Science.gov

Sample records for 26s proteasome inhibition

  1. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition.

    PubMed

    Dambacher, Corey M; Worden, Evan J; Herzik, Mark A; Martin, Andreas; Lander, Gabriel C

    2016-01-08

    The 26S proteasome is responsible for the selective, ATP-dependent degradation of polyubiquitinated cellular proteins. Removal of ubiquitin chains from targeted substrates at the proteasome is a prerequisite for substrate processing and is accomplished by Rpn11, a deubiquitinase within the 'lid' sub-complex. Prior to the lid's incorporation into the proteasome, Rpn11 deubiquitinase activity is inhibited to prevent unwarranted deubiquitination of polyubiquitinated proteins. Here we present the atomic model of the isolated lid sub-complex, as determined by cryo-electron microscopy at 3.5 Å resolution, revealing how Rpn11 is inhibited through its interaction with a neighboring lid subunit, Rpn5. Through mutagenesis of specific residues, we describe the network of interactions that are required to stabilize this inhibited state. These results provide significant insight into the intricate mechanisms of proteasome assembly, outlining the substantial conformational rearrangements that occur during incorporation of the lid into the 26S holoenzyme, which ultimately activates the deubiquitinase for substrate degradation.

  2. Emodin potentiates the antiproliferative effect of interferon α/β by activation of JAK/STAT pathway signaling through inhibition of the 26S proteasome

    PubMed Central

    He, Yujiao; Huang, Junmei; Wang, Ping; Shen, Xiaofei; Li, Sheng; Yang, Lijuan; Liu, Wanli; Suksamrarn, Apichart; Zhang, Guolin; Wang, Fei

    2016-01-01

    The 26S proteasome is a negative regulator of type I interferon (IFN-α/β) signaling. Inhibition of the 26S proteasome by small molecules may be a new strategy to enhance the efficacy of type I IFNs and reduce their side effects. Using cell-based screening assay for new 26S proteasome inhibitors, we found that emodin, a natural anthraquinone, was a potent inhibitor of the human 26S proteasome. Emodin preferably inhibited the caspase-like and chymotrypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Computational modeling showed that emodin exhibited an orientation/conformation favorable to nucleophilic attack in the active pocket of the β1, β2, and β5 subunits of the 26S proteasome. Emodin increased phosphorylation of STAT1, decreased phosphorylation of STAT3 and increased endogenous gene expression stimulated by IFN-α. Emodin inhibited IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Emodin also sensitized the antiproliferative effect of IFN-α in HeLa cervical carcinoma cells and reduced tumor growth in Huh7 hepatocellular carcinoma-bearing mice. These results suggest that emodin potentiates the antiproliferative effect of IFN-α by activation of JAK/STAT pathway signaling through inhibition of 26S proteasome-stimulated IFNAR1 degradation. Therefore, emodin warrants further investigation as a new means to enhance the efficacy of IFN-α/β. PMID:26683360

  3. Inhibition of the 26S proteasome by peptide mimics of the coiled-coil region of its ATPase subunits.

    PubMed

    Inobe, Tomonao; Genmei, Reiko

    Regulation of proteasomal degradation is an indispensable tool for biomedical studies. Thus, there is demand for novel proteasome inhibitors. Proteasomal degradation requires formation of coiled-coil structure by the N-terminal region of ATPase subunits of the proteasome cap. Here we show that peptides that mimic the N-terminal coiled-coil region of ATPase subunits interfere with proteasome function. These results suggest that coiled-coil peptides represent promising new proteasome inhibitors and that N-terminal coiled-coil regions of ATPase subunits are targets for proteasome inhibition.

  4. Dietary apigenin potentiates the inhibitory effect of interferon-α on cancer cell viability through inhibition of 26S proteasome-mediated interferon receptor degradation

    PubMed Central

    Li, Sheng; Yang, Li-juan; Wang, Ping; He, Yu-jiao; Huang, Jun-mei; Liu, Han-wei; Shen, Xiao-fei; Wang, Fei

    2016-01-01

    Background Type I interferons (IFN-α/β) have broad and potent immunoregulatory and antiproliferative activities. However, it is still known whether the dietary flavonoids exhibit their antiviral and anticancer properties by modulating the function of type I IFNs. Objective This study aimed at determining the role of apigenin, a dietary plant flavonoid abundant in common fruits and vegetables, on the type I IFN-mediated inhibition of cancer cell viability. Design Inhibitory effect of apigenin on human 26S proteasome, a known negative regulator of type I IFN signaling, was evaluated in vitro. Molecular docking was conducted to know the interaction between apigenin and subunits of 26S proteasome. Effects of apigenin on JAK/STAT pathway, 26S proteasome-mediated interferon receptor stability, and cancer cells viability were also investigated. Results Apigenin was identified to be a potent inhibitor of human 26S proteasome in a cell-based assay. Apigenin inhibited the chymotrypsin-like, caspase-like, and trypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Results from computational modeling of the potential interactions of apigenin with the chymotrypsin site (β5 subunit), caspase site (β1 subunit), and trypsin site (β2 subunit) of the proteasome were consistent with the observed proteasome inhibitory activity. Apigenin enhanced the phosphorylation of signal transducer and activator of transcription proteins (STAT1 and STAT2) and promoted the endogenous IFN-α-regulated gene expression. Apigenin inhibited the IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Apigenin also sensitized the inhibitory effect of IFN-α on viability of cervical carcinoma HeLa cells. Conclusion These results suggest that apigenin potentiates the inhibitory effect of IFN-α on cancer cell viability by activating JAK/STAT signaling pathway through inhibition of 26S proteasome

  5. Combination of quercetin and tannic acid in inhibiting 26S proteasome affects S5a and 20S expression, and accumulation of ubiquitin resulted in apoptosis in cancer chemoprevention.

    PubMed

    Chang, Tsui-Ling; Wang, Chi-Hsien

    2013-04-01

    To look for oral proteasome inhibitors, daily injested food is the best source for cancer chemoprevention. A combination of active components from vegetables, coffee, tea, and fruit could be more efficient to inhibit 26S proteasome activities for preventing cancer diseases. Tannic acid and quercetin have been shown to strongly inhibit 26S proteasome activity, but the molecular target involved remains unknown. Overlay assay, peptide assay, Western blot, and 2-D gels were used to assess the combination of quercetin and tannic acid as a potential inhibitor. Here, we demonstrated that the combination of quercetin and tannic acid (1) synergistically suppresses chymotrypsin-, caspase-, and trypsin-like proteolytic activities, (2) are tightly binding substrates, (3) do not perturb the proteasome structure, (4) inhibit the 26S proteasome affected by ubiquitin, ATP, or β-casein, and (5) inhibit β-casein degradation by the 26S proteasome in vitro. Finally, the inhibition of the proteasome by a combination of quercetin plus tannic acid in Hep-2 cells resulted in the induction of S5a at low dose, accumulation of ubiquitin, and the cleavage of pro-caspase-3, followed by the induction of apoptotic cell death. Evaluating the combination of quercetin and tannic acid as an oral drug to prevent cancer may provide a pharmacological rationale to pursue preclinical trials of this combination.

  6. Characterization of the 26S proteasome network in Plasmodium falciparum.

    PubMed

    Wang, Lihui; Delahunty, Claire; Fritz-Wolf, Karin; Rahlfs, Stefan; Helena Prieto, Judith; Yates, John R; Becker, Katja

    2015-12-07

    In eukaryotic cells, the ubiquitin-proteasome system as a key regulator of protein quality control is an excellent drug target. We therefore aimed to analyze the 26S proteasome complex in the malaria parasite Plasmodium falciparum, which still threatens almost half of the world's population. First, we established an affinity purification protocol allowing for the isolation of functional 26S proteasome complexes from the parasite. Subunit composition of the proteasome and component stoichiometry were studied and physiologic interacting partners were identified via in situ protein crosslinking. Furthermore, intrinsic ubiquitin receptors of the plasmodial proteasome were determined and their roles in proteasomal substrate recognition were analyzed. Notably, PfUSP14 was characterized as a proteasome-associated deubiquitinase resulting in the concept that targeting proteasomal deubiquitinating activity in P. falciparum may represent a promising antimalarial strategy. The data provide insights into a profound network orchestrated by the plasmodial proteasome and identified novel drug target candidates in the ubiquitin-proteasome system.

  7. Aging perturbs 26S proteasome assembly in Drosophila melanogaster

    PubMed Central

    Vernace, Vita A.; Arnaud, Lisette; Schmidt-Glenewinkel, Thomas; Figueiredo-Pereira, Maria E.

    2012-01-01

    Aging is associated with loss of quality control in protein turnover. The ubiquitin-proteasome pathway is critical to this quality control process as it degrades mutated and damaged proteins. We identified a unique aging-dependent mechanism that contributes to proteasome dysfunction in Drosophila melanogaster. Our studies are the first to show that the major proteasome form in old (43–47 days old) female and male flies is the weakly active 20S core particle, while in younger (1–32 days old) flies highly active 26S proteasomes are preponderant. Old (43–47 days) flies of both genders also exhibit a decline (~50%) in ATP levels, which is relevant to 26S proteasomes, as their assembly is ATP-dependent. The steep declines in 26S proteasome and ATP levels were observed at an age (43–47 days) when the flies exhibited a marked drop in locomotor performance, attesting that these are “old age” events. Remarkably, treatment with a proteasome inhibitor increases ubiquitinated protein levels and shortens the life span of old but not young flies. In conclusion, our data reveal a previously unknown mechanism that perturbs proteasome activity in “old-age” female and male Drosophila most likely depriving them of the ability to effectively cope with proteotoxic damages caused by environmental and/or genetic factors. PMID:17413001

  8. The Regulatory Complex of Drosophila melanogaster 26s Proteasomes

    PubMed Central

    Hölzl, Harald; Kapelari, Barbara; Kellermann, Josef; Seemüller, Erika; Sümegi, Máté; Udvardy, Andor; Medalia, Ohad; Sperling, Joseph; Müller, Shirley A.; Engel, Andreas; Baumeister, Wolfgang

    2000-01-01

    Drosophila melanogaster embryos are a source for homogeneous and stable 26S proteasomes suitable for structural studies. For biochemical characterization, purified 26S proteasomes were resolved by two-dimensional (2D) gel electrophoresis and subunits composing the regulatory complex (RC) were identified by amino acid sequencing and immunoblotting, before corresponding cDNAs were sequenced. 17 subunits from Drosophila RCs were found to have homologues in the yeast and human RCs. An additional subunit, p37A, not yet described in RCs of other organisms, is a member of the ubiquitin COOH-terminal hydrolase family (UCH). Analysis of EM images of 26S proteasomes-UCH-inhibitor complexes allowed for the first time to localize one of the RC's specific functions, deubiquitylating activity. The masses of 26S proteasomes with either one or two attached RCs were determined by scanning transmission EM (STEM), yielding a mass of 894 kD for a single RC. This value is in good agreement with the summed masses of the 18 identified RC subunits (932 kD), indicating that the number of subunits is complete. PMID:10893261

  9. The Lysine 48 and Lysine 63 Ubiquitin Conjugates Are Processed Differently by the 26 S Proteasome*

    PubMed Central

    Jacobson, Andrew D.; Zhang, Nan-Yan; Xu, Ping; Han, Ke-Jun; Noone, Seth; Peng, Junmin; Liu, Chang-Wei

    2009-01-01

    The role of Lys-63 ubiquitin chains in targeting proteins for proteasomal degradation is still obscure. We systematically compared proteasomal processing of Lys-63 ubiquitin chains with that of the canonical proteolytic signal, Lys-48 ubiquitin chains. Quantitative mass spectrometric analysis of ubiquitin chains in HeLa cells determines that the levels of Lys-63 ubiquitin chains are insensitive to short-time proteasome inhibition. Also, the Lys-48/Lys-63 ratio in the 26 S proteasome-bound fraction is 1.7-fold more than that in the cell lysates, likely because some cellular Lys-63 ubiquitin conjugates are sequestered by Lys-63 chain-specific binding proteins. In vitro, Lys-48 and Lys-63 ubiquitin chains bind the 26 S proteasome comparably, whereas Lys-63 chains are deubiquitinated 6-fold faster than Lys-48 chains. Also, Lys-63 tetraubiquitin-conjugated UbcH10 is rapidly deubiquitinated into the monoubiquitinated form, whereas Lys-48 tetraubiquitin targets UbcH10 for degradation. Furthermore, we found that both the ubiquitin aldehyde- and 1,10-phenanthroline-sensitive deubiquitinating activities of the 26 S proteasome contribute to Lys-48- and Lys-63-linkage deubiquitination, albeit the inhibitory extents are different. Together, our findings suggest that compared with Lys-48 chains, cellular Lys-63 chains have less proteasomal accessibility, and proteasome-bound Lys-63 chains are more rapidly deubiquitinated, which could cause inefficient degradation of Lys-63 conjugates. PMID:19858201

  10. Conformational switching of the 26S proteasome enables substrate degradation.

    PubMed

    Matyskiela, Mary E; Lander, Gabriel C; Martin, Andreas

    2013-07-01

    The 26S proteasome is the major eukaryotic ATP-dependent protease, responsible for regulating the proteome through degradation of ubiquitin-tagged substrates. Its regulatory particle, containing the heterohexameric AAA+ ATPase motor and the essential deubiquitinase Rpn11, recognizes substrates, removes their ubiquitin chains and translocates them into the associated peptidase after unfolding, but detailed mechanisms remain unknown. Here we present the 26S proteasome structure from Saccharomyces cerevisiae during substrate degradation, showing that the regulatory particle switches from a preengaged to a translocation-competent conformation. This conformation is characterized by a rearranged ATPase ring with uniform subunit interfaces, a widened central channel coaxially aligned with the peptidase and a spiral orientation of pore loops that suggests a rapid progression of ATP-hydrolysis events around the ring. Notably, Rpn11 moves from an occluded position to directly above the central pore, thus facilitating substrate deubiquitination concomitant with translocation.

  11. PiZ Mouse Liver Accumulates Polyubiquitin Conjugates That Associate with Catalytically Active 26S Proteasomes

    PubMed Central

    Haddock, Christopher J.; Blomenkamp, Keith; Gautam, Madhav; James, Jared; Mielcarska, Joanna; Gogol, Edward; Teckman, Jeffrey; Skowyra, Dorota

    2014-01-01

    Accumulation of aggregation-prone human alpha 1 antitrypsin mutant Z (AT-Z) protein in PiZ mouse liver stimulates features of liver injury typical of human alpha 1 antitrypsin type ZZ deficiency, an autosomal recessive genetic disorder. Ubiquitin-mediated proteolysis by the 26S proteasome counteracts AT-Z accumulation and plays other roles that, when inhibited, could exacerbate the injury. However, it is unknown how the conditions of AT-Z mediated liver injury affect the 26S proteasome. To address this question, we developed a rapid extraction strategy that preserves polyubiquitin conjugates in the presence of catalytically active 26S proteasomes and allows their separation from deposits of insoluble AT-Z. Compared to WT, PiZ extracts had about 4-fold more polyubiquitin conjugates with no apparent change in the levels of the 26S and 20S proteasomes, and unassembled subunits. The polyubiquitin conjugates had similar affinities to ubiquitin-binding domain of Psmd4 and co-purified with similar amounts of catalytically active 26S complexes. These data show that polyubiquitin conjugates were accumulating despite normal recruitment to catalytically active 26S proteasomes that were available in excess, and suggest that a defect at the 26S proteasome other than compromised binding to polyubiquitin chain or peptidase activity played a role in the accumulation. In support of this idea, PiZ extracts were characterized by high molecular weight, reduction-sensitive forms of selected subunits, including ATPase subunits that unfold substrates and regulate access to proteolytic core. Older WT mice acquired similar alterations, implying that they result from common aspects of oxidative stress. The changes were most pronounced on unassembled subunits, but some subunits were altered even in the 26S proteasomes co-purified with polyubiquitin conjugates. Thus, AT-Z protein aggregates indirectly impair degradation of polyubiquitinated proteins at the level of the 26S proteasome

  12. Toward an Integrated Structural Model of the 26S Proteasome*

    PubMed Central

    Förster, Friedrich; Lasker, Keren; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2010-01-01

    The 26S proteasome is the end point of the ubiquitin-proteasome pathway and degrades ubiquitylated substrates. It is composed of the 20S core particle (CP), where degradation occurs, and the 19S regulatory particle (RP), which ensures substrate specificity of degradation. Whereas the CP is resolved to atomic resolution, the architecture of the RP is largely unknown. We provide a comprehensive analysis of the current structural knowledge on the RP, including structures of the RP subunits, physical protein-protein interactions, and cryoelectron microscopy data. These data allowed us to compute an atomic model for the CP-AAA-ATPase subcomplex. In addition to this atomic model, further subunits can be mapped approximately, which lets us hypothesize on the substrate path during its degradation. PMID:20467039

  13. Viruses and the 26S proteasome: hacking into destruction.

    PubMed

    Banks, Lawrence; Pim, David; Thomas, Miranda

    2003-08-01

    The discovery that the human papillomavirus E6 oncoprotein could direct the ubiquitination and degradation of the p53 tumour suppressor at the 26S proteasome was the beginning of a new view on virus-host interactions. A decade later, a plethora of viral proteins have been shown to direct host-cell proteins for proteolytic degradation. These activities are required for various aspects of the virus life-cycle from entry, through replication and enhanced cell survival, to viral release. As with oncogenes and cell-cycle control, the study of apparently simple viruses has provided a wealth of information on the function of a whole class of cellular proteins whose function is arguably as important as that of the kinases: the ubiquitin-protein ligases.

  14. D1 dopamine receptor stimulation impairs striatal proteasome activity in Parkinsonism through 26S proteasome disassembly.

    PubMed

    Barroso-Chinea, Pedro; Thiolat, Marie-Laure; Bido, Simone; Martinez, Audrey; Doudnikoff, Evelyne; Baufreton, Jérôme; Bourdenx, Mathieu; Bloch, Bertrand; Bezard, Erwan; Martin-Negrier, Marie-Laure

    2015-06-01

    Among the mechanisms underlying the development of L-dopa-induced dyskinesia (LID) in Parkinson's disease, complex alterations in dopamine signaling in D1 receptor (D1R)-expressing medium spiny striatal neurons have been unraveled such as, but not limited to, dysregulation of D1R expression, lateral diffusion, intraneuronal trafficking, subcellular localization and desensitization, leading to a pathological anchorage of D1R at the plasma membrane. Such anchorage is partly due to a decreased proteasomal activity that is specific of the L-dopa-exposed dopamine-depleted striatum, results from D1R activation and feeds-back the D1R exaggerated cell surface abundance. The precise mechanisms by which L-dopa affects striatal proteasome activity remained however unknown. We here show, in a series of in vitro ex vivo and in vivo models, that such rapid modulation of striatal proteasome activity intervenes through D1R-mediated disassembly of the 26S proteasome rather than change in transcription or translation of proteasome or proteasome subunits intraneuronal relocalization.

  15. Compensatory role of the Nrf2-ARE pathway against paraquat toxicity: Relevance of 26S proteasome activity.

    PubMed

    Izumi, Yasuhiko; Yamamoto, Noriyuki; Matsushima, Sayaka; Yamamoto, Takamori; Takada-Takatori, Yuki; Akaike, Akinori; Kume, Toshiaki

    2015-11-01

    Oxidative stress and the ubiquitin-proteasome system play a key role in the pathogenesis of Parkinson disease. Although the herbicide paraquat is an environmental factor that is involved in the etiology of Parkinson disease, the role of 26S proteasome in paraquat toxicity remains to be determined. Using PC12 cells overexpressing a fluorescent protein fused to the proteasome degradation signal, we report here that paraquat yielded an inhibitory effect on 26S proteasome activity without an obvious decline in 20S proteasome activity. Relative low concentrations of proteasome inhibitors caused the accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), which is targeted to the ubiquitin-proteasome system, and activated the antioxidant response element (ARE)-dependent transcription. Paraquat also upregulated the protein level of Nrf2 without increased expression of Nrf2 mRNA, and activated the Nrf2-ARE pathway. Consequently, paraquat induced expression of Nrf2-dependent ARE-driven genes, such as γ-glutamylcysteine synthetase, catalase, and hemeoxygenase-1. Knockdown of Nrf2 or inhibition of γ-glutamylcysteine synthetase and catalase exacerbated paraquat-induced toxicity, whereas suppression of hemeoxygenase-1 did not. These data indicate that the compensatory activation of the Nrf2-ARE pathway via inhibition of 26S proteasome serves as part of a cellular defense mechanism to protect against paraquat toxicity.

  16. KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition.

    PubMed

    Haratake, Kousuke; Sato, Akitsugu; Tsuruta, Fuminori; Chiba, Tomoki

    2016-06-01

    Many cellular stresses cause damages of intracellular proteins, which are eventually degraded by the ubiquitin and proteasome system. The proteasome is a multicatalytic protease complex composed of 20S core particle and the proteasome activators that regulate the proteasome activity. Extracellular mutants 29 (Ecm29) is a 200 kDa protein encoded by KIAA0368 gene, associates with the proteasome, but its role is largely unknown. Here, we generated KIAA0368-deficient mice and investigated the function of Ecm29 in stress response. KIAA0368-deficient mice showed normal peptidase activity and proteasome formation at normal condition. Under stressed condition, 26S proteasome dissociates in wild-type cells, but not in KIAA0368(-/-) cells. This response was correlated with efficient degradation of damaged proteins and resistance to oxidative stress of KIAA0368(-/-) cells. Thus, Ecm29 is involved in the dissociation process of 26S proteasome, providing clue to analyse the mechanism of proteasomal degradation under various stress condition.

  17. Inherent asymmetry in the 26S proteasome is defined by the ubiquitin receptor RPN13.

    PubMed

    Berko, Dikla; Herkon, Ora; Braunstein, Ilana; Isakov, Elada; David, Yael; Ziv, Tamar; Navon, Ami; Stanhill, Ariel

    2014-02-28

    The 26S double-capped proteasome is assembled in a hierarchic event that is orchestrated by dedicated set of chaperons. To date, all stoichiometric subunits are considered to be present in equal ratios, thus providing symmetry to the double-capped complex. Here, we show that although the vast majority (if not all) of the double-capped 26S proteasomes, both 19S complexes, contain the ubiquitin receptor Rpn10/S5a, only one of these 19S particles contains the additional ubiquitin receptor Rpn13, thereby defining asymmetry in the 26S proteasome. These results were validated in yeast and mammals, utilizing biochemical and unbiased AQUA-MS methodologies. Thus, the double-capped 26S proteasomes are asymmetric in their polyubiquitin binding capacity. Our data point to a potential new role for ubiquitin receptors as directionality factors that may participate in the prevention of simultaneous substrates translocation into the 20S from both 19S caps.

  18. Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome.

    PubMed

    Pack, Chan-Gi; Yukii, Haruka; Toh-e, Akio; Kudo, Tai; Tsuchiya, Hikaru; Kaiho, Ai; Sakata, Eri; Murata, Shigeo; Yokosawa, Hideyoshi; Sako, Yasushi; Baumeister, Wolfgang; Tanaka, Keiji; Saeki, Yasushi

    2014-03-06

    The 26S proteasome is a 2.5-MDa multisubunit protease complex that degrades polyubiquitylated proteins. Although its functions and structure have been extensively characterized, little is known about its dynamics in living cells. Here, we investigate the absolute concentration, spatio-temporal dynamics and complex formation of the proteasome in living cells using fluorescence correlation spectroscopy. We find that the 26S proteasome complex is highly mobile, and that almost all proteasome subunits throughout the cell are stably incorporated into 26S proteasomes. The interaction between 19S and 20S particles is stable even in an importin-α mutant, suggesting that the 26S proteasome is assembled in the cytoplasm. Furthermore, a genetically stabilized 26S proteasome mutant is able to enter the nucleus. These results suggest that the 26S proteasome completes its assembly process in the cytoplasm and translocates into the nucleus through the nuclear pore complex as a holoenzyme.

  19. The Cdc48-Vms1 complex maintains 26S proteasome architecture.

    PubMed

    Tran, Joseph R; Brodsky, Jeffrey L

    2014-03-15

    The 26S proteasome is responsible for most regulated protein turnover and for the degradation of aberrant proteins in eukaryotes. The assembly of this ~2.5 MDa multicatalytic protease requires several dedicated chaperones and, once assembled, substrate selectivity is mediated by ubiquitin conjugation. After modification with ubiquitin, substrates are escorted to the proteasome by myriad factors, including Cdc48 (cell-division cycle 48). Cdc48 also associates with numerous cofactors, but, to date, it is unclear whether each cofactor facilitates proteasome delivery. We discovered that yeast lacking a conserved Cdc48 cofactor, Vms1 [VCP (valosin-containing protein)/Cdc48-associated mitochondrial stress-responsive], accumulate proteasome-targeted ubiquitinated proteins. Vms1 mutant cells also contain elevated levels of unassembled 20S proteasome core particles and select 19S cap subunits. In addition, we found that the ability of Vms1 to support 26S proteasome assembly requires Cdc48 interaction, and that the loss of Vms1 reduced 26S proteasome levels and cell viability after prolonged culture in the stationary phase. The results of the present study highlight an unexpected link between the Cdc48-Vms1 complex and the preservation of proteasome architecture, and indicate how perturbed proteasome assembly affects the turnover of ubiquitinated proteins and maintains viability in aging cells.

  20. The Cdc48–Vms1 complex maintains 26S proteasome architecture

    PubMed Central

    Tran, Joseph R.; Brodsky, Jeffrey L.

    2014-01-01

    The 26S proteasome is responsible for most regulated protein turnover and for the degradation of aberrant proteins in eukaryotes. The assembly of this ~2.5 MDa multicatalytic protease requires several dedicated chaperones and, once assembled, substrate selectivity is mediated by ubiquitin conjugation. After modification with ubiquitin, substrates are escorted to the proteasome by myriad factors, including Cdc48 (cell-division cycle 48). Cdc48 also associates with numerous cofactors, but, to date, it is unclear whether each cofactor facilitates proteasome delivery. We discovered that yeast lacking a conserved Cdc48 cofactor, Vms1 [VCP (valosin-containing protein)/Cdc48-associated mitochondrial stress-responsive], accumulate proteasome-targeted ubiquitinated proteins. Vms1 mutant cells also contain elevated levels of unassembled 20S proteasome core particles and select 19S cap subunits. In addition, we found that the ability of Vms1 to support 26S proteasome assembly requires Cdc48 interaction, and that the loss of Vms1 reduced 26S proteasome levels and cell viability after prolonged culture in the stationary phase. The results of the present study highlight an unexpected link between the Cdc48–Vms1 complex and the preservation of proteasome architecture, and indicate how perturbed proteasome assembly affects the turnover of ubiquitinated proteins and maintains viability in aging cells. PMID:24351022

  1. DBC2 resistance is achieved by enhancing 26S proteasome-mediated protein degradation.

    PubMed

    Collado, Denise; Yoshihara, Takashi; Hamaguchi, Masaaki

    2007-08-31

    Tumor suppressor gene DBC2 stops growth of tumor cells through regulation of CCND1. Interference of CCND1 down-regulation prevented growth arrest caused by DBC2 [T. Yoshihara, D. Collado, M. Hamaguchi, Cyclin D1 down-regulation is essential for DBC2's tumor suppressor function, Biochemical and biophysical research communications 358 (2007) 1076-1079]. It was also noted that DBC2 resistant cells eventually arose after repeated induction of DBC2 with muristerone A treatment [M. Hamaguchi, J.L. Meth, C. Von Klitzing, W. Wei, D. Esposito, L. Rodgers, T. Walsh, P. Welcsh, M.C. King, M.H. Wigler, DBC2, a candidate for a tumor suppressor gene involved in breast cancer, Proc. Natl. Acad. Sci. USA 99 (2002) 13647-13652]. In order to elucidate the mechanism of resistance acquisition, we analyzed DBC2 sensitive and resistant cells derived from the same progenitor cells (T-47D). We discovered that DBC2 protein was abundantly expressed in the sensitive cells when DBC2 was induced. In contrast, it was undetectable by western blot analysis in the resistant cells. We confirmed that the inducible gene expression system was responsive in both cells by detecting induced GFP. Additionally, inhibition of 26S proteasome by MG132 revealed production of DBC2 protein in the resistant cells. These findings indicate that the resistant T-47D cells survive DBC2 induction by rapid destruction of DBC2 through 26S proteasome-mediated protein degradation.

  2. Purification and characterization of 26S proteasomes from human and mouse spermatozoa.

    PubMed

    Tipler, C P; Hutchon, S P; Hendil, K; Tanaka, K; Fishel, S; Mayer, R J

    1997-12-01

    We purified by fractionation on 10-40% glycerol gradients, 26S proteasomes from normal human spermatozoa. These proteasomes, which participate in the ATP-dependent degradation of ubiquitinated proteins, share a similar sedimentation coefficient to those purified from other human tissues. Fluorogenic peptide assays reveal they have chymotrypsin, trypsin and peptidyl-glutamyl-like peptide hydrolysing activities; the chymotrypsin activity is ablated by the specific 26S proteasome inhibitor MG132. Confirmation that these large proteases are 26S proteasomes is provided by detection of the 20S proteasome subunits HC2, XAPC7, RN3 and Z and regulatory ATPases MSS1, TBP1, SUG1 and SUG2 by Western analyses with monoclonal antisera. These antigens are found only in the gradient fractions enriched in proteolytic activities. We have also shown that, although mature spermatozoa from mice have considerably reduced amounts of a ubiquitin-conjugating enzyme (E2) and ubiquitin-protein conjugates in comparison with less mature germ cells, they retain relatively high values of 26S proteasome activity. This suggests that proteasomes may have further roles to play in normal sperm physiology.

  3. Differential expression of 26S proteasome subunits and functional activity during neonatal development.

    PubMed

    Claud, Erika C; McDonald, Julie A K; He, Shu-Mei; Yu, Yueyue; Duong, Lily; Sun, Jun; Petrof, Elaine O

    2014-08-29

    Proteasomes regulate many essential cellular processes by degrading intracellular proteins. While aging is known to be associated with dysfunction of the proteasome, there are few reports detailing activity and function of proteasomes in the early stages of life. To elucidate the function and development of mammalian proteasomes, 26S proteasomes were affinity-purified from rat intestine, spleen and liver. The developmental expression of core, regulatory and immunoproteasome subunits was analyzed by immunoblotting and reverse-transcriptase PCR of mRNA subunits, and proteasome catalytic function was determined by fluorogenic enzymatic assays. The expression of core (β2, β5, α7 and β1) and regulatory (Rpt5) subunits was found to be present at low levels at birth and increased over time particularly at weaning. In contrast, while gradual developmental progression of proteasome structure was also seen with the immunoproteasome subunits (β1i, β5i, and β2i), these were not present at birth. Our studies demonstrate a developmental pattern to 26S proteasome activity and subunit expression, with low levels of core proteasome components and absence of immunoproteasomes at birth followed by increases at later developmental stages. This correlates with findings from other studies of a developmental hyporesponsiveness of the adaptive immune system to allow establishment of microbial colonization immediately after birth.

  4. Structure of an endogenous yeast 26S proteasome reveals two major conformational states.

    PubMed

    Luan, Bai; Huang, Xiuliang; Wu, Jianping; Mei, Ziqing; Wang, Yiwei; Xue, Xiaobin; Yan, Chuangye; Wang, Jiawei; Finley, Daniel J; Shi, Yigong; Wang, Feng

    2016-03-08

    The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.

  5. DNA damage modulates interactions between microRNAs and the 26S proteasome

    PubMed Central

    Tsimokha, Anna S; Kulichkova, Valentina A.; Karpova, Elena V.; Zaykova, Julia J.; Aksenov, Nikolai D; Vasilishina, Anastasia A.; Kropotov, Andrei V.; Antonov, Alexey; Barlev, Nikolai A.

    2014-01-01

    26S proteasomes are known as major non-lysosomal cellular machines for coordinated and specific destruction of ubiquitinylated proteins. The proteolytic activities of proteasomes are controlled by various post-translational modifications in response to environmental cues, including DNA damage. Besides proteolysis, proteasomes also associate with RNA hydrolysis and splicing. Here, we extend the functional diversity of proteasomes by showing that they also dynamically associate with microRNAs (miRNAs) both in the nucleus and cytoplasm of cells. Moreover, DNA damage induced by an anti-cancer drug, doxorubicin, alters the repertoire of proteasome-associated miRNAs, enriching the population of miRNAs that target cell cycle checkpoint regulators and DNA repair proteins. Collectively, these data uncover yet another potential mode of action for proteasomes in the cell via their dynamic association with microRNAs. PMID:25004448

  6. Structure of an endogenous yeast 26S proteasome reveals two major conformational states

    PubMed Central

    Luan, Bai; Huang, Xiuliang; Wu, Jianping; Mei, Ziqing; Wang, Yiwei; Xue, Xiaobin; Yan, Chuangye; Wang, Jiawei; Finley, Daniel J.; Shi, Yigong; Wang, Feng

    2016-01-01

    The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function. PMID:26929360

  7. Rice Stripe Tenuivirus Nonstructural Protein 3 Hijacks the 26S Proteasome of the Small Brown Planthopper via Direct Interaction with Regulatory Particle Non-ATPase Subunit 3

    PubMed Central

    Xu, Yi; Wu, Jianxiang; Fu, Shuai; Li, Chenyang; Zhu, Zeng-Rong

    2015-01-01

    ABSTRACT The ubiquitin/26S proteasome system plays a vital role in regulating host defenses against pathogens. Previous studies have highlighted different roles for the ubiquitin/26S proteasome in defense during virus infection in both mammals and plants, but their role in the vectors that transmit those viruses is still unclear. In this study, we determined that the 26S proteasome is present in the small brown planthopper (SBPH) (Laodelphgax striatellus) and has components similar to those in plants and mammals. There was an increase in the accumulation of Rice stripe virus (RSV) in the transmitting vector SBPH after disrupting the 26S proteasome, indicating that the SBPH 26S proteasome plays a role in defense against RSV infection by regulating RSV accumulation. Yeast two-hybrid analysis determined that a subunit of the 26S proteasome, named RPN3, could interact with RSV NS3. Transient overexpression of RPN3 had no effect on the RNA silencing suppressor activity of RSV NS3. However, NS3 could inhibit the ability of SBPH rpn3 to complement an rpn3 mutation in yeast. Our findings also indicate that the direct interaction between RPN3 and NS3 was responsible for inhibiting the complementation ability of RPN3. In vivo, we found an accumulation of ubiquitinated protein in SBPH tissues where the RSV titer was high, and silencing of rpn3 resulted in malfunction of the SBPH proteasome-mediated proteolysis. Consequently, viruliferous SBPH in which RPN3 was repressed transmitted the virus more effectively as a result of higher accumulation of RSV. Our results suggest that the RSV NS3 protein is able to hijack the 26S proteasome in SBPH via a direct interaction with the RPN3 subunit to attenuate the host defense response. IMPORTANCE We show, for the first time, that the 26S proteasome components are present in the small brown planthopper and play a role in defense against its vectored plant virus (RSV). In turn, RSV encodes a protein that subverts the SBPH 26S proteasome

  8. Localization of the regulatory particle subunit Sem1 in the 26S proteasome

    SciTech Connect

    Bohn, Stefan; Sakata, Eri; Beck, Florian; Pathare, Ganesh R.; Schnitger, Jérôme; Nágy, Istvan; Baumeister, Wolfgang Förster, Friedrich

    2013-05-31

    Highlights: •26S proteasome subunit Sem1 was mapped using cryo-EM and cross-linking data. •C-terminal helix of Sem1 located near winged helix motif of Rpn7. •N-terminal part of Sem1 tethers Rpn7, Rpn3 and lid helical bundle. •Sem1 binds differently to PCI-domains of proteasome subunit Rpn7 and TREX-2 subunit Thp1. -- Abstract: The ubiquitin–proteasome system is responsible for regulated protein degradation in the cell with the 26S proteasome acting as its executive arm. The molecular architecture of this 2.5 MDa complex has been established recently, with the notable exception of the small acidic subunit Sem1. Here, we localize the C-terminal helix of Sem1 binding to the PCI domain of the subunit Rpn7 using cryo-electron microscopy single particle reconstruction of proteasomes purified from yeast cells with sem1 deletion. The approximate position of the N-terminal region of Sem1 bridging the cleft between Rpn7 and Rpn3 was inferred based on site-specific cross-linking data of the 26S proteasome. Our structural studies indicate that Sem1 can assume different conformations in different contexts, which supports the idea that Sem1 functions as a molecular glue stabilizing the Rpn3/Rpn7 heterodimer.

  9. Attenuation of glucocorticoid signaling through targeted degradation of p300 via the 26S proteasome pathway.

    PubMed

    Li, Qiao; Su, Anna; Chen, Jihong; Lefebvre, Yvonne A; Haché, Robert J G

    2002-12-01

    The effects of acetylation on gene expression are complex, with changes in chromatin accessibility intermingled with direct effects on transcriptional regulators. For the nuclear receptors, both positive and negative effects of acetylation on specific gene transcription have been observed. We report that p300 and steroid receptor coactivator 1 interact transiently with the glucocorticoid receptor and that the acetyltransferase activity of p300 makes an important contribution to glucocorticoid receptor-mediated transcription. Treatment of cells with the deacetylase inhibitor, sodium butyrate, inhibited steroid-induced transcription and altered the transient association of glucocorticoid receptor with p300 and steroid receptor coactivator 1. Additionally, sustained sodium butyrate treatment induced the degradation of p300 through the 26S proteasome pathway. Treatment with the proteasome inhibitor MG132 restored both the level of p300 protein and the transcriptional response to steroid over 20 h of treatment. These results reveal new levels for the regulatory control of gene expression by acetylation and suggest feedback control on p300 activity.

  10. Precise assembly and regulation of 26S proteasome and correlation between proteasome dysfunction and neurodegenerative diseases

    PubMed Central

    Im, Eunju; Chung, Kwang Chul

    2016-01-01

    Neurodegenerative diseases (NDs) often involve the formation of abnormal and toxic protein aggregates, which are thought to be the primary factor in ND occurrence and progression. Aged neurons exhibit marked increases in aggregated protein levels, which can lead to increased cell death in specific brain regions. As no specific drugs/therapies for treating the symptoms or/and progression of NDs are available, obtaining a complete understanding of the mechanism underlying the formation of protein aggregates is needed for designing a novel and efficient removal strategy. Intracellular proteolysis generally involves either the lysosomal or ubiquitin-proteasome system. In this review, we focus on the structure and assembly of the proteasome, proteasome-mediated protein degradation, and the multiple dynamic regulatory mechanisms governing proteasome activity. We also discuss the plausibility of the correlation between changes in proteasome activity and the occurrence of NDs. [BMB Reports 2016; 49(9): 459-473] PMID:27312603

  11. Precise assembly and regulation of 26S proteasome and correlation between proteasome dysfunction and neurodegenerative diseases.

    PubMed

    Im, Eunju; Chung, Kwang Chul

    2016-09-01

    Neurodegenerative diseases (NDs) often involve the formation of abnormal and toxic protein aggregates, which are thought to be the primary factor in ND occurrence and progression. Aged neurons exhibit marked increases in aggregated protein levels, which can lead to increased cell death in specific brain regions. As no specific drugs/therapies for treating the symptoms or/and progression of NDs are available, obtaining a complete understanding of the mechanism underlying the formation of protein aggregates is needed for designing a novel and efficient removal strategy. Intracellular proteolysis generally involves either the lysosomal or ubiquitin-proteasome system. In this review, we focus on the structure and assembly of the proteasome, proteasome-mediated protein degradation, and the multiple dynamic regulatory mechanisms governing proteasome activity. We also discuss the plausibility of the correlation between changes in proteasome activity and the occurrence of NDs. [BMB Reports 2016; 49(9): 459-473].

  12. Uncommon functional properties of the first piscine 26S proteasome from the Antarctic notothenioid Trematomus bernacchii.

    PubMed

    Gogliettino, Marta; Balestrieri, Marco; Riccio, Alessia; Facchiano, Angelo; Fusco, Carmela; Palazzo, Vincenzo Cecere; Rossi, Mosè; Cocca, Ennio; Palmieri, Gianna

    2016-01-01

    Protein homoeostasis is a fundamental process allowing the preservation of functional proteins and it has a great impact on the life of the Antarctic organisms. However, the effect of low temperatures on protein turnover is poorly understood and the cold-adaptation of the degradation machinery remains an unresolved issue. As the 26S proteasome represents the main proteolytic system devoted to the controlled degradation of intracellular proteins, the purpose of the present study was to investigate the functions of this complex in the notothenioid Trematomus bernacchii, in order to better understand its role in the physiology of Antarctic fish. To this aim, we purified and characterized the 26S proteasome from T. bernacchii and isolated the cDNAs codifying seven of the 14 subunits belonging to the proteasome 20S core particle. Results provided evidences of the high resistance of the piscine 26S proteasome to oxidative agents and of its 'uncommon' ability to efficiently hydrolyse oxidized bovine serum albumin (BSA), suggesting that this enzymatic complex could play a key role in the antioxidant defense systems in fish inhabiting permanently cold marine environments. These unique properties were also reflected by the 3D model analysis, which revealed a higher structural stability of the piscine complex respect to the murine template. Finally, a comparative analysis, performed in a variety of tissues collected from T. bernacchii and the temperate fish Dicentrarchus labrax, showed a lower protein retention in the cold-adapted fish, possibly due to a better efficiency of its degradation machinery.

  13. [Structures and functions of the 26S proteasome Rpn10 family].

    PubMed

    Kawahara, Hiroyuki

    2002-09-01

    The ubiquitin-dependent proteolytic pathway is thought to be one of the vital systems for cellular regulations, including control of the cell cycle, differentiation and apoptosis. In this pathway, poly-ubiquitinated proteins are selectively degraded by the 26S proteasome, a multisubunit proteolytic machinery. Recognition of the poly-ubiquitin chain by the 26S proteasome should be a key step leading to the selective degradation of target proteins, and the Rpn10 subunit of the 26S proteasome has been shown to preferentially bind the poly-ubiquitin chain in vitro. We previously reported that the mouse Rpn10 mRNA family is generated from a single gene by developmentally regulated, alternative splicing. To determine whether such alternative splicing mechanisms occur in organisms other than the mouse, we searched for Rpn10 isoforms in various species. Here we summarize the gene organization of the Rpn10 in lower species and provide evidence that the competence for generating all distinct forms of Rpn10 alternative splicing has expanded through evolution. Some of the Rpn10 family genes were found to be expressed in distinct developmental stages, suggesting that they have distinct functions during embryogenesis. For example, Rpn10c and Rpn10e were exclusively expressed at specific developmental stages and in specific tissues, while Rpn10a was expressed constitutively. Our experimental results indicate that the respective Rpn10 proteins possess distinct roles in the progression of development. Furthermore, some of the Rpn10 variants specifically interacted with important developmental regulators.

  14. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach.

    PubMed

    Lasker, Keren; Förster, Friedrich; Bohn, Stefan; Walzthoeni, Thomas; Villa, Elizabeth; Unverdorben, Pia; Beck, Florian; Aebersold, Ruedi; Sali, Andrej; Baumeister, Wolfgang

    2012-01-31

    The 26S proteasome is at the executive end of the ubiquitin-proteasome pathway for the controlled degradation of intracellular proteins. While the structure of its 20S core particle (CP) has been determined by X-ray crystallography, the structure of the 19S regulatory particle (RP), which recruits substrates, unfolds them, and translocates them to the CP for degradation, has remained elusive. Here, we describe the molecular architecture of the 26S holocomplex determined by an integrative approach based on data from cryoelectron microscopy, X-ray crystallography, residue-specific chemical cross-linking, and several proteomics techniques. The "lid" of the RP (consisting of Rpn3/5/6/7/8/9/11/12) is organized in a modular fashion. Rpn3/5/6/7/9/12 form a horseshoe-shaped heterohexamer, which connects to the CP and roofs the AAA-ATPase module, positioning the Rpn8/Rpn11 heterodimer close to its mouth. Rpn2 is rigid, supporting the lid, while Rpn1 is conformationally variable, positioned at the periphery of the ATPase ring. The ubiquitin receptors Rpn10 and Rpn13 are located in the distal part of the RP, indicating that they were recruited to the complex late in its evolution. The modular structure of the 26S proteasome provides insights into the sequence of events prior to the degradation of ubiquitylated substrates.

  15. Uncommon functional properties of the first piscine 26S proteasome from the Antarctic notothenioid Trematomus bernacchii

    PubMed Central

    Gogliettino, Marta; Balestrieri, Marco; Riccio, Alessia; Facchiano, Angelo; Fusco, Carmela; Palazzo, Vincenzo Cecere; Rossi, Mosè; Cocca, Ennio; Palmieri, Gianna

    2016-01-01

    Protein homoeostasis is a fundamental process allowing the preservation of functional proteins and it has a great impact on the life of the Antarctic organisms. However, the effect of low temperatures on protein turnover is poorly understood and the cold-adaptation of the degradation machinery remains an unresolved issue. As the 26S proteasome represents the main proteolytic system devoted to the controlled degradation of intracellular proteins, the purpose of the present study was to investigate the functions of this complex in the notothenioid Trematomus bernacchii, in order to better understand its role in the physiology of Antarctic fish. To this aim, we purified and characterized the 26S proteasome from T. bernacchii and isolated the cDNAs codifying seven of the 14 subunits belonging to the proteasome 20S core particle. Results provided evidences of the high resistance of the piscine 26S proteasome to oxidative agents and of its ‘uncommon’ ability to efficiently hydrolyse oxidized bovine serum albumin (BSA), suggesting that this enzymatic complex could play a key role in the antioxidant defense systems in fish inhabiting permanently cold marine environments. These unique properties were also reflected by the 3D model analysis, which revealed a higher structural stability of the piscine complex respect to the murine template. Finally, a comparative analysis, performed in a variety of tissues collected from T. bernacchii and the temperate fish Dicentrarchus labrax, showed a lower protein retention in the cold-adapted fish, possibly due to a better efficiency of its degradation machinery. PMID:26933238

  16. Structural insights into the functional cycle of the ATPase module of the 26S proteasome.

    PubMed

    Wehmer, Marc; Rudack, Till; Beck, Florian; Aufderheide, Antje; Pfeifer, Günter; Plitzko, Jürgen M; Förster, Friedrich; Schulten, Klaus; Baumeister, Wolfgang; Sakata, Eri

    2017-02-07

    In eukaryotic cells, the ubiquitin-proteasome system (UPS) is responsible for the regulated degradation of intracellular proteins. The 26S holocomplex comprises the core particle (CP), where proteolysis takes place, and one or two regulatory particles (RPs). The base of the RP is formed by a heterohexameric AAA(+) ATPase module, which unfolds and translocates substrates into the CP. Applying single-particle cryo-electron microscopy (cryo-EM) and image classification to samples in the presence of different nucleotides and nucleotide analogs, we were able to observe four distinct conformational states (s1 to s4). The resolution of the four conformers allowed for the construction of atomic models of the AAA(+) ATPase module as it progresses through the functional cycle. In a hitherto unobserved state (s4), the gate controlling access to the CP is open. The structures described in this study allow us to put forward a model for the 26S functional cycle driven by ATP hydrolysis.

  17. Proteomics of the 26S proteasome in Spodoptera frugiperda cells infected with the nucleopolyhedrovirus, AcMNPV.

    PubMed

    Lyupina, Yulia V; Zatsepina, Olga G; Serebryakova, Marina V; Erokhov, Pavel A; Abaturova, Svetlana B; Kravchuk, Oksana I; Orlova, Olga V; Beljelarskaya, Svetlana N; Lavrov, Andrey I; Sokolova, Olga S; Mikhailov, Victor S

    2016-06-01

    Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 β subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection.

  18. Noncovalent inhibitors of human 20S and 26S proteasome based on trypsin inhibitor SFTI-1.

    PubMed

    Dębowski, Dawid; Cichorek, Mirosława; Lubos, Marta; Wójcik, Sławomir; Łęgowska, Anna; Rolka, Krzysztof

    2016-09-01

    Sunflower trypsin inhibitor (SFTI-1) is recognized as an attractive scaffold to designed potent inhibitors of various proteases. We have recently found that its analogues inhibit noncovalently both human and yeast 20S proteasomes. Here, a set of novel and more potent in vitro inhibitors is presented. The inhibitory potency of the peptides was assessed with human 20S proteasome in the presence or absence of sodium dodecyl sulfate and with human 26 proteasome. Their antiproliferative action against tumor (human melanoma cells A375) and normal cells (46 BR.1N human fibroblasts and HaCaT keratinocytes) was determined. The selected fluoresceine-labeled inhibitors were able to internalize into A375 cells and were sometimes present as foci in the cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 685-696, 2016.

  19. Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid.

    PubMed

    Estrin, Eric; Lopez-Blanco, José Ramón; Chacón, Pablo; Martin, Andreas

    2013-09-03

    The 26S proteasome is the major ATP-dependent protease in eukaryotes and thus involved in regulating a diverse array of vital cellular processes. Three subcomplexes form this massive degradation machine: the lid, the base, and the core. While assembly of base and core has been well-studied, the detailed molecular mechanisms involved in formation of the nine-subunit lid remain largely unknown. Here, we reveal that helices found at the C terminus of each lid subunit form a helical bundle that directs the ordered self-assembly of the lid subcomplex. Furthermore, we use an integrative modeling approach to gain critical insights into the bundle topology and provide an important structural framework for our biochemical data. We show that the helical bundle serves as a hub through which the last-added subunit Rpn12 monitors proper lid assembly before incorporation into the proteasome. Finally, we predict that the assembly of the COP9 signalosome depends on a similar helical bundle.

  20. Structural insights into the functional cycle of the ATPase module of the 26S proteasome

    PubMed Central

    Wehmer, Marc; Rudack, Till; Beck, Florian; Aufderheide, Antje; Pfeifer, Günter; Plitzko, Jürgen M.; Förster, Friedrich; Schulten, Klaus; Baumeister, Wolfgang; Sakata, Eri

    2017-01-01

    In eukaryotic cells, the ubiquitin–proteasome system (UPS) is responsible for the regulated degradation of intracellular proteins. The 26S holocomplex comprises the core particle (CP), where proteolysis takes place, and one or two regulatory particles (RPs). The base of the RP is formed by a heterohexameric AAA+ ATPase module, which unfolds and translocates substrates into the CP. Applying single-particle cryo-electron microscopy (cryo-EM) and image classification to samples in the presence of different nucleotides and nucleotide analogs, we were able to observe four distinct conformational states (s1 to s4). The resolution of the four conformers allowed for the construction of atomic models of the AAA+ ATPase module as it progresses through the functional cycle. In a hitherto unobserved state (s4), the gate controlling access to the CP is open. The structures described in this study allow us to put forward a model for the 26S functional cycle driven by ATP hydrolysis. PMID:28115689

  1. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato

    PubMed Central

    Sahu, Pranav Pankaj; Sharma, Namisha; Puranik, Swati; Chakraborty, Supriya; Prasad, Manoj

    2016-01-01

    Involvement of 26S proteasomal subunits in plant pathogen-interactions, and the roles of each subunit in independently modulating the activity of many intra- and inter-cellular regulators controlling physiological and defense responses of a plant were well reported. In this regard, we aimed to functionally characterize a Solanum lycopersicum 26S proteasomal subunit RPT4a (SlRPT4) gene, which was differentially expressed after Tomato leaf curl New Delhi virus (ToLCNDV) infection in tolerant cultivar H-88-78-1. Molecular analysis revealed that SlRPT4 protein has an active ATPase activity. SlRPT4 could specifically bind to the stem-loop structure of intergenic region (IR), present in both DNA-A and DNA-B molecule of the bipartite viral genome. Lack of secondary structure in replication-associated gene fragment prevented formation of DNA-protein complex suggesting that binding of SlRPT4 with DNA is secondary structure specific. Interestingly, binding of SlRPT4 to IR inhibited the function of RNA Pol-II and subsequently reduced the bi-directional transcription of ToLCNDV genome. Virus-induced gene silencing of SlRPT4 gene incited conversion of tolerant attributes of cultivar H-88-78-1 into susceptibility. Furthermore, transient overexpression of SlRPT4 resulted in activation of programmed cell death and antioxidant enzymes system. Overall, present study highlights non-proteolytic function of SlRPT4 and their participation in defense pathway against virus infection in tomato. PMID:27252084

  2. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death

    PubMed Central

    Livneh, Ido; Cohen-Kaplan, Victoria; Cohen-Rosenzweig, Chen; Avni, Noa; Ciechanover, Aaron

    2016-01-01

    The 26S proteasome is a large, ∼2.5 MDa, multi-catalytic ATP-dependent protease complex that serves as the degrading arm of the ubiquitin system, which is the major pathway for regulated degradation of cytosolic, nuclear and membrane proteins in all eukaryotic organisms. PMID:27444871

  3. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    PubMed Central

    Förster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-01-01

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners. PMID:19653995

  4. Convergence of the 26S proteasome and the REVOLUTA pathways in regulating inflorescence and floral meristem functions in Arabidopsis.

    PubMed

    Zhang, Zhenzhen; Wang, Hua; Luo, Dexian; Zeng, Minhuan; Huang, Hai; Cui, Xiaofeng

    2011-01-01

    The 26S proteasome is a large multisubunit proteolytic complex, regulating growth and development in eukaryotes by selective removal of short-lived regulatory proteins. Here, it is shown that the 26S proteasome and the transcription factor gene REVOLUTA (REV) act together in maintaining inflorescence and floral meristem (IM and FM) functions. The characterization of a newly identified Arabidopsis mutant, designated ae4 (asymmetric leaves1/2 enhancer4), which carries a mutation in the gene encoding the 26S proteasome subunit, RPN2a, is reported. ae4 and rev have minor defects in phyllotaxy structure and meristem initiation, respectively, whereas ae4 rev demonstrated strong developmental defects. Compared with the rev single mutant, an increased percentage of ae4 rev plants exhibited abnormal vegetative shoot apical and axillary meristems. After flowering, ae4 rev first gave rise to a few normal-looking flowers, and then flowers with reduced numbers of all types of floral organs. In late reproductive development, instead of flowers, the ae4 rev IM produced numerous filamentous structures, which contained cells seen only in the floral organs, and then carpelloid organs. In situ hybridization revealed that expression of the WUSCHEL and CLAVATA3 genes was severely down-regulated or absent in the late appearing ae4 rev primordia, but the genes were strongly expressed in top-layer cells of inflorescence tips. Double mutant plants combining rev with other 26S proteasome subunit mutants, rpn1a and rpn9a, resembled ae4 rev, suggesting that the 26S proteasome might act as a whole in regulating IM and FM functions.

  5. The RPN1 Subunit of the 26S Proteasome in Arabidopsis Is Essential for Embryogenesis

    PubMed Central

    Brukhin, Vladimir; Gheyselinck, Jacqueline; Gagliardini, Valeria; Genschik, Pascal; Grossniklaus, Ueli

    2005-01-01

    The 26S proteasome plays a central role in the degradation of regulatory proteins involved in a variety of developmental processes. It consists of two multisubunit protein complexes: the proteolytic core protease and the regulatory particle (RP). The function of most RP subunits is poorly understood. Here, we describe mutants in the Arabidopsis thaliana RPN1 subunit, which is encoded by two paralogous genes, RPN1a and RPN1b. Disruption of RPN1a caused embryo lethality, while RPN1b mutants showed no obvious abnormal phenotype. Embryos homozygous for rpn1a arrested at the globular stage with defects in the formation of the embryonic root, the protoderm, and procambium. Cyclin B1 protein was not degraded in these embryos, consistent with cell division defects. Double mutant plants (rpn1a/RPN1a rpn1b/rpn1b) produced embryos with a phenotype indistinguishable from that of the rpn1a single mutant. Thus, despite their largely overlapping expression patterns in flowers and developing seeds, the two isoforms do not share redundant functions during gametogenesis and embryogenesis. However, complementation of the rpn1a mutation with the coding region of RPN1b expressed under the control of the RPN1a promoter indicates that the two RPN1 isoforms are functionally equivalent. Overall, our data indicate that RPN1 activity is essential during embryogenesis, where it might participate in the destruction of a specific set of protein substrates. PMID:16169895

  6. Mouse homologue of yeast Prp19 interacts with mouse SUG1, the regulatory subunit of 26S proteasome.

    PubMed

    Sihn, Choong-Ryoul; Cho, Si Young; Lee, Jeong Ho; Lee, Tae Ryong; Kim, Sang Hoon

    2007-04-27

    Yeast Prp19 has been shown to involve in pre-mRNA splicing and DNA repair as well as being an ubiquitin ligase. Mammalian homologue of yeast Prp19 also plays on similar functional activities in cells. In the present study, we isolated mouse SUG1 (mSUG1) as binding partner of mouse Prp19 (mPrp19) by the yeast two-hybrid system. We confirmed the interaction of mPrp9 with mSUG1 by GST pull-down assay and co-immunoprecipitation assay. The N-terminus of mPrp19 including U-box domain was associated with the C-terminus of mSUG1. Although, mSUG1 is a regulatory subunit of 26S proteasome, mPrp19 was not degraded in the proteasome-dependent pathway. Interestingly, GFP-mPrp19 fusion protein was co-localized with mSUG1 protein in cytoplasm as the formation of the speckle-like structures in the presence of a proteasome inhibitor MG132. In addition, the activity of proteasome was increased in cells transfected with mPrp19. Taken together, these results suggest that mPrp19 involves the regulation of protein turnover and may transport its substrates to 26S proteasome through mSUG1 protein.

  7. The 26S proteasome is a multifaceted target for anti-cancer therapies.

    PubMed

    Grigoreva, Tatyana A; Tribulovich, Vyacheslav G; Garabadzhiu, Alexander V; Melino, Gerry; Barlev, Nickolai A

    2015-09-22

    Proteasomes play a critical role in the fate of proteins that are involved in major cellular processes, including signal transduction, gene expression, cell cycle, replication, differentiation, immune response, cellular response to stress, etc. In contrast to non-specific degradation by lysosomes, proteasomes are highly selective and destroy only the proteins that are covalently labelled with small proteins, called ubiquitins. Importantly, many diseases, including neurodegenerative diseases and cancers, are intimately connected to the activity of proteasomes making them an important pharmacological target. Currently, the vast majority of inhibitors are aimed at blunting the proteolytic activities of proteasomes. However, recent achievements in solving structures of proteasomes at very high resolution provided opportunities to design new classes of small molecules that target other physiologically-important enzymatic activities of proteasomes, including the de-ubiquitinating one. This review attempts to catalog the information available to date about novel classes of proteasome inhibitors that may have important pharmacological ramifications.

  8. Evidence that the Arabidopsis Ubiquitin C-terminal Hydrolases 1 and 2 associate with the 26S proteasome and the TREX-2 complex.

    PubMed

    Tian, Gang; Lu, Qing; Kohalmi, Susanne E; Rothstein, Steven J; Cui, Yuhai

    2012-11-01

    The 26S proteasome interacts with a number of different proteins, while the TREX-2 complex is an important component of the mRNA export machinery. In animals and yeast, members of the Ubiquitin C-terminal Hydrolase 37 (UCH37) family are found to associate with the 26S proteasome, but this has not been demonstrated in plants. The Arabidopsis UCH1 and UCH2 are orthologous to UCH37. Here, we show that UCH1 and UCH2 interact with the 26S proteasome lid subunits. In addition, the two UCHs also interact with TREX-2 components. Our data suggest that Arabidopsis UCHs may serve as a link between the 26S proteasome lid complex and the TREX-2 complex.

  9. Bufalin derivative BF211 inhibits proteasome activity in human lung cancer cells in vitro by inhibiting β1 subunit expression and disrupting proteasome assembly

    PubMed Central

    Sun, Peng; Feng, Li-xing; Zhang, Dong-mei; Liu, Miao; Liu, Wang; Mi, Tian; Wu, Wan-ying; Jiang, Bao-hong; Yang, Min; Hu, Li-hong; Guo, De-an; Liu, Xuan

    2016-01-01

    Aim: Bufalin is one of the active components in the traditional Chinese medicine ChanSu that is used to treat arrhythmia, inflammation and cancer. BF211 is a bufalin derivative with stronger cytotoxic activity in cancer cells. The aim of this study was to identify the putative target proteins of BF211 and the signaling pathways in cancer cells. Methods: A549 human lung cancer cells were treated with BF211. A SILAC-based proteomic analysis was used to detect the protein expression profiles of BF211-treated A549 cells. Cellular proteasome activities were examined using fluorogenic peptide substrates, and the binding affinities of BF211 to recombinant proteasome subunit proteins were evaluated using the Biacore assay. The expression levels of proteasome subunits were determined using RT-PCR and Western blotting, and the levels of the integral 26S proteasome were evaluated using native PAGE analysis. Results: The proteomic analysis revealed that 1282 proteins were differentially expressed in BF211-treated A549 cells, and the putative target proteins of BF211 were associated with various cellular functions, including transcription, translation, mRNA splicing, ribosomal protein synthesis and proteasome function. In A549 cells, BF211 (5, 10, and 20 nmol/L) dose-dependently inhibited the enzymatic activities of proteasome. But BF211 displayed a moderate affinity in binding to proteasome β1 subunit and no binding affinity to the β2 and β5 subunits. Moreover, BF211 (0.1, 1, and 10 nmol/L) did not inhibit the proteasome activities in the cell lysates. BF211 (5, 10, and 20 nmol/L) significantly decreased the expression level of proteasome β1 subunit and the levels of integral 26S proteasome in A549 cells. Similarly, knockdown of the β1 subunit with siRNA in A549 cells significantly decreased integral 26S proteasome and proteasome activity. Conclusion: BF211 inhibits proteasome activity in A549 cells by decreasing β1 subunit expression and disrupting proteasome assembly

  10. Caspase activation inhibits proteasome function during apoptosis.

    PubMed

    Sun, Xiao-Ming; Butterworth, Michael; MacFarlane, Marion; Dubiel, Wolfgang; Ciechanover, Aaron; Cohen, Gerald M

    2004-04-09

    The ubiquitin/proteasome system regulates protein turnover by degrading polyubiquitinated proteins. To date, all studies on the relationship of apoptosis and the proteasome have emphasized the key role of the proteasome in the regulation of apoptosis, by virtue of its ability to degrade regulatory molecules involved in apoptosis. We now demonstrate how induction of apoptosis may regulate the activity of the proteasome. During apoptosis, caspase activation results in the cleavage of three specific subunits of the 19S regulatory complex of the proteasome: S6' (Rpt5) and S5a (Rpn10), whose role is to recognize polyubiquitinated substrates of the proteasome, and S1 (Rpn2), which with S5a and S2 (Rpn1) holds together the lid and base of the 19S regulatory complex. This caspase-mediated cleavage inhibits the proteasomal degradation of ubiquitin-dependent and -independent cellular substrates, including proapoptotic molecules such as Smac, so facilitating the execution of the apoptotic program by providing a feed-forward amplification loop.

  11. Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination

    PubMed Central

    Braten, Ori; Livneh, Ido; Ziv, Tamar; Admon, Arie; Kehat, Izhak; Caspi, Lilac H.; Gonen, Hedva; Bercovich, Beatrice; Godzik, Adam; Jahandideh, Samad; Jaroszewski, Lukasz; Sommer, Thomas; Kwon, Yong Tae; Guharoy, Mainak; Tompa, Peter; Ciechanover, Aaron

    2016-01-01

    The “canonical” proteasomal degradation signal is a substrate-anchored polyubiquitin chain. However, a handful of proteins were shown to be targeted following monoubiquitination. In this study, we established—in both human and yeast cells—a systematic approach for the identification of monoubiquitination-dependent proteasomal substrates. The cellular wild-type polymerizable ubiquitin was replaced with ubiquitin that cannot form chains. Using proteomic analysis, we screened for substrates that are nevertheless degraded under these conditions compared with those that are stabilized, and therefore require polyubiquitination for their degradation. For randomly sampled representative substrates, we confirmed that their cellular stability is in agreement with our screening prediction. Importantly, the two groups display unique features: monoubiquitinated substrates are smaller than the polyubiquitinated ones, are enriched in specific pathways, and, in humans, are structurally less disordered. We suggest that monoubiquitination-dependent degradation is more widespread than assumed previously, and plays key roles in various cellular processes. PMID:27385826

  12. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    SciTech Connect

    Samaras, Susan E.; Chen, Billy; Koch, Stephen R.; Sawyer, Douglas B.; Lim, Chee Chew; Davidson, Jeffrey M.

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. Black-Right-Pointing-Pointer Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. Black-Right-Pointing-Pointer Differential degradation appears related to nuclear vs. sarcolemmal localization. Black-Right-Pointing-Pointer Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  13. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling

    PubMed Central

    Stone, Sophia L.

    2014-01-01

    Ubiquitin is a small, highly conserved, ubiquitously expressed eukaryotic protein with immensely important and diverse regulatory functions. A well-studied function of ubiquitin is its role in selective proteolysis by the ubiquitin-proteasome system (UPS). The UPS has emerged as an integral player in plant response and adaptation to environmental stresses such as drought, salinity, cold and nutrient deprivation. The UPS has also been shown to influence the production and signal transduction of stress-related hormones such as abscisic acid. Understanding UPS function has centered mainly on defining the role of E3 ubiquitin ligases, which are the substrate-recruiting component of the ubiquitination pathway. The recent identification of stress signaling/regulatory proteins that are the subject of ubiquitin-dependent degradation has increased our knowledge of how the UPS facilitates responses to adverse environmental conditions. A brief overview is provided on role of the UPS in modulating protein stability during abiotic stress signaling. E3 ubiquitin ligases for which stress-related substrate proteins have been identified are discussed. PMID:24795732

  14. A pilot study to investigate the role of the 26S proteasome in radiotherapy resistance and loco-regional recurrence following breast conserving therapy for early breast cancer.

    PubMed

    Elfadl, Dalia; Hodgkinson, Victoria C; Long, Ervine D; Scaife, Lucy; Drew, Philip J; Lind, Michael J; Cawkwell, Lynn

    2011-08-01

    Breast conserving therapy is a currently accepted method for managing patients with early stage breast cancer. However, approximately 7% of patients may develop loco-regional tumour recurrence within 5 years. We previously reported that expression of the 26S proteasome may be associated with radio-resistance. Here we aimed to analyse the 26S proteasome in a pilot series of early breast cancers and correlate the findings with loco-regional recurrence. Fourteen patients with early breast cancer who developed loco-regional recurrence within 4 years of completing breast conserving therapy were selected according to strict criteria and compared with those from 14 patients who were disease-free at 10 years. Decreased expression of the 26S proteasome was significantly associated with radio-resistance, manifested as the development of a loco-regional recurrence within 4 years of breast conserving therapy (p = 0.018). This small pilot study provides further suggestion that the 26S proteasome may be associated with response to radiotherapy.

  15. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis.

    PubMed

    Lee, Boo-Ja; Kwon, Sun Jae; Kim, Sung-Kyu; Kim, Ki-Jeong; Park, Chang-Jin; Kim, Young-Jin; Park, Ohkmae K; Paek, Kyung-Hee

    2006-12-15

    Two-dimensional gel electrophoresis (2-DE) was applied for the screening of Tobacco mosaic virus (TMV)-induced hot pepper (Capsicum annuum cv. Bugang) nuclear proteins. From differentially expressed protein spots, we acquired the matched peptide mass fingerprint (PMF) data, analyzed by MALDI-TOF MS, from the non-redundant hot pepper EST protein FASTA database using the VEMS 2.0 software. Among six identified nuclear proteins, the hot pepper 26S proteasome subunit RPN7 (CaRPN7) was subjected to further study. The level of CaRPN7 mRNA was specifically increased during incompatible TMV-P(0) interaction, but not during compatible TMV-P(1.2) interaction. When CaRPN7::GFP fusion protein was targeted in onion cells, the nuclei had been broken into pieces. In the hot pepper leaves, cell death was exacerbated and genomic DNA laddering was induced by Agrobacterium-mediated transient overexpression of CaPRN7. Thus, this report presents that the TMV-induced CaRPN7 may be involved in programmed cell death (PCD) in the hot pepper plant.

  16. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis

    SciTech Connect

    Lee, Boo-Ja; Kwon, Sun Jae; Kim, Sung-Kyu; Kim, Ki-Jeong; Park, Chang-Jin; Kim, Young-Jin; Park, Ohkmae K.; Paek, Kyung-Hee . E-mail: khpaek95@korea.ac.kr

    2006-12-15

    Two-dimensional gel electrophoresis (2-DE) was applied for the screening of Tobacco mosaic virus (TMV)-induced hot pepper (Capsicum annuum cv. Bugang) nuclear proteins. From differentially expressed protein spots, we acquired the matched peptide mass fingerprint (PMF) data, analyzed by MALDI-TOF MS, from the non-redundant hot pepper EST protein FASTA database using the VEMS 2.0 software. Among six identified nuclear proteins, the hot pepper 26S proteasome subunit RPN7 (CaRPN7) was subjected to further study. The level of CaRPN7 mRNA was specifically increased during incompatible TMV-P{sub 0} interaction, but not during compatible TMV-P{sub 1.2} interaction. When CaRPN7::GFP fusion protein was targeted in onion cells, the nuclei had been broken into pieces. In the hot pepper leaves, cell death was exacerbated and genomic DNA laddering was induced by Agrobacterium-mediated transient overexpression of CaPRN7. Thus, this report presents that the TMV-induced CaRPN7 may be involved in programmed cell death (PCD) in the hot pepper plant.

  17. Activating Cell Death Ligand Signaling Through Proteasome Inhibition

    DTIC Science & Technology

    2009-05-01

    Activating Cell Death Ligand Signaling Through Proteasome Inhibition PRINCIPAL INVESTIGATOR: Steven R Schwarze...SUBTITLE Activating Cell Death Ligand Signaling Through 5a. CONTRACT NUMBER Proteasome Inhibition 5b. GRANT NUMBER W81XWH-08-1-0392 5c...proteasome inhibition can act as an anti-neoplastic agent in vivo by sensitizing cancer cells to cell death ligands in the tumor microenvironment

  18. 26S and PA28-20S Proteasome Activity in Cytosolic Extracts from Embryonic Stem Cells.

    PubMed

    Hernebring, Malin

    2016-01-01

    The proteasome is a complex multisubunit protease that plays a major role in the degradation of proteins in eukaryotic cells. Proteasome function is one of the key players regulating the proteome and it is vital for many cellular processes. The method described here makes it possible to assay the proteolytic capacities of proteasome complexes separately in crude cytosolic extracts from ES cells. The method is based on hydrolysis of a fluorogenic peptide substrate in lysates prepared under conditions that favor the interactions of the 20S proteasomal catalytical core with either the 19S or the PA28αβ proteasome regulator.

  19. Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome.

    PubMed

    Dawson, Simon; Apcher, Sebastien; Mee, Maureen; Higashitsuji, Hiroaki; Baker, Rohan; Uhle, Stefan; Dubiel, Wolfgang; Fujita, Jun; Mayer, R John

    2002-03-29

    A yeast two-hybrid screen with the human S6 (TBP7, RPT3) ATPase of the 26 S proteasome has identified gankyrin, a liver oncoprotein, as an interacting protein. Gankyrin interacts with both free and regulatory complex-associated S6 ATPase and is not stably associated with the 26 S particle. Deletional mutagenesis shows that the C-terminal 78 amino acids of the S6 ATPase are necessary and sufficient to mediate the interaction with gankyrin. Deletion of an orthologous gene in Saccharomyces cerevisiae suggests that it is dispensable for cell growth and viability. Overexpression and precipitation of tagged gankyrin from cultured cells detects a complex containing co-transfected tagged S6 ATPase (or endogenous S6) and endogenous cyclin D-dependent kinase CDK4. The proteasomal ATPases are part of the AAA (ATPases associated with diverse cellular activities) family, members of which are molecular chaperones; gankyrin complexes may therefore influence CDK4 function during oncogenesis.

  20. Cereblon inhibits proteasome activity by binding to the 20S core proteasome subunit beta type 4.

    PubMed

    Lee, Kwang Min; Lee, Jongwon; Park, Chul-Seung

    2012-10-26

    In humans, mutations in the gene encoding cereblon (CRBN) are associated with mental retardation. Although CRBN has been investigated in several cellular contexts, its function remains unclear. Here, we demonstrate that CRBN plays a role in regulating the ubiquitin-proteasome system (UPS). Heterologous expression of CRBN inhibited proteasome activity in a human neuroblastoma cell line. Furthermore, proteasome subunit beta type 4 (PSMB4), the β7 subunit of the 20S core complex, was identified as a direct binding partner of CRBN. These findings suggest that CRBN may modulate proteasome activity by directly interacting with the β7 subunit.

  1. Redox-Regulated Pathway of Tyrosine Phosphorylation Underlies NF-κB Induction by an Atypical Pathway Independent of the 26S Proteasome

    PubMed Central

    Cullen, Sarah; Ponnappan, Subramaniam; Ponnappan, Usha

    2015-01-01

    Alternative redox stimuli such as pervanadate or hypoxia/reoxygenation, induce transcription factor NF-κB by phospho-tyrosine-dependent and proteasome-independent mechanisms. While considerable attention has been paid to the absence of proteasomal regulation of tyrosine phosphorylated IκBα, there is a paucity of information regarding proteasomal regulation of signaling events distinct from tyrosine phosphorylation of IκBα. To delineate roles for the ubiquitin-proteasome pathway in the phospho-tyrosine dependent mechanism of NF-κB induction, we employed the proteasome inhibitor, Aclacinomycin, and the phosphotyrosine phosphatase inhibitor, pervanadate (PV). Results from these studies demonstrate that phospho-IκBα (Tyr-42) is not subject to proteasomal degradation in a murine stromal epithelial cell line, confirming results previously reported. Correspondingly, proteasome inhibition had no discernable effect on the key signaling intermediaries, Src and ERK1/2, involved in the phospho-tyrosine mechanisms regulating PV-mediated activation of NF-κB. Consistent with previous reports, a significant redox imbalance leading to the activation of tyrosine kinases, as occurs with pervanadate, is required for the induction of NF-κB. Strikingly, our studies demonstrate that proteasome inhibition can potentiate oxidative stress associated with PV-stimulation without impacting kinase activation, however, other cellular implications for this increase in intracellular oxidation remain to be fully delineated. PMID:25671697

  2. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells

    PubMed Central

    2013-01-01

    Background Inhibition of the proteolytic activity of 26S proteasome, the protein-degrading machine, is now considered a novel and promising approach for cancer therapy. Interestingly, proteasome inhibitors have been demonstrated to selectively kill cancer cells and also enhance the sensitivity of tumor cells to chemotherapeutic agents. Recently, polyphenols/flavonoids have been reported to inhibit proteasome activity. Murraya koenigii Spreng, a medicinally important herb of Indian origin, has been used for centuries in the Ayurvedic system of medicine. Here we show that Murraya koenigii leaves (curry leaves), a rich source of polyphenols, inhibit the proteolytic activity of the cancer cell proteasome, and cause cell death. Methods Hydro-methanolic extract of curry leaves (CLE) was prepared and its total phenolic content [TPC] determined by, the Folin-Ciocalteau’s method. Two human breast carcinoma cell lines: MCF-7 and MDA-MB-231 and a normal human lung fibroblast cell line, WI-38 were used for the studies. Cytotoxicity of the CLE was assessed by the MTT assay. We studied the effect of CLE on growth kinetics using colony formation assay. Growth arrest was assessed by cell cycle analysis and apoptosis by Annexin-V binding using flow cytometry. Inhibition of the endogenous 26S proteasome was studied in intact cells and cell extracts using substrates specific to 20S proteasomal enzymes. Results CLE decreased cell viability and altered the growth kinetics in both the breast cancer cell lines in a dose-dependent manner. It showed a significant arrest of cells in the S phase albeit in cancer cells only. Annexin V binding data suggests that cell death was via the apoptotic pathway in both the cancer cell lines. CLE treatment significantly decreased the activity of the 26S proteasome in the cancer but not normal cells. Conclusions Our study suggests M. koenigii leaves to be a potent source of proteasome inhibitors that lead to cancer cell death. Therefore, identification

  3. Induction of 26S proteasome subunit PSMB5 by the bifunctional inducer 3-methylcholanthrene through the Nrf2-ARE, but not the AhR/Arnt-XRE, pathway

    SciTech Connect

    Kwak, Mi-Kyoung . E-mail: mkwak@yumail.ac.kr; Kensler, Thomas W.

    2006-07-14

    The 26S proteasome is responsible for degradation of abnormal intracellular proteins, including oxidatively damaged proteins and may play a role as a component of a cellular antioxidative system. However, little is known about regulation of proteasome expression. In the present study, regulation of proteasome expression by the bifunctional enzyme inducer and a specific signaling pathway for this regulation were investigated in murine neuroblastoma cells. Expression of catalytic core subunits including PSMB5 and peptidase activities of the proteasome were elevated following incubation with 3-methylcholanthrene (3-MC). Studies using reporter genes containing the murine Psmb5 promoter showed that transcriptional activity of this gene was enhanced by 3-MC. Overexpression of AhR/Arnt did not affect activation of the Pmsb5 promoter by 3-MC and deletion of the xenobiotic response elements (XREs) from this promoter exerted modest effects on inducibility in response to 3-MC. However, mutation of the proximal AREs of the Psmb5 promoter largely abrogated its inducibility by 3-MC. In addition, this promoter showed a blunted response toward 3-MC in the absence of nrf2; 3-MC incubation increased nuclear levels of Nrf2 only in wild-type cells. Collectively, these results indicate that expression of proteasome subunit PSMB5 is modulated by bifunctional enzyme inducers in a manner independent of the AhR/Arnt-XRE pathway but dependent upon the Nrf2-ARE pathway.

  4. Proteasome Inhibition by Fellutamide B Induces Nerve Growth Factor Synthesis

    PubMed Central

    Hines, John; Groll, Michael; Fahnestock, Margaret; Crews, Craig M.

    2008-01-01

    SUMMARY Neurotrophic small molecules have the potential to aid in the treatment of neuronal injury and neurodegenerative diseases. The natural product fellutamide B, originally isolated from Penicillium fellutanum, potently induces nerve growth factor (NGF) release from fibroblasts and glial-derived cells, although the mechanism for this neurotrophic activity has not been elucidated. Here, we report that fellutamide B potently inhibits proteasome catalytic activity. High resolution structural information obtained from co-crystallization of the 20S proteasome reveals novel aspects regarding β-subunit binding and adduct formation by fellutamide B to inhibit their hydrolytic activity. We demonstrate that fellutamide B and other proteasome inhibitors increased NGF gene transcription via a cis-acting element (or elements) in the promoter. These results demonstrate an unrecognized connection between proteasome inhibition and NGF production, suggesting a possible new strategy in the development of neurotrophic agents. PMID:18482702

  5. The devil is in the details: comparison between COP9 signalosome (CSN) and the LID of the 26S proteasome.

    PubMed

    Meister, Cindy; Gulko, Miriam Kolog; Köhler, Anna M; Braus, Gerhard H

    2016-02-01

    The COP9 signalosome (CSN) and the proteasomal LID are conserved macromolecular complexes composed of at least eight subunits with molecular weights of approximately 350 kDa. CSN and LID are part of the ubiquitin–proteasome pathway and cleave isopeptide linkages of lysine side chains on target proteins. CSN cleaves the isopeptide bond of ubiquitin-like protein Nedd8 from cullins, whereas the LID cleaves ubiquitin from target proteins sentenced for degradation. CSN and LID are structurally and functionally similar but the order of the assembly pathway seems to be different. The assembly differs in at least the last subunit joining the pre-assembled subcomplex. This review addresses the similarities and differences in structure, function and assembly of CSN and LID.

  6. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection

    PubMed Central

    Costa, Vivian V.; Tan, Hwee Cheng; Horrevorts, Sophie; Ooi, Eng Eong

    2015-01-01

    The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue. PMID:26565697

  7. Structural insights into the COP9 signalosome and its common architecture with the 26S proteasome lid and eIF3.

    PubMed

    Enchev, Radoslav I; Schreiber, Anne; Beuron, Fabienne; Morris, Edward P

    2010-03-14

    The evolutionary conserved COP9 signalosome (CSN), a large multisubunit complex, plays a central role in regulating ubiquitination and cell signaling. Here we report recombinant insect cell expression and two-step purification of human CSN and demonstrate its functional assembly. We further obtain a three-dimensional structure of both native and recombinant CSN using electron microscopy and single particle analysis. Antibody labeling of CSN5 and segmentation of the structure suggest a likely subunit distribution and the architecture of its helical repeat subunits is revealed. We compare the structure of CSN with its homologous complexes, the 26S proteasome lid and eIF3, and propose a conserved architecture implying similar assembly pathways and/or conserved substrate interaction modes.

  8. PUB22 and PUB23 U-BOX E3 ligases directly ubiquitinate RPN6, a 26S proteasome lid subunit, for subsequent degradation in Arabidopsis thaliana.

    PubMed

    Cho, Seok Keun; Bae, Hansol; Ryu, Moon Young; Wook Yang, Seong; Kim, Woo TaeK

    2015-09-04

    Drought stress strongly affects plant growth and development, directly connected with crop yields, accordingly. However, related to the function of U-BOX E3 ligases, the underlying molecular mechanisms of desiccation stress response in plants are still largely unknown. Here we report that PUB22 and PUB23, two U-box E3 ligase homologs, tether ubiquitins to 19S proteasome regulatory particle (RP) subunit RPN6, leading to its degradation. RPN6 was identified as an interacting substrate of PUB22 by yeast two-hybrid screening, and in vitro pull-down assay confirmed that RPN6 interacts not only with PUB22, but also with PUB23. Both PUB22 and PUB23 were able to conjugate ubiquitins on RPN6 in vitro. Furthermore, RPN6 showed a shorter protein half-life in PUB22 overexpressing plants than in wild-type, besides RPN6 was significantly stabilized in pub22pub23 double knockout plants. Taken together, these results solidify a notion that PUB22 and PUB23 can alter the activity of 26S proteasome in response to drought stress.

  9. Degradation of the encephalomyocarditis virus and hepatitis A virus 3C proteases by the ubiquitin/26S proteasome system in vivo

    SciTech Connect

    Schlax, Peter E.; Zhang Jin; Lewis, Elizabeth; Planchart, Antonio; Lawson, T. Glen . E-mail: tlawson@bates.edu

    2007-04-10

    We have isolated stably transfected mouse embryonic fibroblast cell lines that inducibly express either the mature encephalomyocarditis virus (EMCV) or hepatitis A virus (HAV) 3C protease and have used these cells to demonstrate that both proteins are subject to degradation in vivo by the ubiquitin/26S proteasome system. The detection of 3C protease expression in these cells requires inducing conditions and the presence of one of several proteasome inhibitors. Both 3C proteases are incorporated into conjugates with ubiquitin in vivo. HAV 3C protease expression has deleterious effects on cell viability, as determined by observation and counting of cells cultured in the absence or presence of inducing conditions. The EMCV 3C protease was found to be preferentially localized to the nucleus of induced cells, while the HAV 3C protease remains in the cytoplasm. The absence of polyubiquitinated EMCV 3C protease conjugates in nuclear fraction preparations suggests that localization to the nucleus can protect this protein from ubiquitination.

  10. The Proteasome Inhibition Model of Parkinson’s Disease

    PubMed Central

    Bentea, Eduard; Verbruggen, Lise; Massie, Ann

    2016-01-01

    The pathological hallmarks of Parkinson’s disease are the progressive loss of nigral dopaminergic neurons and the formation of intracellular inclusion bodies, termed Lewy bodies, in surviving neurons. Accumulation of proteins in large insoluble cytoplasmic aggregates has been proposed to result, partly, from a failure in the function of intracellular protein degradation pathways. Evidence in support for such a hypothesis emerged in the beginning of the years 2000 with studies demonstrating structural and functional deficits in the ubiquitin-proteasome pathway in post-mortem nigral tissue of patients with Parkinson’s disease. These fundamental findings have inspired the development of a new generation of animal models based on the use of proteasome inhibitors to disturb protein homeostasis and trigger nigral dopaminergic neurodegeneration. In this review, we provide an updated overview of the current approaches in employing proteasome inhibitors to model Parkinson’s disease, with particular emphasis on rodent studies. In addition, the mechanisms underlying proteasome inhibition-induced cell death and the validity criteria (construct, face and predictive validity) of the model will be critically discussed. Due to its distinct, but highly relevant mechanism of inducing neuronal death, the proteasome inhibition model represents a useful addition to the repertoire of toxin-based models of Parkinson’s disease that might provide novel clues to unravel the complex pathogenesis of this disorder. PMID:27802243

  11. Similarities between methamphetamine toxicity and proteasome inhibition.

    PubMed

    Fornai, F; Lenzi, P; Gesi, M; Ferrucci, M; Lazzeri, G; Capobianco, L; de Blasi, A; Battaglia, G; Nicoletti, F; Ruggieri, S; Paparelli, A

    2004-10-01

    The monoamine neurotoxin methamphetamine (METH) is commonly used as an experimental model for Parkinson's disease (PD). In fact, METH-induced striatal dopamine (DA) loss is accompanied by damage to striatal nerve endings arising from the substantia nigra. On the other hand, PD is characterized by neuronal inclusions within nigral DA neurons. These inclusions contain alpha-synuclein, ubiquitin, and various components of a metabolic pathway named the ubiquitin-proteasome (UP) system, while mutation of genes coding for various components of the UP system is responsible for inherited forms of PD. In this presentation we demonstrate for the first time the occurrence of neuronal inclusions in vivo in the nigrostriatal system of the mouse following administration of METH. We analyzed, in vivo and in vitro, the shape and the fine structure of these neuronal bodies by using transmission electron microscopy. Immunocytochemical investigation showed that these METH-induced cytosolic inclusions stain for ubiquitin, alpha-synuclein, and UP-related molecules, thus sharing similar components with Lewy bodies occurring in PD, with an emphasis on enzymes belonging to the UP system. In line with this, blockade of this multicatalytic pathway by the selective inhibitor epoxomycin produced cell inclusions with similar features. Moreover, using a multifaceted pharmacological approach, we could demonstrate the need for endogenous DA in order to form neuronal inclusions.

  12. ARS5 is a component of the 26S proteasome complex and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis

    PubMed Central

    Sung, Dong-Yul; Kim, Tae-Houn; Komives, Elizabeth A.; Mendoza-Cózatl, David G.; Schroeder, Julian I.

    2010-01-01

    Summary A forward genetic screen in Arabidopsis led to the isolation of several arsenic tolerance mutants. ars5 is the strongest arsenate and arsenite resistant mutant identified in this genetic screen. Here, we report the characterization and cloning of the ars5 mutant gene. ars5 is shown to exhibit an increased accumulation of arsenic and thiol compounds during arsenic stress. Rough mapping together with microarray-based expression mapping identified the ars5 mutation in the alpha subunit F (PAF1) of the 26S proteasome complex. Characterization of an independent paf1 T-DNA insertion allele and complementation by PAF1 confirmed that paf1 mutation is responsible for the enhanced thiol accumulation and the arsenic tolerance phenotypes. Arsenic tolerance was not observed in a knockout mutant of the highly homologous PAF2 gene. However, genetic complementation of ars5 by over expression of PAF2 suggests that the PAF2 protein is functionally equivalent to PAF1 when expressed at high levels. No detectible difference was observed in total ubiquitinylated protein profiles between ars5 and wild type Arabidopsis, suggesting that the arsenic tolerance observed in ars5 is not derived from a general impairment in proteasome-mediated protein degradation. Quantitative RT-PCR showed that arsenic induces enhanced transcriptional activation of several key genes that function in glutathione and phytochelatin biosynthesis in wild type and this arsenic-induction of gene expression is more dramatic in ars5. The enhanced transcriptional response to arsenic and the increased accumulation of thiol compounds in ars5 compared to WT suggest the presence of a positive regulation pathway for thiol biosynthesis that is enhanced in the ars5 background. PMID:19453443

  13. Characterization and Quantification of Intact 26S Proteasome Proteins by Real-Time Measurement of Intrinsic Fluorescence Prior to Top-down Mass Spectrometry

    PubMed Central

    Russell, Jason D.; Scalf, Mark; Book, Adam J.; Ladror, Daniel T.; Vierstra, Richard D.; Smith, Lloyd M.; Coon, Joshua J.

    2013-01-01

    Quantification of gas-phase intact protein ions by mass spectrometry (MS) is impeded by highly-variable ionization, ion transmission, and ion detection efficiencies. Therefore, quantification of proteins using MS-associated techniques is almost exclusively done after proteolysis where peptides serve as proxies for estimating protein abundance. Advances in instrumentation, protein separations, and informatics have made large-scale sequencing of intact proteins using top-down proteomics accessible to the proteomics community; yet quantification of proteins using a top-down workflow has largely been unaddressed. Here we describe a label-free approach to determine the abundance of intact proteins separated by nanoflow liquid chromatography prior to MS analysis by using solution-phase measurements of ultraviolet light-induced intrinsic fluorescence (UV-IF). UV-IF is measured directly at the electrospray interface just prior to the capillary exit where proteins containing at least one tryptophan residue are readily detected. UV-IF quantification was demonstrated using commercially available protein standards and provided more accurate and precise protein quantification than MS ion current. We evaluated the parallel use of UV-IF and top-down tandem MS for quantification and identification of protein subunits and associated proteins from an affinity-purified 26S proteasome sample from Arabidopsis thaliana. We identified 26 unique proteins and quantified 13 tryptophan-containing species. Our analyses discovered previously unidentified N-terminal processing of the β6 (PBF1) and β7 (PBG1) subunit - such processing of PBG1 may generate a heretofore unknown additional protease active site upon cleavage. In addition, our approach permitted the unambiguous identification and quantification both isoforms of the proteasome-associated protein DSS1. PMID:23536786

  14. Stress-responsive mitogen-activated protein kinases interact with the EAR motif of a poplar zinc finger protein and mediate its degradation through the 26S proteasome.

    PubMed

    Hamel, Louis-Philippe; Benchabane, Meriem; Nicole, Marie-Claude; Major, Ian T; Morency, Marie-Josée; Pelletier, Gervais; Beaudoin, Nathalie; Sheen, Jen; Séguin, Armand

    2011-11-01

    Mitogen-activated protein kinases (MAPKs) contribute to the establishment of plant disease resistance by regulating downstream signaling components, including transcription factors. In this study, we identified MAPK-interacting proteins, and among the newly discovered candidates was a Cys-2/His-2-type zinc finger protein named PtiZFP1. This putative transcription factor belongs to a family of transcriptional repressors that rely on an ERF-associated amphiphilic repression (EAR) motif for their repression activity. Amino acids located within this repression motif were also found to be essential for MAPK binding. Close examination of the primary protein sequence revealed a functional bipartite MAPK docking site that partially overlaps with the EAR motif. Transient expression assays in Arabidopsis (Arabidopsis thaliana) protoplasts suggest that MAPKs promote PtiZFP1 degradation through the 26S proteasome. Since features of the MAPK docking site are conserved among other EAR repressors, our study suggests a novel mode of defense mechanism regulation involving stress-responsive MAPKs and EAR repressors.

  15. Yeast counterparts of subunits S5a and p58 (S3) of the human 26S proteasome are encoded by two multicopy suppressors of nin1-1.

    PubMed Central

    Kominami, K; Okura, N; Kawamura, M; DeMartino, G N; Slaughter, C A; Shimbara, N; Chung, C H; Fujimuro, M; Yokosawa, H; Shimizu, Y; Tanahashi, N; Tanaka, K; Toh-e, A

    1997-01-01

    Nin1p, a component of the 26S proteasome of Saccharomyces cerevisiae, is required for activation of Cdc28p kinase at the G1-S-phase and G2-M boundaries. By exploiting the temperature-sensitive phenotype of the nin1-1 mutant, we have screened for genes encoding proteins with related functions to Nin1p and have cloned and characterized two new multicopy suppressors, SUN1 and SUN2, of the nin1-1 mutation. SUN1 can suppress a null nin1 mutation, whereas SUN2, an essential gene, does not. Sun1p is a 268-amino acid protein which shows strong similarity to MBP1 of Arabidopsis thaliana, a homologue of the S5a subunit of the human 26S proteasome. Sun1p binds ubiquitin-lysozyme conjugates as do S5a and MBP1. Sun2p (523 amino acids) was found to be homologous to the p58 subunit of the human 26S proteasome. cDNA encoding the p58 component was cloned. Furthermore, expression of a derivative of p58 from which the N-terminal 150 amino acids had been removed restored the function of a null allele of SUN2. During glycerol density gradient centrifugation, both Sun1p and Sun2p comigrated with the known proteasome components. These results, as well as other structural and functional studies, indicate that both Sun1p and Sun2p are components of the regulatory module of the yeast 26S proteasome. Images PMID:9017604

  16. Proteasome inhibition induces both antioxidant and hb f responses in sickle cell disease via the nrf2 pathway.

    PubMed

    Pullarkat, Vinod; Meng, Zhuo; Tahara, Stanley M; Johnson, Cage S; Kalra, Vijay K

    2014-01-01

    Oxidant stress is implicated in the manifestations of sickle cell disease including hemolysis and vascular occlusion. Strategies to induce antioxidant response as well as Hb F (α2γ2) have the potential to ameliorate the severity of sickle cell disease. Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or Nrf2) is a transcription factor that regulates antioxidant enzymes as well as γ-globin transcription. The Nrf2 in the cytoplasm is bound to its adapter protein Keap-1 that targets Nrf2 for proteasomal degradation, thereby preventing its nuclear translocation. We examined whether inhibiting the 26S proteasome using the clinically applicable proteasome inhibitors bortezomib and MLN 9708 would promote nuclear translocation of Nrf2, and thereby induce an antioxidant response and as well as Hb F in sickle cell disease. Proteasome inhibitors induced reactive oxygen species (ROS) and thereby increased Nrf2-dependent antioxidant enzyme transcripts, elevated cellular glutathione (GSH) levels and γ-globin transcripts as well as Hb F levels in the K562 cell line and also in erythroid burst forming units (BFU-E) generated from peripheral blood mononuclear cells of sickle cell disease patients. These responses were abolished by siRNA-mediated knockdown of Nrf2. Proteasome inhibitors, especially newer oral agents such as MLN9708 have the potential to be readily translated to clinical trials in sickle cell disease with the dual end points of antioxidant response and Hb F induction.

  17. Selective increase of in vivo firing frequencies in DA SN neurons after proteasome inhibition in the ventral midbrain.

    PubMed

    Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen

    2014-09-01

    The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'.

  18. Proteasomal inhibition causes loss of nigral tyrosine hydroxylase neurons.

    PubMed

    Schapira, Anthony H V; Cleeter, Michael W J; Muddle, John R; Workman, Jane M; Cooper, J Mark; King, Rosalind H M

    2006-08-01

    Dysfunction of the ubiquitin-proteasomal system (UPS) has been implicated in the pathogenesis of Parkinson's disease. The systemic administration of UPS inhibitors has been reported to induce nigrostriatal cell death and model Parkinson's disease pathology in rodents. We administered a synthetic, specific UPS inhibitor (PSI) subcutaneously to rats and quantified substantia nigral tyrosine hydroxylase-positive dopaminergic neurons by stereology. PSI caused a 15% decrease in UPS activity at 2 weeks and a 42% reduction in substantia nigra pars compacta tyrosine hydroxylase-positive neurons at 8 weeks. Systemic inhibition of the UPS warrants further evaluation as a means to model Parkinson's disease.

  19. Proteasome inhibition enhances resistance to DNA damage via upregulation of Rpn4-dependent DNA repair genes.

    PubMed

    Karpov, Dmitry S; Spasskaya, Daria S; Tutyaeva, Vera V; Mironov, Alexander S; Karpov, Vadim L

    2013-09-17

    The 26S proteasome is an ATP-dependent multi-subunit protease complex and the major regulator of intracellular protein turnover and quality control. However, its role in the DNA damage response is controversial. We addressed this question in yeast by disrupting the transcriptional regulation of the PRE1 proteasomal gene. The mutant strain has decreased proteasome activity and is hyper-resistant to various DNA-damaging agents. We found that Rpn4-target genes MAG1, RAD23, and RAD52 are overexpressed in this strain due to Rpn4 stabilisation. These genes represent three different pathways of base excision, nucleotide excision and double strand break repair by homologous recombination (DSB-HR). Consistently, the proteasome mutant displays increased DSB-HR activity. Our data imply that the proteasome may have a negative role in DNA damage response.

  20. Inhibition of the host proteasome facilitates papaya ringspot virus accumulation and proteosomal catalytic activity is modulated by viral factor HcPro.

    PubMed

    Sahana, Nandita; Kaur, Harpreet; Basavaraj; Tena, Fatima; Jain, Rakesh Kumar; Palukaitis, Peter; Canto, Tomas; Praveen, Shelly

    2012-01-01

    The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant-pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV) accumulation in its natural host papaya (Carica papaya). We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome), but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome), associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54), which impaired the HcPro - PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation.

  1. Proteasome inhibition increases DNA and RNA oxidation in astrocyte and neuron cultures.

    PubMed

    Ding, Qunxing; Dimayuga, Edgardo; Markesbery, William R; Keller, Jeffrey N

    2004-12-01

    Increased levels of nucleic acid oxidation have been described as part of normal brain aging and have been demonstrated to occur in multiple neurological disorders. The basis for increased nucleic acid oxidation in each of these conditions is presently unknown. Proteasome inhibition occurs in a host of neurodegenerative conditions and likely contributes to increased levels of oxidative damage and neurotoxicity. In the present study we demonstrate for the first time the ability of proteasome inhibition to increase the level of nucleic acid oxidation in primary neuron and astrocyte cultures. Administration of proteasome inhibitors (MG262, MG115) at concentrations that do not induce neuron death in the first 24 h of treatment, dramatically increase the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8OHG) immunoreactivity in both cell types. Neurons underwent larger increases in nucleic acid oxidation compared to astrocyte cultures. While both DNA and RNA oxidation were observed following proteasome inhibition, RNA appeared to undergo a greater degree of oxidation than DNA. Both 18S and 28S ribosomal RNA were dramatically decreased following proteasome inhibition. Interestingly, an accumulation of unprocessed and/or cross-linked RNA species was observed following proteasome inhibition. Taken together, these data indicate the ability of proteasome inhibition to increase the levels of nucleic acid oxidation in both neurons and astrocytes, and suggest that proteasome inhibition may have deleterious effects on transcription and translation in both neurons and glia.

  2. Zinc ionophores pyrithione inhibits herpes simplex virus replication through interfering with proteasome function and NF-κB activation.

    PubMed

    Qiu, Min; Chen, Yu; Chu, Ying; Song, Siwei; Yang, Na; Gao, Jie; Wu, Zhiwei

    2013-10-01

    Pyrithione (PT), known as a zinc ionophore, is effective against several pathogens from the Streptococcus and Staphylococcus genera. The antiviral activity of PT was also reported against a number of RNA viruses. In this paper, we showed that PT could effectively inhibit herpes simplex virus types 1 and 2 (HSV-1 and HSV-2). PT inhibited HSV late gene (Glycoprotein D, gD) expression and the production of viral progeny, and this action was dependent on Zn(2+). Further studies showed that PT suppressed the expression of HSV immediate early (IE) gene, the infected cell polypeptide 4 (ICP4), but had less effect on another regulatory IE protein, ICP0. It was found that PT treatment could interfere with cellular ubiquitin-proteasome system (UPS), leading to the inhibition of HSV-2-induced IκB-α degradation to inhibit NF-κB activation and enhanced promyelocytic leukemia protein (PML) stability in nucleus. However, PT did not show direct inhibition of 26S proteasome activity. Instead, it induced Zn(2+) influx, which facilitated the dysregulation of UPS and the accumulation of intracellular ubiquitin-conjugates. UPS inhibition by PT caused disruption of IκB-α degradation and NF-κB activation thus leading to marked reduction of viral titer.

  3. Nelfinavir augments proteasome inhibition by bortezomib in myeloma cells and overcomes bortezomib and carfilzomib resistance.

    PubMed

    Kraus, M; Bader, J; Overkleeft, H; Driessen, C

    2013-03-01

    HIV protease inhibitors (HIV-PI) are oral drugs for HIV treatment. HIV-PI have antitumor activity via induction of ER-stress, inhibition of phospho-AKT (p-AKT) and the proteasome, suggesting antimyeloma activity. We characterize the effects of all approved HIV-PI on myeloma cells. HIV-PI were compared regarding cytotoxicity, proteasome activity, ER-stress induction and AKT phosphorylation using myeloma cells in vitro. Nelfinavir is the HIV-PI with highest cytotoxic activity against primary myeloma cells and with an IC50 near therapeutic drug blood levels (8-14 μM), irrespective of bortezomib sensitivity. Only nelfinavir inhibited intracellular proteasome activity in situ at drug concentrations <40 μM. Ritonavir, saquinavir and lopinavir inhibited p-AKT comparable to nelfinavir, and showed similar synergistic cytotoxicity with bortezomib against bortezomib-sensitive cells. Nelfinavir had superior synergistic activity with bortezomib/carfilzomib in particular against bortezomib/carfilzomib-resistant myeloma cells. It inhibited not only the proteasomal β1/β5 active sites, similar to bortezomib/carfilzomib, but in addition the β2 proteasome activity not targeted by bortezomib/carfilzomib. Additional inhibition of β2 proteasome activity is known to sensitize cells for bortezomib and carfilzomib. Nelfinavir has unique proteasome inhibiting activity in particular on the bortezomib/carfilzomib-insensitive tryptic (β2) proteasome activity in intact myeloma cells, and is active against bortezomib/carfilzomib-resistant myeloma cells in vitro.

  4. N-Myristoylation of the Rpt2 subunit of the yeast 26S proteasome is implicated in the subcellular compartment-specific protein quality control system.

    PubMed

    Kimura, Ayuko; Kurata, Yoichi; Nakabayashi, Jun; Kagawa, Hiroyuki; Hirano, Hisashi

    2016-01-01

    Ubiquitination is the posttranslational modification of a protein by covalent attachment of ubiquitin. Controlled proteolysis via the ubiquitin-proteasome system (\\UPS) alleviates cellular stress by clearing misfolded proteins. In budding yeast, UPS within the nucleus degrades the nuclear proteins as well as proteins imported from the cytoplasm. While the predominantly nuclear localization of the yeast proteasome is maintained by the importin-mediated transport, N-myristoylation of the proteasome subunit Rpt2 was indicated to cause dynamic nucleo-cytoplasmic localization of proteasomes. Here, we quantitatively analyzed the ubiquitinated peptides using anti-K-ε-GG antibody in yeast cell lines with or without a mutation in the N-myristoylation site of Rpt2 and detected upregulated ubiquitination of proteins with nucleo-cytoplasmic localizations in the mutant strains. Moreover, both the protein and ubiquitinated peptide levels of two Hsp70 family chaperones involved in the nuclear import of misfolded proteins, Ssa and Sse1, were elevated in the mutant strains, whereas levels of an Hsp70 family chaperone involved in the nuclear export, Ssb, were reduced. Taken together, our results indicate that N-myristoylation of Rpt2 is involved in controlled proteolysis via regulation of the nucleo-cytoplasmic localization of the yeast proteasome.

  5. Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation.

    PubMed

    Lee, Seung-Hoon; Park, Yoon; Yoon, Sungjoo Kim; Yoon, Jong-Bok

    2010-12-31

    Osmotic stress causes profound perturbations of cell functions. Although the adaptive responses required for cell survival upon osmotic stress are being unraveled, little is known about the effects of osmotic stress on ubiquitin-dependent proteolysis. We now report that hyperosmotic stress inhibits proteasome activity by activating p38 MAPK. Osmotic stress increased the level of polyubiquitinated proteins in the cell. The selective p38 inhibitor SB202190 decreased osmotic stress-associated accumulation of polyubiquitinated proteins, indicating that p38 MAPK plays an inhibitory role in the ubiquitin proteasome system. Activated p38 MAPK stabilized various substrates of the proteasome and increased polyubiquitinated proteins. Proteasome preparations purified from cells expressing activated p38 MAPK had substantially lower peptidase activities than control proteasome samples. Proteasome phosphorylation sites dependent on p38 were identified by measuring changes in the extent of proteasome phosphorylation in response to p38 MAPK activation. The residue Thr-273 of Rpn2 is the major phosphorylation site affected by p38 MAPK. The mutation T273A in Rpn2 blocked the proteasome inhibition that is mediated by p38 MAPK. These results suggest that p38 MAPK negatively regulates the proteasome activity by phosphorylating Thr-273 of Rpn2.

  6. APEH Inhibition Affects Osteosarcoma Cell Viability via Downregulation of the Proteasome

    PubMed Central

    Palumbo, Rosanna; Gogliettino, Marta; Cocca, Ennio; Iannitti, Roberta; Sandomenico, Annamaria; Ruvo, Menotti; Balestrieri, Marco; Rossi, Mosè; Palmieri, Gianna

    2016-01-01

    The proteasome is a multienzymatic complex that controls the half-life of the majority of intracellular proteins, including those involved in apoptosis and cell-cycle progression. Recently, proteasome inhibition has been shown to be an effective anticancer strategy, although its downregulation is often accompanied by severe undesired side effects. We previously reported that the inhibition of acylpeptide hydrolase (APEH) by the peptide SsCEI 4 can significantly affect the proteasome activity in A375 melanoma or Caco-2 adenocarcinoma cell lines, thus shedding new light on therapeutic strategies based on downstream regulation of proteasome functions. In this work, we investigated the functional correlation between APEH and proteasome in a panel of cancer cell lines, and evaluated the cell proliferation upon SsCEI 4-treatments. Results revealed that SsCEI 4 triggered a proliferative arrest specifically in osteosarcoma U2OS cells via downregulation of the APEH–proteasome system, with the accumulation of the typical hallmarks of proteasome: NF-κB, p21Waf1, and polyubiquitinylated proteins. We found that the SsCEI 4 anti-proliferative effect involved a senescence-like growth arrest without noticeable cytotoxicity. These findings represent an important step toward understanding the mechanism(s) underlying the APEH-mediated downregulation of proteasome in order to design new molecules able to efficiently regulate the proteasome system for alternative therapeutic strategies. PMID:27669226

  7. Purification, crystallization and preliminary X-ray data collection of the N-terminal domain of the 26S proteasome regulatory subunit p27 and its complex with the ATPase domain of Rpt5 from Mus musculus.

    PubMed

    Diao, Wentao; Yang, Xue; Zhou, Hao

    2014-05-01

    The protein 26S proteasome regulatory subunit p27 is one of the four chaperones that help in the assembly of the 19S regulatory particle (RP) of the 26S proteasome. In the present work, the N-terminus of p27 (residues 1-128) from Mus musculus was cloned, expressed, purified and crystallized alone and in complex with the C-terminal ATPase domain of Rpt5 (residues 173-442). The crystals of p27((1-128)) diffracted to 1.7 Å resolution and belonged to space group P212121, with unit-cell parameters a = 26.79, b = 30.39, c = 145.06 Å. Resolution-dependent Matthews coefficient probability analysis suggested the presence of only one molecule per asymmetric unit, with 40.5% solvent content and a VM value of 2.02 Å(3) Da(-1). The crystal of the p27((1-128))-Rpt5((173-442)) complex diffracted to 4 Å resolution and belonged to space group P222, with unit-cell parameters a = 75.93, b = 76.08, c = 336.85 Å. The presence of four heterodimers in the asymmetric unit with 53.2% solvent content and a VM value of 2.63 Å(3) Da(-1) or five heterodimers in the asymmetric unit with 41.5% solvent content and a VM value of 2.10 Å(3) Da(-1) is assumed.

  8. Clinically used antirheumatic agent auranofin is a proteasomal deubiquitinase inhibitor and inhibits tumor growth

    PubMed Central

    Song, Wenbin; Lu, Xiaoyu; Lan, Xiaoying; Chen, Xin; Yi, Songgang; Xu, Li; Jiang, Lili; Zhao, Canguo; Dong, Xiaoxian; Zhou, Ping; Li, Shujue; Wang, Shunqing; Shi, Xianping; Dou, Ping Q.; Wang, Xuejun; Liu, Jinbao

    2014-01-01

    Proteasomes are attractive emerging targets for anti-cancer therapies. Auranofin (Aur), a gold-containing compound clinically used to treat rheumatic arthritis, was recently approved by US Food and Drug Administration for Phase II clinical trial to treat cancer but its anti-cancer mechanism is poorly understood. Here we report that (i) Aur shows proteasome-inhibitory effect that is comparable to that of bortezomib/Velcade (Vel); (ii) different from bortezomib, Aur inhibits proteasome-associated deubiquitinases (DUBs) UCHL5 and USP14 rather than the 20S proteasome; (iii) inhibition of the proteasome-associated DUBs is required for Aur-induced cytotoxicity; and (iv) Aur selectively inhibits tumor growth in vivo and induces cytotoxicity in cancer cells from acute myeloid leukemia patients. This study provides important novel insight into understanding the proteasome-inhibiting property of metal-containing compounds. Although several DUB inhibitors were reported, this study uncovers the first drug already used in clinic that can inhibit proteasome-associated DUBs with promising anti-tumor effects. PMID:24977961

  9. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate

    SciTech Connect

    Hu,G.; Lin, G.; Wang, M.; Dick, L.; Xu, R.; Nathan, C.; Li, H.

    2006-01-01

    Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 Angstroms resolution reveals a substrate-binding pocket with composite features of the distinct {beta}1, {beta}2 and {beta}5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the a-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapeptides of the a-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-{beta}-(1-naphthyl)-l-alanine-l-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis.

  10. p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition.

    PubMed

    Radhakrishnan, Senthil K; den Besten, Willem; Deshaies, Raymond J

    2014-01-01

    Proteasome inhibition elicits an evolutionarily conserved response wherein proteasome subunit mRNAs are upregulated, resulting in recovery (i.e., 'bounce-back') of proteasome activity. We previously demonstrated that the transcription factor Nrf1/NFE2L1 mediates this homeostatic response in mammalian cells. We show here that Nrf1 is initially translocated into the lumen of the ER, but is rapidly and efficiently retrotranslocated to the cytosolic side of the membrane in a manner that depends on p97/VCP. Normally, retrotranslocated Nrf1 is degraded promptly by the proteasome and active species do not accumulate. However, in cells with compromised proteasomes, retrotranslocated Nrf1 escapes degradation and is cleaved N-terminal to Leu-104 to yield a fragment that is no longer tethered to the ER membrane. Importantly, this cleavage event is essential for Nrf1-dependent activation of proteasome gene expression upon proteasome inhibition. Our data uncover an unexpected role for p97 in activation of a transcription factor by relocalizing it from the ER lumen to the cytosol. DOI: http://dx.doi.org/10.7554/eLife.01856.001.

  11. Proteasome inhibition alleviates prolonged moderate compression-induced muscle pathology

    PubMed Central

    2011-01-01

    Background The molecular mechanism initiating deep pressure ulcer remains to be elucidated. The present study tested the hypothesis that the ubiquitin proteasome system is involved in the signalling mechanism in pressure-induced deep tissue injury. Methods Adult Sprague Dawley rats were subjected to an experimental compression model to induce deep tissue injury. The tibialis region of the right hind limb was subjected to 100 mmHg of static pressure for six hours on each of two consecutive days. The compression pressure was continuously monitored by a three-axial force transducer within the compression indentor. The left hind limb served as the intra-animal control. Muscle tissues underneath the compressed region were collected and used for analyses. Results Our results demonstrated that the activity of 20S proteasome and the protein abundance of ubiquitin and MAFbx/atrogin-1 were elevated in conjunction with pathohistological changes in the compressed muscle, as compared to control muscle. The administration of the proteasome inhibitor MG132 was found to be effective in ameliorating the development of pathological histology in compressed muscle. Furthermore, 20S proteasome activity and protein content of ubiquitin and MAFbx/atrogin-1 showed no apparent increase in the MG132-treated muscle following compression. Conclusion Our data suggest that the ubiquitin proteasome system may play a role in the pathogenesis of pressure-induced deep tissue injury. PMID:21385343

  12. Proteasome inhibition reverses hedgehog inhibitor and taxane resistance in ovarian cancer.

    PubMed

    Steg, Adam D; Burke, Mata R; Amm, Hope M; Katre, Ashwini A; Dobbin, Zachary C; Jeong, Dae Hoon; Landen, Charles N

    2014-08-30

    The goal of this study was to determine whether combined targeted therapies, specifically those against the Notch, hedgehog and ubiquitin-proteasome pathways, could overcome ovarian cancer chemoresistance. Chemoresistant ovarian cancer cells were exposed to gamma-secretase inhibitors (GSI-I, Compound E) or the proteasome inhibitor bortezomib, alone and in combination with the hedgehog antagonist, LDE225. Bortezomib, alone and in combination with LDE225, was evaluated for effects on paclitaxel efficacy. Cell viability and cell cycle analysis were assessed by MTT assay and propidium iodide staining, respectively. Proteasome activity and gene expression were determined by luminescence assay and qPCR, respectively. Studies demonstrated that GSI-I, but not Compound E, inhibited proteasome activity, similar to bortezomib. Proteasome inhibition decreased hedgehog target genes (PTCH1, GLI1 and GLI2) and increased LDE225 sensitivity in vitro. Bortezomib, alone and in combination with LDE225, increased paclitaxel sensitivity through apoptosis and G2/M arrest. Expression of the multi-drug resistance gene ABCB1/MDR1 was decreased and acetylation of α-tubulin, a marker of microtubule stabilization, was increased following bortezomib treatment. HDAC6 inhibitor tubastatin-a demonstrated that microtubule effects are associated with hedgehog inhibition and sensitization to paclitaxel and LDE225. These results suggest that proteasome inhibition, through alteration of microtubule dynamics and hedgehog signaling, can reverse taxane-mediated chemoresistance.

  13. Transcriptional upregulation of BAG3 upon proteasome inhibition

    SciTech Connect

    Wang Huaqin Liu Haimei; Zhang Haiyan; Guan Yifu; Du Zhenxian

    2008-01-11

    Proteasome inhibitors exhibit antitumoral activity against malignancies of different histology. Emerging evidence indicates that antiapoptotic factors may also accumulate as a consequence of exposure to these drugs, thus it seems plausible that activation of survival signaling cascades might compromise their antitumoral effects. Bcl-2-associated athanogene (BAG) family proteins are characterized by their property of interaction with a variety of partners involved in modulating the proliferation/death balance, including heat shock proteins (HSP), Bcl-2, Raf-1. In this report, we demonstrated that BAG3 is a novel antiapoptotic molecule induced by proteasome inhibitors in various cancer cells at the transcriptional level. Moreover, we demonstrated that BAG3 knockdown by siRNA sensitized cancer cells to MG132-induced apoptosis. Taken together, our results suggest that BAG3 induction might represents as an unwanted molecular consequence of utilizing proteasome inhibitors to combat tumors.

  14. Marizomib irreversibly inhibits proteasome to overcome compensatory hyperactivation in multiple myeloma and solid tumour patients.

    PubMed

    Levin, Nancy; Spencer, Andrew; Harrison, Simon J; Chauhan, Dharminder; Burrows, Francis J; Anderson, Kenneth C; Reich, Steven D; Richardson, Paul G; Trikha, Mohit

    2016-09-01

    Proteasome inhibitors (PIs) are highly active in multiple myeloma (MM) but resistance is commonly observed. All clinical stage PIs effectively inhibit chymotrypsin-like (CT-L) activity; one possible mechanism of resistance is compensatory hyperactivation of caspase-like (C-L) and trypsin-like (T-L) subunits, in response to CT-L blockade. Marizomib (MRZ), an irreversible PI that potently inhibits all three 20S proteasome subunits with a specificity distinct from other PIs, is currently in development for treatment of MM and malignant glioma. The pan-proteasome pharmacodynamic activity in packed whole blood and peripheral blood mononuclear cells was measured in two studies in patients with advanced solid tumours and haematological malignancies. Functional inhibition of all proteasome subunits was achieved with once- or twice-weekly MRZ dosing; 100% inhibition of CT-L was frequently achieved within one cycle at therapeutic doses. Concomitantly, C-L and T-L activities were either unaffected or increased, suggesting compensatory hyperactivation of these subunits. Importantly, this response was overcome by continued administration of MRZ, with robust inhibition of T-L and C-L (up to 80% and 50%, respectively) by the end of Cycle 2 and maintained thereafter. This enhanced proteasome inhibition was independent of tumour type and may underlie the clinical activity of MRZ in patients resistant to other PIs.

  15. Proteasome inhibition compromises direct retention of cytochrome P450 2C2 in the endoplasmic reticulum.

    PubMed

    Szczesna-Skorupa, Elzbieta; Kemper, Byron

    2008-10-15

    To determine whether protein degradation plays a role in the endoplasmic reticulum (ER) retention of cytochromes P450, the effects of proteasomal inhibitors on the expression and distribution of green fluorescent protein chimeras of CYP2C2 and related proteins was examined. In transfected cells, expression levels of chimeras of full-length CYP2C2 and its cytosolic domain, but not its N-terminal transmembrane sequence, were increased by proteasomal inhibition. Redistribution of all three chimeras from the reticular ER into a perinuclear compartment and, in a subset of cells, also to the cell surface was observed after proteasomal inhibition. Redistribution was blocked by the microtubular inhibitor, nocodazole, suggesting that redistribution to the cell surface followed the conventional vesicular transport pathway. Similar redistributions were detected for BAP31, a CYP2C2 binding chaperone; CYP2E1 and CYP3A4, which are also degraded by the proteasomal pathway; and for cytochrome P450 reductase, which does not undergo proteasomal degradation; but not for the ER membrane proteins, sec61 and calnexin. Redistribution does not result from saturation of an ER retention "receptor" since in some cases protein levels were unaffected. Proteasomal inhibition may, therefore, alter ER retention by affecting a protein critical for ER retention, either directly, or indirectly by affecting the composition of the ER membranes.

  16. Molecular study on copper-mediated tumor proteasome inhibition and cell death

    PubMed Central

    ZHANG, XIA; CUI, QIUZHI; FAN, YUHUA; BI, CAIFENG; DOU, Q. PING

    2013-01-01

    The metal ion copper is a cofactor essential for maintaining normal biological and physical functions in human beings. High copper levels have been found in variety of tumor tissues and are involved in tumor angiogenesis processes. The ubiquitin-proteasome system plays an important role in cell growth and apoptosis and has been shown as a novel target for cancer therapy. We previously reported that some organic copper complexes can inhibit the proteasomal chymotrypsin-like activity and induce apoptosis in human cancer cells and xenograft models. In the current study, we investigated the effect of oxidation status of copper, Cu(I) or Cu(II), on inhibition of proteasome activity, induction of apoptosis, and induction of reactive oxygen species (ROS) in human cancer cells. We report four major findings here: i) both Cu(I) and Cu(II) could inhibit the chymotrypsin-like activity of purified 20S proteasome, but Cu(I) was more potent than Cu(II), ii) purified 20S proteasome protein was able to reduce Cu(II) to Cu(I), suggesting that Cu(I) is the oxidation status of copper that directly reacts with the proteasome, iii) when complexed with the copper ligand neocuproine, Cu(I) showed higher ability to induce ROS production in cancer cells, compared with Cu(II), iv) addition of a ROS scavenger in the cancer cell culture-blocked copper-induced ROS generation, but did not overcome copper-mediated proteasome-inhibitory and cell death-inducing events, demonstrating the ROS-independent proteasome-inhibitory property of copper complexes. PMID:20514399

  17. Inhibition of proteasome activity by various fruits and vegetables is associated with cancer cell death.

    PubMed

    Chen, Marina S; Chen, Di; Dou, Q Ping

    2004-01-01

    There is a large amount of scientific evidence showing that fruits and vegetables lower the risk of cancer. However, the responsible molecular mechanisms remain poorly understood. Our previous studies have demonstrated that inhibition of proteasomal chymotrypsin-like activity is associated with cancer cell apoptosis, which may also be the major mechanism responsible for the anticancer effects of green tea polyphenols. In the current study, we tested the hypothesis that some fruits and vegetables inhibit tumor cell proteasome activity and that this inhibition contributes to their cancer-preventative activities. We report that the extracts of apple and grape are more potent than onion, tomato and celery in: (i) inhibiting the proteasomal chymotrypsin-like activity in leukemia Jurkat T cell extract; (ii) accumulating the polyubiquitinated proteins in intact Jurkat T cells; (iii) inducing activation of caspase-3/-7 and cleavage of poly(ADP-ribose) polymerase in intact Jurkat T cells; and (iv) inducing the appearance of spherical cells preferentially in prostate cancer PC-3 over the normal NIH 3T3 cell line. We also found that strawberry extract had some effect on Jurkat T cell extract and the prostate PC-3 cell line but not on intact Jurkat T cells. Our findings suggest that the proteasome is a cancer-related molecular target for, at least, the extracts of apple, grape and onion, and that the inhibition of proteasome activity by these fruits or vegetable may contribute to their cancer-preventative effects, although other molecular mechanisms may also be involved.

  18. Proteasome inhibition in medaka brain induces the features of Parkinson's disease.

    PubMed

    Matsui, Hideaki; Ito, Hidefumi; Taniguchi, Yoshihito; Inoue, Haruhisa; Takeda, Shunichi; Takahashi, Ryosuke

    2010-10-01

    Recent findings suggest that a defect in the ubiquitin-proteasome system plays an important role in the pathogenesis of Parkinson's disease (PD). A previous report (McNaught et al. 2004) demonstrated that rats systemically injected with proteasome inhibitors exhibited PD-like clinical symptoms and pathology. However, because these findings have not been consistently replicated, this model is not commonly used to study PD. We used medaka fish to test the effect of systemic administration of proteasome inhibitors because of the high level of accessibility of the cerebrospinal fluid in fish. We injected lactacystin or epoxomicin into the CSF of medaka. With proteasome inhibition in the medaka brain, selective dopaminergic and noradrenergic cell loss was observed. Furthermore, treated fish exhibited reduced spontaneous movement. Treatment with proteasome inhibitors also induced the formation of inclusion bodies resembling Lewy bodies, which are characteristic of PD. Treatment with 6-OHDA also induced dopaminergic cell loss but did not produce inclusion bodies. These findings in medaka are consistent with previous results reporting that non-selective proteasome inhibition replicates the cardinal features of PD: locomotor dysfunction, selective dopaminergic cell loss, and inclusion body formation.

  19. Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome.

    PubMed

    Tsvetkov, Peter; Mendillo, Marc L; Zhao, Jinghui; Carette, Jan E; Merrill, Parker H; Cikes, Domagoj; Varadarajan, Malini; van Diemen, Ferdy R; Penninger, Josef M; Goldberg, Alfred L; Brummelkamp, Thijn R; Santagata, Sandro; Lindquist, Susan

    2015-09-01

    Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans.

  20. Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways.

    PubMed

    Wills, Jonathan; Credle, Joel; Oaks, Adam W; Duka, Valeriy; Lee, Jae-Hoon; Jones, Jessica; Sidhu, Anita

    2012-01-01

    SNCA and MAPT genes and environmental factors are important risk factors of Parkinson's disease [PD], the second-most common neurodegenerative disease. The agrichemicals maneb and paraquat selectively target dopaminergic neurons, leading to parkinsonism, through ill-defined mechanisms. In the current studies we have analyzed the ability of maneb and paraquat, separately and together, to induce synucleinopathy and tauopathy in wild type mice. Maneb was ineffective in increasing α-synuclein [α-Syn] or p-Tau levels. By contrast, paraquat treatment of mice resulted in robust accumulation of α-Syn and hyperphosphorylation of Tau in striata, through activation of p-GSK-3β, a major Tau kinase. Co-treatment with maneb did not enhance the effects of paraquat. Increased hyperacetylation of α-tubulin was observed in paraquat-treated mice, suggesting cytoskeleton remodeling. Paraquat, but not maneb, inhibited soluble proteasomal activity on a peptide substrate but this was not associated with a decreased expression of 26S proteasome subunits. Both paraquat and maneb treatments increased levels of the autophagy inhibitor, mammalian target of rapamycin, mTOR, suggesting impaired axonal autophagy, despite increases in certain autophagic proteins, such as beclin 1 and Agt12. Autophagic flux was also impaired, as ratios of LC3 II to LC3 I were reduced in treated animals. Increased mTOR was also observed in postmortem human PD striata, where there was a reduction in the LC3 II to LC3 I ratio. Heat shock proteins were either increased or unchanged upon paraquat-treatment suggesting that chaperone-mediated autophagy is not hampered by the agrichemicals. These studies provide novel insight into the mechanisms of action of these agrichemicals, which indicate that paraquat is much more toxic than maneb, via its inhibitory effects on proteasomes and autophagy, which lead to accumulation of α-Syn and p-Tau.

  1. Reactive nucleolar and Cajal body responses to proteasome inhibition in sensory ganglion neurons.

    PubMed

    Palanca, Ana; Casafont, Iñigo; Berciano, María T; Lafarga, Miguel

    2014-06-01

    The dysfunction of the ubiquitin proteasome system has been related to a broad array of neurodegenerative disorders in which the accumulation of misfolded protein aggregates causes proteotoxicity. The ability of proteasome inhibitors to induce cell cycle arrest and apoptosis has emerged as a powerful strategy for cancer therapy. Bortezomib is a proteasome inhibitor used as an antineoplastic drug, although its neurotoxicity frequently causes a severe sensory peripheral neuropathy. In this study we used a rat model of bortezomib treatment to study the nucleolar and Cajal body responses to the proteasome inhibition in sensory ganglion neurons that are major targets of bortezomib-induced neurotoxicity. Treatment with bortezomib induced dose-dependent dissociation of protein synthesis machinery (chromatolysis) and nuclear retention of poly(A) RNA granules resulting in neuronal dysfunction. However, as a compensatory response to the proteotoxic stress, both nucleoli and Cajal bodies exhibited reactive changes. These include an increase in the number and size of nucleoli, strong nucleolar incorporation of the RNA precursor 5'-fluorouridine, and increased expression of both 45S rRNA and genes encoding nucleolar proteins UBF, fibrillarin and B23. Taken together, these findings appear to reflect the activation of the nucleolar transcription in response to proteotoxic stress Furthermore, the number of Cajal bodies, a parameter related to transcriptional activity, increases upon proteasome inhibition. We propose that nucleoli and Cajal bodies are important targets in the signaling pathways that are activated by the proteotoxic stress response to proteasome inhibition. The coordinating activity of these two organelles in the production of snRNA, snoRNA and rRNA may contribute to neuronal survival after proteasome inhibition. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.

  2. Transcriptional Activation of Pericentromeric Satellite Repeats and Disruption of Centromeric Clustering upon Proteasome Inhibition.

    PubMed

    Natisvili, Theona; Yandim, Cihangir; Silva, Raquel; Emanuelli, Giulia; Krueger, Felix; Nageshwaran, Sathiji; Festenstein, Richard

    2016-01-01

    Heterochromatinisation of pericentromeres, which in mice consist of arrays of major satellite repeats, are important for centromere formation and maintenance of genome stability. The dysregulation of this process has been linked to genomic stress and various cancers. Here we show in mice that the proteasome binds to major satellite repeats and proteasome inhibition by MG132 results in their transcriptional de-repression; this de-repression is independent of cell-cycle perturbation. The transcriptional activation of major satellite repeats upon proteasome inhibition is accompanied by delocalisation of heterochromatin protein 1 alpha (HP1α) from chromocentres, without detectable change in the levels of histone H3K9me3, H3K4me3, H3K36me3 and H3 acetylation on the major satellite repeats. Moreover, inhibition of the proteasome was found to increase the number of chromocentres per cell, reflecting destabilisation of the chromocentre structures. Our findings suggest that the proteasome plays a role in maintaining heterochromatin integrity of pericentromeres.

  3. Transcriptional Activation of Pericentromeric Satellite Repeats and Disruption of Centromeric Clustering upon Proteasome Inhibition

    PubMed Central

    Natisvili, Theona; Yandim, Cihangir; Silva, Raquel; Emanuelli, Giulia; Krueger, Felix; Nageshwaran, Sathiji; Festenstein, Richard

    2016-01-01

    Heterochromatinisation of pericentromeres, which in mice consist of arrays of major satellite repeats, are important for centromere formation and maintenance of genome stability. The dysregulation of this process has been linked to genomic stress and various cancers. Here we show in mice that the proteasome binds to major satellite repeats and proteasome inhibition by MG132 results in their transcriptional de-repression; this de-repression is independent of cell-cycle perturbation. The transcriptional activation of major satellite repeats upon proteasome inhibition is accompanied by delocalisation of heterochromatin protein 1 alpha (HP1α) from chromocentres, without detectable change in the levels of histone H3K9me3, H3K4me3, H3K36me3 and H3 acetylation on the major satellite repeats. Moreover, inhibition of the proteasome was found to increase the number of chromocentres per cell, reflecting destabilisation of the chromocentre structures. Our findings suggest that the proteasome plays a role in maintaining heterochromatin integrity of pericentromeres. PMID:27806100

  4. E2-25K SUMOylation inhibits proteasome for cell death during cerebral ischemia/reperfusion

    PubMed Central

    Jeong, Eun Il; Chung, Hae Won; Lee, Won Jea; Kim, Seo-Hyun; Kim, Hyunjoo; Choi, Seon-Guk; Jung, Yong-Keun

    2016-01-01

    Cerebral ischemia/reperfusion (I/R) causes brain damage accompanied by ubiquitin accumulation and impairment of proteasome activity. In this study, we report that E2-25K, an E2-conjugating enzyme, is SUMOylated during oxidative stress and regulates cerebral I/R-induced damage. Knockdown of E2-25K expression protects against oxygen/glucose deprivation and reoxygenation (OGD/R)-induced neuronal cell death, whereas ectopic expression of E2-25K stimulates it. Compared with the control mice, cerebral infarction lesions and behavioral/neurological disorders are ameliorated in E2-25K knockout mice during middle cerebral artery occlusion and reperfusion. In particular, E2-25K is SUMOylated at Lys14 under oxidative stress, OGD/R and I/R to prompt cell death. Further, E2-25K downregulates the proteasome subunit S5a to impair proteasome complex and thus restrain proteasome activity under oxidative stress. This proteasome inhibitory activity of E2-25K is dependent on its SUMOylation. These results suggest that E2-25K has a crucial role in oxidative stress and cerebral I/R-induced damage through inhibiting proteasome via its SUMOylation. PMID:28032866

  5. Proteomic analysis of MG132-treated germinating pollen reveals expression signatures associated with proteasome inhibition.

    PubMed

    Vannini, Candida; Bracale, Marcella; Crinelli, Rita; Marconi, Valerio; Campomenosi, Paola; Marsoni, Milena; Scoccianti, Valeria

    2014-01-01

    Chemical inhibition of the proteasome has been previously found to effectively impair pollen germination and tube growth in vitro. However, the mediators of these effects at the molecular level are unknown. By performing 2DE proteomic analysis, 24 differentially expressed protein spots, representing 14 unique candidate proteins, were identified in the pollen of kiwifruit (Actinidia deliciosa) germinated in the presence of the MG132 proteasome inhibitor. qPCR analysis revealed that 11 of these proteins are not up-regulated at the mRNA level, but are most likely stabilized by proteasome inhibition. These differentially expressed proteins are predicted to function in various pathways including energy and lipid metabolism, cell wall synthesis, protein synthesis/degradation and stress responses. In line with this evidence, the MG132-induced changes in the proteome were accompanied by an increase in ATP and ROS content and by an alteration in fatty acid composition.

  6. Nuclear effects of ethanol-induced proteasome inhibition in liver cells

    PubMed Central

    Bardag-Gorce, Fawzia

    2009-01-01

    Alcohol ingestion causes alteration in several cellular mechanisms, and leads to inflammation, apoptosis, immunological response defects, and fibrosis. These phenomena are associated with significant changes in the epigenetic mechanisms, and subsequently, to liver cell memory. The ubiquitin-proteasome pathway is one of the vital pathways in the cell that becomes dysfunctionial as a result of chronic ethanol consumption. Inhibition of the proteasome activity in the nucleus causes changes in the turnover of transcriptional factors, histone modifying enzymes, and therefore, affects epigenetic mechanisms. Alcohol consumption has been associated with an increase in histone acetylation and a decrease in histone methylation, which leads to gene expression changes. DNA and histone modifications that result from ethanol-induced proteasome inhibition are key players in regulating gene expression, especially genes involved in the cell cycle, immunological responses, and metabolism of ethanol. The present review highlights the consequences of ethanol-induced proteasome inhibition in the nucleus of liver cells that are chronically exposed to ethanol. PMID:19291815

  7. Pesticides that inhibit the ubiquitin-proteasome system: effect measure modification by genetic variation in SKP1 in Parkinson׳s disease.

    PubMed

    Rhodes, Shannon L; Fitzmaurice, Arthur G; Cockburn, Myles; Bronstein, Jeff M; Sinsheimer, Janet S; Ritz, Beate

    2013-10-01

    Cytoplasmic inclusions known as Lewy bodies, a hallmark of Parkinson's disease (PD) pathology, may protect against cytotoxic proteins. Since the ubiquitin-proteasome system (UPS) degrades cytotoxic proteins, dysfunction in the UPS may contribute to PD etiology. Our goal in this study was to screen pesticides for proteasome inhibition and investigate (i) whether ambient exposures to pesticides that inhibit the UPS increase PD risk and (ii) whether genetic variation in candidate genes of the UPS pathway modify those increased risks. We assessed 26S UPS activity in SK-N-MC(u) cells by fluorescence. We recruited idiopathic PD cases (n=360) and population-based controls (n=816) from three counties in California with considerable commercial agriculture. We determined ambient pesticide exposure by our validated GIS-based model utilizing residential and workplace address histories. We limited effect measure modification assessment to Caucasians (287 cases, 453 controls). Eleven of 28 pesticides we screened inhibited 26S UPS activity at 10 µM. Benomyl, cyanazine, dieldrin, endosulfan, metam, propargite, triflumizole, and ziram were associated with increased PD risk. We estimated an odds ratio of 2.14 (95% CI: 1.42, 3.22) for subjects with ambient exposure to any UPS-inhibiting pesticide at both residential and workplace addresses; this association was modified by genetic variation in the s-phase kinase-associated protein 1 gene (SKP1; interaction p-value=0.005). Our results provide evidence that UPS-inhibiting pesticides play a role in the etiology of PD and suggest that genetic variation in candidate genes involved in the UPS pathway might exacerbate the toxic effects of pesticide exposures.

  8. Inhibition of 19S proteasome-associated deubiquitinases by metal-containing compounds

    PubMed Central

    Liu, Ningning; Huang, Hongbiao; Ping Dou, Q.; Liu, Jinbao

    2015-01-01

    Copper and gold complexes have clinical activity in several diseases including cancer. Recently, we have reported that the anti-cancer activity of copper (II) pyrithione CuPT and gold (I) complex auranofin is associated with targeting the 19S proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. Here we discuss metal DUB inhibitors in treating cancer and other diseases. (from Editor). Several copper and gold complexes have clinical activity in treating some human diseases including cancer. Recently, we have reported that the anti-cancer activity of copper (II) pyrithione CuPT and gold (I) complex auranofin is tightly associated with their ability to target and inhibit the 19S proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. In this article we review small molecule inhibitors of DUBs and 19S proteasome-associated DUBs. We then describe and discuss the ubique nature of CuPT and auranofin, which is inhibition of 19S proteasome-associated UCHL5 and USP14. We finally suggest the potential to develop novel, specific metal-based DUB inhibitors for treating cancer and other diseases PMID:26097878

  9. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness

    PubMed Central

    Khare, Shilpi; Nagle, Advait S.; Biggart, Agnes; Lai, Yin H.; Liang, Fang; Davis, Lauren C.; Barnes, S. Whitney; Mathison, Casey J. N.; Myburgh, Elmarie; Gao, Mu-Yun; Gillespie, J. Robert; Liu, Xianzhong; Tan, Jocelyn L.; Stinson, Monique; Rivera, Ianne C.; Ballard, Jaime; Yeh, Vince; Groessl, Todd; Federe, Glenn; Koh, Hazel X. Y.; Venable, John D.; Bursulaya, Badry; Shapiro, Michael; Mishra, Pranab K.; Spraggon, Glen; Brock, Ansgar; Mottram, Jeremy C.; Buckner, Frederick S.; Rao, Srinivasa P. S.; Wen, Ben G.; Walker, John R.; Tuntland, Tove; Molteni, Valentina; Glynne, Richard J.; Supek, Frantisek

    2016-01-01

    Chagas disease, leishmaniasis, and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually1. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drug(s) modulating the activity of a conserved parasite target2. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases. PMID:27501246

  10. Proteasome inhibition by new dual warhead containing peptido vinyl sulfonyl fluorides.

    PubMed

    Brouwer, Arwin J; Herrero Álvarez, Natalia; Ciaffoni, Adriano; van de Langemheen, Helmus; Liskamp, Rob M J

    2016-08-15

    The success of inhibition of the proteasome by formation of covalent bonds is a major victory over the long held-view that this would lead to binding the wrong targets and undoubtedly lead to toxicity. Great challenges are now found in uncovering ensembles of new moieties capable of forming long lasting ties. We have introduced peptido sulfonyl fluorides for this purpose. Tuning the reactivity of this electrophilic trap may be crucial for modulating the biological action. Here we describe incorporation of a vinyl moiety into a peptido sulfonyl fluoride backbone, which should lead to a combined attack of the proteasome active site threonine on the double bond and the sulfonyl fluoride. Although this led to strong proteasome inhibitors, in vitro studies did not unambiguously demonstrate the formation of the proposed seven-membered ring structure. Possibly, formation of a seven-membered covalent adduct with the proteosomal active site threonine can only be achieved within the context of the enzyme. Nevertheless, this dual warhead concept may provide exclusive possibilities for duration and selectivity of proteasome inhibition.

  11. Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function.

    PubMed

    Li, Xiaohua; Thompson, David; Kumar, Brajesh; DeMartino, George N

    2014-06-20

    We investigated molecular features and cellular roles of PI31 (PSMF1) on regulation of proteasome function. PI31 has a C-terminal HbYX (where Hb is a hydrophobic amino acid, Y is tyrosine, and X is any amino acid) motif characteristic of several proteasome activators. Peptides corresponding to the PI31 C terminus also bind to and activate the 20 S proteasome in an HbYX-dependent manner, but intact PI31protein inhibits in vitro 20 S activity. Binding to and inhibition of the proteasome by PI31 are conferred by the HbYX-containing proline-rich C-terminal domain but do not require HbYX residues. Thus, multiple regions of PI31 bind independently to the proteasome and collectively determine effects on activity. PI31 blocks the ATP-dependent in vitro assembly of 26 S proteasome from 20 S proteasome and PA700 subcomplexes but has no effect on in vitro activity of the intact 26 S proteasome. To determine the physiologic significance of these in vitro effects, we assessed multiple aspects of cellular proteasome content and function after altering PI31 levels. We detected no change in overall cellular proteasome content or function when PI31 levels were either increased by moderate ectopic overexpression or decreased by RNA interference (RNAi). We also failed to identify a role of PI31 ADP-ribosylation as a mechanism for regulation of overall 26 S proteasome content and function, as recently proposed. Thus, despite its in vitro effects on various proteasome activities and its structural relationship to established proteasome regulators, cellular roles and mechanisms of PI31 in regulation of proteasome function remain unclear and require future definition.

  12. The Proline/Arginine Dipeptide from Hexanucleotide Repeat Expanded C9ORF72 Inhibits the Proteasome

    PubMed Central

    Lan, Matthews; Mojsilovic-Petrovic, Jelena; Choi, Won Hoon; Safren, Nathaniel; Barmada, Sami

    2017-01-01

    Abstract An intronic hexanucleotide repeat expansion (HRE) mutation in the C9ORF72 gene is the most common cause of familial ALS and frontotemporal dementia (FTD) and is found in ∼7% of individuals with apparently sporadic disease. Several different diamino acid peptides can be generated from the HRE by noncanonical translation (repeat-associated non-ATG translation, or RAN translation), and some of these peptides can be toxic. Here, we studied the effects of two arginine containing RAN translation products [proline/arginine repeated 20 times (PR20) and glycine/arginine repeated 20 times (GR20)] in primary rat spinal cord neuron cultures grown on an astrocyte feeder layer. We find that PR20 kills motor neurons with an LD50 of 2 µM, but in contrast to the effects of other ALS-causing mutant proteins (i.e., SOD or TDP43), PR20 does not evoke the biochemical signature of mitochondrial dysfunction, ER stress, or mTORC down-regulation. PR20 does result in a time-dependent build-up of ubiquitylated substrates, and this is associated with a reduction of flux through both autophagic and proteasomal degradation pathways. GR20, however, does not have these effects. The effects of PR20 on the proteasome are likely to be direct because (1) PR20 physically associates with proteasomes in biochemical assays, and (2) PR20 inhibits the degradation of a ubiquitylated test substrate when presented to purified proteasomes. Application of a proteasomal activator (IU1) blocks the toxic effects of PR20 on motor neuron survival. This work suggests that proteasomal activators have therapeutic potential in individuals with C9ORF72 HRE. PMID:28197542

  13. Proteasome inhibition in skeletal muscle cells unmasks metabolic derangements in type 2 diabetes.

    PubMed

    Al-Khalili, Lubna; de Castro Barbosa, Thais; Ostling, Jörgen; Massart, Julie; Cuesta, Pablo Garrido; Osler, Megan E; Katayama, Mutsumi; Nyström, Ann-Christin; Oscarsson, Jan; Zierath, Juleen R

    2014-11-01

    Two-dimensional difference gel electrophoresis (2-D DIGE)-based proteome analysis has revealed intrinsic insulin resistance in myotubes derived from type 2 diabetic patients. Using 2-D DIGE-based proteome analysis, we identified a subset of insulin-resistant proteins involved in protein turnover in skeletal muscle of type 2 diabetic patients, suggesting aberrant regulation of the protein homeostasis maintenance system underlying metabolic disease. We then validated the role of the ubiquitin-proteasome system (UPS) in myotubes to investigate whether impaired proteasome function may lead to metabolic arrest or insulin resistance. Myotubes derived from muscle biopsies obtained from people with normal glucose tolerance (NGT) or type 2 diabetes were exposed to the proteasome inhibitor bortezomib (BZ; Velcade) without or with insulin. BZ exposure increased protein carbonylation and lactate production yet impaired protein synthesis and UPS function in myotubes from type 2 diabetic patients, marking the existence of an insulin-resistant signature that was retained in cultured myotubes. In conclusion, BZ treatment further exacerbates insulin resistance and unmasks intrinsic features of metabolic disease in myotubes derived from type 2 diabetic patients. Our results highlight the existence of a confounding inherent abnormality in cellular protein dynamics in metabolic disease, which is uncovered through concurrent inhibition of the proteasome system.

  14. Ubiquitin-Proteasome System Inhibition Promotes Long-Term Depression and Synaptic Tagging/Capture.

    PubMed

    Li, Qin; Korte, Martin; Sajikumar, Sreedharan

    2016-06-01

    A balance of protein synthesis and degradation is critical for the dynamic regulation and implementation of long-term memory storage. The role of the ubiquitin-proteasome system (UPS) in regulating the plasticity at potentiated synapses is well studied, but its roles in depressed synaptic populations remain elusive. In this study, we probed the possibility of regulating the UPS by inhibiting the proteasome function during the induction of protein synthesis-independent form of hippocampal long-term depression (early-LTD), an important component of synaptic plasticity. Here, we show that protein degradation is involved in early-LTD induction and interfering with this process facilitates early-LTD to late-LTD. We provide evidence here that under the circumstances of proteasome inhibition brain-derived neurotrophic factor is accumulated as plasticity-related protein and it drives the weakly depressed or potentiated synapses to associativity. Thus, UPS inhibition promotes LTD and establishes associativity between weakly depressed or potentiated synapses through the mechanisms of synaptic tagging/capture or cross-capture.

  15. Homogeneous, bioluminescent proteasome assays.

    PubMed

    O'Brien, Martha A; Moravec, Richard A; Riss, Terry L; Bulleit, Robert F

    2015-01-01

    Protein degradation is mediated predominantly through the ubiquitin-proteasome pathway. The importance of the proteasome in regulating degradation of proteins involved in cell-cycle control, apoptosis, and angiogenesis led to the recognition of the proteasome as a therapeutic target for cancer. The proteasome is also essential for degrading misfolded and aberrant proteins, and impaired proteasome function has been implicated in neurodegerative and cardiovascular diseases. Robust, sensitive assays are essential for monitoring proteasome activity and for developing inhibitors of the proteasome. Peptide-conjugated fluorophores are widely used as substrates for monitoring proteasome activity, but fluorogenic substrates can exhibit significant background and can be problematic for screening because of cellular autofluorescence or interference from fluorescent library compounds. Furthermore, fluorescent proteasome assays require column-purified 20S or 26S proteasome (typically obtained from erythrocytes), or proteasome extracts from whole cells, as their samples. To provide assays more amenable to high-throughput screening, we developed a homogeneous, bioluminescent method that combines peptide-conjugated aminoluciferin substrates and a stabilized luciferase. Using substrates for the chymotrypsin-like, trypsin-like, and caspase-like proteasome activities in combination with a selective membrane permeabilization step, we developed single-step, cell-based assays to measure each of the proteasome catalytic activities. The homogeneous method eliminates the need to prepare individual cell extracts as samples and has adequate sensitivity for 96- and 384-well plates. The simple "add and read" format enables sensitive and rapid proteasome assays ideal for inhibitor screening.

  16. Proteasome inhibition correlates with intracellular bortezomib concentrations but not with antiproliferative effects after bolus treatment in myeloma cell lines.

    PubMed

    Dettmer, Susan; Theile, Dirk; Schäfer, Julia; Seckinger, Anja; Burhenne, Jürgen; Weiss, Johanna

    2016-10-01

    Although bortezomib is successfully used against multiple myeloma, the pharmacodynamics of proteasome inhibition and its association with efficacy or resistance is poorly understood. Using ultra performance liquid chromatography coupled to tandem mass spectrometry, site-specific luminogenic substrate assays and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide (MTT) assays, effects of bortezomib on cellular drug concentrations, chymotrypsin- , caspase- , and trypsin-like activities, and cytotoxic efficacy were evaluated in eight myeloma cell lines directly after 1 h of exposure and additionally after a 23-h washout phase. Bortezomib accumulated in myeloma cells by up to 100-fold and concentration-dependently inhibited the proteasomal activities with the chymotrypsin-like activity being the most sensitive. Whereas intracellular concentrations correlated with the inhibition of the chymotrypsin- and the caspase-like activities of the proteasome, the cytotoxic efficacy of bortezomib did not correlate with either intracellular concentrations or proteasomal inhibition. However, the ratio of concentrations measured directly after the exposure and after the washout phase (indicating drug disposition) correlated with efficacy, suggesting that the cell's ability to dispose bortezomib at least in part influences bortezomib's cytotoxicity. In conclusion, this data argues against a direct association of intracellular concentration or proteasomal inhibition with cytotoxic efficacy but advocates for an important role of cellular drug disposition. Moreover, this study underlines the pleiotropic mode of action of bortezomib going beyond proteasome inhibition.

  17. Effect of proteasome inhibition on toxicity and CYP3A23 induction in cultured rat hepatocytes: Comparison with arsenite

    SciTech Connect

    Noreault-Conti, Trisha L.; Jacobs, Judith M.; Trask, Heidi W.; Wrighton, Steven A.; Sinclair, Jacqueline F.; Nichols, Ralph C. . E-mail: ralph.c.nichols@dartmouth.edu

    2006-12-15

    Previous work in our laboratory has shown that acute exposure of primary rat hepatocyte cultures to non-toxic concentrations of arsenite causes major decreases in the DEX-mediated induction of CYP3A23 protein, with minor decreases in CYP3A23 mRNA. To elucidate the mechanism for these effects of arsenite, the effects of arsenite and proteasome inhibition, separately and in combination, on induction of CYP3A23 protein were compared. The proteasome inhibitor, MG132, inhibited proteasome activity, but also decreased CYP3A23 mRNA and protein. Lactacystin, another proteasome inhibitor, decreased CYP3A23 protein without affecting CYP3A23 mRNA at a concentration that effectively inhibited proteasome activity. This result, suggesting that the action of lactacystin is similar to arsenite and was post-transcriptional, was confirmed by the finding that lactacystin decreased association of DEX-induced CYP3A23 mRNA with polyribosomes. Both MG132 and lactacystin inhibited total protein synthesis, but did not affect MTT reduction. Arsenite had no effect on ubiquitination of proteins, nor did arsenite significantly affect proteasomal activity. These results suggest that arsenite and lactacystin act by similar mechanisms to inhibit translation of CYP3A23.

  18. Proteasome Inhibition and Combination Therapy for Non-Hodgkin's Lymphoma: From Bench to Bedside

    PubMed Central

    Feldman, Tatyana; Goy, André

    2012-01-01

    Although patients with B-cell non-Hodgkin's lymphoma (NHL) usually respond to initial conventional chemotherapy, they often relapse and mortality has continued to increase over the last three decades in spite of salvage therapy or high dose therapy and stem cell transplantation. Outcomes vary by subtype, but there continues to be a need for novel options that can help overcome chemotherapy resistance, offer new options as consolidation or maintenance therapy postinduction, and offer potentially less toxic combinations, especially in the elderly population. The bulk of these emerging novel agents for cancer treatment target important biological cellular processes. Bortezomib is the first in the class of proteasome inhibitors (PIs), which target the critical process of intracellular protein degradation or recycling and editing through the proteasome. Bortezomib is approved for the treatment of relapsed or refractory mantle cell lymphoma. The mechanisms of proteasome inhibition are very complex by nature (because they affect many pathways) and not fully understood. However, mechanisms of action shared by bortezomib and investigational PIs such as carfilzomib, marizomib, ONX-0912, and MLN9708 are distinct from those of other NHL treatments, making them attractive options for combination therapy. Preclinical evidence suggests that the PIs have additive and/or synergistic activity with a large number of agents both in vitro and in vivo, from cytotoxics to new biologicals, supporting a growing number of combination studies currently underway in NHL patients, as reviewed in this article. The results of these studies will help our understanding about how to best integrate proteasome inhibition in the management of NHL and continue to improve patient outcomes. PMID:22566373

  19. A cytosolic protein factor from the naked mole-rat activates proteasomes of other species and protects these from inhibition.

    PubMed

    Rodriguez, Karl A; Osmulski, Pawel A; Pierce, Anson; Weintraub, Susan T; Gaczynska, Maria; Buffenstein, Rochelle

    2014-11-01

    The naked mole-rat maintains robust proteostasis and high levels of proteasome-mediated proteolysis for most of its exceptional (~31years) life span. Here, we report that the highly active proteasome from the naked mole-rat liver resists attenuation by a diverse suite of proteasome-specific small molecule inhibitors. Moreover, mouse, human, and yeast proteasomes exposed to the proteasome-depleted, naked mole-rat cytosolic fractions, recapitulate the observed inhibition resistance, and mammalian proteasomes also show increased activity. Gel filtration coupled with mass spectrometry and atomic force microscopy indicates that these traits are supported by a protein factor that resides in the cytosol. This factor interacts with the proteasome and modulates its activity. Although Heat shock protein 72 kDa (HSP72) and Heat shock protein 40 kDa (Homolog of bacterial DNAJ1) (HSP40(Hdj1)) are among the constituents of this factor, the observed phenomenon, such as increasing peptidase activity and protecting against inhibition cannot be reconciled with any known chaperone functions. This novel function may contribute to the exceptional protein homeostasis in the naked mole-rat and allow it to successfully defy aging.

  20. Inhibition on Proteasome β1 Subunit Might Contribute to the Anti-Cancer Effects of Fangchinoline in Human Prostate Cancer Cells.

    PubMed

    Li, Dong; Lu, Yu; Sun, Peng; Feng, Li-Xing; Liu, Miao; Hu, Li-Hong; Wu, Wan-Ying; Jiang, Bao-Hong; Yang, Min; Qu, Xiao-Bo; Guo, De-An; Liu, Xuan

    2015-01-01

    Fangchinoline is a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae S. Moore. Fangchinoline and its structure analogue, tetrandrine, exhibited direct binding affinity with recombinant human proteasome β1 subunit and also inhibited its activity in vitro. In cultured prostate PC-3 cells and LnCap cells, fangchinoline could dose-dependently inhibit cell proliferation and caspase-like activity of cellular proteasome which was mediated by proteasome β1 subunit. The inhibitive effect of fangchinoline on caspase-like activity of proteasome was also observed in purified human erythrocyte 20S proteasome. In PC-3 cells, fangchinoline induced cell cycle arrest at G0/G1 phase and apoptosis. Treatment of PC-3 tumor-bearing nude mice with fangchinoline inhibited tumor growth, induced apoptosis and also caused decrease in proteasome activities in tumor xenografts. Dose-dependent and time-dependent accumulation of ubiquitinated proteins and important proteasome substrates such as p27, Bax and IκB-α were observed in fangchinoline-treated cells. Over-expression of proteasome β1 subunit by plasmid transfection increased sensitivity of cells to the cytotoxicity of fangchinoline while knockdown of proteasome β1 subunit ameliorated cytotoxicity of fangchinoline in PC-3 cells. Results of the present study suggested that proteasome inhibition was involved in the anti-cancer effects of fangchinoline. Fangchinoline and its structure analogues might be new natural proteasome inhibitors targeting β1 subunit.

  1. Inhibition of proteasome activity is involved in cobalt-induced apoptosis of human alveolar macrophages.

    PubMed

    Araya, Jun; Maruyama, Muneharu; Inoue, Akira; Fujita, Tadashi; Kawahara, Junko; Sassa, Kazuhiko; Hayashi, Ryuji; Kawagishi, Yukio; Yamashita, Naohiro; Sugiyama, Eiji; Kobayashi, Masashi

    2002-10-01

    Inhalation of particulate cobalt has been known to induce interstitial lung disease. There is growing evidence that apoptosis plays a crucial role in physiological and pathological settings and that the ubiquitin-proteasome system is involved in the regulation of apoptosis. Cadmium, the same transitional heavy metal as cobalt, has been reported to accumulate ubiquitinated proteins in neuronal cells. On the basis of these findings, we hypothesized that cobalt would induce apoptosis in the lung by disturbance of the ubiquitin-proteasome pathway. To evaluate this, we exposed U-937 cells and human alveolar macrophages (AMs) to cobalt chloride (CoCl(2)) and examined their apoptosis by DNA fragmentation assay, 4',6-diamidino-2'-phenylindol dihydrochloride staining, and Western blot analysis. CoCl(2) induced apoptosis and accumulated ubiquitinated proteins. Exposure to CoCl(2) inhibited proteasome activity in U-937 cells. Cobalt-induced apoptosis was mediated via mitochondrial pathway because CoCl(2) released cytochrome c from mitochondria. These results suggest that cobalt-induced apoptosis of AMs may be one of the mechanisms for cobalt-induced lung injury and that the accumulation of ubiquitinated proteins might be involved in this apoptotic process.

  2. Farnesyl transferase inhibitors, autophagy, and proteasome inhibition: synergy for all the right reasons.

    PubMed

    Lonial, Sagar; Boise, Lawrence H

    2011-04-01

    The increasing appreciation of the importance of autophagy as consequence of cancer therapy or underlying disease biology is illustrated by the large number of papers that are evaluating autophagy as a cancer target. While autophagy is often linked to the generation of metabolic precursors, it is also important in diseases where protein production is a hallmark of the disease itself, such as pancreatic cancer and multiple myeloma. Multiple myeloma is characterized by ongoing autophagy as a consequence of constitutive immunoglobulin production, which creates the need for efficient transfer and disposal of misfolded or unfolded proteins. In order to survive this cellular stress, plasma cells depend on proteasomal degradation of the large volume of misfolded proteins as well as the autophagy pathway. It has previously been suggested that the excess proteins not targeted to the proteasome, or that accumulate when the proteasome is inhibited through the use of chemically active agents such as bortezomib, are linked to impaired cell survival, and that their packaging in the form of an aggresome somehow minimizes their 'proteotoxicity' allowing these toxic proteins to be sequestered away from normal cellular machinery.

  3. Repurposing an antidandruff agent to treating cancer: zinc pyrithione inhibits tumor growth via targeting proteasome-associated deubiquitinases.

    PubMed

    Zhao, Chong; Chen, Xin; Yang, Changshan; Zang, Dan; Lan, Xiaoying; Liao, Siyan; Zhang, Peiquan; Wu, Jinjie; Li, Xiaofen; Liu, Ningning; Liao, Yuning; Huang, Hongbiao; Shi, Xianping; Jiang, Lili; Liu, Xiuhua; Dou, Q Ping; Wang, Xuejun; Liu, Jinbao

    2017-01-10

    The ubiquitin-proteasome system (UPS) plays a central role in various cellular processes through selectively degrading proteins involved in critical cellular functions. Targeting UPS has been validated as a novel strategy for treating human cancer, as inhibitors of the 20S proteasome catalytic activity are currently in clinical use for treatment of multiple myeloma and other cancers, and the deubiquitinase activity associated with the proteasome is also a valid target for anticancer agents. Recent studies suggested that zinc pyrithione, an FDA-approved antidandruff agent, may have antitumor activity, but the detailed molecular mechanisms remain unclear. Here we report that zinc pyrithione (ZnPT) targets the proteasome-associated DUBs (USP14 and UCHL5) and inhibits their activities, resulting in a rapid accumulation of protein-ubiquitin conjugates, but without inhibiting the proteolytic activities of 20S proteasomes. Furthermore, ZnPT exhibits cytotoxic effects against various cancer cell lines in vitro, selectively kills bone marrow cells from leukemia patients ex vivo, and efficiently inhibits the growth of lung adenocarcinoma cancer cell xenografts in nude mice. This study has identified zinc pyrithione, an FDA-approved pharmacological agent with potential antitumor properties as a proteasomal DUB inhibitor.

  4. Formation of distinct inclusion bodies by inhibition of ubiquitin-proteasome and autophagy-lysosome pathways

    SciTech Connect

    Lee, Junho; Yang, Kyu-Hwan; Joe, Cheol O.; Kang, Seok-Seong

    2011-01-14

    Research highlights: {yields} Distinct inclusion bodies are developed by inhibition of UPP and ALP. {yields} The inclusion bodies differ in morphology, localization and formation process. {yields} The inclusion bodies are distinguishable by the localization of TSC2. {yields} Inhibition of both UPP and ALP simultaneously induces those inclusion bodies. -- Abstract: Accumulation of misfolded proteins is caused by the impairment of protein quality control systems, such as ubiquitin-proteasome pathway (UPP) and autophagy-lysosome pathway (ALP). In this study, the formation of inclusion bodies was examined after the blockade of UPP and/or ALP in A549 cells. UPP inhibition induced a single and large inclusion body localized in microtubule-organizing center. Interestingly, however, ALP inhibition generated dispersed small inclusion bodies in the cytoplasm. Tuberous sclerosis complex 2 was selectively accumulated in the inclusion bodies of UPP-inhibited cells, but not those of ALP-inhibited cells. Blockade of transcription and translation entirely inhibited the formation of inclusion body induced by UPP inhibition, but partially by ALP inhibition. Moreover, the simultaneous inhibition of two protein catabolic pathways independently developed two distinct inclusion bodies within a single cell. These findings clearly demonstrated that dysfunction of each catabolic pathway induced formation and accumulation of unique inclusion bodies on the basis of morphology, localization and formation process in A549 cells.

  5. Flavanonol taxifolin attenuates proteasome inhibition-induced apoptosis in differentiated PC12 cells by suppressing cell death process.

    PubMed

    Nam, Yoon Jeong; Lee, Da Hee; Shin, Yong Kyoo; Sohn, Dong Suep; Lee, Chung Soo

    2015-03-01

    The proteasomal dysfunction and mitochondrial impairment has been implicated in neuronal degeneration. Taxifolin has antioxidant and anti-inflammatory effects. However, the effect of taxifolin on the neuronal cell death induced by proteasome inhibition has not been studied. Therefore, in the respect of cell death process, we assessed the effect of taxifolin on the proteasome inhibition-induced apoptosis in neuronal cell injury using differentiated PC12 cells. The proteasome inhibitors MG132 and MG115 induced a decrease in Bid, Bcl-2, and survivin protein levels, an increase in Bax, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases(-8, -9 and -3), an increase in the tumor suppressor p53 levels and cleavage of PARP-1. The addition of taxifolin attenuated the proteasome inhibitor-induced changes in the apoptosis-related protein levels, formation of reactive oxygen species, depletion and oxidation of GSH, formations of malondialdehyde and carbonyls, and cell death. The results show that taxifolin may attenuate the proteasome inhibitor-induced apoptosis in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The preventive effect of taxifolin appears to be attributed to its inhibitory effect on the formation of reactive oxygen species, and depletion and oxidation of GSH.

  6. Fundamental reaction pathway and free energy profile for proteasome inhibition by syringolin A (SylA)

    PubMed Central

    Wei, Donghui; Tang, Mingsheng; Zhan, Chang-Guo

    2015-01-01

    In this study, molecular dynamics (MD) simulations and first-principles quantum mechanical/molecular mechanical free energy (QM/MM-FE) calculations have been performed to uncover the fundamental reaction pathway of proteasome with a representative inhibitor syringolin A (SylA). The calculated results reveal that the reaction process consists of three steps. The first step is a proton transfer process, activating Thr1-Oγ directly by Thr1-Nz to form a zwitterionic intermediate. The next step is nucleophilic attack on the olefin carbon of SylA by the negatively charged Thr1-Oγ atom. The last step is a proton transfer from Thr1-Nz to another olefin carbon of SylA to complete the inhibition reaction process. The calculated free energy profile demonstrates that the second step should be the rate-determining step and has the highest free energy barrier of 24.6 kcal/mol, which is reasonably close to the activation free energy (∼22.4 – 23.0 kcal/mol) derived from available experimental kinetic data. In addition, our computational results indicate that no water molecule can assist the rate-determining step, since the second step is not involved a proton transfer process. The obtained mechanistic insights should be valuable for understanding the inhibition process of proteasome by SylA and structurally related inhibitors at molecular level, and thus provide a solid mechanistic base and valuable clues for future rational design of novel, more potent inhibitors of proteasome. PMID:26018983

  7. Inhibition of histone deacetylases by chlamydocin induces apoptosis and proteasome-mediated degradation of survivin.

    PubMed

    De Schepper, Stefanie; Bruwiere, Hélène; Verhulst, Tinne; Steller, Ulf; Andries, Luc; Wouters, Walter; Janicot, Michel; Arts, Janine; Van Heusden, Jim

    2003-02-01

    The naturally occurring cyclic tetrapeptide chlamydocin is a very potent inhibitor of cell proliferation. Here we show that chlamydocin is a highly potent histone deacetylase (HDAC) inhibitor, inhibiting HDAC activity in vitro with an IC(50) of 1.3 nM. Like other HDAC inhibitors, chlamydocin induces the accumulation of hyperacetylated histones H3 and H4 in A2780 ovarian cancer cells, increases the expression of p21(cip1/waf1), and causes an accumulation of cells in G(2)/M phase of the cell cycle. In addition, chlamydocin induces apoptosis by activating caspase-3, which in turn leads to the cleavage of p21(cip1/waf1) into a 15-kDa breakdown product and drives cells from growth arrest into apoptosis. Concomitant with the activation of caspase-3 and cleavage of p21(cip1/waf1), chlamydocin decreases the protein level of survivin, a member of the inhibitor of apoptosis protein family that is selectively expressed in tumors. Although our data indicate a potential link between degradation of survivin and activation of the apoptotic pathway induced by HDAC inhibitors, stable overexpression of survivin does not suppress the activation of caspase-3 or cleavage of p21(cip1/waf1) induced by chlamydocin treatment. The decrease of survivin protein level is mediated by degradation via proteasomes since it can be inhibited by specific proteasome inhibitors. Taken together, our results show that induction of apoptosis by chlamydocin involves caspase-dependent cleavage of p21(cip1/waf1), which is strikingly associated with proteasome-mediated degradation of survivin.

  8. Formation of distinct inclusion bodies by inhibition of ubiquitin-proteasome and autophagy-lysosome pathways.

    PubMed

    Lee, Junho; Yang, Kyu-Hwan; Joe, Cheol O; Kang, Seok-Seong

    2011-01-14

    Accumulation of misfolded proteins is caused by the impairment of protein quality control systems, such as ubiquitin-proteasome pathway (UPP) and autophagy-lysosome pathway (ALP). In this study, the formation of inclusion bodies was examined after the blockade of UPP and/or ALP in A549 cells. UPP inhibition induced a single and large inclusion body localized in microtubule-organizing center. Interestingly, however, ALP inhibition generated dispersed small inclusion bodies in the cytoplasm. Tuberous sclerosis complex 2 was selectively accumulated in the inclusion bodies of UPP-inhibited cells, but not those of ALP-inhibited cells. Blockade of transcription and translation entirely inhibited the formation of inclusion body induced by UPP inhibition, but partially by ALP inhibition. Moreover, the simultaneous inhibition of two protein catabolic pathways independently developed two distinct inclusion bodies within a single cell. These findings clearly demonstrated that dysfunction of each catabolic pathway induced formation and accumulation of unique inclusion bodies on the basis of morphology, localization and formation process in A549 cells.

  9. Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib.

    PubMed

    Liu, Feng-Ting; Agrawal, Samir G; Movasaghi, Zanyar; Wyatt, Peter B; Rehman, Ihtesham U; Gribben, John G; Newland, Adrian C; Jia, Li

    2008-11-01

    Dietary flavonoids have many health-promoting actions, including anticancer activity via proteasome inhibition. Bor-tezomib is a dipeptide boronate proteasome inhibitor that has activity in the treatment of multiple myeloma but is not effective in chronic lymphocytic leukemia (CLL). Although CLL cells are sensitive in vitro to bortezomib-induced apoptosis when cultured in medium, the killing activity was blocked when cultured in 50% fresh autologous plasma. Dietary flavonoids, quercetin and myricetin, which are abundant in plasma, inhibited bortezomib-induced apoptosis of primary CLL and malignant B-cell lines in a dose-dependent manner. This inhibitory effect was associated with chemical reactions between quercetin and the boronic acid group, -RB(OH)2, in bortezomib. The addition of boric acid diminished the inhibitory effect of both quercetin and plasma on bortezomib-induced apoptosis. The protective effect was also reduced when myeloma cell lines, but not B-cell lines, were preincubated with quercetin, indicating a direct effect of quercetin on myeloma cells. At high doses, quercetin itself induced tumor cell death. These data indicate that dietary flavonoids limit the efficacy of bortezomib, whereas supplemental inorganic boric acid is able to reverse this. The complex interactions between quercetin, tumor cells, and bortezomib mean caution is required when giving dietary advice to patients.

  10. Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib

    PubMed Central

    Liu, Feng-Ting; Agrawal, Samir G.; Movasaghi, Zanyar; Wyatt, Peter B.; Rehman, Ihtesham U.; Gribben, John G.; Newland, Adrian C.

    2008-01-01

    Dietary flavonoids have many health-promoting actions, including anticancer activity via proteasome inhibition. Bor-tezomib is a dipeptide boronate proteasome inhibitor that has activity in the treatment of multiple myeloma but is not effective in chronic lymphocytic leukemia (CLL). Although CLL cells are sensitive in vitro to bortezomib-induced apoptosis when cultured in medium, the killing activity was blocked when cultured in 50% fresh autologous plasma. Dietary flavonoids, quercetin and myricetin, which are abundant in plasma, inhibited bortezomib-induced apoptosis of primary CLL and malignant B-cell lines in a dose-dependent manner. This inhibitory effect was associated with chemical reactions between quercetin and the boronic acid group, -RB(OH)2, in bortezomib. The addition of boric acid diminished the inhibitory effect of both quercetin and plasma on bortezomib-induced apoptosis. The protective effect was also reduced when myeloma cell lines, but not B-cell lines, were preincubated with quercetin, indicating a direct effect of quercetin on myeloma cells. At high doses, quercetin itself induced tumor cell death. These data indicate that dietary flavonoids limit the efficacy of bortezomib, whereas supplemental inorganic boric acid is able to reverse this. The complex interactions between quercetin, tumor cells, and bortezomib mean caution is required when giving dietary advice to patients. PMID:18633129

  11. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity

    SciTech Connect

    Milacic, Vesna; Chen Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2008-08-15

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC{sub 50} value of 13.8 {mu}M, which was less potent than copper(II) chloride (IC{sub 50} 5.3 {mu}M). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells.

  12. Insulin alleviates degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system in septic rats.

    PubMed

    Chen, Qiyi; Li, Ning; Zhu, Weiming; Li, Weiqin; Tang, Shaoqiu; Yu, Wenkui; Gao, Tao; Zhang, Juanjuan; Li, Jieshou

    2011-06-03

    Hypercatabolism is common under septic conditions. Skeletal muscle is the main target organ for hypercatabolism, and this phenomenon is a vital factor in the deterioration of recovery in septic patients. In skeletal muscle, activation of the ubiquitin-proteasome system plays an important role in hypercatabolism under septic status. Insulin is a vital anticatabolic hormone and previous evidence suggests that insulin administration inhibits various steps in the ubiquitin-proteasome system. However, whether insulin can alleviate the degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system under septic condition is unclear. This paper confirmed that mRNA and protein levels of the ubiquitin-proteasome system were upregulated and molecular markers of skeletal muscle proteolysis (tyrosine and 3-methylhistidine) simultaneously increased in the skeletal muscle of septic rats. Septic rats were infused with insulin at a constant rate of 2.4 mU.kg-1.min-1 for 8 hours. Concentrations of mRNA and proteins of the ubiquitin-proteasome system and molecular markers of skeletal muscle proteolysis were mildly affected. When the insulin infusion dose increased to 4.8 mU.kg-1.min-1, mRNA for ubiquitin, E2-14 KDa, and the C2 subunit were all sharply downregulated. At the same time, the levels of ubiquitinated proteins, E2-14KDa, and the C2 subunit protein were significantly reduced. Tyrosine and 3-methylhistidine decreased significantly. We concluded that the ubiquitin-proteasome system is important skeletal muscle hypercatabolism in septic rats. Infusion of insulin can reverse the detrimental metabolism of skeletal muscle by inhibiting the ubiquitin-proteasome system, and the effect is proportional to the insulin infusion dose.

  13. Calcium channel blocker verapamil accelerates gambogic acid-induced cytotoxicity via enhancing proteasome inhibition and ROS generation.

    PubMed

    Liu, Ningning; Huang, Hongbiao; Liu, Shouting; Li, Xiaofen; Yang, Changshan; Dou, Q Ping; Liu, Jinbao

    2014-04-01

    Verapamil (Ver), an inhibitor of the multidrug resistance gene product, has been proved to be a promising combination partner with other anti-cancer agents including proteasome inhibitor bortezomib. Gambogic acid (GA) has been approved for Phase II clinical trials in cancer therapy in China. We have most recently reported that GA is a potent proteasome inhibitor, with anticancer efficiency comparable to bortezomib but much less toxicity. In the current study we investigated whether Ver can enhance the cytotoxicity of GA. We report that (i) the combination of Ver and GA results in synergistic cytotoxic effect and cell death induction in HepG2 and K562 cancer cell lines; (ii) a combinational treatment with Ver and GA induces caspase activation, endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production; (iii) caspase inhibitor z-VAD blocks GA+Ver-induced apoptosis but not proteasome inhibition; (iv) cysteine-containing compound N-acetylcysteine (NAC) prevents GA+Ver-induced poly(ADP-ribose) polymerase cleavage and proteasome inhibition. These results demonstrate that Ver accelerates GA-induced cytotoxicity via enhancing proteasome inhibition and ROS production. These findings indicate that the natural product GA is a valuable candidate that can be used in combination with Ver, thus representing a compelling anticancer strategy.

  14. Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin–proteasome pathway

    PubMed Central

    Nie, Xiao-hu; Ou-yang, Jia; Xing, Ying; Li, Dan-yan; Dong, Xing-yu; Liu, Ru-en; Xu, Ru-xiang

    2015-01-01

    We investigated the underlying mechanism for the potent proapoptotic effect of paeoniflorin (PF) on human glioma cells in vitro, focusing on signal transducer and activator of transcription 3 (STAT3) signaling. Significant time- and dose-dependent apoptosis and inhibition of proliferation were observed in PF-treated U87 and U251 glioma cells. Expression of STAT3, its active form phosphorylated STAT3 (p-STAT3), and several downstream molecules, including HIAP, Bcl-2, cyclin D1, and Survivin, were significantly downregulated upon PF treatment. Overexpression of STAT3 induced resistance to PF, suggesting that STAT3 was a critical target of PF. Interestingly, rapid downregulation of STAT3 was consistent with its accelerated degradation, but not with its dephosphorylation or transcriptional modulation. Using specific inhibitors, we demonstrated that the prodegradation effect of PF on STAT3 was mainly through the ubiquitin–proteasome pathway rather than via lysosomal degradation. These findings indicated that PF-induced growth suppression and apoptosis in human glioma cells through the proteasome-dependent degradation of STAT3. PMID:26508835

  15. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-Gingerol in cervical cancer cells

    PubMed Central

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, Madan L.B.; Mishra, Durga Prasad

    2015-01-01

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer. PMID:26621832

  16. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition.

    PubMed

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-04-08

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment.

  17. Withaferin A Induces Proteasome Inhibition, Endoplasmic Reticulum Stress, the Heat Shock Response and Acquisition of Thermotolerance

    PubMed Central

    Heikkila, John J.

    2012-01-01

    In the present study, withaferin A (WA), a steroidal lactone with anti-inflammatory and anti-tumor properties, inhibited proteasome activity and induced endoplasmic reticulum (ER) and cytoplasmic HSP accumulation in Xenopus laevis A6 kidney epithelial cells. Proteasomal inhibition by WA was indicated by an accumulation of ubiquitinated protein and a decrease in chymotrypsin-like activity. Additionally, immunoblot analysis revealed that treatment of cells with WA induced the accumulation of HSPs including ER chaperones, BiP and GRP94, as well as cytoplasmic/nuclear HSPs, HSP70 and HSP30. Furthermore, WA-induced an increase in the relative levels of the protein kinase, Akt, while the levels of actin were unchanged compared to control. Northern blot experiments determined that WA induced an accumulation in bip, hsp70 and hsp30 mRNA but not eIF-1α mRNA. Interestingly, WA acted synergistically with mild heat shock to enhance HSP70 and HSP30 accumulation to a greater extent than the sum of both stressors individually. This latter phenomenon was not observed with BiP or GRP94. Immunocytochemical analysis indicated that WA-induced BiP accumulation occurred mainly in the perinuclear region in a punctate pattern, while HSP30 accumulation occurred primarily in a granular pattern in the cytoplasm with some staining in the nucleus. Prolonged exposure to WA resulted in disorganization of the F-actin cytoskeleton as well as the production of relatively large HSP30 staining structures that co-localized with F-actin. Finally, prior exposure of cells to WA treatment, which induced the accumulation of HSPs conferred a state of thermal protection since it protected the F-actin cytoskeleton against a subsequent cytotoxic thermal challenge. PMID:23226310

  18. Pharmacodynamic monitoring of (immuno)proteasome inhibition during bortezomib treatment of a critically ill patient with lupus nephritis and myocarditis

    PubMed Central

    de Groot, Karina A; Tsang a Sjoe, Michel; Niewerth, Denise; Cloos, Jacqueline; Blank, Jonathan L; Niessen, Hans W M; Zweegman, Sonja; Voskuyl, Alexandre E; Jansen, Gerrit; van der Heijden, Joost W

    2015-01-01

    Objective To describe the pharmacodynamic monitoring of (immuno)proteasome inhibition following treatment with bortezomib in a therapy-refractory systemic lupus erythematosus (SLE) patient with life-threatening myocarditis and lupus nephritis. Patient and methods Inhibition of catalytic activities of the proteasome subunits β5 (constitutive proteasome), β5i and β1i (immunoproteasome) were measured in peripheral blood mononuclear cells using subunit-specific fluorogenic peptide substrates in a patient who received three cycles of bortezomib (1.3 mg/m2 subcutaneously, days 1, 4, 8 and 11; every three weeks) along with plasma exchange during the first two cycles. Results Proteasome β5, β5i and β1i subunit activities were readily inhibited 1 h after bortezomib administration. Twenty-four hours post-bortezomib administration, β5 and β5i activities were largely restored, whereas inhibition of β1i activity was sustained. Clinically, after three cycles, cardiac function had improved, with concurrent improvement of haemodynamic stability during haemodialysis. Anti-ds-DNA dropped from >400 to 12 IU/mL along with normalisation of complement C3 and C4. Bortezomib therapy was well tolerated, and patient now has a sustained remission for >16 months. Conclusions This case illustrates the potential benefit of pharmacodynamic monitoring of (immune)proteasome subunit-specific activity after bortezomib dosing in patients with therapy refractory SLE. This tool may hold potential to guide personalised/precision dosing aiming to achieve maximal efficacy and minimal toxicity. PMID:26719810

  19. Inhibition of the Proteasome β2 Site Sensitizes Triple-Negative Breast Cancer Cells to β5 Inhibitors and Suppresses Nrf1 Activation.

    PubMed

    Weyburne, Emily S; Wilkins, Owen M; Sha, Zhe; Williams, David A; Pletnev, Alexandre A; de Bruin, Gerjan; Overkleeft, Hermann S; Goldberg, Alfred L; Cole, Michael D; Kisselev, Alexei F

    2017-02-16

    The proteasome inhibitors carfilzomib (Cfz) and bortezomib (Btz) are used successfully to treat multiple myeloma, but have not shown clinical efficacy in solid tumors. Here we show that clinically achievable inhibition of the β5 site of the proteasome by Cfz and Btz does not result in loss of viability of triple-negative breast cancer cell lines. We use site-specific inhibitors and CRISPR-mediated genetic inactivation of β1 and β2 to demonstrate that inhibiting a second site of the proteasome, particularly the β2 site, sensitizes cell lines to Btz and Cfz in vitro and in vivo. Inhibiting both β5 and β2 suppresses production of the soluble, active form of the transcription factor Nrf1 and prevents the recovery of proteasome activity through induction of new proteasomes. These findings provide a strong rationale for the development of dual β5 and β2 inhibitors for the treatment of solid tumors.

  20. Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model.

    PubMed

    Zollner, Thomas M; Podda, Maurizio; Pien, Christine; Elliott, Peter J; Kaufmann, Roland; Boehncke, Wolf-Henning

    2002-03-01

    There is increasing evidence that bacterial superantigens contribute to inflammation and T cell responses in psoriasis. Psoriatic inflammation entails a complex series of inductive and effector processes that require the regulated expression of various proinflammatory genes, many of which require NF-kappa B for maximal trans-activation. PS-519 is a potent and selective proteasome inhibitor based upon the naturally occurring compound lactacystin, which inhibits NF-kappa B activation by blocking the degradation of its inhibitory protein I kappa B. We report that proteasome inhibition by PS-519 reduces superantigen-mediated T cell-activation in vitro and in vivo. Proliferation was inhibited along with the expression of very early (CD69), early (CD25), and late T cell (HLA-DR) activation molecules. Moreover, expression of E-selectin ligands relevant to dermal T cell homing was reduced, as was E-selectin binding in vitro. Finally, PS-519 proved to be therapeutically effective in a SCID-hu xenogeneic psoriasis transplantation model. We conclude that inhibition of the proteasome, e.g., by PS-519, is a promising means to treat T cell-mediated disorders such as psoriasis.

  1. Increased proteasome activity determines human embryonic stem cell identity

    PubMed Central

    Vilchez, David; Boyer, Leah; Morantte, Ianessa; Lutz, Margaret; Merkwirth, Carsten; Joyce, Derek; Spencer, Brian; Page, Lesley; Masliah, Eliezer; Berggren, W. Travis; Gage, Fred H.; Dillin, Andrew

    2016-01-01

    Embryonic stem cells are able to replicate continuously in the absence of senescence and, therefore, are immortal in culture1,2. While genome stability is central for survival of stem cells; proteome stability may play an equally important role in stem cell identity and function. Additionally, with the asymmetric divisions invoked by stem cells, the passage of damaged proteins to daughter cells could potentially destroy the resulting lineage of cells. We hypothesized that stem cells have an increased proteostasis ability compared to their differentiated counterparts and asked whether proteasome activity differed among human embryonic stem cells (hESCs). Notably, hESC populations exhibit a high proteasome activity that is correlated with increased levels of the 19S proteasome subunit PSMD11/RPN-63–5 and a corresponding increased assembly of the 26S/30S proteasome. Ectopic expression of PSMD11 is sufficient to increase proteasome assembly and activity. Proteasome inhibition affects pluripotency of hESCs inducing differentiation towards specific cell lineages. FOXO4, an insulin/IGF-1 responsive transcription factor associated with long lifespan in invertebrates6,7, regulates proteasome activity by modulating the expression of PSMD11 in hESCs. Our results establish a novel regulation of proteostasis in hESCs that links longevity and stress resistance in invertebrates with hESC function and identity. PMID:22972301

  2. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    SciTech Connect

    Honma, Yuichi; Harada, Masaru

    2013-08-15

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation.

  3. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons.

    PubMed

    Palanca, Ana; Casafont, Iñigo; Berciano, María T; Lafarga, Miguel

    2014-05-01

    Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague-Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.

  4. FBXO32 Targets c-Myc for Proteasomal Degradation and Inhibits c-Myc Activity*

    PubMed Central

    Mei, Zhichao; Zhang, Dawei; Hu, Bo; Wang, Jing; Shen, Xian; Xiao, Wuhan

    2015-01-01

    FBXO32 (MAFbx/Atrogin-1) is an E3 ubiquitin ligase that is markedly up-regulated in muscle atrophy. Although some data indicate that FBXO32 may play an important role in tumorigenesis, the molecular mechanism of FBXO32 in tumorigenesis has been poorly understood. Here, we present evidence that FBXO32 targets the oncogenic protein c-Myc for ubiquitination and degradation through the proteasome pathway. Phosphorylation of c-Myc at Thr-58 and Ser-62 is dispensable for FBXO32 to induce c-Myc degradation. Mutation of the lysine 326 in c-Myc reduces c-Myc ubiquitination and prevents the c-Myc degradation induced by FBXO32. Furthermore, overexpression of FBXO32 suppresses c-Myc activity and inhibits cell growth, but knockdown of FBXO32 enhances c-Myc activity and promotes cell growth. Finally, we show that FBXO32 is a direct downstream target of c-Myc, highlighting a negative feedback regulation loop between c-Myc and FBXO32. Thus, FBXO32 may function by targeting c-Myc. This work explains the function of FBXO32 and highlights its mechanisms in tumorigenesis. PMID:25944903

  5. NQO1 inhibits proteasome-mediated degradation of HIF-1α

    PubMed Central

    Oh, Eun-Taex; Kim, Jung-whan; Kim, Joon Mee; Kim, Soo Jung; Lee, Jae-Seon; Hong, Soon-Sun; Goodwin, Justin; Ruthenborg, Robin J.; Jung, Myung Gu; Lee, Hae-June; Lee, Chul-Ho; Park, Eun Sung; Kim, Chulhee; Park, Heon Joo

    2016-01-01

    Overexpression of NQO1 is associated with poor prognosis in human cancers including breast, colon, cervix, lung and pancreas. Yet, the molecular mechanisms underlying the pro-tumorigenic capacities of NQO1 have not been fully elucidated. Here we show a previously undescribed function for NQO1 in stabilizing HIF-1α, a master transcription factor of oxygen homeostasis that has been implicated in the survival, proliferation and malignant progression of cancers. We demonstrate that NQO1 directly binds to the oxygen-dependent domain of HIF-1α and inhibits the proteasome-mediated degradation of HIF-1α by preventing PHDs from interacting with HIF-1α. NQO1 knockdown in human colorectal and breast cancer cell lines suppresses HIF-1 signalling and tumour growth. Consistent with this pro-tumorigenic function for NQO1, high NQO1 expression levels correlate with increased HIF-1α expression and poor colorectal cancer patient survival. These results collectively reveal a function of NQO1 in the oxygen-sensing mechanism that regulates HIF-1α stability in cancers. PMID:27966538

  6. FBXO32 Targets c-Myc for Proteasomal Degradation and Inhibits c-Myc Activity.

    PubMed

    Mei, Zhichao; Zhang, Dawei; Hu, Bo; Wang, Jing; Shen, Xian; Xiao, Wuhan

    2015-06-26

    FBXO32 (MAFbx/Atrogin-1) is an E3 ubiquitin ligase that is markedly up-regulated in muscle atrophy. Although some data indicate that FBXO32 may play an important role in tumorigenesis, the molecular mechanism of FBXO32 in tumorigenesis has been poorly understood. Here, we present evidence that FBXO32 targets the oncogenic protein c-Myc for ubiquitination and degradation through the proteasome pathway. Phosphorylation of c-Myc at Thr-58 and Ser-62 is dispensable for FBXO32 to induce c-Myc degradation. Mutation of the lysine 326 in c-Myc reduces c-Myc ubiquitination and prevents the c-Myc degradation induced by FBXO32. Furthermore, overexpression of FBXO32 suppresses c-Myc activity and inhibits cell growth, but knockdown of FBXO32 enhances c-Myc activity and promotes cell growth. Finally, we show that FBXO32 is a direct downstream target of c-Myc, highlighting a negative feedback regulation loop between c-Myc and FBXO32. Thus, FBXO32 may function by targeting c-Myc. This work explains the function of FBXO32 and highlights its mechanisms in tumorigenesis.

  7. The effects of anti-DNA topoisomerase II drugs, etoposide and ellipticine, are modified in root meristem cells of Allium cepa by MG132, an inhibitor of 26S proteasomes.

    PubMed

    Żabka, Aneta; Winnicki, Konrad; Polit, Justyna Teresa; Maszewski, Janusz

    2015-11-01

    DNA topoisomerase II (Topo II), a highly specialized nuclear enzyme, resolves various entanglement problems concerning DNA that arise during chromatin remodeling, transcription, S-phase replication, meiotic recombination, chromosome condensation and segregation during mitosis. The genotoxic effects of two Topo II inhibitors known as potent anti-cancer drugs, etoposide (ETO) and ellipticine (EPC), were assayed in root apical meristem cells of Allium cepa. Despite various types of molecular interactions between these drugs and DNA-Topo II complexes at the chromatin level, which have a profound negative impact on the genome integrity (production of double-strand breaks, chromosomal bridges and constrictions, lagging fragments of chromosomes and their uneven segregation to daughter cell nuclei), most of the elicited changes were apparently similar, regarding both their intensity and time characteristics. No essential changes between ETO- and EPC-treated onion roots were noticed in the frequency of G1-, S-, G2-and M-phase cells, nuclear morphology, chromosome structures, tubulin-microtubule systems, extended distribution of mitosis-specific phosphorylation sites of histone H3, and the induction of apoptosis-like programmed cell death (AL-PCD). However, the important difference between the effects induced by the ETO and EPC concerns their catalytic activities in the presence of MG132 (proteasome inhibitor engaged in Topo II-mediated formation of cleavage complexes) and relates to the time-variable changes in chromosomal aberrations and AL-PCD rates. This result implies that proteasome-dependent mechanisms may contribute to the course of physiological effects generated by DNA lesions under conditions that affect the ability of plant cells to resolve topological problems that associated with the nuclear metabolic activities.

  8. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma.

    PubMed

    Vogl, Dan T; Stadtmauer, Edward A; Tan, Kay-See; Heitjan, Daniel F; Davis, Lisa E; Pontiggia, Laura; Rangwala, Reshma; Piao, Shengfu; Chang, Yunyoung C; Scott, Emma C; Paul, Thomas M; Nichols, Charles W; Porter, David L; Kaplan, Janeen; Mallon, Gayle; Bradner, James E; Amaravadi, Ravi K

    2014-08-01

    The efficacy of proteasome inhibition for myeloma is limited by therapeutic resistance, which may be mediated by activation of the autophagy pathway as an alternative mechanism of protein degradation. Preclinical studies demonstrate that autophagy inhibition with hydroxychloroquine augments the antimyeloma efficacy of the proteasome inhibitor bortezomib. We conducted a phase I trial combining bortezomib and hydroxychloroquine for relapsed or refractory myeloma. We enrolled 25 patients, including 11 (44%) refractory to prior bortezomib. No protocol-defined dose-limiting toxicities occurred, and we identified a recommended phase 2 dose of hydroxychloroquine 600 mg twice daily with standard doses of bortezomib, at which we observed dose-related gastrointestinal toxicity and cytopenias. Of 22 patients evaluable for response, 3 (14%) had very good partial responses, 3 (14%) had minor responses, and 10 (45%) had a period of stable disease. Electron micrographs of bone marrow plasma cells collected at baseline, after a hydroxychloroquine run-in, and after combined therapy showed therapy-associated increases in autophagic vacuoles, consistent with the combined effects of increased trafficking of misfolded proteins to autophagic vacuoles and inhibition of their degradative capacity. Combined targeting of proteasomal and autophagic protein degradation using bortezomib and hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy.

  9. Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin.

    PubMed

    Yoon, M J; Kang, Y J; Lee, J A; Kim, I Y; Kim, M A; Lee, Y S; Park, J H; Lee, B Y; Kim, I A; Kim, H S; Kim, S-A; Yoon, A-R; Yun, C-O; Kim, E-Y; Lee, K; Choi, K S

    2014-03-13

    Although curcumin suppresses the growth of a variety of cancer cells, its poor absorption and low systemic bioavailability have limited its translation into clinics as an anticancer agent. In this study, we show that dimethoxycurcumin (DMC), a methylated, more stable analog of curcumin, is significantly more potent than curcumin in inducing cell death and reducing the clonogenicity of malignant breast cancer cells. Furthermore, DMC reduces the tumor growth of xenografted MDA-MB 435S cells more strongly than curcumin. We found that DMC induces paraptosis accompanied by excessive dilation of mitochondria and the endoplasmic reticulum (ER); this is similar to curcumin, but a much lower concentration of DMC is required to induce this process. DMC inhibits the proteasomal activity more strongly than curcumin, possibly causing severe ER stress and contributing to the observed dilation. DMC treatment upregulates the protein levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and Noxa, and the small interfering RNA-mediated suppression of CHOP, but not Noxa, markedly attenuates DMC-induced ER dilation and cell death. Interestingly, DMC does not affect the viability, proteasomal activity or CHOP protein levels of human mammary epithelial cells, suggesting that DMC effectively induces paraptosis selectively in breast cancer cells, while sparing normal cells. Taken together, these results suggest that DMC triggers a stronger proteasome inhibition and higher induction of CHOP compared with curcumin, giving it more potent anticancer effects on malignant breast cancer cells.

  10. Copper(II) ions affect the gating dynamics of the 20S proteasome: a molecular and in cell study

    PubMed Central

    Santoro, Anna Maria; Monaco, Irene; Attanasio, Francesco; Lanza, Valeria; Pappalardo, Giuseppe; Tomasello, Marianna Flora; Cunsolo, Alessandra; Rizzarelli, Enrico; De Luigi, Ada; Salmona, Mario; Milardi, Danilo

    2016-01-01

    Due to their altered metabolism cancer cells are more sensitive to proteasome inhibition or changes of copper levels than normal cells. Thus, the development of copper complexes endowed with proteasome inhibition features has emerged as a promising anticancer strategy. However, limited information is available about the exact mechanism by which copper inhibits proteasome. Here we show that Cu(II) ions simultaneously inhibit the three peptidase activities of isolated 20S proteasomes with potencies (IC50) in the micromolar range. Cu(II) ions, in cell-free conditions, neither catalyze red-ox reactions nor disrupt the assembly of the 20S proteasome but, rather, promote conformational changes associated to impaired channel gating. Notably, HeLa cells grown in a Cu(II)-supplemented medium exhibit decreased proteasome activity. This effect, however, was attenuated in the presence of an antioxidant. Our results suggest that if, on one hand, Cu(II)-inhibited 20S activities may be associated to conformational changes that favor the closed state of the core particle, on the other hand the complex effect induced by Cu(II) ions in cancer cells is the result of several concurring events including ROS-mediated proteasome flooding, and disassembly of the 26S proteasome into its 20S and 19S components. PMID:27633879

  11. Inhibition of store-operated calcium entry by sub-lethal levels of proteasome inhibition is associated with STIM1/STIM2 degradation.

    PubMed

    Kuang, Xiu-Li; Liu, Yimei; Chang, Yuhua; Zhou, Jing; Zhang, He; Li, Yiping; Qu, Jia; Wu, Shengzhou

    2016-04-01

    Dysfunction of the ubiquitin-proteasome system (UPS) and calcium homeostasis has been implicated in the neurodegeneration of Alzheimer's and Parkinson's diseases. The cytosolic calcium concentration is maintained by store-operated calcium entry (SOCE), which is repressed by Alzheimer's disease-associated mutants, such as mutant presenilins. We hypothesized that inhibition of UPS impacts SOCE. This study showed that pretreatment with sub-lethal levels of proteasome inhibitors, including MG-132 and clasto-lactacystin-β-lactone (LA), reduced SOCE after depletion of endoplasmic reticulum calcium in rat neurons. With the same treatment, MG-132 and LA reduced the protein levels of stromal interaction molecule 1and 2 (STIM1/2), but not the levels of Orai1 and canonical transient receptor potential channel 1 (TRPC1). STIM1 or STIM2 protein was mobilized to lysosome by MG-132/LA treatment as observed under an immunofluorescence confocal laser microscope. In the neurons, MG-132 and LA degraded p62/SQSTM1, promoted autophagy, converted LC3I to LC3II, and promoted co-localization of LC3 and lysosomes. Rapamycin, which enhances autophagy, reduced STIM1/2 protein levels, whereas bafilomycin, which inhibits autophagy, increased their protein levels. The protein levels of STIM1/2 and the amplitude of SOCE were decreased in SH-SY5Y with decreased protein level of proteasome subunit beta type-5 induced by shRNA. We conclude that sub-lethal levels of proteasome inhibition reduce SOCE and promote autophagy-mediated degradation of STIM1/2. UPS inhibition, a common finding in neurodegenerative diseases, interferes with calcium homeostasis via repression of SOCE.

  12. Proteasomes: Isolation and Activity Assays

    PubMed Central

    Li, Yanjie; Tomko, Robert J.; Hochstrasser, Mark

    2015-01-01

    In eukaryotes, damaged or unneeded proteins are typically degraded by the ubiquitin-proteasome system. In this system, the protein substrate is often first covalently modified with a chain of ubiquitin polypeptides. This chain serves as a signal for delivery to the 26S proteasome, a 2.5 MDa, ATP-dependent multisubunit protease complex. The proteasome consists of a barrel-shaped 20S core particle (CP) that is capped on one or both of its ends by a 19S regulatory particle (RP). The RP is responsible for recognizing the substrate, unfolding it, and translocating it into the CP for destruction. Here we describe simple, one-step purifications scheme for isolating the 26S proteasome and its 19S RP and 20S CP subcomplexes from the yeast Saccharomyces cerevisiae, as well as assays for measuring ubiquitin-dependent and ubiquitin-independent proteolytic activity in vitro. PMID:26061243

  13. 15-Deoxy-Δ12,14-Prostaglandin J2 Modifies Components of the Proteasome and Inhibits Inflammatory Responses in Human Endothelial Cells

    PubMed Central

    Marcone, Simone; Evans, Paul; Fitzgerald, Desmond J.

    2016-01-01

    15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an electrophilic lipid mediator derived from PGD2 with potent anti-inflammatory effects. These are likely to be due to the covalent modification of cellular proteins, via a reactive α,β-unsaturated carbonyl group in its cyclopentenone ring. This study was carried out to identify novel cellular target(s) for covalent modification by 15d-PGJ2 and to investigate the anti-inflammatory effects of the prostaglandin on endothelial cells (EC). The data presented here show that 15d-PGJ2 modifies and inhibits components of the proteasome and consequently inhibits the activation of the NF-κB pathway in response to TNF-α. This, in turn, inhibits the adhesion and migration of monocytes toward activated EC, by reducing the expression of adhesion molecules and chemokines in the EC. The effects are consistent with the covalent modification of 13 proteins in the 19S particle of the proteasome identified by mass spectrometry and the suppression of proteasome function, and were similar to the effects seen with a known proteasome inhibitor (MG132). The ubiquitin–proteasome system has been implicated in the regulation of several inflammatory processes and the observation that 15d-PGJ2 profoundly affects the proteasome functions in human EC suggests that 15d-PGJ2 may regulate the progression of inflammatory disorders such as atherosclerosis. PMID:27833612

  14. Celastrol can inhibit proteasome activity and upregulate the expression of heat shock protein genes, hsp30 and hsp70, in Xenopus laevis A6 cells.

    PubMed

    Walcott, Shantel E; Heikkila, John J

    2010-06-01

    In eukaryotes, the ubiquitin-proteasome system (UPS) is responsible for the degradation of most proteins. Proteasome inhibition, which has been associated with various diseases, can cause alterations in various intracellular processes including the expression of heat shock protein (hsp) genes. In this study, we show that celastrol, a quinone methide triterpene and anti-inflammatory agent, inhibited proteasome activity and enhanced HSP accumulation in Xenopus laevis A6 kidney epithelial cells. Treatment of cells with celastrol induced the accumulation of ubiquitinated protein and inhibited chymotrypsin-like activity. This was accompanied by a dose- and time-dependent accumulation of HSP30 and HSP70. Celastrol-induced HSP accumulation was mediated by HSF1-DNA binding activity since this response was inhibited by the HSF1 activation inhibitor, KNK437. Simultaneous exposure of cells with celastrol plus either mild heat shock or the proteasome inhibitor, MG132, produced an enhanced accumulation of HSP30 that was greater than the sum of the individual stressors alone. Immunocytochemical analysis revealed that celastrol-induced HSP30 accumulation occurred in the cytoplasm in a granular pattern supplemented with larger circular HSP30 staining structures. HSP30 was also noted in the nucleus with less staining in the nucleolus. In some cells, celastrol induced the collapse of the actin cytoskeleton and conversion to a rounder morphology. In conclusion, this study has shown that celastrol inhibited proteasome activity and induced HSF1-mediated expression of hsp genes in amphibian cells.

  15. Delta12-Prostaglandin J2 inhibits the ubiquitin hydrolase UCH-L1 and elicits ubiquitin-protein aggregation without proteasome inhibition.

    PubMed

    Li, Zongmin; Melandri, Francesco; Berdo, Ingrid; Jansen, Marlon; Hunter, Lavonne; Wright, Saundrene; Valbrun, Danielle; Figueiredo-Pereira, Maria E

    2004-07-09

    To investigate molecular mechanisms linking inflammation with neurodegeneration, we treated neuronal cultures with prostaglandins (PGs), which are mediators of inflammation. PGA1, D2, J2, and Delta12-PGJ2, but not PGE2, reduced the viability and raised the levels of ubiquitinated proteins in the neuronal cells. PGJ2 and its metabolite, Delta12-PGJ2, were the most potent of the four neurotoxic PGs tested in inducing both effects. To address the mechanism by which these agents lead to the accumulation of ubiquitinated proteins, we tested their effects on neuronal ubiquitin hydrolases UCH-L1 and UCH-L3 as well as on proteasome activity. Notably, Delta12-PGJ2 inhibited the activities of UCH-L1 (K(i) approximately 3.5 microM) and UCH-L3 (K(i) approximately 8.1 microM) without affecting proteasome activity. Intracellular aggregates containing ubiquitinated proteins were detected in Delta12-PGJ2-treated cells, indicating that these aggregates can form independently of proteasome inhibition. In conclusion, impairment of ubiquitin hydrolase activity, such as triggered by Delta12-PGJ2, may be an important contributor to neurodegeneration associated with accumulation of ubiquitinated proteins and inflammation.

  16. Steviol Reduces MDCK Cyst Formation and Growth by Inhibiting CFTR Channel Activity and Promoting Proteasome-Mediated CFTR Degradation

    PubMed Central

    Yuajit, Chaowalit; Homvisasevongsa, Sureeporn; Chatsudthipong, Lisa; Soodvilai, Sunhapas; Muanprasat, Chatchai; Chatsudthipong, Varanuj

    2013-01-01

    Cyst enlargement in polycystic kidney disease (PKD) involves cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK) cells. Among 4 steviol-related compounds tested, steviol was found to be the most potent at inhibiting MDCK cyst growth. Steviol inhibition of cyst growth was dose-dependent; steviol (100 microM) reversibly inhibited cyst formation and cyst growth by 72.53.6% and 38.2±8.5%, respectively. Steviol at doses up to 200 microM had no effect on MDCK cell viability, proliferation and apoptosis. However, steviol acutely inhibited forskolin-stimulated apical chloride current in MDCK epithelia, measured with the Ussing chamber technique, in a dose-dependent manner. Prolonged treatment (24 h) with steviol (100 microM) also strongly inhibited forskolin-stimulated apical chloride current, in part by reducing CFTR protein expression in MDCK cells. Interestingly, proteasome inhibitor, MG-132, abolished the effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged treatment (24 h) with steviol (100 microM) markedly reduced CFTR expression at the plasma membrane. Taken together, the data suggest that steviol retards MDCK cyst progression in two ways: first by directly inhibiting CFTR chloride channel activity and second by reducing CFTR expression, in part, by promoting proteasomal degradation of CFTR. Steviol and related compounds therefore represent drug candidates for treatment of polycystic kidney disease. PMID:23536832

  17. Prolyl oligopeptidase inhibition attenuates the toxicity of a proteasomal inhibitor, lactacystin, in the alpha-synuclein overexpressing cell culture.

    PubMed

    Myöhänen, Timo T; Norrbacka, Susanna; Savolainen, Mari H

    2017-01-01

    Lewy bodies, the histopathological hallmarks of Parkinson's disease (PD), contain insoluble and aggregated α-synuclein (aSyn) and many other proteins, proposing a role for failure in protein degradation system in the PD pathogenesis. Proteasomal dysfunction has indeed been linked to PD and aSyn oligomers have been shown to inhibit proteasomes and autophagy. Our recent studies have shown that inhibitors of prolyl oligopeptidase (PREP) can prevent the aggregation and enhance the clearance of accumulated aSyn, and therefore, we wanted to study if PREP inhibition can overcome the aSyn aggregation and toxicity induced by lactacystin, a proteasomal inhibitor. The cells overexpressing human A30P or A53T mutated aSyn were incubated with lactacystin and a PREP inhibitor, KYP-2047, for 48h. Theafter, the cells were fractioned, and the effects of lactacystin with/without 1μM KYP-2047 on aSyn aggregation and ubiquitin accumulation, cell viability and on autophagic markers (p62, Beclin1 and LC3BII) were studied. We found that KYP-2047 attenuated lactacystin-induced cell death in mutant aSyn overexpressing cells but not in non-overexpressing control cells. KYP-2047 reduced significantly SDS-insoluble high-molecular-weight aSyn oligomers that were in line with the cell viability results. In addition, significant reduction in protein accumulation marker, p62, was seen in SDS fraction while LC3BII, a marker for autophagosome formation, was increased, indicating to enhanced autophagy. Our results further streghten the possibilities for PREP inhibitors as a potential drug therapy against synucleinopathies and other protein aggregating diseases.

  18. Proteasome inhibition attenuates heart failure during the late stages of pressure overload through alterations in collagen expression.

    PubMed

    Ma, Yuedong; Chen, Yili; Yang, Yang; Chen, Baolin; Liu, Dan; Xiong, Zhaojun; Zhang, Chengxi; Dong, Yugang

    2013-01-15

    Although the role of the ubiquitin-proteasome system (UPS) in cardiac hypertrophy induced by pressure overload has been consistently studied, the fundamental importance of the UPS in cardiac fibrosis has received much less attention. Our previous study found that proteasome inhibitor (MG132) treatment attenuated cardiac fibrosis and heart failure during the early and middle stages of pressure overload. However, the effects of this inhibitor on late-stage pressure overload hearts remain unclear and controversial. The present study was designed to investigate the effects and possible mechanisms of MG132 on cardiac fibrosis and dysfunction during the late stages of pressure overload. Male Sprague Dawley rats with abdominal aortic constriction (AAC) or a sham operation received an intraperitoneal injection of MG132 (0.1 mg kg⁻¹ day⁻¹) or vehicle for 16 weeks. Left ventricular (LV) function, collagen deposition and Ang II levels were evaluated at study termination. Ang II-stimulated adult rat cardiac fibroblasts were utilized to examine the effects of MG132 on collagen synthesis and the relationship between the renin-angiotensin-aldosterone system (RAAS) and the UPS. MG132 treatment attenuated ventricular dysfunction by suppressing cardiac fibrosis rather than inhibiting cardiac hypertrophy during the late-stages of pressure overload. We also found that Ang II activates UPS in the heart and MG132 attenuates Ang II-induced collagen synthesis via suppression of the NF-κB/TGF-β/Smad2 signaling pathways. Proteasome inhibition therefore could provide a new promising therapeutic strategy to prevent cardiac fibrosis and progression of heart failure even during the late-stages of pressure overload.

  19. Synthetic analogs of green tea polyphenols as proteasome inhibitors.

    PubMed Central

    Smith, David M.; Wang, Zhigang; Kazi, Aslamuzzaman; Li, Lian-Hai; Chan, Tak-Hang; Dou, Q. Ping

    2002-01-01

    BACKGROUND: Animal, epidemiological and clinical studies have demonstrated the anti-tumor activity of pharmacological proteasome inhibitors and the cancer-preventive effects of green tea consumption. Previously, one of our laboratories reported that natural ester bond-containing green tea polyphenols (GTPs), such as (-)-epigallocatechin-3-gallate [(-)-EGCG] and (-)-gallocatechin-3-gallate [(-)-GCG], are potent and specific proteasome inhibitors. Another of our groups, for the first time, was able to enantioselectively synthesize (-)-EGCG as well as other analogs of this natural GTP. Our interest in designing and developing novel synthetic GTPs as proteasome inhibitors and potential cancer-preventive agents prompted our current study. MATERIALS AND METHODS: GTP analogs, (+)-EGCG, (+)-GCG, and a fully benzyl-protected (+)-EGCG [Bn-(+)-EGCG], were prepared by enantioselective synthesis. Inhibition of the proteasome or calpain (as a control) activities under cell-free conditions were measured by fluorogenic substrate assay. Inhibition of intact tumor cell proteasome activity was measured by accumulation of some proteasome target proteins (p27, I kappa B-alpha and Bax) using Western blot analysis. Inhibition of tumor cell proliferation and induction of apoptosis by synthetic GTPs were determined by G(1) arrest and caspase activation, respectively. Finally, inhibition of the transforming activity of human prostate cancer cells by synthetic GTPs was measured by a colony formation assay. RESULTS: (+)-EGCG and (+)-GCG potently and specifically inhibit the chymotrypsin-like activity of purified 20S proteasome and the 26S proteasome in tumor cell lysates, while Bn-(+)-EGCG does not. Treatment of leukemic Jurkat T or prostate cancer LNCaP cells with either (+)-EGCG or (+)-GCG accumulated p27 and IkappaB-alpha proteins, associated with an increased G(1) population. (+)-EGCG treatment also accumulated the pro-apoptotic Bax protein and induced apoptosis in LNCaP cells expressing

  20. The proteasome inhibitor, MG132, attenuates diabetic nephropathy by inhibiting SnoN degradation in vivo and in vitro.

    PubMed

    Huang, Wei; Yang, Chen; Nan, Qinling; Gao, Chenlin; Feng, Hong; Gou, Fang; Chen, Guo; Zhang, Zhihong; Yan, Pijun; Peng, Juan; Xu, Yong

    2014-01-01

    Transforming growth factor-β (TGF-β) has been shown to be involved in diabetic nephropathy (DN). The SnoN protein can regulate TGF-β signaling through interaction with Smad proteins. Recent studies have shown that SnoN is mainly degraded by the ubiquitin-proteasome pathway. However, the role of SnoN in the regulation of TGF- β/Smad signaling in DN is still unclear. In this study, diabetic rats were randomly divided into a diabetic control group (DC group) and a proteasome inhibitor (MG132) diabetes therapy group (DT group). Kidney damage parameters and the expression of SnoN, Smurf2, and TGF-β were observed. Simultaneously, we cultured rat glomerular mesangial cells (GMCs) stimulated with high glucose, and SnoN and Arkadia expression were measured. Results demonstrated that 24-hour urine protein, ACR, BUN, and the expression of Smurf2 and TGF- β were significantly increased (P < 0.05), whereas SnoN was significantly decreased in the DC group (P < 0.05). However, these changes diminished after treatment with MG132. SnoN expression in GMCs decreased significantly (P < 0.05), but Arkadia expression gradually increased due to high glucose stimulation (P < 0.05), which could be almost completely reversed by MG132 (P < 0.05). The present results support the hypothesis that MG132 may alleviate kidney damage by inhibiting SnoN degradation and TGF-β activation, suggesting that the ubiquitin-proteasome pathway may become a new therapeutic target for DN.

  1. The Proteasome Inhibitor, MG132, Attenuates Diabetic Nephropathy by Inhibiting SnoN Degradation In Vivo and In Vitro

    PubMed Central

    Huang, Wei; Yang, Chen; Nan, Qinling; Gao, Chenlin; Feng, Hong; Gou, Fang; Chen, Guo; Zhang, Zhihong; Yan, Pijun; Peng, Juan

    2014-01-01

    Transforming growth factor-β (TGF-β) has been shown to be involved in diabetic nephropathy (DN). The SnoN protein can regulate TGF-β signaling through interaction with Smad proteins. Recent studies have shown that SnoN is mainly degraded by the ubiquitin-proteasome pathway. However, the role of SnoN in the regulation of TGF-β/Smad signaling in DN is still unclear. In this study, diabetic rats were randomly divided into a diabetic control group (DC group) and a proteasome inhibitor (MG132) diabetes therapy group (DT group). Kidney damage parameters and the expression of SnoN, Smurf2, and TGF-β were observed. Simultaneously, we cultured rat glomerular mesangial cells (GMCs) stimulated with high glucose, and SnoN and Arkadia expression were measured. Results demonstrated that 24-hour urine protein, ACR, BUN, and the expression of Smurf2 and TGF-β were significantly increased (P < 0.05), whereas SnoN was significantly decreased in the DC group (P < 0.05). However, these changes diminished after treatment with MG132. SnoN expression in GMCs decreased significantly (P < 0.05), but Arkadia expression gradually increased due to high glucose stimulation (P < 0.05), which could be almost completely reversed by MG132 (P < 0.05). The present results support the hypothesis that MG132 may alleviate kidney damage by inhibiting SnoN degradation and TGF-β activation, suggesting that the ubiquitin-proteasome pathway may become a new therapeutic target for DN. PMID:25003128

  2. Pioglitazone, a PPAR-gamma ligand, exerts cytostatic/cytotoxic effects against cancer cells, that do not result from inhibition of proteasome.

    PubMed

    Mrówka, Piotr; Głodkowska, Eliza; Młynarczuk-Biały, Izabela; Biały, Lukasz; Kuckelkorn, Ulrike; Nowis, Dominika; Makowski, Marcin; Legat, Magdalena; Gołab, Jakub

    2008-01-01

    Thiazolidinediones are oral antidiabetic agents that activate peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and exert potent antioxidant and anti-inflammatory properties. It has also been shown that PPAR-gamma agonists induce G0/G1 arrest and apoptosis of malignant cells. Some of these effects have been suggested to result from inhibition of proteasome activity in target cells. The aim of our studies was to critically evaluate the cytostatic/cytotoxic effects of one of thiazolidinediones (pioglitazone) and its influence on proteasome activity. Pioglitazone exerted dose-dependent cytostatic/cytotoxic effects in MIA PaCa-2 cells. Incubation of tumor cells with pioglitazone resulted in increased levels of p53 and p27 and decreased levels of cyclin D1. Accumulation of polyubiquitinated proteins within cells incubated with pioglitazone suggested dysfunction of proteasome activity. However, we did not observe any influence of pioglitazone on the activity of isolated proteasome and on the proteolytic activity in lysates of pioglitazone-treated MIA PaCa-2 cells. Further, treatment with pioglitazone did not cause an accumulation of fluorescent proteasome substrates in transfected HeLa cells expressing unstable GFP variants. Our results indicate that pioglitazone does not act as a direct or indirect proteasome inhibitor.

  3. Missense UROS mutations causing congenital erythropoietic porphyria reduce UROS homeostasis that can be rescued by proteasome inhibition.

    PubMed

    Blouin, Jean-Marc; Bernardo-Seisdedos, Ganeko; Sasso, Emma; Esteve, Julie; Ged, Cécile; Lalanne, Magalie; Sanz-Parra, Arantza; Urquiza, Pedro; de Verneuil, Hubert; Millet, Oscar; Richard, Emmanuel

    2017-02-21

    Congenital erythropoietic porphyria (CEP) is an inborn error of heme biosynthesis characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in deleterious porphyrin accumulation in blood cells responsible for hemolytic anemia and cutaneous photosensitivity. We analyzed here the molecular basis of UROS impairment associated with twenty nine UROS missense mutations actually described in CEP patients. Using a computational and biophysical joint approach we predicted that most disease-causing mutations would affect UROS folding and stability. Through the analysis of enhanced green fluorescent protein-tagged versions of UROS enzyme we experimentally confirmed these data and showed that thermodynamic instability and premature protein degradation is a major mechanism accounting for the enzymatic deficiency associated with twenty UROS mutants in human cells. Since the intracellular loss in protein homeostasis is in excellent agreement with the in vitro destabilization, we used molecular dynamic simulation to rely structural 3D modification with UROS disability. We found that destabilizing mutations could be clustered within three types of mechanism according to side chain rearrangements or contact alterations within the pathogenic UROS enzyme so that the severity degree correlated with cellular protein instability. Furthermore, proteasome inhibition using bortezomib, a clinically available drug, significantly enhanced proteostasis of each unstable UROS mutant. Finally, we show evidence that abnormal protein homeostasis is a prevalent mechanism responsible for UROS deficiency and that modulators of UROS proteolysis such as proteasome inhibitors or chemical chaperones may represent an attractive therapeutic option to reduce porphyrin accumulation and prevent skin photosensitivity in CEP patients when the genotype includes a missense variant.

  4. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death.

    PubMed

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion.

  5. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death

    PubMed Central

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A.; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion. PMID:27529620

  6. A mental retardation-linked nonsense mutation in cereblon is rescued by proteasome inhibition.

    PubMed

    Xu, Guoqiang; Jiang, Xiaogang; Jaffrey, Samie R

    2013-10-11

    A nonsense mutation in cereblon (CRBN) causes autosomal recessive nonsyndromic mental retardation. Cereblon is a substrate receptor for the Cullin-RING E3 ligase complex and couples the ubiquitin ligase to specific ubiquitination targets. The CRBN nonsense mutation (R419X) results in a protein lacking 24 amino acids at its C terminus. Although this mutation has been linked to mild mental retardation, the mechanism by which the mutation affects CRBN function is unknown. Here, we used biochemical and mass spectrometric approaches to explore the function of this mutant. We show that the protein retains its ability to assemble into a Cullin-RING E3 ligase complex and catalyzes the ubiquitination of CRBN-target proteins. However, we find that this mutant exhibits markedly increased levels of autoubiquitination and is more readily degraded by the proteasome than the wild type protein. We also show that the level of the mutant protein can be restored by a treatment of cells with a clinically utilized proteasome inhibitor, suggesting that this agent may be useful for the treatment of mental retardation associated with the CRBN R419X mutation. These data demonstrate that enhanced autoubiquitination and degradation account for the defect in CRBN activity that leads to mental retardation.

  7. Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus

    PubMed Central

    2012-01-01

    Background Neuroinflammation and protein accumulation are characteristic hallmarks of both normal aging and age-related neurodegenerative diseases. However, the relationship between these factors in neurodegenerative processes is poorly understood. We have previously shown that proteasome inhibition produced higher neurodegeneration in aged than in young rats, suggesting that other additional age-related events could be involved in neurodegeneration. We evaluated the role of lipopolysaccharide (LPS)-induced neuroinflammation as a potential synergic risk factor for hippocampal neurodegeneration induced by proteasome inhibition. Methods Young male Wistar rats were injected with 1 μL of saline or LPS (5 mg/mL) into the hippocampus to evaluate the effect of LPS-induced neuroinflammation on protein homeostasis. The synergic effect of LPS and proteasome inhibition was analyzed in young rats that first received 1 μL of LPS and 24 h later 1 μL (5 mg/mL) of the proteasome inhibitor lactacystin. Animals were sacrificed at different times post-injection and hippocampi isolated and processed for gene expression analysis by real-time polymerase chain reaction; protein expression analysis by western blots; proteasome activity by fluorescence spectroscopy; immunofluorescence analysis by confocal microscopy; and degeneration assay by Fluoro-Jade B staining. Results LPS injection produced the accumulation of ubiquitinated proteins in hippocampal neurons, increased expression of the E2 ubiquitin-conjugating enzyme UB2L6, decreased proteasome activity and increased immunoproteasome content. However, LPS injection was not sufficient to produce neurodegeneration. The combination of neuroinflammation and proteasome inhibition leads to higher neuronal accumulation of ubiquitinated proteins, predominant expression of pro-apoptotic markers and increased neurodegeneration, when compared with LPS or lactacystin (LT) injection alone. Conclusions Our results identify neuroinflammation

  8. Proteasome dynamics.

    PubMed

    Enenkel, Cordula

    2014-01-01

    Proteasomes are highly conserved multisubunit protease complexes and occur in the cyto- and nucleoplasm of eukaryotic cells. In dividing cells proteasomes exist as holoenzymes and primarily localize in the nucleus. During quiescence they dissociate into proteolytic core and regulatory complexes and are sequestered into motile cytosolic clusters. Proteasome clusters rapidly clear upon the exit from quiescence, where proteasome core and regulatory complexes reassemble and localize to the nucleus again. The mechanisms underlying proteasome transport and assembly are not yet understood. Here, I summarize our present knowledge about nuclear transport and assembly of proteasomes in yeast and project our studies in this eukaryotic model organism to the mammalian cell system. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.

  9. Inhibition of glioblastoma cell proliferation, migration and invasion by the proteasome antagonist carfilzomib.

    PubMed

    Areeb, Zammam; Stylli, Stanley S; Ware, Thomas M B; Harris, Nicole C; Shukla, Lipi; Shayan, Ramin; Paradiso, Lucia; Li, Bo; Morokoff, Andrew P; Kaye, Andrew H; Luwor, Rodney B

    2016-05-01

    Glioblastoma multiforme is the most aggressive and lethal tumor of the central nervous system with limited treatment strategies on offer, and as such the identification of effective novel therapeutic agents is paramount. To examine the efficacy of proteasome inhibitors, we tested bortezomib, carfilzomib, nafamostat mesylate, gabexate mesylate and acetylsalicylic acid on glioblastoma cell viability, migration and invasion. Both bortezomib and carfilzomib produced significant reduction of cell viability, while nafamostat mesylate, gabexate mesylate and acetylsalicylic acid did not. Subsequent testing showed that carfilzomib significantly reduced cell viability at nM concentrations. Carfilzomib also reduced cell migration, secretion and activation of MMP2 and also cell invasion of all four glioblastoma cells tested. In summary, carfilzomib represents a novel, yet FDA-approved agent for the treatment of glioblastoma multiforme.

  10. Disulfiram promotes the conversion of carcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human cancer cells

    SciTech Connect

    Li Lihua; Yang Huanjie; Chen Di; Cui, Cindy; Ping Dou, Q.

    2008-06-01

    The ubiquitin-proteasome system is involved in various cellular processes, including transcription, apoptosis, and cell cycle. In vitro, in vivo, and clinical studies suggest the potential use of proteasome inhibitors as anticancer drugs. Cadmium (Cd) is a widespread environmental pollutant that has been classified as a human carcinogen. Recent study in our laboratory suggested that the clinically used anti-alcoholism drug disulfiram (DSF) could form a complex with tumor cellular copper, resulting in inhibition of the proteasomal chymotrypsin-like activity and induction of cancer cell apoptosis. In the current study, we report, for the first time, that DSF is able to convert the carcinogen Cd to a proteasome-inhibitor and cancer cell apoptosis inducer. Although the DSF-Cd complex inhibited the chymotrypsin-like activity of a purified 20S proteasome with an IC{sub 50} value of 32 {mu}mol/L, this complex was much more potent in inhibiting the chymotrypsin-like activity of prostate cancer cellular 26S proteasome. Inhibition of cellular proteasome activity by the DSF-Cd complex resulted in the accumulation of ubiquitinated proteins and the natural proteasome substrate p27, which was followed by activation of calpain and induction of apoptosis. Importantly, human breast cancer MCF10DCIS cells were much more sensitive to the DSF-Cd treatment than immortalized but non-tumorigenic human breast MCF-10A cells, demonstrating that the DSF-Cd complex could selectively induce proteasome inhibition and apoptosis in human tumor cells. Our work suggests the potential use of DSF for treatment of cells with accumulated levels of carcinogen Cd.

  11. γ-secretase inhibitor I inhibits neuroblastoma cells, with NOTCH and the proteasome among its targets

    PubMed Central

    Dorneburg, Carmen; Goß, Annika V.; Fischer, Matthias; Roels, Frederik; Barth, Thomas F.E.; Berthold, Frank; Kappler, Roland; Oswald, Franz; Siveke, Jens T.; Molenaar, Jan J.; Debatin, Klaus-Michael; Beltinger, Christian

    2016-01-01

    As high-risk neuroblastoma (NB) has a poor prognosis, new therapeutic modalities are needed. We therefore investigated the susceptibility of NB cells to γ-secretase inhibitor I (GSI-I). NOTCH signaling activity, the cellular effects of GSI-I and its mechanisms of cytotoxicity were evaluated in NB cells in vitro and in vivo. The results show that NOTCH signaling is relevant for human NB cells. Of the GSIs screened in vitro GSI-I was the most effective inhibitor of NB cells. Both MYCN-amplified and non-amplified NB cells were susceptible to GSI-I. Among the targets of GSI-I in NB cells were NOTCH and the proteasome. GSI-I caused G2/M arrest that was enhanced by acute activation of MYCN and led to mitotic dysfunction. GSI-I also induced proapoptotic NOXA. Survival of mice bearing an MYCN non-amplified orthotopic patient-derived NB xenograft was significantly prolonged by systemic GSI-I, associated with mitotic catastrophe and reduced angiogenesis, and without evidence of intestinal toxicity. In conclusion, the activity of GSI-I on multiple targets in NB cells and the lack of gastrointestinal toxicity in mice are advantageous and merit further investigations of GSI-I in NB. PMID:27588497

  12. Cefepime, a fourth-generation cephalosporin, in complex with manganese, inhibits proteasome activity and induces the apoptosis of human breast cancer cells.

    PubMed

    Zhang, Zhen; Bi, Caifeng; Fan, Yuhua; Wang, Huannan; Bao, Yan

    2015-10-01

    Cefepime (FEP), which is a member of the fourth-generation cephalosporin class, has been extensively studied as a biochemical and antimicrobial reagent in recent years. Manganese (Mn) is important in the biochemical and physiological processes of many living organisms, and it is also high expressed in some tumor tissues. In the present study, we aimed to investigate the proteasome-inhibitory and anti-proliferative properties of 8 metal complexes (FEP‑Cu, FEP-Zn, FEP-Co, FEP-Ni, FEP-Cd, FEP-Cr, FEP-Fe, FEP-Mn) in MDA-MB‑231 human breast cancer cells. The FEP-Mn complex was found to be more potent in its ability to inhibit cell proliferation and proteasome activity than the other compounds tested. Moreover, the FEP-Mn complex inhibited proteasomal chymotrypsin-like (CT-like) activity and induced the apoptosis of breast cancer cells in a dose-and time-dependent manner. Furthermore, the MCF-10A cells were much less sensitive to the FEP complexes compared with the MDA-MB-231 breast cancer cells. These results demonstrated that the FEP-Mn(II) complex has the potential to act as a proteasome inhibitor and apoptosis inducer and therefore has possible future applications in cancer chemotherapy.

  13. Breast cancer cell line MCF7 escapes from G1/S arrest induced by proteasome inhibition through a GSK-3β dependent mechanism

    PubMed Central

    Gavilán, Elena; Giráldez, Servando; Sánchez-Aguayo, Inmaculada; Romero, Francisco; Ruano, Diego; Daza, Paula

    2015-01-01

    Targeting the ubiquitin proteasome pathway has emerged as a rational approach in the treatment of human cancers. Autophagy has been described as a cytoprotective mechanism to increase tumor cell survival under stress conditions. Here, we have focused on the role of proteasome inhibition in cell cycle progression and the role of autophagy in the proliferation recovery. The study was performed in the breast cancer cell line MCF7 compared to the normal mammary cell line MCF10A. We found that the proteasome inhibitor MG132 induced G1/S arrest in MCF10A, but G2/M arrest in MCF7 cells. The effect of MG132 on MCF7 was reproduced on MCF10A cells in the presence of the glycogen synthase kinase 3β (GSK-3β) inhibitor VII. Similarly, MCF7 cells overexpressing constitutively active GSK-3β behaved like MCF10A cells. On the other hand, MCF10A cells remained arrested after MG132 removal while MCF7 recovered the proliferative capacity. Importantly, this recovery was abolished in the presence of the autophagy inhibitor 3-methyladenine (3-MA). Thus, our results support the relevance of GSK-3β and autophagy as two targets for controlling cell cycle progression and proliferative capacity in MCF7, highlighting the co-treatment of breast cancer cells with 3-MA to synergize the effect of the proteasome inhibition. PMID:25941117

  14. cAMP signaling increases histone deacetylase 8 expression by inhibiting JNK-dependent degradation via autophagy and the proteasome system in H1299 lung cancer cells.

    PubMed

    Park, Ji-Yeon; Juhnn, Yong-Sung

    2016-02-05

    This study aimed to investigate the roles of autophagy and the ubiquitin-proteasome system in the degradation of histone deacetylase 8 (HDAC8) and to clarify the mechanism by which cAMP signaling regulates this degradation. cAMP signaling was activated by treating H1299 non-small cell lung cancer cells with isoproterenol or forskolin/3-isobutyl-1-methylxanthine, and HDAC8 expression was assessed by western blot analysis. The inhibition of autophagy and ubiquitin-proteasome-dependent degradation increased HDAC8 expression. cAMP signaling inhibited JNK activation, which decreased the phosphorylation of Bcl-2, thereby reducing autophagy, and the phosphorylation of Itch, thereby reducing ubiquitination. These results suggest that the HDAC8 protein is degraded via autophagy and the ubiquitin-proteasome system and that cAMP signaling increases HDAC8 protein levels by reducing JNK-mediated autophagy and ubiquitin-proteasome-dependent degradation of the HDAC8 protein in H1299 lung cancer cells.

  15. Breast cancer cell line MCF7 escapes from G1/S arrest induced by proteasome inhibition through a GSK-3β dependent mechanism.

    PubMed

    Gavilán, Elena; Giráldez, Servando; Sánchez-Aguayo, Inmaculada; Romero, Francisco; Ruano, Diego; Daza, Paula

    2015-05-05

    Targeting the ubiquitin proteasome pathway has emerged as a rational approach in the treatment of human cancers. Autophagy has been described as a cytoprotective mechanism to increase tumor cell survival under stress conditions. Here, we have focused on the role of proteasome inhibition in cell cycle progression and the role of autophagy in the proliferation recovery. The study was performed in the breast cancer cell line MCF7 compared to the normal mammary cell line MCF10A. We found that the proteasome inhibitor MG132 induced G1/S arrest in MCF10A, but G2/M arrest in MCF7 cells. The effect of MG132 on MCF7 was reproduced on MCF10A cells in the presence of the glycogen synthase kinase 3β (GSK-3β) inhibitor VII. Similarly, MCF7 cells overexpressing constitutively active GSK-3β behaved like MCF10A cells. On the other hand, MCF10A cells remained arrested after MG132 removal while MCF7 recovered the proliferative capacity. Importantly, this recovery was abolished in the presence of the autophagy inhibitor 3-methyladenine (3-MA). Thus, our results support the relevance of GSK-3β and autophagy as two targets for controlling cell cycle progression and proliferative capacity in MCF7, highlighting the co-treatment of breast cancer cells with 3-MA to synergize the effect of the proteasome inhibition.

  16. Protease inhibition by Heterodera glycines cyst content: evidence for effects on the Meloidogyne incognita proteasome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteases from Heterodera glycines and Meloidogyne incognita juveniles were inhibited by heat-stable content of H. glycines female cysts (HglCE), and by the plant polyphenol epigallocatechin gallate (EGCG). General protease activities detected using the nematode peptide KSAYMRFa were inhibited by EG...

  17. Proteasome inhibition rescues clinically significant unstable variants of the mismatch repair protein Msh2

    PubMed Central

    Arlow, Tim; Scott, Kristan; Wagenseller, Aubrey; Gammie, Alison

    2013-01-01

    MSH2 is required for DNA mismatch repair recognition in eukaryotes. Deleterious mutations in human MSH2 account for approximately half of the alleles associated with a common hereditary cancer syndrome. Previously, we characterized clinically identified MSH2 missense mutations, using yeast as a model system, and found that the most common cause of defective DNA mismatch repair was low levels of the variant Msh2 proteins. Here, we show that increased protein turnover is responsible for the reduced cellular levels. Increasing gene dosage of more than half of the missense alleles fully restored function. A titration experiment revealed that raising the expression level of one variant to less than wild-type levels restored mismatch repair, suggesting that overexpression is not always required to regain function. We found that the ubiquitin-mediated proteasome degradation pathway is the major mechanism for increased turnover of the Msh2 variants and identified the primary ubiquitin ligase as San1. Deletion of San1 restored protein levels for all but one variant, but did not elevate wild-type Msh2 levels. The unstable variants interacted with San1, whereas wild-type Msh2 did not. Additionally, san1Δ suppressed the mismatch repair defect of unstable variants. Of medical significance, the clinically approved drug Bortezomib partially restored protein levels and mismatch repair function for low-level variants and reversed the resistance to cisplatin, a common chemotherapeutic. Our results provide the foundation for an innovative therapeutic regime for certain mismatch-repair-defective cancers that are refractory to conventional chemotherapies. PMID:23248292

  18. Proteasome Inhibition Enhances the Induction and Impairs the Maintenance of Late-Phase Long-Term Potentiation

    ERIC Educational Resources Information Center

    Dong, Chenghai; Upadhya, Sudarshan C.; Ding, Lan; Smith, Thuy K.; Hegde, Ashok N.

    2008-01-01

    Protein degradation by the ubiquitin-proteasome pathway plays important roles in synaptic plasticity, but the molecular mechanisms by which proteolysis regulates synaptic strength are not well understood. We investigated the role of the proteasome in hippocampal late-phase long-term potentiation (L-LTP), a model for enduring synaptic plasticity.…

  19. Postnatal Proteasome Inhibition Induces Neurodegeneration and Cognitive Deficiencies in Adult Mice: A New Model of Neurodevelopment Syndrome

    PubMed Central

    Romero-Granados, Rocío; Fontán-Lozano, Ángela; Aguilar-Montilla, Francisco Javier; Carrión, Ángel Manuel

    2011-01-01

    Defects in the ubiquitin-proteasome system have been related to aging and the development of neurodegenerative disease, although the effects of deficient proteasome activity during early postnatal development are poorly understood. Accordingly, we have assessed how proteasome dysfunction during early postnatal development, induced by administering proteasome inhibitors daily during the first 10 days of life, affects the behaviour of adult mice. We found that this regime of exposure to the proteasome inhibitors MG132 or lactacystin did not produce significant behavioural or morphological changes in the first 15 days of life. However, towards the end of the treatment with proteasome inhibitors, there was a loss of mitochondrial markers and activity, and an increase in DNA oxidation. On reaching adulthood, the memory of mice that were injected with proteasome inhibitors postnatally was impaired in hippocampal and amygdala-dependent tasks, and they suffered motor dysfunction and imbalance. These behavioural deficiencies were correlated with neuronal loss in the hippocampus, amygdala and brainstem, and with diminished adult neurogenesis. Accordingly, impairing proteasome activity at early postnatal ages appears to cause morphological and behavioural alterations in adult mice that resemble those associated with certain neurodegenerative diseases and/or syndromes of mental retardation. PMID:22174927

  20. Sperm-surface ATP in boar spermatozoa is required for fertilization: relevance to sperm proteasomal function.

    PubMed

    Yi, Young-Joo; Park, Chang-Sik; Kim, Eui-Sook; Song, Eun-Sook; Jeong, Ji-Hyeon; Sutovsky, Peter

    2009-01-01

    Extracellular ATP has been implicated in a number of cellular events, including mammalian sperm function. The complement of ATP-dependent sperm proteins includes six subunits of the 26S proteasome, a multi-subunit protease specific to ubiquitinated substrate-proteins. Proteolysis of ubiquitinated proteins by the 26S proteasome is necessary for the success of mammalian fertilization, including but not limited to acrosomal exocytosis (AE) and sperm-zona pellucida (ZP) penetration. The 26S proteasome is uniquely present on the sperm acrosomal surface during mammalian, ascidian, and invertebrate fertilization. The proteasome is a multi-subunit protease complex of approximately 2 MDa composed of the 19S regulatory complex and a 20S proteolytic core. Integrity of the 19S complex is maintained by six 19S ATPase subunits (PSMC1 through PSMC6). Consequently, we hypothesized that fertilization will be blocked by the depletion of sperm-surface associated ATP (ssATP). Depletion of ssATP by the Solanum tuberosum apyrase, a 49 kDa, non-cell permeant enzyme, significantly reduced the ATP content measured by an adapted luminescence-ATP assay from which all permeabilizing agents were excluded. Addition of active apyrase to porcine in vitro fertilization (IVF) medium caused a concentration dependent reduction in the overall fertilization rate. No such outcomes were observed in control groups using heat-inactivated apyrase. Apyrase treatment altered the band pattern of 19S ATPase subunits PSMC1 (Rpt2) and PSMC4 (Rpt3) in Western blotting, suggesting that it had an effect on the integrity of the sperm proteasomal 19S complex. Apyrase only altered the proteasomal core activities slightly, since these activities are not directly dependent on external ATP. In contrast, sperm treatment with MG132, a specific inhibitor of the proteasomal core chymotrypsin-like activity, inhibited the target proteolytic activity, but also induced a compensatory elevation in proteasomal peptidyl

  1. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells

    PubMed Central

    Zhen, Hong; Huang, Ming; Zheng, Xi; Feng, Lixing; Jiang, Baohong; Yang, Min; Wu, Wanying; Liu, Xuan; Guo, Dean

    2016-01-01

    Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K

  2. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells.

    PubMed

    Yue, Qingxi; Zhen, Hong; Huang, Ming; Zheng, Xi; Feng, Lixing; Jiang, Baohong; Yang, Min; Wu, Wanying; Liu, Xuan; Guo, Dean

    2016-01-01

    Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K

  3. The mechanism for molecular assembly of the proteasome.

    PubMed

    Sahara, Kazutaka; Kogleck, Larissa; Yashiroda, Hideki; Murata, Shigeo

    2014-01-01

    In eukaryotic cells, the ubiquitin proteasome system plays important roles in diverse cellular processes. The 26S proteasome is a large enzyme complex that degrades ubiquitinated proteins. It consists of 33 different subunits that form two subcomplexes, the 20S core particle and the 19S regulatory particle. Recently, several chaperones dedicated to the accurate assembly of this protease complex have been identified, but the complete mechanism of the 26S proteasome assembly is still unclear. In this review, we summarize what is known about the assembly of proteasome to date and present our group's recent findings on the role of the GET pathway in the assembly of the 26S proteasome, in addition to its role in mediating the insertion of tail-anchored (TA) proteins into the ER membrane.

  4. How the ubiquitin proteasome system regulates the regulators of transcription.

    PubMed

    Ee, Gary; Lehming, Norbert

    2012-01-01

    The ubiquitin proteasome system plays an important role in transcription. Monoubiquitination of activators is believed to aid their function, while the 26S proteasomal degradation of repressors is believed to restrict their function. What remains controversial is the question of whether the degradation of activators aids or restricts their function.

  5. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Subs...

  6. Divergent tissue and sex effects of rapamycin on the proteasome-chaperone network of old mice

    PubMed Central

    Rodriguez, Karl A.; Dodds, Sherry G.; Strong, Randy; Galvan, Veronica; Sharp, Z. D.; Buffenstein, Rochelle

    2014-01-01

    Rapamycin, an allosteric inhibitor of the mTOR kinase, increases longevity in mice in a sex-specific manner. In contrast to the widely accepted theory that a loss of proteasome activity is detrimental to both life- and healthspan, biochemical studies in vitro reveal that rapamycin inhibits 20S proteasome peptidase activity. We tested if this unexpected finding is also evident after chronic rapamycin treatment in vivo by measuring peptidase activities for both the 26S and 20S proteasome in liver, fat, and brain tissues of old, male and female mice fed encapsulated chow containing 2.24 mg/kg (14 ppm) rapamycin for 6 months. Further we assessed if rapamycin altered expression of the chaperone proteins known to interact with the proteasome-mediated degradation system (PMDS), heat shock factor 1 (HSF1), and the levels of key mTOR pathway proteins. Rapamycin had little effect on liver proteasome activity in either gender, but increased proteasome activity in female brain lysates and lowered its activity in female fat tissue. Rapamycin-induced changes in molecular chaperone levels were also more substantial in tissues from female animals. Furthermore, mTOR pathway proteins showed more significant changes in female tissues compared to those from males. These data show collectively that there are divergent tissue and sex effects of rapamycin on the proteasome-chaperone network and that these may be linked to the disparate effects of rapamycin on males and females. Further our findings suggest that rapamycin induces indirect regulation of the PMDS/heat-shock response through its modulation of the mTOR pathway rather than via direct interactions between rapamycin and the proteasome. PMID:25414638

  7. Divergent tissue and sex effects of rapamycin on the proteasome-chaperone network of old mice.

    PubMed

    Rodriguez, Karl A; Dodds, Sherry G; Strong, Randy; Galvan, Veronica; Sharp, Z D; Buffenstein, Rochelle

    2014-01-01

    Rapamycin, an allosteric inhibitor of the mTOR kinase, increases longevity in mice in a sex-specific manner. In contrast to the widely accepted theory that a loss of proteasome activity is detrimental to both life- and healthspan, biochemical studies in vitro reveal that rapamycin inhibits 20S proteasome peptidase activity. We tested if this unexpected finding is also evident after chronic rapamycin treatment in vivo by measuring peptidase activities for both the 26S and 20S proteasome in liver, fat, and brain tissues of old, male and female mice fed encapsulated chow containing 2.24 mg/kg (14 ppm) rapamycin for 6 months. Further we assessed if rapamycin altered expression of the chaperone proteins known to interact with the proteasome-mediated degradation system (PMDS), heat shock factor 1 (HSF1), and the levels of key mTOR pathway proteins. Rapamycin had little effect on liver proteasome activity in either gender, but increased proteasome activity in female brain lysates and lowered its activity in female fat tissue. Rapamycin-induced changes in molecular chaperone levels were also more substantial in tissues from female animals. Furthermore, mTOR pathway proteins showed more significant changes in female tissues compared to those from males. These data show collectively that there are divergent tissue and sex effects of rapamycin on the proteasome-chaperone network and that these may be linked to the disparate effects of rapamycin on males and females. Further our findings suggest that rapamycin induces indirect regulation of the PMDS/heat-shock response through its modulation of the mTOR pathway rather than via direct interactions between rapamycin and the proteasome.

  8. Nigral proteasome inhibition in mice leads to motor and non-motor deficits and increased expression of Ser129 phosphorylated α-synuclein

    PubMed Central

    Bentea, Eduard; Van der Perren, Anke; Van Liefferinge, Joeri; El Arfani, Anissa; Albertini, Giulia; Demuyser, Thomas; Merckx, Ellen; Michotte, Yvette; Smolders, Ilse; Baekelandt, Veerle; Massie, Ann

    2015-01-01

    Parkinson's disease is a neurodegenerative disorder characterized by motor and non-motor disturbances. Various pathogenic pathways drive disease progression including oxidative stress, mitochondrial dysfunction, α-synuclein aggregation and impairment of protein degradation systems. Dysfunction of the ubiquitin-proteasome system in the substantia nigra of Parkinson's disease patients is believed to be one of the causes of protein aggregation and cell death associated with this disorder. Lactacystin, a potent inhibitor of the proteasome, was previously delivered to the nigrostriatal pathway of rodents to model nigrostriatal degeneration. Although lactacystin-treated animals develop parkinsonian motor impairment, it is currently unknown whether they also develop non-motor symptoms characteristic of this disorder. In order to further describe the proteasome inhibition model of Parkinson's disease, we characterized the unilateral lactacystin model, performed by stereotaxic injection of the toxin in the substantia nigra of mice. We studied the degree of neurodegeneration and the behavioral phenotype 1 and 3 weeks after lactacystin lesion both in terms of motor impairment, as well as non-motor symptoms. We report that unilateral administration of 3 μg lactacystin to the substantia nigra of mice leads to partial (~40%) dopaminergic cell loss and concurrent striatal dopamine depletion, accompanied by increased expression of Ser129-phosphorylated α-synuclein. Behavioral characterization of the model revealed parkinsonian motor impairment, as well as signs of non-motor disturbances resembling early stage Parkinson's disease including sensitive and somatosensory deficits, anxiety-like behavior, and perseverative behavior. The consistent finding of good face validity, together with relevant construct validity, warrant a further evaluation of proteasome inhibition models of Parkinson's disease in pre-clinical research and validation of therapeutic targets. PMID:25873870

  9. Human cytomegalovirus inhibits apoptosis by proteasome-mediated degradation of Bax at endoplasmic reticulum-mitochondrion contacts.

    PubMed

    Zhang, Aiping; Hildreth, Richard L; Colberg-Poley, Anamaris M

    2013-05-01

    Human cytomegalovirus (HCMV) encodes the UL37 exon 1 protein (pUL37x1), which is the potent viral mitochondrion-localized inhibitor of apoptosis (vMIA), to increase survival of infected cells. HCMV vMIA traffics from the endoplasmic reticulum (ER) to ER subdomains, which are physically linked to mitochondria known as mitochondrion-associated membranes (MAM), and to mitochondria. The antiapoptotic function of vMIA is thought to primarily result from its ability to inhibit Bax-mediated permeabilization of the outer mitochondrial membrane (OMM). Here, we establish that vMIA retargets Bax to the MAM as well as to the OMM from immediate early through late times of infection. However, MAM localization of Bax results in its increased ubiquitination and proteasome-mediated degradation. Surprisingly, HCMV infection does not increase OMM-associated degradation (OMMAD) of Bax, even though the ER and mitochondria are physically connected at the MAM. It was recently found that lipid rafts at the plasma membrane can connect extrinsic and intrinsic apoptotic pathways and can serve as sites of apoptosome assembly. In transfected permissive human fibroblasts, vMIA mediates, through its cholesterol affinity, association of Bax and apoptosome components with MAM lipid rafts. While Bax association with MAM lipid rafts was detected in HCMV-infected cells, association of apoptosome components was not. These results establish that Bax recruitment to the MAM and its MAM-associated degradation (MAMAD) are a newly described antiapoptotic mechanism used by HCMV infection to increase cell survival for its growth.

  10. LDL suppresses angiogenesis through disruption of the HIF pathway via NF-κB inhibition which is reversed by the proteasome inhibitor BSc2118

    PubMed Central

    Doeppner, Thorsten R.; Niu, Feng; Li, Qiaochuan; Yang, Yanping; Kuckelkorn, Ulrike; Hagemann, Nina; Li, Wei; Hermann, Dirk M.; Dai, Yun; Zhou, Wen; Jin, Fengyan

    2015-01-01

    Since disturbance of angiogenesis predisposes to ischemic injuries, attempts to promote angiogenesis have been made to improve clinical outcomes of patients with many ischemic disorders. While hypoxia inducible factors (HIFs) stimulate vascular remodeling and angiogenesis, hyperlipidemia impairs angiogenesis in response to various pro-angiogenic factors. However, it remains uncertain how HIFs regulate angiogenesis under hyperlipidemia. Here, we report that exposure to low-density lipoprotein (LDL) suppressed in vitro angiogenesis of human brain microvascular endothelial cells. Whereas LDL exposure diminished expression of HIF-1α and HIF-2α induced by hypoxia, it inhibited DMOG- and TNFα-induced HIF-1α and HIF-2α expression in normoxia. Notably, in both hypoxia and normoxia, LDL markedly reduced expression of HIF-1β, a constitutively stable HIF subunit, an event associated with NF-κB inactivation. Moreover, knockdown of HIF-1β down-regulated HIF-1α and HIF-2α expression, in association with increased HIF-1α hydroxylation and 20S proteasome activity after LDL exposure. Significantly, the proteasome inhibitor BSc2118 prevented angiogenesis attenuation by LDL through restoring expression of HIFs. Together, these findings argue that HIF-1β might act as a novel cross-link between the HIF and NF-κB pathways in suppression of angiogenesis by LDL, while proteasome inhibitors might promote angiogenesis by reactivating this signaling cascade under hyperlipidemia. PMID:26388611

  11. New insights into the role of the ubiquitin-proteasome pathway in the regulation of apoptosis.

    PubMed

    Liu, Cui-Hua; Goldberg, Alfred L; Qiu, Xiao-Bo

    2007-01-01

    The ubiquitin-proteasome pathway (UPP) is the major system responsible for degradation of intracellular proteins in eukaryotes. By controlling the levels of key proteins, it regulates almost all of the cellular activities, including cell cycle progression, DNA replication and repair, transcription, protein quality control, immune response, and apoptosis. UPP is composed of the ubiquitination system that marks proteins for degradation and the proteasome which degrades the ubiquitinated proteins. The 26S proteasome is a 2400 kDa complex consisting of more than 40 subunits. Following ubiquitination catalyzed by the ubiquitin activating enzyme (El), a ubiquitin-carrier protein (E2), and one of the cell's many ubiquitin-protein ligases (E3s), the protein substrates are targeted to the proteasome for degradation into small peptides. E3s regulate the degradation of protein substrates indirectly by determining both the specificity and timing of substrate ubiquitination, whereas the deubiquitinating enzymes can inhibit this process by releasing ubiquitin from substrates. In this review, we attempt to highlight the recent progress in research on UPP and its role in the regulation of apoptosis by focusing on several of its important components, including the ubiqutin ligase Nrdp 1, which regulates ErbB/EGFR family of receptor tyrosine kinases, the ubiquitin-carrier protein BRUCE/Apollon (an Inhibitor of Apoptosis Protein), and the novel proteasome subunit hRpnl3 (a binding site for the deubiquitinating enzyme, UCH37).

  12. Emerging Mechanistic Insights into AAA Complexes Regulating Proteasomal Degradation

    PubMed Central

    Förster, Friedrich; Schuller, Jan M.; Unverdorben, Pia; Aufderheide, Antje

    2014-01-01

    The 26S proteasome is an integral element of the ubiquitin-proteasome system (UPS) and, as such, responsible for regulated degradation of proteins in eukaryotic cells. It consists of the core particle, which catalyzes the proteolysis of substrates into small peptides, and the regulatory particle, which ensures specificity for a broad range of substrates. The heart of the regulatory particle is an AAA-ATPase unfoldase, which is surrounded by non-ATPase subunits enabling substrate recognition and processing. Cryo-EM-based studies revealed the molecular architecture of the 26S proteasome and its conformational rearrangements, providing insights into substrate recognition, commitment, deubiquitylation and unfolding. The cytosol proteasomal degradation of polyubiquitylated substrates is tuned by various associating cofactors, including deubiquitylating enzymes, ubiquitin ligases, shuttling ubiquitin receptors and the AAA-ATPase Cdc48/p97. Cdc48/p97 and its cofactors function upstream of the 26S proteasome, and their modular organization exhibits some striking analogies to the regulatory particle. In archaea PAN, the closest regulatory particle homolog and Cdc48 even have overlapping functions, underscoring their intricate relationship. Here, we review recent insights into the structure and dynamics of the 26S proteasome and its associated machinery, as well as our current structural knowledge on the Cdc48/p97 and its cofactors that function in the ubiquitin-proteasome system (UPS). PMID:25102382

  13. Insights into the effects of alpha-synuclein expression and proteasome inhibition on glutathione metabolism through a dynamic in silico model of Parkinson's disease: validation by cell culture data.

    PubMed

    Vali, Shireen; Chinta, Shankar J; Peng, Jun; Sultana, Zeba; Singh, Neetu; Sharma, Purushottam; Sharada, S; Andersen, Julie K; Bharath, M M Srinivas

    2008-11-01

    Dopaminergic neurodegeneration during Parkinson disease (PD) involves several pathways including proteasome inhibition, alpha-synuclein (alpha-syn) aggregation, mitochondrial dysfunction, and glutathione (GSH) depletion. We have utilized a systems biology approach and built a dynamic model to understand and link the various events related to PD pathophysiology. We have corroborated the modeling data by examining the effects of alpha-syn expression in the absence and presence of proteasome inhibition on GSH metabolism in dopaminergic neuronal cultures. We report here that the expression of the mutant A53T form of alpha-syn is neurotoxic and causes GSH depletion in cells after proteasome inhibition, compared to wild-type alpha-syn-expressing cells and vector control. Modeling data predicted that GSH depletion in these cells was due to ATP loss associated with mitochondrial dysfunction. ATP depletion elicited by combined A53T expression and proteasome inhibition results in decreased de novo synthesis of GSH via the rate-limiting enzyme gamma-glutamyl cysteine ligase. Based on these data and other recent reports, we propose a novel dynamic model to explain how the presence of mutated alpha-syn protein or proteasome inhibition may individually impact on mitochondrial function and in combination result in alterations in GSH metabolism via enhanced mitochondrial dysfunction.

  14. The capture proteasome assay: A method to measure proteasome activity in vitro.

    PubMed

    Vigneron, Nathalie; Abi Habib, Joanna; Van den Eynde, Benoît J

    2015-08-01

    Because of its crucial role in various cellular processes, the proteasome is the focus of intensive research for the development of proteasome inhibitors to treat cancer and autoimmune diseases. Here, we describe a new and easy assay to measure the different proteasome activities in vitro (chymotrypsin-like, caspase-like, and trypsin-like) based on proteasome capture on antibody-coated plates, namely the capture proteasome assay (CAPA). Applying the CAPA to lysates from cells expressing standard proteasome, immunoproteasome, or intermediate proteasomes β5i or β1i-β5i, we can monitor the activity of the four proteasome subtypes. The CAPA provided similar results as the standard whole-cell proteasome-Glo assay without the problem of contaminating proteases requiring inhibitors. However, the profile of trypsin-like activity differed between the two assays. This could be partly explained by the presence of MgSO4 in the proteasome-Glo buffer, which inhibits the trypsin-like activity of the proteasome. The CAPA does not need MgSO4 and, therefore, provides a more precise measurement of the trypsin-like activity. The CAPA provides a quick and accurate method to measure proteasome activity in vitro in a very specific manner and should be useful for the development of proteasome inhibitors.

  15. Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues

    PubMed Central

    Svozil, Julia; Gruissem, Wilhelm; Baerenfaller, Katja

    2015-01-01

    Protein and transcript levels are partly decoupled as a function of translation efficiency and protein degradation. Selective protein degradation via the Ubiquitin-26S proteasome system (UPS) ensures protein homeostasis and facilitates adjustment of protein abundance during changing environmental conditions. Since individual leaf tissues have specialized functions, their protein composition is different and hence also protein level regulation is expected to differ. To understand UPS function in a tissue-specific context we developed a method termed Meselect to effectively and rapidly separate Arabidopsis thaliana leaf epidermal, vascular and mesophyll tissues. Epidermal and vascular tissue cells are separated mechanically, while mesophyll cells are obtained after rapid protoplasting. The high yield of proteins was sufficient for tissue-specific proteome analyses after inhibition of the proteasome with the specific inhibitor Syringolin A (SylA) and affinity enrichment of ubiquitylated proteins. SylA treatment of leaves resulted in the accumulation of 225 proteins and identification of 519 ubiquitylated proteins. Proteins that were exclusively identified in the three different tissue types are consistent with specific cellular functions. Mesophyll cell proteins were enriched for plastid membrane translocation complexes as targets of the UPS. Epidermis enzymes of the TCA cycle and cell wall biosynthesis specifically accumulated after proteasome inhibition, and in the vascular tissue several enzymes involved in glucosinolate biosynthesis were found to be ubiquitylated. Our results demonstrate that protein level changes and UPS protein targets are characteristic of the individual leaf tissues and that the proteasome is relevant for tissue-specific functions. PMID:26074939

  16. Inhibition of proteasomal degradation of Mcl-1 by cobalt chloride suppresses cobalt chloride-induced apoptosis in HCT116 colorectal cancer cells.

    PubMed

    Lee, Melanie; Lapham, Abigail; Brimmell, Matthew; Wilkinson, Helen; Packham, Graham

    2008-08-01

    Cobalt promotes apoptosis in multiple cell systems, however, the molecular mechanisms that influence cobalt-induced apoptosis are not fully understood. We investigated mechanisms of cobalt chloride induced apoptosis in HCT116 colorectal cancer cells. Cobalt chloride induced dose dependent apoptosis in HCT116 cells (250-750 muM) which, at higher concentrations (500-750 muM), was associated with an increase in the expression of the Bcl-2-related Mcl-1 survival protein. Cobalt chloride caused the accumulation of higher molecular weight ubiquitin-conjugates of Mcl-1 in intact HCT116 cells and inhibited the activity of the trypsin-like site of the 20S proteasome in an in vitro assay. Although siRNA-mediated knockdown of Mcl-1 increased apoptosis in HCT116 cells, the combination of Mcl-1 siRNA and cobalt chloride induced very high levels of cell killing. Therefore, inhibition of the proteasome by cobalt chloride leads to the accumulation of Mcl-1 which acts to limit cobalt chloride induced apoptosis.

  17. Proteasome Modulates Mitochondrial Function During Cellular Senescence

    PubMed Central

    Torres, Claudio A.; Perez, Viviana I.

    2009-01-01

    Proteasome plays fundamental roles in the removal of oxidized proteins and in the normal degradation of short-lived proteins. Previously we have provided evidences that the impairment in proteasome observed during the replicative senescence of human fibroblasts has significant effects on MAPK signaling, proliferation, life span, senescent phenotype and protein oxidative status. These studies have demonstrated that proteasome inhibition and replicative senescence caused accumulation of intracellular protein carbonyl content. In this study, we have investigated the mechanisms by which proteasome dysfunction modulates protein oxidation during cellular senescence. The results indicate that proteasome inhibition during replicative senescence have significant effects on the intra and extracellular ROS production in vitro. The data also show that ROS impaired the proteasome function, which is partially reversible by antioxidants. Increases in ROS after proteasome inhibition correlated with a significant negative effect on the activity of most mitochondrial electron transporters. We propose that failures in proteasome during cellular senescence lead to mitochondrial dysfunction, ROS production and oxidative stress. Furthermore, it is likely that changes in proteasome dynamics could generate a pro-oxidative condition at the immediate extracellular microenvironment that could cause tissue injury during aging, in vivo. PMID:17976388

  18. ATPase and ubiquitin-binding proteins of the yeast proteasome.

    PubMed

    Rubin, D M; van Nocker, S; Glickman, M; Coux, O; Wefes, I; Sadis, S; Fu, H; Goldberg, A; Vierstra, R; Finley, D

    1997-03-01

    The 26S proteasome is a 2-Megadalton proteolytic complex with over 30 distinct subunits. The 19S particle, a subcomplex of the 26S proteasome, is thought to confer ATP-dependence and ubiquitin-dependence on the proteolytic core particle of the proteasome. Given the complexity of the 19S particle, genetic approaches are likely to play an important role in its analysis. We have initiated biochemical and genetic studies of the 19S particle in Saccharomyces cerevisiae. Here we describe the localization to the proteasome of several ATPases that were previously proposed to be involved in transcription. Independent studies indicate that the mammalian 26S proteasome contains closely related ATPases. We have also found that the multiubiquitin chain binding protein Mcb1, a homolog of the mammalian S5a protein, is a subunit of the yeast proteasome. However, contrary to expectation, MCB1 is not an essential gene in yeast. The mcb1 mutant grows at a nearly wild-type rate, and the breakdown of most ubiquitin-protein conjugates is unaffected in this strain. One substrate, Ub-Proline-beta gal, was found to require MCB1 for its breakdown, but it remains unclear whether Mcb1 serves as a ubiquitin receptor in this process. Our data suggest that the recognition of ubiquitin conjugates by the proteasome is a complex process which must involve proteins other than Mcb1.

  19. E11/Podoplanin Protein Stabilization Through Inhibition of the Proteasome Promotes Osteocyte Differentiation in Murine in Vitro Models

    PubMed Central

    Prideaux, Matt; Allen, Steve; Buttle, David J.; Pitsillides, Andrew A.; Farquharson, Colin

    2015-01-01

    The transmembrane glycoprotein E11 is considered critical in early osteoblast–osteocyte transitions (osteocytogenesis), however its function and regulatory mechanisms are still unknown. Using the late osteoblast MLO‐A5 cell line we reveal increased E11 protein/mRNA expression (P < 0.001) concomitant with extensive osteocyte dendrite formation and matrix mineralization (P < 0.001). Transfection with E11 significantly increased mRNA levels (P < 0.001), but immunoblotting failed to detect any correlative increases in E11 protein levels, suggestive of post‐translational degradation. We found that exogenous treatment of MLO‐A5 and osteocytic IDG‐SW3 cells with 10 μM ALLN (calpain and proteasome inhibitor) stabilized E11 protein levels and induced a profound increase in osteocytic dendrite formation (P < 0.001). Treatment with other calpain inhibitors failed to promote similar osteocytogenic changes, suggesting that these effects of ALLN rely upon its proteasome inhibitor actions. Accordingly we found that proteasome‐selective inhibitors (MG132/lactacystin/ Bortezomib/Withaferin‐A) produced similar dose‐dependent increases in E11 protein levels in MLO‐A5 and primary osteoblast cells. This proteasomal targeting was confirmed by immunoprecipitation of ubiquitinylated proteins, which included E11, and by increased levels of ubiquitinylated E11 protein upon addition of the proteasome inhibitors MG132/Bortezomib. Activation of RhoA, the small GTPase, was found to be increased concomitant with the peak in E11 levels and its downstream signaling was also observed to promote MLO‐A5 cell dendrite formation. Our data indicate that a mechanism reliant upon blockade of proteasome‐mediated E11 destabilization contributes to osteocytogenesis and that this may involve downstream targeting of RhoA. This work adds to our mechanistic understanding of the factors regulating bone homeostasis, which may lead to future therapeutic approaches. J. Cell

  20. Long-term proteasomal inhibition in transgenic mice by UBB(+1) expression results in dysfunction of central respiration control reminiscent of brainstem neuropathology in Alzheimer patients.

    PubMed

    Irmler, Martin; Gentier, Romina J G; Dennissen, Frank J A; Schulz, Holger; Bolle, Ines; Hölter, Sabine M; Kallnik, Magdalena; Cheng, Jing Jun; Klingenspor, Martin; Rozman, Jan; Ehrhardt, Nicole; Hermes, Denise J H P; Gailus-Durner, Valérie; Fuchs, Helmut; Hrabě de Angelis, Martin; Meyer, Helmut E; Hopkins, David A; Van Leeuwen, Fred W; Beckers, Johannes

    2012-08-01

    Aging and neurodegeneration are often accompanied by a functionally impaired ubiquitin-proteasome system (UPS). In tauopathies and polyglutamine diseases, a mutant form of ubiquitin B (UBB(+1)) accumulates in disease-specific aggregates. UBB(+1) mRNA is generated at low levels in vivo during transcription from the ubiquitin B locus by molecular misreading. The resulting mutant protein has been shown to inhibit proteasome function. To elucidate causative effects and neuropathological consequences of UBB(+1) accumulation, we used a UBB(+1) expressing transgenic mouse line that models UPS inhibition in neurons and exhibits behavioral phenotypes reminiscent of Alzheimer's disease (AD). In order to reveal affected organs and functions, young and aged UBB(+1) transgenic mice were comprehensively phenotyped for more than 240 parameters. This revealed unexpected changes in spontaneous breathing patterns and an altered response to hypoxic conditions. Our findings point to a central dysfunction of respiratory regulation in transgenic mice in comparison to wild-type littermate mice. Accordingly, UBB(+1) was strongly expressed in brainstem regions of transgenic mice controlling respiration. These regions included, e.g., the medial part of the nucleus of the tractus solitarius and the lateral subdivisions of the parabrachial nucleus. In addition, UBB(+1) was also strongly expressed in these anatomical structures of AD patients (Braak stage #6) and was not expressed in non-demented controls. We conclude that long-term UPS inhibition due to UBB(+1) expression causes central breathing dysfunction in a transgenic mouse model of AD. The UBB(+1) expression pattern in humans is consistent with the contribution of bronchopneumonia as a cause of death in AD patients.

  1. MCPIP1 contributes to the toxicity of proteasome inhibitor MG-132 in HeLa cells by the inhibition of NF-κB.

    PubMed

    Skalniak, Lukasz; Dziendziel, Monika; Jura, Jolanta

    2014-10-01

    Recently, we have shown that the treatment of cells with proteasome inhibitor MG-132 results in the induction of expression of monocyte chemotactic protein-1 induced protein 1 (MCPIP1). MCPIP1 is a ribonuclease, responsible for the degradation of transcripts encoding certain pro-inflammatory cytokines. The protein is also known as an inhibitor of NF-κB transcription factor. Thanks to its molecular properties, MCPIP1 is considered as a regulator of inflammation, differentiation, and survival. Using siRNA technology, we show here that MCPIP1 expression contributes to the toxic properties of MG-132 in HeLa cells. The inhibition of proteasome by MG-132 and epoxomicin markedly increased MCPIP1 expression. While MG-132 induces HeLa cell death, down-regulation of MCPIP1 expression by siRNA partially protects HeLa cells from MG-132 toxicity and restores Nuclear factor-κB (NF-κB) activity, inhibited by MG-132 treatment. Inversely, overexpression of MCPIP1 decreased constitutive activity of NF-κB and limited the survival of HeLa cells, as we have shown in the previous study. Interestingly, although MG-132 decreased the expression of IκBα and increased p65 phosphorylation, the inhibition of constitutive NF-κB activity was observed in MG-132-treated cells. Since the elevated constitutive activity of NF-κB is one of the mechanisms providing increased survival of cancer cells, including HeLa cells, we propose that death-promoting properties of MCPIP1 in MG-132-treated HeLa cells may, at least partially, derive from the negative effect on the constitutive NF-κB activity.

  2. Proteasomal inhibition sensitizes cervical cancer cells to mitomycin C-induced bystander effect: the role of tumor microenvironment.

    PubMed

    Singh, S V; Ajay, A K; Mohammad, N; Malvi, P; Chaube, B; Meena, A S; Bhat, M K

    2015-10-22

    Inaccessibility of drugs to poorly vascularized strata of tumor is one of the limiting factors in cancer therapy. With the advent of bystander effect (BE), it is possible to perpetuate the cellular damage from drug-exposed cells to the unexposed ones. However, the role of infiltrating tumor-associated macrophages (TAMs), an integral part of the tumor microenvironment, in further intensifying BE remains obscure. In the present study, we evaluated the effect of mitomycin C (MMC), a chemotherapeutic drug, to induce BE in cervical carcinoma. By using cervical cancer cells and differentiated macrophages, we demonstrate that MMC induces the expression of FasL via upregulation of PPARγ in both cell types (effector cells) in vitro, but it failed to induce bystander killing in cervical cancer cells. This effect was primarily owing to the proteasomal degradation of death receptors in the cervical cancer cells. Pre-treatment of cervical cancer cells with MG132, a proteasomal inhibitor, facilitates MMC-mediated bystander killing in co-culture and condition medium transfer experiments. In NOD/SCID mice bearing xenografted HeLa tumors administered with the combination of MMC and MG132, tumor progression was significantly reduced in comparison with those treated with either agent alone. FasL expression was increased in TAMs, and the enhanced level of Fas was observed in these tumor sections, thereby causing increased apoptosis. These findings suggest that restoration of death receptor-mediated apoptotic pathway in tumor cells with concomitant activation of TAMs could effectively restrict tumor growth.

  3. The role of the ubiquitin-proteasome system in the response of the ligninolytic fungus Trametes versicolor to nitrogen deprivation.

    PubMed

    Staszczak, Magdalena

    2008-03-01

    The white rot fungus Trametes versicolor is an efficient lignin degrader with ecological significance and industrial applications. Lignin-modifying enzymes of white rot fungi are mainly produced during secondary metabolism triggered in these microorganisms by nutrient deprivation. Selective ubiquitin/proteasome-mediated proteolysis is known to play a crucial role in the response of cells to various stresses such as nutrient limitation, heat shock, and heavy metal exposure. Previous studies from our laboratory demonstrated that proteasomal degradation of intracellular proteins is involved in the regulation of laccase, a major ligninolytic enzyme of T. versicolor, in response to cadmium. In the present study, it was found that the 6-h nitrogen starvation leads to depletion of intracellular free ubiquitin pool in T. versicolor. The difference in the intracellular level of free monomeric ubiquitin observed between the mycelium extract from the nitrogen-deprived and that from the nitrogen-sufficient culture was accompanied by the different pattern of ubiquitin-dependent degradation. Furthermore, it was found that nitrogen deprivation affected 26S proteasome activities of T. versicolor. Proteasome inhibition by lactacystin beta-lactone, a highly specific agent, increased laccase activity in nitrogen-deprived cultures, but not in nitrogen-sufficient cultures. The present study implicates the ubiquitin/proteasome-mediated proteolytic pathway in the response of T. versicolor to nitrogen deprivation.

  4. An evolutionarily conserved pathway controls proteasome homeostasis

    PubMed Central

    Rousseau, Adrien; Bertolotti, Anne

    2016-01-01

    The proteasome is essential for the selective degradation of most cellular proteins but how cells maintain adequate amounts of proteasome is unclear. Here we found an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1 whose inhibition induced all known yeast 19S regulatory particle assembly-chaperones (RACs) as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, ensured that the supply of RACs and proteasome subunits increased under challenging conditions to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and Erk5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/Erk5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance to the rising needs. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation. PMID:27462806

  5. An evolutionarily conserved pathway controls proteasome homeostasis.

    PubMed

    Rousseau, Adrien; Bertolotti, Anne

    2016-08-11

    The proteasome is essential for the selective degradation of most cellular proteins, but how cells maintain adequate amounts of proteasome is unclear. Here we show that there is an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1, the inhibition of which induced all known yeast 19S regulatory particle assembly-chaperones (RACs), as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, acts to increase the supply of RACs and proteasome subunits under challenging conditions in order to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and ERK5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/ERK5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance in response to the rising needs of cells. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation.

  6. C-terminus of HSC70-Interacting Protein (CHIP) Inhibits Adipocyte Differentiation via Ubiquitin- and Proteasome-Mediated Degradation of PPARγ

    PubMed Central

    Kim, Jung-Hoon; Shin, Soyeon; Seo, Jinho; Lee, Eun-Woo; Jeong, Manhyung; Lee, Min-sik; Han, Hyun-Ji; Song, Jaewhan

    2017-01-01

    PPARγ (Peroxisome proliferator-activated receptor γ) is a nuclear receptor involved in lipid homeostasis and related metabolic diseases. Acting as a transcription factor, PPARγ is a master regulator for adipocyte differentiation. Here, we reveal that CHIP (C-terminus of HSC70-interacting protein) suppresses adipocyte differentiation by functioning as an E3 ligase of PPARγ. CHIP directly binds to and induces ubiquitylation of the PPARγ protein, leading to proteasome-dependent degradation. Stable overexpression or knockdown of CHIP inhibited or promoted adipogenesis, respectively, in 3T3-L1 cells. On the other hand, a CHIP mutant defective in E3 ligase could neither regulate PPARγ protein levels nor suppress adipogenesis, indicating the importance of CHIP-mediated ubiquitylation of PPARγ in adipocyte differentiation. Lastly, a CHIP null embryo fibroblast exhibited augmented adipocyte differentiation with increases in PPARγ and its target protein levels. In conclusion, CHIP acts as an E3 ligase of PPARγ, suppressing PPARγ-mediated adipogenesis. PMID:28059128

  7. Pyrrolidine Dithiocarbamate Inhibits Herpes Simplex Virus 1 and 2 Replication, and Its Activity May Be Mediated through Dysregulation of the Ubiquitin-Proteasome System

    PubMed Central

    Qiu, Min; Chen, Yu; Cheng, Lin; Chu, Ying; Song, Hong-Yong

    2013-01-01

    Pyrrolidine dithiocarbamate (PDTC) is widely used as an antioxidant or an NF-κB inhibitor. It has been reported to inhibit the replication of human rhinoviruses, poliovirus, coxsackievirus, and influenza virus. In this paper, we report that PDTC could inhibit the replication of herpes simplex virus 1 and 2 (HSV-1 and HSV-2). PDTC suppressed the expression of HSV-1 and HSV-2 viral immediate early (IE) and late (membrane protein gD) genes and the production of viral progeny. This antiviral property was mediated by the dithiocarbamate moiety of PDTC and required the presence of Zn2+. Although PDTC could potently block reactive oxygen species (ROS) generation, it was found that this property did not contribute to its anti-HSV activity. PDTC showed no activity in disrupting the mitogen-activated protein kinase (MAPK) pathway activation induced by viral infection that was vital for the virus's propagation. We found that PDTC modulated cellular ubiquitination and, furthermore, influenced HSV-2-induced IκB-α degradation to inhibit NF-κB activation and enhanced PML stability in the nucleus, resulting in the inhibition of viral gene expression. These results suggested that the antiviral activity of PDTC might be mediated by its dysregulation of the cellular ubiquitin-proteasome system (UPS). PMID:23740985

  8. Inhibition of melanogenesis by jineol from Scolopendra subspinipes mutilans via MAP-Kinase mediated MITF downregulation and the proteasomal degradation of tyrosinase

    PubMed Central

    Alam, Md Badrul; Bajpai, Vivek K.; Lee, JungIn; Zhao, Peijun; Byeon, Jung-Hee; Ra, Jeong-Sic; Majumder, Rajib; Lee, Jong Sung; Yoon, Jung-In; Rather, Irfan A.; Park, Yong-Ha; Kim, Kangmin; Na, MinKyun; Lee, Sang-Han

    2017-01-01

    In this study, the authors investigated the anti-melanogenic effects of 3,8-dihydroxyquinoline (jineol) isolated from Scolopendra subspinipes mutilans, the mechanisms responsible for its inhibition of melanogenesis in melan-a cells, and its antioxidant efficacy. Mushroom tyrosinase activities and melanin contents were determined in melan-a cells, and the protein and mRNA levels of MITF, tyrosinase, TYRP-1, and TYRP-2 were assessed. Jineol exhibited significant, concentration-dependent antioxidant effects as determined by DPPH, ABTS, CUPRAC, and FRAP assays. Jineol significantly inhibited mushroom tyrosinase activity by functioning as an uncompetitive inhibitor, and markedly inhibited melanin production and intracellular tyrosinase activity in melan-a cells. In addition, jineol abolished the expressions of tyrosinase, TYRP-1, TYRP-2, and MITF, thereby blocking melanin production and interfering with the phosphorylations of ERK1/2 and p38. Furthermore, specific inhibitors of ERK1/2 and p38 prevented melanogenesis inhibition by jineol, and the proteasome inhibitor (MG-132) prevented jineol-induced reductions in cellular tyrosinase levels. Taken together, jineol was found to stimulate MAP-kinase (ERK1/2 and p38) phosphorylation and the proteolytic degradation pathway, which led to the degradations of MITF and tyrosinase, and to suppress the productions of melanin. PMID:28393917

  9. Silibinin Inhibits Platelet-Derived Growth Factor-Driven Cell Proliferation via Downregulation of N-Glycosylation in Human Tenon's Fibroblasts in a Proteasome-Dependent Manner

    PubMed Central

    Chen, Yi-Hao; Chen, Ching-Long; Lu, Da-Wen; Liang, Chang-Min; Tai, Ming-Cheng; Chen, Jiann-Torng

    2016-01-01

    The objective of this study was to evaluate the effects of silibinin on cell proliferation in platelet-derived growth factor (PDGF)-treated human Tenon's fibroblasts (HTFs). The effect of silibinin on cell proliferation in PDGF-treated HTFs was determined by examining the expression of proliferating cell nuclear antigen (PCNA) and performing WST-1 assays. Cell cycle progression was evaluated using flow cytometry. The related cyclins and cyclin-dependent kinases (CDKs) were also analyzed using western blot. A modified rat trabeculectomy model was established to evaluate the effect of silibinin on cell proliferation in vivo. Western blot analysis was carried out to determine the effect of silibinin on the expression of PDGF receptor and on the downstream signaling pathways regulated by PDGF receptor. PDGF elevated the expression of PCNA in HTFs, and this elevation was inhibited by silibinin. The inhibitory effect of silibinin on cell proliferation was also confirmed via WST-1 assay. PDGF-stimulated cell cycle in HTFs was delayed by silibinin, and the related cyclin D1 and CDK4 were also suppressed by silibinin. In the rat model of trabeculectomy, silibinin reduced the expression of PCNA at the site of blebs in vivo. The effects of silibinin on PDGF-stimulated HTFs were mediated via the downregulation of PDGF receptor-regulated signaling pathways, such as ERKs and STATs, which may be partially caused by the downregulation of N-glycosylation of PDGF receptor beta (PDGFRβ). The effect of silibinin on modulation of N-glycosylation of PDGFRβ was mediated in a proteasome-dependent manner. Silibinin inhibited cell proliferation and delayed cell cycle progression in PDGF-treated HTFs in vitro. PDGF also modulated the process of N-glycosylation of the PDGFRβ in a proteasome-dependent manner. Our findings suggest that silibinin has potential therapeutic applications in glaucoma filtering surgery. PMID:28030611

  10. Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae

    SciTech Connect

    Tsuchiya, Hikaru; Arai, Naoko; Tanaka, Keiji Saeki, Yasushi

    2013-07-05

    Highlights: •We succeeded to control the proteasome localization by the anchor-away technique. •Nuclear proteasome-depleted cells showed a lethal phenotype. •Cytoplasmic proteasomes are not indispensable for cell growth in dividing cells. -- Abstract: The 26S proteasome is an essential protease complex responsible for the degradation of ubiquitinated proteins in eukaryotic cells. In rapidly proliferating yeast cells, proteasomes are mainly localized in the nucleus, but the biological significance of the proteasome localization is still unclear. In this study, we investigated the relationship between the proteasome localization and the functions by the anchor-away technique, a ligand-dependent sequestration of a target protein into specific compartment(s). Anchoring of the proteasome to the plasma membrane or the ribosome resulted in conditional depletion of the nuclear proteasomes, whereas anchoring to histone resulted in the proteasome sequestration into the nucleus. We observed that the accumulation of ubiquitinated proteins in all the proteasome-targeted cells, suggesting that both the nuclear and cytoplasmic proteasomes have proteolytic functions and that the ubiquitinated proteins are produced and degraded in each compartment. Consistent with previous studies, the nuclear proteasome-depleted cells exhibited a lethal phenotype. In contrast, the nuclear sequestration of the proteasome resulted only in a mild growth defect, suggesting that the cytoplasmic proteasomes are not basically indispensable for cell growth in rapidly growing yeast cells.

  11. Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation.

    PubMed

    Eide, Erik J; Woolf, Margaret F; Kang, Heeseog; Woolf, Peter; Hurst, William; Camacho, Fernando; Vielhaber, Erica L; Giovanni, Andrew; Virshup, David M

    2005-04-01

    The mammalian circadian regulatory proteins PER1 and PER2 undergo a daily cycle of accumulation followed by phosphorylation and degradation. Although phosphorylation-regulated proteolysis of these inhibitors is postulated to be essential for the function of the clock, inhibition of this process has not yet been shown to alter mammalian circadian rhythm. We have developed a cell-based model of PER2 degradation. Murine PER2 (mPER2) hyperphosphorylation induced by the cell-permeable protein phosphatase inhibitor calyculin A is rapidly followed by ubiquitination and degradation by the 26S proteasome. Proteasome-mediated degradation is critically important in the circadian clock, as proteasome inhibitors cause a significant lengthening of the circadian period in Rat-1 cells. CKIepsilon (casein kinase Iepsilon) has been postulated to prime PER2 for degradation. Supporting this idea, CKIepsilon inhibition also causes a significant lengthening of circadian period in synchronized Rat-1 cells. CKIepsilon inhibition also slows the degradation of PER2 in cells. CKIepsilon-mediated phosphorylation of PER2 recruits the ubiquitin ligase adapter protein beta-TrCP to a specific site, and dominant negative beta-TrCP blocks phosphorylation-dependent degradation of mPER2. These results provide a biochemical mechanism and functional relevance for the observed phosphorylation-degradation cycle of mammalian PER2. Cell culture-based biochemical assays combined with measurement of cell-based rhythm complement genetic studies to elucidate basic mechanisms controlling the mammalian clock.

  12. Autophagy and ubiquitin–proteasome system contribute to sperm mitophagy after mammalian fertilization

    PubMed Central

    Song, Won-Hee; Yi, Young-Joo; Sutovsky, Miriam; Meyers, Stuart; Sutovsky, Peter

    2016-01-01

    Maternal inheritance of mitochondria and mtDNA is a universal principle in human and animal development, guided by selective ubiquitin-dependent degradation of the sperm-borne mitochondria after fertilization. However, it is not clear how the 26S proteasome, the ubiquitin-dependent protease that is only capable of degrading one protein molecule at a time, can dispose of a whole sperm mitochondrial sheath. We hypothesized that the canonical ubiquitin-like autophagy receptors [sequestosome 1 (SQSTM1), microtubule-associated protein 1 light chain 3 (LC3), gamma-aminobutyric acid receptor-associated protein (GABARAP)] and the nontraditional mitophagy pathways involving ubiquitin-proteasome system and the ubiquitin-binding protein dislocase, valosin-containing protein (VCP), may act in concert during mammalian sperm mitophagy. We found that the SQSTM1, but not GABARAP or LC3, associated with sperm mitochondria after fertilization in pig and rhesus monkey zygotes. Three sperm mitochondrial proteins copurified with the recombinant, ubiquitin-associated domain of SQSTM1. The accumulation of GABARAP-containing protein aggregates was observed in the vicinity of sperm mitochondrial sheaths in the zygotes and increased in the embryos treated with proteasomal inhibitor MG132, in which intact sperm mitochondrial sheaths were observed. Pharmacological inhibition of VCP significantly delayed the process of sperm mitophagy and completely prevented it when combined with microinjection of autophagy-targeting antibodies specific to SQSTM1 and/or GABARAP. Sperm mitophagy in higher mammals thus relies on a combined action of SQSTM1-dependent autophagy and VCP-mediated dislocation and presentation of ubiquitinated sperm mitochondrial proteins to the 26S proteasome, explaining how the whole sperm mitochondria are degraded inside the fertilized mammalian oocytes by a protein recycling system involved in degradation of single protein molecules. PMID:27551072

  13. Proteasome as a Molecular Target of Microcystin-LR

    PubMed Central

    Zhu, Zhu; Zhang, Li; Shi, Guoqing

    2015-01-01

    Proteasome degrades proteins in eukaryotic cells. As such, the proteasome is crucial in cell cycle and function. This study proved that microcystin-LR (MC-LR), which is a toxic by-product of algal bloom, can target cellular proteasome and selectively inhibit proteasome trypsin-like (TL) activity. MC-LR at 1 nM can inhibit up to 54% of the purified 20S proteasome TL activity and 43% of the proteasome TL activity in the liver of the cyprinid rare minnow (Gobiocypris rarus). Protein degradation was retarded in GFP-CL1-transfected PC-3 cells because MC-LR inhibited the proteasome TL activity. Docking studies indicated that MC-LR blocked the active site of the proteasome β2 subunit; thus, the proteasome TL activity was inhibited. In conclusion, MC-LR can target proteasome, selectively inhibit proteasome TL activity, and retard protein degradation. This study may be used as a reference of future research on the toxic mechanism of MC-LR. PMID:26090622

  14. Phosphorylation regulates mycobacterial proteasome.

    PubMed

    Anandan, Tripti; Han, Jaeil; Baun, Heather; Nyayapathy, Seeta; Brown, Jacob T; Dial, Rebekah L; Moltalvo, Juan A; Kim, Min-Seon; Yang, Seung Hwan; Ronning, Donald R; Husson, Robert N; Suh, Joowon; Kang, Choong-Min

    2014-09-01

    Mycobacterium tuberculosis possesses a proteasome system that is required for the microbe to resist elimination by the host immune system. Despite the importance of the proteasome in the pathogenesis of tuberculosis, the molecular mechanisms by which proteasome activity is controlled remain largely unknown. Here, we demonstrate that the α-subunit (PrcA) of the M. tuberculosis proteasome is phosphorylated by the PknB kinase at three threonine residues (T84, T202, and T178) in a sequential manner. Furthermore, the proteasome with phosphorylated PrcA enhances the degradation of Ino1, a known proteasomal substrate, suggesting that PknB regulates the proteolytic activity of the proteasome. Previous studies showed that depletion of the proteasome and the proteasome-associated proteins decreases resistance to reactive nitrogen intermediates (RNIs) but increases resistance to hydrogen peroxide (H2O2). Here we show that PknA phosphorylation of unprocessed proteasome β-subunit (pre-PrcB) and α-subunit reduces the assembly of the proteasome complex and thereby enhances the mycobacterial resistance to H2O2 and that H2O2 stress diminishes the formation of the proteasome complex in a PknA-dependent manner. These findings indicate that phosphorylation of the M. tuberculosis proteasome not only modulates proteolytic activity of the proteasome, but also affects the proteasome complex formation contributing to the survival of M. tuberculosis under oxidative stress conditions.

  15. Proteasome inhibition induces hsp30 and hsp70 gene expression as well as the acquisition of thermotolerance in Xenopus laevis A6 cells

    PubMed Central

    Young, Jordan T. F.

    2009-01-01

    Previous studies have shown that inhibiting the activity of the proteasome leads to the accumulation of damaged or unfolded proteins within the cell. In this study, we report that proteasome inhibitors, lactacystin and carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132), induced the accumulation of ubiquitinated proteins as well as a dose- and time-dependent increase in the relative levels of heat shock protein (HSP)30 and HSP70 and their respective mRNAs in Xenopus laevis A6 kidney epithelial cells. In A6 cells recovering from MG132 exposure, HSP30 and HSP70 levels were still elevated after 24 h but decreased substantially after 48 h. The activation of heat shock factor 1 (HSF1) may be involved in MG132-induced hsp gene expression in A6 cells since KNK437, a HSF1 inhibitor, repressed the accumulation of HSP30 and HSP70. Exposing A6 cells to simultaneous MG132 and mild heat shock enhanced the accumulation of HSP30 and HSP70 to a much greater extent than with each stressor alone. Immunocytochemical studies determined that HSP30 was localized primarily in the cytoplasm of lactacystin- or MG132-treated cells. In some cells treated with higher concentrations of MG132 or lactacystin, we observed in the cortical cytoplasm (1) relatively large HSP30 staining structures, (2) colocalization of actin and HSP30, and (3) cytoplasmic areas that were devoid of HSP30. Lastly, MG132 treatment of A6 cells conferred a state of thermotolerance such that they were able to survive a subsequent thermal challenge. PMID:19838833

  16. Proteasome inhibition blocks NF-κB and ERK1/2 pathways, restores antigen expression and sensitizes resistant human melanoma to TCR-engineered CTLs

    PubMed Central

    Jazirehi, Ali R.; Economou, James S.

    2012-01-01

    Adoptive cell transfer (ACT) of ex vivo engineered autologous lymphocytes encoding high-affinity MART-1/HLA-A*0201-specific T-cell receptor (TCR) α/β chains (F5 CTL), densely infiltrate into sites of metastatic disease, mediating dramatic but partial clinical responses in melanoma patients. We hypothesized that MART-1 down-modulation in addition to aberrant apoptotic/survival signaling could confer resistance to death signals delivered by transgenic CTLs. To explore this hypothesis, we established an in vitro model of resistant (R) lines from MART-1+/HLA-A*0201+ F5 CTL-sensitive parental (P) lines under serial F5 CTL-selective pressure. We have recently reported that several melanoma R lines, while retaining MART-1 expression, exhibited constitutive NF-κB activation and over-expression of NF-κB-dependent resistance factors. Another established melanoma cell line M244, otherwise sensitive to F5 CTL, yielded R lines after serial F5 CTL selective pressure which had both reduced MART-1 expression levels, thus, could not be recognized, and were resistant to CTL-delivered apoptotic death signals. The proteasome inhibitor bortezomib blocked NF-κB activity, decreased phopspho-ERK1/2, increased phospho-JNK levels, reduced expression of resistance-factors, restored MART-1 expression to sufficient levels, which in combination allowed M244R lines be sensitized to F5 CTL-killing. These findings suggest that proteasome inhibition in immune resistant tumors can restore proapoptotic signaling and improve tumor antigen expression. PMID:22532603

  17. Activities of proteasome and m-calpain are essential for Chikungunya virus replication.

    PubMed

    Karpe, Yogesh A; Pingale, Kunal D; Kanade, Gayatri D

    2016-10-01

    Replication of many viruses is dependent on the ubiquitin proteasome system. The present study demonstrates that Chikungunya virus replication increases proteasome activity and induces unfolded protein response (UPR) in cultured cells. Further, it was seen that the virus replication was dependent on the activities of proteasomes and m-calpain. Proteasome inhibition induced accumulation of polyubiquitinated proteins and earlier visualization of UPR.

  18. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    SciTech Connect

    Choi, Cheol-Hee; Lee, Byung-Hoon; Ahn, Sang-Gun; Oh, Seon-Hee

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our

  19. The Ubiquitin Ligase Hul5 Promotes Proteasomal Processivity▿

    PubMed Central

    Aviram, Sharon; Kornitzer, Daniel

    2010-01-01

    The 26S proteasome is a large cytoplasmic protease that degrades polyubiquitinated proteins to short peptides in a processive manner. The proteasome 19S regulatory subcomplex tethers the target protein via its polyubiquitin adduct and unfolds the target polypeptide, which is then threaded into the proteolytic site-containing 20S subcomplex. Hul5 is a 19S subcomplex-associated ubiquitin ligase that elongates ubiquitin chains on proteasome-bound substrates. We isolated hul5Δ as a mutation with which fusions of an unstable cyclin to stable reporter proteins accumulate as partially processed products. These products appear transiently in the wild type but are strongly stabilized in 19S ATPase mutants and in the hul5Δ mutant, supporting a role for the ATPase subunits in the unfolding of proteasome substrates before insertion into the catalytic cavity and suggesting a role for Hul5 in the processive degradation of proteins that are stalled on the proteasome. PMID:20008553

  20. GSK-3β signaling determines autophagy activation in the breast tumor cell line MCF7 and inclusion formation in the non-tumor cell line MCF10A in response to proteasome inhibition

    PubMed Central

    Gavilán, E; Sánchez-Aguayo, I; Daza, P; Ruano, D

    2013-01-01

    The ubiquitin–proteasome system and the autophagy–lysosome pathway are the two main mechanisms for eukaryotic intracellular protein degradation. Proteasome inhibitors are used for the treatment of some types of cancer, whereas autophagy seems to have a dual role in tumor cell survival and death. However, the relationship between both pathways has not been extensively studied in tumor cells. We have investigated both proteolytic systems in the human epithelial breast non-tumor cell line MCF10A and in the human epithelial breast tumor cell line MCF7. In basal condition, tumor cells showed a lower proteasome function but a higher autophagy activity when compared with MCF10A cells. Importantly, proteasome inhibition (PI) leads to different responses in both cell types. Tumor cells showed a dose-dependent glycogen synthase kinase-3 (GSK-3)β inhibition, a huge increase in the expression of the transcription factor CHOP and an active processing of caspase-8. By contrast, MCF10A cells fully activated GSK-3β and showed a lower expression of both CHOP and processed caspase-8. These molecular differences were reflected in a dose-dependent autophagy activation and cell death in tumor cells, while non-tumor cells exhibited the formation of inclusion bodies and a decrease in the cell death rate. Importantly, the behavior of the MCF7 cells can be reproduced in MCF10A cells when GSK-3β and the proteasome were simultaneously inhibited. Under this situation, MCF10A cells strongly activated autophagy, showing minimal inclusion bodies, increased CHOP expression and cell death rate. These findings support GSK-3β signaling as a key mechanism in regulating autophagy activation or inclusion formation in human tumor or non-tumor breast cells, respectively, which may shed new light on breast cancer control. PMID:23559006

  1. Evolution of Proteasome Regulators in Eukaryotes

    PubMed Central

    Fort, Philippe; Kajava, Andrey V.; Delsuc, Fredéric; Coux, Olivier

    2015-01-01

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles. PMID:25943340

  2. Evolution of proteasome regulators in eukaryotes.

    PubMed

    Fort, Philippe; Kajava, Andrey V; Delsuc, Fredéric; Coux, Olivier

    2015-05-04

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles.

  3. Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function.

    PubMed

    Otero, Maria G; Alloatti, Matías; Cromberg, Lucas E; Almenar-Queralt, Angels; Encalada, Sandra E; Pozo Devoto, Victorio M; Bruno, Luciana; Goldstein, Lawrence S B; Falzone, Tomás L

    2014-04-01

    Protein degradation by the ubiquitin-proteasome system in neurons depends on the correct delivery of the proteasome complex. In neurodegenerative diseases, aggregation and accumulation of proteins in axons link transport defects with degradation impairments; however, the transport properties of proteasomes remain unknown. Here, using in vivo experiments, we reveal the fast anterograde transport of assembled and functional 26S proteasome complexes. A high-resolution tracking system to follow fluorescent proteasomes revealed three types of motion: actively driven proteasome axonal transport, diffusive behavior in a viscoelastic axonema and proteasome-confined motion. We show that active proteasome transport depends on motor function because knockdown of the KIF5B motor subunit resulted in impairment of the anterograde proteasome flux and the density of segmental velocities. Finally, we reveal that neuronal proteasomes interact with intracellular membranes and identify the coordinated transport of fluorescent proteasomes with synaptic precursor vesicles, Golgi-derived vesicles, lysosomes and mitochondria. Taken together, our results reveal fast axonal transport as a new mechanism of proteasome delivery that depends on membrane cargo 'hitch-hiking' and the function of molecular motors. We further hypothesize that defects in proteasome transport could promote abnormal protein clearance in neurodegenerative diseases.

  4. Effects of Radiation on Proteasome Function in Prostate Cancer Cells

    DTIC Science & Technology

    2010-02-01

    proteasomes from irradiated and un-irradiated samples were loaded on a 11cm agarose strip (BioRad) for their separation based on their isoelectric point (pI...25micrograms of pure 26S preparations from PC-3 ZsGreenODC-negative or PC3 ZsGreenODC-positive sorted cells were focused on 11cm strips for the

  5. Inhibition of nuclear factor-{kappa}B and target genes during combined therapy with proteasome inhibitor bortezomib and reirradiation in patients with recurrent head-and-neck squamous cell carcinoma

    SciTech Connect

    Van Waes, Carter . E-mail: vanwaesc@nidcd.nih.gov; Chang, Angela A.; Lebowitz, Peter F.; Druzgal, Colleen H.; Chen, Zhong; Elsayed, Yusri A.; Sunwoo, John B.; Rudy, Susan; Morris, John C.; Mitchell, James B.; Camphausen, Kevin; Gius, David; Adams, Julian; Sausville, Edward A.; Conley, Barbara A.

    2005-12-01

    Purpose: To examine the effects the proteasome inhibitor bortezomib (VELCADE) on transcription factor nuclear factor-{kappa}B (NF-{kappa}B) and target genes and the feasibility of combination therapy with reirradiation in patients with recurrent head-and-neck squamous cell carcinoma (HNSCC). Methods and Materials: The tolerability and response to bortezomib 0.6 mg/m{sup 2} and 0.9 mg/m{sup 2} given twice weekly concurrent with daily reirradiation to 50-70 Gy was explored. Blood proteasome inhibition and NF-{kappa}B-modulated cytokines and factors were measured. Proteasome inhibition, nuclear localization of NF-{kappa}B phospho-p65, apoptosis, and expression of NF-{kappa}B-modulated mRNAs were compared in serial biopsies from accessible tumors. Results: The maximally tolerated dose was exceeded, and study was limited to 7 and 2 patients, respectively, given bortezomib 0.6 mg/m{sup 2} and 0.9 mg/m{sup 2}/dose with reirradiation. Grade 3 hypotension and hyponatremia were dose limiting. Mucositis was Grade 3 or less and was delayed. The mean blood proteasome inhibition at 1, 24, and 48 h after 0.6 mg/m{sup 2} was 32%, 16%, and 7% and after 0.9 mg/m{sup 2} was 56%, 26%, and 14%, respectively. Differences in proteasome and NF-{kappa}B activity, apoptosis, and expression of NF-{kappa}B-modulated cell cycle, apoptosis, and angiogenesis factor mRNAs were detected in 2 patients with minor tumor reductions and in serum NF-{kappa}B-modulated cytokines in 1 patient with a major tumor reduction. Conclusions: In combination with reirradiation, the maximally tolerated dose of bortezomib was exceeded at a dose of 0.6 mg/m{sup 2} and the threshold of proteasome inhibition. Although this regimen with reirradiation is not feasible, bortezomib induced detectable differences in NF-{kappa}B localization, apoptosis, and NF-{kappa}B-modulated genes and cytokines in tumor and serum in association with tumor reduction, indicating that other schedules of bortezomib combined with primary

  6. TRIM13 (RFP2) downregulation decreases tumour cell growth in multiple myeloma through inhibition of NF Kappa B pathway and proteasome activity

    PubMed Central

    Gatt, Moshe E; Takada, Kohichi; Mani, Mala; Lerner, Mikael; Pick, Marjorie; Hideshima, Teru; Carrasco, Daniel E.; Protopopov, Alexei; Ivanova, Elena; Sangfelt, Olle; Grandér, Dan; Barlogie, Bart; Shaughnessy, John D.; Anderson, Kenneth C.; Carrasco, Daniel R.

    2013-01-01

    Multiple myeloma (MM) is an incurable neoplasm caused by proliferation of malignant plasma cells in the bone marrow (BM). MM is characterized frequently by a complete or partial deletion of chromosome 13q14, seen in more than 50% of patients at diagnosis. Within this deleted region the tripartite motif containing 13 (TRIM13, also termed RFP2) gene product has been proposed to be a tumour suppressor gene (TSG). Here, we show that low expression levels of TRIM13 in MM are associated with chromosome 13q deletion and poor clinical outcome. We present a functional analysis of TRIM13 using a loss-of-function approach, and demonstrate that TRIM13 downregulation decreases tumour cell survival as well as cell cycle progression and proliferation of MM cells. In addition, we provide evidence for the involvement of TRIM13 downregulation in inhibiting the NF kappa B pathway and the activity of the 20S proteasome. Although this data does not support a role of TRIM13 as a TSG, it substantiates important roles of TRIM13 in MM tumour survival and proliferation, underscoring its potential role as a novel target for therapeutic intervention. PMID:23647456

  7. Activation of Both the Calpain and Ubiquitin-Proteasome Systems Contributes to Septic Cardiomyopathy through Dystrophin Loss/Disruption and mTOR Inhibition

    PubMed Central

    Freitas, Ana Caroline Silva; Figueiredo, Maria Jose; Campos, Erica Carolina; Soave, Danilo Figueiredo; Ramos, Simone Gusmao; Tanowitz, Herbert B.

    2016-01-01

    Cardiac dysfunction caused by the impairment of myocardial contractility has been recognized as an important factor contributing to the high mortality in sepsis. Calpain activation in the heart takes place in response to increased intracellular calcium influx resulting in proteolysis of structural and contractile proteins with subsequent myocardial dysfunction. The purpose of the present study was to test the hypothesis that increased levels of calpain in the septic heart leads to disruption of structural and contractile proteins and that administration of calpain inhibitor-1 (N-acetyl-leucinyl-leucinyl-norleucinal (ALLN)) after sepsis induced by cecal ligation and puncture prevents cardiac protein degradation. We also tested the hypothesis that calpain plays a role in the modulation of protein synthesis/degradation through the activation of proteasome-dependent proteolysis and inhibition of the mTOR pathway. Severe sepsis significantly increased heart calpain-1 levels and promoted ubiquitin and Pa28β over-expression with a reduction in the mTOR levels. In addition, sepsis reduced the expression of structural proteins dystrophin and β-dystroglycan as well as the contractile proteins actin and myosin. ALLN administration prevented sepsis-induced increases in calpain and ubiquitin levels in the heart, which resulted in decreased of structural and contractile proteins degradation and basal mTOR expression levels were re-established. Our results support the concept that increased calpain concentrations may be part of an important mechanism of sepsis-induced cardiac muscle proteolysis. PMID:27880847

  8. Hydrated and anhydrous forms of copper(II) complex of 3-methylpicolinic acid, and spectroscopic studies of their ROS-inducing and proteasome inhibition

    NASA Astrophysics Data System (ADS)

    Lai, Jing Wei; Chan, Cheang Wei; Ng, Chew Hee; Ooi, Ing Hong; Tan, Kong Wai; Maah, Mohd Jamil; Ng, Seik Weng

    2016-02-01

    The hydrated and anhydrous forms of the copper(II) complex of 3-methylpicolinic acid, monomeric [Cu(3Me-pic)2(H2O)]·H2O 1 and polymeric [Cu(3Me-pic)2]n2, were synthesized and characterized by FTIR, UV-visible spectroscopy, conductivity measurement, magnetic susceptibility determination, electron paramagnetic resonance (EPR) and light scattering. Crystal structure analysis of 2 shows that it has a doubly-bridged polymeric structure, involving diagonally stacked Cu(3Me-pic)2 units which are linked via carbonyl oxygen atoms of the 3Me-pic moieties. Analysis of EPR spectra at 133 K and 293 K suggests isotropic intermolecular spin interaction only in 2. Complex 2 dissolved in DMF and DMSO solvents to yield nano-size particles. Solution studies show aqueous solutions of 1 and 2 contain the same neutral Cu(3Me-pic)2 species, which generates less hydroxyl radicals from the reaction with hydrogen peroxide than their precursor CuCl2. The Cu(3Me-pic)2 species exhibit more selective inhibition of the β2 site of the 20S proteasome, among the three proteolytic sites.

  9. Schizophrenia-Associated hERG channel Kv11.1-3.1 Exhibits a Unique Trafficking Deficit that is Rescued Through Proteasome Inhibition for High Throughput Screening

    PubMed Central

    Calcaterra, Nicholas E.; Hoeppner, Daniel J.; Wei, Huijun; Jaffe, Andrew E.; Maher, Brady J.; Barrow, James C.

    2016-01-01

    The primate-specific brain voltage-gated potassium channel isoform Kv11.1-3.1 has been identified as a novel therapeutic target for the treatment of schizophrenia. While this ether-a-go-go related K + channel has shown clinical relevance, drug discovery efforts have been hampered due to low and inconsistent activity in cell-based assays. This poor activity is hypothesized to result from poor trafficking via the lack of an intact channel-stabilizing Per-Ant-Sim (PAS) domain. Here we characterize Kv11.1-3.1 cellular localization and show decreased channel expression and cell surface trafficking relative to the PAS-domain containing major isoform, Kv11.1-1A. Using small molecule inhibition of proteasome degradation, cellular expression and plasma membrane trafficking are rescued. These findings implicate the importance of the unfolded-protein response and endoplasmic reticulum associated degradation pathways in the expression and regulation of this schizophrenia risk factor. Utilizing this identified phenomenon, an electrophysiological and high throughput in-vitro fluorescent assay platform has been developed for drug discovery in order to explore a potentially new class of cognitive therapeutics. PMID:26879421

  10. The role of the proteasome in AML

    PubMed Central

    Csizmar, C M; Kim, D-H; Sachs, Z

    2016-01-01

    Acute myeloid leukemia (AML) is deadly hematologic malignancy. Despite a well-characterized genetic and molecular landscape, targeted therapies for AML have failed to significantly improve clinical outcomes. Over the past decade, proteasome inhibition has been demonstrated to be an effective therapeutic strategy in several hematologic malignancies. Proteasome inhibitors, such as bortezomib and carfilzomib, have become mainstays of treatment for multiple myeloma and mantle cell lymphoma. In light of this success, there has been a surge of literature exploring both the role of the proteasome and the effects of proteasome inhibition in AML. Pre-clinical studies have demonstrated that proteasome inhibition disrupts proliferative cell signaling pathways, exhibits cytotoxic synergism with other chemotherapeutics and induces autophagy of cancer-related proteins. Meanwhile, clinical trials incorporating bortezomib into combination chemotherapy regimens have reported a range of responses in AML patients, with complete remission rates >80% in some cases. Taken together, this preclinical and clinical evidence suggests that inhibition of the proteasome may be efficacious in this disease. In an effort to focus further investigation into this area, these recent studies and their findings are reviewed here. PMID:27911437

  11. Fucoidan inhibition of lung cancer in vivo and in vitro : role of the Smurf2-dependent ubiquitin proteasome pathway in TGFβ receptor degradation.

    PubMed

    Hsu, Hsien-Yeh; Lin, Tung-Yi; Wu, Yu-Chung; Tsao, Shu-Ming; Hwang, Pai-An; Shih, Yu-Wei; Hsu, Jason

    2014-09-15

    Fucoidan, a polysaccharide extracted from brown seaweeds, reduces tumor cell proliferation. In this study, we demonstrate that fucoidan reduces tumor size in LLC1-xenograft male C57BL/6 mice. Moreover, we found that LLC1-bearing mice continuously fed fucoidan showed greater antitumor activity than mice with discontinuous feeding. Fucoidan inhibited the in vitro growth of lung cancer cells. Transforming growth factor β (TGFβ) receptors (TGFRs) play important roles in the regulation of proliferation and progression, and high TGFRI expression in lung cancer specimens is associated with a worse prognosis. Herein, using lung cancer cells, we found that fucoidan effectively reduces TGFRI and TGFRII protein levels in vivo and in vitro. Moreover, fucoidan reduces TGFR downstream signaling events, including those in Smad2/3 and non-Smad pathways: Akt, Erk1/2, and FAK phosphorylation. Furthermore, fucoidan suppresses lung cancer cell mobility upon TGFβ stimulation. To elucidate how fucoidan decreases TGFR proteins in lung cancer cells, we found that fucoidan enhances the ubiquitination proteasome pathway (UPP)-mediated degradation of TGFRs in A549 and CL1-5 cells. Mechanistically, fucoidan promotes Smurf2 and Smad7 to conjugate TGFRs, resulting in TGF degradation; however, Smurf2-shRNA abolishes fucoidan-enhanced UPP-mediated TGFR degradation. Our study is the first to identify a novel mechanism for the antitumor activity of fucoidan, namely decreasing tumor growth by modulating the TGFR/Smad7/Smurf2-dependent axis, leading to TGFR protein degradation and inhibition of lung cancer cell progression in vitro and in vivo. Our current findings indicate that fucoidan is a potential therapeutic agent or dietary supplementation for lung cancer, acting via the Smurf2-dependent ubiquitin degradation of TGFβ receptors.

  12. The transcriptional repressor protein PRH interacts with the proteasome.

    PubMed Central

    Bess, Kirstin L; Swingler, Tracey E; Rivett, A Jennifer; Gaston, Kevin; Jayaraman, Padma-Sheela

    2003-01-01

    PRH (proline-rich homeodomain protein)/Hex is important in the control of cell proliferation and differentiation. We have shown previously that PRH contains two domains that can bring about transcriptional repression independently; the PRH homeodomain represses transcription by binding to TATA box sequences, whereas the proline-rich N-terminal domain can repress transcription by interacting with members of the Groucho/TLE (transducin-like enhancer of split) family of co-repressor proteins. The proteasome is a multi-subunit protein complex involved in the processing and degradation of proteins. Some proteasome subunits have been suggested to play a role in the regulation of transcription. In the present study, we show that PRH interacts with the HC8 subunit of the proteasome in the context of both 20 and 26 S proteasomes. Moreover, we show that PRH is associated with the proteasome in haematopoietic cells and that the proline-rich PRH N-terminal domain is responsible for this interaction. Whereas PRH can be cleaved by the proteasome, it does not appear to be degraded rapidly in vitro or in vivo, and the proteolytic activity of the proteasome is not required for transcriptional repression by PRH. However, proteasomal digestion of PRH can liberate truncated PRH proteins that retain the ability to bind to DNA. We discuss these findings in terms of the biological role of PRH in gene regulation and the control of cell proliferation. PMID:12826010

  13. Inhibitors Selective for Mycobacterial Versus Human Proteasomes

    SciTech Connect

    Lin, G.; Li, D; Sorio de Carvalho, L; Deng, H; Tao, H; Vogt, G; Wu, K; Schneider, J; Chidawanyika, T; et. al.

    2009-01-01

    Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-one compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.

  14. Combination Treatment with Sublethal Ionizing Radiation and the Proteasome Inhibitor, Bortezomib, Enhances Death-Receptor Mediated Apoptosis and Anti-Tumor Immune Attack

    PubMed Central

    Cacan, Ercan; Spring, Alexander M.; Kumari, Anita; Greer, Susanna F.; Garnett-Benson, Charlie

    2015-01-01

    Sub-lethal doses of radiation can modulate gene expression, making tumor cells more susceptible to T-cell-mediated immune attack. Proteasome inhibitors demonstrate broad anti-tumor activity in clinical and pre-clinical cancer models. Here, we use a combination treatment of proteasome inhibition and irradiation to further induce immunomodulation of tumor cells that could enhance tumor-specific immune responses. We investigate the effects of the 26S proteasome inhibitor, bortezomib, alone or in combination with radiotherapy, on the expression of immunogenic genes in normal colon and colorectal cancer cell lines. We examined cells for changes in the expression of several death receptors (DR4, DR5 and Fas) commonly used by T cells for killing of target cells. Our results indicate that the combination treatment resulted in increased cell surface expression of death receptors by increasing their transcript levels. The combination treatment further increases the sensitivity of carcinoma cells to apoptosis through FAS and TRAIL receptors but does not change the sensitivity of normal non-malignant epithelial cells. Furthermore, the combination treatment significantly enhances tumor cell killing by tumor specific CD8+ T cells. This study suggests that combining radiotherapy and proteasome inhibition may simultaneously enhance tumor immunogenicity and the induction of antitumor immunity by enhancing tumor-specific T-cell activity. PMID:26703577

  15. The novel β2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells.

    PubMed

    Kraus, Marianne; Bader, Juergen; Geurink, Paul P; Weyburne, Emily S; Mirabella, Anne C; Silzle, Tobias; Shabaneh, Tamer B; van der Linden, Wouter A; de Bruin, Gerjan; Haile, Sarah R; van Rooden, Eva; Appenzeller, Christina; Li, Nan; Kisselev, Alexei F; Overkleeft, Herman; Driessen, Christoph

    2015-10-01

    Proteasome inhibitor resistance is a challenge for myeloma therapy. Bortezomib targets the β5 and β1 activity, but not the β2 activity of the proteasome. Bortezomib-resistant myeloma cells down-regulate the activation status of the unfolded protein response, and up-regulate β2 proteasome activity. To improve proteasome inhibition in bortezomib-resistant myeloma and to achieve more efficient UPR activation, we have developed LU-102, a selective inhibitor of the β2 proteasome activity. LU-102 inhibited the β2 activity in intact myeloma cells at low micromolar concentrations without relevant co-inhibition of β1 and β5 proteasome subunits. In proteasome inhibitor-resistant myeloma cells, significantly more potent proteasome inhibition was achieved by bortezomib or carfilzomib in combination with LU-102, compared to bortezomib/carfilzomib alone, resulting in highly synergistic cytotoxic activity of the drug combination via endoplasmatic reticulum stress-induced apoptosis. Combining bortezomib/carfilzomib with LU-102 significantly prolonged proteasome inhibition and increased activation of the unfolded protein response and IRE1-a activity. IRE1-α has recently been shown to control myeloma cell differentiation and bortezomib sensitivity (Leung-Hagesteijn, Cancer Cell 24:3, 289-304). Thus, β2-selective proteasome inhibition by LU-102 in combination with bortezomib or carfilzomib results in synergistic proteasome inhibition, activation of the unfolded protein response, and cytotoxicity, and overcomes bortezomib/carfilzomib resistance in myeloma cells in vitro.

  16. Bacterial Proteasome Activator Bpa (Rv3780) Is a Novel Ring-Shaped Interactor of the Mycobacterial Proteasome

    PubMed Central

    Delley, Cyrille L.; Laederach, Juerg; Ziemski, Michal; Bolten, Marcel; Boehringer, Daniel; Weber-Ban, Eilika

    2014-01-01

    The occurrence of the proteasome in bacteria is limited to the phylum of actinobacteria, where it is maintained in parallel to the usual bacterial compartmentalizing proteases. The role it plays in these organisms is still not fully understood, but in the human pathogen Mycobacterium tuberculosis (Mtb) the proteasome supports persistence in the host. In complex with the ring-shaped ATPase Mpa (called ARC in other actinobacteria), the proteasome can degrade proteins that have been post-translationally modified with the prokaryotic ubiquitin-like protein Pup. Unlike for the eukaryotic proteasome core particle, no other bacterial proteasome interactors have been identified to date. Here we describe and characterize a novel bacterial proteasome activator of Mycobacterium tuberculosis we termed Bpa (Rv3780), using a combination of biochemical and biophysical methods. Bpa features a canonical C-terminal proteasome interaction motif referred to as the HbYX motif, and its orthologs are only found in those actinobacteria encoding the proteasomal subunits. Bpa can inhibit degradation of Pup-tagged substrates in vitro by competing with Mpa for association with the proteasome. Using negative-stain electron microscopy, we show that Bpa forms a ring-shaped homooligomer that can bind coaxially to the face of the proteasome cylinder. Interestingly, Bpa can stimulate the proteasomal degradation of the model substrate β-casein, which suggests it could play a role in the removal of non-native or damaged proteins. PMID:25469515

  17. Proteasome activator 200: the heat is on...

    PubMed

    Savulescu, Anca F; Glickman, Michael H

    2011-05-01

    Proteasomes play a key regulatory role in all eukaryotic cells by removing proteins in a timely manner. There are two predominant forms: The 20S core particle (CP) can hydrolyze peptides and certain unstructured proteins, and the 26S holoenzyme is able to proteolyse most proteins conjugated to ubiquitin. The 26S complex consists of a CP barrel with a 19S regulatory particle (RP; a.k.a PA700) attached to its outer surface. Several studies purified another proteasome activator with a MW of 200 kDa (PA200) that attaches to the same outer ring of the CP. A role for PA200 has been demonstrated in spermatogenesis, in response to DNA repair and in maintenance of mitochondrial inheritance. Enhanced levels of PA200-CP complexes are observed under conditions in which either activated or disrupted CP prevail, suggesting it participates in regulating overall proteolytic activity. PA200, or its yeast ortholog Blm10, may also incorporate into 26S proteasomes yielding PA200-CP-RP hybrids. A three-dimensional molecular structure determined by x-ray crystallography of Blm10-CP provides a model for activation. The carboxy terminus of Blm10 inserts into a dedicated pocket in the outer ring of the CP surface, whereas multiple HEAT-like repeats fold into an asymmetric solenoid wrapping around the central pore to stabilize a partially open conformation. The resulting hollow domelike structure caps the entire CP surface. This asymmetric structure may provide insight as to how the 19S RP, with two HEAT repeatlike subunits (Rpn1, Rpn2) alongside six ATPases (Rpt1-6), attaches to the same surface of the CP ring, and likewise, induces pore opening.

  18. Physalin B not only inhibits the ubiquitin-proteasome pathway but also induces incomplete autophagic response in human colon cancer cells in vitro

    PubMed Central

    Ma, Yi-ming; Han, Wei; Li, Jia; Hu, Li-hong; Zhou, Yu-bo

    2015-01-01

    Aim: To investigate the effects of physalin B insolated from Physalis divericata on human colon cancer cells in vitro and its anticancer mechanisms. Methods: Human HCT116 colon cancer cell line was tested. Cell viability and apoptosis were detected, and relevant proteins were measured using Western blot analyses. Autophagosomes were observed in stable GFP-LC3 HCT116 cells. Localization of autophagosomes and lysosomes was evaluated in GFP-LC3/RFP-LAMP1-co-transfected cells. Microtubules and F-actin microfilaments were observed with confocal microscope. Mitochondrial ROS (mito-ROS) was detected with flow cytometry in the cells stained with MitoSox dye. Results: Physalin B inhibited the viability of HCT116 cells with an IC50 value of 1.35 μmol/L. Treatment of the cells with physalin B (2.5–10 μmol/L) induced apoptosis and the cleavage of PARP and caspase-3. Meanwhile, physalin B treatment induced autophagosome formation, and accumulation of LC3-II and p62, but decreased Beclin 1 protein level. Marked changes of microtubules and F-actin microfilaments were observed in physalin B-treated cells, which led to the blockage of co-localization of autophagosomes and lysosomes. Physalin B treatment dose-dependently increased the phosphorylation of p38, ERK and JNK in the cells, whereas the p38 inhibitor SB202190, ERK inhibitor U0126 or JNK inhibitor SP600125 could partially reduce physalin B-induced PARP cleavage and p62 accumulation. Moreover, physalin B treatment dose-dependently increased mito-ROS production in the cells, whereas the ROS scavenger NAC could reverse physalin B-induced effects, including incomplete autophagic response, accumulation of ubiquitinated proteins, changes of microtubules and F-actin, activation of p38, ERK and JNK, as well as cell death and apoptosis. Conclusion: Physalin B induces mito-ROS, which not only inhibits the ubiquitin-proteasome pathway but also induces incomplete autophagic response in HCT116 cells in vitro. PMID:25832431

  19. Mammalian proteasome subtypes: Their diversity in structure and function.

    PubMed

    Dahlmann, Burkhardt

    2016-02-01

    The 20S proteasome is a multicatalytic proteinase catalysing the degradation of the majority of intracellular proteins. Thereby it is involved in almost all basic cellular processes, which is facilitated by its association with various regulator complexes so that it appears in different disguises like 26S proteasome, hybrid-proteasome and others. The 20S proteasome has a cylindrical structure built up by four stacked rings composed of α- and β-subunits. Since the three active site-containing β-subunits can all or in part be replaced by immuno-subunits, three main subpopulations exist, namely standard-, immuno- and intermediate-proteasomes. Due to posttranslational modifications or/and genetic variations all α- and β-subunits occur in multiple iso- or proteoforms. This leads to the fact that each of the three subpopulations is composed of a variety of 20S proteasome subtypes. This review summarizes the knowledge of proteasome subtypes in mammalian cells and tissues and their possible biological and medical relevancy.

  20. 1.15 Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain

    SciTech Connect

    Singh, Chingakham R.; Lovell, Scott; Mehzabeen, Nurjahan; Chowdhury, Wasimul Q.; Geanes, Eric S.; Battaile, Kevin P.; Roelofs, Jeroen

    2014-03-25

    The proteasome-assembly chaperone Nas2 binds to the proteasome subunit Rpt5 using its PDZ domain. The structure of the Nas2 PDZ domain has been determined. The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to the C-terminal tail of Rpt5; however, it does not require the C-terminus of Rpt5 for binding. Here, the 1.15 Å resolution structure of the PDZ domain of Nas2 is reported. This structure will provide a basis for further insights regarding the structure and function of Nas2 in proteasome assembly.

  1. Structural Basis for the Assembly and Gate Closure Mechanisms of the Mycobacterium tuberculosis 20S Proteasome

    SciTech Connect

    Lin, D.; Li, H; Wang, T; Pan, H; Lin, G; Li, H

    2010-01-01

    Mycobacterium tuberculosis (Mtb) possesses a proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. Mtb requires the proteasome to resist killing by the host immune system. The detailed assembly process and the gating mechanism of Mtb proteasome have remained unknown. Using cryo-electron microscopy and X-ray crystallography, we have obtained structures of three Mtb proteasome assembly intermediates, showing conformational changes during assembly, and explaining why the {beta}-subunit propeptide inhibits rather than promotes assembly. Although the eukaryotic proteasome core particles close their protein substrate entrance gates with different amino terminal peptides of the seven {alpha}-subunits, it has been unknown how a prokaryotic proteasome might close the gate at the symmetry axis with seven identical peptides. We found in the new Mtb proteasome crystal structure that the gate is tightly sealed by the seven identical peptides taking on three distinct conformations. Our work provides the structural bases for assembly and gating mechanisms of the Mtb proteasome.

  2. Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome

    SciTech Connect

    Li, D.; Li, H.; Li, H.; Wang, T.; Pan, H.; Lin, G.

    2010-06-16

    Mycobacterium tuberculosis (Mtb) possesses a proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. Mtb requires the proteasome to resist killing by the host immune system. The detailed assembly process and the gating mechanism of Mtb proteasome have remained unknown. Using cryo-electron microscopy and X-ray crystallography, we have obtained structures of three Mtb proteasome assembly intermediates, showing conformational changes during assembly, and explaining why the {beta}-subunit propeptide inhibits rather than promotes assembly. Although the eukaryotic proteasome core particles close their protein substrate entrance gates with different amino terminal peptides of the seven {alpha}-subunits, it has been unknown how a prokaryotic proteasome might close the gate at the symmetry axis with seven identical peptides. We found in the new Mtb proteasome crystal structure that the gate is tightly sealed by the seven identical peptides taking on three distinct conformations. Our work provides the structural bases for assembly and gating mechanisms of the Mtb proteasome.

  3. INT6 May Influence Breast Cancer Formation by Regulating the 26S Proteasome

    DTIC Science & Technology

    2007-04-01

    critically reading the manuscript. We also thank Nick Rhind, Chris Norbury, Roger Tsien , and Colin Gordon for kindly providing materials that are...Yarbrough, C. A., Tsien , R. Y., and Remington, S. J. (2006) Biochemistry 45(32), 9639-9647 20. Bähler, J., Wu, J. Q., Longtine, M. S., Shah, N. G

  4. INT6 May Influence Breast Cancer Formation by Regulating the 26S Proteasome

    DTIC Science & Technology

    2006-04-01

    have shown that int6kd cells display mitotic abnormalities in that they become multinucleated and contain abnormal spindles (see also Figure 1A-D). In...Int6∆C, but not wild type Int6, will lead to formation of larger acini (Figure 3B), suggesting that mInt6, like Int6∆C, might cause abnormal cell...functions in Int6-reduced HeLa cells and found evidence of abnormal mitosis due to the presence of tri-polar spindles (as reported in 2004). 4. I

  5. Regulation of the Response to Radiotherapy and Hyperthermia in Prostate Cancer by the 26s Proteasome

    DTIC Science & Technology

    2003-04-01

    and hair follicles, undergo rapid ’interphase death’ within hours of irradiation. Interphase death is now acknowledged to represent rapid apoptosis...any. Gynaecomastia caused by HAART has been reported Received: 10 January 2002;’acc ted: 15 January 2002. for several drugs, e.g. efavirenz

  6. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    SciTech Connect

    Cho, Eun-Ah; Juhnn, Yong-Sung

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNA repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma}-ray irradiation. From

  7. Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease

    PubMed Central

    Wang, Dong-Tao; Yang, Ya-Jun; Huang, Ren-Hua; Zhang, Zhi-Hua; Lin, Xin

    2015-01-01

    Our evidence demonstrated that CKD upregulated the expression of myostatin, TNF-α, and p-IkBa and downregulated the phosphorylation of PI3K, Akt, and FoxO3a, which were also associated with protein degradation and muscle atrophy. The autophagosome formation and protein expression of autophagy-related genes were increased in muscle of CKD rats. The mRNA level and protein expression of MAFbx and MuRF-1 were also upregulated in CKD rats, as well as proteasome activity of 26S. Moreover, activation of myostatin elicited by TNF-α induces C2C12 myotube atrophy via upregulating the expression of autophagy-related genes, including MAFbx and MuRF1 and proteasome subunits. Inactivation of FoxO3a triggered by PI3K inhibitor LY294002 prevented the myostatin-induced increase of expression of MuRF1, MAFbx, and LC3-II protein in C2C12 myotubes. The findings were further consolidated by using siRNA interference and overexpression of myostatin. Additionally, expression of myostatin was activated by TNF-α via a NF-κB dependent pathway in C2C12 myotubes, while inhibition of NF-κB activity suppressed myostatin and improved myotube atrophy. Collectively, myostatin mediated CKD-induced muscle catabolism via coordinate activation of the autophagy and the ubiquitin-proteasome systems. PMID:26448817

  8. Rice ROOT ARCHITECTURE ASSOCIATED1 Binds the Proteasome Subunit RPT4 and Is Degraded in a D-Box and Proteasome-Dependent Manner1[W][OA

    PubMed Central

    Han, Ye; Cao, Hong; Jiang, Jiafu; Xu, Yunyuan; Du, Jizhou; Wang, Xin; Yuan, Ming; Wang, Zhiyong; Xu, Zhihong; Chong, Kang

    2008-01-01

    Root growth is mainly determined by cell division and subsequent elongation in the root apical area. Components regulating cell division in root meristematic cells are largely unknown. Previous studies have identified rice (Oryza sativa) ROOT ARCHITECTURE ASSOCIATED1 (OsRAA1) as a regulator in root development. Yet, the function of OsRAA1 at the cellular and molecular levels is unclear. Here, we show that OsRAA1-overexpressed transgenic rice showed reduced primary root growth, increased numbers of cells in metaphase, and reduced numbers of cells in anaphase, which suggests that OsRAA1 is responsible for limiting root growth by inhibiting the onset of anaphase. The expression of OsRAA1 in fission yeast also induced metaphase arrest, which is consistent with the fact that OsRAA1 functions through a conserved mechanism of cell cycle regulation. Moreover, a colocalization assay has shown that OsRAA1 is expressed predominantly at spindles during cell division. Yeast two-hybrid and pull-down assays, as well as a bimolecular fluorescence complementation assay, all have revealed that OsRAA1 interacts with a rice homolog of REGULATORY PARTICLE TRIPLE-A ATPASE4, a component that is involved in the ubiquitin pathway. Treating transgenic rice with specific inhibitors of the 26S proteasome blocked the degradation of OsRAA1 and increased the number of cells in metaphase. Mutation of a putative ubiquitination-targeting D-box (RGSLDLISL) in OsRAA1 interrupted the destruction of OsRAA1 in transgenic yeast. These results suggest that ubiquitination and proteasomic proteolysis are involved in OsRAA1 degradation, which is essential for the onset of anaphase, and that OsRAA1 may modulate root development mediated by the ubiquitin-proteasome pathway as a novel regulatory factor of the cell cycle. PMID:18701670

  9. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells.

    PubMed Central

    Brooks, P; Fuertes, G; Murray, R Z; Bose, S; Knecht, E; Rechsteiner, M C; Hendil, K B; Tanaka, K; Dyson, J; Rivett, J

    2000-01-01

    Proteasomes can exist in several different molecular forms in mammalian cells. The core 20S proteasome, containing the proteolytic sites, binds regulatory complexes at the ends of its cylindrical structure. Together with two 19S ATPase regulatory complexes it forms the 26S proteasome, which is involved in ubiquitin-dependent proteolysis. The 20S proteasome can also bind 11S regulatory complexes (REG, PA28) which play a role in antigen processing, as do the three variable gamma-interferon-inducible catalytic beta-subunits (e.g. LMP7). In the present study, we have investigated the subcellular distribution of the different forms of proteasomes using subunit specific antibodies. Both 20S proteasomes and their 19S regulatory complexes are found in nuclear, cytosolic and microsomal preparations isolated from rat liver. LMP7 was enriched approximately two-fold compared with core alpha-type proteasome subunits in the microsomal preparations. 20S proteasomes were more abundant than 26S proteasomes, both in liver and cultured cell lines. Interestingly, some significant differences were observed in the distribution of different subunits of the 19S regulatory complexes. S12, and to a lesser extent p45, were found to be relatively enriched in nuclear fractions from rat liver, and immunofluorescent labelling of cultured cells with anti-p45 antibodies showed stronger labelling in the nucleus than in the cytoplasm. The REG was found to be localized predominantly in the cytoplasm. Three- to six-fold increases in the level of REG were observed following gamma-interferon treatment of cultured cells but gamma-interferon had no obvious effect on its subcellular distribution. These results demonstrate that different regulatory complexes and subpopulations of proteasomes have different distributions within mammalian cells and, therefore, that the distribution is more complex than has been reported for yeast proteasomes. PMID:10657252

  10. The proteasome assembly line

    PubMed Central

    Madura, Kiran

    2013-01-01

    The assembly of the proteasome — the cellular machine that eliminates unwanted proteins — is a carefully choreographed affair, involving a complex sequence of steps overseen by dedicated protein chaperones. PMID:19516331

  11. Light-Regulated Hypocotyl Elongation Involves Proteasome-Dependent Degradation of the Microtubule Regulatory Protein WDL3 in Arabidopsis[C][W][OA

    PubMed Central

    Liu, Xiaomin; Qin, Tao; Ma, Qianqian; Sun, Jingbo; Liu, Ziqiang; Yuan, Ming; Mao, Tonglin

    2013-01-01

    Light significantly inhibits hypocotyl cell elongation, and dark-grown seedlings exhibit elongated, etiolated hypocotyls. Microtubule regulatory proteins function as positive or negative regulators that mediate hypocotyl cell elongation by altering microtubule organization. However, it remains unclear how plants coordinate these regulators to promote hypocotyl growth in darkness and inhibit growth in the light. Here, we demonstrate that WAVE-DAMPENED 2–LIKE3 (WDL3), a microtubule regulatory protein of the WVD2/WDL family from Arabidopsis thaliana, functions in hypocotyl cell elongation and is regulated by a ubiquitin-26S proteasome–dependent pathway in response to light. WDL3 RNA interference Arabidopsis seedlings grown in the light had much longer hypocotyls than controls. Moreover, WDL3 overexpression resulted in overall shortening of hypocotyl cells and stabilization of cortical microtubules in the light. Cortical microtubule reorganization occurred slowly in cells from WDL3 RNA interference transgenic lines but was accelerated in cells from WDL3-overexpressing seedlings subjected to light treatment. More importantly, WDL3 protein was abundant in the light but was degraded through the 26S proteasome pathway in the dark. Overexpression of WDL3 inhibited etiolated hypocotyl growth in regulatory particle non-ATPase subunit-1a mutant (rpn1a-4) plants but not in wild-type seedlings. Therefore, a ubiquitin-26S proteasome–dependent mechanism regulates the levels of WDL3 in response to light to modulate hypocotyl cell elongation. PMID:23653471

  12. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1α protein expression through the ubiquitin-proteasome degradation pathway.

    PubMed

    Dong, Bin; Li, Hai; Singh, Amar Bahadur; Cao, Aiqin; Liu, Jingwen

    2015-02-13

    Our previous in vitro studies have identified hepatocyte nuclear factor 1α (HNF1α) as an obligated trans-activator for PCSK9 gene expression and demonstrated its functional involvement in the suppression of PCSK9 expression by berberine (BBR), a natural cholesterol-lowering compound. In this study, we investigated the mechanism underlying the inhibitory effect of BBR on HNF1α-mediated PCSK9 transcription. Administration of BBR to hyperlipidemic mice and hamsters lowered circulating PCSK9 concentrations and hepatic PCSK9 mRNA levels without affecting the gene expression of HNF1α. However, hepatic HNF1α protein levels were markedly reduced in BBR-treated animals as compared with the control. Using HepG2 cells as a model system, we obtained evidence that BBR treatment let to accelerated degradation of HNF1α protein. By applying inhibitors to selectively block the ubiquitin proteasome system (UPS) and autophagy-lysosomal pathway, we show that HNF1α protein content in HepG2 cells was not affected by bafilomycin A1 treatment, but it was dose-dependently increased by UPS inhibitors bortezomib and MG132. Bortezomib treatment elevated HNF1α and PCSK9 cellular levels with concomitant reductions of LDL receptor protein. Moreover, HNF1α protein displayed a multiubiquitination ladder pattern in cells treated with BBR or overexpressing ubiquitin. By expressing GFP-HNF1α fusion protein in cells, we observed that blocking UPS resulted in accumulation of GFP-HNF1α in cytoplasm. Importantly, we show that the BBR reducing effects on HNF1α protein and PCSK9 gene transcription can be eradicated by proteasome inhibitors. Altogether, our studies using BBR as a probe uncovered a new aspect of PCSK9 regulation by ubiquitin-induced proteasomal degradation of HNF1α.

  13. Small-Molecule RA-9 Inhibits Proteasome-Associated DUBs and Ovarian Cancer in Vitro and in Vivo Via Exacerbating Unfolded Protein Responses

    PubMed Central

    Coughlin, Kathleen; Anchoori, Ravi; Iizuka, Yoshie; Meints, Joyce; MacNeill, Lauren; Vogel, Rachel Isaksson; Orlowski, Robert Z.; Lee, Michael K.; Roden, Richard BS; Bazzaro, Martina

    2014-01-01

    Purpose Ovarian cancer is the deadliest of the gynecological malignancies. Carcinogenic progression is accompanied by up-regulation of ubiquitin-dependent protein degradation machinery as a mechanism to compensate with elevated endogenous proteotoxic stress. Recent studies support the notion that deubiquitinating enzymes (DUBs) are essential factors in proteolytic degradation and that their aberrant activity is linked to cancer progression and chemoresistance. Thus, DUBs are an attractive therapeutic target for ovarian cancer. Experimental Design The potency and selectivity of RA-9 inhibitor for proteasome-associated DUBs was determined in ovarian cancer cell lines and primary cells. The anticancer activity of RA-9 and its mechanism of action was evaluated in multiple cancer cell lines in vitro and in vivo in immunodeficient mice bearing an intra-peritoneal ES-2 xenograft model of human ovarian cancer. Results Here we report the characterization of RA-9 as a small-molecule inhibitor of proteasome-associated DUBs. Treatment with RA-9 selectively induces onset of apoptosis, in ovarian cancer cell lines and primary cultures derived from donors. Loss of cell viability following RA-9 exposure is associated with an Unfolded Protein Response (UPR) as mechanism to compensate for unsustainable levels of proteotoxic stress. In vivo treatment with RA-9 retards tumor growth, increases overall survival and was well tolerated by the host. Conclusions Our preclinical studies support further evaluation of RA-9 as an ovarian cancer therapeutic. PMID:24727327

  14. The proteasome: mechanisms of biology and markers of activity and response to treatment in multiple myeloma.

    PubMed

    Manasanch, Elisabet E; Korde, Neha; Zingone, Adriana; Tageja, Nishant; Fernandez de Larrea, Carlos; Bhutani, Manisha; Wu, Peter; Roschewski, Mark; Landgren, Ola

    2014-08-01

    Since the early 1990s, the synthesis and subsequent clinical application of small molecule inhibitors of the ubiquitin proteasome pathway (UPP) has revolutionized the treatment and prognosis of multiple myeloma. In this review, we summarize important aspects of the biology of the UPP with a focus on its structure and key upstream/downstream regulatory components. We then review current knowledge of plasma cell sensitivity to proteasome inhibition and highlight new proteasome inhibitors that have recently entered clinical development. Lastly, we address the putative role of circulating proteasomes as a novel biomarker in multiple myeloma and provide guidance for future clinical trials using proteasome inhibitors.

  15. Denervation-Induced Activation of the Standard Proteasome and Immunoproteasome

    PubMed Central

    Ferrington, Deborah A.; Baumann, Cory W.; Thompson, LaDora V.

    2016-01-01

    The standard 26S proteasome is responsible for the majority of myofibrillar protein degradation leading to muscle atrophy. The immunoproteasome is an inducible form of the proteasome. While its function has been linked to conditions of atrophy, its contribution to muscle proteolysis remains unclear. Therefore, the purpose of this study was to determine if the immunoproteasome plays a role in skeletal muscle atrophy induced by denervation. Adult male C57BL/6 wild type (WT) and immunoproteasome knockout lmp7-/-/mecl-1-/- (L7M1) mice underwent tibial nerve transection on the left hindlimb for either 7 or 14 days, while control mice did not undergo surgery. Proteasome activity (caspase-, chymotrypsin-, and trypsin- like), protein content of standard proteasome (β1, β5 and β2) and immunoproteasome (LMP2, LMP7 and MECL-1) catalytic subunits were determined in the gastrocnemius muscle. Denervation induced significant atrophy and was accompanied by increased activities and protein content of the catalytic subunits in both WT and L7M1 mice. Although denervation resulted in a similar degree of muscle atrophy between strains, the mice lacking two immunoproteasome subunits showed a differential response in the extent and duration of proteasome features, including activities and content of the β1, β5 and LMP2 catalytic subunits. The results indicate that immunoproteasome deficiency alters the proteasome’s composition and activities. However, the immunoproteasome does not appear to be essential for muscle atrophy induced by denervation. PMID:27875560

  16. The proteasome stress regulon is controlled by a pair of NAC transcription factors in arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteotoxic stress is mitigated by a variety of mechanisms, including activation of the unfolded protein response and co-ordinated increases in protein chaperones and activities that direct proteolysis such as the 26S proteasome. Using RNA-seq analyses combined with either chemical inhibitors or mut...

  17. The proteasome stress regulon is controlled by a pair of NAC transcription factors in arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteotoxic stress is mitigated by a variety of mechanisms, including activation of the unfolded protein response and coordinated increases in protein chaperones and activities that direct proteolysis such as the 26S proteasome. Using RNA-seq analyses combined with either chemical inhibitors or mut...

  18. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism

    PubMed Central

    Soriano, G P; Besse, L; Li, N; Kraus, M; Besse, A; Meeuwenoord, N; Bader, J; Everts, B; den Dulk, H; Overkleeft, H S; Florea, B I; Driessen, C

    2016-01-01

    Adaptive resistance of myeloma to proteasome inhibition represents a clinical challenge, whose biology is poorly understood. Proteasome mutations were implicated as underlying mechanism, while an alternative hypothesis based on low activation status of the unfolded protein response was recently suggested (IRE1/XBP1-low model). We generated bortezomib- and carfilzomib-adapted, highly resistant multiple myeloma cell clones (AMO-BTZ, AMO-CFZ), which we analyzed in a combined quantitative and functional proteomic approach. We demonstrate that proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition, irrespective of a proteasome mutation, and uniformly show an 'IRE1/XBP1-low' signature. Adaptation of myeloma cells to proteasome inhibitors involved quantitative changes in >600 protein species with similar patterns in AMO-BTZ and AMO-CFZ cells: proteins involved in metabolic regulation, redox homeostasis, and protein folding and destruction were upregulated, while apoptosis and transcription/translation were downregulated. The quantitatively most upregulated protein in AMO-CFZ cells was the multidrug resistance protein (MDR1) protein ABCB1, and carfilzomib resistance could be overcome by MDR1 inhibition. We propose a model where proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition owing to metabolic adaptations that favor the generation of reducing equivalents, such as NADPH, which is supported by oxidative glycolysis. Proteasome inhibitor resistance may thus be targeted by manipulating the energy and redox metabolism. PMID:27118406

  19. Emerging therapies targeting the ubiquitin proteasome system in cancer

    PubMed Central

    Weathington, Nathaniel M.; Mallampalli, Rama K.

    2014-01-01

    The ubiquitin proteasome system (UPS) is an essential metabolic constituent of cellular physiology that tightly regulates cellular protein concentrations with specificity and precision to optimize cellular function. Inhibition of the proteasome has proven very effective in the treatment of multiple myeloma, and this approach is being tested for utility in other malignancies. New pharmaceuticals targeting the proteasome itself or specific proximal pathways of the UPS are in development as antiproliferatives or immunomodulatory agents. In this article, we discuss the biology of UPS-targeting drugs, their use as therapy for neoplasia, and the state of clinical and preclinical development for emerging therapeutics. PMID:24382383

  20. Emerging therapies targeting the ubiquitin proteasome system in cancer.

    PubMed

    Weathington, Nathaniel M; Mallampalli, Rama K

    2014-01-01

    The ubiquitin proteasome system (UPS) is an essential metabolic constituent of cellular physiology that tightly regulates cellular protein concentrations with specificity and precision to optimize cellular function. Inhibition of the proteasome has proven very effective in the treatment of multiple myeloma, and this approach is being tested for utility in other malignancies. New pharmaceuticals targeting the proteasome itself or specific proximal pathways of the UPS are in development as antiproliferatives or immunomodulatory agents. In this article, we discuss the biology of UPS-targeting drugs, their use as therapy for neoplasia, and the state of clinical and preclinical development for emerging therapeutics.

  1. Development of proteasome inhibitors as research tools and cancer drugs

    PubMed Central

    2012-01-01

    The proteasome is the primary site for protein degradation in mammalian cells, and proteasome inhibitors have been invaluable tools in clarifying its cellular functions. The anticancer agent bortezomib inhibits the major peptidase sites in the proteasome’s 20S core particle. It is a “blockbuster drug” that has led to dramatic improvements in the treatment of multiple myeloma, a cancer of plasma cells. The development of proteasome inhibitors illustrates the unpredictability, frustrations, and potential rewards of drug development but also emphasizes the dependence of medical advances on basic biological research. PMID:23148232

  2. Using siRNA techniques to dissect proteasome assembly pathways in mammalian cells.

    PubMed

    Kaneko, Takeumi; Murata, Shigeo

    2012-01-01

    The 26S proteasome is an ATP-dependent protease known to collaborate with ubiquitin, the polymerization of which acts as a marker for protein degradation in eukaryotic cells, and is involved in a diverse array of biological processes, such as the cell-cycle progression, DNA repair, apoptosis, immune response, signal transduction, transcription, metabolism, protein quality control, and developmental program. The 26S proteasome is a huge protease complex and consists of one catalytic core called the 20S proteasome (or 20S core particle) and one or two 19S regulatory particles (19S RP), which include 14 and 19 different subunits, respectively. Recent studies have revealed that the proteasome formation requires multiple assembly factors and that the assembly pathways are highly conserved between yeast and mammalian cells. This chapter is focused on experimental approaches to reveal the assembly pathways of the proteasome using small interfering RNA techniques in mammalian cells. Knockdown of a proteasome subunit causes arrest of the assembly process before incorporation of the targeted subunit and accumulation of a specific intermediate.

  3. Proteasome Regulation of ULBP1 Transcription

    PubMed Central

    Butler, James E.; Moore, Mikel B.; Presnell, Steven R.; Chan, Huei-Wei; Chalupny, N. Jan; Lutz, Charles T.

    2009-01-01

    Killer lymphocytes recognize stress-activated NKG2D ligands on tumors. We examined NKG2D ligand expression in head and neck squamous cell carcinoma (HNSCC) cells and other cell lines. HNSCC cells typically expressed MHC class I chain-related gene A (MICA), MICB, UL16-binding protein (ULBP)2, and ULBP3, but they were uniformly negative for cell surface ULBP1 and ULBP4. We then studied how cancer treatments affected NKG2D ligand expression. NKG2D ligand expression was not changed by most cancer-relevant treatments. However, bortezomib and other proteasome inhibitor drugs with distinct mechanisms of action dramatically and specifically up-regulated HNSCC ULBP1 mRNA and cell surface protein. Proteasome inhibition also increased RNA for ULBP1 and other NKG2D ligands in nontransformed human keratinocytes. Proteasome inhibitor drugs increased ULBP1 transcription by acting at a site in the 522-bp ULBP1 promoter. Although the DNA damage response pathways mediated by ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) signaling had been reported to up-regulate NKG2D ligand expression, we found that ULBP1 up-regulation was not inhibited by caffeine and wortmannin, inhibitors of ATM/ATR signaling. ULBP1 expression in HNSCC cells was not increased by several ATM/ATR activating treatments, including bleomycin, cisplatin, aphidicolin, and hydroxyurea. Ionizing radiation caused ATM activation in HNSCC cells, but high-level ULBP1 expression was not induced by gamma radiation or UV radiation. Thus, ATM/ATR signaling was neither necessary nor sufficient for high-level ULBP1 expression in human HNSCC cell lines and could not account for the proteasome effect. The selective induction of ULBP1 expression by proteasome inhibitor drugs, along with variable NKG2D ligand expression by human tumor cells, indicates that NKG2D ligand genes are independently regulated. PMID:19414815

  4. Fellutamide B is a Potent Inhibitor of the Mycobacterium tuberculosis Proteasome

    SciTech Connect

    Lin, G.; Li, D; Chidawanyika, T; Nathan, C; Li, H

    2010-01-01

    Via high-throughput screening of a natural compound library, we have identified a lipopeptide aldehyde, fellutamide B (1), as the most potent inhibitor of the Mycobacterium tuberculosis (Mtb) proteasome tested to date. Kinetic studies reveal that 1 inhibits both Mtb and human proteasomes in a time-dependent manner under steady-state condition. Remarkably, 1 inhibits the Mtb proteasome in a single-step binding mechanism with K{sub i} = 6.8 nM, whereas it inhibits the human proteasome {beta}5 active site following a two-step mechanism with K{sub i} = 11.5 nM and K*{sub i} = 0.93 nM. Co-crystallization of 1 bound to the Mtb proteasome revealed a structural basis for the tight binding of 1 to the active sites of the Mtb proteasome. The hemiacetal group of 1 in the Mtb proteasome takes the (R)-configuration, whereas in the yeast proteasome it takes the (S)-configuration, indicating that the pre-chiral CHO group of 1 binds to the active site Thr1 in a different orientation. Re-examination of the structure of the yeast proteasome in complex with 1 showed significant conformational changes at the substrate-binding cleft along the active site. These structural differences are consistent with the different kinetic mechanisms of 1 against Mtb and human proteasomes.

  5. Base-CP proteasome can serve as a platform for stepwise lid formation.

    PubMed

    Yu, Zanlin; Livnat-Levanon, Nurit; Kleifeld, Oded; Mansour, Wissam; Nakasone, Mark A; Castaneda, Carlos A; Dixon, Emma K; Fushman, David; Reis, Noa; Pick, Elah; Glickman, Michael H

    2015-01-27

    26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid subcomplexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base subcomplexes, and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Rpn11 in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11-m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of the 5 module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Reintroducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11-Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine, and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes.

  6. Base-CP proteasome can serve as a platform for stepwise lid formation.

    PubMed

    Yu, Zanlin; Livnat-Levanon, Nurit; Kleifeld, Oded; Mansour, Wissam; Nakasone, Mark A; Castaneda, Carlos A; Dixon, Emma K; Fushman, David; Reis, Noa; Pick, Elah; Glickman, Michael H

    2015-01-27

    26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11-m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11-Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes.

  7. Base-CP proteasome can serve as a platform for stepwise lid formation

    PubMed Central

    Yu, Zanlin; Livnat-Levanon, Nurit; Kleifeld, Oded; Mansour, Wissam; Nakasone, Mark A.; Castaneda, Carlos A.; Dixon, Emma K.; Fushman, David; Reis, Noa; Pick, Elah; Glickman, Michael H.

    2015-01-01

    26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes. PMID:26182356

  8. Proteasome activation as a novel anti-aging strategy.

    PubMed

    Gonos, Efstathios

    2014-10-01

    Aging and longevity are two multifactorial biological phenomena whose knowledge at molecular level is still limited. We have studied proteasome function in replicative senescence and cell survival (Mol Aspects Med 35, 1-71, 2014). We have observed reduced levels of proteasome content and activities in senescent cells due to the down-regulation of the catalytic subunits of the 20S complex (J Biol Chem 278, 28026-28037, 2003). In support, partial inhibition of proteasomes in young cells by specific inhibitors induces premature senescence which is p53 dependent (Aging Cell 7, 717-732, 2008). Stable over-expression of catalytic subunits or POMP resulted in enhanced proteasome assembly and activities and increased cell survival following treatments with various oxidants. Importantly, the developed "proteasome activated" human fibroblasts cell lines exhibit a delay of senescence by approximately 15% (J Biol Chem 280, 11840-11850, 2005; J Biol Chem 284, 30076-30086, 2009). Our current work proposes that proteasome activation is an evolutionary conserved mechanism, as it can delay aging in various in vivo systems. Moreover, additional findings indicate that the recorded proteasome activation by many inducers is Nrf2-dependent (J Biol Chem 285, 8171-8184, 2010). Finally, we have studied the proteolysis processes of various age-related proteins and we have identified that CHIP is a major p53 E3 ligase in senescent fibroblasts (Free Rad Biol Med 50, 157-165, 2011).

  9. Peptide-based proteasome inhibitors in anticancer drug design.

    PubMed

    Micale, Nicola; Scarbaci, Kety; Troiano, Valeria; Ettari, Roberta; Grasso, Silvana; Zappalà, Maria

    2014-09-01

    The identification of the key role of the eukaryotic 26S proteasome in regulated intracellular proteolysis and its importance as a target in many pathological conditions wherein the proteasomal activity is defective (e.g., malignancies, autoimmune diseases, neurodegenerative diseases, etc.) prompted several research groups to the development of specific inhibitors of this multicatalytic complex with the aim of obtaining valid drug candidates. In regard to the anticancer therapy, the peptide boronate bortezomib (Velcade®) represents the first molecule approved by FDA for the treatment of multiple myeloma in 2003 and mantle cell lymphoma in 2006. Since then, a plethora of molecules targeting the proteasome have been identified as potential anticancer agents and a few of them reached clinical trials or are already in the market (i.e., carfilzomib; Kyprolis®). In most cases, the design of new proteasome inhibitors (PIs) takes into account a proven peptide or pseudopeptide motif as a base structure and places other chemical entities throughout the peptide skeleton in such a way to create an efficacious network of interactions within the catalytic sites. The purpose of this review is to provide an in-depth look at the current state of the research in the field of peptide-based PIs, specifically those ones that might find an application as anticancer agents.

  10. Overview of Proteasome Inhibitor-Based Anti-cancer Therapies: Perspective on Bortezomib and Second Generation Proteasome Inhibitors versus Future Generation Inhibitors of Ubiquitin-Proteasome System

    PubMed Central

    Dou, Q. Ping; Zonder, Jeffrey A.

    2014-01-01

    Over the past ten years, proteasome inhibition has emerged as an effective therapeutic strategy for treating multiple myeloma (MM) and some lymphomas. In 2003, Bortezomib (BTZ) became the first proteasome inhibitor approved by the U.S. Food and Drug Administration (FDA). BTZ-based therapies have become a staple for the treatment of MM at all stages of the disease. The survival rate of MM patients has improved significantly since clinical introduction of BTZ and other immunomodulatory drugs. However, BTZ has several limitations. Not all patients respond to BTZ-based therapies and relapse occurs in many patients who initially responded. Solid tumors, in particular, are often resistant to BTZ. Furthermore, BTZ can induce dose-limiting peripheral neuropathy (PN). The second generation proteasome inhibitor Carfizomib (CFZ; U.S. FDA approved in August 2012) induces responses in a minority of MM patients relapsed from or refractory to BTZ. There is less PN compared to BTZ. Four other second-generation proteasome inhibitors (Ixazomib, Delanzomib, Oprozomib and Marizomib) with different pharmacologic properties and broader anticancer activities, have also shown some clinical activity in bortezomib-resistant cancers. While the mechanism of resistance to bortezomib in human cancers still remains to be fully understood, targeting the immunoproteasome, ubiquitin E3 ligases, the 19S proteasome and deubiquitinases in pre-clinical studies represents possible directions for future generation inhibitors of ubiquitin-proteasome system in the treatment of MM and other cancers. PMID:25092212

  11. The ubiquitin-proteasome system regulates plant hormone signaling

    PubMed Central

    Santner, Aaron; Estelle, Mark

    2011-01-01

    SUMMARY Plants utilize the ubiquitin-proteasome system (UPS) to modulate nearly every aspect of growth and development. Ubiquitin is covalently attached to target proteins through the action of three enzymes known as E1, E2, and E3. The ultimate outcome of this post-translational modification depends on the nature of the ubiquitin linkage and the extent of polyubiquitination. In most cases, ubiquitination results in degradation of the target protein in the 26S proteasome. During the last 10 years it has become clear that the UPS plays a prominent regulatory role in hormone biology. E3 ubiquitin ligases in particular actively participate in hormone perception, de-repression of hormone signaling pathways, degradation of hormone specific transcription factors, and regulation of hormone biosynthesis. It is certain that additional functions will be discovered as more of the nearly 1200 potential E3s in plants are elucidated. PMID:20409276

  12. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions

    PubMed Central

    Grune, Tilman; Botzen, Diana; Engels, Martina; Voss, Peter; Kaiser, Barbara; Jung, Tobias; Grimm, Stefanie; Ermak, Gennady; Davies, Kelvin J. A.

    2010-01-01

    Tau is the major protein exhibiting intracellular accumulation in Alzheimer disease. The mechanisms leading to its accumulation are not fully understood. It has been proposed that the proteasome is responsible for degrading tau but, since proteasomal inhibitors block both the ubiquitin-dependent 26S proteasome and the ubiqutin-independent 20S proteasome pathways, it is not clear which of these pathways is involved in tau degradation. Some involvement of the ubiquitin ligase, CHIP in tau degradation has also been postulated during stress. In the current studies, we utilized HT22 cells and tau-transfected E36 cells in order to test the relative importance or possible requirement of the ubiquitin-dependent 26S proteasomal system versus the ubiquitin-independent 20S proteasome, in tau degradation. By means of ATP-depletion, ubiquitinylation-deficient E36ts20 cells, a 19S proteasomal regulator subunit MSS1-siRNA approaches, and in vitro ubiquitinylation studies, we were able to demonstrate that ubiquitinylation is not required for normal tau degradation. PMID:20478262

  13. Effects of Hydroxy Groups in the A-Ring on the Anti-proteasome Activity of Flavone.

    PubMed

    Nakamura, Kasumi; Yang, Jia-Hua; Sato, Eiji; Miura, Naoyuki; Wu, Yi-Xin

    2015-01-01

    The ubiquitin-proteasome pathway plays an important role in regulating apoptosis and the cell cycle. Recently, proteasome inhibitors have been shown to have antitumor effects and have been used in anticancer therapy for several cancers such as multiple myeloma. Although some flavones, such as apigenin, chrysin and luteolin, have a specific role in the inhibition of proteasome activity and induced apoptosis in some reports, these findings did not address all flavone types. To further investigate the proteasome-inhibitory mechanism of flavonoids, we examined the inhibitory activity of 5,6,7-trihydroxyflavone, baicalein and 5,6,7,4'-tetrahydroxyflavone, scutellarein on extracted proteasomes from mice and cancer cells. Unlike the other flavones, baicalein and scutellarein did not inhibit proteasome activity or accumulate levels of ubiquitinated proteins. These results indicate that flavones with hydroxy groups at positions 5, 6 and 7 of the A-ring lack the anti-proteasome function.

  14. The proteasome of malaria parasites: A multi-stage drug target for chemotherapeutic intervention?

    PubMed Central

    Aminake, Makoah Nigel; Arndt, Hans-Dieter; Pradel, Gabriele

    2012-01-01

    The ubiquitin/proteasome system serves as a regulated protein degradation pathway in eukaryotes, and is involved in many cellular processes featuring high protein turnover rates, such as cell cycle control, stress response and signal transduction. In malaria parasites, protein quality control is potentially important because of the high replication rate and the rapid transformations of the parasite during life cycle progression. The proteasome is the core of the degradation pathway, and is a major proteolytic complex responsible for the degradation and recycling of non-functional ubiquitinated proteins. Annotation of the genome for Plasmodium falciparum, the causative agent of malaria tropica, revealed proteins with similarity to human 26S proteasome subunits. In addition, a bacterial ClpQ/hslV threonine peptidase-like protein was identified. In recent years several independent studies indicated an essential function of the parasite proteasome for the liver, blood and transmission stages. In this review, we compile evidence for protein recycling in Plasmodium parasites and discuss the role of the 26S proteasome as a prospective multi-stage target for antimalarial drug discovery programs. PMID:24533266

  15. The Ubiquitin-Proteasome Pathway and Proteasome Inhibitors

    PubMed Central

    Myung, Jayhyuk; Kim, Kyung Bo

    2008-01-01

    The ubiquitin-proteasome pathway has emerged as a central player in the regulation of several diverse cellular processes. Here, we describe the important components of this complex biochemical machinery as well as several important cellular substrates targeted by this pathway and examples of human diseases resulting from defects in various components of the ubiquitin-proteasome pathway. In addition, this review covers the chemistry of synthetic and natural proteasome inhibitors, emphasizing their mode of actions toward the 20S proteasome. Given the importance of proteasome-mediated protein degradation in various intracellular processes, inhibitors of this pathway will continue to serve as both molecular probes of major cellular networks as well as potential therapeutic agents for various human diseases. PMID:11410931

  16. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling

    PubMed Central

    Wang, Feng; Deng, Xing Wang

    2011-01-01

    The ubiquitin-proteasome system (UPS) in plants, like in other eukaryotes, targets numerous intracellular regulators and thus modulates almost every aspect of growth and development. The well-known and best-characterized outcome of ubiquitination is mediating target protein degradation via the 26S proteasome, which represents the major selective protein degradation pathway conserved among eukaryotes. In this review, we will discuss the molecular composition, regulation and function of plant UPS, with a major focus on how DELLA protein degradation acts as a key in gibberellin signal transduction and its implication in the regulation of plant growth. PMID:21788985

  17. Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma.

    PubMed

    Song, Y; Ray, A; Li, S; Das, D S; Tai, Y T; Carrasco, R D; Chauhan, D; Anderson, K C

    2016-09-01

    Proteasome inhibitor bortezomib is an effective therapy for relapsed and newly diagnosed multiple myeloma (MM); however, dose-limiting toxicities and the development of resistance can limit its long-term utility. Recent research has focused on targeting ubiquitin receptors upstream of 20S proteasome, with the aim of generating less toxic therapies. Here we show that 19S proteasome-associated ubiquitin receptor Rpn13 is more highly expressed in MM cells than in normal plasma cells. Rpn13-siRNA (small interfering RNA) decreases MM cell viability. A novel agent RA190 targets Rpn13 and inhibits proteasome function, without blocking the proteasome activity or the 19S deubiquitylating activity. CRISPR/Cas9 Rpn13-knockout demonstrates that RA190-induced activity is dependent on Rpn13. RA190 decreases viability in MM cell lines and patient MM cells, inhibits proliferation of MM cells even in the presence of bone marrow stroma and overcomes bortezomib resistance. Anti-MM activity of RA190 is associated with induction of caspase-dependent apoptosis and unfolded protein response-related apoptosis. MM xenograft model studies show that RA190 is well tolerated, inhibits tumor growth and prolongs survival. Combining RA190 with bortezomib, lenalidomide or pomalidomide induces synergistic anti-MM activity. Our preclinical data validates targeting Rpn13 to overcome bortezomib resistance, and provides the framework for clinical evaluation of Rpn13 inhibitors, alone or in combination, to improve patient outcome in MM.

  18. Clioquinol - a novel copper-dependent and independent proteasome inhibitor.

    PubMed

    Schimmer, A D

    2011-03-01

    Clioquinol (5-chloro-7-iodo-quinolin-8-ol) was used in the 1950's-1970's as an oral anti-parasitic agent. More recently, studies have demonstrated that Clioquinol displays preclinical efficacy in the treatment of malignancy. Its anti-cancer activity relates, at least in part, to its ability to inhibit the proteasome through mechanisms dependent and independent of its ability to bind heavy metals such as copper. By acting as a metal ionophore Clioquinol transports metal ions from the extracellular environment into the cell and mobilizes weakly bound intracellular stores. It then directs the metal to the proteasome resulting in disruption of this enzymatic complex. In addition, Clioquinol is capable of directly inhibiting the proteasome at higher concentrations. Thus, Clioquinol represents a novel therapeutic strategy to inhibit the proteasome. Given the prior toxicology and pharmacology studies, Clioquinol could be rapidly repositioned for a new anti-cancer indication. This review highlights the mechanism of action of Clioquinol as a proteasome inhibitor. In addition, it discusses the human pharmacology and toxicology studies and how this information would guide a phase I clinical trial of this agent for patients with malignancy.

  19. Inhibitory effects of pesticides on proteasome activity: implication in Parkinson's disease.

    PubMed

    Wang, Xue-Feng; Li, Sharon; Chou, Arthur P; Bronstein, Jeff M

    2006-07-01

    Epidemiological studies have suggested a correlation of pesticides and Parkinson's disease (PD) while genetic and biochemical studies have implicated the ubiquitin-proteasome system (UPS) in the pathogenesis of PD. In the present studies, we tested the hypothesis that pesticide exposure increases the risk of developing PD by inhibiting the UPS. The effects of pesticides on proteasome activity were examined in SK-N-MC neuroblastoma cells overexpressing a GFP-conjugated proteasome degradation signal, GFP(u). Six out of 25 representative pesticides, including rotenone, ziram, diethyldithiocarbamate, endosulfan, benomyl, and dieldrin, showed inhibitory effects on proteasome activities at low concentrations (10 nM to 10 microM). Unlike proteasome inhibitors, they did not inhibit 20 S proteasome activities in cell lysates. Except for rotenone, the other five pesticides did not induce significantly cellular oxidative stress. The cytotoxic effects of these pesticides were closely correlated with proteasome inhibition. Our results suggest proteasome inhibition as a potential mechanism for the epidemiological association of pesticides and PD.

  20. Effect of ionizing radiation exposure on Trypanosoma cruzi ubiquitin-proteasome system.

    PubMed

    Cerqueira, Paula G; Passos-Silva, Danielle G; Vieira-da-Rocha, João P; Mendes, Isabela Cecilia; de Oliveira, Karla A; Oliveira, Camila F B; Vilela, Liza F F; Nagem, Ronaldo A P; Cardoso, Joseane; Nardelli, Sheila C; Krieger, Marco A; Franco, Glória R; Macedo, Andrea M; Pena, Sérgio D J; Schenkman, Sérgio; Gomes, Dawidson A; Guerra-Sá, Renata; Machado, Carlos R

    2017-03-01

    In recent years, proteasome involvement in the damage response induced by ionizing radiation (IR) became evident. However, whether proteasome plays a direct or indirect role in IR-induced damage response still unclear. Trypanosoma cruzi is a human parasite capable of remarkable high tolerance to IR, suggesting a highly efficient damage response system. Here, we investigate the role of T. cruzi proteasome in the damage response induced by IR. We exposed epimastigotes to high doses of gamma ray and we analyzed the expression and subcellular localization of several components of the ubiquitin-proteasome system. We show that proteasome inhibition increases IR-induced cell growth arrest and proteasome-mediated proteolysis is altered after parasite exposure. We observed nuclear accumulation of 19S and 20S proteasome subunits in response to IR treatments. Intriguingly, the dynamic of 19S particle nuclear accumulation was more similar to the dynamic observed for Rad51 nuclear translocation than the observed for 20S. In the other hand, 20S increase and nuclear translocation could be related with an increase of its regulator PA26 and high levels of proteasome-mediated proteolysis in vitro. The intersection between the opposed peaks of 19S and 20S protein levels was marked by nuclear accumulation of both 20S and 19S together with Ubiquitin, suggesting a role of ubiquitin-proteasome system in the nuclear protein turnover at the time. Our results revealed the importance of proteasome-mediated proteolysis in T. cruzi IR-induced damage response suggesting that proteasome is also involved in T. cruzi IR tolerance. Moreover, our data support the possible direct/signaling role of 19S in DNA damage repair. Based on these results, we speculate that spatial and temporal differences between the 19S particle and 20S proteasome controls proteasome multiple roles in IR damage response.

  1. Proteasomes play an essential role in thymocyte apoptosis.

    PubMed Central

    Grimm, L M; Goldberg, A L; Poirier, G G; Schwartz, L M; Osborne, B A

    1996-01-01

    Cell death in many different organisms requires the activation of proteolytic cascades involving cytosolic proteases. Here we describe a novel requirement in thymocyte cell death for the 20S proteasome, a highly conserved multicatalytic protease found in all eukaryotes. Specific inhibitors of proteasome function blocked cell death induced by ionizing radiation, glucocorticoids or phorbol ester. In addition to inhibiting apoptosis, these signals prevented the cleavage of poly(ADP-ribose) polymerase that accompanies many cell deaths. Since overall rates of protein degradation were not altered significantly during cell death in thymocytes, these results suggest that the proteasome may either degrade regulatory protein(s) that normally inhibit the apoptotic pathway or may proteolytically activate protein(s) than promote cell death. Images PMID:8670888

  2. The ubiquitin proteasome system in neuropathology.

    PubMed

    Lehman, Norman L

    2009-09-01

    The ubiquitin proteasome system (UPS) orchestrates the turnover of innumerable cellular proteins. In the process of ubiquitination the small protein ubiquitin is attached to a target protein by a peptide bond. The ubiquitinated target protein is subsequently shuttled to a protease complex known as the 26S proteasome and subjected to degradative proteolysis. The UPS facilitates the turnover of proteins in several settings. It targets oxidized, mutant or misfolded proteins for general proteolytic destruction, and allows for the tightly controlled and specific destruction of proteins involved in development and differentiation, cell cycle progression, circadian rhythms, apoptosis, and other biological processes. In neuropathology, alteration of the UPS, or mutations in UPS target proteins may result in signaling abnormalities leading to the initiation or progression of tumors such as astrocytomas, hemangioblastomas, craniopharyngiomas, pituitary adenomas, and medulloblastomas. Dysregulation of the UPS may also contribute to tumor progression by perturbation of DNA replication and mitotic control mechanisms, leading to genomic instability. In neurodegenerative diseases caused by the expression of mutant proteins, the cellular accumulation of these proteins may overload the UPS, indirectly contributing to the disease process, e.g., sporadic Parkinsonism and prion diseases. In other cases, mutation of UPS components may directly cause pathological accumulation of proteins, e.g., autosomal recessive Parkinsonism and spinocerebellar ataxias. Defects or dysfunction of the UPS may also underlie cognitive disorders such as Angelman syndrome, Rett syndrome and autism, and muscle and nerve diseases, e.g., inclusion body myopathy and giant axon neuropathy. This paper describes the basic biochemical mechanisms comprising the UPS and reviews both its theoretical and proven involvement in neuropathological diseases. The potential for the UPS as a target of pharmacological therapy

  3. Structure- and function-based design of Plasmodium-selective proteasome inhibitors.

    PubMed

    Li, Hao; O'Donoghue, Anthony J; van der Linden, Wouter A; Xie, Stanley C; Yoo, Euna; Foe, Ian T; Tilley, Leann; Craik, Charles S; da Fonseca, Paula C A; Bogyo, Matthew

    2016-02-11

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a

  4. Structure and function based design of Plasmodium-selective proteasome inhibitors

    PubMed Central

    Li, Hao; O'Donoghue, Anthony J.; van der Linden, Wouter A.; Xie, Stanley C.; Yoo, Euna; Foe, Ian T.; Tilley, Leann; Craik, Charles S.; da Fonseca, Paula C. A.; Bogyo, Matthew

    2016-01-01

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation1. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle2-5. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome resulting in toxicity that precludes their use as therapeutic agents2,6. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, we used a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We designed inhibitors based on amino acid preferences specific to the parasite proteasome, and found that they preferentially inhibit the β 2 subunit. We determined the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy (cryo-EM) and single particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information regarding active site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin (ART) family anti-malarials7,8, we observed growth inhibition synergism with low doses of this β 2 selective inhibitor in ART sensitive and resistant parasites. Finally, we demonstrated that a parasite selective inhibitor could be used to attenuate parasite growth in vivo without significant toxicity to the host. Thus, the

  5. Synthesis and Evaluation of Derivatives of the Proteasome Deubiquitinase Inhibitor b-AP15

    PubMed Central

    Wang, Xin; D'Arcy, Pádraig; Caulfield, Thomas R.; Paulus, Aneel; Chitta, Kasyapa; Mohanty, Chitralekha; Gullbo, Joachim; Chanan-Khan, Asher; Linder, Stig

    2016-01-01

    The ubiquitin–proteasome system (UPS) is increasingly recognized as a therapeutic target for the development of anticancer therapies. The success of the 20S proteasome core particle (20S CP) inhibitor bortezomib in the clinical management of multiple myeloma has raised the possibility of identifying other UPS components for therapeutic intervention. We previously identified the small molecule b-AP15 as an inhibitor of 19S proteasome deubiquitinase (DUB) activity. Building upon our previous data, we performed a structure–activity relationship (SAR) study on b-AP15 and identified VLX1570 as an analog with promising properties, including enhanced potency and improved solubility in aqueous solution. In silico modeling was consistent with interaction of VLX1570 with key cysteine residues located at the active sites of the proteasome DUBs USP14 and UCHL5. VLX1570 was found to inhibit proteasome deubiquitinase activity in vitro in a manner consistent with competitive inhibition. Furthermore, using active-site-directed probes, VLX1570 also inhibited proteasome DUB activity in exposed cells. Importantly, VLX1570 did not show inhibitory activity on a panel of recombinant non-proteasome DUBs, on recombinant kinases, or on caspase-3 activity, suggesting that VLX1570 is not an overtly reactive general enzyme inhibitor. Taken together, our data shows the chemical and biological properties of VLX1570 as an optimized proteasome DUB inhibitor. PMID:25854145

  6. Wheat sprout extract-induced apoptosis in human cancer cells by proteasomes modulation.

    PubMed

    Bonfili, Laura; Amici, Manila; Cecarini, Valentina; Cuccioloni, Massimiliano; Tacconi, Rosalia; Angeletti, Mauro; Fioretti, Evandro; Keller, Jeffrey N; Eleuteri, Anna Maria

    2009-09-01

    Natural occurring modulators of proteasome functionality are extensively investigated for their implication in cancer therapy. On the basis of our previous evidences both on proteasomal inhibition by monomeric polyphenols, and on the characterization of wheat sprout hydroalcoholic extract, herein we thoroughly report on a comparative study of the effect of wheat sprout extract on both normal and tumour cells. Treatment of isolated 20S proteasomes with wheat sprout extracts induced a gradual inhibition of all proteasome activities. Next, two wheat sprout extract components were separated: a polyphenol and a protein fraction. Both components exerted an in vitro inhibitory effect on proteasome activity. HeLa tumour cells and FHs 74 Int normal cells were exposed to both fractions, resulting in different rates of proteasome inhibition, with tumour cells showing a significantly higher degree of proteasome impairment and apoptosis induction. Furthermore, a decrease in proteasome activities and in cell survival of the human plasmacytoma RPMI 8226 cell line, upon the same treatments, was observed. Collectively, our results provide additional evidences supporting the possible use of natural extracts as coadjuvants in cancer treatments.

  7. CRM1 Inhibition Sensitizes Drug Resistant Human Myeloma Cells to Topoisomerase II and Proteasome Inhibitors both In Vitro and Ex Vivo

    PubMed Central

    Turner, Joel G.; Dawson, Jana; Emmons, Michael F.; Cubitt, Christopher L.; Kauffman, Michael; Shacham, Sharon; Hazlehurst, Lori A.; Sullivan, Daniel M.

    2013-01-01

    Multiple myeloma (MM) remains an incurable disease despite improved treatments, including lenalidomide/pomalidomide and bortezomib/carfilzomib based therapies and high-dose chemotherapy with autologous stem cell rescue. New drug targets are needed to further improve treatment outcomes. Nuclear export of macromolecules is misregulated in many cancers, including in hematological malignancies such as MM. CRM1 (chromosome maintenance protein-1) is a ubiquitous protein that exports large proteins (>40 kDa) from the nucleus to the cytoplasm. We found that small-molecule Selective Inhibitors of Nuclear Export (SINE) prevent CRM1-mediated export of p53 and topoisomerase IIα (topo IIα). SINE's CRM1-inhibiting activity was verified by nuclear-cytoplasmic fractionation and immunocytochemical staining of the CRM1 cargoes p53 and topo IIα in MM cells. We found that SINE molecules reduced cell viability and induced apoptosis when used as both single agents in the sub-micromolar range and when combined with doxorubicin, bortezomib, or carfilzomib but not lenalidomide, melphalan, or dexamethasone. In addition, CRM1 inhibition sensitized MM cell lines and patient myeloma cells to doxorubicin, bortezomib, and carfilzomib but did not affect peripheral blood mononuclear or non-myeloma bone marrow mononuclear cells as shown by cell viability and apoptosis assay. Drug resistance induced by co-culture of myeloma cells with bone marrow stroma cells was circumvented by the addition of SINE molecules. These results support the continued development of SINE for patients with MM. PMID:24155773

  8. Radiosensitizing effect of PSMC5, a 19S proteasome ATPase, in H460 lung cancer cells.

    PubMed

    Yim, Ji-Hye; Yun, Hong Shik; Lee, Su-Jae; Baek, Jeong-Hwa; Lee, Chang-Woo; Song, Ji-Young; Um, Hong-Duck; Park, Jong Kuk; Kim, Jae-Sung; Park, In-Chul; Hwang, Sang-Gu

    2016-01-01

    The function of PSMC5 (proteasome 26S subunit, ATPase 5) in tumors, particularly with respect to cancer radioresistance, is not known. Here, we identified PSMC5 as a novel radiosensitivity biomarker, demonstrating that radiosensitive H460 cells were converted to a radioresistance phenotype by PSMC5 depletion. Exposure of H460 cells to radiation induced a marked accumulation of cell death-promoting reactive oxygen species, but this effect was blocked in radiation-treated H460 PSMC5-knockdown cells through downregulation of the p53-p21 pathway. Interestingly, PSMC5 depletion in H460 cells enhanced both AKT activation and MDM2 transcription, thereby promoting the degradation of p53 and p21 proteins. Furthermore, specific inhibition of AKT with triciribine or knockdown of MDM2 with small interfering RNA largely restored p21 expression in PSMC5-knockdown H460 cells. Our data suggest that PSMC5 facilitates the damaging effects of radiation in radiation-responsive H460 cancer cells and therefore may serve as a prognostic indicator for radiotherapy and molecular targeted therapy in lung cancer patients.

  9. Natural Compounds with Proteasome Inhibitory Activity for Cancer Prevention and Treatment

    PubMed Central

    Yang, H; Landis-Piwowar, KR.; Chen, D; Milacic, V; Dou, QP

    2012-01-01

    The proteasome is a multicatalytic protease complex that degrades most endogenous proteins including misfolded or damaged proteins to ensure normal cellular function. The ubiquitin-proteasome degradation pathway plays an essential role in multiuple cellular processes, including cell cycle progression, proliferation, apoptosis and angiogenesis. It has been shown that human cancer cells are more sensitive to proteasome inhibition than normal cells, indicating that a proteasome inhibitor could be used as a novel anticancer drug. Indeed, this idea has been supported by the encouraging results of the clinical trials using the proteasome inhibitor Bortezomib (Velcade, PS-341), a drug approved by the US Food and Drug Administration (FDA). Several natural compounds, including the microbial metabolite lactacystin, green tea polyphenols, and traditional medicinal triterpenes, have been shown to be potent proteasome inhibitors. These findings suggest the potential use of natural proteasome inhibitors as not only chemopreventive and chemotherapeutic agents, but also tumor sensitizers to conventional radiotherapy and chemotherapy. In this review, we will summarize the structure and biological activities of the proteasome and several natural compounds with proteasome inhibitory activity, and will discuss the potential use of these compounds for the prevention and treatment of human cancers. PMID:18537678

  10. Protein oxidative modification in the aging organism and the role of the ubiquitin proteasomal system.

    PubMed

    Kastle, Marc; Grune, Tilman

    2011-12-01

    Living in an oxygen containing environment is automatically connected to oxidative stress. Beside lipids and nucleic acids, especially proteins are very susceptible for oxidative modifications. These oxidative modifications comprise alterations of single amino acids, like the formation of protein carbonyls and methionine sulfoxide, or the aggregation of whole proteins. Due to the ongoing accumulation of protein aggregates during the aging process, the cellular protein quality control system becomes more and more overwhelmed. One essential element of the protein quality control machinery is the ubiquitin proteasomal system which plays therefore a crucial part in the aging process, too. Ubiquitination of proteins is a three step mechanism to tag proteins with a polyubiquitin chain for the proteasome. The proteasome is a regulated, barrel-shaped multi-enzyme complex which is responsible for the degradation of proteins. Although there is no drastic loss of all proteasomal subunits during the aging process, there is a functional decline of the proteasome activity in aging organisms. Impairment of the ubiquitin proteasome system leads to increasing protein aggregation and cellular death. A lot of age related diseases are closely connected to an inhibition of the proteasome and the formation of large protein aggregates. Especially skin aging, atherosclerosis, age-dependent macula degeneration, cataract formation and several neurodegenerative diseases are directly connected to the decline of proteasome function. This review outlines the connections between aging, oxidative stress and protein oxidation, as well as the influence on the ubiquitin proteasomal system and several associated diseases.

  11. Proteasome activity is required for the initiation of precancerous pancreatic lesions

    PubMed Central

    Furuyama, Takaki; Tanaka, Shinji; Shimada, Shu; Akiyama, Yoshimitsu; Matsumura, Satoshi; Mitsunori, Yusuke; Aihara, Arihiro; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Fukamachi, Hiroshi; Arii, Shigeki; Kawaguchi, Yoshiya; Tanabe, Minoru

    2016-01-01

    Proteasome activity is significantly increased in advanced cancers, but its role in cancer initiation is not clear, due to difficulties in monitoring this process in vivo. We established a line of transgenic mice that carried the ZsGreen-degronODC (Gdeg) proteasome reporter to monitor the proteasome activity. In combination with Pdx-1-Cre;LSL-KrasG12D model, proteasome activity was investigated in the initiation of precancerous pancreatic lesions (PanINs). Normal pancreatic acini in Gdeg mice had low proteasome activity. By contrast, proteasome activity was increased in the PanIN lesions that developed in Gdeg;Pdx-1-Cre;LSL-KrasG12D mice. Caerulein administration to Gdeg;Pdx-1-Cre;LSL-KrasG12D mice induced constitutive elevation of proteasome activity in pancreatic tissues and accelerated PanIN formation. The proteasome inhibitor markedly reduced PanIN formation in Gdeg;Pdx-1-Cre;LSL-KrasG12D mice (P = 0.001), whereas it had no effect on PanIN lesions that had already formed. These observations indicated the significance of proteasome activity in the initiation of PanIN but not the maintenance per se. In addition, the expressions of pERK and its downstream factors including cyclin D1, NF-κB, and Cox2 were decreased after proteasome inhibition in PanINs. Our studies showed activation of proteasome is required specifically for the initiation of PanIN. The roles of proteasome in the early stages of pancreatic carcinogenesis warrant further investigation. PMID:27244456

  12. From Bortezomib to other Inhibitors of the Proteasome and Beyond

    PubMed Central

    Buac, Daniela; Shen, Min; Schmitt, Sara; Kona, Fathima Rani; Deshmukh, Rahul; Zhang, Zhen; Neslund-Dudas, Christine; Mitra, Bharati; Dou, Q. Ping

    2013-01-01

    The cancer drug discovery field has placed much emphasis on the identification of novel and cancer-specific molecular targets. A rich source of such targets for the design of novel anti-tumor agents is the ubiqutin-proteasome system (UP-S), a tightly regulated, highly specific pathway responsible for the vast majority of protein turnover within the cell. Because of its critical role in almost all cell processes that ensure normal cellular function, its inhibition at one point in time was deemed non-specific and therefore not worth further investigation as a molecular drug target. However, today the proteasome is one of the most promising anti-cancer drug targets of the century. The discovery that tumor cells are in fact more sensitive to proteasome inhibitors than normal cells indeed paved the way for the design of its inhibitors. Such efforts have led to bortezomib, the first FDA approved proteasome inhibitor now used as a frontline treatment for newly diagnosed multiple myeloma (MM), relapsed/refractory MM and mantle cell lymphoma. Though successful in improving clinical outcomes for patients with hematological malignancies, relapse often occurs in those who initially responded to bortezomib. Therefore, the acquisition of bortezomib resistance is a major issue with its therapy. Furthermore, some neuro-toxicities have been associated with bortezomib treatment and its efficacy in solid tumors is lacking. These observations have encouraged researchers to pursue the next generation of proteasome inhibitors, which would ideally overcome bortezomib resistance, have reduced toxicities and a broader range of anti-cancer activity. This review summarizes the success and limitations of bortezomib, and describes recent advances in the field, including, and most notably, the most recent FDA approval of carfilzomib in July, 2012, a second generation proteasome inhibitor. Other proteasome inhibitors currently in clinical trials and those that are currently experimental grade

  13. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction

    PubMed Central

    Koizumi, Shun; Irie, Taro; Hirayama, Shoshiro; Sakurai, Yasuyuki; Yashiroda, Hideki; Naguro, Isao; Ichijo, Hidenori; Hamazaki, Jun; Murata, Shigeo

    2016-01-01

    In response to proteasome dysfunction, mammalian cells upregulate proteasome gene expression by activating Nrf1. Nrf1 is an endoplasmic reticulum-resident transcription factor that is continually retrotranslocated and degraded by the proteasome. Upon proteasome inhibition, Nrf1 escapes degradation and is cleaved to become active. However, the processing enzyme for Nrf1 remains obscure. Here we show that the aspartyl protease DNA-damage inducible 1 homolog 2 (DDI2) is required to cleave and activate Nrf1. Deletion of DDI2 reduced the cleaved form of Nrf1 and increased the full-length cytosolic form of Nrf1, resulting in poor upregulation of proteasomes in response to proteasome inhibition. These defects were restored by adding back wild-type DDI2 but not protease-defective DDI2. Our results provide a clue for blocking compensatory proteasome synthesis to improve cancer therapies targeting proteasomes. DOI: http://dx.doi.org/10.7554/eLife.18357.001 PMID:27528193

  14. The effect of temperature adaptation on the ubiquitin-proteasome pathway in notothenioid fishes.

    PubMed

    Todgham, Anne E; Crombie, Timothy A; Hofmann, Gretchen E

    2017-02-01

    There is an accumulating body of evidence suggesting that the sub-zero Antarctic marine environment places physiological constraints on protein homeostasis. Levels of ubiquitin (Ub)-conjugated proteins, 20S proteasome activity and mRNA expression of many proteins involved in both the Ub tagging of damaged proteins as well as the different complexes of the 26S proteasome were measured to examine whether there is thermal compensation of the Ub-proteasome pathway in Antarctic fishes to better understand the efficiency of the protein degradation machinery in polar species. Both Antarctic (Trematomus bernacchii, Pagothenia borchgrevinki) and non-Antarctic (Notothenia angustata, Bovichtus variegatus) notothenioids were included in this study to investigate the mechanisms of cold adaptation of this pathway in polar species. Overall, there were significant differences in the levels of Ub-conjugated proteins between the Antarctic notothenioids and B. variegatus, with N. angustata possessing levels very similar to those of the Antarctic fishes. Proteasome activity in the gills of Antarctic fishes demonstrated a high degree of temperature compensation such that activity levels were similar to activities measured in their temperate relatives at ecologically relevant temperatures. A similar level of thermal compensation of proteasome activity was not present in the liver of two Antarctic fishes. Higher gill proteasome activity is likely due in part to higher cellular levels of proteins involved in the Ub-proteasome pathway, as evidenced by high mRNA expression of relevant genes. Reduced activity of the Ub-proteasome pathway does not appear to be the mechanism responsible for elevated levels of denatured proteins in Antarctic fishes, at least in the gills.

  15. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome

    PubMed Central

    Reeg, Sandra; Jung, Tobias; Castro, José P.; Davies, Kelvin J.A.; Henze, Andrea; Grune, Tilman

    2016-01-01

    One hallmark of aging is the accumulation of protein aggregates, promoted by the unfolding of oxidized proteins. Unraveling the mechanism by which oxidized proteins are degraded may provide a basis to delay the early onset of features, such as protein aggregate formation, that contribute to the aging phenotype. In order to prevent aggregation of oxidized proteins, cells recur to the 20S proteasome, an efficient turnover proteolysis complex. It has previously been shown that upon oxidative stress the 26S proteasome, another form, dissociates into the 20S form. A critical player implicated in its dissociation is the Heat Shock Protein 70 (Hsp70), which promotes an increase in free 20S proteasome and, therefore, an increased capability to degrade oxidized proteins. The aim of this study was to test whether or not Hsp70 is involved in cooperating with the 20S proteasome for a selective degradation of oxidatively damaged proteins. Our results demonstrate that Hsp70 expression is induced in HT22 cells as a result of mild oxidative stress conditions. Furthermore, Hsp70 prevents the accumulation of oxidized proteins and directly promotes their degradation by the 20S proteasome. In contrast the expression of the Heat shock cognate protein 70 (Hsc70) was not changed in recovery after oxidative stress and Hsc70 has no influence on the removal of oxidatively damaged proteins. We were able to demonstrate in HT22 cells, in brain homogenates from 129/SV mice and in vitro, that there is an increased interaction of Hsp70 with oxidized proteins, but also with the 20S proteasome, indicating a role of Hsp70 in mediating the interaction of oxidized proteins with the 20S proteasome. Thus, our data clearly implicate an involvement of Hsp70 oxidatively damaged protein degradation by the 20S proteasome. PMID:27498116

  16. The capture proteasome assay (CAPA) to evaluate subtype-specific proteasome inhibitors.

    PubMed

    Vigneron, Nathalie; Abi Habib, Joanna; Van den Eynde, Benoît J

    2015-09-01

    We recently developed a new assay to measure proteasome activity in vitro (CAPA for capture proteasome assay) [1], based on proteasome capture on an antibody-coated plate. When used with lysates originating from cells expressing either standard proteasome, immunoproteasome or intermediate proteasomes β5i or β1i-β5i, this assay allows the individual monitoring of the chymotrypsin-like, trypsin-like and caspase-like activities of the corresponding proteasome subtypes. The efficiency and specificity of four proteasome inhibitors were studied using the CAPA assay, demonstrating the potential of this assay for the development of subtype-specific proteasome inhibitors.

  17. Proteasome Inhibitors in the Treatment of Multiple Myeloma

    PubMed Central

    Shah, Jatin J.; Orlowski, Robert Z.

    2016-01-01

    Targeting intracellular protein turnover by inhibiting the ubiquitin-proteasome pathway as a strategy for cancer therapy is a new addition to our chemotherapeutic armamentarium, and has seen its greatest successes against multiple myeloma. The first-in-class proteasome inhibitor bortezomib was initially approved for treatment of patients in the relapsed/refractory setting as a single agent, and was recently shown to induce even greater benefits as part of rationally-designed combinations that overcome chemoresistance. Modulation of proteasome function is also a rational approach to achieve chemosensitization to other anti-myeloma agents, and bortezomib has now been incorporated into the front-line setting. Bortezomib-based induction regimens are able to achieve higher overall response rates and response qualities than was the case with prior standards of care, and unlike these older approaches, maintain efficacy in patients with clinically- and molecularly-defined high-risk disease. Second-generation proteasome inhibitors with novel properties, such as NPI-0052 and carfilzomib, are entering the clinical arena, and showing evidence of anti-myeloma activity. In this spotlight review, we provide an overview of the current state of the art use of bortezomib and other proteasome inhibitors against multiple myeloma, and highlight areas for future study that will further optimize our ability to benefit patients with this disease. PMID:19741722

  18. Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis.

    PubMed

    Guerrero, Cortnie; Milenkovic, Tijana; Przulj, Natasa; Kaiser, Peter; Huang, Lan

    2008-09-09

    Quantitative analysis of tandem-affinity purified cross-linked (x) protein complexes (QTAX) is a powerful technique for the identification of protein interactions, including weak and/or transient components. Here, we apply a QTAX-based tag-team mass spectrometry strategy coupled with protein network analysis to acquire a comprehensive and detailed assessment of the protein interaction network of the yeast 26S proteasome. We have determined that the proteasome network is composed of at least 471 proteins, significantly more than the total number of proteins identified by previous reports using proteasome subunits as baits. Validation of the selected proteasome-interacting proteins by reverse copurification and immunoblotting experiments with and without cross-linking, further demonstrates the power of the QTAX strategy for capturing protein interactions of all natures. In addition, >80% of the identified interactions have been confirmed by existing data using protein network analysis. Moreover, evidence obtained through network analysis links the proteasome to protein complexes associated with diverse cellular functions. This work presents the most complete analysis of the proteasome interaction network to date, providing an inclusive set of physical interaction data consistent with physiological roles for the proteasome that have been suggested primarily through genetic analyses. Moreover, the methodology described here is a general proteomic tool for the comprehensive study of protein interaction networks.

  19. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form.

    PubMed

    Pereira-Neves, Antonio; Gonzaga, Luiz; Menna-Barreto, Rubem F S; Benchimol, Marlene

    2015-01-01

    Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in

  20. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form

    PubMed Central

    Pereira-Neves, Antonio; Gonzaga, Luiz; Menna-Barreto, Rubem F. S.; Benchimol, Marlene

    2015-01-01

    Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in

  1. The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by Pseudomonas Type III Effectors1[OPEN

    PubMed Central

    Sheikh, Arsheed; Gimenez-Ibanez, Selena

    2016-01-01

    Recent evidence suggests that the ubiquitin-proteasome system is involved in several aspects of plant immunity and that a range of plant pathogens subvert the ubiquitin-proteasome system to enhance their virulence. Here, we show that proteasome activity is strongly induced during basal defense in Arabidopsis (Arabidopsis thaliana). Mutant lines of the proteasome subunits RPT2a and RPN12a support increased bacterial growth of virulent Pseudomonas syringae pv tomato DC3000 (Pst) and Pseudomonas syringae pv maculicola ES4326. Both proteasome subunits are required for pathogen-associated molecular pattern-triggered immunity responses. Analysis of bacterial growth after a secondary infection of systemic leaves revealed that the establishment of systemic acquired resistance (SAR) is impaired in proteasome mutants, suggesting that the proteasome also plays an important role in defense priming and SAR. In addition, we show that Pst inhibits proteasome activity in a type III secretion-dependent manner. A screen for type III effector proteins from Pst for their ability to interfere with proteasome activity revealed HopM1, HopAO1, HopA1, and HopG1 as putative proteasome inhibitors. Biochemical characterization of HopM1 by mass spectrometry indicates that HopM1 interacts with several E3 ubiquitin ligases and proteasome subunits. This supports the hypothesis that HopM1 associates with the proteasome, leading to its inhibition. Thus, the proteasome is an essential component of pathogen-associated molecular pattern-triggered immunity and SAR, which is targeted by multiple bacterial effectors. PMID:27613851

  2. Gene therapy by proteasome activator, PA28γ, improves motor coordination and proteasome function in Huntington's disease YAC128 mice.

    PubMed

    Jeon, J; Kim, W; Jang, J; Isacson, O; Seo, H

    2016-06-02

    Huntington's disease (HD) is neurologically characterized by involuntary movements, associated with degeneration of the medium-sized spiny neurons (MSNs) and ubiquitin-positive neuronal intranuclear inclusions (NIIs). It has been reported that the proteolytic activities of the ubiquitin-proteasome system (UPS) are generally inhibited in HD patient's brain. We previously discovered that a proteasome activator (PA), PA28γ enhances proteasome activities and cell survival in in vitro HD model. In this study, we aimed to find whether PA28γ gene transfer improves the proteasome activities and pathological symptoms in in vivo HD model. We stereotaxically injected lenti-PA28γ virus into the striatum of mutant (MT) YAC128 HD mice and littermate (LM) controls at 14-18months of age, and validated their behavioral and biochemical changes at 12weeks after the injection. YAC128 mice showed a significant increase in their peptidyl-glutamyl preferring hydrolytic (PGPH) proteasome activity and the mRNA or protein levels of brain-derived neurotrophic factor (BDNF) and pro-BDNF after lenti-PA28γ injection. The number of ubiquitin-positive inclusion bodies was reduced in the striatum of YAC128 mice after lenti-PA28γ injection. YAC128 mice showed significant improvement of latency to fall on the rota-rod test after lenti-PA28γ injection. These data demonstrate that the gene therapy with PA, PA28γ can improve UPS function as well as behavioral abnormalities in HD model mice.

  3. K(ATP) channel block prevents proteasome inhibitor-induced apoptosis in differentiated PC12 cells.

    PubMed

    Nam, Yoon Jeong; Lee, Da Hee; Lee, Min Sung; Lee, Chung Soo

    2015-10-05

    Dysfunction of the proteasome system has been suggested to be implicated in neuronal degeneration. Modulation of KATP channels appears to affect the viability of neuronal cells exposed to toxic insults. However, the effect of KATP channel blockers on the neuronal cell death mediated by proteasome inhibition has not been studied. The present study investigated the effect of KATP channel blockers on proteasome inhibitor-induced apoptosis in differentiated PC12 cells and SH-SY5Y cells. 5-Hydroxydecanoate (a selective KATP channel blocker) and glibenclamide (a cell surface and mitochondrial KATP channel inhibitor) reduced the proteasome inhibitor-induced apoptosis. Addition of the KATP channel blockers attenuated the proteasome inhibitor-induced changes in the levels of apoptosis-related proteins, the loss of the mitochondrial transmembrane potential, the increase in the formation of reactive oxygen species and the depletion of glutathione in both cell lines. The results show that KATP channel blockers may attenuate proteasome inhibitor-induced apoptosis in PC12 cells by suppressing activation of the mitochondrial pathway and of the caspase-8- and Bid-dependent pathways. The preventive effect appears to be associated with the inhibition of the formation of reactive oxygen species and the depletion of glutathione. KATP channel blockade appears to prevent proteasome inhibition-induced neuronal cell death.

  4. Gambogic acid is a tissue-specific proteasome inhibitor in vitro and in vivo.

    PubMed

    Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zhao, Chong; Liao, Siyan; Yang, Changshan; Liu, Yurong; Zhao, Canguo; Li, Shujue; Lu, Xiaoyu; Liu, Chunjiao; Guan, Lixia; Zhao, Kai; Shi, Xiaoqing; Song, Wenbin; Zhou, Ping; Dong, Xiaoxian; Guo, Haiping; Wen, Guanmei; Zhang, Change; Jiang, Lili; Ma, Ningfang; Li, Bing; Wang, Shunqing; Tan, Huo; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2013-01-31

    Gambogic acid (GA) is a natural compound derived from Chinese herbs that has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients; however, its molecular targets have not been thoroughly studied. Here, we report that GA inhibits tumor proteasome activity, with potency comparable to bortezomib but much less toxicity. First, GA acts as a prodrug and only gains proteasome-inhibitory function after being metabolized by intracellular CYP2E1. Second, GA-induced proteasome inhibition is a prerequisite for its cytotoxicity and anticancer effect without off-targets. Finally, because expression of the CYP2E1 gene is very high in tumor tissues but low in many normal tissues, GA could therefore produce tissue-specific proteasome inhibition and tumor-specific toxicity, with clinical significance for designing novel strategies for cancer treatment.

  5. Role of proteasomes in disease

    PubMed Central

    Dahlmann, Burkhardt

    2007-01-01

    A functional ubiquitin proteasome system is essential for all eukaryotic cells and therefore any alteration to its components has potential pathological consequences. Though the exact underlying mechanism is unclear, an age-related decrease in proteasome activity weakens cellular capacity to remove oxidatively modified proteins and favours the development of neurodegenerative and cardiac diseases. Up-regulation of proteasome activity is characteristic of muscle wasting conditions including sepsis, cachexia and uraemia, but may not be rate limiting. Meanwhile, enhanced presence of immunoproteasomes in aging brain and muscle tissue could reflect a persistent inflammatory defence and anti-stress mechanism, whereas in cancer cells, their down-regulation reflects a means by which to escape immune surveillance. Hence, induction of apoptosis by synthetic proteasome inhibitors is a potential treatment strategy for cancer, whereas for other diseases such as neurodegeneration, the use of proteasome-activating or -modulating compounds could be more effective. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ). PMID:18047740

  6. High-resolution cryo-EM structure of the proteasome in complex with ADP-AlFx.

    PubMed

    Ding, Zhanyu; Fu, Zhenglin; Xu, Cong; Wang, Yifan; Wang, Yanxing; Li, Junrui; Kong, Liangliang; Chen, Jinhuan; Li, Na; Zhang, Rongguang; Cong, Yao

    2017-03-01

    The 26S proteasome is an ATP-dependent dynamic 2.5 MDa protease that regulates numerous essential cellular functions through degradation of ubiquitinated substrates. Here we present a near-atomic-resolution cryo-EM map of the S. cerevisiae 26S proteasome in complex with ADP-AlFx. Our biochemical and structural data reveal that the proteasome-ADP-AlFx is in an activated state, displaying a distinct conformational configuration especially in the AAA-ATPase motor region. Noteworthy, this map demonstrates an asymmetric nucleotide binding pattern with four consecutive AAA-ATPase subunits bound with nucleotide. The remaining two subunits, Rpt2 and Rpt6, with empty or only partially occupied nucleotide pocket exhibit pronounced conformational changes in the AAA-ATPase ring, which may represent a collective result of allosteric cooperativity of all the AAA-ATPase subunits responding to ATP hydrolysis. This collective motion of Rpt2 and Rpt6 results in an elevation of their pore loops, which could play an important role in substrate processing of proteasome. Our data also imply that the nucleotide occupancy pattern could be related to the activation status of the complex. Moreover, the HbYX tail insertion may not be sufficient to maintain the gate opening of 20S core particle. Our results provide new insights into the mechanisms of nucleotide-driven allosteric cooperativity of the complex and of the substrate processing by the proteasome.

  7. Regulation of Feedback between Protein Kinase A and the Proteasome System Worsens Huntington's Disease

    PubMed Central

    Lin, Jiun-Tsai; Chang, Wei-Cheng; Chen, Hui-Mei; Lai, Hsing-Lin; Chen, Chih-Yeh; Tao, Mi-Hua

    2013-01-01

    Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a CAG repeat in the Huntingtin (HTT) gene. Abnormal regulation of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway occurs during HD progression. Here we found that lower PKA activity was associated with proteasome impairment in the striatum for two HD mouse models (R6/2 and N171-82Q) and in mutant HTT (mHTT)-expressing striatal cells. Because PKA regulatory subunits (PKA-Rs) are proteasome substrates, the mHTT-evoked proteasome impairment caused accumulation of PKA-Rs and subsequently inhibited PKA activity. Conversely, activation of PKA enhanced the phosphorylation of Rpt6 (a component of the proteasome), rescued the impaired proteasome activity, and reduced mHTT aggregates. The dominant-negative Rpt6 mutant (Rpt6S120A) blocked the ability of a cAMP-elevating reagent to enhance proteasome activity, whereas the phosphomimetic Rpt6 mutant (Rpt6S120D) increased proteasome activity, reduced HTT aggregates, and ameliorated motor impairment. Collectively, our data demonstrated that positive feedback regulation between PKA and the proteasome is critical for HD pathogenesis. PMID:23275441

  8. TOPORS, a Dual E3 Ubiquitin and Sumo1 Ligase, Interacts with 26 S Protease Regulatory Subunit 4, Encoded by the PSMC1 Gene.

    PubMed

    Czub, Barbara; Shah, Amna Z; Alfano, Giovanna; Kruczek, Przemysław M; Chakarova, Christina F; Bhattacharya, Shomi S

    2016-01-01

    The significance of the ubiquitin-proteasome system (UPS) for protein degradation has been highlighted in the context of neurodegenerative diseases, including retinal dystrophies. TOPORS, a dual E3 ubiquitin and SUMO1 ligase, forms a component of the UPS and selected substrates for its enzymatic activities, such as DJ-1/PARK7 and APOBEC2, are important for neuronal as well as retinal homeostasis, respectively. TOPORS is ubiquitously expressed, yet its mutations are only known to result in autosomal dominant retinitis pigmentosa. We performed a yeast two-hybrid (Y2H) screen of a human retinal cDNA library in order to identify interacting protein partners of TOPORS from the retina, and thus begin delineating the putative disease mechanism(s) associated with the retina-specific phenotype resulting from mutations in TOPORS. The screen led to isolation of the 26 S protease regulatory subunit 4 (P26s4/ PSMC1), an ATPase indispensable for correct functioning of UPS-mediated proteostasis. The interaction between endogenous TOPORS and P26s4 proteins was validated by co-immuno-precipitation from mammalian cell extracts and further characterised by immunofluorescent co-localisation studies in cell lines and retinal sections. Findings from hTERT-RPE1 and 661W cells demonstrated that TOPORS and P26s4 co-localise at the centrosome in cultured cells. Immunofluorescent staining of mouse retinae revealed a strong P26s4 reactivity at the interface between retinal pigmented epithelium (RPE) layer and the photoreceptors outer segments (OS). This finding leads us to speculate that P26s4, along with TOPORS, may have a role(s) in RPE phagocytosis, in addition to contributing to the overall photoreceptor and retinal homeostasis via the UPS.

  9. TOPORS, a Dual E3 Ubiquitin and Sumo1 Ligase, Interacts with 26 S Protease Regulatory Subunit 4, Encoded by the PSMC1 Gene

    PubMed Central

    Czub, Barbara; Shah, Amna Z.; Alfano, Giovanna; Kruczek, Przemysław M.; Chakarova, Christina F.; Bhattacharya, Shomi S.

    2016-01-01

    The significance of the ubiquitin-proteasome system (UPS) for protein degradation has been highlighted in the context of neurodegenerative diseases, including retinal dystrophies. TOPORS, a dual E3 ubiquitin and SUMO1 ligase, forms a component of the UPS and selected substrates for its enzymatic activities, such as DJ-1/PARK7 and APOBEC2, are important for neuronal as well as retinal homeostasis, respectively. TOPORS is ubiquitously expressed, yet its mutations are only known to result in autosomal dominant retinitis pigmentosa. We performed a yeast two-hybrid (Y2H) screen of a human retinal cDNA library in order to identify interacting protein partners of TOPORS from the retina, and thus begin delineating the putative disease mechanism(s) associated with the retina-specific phenotype resulting from mutations in TOPORS. The screen led to isolation of the 26 S protease regulatory subunit 4 (P26s4/ PSMC1), an ATPase indispensable for correct functioning of UPS-mediated proteostasis. The interaction between endogenous TOPORS and P26s4 proteins was validated by co-immuno-precipitation from mammalian cell extracts and further characterised by immunofluorescent co-localisation studies in cell lines and retinal sections. Findings from hTERT-RPE1 and 661W cells demonstrated that TOPORS and P26s4 co-localise at the centrosome in cultured cells. Immunofluorescent staining of mouse retinae revealed a strong P26s4 reactivity at the interface between retinal pigmented epithelium (RPE) layer and the photoreceptors outer segments (OS). This finding leads us to speculate that P26s4, along with TOPORS, may have a role(s) in RPE phagocytosis, in addition to contributing to the overall photoreceptor and retinal homeostasis via the UPS. PMID:26872363

  10. Proteasomal degradation of beta-carotene metabolite--modified proteins.

    PubMed

    Sommerburg, Olaf; Karius, Nicole; Siems, Werner; Langhans, Claus-Dieter; Leichsenring, Michael; Breusing, Nicolle; Grune, Tilman

    2009-01-01

    Free radical attack on beta-carotene results in the formation of high amounts of carotene breakdown products (CBPs) having biological activities. As several of the CBPs are reactive aldehydes, it has to be considered that these compounds are able to modify proteins. Therefore, the aim of the study was to investigate whether CBP-modification of proteins is leading to damaged proteins recognized and degraded by the proteasomal system. We used the model proteins tau and ferritin to test whether CBPs will modify them and whether such modifications lead to enhanced proteasomal degradation. To modify proteins, we used crude CBPs as a mixture obtained after hypochloric acid derived BC degradation, as well as several single compounds, as apo8'-carotenal, retinal, or beta-ionone. The majority of the CBPs found in our reaction mixture are well known metabolites as described earlier after BC degradation using different oxidants. CBPs are able to modify proteins, and in in vitro studies, we were able to demonstrate that the 20S proteasome is able to recognize and degrade CBP-modified proteins preferentially. In testing the proteolytic response of HT22 cells toward CBPs, we could demonstrate an enhanced protein turnover, which is sensitive to lactacystin. Interestingly, the proteasomal activity is resistant to treatment with CBP. On the other hand, we were able to demonstrate that supraphysiological levels of CBPs might lead to the formation of protein-CBP-adducts that are able to inhibit the proteasome. Therefore, the removal of CBP-modified proteins seems to be catalyzed by the proteasomal system and is effective, if the formation of CBPs is not overwhelming and leading to protein aggregates.

  11. Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat.

    PubMed

    Rodriguez, Karl A; Edrey, Yael H; Osmulski, Pawel; Gaczynska, Maria; Buffenstein, Rochelle

    2012-01-01

    The longest-lived rodent, the naked mole-rat (Bathyergidae; Heterocephalus glaber), maintains robust health for at least 75% of its 32 year lifespan, suggesting that the decline in genomic integrity or protein homeostasis routinely observed during aging, is either attenuated or delayed in this extraordinarily long-lived species. The ubiquitin proteasome system (UPS) plays an integral role in protein homeostasis by degrading oxidatively-damaged and misfolded proteins. In this study, we examined proteasome activity in naked mole-rats and mice in whole liver lysates as well as three subcellular fractions to probe the mechanisms behind the apparently enhanced effectiveness of UPS. We found that when compared with mouse samples, naked mole-rats had significantly higher chymotrypsin-like (ChT-L) activity and a two-fold increase in trypsin-like (T-L) in both whole lysates as well as cytosolic fractions. Native gel electrophoresis of the whole tissue lysates showed that the 20S proteasome was more active in the longer-lived species and that 26S proteasome was both more active and more populous. Western blot analyses revealed that both 19S subunits and immunoproteasome catalytic subunits are present in greater amounts in the naked mole-rat suggesting that the observed higher specific activity may be due to the greater proportion of immunoproteasomes in livers of healthy young adults. It thus appears that proteasomes in this species are primed for the efficient removal of stress-damaged proteins. Further characterization of the naked mole-rat proteasome and its regulation could lead to important insights on how the cells in these animals handle increased stress and protein damage to maintain a longer health in their tissues and ultimately a longer life.

  12. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production

    PubMed Central

    Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L.; Remmers, Elaine F.; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J.; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D.; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L.; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina; Hildebrand, Peter W.; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela

    2015-01-01

    Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591

  13. Proteasome activity is important for replication recovery, CHK1 phosphorylation and prevention of G2 arrest after low-dose formaldehyde

    SciTech Connect

    Ortega-Atienza, Sara; Green, Samantha E.; Zhitkovich, Anatoly

    2015-07-15

    Formaldehyde (FA) is a human carcinogen with numerous sources of environmental and occupational exposures. This reactive aldehyde is also produced endogenously during metabolism of drugs and other processes. DNA–protein crosslinks (DPCs) are considered to be the main genotoxic lesions for FA. Accumulating evidence suggests that DPC repair in high eukaryotes involves proteolysis of crosslinked proteins. Here, we examined a role of the main cellular proteolytic machinery proteasomes in toxic responses of human lung cells to low FA doses. We found that transient inhibition of proteasome activity increased cytotoxicity and diminished clonogenic viability of FA-treated cells. Proteasome inactivation exacerbated suppressive effects of FA on DNA replication and increased the levels of the genotoxic stress marker γ-H2AX in normal human cells. A transient loss of proteasome activity in FA-exposed cells also caused delayed perturbations of cell cycle, which included G2 arrest and a depletion of S-phase populations at FA doses that had no effects in control cells. Proteasome activity diminished p53-Ser15 phosphorylation but was important for FA-induced CHK1 phosphorylation, which is a biochemical marker of DPC proteolysis in replicating cells. Unlike FA, proteasome inhibition had no effect on cell survival and CHK1 phosphorylation by the non-DPC replication stressor hydroxyurea. Overall, we obtained evidence for the importance of proteasomes in protection of human cells against biologically relevant doses of FA. Biochemically, our findings indicate the involvement of proteasomes in proteolytic repair of DPC, which removes replication blockage by these highly bulky lesions. - Highlights: • Proteasome inhibition enhances cytotoxicity of low-dose FA in human lung cells. • Active proteasomes diminish replication-inhibiting effects of FA. • Proteasome activity prevents delayed G2 arrest in FA-treated cells. • Proteasome inhibition exacerbates replication stress by FA in

  14. Sperm proteasomes degrade sperm receptor on the egg zona pellucida during mammalian fertilization.

    PubMed

    Zimmerman, Shawn W; Manandhar, Gaurishankar; Yi, Young-Joo; Gupta, Satish K; Sutovsky, Miriam; Odhiambo, John F; Powell, Michael D; Miller, David J; Sutovsky, Peter

    2011-02-23

    Despite decades of research, the mechanism by which the fertilizing spermatozoon penetrates the mammalian vitelline membrane, the zona pellucida (ZP) remains one of the unexplained fundamental events of human/mammalian development. Evidence has been accumulating in support of the 26S proteasome as a candidate for echinoderm, ascidian and mammalian egg coat lysin. Monitoring ZP protein degradation by sperm during fertilization is nearly impossible because those few spermatozoa that penetrate the ZP leave behind a virtually untraceable residue of degraded proteins. We have overcome this hurdle by designing an experimentally consistent in vitro system in which live boar spermatozoa are co-incubated with ZP-proteins (ZPP) solubilized from porcine oocytes. Using this assay, mimicking sperm-egg interactions, we demonstrate that the sperm-borne proteasomes can degrade the sperm receptor protein ZPC. Upon coincubation with motile spermatozoa, the solubilized ZPP, which appear to be ubiquitinated, adhered to sperm acrosomal caps and induced acrosomal exocytosis/formation of the acrosomal shroud. The degradation of the sperm receptor protein ZPC was assessed by Western blotting band-densitometry and proteomics. A nearly identical pattern of sperm receptor degradation, evident already within the first 5 min of coincubation, was observed when the spermatozoa were replaced with the isolated, enzymatically active, sperm-derived proteasomes. ZPC degradation was blocked by proteasomal inhibitors and accelerated by ubiquitin-aldehyde(UBAL), a modified ubiquitin protein that stimulates proteasomal proteolysis. Such a degradation pattern of ZPC is consistent with in vitro fertilization studies, in which proteasomal inhibitors completely blocked fertilization, and UBAL increased fertilization and polyspermy rates. Preincubation of intact zona-enclosed ova with isolated active sperm proteasomes caused digestion, abrasions and loosening of the exposed zonae, and significantly reduced

  15. Function-Oriented Biosynthesis of β-Lactone Proteasome Inhibitors in Salinispora tropica

    PubMed Central

    Nett, Markus; Gulder, Tobias A. M.; Kale, Andrew J.; Hughes, Chambers C.; Moore, Bradley S.

    2009-01-01

    The natural proteasome inhibitor salinosporamide A from the marine bacterium Salinispora tropica is a promising drug candidate for the treatment of multiple myeloma and mantle cell lymphoma. Using a comprehensive approach that combined chemical synthesis with metabolic engineering, we generated a series of salinosporamide analogues with altered proteasome binding affinity. One of the engineered compounds is equipotent to salinosporamide A in inhibition of the chymotrypsin-like activity of the proteasome, yet, exhibits superior activity in the cell-based HCT-116 assay. PMID:19746976

  16. Tert-butylhydroquinone lowers blood pressure in AngII-induced hypertension in mice via proteasome-PTEN-Akt-eNOS pathway

    PubMed Central

    Xu, Bing-Can; Long, Hui-Bao; Luo, Ke-Qin

    2016-01-01

    Tert-butylhydroquinone (tBHQ), as an antioxidant, has been widely used for many years to prevent oxidization of food products. The aim of this study was to investigate whether tBHQ activates endothelial nitric oxide synthase (eNOS) to prevent endothelial dysfunction and lower blood pressure. The role of Akt in tBHQ-induced eNOS phosphorylation was examined in human umbilical vein endothelial cells (HUVEC) or in mice. tBHQ treatment of HUVEC increased both Akt-Ser473 phosphorylation, accompanied with increased eNOS-Ser1177 phosphorylation and NO release. Mechanically, pharmacologic or genetic inhibition of Akt abolished tBHQ-enhanced NO release and eNOS phosphorylation in HUVEC. Gain-function of PTEN or inhibition of 26S proteasome abolished tBHQ-enhanced Akt phosphorylation in HUVEC. Ex vivo analysis indicated that tBHQ improved Ach-induced endothelium-dependent relaxation in LPC-treated mice aortic arteries, which were abolished by inhibition of Akt or eNOS. In animal study, administration of tBHQ significantly increased eNOS-Ser1177 phosphorylation and acetylcholine-induced vasorelaxation, and lowered AngII-induced hypertension in wildtype mice, but not in mice deficient of Akt or eNOS. In conclusion, tBHQ via proteasome-dependent degradation of PTEN increases Akt phosphorylation, resulting in upregulation of eNOS-derived NO production and consequent improvement of endothelial function in vivo. In this way, tBHQ lowers blood pressure in hypertensive mice. PMID:27435826

  17. Development and Characterization of Proteasome Inhibitors

    PubMed Central

    Kim, Kyung Bo; Fonseca, Fabiana N.; Crews, Craig M.

    2008-01-01

    Although many proteasome inhibitors have been either synthesized or identified from natural sources, the development of more sophisticated, selective proteasome inhibitors is important for a detailed understanding of proteasome function. We have found that antitumor natural product epoxomicin and eponemycin, both of which are linear peptides containing a α,β-epoxyketone pharmacophore, target proteasome for their antitumor activity. Structural studies of the proteasome–epoxomicin complex revealed that the unique specificity of the natural product toward proteasome is due to the α,β-epoxyketone pharmacophore, which forms an unusual six-membered morpholino ring with the amino terminal catalytic Thr-1 of the 20S proteasome. Thus, we believe that a facile synthetic approach for α,β-epoxyketone linear peptides provides a unique opportunity to develop proteasome inhibitors with novel activities. In this chapter, we discuss the detailed synthetic procedure of the α′,β′-epoxyketone natural product epoxomicin and its derivatives. PMID:16338383

  18. Characteristics of the turnover of uncoupling protein 3 by the ubiquitin proteasome system in isolated mitochondria.

    PubMed

    Mookerjee, Shona A; Brand, Martin D

    2011-11-01

    Uncoupling protein 3 (UCP3) is implicated in mild uncoupling and the regulation of mitochondrial ROS production. We previously showed that UCP3 turns over rapidly in C2C12 myoblasts, with a half-life of 0.5-4h, and that turnover can be reconstituted in vitro. We show here that rapid degradation of UCP3 in vitro in isolated brown adipose tissue mitochondria required the 26S proteasome, ubiquitin, ATP, succinate to generate a high membrane potential, and a pH of 7.4 or less. Ubiquitin containing lysine-48 was both necessary and sufficient to support UCP3 degradation, implying a requirement for polyubiquitylation at this residue. The 20S proteasome did not support degradation. UCP3 degradation was prevented by simultaneously blocking matrix ATP generation and import, showing that ATP in the mitochondrial matrix was required. Degradation did not appear to require a transmembrane pH gradient, but was very sensitive to membrane potential: degradation was halved when membrane potential decreased 10-20mV from its resting value, and was not significant below about 120mV. We propose that matrix ATP and a high membrane potential are needed for UCP3 to be polyubiquitylated through lysine-48 of ubiquitin and exported to the cytosolic 26S proteasome, where it is de-ubiquitylated and degraded.

  19. MONOUBIQUITINATION OF RPN10 REGULATES SUBSTRATE RECRUITMENT TO THE PROTEASOME

    PubMed Central

    Isasa, Marta; Katz, Elijah J.; Kim, Woong; Yugo, Verónica; González, Sheyla; Kirkpatrick, Donald S.; Thomson, Timothy M.; Finley, Daniel; Gygi, Steven P.; Crosas, Bernat

    2012-01-01

    The proteasome recognizes its substrates via a diverse set of ubiquitin receptors, including subunits Rpn10/S5a and Rpn13. In addition, shuttling factors, such as Rad23, recruit substrates to the proteasome by delivering ubiquitinated proteins. Despite the increasing understanding of the factors involved in this process, the regulation of substrate delivery remains largely unexplored. Here we report that Rpn10 is monoubiquitinated in vivo and that this modification has profound effects on proteasome function. Monoubiquitination regulates the capacity of Rpn10 to interact with substrates by inhibiting Rpn10’s ubiquitin interacting motif (UIM). We show that Rsp5, a member of NEDD4 ubiquitin-protein ligase family, and Ubp2, a deubiquitinating enzyme, control the levels of Rpn10 monoubiquitination in vivo. Notably, monoubiquitination of Rpn10 is decreased under stress conditions, suggesting a mechanism of control of receptor availability mediated by the Rsp5-Ubp2 system. Our results reveal an unanticipated link between monoubiquitination signal and regulation of proteasome function. PMID:20542005

  20. Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis

    PubMed Central

    Guan, Shan; Zhao, Yanling; Lu, Jiaxiong; Yu, Yang; Sun, Wenjing; Mao, Xinfang; Chen, Zhenghu; Xu, Xin; Pan, Jessie; Sun, Surong; Yang, Jianhua

    2016-01-01

    Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common extracranial malignant neoplasm in children. Elevated level of proteasome activity promotes cancer development and the inhibition of proteasome activity is a promising strategy for cancer treatment. Therefore, targeting proteasome by small molecule inhibitors may be a viable option for NB therapy. Here in this study, we show that a novel proteasome inhibitor Carfilzomib (CFZ) exerts anti-tumor effect on NB. CFZ caused decreased cell viability and attenuated colony formation ability of a subset of NB cell lines. CFZ induced cell apoptosis in NB cells. Moreover, CFZ enhanced the cytotoxic effect of doxorubicin (Dox) on NB cells and Dox-induced p38 and JNK phosphorylation. In addition, CFZ inhibited Dox-induced NF-κB activation by stabilizing the protein level of IκBα. Furthermore, CFZ induced apoptosis and augmented Dox-induced apoptosis in NB tumor cells in orthotopic xenograft mouse models. In summary, our study suggests that proteasome is a therapeutic target in NB and proteasome inhibition by CFZ is a potential therapeutic strategy for treating NB patients. PMID:27713150

  1. Proteasome inhibitor MG-132 lowers gastric adenocarcinoma TMK1 cell proliferation via bone morphogenetic protein signaling

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Jao Yiu; Yu Le; Cho, C.H.

    2008-06-27

    Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21{sup Waf1/Cip1} mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21{sup Waf1/Cip1} induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer.

  2. Proteasome Inhibitors Prevent Tracheary Element Differentiation in Zinnia Mesophyll Cell Cultures1

    PubMed Central

    Woffenden, Bonnie J.; Freeman, Thomas B.; Beers, Eric P.

    1998-01-01

    To determine whether proteasome activity is required for tracheary element (TE) differentiation, the proteasome inhibitors clasto-lactacystin β-lactone and carbobenzoxy-leucinyl-leucinyl-leucinal (LLL) were used in a zinnia (Zinnia elegans) mesophyll cell culture system. The addition of proteasome inhibitors at the time of culture initiation prevented differentiation otherwise detectable at 96 h. Inhibition of the proteasome at 48 h, after cellular commitment to differentiation, did not alter the final percentage of TEs compared with controls. However, proteasome inhibition at 48 h delayed the differentiation process by approximately 24 h, as indicated by examination of both morphological markers and the expression of putative autolytic proteases. These results indicate that proteasome function is required both for induction of TE differentiation and for progression of the TE program in committed cells. Treatment at 48 h with LLL but not clasto-lactacystin β-lactone resulted in partial uncoupling of autolysis from differentiation. Results from gel analysis of protease activity suggested that the observed incomplete autolysis was due to the ability of LLL to inhibit TE cysteine proteases. PMID:9765527

  3. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells

    SciTech Connect

    Wu, William Ka Kei Wu Yachun; Yu Le; Li Zhijie; Sung, Joseph Jao Yiu; Cho, C.H.

    2008-09-19

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G{sub 2}/M cell cycle arrest which was associated with the formation of LC3{sup +} autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3{sup +} autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.

  4. Proteasome Modulates Positive and Negative Translational Regulators in Long-Term Synaptic Plasticity

    PubMed Central

    Dong, Chenghai; Bach, Svitlana V.; Haynes, Kathryn A.

    2014-01-01

    Proteolysis by the ubiquitin-proteasome pathway appears to have a complex role in synaptic plasticity, but its various functions remain to be elucidated. Using late phase long-term potentiation (L-LTP) in the hippocampus of the mouse as a model for long-term synaptic plasticity, we previously showed that inhibition of the proteasome enhances induction but blocks maintenance of L-LTP. In this study, we investigated the possible mechanisms by which proteasome inhibition has opposite effects on L-LTP induction and maintenance. Our results show that inhibiting phosphatidyl inositol-3 kinase or blocking the interaction between eukaryotic initiation factors 4E (eIF4E) and 4G (eIF4G) reduces the enhancement of L-LTP induction brought about by proteasome inhibition suggesting interplay between proteolysis and the signaling pathway mediated by mammalian target of rapamycin (mTOR). Also, proteasome inhibition leads to accumulation of translational activators in the mTOR pathway such as eIF4E and eukaryotic elongation factor 1A (eEF1A) early during L-LTP causing increased induction. Furthermore, inhibition of the proteasome causes a buildup of translational repressors, such as polyadenylate-binding protein interacting protein 2 (Paip2) and eukaryotic initiation factor 4E-binding protein 2 (4E-BP2), during late stages of L-LTP contributing to the blockade of L-LTP maintenance. Thus, the proteasome plays a critical role in regulating protein synthesis during L-LTP by tightly controlling translation. Our results provide novel mechanistic insights into the interplay between protein degradation and protein synthesis in long-term synaptic plasticity. PMID:24573276

  5. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect.

    PubMed

    Kaplan, Gulce Sari; Torcun, Ceyda Corek; Grune, Tilman; Ozer, Nesrin Kartal; Karademir, Betul

    2017-02-01

    Proteasomal system plays an important role in protein turnover, which is essential for homeostasis of cells. Besides degradation of oxidized proteins, it is involved in the regulation of many different signaling pathways. These pathways include mainly cell differentiation, proliferation, apoptosis, transcriptional activation and angiogenesis. Thus, proteasomal system is a crucial target for treatment of several diseases including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes and cancer. Over the last fifteen years, proteasome inhibitors have been tested to highlight their mechanisms of action and used in the clinic to treat different types of cancer. Proteasome inhibitors are mainly used in combinational therapy along with classical chemo-radiotherapy. Several studies have proved their significant effects but serious side effects such as peripheral neuropathy, limits their use in required effective doses. Recent studies focus on peripheral neuropathy as the primary side effect of proteasome inhibitors. Therefore, it is important to delineate the underlying mechanisms of peripheral neuropathy and develop new inhibitors according to obtained data. This review will detail the role of proteasome inhibition in cancer therapy and development of peripheral neuropathy as a side effect. Additionally, new approaches to prevent treatment-limiting side effects will be discussed in order to help researchers in developing effective strategies to overcome side effects of proteasome inhibitors.

  6. Effects of an Anticarcinogenic Bowman-Birk Protease Inhibitor on Purified 20S Proteasome and MCF-7 Breast Cancer Cells

    PubMed Central

    Souza, Larissa da Costa; Camargo, Ricardo; Demasi, Marilene; Santana, Jaime Martins; de Freitas, Sonia Maria

    2014-01-01

    Proteasome inhibitors have been described as an important target for cancer therapy due to their potential to regulate the ubiquitin-proteasome system in the degradation pathway of cellular proteins. Here, we reported the effects of a Bowman-Birk-type protease inhibitor, the Black-eyed pea Trypsin/Chymotrypsin Inhibitor (BTCI), on proteasome 20S in MCF-7 breast cancer cells and on catalytic activity of the purified 20S proteasome from horse erythrocytes, as well as the structural analysis of the BTCI-20S proteasome complex. In vitro experiments and confocal microscopy showed that BTCI readily crosses the membrane of the breast cancer cells and co-localizes with the proteasome in cytoplasm and mainly in nucleus. Indeed, as indicated by dynamic light scattering, BTCI and 20S proteasome form a stable complex at temperatures up to 55°C and at neutral and alkaline pHs. In complexed form, BTCI strongly inhibits the proteolytic chymotrypsin-, trypsin- and caspase-like activities of 20S proteasome, indicated by inhibition constants of 10−7 M magnitude order. Besides other mechanisms, this feature can be associated with previously reported cytostatic and cytotoxic effects of BTCI in MCF-7 breast cancer cells by means of apoptosis. PMID:24475156

  7. Subnormothermic Perfusion in the Isolated Rat Liver Preserves the Antioxidant Glutathione and Enhances the Function of the Ubiquitin Proteasome System

    PubMed Central

    Alva, Norma; Sanchez-Nuño, Sergio; Dewey, Shannamar; Gomes, Aldrin V.

    2016-01-01

    The reduction of oxidative stress is suggested to be one of the main mechanisms to explain the benefits of subnormothermic perfusion against ischemic liver damage. In this study we investigated the early cellular mechanisms induced in isolated rat livers after 15 min perfusion at temperatures ranging from normothermia (37°C) to subnormothermia (26°C and 22°C). Subnormothermic perfusion was found to maintain hepatic viability. Perfusion at 22°C raised reduced glutathione levels and the activity of glutathione reductase; however, lipid and protein oxidation still occurred as determined by malondialdehyde, 4-hydroxynonenal-protein adducts, and advanced oxidation protein products. In livers perfused at 22°C the lysosomal and ubiquitin proteasome system (UPS) were both activated. The 26S chymotrypsin-like (β5) proteasome activity was significantly increased in the 26°C (46%) and 22°C (42%) groups. The increased proteasome activity may be due to increased Rpt6 Ser120 phosphorylation, which is known to enhance 26S proteasome activity. Together, our results indicate that the early events produced by subnormothermic perfusion in the liver can induce oxidative stress concomitantly with antioxidant glutathione preservation and enhanced function of the lysosomal and UPS systems. Thus, a brief hypothermia could trigger antioxidant mechanisms and may be functioning as a preconditioning stimulus. PMID:27800122

  8. Morphine Induces Ubiquitin-Proteasome Activity and Glutamate Transporter Degradation*

    PubMed Central

    Yang, Liling; Wang, Shuxing; Sung, Backil; Lim, Grewo; Mao, Jianren

    2008-01-01

    Glutamate transporters play a crucial role in physiological glutamate homeostasis, neurotoxicity, and glutamatergic regulation of opioid tolerance. However, how the glutamate transporter turnover is regulated remains poorly understood. Here we show that chronic morphine exposure induced posttranscriptional down-regulation of the glutamate transporter EAAC1 in C6 glioma cells with a concurrent decrease in glutamate uptake and increase in proteasome activity, which were blocked by the selective proteasome inhibitor MG-132 or lactacystin but not the lysosomal inhibitor chloroquin. At the cellular level, chronic morphine induced the PTEN (phosphatase and tensin homolog deleted on chromosome Ten)-mediated up-regulation of the ubiquitin E3 ligase Nedd4 via cAMP/protein kinase A signaling, leading to EAAC1 ubiquitination and proteasomal degradation. Either Nedd4 or PTEN knockdown with small interfering RNA prevented the morphine-induced EAAC1 degradation and decreased glutamate uptake. These data indicate that cAMP/protein kinase A signaling serves as an intracellular regulator upstream to the activation of the PTEN/Nedd4-mediated ubiquitin-proteasome system activity that is critical for glutamate transporter turnover. Under an in vivo condition, chronic morphine exposure also induced posttranscriptional down-regulation of the glutamate transporter EAAC1, which was prevented by MG-132, and transcriptional up-regulation of PTEN and Nedd4 within the spinal cord dorsal horn. Thus, inhibition of the ubiquitin-proteasome-mediated glutamate transporter degradation may be an important mechanism for preventing glutamate overexcitation and may offer a new strategy for treating certain neurological disorders and improving opioid therapy in chronic pain management. PMID:18539596

  9. Dss1 associating with the proteasome functions in selective nuclear mRNA export in yeast

    SciTech Connect

    Mannen, Taro; Andoh, Tomoko; Tani, Tokio

    2008-01-25

    Dss1p is an evolutionarily conserved small protein that interacts with BRCA2, a tumor suppressor protein, in humans. The Schizosaccharomyces pombe strain lacking the dss1{sup +} gene ({delta}dss1) shows a temperature-sensitive growth defect and accumulation of bulk poly(A){sup +} RNA in the nucleus at a nonpermissive temperature. In situ hybridization using probes for several specific mRNAs, however, revealed that the analyzed mRNAs were exported normally to the cytoplasm in {delta}dss1, suggesting that Dss1p is required for export of some subsets of mRNAs. We identified the pad1{sup +} gene, which encodes a component of the 26S proteasome, as a suppressor for the ts{sup -} phenotype of {delta}dss1. Unexpectedly, overexpression of Pad1p could suppress neither the defect in nuclear mRNA export nor a defect in proteasome function. In addition, loss of proteasome functions does not cause defective nuclear mRNA export. Dss1p seems to be a multifunctional protein involved in nuclear export of specific sets of mRNAs and the ubiquitin-proteasome pathway in fission yeast.

  10. De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder.

    PubMed

    Küry, Sébastien; Besnard, Thomas; Ebstein, Frédéric; Khan, Tahir N; Gambin, Tomasz; Douglas, Jessica; Bacino, Carlos A; Sanders, Stephan J; Lehmann, Andrea; Latypova, Xénia; Khan, Kamal; Pacault, Mathilde; Sacharow, Stephanie; Glaser, Kimberly; Bieth, Eric; Perrin-Sabourin, Laurence; Jacquemont, Marie-Line; Cho, Megan T; Roeder, Elizabeth; Denommé-Pichon, Anne-Sophie; Monaghan, Kristin G; Yuan, Bo; Xia, Fan; Simon, Sylvain; Bonneau, Dominique; Parent, Philippe; Gilbert-Dussardier, Brigitte; Odent, Sylvie; Toutain, Annick; Pasquier, Laurent; Barbouth, Deborah; Shaw, Chad A; Patel, Ankita; Smith, Janice L; Bi, Weimin; Schmitt, Sébastien; Deb, Wallid; Nizon, Mathilde; Mercier, Sandra; Vincent, Marie; Rooryck, Caroline; Malan, Valérie; Briceño, Ignacio; Gómez, Alberto; Nugent, Kimberly M; Gibson, James B; Cogné, Benjamin; Lupski, James R; Stessman, Holly A F; Eichler, Evan E; Retterer, Kyle; Yang, Yaping; Redon, Richard; Katsanis, Nicholas; Rosenfeld, Jill A; Kloetzel, Peter-Michael; Golzio, Christelle; Bézieau, Stéphane; Stankiewicz, Paweł; Isidor, Bertrand

    2017-02-02

    Degradation of proteins by the ubiquitin-proteasome system (UPS) is an essential biological process in the development of eukaryotic organisms. Dysregulation of this mechanism leads to numerous human neurodegenerative or neurodevelopmental disorders. Through a multi-center collaboration, we identified six de novo genomic deletions and four de novo point mutations involving PSMD12, encoding the non-ATPase subunit PSMD12 (aka RPN5) of the 19S regulator of 26S proteasome complex, in unrelated individuals with intellectual disability, congenital malformations, ophthalmologic anomalies, feeding difficulties, deafness, and subtle dysmorphic facial features. We observed reduced PSMD12 levels and an accumulation of ubiquitinated proteins without any impairment of proteasome catalytic activity. Our PSMD12 loss-of-function zebrafish CRISPR/Cas9 model exhibited microcephaly, decreased convolution of the renal tubules, and abnormal craniofacial morphology. Our data support the biological importance of PSMD12 as a scaffolding subunit in proteasome function during development and neurogenesis in particular; they enable the definition of a neurodevelopmental disorder due to PSMD12 variants, expanding the phenotypic spectrum of UPS-dependent disorders.

  11. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery

    SciTech Connect

    Mi, Lixin; Gan, Nanqin; Chung, Fung-Lung

    2009-10-16

    Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule-organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic {alpha}- and {beta}-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy to cope with misfolded proteins.

  12. Design, synthesis and biological evaluation of novel non-peptide boronic acid derivatives as proteasome inhibitors.

    PubMed

    Ge, Ying; Li, Aibo; Wu, Jianwei; Feng, Haiwei; Wang, Letian; Liu, Hongwu; Xu, Yungen; Xu, Qingxiang; Zhao, Li; Li, Yuyan

    2017-03-10

    A novel series of non-peptide proteasome inhibitors bearing the 1, 4-naphthoquinone scaffold and boronic acid warhead was developed. In the biological evaluation on the chymotrypsin-like activity of human 20S proteasome, five compounds showed IC50 values in the nanomolar range. Docking experiments into the yeast 20S proteasome rationalized their biological activities and allowed further optimization of this interesting class of inhibitors. Within the cellular proliferation inhibition assay and western blot analysis, compound 3e demonstrated excellent anti-proliferative activity against solid tumor cells and clear accumulation of ubiquitinated cellular proteins. Furthermore, in the microsomal stability assay compound 3e demonstrated much improved metabolic stability compared to bortezomib, emerging as a promising lead compound for further design of non-peptide proteasome inhibitors.

  13. Proteasome stress responses in Schistosoma mansoni.

    PubMed

    de Paula, Renato Graciano; de Magalhães Ornelas, Alice Maria; Morais, Enyara Rezende; de Souza Gomes, Matheus; de Paula Aguiar, Daniela; Magalhães, Lizandra Guidi; Rodrigues, Vanderlei

    2015-05-01

    The proteasome proteolytic system is the major ATP-dependent protease in eukaryotic cells responsible for intracellular protein turnover. Schistosoma mansoni has been reported to contain an ubiquitin-proteasome proteolytic pathway, and many studies have suggested a biological role of proteasomes in the development of this parasite. Additionally, evidence has suggested diversity in proteasome composition under several cellular conditions, and this might contribute to the regulation of its function in this parasite. The proteasomal system has been considered important to support the protein homeostasis during cellular stress. In this study, we described in vitro effects of oxidative stress, heat shock, and chemical stress on S. mansoni adults. Our findings showed that chemical stress induced with curcumin, IBMX, and MG132 modified the gene expression of the proteasomal enzymes SmHul5 and SmUbp6. Likewise, the expression of these genes was upregulated during oxidative stress and heat shock. Analyses of the S. mansoni life cycle showed differential gene expression in sporocysts, schistosomulae, and miracidia. These results suggested that proteasome accessory proteins participate in stress response during the parasite development. The expression level of SmHul5 and SmUbp6 was decreased by 16-fold and 9-fold, respectively, by the chemical stress induced with IBMX, which suggests proteasome disassembly. On the other hand, curcumin, MG132, oxidative stress, and heat shock increased the expression of these genes. Furthermore, the gene expression of maturation proteasome protein (SmPOMP) was increased in stress conditions induced by curcumin, MG132, and H₂O₂, which could be related to the synthesis of new proteasomes. S. mansoni adult worms were found to utilize similar mechanisms to respond to different conditions of stress. Our results demonstrated that oxidative stress, heat shock, and chemical stress modified the expression profile of genes related to the ubiquitin-proteasome

  14. Transgenic pig carrying green fluorescent proteasomes

    PubMed Central

    Miles, Edward L.; O’Gorman, Chad; Zhao, Jianguo; Samuel, Melissa; Walters, Eric; Yi, Young-Joo; Prather, Randall S.; Wells, Kevin D.; Sutovsky, Peter

    2013-01-01

    Among its many functions, the ubiquitin–proteasome system regulates substrate-specific proteolysis during the cell cycle, apoptosis, and fertilization and in pathologies such as Alzheimer’s disease, cancer, and liver cirrhosis. Proteasomes are present in human and boar spermatozoa, but little is known about the interactions of proteasomal subunits with other sperm proteins or structures. We have created a transgenic boar with green fluorescent protein (GFP) tagged 20S proteasomal core subunit α-type 1 (PSMA1-GFP), hypothesizing that the PSMA1-GFP fusion protein will be incorporated into functional sperm proteasomes. Using direct epifluorescence imaging and indirect immunofluorescence detection, we have confirmed the presence of PSMA1-GFP in the sperm acrosome. Western blotting revealed a protein band corresponding to the predicted mass of PSMA1-GFP fusion protein (57 kDa) in transgenic spermatozoa. Transgenic boar fertility was confirmed by in vitro fertilization, resulting in transgenic blastocysts, and by mating, resulting in healthy transgenic offspring. Immunoprecipitation and proteomic analysis revealed that PSMA1-GFP copurifies with several acrosomal membrane-associated proteins (e.g., lactadherin/milk fat globule E8 and spermadhesin alanine-tryptophan-asparagine). The interaction of MFGE8 with PSMA1-GFP was confirmed through cross-immunoprecipitation. The identified proteasome-interacting proteins may regulate sperm proteasomal activity during fertilization or may be the substrates of proteasomal proteolysis during fertilization. Proteomic analysis also confirmed the interaction/coimmunoprecipitation of PSMA1-GFP with 13/14 proteasomal core subunits. These results demonstrate that the PSMA1-GFP was incorporated in the assembled sperm proteasomes. This mammal carrying green fluorescent proteasomes will be useful for studies of fertilization and wherever the ubiquitin–proteasome system plays a role in cellular function or pathology. PMID:23550158

  15. Molecular shredders: how proteasomes fulfill their role.

    PubMed

    Groll, Michael; Clausen, Tim

    2003-12-01

    The 20S proteasome is a large, cylinder-shaped protease that is found in all domains of life and plays a crucial role in cellular protein turnover. It has multiple catalytic centers located within the hollow cavity of a molecular cage. This architecture prevents unwanted degradation of endogenous proteins and promotes processive degradation of substrates by restricting the dissociation of partially digested polypeptides. Although this kind of self-compartmentalization is generally conserved, the proteasomes of bacteria, archaea and eukaryotes show many differences in architecture, subunit composition and regulation. The structure of the 20S proteasome and its inherent role in the regulation of proteasome function are gradually being elucidated.

  16. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    PubMed

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  17. Cytoplasmic Lipid Droplets Are Sites of Convergence of Proteasomal and Autophagic Degradation of Apolipoprotein B

    PubMed Central

    Cheng, Jinglei; Fujita, Akikazu; Tokumoto, Toshinobu

    2006-01-01

    Lipid esters stored in cytoplasmic lipid droplets (CLDs) of hepatocytes are used to synthesize very low-density lipoproteins (VLDLs), into which apolipoprotein B (ApoB) is integrated cotranslationally. In the present study, by using Huh7 cells, derived from human hepatoma and competent for VLDL secretion, we found that ApoB is highly concentrated around CLDs to make “ApoB-crescents.” ApoB-crescents were seen in <10% of Huh7 cells under normal conditions, but the ratio increased to nearly 50% after 12 h of proteasomal inhibition by N-acetyl-l-leucinyl-l-leucinyl-l-norleucinal. Electron microscopy showed ApoB to be localized to a cluster of electron-lucent particles 50–100 nm in diameter adhering to CLDs. ApoB, proteasome subunits, and ubiquitinated proteins were detected in the CLD fraction, and this ApoB was ubiquitinated. Interestingly, proteasome inhibition also caused increases in autophagic vacuoles and ApoB in lysosomes. ApoB-crescents began to decrease after 12–24 h of proteasomal inhibition, but the decrease was blocked by an autophagy inhibitor, 3-methyladenine. Inhibition of autophagy alone caused an increase in ApoB-crescents. These observations indicate that both proteasomal and autophagy/lysosomal degradation of ApoB occur around CLDs and that the CLD surface functions as a unique platform for convergence of the two pathways. PMID:16597703

  18. Structural basis for the activation and inhibition of the UCH37 deubiquitylase

    PubMed Central

    Schmitt, Benjamin; Ndoja, Ada; Whitby, Frank G.; Robinson, Howard; Cohen, Robert E.; Yao, Tingting; Hill, Christopher P.

    2015-01-01

    SUMMARY The UCH37 deubiquitylase functions in two large and very different complexes, the 26S proteasome and the INO80 chromatin remodeler. We have performed biochemical characterization and determined crystal structures of UCH37 in complexes with RPN13 and NFRKB, which mediate its recruitment to proteasome and INO80, respectively. RPN13 and NFRKB make similar contacts to the UCH37 C-terminal domain, but quite different contacts to the catalytic UCH domain. RPN13 can activate UCH37 by disrupting dimerization, although physiologically-relevant activation likely results from stabilization of a surface competent for ubiquitin binding and modulation of the active-site crossover loop. In contrast, NFRKB inhibits UCH37 by blocking the ubiquitin-binding site and by disrupting the enzyme active site. These findings reveal remarkable commonality in mechanisms of recruitment, yet very different mechanisms of regulating enzyme activity, and provide a foundation for understanding the role of UCH37 in the unrelated proteasome and INO80 complexes. PMID:25702872

  19. FV-162 is a novel, orally bioavailable, irreversible proteasome inhibitor with improved pharmacokinetics displaying preclinical efficacy with continuous daily dosing

    PubMed Central

    Wang, Z; Dove, P; Wang, X; Shamas-Din, A; Li, Z; Nachman, A; Oh, Y J; Hurren, R; Ruschak, A; Climie, S; Press, B; Griffin, C; Undzys, E; Aman, A; Al-awar, R; Kay, L E; O'Neill, D; Trudel, S; Slassi, M; Schimmer, A D

    2015-01-01

    Approved proteasome inhibitors have advanced the treatment of multiple myeloma but are associated with serious toxicities, poor pharmacokinetics, and most with the inconvenience of intravenous administration. We therefore sought to identify novel orally bioavailable proteasome inhibitors with a continuous daily dosing schedule and improved therapeutic window using a unique drug discovery platform. We employed a fluorine-based medicinal chemistry technology to synthesize 14 novel analogs of epoxyketone-based proteasome inhibitors and screened them for their stability, ability to inhibit the chymotrypsin-like proteasome, and antimyeloma activity in vitro. The tolerability, pharmacokinetics, pharmacodynamic activity, and antimyeloma efficacy of our lead candidate were examined in NOD/SCID mice. We identified a tripeptide epoxyketone, FV-162, as a metabolically stable, potent proteasome inhibitor cytotoxic to human myeloma cell lines and primary myeloma cells. FV-162 had limited toxicity and was well tolerated on a continuous daily dosing schedule. Compared with the benchmark oral irreversible proteasome inhibitor, ONX-0192, FV-162 had a lower peak plasma concentration and longer half-life, resulting in a larger area under the curve (AUC). Oral FV-162 treatment induced rapid, irreversible inhibition of chymotrypsin-like proteasome activity in murine red blood cells and inhibited tumor growth in a myeloma xenograft model. Our data suggest that oral FV-162 with continuous daily dosing schedule displays a favorable safety, efficacy, and pharmacokinetic profile in vivo, identifying it as a promising lead for clinical evaluation in myeloma therapy. PMID:26158521

  20. Ubiquitin/proteasome-mediated proteolysis is involved in the response to flooding stress in soybean roots, independent of oxygen limitation.

    PubMed

    Yanagawa, Yuki; Komatsu, Setsuko

    2012-04-01

    Ubiquitin/proteasome-mediated proteolysis plays an important role in the response to several environmental stresses. Here, we described the relationship of the proteolysis in the flooding stress in soybean (Glycine max L. cultivar Enrei). Immunoblot analyses were performed using antibodies against two subunits of 26S proteasome, Rpt5 and Rpn10, 20S proteasome and two subunits of COP9 signalosome (CSN), CSN4 and CSN5, to compare between flooded and untreated roots. We also examined their protein amounts in the condition of low oxygen. Moreover, crude extracts from flooded or untreated roots incubated with or without a proteasome inhibitor MG132 were analyzed by proteomics technique. We revealed that the amount of ubiquitinated proteins in soybean roots decreased after flooding treatment and increased to levels similar to controls after de-submergence. Both CSN4 and CSN5 accumulated following flooding treatment, although no significant difference was observed in proteasome. Low oxygen had no effect on the amount of ubiquitinated proteins or CSN4. By 2D-PAGE, the amount of 6 proteins changed significantly following MG132 treatment in flooding stressed plants. We conclude that the accumulation of CSN proteins might enhance the degradation of ubiquitinated proteins independent of hypoxia caused by flooding, thereby lowering their abundance during flooding stress.

  1. Molecular mechanisms of proteasome plasticity in aging.

    PubMed

    Rodriguez, Karl A; Gaczynska, Maria; Osmulski, Pawel A

    2010-02-01

    The ubiquitin-proteasome pathway plays a crucial role in regulation of intracellular protein turnover. Proteasome, the central protease of the pathway, encompasses multi-subunit assemblies sharing a common catalytic core supplemented by regulatory modules and localizing to different subcellular compartments. To better comprehend age-related functions of the proteasome we surveyed content, composition and catalytic properties of the enzyme in cytosolic, microsomal and nuclear fractions obtained from mouse livers subjected to organismal aging. We found that during aging subunit composition and subcellular distribution of proteasomes changed without substantial alterations in the total level of core complexes. We observed that the general decline in proteasomes functions was limited to nuclear and cytosolic compartments. Surprisingly, the observed changes in activity and specificity were linked to the amount of the activator module and distinct composition of the catalytic subunits. In contrast, activity, specificity and composition of the microsomal-associated proteasomes remained mostly unaffected by aging; however their relative contribution to the total activity was substantially elevated. Unexpectedly, the nuclear proteasomes were affected most profoundly by aging possibly triggering significant changes in cellular signaling and transcription. Collectively, the data indicate an age-related refocusing of proteasome from the compartment-specific functions towards general protein maintenance.

  2. Bortezomib-resistance is associated with increased levels of proteasome subunits and apoptosis-avoidance

    PubMed Central

    Wu, Yi-Xin; Yang, Jia-Hua; Saitsu, Hirotomo

    2016-01-01

    Bortezomib (BTZ), a proteasome inhibitor, is the first proteasome inhibitor to be used in clinical practice. Here we investigated the mechanisms underlying acquired bortezomib resistance in hepatocellular carcinoma (HCC) cells. Using stepwise selection, we established two acquired bortezomib-resistant HCC cell lines, a bortezomib-resistant HepG2 cell line (HepG2/BTZ) and bortezomib-resistant HuH7 cell line (HuH7/BTZ). The 50% inhibitory concentration values of HepG2/BTZ and HuH7/BTZ were respectively 15- and 39-fold higher than those of parental cell lines. Sequence analysis of the bortezomib-binding pocket in the β5-subunit showed no mutation. However, bortezomib-resistant HCC cells had increased expression of β1 and β5 proteasome subunits. These alterations of proteasome expression were accompanied by a weak degree of proteasome inhibition in bortezomib-resistant cells than that in wild-type cells after bortezomib exposure. Furthermore, bortezomib-resistant HCC cells acquired resistance to apoptosis. Bortezomib up-regulated pro-apoptotic proteins of the Bcl-2 protein family, Bax and Noxa in wild-type HCC cells. However, in bortezomib-resistant HCC cells, resistance to apoptosis was accompanied by loss of the ability to stabilize and accumulate these proteins. Thus, increased expression and increased activity of proteasomes constitute an adaptive and auto regulatory feedback mechanism to allow cells to survive exposure bortezomib. PMID:27769058

  3. The proteasomes of two marine decapod crustaceans, European lobster (Homarus gammarus) and Edible crab (Cancer pagurus), are differently impaired by heavy metals.

    PubMed

    Götze, Sandra; Bose, Aneesh; Sokolova, Inna M; Abele, Doris; Saborowski, Reinhard

    2014-05-01

    The intracellular ubiquitin-proteasome system is a key regulator of cellular processes involved in the controlled degradation of short-living or malfunctioning proteins. Certain diseases and cellular dysfunctions are known to arise from the disruption of proteasome pathways. Trace metals are recognized stressors of the proteasome system in vertebrates and plants, but their effects on the proteasome of invertebrates are not well understood. Since marine invertebrates, and particularly benthic crustaceans, can be exposed to high metal levels, we studied the effects of in vitro exposure to Hg(2+), Zn(2+), Cu(2+), and Cd(2+) on the activities of the proteasome from the claw muscles of lobsters (Homarus gammarus) and crabs (Cancer pagurus). The chymotrypsin like activity of the proteasome of these two species showed different sensitivity to metals. In lobsters the activity was significantly inhibited by all metals to a similar extent. In crabs the activities were severely suppressed only by Hg(2+) and Cu(2+) while Zn(2+) had only a moderate effect and Cd(2+) caused almost no inhibition of the crab proteasome. This indicates that the proteasomes of both species possess structural characteristics that determine different susceptibility to metals. Consequently, the proteasome-mediated protein degradation in crab C. pagurus may be less affected by metal pollution than that of the lobster H. gammarus.

  4. Proteasome regulates turnover of toxic human amylin in pancreatic cells

    PubMed Central

    Singh, Sanghamitra; Trikha, Saurabh; Sarkar, Anjali; Jeremic, Aleksandar M.

    2016-01-01

    Toxic human amylin (hA) oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Although recent studies demonstrated a causal connection between hA uptake and toxicity in pancreatic cells, the mechanism of amylin’s clearance following its internalization and its relationship to toxicity is yet to be determined, and hence was investigated here. Using pancreatic rat insulinoma β-cells and human islets as model systems, we show that hA, following its internalization, first accumulates in the cytosol followed by its translocation into nucleus, and to a lesser extent lysosomes, keeping the net cytosolic amylin content low. An increase in hA accumulation in the nucleus of pancreatic cells correlated with its cytotoxicity, suggesting that its excessive accumulation in the nucleus is detrimental. hA interacted with 20S core and 19S lid subunits of the β-cell proteasomal complex, as suggested by immunoprecipitation and confocal microscopy studies, which subsequently resulted in a decrease in the proteasome’s proteolytic activity in these cells. In vitro binding and activity assays confirmed an intrinsic and potent ability of amylin to interact with the 20S core complex thereby modulating its proteolytic activity. Interestingly, less toxic and aggregation incapable rat amylin (rA) showed a comparable inhibitory effect on proteasome activity and protein ubiquitination, decoupling amylin aggregation/toxicity and amylin-induced protein stress. In agreement with these studies, inhibition of proteasomal proteolytic activity significantly increased intracellular amylin content and toxicity. Taken together, our results suggest a pivotal role of proteasomes in amylin’s turnover and detoxification in pancreatic cells. PMID:27340132

  5. Dissecting a role of a charge and conformation of Tat2 peptide in allosteric regulation of 20S proteasome.

    PubMed

    Witkowska, Julia; Karpowicz, Przemysław; Gaczynska, Maria; Osmulski, Pawel A; Jankowska, Elżbieta

    2014-08-01

    Proteasome is a 'proteolytic factory' that constitutes an essential part of the ubiquitin-proteasome pathway. The involvement of proteasome in regulation of all major aspects of cellular physiology makes it an attractive drug target. So far, only inhibitors of the proteasome entered the clinic as anti-cancer drugs. However, proteasome regulators may also be useful for treatment of inflammatory and neurodegenerative diseases. We established in our previous studies that the peptide Tat2, comprising the basic domain of HIV-1 Tat protein: R(49) KKRRQRR(56) , supplemented with Q(66) DPI(69) fragment, inhibits the 20S proteasome in a noncompetitive manner. Mechanism of Tat2 likely involves allosteric regulation because it competes with the proteasome natural 11S activator for binding to the enzyme noncatalytic subunits. In this study, we performed alanine walking coupled with biological activity measurements and FTIR and CD spectroscopy to dissect contribution of a charge and conformation of Tat2 to its capability to influence peptidase activity of the proteasome. In solution, Tat2 and most of its analogs with a single Ala substitution preferentially adopted a conformation containing PPII/turn structural motifs. Replacing either Asp10 or two or more adjacent Arg/Lys residues induced a random coil conformation, probably by disrupting ionic interactions responsible for stabilization of the peptides ordered structure. The random coil Tat2 analogs lost their capability to activate the latent 20S proteasome. In contrast, inhibitory properties of the peptides more significantly depended on their positive charge. The data provide valuable clues for the future optimization of the Tat2-based proteasome regulators.

  6. CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval.

    PubMed

    Jarome, Timothy J; Ferrara, Nicole C; Kwapis, Janine L; Helmstetter, Fred J

    2016-02-01

    Numerous studies have suggested that memories "destabilize" and require de novo protein synthesis in order to reconsolidate following retrieval, but very little is known about how this destabilization process is regulated. Recently, ubiquitin-proteasome mediated protein degradation has been identified as a critical regulator of memory trace destabilization following retrieval, though the specific mechanisms controlling retrieval-induced changes in ubiquitin-proteasome activity remain equivocal. Here, we found that proteasome activity is increased in the amygdala in a CaMKII-dependent manner following the retrieval of a contextual fear memory. We show that in vitro inhibition of CaMKII reversed retrieval-induced increases in proteasome activity. Additionally, in vivo pharmacological blockade of CaMKII abolished increases in proteolytic activity and activity related regulatory phosphorylation in the amygdala following retrieval, suggesting that CaMKII was "upstream" of protein degradation during the memory reconsolidation process. Consistent with this, while inhibiting CaMKII in the amygdala did not impair memory following retrieval, it completely attenuated the memory impairments that resulted from post-retrieval protein synthesis blockade. Collectively, these results suggest that CaMKII controls the initiation of the memory reconsolidation process through regulation of the proteasome.

  7. Interaction of Gcn4 with target gene chromatin is modulated by proteasome function

    PubMed Central

    Howard, Gregory C.; Tansey, William P.

    2016-01-01

    The ubiquitin–proteasome system (UPS) influences gene transcription in multiple ways. One way in which the UPS affects transcription centers on transcriptional activators, the function of which can be stimulated by components of the UPS that also trigger their destruction. Activation of transcription by the yeast activator Gcn4, for example, is attenuated by mutations in the ubiquitin ligase that mediates Gcn4 ubiquitylation or by inhibition of the proteasome, leading to the idea that ubiquitin-mediated proteolysis of Gcn4 is required for its activity. Here we probe the steps in Gcn4 activity that are perturbed by disruption of the UPS. We show that the ubiquitylation machinery and the proteasome control different steps in Gcn4 function and that proteasome activity is required for the ability of Gcn4 to bind to its target genes in the context of chromatin. Curiously, the effect of proteasome inhibition on Gcn4 activity is suppressed by mutations in the ubiquitin-selective chaperone Cdc48, revealing that proteolysis per se is not required for Gcn4 activity. Our data highlight the role of Cdc48 in controlling promoter occupancy by Gcn4 and support a model in which ubiquitylation of activators—not their destruction—is important for function. PMID:27385344

  8. Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin-proteasome system

    PubMed Central

    Guharoy, Mainak; Bhowmick, Pallab; Sallam, Mohamed; Tompa, Peter

    2016-01-01

    Specific signals (degrons) regulate protein turnover mediated by the ubiquitin-proteasome system. Here we systematically analyse known degrons and propose a tripartite model comprising the following: (1) a primary degron (peptide motif) that specifies substrate recognition by cognate E3 ubiquitin ligases, (2) secondary site(s) comprising a single or multiple neighbouring ubiquitinated lysine(s) and (3) a structurally disordered segment that initiates substrate unfolding at the 26S proteasome. Primary degron sequences are conserved among orthologues and occur in structurally disordered regions that undergo E3-induced folding-on-binding. Posttranslational modifications can switch primary degrons into E3-binding-competent states, thereby integrating degradation with signalling pathways. Degradation-linked lysines tend to be located within disordered segments that also initiate substrate degradation by effective proteasomal engagement. Many characterized mutations and alternative isoforms with abrogated degron components are implicated in disease. These effects result from increased protein stability and interactome rewiring. The distributed nature of degrons ensures regulation, specificity and combinatorial control of degradation. PMID:26732515

  9. HDAC and Proteasome Inhibitors Synergize to Activate Pro-Apoptotic Factors in Synovial Sarcoma

    PubMed Central

    Barrott, Jared J.; Yao, Ren Jie; Poulin, Neal M.; Brodin, Bertha A.; Jones, Kevin B.; Underhill, T. Michael; Nielsen, Torsten O.

    2017-01-01

    Conventional cytotoxic therapies for synovial sarcoma provide limited benefit, and no drugs specifically targeting its driving SS18-SSX fusion oncoprotein are currently available. Patients remain at high risk for early and late metastasis. A high-throughput drug screen consisting of over 900 tool compounds and epigenetic modifiers, representing over 100 drug classes, was undertaken in a panel of synovial sarcoma cell lines to uncover novel sensitizing agents and targetable pathways. Top scoring drug categories were found to be HDAC inhibitors and proteasomal targeting agents. We find that the HDAC inhibitor quisinostat disrupts the SS18-SSX driving protein complex, thereby reestablishing expression of EGR1 and CDKN2A tumor suppressors. In combination with proteasome inhibition, HDAC inhibitors synergize to decrease cell viability and elicit apoptosis. Quisinostat inhibits aggresome formation in response to proteasome inhibition, and combination treatment leads to elevated endoplasmic reticulum stress, activation of pro-apoptotic effector proteins BIM and BIK, phosphorylation of BCL-2, increased levels of reactive oxygen species, and suppression of tumor growth in a murine model of synovial sarcoma. This study identifies and provides mechanistic support for a particular susceptibility of synovial sarcoma to the combination of quisinostat and proteasome inhibition. PMID:28056055

  10. Role of Proteasome-Dependent Protein Degradation in Long-Term Operant Memory in "Aplysia"

    ERIC Educational Resources Information Center

    Lyons, Lisa C.; Gardner, Jacob S.; Gandour, Catherine E.; Krishnan, Harini C.

    2017-01-01

    We investigated the in vivo role of protein degradation during intermediate (ITM) and long-term memory (LTM) in "Aplysia" using an operant learning paradigm. The proteasome inhibitor MG-132 inhibited the induction and molecular consolidation of LTM with no effect on ITM. Remarkably, maintenance of steady-state protein levels through…

  11. Molecular Mechanisms of the Cardiotoxicity of the Proteasomal-Targeted Drugs Bortezomib and Carfilzomib.

    PubMed

    Hasinoff, Brian B; Patel, Daywin; Wu, Xing

    2016-07-07

    Bortezomib and carfilzomib are anticancer drugs that target the proteasome. However, these agents have been shown to exhibit some specific cardiac toxicities by as yet unknown mechanisms. Bortezomib and carfilzomib are also being used clinically in combination with doxorubicin, which is also cardiotoxic. A primary neonatal rat myocyte model was used to study these cardiotoxic mechanisms. Exposure to submicromolar concentrations of bortezomib and carfilzomib resulted in significant myocyte damage and induced apoptosis. Both bortezomib and carfilzomib inhibited the chymotrypsin-like proteasomal activity of myocyte lysate in the low nanomolar concentration range and exhibited time-dependent inhibition kinetics. The high sensitivity of myocytes, which were determined to contain high specific levels of chymotrypsin-like proteasomal activity, to the damaging effects of bortezomib and carfilzomib was likely due to the inhibition of proteasomal-dependent ongoing sarcomeric protein turnover. A brief preexposure of myocytes to non-toxic nanomolar concentrations of bortezomib or carfilzomib greatly increased doxorubicin-mediated damage, which suggests that the combination of doxorubicin with either bortezomib or carfilzomib may produce more than additive cardiotoxicity. The doxorubicin cardioprotective agent dexrazoxane partially protected myocytes from doxorubicin plus bortezomib or carfilzomib treatment, in spite of the fact that bortezomib and carfilzomib inhibited the dexrazoxane-induced decreases in topoisomerase IIβ protein levels in myocytes. These latter results suggest that the doxorubicin cardioprotective effects of dexrazoxane and the doxorubicin-mediated cardiotoxicity were not exclusively due to targeting of topoisomerase IIβ.

  12. Proteasomal dysfunction in sporadic Parkinson's disease.

    PubMed

    McNaught, Kevin St P; Jackson, Tehone; JnoBaptiste, Ruth; Kapustin, Alexander; Olanow, C Warren

    2006-05-23

    The cause and mechanism of neuronal death in sporadic Parkinson's disease (PD) continue to elude investigators. Recently, alterations in proteasomal function have been detected in the brain of patients with the illness. The biochemical basis of the defect and its relevance to the disease process are now being studied. The available results suggest that proteasomal dysfunction could underlie protein accumulation, Lewy body formation, and neuron death in PD. The cause of proteasomal dysfunction is unknown at present, but this could relate to gene mutations, oxidative damage, ATP depletion, or the actions of environmental toxins. It remains to be established if proteasomal dysfunction plays a primary or a secondary role in the initiation or progression of the neurodegenerative process in PD.

  13. Coordination between proteasome impairment and caspase activation leading to TAU pathology: neuroprotection by cAMP

    PubMed Central

    Metcalfe, M J; Huang, Q; Figueiredo-Pereira, M E

    2012-01-01

    Neurofibrillary tangles (NFTs) are hallmarks of Alzheimer's disease (AD). The main component of NFTs is TAU, a highly soluble microtubule-associated protein. However, when TAU is cleaved at Asp421 by caspases it becomes prone to aggregation leading to NFTs. What triggers caspase activation resulting in TAU cleavage remains unclear. We investigated in rat cortical neurons a potential coordination between proteasome impairment and caspase activation. We demonstrate that upon proteasome inhibition, the early accumulation of detergent-soluble ubiquitinated (SUb) proteins paves the way to caspase activation and TAU pathology. This occurs with two drugs that inhibit the proteasome by different means: the product of inflammation prostaglandin J2 (PGJ2) and epoxomicin. Our results pinpoint a critical early event, that is, the buildup of SUb proteins that contributes to caspase activation, TAU cleavage, TAU/Ub-protein aggregation and neuronal death. Furthermore, to our knowledge, we are the first to demonstrate that elevating cAMP in neurons with dibutyryl-cAMP (db-cAMP) or the lipophilic peptide PACAP27 prevents/diminishes caspase activation, TAU cleavage and neuronal death induced by PGJ2, as long as these PGJ2-induced changes are moderate. db-cAMP also stimulated proteasomes, and mitigated proteasome inhibition induced by PGJ2. We propose that targeting cAMP/PKA to boost proteasome activity in a sustainable manner could offer an effective approach to avoid early accumulation of SUb proteins and later caspase activation, and TAU cleavage, possibly preventing/delaying AD neurodegeneration. PMID:22717581

  14. Catabolism of endogenous and overexpressed APH1a and PEN2: evidence for artifactual involvement of the proteasome in the degradation of overexpressed proteins

    PubMed Central

    Dunys, Julie; Kawarai, Toshitaka; Wilk, Sherwin; St. George-Hyslop, Peter; Alves Da Costa, Cristine; Checler, Frédéric

    2005-01-01

    PS (presenilin)-dependent γ-secretase occurs as a high-molecular-mass complex composed of either PS1 or PS2 associated with Nct (nicastrin), PEN2 (presenilin enhancer 2 homologue) and APH1 (anterior pharynx defective 1 homologue). Numerous reports have documented the very complicated physical and functional cross-talk between these proteins that ultimately governs the biological activity of the γ-secretase, but very few studies examined the fate of the components of the complex. We show that, in both HEK-293 cells and the TSM1 neuronal cell line, the immunoreactivities of overexpressed myc-tagged-APH1a and -PEN2 were enhanced by the proteasome inhibitors ZIE and lactacystin, whereas a broad range of protease inhibitors had no effect. By contrast, proteasome inhibitors were totally unable to affect the cellular expression of endogenous APH1aL and PEN2 in HEK-293 cells, TSM1 and primary cultured cortical neurons. To explain this apparent discrepancy, we examined the degradation of myc-tagged-APH1a and -PEN2, in vitro, by cell extracts containing endogenous proteasome and by purified 20S proteasome. Strikingly, myc-tagged-APH1a and -PEN2 resist proteolysis by endogenous proteasome and purified 20S proteasome. We also show that endogenous PEN2 expression was drastically higher in wild-type than in PS- and Nct-deficient fibroblasts and was enhanced by proteasome inhibitors only in the two deficient cell systems. However, here again, purified 20S proteasome appeared unable to cleave endogenous PEN2 present in PS-deficient fibroblasts. The levels of endogenous APH1aL-like immunoreactivity were not modified by proteasome inhibitors and were unaffected by PS deficiency. Altogether, our results indicate that endogenous PEN2 and APH1aL do not undergo proteasomal degradation under physiological conditions in HEK-293 cells, TSM1 cells and fibroblasts and that the clearance of PEN2 in PS- and Nct-deficient fibroblasts is not mediated by 20S proteasome. Whether the 26S

  15. Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis.

    PubMed

    Kapuria, Vaibhav; Peterson, Luke F; Fang, Dexing; Bornmann, William G; Talpaz, Moshe; Donato, Nicholas J

    2010-11-15

    Recent evidence suggests that several deubiquitinases (DUB) are overexpressed or activated in tumor cells and many contribute to the transformed phenotype. Agents with DUB inhibitory activity may therefore have therapeutic value. In this study, we describe the mechanism of action of WP1130, a small molecule derived from a compound with Janus-activated kinase 2 (JAK2) kinase inhibitory activity. WP1130 induces rapid accumulation of polyubiquitinated (K48/K63-linked) proteins into juxtanuclear aggresomes, without affecting 20S proteasome activity. WP1130 acts as a partly selective DUB inhibitor, directly inhibiting DUB activity of USP9x, USP5, USP14, and UCH37, which are known to regulate survival protein stability and 26S proteasome function. WP1130-mediated inhibition of tumor-activated DUBs results in downregulation of antiapoptotic and upregulation of proapoptotic proteins, such as MCL-1 and p53. Our results show that chemical modification of a previously described JAK2 inhibitor results in the unexpected discovery of a novel DUB inhibitor with a unique antitumor mechanism.

  16. Deimination of the myelin basic protein decelerates its proteasome-mediated metabolism.

    PubMed

    Kuzina, E S; Kudriaeva, A A; Glagoleva, I S; Knorre, V D; Gabibov, A G; Belogurov, A A

    2016-07-01

    Deimination of myelin basic protein (MBP) by peptidylarginine deiminase (PAD) prevents its binding to the proteasome and decelerates its degradation by the proteasome in mammalian cells. Potential anticancer drug tetrazole analogue of chloramidine 2, at concentrations greater than 1 µM inhibits the enzymatic activity of PAD in vitro. The observed acceleration of proteasome hydrolysis of MBP to antigenic peptides in the presence of PAD inhibitor may increase the efficiency of lesion of the central nervous system by cytotoxic lymphocytes in multiple sclerosis. We therefore suggest that clinical trials and the introduction of PAD inhibitors in clinical practice for the treatment of malignant neoplasms should be performed only after a careful analysis of their potential effect on the induction of autoimmune neurodegeneration processes.

  17. Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells.

    PubMed

    Jang, Jiwon; Wang, Yidi; Kim, Hyung-Seok; Lalli, Matthew A; Kosik, Kenneth S

    2014-10-01

    Nuclear factor, erythroid 2-like 2 (Nrf2) is a master transcription factor for cellular defense against endogenous and exogenous stresses by regulating expression of many antioxidant and detoxification genes. Here, we show that Nrf2 acts as a key pluripotency gene and a regulator of proteasome activity in human embryonic stem cells (hESCs). Nrf2 expression is highly enriched in hESCs and dramatically decreases upon differentiation. Nrf2 inhibition impairs both the self-renewal ability of hESCs and re-establishment of pluripotency during cellular reprogramming. Nrf2 activation can delay differentiation. During early hESC differentiation, Nrf2 closely colocalizes with OCT4 and NANOG. As an underlying mechanism, our data show that Nrf2 regulates proteasome activity in hESCs partially through proteasome maturation protein (POMP), a proteasome chaperone, which in turn controls the proliferation of self-renewing hESCs, three germ layer differentiation and cellular reprogramming. Even modest proteasome inhibition skews the balance of early differentiation toward mesendoderm at the expense of an ectodermal fate by decreasing the protein level of cyclin D1 and delaying the degradation of OCT4 and NANOG proteins. Taken together, our findings suggest a new potential link between environmental stress and stemness with Nrf2 and the proteasome coordinately positioned as key mediators.

  18. Terminal functionalized thiourea-containing dipeptides as multidrug-resistance reversers that target 20S proteasome and cell proliferation.

    PubMed

    Qin, Jian-Mei; Huang, Ri-Zhen; Yao, Gui-Yang; Liao, Zhi-Xin; Pan, Ying-Ming; Wang, Heng-Shan

    2017-01-27

    A series of inhibitors of 20S proteasome based on terminal functionalized dipeptide derivatives containing the thiourea moiety were synthesized and evaluated for inhibition of 20S proteasome and the effects of multidrug-resistance reversers. These compounds exhibited significant selectivity to the β5-subunit of the human 20S proteasome with IC50 values at submicromolar concentrations. A docking study of the most active compound 6i revealed key interactions between 6i and the active site of the 20S proteasome in which the thiourea moiety and a nitro group were important for improving activity. In particular, compound 6i appeared to be the most potent compound against the NCI-H460 cell line, and displayed similar efficiency in drug-sensitive versus drug-resistant cancer cell lines, at least partly, by inhibition of the activity of 20S proteasome and induce apoptosis. In addition, 6i-induced apoptosis was significantly facilitated in NCI-H460/DOX cells that had been pretreated with inhibitors of P-gp. Mechanistically, compound 6i might trigger apoptotic signalling pathway. Thus, we conclude that dipeptide derivatives containing the thiourea moiety may be the potential inhibitors of proteasome with the ability to reverse multidrug resistance.

  19. Crystal structure of the human 20S proteasome in complex with carfilzomib.

    PubMed

    Harshbarger, Wayne; Miller, Chase; Diedrich, Chandler; Sacchettini, James

    2015-02-03

    Proteasome inhibition is highly effective as a treatment for multiple myeloma, and recently carfilzomib was granted US FDA approval for the treatment of relapsed and refractory multiple myeloma. Here, we report the X-ray crystal structure of the human constitutive 20S proteasome with and without carfilzomib bound at 2.9 and 2.6 Å, respectively. Our data indicate that the S3 and S4 binding pockets play a pivotal role in carfilzomib's selectivity for chymotrypsin-like sites. Structural comparison with the mouse immunoproteasome crystal structure reveals amino acid substitutions that explain carfilzomib's slight preference for chymotrypsin-like subunits of constitutive proteasomes. In addition, comparison of the human proteasome:carfilzomib complex with the mouse proteasome:PR-957 complex reveals new details that explain why PR-957 is selective for immunoproteasomes. Together, the data presented here support the design of inhibitors for either constitutive or immunoproteasomes, with implications for the treatment of cancers as well as autoimmune and neurodegenerative diseases.

  20. High-throughput bioluminescence screening of ubiquitin-proteasome pathway inhibitors from chemical and natural sources.

    PubMed

    Ausseil, Frederic; Samson, Arnaud; Aussagues, Yannick; Vandenberghe, Isabelle; Creancier, Laurent; Pouny, Isabelle; Kruczynski, Anna; Massiot, Georges; Bailly, Christian

    2007-02-01

    To discover original inhibitors of the ubiquitin-proteasome pathway, the authors have developed a cell-based bioluminescent assay and used it to screen collections of plant extracts and chemical compounds. They first established a DLD-1 human colon cancer cell line that stably expresses a 4Ubiquitin-Luciferase (4Ub-Luc) reporter protein, efficiently targeted to the ubiquitin-proteasome degradation pathway. The assay was then adapted to 96- and 384-well plate formats and calibrated with reference proteasome inhibitors. Assay robustness was carefully assessed, particularly cell toxicity, and the statistical Z factor value was calculated to 0.83, demonstrating a good performance level of the assay. A total of 18,239 molecules and 15,744 plant extracts and fractions thereof were screened for their capacity to increase the luciferase activity in DLD-1 4Ub-Luc cells, and 21 molecules and 66 extracts inhibiting the ubiquitin-proteasome pathway were identified. The fractionation of an active methanol extract of Physalis angulata L. aerial parts was performed to isolate 2 secosteroids known as physalin B and C. In a cell-based Western blot assay, the ubiquitinated protein accumulation was confirmed after a physalin treatment confirming the accuracy of the screening process. The method reported here thus provides a robust approach to identify novel ubiquitin-proteasome pathway inhibitors in large collections of chemical compounds and natural products.

  1. Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome

    PubMed Central

    Beenukumar, R. R.; Gödderz, Daniela; Palanimurugan, R.; Dohmen, R. J.

    2015-01-01

    Ornithine decarboxylase (ODC), a ubiquitin-independent substrate of the proteasome, is a homodimeric protein with a rate-limiting function in polyamine biosynthesis. Polyamines regulate ODC levels by a feedback mechanism mediated by ODC antizyme (OAZ). Higher cellular polyamine levels trigger the synthesis of OAZ and also inhibit its ubiquitin-dependent proteasomal degradation. OAZ binds ODC monomers and targets them to the proteasome. Here, we report that polyamines, aside from their role in the control of OAZ synthesis and stability, directly enhance OAZ-mediated ODC degradation by the proteasome. Using a stable mutant of OAZ, we show that polyamines promote ODC degradation in Saccharomyces cerevisiae cells even when OAZ levels are not changed. Furthermore, polyamines stimulated the in vitro degradation of ODC by the proteasome in a reconstituted system using purified components. In these assays, spermine shows a greater effect than spermidine. By contrast, polyamines do not have any stimulatory effect on the degradation of ubiquitin-dependent substrates. PMID:28357293

  2. Cloning and partial characterization of the proteasome S4 ATPase from Plasmodium falciparum.

    PubMed

    Certad, G; Abrahem, A; Georges, E

    1999-11-01

    Certad, G., Abrahem, A., and Georges, E. 1999. Cloning and Partial characterization of the proteasome S4 ATPase from Plasmodium falciparum. Experimental Parasitology 93, 123-131. The ATP-ubiquitin-proteasome pathway mediates the nonlysosomal degradation of cytosolic proteins in eukaryotic cells. The activities of this pathway have been shown to regulate cell growth and differentiation through modulation of regulatory proteins. The proteasome is a large complex consisting of two multisubunit structures, the 20S and 19S(PA700) or P28 complexes, that combine to form the 26S particles. In this study, we describe the cloning of a cDNA encoding the proteasome subunit 4 ATPase homologue from Plasmodium falciparum (PFS4). Analysis of the PFS4 cDNA sequence shows an open reading frame encoding a deduced protein of 455 amino acids. Moreover, comparison of PFS4 cDNA sequence to that of genomic fragments encoding PFS4 showed identical sequences with no detectable introns. Database searches revealed a high sequence identity to those of rice, yeast, mouse, Drosophila, and human S4 ATPases. However, PFS4 contains two unique inserts of nine and seven amino acid residues in the N-terminal domain. Interestingly, only the rice S4 contains the latter (seven amino acids) insert with four identical amino acids. In vitro expression of the full-length cDNA encoding the PFS4, using a transcription-translation-coupled reticulocyte lysate, shows a 50-kDa [(35)S]methionine-labeled protein which was immunoprecipitated with PFS4 anti-peptide antiserum. Southern blot analysis of genomic DNA digests shows a single gene copy of PFS4 in P. falciparum. Of interest was the effect of the proteasome-specific natural product, lactacystin, on the growth of the parasite, with IC(50) values of 0.6-0.92 microM. The latter IC(50) values of lactacystin for different clones of P. falciparum are comparable to those obtained for mammalian cell lines (0.65 microM), suggesting the presence of a conserved

  3. Ubiquitin-proteasome system and hereditary cardiomyopathies.

    PubMed

    Schlossarek, Saskia; Frey, Norbert; Carrier, Lucie

    2014-06-01

    Adequate protein turnover is essential for cardiac homeostasis. Different protein quality controls are involved in the maintenance of protein homeostasis, including molecular chaperones and co-chaperones, the autophagy-lysosomal pathway, and the ubiquitin-proteasome system (UPS). In the last decade, a series of evidence has underlined a major function of the UPS in cardiac physiology and disease. Particularly, recent studies have shown that dysfunctional proteasomal function leads to cardiac disorders. Hypertrophic and dilated cardiomyopathies are the two most prevalent inherited cardiomyopathies. Both are primarily transmitted as an autosomal-dominant trait and mainly caused by mutations in genes encoding components of the cardiac sarcomere, including a relevant striated muscle-specific E3 ubiquitin ligase. A growing body of evidence indicates impairment of the UPS in inherited cardiomyopathies as determined by measurement of the level of ubiquitinated proteins, the activities of the proteasome and/or the use of fluorescent UPS reporter substrates. The present review will propose mechanisms of UPS impairment in inherited cardiomyopathies, summarize the potential consequences of UPS impairment, including activation of the unfolded protein response, and underline some therapeutic options available to restore proteasome function and therefore cardiac homeostasis and function. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".

  4. Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections.

    PubMed

    Misas-Villamil, Johana C; van der Burgh, Aranka M; Grosse-Holz, Friederike; Bach-Pages, Marcel; Kovács, Judit; Kaschani, Farnusch; Schilasky, Sören; Emon, Asif Emran Khan; Ruben, Mark; Kaiser, Markus; Overkleeft, Hermen S; van der Hoorn, Renier A L

    2017-01-24

    The proteasome is a nuclear - cytoplasmic proteolytic complex involved in nearly all regulatory pathways in plant cells. The three different catalytic activities of the proteasome can have different functions but tools to monitor and control these subunits selectively are not yet available in plant science. Here, we introduce subunit-selective inhibitors and dual-color fluorescent activity-based probes for studying two of the three active catalytic subunits of the plant proteasome. We validate these tools in two model plants and use this to study the proteasome during plant-microbe interactions. Our data reveals that Nicotiana benthamiana incorporates two different paralogs of each catalytic subunit into active proteasomes. Interestingly, both β1 and β5 activities are significantly increased upon infection with pathogenic Pseudomonas syringae pv. tomato DC3000 lacking hopQ1-1 (PtoDC3000(ΔhQ)) whilst the activity profile of the β1 subunit changes. Infection with wild-type PtoDC3000 causes proteasome activities that range from strongly induced β1 and β5 activities to strongly suppressed β5 activities, revealing that β1 and β5 activities can be uncoupled during bacterial infection. These selective probes and inhibitors are now available to the plant science community and can be widely and easily applied to study the activity and role of the different catalytic subunits of the proteasome in different plant species. This article is protected by copyright. All rights reserved.

  5. Identification of proteasome subunit beta type 2 associated with deltamethrin detoxification in Drosophila Kc cells by cDNA microarray analysis and bioassay analyses.

    PubMed

    Hu, Junli; Jiao, Dongxu; Xu, Qin; Ying, Xiaoli; Liu, Wei; Chi, Qingping; Ye, Yuting; Li, Xueyu; Cheng, Luogen

    2016-05-10

    Insecticide deltamethrin resistance has presented a difficult obstacle for pest control and the resistance development is complex and associated with many genes. To better understand the possible molecular mechanisms involved in DM stress, in this study, cDNA microarray analysis was employed. 448 differentially expressed genes with at least a 2-fold expression difference were identified in Drosophila cells after DM exposure. Moreover, some genes were confirmed with qPCR, which yielded results consistent with the microarray analysis. Three members of the ubiquitin-proteasome system were significantly elevated in DM-stressed cells, suggesting that the ubiquitin-proteasome pathway may play an important role in DM detoxification. The proteasome beta2 subunit (Prosbeta2) is a member of 20S proteasome subunit family, which forms the proteolytic core of 26S proteasome. Whether Prosbeta2 participates in DM detoxification requires further study. RNAi and heterologous expression were conducted to investigate the contribution of Prosbeta2 in DM detoxification. The results revealed Prosbeta2 knockdown significantly reduce the level of DM detoxification in RNAi-treated cells after 48 h. Overexpression of Prosbeta2 increased cellular viability. These detoxification results represent the first evidence that Prosbeta2 plays a role in the detoxification of DM, which may provide new idea and target for studying the molecular mechanisms of insect resistance.

  6. Proteasome Inhibitors Alter Levels of Intracellular Peptides in HEK293T and SH-SY5Y Cells

    PubMed Central

    Dasgupta, Sayani; Castro, Leandro M.; Dulman, Russell; Yang, Ciyu; Schmidt, Marion; Ferro, Emer S.; Fricker, Lloyd D.

    2014-01-01

    The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T) cells with epoxomicin (an irreversible proteasome inhibitor) generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor) caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin β-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell. PMID:25079948

  7. Peptidomic analysis of HEK293T cells: Effect of the proteasome inhibitor epoxomicin on intracellular peptides

    PubMed Central

    Fricker, Lloyd D.; Gelman, Julia S.; Castro, Leandro M.; Gozzo, Fabio C.; Ferro, Emer S.

    2012-01-01

    Peptides derived from cytosolic, mitochondrial, and nuclear proteins have been detected in extracts of animal tissues and cell lines. To test whether the proteasome is involved in their formation, HEK293T cells were treated with epoxomicin (0.2 μM or 2 μM) for 1 hour and quantitative peptidomics analysis was performed. Altogether, 147 unique peptides were identified by mass spectrometry sequence analysis. Epoxomicin treatment decreased the levels of the majority of intracellular peptides, consistent with inhibition of the proteasome beta-2 and beta-5 subunits. Treatment with the higher concentration of epoxomicin elevated the levels of some peptides. Most of the elevated peptides resulted from cleavages at acidic residues, suggesting that epoxomicin increased the processing of proteins through the beta-1 subunit. Interestingly, some of the peptides that were elevated by the epoxomicin treatment had hydrophobic residues in P1 cleavage sites. Taken together, these findings suggest that while the proteasome is the major source of intracellular peptides, other peptide-generating mechanisms exist. Because intracellular peptides are likely to perform intracellular functions, studies using proteasome inhibitors need to be interpreted with caution as it is possible that the effects of these inhibitors are due to a change in the peptide levels rather than inhibition of protein degradation. PMID:22304392

  8. Production of proteasome inhibitor syringolin A by the endophyte Rhizobium sp. strain AP16.

    PubMed

    Dudnik, Alexey; Bigler, Laurent; Dudler, Robert

    2014-06-01

    Syringolin A, the product of a mixed nonribosomal peptide synthetase/polyketide synthase encoded by the syl gene cluster, is a virulence factor secreted by certain Pseudomonas syringae strains. Together with the glidobactins produced by a number of beta- and gammaproteobacterial human and animal pathogens, it belongs to the syrbactins, a structurally novel class of proteasome inhibitors. In plants, proteasome inhibition by syringolin A-producing P. syringae strains leads to the suppression of host defense pathways requiring proteasome activity, such as the ones mediated by salicylic acid and jasmonic acid. Here we report the discovery of a syl-like gene cluster with some unusual features in the alphaproteobacterial endophyte Rhizobium sp. strain AP16 that encodes a putative syringolin A-like synthetase whose components share 55% to 65% sequence identity (72% to 79% similarity) at the amino acid level. As revealed by average nucleotide identity (ANI) calculations, this strain likely belongs to the same species as biocontrol strain R. rhizogenes K84 (formely known as Agrobacterium radiobacter K84), which, however, carries a nonfunctional deletion remnant of the syl-like gene cluster. Here we present a functional analysis of the syl-like gene cluster of Rhizobium sp. strain AP16 and demonstrate that this endophyte synthesizes syringolin A and some related minor variants, suggesting that proteasome inhibition by syrbactin production can be important not only for pathogens but also for endophytic bacteria in the interaction with their hosts.

  9. Age-related dysfunctions of the autophagy lysosomal pathway in hippocampal pyramidal neurons under proteasome stress.

    PubMed

    Gavilán, Elena; Pintado, Cristina; Gavilan, Maria P; Daza, Paula; Sánchez-Aguayo, Inmaculada; Castaño, Angélica; Ruano, Diego

    2015-05-01

    Autophagy plays a key role in the maintenance of cellular homeostasis, and autophagy deregulation gives rise to severe disorders. Many of the signaling pathways regulating autophagy under stress conditions are still poorly understood. Using a model of proteasome stress in rat hippocampus, we have characterized the functional crosstalk between the ubiquitin proteasome system and the autophagy-lysosome pathway, identifying also age-related modifications in the crosstalk between both proteolytic systems. Under proteasome inhibition, both autophagy activation and resolution were efficiently induced in young but not in aged rats, leading to restoration of protein homeostasis only in young pyramidal neurons. Importantly, proteasome stress inhibited glycogen synthase kinase-3β in young but activated in aged rats. This age-related difference could be because of a dysfunction in the signaling pathway of the insulin growth factor-1 under stress situations. Present data highlight the potential role of glycogen synthase kinase-3β in the coordination of both proteolytic systems under stress situation, representing a key molecular target to sort out this deleterious effect.

  10. Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program.

    PubMed

    Matsushita, Akane; Inoue, Haruhiko; Goto, Shingo; Nakayama, Akira; Sugano, Shoji; Hayashi, Nagao; Takatsuji, Hiroshi

    2013-01-01

    The transcriptional activator WRKY45 plays a major role in the salicylic acid/benzothiadiazole-induced defense program in rice. Here, we show that the nuclear ubiquitin-proteasome system (UPS) plays a role in regulating the function of WRKY45. Proteasome inhibitors induced accumulation of polyubiquitinated WRKY45 and transient up-regulation of WRKY45 target genes in rice cells, suggesting that WRKY45 is constantly degraded by the UPS to suppress defense responses in the absence of defense signals. Mutational analysis of the nuclear localization signal indicated that UPS-dependent WRKY45 degradation occurs in the nuclei. Interestingly, the transcriptional activity of WRKY45 after salicylic acid treatment was impaired by proteasome inhibition. The same C-terminal region in WRKY45 was essential for both transcriptional activity and UPS-dependent degradation. These results suggest that UPS regulation also plays a role in the transcriptional activity of WRKY45. It has been reported that AtNPR1, the central regulator of the salicylic acid pathway in Arabidopsis, is regulated by the UPS. We found that OsNPR1/NH1, the rice counterpart of NPR1, was not stabilized by proteasome inhibition under uninfected conditions. We discuss the differences in post-translational regulation of salicylic acid pathway components between rice and Arabidopsis.

  11. The proteasome controls presynaptic differentiation through modulation of an on-site pool of polyubiquitinated conjugates

    PubMed Central

    Pinto, Maria J.; Alves, Pedro L.; Martins, Luís; Pedro, Joana R.; Ryu, Hyun R.; Jeon, Noo Li; Taylor, Anne M.

    2016-01-01

    Differentiation of the presynaptic terminal is a complex and rapid event that normally occurs in spatially specific axonal regions distant from the soma; thus, it is believed to be dependent on intra-axonal mechanisms. However, the full nature of the local events governing presynaptic assembly remains unknown. Herein, we investigated the involvement of the ubiquitin–proteasome system (UPS), the major degradative pathway, in the local modulation of presynaptic differentiation. We found that proteasome inhibition has a synaptogenic effect on isolated axons. In addition, formation of a stable cluster of synaptic vesicles onto a postsynaptic partner occurs in parallel to an on-site decrease in proteasome degradation. Accumulation of ubiquitinated proteins at nascent sites is a local trigger for presynaptic clustering. Finally, proteasome-related ubiquitin chains (K11 and K48) function as signals for the assembly of presynaptic terminals. Collectively, we propose a new axon-intrinsic mechanism for presynaptic assembly through local UPS inhibition. Subsequent on-site accumulation of proteins in their polyubiquitinated state triggers formation of presynapses. PMID:27022091

  12. Trial Watch: Proteasomal inhibitors for anticancer therapy

    PubMed Central

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called “ubiquitin-proteasome system” (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients. PMID:27308423

  13. Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro

    PubMed Central

    Shin, Seung Kyun; Kim, Ji Hyeon; Lee, Jung Hoon; Son, Young Hoon; Lee, Min Wook; Kim, Hak Joong; Noh, Sue Ah; Kim, Kwang Pyo; Kim, In-Gyu; Lee, Min Jae

    2017-01-01

    Proteasomes are the primary degradation machinery for oxidatively damaged proteins that compose a class of misfolded protein substrates. Cellular levels of reactive oxygen species increase with age and this cellular propensity is particularly harmful when combined with the age-associated development of various human disorders including cancer, neurodegenerative disease and muscle atrophy. Proteasome activity is reportedly downregulated in these disease conditions. Herein, we report that docosahexaenoic acid (DHA), a major dietary omega-3 polyunsaturated fatty acid, mediates intermolecular protein cross-linkages through oxidation, and the resulting protein aggregates potently reduce proteasomal activity both in vitro and in cultured cells. Cellular models overexpressing aggregation-prone proteins such as tau showed significantly elevated levels of tau aggregates and total ubiquitin conjugates in the presence of DHA, thereby reflecting suppressed proteasome activity. Strong synergetic cytotoxicity was observed when the cells overexpressing tau were simultaneously treated with DHA. Antioxidant N-acetyl cysteine significantly desensitized the cells to DHA-induced oxidative stress. DHA significantly delayed the proteasomal degradation of muscle proteins in a cellular atrophy model. Thus, the results of our study identified DHA as a potent inducer of cellular protein aggregates that inhibit proteasome activity and potentially delay systemic muscle protein degradation in certain pathologic conditions. PMID:28104914

  14. Degrasyn activates proteasomal-dependent degradation of c-Myc.

    PubMed

    Bartholomeusz, Geoffrey; Talpaz, Moshe; Bornmann, William; Kong, Ling-Yuan; Donato, Nicholas J

    2007-04-15

    c-Myc is a highly unstable transcription factor whose deregulation and increased expression are associated with cancer. Degrasyn, a small synthetic molecule, induces rapid degradation of c-Myc protein in MM-1 multiple myeloma and other tumor cell lines. Destruction of c-Myc by degrasyn requires the presence of a region of c-Myc between amino acid residues 316 and 378 that has not previously been associated with c-Myc stability. Degrasyn-induced degradation of c-Myc depends on proteasomes but is independent of the degron regions previously shown to be important for ubiquitin-mediated targeting and proteasomal destruction of the protein. Degrasyn-dependent c-Myc proteolysis is not mediated by any previously identified c-Myc regulatory mechanism, does not require new protein synthesis, and does not depend on the nuclear localization of c-Myc. Degrasyn reduced c-Myc levels in A375 melanoma cells and in A375 tumors in nude mice, and this activity correlated with tumor growth inhibition. Together, these results suggest that degrasyn reduces the stability of c-Myc in vitro and in vivo through a unique signaling process that uses c-Myc domains not previously associated with c-Myc regulation.

  15. The effect of peptidic and non-peptidic proteasome inhibitors on the biological properties of Acanthamoeba castellanii belonging to the T4 genotype.

    PubMed

    Siddiqui, Ruqaiyyah; Saleem, Sahreena; Khan, Naveed Ahmed

    2016-09-01

    The treatment of Acanthamoeba infections remains problematic, suggesting that new targets and/or chemotherapeutic agents are needed. Bioassay-guided screening of drugs that are clinically-approved for non-communicable diseases against opportunistic eukaryotic pathogens is a viable strategy. With known targets and mode of action, such drugs can advance to clinical trials at a faster pace. Recently Bortezomib (proteasome inhibitor) has been approved by FDA in the treatment of multiple myeloma. As proteasomal pathways are well known regulators of a variety of eukaryotic cellular functions, the overall aim of the present study was to study the effects of peptidic and non-peptidic proteasome inhibitors on the biology and pathogenesis of Acanthamoeba castellanii of the T4 genotype, in vitro. Zymographic assays revealed that inhibition of proteasome had detrimental effects on the extracellular proteolytic activities of A. castellanii. Proteasome inhibition affected A. castellanii growth (using amoebistatic assays), but not viability of A. castellanii. Importantly, proteasome inhibitors affected encystation as determined by trophozoite transformation into the cyst form, as well as excystation, as determined by cyst transformation into the trophozoite form. The ability of proteasome inhibitor to block Acanthamoeba differentiation is significant, as it presents a major challenge in the successful treatment of Acanthamoeba infection. As these drugs are used clinically against non-communicable diseases, the findings reported here have the potential to be tested in a clinical setting against amoebic infections.

  16. Design, synthesis and docking studies of novel dipeptidyl boronic acid proteasome inhibitors constructed from αα- and αβ-amino acids.

    PubMed

    Shi, Jingmiao; Lei, Meng; Wu, Wenkui; Feng, Huayun; Wang, Jia; Chen, Shanshan; Zhu, Yongqiang; Hu, Shihe; Liu, Zhaogang; Jiang, Cheng

    2016-04-15

    A series of novel dipeptidyl boronic acid proteasome inhibitors constructed from αα- and αβ-amino acids were designed and synthesized. Their structures were elucidated by (1)H NMR, (13)C NMR, LC-MS and HRMS. These compounds were evaluated for their β5 subunit inhibitory activities of human proteasome. The results showed that dipeptidyl boronic acid inhibitors composed of αα-amino acids were as active as bortezomib. Interestingly, the activities of those derived from αβ-amino acids lost completely. Of all the inhibitors, compound 22 (IC50=4.82 nM) was the most potent for the inhibition of proteasome activity. Compound 22 was also the most active against three MM cell lines with IC50 values less than 5 nM in inhibiting cell growth assays. Molecular docking studies displayed that 22 fitted very well in the β5 subunit active pocket of proteasome.

  17. The proteasome activator 11 S REG (PA28) and class I antigen presentation.

    PubMed Central

    Rechsteiner, M; Realini, C; Ustrell, V

    2000-01-01

    There are two immune responses in vertebrates: humoral immunity is mediated by circulating antibodies, whereas cytotoxic T lymphocytes (CTL) confer cellular immunity. CTL lyse infected cells upon recognition of cell-surface MHC Class I molecules complexed with foreign peptides. The displayed peptides are produced in the cytosol by degradation of host proteins or proteins from intracellular pathogens that might be present. Proteasomes are cylindrical multisubunit proteases that generate many of the peptides eventually transferred to the cell surface for immune surveillance. In mammalian proteasomes, six active sites face a central chamber. As this chamber is sealed off from the enzyme's surface, there must be mechanisms to promote entry of substrates. Two protein complexes have been found to bind the ends of the proteasome and activate it. One of the activators is the 19 S regulatory complex of the 26 S proteasome; the other activator is '11 S REG' [Dubiel, Pratt, Ferrell and Rechsteiner (1992) J. Biol. Chem. 267, 22369-22377] or 'PA28' [Ma, Slaughter and DeMartino (1992) J. Biol. Chem. 267, 10515-10523]. During the past 7 years, our understanding of the structure of REG molecules has increased significantly, but much less is known about their biological functions. There are three REG subunits, namely alpha, beta and gamma. Recombinant REGalpha forms a ring-shaped heptamer of known crystal structure. 11 S REG is a heteroheptamer of alpha and beta subunits. REGgamma is also presumably a heptameric ring, and it is found in the nuclei of the nematode work Caenorhabditis elegans and higher organisms, where it may couple proteasomes to other nuclear components. REGalpha and REGbeta, which are abundant in vertebrate immune tissues, are located mostly in the cytoplasm. Synthesis of REG alpha and beta subunits is induced by interferon-gamma, and this has led to the prevalent hypothesis that REG alpha/beta hetero-oligomers play an important role in Class I antigen

  18. Functional asymmetries of proteasome translocase pore.

    PubMed

    Erales, Jenny; Hoyt, Martin A; Troll, Fabian; Coffino, Philip

    2012-05-25

    Degradation by proteasomes involves coupled translocation and unfolding of its protein substrates. Six distinct but paralogous proteasome ATPase proteins, Rpt1 to -6, form a heterohexameric ring that acts on substrates. An axially positioned loop (Ar-Φ loop) moves in concert with ATP hydrolysis, engages substrate, and propels it into a proteolytic chamber. The aromatic (Ar) residue of the Ar-Φ loop in all six Rpts of S. cerevisiae is tyrosine; this amino acid is thought to have important functional contacts with substrate. Six yeast strains were constructed and characterized in which Tyr was individually mutated to Ala. The mutant cells were viable and had distinct phenotypes. rpt3, rpt4, and rpt5 Tyr/Ala mutants, which cluster on one side of the ATPase hexamer, were substantially impaired in their capacity to degrade substrates. In contrast, rpt1, rpt2, and rpt6 mutants equaled or exceeded wild type in degradation activity. However, rpt1 and rpt6 mutants had defects that limited cell growth or viability under conditions that stressed the ubiquitin proteasome system. In contrast, the rpt3 mutant grew faster than wild type and to a smaller size, a defect that has previously been associated with misregulation of G1 cyclins. This rpt3 phenotype probably results from altered degradation of cell cycle regulatory proteins. Finally, mutation of five of the Rpt subunits increased proteasome ATPase activity, implying bidirectional coupling between the Ar-Φ loop and the ATP hydrolysis site. The present observations assign specific functions to individual Rpt proteins and provide insights into the diverse roles of the axial loops of individual proteasome ATPases.

  19. Assembly mechanisms of specialized core particles of the proteasome.

    PubMed

    Bai, Minghui; Zhao, Xian; Sahara, Kazutaka; Ohte, Yuki; Hirano, Yuko; Kaneko, Takeumi; Yashiroda, Hideki; Murata, Shigeo

    2014-07-16

    The 26S proteasome has a highly complicated structure comprising the 20S core particle (CP) and the 19S regulatory particle (RP). Along with the standard CP in all eukaryotes, vertebrates have two more subtypes of CP called the immunoproteasome and the thymoproteasome. The immunoproteasome has catalytic subunits β1i, β2i, and β5i replacing β1, β2, and β5 and enhances production of major histocompatibility complex I ligands. The thymoproteasome contains thymus-specific subunit β5t in place of β5 or β5i and plays a pivotal role in positive selection of CD8+ T cells. Here we investigate the assembly pathways of the specialized CPs and show that β1i and β2i are incorporated ahead of all the other β-subunits and that both β5i and β5t can be incorporated immediately after the assembly of β3 in the absence of β4, distinct from the assembly of the standard CP in which β-subunits are incorporated in the order of β2, β3, β4, β5, β6, β1, and β7. The propeptide of β5t is a key factor for this earlier incorporation, whereas the body sequence seems to be important for the earlier incorporation of β5i. This unique feature of β5t and β5i may account for preferential assembly of the immunoproteasome and the thymoproteasome over the standard type even when both the standard and specialized subunits are co-expressed.

  20. Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining.

    PubMed

    Tomko, Robert J; Hochstrasser, Mark

    2011-12-23

    The 26S proteasome, the central eukaryotic protease, comprises a core particle capped by a 19S regulatory particle (RP). The RP is divisible into base and lid subcomplexes. Lid biogenesis and incorporation into the RP remain poorly understood. We report several lid intermediates, including the free Rpn12 subunit and a lid particle (LP) containing the remaining eight subunits, LP2. Rpn12 binds LP2 in vitro, and each requires the other for assembly into 26S proteasomes. Stable Rpn12 incorporation depends on all other lid subunits, indicating that Rpn12 distinguishes LP2 from smaller lid subcomplexes. The highly conserved C terminus of Rpn12 bridges the lid and base, mediating both stable binding to LP2 and lid-base joining. Our data suggest a hierarchical assembly mechanism where Rpn12 binds LP2 only upon correct assembly of all other lid subunits, and the Rpn12 tail then helps drive lid-base joining. Rpn12 incorporation thus links proper lid assembly to subsequent assembly steps.

  1. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies.

    PubMed

    Schipper-Krom, Sabine; Juenemann, Katrin; Jansen, Anne H; Wiemhoefer, Anne; van den Nieuwendijk, Rianne; Smith, Donna L; Hink, Mark A; Bates, Gillian P; Overkleeft, Hermen; Ovaa, Huib; Reits, Eric

    2014-01-03

    Neurodegenerative disorders such as Huntington's disease are hallmarked by neuronal intracellular inclusion body formation. Whether proteasomes are irreversibly recruited into inclusion bodies in these protein misfolding disorders is a controversial subject. In addition, it has been proposed that the proteasomes may become clogged by the aggregated protein fragments, leading to impairment of the ubiquitin-proteasome system. Here, we show by fluorescence pulse-chase experiments in living cells that proteasomes are dynamically and reversibly recruited into inclusion bodies. As these recruited proteasomes remain catalytically active and accessible to substrates, our results challenge the concept of proteasome sequestration and impairment in Huntington's disease, and support the reported absence of proteasome impairment in mouse models of Huntington's disease.

  2. Rationale and efficacy of proteasome inhibitor combined with arsenic trioxide in the treatment of acute promyelocytic leukemia

    PubMed Central

    Ganesan, S; Alex, A A; Chendamarai, E; Balasundaram, N; Palani, H K; David, S; Kulkarni, U; Aiyaz, M; Mugasimangalam, R; Korula, A; Abraham, A; Srivastava, A; Padua, R A; Chomienne, C; George, B; Balasubramanian, P; Mathews, V

    2016-01-01

    Arsenic trioxide (ATO) mediates PML-RARA (promyelocytic leukemia–retinoic acid receptor-α) oncoprotein degradation via the proteasome pathway and this degradation appears to be critical for achieving cure in acute promyeloytic leukemia (APL). We have previously demonstrated significant micro-environment-mediated drug resistance (EMDR) to ATO in APL. Here we demonstrate that this EMDR could be effectively overcome by combining a proteasome inhibitor (bortezomib) with ATO. A synergistic effect on combining these two agents in vitro was noted in both ATO-sensitive and ATO-resistant APL cell lines. The mechanism of this synergy involved downregulation of the nuclear factor-κB pathway, increase in unfolded protein response (UPR) and an increase in reactive oxygen species generation in the malignant cell. We also noted that PML-RARA oncoprotein is effectively cleared with this combination in spite of proteasome inhibition by bortezomib, and that this clearance is mediated through a p62-dependent autophagy pathway. We further demonstrated that proteasome inhibition along with ATO had an additive effect in inducing autophagy. The beneficial effect of this combination was further validated in an animal model and in an on-going clinical trial. This study raises the potential of a non-myelotoxic proteasome inhibitor replacing anthracyclines in the management of high-risk and relapsed APL. PMID:27560113

  3. Deleterious effects of reactive aldehydes and glycated proteins on macrophage proteasomal function: possible links between diabetes and atherosclerosis.

    PubMed

    Moheimani, Fatemeh; Morgan, Philip E; van Reyk, David M; Davies, Michael J

    2010-06-01

    People with diabetes experience chronic hyperglycemia and are at a high risk of developing atherosclerosis and microvascular disease. Reactions of glucose, or aldehydes derived from glucose (e.g. methylglyoxal, glyoxal, or glycolaldehyde), with proteins result in glycation that ultimately yield advanced glycation end products (AGE). AGE are present at elevated levels in plasma and atherosclerotic lesions from people with diabetes, and previous in vitro studies have postulated that the presence of these materials is deleterious to cell function. This accumulation of AGE and glycated proteins within cells may arise from either increased formation and/or ineffective removal by cellular proteolytic systems, such as the proteasomes, the major multi-enzyme complex that removes proteins within cells. In this study it is shown that whilst high glucose concentrations fail to modify proteasome enzyme activities in J774A.1 macrophage-like cell extracts, reactive aldehydes enhanced proteasomal enzyme activities. In contrast BSA, pre-treated with high glucose for 8 weeks, inhibited both the chymotrypsin-like and caspase-like activities. BSA glycated using methylglyoxal or glycolaldehyde, also inhibited proteasomal activity though to differing extents. This suppression of proteasome activity by glycated proteins may result in further intracellular accumulation of glycated proteins with subsequent deleterious effects on cellular function.

  4. Synthesis and Evaluation of Macrocyclic Peptide Aldehydes as Potent and Selective Inhibitors of the 20S Proteasome

    PubMed Central

    2016-01-01

    This research explores the first design and synthesis of macrocyclic peptide aldehydes as potent inhibitors of the 20S proteasome. Two novel macrocyclic peptide aldehydes based on the ring-size of the macrocyclic natural product TMC-95 were prepared and evaluated as inhibitors of the 20S proteasome. Both compounds inhibited in the low nanomolar range and proved to be selective for the proteasome over other serine and cysteine proteases, particularly when compared to linear analogues with similar amino acid sequences. In HeLa cells, both macrocycles efficiently inhibited activation of nuclear factor-κB (NF-κB) transcription factor by blocking proteasomal degradation of the inhibitor protein IκBα after cytokine stimulation. Due to their covalent mechanism of binding these compounds represent a 1000-fold increase in inhibitory potency over previously reported noncovalently binding TMC-95 analogues. Molecular modeling of the macrocyclic peptides confirms the preference of the large S3 pocket for large, hydrophobic residues and the ability to exploit this to improve selectivity of proteasome inhibitors. PMID:26985310

  5. Ubiquitin-proteasome dependent degradation of GABAAα1 in autism spectrum disorder

    PubMed Central

    2014-01-01

    Background Although the neurobiological basis of autism spectrum disorder (ASD) is not fully understood, recent studies have indicated the potential role of GABAA receptors in the pathophysiology of ASD. GABAA receptors play a crucial role in various neurodevelopmental processes and adult neuroplasticity. However, the mechanism(s) of regulation of GABAA receptors in ASD remains poorly understood. Methods Postmortem middle frontal gyrus tissues (13 ASD and 13 control subjects) were used. In vitro studies were performed in primary cortical neurons at days in vitro (DIV) 14. The protein levels were examined by western blotting. Immunofluorescence studies were employed for cellular localization. The gene expression was determined by RT-PCR array and qRT-PCR. Results A significant decrease in GABAAα1 protein, but not mRNA levels was found in the middle frontal gyrus of ASD subjects indicating a post-translational regulation of GABAA receptors in ASD. At the cellular level, treatment with proteasomal inhibitor, MG132, or lactacystin significantly increased GABAAα1 protein levels and Lys48-linked polyubiquitination of GABAAα1, but reduced proteasome activity in mouse primary cortical neurons (DIV 14 from E16 embryos). Moreover, treatment with betulinic acid, a proteasome activator significantly decreased GABAAα1 protein levels in cortical neurons indicating the role of polyubiquitination of GABAAα1 proteins with their subsequent proteasomal degradation in cortical neurons. Ubiquitination specific RT-PCR array followed by western blot analysis revealed a significant increase in SYVN1, an endoplasmic reticulum (ER)-associated degradation (ERAD) E3 ubiquitin ligase in the middle frontal gyrus of ASD subjects. In addition, the inhibition of proteasomal activity by MG132 increased the expression of GABAAα1 in the ER. The siRNA knockdown of SYVN1 significantly increased GABAAα1 protein levels in cortical neurons. Moreover, reduced association between SYVN1 and GABAAα1

  6. Exploration of novel piperazine or piperidine constructed non-covalent peptidyl derivatives as proteasome inhibitors.

    PubMed

    Zhuang, Rangxiao; Gao, Lixin; Lv, Xiaoqing; Xi, Jianjun; Sheng, Li; Zhao, Yanmei; He, Ruoyu; Hu, Xiaobei; Shao, Yidan; Pan, Xuwang; Liu, Shourong; Huang, Weiwei; Zhou, Yubo; Li, Jia; Zhang, Jiankang

    2017-01-27

    A series of novel piperazine or piperidine-containing non-covalent peptidyl derivatives possessing a neopentyl-asparagine residue were designed, synthesized and evaluated as proteasome inhibitors. All target compounds were screened for their 20S proteasome chymotrypsin-like inhibitory activities, and 15 ones displayed more potent activities than carfilzomib with IC50 values lower than 10 nM. Subsequently, the most potent 10 analogues were tested for their cytotoxic activities against two multiple myeloma (MM) cell lines RPMI-8226 and MM-1S. Based on these experiments, selected derivatives were further evaluated for their ex vivo and in vivo blood cell proteasome inhibitory activities. The most potential compound 35 (proteasome inhibition IC50: 1.2 ± 0.1 nM) with potent anti-proliferation (IC50: RPMI-8226 8.4 ± 0.8 nM; MM-1S: 6.3 ± 0.8 nM), ex vivo and in vivo activities also had a prolonged half life in plasma, which demonstrated that the enzymatic stabilities of this series of compounds have been improved by constructing a six-membered ring into the peptide skeleton. All the experiments confirmed the correctness of design concept, which made this series of compounds potential leads for exploring new anti-MM drugs.

  7. Plant Virus Infection and the Ubiquitin Proteasome Machinery: Arms Race along the Endoplasmic Reticulum

    PubMed Central

    Verchot, Jeanmarie

    2016-01-01

    The endoplasmic reticulum (ER) is central to plant virus replication, translation, maturation, and egress. Ubiquitin modification of ER associated cellular and viral proteins, alongside the actions of the 26S proteasome, are vital for the regulation of infection. Viruses can arrogate ER associated ubiquitination as well as cytosolic ubiquitin ligases with the purpose of directing the ubiquitin proteasome system (UPS) to new targets. Such targets include necessary modification of viral proteins which may stabilize certain complexes, or modification of Argonaute to suppress gene silencing. The UPS machinery also contributes to the regulation of effector triggered immunity pattern recognition receptor immunity. Combining the results of unrelated studies, many positive strand RNA plant viruses appear to interact with cytosolic Ub-ligases to provide novel avenues for controlling the deleterious consequences of disease. Viral interactions with the UPS serve to regulate virus infection in a manner that promotes replication and movement, but also modulates the levels of RNA accumulation to ensure successful biotrophic interactions. In other instances, the UPS plays a central role in cellular immunity. These opposing roles are made evident by contrasting studies where knockout mutations in the UPS can either hamper viruses or lead to more aggressive diseases. Understanding how viruses manipulate ER associated post-translational machineries to better manage virus–host interactions will provide new targets for crop improvement. PMID:27869775

  8. Solution structure of yeast Rpn9: insights into proteasome lid assembly.

    PubMed

    Hu, Yunfei; Wu, Yujie; Li, Qianwen; Zhang, Wenbo; Jin, Changwen

    2015-03-13

    The regulatory particle (RP) of the 26 S proteasome functions in preparing polyubiquitinated substrates for degradation. The lid complex of the RP contains an Rpn8-Rpn11 heterodimer surrounded by a horseshoe-shaped scaffold formed by six proteasome-COP9/CSN-initiation factor (PCI)-containing subunits. The PCI domains are essential for lid assembly, whereas the detailed molecular mechanisms remain elusive. Recent cryo-EM studies at near-atomic resolution provided invaluable information on the RP architecture in different functional states. Nevertheless, atomic resolution structural information on the RP is still limited, and deeper understanding of RP assembly mechanism requires further studies on the structures and interactions of individual subunits or subcomplexes. Herein we report the high-resolution NMR structures of the PCI-containing subunit Rpn9 from Saccharomyces cerevisiae. The 45-kDa protein contains an all-helical N-terminal domain and a C-terminal PCI domain linked via a semiflexible hinge. The N-terminal domain mediates interaction with the ubiquitin receptor Rpn10, whereas the PCI domain mediates interaction with the neighboring PCI subunit Rpn5. The Rpn9-Rpn5 interface highlights two structural motifs on the winged helix module forming a hydrophobic center surrounded by ionic pairs, which is a common pattern for all PCI-PCI interactions in the lid. The results suggest that divergence in surface composition among different PCI pairs may contribute to the modulation of lid assembly.

  9. MM-1 facilitates degradation of c-Myc by recruiting proteasome and a novel ubiquitin E3 ligase.

    PubMed

    Kimura, Yumiko; Nagao, Arisa; Fujioka, Yuko; Satou, Akiko; Taira, Takahiro; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2007-10-01

    We have reported that a novel c-Myc-binding protein, MM-1, repressed the E-box-dependent transcription activity of c-Myc by recruiting the HDAC1 complex via TIF1beta/KAP1, a transcriptional corepressor. We have also reported that a mutation of A157R in MM-1, which is often observed in patients with leukemia or lymphoma, abrogated all of the repressive activities of MM-1 toward c-Myc, indicating that MM-1 is a novel tumor suppressor. In this study, we found that MM-1 was bound to a component of proteasome and stimulated degradation of c-Myc in human cells. Knockdown of endogenous MM-1 in human HeLa cells by introduction of siRNA against MM-1 stabilized the endogenous c-Myc. To identify proteins that participate in c-Myc degradation by MM-1, in vivo and in vitro binding assays were carried out. The results showed that MM-1 directly bound to Rpt3, a subunit of 26S proteasome, and that c-Myc directly bound to Skp2, which recruited ElonginC, ElonginB and Cullin2, thereby forming a novel ubiquitin E3 ligase. Knockdown of endogenous Cullin2 stabilized the endogenous c-Myc. Thus, MM-1 is a factor that connects c-Myc to the ubiquitin E3 ligase and the proteasome.

  10. The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity

    PubMed Central

    Wang, Changhua; Wang, Xuejun

    2014-01-01

    Proteotoxicity refers to the detrimental effects of damaged/misfolded proteins on the cell. Cardiac muscle is particularly susceptible to proteotoxicity because sustained and severe proteotoxic stress leads to cell death and cardiac muscle has very limited self-renewal capacity. The ubiquitin-proteasome system (UPS) and the autophagic-lysosomal pathway (ALP) are two major pathways responsible for degradation of most cellular proteins. Alterations of UPS and ALP functions are associated with the accumulation of proteotoxic species in the heart, a key pathological feature of common forms of heart disease including idiopathic, ischemic, and pressure-overloaded cardiomyopathies and a large subset of congestive heart failure. Emerging evidence suggests proteasome inhibition or impairment activates autophagy and conversely, acute ALP inhibition may sometimes increase intrinsic proteasome peptidase activities but chronic ALP inhibition hinders UPS performance in ubiquitinated protein degradation. The exact molecular basis on which the two degradative pathways interact remains largely undefined. Here we review current understanding of the roles of the UPS and autophagy in the control of cardiac proteotoxicity, with a specific focus on the crosstalk between the two pathways. PMID:25092168

  11. The regulation of glucose on milk fat synthesis is mediated by the ubiquitin-proteasome system in bovine mammary epithelial cells.

    PubMed

    Liu, Lily; Jiang, Li; Ding, Xiang-dong; Liu, Jian-feng; Zhang, Qin

    2015-09-11

    Glucose as one of the nutrition factors plays a vital role in the regulation of milk fat synthesis. Ubiquitin-proteasome system (UPS) is a vital proteolytic pathway in all eukaryotic cells through timely marking, recognizing and degrading the poly-ubiquitinated protein substrates. Previous studies indicated that UPS plays a considerable role in controlling the triglyceride (TG) synthesis. Therefore, the aim of this study is to confirm the link between high-glucose and UPS and its regulation mechanism on milk fat synthesis in BMEC (bovine mammary epithelial cells). We incubated BMEC with normal (17.5 mm/L) and high-glucose (25 mm/L) with and without proteasome inhibitor epoxomicin and found that, compared with the control (normal glucose and without proteasome inhibitor), both high-glucose concentration and proteasome inhibitor epoxomicin could increase the accumulation of TG and poly-ubiquitinated proteins, and reduce significantly three proteasome activities (chymotrypsin-like, caspase-like, and trypsin-like). In addition, high-glucose concentration combined with proteasome inhibitor further enhanced the increase of the poly-ubiquitinated protein level and the decrease of proteasome activities. Our results suggest that the regulation of high-glucose on milk fat synthesis is mediated by UPS in BMEC, and high-glucose exposure could lead to a hypersensitization of BMEC to UPS inhibition which in turn results in increased milk fat synthesis.

  12. Activity-based imaging probes of the proteasome.

    PubMed

    Carmony, Kimberly Cornish; Kim, Kyung Bo

    2013-09-01

    Over the years, the proteasome has been extensively investigated due to its crucial roles in many important signaling pathways and its implications in diseases. Two proteasome inhibitors--bortezomib and carfilzomib--have received FDA approval for the treatment of multiple myeloma, thereby validating the proteasome as a chemotherapeutic target. As a result, further research efforts have been focused on dissecting the complex biology of the proteasome to gain the insight required for developing next-generation proteasome inhibitors. It is clear that chemical probes have made significant contributions to these efforts, mostly by functioning as inhibitors that selectively block the catalytic activity of proteasomes. Analogues of these inhibitors are now providing additional tools for visualization of catalytically active proteasome subunits, several of which allow real-time monitoring of proteasome activity in living cells as well as in in vivo settings. These imaging probes will provide powerful tools for assessing the efficacy of proteasome inhibitors in clinical settings. In this review, we will focus on the recent efforts towards developing imaging probes of proteasomes, including the latest developments in immunoproteasome-selective imaging probes.

  13. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    PubMed Central

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  14. Marizomib, a Proteasome Inhibitor for All Seasons: Preclinical Profile and a Framework for Clinical Trials

    PubMed Central

    Potts, B.C.; Albitar, M.X.; Anderson, K.C.; Baritaki, S.; Berkers, C.; Bonavida, B.; Chandra, J.; Chauhan, D.; Cusack, J.C.; Fenical, W.; Ghobrial, I.M.; Groll, M.; Jensen, P.R.; Lam, K.S.; Lloyd, G.K.; McBride, W.; McConkey, D.J.; Miller, C.P.; Neuteboom, S.T.C.; Oki, Y.; Ovaa, H.; Pajonk, F.; Richardson, P.G.; Roccaro, A.M.; Sloss, C.M.; Spear, M.A.; Valashi, E.; Younes, A.; Palladino, M.A.

    2013-01-01

    The proteasome has emerged as an important clinically relevant target for the treatment of hematologic malignancies. Since the Food and Drug Administration approved the first-in-class proteasome inhibitor bortezomib (Velcade®) for the treatment of relapsed/refractory multiple myeloma (MM) and mantle cell lymphoma, it has become clear that new inhibitors are needed that have a better therapeutic ratio, can overcome inherent and acquired bortezomib resistance and exhibit broader anti-cancer activities. Marizomib (NPI-0052; salinosporamide A) is a structurally and pharmacologically unique β-lactone-γ-lactam proteasome inhibitor that may fulfill these unmet needs. The potent and sustained inhibition of all three proteolytic activities of the proteasome by marizomib has inspired extensive preclinical evaluation in a variety of hematologic and solid tumor models, where it is efficacious as a single agent and in combination with biologics, che-motherapeutics and targeted therapeutic agents. Specifically, marizomib has been evaluated in models for multiple myeloma, mantle cell lymphoma, Waldenstrom’s macroglobulinemia, chronic and acute lymphocytic leukemia, as well as glioma, colorectal and pancreatic cancer models, and has exhibited synergistic activities in tumor models in combination with bortezomib, the immunomodulatory agent lenalidomide (Revlimid®), and various histone deacetylase inhibitors. These and other studies provided the framework for ongoing clinical trials in patients with MM, lymphomas, leukemias and solid tumors, including those who have failed bortezomib treatment, as well as in patients with diagnoses where other proteasome inhibitors have not demonstrated significant efficacy. This review captures the remarkable translational studies and contributions from many collaborators that have advanced marizomib from seabed to bench to bedside. PMID:21247382

  15. Immunoaffinity purification of the functional 20S proteasome from human cells via transient overexpression of specific proteasome subunits.

    PubMed

    Livinskaya, Veronika A; Barlev, Nickolai A; Nikiforov, Andrey A

    2014-05-01

    The proteasome is a multi-subunit proteolytic complex that plays a central role in protein degradation in all eukaryotic cells. It regulates many vital cellular processes therefore its dysfunction can lead to various pathologies including cancer and neurodegeneration. Isolation of enzymatically active proteasomes is a key step to the successful study of the proteasome regulation and functions. Here we describe a simple and efficient protocol for immunoaffinity purification of the functional 20S proteasomes from human HEK 293T cells after transient overexpression of specific proteasome subunits tagged with 3xFLAG. To construct 3xFLAG-fusion proteins, DNA sequences encoding the 20S proteasome subunits PSMB5, PSMA5, and PSMA3 were cloned into mammalian expression vector pIRES-hrGFP-1a. The corresponding recombinant proteins PSMB5-3xFLAG, PSMA5-3xFLAG, or PSMA3-3xFLAG were transiently overexpressed in human HEK 293T cells and were shown to be partially incorporated into the intact proteasome complexes. 20S proteasomes were immunoprecipitated from HEK 293T cell extracts under mild conditions using antibodies against FLAG peptide. Isolation of highly purified 20S proteasomes were confirmed by SDS-PAGE and Western blotting using antibodies against different proteasome subunits. Affinity purified 20S proteasomes were shown to possess chymotrypsin- and trypsin-like peptidase activities confirming their functionality. This simple single-step affinity method of the 20S proteasome purification can be instrumental to subsequent functional studies of proteasomes in human cells.

  16. Discovery of a novel proteasome inhibitor selective for cancer cells over non-transformed cells.

    PubMed

    Kazi, Aslamuzzaman; Lawrence, Harshani; Guida, Wayne C; McLaughlin, Mark L; Springett, Gregory M; Berndt, Norbert; Yip, Richard M L; Sebti, Saïd M

    2009-06-15

    Numerous proteins controlling cell cycle progression, apoptosis and angiogenesis are degraded by the ubiquitin/proteasome system, which has become the subject for intense investigations for cancer therapeutics. Therefore, we used in silico and experimental approaches to screen compounds from the NCI chemical libraries for inhibitors against the chymotrypsin-like (CT-L) activity of the proteasome and discovered PI-083. Molecular docking indicates that PI-083 interacts with the Thr21, Gly47 and Ala49 residues of the beta5 subunit and Asp114 of the beta6 subunit of the proteasome. PI-083 inhibits CT-L activity and cell proliferation and induces apoptosis selectively in cancer cells (ovarian T80-Hras, pancreatic C7-Kras and breast MCF-7) as compared to their normal/immortalized counterparts (T80, C7 and MCF-10A, respectively). In contrast, Bortezomib, the only proteasome inhibitor approved by the Food and Drug Administration (FDA), did not exhibit this selectivity for cancer over non-transformed cells. In addition, in all cancer cells tested, including Multiple Myeloma (MM), breast, pancreatic, ovarian, lung, prostate cancer cell lines as well as fresh MM cells from patients, PI-083 required less time than Bortezomib to induce its antitumor effects. Furthermore, in nude mouse xenografts in vivo, PI-083, but not Bortezomib, suppressed the growth of human breast and lung tumors. Finally, following in vivo treatment of mice, PI-083 inhibited tumor, but not hepatic liver CT-L activity, whereas Bortezomib inhibited both tumor and liver CT-L activities. These results suggest that PI-083 is more selective for cancer cells and may have broader antitumor activity and therefore warrants further advanced preclinical studies.

  17. A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative stress adaptation in mammals, Caenorhabditis elegans and Drosophila melanogaster

    PubMed Central

    Pickering, Andrew M.; Staab, Trisha A.; Tower, John; Sieburth, Derek; Davies, Kelvin J. A.

    2013-01-01

    SUMMARY In mammalian cells, hydrogen peroxide (H2O2)-induced adaptation to oxidative stress is strongly dependent on an Nrf2 transcription factor-mediated increase in the 20S proteasome. Here, we report that both Caenorhabditis elegans nematode worms and Drosophila melanogaster fruit flies are also capable of adapting to oxidative stress with H2O2 pre-treatment. As in mammalian cells, this adaptive response in worms and flies involves an increase in proteolytic activity and increased expression of the 20S proteasome, but not of the 26S proteasome. We also found that the increase in 20S proteasome expression in both worms and flies, as in mammalian cells, is important for the adaptive response, and that it is mediated by the SKN-1 and CNC-C orthologs of the mammalian Nrf2 transcription factor, respectively. These studies demonstrate that stress mechanisms operative in cell culture also apply in disparate intact organisms across a wide biological diversity. PMID:23038734

  18. Cystic Fibrosis Transmembrane Conductance Regulator Controls Lung Proteasomal Degradation and Nuclear Factor-κB Activity in Conditions of Oxidative Stress

    PubMed Central

    Boncoeur, Emilie; Roque, Telma; Bonvin, Elise; Saint-Criq, Vinciane; Bonora, Monique; Clement, Annick; Tabary, Olivier; Henrion-Caude, Alexandra; Jacquot, Jacky

    2008-01-01

    Cystic fibrosis is a lethal inherited disorder caused by mutations in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, resulting in progressive oxidative lung damage. In this study, we evaluated the role of CFTR in the control of ubiquitin-proteasome activity and nuclear factor (NF)-κB/IκB-α signaling after lung oxidative stress. After a 64-hour exposure to hyperoxia-mediated oxidative stress, CFTR-deficient (cftr−/−) mice exhibited significantly elevated lung proteasomal activity compared with wild-type (cftr+/+) animals. This was accompanied by reduced lung caspase-3 activity and defective degradation of NF-κB inhibitor IκB-α. In vitro, human CFTR-deficient lung cells exposed to oxidative stress exhibited increased proteasomal activity and decreased NF-κB-dependent transcriptional activity compared with CFTR-sufficient lung cells. Inhibition of the CFTR Cl− channel by CFTRinh-172 in the normal bronchial immortalized cell line 16HBE14o− increased proteasomal degradation after exposure to oxidative stress. Caspase-3 inhibition by Z-DQMD in CFTR-sufficient lung cells mimicked the response profile of increased proteasomal degradation and reduced NF-κB activity observed in CFTR-deficient lung cells exposed to oxidative stress. Taken together, these results suggest that functional CFTR Cl− channel activity is crucial for regulation of lung proteasomal degradation and NF-κB activity in conditions of oxidative stress. PMID:18372427

  19. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer.

    PubMed

    Walerych, Dawid; Lisek, Kamil; Sommaggio, Roberta; Piazza, Silvano; Ciani, Yari; Dalla, Emiliano; Rajkowska, Katarzyna; Gaweda-Walerych, Katarzyna; Ingallina, Eleonora; Tonelli, Claudia; Morelli, Marco J; Amato, Angela; Eterno, Vincenzo; Zambelli, Alberto; Rosato, Antonio; Amati, Bruno; Wiśniewski, Jacek R; Del Sal, Giannino

    2016-08-01

    In cancer, the tumour suppressor gene TP53 undergoes frequent missense mutations that endow mutant p53 proteins with oncogenic properties. Until now, a universal mutant p53 gain-of-function program has not been defined. By means of multi-omics: proteome, DNA interactome (chromatin immunoprecipitation followed by sequencing) and transcriptome (RNA sequencing/microarray) analyses, we identified the proteasome machinery as a common target of p53 missense mutants. The mutant p53-proteasome axis globally affects protein homeostasis, inhibiting multiple tumour-suppressive pathways, including the anti-oncogenic KSRP-microRNA pathway. In cancer cells, p53 missense mutants cooperate with Nrf2 (NFE2L2) to activate proteasome gene transcription, resulting in resistance to the proteasome inhibitor carfilzomib. Combining the mutant p53-inactivating agent APR-246 (PRIMA-1MET) with the proteasome inhibitor carfilzomib is effective in overcoming chemoresistance in triple-negative breast cancer cells, creating a therapeutic opportunity for treatment of solid tumours and metastasis with mutant p53.

  20. BIM(EL), an intrinsically disordered protein, is degraded by 20S proteasomes in the absence of poly-ubiquitylation.

    PubMed

    Wiggins, Ceri M; Tsvetkov, Peter; Johnson, Mark; Joyce, Claire L; Lamb, Christopher A; Bryant, Nia J; Komander, David; Shaul, Yosef; Cook, Simon J

    2011-03-15

    BIM-extra long (BIM(EL)), a pro-apoptotic BH3-only protein and part of the BCL-2 family, is degraded by the proteasome following activation of the ERK1/2 signalling pathway. Although studies have demonstrated poly-ubiquitylation of BIM(EL) in cells, the nature of the ubiquitin chain linkage has not been defined. Using ubiquitin-binding domains (UBDs) specific for defined ubiquitin chain linkages, we show that BIM(EL) undergoes K48-linked poly-ubiquitylation at either of two lysine residues. Surprisingly, BIM(EL)ΔKK, which lacks both lysine residues, was not poly-ubiquitylated but still underwent ERK1/2-driven, proteasome-dependent turnover. BIM has been proposed to be an intrinsically disordered protein (IDP) and some IDPs can be degraded by uncapped 20S proteasomes in the absence of poly-ubiquitylation. We show that BIM(EL) is degraded by isolated 20S proteasomes but that this is prevented when BIM(EL) is bound to its pro-survival target protein MCL-1. Furthermore, knockdown of the proteasome cap component Rpn2 does not prevent BIM(EL) turnover in cells, and inhibition of the E3 ubiquitin ligase β-TrCP, which catalyses poly-Ub of BIM(EL), causes Cdc25A accumulation but does not inhibit BIM(EL) turnover. These results provide new insights into the regulation of BIM(EL) by defining a novel ubiquitin-independent pathway for the proteasome-dependent destruction of this highly toxic protein.

  1. Proteasomes and protein conjugation across domains of life.

    PubMed

    Maupin-Furlow, Julie

    2011-12-19

    Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes.

  2. Isolation and purification of proteasomes from primary cells.

    PubMed

    Steers, Nicholas J; Peachman, Kristina K; Alving, Carl R; Rao, Mangala

    2014-11-03

    Proteasomes play an important role in cell homeostasis and in orchestrating the immune response by systematically degrading foreign proteins and misfolded or damaged host cell proteins. We describe a protocol to purify functionally active proteasomes from human CD4(+) T cells and dendritic cells derived from peripheral blood mononuclear cells. The purification is a three-step process involving ion-exchange chromatography, ammonium sulfate precipitation, and sucrose density gradient ultracentrifugation. This method can be easily adapted to purify proteasomes from cell lines or from organs. Methods to characterize and visualize the purified proteasomes are also described.

  3. The proteasome and the degradation of oxidized proteins: Part III—Redox regulation of the proteasomal system

    PubMed Central

    Höhn, Tobias Jung Annika; Grune, Tilman

    2014-01-01

    Here, we review shortly the current knowledge on the regulation of the proteasomal system during and after oxidative stress. After addressing the components of the proteasomal system and the degradation of oxidatively damaged proteins in part I and II of this series, we address here which changes in activity undergo the proteasome and the ubiquitin-proteasomal system itself under oxidative conditions. While several components of the proteasomal system undergo direct oxidative modification, a number of redox-regulated events are modulating the proteasomal activity in a way it can address the major tasks in an oxidative stress situation: the removal of oxidized proteins and the adaptation of the cellular metabolism to the stress situation. PMID:24563857

  4. Proteasome affects the expression of aryl hydrocarbon receptor-regulated proteins.

    PubMed

    Ishida, Takumi; Kawakami, Masayo; Baba, Hiroko; Yahata, Masahiro; Mutoh, Junpei; Takeda, Shuso; Fujita, Hideaki; Tanaka, Yoshitaka; Ishii, Yuji; Yamada, Hideyuki

    2008-11-01

    The effect of proteasome inhibition with N-acetyl-leucyl-leucyl-norleucinal (ALLN) on the protein expression regulated by aryl hydrocarbon receptor (AhR) was studied in T47D breast tumor cells. The luciferase reporter gene assay using a construct which has the xenobiotic responsive element showed that the inducible expression of the reporter with AhR ligands was significantly reduced by co-treatment with ALLN. The same suppressive effect by ALLN was observed for ethoxyresorufin O-deethylase (EROD) activity induced by an AhR ligand, 3-methylcholanthrene (3MC). Despite the above effects, the induced expression of CYP1A1 and CYP1B1 mRNAs was unaffected by ALLN. While lactacystin, another proteasome inhibitor, exhibited the same effect as ALLN on EROD activity induced by 3MC, leupeptin, which is one of the cysteine protease inhibitors, had no such effect. Based on the evidence obtained, it appears that proteasome inhibition results in a reduction in the expression of AhR-regulated proteins.

  5. ER stress suppresses DNA double-strand break repair and sensitizes tumor cells to ionizing radiation by stimulating proteasomal degradation of Rad51.

    PubMed

    Yamamori, Tohru; Meike, Shunsuke; Nagane, Masaki; Yasui, Hironobu; Inanami, Osamu

    2013-10-11

    In this study, we provide evidence that endoplasmic reticulum (ER) stress suppresses DNA double-strand break (DSB) repair and increases radiosensitivity of tumor cells by altering Rad51 levels. We show that the ER stress inducer tunicamycin stimulates selective degradation of Rad51 via the 26S proteasome, impairing DSB repair and enhancing radiosensitivity in human lung cancer A549 cells. We also found that glucose deprivation, which is a physiological inducer of ER stress, triggered similar events. These findings suggest that ER stress caused by the intratumoral environment influences tumor radiosensitivity, and that it has potential as a novel target to improve cancer radiotherapy.

  6. The carmaphycins: new proteasome inhibitors exhibiting an α,β-epoxyketone warhead from a marine cyanobacterium.

    PubMed

    Pereira, Alban R; Kale, Andrew J; Fenley, Andrew T; Byrum, Tara; Debonsi, Hosana M; Gilson, Michael K; Valeriote, Frederick A; Moore, Bradley S; Gerwick, William H

    2012-04-16

    Two new peptidic proteasome inhibitors were isolated as trace components from a Curaçao collection of the marine cyanobacterium Symploca sp. Carmaphycin A (1) and carmaphycin B (2) feature a leucine-derived α,β-epoxyketone warhead directly connected to either methionine sulfoxide or methionine sulfone. Their structures were elucidated on the basis of extensive NMR and MS analyses and confirmed by total synthesis, which in turn provided more material for further biological evaluations. Pure carmaphycins A and B were found to inhibit the β5 subunit (chymotrypsin-like activity) of the S. cerevisiae 20S proteasome in the low nanomolar range. Additionally, they exhibited strong cytotoxicity to lung and colon cancer cell lines, as well as exquisite antiproliferative effects in the NCI60 cell-line panel. These assay results as well as initial structural biology studies suggest a distinctive binding mode for these new inhibitors.

  7. Proteasome inhibitors for malignancy-related Lambert-Eaton myasthenic syndrome.

    PubMed

    Wang, Chen; Chen, Shaobo; Feng, Bing; Guan, Yuzhou

    2014-03-01

    Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disorder characterized by autoantibodies against presynaptic voltage-gated calcium channels that impair neuromuscular transmission. Malignancies, especially small cell lung cancer (SCLC), have been associated with LEMS and account for approximately 60% of cases, making malignancy management a central step in LEMS therapy. In addition, immunosuppressive therapy is also recommended for symptomatic control. Interestingly, both pathological and epidemiological data suggest that the autoimmune response can inhibit progression of tumors in malignancy-associated LEMS. Thus, conventional broad-spectrum immunosuppressants may not be effective agents for treatment of LEMS, especially in those with malignancy-associated LEMS. Recent preclinical and clinical studies have indicated that proteasome inhibitors can eliminate antibody-producing cells efficiently, block dendritic cell maturation, and have anti-tumor activity. We hypothesize that proteasome inhibitors may be promising agents for treatment of malignancy-related LEMS.

  8. Phylogenetic analysis of nematodes of the genus Pratylenchus using nuclear 26S rDNA.

    PubMed

    Al-Banna, L; Williamson, V; Gardner, S L

    1997-02-01

    We used nucleotide sequences of the large subunit ribosomal genes (26S rDNA) to examine evolutionary relationships among species of the genus Pratylenchus (Order: Tylenchida, Family: Pratylenchidae), commonly known as root-lesion nematodes. Ten species of Pratylenchus were studied including, P. penetrans, P. crenatus, P. minyus, P. vulnus, P. thornei, P. musicola, P. coffeae, P. hexincisus, P. scribneri, and P. brachyurus. The species Hirschmanniella belli, Meloidogyne javanica, Heterorhabditis bacteriophora, Nacobbus aberrans, Radopholus similis, and Xiphinema index were used as outgroups. Based on parsimony analyses of approximately 307 aligned nucleotides of the D3 expansion region of the 26S rDNA, it is clear that species of Pratylenchus are a paraphyletic assemblage. The outgroup taxon H. belli shares a common ancestor with the clade that includes P. vulnus and P. crenatus while N. aberrans and R. similis share a common ancestor with 5 other species included in this study.

  9. Protein Expression of Proteasome Subunits in Elderly Patients with Schizophrenia

    PubMed Central

    Scott, Madeline R; Rubio, Maria D; Haroutunian, Vahram; Meador-Woodruff, James H

    2016-01-01

    The ubiquitin proteasome system (UPS) is a major regulator of protein processing, trafficking, and degradation. While protein ubiquitination is utilized for many cellular processes, one major function of this system is to target proteins to the proteasome for degradation. In schizophrenia, studies have found UPS transcript abnormalities in both blood and brain, and we have previously reported decreased protein expression of ubiquitin-associated proteins in brain. To test whether the proteasome is similarly dysregulated, we measured the protein expression of proteasome catalytic subunits as well as essential subunits from proteasome regulatory complexes in 14 pair-matched schizophrenia and comparison subjects in superior temporal cortex. We found decreased expression of Rpt1, Rpt3, and Rpt6, subunits of the 19S regulatory particle essential for ubiquitin-dependent degradation by the proteasome. Additionally, the α subunit of the 11S αβ regulatory particle, which enhances proteasomal degradation of small peptides and unfolded proteins, was also decreased. Haloperidol-treated rats did not have altered expression of these subunits, suggesting the changes we observed in schizophrenia are likely not due to chronic antipsychotic treatment. Interestingly, expression of the catalytic subunits of both the standard and immunoproteasome were unchanged, suggesting the abnormalities we observed may be specific to the complexed state of the proteasome. Aging has significant effects on the proteasome, and several subunits (20S β2, Rpn10, Rpn13, 11Sβ, and 11Sγ) were significantly correlated with subject age. These data provide further evidence of dysfunction of the ubiquitin-proteasome system in schizophrenia, and suggest that altered proteasome activity may be associated with the pathophysiology of this illness. PMID:26202105

  10. Structural Analysis of the Bacterial Proteasome Activator Bpa in Complex with the 20S Proteasome.

    PubMed

    Bolten, Marcel; Delley, Cyrille L; Leibundgut, Marc; Boehringer, Daniel; Ban, Nenad; Weber-Ban, Eilika

    2016-12-06

    Mycobacterium tuberculosis harbors proteasomes that recruit substrates for degradation through an ubiquitin-like modification pathway. Recently, a non-ATPase activator termed Bpa (bacterial proteasome activator) was shown to support an alternate proteasomal degradation pathway. Here, we present the cryo-electron microscopy (cryo-EM) structure of Bpa in complex with the 20S core particle (CP). For docking into the cryo-EM density, we solved the X-ray structure of Bpa, showing that it forms tight four-helix bundles arranged into a 12-membered ring with a 40 Å wide central pore and the C-terminal helix of each protomer protruding from the ring. The Bpa model was fitted into the cryo-EM map of the Bpa-CP complex, revealing its architecture and striking symmetry mismatch. The Bpa-CP interface was resolved to 3.5 Å, showing the interactions between the C-terminal GQYL motif of Bpa and the proteasome α-rings. This docking mode is related to the one observed for eukaryotic activators with features specific to the bacterial complex.

  11. Evidence for an Independent 26-s Microseismic Source near the Vanuatu Islands

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangfang; Ni, Sidao

    2014-09-01

    The 26 s peak in the ambient seismic noise spectrum is persistently excited and observed at stations globally. Using noise cross-correlation functions (NCFs), the location suggests that the source could be situated in the Gulf of Guinea and Fiji Basin. However, the Fiji Basin was proposed to be the mirror site (near antipode) of the Gulf of Guinea source instead of an independent source, assuming that the surface waves more efficiently propagate along the major-arc paths of oceanic movements. To investigate the propagation of the Rayleigh waves along continental and oceanic paths, we analyzed the surface wave data recorded from an earthquake near the Gulf of Guinea and found that Rayleigh waves travel along continental minor-arc paths more efficiently than along oceanic major-arc paths. We then located the source in the western Pacific Ocean from group velocities measured with earthquake data by using the travel time misfit in NCFs after calibration and concluded that the source is in the Vanuatu Islands. Moreover, the temporal variation of the 26 s microseismic peak observed in the western Pacific seismic stations is very different from that in stations near the Gulf of Guinea, which suggests that they are excited by independent sources. Therefore, the Vanuatu source should be an independent microseismic source. As it is close to volcanoes in the Vanuatu islands, the Pacific 26 s microseismic source might be excited by magmatic processes, which are also responsible for very-long-period volcanic tremors.

  12. Novel proteasome inhibitor ixazomib sensitizes neuroblastoma cells to doxorubicin treatment

    PubMed Central

    Li, Haoyu; Chen, Zhenghu; Hu, Ting; Wang, Long; Yu, Yang; Zhao, Yanling; Sun, Wenijing; Guan, Shan; Pang, Jonathan C.; Woodfield, Sarah E.; Liu, Qing; Yang, Jianhua

    2016-01-01

    Neuroblastoma (NB) is the most common extracranial malignant solid tumor seen in children and continues to lead to the death of many pediatric cancer patients. The poor outcome in high risk NB is largely attributed to the development of chemoresistant tumor cells. Doxorubicin (dox) has been widely employed as a potent anti-cancer agent in chemotherapeutic regimens; however, it also leads to chemoresistance in many cancer types including NB. Thus, developing novel small molecules that can overcome dox-induced chemoresistance is a promising strategy in cancer therapy. Here we show that the second generation proteasome inhibitor ixazomib (MLN9708) not only inhibits NB cell proliferation and induces apoptosis in vitro but also enhances dox-induced cytotoxicity in NB cells. Ixazomib inhibits dox-induced NF-κB activity and sensitizes NB cells to dox-induced apoptosis. More importantly, ixazomib demonstrated potent anti-tumor efficacy in vivo by enhancing dox-induced apoptosis in an orthotopic xenograft NB mouse model. Collectively, our study illustrates the anti-tumor efficacy of ixazomib in NB both alone and in combination with dox, suggesting that combination therapy including ixazomib with traditional therapeutic agents such as dox is a viable strategy that may achieve better outcomes for NB patients. PMID:27687684

  13. Ubiquitin proteasome system research in gastrointestinal cancer

    PubMed Central

    Zhong, Jia-Ling; Huang, Chang-Zhi

    2016-01-01

    The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design. PMID:26909134

  14. Ubiquitin proteasome system research in gastrointestinal cancer.

    PubMed

    Zhong, Jia-Ling; Huang, Chang-Zhi

    2016-02-15

    The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design.

  15. Distinct Elements in the Proteasomal β5 Subunit Propeptide Required for Autocatalytic Processing and Proteasome Assembly*

    PubMed Central

    Li, Xia; Li, Yanjie; Arendt, Cassandra S.; Hochstrasser, Mark

    2016-01-01

    Eukaryotic 20S proteasome assembly remains poorly understood. The subunits stack into four heteroheptameric rings; three inner-ring subunits (β1, β2, and β5) bear the protease catalytic residues and are synthesized with N-terminal propeptides. These propeptides are removed autocatalytically late in assembly. In Saccharomyces cerevisiae, β5 (Doa3/Pre2) has a 75-residue propeptide, β5pro, that is essential for proteasome assembly and can work in trans. We show that deletion of the poorly conserved N-terminal half of the β5 propeptide nonetheless causes substantial defects in proteasome maturation. Sequences closer to the cleavage site have critical but redundant roles in both assembly and self-cleavage. A conserved histidine two residues upstream of the autocleavage site strongly promotes processing. Surprisingly, although β5pro is functionally linked to the Ump1 assembly factor, trans-expressed β5pro associates only weakly with Ump1-containing precursors. Several genes were identified as dosage suppressors of trans-expressed β5pro mutants; the strongest encoded the β7 proteasome subunit. Previous data suggested that β7 and β5pro have overlapping roles in bringing together two half-proteasomes, but the timing of β7 addition relative to half-mer joining was unclear. Here we report conditions where dimerization lags behind β7 incorporation into the half-mer. Our results suggest that β7 insertion precedes half-mer dimerization, and the β7 tail and β5 propeptide have unequal roles in half-mer joining. PMID:26627836

  16. Distinct Elements in the Proteasomal β5 Subunit Propeptide Required for Autocatalytic Processing and Proteasome Assembly.

    PubMed

    Li, Xia; Li, Yanjie; Arendt, Cassandra S; Hochstrasser, Mark

    2016-01-22

    Eukaryotic 20S proteasome assembly remains poorly understood. The subunits stack into four heteroheptameric rings; three inner-ring subunits (β1, β2, and β5) bear the protease catalytic residues and are synthesized with N-terminal propeptides. These propeptides are removed autocatalytically late in assembly. In Saccharomyces cerevisiae, β5 (Doa3/Pre2) has a 75-residue propeptide, β5pro, that is essential for proteasome assembly and can work in trans. We show that deletion of the poorly conserved N-terminal half of the β5 propeptide nonetheless causes substantial defects in proteasome maturation. Sequences closer to the cleavage site have critical but redundant roles in both assembly and self-cleavage. A conserved histidine two residues upstream of the autocleavage site strongly promotes processing. Surprisingly, although β5pro is functionally linked to the Ump1 assembly factor, trans-expressed β5pro associates only weakly with Ump1-containing precursors. Several genes were identified as dosage suppressors of trans-expressed β5pro mutants; the strongest encoded the β7 proteasome subunit. Previous data suggested that β7 and β5pro have overlapping roles in bringing together two half-proteasomes, but the timing of β7 addition relative to half-mer joining was unclear. Here we report conditions where dimerization lags behind β7 incorporation into the half-mer. Our results suggest that β7 insertion precedes half-mer dimerization, and the β7 tail and β5 propeptide have unequal roles in half-mer joining.

  17. Purification and characterization of Candida albicans 20S proteasome: identification of four proteasomal subunits.

    PubMed

    Fernández Murray, P; Biscoglio, M J; Passeron, S

    2000-03-15

    The 20S proteasome from yeast cells of Candida albicans was purified by successive chromatographic steps to apparent homogeneity, as judged by nondenaturing and denaturing polyacrylamide gel electrophoresis. Its molecular mass was estimated to be 640 kDa by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gave at least 10 bands in the range 20-32 kDa. Two-dimensional electrophoresis revealed the presence of at least 14 polypeptides. By electron microscopy after negative staining, the proteasome preparation appeared as typical symmetrical barrel-shaped particles. The enzyme cleaved the peptidyl-arylamide bonds in the model synthetic substrates Cbz-G-G-L-p-nitroanilide, Cbz-G-G-R-beta-naphthylamide, and Cbz-L-L-E-beta-naphthylamide (chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide-hydrolyzing activities). The differential sensitivity of these activities to aldehyde peptides and sodium dodecyl sulfate supported the multicatalytic nature of this enzyme. Three proteasomal subunits were identified as alpha6/Pre5, alpha3/Y13, and alpha5/Pup2 by internal sequencing of tryptic fragments. Their sequences perfectly matched the corresponding deduced amino acid sequences of the C. albicans genes. A fourth subunit was identified as alpha7/Prs1 by immunorecognition with a monoclonal antibody specific for C8, the human proteasome subunit homologue. Treatment of the intact isolated 20S proteasome with acid phosphatase and Western blot analysis of the separated components indicated that the alpha7/Prs1 subunit is obtained as a multiply phosphorylated protein.

  18. Synergistic anti-myeloma activity of the proteasome inhibitor marizomib and the IMiD immunomodulatory drug pomalidomide.

    PubMed

    Das, Deepika S; Ray, Arghya; Song, Yan; Richardson, Paul; Trikha, Mohit; Chauhan, Dharminder; Anderson, Kenneth C

    2015-12-01

    The proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity, peripheral neuropathy and drug resistance. Our earlier studies showed that the novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action and effects on proteasomal activities, and that it can overcome bortezomib resistance. Pomalidomide, like lenalidomide, has potent immunomodulatory activity and has been approved by the US Food and Drug Administration for the treatment of RRMM. Here, we demonstrate that combining low concentrations of marizomib with pomalidomide induces synergistic anti-MM activity. Marizomib plus pomalidomide-induced apoptosis is associated with: (i) activation of caspase-8, caspase-9, caspase-3 and PARP cleavage, (ii) downregulation of cereblon (CRBN), IRF4, MYC and MCL1, and (iii) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. CRBN-siRNA attenuates marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibits the migration of MM cells and tumour-associated angiogenesis, as well as overcomes cytoprotective effects of bone marrow microenvironment. In human MM xenograft model studies, the combination of marizomib and pomalidomide is well tolerated, inhibits tumour growth and prolongs survival. These preclinical studies provide the rationale for on-going clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM.

  19. Synergistic Anti-Myeloma Activity of the Proteasome Inhibitor Marizomib and the IMiD® Immunomodulatory Drug Pomalidomide

    PubMed Central

    Das, Deepika Sharma; Ray, Arghya; Song, Yan; Richardson, Paul; Trikha, Mohit; Chauhan, Dharminder; Anderson, Kenneth C.

    2015-01-01

    The proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity, peripheral neuropathy and drug resistance. Our earlier studies showed that the novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action and effects on proteasomal activities, and that it can overcome bortezomib resistance. Pomalidomide, like lenalidomide, has potent immunomodulatory activity and has been approved by the US Food and Drug Administration for the treatment of RRMM. Here, we demonstrate that combining low concentrations of marizomib with pomalidomide induces synergistic anti-MM activity. Marizomib plus pomalidomide-induced apoptosis is associated with: 1) activation of caspase-8, caspase-9, caspase-3 and PARP cleavage; 2) downregulation of cereblon (CRBN), IRF4, MYC and MCL1; and 3) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. CRBN-siRNA attenuates marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibits the migration of MM cells and tumour-associated angiogenesis, as well as overcomes cytoprotective effects of bone marrow microenvironment. In human MM xenograft model studies, the combination of marizomib and pomalidomide is well tolerated, inhibits tumour growth and prolongs survival. These preclinical studies provide the rationale for on-going clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM. PMID:26456076

  20. Structure of a proteasome Pba1-Pba2 complex: implications for proteasome assembly, activation, and biological function.

    PubMed

    Stadtmueller, Beth M; Kish-Trier, Erik; Ferrell, Katherine; Petersen, Charisse N; Robinson, Howard; Myszka, David G; Eckert, Debra M; Formosa, Tim; Hill, Christopher P

    2012-10-26

    The 20S proteasome is an essential, 28-subunit protease that sequesters proteolytic sites within a central chamber, thereby repressing substrate degradation until proteasome activators open the entrance/exit gate. Two established activators, Blm10 and PAN/19S, induce gate opening by binding to the pockets between proteasome α-subunits using C-terminal HbYX (hydrophobic-tyrosine-any residue) motifs. Equivalent HbYX motifs have been identified in Pba1 and Pba2, which function in proteasome assembly. Here, we demonstrate that Pba1-Pba2 proteins form a stable heterodimer that utilizes its HbYX motifs to bind mature 20S proteasomes in vitro and that the Pba1-Pba2 HbYX motifs are important for a physiological function of proteasomes, the maintenance of mitochondrial function. Other factors that contribute to proteasome assembly or function also act in the maintenance of mitochondrial function and display complex genetic interactions with one another, possibly revealing an unexpected pathway of mitochondrial regulation involving the Pba1-Pba2 proteasome interaction. Our determination of a proteasome Pba1-Pba2 crystal structure reveals a Pba1 HbYX interaction that is superimposable with those of known activators, a Pba2 HbYX interaction that is different from those reported previously, and a gate structure that is disrupted but not sufficiently open to allow entry of even small peptides. These findings extend understanding of proteasome interactions with HbYX motifs and suggest multiple roles for Pba1-Pba2 interactions throughout proteasome assembly and function.

  1. Altered epidermal lipid processing and calcium distribution in the KID syndrome mouse model Cx26S17F

    PubMed Central

    Bosen, Felicitas; Celli, Anna; Crumrine, Debra; vom Dorp, Katharina; Ebel, Philipp; Jastrow, Holger; Dörmann, Peter; Winterhager, Elke; Mauro, Theodora; Willecke, Klaus

    2016-01-01

    The keratitis–ichthyosis–deafness (KID) syndrome is caused by mutations in the gap junctional channel protein connexin 26 (Cx26), among them the mutation Cx26S17F. Heterozygous Cx26S17F mice resemble the human KID syndrome, i.e. exhibiting epidermal hyperplasia and hearing impairments. Newborn Cx26S17F mice show a defective epidermal water barrier as well as altered epidermal lipid secretion and location. Linoleoyl ω-esterified ceramides are strongly decreased on the skin surface of Cx26S17F mice. Moreover, the epidermal calcium gradient is altered in the mutant mice. These alterations may be caused by an abnormal Cx26S17F channel function that leads to a defective epidermal water barrier, which in turn may trigger the hyperproliferation seen in the KID syndrome. PMID:26070424

  2. Altered epidermal lipid processing and calcium distribution in the KID syndrome mouse model Cx26S17F.

    PubMed

    Bosen, Felicitas; Celli, Anna; Crumrine, Debra; vom Dorp, Katharina; Ebel, Philipp; Jastrow, Holger; Dörmann, Peter; Winterhager, Elke; Mauro, Theodora; Willecke, Klaus

    2015-07-08

    The keratitis-ichthyosis-deafness (KID) syndrome is caused by mutations in the gap junctional channel protein connexin 26 (Cx26), among them the mutation Cx26S17F. Heterozygous Cx26S17F mice resemble the human KID syndrome, i.e. exhibiting epidermal hyperplasia and hearing impairments. Newborn Cx26S17F mice show a defective epidermal water barrier as well as altered epidermal lipid secretion and location. Linoleoyl ω-esterified ceramides are strongly decreased on the skin surface of Cx26S17F mice. Moreover, the epidermal calcium gradient is altered in the mutant mice. These alterations may be caused by an abnormal Cx26S17F channel function that leads to a defective epidermal water barrier, which in turn may trigger the hyperproliferation seen in the KID syndrome.

  3. Proteasome inhibitor-induced apoptosis is mediated by positive feedback amplification of PKCδ proteolytic activation and mitochondrial translocation

    PubMed Central

    Sun, Faneng; Kanthasamy, Arthi; Song, Chunjuan; Yang, Yongjie; Anantharam, Vellareddy; Kanthasamy, Anumantha G

    2008-01-01

    Emerging evidence implicates impaired protein degradation by the ubiquitin proteasome system (UPS) in Parkinson's disease; however cellular mechanisms underlying dopaminergic degeneration during proteasomal dysfunction are yet to be characterized. In the present study, we identified that the novel PKC isoform PKCδ plays a central role in mediating apoptotic cell death following UPS dysfunction in dopaminergic neuronal cells. Inhibition of proteasome function by MG-132 in dopaminergic neuronal cell model (N27 cells) rapidly depolarized mitochondria independent of ROS generation to activate the apoptotic cascade involving cytochrome c release, and caspase-9 and caspase-3 activation. PKCδ was a key downstream effector of caspase-3 because the kinase was proteolytically cleaved by caspase-3 following exposure to proteasome inhibitors MG-132 or lactacystin, resulting in a persistent increase in the kinase activity. Notably MG-132 treatment resulted in translocation of proteolytically cleaved PKCδ fragments to mitochondria in a time-dependent fashion, and the PKCδ inhibition effectively blocked the activation of caspase-9 and caspase-3, indicating that the accumulation of the PKCδ catalytic fragment in the mitochondrial fraction possibly amplifies mitochondria-mediated apoptosis. Overexpression of the kinase active catalytic fragment of PKCδ (PKCδ-CF) but not the regulatory fragment (RF), or mitochondria-targeted expression of PKCδ-CF triggers caspase-3 activation and apoptosis. Furthermore, inhibition of PKCδ proteolytic cleavage by a caspase-3 cleavage-resistant mutant (PKCδ-CRM) or suppression of PKCδ expression by siRNA significantly attenuated MG-132-induced caspase-9 and -3 activation and DNA fragmentation. Collectively, these results demonstrate that proteolytically activated PKCδ has a significant feedback regulatory role in amplification of the mitochondria-mediated apoptotic cascade during proteasome dysfunction in dopaminergic neuronal cells. PMID

  4. Proteasome inhibitors promote the sequestration of PrPSc into aggresomes within the cytosol of prion-infected CAD neuronal cells.

    PubMed

    Dron, Michel; Dandoy-Dron, Françoise; Farooq Salamat, Muhammad Khalid; Laude, Hubert

    2009-08-01

    Dysfunction of the endoplasmic reticulum associated protein degradation/proteasome system is believed to contribute to the initiation or aggravation of neurodegenerative disorders associated with protein misfolding, and there is some evidence to suggest that proteasome dysfunctions might be implicated in prion disease. This study investigated the effect of proteasome inhibitors on the biogenesis of both the cellular (PrP(C)) and abnormal (PrP(Sc)) forms of prion protein in CAD neuronal cells, a newly introduced prion cell system. In uninfected cells, proteasome impairment altered the intracellular distribution of PrP(C), leading to a strong accumulation in the Golgi apparatus. Moreover, a detergent-insoluble and weakly protease-resistant PrP species of 26 kDa, termed PrP(26K), accumulated in the cells, whether they were prion-infected or not. However, no evidence was found that, in infected cells, this PrP(26K) species converts into the highly proteinase K-resistant PrP(Sc). In the infected cultures, proteasome inhibition caused an increased intracellular aggregation of PrP(Sc) that was deposited into large aggresomes. These findings strengthen the view that, in neuronal cells expressing wild-type PrP(C) from the natural promoter, proteasomal impairment may affect both the process of PrP(C) biosynthesis and the subcellular sites of PrP(Sc) accumulation, despite the fact that these two effects could essentially be disconnected.

  5. The over-expression of the β2 catalytic subunit of the proteasome decreases homologous recombination and impairs DNA double-strand break repair in human cells.

    PubMed

    Collavoli, Anita; Comelli, Laura; Cervelli, Tiziana; Galli, Alvaro

    2011-01-01

    By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.

  6. The Over-expression of the β2 Catalytic Subunit of the Proteasome Decreases Homologous Recombination and Impairs DNA Double-Strand Break Repair in Human Cells

    PubMed Central

    Collavoli, Anita; Comelli, Laura; Cervelli, Tiziana; Galli, Alvaro

    2011-01-01

    By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p. PMID:21660142

  7. Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion

    SciTech Connect

    Lu, Li; Song, Hui-Fang; Zhang, Wei-Guo; Liu, Xue-Qin; Zhu, Qian; Cheng, Xiao-Long; Yang, Gui-Jiao; Li, Ang; Xiao, Zhi-Cheng

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Prolonged culture expansion retards proliferation and induces senescence of hBMSCs. Black-Right-Pointing-Pointer Reduced 20S proteasomal activity and expression potentially contribute to cell aging. Black-Right-Pointing-Pointer MG132-mediated 20S proteasomal inhibition induces senescence-like phenotype. Black-Right-Pointing-Pointer 18{alpha}-GA stimulates proteasomal activity and restores replicative senescence. Black-Right-Pointing-Pointer 18{alpha}-GA retains differentiation without affecting stem cell characterizations. -- Abstract: Human bone marrow stromal cells (hBMSCs) could be used in clinics as precursors of multiple cell lineages following proper induction. Such application is impeded by their characteristically short lifespan, together with the increasing loss of proliferation capability and progressive reduction of differentiation potential after the prolonged culture expansion. In the current study, we addressed the possible role of 20S proteasomes in this process. Consistent with prior reports, long-term in vitro expansion of hBMSCs decreased cell proliferation and increased replicative senescence, accompanied by reduced activity and expression of the catalytic subunits PSMB5 and PSMB1, and the 20S proteasome overall. Application of the proteasome inhibitor MG132 produced a senescence-like phenotype in early passages, whereas treating late-passage cells with 18{alpha}-glycyrrhetinic acid (18{alpha}-GA), an agonist of 20S proteasomes, delayed the senescence progress, enhancing the proliferation and recovering the capability of differentiation. The data demonstrate that activation of 20S proteasomes assists in counteracting replicative senescence of hBMSCs expanded in vitro.

  8. Recognition and Cleavage of Related to Ubiquitin 1 (Rub1) and Rub1-Ubiquitin Chains by Components of the Ubiquitin-Proteasome System*

    PubMed Central

    Singh, Rajesh K.; Zerath, Sylvia; Kleifeld, Oded; Scheffner, Martin; Glickman, Michael H.; Fushman, David

    2012-01-01

    Of all ubiquitin-like proteins, Rub1 (Nedd8 in mammals) is the closest kin of ubiquitin. We show via NMR that structurally, Rub1 and ubiquitin are fundamentally similar as well. Despite these profound similarities, the prevalence of Rub1/Nedd8 and of ubiquitin as modifiers of the proteome is starkly different, and their attachments to specific substrates perform different functions. Recently, some proteins, including p53, p73, EGFR, caspase-7, and Parkin, have been shown to be modified by both Rub1/Nedd8 and ubiquitin within cells. To understand whether and how it might be possible to distinguish among the same target protein modified by Rub1 or ubiquitin or both, we examined whether ubiquitin receptors can differentiate between Rub1 and ubiquitin. Surprisingly, Rub1 interacts with proteasome ubiquitin-shuttle proteins comparably to ubiquitin but binds more weakly to a proteasomal ubiquitin receptor Rpn10. We identified Rub1-ubiquitin heteromers in yeast and Nedd8-Ub heteromers in human cells. We validate that in human cells and in vitro, human Rub1 (Nedd8) forms chains with ubiquitin where it acts as a chain terminator. Interestingly, enzymatically assembled K48-linked Rub1-ubiquitin heterodimers are recognized by various proteasomal ubiquitin shuttles and receptors comparably to K48-linked ubiquitin homodimers. Furthermore, these heterologous chains are cleaved by COP9 signalosome or 26S proteasome. A derubylation function of the proteasome expands the repertoire of its enzymatic activities. In contrast, Rub1 conjugates may be somewhat resilient to the actions of other canonical deubiquitinating enzymes. Taken together, these findings suggest that once Rub1/Nedd8 is channeled into ubiquitin pathways, it is recognized essentially like ubiquitin. PMID:23105008

  9. Alterations of the Intracellular Peptidome in Response to the Proteasome Inhibitor Bortezomib

    PubMed Central

    Berezniuk, Iryna; Dasgupta, Sayani; Castro, Leandro M.; Gozzo, Fabio C.; Ferro, Emer S.; Fricker, Lloyd D.

    2013-01-01

    Bortezomib is an antitumor drug that competitively inhibits proteasome beta-1 and beta-5 subunits. While the impact of bortezomib on protein stability is known, the effect of this drug on intracellular peptides has not been previously explored. A quantitative peptidomics technique was used to examine the effect of treating human embryonic kidney 293T (HEK293T) cells with 5–500 nM bortezomib for various lengths of time (30 minutes to 16 hours), and human neuroblastoma SH-SY5Y cells with 500 nM bortezomib for 1 hour. Although bortezomib treatment decreased the levels of some intracellular peptides, the majority of peptides were increased by 50–500 nM bortezomib. Peptides requiring cleavage at acidic and hydrophobic sites, which involve beta-1 and -5 proteasome subunits, were among those elevated by bortezomib. In contrast, the proteasome inhibitor epoxomicin caused a decrease in the levels of many of these peptides. Although bortezomib can induce autophagy under certain conditions, the rapid bortezomib-mediated increase in peptide levels did not correlate with the induction of autophagy. Taken together, the present data indicate that bortezomib alters the balance of intracellular peptides, which may contribute to the biological effects of this drug. PMID:23308178

  10. Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways.

    PubMed

    Wang, Shixuan; Livingston, Man J; Su, Yunchao; Dong, Zheng

    2015-04-03

    Primary cilium is an organelle that plays significant roles in a number of cellular functions ranging from cell mechanosensation, proliferation, and differentiation to apoptosis. Autophagy is an evolutionarily conserved cellular function in biology and indispensable for cellular homeostasis. Both cilia and autophagy have been linked to different types of genetic and acquired human diseases. Their interaction has been suggested very recently, but the underlying mechanisms are still not fully understood. We examined autophagy in cells with suppressed cilia and measured cilium length in autophagy-activated or -suppressed cells. It was found that autophagy was repressed in cells with short cilia. Further investigation showed that MTOR activation was enhanced in cilia-suppressed cells and the MTOR inhibitor rapamycin could largely reverse autophagy suppression. In human kidney proximal tubular cells (HK2), autophagy induction was associated with cilium elongation. Conversely, autophagy inhibition by 3-methyladenine (3-MA) and chloroquine (CQ) as well as bafilomycin A1 (Baf) led to short cilia. Cilia were also shorter in cultured atg5-knockout (KO) cells and in atg7-KO kidney proximal tubular cells in mice. MG132, an inhibitor of the proteasome, could significantly restore cilium length in atg5-KO cells, being concomitant with the proteasome activity. Together, the results suggest that cilia and autophagy regulate reciprocally through the MTOR signaling pathway and ubiquitin-proteasome system.

  11. The Transcription Activity of Gis1 Is Negatively Modulated by Proteasome-mediated Limited Proteolysis*

    PubMed Central

    Zhang, Nianshu; Oliver, Stephen G.

    2010-01-01

    The transcriptional response to environmental changes has to be prompt but appropriate. Previously, it has been shown that the Gis1 transcription factor is responsible for regulating the expression of postdiauxic shift genes in response to nutrient starvation, and this transcription regulation is dependent upon the Rim15 kinase. Here we demonstrate that the activity of Gis1 is negatively modulated by proteasome-mediated limited proteolysis. Limited degradation of Gis1 by the proteasome leads to the production of smaller variants, which have weaker transcription activities than the full-length protein. The coiled-coil domain, absent from the smaller variants, is part of the second transcription activation domain in Gis1 and is essential for both the limited proteolysis of Gis1 and its full activity. Endogenous Gis1 and its variants, regardless of their transcription capabilities, activate transcription in a Rim15-dependent manner. However, when the full-length Gis1 accumulates in cells due to overexpression or inhibition of the proteasome function, transcription activation by Gis1 is no longer solely controlled by Rim15. Together, these data strongly indicate that the function of the limited degradation is to ensure that Gis1-dependent transcription is strictly regulated by the Rim15 kinase. Furthermore, we have revealed that the kinase activity of Rim15 is essential for this regulation. PMID:20022953

  12. Regulation of energy homeostasis by the ubiquitin-independent REGγ proteasome

    PubMed Central

    Sun, Lianhui; Fan, Guangjian; Shan, Peipei; Qiu, Xiaoying; Dong, Shuxian; Liao, Lujian; Yu, Chunlei; Wang, Tingting; Gu, Xiaoyang; Li, Qian; Song, Xiaoyu; Cao, Liu; Li, Xiaotao; Cui, Yongping; Zhang, Shengping; Wang, Chuangui

    2016-01-01

    Maintenance of energy homeostasis is essential for cell survival. Here, we report that the ATP- and ubiquitin-independent REGγ-proteasome system plays a role in maintaining energy homeostasis and cell survival during energy starvation via repressing rDNA transcription, a major intracellular energy-consuming process. Mechanistically, REGγ-proteasome limits cellular rDNA transcription and energy consumption by targeting the rDNA transcription activator SirT7 for ubiquitin-independent degradation under normal conditions. Moreover, energy starvation induces an AMPK-directed SirT7 phosphorylation and subsequent REGγ-dependent SirT7 subcellular redistribution and degradation, thereby further reducing rDNA transcription to save energy to overcome cell death. Energy starvation is a promising strategy for cancer therapy. Our report also shows that REGγ knockdown markedly improves the anti-tumour activity of energy metabolism inhibitors in mice. Our results underscore a control mechanism for an ubiquitin-independent process in maintaining energy homeostasis and cell viability under starvation conditions, suggesting that REGγ-proteasome inhibition has a potential to provide tumour-starving benefits. PMID:27511885

  13. Proteasome Inhibitors Decrease AAV2 Capsid derived Peptide Epitope Presentation on MHC Class I Following Transduction

    PubMed Central

    Finn, Jonathan D; Hui, Daniel; Downey, Harre D; Dunn, Danielle; Pien, Gary C; Mingozzi, Federico; Zhou, Shangzhen; High, Katherine A

    2009-01-01

    Adeno-associated viral (AAV) vectors are an extensively studied and highly used vector platform for gene therapy applications. We hypothesize that in the first clinical trial using AAV to treat hemophilia B, AAV capsid proteins were presented on the surface of transduced hepatocytes, resulting in clearance by antigen-specific CD8+ T cells and consequent loss of therapeutic transgene expression. It has been previously shown that proteasome inhibitors can have a dramatic effect on AAV transduction in vitro and in vivo. Here, we describe using the US Food and Drug Administration-approved proteasome inhibitor, bortezomib, to decrease capsid antigen presentation on hepatocytes in vitro, whereas at the same time, enhancing gene expression in vivo. Using an AAV capsid-specific T-cell reporter (TCR) line to analyze the effect of proteasome inhibitors on antigen presentation, we demonstrate capsid antigen presentation at low multiplicities of infection (MOIs), and inhibition of antigen presentation at pharmacologic levels of bortezomib. We also demonstrate that bortezomib can enhance Factor IX (FIX) expression from an AAV2 vector in mice, although the same effect was not observed for AAV8 vectors. A pharmacological agent that can enhance AAV transduction, decrease T-cell activation/proliferation, and decrease capsid antigen presentation would be a promising solution to obstacles to successful AAV-mediated, liver-directed gene transfer in humans. PMID:19904235

  14. Regulation of energy homeostasis by the ubiquitin-independent REGγ proteasome.

    PubMed

    Sun, Lianhui; Fan, Guangjian; Shan, Peipei; Qiu, Xiaoying; Dong, Shuxian; Liao, Lujian; Yu, Chunlei; Wang, Tingting; Gu, Xiaoyang; Li, Qian; Song, Xiaoyu; Cao, Liu; Li, Xiaotao; Cui, Yongping; Zhang, Shengping; Wang, Chuangui

    2016-08-11

    Maintenance of energy homeostasis is essential for cell survival. Here, we report that the ATP- and ubiquitin-independent REGγ-proteasome system plays a role in maintaining energy homeostasis and cell survival during energy starvation via repressing rDNA transcription, a major intracellular energy-consuming process. Mechanistically, REGγ-proteasome limits cellular rDNA transcription and energy consumption by targeting the rDNA transcription activator SirT7 for ubiquitin-independent degradation under normal conditions. Moreover, energy starvation induces an AMPK-directed SirT7 phosphorylation and subsequent REGγ-dependent SirT7 subcellular redistribution and degradation, thereby further reducing rDNA transcription to save energy to overcome cell death. Energy starvation is a promising strategy for cancer therapy. Our report also shows that REGγ knockdown markedly improves the anti-tumour activity of energy metabolism inhibitors in mice. Our results underscore a control mechanism for an ubiquitin-independent process in maintaining energy homeostasis and cell viability under starvation conditions, suggesting that REGγ-proteasome inhibition has a potential to provide tumour-starving benefits.

  15. Electrospray ionization mass spectrometry and ion mobility analysis of the 20S proteasome complex.

    PubMed

    Loo, Joseph A; Berhane, Beniam; Kaddis, Catherine S; Wooding, Kerry M; Xie, Yongming; Kaufman, Stanley L; Chernushevich, Igor V

    2005-07-01

    Mass spectrometry and gas phase ion mobility [gas phase electrophoretic macromolecule analyzer (GEMMA)] with electrospray ionization were used to characterize the structure of the noncovalent 28-subunit 20S proteasome from Methanosarcina thermophila and rabbit. ESI-MS measurements with a quadrupole time-of-flight analyzer of the 192 kDa alpha7-ring and the intact 690 kDa alpha7beta7beta7alpha7 are consistent with their expected stoichiometries. Collisionally activated dissociation of the 20S gas phase complex yields loss of individual alpha-subunits only, and it is generally consistent with the known alpha7beta7beta7alpha7 architecture. The analysis of the binding of a reversible inhibitor to the 20S proteasome shows the expected stoichiometry of one inhibitor for each beta-subunit. Ion mobility measurements of the alpha7-ring and the alpha7beta7beta7alpha7 complex yield electrophoretic diameters of 10.9 and 15.1 nm, respectively; these dimensions are similar to those measured by crystallographic methods. Sequestration of multiple apo-myoglobin substrates by a lactacystin-inhibited 20S pr