Science.gov

Sample records for 26s rdna pcr-rflp

  1. Epidemiologic Study of Malassezia Yeasts in Patients with Malassezia Folliculitis by 26S rDNA PCR-RFLP Analysis

    PubMed Central

    Ko, Jong Hyun; Choe, Yong Beom; Ahn, Kyu Joong

    2011-01-01

    Background So far, studies on the inter-relationship between Malassezia and Malassezia folliculitis have been rather scarce. Objective We sought to analyze the differences in body sites, gender and age groups, and to determine whether there is a relationship between certain types of Malassezia species and Malassezia folliculitis. Methods Specimens were taken from the forehead, cheek and chest of 60 patients with Malassezia folliculitis and from the normal skin of 60 age- and gender-matched healthy controls by 26S rDNA PCR-RFLP. Results M. restricta was dominant in the patients with Malassezia folliculitis (20.6%), while M. globosa was the most common species (26.7%) in the controls. The rate of identification was the highest in the teens for the patient group, whereas it was the highest in the thirties for the control group. M. globosa was the most predominant species on the chest with 13 cases (21.7%), and M. restricta was the most commonly identified species, with 17 (28.3%) and 12 (20%) cases on the forehead and cheek, respectively, for the patient group. Conclusion Statistically significant differences were observed between the patient and control groups for the people in their teens and twenties, and in terms of the body site, on the forehead only. PMID:21747616

  2. Epidemiologic Study of Malassezia Yeasts in Seborrheic Dermatitis Patients by the Analysis of 26S rDNA PCR-RFLP

    PubMed Central

    Oh, Byung Ho; Choe, Yong Beom; Ahn, Kyu Joong

    2010-01-01

    Background This case-control study concerns a molecular biological method based on the data gathered from a group of Korean subjects to examine the distribution of Malassezia yeasts in seborrheic dermatitis (SD) patients. Cultures for Malassezia yeasts were taken from the foreheads, cheeks and chests of 60 patients with SD and in 60 healthy controls of equivalent age. Objective The purpose of this study is to identify the relationship between certain species of Malassezia and SD. This was done by analyzing the differences in the distribution of Malassezia species in terms of age and body parts of the host with healthy controls. Methods 26S rDNA PCR-RFLP, a fast and accurate molecular biological method, was used to overcome the limits of morphological and biochemical methods. Results The positive Malassezia culture rate was 51.7% in patients with SD, which was lower than that of healthy adults (63.9%). M. restricta was dominant in patients with SD (19.5%). Likewise, M. restricta was identified as a common species (20.5%) in healthy controls. In the ages 31~40, M. restricta was found to be the most common species (31.6%) among SD patients. Conclusion According to the results of the study, the most frequently isolated species was M. restricta (19.5%) in patients with SD. There was no statistically significant difference in the distribution of Malassezia species between the SD patients and healthy control groups. PMID:20548904

  3. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP

    PubMed Central

    Mandakovic, Dinka; Glasner, Benjamín; Maldonado, Jonathan; Aravena, Pamela; González, Mauricio; Cambiazo, Verónica; Pulgar, Rodrigo

    2016-01-01

    The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction—Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies. PMID:27242682

  4. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP.

    PubMed

    Mandakovic, Dinka; Glasner, Benjamín; Maldonado, Jonathan; Aravena, Pamela; González, Mauricio; Cambiazo, Verónica; Pulgar, Rodrigo

    2016-01-01

    The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies.

  5. PCR-RFLP of ITS rDNA for the rapid identification of Penicillium subgenus Biverticillium species.

    PubMed

    Dupont, Jöelle; Dennetière, Bruno; Jacquet, Claire; Dupont, Marie France

    2006-09-01

    RFLP of ITS rDNA is proposed as a useful tool for molecular identification of the most common species of biverticillate penicillia. 60 isolates were analysed representing 13 species and 21 unique sequences were produced. The combination of five restriction enzymes was successful in separating 12 species. However, the variety Penicillium purpurogenum var. rubrisclerotium remained indistinguishable from Penicillium funiculosum. P. funiculosum appeared as the most confused species, being mis-identified with Penicillium miniolutum and Penicillium pinophilum, which were originally part of the species, and with P. purpurogenum perhaps because of the common production of red pigment. Penicillium variabile was difficult to investigate as introns were found on half of the isolates. Penicillium piceum, Penicillium rugulosum, Penicillium loliense, Penicillium erythromellis and P. purpurogenum were homogeneous from molecular and morphological positions and corresponded to a well circumscribed taxon. Furthermore, intraspecific variability was evidenced within P. pinophilum and P. funiculosum. The ex-type isolate of P. funiculosum produced a unique pattern. The method is sensitive, rapid and inexpensive and can be used for isolate identification of the biverticillate species. It is recommended particularly when many isolates have to be authentificated prior to analysis for phylogenetic assessment or population genetics.

  6. Detection and identification of Malassezia species in domestic animals and aquatic birds by PCR-RFLP.

    PubMed

    Zia, M; Mirhendi, H; Toghyani, M

    2015-01-01

    The present study aimed at detection and species-level identification of the Malassezia yeasts in domestic animals and aquatic birds by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Samples were collected using tape strips and swabs from 471 animals including 97 horses, 102 cattle, 105 sheep, 20 camels, 60 dogs, 30 cats, 1 hamster, 1 squirrel, 50 aquatic birds and 5 turkeys. Tape-strip samples were examined by direct microscopy. All samples were inoculated on modified Leeming and Notman agar medium. DNA extracted from the yeast colonies was amplified by PCR using primers specific for 26S rDNA. RFLP of the PCR products was performed using Hin6I enzyme, and PCR and RFLP products were visualized by agarose gel electrophoresis. Malassezia yeasts were detected at the following frequencies: 15.46% in horses, 12.74% in cattle, 12.38% in sheep, 28.33% in dogs, 26.66% in cats and 26% in aquatic birds. Eighty colonies of 6 species were isolated: Malassezia globosa 41.25%, Malassezia furfur 22.5%, Malassezia restricta 15%, Malassezia sympodialis 15%, Malassezia pachydermatis 5% and Malassezia slooffiae 1.25%. Therefore different lipophilic Malassezia species are found in a wide diversity of animals and aquatic birds. PCR-RFLP is a suitable technique for identification of different Malassezia species.

  7. Detection and identification of Malassezia species in domestic animals and aquatic birds by PCR-RFLP

    PubMed Central

    Zia, M.; Mirhendi, H.; Toghyani, M.

    2015-01-01

    The present study aimed at detection and species-level identification of the Malassezia yeasts in domestic animals and aquatic birds by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Samples were collected using tape strips and swabs from 471 animals including 97 horses, 102 cattle, 105 sheep, 20 camels, 60 dogs, 30 cats, 1 hamster, 1 squirrel, 50 aquatic birds and 5 turkeys. Tape-strip samples were examined by direct microscopy. All samples were inoculated on modified Leeming and Notman agar medium. DNA extracted from the yeast colonies was amplified by PCR using primers specific for 26S rDNA. RFLP of the PCR products was performed using Hin6I enzyme, and PCR and RFLP products were visualized by agarose gel electrophoresis. Malassezia yeasts were detected at the following frequencies: 15.46% in horses, 12.74% in cattle, 12.38% in sheep, 28.33% in dogs, 26.66% in cats and 26% in aquatic birds. Eighty colonies of 6 species were isolated: Malassezia globosa 41.25%, Malassezia furfur 22.5%, Malassezia restricta 15%, Malassezia sympodialis 15%, Malassezia pachydermatis 5% and Malassezia slooffiae 1.25%. Therefore different lipophilic Malassezia species are found in a wide diversity of animals and aquatic birds. PCR-RFLP is a suitable technique for identification of different Malassezia species. PMID:27175148

  8. Phylogenetic analysis of nematodes of the genus Pratylenchus using nuclear 26S rDNA.

    PubMed

    Al-Banna, L; Williamson, V; Gardner, S L

    1997-02-01

    We used nucleotide sequences of the large subunit ribosomal genes (26S rDNA) to examine evolutionary relationships among species of the genus Pratylenchus (Order: Tylenchida, Family: Pratylenchidae), commonly known as root-lesion nematodes. Ten species of Pratylenchus were studied including, P. penetrans, P. crenatus, P. minyus, P. vulnus, P. thornei, P. musicola, P. coffeae, P. hexincisus, P. scribneri, and P. brachyurus. The species Hirschmanniella belli, Meloidogyne javanica, Heterorhabditis bacteriophora, Nacobbus aberrans, Radopholus similis, and Xiphinema index were used as outgroups. Based on parsimony analyses of approximately 307 aligned nucleotides of the D3 expansion region of the 26S rDNA, it is clear that species of Pratylenchus are a paraphyletic assemblage. The outgroup taxon H. belli shares a common ancestor with the clade that includes P. vulnus and P. crenatus while N. aberrans and R. similis share a common ancestor with 5 other species included in this study.

  9. Identification of the razor clam species Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus using PCR-RFLP analysis of the 5S rDNA region.

    PubMed

    Fernandez-Tajes, Juan; Méndez, Josefina

    2007-09-05

    Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis of the 5S ribosomal DNA region has been applied to the establishment of DNA-based molecular markers for the identification of five razor clam species: Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus. PCR amplifications were carried out using a pair of universal primers from the coding region of 5S rDNA. S. marginatus was simply distinguished by the different size of the amplicons obtained. Species-specific restriction endonuclease patterns were found with the enzymes Hae III for E. arcuatus, E. siliqua, and E. directus, and Acs I for E. macha, and when two enzymes were combined, the four species were also identified. Thus, this work provides a simple, reliable, and rapid protocol for the accurate identification of Ensis and Solen species in fresh and canned products, which is very useful for traceability and to enforce labeling regulations.

  10. Karyotypes, heterochromatin, and physical mapping of 18S-26S rDNA in Cactaceae.

    PubMed

    Las Peñas, M L; Urdampilleta, J D; Bernardello, G; Forni-Martins, E R

    2009-01-01

    Karyotype analyses in members of the four Cactaceae subfamilies were performed. Numbers and karyotype formula obtained were: Pereskioideae = Pereskiaaculeata(2n = 22; 10 m + 1 sm), Maihuenioideae = Maihuenia patagonica (2n = 22, 9 m + 2 sm; 2n = 44, 18 m + 4 sm), Opuntioideae = Cumulopuntia recurvata(2n = 44; 20 m + 2 sm), Cactoideae = Acanthocalycium spiniflorum (2n = 22; 10 m + 1 sm),Echinopsis tubiflora (2n = 22; 10 m + 1 sm), Trichocereus candicans (2n = 22, 22 m). Chromosomes were small, the average chromosome length was 2.3 mum. Diploid species and the tetraploid C. recurvata had one terminal satellite, whereas the remaining tetraploid species showed four satellited chromosomes. Karyotypes were symmetrical. No CMA(-)/DAPI(+) bands were detected, but CMA(+)/DAPI(-) bands associated with NOR were always found. Pericentromeric heterochromatin was found in C. recurvata, A. spiniflorum, and the tetraploid cytotype of M. patagonica. The locations of the 18S-26S rDNA sites in all species coincided with CMA(+)/DAPI(-) bands; the same occurred with the sizes and numbers of signals for each species. This technique was applied for the first time in metaphase chromosomes in cacti. NOR-bearing pair no.1 may be homeologous in all species examined. In Cactaceae, the 18S-26S loci seem to be highly conserved.

  11. Screening of PAH-degrading bacteria in a mangrove swamp using PCR-RFLP.

    PubMed

    Liu, HuiJie; Yang, CaiYun; Tian, Yun; Lin, GuangHui; Zheng, TianLing

    2010-11-01

    There are abundant PAH-degrading bacteria in mangrove sediments, and it is very important to screen the high efficiency degraders in order to perform bioremediation of PAH polluted environments. In order to obtain the more highly efficient PAH-degrading bacteria from a mangrove swamp, we first obtained 62 strains of PAH-degrading bacteria using traditional culture methods and based on their morphological characteristics. We then used the modern molecular biological technology of PCR-RFLP, in which the 16S rDNA of these strains were digested by different enzymes. Based on differences in the PCR-RFLP profiles, we obtained five strains of phenanthrene-degrading bacteria, five strains of pyrene-degrading bacteria, four strains of fluoranthene-degrading bacteria, five strains of benzo[a]pyrene-degrading bacteria and two strains of mixed PAH-degrading bacteria (including phenanthrene, pyrene, fluoranthene and benzo[a]pyrene). Finally, a total of 14 different PAH-degrading bacteria were obtained. The 16S rDNA sequences of these strains were aligned with the BLAST program on the NCBI website and it was found that they belonged to the α-proteobacteria and γ-proteobacteria, including four strains, where the similarities were no more than 97% and which were suspected therefore to be new species. This study indicated that PCR-RFLP was a very important method to screen degrading-bacteria, and also a significant molecular biological tool for the rapid classification and accurate identification of many different strains. On the other hand, it also showed that rich bacterial resources existed in mangrove areas, and that exploring and developing the functional microorganism from these mangrove areas would have wide use in the study of bioremediation of contaminated environments in the future.

  12. ABO genotyping by PCR-RFLP and cloning and sequencing.

    PubMed

    Haak, Wolfgang; Burger, Joachim; Alt, Kurt Werner

    2004-12-01

    A refined PCR-RFLP based method was established to genotype ABO blood groups. The main objective of this study was to make the techniques also suitable for working with degraded DNA. Specific primer design was carried out to choose fragments shorter than 200 bp as necessary in forensic and archaeological applications. Four fragments of exon 6 and 7 of the ABO gene were amplified and digested by in total 7 restriction endonucleases. Particular attention was paid to the base changes at nucleotide positions 261(delG), 297, 526, 703, 721, 771, 796 and 1060(delC) in order to distinguish the six common alleles A101, A201, B, O01, O02 and O03. Furthermore, this method also enables determination of seven of the less frequent alleles: A104, A204, Ax02, Ax03, O05, O06 and O07. The method was applied successfully to a series of blood samples with known phenotypes and genotypes as well as DNA extracted from a thirty year old blood stain and an ancient tooth sample. However, working with ancient DNA requires additional cloning and sequencing of the RFLP-typing results due to DNA post mortem damages such as deaminations, which could lead to false typing results.

  13. Determination of fruit origin by using 26S rDNA fingerprinting of yeast communities by PCR-DGGE: preliminary application to Physalis fruits from Egypt.

    PubMed

    El Sheikha, Aly Farag; Condur, Ana; Métayer, Isabelle; Nguyen, Doan Duy Le; Loiseau, Gérard; Montet, Didier

    2009-10-01

    The determination of geographical origin is a demand of the traceability system of import-export food products. One hypothesis for tracing the source of a product is by global analysis of the microbial communities of the food and statistical linkage of this analysis to the geographical origin of the food. For this purpose, a molecular technique employing 26S rDNA profiles generated by PCR-DGGE was used to detect the variation in yeast community structures of three species of Physalis fruit (Physalis ixocarpa Brat, Physalis pubescens L, Physalis pruinosa L) from four Egyptian regions (Qalyoubia, Minufiya, Beheira and Alexandria Governments). When the 26S rDNA profiles were analysed by multivariate analysis, distinct microbial communities were detected. The band profiles of Physalis yeasts from different Governments were specific for each location and could be used as a bar code to discriminate the origin of the fruits. This method is a new traceability tool which provides fruit products with a unique biological bar code and makes it possible to trace back the fruits to their original location.

  14. Identification of Malassezia Species Isolated from Patients with Pityriasis Versicolor Using PCR-RFLP Method in Markazi Province, Central Iran

    PubMed Central

    DIDEHDAR, Mojtaba; MEHBOD, Amir Sayed Ali; ESLAMIRAD, Zahra; MOSAYEBI, Mahdi; HAJIHOSSEIN, Reza; GHORBANZADE, Behzad; KHAZAEI, Mahmoud Reza

    2014-01-01

    Abstract Background The lipophilic yeasts of Malassezia species are members of the normal skin microbial that are cause of pityriasis versicolor. Pityriasis versicolor is a common superficial fungal infection with world-wide distribution. The phenotypic methods for identification of Malassezia species usually are time consuming and unreliable to differentiate newly identified species. But DNA-based techniques rapidly and accurately identified Malassezia species. The purpose of this study was isolation and identification of Malassezia Species from patients with pityriasis versicolor by molecular methods in Markazi Province, Central Iran in 2012. Methods Mycologic examinations including direct microscopy and culture were performed on clinical samples. DNA extraction was performed from colonies. The ITS1 region of rDNA from isolates of Malassezia species were amplified by PCR reaction. The PCR were digested by Cfo I enzyme. Results From 70 skin samples, were microscopically positive for Malassezia elements, 60 samples were grown on culture medium (85.7%). Using PCR-RFLP method, that was performed on 60 isolates, 37(61.6%) M. globosa, 14(23.3%) M. furfur, 5(8.4%) M. sympodialis and 4(6.7%) M. restrictawere identified. In one case was isolated M. globosa along with M. restricta. Conclusion The PCR-RFLP method is a useful and reliable technique for identification of differentiation of Malas-sezia species. PMID:26056657

  15. Development of a novel PCR-RFLP assay for improved detection and typing of bovine papillomaviruses.

    PubMed

    Kawauchi, Kyoko; Takahashi, Chiaki; Ishihara, Ryoko; Hatama, Shinichi

    2015-06-15

    A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay was developed to detect and type bovine papillomaviruses (BPVs) from tumors in cattle. Two degenerate primer sets targeting the BPV L1 gene, subAup/subAdw and subBup/subBdw, and one restriction enzyme RsaI were used in this assay. In silico analyses of the restriction enzyme sites in the PCR fragments of 13 BPV sequences (BPV-1 to -13) revealed that all known BPVs are differentiated by the PCR-RFLP assay. Analyses of 63 previously typed clinical samples, that included teat papillomas and both esophageal and urinary bladder cancer biopsies, show that the assay clearly differentiates between eight clinically important BPV types (BPV-1 to -6, -9, -10), and discriminates between single and multiple infections. To further assess the reliability of the PCR-RFLP method amplified fragments were sequenced. A high correlation (95%) was observed when the results of the PCR-RFLP method were compared with PCR-sequencing. Differences in typing occurred for 3 of 63 specimens; PCR-RFLP identified additional BPV types in these specimens, while the PCR-sequencing identified only one. These results indicate that the PCR-RFLP method reported here is simpler and more reliable in the detection and typing of BPVs from bovine tumor samples than PCR-sequencing.

  16. Characterization of South American Snails of the Genus Biomphalaria (Basommatophora: Planorbidae) and Schistosoma mansoni (Platyhelminthes: Trematoda) in Molluscs by PCR-RFLP.

    PubMed

    Caldeira, Roberta Lima; Teodoro, Tatiana Maria; Jannotti-Passos, Liana Konovaloff; Lira-Moreira, Pollanah M; Goveia, Christiane De Oliveira; Carvalho, Omar Dos Santos

    2016-01-01

    The identification of snails of the genus Biomphalaria can be done using morphological characteristics which depends on the size of the snails and skill and knowledge of researcher. These methods sometimes are not adequate for identification of species. The PCR-RFLP, using the ITS region of the rDNA, has been used to identify Brazilian species of the genus Biomphalaria. Nevertheless, there is a lack of information about snails from other Latin American countries. In addition, some snails may be infected by Schistosoma mansoni and when submitted to PCR-RFLP they show molecular profiles different from those previously standardized for the other mollusc species. In this work the molecular profiles of 15 species and the subspecies were established by PCR-RFLP of ITS-rDNA with the enzyme DdeI. Moreover, the molecular profiles of host species, B. glabrata, B. straminea, B. tenagophila, and B. prona, infected by S. mansoni were also established. The molluscs were dissected to permit morphological identification. These results contribute to a correct identification of snails of the genus Biomphalaria and detection of these snails infected by S. mansoni.

  17. Characterization of South American Snails of the Genus Biomphalaria (Basommatophora: Planorbidae) and Schistosoma mansoni (Platyhelminthes: Trematoda) in Molluscs by PCR-RFLP

    PubMed Central

    Teodoro, Tatiana Maria; Jannotti-Passos, Liana Konovaloff; Lira-Moreira, Pollanah M.; Goveia, Christiane De Oliveira; Carvalho, Omar dos Santos

    2016-01-01

    The identification of snails of the genus Biomphalaria can be done using morphological characteristics which depends on the size of the snails and skill and knowledge of researcher. These methods sometimes are not adequate for identification of species. The PCR-RFLP, using the ITS region of the rDNA, has been used to identify Brazilian species of the genus Biomphalaria. Nevertheless, there is a lack of information about snails from other Latin American countries. In addition, some snails may be infected by Schistosoma mansoni and when submitted to PCR-RFLP they show molecular profiles different from those previously standardized for the other mollusc species. In this work the molecular profiles of 15 species and the subspecies were established by PCR-RFLP of ITS-rDNA with the enzyme DdeI. Moreover, the molecular profiles of host species, B. glabrata, B. straminea, B. tenagophila, and B. prona, infected by S. mansoni were also established. The molluscs were dissected to permit morphological identification. These results contribute to a correct identification of snails of the genus Biomphalaria and detection of these snails infected by S. mansoni. PMID:27981045

  18. Discrimination of the ITS1 types of Fasciola spp. based on a PCR-RFLP method.

    PubMed

    Ichikawa, Madoka; Itagaki, Tadashi

    2010-02-01

    Molecular characterization is important for discriminating Fasciola specimens having the deoxyribonucleic acid (DNA) sequences of Fasciola hepatica, Fasciola gigantica, and both Fasciola species, since three Fasciola forms coexist in Asian countries. We have developed a restriction fragment length polymorphism of amplified DNA (PCR-RFLP) of the nuclear ribosomal internal transcribed spacer 1 (ITS1) region in Fasciola species. The band patterns of the fragments digested with a restriction enzyme, Rsa I, were accurately distinguished among the three forms of Fasciola. Amplicons with the sequences of F. hepatica and F. gigantica were divided into fragments of about 360, 100, and 60 bp, and 360, 170, and 60 bp, respectively, and amplicons with the sequences of both Fasciola species yielded fragments of 360, 170, 100, and 60 bp. The results of PCR-RFLP completely coincided with those of sequence analysis, and thus PCR-RFLP is a useful technique for determining the ITS1 type in Fasciola species.

  19. Characterization of three different clusters of 18S-26S ribosomal DNA genes in the sea urchin P. lividus: Genetic and epigenetic regulation synchronous to 5S rDNA.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Caradonna, Fabio

    2016-04-15

    We previously reported the characterization 5S ribosomal DNA (rDNA) clusters in the common sea urchin Paracentrotus lividus and demonstrated the presence of DNA methylation-dependent silencing of embryo specific 5S rDNA cluster in adult tissue. In this work, we show genetic and epigenetic characterization of 18S-26S rDNA clusters in this specie. The results indicate the presence of three different 18S-26S rDNA clusters with different Non-Transcribed Spacer (NTS) regions that have different chromosomal localizations. Moreover, we show that the two largest clusters are hyper-methylated in the promoter-containing NTS regions in adult tissues, as in the 5S rDNA. These findings demonstrate an analogous epigenetic regulation in small and large rDNA clusters and support the logical synchronism in building ribosomes. In fact, all the ribosomal RNA genes must be synchronously and equally transcribed to perform their unique final product.

  20. COMPARISON OF TAXONOMIC, COLONY MORPHOTYPE AND PCR-RFLP METHODS TO CHARACTERIZE MICROFUNGAL DIVERSITY

    EPA Science Inventory

    We compared three methods for estimating fungal species diversity in soil samples. A rapid screening method based on gross colony morphological features and color reference standards was compared with traditional fungal taxonomic methods and PCR-RFLP for estimation of ecological ...

  1. Genetic differentiation of Colletotrichum gloeosporioides and C. truncatum associated with Anthracnose disease of papaya (Carica papaya L.) and bell pepper (Capsium annuum L.) based on ITS PCR-RFLP fingerprinting.

    PubMed

    Maharaj, Ariana; Rampersad, Sephra N

    2012-03-01

    Members of the genus Colletotrichum include some of the most economically important fungal pathogens in the world. Accurate diagnosis is critical to devising disease management strategies. Two species, Colletotrichum gloeosporioides and C. truncatum, are responsible for anthracnose disease in papaya (Carica papaya L.) and bell pepper (Capsicum annuum L.) in Trinidad. The ITS1-5.8S-ITS2 region of 48 Colletotrichum isolates was sequenced, and the ITS PCR products were analyzed by PCR-RFLP analysis. Restriction site polymorphisms generated from 11 restriction enzymes enabled the identification of specific enzymes that were successful in distinguishing between C. gloeosporioides and C. truncatum isolates. Species-specific restriction fragment length polymorphisms generated by the enzymes AluI, HaeIII, PvuII, RsaI, and Sau3A were used to consistently resolve C. gloeosporioides and C. truncatum isolates from papaya. AluI, ApaI, PvuII, RsaI, and SmaI reliably separated isolates of C. gloeosporioides and C. truncatum from bell pepper. PvuII, RsaI, and Sau3A were also capable of distinguishing among the C. gloeosporioides isolates from papaya based on the different restriction patterns that were obtained as a result of intra-specific variation in restriction enzyme recognition sites in the ITS1-5.8S-ITS2 rDNA region. Of all the isolates tested, C. gloeosporioides from papaya also had the highest number of PCR-RFLP haplotypes. Cluster analysis of sequence and PCR-RFLP data demonstrated that all C. gloeosporioides and C. truncatum isolates clustered separately into species-specific clades regardless of host species. Phylograms also revealed consistent topologies which suggested that the genetic distances for PCR-RFLP-generated data were comparable to that of ITS sequence data. ITS PCR-RFLP fingerprinting is a rapid and reliable method to identify and differentiate between Colletotrichum species.

  2. Identification of species belonging to the Bifidobacterium genus by PCR-RFLP analysis of a hsp60 gene fragment

    PubMed Central

    2013-01-01

    Background Bifidobacterium represents one of the largest genus within the Actinobacteria, and includes at present 32 species. These species share a high sequence homology of 16S rDNA and several molecular techniques already applied to discriminate among them give ambiguous results. The slightly higher variability of the hsp60 gene sequences with respect to the 16S rRNA sequences offers better opportunities to design or develop molecular assays, allowing identification and differentiation of closely related species. hsp60 can be considered an excellent additional marker for inferring the taxonomy of the members of Bifidobacterium genus. Results This work illustrates a simple and cheap molecular tool for the identification of Bifidobacterium species. The hsp60 universal primers were used in a simple PCR procedure for the direct amplification of 590 bp of the hsp60 sequence. The in silico restriction analysis of bifidobacterial hsp60 partial sequences allowed the identification of a single endonuclease (HaeIII) able to provide different PCR-restriction fragment length polymorphism (RFLP) patterns in the Bifidobacterium spp. type strains evaluated. The electrophoretic analyses allowed to confirm the different RFLP patterns. Conclusions The developed PCR-RFLP technique resulted in efficient discrimination of the tested species and subspecies and allowed the construction of a dichotomous key in order to differentiate the most widely distributed Bifidobacterium species as well as the subspecies belonging to B. pseudolongum and B. animalis. PMID:23815602

  3. A computerized methodology for improved virus typing by PCR-RFLP gel electrophoresis.

    PubMed

    Maramis, Christos F; Delopoulos, Anastasios N; Lambropoulos, Alexandros F

    2011-08-01

    The analysis of digitized images from polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP)gel electrophoresis examinations is a popular method for virus typing, i.e., for identifying the virus type(s) that have infected an investigated biological sample. However, being mostly manual, the conventional virus typing protocol remains laborious, time consuming, and error prone. In order to overcome these shortcomings,we propose a computerized methodology for improving virus typing via PCR-RFLP gel electrophoresis. A novel realistic observation model of the viral DNA motion on the gel matrix is employed to assist in exploiting additional virus-related information in comparison to the conventional approaches. The extracted rich information is fed to a novel typing algorithm, resulting in faster and more accurate decisions. The proposed methodology is evaluated for the case of the human papillomavirus typing on a dataset of 80 real and 1500 simulated samples, producing very satisfactory results.Ind

  4. Novel PCR-RFLP system based on rpoB gene for differentiation of Cronobacter species.

    PubMed

    Vlach, Jiří; Javůrková, Barbora; Karamonová, Ludmila; Blažková, Martina; Fukal, Ladislav

    2017-04-01

    Bacteria from the genus Cronobacter are opportunistic foodborne pathogens that can cause severe infections. More rapid, cost-effective and reliable methods are still required for the species identification of Cronobacter spp. In this study, we present a novel PCR-RFLP-based method that uses a newly designed pair of primers for the PCR-amplification of a partial rpoB gene sequence (1635 bp). The amplified products of DNA from 80 Cronobacter strains were separately digested with three restriction endonucleases (Csp6I, HinP1I, MboI). Using the obtained restriction patterns, a PCR-RFLP identification system was created to enable differentiation between all seven currently-known Cronobacter species. The functionality of our method was successfully verified on real food samples. Moreover, the relationships between the Cronobacter species were determined via a phylogenetic tree created from the RFLP patterns.

  5. Identification of five sea cucumber species through PCR-RFLP analysis

    NASA Astrophysics Data System (ADS)

    Lv, Yingchun; Zheng, Rong; Zuo, Tao; Wang, Yuming; Li, Zhaojie; Xue, Yong; Xue, Changhu; Tang, Qingjuan

    2014-10-01

    Sea cucumbers are traditional marine food and Chinese medicine in Asia. The rapid expansion of sea cucumber market has resulted in various problems, such as commercial fraud and mislabeling. Conventionally, sea cucumber species could be distinguished by their morphological and anatomical characteristics; however, their identification becomes difficult when they are processed. The aim of this study was to develop a new convenient method of identifying and distinguishing sea cucumber species. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of mitochondrial cytochrome oxidase I gene ( COI) was used to identifing five sea cucumber species ( Apostichopus japonicus, Cucumaria frondosa, Thelenota ananas, Parastichopus californicus and Actinopyga lecanora). A 692 bp fragment of COI was searched for BamHI, KpnI, PstI, XbaI and Eco31I restriction sites with DNAMAN 6.0, which were then used to PCR-RFLP analysis. These five sea cucumber species can be discriminated from mixed sea cucumbers. The developed PCR-RFLP assay will facilitate the identification of sea cucumbers, making their source tracing and quality controlling feasible.

  6. Blood Meal Identification in Field-Captured Sand flies: Comparison of PCR-RFLP and ELISA Assays

    PubMed Central

    Maleki-Ravasan, N; Oshaghi, MA; Javadian, E; Rassi, Y; Sadraei, J; Mohtarami, F

    2009-01-01

    Background We aimed to develop a PCR-RFLP assay based on available sequences of putative vertebrate hosts to identify blood meals ingested by field female sand fly in the northwest of Iran. In addition, the utility of PCR-RFLP was compared with ELISA as a standard method. Methods: This experimental study was performed in the Insect Molecular Biology Laboratory of School of Public Health, Tehran University of Medical Sciences, Iran in 2006–2007. For PCR-RFLP a set of conserved vertebrate primers were used to amplify a part of the host mitochondrial cytochrome b (cyt b) gene followed by digestion of the PCR products by Hae III enzyme. Results: The PCR-RFLP and ELISA assays revealed that 34% and 27% of field-collected sand flies had fed on humans, respectively. Additionally, PCR-RFLP assays could reveal specific host DNA as well as the components of mixed blood meals. Results of PCR-RFLP assay showed that the sand flies had fed on cow (54%), human (10%), dog (4%), human and cow (21%), dog and cow (14%), and human and dog (3%). Conclusion: The results can provide a novel method for rapid diagnosis of blood meal taken by sandflies. The advantages and limitations of PCR and ELISA assays are discussed. PMID:22808367

  7. Genotyping of the Q locus in wheat by a simple PCR-RFLP method.

    PubMed

    Asakura, Nobuaki; Mori, Naoki; Nakamura, Chiharu; Ohtsuka, Ichiro

    2009-06-01

    The Q locus located on the long arm of chromosome 5A is a key factor in evolution and widespread cultivation of domesticated wheat. The Q locus pleiotropically affects many agronomically important traits including threshability, glume shape and tenacity, rachis fragility and others. Genotyping of the Q locus based on the complex traits is ambiguous due to their multi-genetic control through interactions with the Q locus. To determine the Q locus genotype of wheat accessions possessing A genome, we developed a method based on polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) analysis. The Q and q alleles were clearly distinguished by PCR-RFLP analysis at six conserved single nucleotide polymorphisms in common wheat and wild and cultivated einkorn, emmer and timopheevi wheat. The Q locus genotype of Triticum sinskajae, which is one of the einkorn wheat species and exhibits free-threshing trait, was determined to be qq as expected. This simple PCR-RLFP-based genotyping method should serve as a useful tool in studying the origin of Q and thus wheat evolution after domestication and the following widespread cultivation.

  8. Reliable sex identification of dogs by modified PCR/RFLP analysis.

    PubMed

    Murakami, M; Fujise, H; Lee, Y S; Matsuba, C; Fujitani, H

    2001-06-01

    To find definitive RFLP sites for canine sex determination, DNA segments corresponding to parts of the canine ZFX and ZFY genes were amplified by PCR and were directly sequenced. According to the newly defined sequence data, the combination of Haelll and Cfr13I sites was found to be useful for not only identifying the sex of the canine DNA samples but also distinguishing them from the human DNA. Conveniently, these two enzymes worked simultaneously in the same single buffer. The double-digestion of the ZFX/ZFY PCR products with HaeIII and Cfr13I showed banding patterns unique to males and females in Canis familialis. This PCR/RFLP method was confirmed to be applicable to various breeds of dog.

  9. Identification of brucella species and biotypes using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).

    PubMed

    Al Dahouk, Sascha; Tomaso, Herbert; Prenger-Berninghoff, Ellen; Splettstoesser, Wolf D; Scholz, Holger C; Neubauer, Heinrich

    2005-01-01

    Brucellosis is a worldwide zoonosis causing reproductive failures in livestock and a severe multi-organ disease in humans. The genus Brucella is divided into seven species and various biotypes differing in pathogenicity and host specificity. Although Brucella spp. represent a highly homogenous group of bacteria, RFLPs of selected genes display sufficient polymorphism to distinguish Brucella species and biovars. PCR-RFLP analysis shows excellent typeability, reproducibility, stability, and epidemiological concordance. Consequently, PCR-RFLP assays of specific gene loci can serve as tools for diagnostic, epidemiological, taxonomic, and evolutionary studies. Various PCR-RFLPs used for the identification of Brucella species and biotypes are reviewed.

  10. Determination of cytoplasmic male sterile factors in onion plants (Allium cepa L.) using PCR-RFLP and SNP markers.

    PubMed

    Cho, Kwang-Soo; Yang, Tae-Jin; Hong, Su-Young; Kwon, Young-Seok; Woo, Jong-Gyu; Park, Hyo-Guen

    2006-06-30

    We have developed a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) marker that can distinguish male-fertile (N) and male-sterile (S) cytoplasm in onions. The PCR-RFLP marker was located in a chloroplast psbA gene amplicon. Digesting the amplicons from different cytoplasm-containing varieties with the restriction enzyme MspI revealed that N-cytoplasm plants have a functional MspI site (CCGG), whereas the S-cytoplasm plants has a substitution in that site (CTGG), and thus no MspI target. The results obtained using this PCR-RFLP marker to distinguish between cytoplasmic male sterile factors in 35 onion varieties corresponded with those using a CMS-specific sequence-characterized amplified region (SCAR) marker. Moreover, the PCR-RFLP marker can identify N- ot S-cytoplasms in DNA sample mixtures in which they are in up to a 10-fold minority, indicating that use of the marker has high diagnostic precision. We also demonstrated the usefulness of the SNP detected in the psbA gene for high-throughput discrimination of CMS factors using Real-time PCR and a TaqMan probe assay.

  11. Molecular identification of Indian crocodile species: PCR-RFLP method for forensic authentication*.

    PubMed

    Meganathan, P R; Dubey, Bhawna; Haque, Ikramul

    2009-09-01

    South East Asian countries are known for illegal poaching and trade of crocodiles clandestinely, to be used in skin, medicinal, and cosmetic industries. Besides crocodiles being listed in the Convention on International Trade in Endangered Species of Wild Fauna and Flora, India has its Wildlife Protection Act, 1972 for conservation of crocodile species. Hitherto, lack of any rapid and reliable technique for examinations of crocodile-based crime exhibits such as skin, bones, etc. has been a major problem for an effective promulgation of law on illegal trade. DNA-based identification of species using PCR-RFLP technique for an apt identification of all the three Indian crocodile species namely, Crocodylus porosus, Crocodylus palustris and Gavialis gangeticus is presented here. A 628 bp segment of cytochrome b gene was amplified using novel primers followed by restriction digestion with three enzymes i.e., HaeIII, MboI, and MwoI, separately and in combination. The technique has produced a species-specific pattern for identifying the three crocodile species individually, which fulfills the requirement for its forensic application. It is expected that the technique will prove handy in identification of all the three Indian crocodile species and strengthen conservation efforts.

  12. Genotoxicity Evaluation of Acephate and Profenofos by the PCR-RFLP Assay

    PubMed Central

    Bhinder, Preety; Chaudhry, Asha

    2014-01-01

    Objectives: In this study we have evaluated the genotoxic potential of pesticides acephate and profenofos by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay with the mosquito Culex quinquefasciatus taken as experimental model. Material and Methods: Second instar larvae were treated with LC20 of each pesticide for 24 h and induced mutations in the sequence of mitochondrial 16S rRNA gene were studied from restriction patterns generated with PacI and PsiI restriction endonucleases. Results: Variations in the number and size of digested fragments were recorded from treated individuals compared with controls showing that the restriction enzymes created a cut at different locations. In addition, sequences of the 16S gene from control and treated individuals were also used to confirm the RFLP patterns. From the sequence alignment data, it was found that mutations caused the destruction and generation of restriction sites in the gene sequence of treated individuals. Conclusion: This study indicates that both the pesticides had significant potential to induce mutations in the 16S gene of Culex quinquefasciatus. PMID:24748740

  13. Molecular typing of the actin gene of Trichomonas vaginalis isolates by PCR-RFLP in Iran.

    PubMed

    Momeni, Zohreh; Sadraei, Javid; Kazemi, Bahram; Dalimi, Abdolhossein

    2015-12-01

    Trichomonas vaginalis is a human urogenital pathogen that causes trichomoniasis, the most common nonviral, parasitic sexually transmitted infection in the world. At present, little is known regarding the degree of strain variability of T. vaginalis. A classification method for T. vaginalis strains would be a useful tool in the study of the epidemiology, drug resistance, pathogenesis and transmission of T. vaginalis. Eight different types of actin genes have been identified by PCR-RFLP in T. vaginalis; the purpose of this study is to determine the genotypes of this parasite in Karaj city, Iran. Forty-five clinical T. vaginalis isolates from vaginal secretions and urine sediment were collected from Karaj city from 2012 through 2014. DNA was extracted and the actin gene was amplified by nested-PCR; all samples were positive. To determine the genetic differences, sequencing on seven samples was conducted. Then, all PCR products were digested with HindII, MseI, and RsaI restriction enzymes. Of 45 isolates, 23 samples (51.1%) were of actin genotype G, 11 samples (24.4%) of genotype E, six samples (13.3%) of genotype H, three samples (6.6%) of genotype I, and two samples (4.4%) were mixed genotypes of G and E. Genetic diversity of T. vaginalis isolates is notable. The actin genotype G may be the dominant genotype in Karaj city, Iran.

  14. Investigation of Genetic Diversity of Fusarium oxysporum f. sp. fragariae Using PCR-RFLP

    PubMed Central

    Kim, Ji-Su; Kang, Nam Jun; Kwak, Youn-Sig; Lee, Choungkeun

    2017-01-01

    Fusarium wilts of strawberry, caused by Fusarium oxysporum f. sp. fragariae, is a serious soil-borne disease. Fusarium wilt causes dramatic yield losses in commercial strawberry production and it is a very stubborn disease to control. Reliable chemical control of strawberry Fusarium wilt disease is not yet available. Moreover, other well-known F. oxysporum have different genetic information from F. oxysporum f. sp. fragariae. This analysis investigates the genetic diversity of strawberry Fusairum wilt pathogen. In total, 110 pathogens were isolated from three major strawberry production regions, namely Sukok, Hadong, Sancheong in Gyeongnam province in South Korea. The isolates were confirmed using F. oxysporum f. sp. fragariae species-specific primer sets. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses were executed using the internal transcribed spacer, intergenic spacer, translation elongation factor1-α, and β-tubulin genes of the pathogens and four restriction enzymes: AluI, HhaI, HinP1I and HpyCH4V. Regarding results, there were diverse patterns in the three gene regions except for the β-tubulin gene region. Correlation analysis of strawberry cultivation region, cultivation method, variety, and phenotype of isolated pathogen, confirmed that genetic diversity depended on the classification of the cultivated region. PMID:28381961

  15. Bovine Papillomavirus in Brazil: Detection of Coinfection of Unusual Types by a PCR-RFLP Method

    PubMed Central

    Carvalho, R. F.; Sakata, S. T.; Giovanni, D. N. S.; Mori, E.; Brandão, P. E.; Richtzenhain, L. J.; Pozzi, C. R.; Arcaro, J. R. P.; Miranda, M. S.; Mazzuchelli-de-Souza, J.; Melo, T. C.; Comenale, G.; Assaf, S. L. M. R.; Beçak, W.; Stocco, R. C.

    2013-01-01

    Bovine papillomavirus (BPV) is recognized as a causal agent of benign and malignant tumors in cattle. Thirteen types of BPV are currently characterized and classified into three distinct genera, associated with different pathological outcomes. The described BPV types as well as other putative ones have been demonstrated by molecular biology methods, mainly by the employment of degenerated PCR primers. Specifically, divergences in the nucleotide sequence of the L1 gene are useful for the identification and classification of new papillomavirus types. On the present work, a method based on the PCR-RFLP technique and DNA sequencing was evaluated as a screening tool, allowing for the detection of two relatively rare types of BPV in lesions samples from a six-year-old Holstein dairy cow, chronically affected with cutaneous papillomatosis. These findings point to the dissemination of BPVs with unclear pathogenic potential, since two relatively rare, new described BPV types, which were first characterized in Japan, were also detected in Brazil. PMID:23865043

  16. An extremely sensitive nested PCR-RFLP mitochondrial marker for detection and identification of salmonids in eDNA from water samples

    PubMed Central

    Ardura, Alba; Fernández, Sara; Roca, Agustín A.; García-Vázquez, Eva

    2017-01-01

    Background Salmonids are native from the North Hemisphere but have been introduced for aquaculture and sport fishing in the South Hemisphere and inhabit most rivers and lakes in temperate and cold regions worldwide. Five species are included in the Global Invasive Species Database: rainbow trout Oncorhynchus mykiss, Atlantic salmon Salmo salar, brown trout Salmo trutta, brook trout Salvelinus fontinalis, and lake trout Salvelinus namaycush. In contrast, other salmonids are endangered in their native settings. Methods Here we have developed a method to identify salmonid species directly from water samples, focusing on the Iberian Peninsula as a case study. We have designed nested Salmonidae-specific primers within the 16S rDNA region. From these primers and a PCR-RFLP procedure the target species can be unequivocally identified from DNA extracted from water samples. Results The method was validated in aquarium experiments and in the field with water from watersheds with known salmonid populations. Finally, the method was applied to obtain a global view of the Salmonidae community in Nalón River (north coast of Spain). Discussion This new powerful, very sensitive (identifying the species down to 10 pg DNA/ml water) and economical tool can be applied for monitoring the presence of salmonids in a variety of situations, from checking upstream colonization after removal of river barriers to monitoring potential escapes from fish farms. PMID:28265514

  17. Identification of goat cashmere and sheep wool by PCR-RFLP analysis of mitochondrial 12S rRNA gene.

    PubMed

    Geng, Rong-Qing; Yuan, Chao; Chen, Yu-Lin

    2012-12-01

    The efficacy of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of mitochondrial 12S rRNA gene in identification of goat cashmere and sheep wool samples was evaluated. The specific fragments of the mitochondrial 12S rRNA gene, which were about 440 bp, were obtained using the PCR. Restriction enzyme digestion of the PCR products with endonucleases BspT I and Hinf I revealed species-specific RFLP patterns. Application of this technique on mixed samples could identify goat cashmere and sheep wool from each other within the proportion of 8:1. The technique, however, could detect only one species when the proportion of mixture was more than 9:1. The PCR-RFLP technique was demonstrated to possess potential value in precise identification of goat cashmere and sheep wool.

  18. Specific detection of benzimidazole resistance in Colletotrichum gloeosporioides from fruit crops by PCR-RFLP.

    PubMed

    Chung, Wen-Hsin; Chung, Wen-Chuan; Peng, Mun-Tsu; Yang, Hong-Ren; Huang, Jenn-Wen

    2010-02-28

    Anthracnose diseases, caused by Colletotrichum gloeosporioides, are a worldwide problem and are especially important in Taiwan owing to the severe economic damage they cause to tropical fruits that are grown for local consumption and export. Benzimidazoles are systemic fungicides widely used for controlling these diseases in Taiwan. Thirty-one isolates of C. gloeosporioides from mango and strawberry grown in Taiwan were examined for their sensitivity to benzimidazole fungicides. The responses of the isolates grown on benzimidazole-amended culture media were characterized as sensitive, moderately resistant, resistant or highly resistant. Analysis of point mutations in the beta-tubulin gene by DNA sequencing of PCR-amplified fragments revealed a substitution of GCG for GAG at codon 198 in resistant and highly resistant isolates and a substitution of TAC for TTC at codon 200 in moderately resistant isolates. A set of specific primers, TubGF1 and TubGR, was designed to amplify a portion of the beta-tubulin gene for the detection of benzimidazole-resistant C. gloeosporioides. Bsh1236I restriction maps of the amplified beta-tubulin gene showed that the resistant isolate sequence, but not the sensitive isolate sequence, was cut. The PCR restriction fragment length polymorphism (PCR-RFLP) was validated to detect benzimidazole-resistant and benzimidazole-sensitive C. gloeosporioides isolates recovered from avocado, banana, carambola, dragon fruit, grape, guava, jujube, lychee, papaya, passion fruit and wax apple. This method has the potential to become a valuable tool for monitoring the occurrence of benzimidazole-resistant C. gloeosporioides and for assessment of the need for alternative management practices.

  19. A PCR-RFLP assay to detect and type cytolethal distending toxin (cdt) genes in Campylobacter hyointestinalis

    PubMed Central

    HATANAKA, Noritoshi; KAMEI, Kazumasa; SOMROOP, Srinuan; AWASTHI, Sharda Prasad; ASAKURA, Masahiro; MISAWA, Naoaki; HINENOYA, Atsushi; YAMASAKI, Shinji

    2016-01-01

    Campylobacter hyointestinalis is considered as an emerging zoonotic pathogen. We have recently identified two types of cytolethal distending toxin (cdt) gene in C. hyointestinalis and designated them as Chcdt-I and Chcdt-II. In this study, we developed a PCR-restriction fragment length polymorphism (RFLP) assay that can differentiate Chcdt-I from Chcdt-II. When the PCR-RFLP assay was applied to 17 other Campylobacter strains and 25 non-Campylobacter strains, PCR products were not obtained irrespective of their cdt gene-possession, indicating that the specificity of the PCR-RFLP assay was 100%. In contrast, when the PCR-RFLP assay was applied to 35 C. hyointestinalis strains including 23 analyzed in the previous study and 12 newly isolated from pigs and bovines, all of them showed the presence of cdt genes. Furthermore, a restriction digest by EcoT14-I revealed that 29 strains contained both Chcdt-I and Chcdt-II and 6 strains contained only Chcdt-II, showing 100% sensitivity. Unexpectedly, however, PCR products obtained from 7 C. hyointestinalis strains were not completely digested by EcoT14-I. Nucleotide sequence analysis revealed that the undigested PCR product was homologous to cdtB but not to Chcdt-IB or Chcdt-IIB, indicating the presence of another cdt gene-variant. Then, we further digested the PCR products with DdeI in addition to EcoT14-I, showing that all three cdt genes, including a possible new Chcdt variant, could be clearly differentiated. Thus, the PCR-RFLP assay developed in this study is a valuable tool for evaluating the Chcdt gene-profile of bacteria. PMID:27916784

  20. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for rapid diagnosis of neonatal sepsis

    PubMed Central

    Rohit, Anusha; Maiti, Biswajit; Shenoy, Shalini; Karunasagar, Indrani

    2016-01-01

    Background & objectives: The difficulties in diagnosis of neonatal sepsis are due to varied clinical presentation, low sensitivity of blood culture which is considered the gold standard and empirical antibiotic usage affecting the outcome of results. Though polymerase chain reaction (PCR) based detection of bacterial 16S rRNA gene has been reported earlier, this does not provide identification of the causative agent. In this study, we used restriction fragment length polymorphism (RFLP) of amplified 16S rRNA gene to identify the organisms involved in neonatal sepsis and compared the findings with blood culture. Methods: Blood samples from 97 neonates were evaluated for diagnosis of neonatal sepsis using BacT/Alert (automated blood culture) and PCR-RFLP. Results: Bacterial DNA was detected by 16S rRNA gene PCR in 55 cases, while BacT/Alert culture was positive in 34 cases. Staphylococcus aureus was the most common organism detected with both methods. Klebsiella spp. was isolated from four samples by culture but was detected by PCR-RFLP in five cases while Acinetobacter spp. was isolated from one case but detected in eight cases by PCR-RFLP. The sensitivity of PCR was found to be 82.3 per cent with a negative predictive value of 85.7 per cent. Eighty of the 97 neonates had prior exposure to antibiotics. Interpretation & conclusions: The results of our study demonstrate that PCR-RFLP having a rapid turnaround time may be useful for the early diagnosis of culture negative neonatal sepsis. PMID:26997017

  1. Characterization of Genomic Inheritance of Intergeneric Hybrids between Ascocenda and Phalaenopsis Cultivars by GISH, PCR-RFLP and RFLP

    PubMed Central

    Liu, Wen-Lin; Shih, Huei-Chuan; Weng, I-Szu; Ko, Ya-Zhu; Chou, Chang-Hung; Chiang, Yu-Chung

    2016-01-01

    Background The intergeneric hybrids between Ascocenda John De Biase ‘Blue’ and Phalaenopsis Chih Shang's Stripes have been generated to introduce the blue color into the Phalaenopsis germplasm in prior study. In order to confirm the inheritance in hybrid progenies, genomic in situ hybridization (GISH) and restriction fragment length polymorphism (RFLP) analysis were conducted to confirm the intergeneric hybridization status. Methods/Results GISH analysis showed the presence of both maternal and paternal chromosomes in the cells of the putative hybrids indicating that the putative hybrid seedlings were intergeneric hybrids of the two parents. Furthermore, twenty-seven putative hybrids were randomly selected for DNA analysis, and the external transcribed spacer (ETS) regions of nrDNA were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and RFLP analyses to identify the putative hybrids. RFLP analysis showed that the examined seedlings were intergeneric hybrids of the two parents. However, PCR-RFLP analysis showed bias to maternal genotype. Conclusions Both GISH and RFLP analyses are effective detection technology to identify the intergeneric hybridization status of putative hybrids. Furthermore, the use of PCR-RFLP analysis to identify the inheritance of putative hybrids should be carefully evaluated. PMID:27055268

  2. Evaluation of a PCR-RFLP- ITS2 assay for discrimination of Anopheles species in northern and western Colombia

    PubMed Central

    Cienfuegos, Astrid V.; Rosero, Doris A.; Naranjo, Nelson; Luckhart, Shirley; Conn, Jan E.; Correa, Margarita M.

    2011-01-01

    Anopheles mosquitoes are routinely identified using morphological characters of the female that often lead to misidentification due to interspecies similarity and intraspecies variability. The aim of this work was to evaluate the applicability of a previously developed PCR-RFLP-ITS2 assay for accurate discrimination of anophelines in twelve localities spanning three Colombian malaria epidemiological regions: Atlantic Coast, Pacific Coast, and Uraba-Bajo Cauca-Alto Sinu Region. The evaluation of the stability of the PCR-RFLP patterns is required since variability of the ITS2 has been documented and may produce discrepancies in the patterns previously reported. The assay was used to evaluate species assignation of 939 mosquitoes identified by morphology. Strong agreement between the morphological and molecular identification was found for species An. albimanus, An. aquasalis, An. darlingi and An. triannulatus s.l. (p ≥ 0.05, kappa=1). However, disagreement was found for species An. nuneztovari s.l., An. neomaculipalpus, An. apicimacula and An. punctimacula (p ≤ 0.05; kappa ranging from 0.33–0.80). The ITS2-PCR-RFLP assay proved valuable for discriminating anopheline species of northern and western Colombia, especially those with overlapping morphology in the Oswaldoi Group. PMID:21345325

  3. Genotyping of β-Lactoglobulin gene by PCR-RFLP in Sahiwal and Tharparkar cattle breeds

    PubMed Central

    Rachagani, Satyanarayana; Gupta, Ishwar Dayal; Gupta, Neelam; Gupta, SC

    2006-01-01

    Background Improvement of efficiency and economic returns is an important goal in dairy farming, as in any agricultural enterprise. The primary goal of dairy industry has been to identify an efficient and economical way of increasing milk production and its constituents without increasing the size of the dairy herd. Selection of animals with desirable genotypes and mating them to produce the next generation has been the basis of livestock improvement and this would continue to remain the same in the coming years. The use of polymorphic genes as detectable molecular markers is a promising alternative to the current methods of trait selection once these genes are proven to be associated with traits of interest in animals. The point mutations in exon IV of bovine β-Lactoglobulin gene determine two allelic variants A and B. These variants were distinguished by Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) analysis in two indigenous Bos indicus breeds viz. Sahiwal and Tharparkar cattle. DNA samples (228 in Sahiwal and 86 in Tharparkar) were analyzed for allelic variants of β-Lactoglobulin gene. Polymorphism was detected by digestion of PCR amplified products with Hae III enzyme, and separation on 12% non-denaturing gels and resolved by silver staining. Results The allele B of β-Lactoglobulin occurred at a higher frequency than the allele A in both Sahiwal and Tharparkar breeds. The genotypic frequencies of AA, AB, and BB in Sahiwal and Tharparkar breeds were 0.031, 0.276, 0.693 and 0.023, 0.733, 0.244 respectively. Frequencies of A and B alleles were 0.17 and 0.83, and 0.39 and 0.61 in Sahiwal and Tharparkar breeds respectively. The Chi-square test results (at one degree of freedom at one per cent level) revealed that the Tharparkar population was not in Hardy-Weinberg equilibrium as there was a continuous migration of animals in the herd studied, where as, the results are not significant for the Sahiwal population. Conclusion

  4. Development of a Multiplexed Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Assay to Identify Common Members of the Subgenera Culex (Culex) and Culex (Phenacomyia) in Guatemala

    PubMed Central

    Kent, Rebekah J.; Deus, Stephen; Williams, Martin; Savage, Harry M.

    2010-01-01

    Morphological differentiation of mosquitoes in the subgenera Culex (Culex) and Culex (Phenacomyia) in Guatemala is difficult, with reliable identification ensured only through examination of larval skins from individually reared specimens and associated male genitalia. We developed a multiplexed polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay to identify common Cx. (Cux.) and Cx. (Phc.). Culex (Cux.) chidesteri, Cx. (Cux.) coronator, Cx. (Cux.) interrogator, Cx. (Cux.) quinquefasciatus, Cx. (Cux.) nigripalpus/Cx. (Cux.) thriambus, and Cx. (Phc.) lactator were identified directly with a multiplexed primer cocktail comprising a conserved forward primer and specific reverse primers targeting ribosomal DNA (rDNA). Culex nigripalpus and Cx. thriambus were differentiated by restriction digest of homologous amplicons. The assay was developed and optimized using well-characterized specimens from Guatemala and the United States and field tested with unknown material from Guatemala. This assay will be a valuable tool for mosquito identification in entomological and arbovirus ecology studies in Guatemala. PMID:20682869

  5. Phylogenetic analysis of Xanthomonas based on partial rpoB gene sequences and species differentiation by PCR-RFLP.

    PubMed

    Ferreira-Tonin, Mariana; Rodrigues-Neto, Júlio; Harakava, Ricardo; Destéfano, Suzete Aparecida Lanza

    2012-06-01

    The rpoB gene was evaluated as an alternative molecular marker for the differentiation of Xanthomonas species and in order to understand better the phylogenetic relationships within the genus. PCR-RFLP experiments using HaeIII allowed differentiation of Xanthomonas species, particularly those that affect the same plant host such as Xanthomonas albilineans and X. sacchari, pathogenic to sugar cane, Xanthomonas cucurbitae and X. melonis, which cause disease in melon, and Xanthomonas gardneri, X. vesicatoria and X. euvesicatoria/X. perforans, pathogenic to tomato. Phylogenetic relationships within the genus Xanthomonas were also examined by comparing partial rpoB gene sequences (612 nt) and the Xanthomonas species were separated into two main groups. Group I, well supported by bootstrap values of 99 %, comprised X. euvesicatoria, X. perforans, X. alfalfae, X. citri, X. dyei, X. axonopodis, X. oryzae, X. hortorum, X. bromi, X. vasicola, X. cynarae, X. gardneri, X. campestris, X. fragariae, X. arboricola, X. cassavae, X. cucurbitae, X. pisi, X. vesicatoria, X. codiaei and X. melonis. Group II, again well supported by bootstrap values of 99 %, comprised X. albilineans, X. sacchari, X. theicola, X. translucens and X. hyacinthi. The rpoB gene sequence similarity observed among the species in this study ranged from 87.8 to 99.7 %. The results of PCR-RFLP of the rpoB gene indicated that this technique can be used for diagnosis and identification of most Xanthomonas strains, including closely related species within the genus. However, species that showed identical profiles could be differentiated clearly only by sequence analysis. The results obtained in our phylogenetic analysis suggested that the rpoB gene can be used as an alternative molecular marker for genetic relatedness in the genus Xanthomonas. The results of PCR-RFLP of the rpoB gene indicate that this technique can be used for diagnosis and identification of closely related species within the genus, representing

  6. A simple method for domestic animal identification in Argentina using PCR-RFLP analysis of cytochrome b gene.

    PubMed

    Bravi, Claudio M; Lirón, Juan P; Mirol, Patricia M; Ripoli, María V; Peral-García, Pilar; Giovambattista, Guillermo

    2004-10-01

    We developed a simple, quick assay in order to discriminate forensic samples among human, and common domestic and livestock species of the Pampean region, Argentina. A mitochondrial cytochrome b fragment amplified with universal primers was separately digested with three restriction enzymes (AluI, HaeIII, and HinfI) and the resulting fragments were resolved through electrophoresis in polyacrylamide gels. This PCR-RFLP method allowed us to identify the target species and worked on degraded samples. The assay was successfully applied in livestock robbery cases in Argentine, and may be useful when attempting a first assessment as to the specific status of a forensic evidence.

  7. A PCR-RFLP assay for gender assignment in the three-toed sloths (Bradypus, Pilosa, Bradypodidae).

    PubMed

    Martinelli, Arturo B; DE Moraes-Barros, Nadia; Alvarenga, Clara S; Chaves, Paulo B; Santos, Luiz A D; Fagundes, Valéria

    2010-07-01

    The three-toed sloths (Bradypus) are slow-moving arboreal neotropical mammals. Understanding demographic variables (such as sex ratio) of populations is a key for conservation purposes. Nevertheless, gender assignment of Bradypus is particularly challenging because of the lack of sexual dimorphism in infants and in adults, particularly B. torquatus, the most endangered of the three-toed sloths, in which sex is attributed by visual observation of the reproductively active males. Here, we standardized a method for sexing Bradypus individuals using PCR-RFLP of sex-linked genes ZFX/ZFY. This assay was validated with known-gender animals and proved accurate to assign gender on three Bradypus species.

  8. Molecular Detection and Genetic Characterization of Toxoplasma gondii in Farmed Minks (Neovison vison) in Northern China by PCR-RFLP

    PubMed Central

    Ma, Jian-Gang; Li, Fa-Cai; Zhao, Quan; Zhu, Xing-Quan

    2016-01-01

    Toxoplasma gondii is a worldwide prevalent parasite, affecting a wide range of mammals and human beings. Little information is available about the distribution of genetic diversity of T. gondii infection in minks (Neovison vison). This study was conducted to estimate the prevalence and genetic characterization of T. gondii isolates from minks in China. A total of 418 minks brain tissue samples were collected from Jilin and Hebei provinces, northern China. Genomic DNA were extracted and assayed for T. gondii infection by semi-nested PCR of B1 gene. The positive DNA samples were typed at 10 genetic markers (SAG1, SAG2 (5'+3' SAG2, alter.SAG2), SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico) using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technology. 36 (8.6%) of 418 DNA samples were overall positive for T. gondii. Among them, 5 samples were genotyped at all loci, and 1 sample was genotyped for 9 loci. In total, five samples belong to ToxoDB PCR-RFLP genotype#9, one belong to ToxoDB genotye#3. To our knowledge, this is the first report of genetic characterization of T. gondii in minks in China. Meanwhile, these results revealed a distribution of T. gondii infection in minks in China. These data provided base-line information for controlling T. gondii infection in minks. PMID:27806069

  9. Discrimination between Mycoplasma mycoides subsp. capri and Mycoplasma capricolum subsp. capricolum using PCR-RFLP and PCR.

    PubMed

    Cillara, Grazia; Manca, Maria Giovanna; Longheu, Carla; Tola, Sebastiana

    2015-09-01

    In this study, the dihydrolipoyl dehydrogenase (lpdA) gene was used to distinguish Mycoplasma mycoides subsp. capri (Mmc) from Mycoplasma capricolum subsp. capricolum (Mcc), two of four Mycoplasma species that cause contagious agalactia in sheep and goats. After alignment of nucleotide sequences of both species, specific primer sets were designed from unchanging and variable gene segments. The first primer set LPD-C1-F/LPD-C1-R was used to amplify a 911 bp fragment that was subsequently co-digested with FastDigest PstI, SspI, EcoRI and ClaI enzymes. The PCR-RFLP profiles differentiated the two mycoplasma species. The second primer set was used to distinguish Mmc from Mcc by single tube PCR. Both methods were further applied to identify 54 isolates collected from dairy herds from different provinces in Sardinia. The results of this study showed that PCR-RFLP and PCR could be used in routine diagnosis for rapid and specific simultaneous discrimination of Mmc and Mcc.

  10. DNA sequencing confirms PCR-RFLP identification of wild caught Larroussius sand flies from Crete and Cyprus.

    PubMed

    Dokianakis, Emmanouil; Tsirigotakis, Nikolaos; Christodoulou, Vasiliki; Poulakakis, Nikos; Antoniou, Maria

    2016-12-01

    Many Phlebotomine sand fly species (Diptera, Psychodidae) are vectors of the protozoan parasite Leishmania causing a group of diseases called the leishmaniases. The subgenus Larroussius includes sand fly vectors found in South East Mediterranean Basin responsible for Visceral (VL) and Cutaneous human leishmaniasis (CL). It is important to monitor these medically important insects in order to safely predict possible Leishmania transmission cycles. Leishmania infantum is endemic in the islands of Crete and Cyprus with increasing VL cases in humans and dogs and in Cyprus the newly introduced Leishmania donovani causes both VL and CL in humans. The morphological identification of the females of the subgenus Larroussius often presents difficulties. Morphology and COI PCR - RFLP were used to identify wild caught Larroussius sand flies belonging to Phlebotomus tobbi, P. perfiliewi, and P. neglectus species from Crete and Cyprus. The identification results were further confirmed by sequencing (DNA barcoding) and Bayesian phylogenetic analysis. COI PCR - RFLP, when correctly optimized and with respect to geographical origin, can serve as an initial patterning identification tool when large sand fly numbers need to be identified. It could accurately assign Larroussius females and males to their taxa overcoming the difficulties of morphological identification. Finally, DNA barcoding will contribute to a molecular identification database to be used for in-depth species studies.

  11. Authentication of beef, carabeef, chevon, mutton and pork by a PCR-RFLP assay of mitochondrial cytb gene.

    PubMed

    Kumar, Deepak; Singh, S P; Karabasanavar, Nagappa S; Singh, Rashmi; Umapathi, V

    2014-11-01

    Authentication of meat assumes significance in view of religious, quality assurance, food safety, public health, conservation and legal concerns. Here, we describe a PCR-RFLP (Polymerase Chain Reaction- Restriction Fragment Length Polymorphism) assay targeting mitochondrial cytochrome-b gene for the identification of meats of five most common food animals namely cattle, buffalo, goat, sheep and pig. A pair of forward and reverse primers (VPH-F & VPH-R) amplifying a conserved region (168-776 bp) of mitochondrial cytochrome-b (cytb) gene for targeted species was designed which yielded a 609 bp PCR amplicon. Further, restriction enzyme digestion of the amplicons with Alu1 and Taq1 restriction enzymes resulted in a distinctive digestion pattern that was able to discriminate each species. The repeatability of the PCR-RFLP assay was validated ten times with consistent results observed. The developed assay can be used in routine diagnostic laboratories to differentiate the meats of closely related domestic livestock species namely cattle from buffalo and sheep from goat.

  12. False homozygous deletions of SMN1 exon 7 using Dra I PCR-RFLP caused by a novel mutation in spinal muscular atrophy.

    PubMed

    Kang, Seong-Ho; Cho, Sung Im; Chae, Jong-Hee; Chung, Kyu Nam; Ra, Eun Kyung; Kim, So Yeon; Seong, Moon-Woo; Kim, Ji Yeon; Park, Sung Sup

    2009-08-01

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder, and about 95% of SMA patients are homozygous for deletions in the SMN1 gene. Herein, classical polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) using DraI yielded false homozygous deletions of SMN1 exon 7 in a patient with SMA, but multiple ligation-dependent probe amplification analysis revealed one remaining copy of SMN1 exon 7. Sequencing showed that this false deletion in the PCR-RFLP resulted from a novel mutation of one SMN1 copy that was not deleted (c.863G > T, p.R288M). This novel sequence variant introduced a mismatch that interfered with primer binding. These findings demonstrate that comprehensive analysis using PCR-RFLP, multiple ligation-dependent probe amplification, and sequencing can reliably and correctly diagnose SMA.

  13. Intraspecific genetic variability in a population of Moroccan Leishmania infantum revealed by PCR-RFLP of kDNA minicircles.

    PubMed

    El Hamouchi, Adil; Ejghal, Rajaa; Hida, Moustapha; Lemrani, Meryem

    2017-05-01

    In Morocco, Leishmania infantum is the main etiologic agent of human and canine visceral leishmaniasis (VL). This species has been proven to be an opportunistic agent in HIV+ patients and is also responsible of sporadic cutaneous leishmaniasis (CL).This work aims to evaluate the genetic variability of Moroccan L. infantum strains based on PCR-RFLP analysis of the kinetoplastid DNA (kDNA) minicircles. A total of 75 DNA samples extracted from positive Giemsa-stained smears (n=32) and from L. infantum cultures (n=43) was studied. The samples have been taken from VL patients infected (n=7) or not (n=56) by HIV, patients with CL (n=2) and finally from infected dogs (n=10). An hypervariable region of kDNA was amplified using the primers MC1 and MC2; the PCR products were digested separately by a panel of nine restriction enzymes. The presence or absence of restriction fragments was scored in a binary matrix and the SplitsTree4 software was used for the construction of a Neighbor-Net network. Moroccan L. infantum population showed an important level of variability with the identification of 6 genotypes. For each genotype a PCR product was sequenced, confirming the presence of all the expected restriction sites. The predominant profile was the genotype B. A new genotype, named Q was detected for the first time, whereas the four other genotypes (G, K, N and O) were reported sporadically in the Mediterranean basin. The Neighbor-Net network segregates our L. infantum population into 3 clusters: Cluster I includes genotype B, cluster II grouping the genotypes O, Q and G and finally the cluster III contains the genotype N. The kDNA-PCR-RFLP assay is suitable for use directly on biological samples; it reveals an important degree of genetic variability among L. infantum strains even those belonging to the same zymodeme what is of great epidemiological interest.

  14. Aspergillus tubingensis and Aspergillus niger as the dominant black Aspergillus, use of simple PCR-RFLP for preliminary differentiation.

    PubMed

    Mirhendi, H; Zarei, F; Motamedi, M; Nouripour-Sisakht, S

    2016-03-01

    This work aimed to identify the species distribution of common clinical and environmental isolates of black Aspergilli based on simple restriction fragment length polymorphism (RFLP) analysis of the β-tubulin gene. A total of 149 clinical and environmental strains of black Aspergilli were collected and subjected to preliminary morphological examination. Total genomic DNAs were extracted, and PCR was performed to amplify part of the β-tubulin gene. At first, 52 randomly selected samples were species-delineated by sequence analysis. In order to distinguish the most common species, PCR amplicons of 117 black Aspergillus strains were identified by simple PCR-RFLP analysis using the enzyme TasI. Among 52 sequenced isolates, 28 were Aspergillus tubingensis, 21 Aspergillus niger, and the three remaining isolates included Aspergillus uvarum, Aspergillus awamori, and Aspergillus acidus. All 100 environmental and 17 BAL samples subjected to TasI-RFLP analysis of the β-tubulin gene, fell into two groups, consisting of about 59% (n=69) A. tubingensis and 41% (n=48) A. niger. Therefore, the method successfully and rapidly distinguished A. tubingensis and A. niger as the most common species among the clinical and environmental isolates. Although tardy, the Ehrlich test was also able to differentiate A. tubingensis and A. niger according to the yellow color reaction specific to A. niger. A. tubingensis and A. niger are the most common black Aspergillus in both clinical and environmental isolates in Iran. PCR-RFLP using TasI digestion of β-tubulin DNA enables rapid screening for these common species.

  15. PCR-RFLP analysis for identification of Tetranychus spider mite species (Acari: Tetranychidae).

    PubMed

    Arimoto, Makoto; Satoh, Masaru; Uesugi, Ryuji; Osakabe, Masahiro

    2013-04-01

    A polymerase chain reaction (PCR)-restriction fragment length polymorphism (PCR-restriction fragment-length polymorphism)-based method for species identification was applied to 14 Tetranychus spider mite species, which were dominant species intercepted at Japanese import plant quarantine. We sequenced the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA (rDNA), which included the partial ends of the 18S and 28S ribosomal RNA genes, 5.8S ribosomal RNA gene, and two internal transcribed spacers (ITS1 and ITS2) for 15 populations of the 14 species. We analyzed the recognition sites of four restriction endonucleases, which had been proposed for discrimination of Japanese Tetranychus species, and constructed a scheme for Tetranychus species identification by PCR-restriction fragment-length polymorphism. We then applied the scheme to 245 individuals from 199 populations, most of them were from foreign countries. As a result, all 14 species were correctly identified using PCR-restriction fragment-length polymorphism. This demonstrates the usefulness of the PCR-restriction fragment-length polymorphism method for the worldwide identification of Tetranychus species.

  16. Comparative evaluation of the nested ITS PCR against the 18S PCR-RFLP in a survey of bovine trypanosomiasis in Kwale County, Kenya.

    PubMed

    Odongo, Steven; Delespaux, Vincent; Ngotho, Maina; Bekkele, Serkalem Mindaye; Magez, Stefan

    2016-09-01

    We compared the nested internal transcribed spacer (ITS) PCR and the 18S PCR-RFLP (restriction-fragment length polymorphism) pan-trypanosome assays in a cross-sectional survey of bovine trypanosomiasis in 358 cattle in Kwale County, Kenya. The prevalence of trypanosomiasis as determined by the nested ITS PCR was 19.6% (70/358) and by 18S PCR-RFLP was 16.8% (60/358). Of the pathogenic trypanosomes detected, the prevalence of Trypanosoma congolense and Trypanosoma vivax was greater than that of Trypanosoma simiae The nested ITS PCR detected 83 parasite events, whereas the 18S PCR-RFLP detected 64; however, overall frequencies of infections and the parasite events detected did not differ between the assays (χ(2) = 0.8, df = 1, p > 0.05 and χ(2) = 2.5, df = 1, p > 0.05, respectively). The kappa statistic (0.8) showed good agreement between the tests. The nested ITS PCR and the 18S PCR-RFLP had comparable sensitivity, although the nested ITS PCR was better at detecting mixed infections (χ(2) = 5.4, df = 1, p < 0.05).

  17. [Application of the multiplex PCR and PCR-RFLP method in the identification of the Bacillus anthracis].

    PubMed

    Szymajda, Urszula; Bartoszcze, Michał

    2005-01-01

    The aim of this study was to apply the multiplex PCR and PCR-RFLP method for the identification of the B. anthracis strains and to distinguish those bacteria from other members of the Bacillus cereus group. The multiplex PCR method enables to detect the virulence factors, i.e. the toxin and the capsule in B. anthracis strains. To do that, the authors have used 5 primer pairs specific for the fragments of lef, cya, pag genes which are present in the pXO1 plasmid and encode the toxin, the cap gene, which is present in the pXO2 plasmid and encodes the capsule, and the Ba813 chromosomal sequence. Among the four B. anthracis strains examined, three contained two plasmids and the Ba813 chromosomal sequence, while the fourth one contained the pXO1 plasmid only, together and the Ba813 chromosomal sequence. Other bacterial species, belonging to the B. cereus group, were also examined: 6 strains of B. cereus, 4 strains of B. thuringiensis and one strain of B. mycoides. The presence of Ba813 chromosomal sequence has been detected in two B. cereus strains. Neither plasmids nor Ba813 chromosomal sequence have been discovered in other B. cereus, B. thuringiensis and B. mycoides strains. The results of the survey indicate that the Ba813 chromosomal sequence does not occur solely in B. anthracis strains. The PCR-RFLP method with the use of SG-749f and SG-749r primers enabled to demonstrate the presence of DNA sequence (SG-749) in B. anthracis, B. cereus, B. thuringiensis and B. mycoides strains. Restriction analysis with enzyme AluI of the SG-749 sequence, has shown the presence of two DNA fragments at the size of about 90 and 660 bp in all B. anthracis strains. The restriction profile obtained was characteristic for B. anthracis strains and it did not occur in other investigated bacterial species belonging to the B. cereus group. It was not observed even in such B. cereus strains in which the presence of Ba813 sequence was discovered and it enabled to differentiate between B

  18. Giardia duodenalis genotypes in domestic and wild animals from Romania identified by PCR-RFLP targeting the gdh gene.

    PubMed

    Adriana, Gyӧrke; Zsuzsa, Kalmár; Mirabela Oana, Dumitrache; Mircea, Gherman Călin; Viorica, Mircean

    2016-02-15

    Sixty Giardia duodenalis isolates from domestic (n=49) and wild (n=11) animals (dogs, cats, deers, wolves, raccoon dog and muskrat) were analysed by PCR-RFLP at glutamate dehydrogenase locus (gdh). The isolates were obtained from positive feces samples for Giardia cysts analysed by flotation technique with saturated sodium chloride solution (specific gravity 1.28). Three G. duodenalis genotypes were identified: C (10/60; 16.7%); D (42/60; 70.0%); and E (7/60; 11.7%). In dogs all three genotypes were found, with the following prevalences: 76.9% genotype D (30/39); 23.1% C (9/39); 2.6% genotype E (1/39). One dog was co-infected with C and D genotypes. In cats we identified only G. duodenalis genotype D. Wolves and raccoon dog harbored infection with G. duodenalis genotype D, deers with E type and muskrat C type. This is the first study regarding genotyping of G. duodenalis in cats and wild animals from Romania. To the best of our knowledge, this is the first report of assemblages E in roe deers; assemblage C in wolves and muskrat; and assemblage D in raccoon dog.

  19. Population structure of wild bananas, Musa balbisiana, in China determined by SSR fingerprinting and cpDNA PCR-RFLP.

    PubMed

    Ge, X J; Liu, M H; Wang, W K; Schaal, B A; Chiang, T Y

    2005-04-01

    Both demographic history and dispersal mechanisms influence the apportionment of genetic diversity among plant populations across geographical regions. In this study, phylogeography and population structure of wild banana, Musa balbisiana, one of the progenitors of cultivated bananas and plantains in China were investigated by an analysis of genetic diversity of simple sequence repeat (SSR) fingerprint markers and cpDNA PCR-RFLP. A chloroplast DNA (cpDNA) genealogy of 21 haplotypes identified two major clades, which correspond to two geographical regions separated by the Beijiang and Xijiang rivers, suggesting a history of vicariance. Significant genetic differentiation was detected among populations with cpDNA markers, a result consistent with limited seed dispersal in wild banana mediated by foraging of rodents. Nuclear SSR data also revealed significant geographical structuring in banana populations. In western China, however, there was no detected phylogeograpahical pattern, possibly due to frequent pollen flow via fruit bats. In contrast, populations east of the Beijiang River and the population of Hainan Island, where long-range soaring pollinators are absent, are genetically distinct. Colonization-extinction processes may have influenced the evolution of Musa populations, which have a metapopulation structure and are connected by migrating individuals. Effective gene flow via pollen, estimated from the nuclear SSR data, is 3.65 times greater than gene flow via seed, estimated from cpDNA data. Chloroplast and nuclear DNAs provide different insights into phylogeographical patterns of wild banana populations and, taken together, can inform conservation practices.

  20. GISH, AFLP and PCR-RFLP analysis of an intergeneric somatic hybrid combining Goutou sour orange and Poncirus trifoliata.

    PubMed

    Fu, C H; Chen, C L; Guo, W W; Deng, X X

    2004-11-01

    Intergeneric somatic hybrids combining Goutou sour orange (Citrus aurantium L.) with trifoliate orange Poncirus trifoliata (L.) Raf] were produced by electrofusion and their genetic inheritance analyzed by amplified fragment length polymorphism (AFLP), genomic in situ hybridization (GISH), and PCR-restriction fragment length polymorphism (PCR-RFLP). Sixteen mini-calluses were obtained after 20 days of culture; they all developed into embryoids on EME500 medium. Following several subcultures on shoot induction medium for a total culture period of 6 months, shoots regenerated. The plants grew vigorously with a well-developed root system and exhibited the trifoliate leaf character of P. trifoliata. Ploidy analysis verified that all of the regenerates were tetraploids (2 n=4 x=36) as expected. GISH analysis confirmed that 18 chromosomes came from trifoliate orange and the remaining 18 from Goutou sour orange, as with most symmetric somatic hybrid plants; moreover, chromosome translocations were also observed in one plant. AFLP analysis of 16 regenerates and their fusion parents indicated that all of the somatic hybrids except one were genetically uniform. Analysis of the somatic hybrid cytoplasmic genomes with universal primers revealed that their chloroplast DNA (cpDNA) banding patterns were identical to those of the mesophyll parent trifoliate orange, while their mitochondria (mt) genomes were of the callus parent sour orange. The potential of GISH in Citrus somatic hybrid analysis is discussed.

  1. Differentiation of sheep pox and goat poxviruses by sequence analysis and PCR-RFLP of P32 gene.

    PubMed

    Hosamani, Madhusudan; Mondal, Bimalendu; Tembhurne, Prabhakar A; Bandyopadhyay, Santanu Kumar; Singh, Raj Kumar; Rasool, Thaha Jamal

    2004-08-01

    Sheep pox and Goat pox are highly contagious viral diseases of small ruminants. These diseases were earlier thought to be caused by a single species of virus, as they are serologically indistinguishable. P32, one of the major immunogenic genes of Capripoxvirus, was isolated and Sequenced from two Indian isolates of goat poxvirus (GPV) and a vaccine strain of sheep poxvirus (SPV). The sequences were compared with other P32 sequences of capripoxviruses available in the database. Sequence analysis revealed that sheep pox and goat poxviruses share 97.5 and 94.7% homology at nucleotide and amino acid level, respectively. A major difference between them is the presence of an additional aspartic acid at 55th position of P32 of sheep poxvirus that is absent in both goat poxvirus and lumpy skin disease virus. Further, six unique neutral nucleotide substitutions were observed at positions 77, 275, 403, 552, 867 and 964 in the sequence of goat poxvirus, which can be taken as GPV signature residues. Similar unique nucleotide signatures could be identified in SPV and LSDV sequences also. Phylogenetic analysis showed that members of the Capripoxvirus could be delineated into three distinct clusters of GPV, SPV and LSDV based on the P32 genomic sequence. Using this information, a PCR-RFLP method has been developed for unequivocal genomic differentiation of SPV and GPV.

  2. Identification of Eastern United States Reticulitermes Termite Species via PCR-RFLP, Assessed Using Training and Test Data

    PubMed Central

    Garrick, Ryan C.; Collins, Benjamin D.; Yi, Rachel N.; Dyer, Rodney J.; Hyseni, Chaz

    2015-01-01

    Reticulitermes termites play key roles in dead wood decomposition and nutrient cycling in forests. They also damage man-made structures, resulting in considerable economic loss. In the eastern United States, five species (R. flavipes, R. virginicus, R. nelsonae, R. hageni and R. malletei) have overlapping ranges and are difficult to distinguish morphologically. Here we present a molecular tool for species identification. It is based on polymerase chain reaction (PCR) amplification of a section of the mitochondrial cytochrome oxidase subunit II gene, followed by a three-enzyme restriction fragment length polymorphism (RFLP) assay, with banding patterns resolved via agarose gel electrophoresis. The assay was designed using a large set of training data obtained from a public DNA sequence database, then evaluated using an independent test panel of Reticulitermes from the Southern Appalachian Mountains, for which species assignments were determined via phylogenetic comparison to reference sequences. After refining the interpretive framework, the PCR-RFLP assay was shown to provide accurate identification of four co-occurring species (the fifth species, R. hageni, was absent from the test panel, so accuracy cannot yet be extended to training data). The assay is cost- and time-efficient, and will help improve knowledge of Reticulitermes species distributions. PMID:26463202

  3. Identification of roots from grass swards using PCR-RFLP and FFLP of the plastid trnL (UAA) intron

    PubMed Central

    Ridgway, Karyn P; Duck, Janette M; Young, J Peter W

    2003-01-01

    Background The specific associations between plant roots and the soil microbial community are key to understanding nutrient cycling in grasslands, but grass roots can be difficult to identify using morphology alone. A molecular technique to identify plant species from root DNA would greatly facilitate investigations of the root rhizosphere. Results We show that trnL PCR product length heterogeneity and a maximum of two restriction digests can separate 14 common grassland species. The RFLP key was used to identify root fragments at least to genus level in a field study of upland grassland community diversity. Roots which could not be matched to known types were putatively identified by comparison of the nuclear ribosomal ITS sequence to the GenBank database. Ten taxa were identified among almost 600 root fragments. Additionally, we have employed capillary electrophoresis of fluorescent trnL PCR products (fluorescent fragment length polymorphism, FFLP) to discriminate all taxa identified at the field site. Conclusion We have developed a molecular database for the identification of some common grassland species based on PCR-RFLP of the plastid transfer RNA leucine (trnL) UAA gene intron. This technique will allow fine-scale studies of the rhizosphere, where root identification by morphology is unrealistic and high throughput is desirable. PMID:14563214

  4. Identification of causative Leishmania species in Giemsa-stained smears prepared from patients with cutaneous leishmaniasis in Peru using PCR-RFLP.

    PubMed

    Koarashi, Yu; Cáceres, Abraham G; Saca, Florencia Margarita Zúniga; Flores, Elsa Elvira Palacios; Trujillo, Adela Celis; Alvares, José Luis Abanto; Yoshimatsu, Kumiko; Arikawa, Jiro; Katakura, Ken; Hashiguchi, Yoshihisa; Kato, Hirotomo

    2016-06-01

    A PCR-Restriction Fragment Length Polymorphism (RFLP) targeting the mannose phosphate isomerase gene was established to differentiate Leishmania species distributed near the Department of Huanuco, Peru. The technique was applied to 267 DNA samples extracted from Giemsa-stained smears of cutaneous lesions taken from patients suspected for cutaneous leishmaniasis in the area, and the present status of causative Leishmania species was identified. Of 114 PCR-amplified samples, 22, 19, 24 and 49 samples were identified to be infected by Leishmania (Viannia) braziliensis, L. (V.) peruviana, L. (V.) guyanensis, and a hybrid of L. (V.) braziliensis/L. (V.) peruviana, respectively, and the validity of PCR-RFLP was confirmed by sequence analysis. Since PCR-RFLP is simple and rapid, the technique will be a useful tool for the epidemiological study of leishmaniasis.

  5. Identification of aphid (Hemiptera: Aphididae) species of economic importance in Kenya using DNA barcodes and PCR-RFLP-based approach.

    PubMed

    Kinyanjui, G; Khamis, F M; Mohamed, S; Ombura, L O; Warigia, M; Ekesi, S

    2016-02-01

    Aphids are among pests of economic importance throughout the world. Together with transmitting plant viruses, aphids are capable of inflicting severe crop production losses. They also excrete honeydew that favours the growth of sooty mold which reduces the quality of vegetables and fruits and hence their market values. Rapid and accurate identification of aphids to the species level is a critical component in effective pest management and plant quarantine systems. Even though morphological taxonomy has made a tremendous impact on species-level identifications, polymorphism, morphological plasticity and immature stages are among the many challenges to accurate identification. In addition, their small size, presence of cryptic species and damaged specimens dictate the need for a strategy that will ensure timely and accurate identification. In this study, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)-based on mitochondrial cytochrome c oxidase subunit I gene and DNA barcoding were applied to identify different aphid species collected from different agro-ecological zones of Kenya. Three restriction enzymes RsaI, AluI and Hinf1 produced patterns that allowed unambiguous identification of the species except Aphis craccivora and Aphis fabae. Analyses of the barcode region indicated intraspecific and interspecific sequence divergences of 0.08 and 6.63%, respectively. DNA barcoding identified all species, including the morphologically indistinguishable A. craccivora and A. fabae and separated two subspecies of A. fabae. Based on these results, both PCR-RFLPs and DNA barcoding could provide quick and accurate tools for identification of aphid species within Aphididae subsequently aiding in effective pest management programmes and enhance plant quarantine systems.

  6. A cultivation-independent PCR-RFLP assay targeting oprF gene for detection and identification of Pseudomonas spp. in samples from fibrocystic pediatric patients.

    PubMed

    Lagares, Antonio; Agaras, Betina; Bettiol, Marisa P; Gatti, Blanca M; Valverde, Claudio

    2015-07-01

    Species-specific genetic markers are crucial to develop faithful and sensitive molecular methods for the detection and identification of Pseudomonas aeruginosa (Pa). We have previously set up a PCR-RFLP protocol targeting oprF, the gene encoding the genus-specific outer membrane porin F, whose strong conservation and marked sequence diversity allowed detection and differentiation of environmental isolates (Agaras et al., 2012). Here, we evaluated the ability of the PCR-RFLP assay to genotype clinical isolates previously identified as Pa by conventional microbiological methods within a collection of 62 presumptive Pa isolates from different pediatric clinical samples and different sections of the Hospital de Niños "Sor María Ludovica" from La Plata, Argentina. All isolates, but one, gave an oprF amplicon consistent with that from reference Pa strains. The sequence of the smaller-sized amplicon revealed that the isolate was in fact a mendocina Pseudomonas strain. The oprF RFLP pattern generated with TaqI or HaeIII nucleases matched those of reference Pa strains for 59 isolates (96%). The other two Pa isolates (4%) revealed a different RFLP pattern based on HaeIII digestion, although oprF sequencing confirmed that Pa identification was correct. We next tested the effectiveness of the PCR-RFLP to detect pseudomonads on clinical samples of pediatric fibrocystic patients directly without sample cultivation. The expected amplicon and its cognate RFLP profile were obtained for all samples in which Pa was previously detected by cultivation-dependent methods. Altogether, these results provide the basis for the application of the oprF PCR-RFLP protocol to directly detect and identify Pa and other non-Pa pseudomonads in fibrocystic clinical samples.

  7. Amplification of a single-locus variable-number direct repeats with restriction fragment length polymorphism (DR-PCR/RFLP) for genetic typing of Acinetobacter baumannii strains.

    PubMed

    Nowak-Zaleska, Alicja; Krawczyk, Beata; Kotłowski, Roman; Mikucka, Agnieszka; Gospodarek, Eugenia

    2008-01-01

    In search of an effective DNA typing technique for Acinetobacter baumannii strains for hospital epidemiology use, the performance and convenience of a new target sequence was evaluated. Using known genomic sequences of Acinetobacter baumannii strains AR 319754 and ATCC 17978, we developed single-locus variable-number direct-repeat analysis using polymerase chain reaction-restriction fragment length polymorphism (DR-PCR/RFLP) method. A total of 90 Acinetobacter baumannii strains isolated from patients of the Clinical Hospital in Bydgoszcz, Poland, were examined. Initially, all strains were typed using macrorestriction analysis of the chromosomal DNA by pulsed-field gel electrophoresis (REA-PFGE). Digestion of the chromosomal DNA with the ApaI endonuclease and separation of the fragments by PFGE revealed 21 unique types. Application of DR-PCR/RFLP resulted in recognition of 12 clusters. The results showed that the DR-PCR/RFLP method is less discriminatory than REA-PFGE, however, the novel genotyping method can be used as an alternative technique for generating DNA profiles in epidemiological studies of intra-species genetic relatedness of Acinetobacter baumannii strains.

  8. [Determination of Leishmania species by PCR-RFLP in the smear samples taken from the lesions of cutaneous leishmaniasis cases].

    PubMed

    Ertabaklar, Hatice; Ertuğ, Sema; Çalışkan, Serçin Özlem; Bozdoğan, Bülent

    2016-04-01

    control samples (n= 10). The data of this study showed that the most common CL agent in Aydin is L.tropica. In conclusion, ITS-1 PCR-RFLP method may be used directly as a single routine procedure for both the detection and identification of Leishmania species in the clinical samples of CL patients, in laboratories with adequate facilities.

  9. Differentiation of Candida glabrata, C. nivariensis and C. bracarensis based on fragment length polymorphism of ITS1 and ITS2 and restriction fragment length polymorphism of ITS and D1/D2 regions in rDNA.

    PubMed

    Mirhendi, H; Bruun, B; Schønheyder, H C; Christensen, J J; Fuursted, K; Gahrn-Hansen, B; Johansen, H K; Nielsen, L; Knudsen, J D; Arendrup, M C

    2011-11-01

    Different molecular methods for the discrimination of Candida glabrata, C. bracarensis and C. nivariensis were evaluated and the prevalence of these species among Danish blood isolates investigated. Control strains were used to determine fragment length polymorphism in the ITS1, ITS2, ITS1-5.8S-ITS2 regions and in the D1/D2 domain of 26S rDNA using primers designed for this study. A total of 133 blood isolates previously identified as C. glabrata were examined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and the peptide nucleic acid-fluorescent in situ hybridization (PNA-FISH) method. The size of ITS1 allowed differentiation between C. glabrata (483), C. nivariensis (361) and C. bracarensis (385), whereas the ITS2 region was of similar size in C. nivariensis (417) and C. glabrata (418). Sequence analysis of the ITS region suggested that many restriction enzymes were suitable for RFLP differentiation of the species. Enzymatic digestion of the D1/D2 domain with TatI produced unique band sizes for each of the three species. PCR-RFLP and PNA-FISH were in agreement for all of the isolates tested. None of the 133 Danish blood isolates were C. nivariensis or C. bracarensis. Fragment size polymorphism of ITS1 and RFLP of the D1/D2 domain or the ITS region are useful methods for the differentiation of the species within the C. glabrata group. C. bracarensis and C. nivariensis are rare among Danish C. glabrata blood isolates.

  10. Application of a new PCR-RFLP panel suggests a restricted population structure for Eimeria tenella in UK and Irish chickens.

    PubMed

    Pegg, Elaine; Doyle, Kate; Clark, Emily L; Jatau, Isa D; Tomley, Fiona M; Blake, Damer P

    2016-10-15

    Eimeria species cause coccidiosis, most notably in chickens where the global cost exceeds US$3 billion every year. Understanding variation in Eimeria population structure and genetic diversity contributes valuable information that can be used to minimise the impact of drug resistance and develop new, cost-effective anticoccidial vaccines. Little knowledge is currently available on the epidemiology of Eimeria species and strains in different regions, or under different chicken production systems. Recently, 244 Eimeria tenella isolates collected from countries in Africa and Asia were genotyped using a Sequenom single nucleotide polymorphism (SNP) tool, revealing significant variation in haplotype diversity and population structure, with a marked North/South regional divide. To expand studies on genetic polymorphism to larger numbers of E. tenella populations in other geographic regions a cheaper and more accessible technique, such as polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), is desirable. We have converted a subset of SNP markers for use as PCR-RFLPs and re-analysed the original 244 isolates with the PCR-RFLPs to assess their utility. In addition, application of the PCR-RFLP to E. tenella samples collected from UK and Irish broiler chickens revealed a tightly restricted haplotype diversity. Just two of the PCR-RFLPs accounted for all of the polymorphism detected in the UK and Irish parasite populations, but analysis of the full dataset revealed different informative markers in different regions, supporting validity of the PCR-RFLP panel. The tools described here provide an accessible and cost-effective method that can be used to enhance understanding of E. tenella genetic diversity and population structure.

  11. Phylogenetic analysis of Cystoisospora species at the rRNA ITS1 locus and development of a PCR-RFLP assay.

    PubMed

    Samarasinghe, Bimba; Johnson, Johanna; Ryan, Una

    2008-04-01

    The ITS1 sequences for C. suis, C. belli, C. rivolta, C. felis, and C. ohioensis-like oocysts were determined and a diagnostic PCR-RFLP assay specific for Cystosisopora species was developed. Phylogenetic analysis of ITS1 sequences of Cystosisopora species along with ITS1 sequences for Toxoplasma, Neospora, Sarcocystis and Eimeria spp. using distance, minimum evolution and parsimony-based methods confirmed previous studies, which suggested that the genus Cystoisospora does not belong to the family Eimeriidae, but should be classified together with the cyst-forming coccidia in the family Sarcocystidae.

  12. Identification of Echinococcus granulosus Strains in Isolated Hydatid Cyst Specimens from Animals by PCR-RFLP Method in West Azerbaijan – Iran

    PubMed Central

    HANIFIAN, Haleh; DIBA, Kambiz; TAPPEH, Khosrow HAZRATI; MOHAMMADZADEH, Habib; MAHMOUDLOU, Rahim

    2013-01-01

    Background The aim of this study was DNA extraction from protoscolecses of Echinococcus granulosus and identification of these strains in West-Azerbaijan Province, north western Iran. Methods Thirty one livestock isolates from sheep and cattle were collected from abattoirs of the province. To investigate the genetic variation of the isolates, after DNA extraction by Glass beads-phenol chloroform method; PCR-RLFP analysis of rDNA-ITS1 was performed using three different restriction enzymes of Taq 1, Rsa 1 and Alu 1. Result Amplified PCR products for all isolates were 1000bp band which is expected band in sheep strains (G1-G3 complex). The results of RFLP analysis also were the same for all isolates. PCR-RFLP patterns restriction enzymes were identical as follows, Rsa1 bands under UV showed two bands approximately 655bp and 345bp. Alu1 bands were as follows: two approximately 800bp and 200bp and Taq1 did not cut any region and bands were approximately 1000 bp in all samples. Conclusions Based on PCR-RFLP patterns of ITS1 fragment produced with endonucleases enzyme digestion in animal isolates, it can be concluded that a single strain of E. granulosus (sheep strain or G1-G3 complex) is dominant genotype in this province. PMID:24454429

  13. Molecular Characterization of Cryptosporidium spp. in Wild Rodents of Southwestern Iran Using 18s rRNA Gene Nested-PCR-RFLP and Sequencing Techniques

    PubMed Central

    Saki, Jasem; Asadpouri, Reza

    2016-01-01

    Background. Rodents could act as reservoir for Cryptosporidium spp. specially C. parvum, a zoonotic agent responsible for human infections. Since there is no information about Cryptosporidium infection in rodents of Ahvaz city, southwest of Iran, hence, this survey was performed to determine the prevalence and molecular characterization of Cryptosporidium spp. in this region. Materials and Methods. One hundred rodents were trapped from different regions of Ahvaz city. Intestine contents and fecal specimens of rodents were studied using both microscopy examination to identify oocyst and nested-polymerase chain reaction (PCR) technique for 18s rRNA gene detection. Eventually restriction fragment length polymorphism (RFLP) method using SspI and VspI restriction enzymes was carried out to genotype the species and then obtained results were sequenced. Results. Three out of 100 samples were diagnosed as positive and overall prevalence of Cryptosporidium spp. was 3% using both modified Ziehl-Neelsen staining under light microscope and nested-PCR (830 bp) methods. Afterwards, PCR-RFLP was performed on positive samples and C. parvum pattern was identified. Finally PCR-RFLP findings were sequenced and presence of C. parvum was confirmed again. Conclusions. Our study showed rodents could be potential reservoir for C. parvum. So an integrated program for control and combat with them should be adopted and continued. PMID:27956905

  14. Identification of tamaraw (Bubalus mindorensis) from natural habitat-derived fecal samples by PCR-RFLP analysis of cytochrome b gene.

    PubMed

    Ishihara, Shinya; Herrela, Rommel J; Ijiri, Daichi; Matsubayashi, Hisashi; Hirabayashi, Miho; Del Barrio, Arnel N; Boyles, Rodel M; Eduarte, Medardo M; Salac, Ronilo L; Cruz, Libertado C; Kanai, Yukio

    2010-12-01

    Fecal DNA analysis is a useful tool for the investigation of endangered species. Tamaraw (Bubalus mindorensis) is endemic to the Philippine island of Mindoro but knowledge of its genetic and ecological information is limited. In this study, we developed a species identification method for tamaraw by fecal DNA analysis. Eighteen feces presumed to be from tamaraw were collected in Mount Iglit-Baco National Park and species-known feces from domestic buffaloes and cattle were obtained from a farm. Additionally, one species-unknown fecal sample was obtained in Mount Aruyan Preserve, where the sighting of tamaraw has not been reported in recent years. Based on DNA sequence data previously reported, the genus Bubalus- and tamaraw-specific primers for PCR of cytochrome b gene were newly designed. The Bubalus-specific primer yielded a 976 bp fragment of cytochrome b for all fecal samples from tamaraw and domestic buffaloes, but not for cattle, whereas the tamaraw-specific primer yielded a 582 bp fragment for all tamaraw fecal samples and for one of the four domestic buffalo samples. PCR-RFLP (restriction fragment length polymorphism) analysis of the 976 bp PCR fragment with AvrII or BsaXI provided distinct differences between tamaraw and domestic buffalo. PCR-RFLP analysis also showed that the species-unknown sample obtained in Mount Aruyan Preserve, originates from tamaraw.

  15. Discrimination of the Thai rejuvenating herbs Pueraria candollei (White Kwao Khruea), Butea superba (Red Kwao Khruea), and Mucuna collettii (Black Kwao Khruea) using PCR-RFLP.

    PubMed

    Wiriyakarun, Suchaya; Yodpetch, Woraluk; Komatsu, Katsuko; Zhu, Shu; Ruangrungsi, Nijsiri; Sukrong, Suchada

    2013-07-01

    The tuberous roots of Pueraria candollei (White Kwao Khruea), Butea superba (Red Kwao Khruea) and Mucuna collettii (Black Kwao Khruea), which belong to the family Leguminosae, are used as rejuvenating herbs in traditional Thai medicine. Although all of these species have an indication for rejuvenation, each differs in its medicinal properties. Two varieties of P. candollei, var. mirifica and var. candollei, affect females, whereas B. superba and M. collettii exhibit effects on males. However, the identification of these roots according to the name "Kwao Khruea" is confusing due to the similarity in their features. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) was utilised to identify plant origin. The partial matK gene was amplified and subjected to restriction enzyme digestion with DdeI and TaqI. The restriction fragments generated differed in number and size. To test the reliability of the method, an admixture of the different Kwao Khruea species containing equal amounts of DNA was tested. The results showed combined restriction patterns, and each species could be detected in the background of the others. The method was also used to authenticate eight different crude drugs sold as various types of Kwao Khruea in Thai markets. The results showed that the misidentification of commercial drugs remains a problem in crude drug markets. The PCR-RFLP analysis developed here provides a simple and accurate discrimination of these rejuvenating "Kwao Khruea" species.

  16. Establishment of a heteroplasmic mouse strain with interspecific mitochondrial DNA haplotypes and improvement of a PCR-RFLP-based measurement system for estimation of mitochondrial DNA heteroplasmy.

    PubMed

    Shitara, Hiroshi; Cao, Liqin; Yamaguchi, Midori; Yonekawa, Hiromichi; Taya, Choji

    2017-02-20

    Mitochondrial DNA segregation is one of the characteristic modes of mitochondrial inheritance in which the heteroplasmic state of mitochondrial DNA is transmitted to the next generation in variable proportions. To analyze mitochondrial DNA segregation, we produced a heteroplasmic mouse strain with interspecific mitochondrial DNA haplotypes, which contains two types of mitochondrial DNA derived from C57BL/6J and Mus spretus strains. The strain was produced on a C57BL/6J nuclear genomic background by microinjection of donor cytoplasm into fertilized eggs. The PCR-RFLP semi-quantitative analysis method, which was improved to reduce the effect of heteroduplex formation, was used to measure the proportion of heteroplasmic mitochondrial DNA in tissues. Founder mice contained up to approximately 14% of exogenous Mus spretus mitochondrial DNA molecules in their tails, and the detected proportions differed among tissues of the same individual. Heteroplasmic mitochondrial DNA is transmitted to the next generation in varying proportions under the maternal inheritance mode. This mitochondrial heteroplasmic mouse strain and the improved PCR-RFLP measurement system enable analysis of the transmission of heteroplasmic mitochondrial DNA variants between tissues and generations.

  17. COMPARISON OF 16S rRNA-PCR-RFLP, LipL32-PCR AND OmpL1-PCR METHODS IN THE DIAGNOSIS OF LEPTOSPIROSIS

    PubMed Central

    GÖKMEN, Tülin GÜVEN; SOYAL, Ayben; KALAYCI, Yıldız; ÖNLEN, Cansu; KÖKSAL, Fatih

    2016-01-01

    SUMMARY Leptospirosis is still one of the most important health problems in developing countries located in humid tropical and subtropical regions. Human infections are generally caused by exposure to water, soil or food contaminated with the urine of infected wild and domestic animals such as rodents and dogs. The clinical course of leptospirosis is variable and may be difficult to distinguish from many other infectious diseases. The dark-field microscopy (DFM), serology and nucleic acid amplification techniques are used to diagnose leptospirosis, however, a distinctive standard reference method is still lacking. Therefore, in this study, we aimed to determine the presence of Leptospira spp., to differentiate the pathogenic L. interrogans and the non-pathogenic L. biflexa, and also to determine the sensitivity and specificity values of molecular methods as an alternative to conventional ones. A total of 133 serum samples, from 47 humans and 86 cattle were evaluated by two conventional tests: the Microagglutination Test (MAT) and the DFM, as well as three molecular methods, the 16S rRNA-PCR followed by Restriction Fragment Lenght Polymorphism (RFLP) of the amplification products 16S rRNA-PCR-RFLP, LipL32-PCR and OmpL1-PCR. In this study, for L. interrogans, the specificity and sensitivity rates of the 16S rRNA-PCR and the LipL32-PCR were considered similar (100% versus 98.25% and 100% versus 98.68%, respectively). The OmpL1-PCR was able to classify L. interrogans into two intergroups, but this PCR was less sensitive (87.01%) than the other two PCR methods. The 16S rRNA-PCR-RFLP could detect L. biflexa DNA, but LipL32-PCR and OmpL1-PCR could not. The 16S rRNA-PCR-RFLP provided an early and accurate diagnosis and was able to distinguish pathogenic and non-pathogenic Leptospira species, hence it may be used as an alternative method to the conventional gold standard techniques for the rapid disgnosis of leptospirosis. PMID:27680169

  18. Differentiation of Salmonella strains from the SARA, SARB and SARC reference collections by using three genes PCR-RFLP and the 2100 Agilent Bioanalyzer

    PubMed Central

    Soler-García, Ángel A.; De Jesús, Antonio J.; Taylor, Kishana; Brown, Eric W.

    2014-01-01

    Rapid molecular typing methods are important tools in surveillance and outbreak investigations of human Salmonella infections. Here we described the development of a three-genes PCR-RFLP typing method for the differentiation of Salmonella species, subspecies and serovars using the Agilent 2100 Bioanalyzer. The fliC, gnd, and mutS genes were PCR-amplified in 160 Salmonella strains representing the two Salmonella species, six subspecies, and 41 different serovars of S. enterica subspecies enterica. PCR products were individually cut with two different restriction enzymes and the resulting 930 restriction patterns were collected using the Agilent 2100 Bioanalyzer followed by cluster analysis. Both species of Salmonella were differentiated by conventional PCR. All of S. bongori tested were gnd PCR negative due to a mismatch at the 3′-end in one the PCR primers. Salmonella subspecies were differentiated into third-teen homogeneous groups representing each of the six subspecies by cluster analysis of restriction patterns generated from the mutS gene cut with AciI. S. enterica subspecies enterica serovars were further differentiated by the combination of the three target genes and five out the six sets of restriction patterns with a discriminatory power of 0.9725 by cluster analysis. The combined RFLP results of five sets of restriction patterns allowed us to assign each of the 160 strains to one of 128 restriction types. During inoculation studies we were able to identify S. Saintpaul and Typhimurium from 24 h pre-enrichment samples using the described method. The use of fliC, gnd, and mutS PCR-RFLP with the Agilent 2100 Bioanalyzer can provide an accessible and automated alternative method for differentiation of Salmonella pathogens. PMID:25157247

  19. Lab-on-a-Chip-Based PCR-RFLP Assay for the Detection of Malayan Box Turtle (Cuora amboinensis) in the Food Chain and Traditional Chinese Medicines.

    PubMed

    Asing; Ali, Md Eaqub; Abd Hamid, Sharifah Bee; Hossain, M A Motalib; Mustafa, Shuhaimi; Kader, Md Abdul; Zaidul, I S M

    2016-01-01

    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected turtle species, but it is a lucrative item in the illegal wildlife trade because of its great appeal as an exotic food item and in traditional medicine. Although several polymerase chain reaction (PCR) assays to identify MBT by various routes have been documented, their applicability for forensic authentication remains inconclusive due to the long length of the amplicon targets, which are easily broken down by natural decomposition, environmental stresses or physiochemical treatments during food processing. To address this research gap, we developed, for the first time, a species-specific PCR-restriction fragment length polymorphism (RFLP) assay with a very short target length (120 bp) to detect MBT in the food chain; this authentication ensured better security and reliability through molecular fingerprints. The PCR-amplified product was digested with Bfa1 endonuclease, and distinctive restriction fingerprints (72, 43 and 5 bp) for MBT were found upon separation in a microfluidic chip-based automated electrophoresis system, which enhances the resolution of short oligos. The chances of any false negative identifications were eliminated through the use of a universal endogenous control for eukaryotes, and the limit of detection was 0.0001 ng DNA or 0.01% of the meat under admixed states. Finally, the optimized PCR-RFLP assay was validated for the screening of raw and processed commercial meatballs, burgers and frankfurters, which are very popular in most countries. The optimized PCR-RFLP assay was further used to screen MBT materials in 153 traditional Chinese medicines of 17 different brands and 62 of them were found MBT positive; wherein the ingredients were not declared in product labels. Overall, the novel assay demonstrated sufficient merit for use in any forensic and/or archaeological authentication of MBT, even under a state of decomposition.

  20. Lab-on-a-Chip-Based PCR-RFLP Assay for the Detection of Malayan Box Turtle (Cuora amboinensis) in the Food Chain and Traditional Chinese Medicines

    PubMed Central

    Asing; Ali, Md. Eaqub; Abd Hamid, Sharifah Bee; Hossain, M. A. Motalib; Mustafa, Shuhaimi; Kader, Md. Abdul; Zaidul, I. S. M.

    2016-01-01

    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected turtle species, but it is a lucrative item in the illegal wildlife trade because of its great appeal as an exotic food item and in traditional medicine. Although several polymerase chain reaction (PCR) assays to identify MBT by various routes have been documented, their applicability for forensic authentication remains inconclusive due to the long length of the amplicon targets, which are easily broken down by natural decomposition, environmental stresses or physiochemical treatments during food processing. To address this research gap, we developed, for the first time, a species-specific PCR-restriction fragment length polymorphism (RFLP) assay with a very short target length (120 bp) to detect MBT in the food chain; this authentication ensured better security and reliability through molecular fingerprints. The PCR-amplified product was digested with Bfa1 endonuclease, and distinctive restriction fingerprints (72, 43 and 5 bp) for MBT were found upon separation in a microfluidic chip-based automated electrophoresis system, which enhances the resolution of short oligos. The chances of any false negative identifications were eliminated through the use of a universal endogenous control for eukaryotes, and the limit of detection was 0.0001 ng DNA or 0.01% of the meat under admixed states. Finally, the optimized PCR-RFLP assay was validated for the screening of raw and processed commercial meatballs, burgers and frankfurters, which are very popular in most countries. The optimized PCR-RFLP assay was further used to screen MBT materials in 153 traditional Chinese medicines of 17 different brands and 62 of them were found MBT positive; wherein the ingredients were not declared in product labels. Overall, the novel assay demonstrated sufficient merit for use in any forensic and/or archaeological authentication of MBT, even under a state of decomposition. PMID:27716792

  1. Molecular diagnosis of canine visceral leishmaniasis: identification of Leishmania species by PCR-RFLP and quantification of parasite DNA by real-time PCR.

    PubMed

    Quaresma, Patrícia Flávia; Murta, Silvane Maria Fonseca; Ferreira, Eduardo de Castro; da Rocha-Lima, Ana Cristina Vianna Mariano; Xavier, Ana Amélia Prates; Gontijo, Célia Maria Ferreira

    2009-09-01

    The efficacies of polymerase chain reaction (PCR) procedures for the diagnosis of canine visceral leishmaniasis (CVL), and of PCR-restriction fragment length polymorphism (RFLP) analysis for the identification of Leishmania species, have been assessed. Quantitative real-time PCR employing a SYBR Green dye-based system was standardised for the quantification of Leishmania kDNA minicircles. Skin, peripheral blood and bone marrow samples collected from 217 dogs, asymptomatic or symptomatic for CVL, were analysed. The PCR method, which was based on the amplification of a 120 bp kDNA fragment conserved across Leishmania species, was able to detect the presence in clinical samples of protozoan parasite DNA in amounts as low as 0.1 fg. Bone marrow and skin samples proved to be more suitable than peripheral blood for the detection of Leishmania by PCR and presented positive indices of 84.9% and 80.2%, respectively. PCR-RFLP analysis indicated that 192 of the PCR-positive dogs were infected with Leishmania infantum chagasi, whilst L. braziliensis was identified in two other animals. Quantitative PCR revealed that bone marrow samples from dogs presenting positive conventional tests contained a higher number of copies of Leishmania kDNA than peripheral blood, although no significant differences were detected between symptomatic and asymptomatic dogs in terms of parasite load. This study demonstrates that PCR can be used for the detection of Leishmania in clinical samples derived from naturally infected dogs, and that PCR-RFLP represents a rapid and sensitive tool for the identification of Leishmania species. Additionally, qPCR is effective in quantifying Leishmania DNA load in clinical samples.

  2. Rapid differentiation of Staphylococcus aureus isolates harbouring egc loci with pseudogenes psient1 and psient2 and the selu or seluv gene using PCR-RFLP.

    PubMed

    Collery, Mark M; Smyth, Cyril J

    2007-02-01

    The egc locus of Staphylococus aureus harbours two enterotoxin genes (seg and sei) and three enterotoxin-like genes (selm, seln and selo). Between the sei and seln genes are located two pseudogenes, psient1 and psient2, or the selu or seluv gene. While these two alternative sei-seln intergenic regions can be distinguished by PCR, to date, DNA sequencing has been the only confirmatory option because of the very high degree of sequence similarity between egc loci bearing the pseudogenes and the selu or seluv gene. In silico restriction enzyme digestion of genomic regions encompassing the egc locus from the 3' end of the sei gene through the 5' first quarter of the seln gene allowed pseudogene- and selu- or seluv-bearing egc loci to be distinguished by PCR-RFLP. Experimental application of these findings demonstrated that endonuclease HindIII cleaved PCR amplimers bearing pseudogenes but not those with a selu or seluv gene, while selu- or seluv-bearing amplimers were susceptible to cleavage by endonuclease HphI, but not by endonuclease HindIII. The restriction enzyme BccI cleaved selu- or seluv-harbouring amplimers at a unique restriction site created by their signature 15 bp insertion compared with pseudogene-bearing amplimers, thereby allowing distinction of these egc loci. PCR-RFLP analysis using these restriction enzymes provides a rapid, easy to interpret alternative to DNA sequencing for verification of PCR findings on the nature of an egc locus type, and can also be used for the primary identification of the intergenic sei-seln egc locus type.

  3. Rapidly discriminate commercial medicinal Pulsatilla chinensis (Bge.) Regel from its adulterants using ITS2 barcoding and specific PCR-RFLP assay

    PubMed Central

    Shi, Yuhua; Zhao, Mingming; Yao, Hui; Yang, Pei; Xin, Tianyi; Li, Bin; Sun, Wei; Chen, Shilin

    2017-01-01

    Pulsatillae radix is a conventional traditional Chinese medicine (TCM) with common name Baitouweng, and has notable effects on inflammation and dysentery. Pulsatilla chinensis (Bge.) Regel is the only source plant of Baitouweng recorded in Chinese Pharmacopoeia, but its adulteration often occurs in the market that possibly affects medicinal efficacy and safety. We have established an internal transcribed spacer 2 (ITS2) barcode library based on 105 plant samples from 12 Pulsatilla species and 10 common adulterants. Results indicate that ITS2 barcoding can accurately distinguish Pulsatilla species from their adulterants. Pulsatilla chinensis can be discriminated from 11 congeneric species by two stable single nucleotide polymorphisms (SNPs) in the ITS2 region. Additionally, a quick specific PCR-RFLP identification assay based on the ITS2 barcode was developed. Using specific primers ITS2/PR1 combined with restriction enzyme Bgl I, Pu. chinensis can rapidly be differentiated from other species via simple and low-cost test procedures. Furthermore, 30 commercial Baitouweng products were tested and only two products were derived from authentic Pu. chinensis. Thus, these two molecular approaches provide practical tools for quick identification of commercial Baitouweng products and can help ensure the safe use of this TCM product. PMID:28059130

  4. POTENTIAL CROSS-CONTAMINATION OF SIMILAR Giardia duodenalis ASSEMBLAGE IN CHILDREN AND PET DOGS IN SOUTHERN BRAZIL, AS DETERMINED BY PCR-RFLP.

    PubMed

    Quadros, Rosiléia Marinho de; Weiss, Paulo Henrique Exterchoter; Marques, Sandra Marcia Tietz; Miletti, Luiz Claudio

    2016-09-22

    Giardia duodenalis is an enteric parasite that has distinct genetic groups. Human infections are mainly caused by assemblages A and B, although sporadic infections by assemblages C and D have also been reported. Animals can be infected by a wide range of assemblages (A to H). The aim of this study is to identify the assemblages and sub-assemblages of G. duodenalis with zoonotic features in fecal samples of school-aged children, and in dogs that coexist in the same households in Lages, Santa Catarina, Brazil. Fecal samples of 91 children and 108 dogs were obtained and G. duodenalis cysts were detected in samples from 11 (12.08%) children and 10 (9.25%) dogs. DNA extracted from the 21 positive samples was analyzed by PCR-RFLP, using the gdh gene. Results showed the presence of sub-assemblages AI (2/11), AII (4/11), BIII (2/11), and BIV(3/11) among children and AI (5/10) and BIV(3/10) in dogs, with zoonotic characteristics, and the carnivore specific assemblage C (2/10). G. duodenalis was found to infect both children and dogs living in the same household, with the same sub-assemblage (BIV) indicating that pet dogs are a potential risk of transmission of G. duodenalis to humans.

  5. POTENTIAL CROSS-CONTAMINATION OF SIMILAR Giardia duodenalis ASSEMBLAGE IN CHILDREN AND PET DOGS IN SOUTHERN BRAZIL, AS DETERMINED BY PCR-RFLP

    PubMed Central

    de QUADROS, Rosiléia Marinho; WEISS, Paulo Henrique Exterchoter; MARQUES, Sandra Marcia Tietz; MILETTI, Luiz Claudio

    2016-01-01

    SUMMARY Giardia duodenalis is an enteric parasite that has distinct genetic groups. Human infections are mainly caused by assemblages A and B, although sporadic infections by assemblages C and D have also been reported. Animals can be infected by a wide range of assemblages (A to H). The aim of this study is to identify the assemblages and sub-assemblages of G. duodenalis with zoonotic features in fecal samples of school-aged children, and in dogs that coexist in the same households in Lages, Santa Catarina, Brazil. Fecal samples of 91 children and 108 dogs were obtained and G. duodenalis cysts were detected in samples from 11 (12.08%) children and 10 (9.25%) dogs. DNA extracted from the 21 positive samples was analyzed by PCR-RFLP, using the gdh gene. Results showed the presence of sub-assemblages AI (2/11), AII (4/11), BIII (2/11), and BIV(3/11) among children and AI (5/10) and BIV(3/10) in dogs, with zoonotic characteristics, and the carnivore specific assemblage C (2/10). G. duodenalis was found to infect both children and dogs living in the same household, with the same sub-assemblage (BIV) indicating that pet dogs are a potential risk of transmission of G. duodenalis to humans. PMID:27680171

  6. PCR-RFLP of ribosomal internal transcribed spacers highlights inter and intra-species variation among Leishmania strains native to La Paz, Bolivia.

    PubMed

    Buitrago, Rosio; Cupolillo, Elisa; Bastrenta, Brigitte; Le Pont, Francois; Martinez, Eddy; Barnabé, Christian; Brenière, Simone Frédérique

    2011-04-01

    Human leishmaniasis is highly endemic in Bolivia and shows a growing incidence. This report reveals the genetic variability of 35 isolates mainly belonging to Leishmania braziliensis and Leishmania amazonensis species. Among them, 31 were from human patients with different clinical presentations, 3 strains from Lutzomya nuneztovari anglesi (the proven vector of L. amazonensis) and 1 strain of a mammal (Conepatus chinga). The isolates were analyzed by isoenzyme electrophoresis (MLEE) and PCR-RFLP of ITS rRNA genes, a genetic marker highly polymorphic and better adapted to sub-structuring of populations. MLEE and RFLP-ITS were in agreement to discriminate the species, 12 belong to L. (V.) braziliensis, 21 to L. (L.) amazonensis, 1 to Leishmania (V.) lainsoni and 1 to Leishmania (L.) chagasi. Among L. (V.) braziliensis the RFLP-ITS only highlights variability. Ten isolates from either cutaneous or mucocutaneous clinical forms, were grouped together (bootstrap value of 99.8%) apart from two others, one from a mammal (C. chinga), the other from a patient with a cutaneous form. Among L. (L.) amazonensis both markers detect variability but no significant sub-division was identified including isolates from different clinical forms. Moreover, the high frequency of several isolates from cutaneous forms occurred during an outbreak, with putative hybrid character (multiloci heterozygous patterns depicted by MLEE) could be linked to better fitness of these parasites. However, in the absence of observation of hypothetical parents, their hybrid status remains a question.

  7. PCR-RFLP for the detection and differentiation of the canine piroplasm species and its use with filter paper-based technologies.

    PubMed

    Jefferies, R; Ryan, U M; Irwin, P J

    2007-03-15

    Canine piroplasmosis is an emerging disease worldwide, with multiple species of piroplasm now recognised to infect dogs. A nested polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay was developed for the detection and differentiation of each of the piroplasm species currently known to infect dogs on the basis of the 18S ribosomal RNA gene. The assay can potentially amplify and discriminate between Theileria annae, Theileria equi, Babesia conradae, Babesia gibsoni, Babesia sp. (Coco) and each of the Babesia canis subspecies. Non-canine piroplasm species can also potentially be detected using the described assay, however amplification of Neospora caninum was also observed. The PCR was found to have a high detection limit, capable of detecting a 2.7x10(-7)% parasitaemia or the equivalent of 1.2 molecules of target DNA when using DNA extracted from whole EDTA blood and detected a parasitaemia of 2.7x10(-5)% using blood applied to both Flinders Technology Associates (FTA) cards and IsoCodetrade mark Stix. The application of blood samples to filter paper may greatly assist in piroplasm identification in regions of the world where local technologies for molecular characterisation are limited. The assay reported here has the potential to be standardised for routine screening of dogs for piroplasmosis.

  8. First genotyping of Cryptosporidium spp. in pre-weaned calves, broiler chickens and children in Syria by PCR-RFLP analysis.

    PubMed

    Kassouha, Morshed; Soukkarieh, Chadi; Alkhaled, Abdulkarim

    2016-07-30

    In this study, PCR-RFLP was used for the first time in Syria for genotyping Cryptosporidium species of man, calves and chickens. The total of 391 fecal samples included 213 from children with diarrhea (<5years), 67 from pre-weaned calves with diarrhea and 111 from broiler chicken farms. All samples were collected and examined with acid fast stain to detect the positive samples. Subsequently a nested-PCR test was performed on 35 positive samples (17 from calves, 11 from chicken, and 7 from children) targeting SSU rRNA gene, and was followed by RFLP analysis using three restriction enzymes SspI, VspI and MboII. Results showed that C. parvum was the only identified species in children and calves, on the other hand C. baileyi was identified in broilers in addition to another species with unknown RFLP profile in comparison to those which have been described in chicken. Further studies using more genes are needed to sequence and detect subtypes of this parasite.

  9. Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis

    PubMed Central

    Erwanto, Yuny; Abidin, Mohammad Zainal; Sugiyono, Eko Yasin Prasetyo Muslim; Rohman, Abdul

    2014-01-01

    This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment. PMID:25178301

  10. Identification of Chabertiidae (Nematoda, Strongylida) by PCR-RFLP based method: a new diagnostic tool for cross transmission investigation between domestic and wild ruminants in France.

    PubMed

    Patrelle, Cécile; Ferté, Hubert; Jouet, Damien

    2014-12-01

    We describe a PCR-RFLP-based method that allows reliable identification of four species of nematode parasites presenting similar infective third-stage larvae (L3) with a flagelliform tail and more than 16 intestinal cells, commonly observed in gastrointestinal tract of ruminants in France. Molecular analysis of the second internal transcribed spacer (ITS2) of ribosomal DNA, considered as a specific marker for Strongylida, revealed four robust monophyletic clades corresponding to species Chabertia ovina, Oesophagostomum sikae, Oesophagostomum radiatum and Oesophagostomum venulosum. One restriction enzyme (DdeI) was used to digest this domain, and we observed four different and clear digestion patterns according to these species (adults or larvae). Hence, this new method is a good tool easy to use for veterinary laboratories to characterize the different species, and allows considering possible cross transmission between domestic and wild ruminants, especially cervids often incriminated as potential reservoir of parasites for cattle. Moreover, thanks to this new tool, necroscopic analyses could be substituted by coprological methods, a non-invasive approach.

  11. An Improved PCR-RFLP Assay for Detection and Genotyping of Asymptomatic Giardia lamblia Infection in a Resource-Poor Setting

    PubMed Central

    Hawash, Yoursry; Ghonaim, M. M.; Al-Shehri, S. S.

    2016-01-01

    Laboratory workers, in resource-poor countries, still consider PCR detection of Giardia lamblia more costly and more time-consuming than the classical parasitological techniques. Based on 2 published primers, an in-house one-round touchdown PCR-RFLP assay was developed. The assay was validated with an internal amplification control included in reactions. Performance of the assay was assessed with DNA samples of various purities, 91 control fecal samples with various parasite load, and 472 samples of unknown results. Two cysts per reaction were enough for PCR detection by the assay with exhibited specificity (Sp) and sensitivity (Se) of 100% and 93%, respectively. Taking a published small subunit rRNA reference PCR test results (6%; 29/472) as a nominated gold standard, G. lamblia was identified in 5.9% (28/472), 5.2%, (25/472), and 3.6% (17/472) by PCR assay, RIDA® Quick Giardia antigen detection test (R-Biopharm, Darmstadt, Germany), and iodine-stained smear microscopy, respectively. The percent agreements (kappa values) of 99.7% (0.745), 98.9% (0.900), and 97.7% (0.981) were exhibited between the assay results and that of the reference PCR, immunoassay, and microscopy, respectively. Restriction digestion of the 28 Giardia-positive samples revealed genotype A pattern in 12 and genotype B profile in 16 samples. The PCR assay with the described format and exhibited performance has a great potential to be adopted in basic clinical laboratories as a detection tool for G. lamblia especially in asymptomatic infections. This potential is increased more in particular situations where identification of the parasite genotype represents a major requirement as in epidemiological studies and infection outbreaks. PMID:26951972

  12. An Improved PCR-RFLP Assay for Detection and Genotyping of Asymptomatic Giardia lamblia Infection in a Resource-Poor Setting.

    PubMed

    Hawash, Yoursry; Ghonaim, M M; Al-Shehri, S S

    2016-02-01

    Laboratory workers, in resource-poor countries, still consider PCR detection of Giardia lamblia more costly and more time-consuming than the classical parasitological techniques. Based on 2 published primers, an in-house one-round touchdown PCR-RFLP assay was developed. The assay was validated with an internal amplification control included in reactions. Performance of the assay was assessed with DNA samples of various purities, 91 control fecal samples with various parasite load, and 472 samples of unknown results. Two cysts per reaction were enough for PCR detection by the assay with exhibited specificity (Sp) and sensitivity (Se) of 100% and 93%, respectively. Taking a published small subunit rRNA reference PCR test results (6%; 29/472) as a nominated gold standard, G. lamblia was identified in 5.9% (28/472), 5.2%, (25/472), and 3.6% (17/472) by PCR assay, RIDA(®) Quick Giardia antigen detection test (R-Biopharm, Darmstadt, Germany), and iodine-stained smear microscopy, respectively. The percent agreements (kappa values) of 99.7% (0.745), 98.9% (0.900), and 97.7% (0.981) were exhibited between the assay results and that of the reference PCR, immunoassay, and microscopy, respectively. Restriction digestion of the 28 Giardia-positive samples revealed genotype A pattern in 12 and genotype B profile in 16 samples. The PCR assay with the described format and exhibited performance has a great potential to be adopted in basic clinical laboratories as a detection tool for G. lamblia especially in asymptomatic infections. This potential is increased more in particular situations where identification of the parasite genotype represents a major requirement as in epidemiological studies and infection outbreaks.

  13. Evaluation of rs62527607 [GT] single nucleotide polymorphism located in BAALC gene in children with acute leukemia using mismatch PCR-RFLP.

    PubMed

    Nadimi, Motahareh; Rahgozar, Soheila; Moafi, Alireza; Tavassoli, Manoochehr; Mesrian Tanha, Hamzeh

    2016-01-01

    Acute leukemia is the most common cancer in children and involves several factors that contribute to the development of multidrug resistance and treatment failure. According to our recent studies, the BAALC gene is identified to have high mRNA expression levels in childhood acute lymphoblastic leukemia (ALL) and those with multidrug resistance. Several polymorphisms are associated with the expression of this gene. To date, there has been no study on the rs62527607 [GT] single nucleotide polymorphism (SNP) of BAALC gene and its link with childhood acute lymphoblastic and myeloid leukemia (AML). The purpose of this study is to evaluate the prevalence of this polymorphism in pediatric acute leukemia, as well as its relationship with prognosis. DNA samples were extracted from bone marrow slides of 129 children with ALL and 16 children with AML. The rs62527607 [GT] SNP was evaluated using mismatch polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)-based analysis. The association between the SNP alleles and patient disease-free survival was then assessed. The prevalence of the T-allele of rs62527607 [GT] SNP in childhood T-ALL and pre-B-ALL was 28.3% and 11.2%, respectively. In the pre-B-ALL patients, 3 year disease free survival was associated with the GG genotype. Results showed a robust association between the rs62527607 SNP and the risk of relapse in ALL, but not AML, patients. T-ALL patients with the GT genotype had an 8.75 fold higher risk of relapse. The current study demonstrates a significant association between the genotype GT and the polymorphic allele G424T, and introduces this SNP as a negative prognostic factor in children with ALL.

  14. PCR and PCR-RFLP of the 5S-rRNA-NTS region and salvinorin A analyses for the rapid and unequivocal determination of Salvia divinorum.

    PubMed

    Bertea, Cinzia M; Luciano, Pino; Bossi, Simone; Leoni, Francesca; Baiocchi, Claudio; Medana, Claudio; Azzolin, Chiara M M; Temporale, Giovanni; Lombardozzi, Maria Antonietta; Maffei, Massimo E

    2006-02-01

    Salvia divinorum Epling & Játiva-M. is a perennial herb belonging to the Lamiaceae family; its active ingredient, the neoclerodane diterpene salvinorin A, is a psychotropic molecule that produces hallucinations. A comparative evaluation of S. divinorum fresh and dried leaves, S. officinalis fresh leaves, and dried powdered leaves claimed to be S. divinorum was done. HPLC-MS data confirmed the presence of salvinorin A in both S. divinorun leaf extracts and the powdered leaves, whereas no salvinorin A was found in S. officinalis. The non-transcribed spacer (NTS) in the 5S-rRNA gene of all leaf samples and the dried powdered leaves was amplified by PCR using a pair of primers located at the 3' and 5' ends of the coding sequence of 5S-rRNA gene. The resulting PCR products (about 500bp for S. divinorum and 300bp for S. officinalis) were gel purified, subcloned into pGEM-T Easy vector and sequenced. By aligning the isolated nucleotide sequences, great diversities were found in the spacer region of the two species. Specific S. divinorum primers were designed on the sequence of the 5S-rRNA gene spacer region. In addition, a PCR-restriction fragment length polymorphism (PCR-RFLP) method was applied using NdeI and TaqI restriction enzymes. An NdeI site, absent in S. officinalis, was found in S. divinorum NTS region at 428-433bp. For TaqI, multiple sites (161-164, 170-173, and 217-220bp) were found in S. officinalis, whereas a unique site was found in S. divinorum (235-238bp). The results of this work show that the combined use of analytical chemical (HPLC-MS) and molecular (DNA fingerprinting) methods lead to the precise and unequivocal identification of S. divinorum.

  15. DNA sequence analysis suggests that cytb-nd1 PCR-RFLP may not be applicable to sandfly species identification throughout the Mediterranean region.

    PubMed

    Llanes-Acevedo, Ivonne Pamela; Arcones, Carolina; Gálvez, Rosa; Martin, Oihane; Checa, Rocío; Montoya, Ana; Chicharro, Carmen; Cruz, Susana; Miró, Guadalupe; Cruz, Israel

    2016-03-01

    Molecular methods are increasingly used for both species identification of sandflies and assessment of their population structure. In general, they are based on DNA sequence analysis of targets previously amplified by PCR. However, this approach requires access to DNA sequence facilities, and in some circumstances, it is time-consuming. Though DNA sequencing provides the most reliable information, other downstream PCR applications are explored to assist in species identification. Thus, it has been recently proposed that the amplification of a DNA region encompassing partially both the cytochrome-B (cytb) and the NADH dehydrogenase 1 (nd1) genes followed by RFLP analysis with the restriction enzyme Ase I allows the rapid identification of the most prevalent species of phlebotomine sandflies in the Mediterranean region. In order to confirm the suitability of this method, we collected, processed, and molecularly analyzed a total of 155 sandflies belonging to four species including Phlebotomus ariasi, P. papatasi, P. perniciosus, and Sergentomyia minuta from different regions in Spain. This data set was completed with DNA sequences available at the GenBank for species prevalent in the Mediterranean basin and the Middle East. Additionally, DNA sequences from 13 different phlebotomine species (P. ariasi, P. balcanicus, P. caucasicus, P. chabaudi, P. chadlii, P. longicuspis, P. neglectus, P. papatasi, P. perfiliewi, P. perniciosus, P. riouxi, P. sergenti, and S. minuta), from 19 countries, were added to the data set. Overall, our molecular data revealed that this PCR-RFLP method does not provide a unique and specific profile for each phlebotomine species tested. Intraspecific variability and similar RFLP patterns were frequently observed among the species tested. Our data suggest that this method may not be applicable throughout the Mediterranean region as previously proposed. Other molecular approaches like DNA barcoding or phylogenetic analyses would allow a more

  16. A new and improved method based on polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for the determination of A1298C mutation in the methylenetetrahydrofolate reductase (MTHFR) gene.

    PubMed

    Machnik, Grzegorz; Zapala, Malgorzata; Pelc, Ewa; Gasecka-Czapla, Monika; Kaczmarczyk, Grzegorz; Okopien, Boguslaw

    2013-01-01

    Intracellular folate homeostasis and metabolism is regulated by numerous genes. Among them, 5,10-methylenetetrahydrofolate reductase (MTHFR) is of special interest because of its involvement in regulation of the homocysteine level in the body as a result of folate metabolism. Moreover, some studies demonstrated that the homocysteine plasma level in individuals may be influenced by polymorphisms present in the MTHFR gene. Two common, clinically relevant mutations have been described: MTHFR C677T and MTHFR A1298C. Although several laboratory techniques allow genotyping of both polymorphisms, PCR-RFLP analysis is simple to perform, relatively cheap, and thus one of the most utilized. In the case of A1298C, the PCR-RFLP technique that utilizes MboII endonuclease class II requires an acrylamide gel electrophoresis, since agarose gel electrophoresis is unable to resolve short deoxyribonucleic acid (DNA) fragments after restriction digestion. Agarose gel electrophoresis is commonly preferred over that of acrylamide. To resolve this inconvenience, a novel PCR-RFLP, AjuI-based method to genotype A1298C alleles has been developed that can be performed on standard agarose gel.

  17. Use of pcr-rflp of the fla a gene for detection and subtyping of Campylobacter jejuni strains Potentially related to Guillain-barré syndrome, isolated from humans and animals

    PubMed Central

    Scarcelli, E.; Piatti, R.M.; Harakava, R.; Miyashiro, S.; Campos, F.R.; Souza, M.C.A.; Cardoso, M.V.; Teixeira, S.R.; Genovez, M.E.

    2009-01-01

    The objectives of the present study were the subtyping of Campylobacter jejuni subsp. jejuni strains obtained from humans and different animal species using PCR-RFLP, and the detection, by means of the same technique, of strains related to serotype PEN O19:LIO 7, the main C. jejuni serotype linked to Guillain-Barré Syndrome (GBS). Seventy C. jejuni strains isolated from human feces (n=33), primates (n=15), dogs (n=5), swine (n=2), bovines (n=1), abortion material from goats (n=2) and poultry carcasses (n=12), all collected in the state of São Paulo, were subtyped by means of PCR-RFLP of fla A gene, using restriction endonucleases Hae III, Afa I and Mbo I. Seven subtypes were observed when using the enzyme Hae III; eight when using Mbo I; and seven when using Afa I. The combination of the three endonucleases led to 16 fla-RFLP subtypes, from which ten subtypes shared strains of human and animal origin. From these, seven subtypes were observed in human and broiler strains. In eight subtypes, the other animal species shared patterns with human strains. It was inferred that, besides broilers, swine, goats, dogs and primates may be sources of infection for human in São Paulo. PCR-RFLP is a highly discriminatory technique that may be applied to molecular epidemiology studies of samples from different origins. Besides, the study also enabled the detection of two human strains and two primate strains related to serotype PEN O19: LIO 7. PMID:24031446

  18. Detection of Leishmania infantum in naturally infected Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) and Canis familiaris in Misiones, Argentina: the first report of a PCR-RFLP and sequencing-based confirmation assay.

    PubMed

    Acardi, Soraya Alejandra; Liotta, Domingo Javier; Santini, María Soledad; Romagosa, Carlo Mariano; Salomón, Oscar Daniel

    2010-09-01

    In this study, a genotypification of Leishmania was performed using polimerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing techniques to identify species of Leishmania parasites in phlebotomine sand flies and dogs naturally infected. Between January-February of 2009, CDC light traps were used to collect insect samples from 13 capture sites in the municipality of Posadas, which is located in the province of Misiones of Argentina. Sand flies identified as Lutzomyia longipalpis were grouped into 28 separate pools for molecular biological analysis. Canine samples were taken from lymph node aspirates of two symptomatic stray animals that had been positively diagnosed with canine visceral leishmaniasis. One vector pool of 10 sand flies (1 out of the 28 pools tested) and both of the canine samples tested positively for Leishmania infantum by PCR and RFLP analysis. PCR products were confirmed by sequencing and showed a maximum identity with L. infantum. Given that infection was detected in one out of the 28 pools and that at least one infected insect was infected, it was possible to infer an infection rate at least of 0.47% for Lu. longipalpis among the analyzed samples. These results contribute to incriminate Lu. longipalpis as the vector of L. infantum in the municipality of Posadas, where cases of the disease in humans and dogs have been reported since 2005.

  19. High levels of genetic variability and differentiation in hilsa shad, Tenualosa ilisha (Clupeidae, Clupeiformes) populations revealed by PCR-RFLP analysis of the mitochondrial DNA D-loop region

    PubMed Central

    2009-01-01

    The hilsa shad, Tenualosa ilisha (Clupeidae, Clupeiformes) is an important anadromous clupeid species from the Western division of the Indo-Pacific region. It constitutes the largest single fishable species in Bangladesh. Information on genetic variability and population structure is very important for both management and conservation purposes. Past reports on the population structure of T. ilisha involving morphometric, allozyme and RAPD analyses are contradictory. We examined genetic variability and divergence in two riverine (the Jamuna and the Meghna), two estuarine (Kuakata and Sundarbans) and one marine (Cox's Bazar) populations of T. ilisha by applying PCR-RFLP analysis of the mtDNA D-loop region. The amplified PCR products were restricted with four restriction enzymes namely, XbaI, EcoRI, EcoRV, and HaeIII. High levels of haplotype and gene diversity within and significant differentiations among, populations of T. ilisha were observed in this study. Significant FST values indicated differentiation among the river, estuary and marine populations. The UPGMA dendrogram based on genetic distance resulted in two major clusters, although, these were subsequently divided into three, corresponding to the riverine, estuarine and marine populations. The study underlines the usefulness of RFLP of mtDNA D-loop region as molecular markers, and detected at least two differentiated populations of T. ilisha in Bangladesh waters. PMID:21637667

  20. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA gene.

    PubMed Central

    Kurtzman, C P; Robnett, C J

    1997-01-01

    Clinically important species of Candida and related organisms were compared for extent of nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA (rDNA) gene. This rDNA region is sufficiently variable to allow reliable separation of all known clinically significant yeast species. Of the 204 described species examined, 21 appeared to be synonyms of previously described organisms. Phylogenetic relationships among the species are presented. PMID:9114410

  1. Single Nucleotide rs760370 Polymorphism at the Main Ribavirin Transporter Gene Detection by PCR-RFLP Assay Compared with the TaqMan Assay and Its Relation to Sustained Virological Response in Chronic HCV Patients Treated with Pegylated Interferon-Ribavirin Therapy.

    PubMed

    Fouad, Rabab; Zachariah, Khaled; Khairy, Marwa; Khorshied, Mervat; Ezzat, Wafaa; Sheta, Marwa M; Heiba, Ahmed

    2017-02-01

    Ribavirin clearly plays a role in chronic hepatitis C treatment response. The equilibrative nucleoside transporter-1 codified by SLC29A1 gene has been associated with ribavirin uptake into hepatocytes and erythrocytes. rs760370A>G single nucleotide polymorphism (SNP) at the SLC29A1 gene may have a role in ribavirin-based regimen treatment response. Accuracy of the polymerase-chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay compared with the TaqMan assay for the detection of the SNP rs760370 at the main ribavirin transporter gene and its relation to sustained virological response in chronic hepatitis C virus (HCV) patients treated with pegylated interferon-ribavirin therapy. The study included 100 chronic HCV patients who were treated with pegylated interferon-ribavirin therapy. The patients were categorized according to the treatment response into responders (50 patients) and null responders (50 patients). rs760370 SNP was measured using TaqMan 5-nuclease assay and by the newly developed PCR-based RFLP assay. The overall accuracy of the newly developed PCR-RFLP assay compared with the TaqMan assay for rs760370 polymorphism detection was 100%. Allelic frequencies at rs760370 were as follows: A/A genotype (28%), A/G genotype (58%), and G/G genotype (14%). Treatment response was not significantly related with rs760370 polymorphism (P = 0.5). Ribavirin-induced anemia was good predictor of sustained virological response (P = 0.001), but was not related to rs760370 polymorphism (P = 0.92). PCR-RFLP assay is an accurate, cost-effective method in the detection of rs760370 compared with TaqMan assay. rs760370 SNP cannot serve as predictor of response in chronic HCV patients treated with interferon ribavirin therapy.

  2. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants

    PubMed Central

    Rosato, Marcela; Kovařík, Aleš; Garilleti, Ricardo; Rosselló, Josep A.

    2016-01-01

    Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes. PMID:27622766

  3. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants.

    PubMed

    Rosato, Marcela; Kovařík, Aleš; Garilleti, Ricardo; Rosselló, Josep A

    2016-01-01

    Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes.

  4. [Numerical taxonomy and 16S rDNA PCR-rFLP analysis of rhizobial strains isolated from root nodules of cowpea and mung bean grown in different regions of China].

    PubMed

    Zhang, Yong-fa; Wang, Feng-qin; Chen, Wen-xin

    2006-12-01

    Seventy-nine rhizobial strains, isolated from root nodules of cowpea ( Vigna unguiculata ) and mung bean (Vigna radiata ) grown in different regions of China, were studied by a fuzzy cluster analysis of 128 phenotypic characteristics. The phenotypic characterization of these strains showed that most of these strains had high stress resistance. For instance, most of them could grow from pH 5.0 to pH 11.0. Over 85% of these strains could grow well on YMA plate at 37 degrees C and several of them even could grow after a 45 minutes hot shock at 60 degrees C. Some strains had a tolerance to high concentration of Bacitracin (400 microg/mL) . The result of the fuzzy cluster analysis showed that all the strains were clustered into 2 groups, slow growers and fast growers, at the similarity level of 63.5% . At the similarity level of 79 %, there were 7 subgroups further separated. Based upon the result of the numerical taxonomy, these strains together with 22 reference stains were analyzed by the 16S rDNA PCR-RFLP. Thirty-four genotype profiles were obtained from the fingerprinting of the 16S rDNA PCR-RFLP. These strains were analyzed by GelCompare II software and clustered into 7 groups at the similarity level of 91% , which were consonant with the 7 subgroups clustered at the similarity level of 79% in numerical taxonomy. The results of numerical taxonomy and 16S rDNA PCR-RFLP analysis showed that all of the seventy-nine rhizobial Bradyrhizobium, strains isolated from root nodules of cowpea and mung bean were clustered into four genera: Agrobacterium, Rhizobium and Sinorhizobium, respectively. An individual clade without any reference stains, which was composed of CCBAU 45071, CCBAU 45111-1 and CCBAU 45248, might be a new species of Rhizobium. Overall, the study results demonstrated a high phenotypic and phylogenetic diversity of rhizobial strains nodulating cowpea and mung bean grown in different geographic regions of China.

  5. Molecular coevolution among cryptically simple expansion segments of eukaryotic 26S/28S rRNAs.

    PubMed

    Hancock, J M; Dover, G A

    1988-07-01

    The set of "expansion segments" of any eukaryotic 26S/28S ribosomal RNA (rRNA) gene is responsible for the bulk of the difference in length between the prokaryotic 23S rRNA gene and the eukaryotic 26S/28S rRNA gene. The expansion segments are also responsible for interspecific fluctuations in length during eukaryotic evolution. They show a consistent bias in base composition in any species; for example, they are AT rich in Drosophila melanogaster and GC rich in vertebrate species. Dot-matrix comparisons of sets of expansion segments reveal high similarities between members of a set within any 28S rRNA gene of a species, in contrast to the little or spurious similarity that exists between sets of expansion segments from distantly related species. Similarities among members of a set of expansion segments within any 28S rRNA gene cannot be accounted for by their base-compositional bias alone. In contrast, no significant similarity exists within a set of "core" segments (regions between expansion segments) of any 28S rRNA gene, although core segments are conserved between species. The set of expansion segments of a 26S/28S gene is coevolving as a unit in each species, at the same time as the family of 28S rRNA genes, as a whole, is undergoing continual homogenization, making all sets of expansion segments from all ribosomal DNA (rDNA) arrays in a species similar in sequence. Analysis of DNA simplicity of 26S/28S rRNA genes shows a direct correlation between significantly high relative simplicity factors (RSFs) and sequence similarity among a set of expansion segments. A similar correlation exists between RSF values, overall rDNA lengths, and the lengths of individual expansion segments. Such correlations suggest that most length fluctuations reflect the gain and loss of simple sequence motifs by slippage-like mechanisms. We discuss the molecular coevolution of expansion segments, which takes place against a background of slippage-like and unequal crossing

  6. PCR-RFLP using a SNP on the mitochondrial Lsu-rDNA as an easy method to differentiate Tuber melanosporum (Perigord truffle) and other truffle species in cans.

    PubMed

    Mabru, D; Douet, J P; Mouton, A; Dupré, C; Ricard, J M; Médina, B; Castroviejo, M; Chevalier, G

    2004-07-01

    Canned truffle products labeled Tuber melanosporum, the famous Perigord truffle, may contain other less tasty and cheaper truffle species. To protect consumers from fraud, a PCR DNA-based method was used to unequivocally identify the nature of the product. Several rapid and simple cell lysis procedures, used in conjunction with a commercially available DNA purification kit, were evaluated for their effectiveness in recovering DNA from canned truffle. In parallel, a marker for T. melanosporum was tested on the mitochondrial rDNA. These two techniques were then combined to differentiate T. melanosporum from other truffle species like T. aestivum, T. brumale or T. indicum up to the legal threshold in canned products. These findings not only allow a comparison of the effectiveness of the different DNA extraction methods but also provide a preliminary indication of the specificity and sensitivity of the detection with the mitochondrial marker that might be attainable for truffle species in a quantitative PCR-based analysis method.

  7. Characterization of rDNA sequences from Syphacia obvelata, Syphacia muris, and Aspiculuris tetraptera and development of a PCR-based method for identification.

    PubMed

    Parel, Joan Dee C; Galula, Jedhan U; Ooi, Hong-Kean

    2008-05-31

    To differentiate the morphologically similar pinworms of the common laboratory rodents, such as Syphacia obvelata and Syphacia muris, we amplified and sequenced the region spanning the internal transcribed spacer 1 (ITS-1), 5.8S gene, and ITS-2 of the ribosomal DNA followed by designing of species-specific primers for future use in the identification of the worms. It was observed that S. obvelata, S. muris and Aspiculuris tetraptera can be differentiated from each other based on their rDNA sequences. This is the first report of the ITS-1, 5.8S, and ITS-2 of the rDNA of the three aforementioned rodent pinworm species. The use of restriction endonucleases, AluI or RsaI, further allowed the delineation of the three species. Moreover, we also constructed species-specific primers that were designed for unique regions of the ITS-2 of the three species. This approach allowed their specific identification with no amplicons being amplified from heterogenous DNA samples, and sequencing confirmed the identity of the sequences amplified. Thus, the use of these specific primers along with PCR-RFLP can serve as useful tools for the identification of pinworms in rats, mice, and wild rodents.

  8. Molecular approaches to differentiate three species of Nematodirus in sheep and goats from China based on internal transcribed spacer rDNA sequences.

    PubMed

    Zhao, G H; Jia, Y Q; Bian, Q Q; Nisbet, A J; Cheng, W Y; Liu, Y; Fang, Y Q; Ma, X T; Yu, S K

    2015-05-01

    Internal transcribed spacer (ITS) rDNA sequences of three Nematodirus species from naturally infected goats or sheep in two endemic provinces of China were analysed to establish an effective molecular approach to differentiate Nematodirus species in small ruminants. The respective intra-specific genetic variations in ITS1 and ITS2 rDNA regions were 0.3-1.8% and 0-0.4% in N. spathiger, 0-6.5% and 0-5.4% in N. helvetianus, and 0-4.4% and 0-6.1% in N. oiratianus from China. The respective intra-specific variations of ITS1 and ITS2 were 1.8-4.4% and 1.6-6.1% between N. oiratianus isolates from China and Iran, 5.7-7.1% and 6.3-8.3% between N. helvetianus samples from China and America. For N. spathiger, compared with samples from China, sequence differences in ITS1 rDNA were 0.3-2.4% in isolates from America, 0.3-2.9% in New Zealand and 2.1-2.4% in Australia. Genetic variations in ITS2 rDNA of N. spathiger were 0-0.4% between samples from China and America, and 0-0.8% between samples from China and New Zealand. Using mutation sites, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and specific PCR techniques were developed to differentiate these three Nematodirus species. The specific PCR assay allowed the accurate identification of N. oiratianus from other common nematodes with a sensitivity of 0.69 pg and further examination of Nematodirus samples demonstrated the reliability of these two molecular methods.

  9. Molecular phylogenetic study of the Ranunculaceae: utility of the nuclear 26S ribosomal DNA in inferring intrafamilial relationships.

    PubMed

    Ro, K E; Keener, C S; McPheron, B A

    1997-10-01

    There are only a small number of molecular markers currently proven to be useful for phylogenetic inference within the flowering plants. We demonstrate that the 5' end of the 26S ribosomal DNA (ca. 1100 bp) is of great value for investigating generic to subfamilial relationships. We analyzed DNA sequences from 31 species of the Ranunculaceae and four species of the Berberidaceae to test phylogenetic relationships within the Ranunculaceae. The inferred phylogeny strongly supports the concept that the Thalictrum chromosome group is not monophyletic, but consists of three independent lineages: (1) Hydrastis, (2) Xanthorhiza and Coptis, and (3) Thalictrum, Aquilegia, and Enemion. Based on comparison with conventional taxonomic characters, we propose a hypothesis that the third group also includes the rest of the Thalictrum chromosome taxa that have a base chromosome number of seven. For the Ranunculus chromosome group, our study suggests several relationships that have not been recognized by conventional systematics. The inferred 26S rDNA topology is compared with results from two previously published molecular data sets: DNA sequences from rbcL, atpB, and 18S rDNA genes and restriction fragment length polymorphism data from chloroplast DNA. The three topologies are highly congruent and agree with karyological characters, but not with fruit type, both of which have often been used for the higher classification of the Ra- nunculaceae.

  10. Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb.

    PubMed

    Wang, Wencai; Ma, Lu; Becher, Hannes; Garcia, Sònia; Kovarikova, Alena; Leitch, Ilia J; Leitch, Andrew R; Kovarik, Ales

    2016-09-01

    In all eukaryotes, the highly repeated 35S ribosomal DNA (rDNA) sequences encoding 18S-5.8S-26S ribosomal RNA (rRNA) typically show high levels of intragenomic uniformity due to homogenisation processes, leading to concerted evolution of 35S rDNA repeats. Here, we compared 35S rDNA divergence in several seed plants using next generation sequencing and a range of molecular and cytogenetic approaches. Most species showed similar 35S rDNA homogeneity indicating concerted evolution. However, Cycas revoluta exhibits an extraordinary diversity of rDNA repeats (nucleotide sequence divergence of different copies averaging 12 %), influencing both the coding and non-coding rDNA regions nearly equally. In contrast, its rRNA transcriptome was highly homogeneous suggesting that only a minority of genes (<20 %) encode functional rRNA. The most common SNPs were C > T substitutions located in symmetrical CG and CHG contexts which were also highly methylated. Both functional genes and pseudogenes appear to cluster on chromosomes. The extraordinary high levels of 35S rDNA diversity in C. revoluta, and probably other species of cycads, indicate that the frequency of repeat homogenisation has been much lower in this lineage, compared with all other land plant lineages studied. This has led to the accumulation of methylation-driven mutations and pseudogenisation. Potentially, the reduced homology between paralogs prevented their elimination by homologous recombination, resulting in long-term retention of rDNA pseudogenes in the genome.

  11. Fly Diversity Revealed by PCR-RFLP of Mitochondrial DNA

    ERIC Educational Resources Information Center

    Asraoui, Jimmy F.; Sayar, Nancy P.; Knio, Khouzama M.; Smith, Colin A.

    2008-01-01

    In this article, we describe an inexpensive, two-session undergraduate laboratory activity that introduces important molecular biology methods in the context of biodiversity. In the first session, students bring tentatively identified flies (order Diptera, true flies) to the laboratory, extract DNA, and amplify a region of the mitochondrial gene…

  12. The Regulatory Complex of Drosophila melanogaster 26s Proteasomes

    PubMed Central

    Hölzl, Harald; Kapelari, Barbara; Kellermann, Josef; Seemüller, Erika; Sümegi, Máté; Udvardy, Andor; Medalia, Ohad; Sperling, Joseph; Müller, Shirley A.; Engel, Andreas; Baumeister, Wolfgang

    2000-01-01

    Drosophila melanogaster embryos are a source for homogeneous and stable 26S proteasomes suitable for structural studies. For biochemical characterization, purified 26S proteasomes were resolved by two-dimensional (2D) gel electrophoresis and subunits composing the regulatory complex (RC) were identified by amino acid sequencing and immunoblotting, before corresponding cDNAs were sequenced. 17 subunits from Drosophila RCs were found to have homologues in the yeast and human RCs. An additional subunit, p37A, not yet described in RCs of other organisms, is a member of the ubiquitin COOH-terminal hydrolase family (UCH). Analysis of EM images of 26S proteasomes-UCH-inhibitor complexes allowed for the first time to localize one of the RC's specific functions, deubiquitylating activity. The masses of 26S proteasomes with either one or two attached RCs were determined by scanning transmission EM (STEM), yielding a mass of 894 kD for a single RC. This value is in good agreement with the summed masses of the 18 identified RC subunits (932 kD), indicating that the number of subunits is complete. PMID:10893261

  13. Characterization of the 26S proteasome network in Plasmodium falciparum.

    PubMed

    Wang, Lihui; Delahunty, Claire; Fritz-Wolf, Karin; Rahlfs, Stefan; Helena Prieto, Judith; Yates, John R; Becker, Katja

    2015-12-07

    In eukaryotic cells, the ubiquitin-proteasome system as a key regulator of protein quality control is an excellent drug target. We therefore aimed to analyze the 26S proteasome complex in the malaria parasite Plasmodium falciparum, which still threatens almost half of the world's population. First, we established an affinity purification protocol allowing for the isolation of functional 26S proteasome complexes from the parasite. Subunit composition of the proteasome and component stoichiometry were studied and physiologic interacting partners were identified via in situ protein crosslinking. Furthermore, intrinsic ubiquitin receptors of the plasmodial proteasome were determined and their roles in proteasomal substrate recognition were analyzed. Notably, PfUSP14 was characterized as a proteasome-associated deubiquitinase resulting in the concept that targeting proteasomal deubiquitinating activity in P. falciparum may represent a promising antimalarial strategy. The data provide insights into a profound network orchestrated by the plasmodial proteasome and identified novel drug target candidates in the ubiquitin-proteasome system.

  14. Conformational switching of the 26S proteasome enables substrate degradation.

    PubMed

    Matyskiela, Mary E; Lander, Gabriel C; Martin, Andreas

    2013-07-01

    The 26S proteasome is the major eukaryotic ATP-dependent protease, responsible for regulating the proteome through degradation of ubiquitin-tagged substrates. Its regulatory particle, containing the heterohexameric AAA+ ATPase motor and the essential deubiquitinase Rpn11, recognizes substrates, removes their ubiquitin chains and translocates them into the associated peptidase after unfolding, but detailed mechanisms remain unknown. Here we present the 26S proteasome structure from Saccharomyces cerevisiae during substrate degradation, showing that the regulatory particle switches from a preengaged to a translocation-competent conformation. This conformation is characterized by a rearranged ATPase ring with uniform subunit interfaces, a widened central channel coaxially aligned with the peptidase and a spiral orientation of pore loops that suggests a rapid progression of ATP-hydrolysis events around the ring. Notably, Rpn11 moves from an occluded position to directly above the central pore, thus facilitating substrate deubiquitination concomitant with translocation.

  15. Contrasting Patterns of rDNA Homogenization within the Zygosaccharomyces rouxii Species Complex

    PubMed Central

    Chand Dakal, Tikam; Giudici, Paolo; Solieri, Lisa

    2016-01-01

    Arrays of repetitive ribosomal DNA (rDNA) sequences are generally expected to evolve as a coherent family, where repeats within such a family are more similar to each other than to orthologs in related species. The continuous homogenization of repeats within individual genomes is a recombination process termed concerted evolution. Here, we investigated the extent and the direction of concerted evolution in 43 yeast strains of the Zygosaccharomyces rouxii species complex (Z. rouxii, Z. sapae, Z. mellis), by analyzing two portions of the 35S rDNA cistron, namely the D1/D2 domains at the 5’ end of the 26S rRNA gene and the segment including the internal transcribed spacers (ITS) 1 and 2 (ITS regions). We demonstrate that intra-genomic rDNA sequence variation is unusually frequent in this clade and that rDNA arrays in single genomes consist of an intermixing of Z. rouxii, Z. sapae and Z. mellis-like sequences, putatively evolved by reticulate evolutionary events that involved repeated hybridization between lineages. The levels and distribution of sequence polymorphisms vary across rDNA repeats in different individuals, reflecting four patterns of rDNA evolution: I) rDNA repeats that are homogeneous within a genome but are chimeras derived from two parental lineages via recombination: Z. rouxii in the ITS region and Z. sapae in the D1/D2 region; II) intra-genomic rDNA repeats that retain polymorphisms only in ITS regions; III) rDNA repeats that vary only in their D1/D2 domains; IV) heterogeneous rDNA arrays that have both polymorphic ITS and D1/D2 regions. We argue that an ongoing process of homogenization following allodiplodization or incomplete lineage sorting gave rise to divergent evolutionary trajectories in different strains, depending upon temporal, structural and functional constraints. We discuss the consequences of these findings for Zygosaccharomyces species delineation and, more in general, for yeast barcoding. PMID:27501051

  16. Aging perturbs 26S proteasome assembly in Drosophila melanogaster

    PubMed Central

    Vernace, Vita A.; Arnaud, Lisette; Schmidt-Glenewinkel, Thomas; Figueiredo-Pereira, Maria E.

    2012-01-01

    Aging is associated with loss of quality control in protein turnover. The ubiquitin-proteasome pathway is critical to this quality control process as it degrades mutated and damaged proteins. We identified a unique aging-dependent mechanism that contributes to proteasome dysfunction in Drosophila melanogaster. Our studies are the first to show that the major proteasome form in old (43–47 days old) female and male flies is the weakly active 20S core particle, while in younger (1–32 days old) flies highly active 26S proteasomes are preponderant. Old (43–47 days) flies of both genders also exhibit a decline (~50%) in ATP levels, which is relevant to 26S proteasomes, as their assembly is ATP-dependent. The steep declines in 26S proteasome and ATP levels were observed at an age (43–47 days) when the flies exhibited a marked drop in locomotor performance, attesting that these are “old age” events. Remarkably, treatment with a proteasome inhibitor increases ubiquitinated protein levels and shortens the life span of old but not young flies. In conclusion, our data reveal a previously unknown mechanism that perturbs proteasome activity in “old-age” female and male Drosophila most likely depriving them of the ability to effectively cope with proteotoxic damages caused by environmental and/or genetic factors. PMID:17413001

  17. A Global Health Diagnostic for Personalized Medicine in Resource-Constrained World Settings: A Simple PCR-RFLP Method for Genotyping CYP2B6 g.15582C>T and Science and Policy Relevance for Optimal Use of Antiretroviral Drug Efavirenz.

    PubMed

    Evans, Jonathan; Swart, Marelize; Soko, Nyarai; Wonkam, Ambroise; Huzair, Farah; Dandara, Collet

    2015-06-01

    The use of pharmacogenomics (PGx) knowledge in treatment of individual patients is becoming a common phenomenon in the developed world. However, poorly resourced countries have thus far been constrained for three main reasons. First, the cost of whole genome sequencing is still considerably high in comparison to other (non-genomics) diagnostics in the developing world where both science and social dynamics create a dynamic and fragile healthcare ecosystem. Second, studies correlating genomic differences with drug pharmacokinetics and pharmacodynamics have not been consistent, and more importantly, often not indexed to impact on societal end-points, beyond clinical practice. Third, ethics regulatory frames over PGx testing require improvements based on nested accountability systems and in ways that address the user community needs. Thus, CYP2B6 is a crucial enzyme in the metabolism of antiretroviral drugs, efavirenz and nevirapine. More than 40 genetic variants have been reported, but only a few contribute to differences in plasma EFV and NVP concentrations. The most widely reported CYP2B6 variants affecting plasma drug levels include c.516G>T, c.983T>C, and to a lesser extent, g.15582C>T, which should be considered in future PGx tests. While the first two variants are easily characterized, the g.15582C>T detection has been performed primarily by sequencing, which is costly, labor intensive, and requires access to barely available expertise in the developing world. We report here on a simple, practical PCR-RFLP method with vast potentials for use in resource-constrained world regions to detect the g.15582C>T variation among South African and Cameroonian persons. The effects of CYP2B6 g.15582C>T on plasma EFV concentration were further evaluated among HIV/AIDS patients. We report no differences in the frequency of the g.15582T variant between the South African (0.08) and Cameroonian (0.06) groups, which are significantly lower than reported in Asians (0.39) and

  18. Toward an Integrated Structural Model of the 26S Proteasome*

    PubMed Central

    Förster, Friedrich; Lasker, Keren; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2010-01-01

    The 26S proteasome is the end point of the ubiquitin-proteasome pathway and degrades ubiquitylated substrates. It is composed of the 20S core particle (CP), where degradation occurs, and the 19S regulatory particle (RP), which ensures substrate specificity of degradation. Whereas the CP is resolved to atomic resolution, the architecture of the RP is largely unknown. We provide a comprehensive analysis of the current structural knowledge on the RP, including structures of the RP subunits, physical protein-protein interactions, and cryoelectron microscopy data. These data allowed us to compute an atomic model for the CP-AAA-ATPase subcomplex. In addition to this atomic model, further subunits can be mapped approximately, which lets us hypothesize on the substrate path during its degradation. PMID:20467039

  19. Viruses and the 26S proteasome: hacking into destruction.

    PubMed

    Banks, Lawrence; Pim, David; Thomas, Miranda

    2003-08-01

    The discovery that the human papillomavirus E6 oncoprotein could direct the ubiquitination and degradation of the p53 tumour suppressor at the 26S proteasome was the beginning of a new view on virus-host interactions. A decade later, a plethora of viral proteins have been shown to direct host-cell proteins for proteolytic degradation. These activities are required for various aspects of the virus life-cycle from entry, through replication and enhanced cell survival, to viral release. As with oncogenes and cell-cycle control, the study of apparently simple viruses has provided a wealth of information on the function of a whole class of cellular proteins whose function is arguably as important as that of the kinases: the ubiquitin-protein ligases.

  20. Physical mapping of 5S and 18S-5.8S-26S RNA gene families in polyploid series of Cenchrus ciliaris Linnaeus, 1771 (Poaceae)

    PubMed Central

    Kharrat-Souissi, Amina; Siljak-Yakovlev, Sonja; Pustahija, Fatima; Chaieb, Mohamed

    2012-01-01

    Abstract The Buffelgrass (Cenchrus ciliaris L., Poaceae) is one of the most important pasturage grasses due to its high productivity and good forage qualities. This species possess a high adaptability to bioclimatic constraints of arid zones and may be used for the restoration of degraded arid ecosystems. Tunisian populations present three ploidy levels (4x, 5x and 6x) with a basic chromosome number x=9. This study reported for the first time the distribution of the ribosomal genes (rRNA) for pentaploid and hexaploid cytotypes of Cenchrus ciliaris. Molecular cytogenetic study using double fluorescence in situ hybridization has shown that the two rDNA families, 5S and 18S-5.8S-26S (18S), displayed intraspecific variation in number of loci among different ploidy levels. Each ploidy level was characterized by specific number of both 5S and 18S rDNA loci (two loci in tetraploid, five in pentaploid and six in hexaploid level). For three studied cytotypes (4x, 5x and 6x) all 5S rDNA loci were localized on the subcentromeric region of chromosomes, while 18S loci were situated on the telomeric region of short chromosome arms. Data of the FISH experiments show proportional increase of ribosomal loci number during polyploidization processes. PMID:24260668

  1. Inherent asymmetry in the 26S proteasome is defined by the ubiquitin receptor RPN13.

    PubMed

    Berko, Dikla; Herkon, Ora; Braunstein, Ilana; Isakov, Elada; David, Yael; Ziv, Tamar; Navon, Ami; Stanhill, Ariel

    2014-02-28

    The 26S double-capped proteasome is assembled in a hierarchic event that is orchestrated by dedicated set of chaperons. To date, all stoichiometric subunits are considered to be present in equal ratios, thus providing symmetry to the double-capped complex. Here, we show that although the vast majority (if not all) of the double-capped 26S proteasomes, both 19S complexes, contain the ubiquitin receptor Rpn10/S5a, only one of these 19S particles contains the additional ubiquitin receptor Rpn13, thereby defining asymmetry in the 26S proteasome. These results were validated in yeast and mammals, utilizing biochemical and unbiased AQUA-MS methodologies. Thus, the double-capped 26S proteasomes are asymmetric in their polyubiquitin binding capacity. Our data point to a potential new role for ubiquitin receptors as directionality factors that may participate in the prevention of simultaneous substrates translocation into the 20S from both 19S caps.

  2. PiZ Mouse Liver Accumulates Polyubiquitin Conjugates That Associate with Catalytically Active 26S Proteasomes

    PubMed Central

    Haddock, Christopher J.; Blomenkamp, Keith; Gautam, Madhav; James, Jared; Mielcarska, Joanna; Gogol, Edward; Teckman, Jeffrey; Skowyra, Dorota

    2014-01-01

    Accumulation of aggregation-prone human alpha 1 antitrypsin mutant Z (AT-Z) protein in PiZ mouse liver stimulates features of liver injury typical of human alpha 1 antitrypsin type ZZ deficiency, an autosomal recessive genetic disorder. Ubiquitin-mediated proteolysis by the 26S proteasome counteracts AT-Z accumulation and plays other roles that, when inhibited, could exacerbate the injury. However, it is unknown how the conditions of AT-Z mediated liver injury affect the 26S proteasome. To address this question, we developed a rapid extraction strategy that preserves polyubiquitin conjugates in the presence of catalytically active 26S proteasomes and allows their separation from deposits of insoluble AT-Z. Compared to WT, PiZ extracts had about 4-fold more polyubiquitin conjugates with no apparent change in the levels of the 26S and 20S proteasomes, and unassembled subunits. The polyubiquitin conjugates had similar affinities to ubiquitin-binding domain of Psmd4 and co-purified with similar amounts of catalytically active 26S complexes. These data show that polyubiquitin conjugates were accumulating despite normal recruitment to catalytically active 26S proteasomes that were available in excess, and suggest that a defect at the 26S proteasome other than compromised binding to polyubiquitin chain or peptidase activity played a role in the accumulation. In support of this idea, PiZ extracts were characterized by high molecular weight, reduction-sensitive forms of selected subunits, including ATPase subunits that unfold substrates and regulate access to proteolytic core. Older WT mice acquired similar alterations, implying that they result from common aspects of oxidative stress. The changes were most pronounced on unassembled subunits, but some subunits were altered even in the 26S proteasomes co-purified with polyubiquitin conjugates. Thus, AT-Z protein aggregates indirectly impair degradation of polyubiquitinated proteins at the level of the 26S proteasome

  3. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation.

    PubMed

    Garcia, S; Kovařík, A

    2013-07-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S-5.8S-26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S-18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S-5.8S-26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants.

  4. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family

    PubMed Central

    2010-01-01

    Background In flowering plants and animals the most common ribosomal RNA genes (rDNA) organisation is that in which 35S (encoding 18S-5.8S-26S rRNA) and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae), a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing), gene copy number (quantitative PCR) and chromosomal position (FISH) of 5S and 35S rRNA genes in ~200 species representing the family diversity and other closely related groups. Results Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases), tribe Gnaphalieae (100%) and in the "Heliantheae alliance" (23%). The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes. Conclusions Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic structure of rDNA units

  5. Purification and characterization of 26S proteasomes from human and mouse spermatozoa.

    PubMed

    Tipler, C P; Hutchon, S P; Hendil, K; Tanaka, K; Fishel, S; Mayer, R J

    1997-12-01

    We purified by fractionation on 10-40% glycerol gradients, 26S proteasomes from normal human spermatozoa. These proteasomes, which participate in the ATP-dependent degradation of ubiquitinated proteins, share a similar sedimentation coefficient to those purified from other human tissues. Fluorogenic peptide assays reveal they have chymotrypsin, trypsin and peptidyl-glutamyl-like peptide hydrolysing activities; the chymotrypsin activity is ablated by the specific 26S proteasome inhibitor MG132. Confirmation that these large proteases are 26S proteasomes is provided by detection of the 20S proteasome subunits HC2, XAPC7, RN3 and Z and regulatory ATPases MSS1, TBP1, SUG1 and SUG2 by Western analyses with monoclonal antisera. These antigens are found only in the gradient fractions enriched in proteolytic activities. We have also shown that, although mature spermatozoa from mice have considerably reduced amounts of a ubiquitin-conjugating enzyme (E2) and ubiquitin-protein conjugates in comparison with less mature germ cells, they retain relatively high values of 26S proteasome activity. This suggests that proteasomes may have further roles to play in normal sperm physiology.

  6. Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome.

    PubMed

    Pack, Chan-Gi; Yukii, Haruka; Toh-e, Akio; Kudo, Tai; Tsuchiya, Hikaru; Kaiho, Ai; Sakata, Eri; Murata, Shigeo; Yokosawa, Hideyoshi; Sako, Yasushi; Baumeister, Wolfgang; Tanaka, Keiji; Saeki, Yasushi

    2014-03-06

    The 26S proteasome is a 2.5-MDa multisubunit protease complex that degrades polyubiquitylated proteins. Although its functions and structure have been extensively characterized, little is known about its dynamics in living cells. Here, we investigate the absolute concentration, spatio-temporal dynamics and complex formation of the proteasome in living cells using fluorescence correlation spectroscopy. We find that the 26S proteasome complex is highly mobile, and that almost all proteasome subunits throughout the cell are stably incorporated into 26S proteasomes. The interaction between 19S and 20S particles is stable even in an importin-α mutant, suggesting that the 26S proteasome is assembled in the cytoplasm. Furthermore, a genetically stabilized 26S proteasome mutant is able to enter the nucleus. These results suggest that the 26S proteasome completes its assembly process in the cytoplasm and translocates into the nucleus through the nuclear pore complex as a holoenzyme.

  7. rDNA Loci Evolution in the Genus Glechoma (Lamiaceae)

    PubMed Central

    Jang, Tae-Soo; McCann, Jamie; Parker, John S.; Takayama, Koji; Hong, Suk-Pyo; Schneeweiss, Gerald M.

    2016-01-01

    Glechoma L. (Lamiaceae) is distributed in eastern Asia and Europe. Understanding chromosome evolution in Glechoma has been strongly hampered by its small chromosomes, constant karyotype and polyploidy. Here phylogenetic patterns and chromosomal variation in Glechoma species are considered, using genome sizes, chromosome mapping of 5S and 35S rDNAs by fluorescence in situ hybridisation (FISH), and phylogenetic analyses of internal transcribed spacers (nrITS) of 35S rDNA and 5S rDNA NTS sequences. Species and populations of Glechoma are tetraploid (2n = 36) with base chromosome number of x = 9. Four chromosomes carry pericentric 5S rDNA sites in their short arms in all the species. Two to four of these chromosomes also carry 35S rDNA in subterminal regions of the same arms. Two to four other chromosomes have 35S rDNA sites, all located subterminally within short arms; one individual possessed additional weak pericentric 35S rDNA signals on three other chromosomes. Five types of rDNA locus distribution have been defined on the basis of 35S rDNA variation, but none is species-specific, and most species have more than one type. Glechoma hederacea has four types. Genome size in Glechoma ranges from 0.80 to 0.94 pg (1C), with low levels of intrapopulational variation in all species. Phylogenetic analyses of ITS and NTS sequences distinguish three main clades coinciding with geographical distribution: European (G. hederacea–G. hirsuta), Chinese and Korean (G. longituba), and Japanese (G. grandis). The paper presents the first comparative cytogenetic analyses of Glechoma species including karyotype structure, rDNA location and number, and genome size interpreted in a phylogenetic context. The observed variation suggests that the genus is still in genomic flux. Genome size, but not rDNA loci number and distribution, provides a character for species delimitation which allows better inferences of interspecific relationships to be made, in the absence of well

  8. KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition.

    PubMed

    Haratake, Kousuke; Sato, Akitsugu; Tsuruta, Fuminori; Chiba, Tomoki

    2016-06-01

    Many cellular stresses cause damages of intracellular proteins, which are eventually degraded by the ubiquitin and proteasome system. The proteasome is a multicatalytic protease complex composed of 20S core particle and the proteasome activators that regulate the proteasome activity. Extracellular mutants 29 (Ecm29) is a 200 kDa protein encoded by KIAA0368 gene, associates with the proteasome, but its role is largely unknown. Here, we generated KIAA0368-deficient mice and investigated the function of Ecm29 in stress response. KIAA0368-deficient mice showed normal peptidase activity and proteasome formation at normal condition. Under stressed condition, 26S proteasome dissociates in wild-type cells, but not in KIAA0368(-/-) cells. This response was correlated with efficient degradation of damaged proteins and resistance to oxidative stress of KIAA0368(-/-) cells. Thus, Ecm29 is involved in the dissociation process of 26S proteasome, providing clue to analyse the mechanism of proteasomal degradation under various stress condition.

  9. Structural insights into the functional cycle of the ATPase module of the 26S proteasome.

    PubMed

    Wehmer, Marc; Rudack, Till; Beck, Florian; Aufderheide, Antje; Pfeifer, Günter; Plitzko, Jürgen M; Förster, Friedrich; Schulten, Klaus; Baumeister, Wolfgang; Sakata, Eri

    2017-02-07

    In eukaryotic cells, the ubiquitin-proteasome system (UPS) is responsible for the regulated degradation of intracellular proteins. The 26S holocomplex comprises the core particle (CP), where proteolysis takes place, and one or two regulatory particles (RPs). The base of the RP is formed by a heterohexameric AAA(+) ATPase module, which unfolds and translocates substrates into the CP. Applying single-particle cryo-electron microscopy (cryo-EM) and image classification to samples in the presence of different nucleotides and nucleotide analogs, we were able to observe four distinct conformational states (s1 to s4). The resolution of the four conformers allowed for the construction of atomic models of the AAA(+) ATPase module as it progresses through the functional cycle. In a hitherto unobserved state (s4), the gate controlling access to the CP is open. The structures described in this study allow us to put forward a model for the 26S functional cycle driven by ATP hydrolysis.

  10. Evidence for an Independent 26-s Microseismic Source near the Vanuatu Islands

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangfang; Ni, Sidao

    2014-09-01

    The 26 s peak in the ambient seismic noise spectrum is persistently excited and observed at stations globally. Using noise cross-correlation functions (NCFs), the location suggests that the source could be situated in the Gulf of Guinea and Fiji Basin. However, the Fiji Basin was proposed to be the mirror site (near antipode) of the Gulf of Guinea source instead of an independent source, assuming that the surface waves more efficiently propagate along the major-arc paths of oceanic movements. To investigate the propagation of the Rayleigh waves along continental and oceanic paths, we analyzed the surface wave data recorded from an earthquake near the Gulf of Guinea and found that Rayleigh waves travel along continental minor-arc paths more efficiently than along oceanic major-arc paths. We then located the source in the western Pacific Ocean from group velocities measured with earthquake data by using the travel time misfit in NCFs after calibration and concluded that the source is in the Vanuatu Islands. Moreover, the temporal variation of the 26 s microseismic peak observed in the western Pacific seismic stations is very different from that in stations near the Gulf of Guinea, which suggests that they are excited by independent sources. Therefore, the Vanuatu source should be an independent microseismic source. As it is close to volcanoes in the Vanuatu islands, the Pacific 26 s microseismic source might be excited by magmatic processes, which are also responsible for very-long-period volcanic tremors.

  11. The Cdc48-Vms1 complex maintains 26S proteasome architecture.

    PubMed

    Tran, Joseph R; Brodsky, Jeffrey L

    2014-03-15

    The 26S proteasome is responsible for most regulated protein turnover and for the degradation of aberrant proteins in eukaryotes. The assembly of this ~2.5 MDa multicatalytic protease requires several dedicated chaperones and, once assembled, substrate selectivity is mediated by ubiquitin conjugation. After modification with ubiquitin, substrates are escorted to the proteasome by myriad factors, including Cdc48 (cell-division cycle 48). Cdc48 also associates with numerous cofactors, but, to date, it is unclear whether each cofactor facilitates proteasome delivery. We discovered that yeast lacking a conserved Cdc48 cofactor, Vms1 [VCP (valosin-containing protein)/Cdc48-associated mitochondrial stress-responsive], accumulate proteasome-targeted ubiquitinated proteins. Vms1 mutant cells also contain elevated levels of unassembled 20S proteasome core particles and select 19S cap subunits. In addition, we found that the ability of Vms1 to support 26S proteasome assembly requires Cdc48 interaction, and that the loss of Vms1 reduced 26S proteasome levels and cell viability after prolonged culture in the stationary phase. The results of the present study highlight an unexpected link between the Cdc48-Vms1 complex and the preservation of proteasome architecture, and indicate how perturbed proteasome assembly affects the turnover of ubiquitinated proteins and maintains viability in aging cells.

  12. Uncommon functional properties of the first piscine 26S proteasome from the Antarctic notothenioid Trematomus bernacchii.

    PubMed

    Gogliettino, Marta; Balestrieri, Marco; Riccio, Alessia; Facchiano, Angelo; Fusco, Carmela; Palazzo, Vincenzo Cecere; Rossi, Mosè; Cocca, Ennio; Palmieri, Gianna

    2016-01-01

    Protein homoeostasis is a fundamental process allowing the preservation of functional proteins and it has a great impact on the life of the Antarctic organisms. However, the effect of low temperatures on protein turnover is poorly understood and the cold-adaptation of the degradation machinery remains an unresolved issue. As the 26S proteasome represents the main proteolytic system devoted to the controlled degradation of intracellular proteins, the purpose of the present study was to investigate the functions of this complex in the notothenioid Trematomus bernacchii, in order to better understand its role in the physiology of Antarctic fish. To this aim, we purified and characterized the 26S proteasome from T. bernacchii and isolated the cDNAs codifying seven of the 14 subunits belonging to the proteasome 20S core particle. Results provided evidences of the high resistance of the piscine 26S proteasome to oxidative agents and of its 'uncommon' ability to efficiently hydrolyse oxidized bovine serum albumin (BSA), suggesting that this enzymatic complex could play a key role in the antioxidant defense systems in fish inhabiting permanently cold marine environments. These unique properties were also reflected by the 3D model analysis, which revealed a higher structural stability of the piscine complex respect to the murine template. Finally, a comparative analysis, performed in a variety of tissues collected from T. bernacchii and the temperate fish Dicentrarchus labrax, showed a lower protein retention in the cold-adapted fish, possibly due to a better efficiency of its degradation machinery.

  13. The Cdc48–Vms1 complex maintains 26S proteasome architecture

    PubMed Central

    Tran, Joseph R.; Brodsky, Jeffrey L.

    2014-01-01

    The 26S proteasome is responsible for most regulated protein turnover and for the degradation of aberrant proteins in eukaryotes. The assembly of this ~2.5 MDa multicatalytic protease requires several dedicated chaperones and, once assembled, substrate selectivity is mediated by ubiquitin conjugation. After modification with ubiquitin, substrates are escorted to the proteasome by myriad factors, including Cdc48 (cell-division cycle 48). Cdc48 also associates with numerous cofactors, but, to date, it is unclear whether each cofactor facilitates proteasome delivery. We discovered that yeast lacking a conserved Cdc48 cofactor, Vms1 [VCP (valosin-containing protein)/Cdc48-associated mitochondrial stress-responsive], accumulate proteasome-targeted ubiquitinated proteins. Vms1 mutant cells also contain elevated levels of unassembled 20S proteasome core particles and select 19S cap subunits. In addition, we found that the ability of Vms1 to support 26S proteasome assembly requires Cdc48 interaction, and that the loss of Vms1 reduced 26S proteasome levels and cell viability after prolonged culture in the stationary phase. The results of the present study highlight an unexpected link between the Cdc48–Vms1 complex and the preservation of proteasome architecture, and indicate how perturbed proteasome assembly affects the turnover of ubiquitinated proteins and maintains viability in aging cells. PMID:24351022

  14. [Structures and functions of the 26S proteasome Rpn10 family].

    PubMed

    Kawahara, Hiroyuki

    2002-09-01

    The ubiquitin-dependent proteolytic pathway is thought to be one of the vital systems for cellular regulations, including control of the cell cycle, differentiation and apoptosis. In this pathway, poly-ubiquitinated proteins are selectively degraded by the 26S proteasome, a multisubunit proteolytic machinery. Recognition of the poly-ubiquitin chain by the 26S proteasome should be a key step leading to the selective degradation of target proteins, and the Rpn10 subunit of the 26S proteasome has been shown to preferentially bind the poly-ubiquitin chain in vitro. We previously reported that the mouse Rpn10 mRNA family is generated from a single gene by developmentally regulated, alternative splicing. To determine whether such alternative splicing mechanisms occur in organisms other than the mouse, we searched for Rpn10 isoforms in various species. Here we summarize the gene organization of the Rpn10 in lower species and provide evidence that the competence for generating all distinct forms of Rpn10 alternative splicing has expanded through evolution. Some of the Rpn10 family genes were found to be expressed in distinct developmental stages, suggesting that they have distinct functions during embryogenesis. For example, Rpn10c and Rpn10e were exclusively expressed at specific developmental stages and in specific tissues, while Rpn10a was expressed constitutively. Our experimental results indicate that the respective Rpn10 proteins possess distinct roles in the progression of development. Furthermore, some of the Rpn10 variants specifically interacted with important developmental regulators.

  15. The Lysine 48 and Lysine 63 Ubiquitin Conjugates Are Processed Differently by the 26 S Proteasome*

    PubMed Central

    Jacobson, Andrew D.; Zhang, Nan-Yan; Xu, Ping; Han, Ke-Jun; Noone, Seth; Peng, Junmin; Liu, Chang-Wei

    2009-01-01

    The role of Lys-63 ubiquitin chains in targeting proteins for proteasomal degradation is still obscure. We systematically compared proteasomal processing of Lys-63 ubiquitin chains with that of the canonical proteolytic signal, Lys-48 ubiquitin chains. Quantitative mass spectrometric analysis of ubiquitin chains in HeLa cells determines that the levels of Lys-63 ubiquitin chains are insensitive to short-time proteasome inhibition. Also, the Lys-48/Lys-63 ratio in the 26 S proteasome-bound fraction is 1.7-fold more than that in the cell lysates, likely because some cellular Lys-63 ubiquitin conjugates are sequestered by Lys-63 chain-specific binding proteins. In vitro, Lys-48 and Lys-63 ubiquitin chains bind the 26 S proteasome comparably, whereas Lys-63 chains are deubiquitinated 6-fold faster than Lys-48 chains. Also, Lys-63 tetraubiquitin-conjugated UbcH10 is rapidly deubiquitinated into the monoubiquitinated form, whereas Lys-48 tetraubiquitin targets UbcH10 for degradation. Furthermore, we found that both the ubiquitin aldehyde- and 1,10-phenanthroline-sensitive deubiquitinating activities of the 26 S proteasome contribute to Lys-48- and Lys-63-linkage deubiquitination, albeit the inhibitory extents are different. Together, our findings suggest that compared with Lys-48 chains, cellular Lys-63 chains have less proteasomal accessibility, and proteasome-bound Lys-63 chains are more rapidly deubiquitinated, which could cause inefficient degradation of Lys-63 conjugates. PMID:19858201

  16. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach.

    PubMed

    Lasker, Keren; Förster, Friedrich; Bohn, Stefan; Walzthoeni, Thomas; Villa, Elizabeth; Unverdorben, Pia; Beck, Florian; Aebersold, Ruedi; Sali, Andrej; Baumeister, Wolfgang

    2012-01-31

    The 26S proteasome is at the executive end of the ubiquitin-proteasome pathway for the controlled degradation of intracellular proteins. While the structure of its 20S core particle (CP) has been determined by X-ray crystallography, the structure of the 19S regulatory particle (RP), which recruits substrates, unfolds them, and translocates them to the CP for degradation, has remained elusive. Here, we describe the molecular architecture of the 26S holocomplex determined by an integrative approach based on data from cryoelectron microscopy, X-ray crystallography, residue-specific chemical cross-linking, and several proteomics techniques. The "lid" of the RP (consisting of Rpn3/5/6/7/8/9/11/12) is organized in a modular fashion. Rpn3/5/6/7/9/12 form a horseshoe-shaped heterohexamer, which connects to the CP and roofs the AAA-ATPase module, positioning the Rpn8/Rpn11 heterodimer close to its mouth. Rpn2 is rigid, supporting the lid, while Rpn1 is conformationally variable, positioned at the periphery of the ATPase ring. The ubiquitin receptors Rpn10 and Rpn13 are located in the distal part of the RP, indicating that they were recruited to the complex late in its evolution. The modular structure of the 26S proteasome provides insights into the sequence of events prior to the degradation of ubiquitylated substrates.

  17. Localization of the regulatory particle subunit Sem1 in the 26S proteasome

    SciTech Connect

    Bohn, Stefan; Sakata, Eri; Beck, Florian; Pathare, Ganesh R.; Schnitger, Jérôme; Nágy, Istvan; Baumeister, Wolfgang Förster, Friedrich

    2013-05-31

    Highlights: •26S proteasome subunit Sem1 was mapped using cryo-EM and cross-linking data. •C-terminal helix of Sem1 located near winged helix motif of Rpn7. •N-terminal part of Sem1 tethers Rpn7, Rpn3 and lid helical bundle. •Sem1 binds differently to PCI-domains of proteasome subunit Rpn7 and TREX-2 subunit Thp1. -- Abstract: The ubiquitin–proteasome system is responsible for regulated protein degradation in the cell with the 26S proteasome acting as its executive arm. The molecular architecture of this 2.5 MDa complex has been established recently, with the notable exception of the small acidic subunit Sem1. Here, we localize the C-terminal helix of Sem1 binding to the PCI domain of the subunit Rpn7 using cryo-electron microscopy single particle reconstruction of proteasomes purified from yeast cells with sem1 deletion. The approximate position of the N-terminal region of Sem1 bridging the cleft between Rpn7 and Rpn3 was inferred based on site-specific cross-linking data of the 26S proteasome. Our structural studies indicate that Sem1 can assume different conformations in different contexts, which supports the idea that Sem1 functions as a molecular glue stabilizing the Rpn3/Rpn7 heterodimer.

  18. Characterization and Sequence Variation in the rDNA Region of Six Nematode Species of the Genus Longidorus (Nematoda)

    PubMed Central

    De Luca, F.; Reyes, A.; Grunder, J.; Kunz, P.; Agostinelli, A.; De Giorgi, C.; Lamberti, F.

    2004-01-01

    Total DNA was isolated from individual nematodes of the species Longidorus helveticus, L. macrosoma, L. arthensis, L. profundorum, L. elongatus, and L. raskii collected in Switzerland. The ITS region and D1-D2 expansion segments of the 26S rDNA were amplified and cloned. The sequences obtained were aligned in order to investigate sequence diversity and to infer the phylogenetic relationships among the six Longidorus species. D1-D2 sequences were more conserved than the ITS sequences that varied widely in primary structure and length, and no consensus was observed. Phylogenetic analyses using the neighbor-joining, maximum parsimony and maximum likelihood methods were performed with three different sequence data sets: ITS1-ITS2, 5.8S-D1-D2, and combining ITS1-ITS2+5.8S-D1-D2 sequences. All multiple alignments yielded similar basic trees supporting the existence of the six species established using morphological characters. These sequence data also provided evidence that the different regions of the rDNA are characterized by different evolution rates and by different factors associated with the generation of extreme size variation. PMID:19262800

  19. PCR- RFLP based bacterial diversity analysis of a municipal sewage treatment plant.

    PubMed

    Devi, S Gayathri; Ramya, M

    2015-09-01

    Bacterial diversity of sewage soil is an essential study to discover novel bacterial species involved in biodegradation. Restriction Fragment Length Polymorphism is one of the most useful molecular technique for diversity analysis in terms of cost effectiveness and reliability. The present study focuses on bacterial diversity of municipal sewage treatment plant in Chennai, Tamil Nadu, India through metagenomic approach. A 16S r DNA clone library was constructed from metagenomic DNA of sewage soil. 200 clones from the library were subjected to colony PCR and RFLP analysis. Upon RFLP analysis, 16 different Operational Taxonomic Units (OTU's) were obtained and a single clone from each OTU was subjected to sequencing. Phylogenetic analysis of sequences revealed the presence of five different groups of bacteria namely Proteobacteria (56%), Actinobacteria (7%), Firmicutes (5%), Bacteroidetes (17%) and Plancomycetes (7%). Three novel and uncultured groups of bacteria (8%) were also discovered. Most of the organisms identified through this study were reported to be efficient degraders of hydrocarbons, aromatic compounds and heavy metals, thereby promoting biodegradation of polluted environment.

  20. Molecular identification of three Indian snake species using simple PCR-RFLP method.

    PubMed

    Dubey, Bhawna; Meganathan, P R; Haque, Ikramul

    2010-07-01

    Three endangered Indian snake species, Python molurus, Naja naja, and Xenochrophis piscator are known to be significantly involved in illegal trade. Effective authentication of species is required to curb this illegal trade. In the absence of morphological features, molecular identification techniques hold promise to address the issue of species identification. We present an effective PCR-restriction fragment length polymorphism method for easy identification of the three endangered snake species, Python molurus, Naja naja, and Xenochrophis piscator. A 431-bp amplicon from cytochrome b gene was amplified using novel snake-specific primers following restriction digestion with enzymes Mbo II and Fok I. The species-specific reference fragment patterns were obtained for the target species, which enabled successful identification of even highly degraded shed skin sample confirming the utility of the technique in case of poor-quality DNA. The assay could be effectively used for forensic authentication of three Indian snake species and would help strengthen conservation efforts.

  1. A Rapid PCR-RFLP Method for Monitoring Genetic Variation among Commercial Mushroom Species

    ERIC Educational Resources Information Center

    Martin, Presley; Muruke, Masoud; Hosea, Kenneth; Kivaisi, Amelia; Zerwas, Nick; Bauerle, Cynthia

    2004-01-01

    We report the development of a simplified procedure for restriction fragment length polymorphism (RFLP) analysis of mushrooms. We have adapted standard molecular techniques to be amenable to an undergraduate laboratory setting in order to allow students to explore basic questions about fungal diversity and relatedness among mushroom species. The…

  2. Case-Study Investigation of Equine Maternity via PCR-RFLP: A Biochemistry Laboratory Experiment

    PubMed Central

    Millard, Julie T.; Chuang, Edward; Lucas, James S.; Nagy, Erzsebet E.; Davis, Griffin T.

    2013-01-01

    A simple and robust biochemistry laboratory experiment is described that uses restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) products to verify the identity of a potentially valuable horse. During the first laboratory period, students purify DNA from equine samples and amplify two loci of mitochondrial DNA. During the second laboratory period, students digest PCR products with restriction enzymes and analyze the fragment sizes through agarose gel electrophoresis. An optional step of validating DNA extracts through realtime PCR can expand the experiment to three weeks. This experiment, which has an engaging and versatile scenario, provides students with exposure to key principles and techniques of molecular biology, bioinformatics, and evolution in a forensic context. PMID:24363455

  3. Case-Study Investigation of Equine Maternity via PCR-RFLP: A Biochemistry Laboratory Experiment.

    PubMed

    Millard, Julie T; Chuang, Edward; Lucas, James S; Nagy, Erzsebet E; Davis, Griffin T

    2013-11-12

    A simple and robust biochemistry laboratory experiment is described that uses restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) products to verify the identity of a potentially valuable horse. During the first laboratory period, students purify DNA from equine samples and amplify two loci of mitochondrial DNA. During the second laboratory period, students digest PCR products with restriction enzymes and analyze the fragment sizes through agarose gel electrophoresis. An optional step of validating DNA extracts through realtime PCR can expand the experiment to three weeks. This experiment, which has an engaging and versatile scenario, provides students with exposure to key principles and techniques of molecular biology, bioinformatics, and evolution in a forensic context.

  4. Discrimination of Paederus fuscipes and Paederus littoralis by mtDNA-COI PCR-RFLP

    PubMed Central

    Bazrafkan, Sahar; Vatandoost, Hassan; Heydari, Abbas; Bakhshi, Hassan; Panahi-Moghadam, Somayeh; Hashemi-Aghdam, Saedeh; Mohtarami, Fatemeh; Rahimiforoushan, Abbas; Anlaandş, Sinan; Shayeghi, Mansoreh; Oshaghi, Mohammad Ali; Abtahi, Seyed Mohammad

    2016-01-01

    Background: Linear dermatitis is endemic in Iran where most cases occur in the Caspian Sea coast and Fars province. The disease is caused by beetles of the genus Paederus which are active from early spring to beginning of autumn although its incidence rises from May to August. The classic taxonomy of Paederus spp. is based on the male genitalia that is very complex and needs expertise. In this study, we report a DNA-based method to discriminate Paederus fuscipes and Paederus littoralis (=syn: P. lenkoranus, P. ilsae). Methods: Type specimens were collected from north and south of Iran. Molecular typing of the species was performed using restriction fragment length polymorphism (RFLP) analysis of polymerase chain reaction (PCR)-amplified fragments of mtDNA-COI. Results: Sequence analyses of the data obtained in this study showed significant DNA polymorphisms. There were 89 substitutions between COI sequences of the two species. The mtDNA-COI fragment comprises several useful species-specific restriction sites comprising HaeIII that could result in distinctively different species-specific PCR–RFLP profiles. The HaeIII enzyme cuts the 872 bp PCR amplicon of P. littoralis into 737 and 100 bp and two small nonvisible bands whereas it does not cut P. fuscipes amplicon into fragments. Conclusion: This study demonstrates that molecular typing is useful method and allows one to differentiate between two species and is recommended for discrimination of other Paederus species, which morphologically are indistinguishable or very difficult to be distinguished. PMID:28032097

  5. Using PCR-RFLP Technology to Teach Single Nucleotide Polymorphism for Undergraduates

    ERIC Educational Resources Information Center

    Zhang, Bo; Wang, Yan; Xu, Xiaofeng; Guan, Xingying; Bai, Yun

    2013-01-01

    Recent studies indicated that the aberrant gene expression of peroxiredoxin-6 (prdx6) was found in various kinds of cancers. Because of its biochemical function and gene expression pattern in cancer cells, the association between genetic polymorphism of Prdx6 and cancer onset is interesting. In this report, we have developed and implemented a…

  6. Characterization of molds isolated from smoked paprika by PCR-RFLP and micellar electrokinetic capillary electrophoresis.

    PubMed

    Ruiz-Moyano, Santiago; Benito, María J; Martín, Alberto; Aranda, Emilio; Hernández, Alejandro; Córdoba, María G

    2009-12-01

    Molds are common contaminants of paprika meat products. The drying and storage stages of paprika processing are critical because they can provide molds with the conditions particularly appropriate for their growth and proliferation. Thus, an efficient and accurate characterization of the toxigenic molds of paprika is necessary. An RFLP analysis of the rRNA genes was performed by using a TaqI restriction enzyme. In addition, a micellar electrokinetic capillary chromatography (MECC) method was tested to analyze secondary metabolites produced by mold strains commonly found in paprika. This study was confirmed with a 5.8S-ITS region sequence analysis. A total of 31 isolates were identified by RFLP and MECC analysis. These showed stable RFLP profiles that were clearly different for the different genera and species, and were grouped into clusters together with the profiles of the 16 reference strains. MECC analysis provided additional characteristic peak patterns for the characterization of the mold species present. The characterized isolates were species of the genera Fusarium spp., Aspergillus spp., Penicillium spp., Cladosporium spp., Mucor spp. and Phlebia spp. The identifications were confirmed by the 5.8S-ITS region sequence analysis and by a BLAST search of the GenBank database. RFLP patterns with TaqI restriction enzyme and MECC profiles, either singly or combined, could be of great interest to distinguish molds in paprika.

  7. [PCR-RFLP analysis of the mtDNA Cytb gene in three different horse breeds].

    PubMed

    Li, Jin-Lian; Shi, You-Fei; Bu, Ren-Qiqige; Mang, Lai

    2006-08-01

    Restriction endonucleases, namely BamH I, Taq I, Hae III, Rsa I and Hinc II, were used to analyze the polymorphism of partial mtDNA Cytb gene sequences from 256 horses 6 types (Thoroughbred, Sanhe, Wuzhumuqin, Xinihe, Wushen and Pony) including the imported breed, cultivated breed and local breed. The products of endonuclease digestion were run on 8% non-denaturing polyacrylamide gel electrophoresis and detected by silver staining. Results indicated BamH I and Taq I polymorphism. In all 7 restriction patterns were defected that could be sorted into 3 haplotypes, of which haplotypes I and III were the basic haplotypes. We infer that these horses came from one female ancestor through the analysis thorough one pattern, namely BamH I-B.

  8. Altered epidermal lipid processing and calcium distribution in the KID syndrome mouse model Cx26S17F

    PubMed Central

    Bosen, Felicitas; Celli, Anna; Crumrine, Debra; vom Dorp, Katharina; Ebel, Philipp; Jastrow, Holger; Dörmann, Peter; Winterhager, Elke; Mauro, Theodora; Willecke, Klaus

    2016-01-01

    The keratitis–ichthyosis–deafness (KID) syndrome is caused by mutations in the gap junctional channel protein connexin 26 (Cx26), among them the mutation Cx26S17F. Heterozygous Cx26S17F mice resemble the human KID syndrome, i.e. exhibiting epidermal hyperplasia and hearing impairments. Newborn Cx26S17F mice show a defective epidermal water barrier as well as altered epidermal lipid secretion and location. Linoleoyl ω-esterified ceramides are strongly decreased on the skin surface of Cx26S17F mice. Moreover, the epidermal calcium gradient is altered in the mutant mice. These alterations may be caused by an abnormal Cx26S17F channel function that leads to a defective epidermal water barrier, which in turn may trigger the hyperproliferation seen in the KID syndrome. PMID:26070424

  9. Altered epidermal lipid processing and calcium distribution in the KID syndrome mouse model Cx26S17F.

    PubMed

    Bosen, Felicitas; Celli, Anna; Crumrine, Debra; vom Dorp, Katharina; Ebel, Philipp; Jastrow, Holger; Dörmann, Peter; Winterhager, Elke; Mauro, Theodora; Willecke, Klaus

    2015-07-08

    The keratitis-ichthyosis-deafness (KID) syndrome is caused by mutations in the gap junctional channel protein connexin 26 (Cx26), among them the mutation Cx26S17F. Heterozygous Cx26S17F mice resemble the human KID syndrome, i.e. exhibiting epidermal hyperplasia and hearing impairments. Newborn Cx26S17F mice show a defective epidermal water barrier as well as altered epidermal lipid secretion and location. Linoleoyl ω-esterified ceramides are strongly decreased on the skin surface of Cx26S17F mice. Moreover, the epidermal calcium gradient is altered in the mutant mice. These alterations may be caused by an abnormal Cx26S17F channel function that leads to a defective epidermal water barrier, which in turn may trigger the hyperproliferation seen in the KID syndrome.

  10. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation

    PubMed Central

    Garcia, S; Kovařík, A

    2013-01-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S–5.8S–26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S–18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S–5.8S–26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants. PMID:23512008

  11. Uncommon functional properties of the first piscine 26S proteasome from the Antarctic notothenioid Trematomus bernacchii

    PubMed Central

    Gogliettino, Marta; Balestrieri, Marco; Riccio, Alessia; Facchiano, Angelo; Fusco, Carmela; Palazzo, Vincenzo Cecere; Rossi, Mosè; Cocca, Ennio; Palmieri, Gianna

    2016-01-01

    Protein homoeostasis is a fundamental process allowing the preservation of functional proteins and it has a great impact on the life of the Antarctic organisms. However, the effect of low temperatures on protein turnover is poorly understood and the cold-adaptation of the degradation machinery remains an unresolved issue. As the 26S proteasome represents the main proteolytic system devoted to the controlled degradation of intracellular proteins, the purpose of the present study was to investigate the functions of this complex in the notothenioid Trematomus bernacchii, in order to better understand its role in the physiology of Antarctic fish. To this aim, we purified and characterized the 26S proteasome from T. bernacchii and isolated the cDNAs codifying seven of the 14 subunits belonging to the proteasome 20S core particle. Results provided evidences of the high resistance of the piscine 26S proteasome to oxidative agents and of its ‘uncommon’ ability to efficiently hydrolyse oxidized bovine serum albumin (BSA), suggesting that this enzymatic complex could play a key role in the antioxidant defense systems in fish inhabiting permanently cold marine environments. These unique properties were also reflected by the 3D model analysis, which revealed a higher structural stability of the piscine complex respect to the murine template. Finally, a comparative analysis, performed in a variety of tissues collected from T. bernacchii and the temperate fish Dicentrarchus labrax, showed a lower protein retention in the cold-adapted fish, possibly due to a better efficiency of its degradation machinery. PMID:26933238

  12. Differential expression of 26S proteasome subunits and functional activity during neonatal development.

    PubMed

    Claud, Erika C; McDonald, Julie A K; He, Shu-Mei; Yu, Yueyue; Duong, Lily; Sun, Jun; Petrof, Elaine O

    2014-08-29

    Proteasomes regulate many essential cellular processes by degrading intracellular proteins. While aging is known to be associated with dysfunction of the proteasome, there are few reports detailing activity and function of proteasomes in the early stages of life. To elucidate the function and development of mammalian proteasomes, 26S proteasomes were affinity-purified from rat intestine, spleen and liver. The developmental expression of core, regulatory and immunoproteasome subunits was analyzed by immunoblotting and reverse-transcriptase PCR of mRNA subunits, and proteasome catalytic function was determined by fluorogenic enzymatic assays. The expression of core (β2, β5, α7 and β1) and regulatory (Rpt5) subunits was found to be present at low levels at birth and increased over time particularly at weaning. In contrast, while gradual developmental progression of proteasome structure was also seen with the immunoproteasome subunits (β1i, β5i, and β2i), these were not present at birth. Our studies demonstrate a developmental pattern to 26S proteasome activity and subunit expression, with low levels of core proteasome components and absence of immunoproteasomes at birth followed by increases at later developmental stages. This correlates with findings from other studies of a developmental hyporesponsiveness of the adaptive immune system to allow establishment of microbial colonization immediately after birth.

  13. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition.

    PubMed

    Dambacher, Corey M; Worden, Evan J; Herzik, Mark A; Martin, Andreas; Lander, Gabriel C

    2016-01-08

    The 26S proteasome is responsible for the selective, ATP-dependent degradation of polyubiquitinated cellular proteins. Removal of ubiquitin chains from targeted substrates at the proteasome is a prerequisite for substrate processing and is accomplished by Rpn11, a deubiquitinase within the 'lid' sub-complex. Prior to the lid's incorporation into the proteasome, Rpn11 deubiquitinase activity is inhibited to prevent unwarranted deubiquitination of polyubiquitinated proteins. Here we present the atomic model of the isolated lid sub-complex, as determined by cryo-electron microscopy at 3.5 Å resolution, revealing how Rpn11 is inhibited through its interaction with a neighboring lid subunit, Rpn5. Through mutagenesis of specific residues, we describe the network of interactions that are required to stabilize this inhibited state. These results provide significant insight into the intricate mechanisms of proteasome assembly, outlining the substantial conformational rearrangements that occur during incorporation of the lid into the 26S holoenzyme, which ultimately activates the deubiquitinase for substrate degradation.

  14. DBC2 resistance is achieved by enhancing 26S proteasome-mediated protein degradation.

    PubMed

    Collado, Denise; Yoshihara, Takashi; Hamaguchi, Masaaki

    2007-08-31

    Tumor suppressor gene DBC2 stops growth of tumor cells through regulation of CCND1. Interference of CCND1 down-regulation prevented growth arrest caused by DBC2 [T. Yoshihara, D. Collado, M. Hamaguchi, Cyclin D1 down-regulation is essential for DBC2's tumor suppressor function, Biochemical and biophysical research communications 358 (2007) 1076-1079]. It was also noted that DBC2 resistant cells eventually arose after repeated induction of DBC2 with muristerone A treatment [M. Hamaguchi, J.L. Meth, C. Von Klitzing, W. Wei, D. Esposito, L. Rodgers, T. Walsh, P. Welcsh, M.C. King, M.H. Wigler, DBC2, a candidate for a tumor suppressor gene involved in breast cancer, Proc. Natl. Acad. Sci. USA 99 (2002) 13647-13652]. In order to elucidate the mechanism of resistance acquisition, we analyzed DBC2 sensitive and resistant cells derived from the same progenitor cells (T-47D). We discovered that DBC2 protein was abundantly expressed in the sensitive cells when DBC2 was induced. In contrast, it was undetectable by western blot analysis in the resistant cells. We confirmed that the inducible gene expression system was responsive in both cells by detecting induced GFP. Additionally, inhibition of 26S proteasome by MG132 revealed production of DBC2 protein in the resistant cells. These findings indicate that the resistant T-47D cells survive DBC2 induction by rapid destruction of DBC2 through 26S proteasome-mediated protein degradation.

  15. Structural insights into the functional cycle of the ATPase module of the 26S proteasome

    PubMed Central

    Wehmer, Marc; Rudack, Till; Beck, Florian; Aufderheide, Antje; Pfeifer, Günter; Plitzko, Jürgen M.; Förster, Friedrich; Schulten, Klaus; Baumeister, Wolfgang; Sakata, Eri

    2017-01-01

    In eukaryotic cells, the ubiquitin–proteasome system (UPS) is responsible for the regulated degradation of intracellular proteins. The 26S holocomplex comprises the core particle (CP), where proteolysis takes place, and one or two regulatory particles (RPs). The base of the RP is formed by a heterohexameric AAA+ ATPase module, which unfolds and translocates substrates into the CP. Applying single-particle cryo-electron microscopy (cryo-EM) and image classification to samples in the presence of different nucleotides and nucleotide analogs, we were able to observe four distinct conformational states (s1 to s4). The resolution of the four conformers allowed for the construction of atomic models of the AAA+ ATPase module as it progresses through the functional cycle. In a hitherto unobserved state (s4), the gate controlling access to the CP is open. The structures described in this study allow us to put forward a model for the 26S functional cycle driven by ATP hydrolysis. PMID:28115689

  16. ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin.

    PubMed Central

    Eytan, E; Ganoth, D; Armon, T; Hershko, A

    1989-01-01

    Previous studies have indicated that the ATP-dependent 26S protease complex that degrades proteins conjugated to ubiquitin is formed by the assembly of three factors in an ATP-requiring process. We now identify one of the factors as the 20S "multicatalytic" protease, a complex of low molecular weight subunits widely distributed in eukaryotic cells. Comparison of the subunit compositions of purified 20S and 26S complexes indicates that the former is an integral part of the latter. By the use of detergent treatment to activate latent protease activity, we show that the 20S protease becomes incorporated into the 26S complex in the ATP-dependent assembly process. It thus seems that the 20S protease is the "catalytic core" of the 26S complex of the ubiquitin proteolytic pathway. Images PMID:2554287

  17. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis.

    PubMed

    Dec, Marta; Urban-Chmiel, Renata; Gnat, Sebastian; Puchalski, Andrzej; Wernicki, Andrzej

    2014-04-01

    The objective of our study was to identify Lactobacillus sp. strains of goose origin using MALDI-TOF mass spectrometry, ITS-PCR and ITS-PCR/RFLP. All three techniques proved to be valuable tools for identification of avian lactobacilli and produced comparable classification results. Lactobacillus strains were isolated from 100% of geese aged 3 weeks to 4 years, but from only 25% of chicks aged 1-10 days. Among the 104 strains isolated, we distinguished 14 Lactobacillus species. The dominant species was Lactobacillus salivarius (35.6%), followed by Lactobacillus johnsonii (18.3%), Lactobacillus ingluviei (11.5%) and Lactobacillus agilis (7.7%). The intact-cell MALDI-TOF mass spectrometry enabled rapid species identification of the lactobacilli with minimal pretreatment. However, it produced more than one identification result for 11.5% examined strains (mainly of the species L. johnsonii). ITS-PCR distinguished 12 genotypes among the isolates, but was not able to differentiate closely related strains, i.e. between Lactobacillus amylovorus and Lactobacillus kitasatonis and between Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus zeae. These species were differentiated by ITS-PCR/RFLP using the restriction enzymes TaqI and MseI. The results obtained indicate that ITS-PCR and ITS-PCR/RFLP assays could be used not only for interspecific, but also for intraspecific, typing.

  18. Structure of an endogenous yeast 26S proteasome reveals two major conformational states.

    PubMed

    Luan, Bai; Huang, Xiuliang; Wu, Jianping; Mei, Ziqing; Wang, Yiwei; Xue, Xiaobin; Yan, Chuangye; Wang, Jiawei; Finley, Daniel J; Shi, Yigong; Wang, Feng

    2016-03-08

    The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.

  19. DNA damage modulates interactions between microRNAs and the 26S proteasome

    PubMed Central

    Tsimokha, Anna S; Kulichkova, Valentina A.; Karpova, Elena V.; Zaykova, Julia J.; Aksenov, Nikolai D; Vasilishina, Anastasia A.; Kropotov, Andrei V.; Antonov, Alexey; Barlev, Nikolai A.

    2014-01-01

    26S proteasomes are known as major non-lysosomal cellular machines for coordinated and specific destruction of ubiquitinylated proteins. The proteolytic activities of proteasomes are controlled by various post-translational modifications in response to environmental cues, including DNA damage. Besides proteolysis, proteasomes also associate with RNA hydrolysis and splicing. Here, we extend the functional diversity of proteasomes by showing that they also dynamically associate with microRNAs (miRNAs) both in the nucleus and cytoplasm of cells. Moreover, DNA damage induced by an anti-cancer drug, doxorubicin, alters the repertoire of proteasome-associated miRNAs, enriching the population of miRNAs that target cell cycle checkpoint regulators and DNA repair proteins. Collectively, these data uncover yet another potential mode of action for proteasomes in the cell via their dynamic association with microRNAs. PMID:25004448

  20. Structure of an endogenous yeast 26S proteasome reveals two major conformational states

    PubMed Central

    Luan, Bai; Huang, Xiuliang; Wu, Jianping; Mei, Ziqing; Wang, Yiwei; Xue, Xiaobin; Yan, Chuangye; Wang, Jiawei; Finley, Daniel J.; Shi, Yigong; Wang, Feng

    2016-01-01

    The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function. PMID:26929360

  1. Variation in rDNA locus number and position among legume species and detection of 2 linked rDNA loci in the model Medicago truncatula by FISH.

    PubMed

    Abirached-Darmency, Mona; Prado-Vivant, Emilce; Chelysheva, Liudmila; Pouthier, Thomas

    2005-06-01

    Within Fabaceae, legume species have a variable genome size, chromosome number, and ploidy level. The genome distribution of ribosomal genes, easily detectable by fluorescent in situ hybridization (FISH), is a good tool for anchoring physical and genetic comparative maps. The organisation of 45S rDNA and 5S loci was analysed by FISH in the 4 closely related species: Pisum sativum, Medicago truncatula, Medicago sativa (2 diploid taxa), and Lathyrus sativus. The 2 types of rDNA arrays displayed interspecific variation in locus number and location, but little intraspecific variation was detected. In the model legume, M. truncatula, the presence of 2 adjacent 45S rDNA loci was demonstrated, and the location of the rDNA loci was independent of the general evolution of the genome DNA. The different parameters relative to clustering of the rDNA loci in specific chromosome regions and the possible basis of rDNA instability are discussed.

  2. Strain typing of Zygosaccharomyces yeast species using a single molecular method based on polymorphism of the intergenic spacer region (IGS).

    PubMed

    Wrent, Petra; Rivas, Eva-María; Peinado, José M; de Silóniz, María-Isabel

    2010-08-15

    Unlike previously reported methods that need a combination of several typing techniques, we have developed a single method for strain typing of the Zygosaccharomyces bailii, Z. mellis and Z. rouxii spoilage species. Strains belonging to other species have also been included for comparison. We have demonstrated that the IGS-PCR RFLP method has a high discriminative power. Considering the three endonucleases used in this work, we have obtained a variability of 100% for Z. mellis and Z. rouxii strains and up to 70% for Z. bailii. We have also detected two misidentified Z. mellis strains (CBS 711 and CBS 7412) which have RFLP patterns with a set of bands characteristic of Z. rouxii strains. Sequencing of 26S rDNA D1/D2 domains and the 5.8-ITS rDNA region confirmed these strains as Z. rouxii. The method also groups three certified hybrid strains of Zygosaccharomyces in a separate cluster.

  3. Physical mapping of 18S-25S rDNA and 5S rDNA in Lupinus via fluorescent in situ hybridization.

    PubMed

    Naganowska, Barbara; Zielińska, Anna

    2002-01-01

    Double-target fluorescent in situ hybridization (FISH) was used to determine the genomic distribution of ribosomal RNA genes in five Lupinus species: L. cosentinii (2n=32), L. pilosus (2n=42), L. angustifolius (2n=40), L. luteus (2n=52) and L. mutabilis (2n=48). 18S-25S rDNA and 5S rDNA were used as probes. Some interspecific variation was observed in the number and size of the 18S-25S rDNA loci. All the studied species had one chromosome pair carrying 5S rDNA.

  4. D1 dopamine receptor stimulation impairs striatal proteasome activity in Parkinsonism through 26S proteasome disassembly.

    PubMed

    Barroso-Chinea, Pedro; Thiolat, Marie-Laure; Bido, Simone; Martinez, Audrey; Doudnikoff, Evelyne; Baufreton, Jérôme; Bourdenx, Mathieu; Bloch, Bertrand; Bezard, Erwan; Martin-Negrier, Marie-Laure

    2015-06-01

    Among the mechanisms underlying the development of L-dopa-induced dyskinesia (LID) in Parkinson's disease, complex alterations in dopamine signaling in D1 receptor (D1R)-expressing medium spiny striatal neurons have been unraveled such as, but not limited to, dysregulation of D1R expression, lateral diffusion, intraneuronal trafficking, subcellular localization and desensitization, leading to a pathological anchorage of D1R at the plasma membrane. Such anchorage is partly due to a decreased proteasomal activity that is specific of the L-dopa-exposed dopamine-depleted striatum, results from D1R activation and feeds-back the D1R exaggerated cell surface abundance. The precise mechanisms by which L-dopa affects striatal proteasome activity remained however unknown. We here show, in a series of in vitro ex vivo and in vivo models, that such rapid modulation of striatal proteasome activity intervenes through D1R-mediated disassembly of the 26S proteasome rather than change in transcription or translation of proteasome or proteasome subunits intraneuronal relocalization.

  5. Attenuation of glucocorticoid signaling through targeted degradation of p300 via the 26S proteasome pathway.

    PubMed

    Li, Qiao; Su, Anna; Chen, Jihong; Lefebvre, Yvonne A; Haché, Robert J G

    2002-12-01

    The effects of acetylation on gene expression are complex, with changes in chromatin accessibility intermingled with direct effects on transcriptional regulators. For the nuclear receptors, both positive and negative effects of acetylation on specific gene transcription have been observed. We report that p300 and steroid receptor coactivator 1 interact transiently with the glucocorticoid receptor and that the acetyltransferase activity of p300 makes an important contribution to glucocorticoid receptor-mediated transcription. Treatment of cells with the deacetylase inhibitor, sodium butyrate, inhibited steroid-induced transcription and altered the transient association of glucocorticoid receptor with p300 and steroid receptor coactivator 1. Additionally, sustained sodium butyrate treatment induced the degradation of p300 through the 26S proteasome pathway. Treatment with the proteasome inhibitor MG132 restored both the level of p300 protein and the transcriptional response to steroid over 20 h of treatment. These results reveal new levels for the regulatory control of gene expression by acetylation and suggest feedback control on p300 activity.

  6. The RPN1 Subunit of the 26S Proteasome in Arabidopsis Is Essential for Embryogenesis

    PubMed Central

    Brukhin, Vladimir; Gheyselinck, Jacqueline; Gagliardini, Valeria; Genschik, Pascal; Grossniklaus, Ueli

    2005-01-01

    The 26S proteasome plays a central role in the degradation of regulatory proteins involved in a variety of developmental processes. It consists of two multisubunit protein complexes: the proteolytic core protease and the regulatory particle (RP). The function of most RP subunits is poorly understood. Here, we describe mutants in the Arabidopsis thaliana RPN1 subunit, which is encoded by two paralogous genes, RPN1a and RPN1b. Disruption of RPN1a caused embryo lethality, while RPN1b mutants showed no obvious abnormal phenotype. Embryos homozygous for rpn1a arrested at the globular stage with defects in the formation of the embryonic root, the protoderm, and procambium. Cyclin B1 protein was not degraded in these embryos, consistent with cell division defects. Double mutant plants (rpn1a/RPN1a rpn1b/rpn1b) produced embryos with a phenotype indistinguishable from that of the rpn1a single mutant. Thus, despite their largely overlapping expression patterns in flowers and developing seeds, the two isoforms do not share redundant functions during gametogenesis and embryogenesis. However, complementation of the rpn1a mutation with the coding region of RPN1b expressed under the control of the RPN1a promoter indicates that the two RPN1 isoforms are functionally equivalent. Overall, our data indicate that RPN1 activity is essential during embryogenesis, where it might participate in the destruction of a specific set of protein substrates. PMID:16169895

  7. Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid.

    PubMed

    Estrin, Eric; Lopez-Blanco, José Ramón; Chacón, Pablo; Martin, Andreas

    2013-09-03

    The 26S proteasome is the major ATP-dependent protease in eukaryotes and thus involved in regulating a diverse array of vital cellular processes. Three subcomplexes form this massive degradation machine: the lid, the base, and the core. While assembly of base and core has been well-studied, the detailed molecular mechanisms involved in formation of the nine-subunit lid remain largely unknown. Here, we reveal that helices found at the C terminus of each lid subunit form a helical bundle that directs the ordered self-assembly of the lid subcomplex. Furthermore, we use an integrative modeling approach to gain critical insights into the bundle topology and provide an important structural framework for our biochemical data. We show that the helical bundle serves as a hub through which the last-added subunit Rpn12 monitors proper lid assembly before incorporation into the proteasome. Finally, we predict that the assembly of the COP9 signalosome depends on a similar helical bundle.

  8. [Comparative analysis of rDNA distribution in metaphase chromosomes of Cucurbitaceae species].

    PubMed

    Xu, Yan-Hao; Yang, Fei; Cheng, You-Lin; Ma, Lu; Wang, Jian-Bo; Li, Li-Jia

    2007-05-01

    Fluorescence in situ hybridization (FISH) and double FISH experiments were carried out to ascertain the chromosomal distribution patterns of the 45S and 5S ribosomal DNAs in the three species of Cucurbitaceae. Five pairs of 45S rDNA loci and two pairs of 5S rDNA signals were detected on chromosomes of Cucurbita moschata Duch. Luffa cylindrical Roem. contained five pairs of 45S rDNA loci and one pair of 5S rDNA loci. In Benincasa hispida Cogn., two pairs of 45S rDNA sites and one pair of 5S rDNA site were detected. In this species, 5S rDNA and one pair of the 45S loci were collocated closely in chromosome 7S. 45S rDNA chromosomal distribution patterns were highly conserved among the three species, althoufh their number varied markedly. The 5S rDNA sites on chromosomes among the three species were highly polymorphic. We further discussed differentially evolutionary processes of 45S and 5S rDNA in plant genomes.

  9. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death

    PubMed Central

    Livneh, Ido; Cohen-Kaplan, Victoria; Cohen-Rosenzweig, Chen; Avni, Noa; Ciechanover, Aaron

    2016-01-01

    The 26S proteasome is a large, ∼2.5 MDa, multi-catalytic ATP-dependent protease complex that serves as the degrading arm of the ubiquitin system, which is the major pathway for regulated degradation of cytosolic, nuclear and membrane proteins in all eukaryotic organisms. PMID:27444871

  10. Proteomics of the 26S proteasome in Spodoptera frugiperda cells infected with the nucleopolyhedrovirus, AcMNPV.

    PubMed

    Lyupina, Yulia V; Zatsepina, Olga G; Serebryakova, Marina V; Erokhov, Pavel A; Abaturova, Svetlana B; Kravchuk, Oksana I; Orlova, Olga V; Beljelarskaya, Svetlana N; Lavrov, Andrey I; Sokolova, Olga S; Mikhailov, Victor S

    2016-06-01

    Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 β subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection.

  11. Convergence of the 26S proteasome and the REVOLUTA pathways in regulating inflorescence and floral meristem functions in Arabidopsis.

    PubMed

    Zhang, Zhenzhen; Wang, Hua; Luo, Dexian; Zeng, Minhuan; Huang, Hai; Cui, Xiaofeng

    2011-01-01

    The 26S proteasome is a large multisubunit proteolytic complex, regulating growth and development in eukaryotes by selective removal of short-lived regulatory proteins. Here, it is shown that the 26S proteasome and the transcription factor gene REVOLUTA (REV) act together in maintaining inflorescence and floral meristem (IM and FM) functions. The characterization of a newly identified Arabidopsis mutant, designated ae4 (asymmetric leaves1/2 enhancer4), which carries a mutation in the gene encoding the 26S proteasome subunit, RPN2a, is reported. ae4 and rev have minor defects in phyllotaxy structure and meristem initiation, respectively, whereas ae4 rev demonstrated strong developmental defects. Compared with the rev single mutant, an increased percentage of ae4 rev plants exhibited abnormal vegetative shoot apical and axillary meristems. After flowering, ae4 rev first gave rise to a few normal-looking flowers, and then flowers with reduced numbers of all types of floral organs. In late reproductive development, instead of flowers, the ae4 rev IM produced numerous filamentous structures, which contained cells seen only in the floral organs, and then carpelloid organs. In situ hybridization revealed that expression of the WUSCHEL and CLAVATA3 genes was severely down-regulated or absent in the late appearing ae4 rev primordia, but the genes were strongly expressed in top-layer cells of inflorescence tips. Double mutant plants combining rev with other 26S proteasome subunit mutants, rpn1a and rpn9a, resembled ae4 rev, suggesting that the 26S proteasome might act as a whole in regulating IM and FM functions.

  12. Sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2, and 28S rDNA) of Demodex and phylogenetic analysis of Acari based on 18S and 28S rDNA.

    PubMed

    Zhao, Ya-E; Wu, Li-Ping; Hu, Li; Xu, Yang; Wang, Zheng-Hang; Liu, Wen-Yan

    2012-11-01

    Due to the difficulty of DNA extraction for Demodex, few studies dealt with the identification and the phyletic evolution of Demodex at molecular level. In this study, we amplified, sequenced, and analyzed a complete (Demodex folliculorum) and an almost complete (D12 missing) (Demodex brevis) ribosomal DNA (rDNA) sequence and also analyzed the primary sequences of divergent domains in small-subunit ribosomal RNA (rRNA) of 51 species and in large-subunit rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea, and Ixodoidea). The results revealed that 18S rDNA sequence was relatively conserved in rDNA-coding regions and was not evolving as rapidly as 28S rDNA sequence. The evolutionary rates of transcribed spacer regions were much higher than those of the coding regions. The maximum parsimony trees of 18S and 28S rDNA appeared to be almost identical, consistent with their morphological classification. Based on the fact that the resolution capability of sequence length and the divergence of the 13 segments (D1-D6, D7a, D7b, and D8-D12) of 28S rDNA were stronger than that of the nine variable regions (V1-V9) of 18S rDNA, we were able to identify Demodex (Cheyletoidea) by the indels occurring in D2, D6, and D8.

  13. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    PubMed Central

    Förster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-01-01

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners. PMID:19653995

  14. The connexin26 S17F mouse mutant represents a model for the human hereditary keratitis-ichthyosis-deafness syndrome.

    PubMed

    Schütz, Melanie; Auth, Tanja; Gehrt, Anna; Bosen, Felicitas; Körber, Inken; Strenzke, Nicola; Moser, Tobias; Willecke, Klaus

    2011-01-01

    Mutations in the GJB2 gene coding for connexin26 (Cx26) can cause a variety of deafness and hereditary hyperproliferative skin disorders in humans. In this study, we investigated the Cx26S17F mutation in mice, which had been identified to cause the keratitis-ichthyosis-deafness (KID) syndrome in humans. The KID syndrome is characterized by keratitis and chronic progressive corneal neovascularization, skin hyperplasia, sensorineural hearing loss and increased carcinogenic potential. We have generated a conditional mouse mutant, in which the floxed wild-type Cx26-coding DNA can be deleted and the Cx26S17F mutation is expressed under control of the endogenous Cx26 promoter. Homozygous mutants are not viable, whereas the surviving heterozygous mice show hyperplasia of tail and foot epidermis, wounded tails and annular tail restrictions, and are smaller than their wild-type littermates. Analyses of auditory brainstem responses (ABRs) indicate an ∼35 dB increased hearing threshold in these mice, which is likely due to the reduction of the endocochlear potential by 20-40%. Our results indicate that the Cx26S17F protein, which does not form functional gap junction channels or hemichannels, alters epidermal proliferation and differentiation in the heterozygous state. In the inner ear, reduced intercellular coupling by heteromeric channels composed of Cx26S17F and Cx30 could contribute to hearing impairment in heterozygous mice, while remaining wild-type Cx26 may be sufficient to stabilize Cx30 and partially maintain cochlear homeostasis. The phenotype of heterozygous mice resembles many of the symptoms of the human KID syndrome. Thus, these mice represent an appropriate model to further investigate the disease mechanism.

  15. Compensatory role of the Nrf2-ARE pathway against paraquat toxicity: Relevance of 26S proteasome activity.

    PubMed

    Izumi, Yasuhiko; Yamamoto, Noriyuki; Matsushima, Sayaka; Yamamoto, Takamori; Takada-Takatori, Yuki; Akaike, Akinori; Kume, Toshiaki

    2015-11-01

    Oxidative stress and the ubiquitin-proteasome system play a key role in the pathogenesis of Parkinson disease. Although the herbicide paraquat is an environmental factor that is involved in the etiology of Parkinson disease, the role of 26S proteasome in paraquat toxicity remains to be determined. Using PC12 cells overexpressing a fluorescent protein fused to the proteasome degradation signal, we report here that paraquat yielded an inhibitory effect on 26S proteasome activity without an obvious decline in 20S proteasome activity. Relative low concentrations of proteasome inhibitors caused the accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), which is targeted to the ubiquitin-proteasome system, and activated the antioxidant response element (ARE)-dependent transcription. Paraquat also upregulated the protein level of Nrf2 without increased expression of Nrf2 mRNA, and activated the Nrf2-ARE pathway. Consequently, paraquat induced expression of Nrf2-dependent ARE-driven genes, such as γ-glutamylcysteine synthetase, catalase, and hemeoxygenase-1. Knockdown of Nrf2 or inhibition of γ-glutamylcysteine synthetase and catalase exacerbated paraquat-induced toxicity, whereas suppression of hemeoxygenase-1 did not. These data indicate that the compensatory activation of the Nrf2-ARE pathway via inhibition of 26S proteasome serves as part of a cellular defense mechanism to protect against paraquat toxicity.

  16. Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA.

    PubMed Central

    Fritze, C E; Verschueren, K; Strich, R; Easton Esposito, R

    1997-01-01

    The yeast SIR2 gene maintains inactive chromatin domains required for transcriptional repression at the silent mating-type loci and telomeres. We previously demonstrated that SIR2 also acts to repress mitotic and meiotic recombination between the tandem ribosomal RNA gene array (rDNA). Here we address whether rDNA chromatin structure is altered by loss of SIR2 function by in vitro and in vivo assays of sensitivity to micrococcal nuclease and dam methyltransferase, respectively, and present the first chromatin study that maps sites of SIR2 action within the rDNA locus. Control studies at the MAT alpha locus also revealed a previously undetected MNase-sensitive site at the a1-alpha 2 divergent promoter which is protected in sir2 mutant cells by the derepressed a1-alpha 2 regulator. In rDNA, SIR2 is required for a more closed chromatin structure in two regions: SRR1, the major SIR-Responsive Region in the non-transcribed spacer, and SRR2, in the 18S rRNA coding region. None of the changes in rDNA detected in sir2 mutants are due to the presence of the a1-alpha 2 repressor. Reduced recombination in the rDNA correlates with a small, reproducible transcriptional silencing position effect. Deletion and overexpression studies demonstrate that SIR2, but not SIR1, SIR3 or SIR4, is required for this rDNA position effect. Significantly, rDNA transcriptional silencing and rDNA chromatin accessibility respond to SIR2 dosage, indicating that SIR2 is a limiting component required for chromatin modeling in rDNA. PMID:9351831

  17. Evolutionary dynamics of 5S rDNA location in acridid grasshoppers and its relationship with H3 histone gene and 45S rDNA location.

    PubMed

    Cabral-de-Mello, Diogo C; Cabrero, Josefa; López-León, María Dolores; Camacho, Juan Pedro M

    2011-07-01

    We analyze the chromosomal location of 5S rDNA clusters in 29 species of grasshoppers belonging to the family Acrididae. There was extensive variation among species for the number and location of 5S rDNA sites. Out of 148 sites detected, 75% were proximally located, 21.6% were interstitial, and only 3.4% were distal. The number of 5S rDNA sites per species varied from a single chromosome pair (in six species) to all chromosome pairs (in five species), with a range of intermediate situations. Thirteen chromosomes from eight species carried two 5S rDNA clusters. At intraspecific level, differences among populations were detected in Eyprepocnemis plorans, and some heteromorphisms have also been observed in some species. Double FISH for 5S rDNA and H3 histone gene DNA, performed on 17 of these 29 species, revealed that both markers are sometimes placed in a same chromosome but at different location, whereas they appeared to co-localize in five species (Calliptamus barbarus, Heteracris adpersa, Aiolopus strepens, Oedipoda charpentieri and O. coerulescens). Double fiber-FISH in A. strepens and O. coerulescens showed that the two DNAs are closely interspersed with variable relative amounts of both classes of DNA. Finally, no correlation was observed between the number of 5S and 45S rDNA clusters in 23 species where this information was available. These results are discussed in the light of possible mechanisms of spread that led to the extensive variation in the number of clusters observed for both rDNA types in acridid grasshoppers.

  18. Analysis of Mammalian rDNA Internal Transcribed Spacers

    PubMed Central

    Coleman, Annette W.

    2013-01-01

    Nuclear rDNA Internal Transcribed Spacers, ITS1 and ITS2, are widely used for eukaryote phylogenetic studies from the ordinal level to the species level, and there is even a database for ITS2 sequences. However, ITS regions have been ignored in mammalian phylogenetic studies, and only a few rodent and ape sequences are represented in GenBank. The reasons for this dearth, and the remedies, are described here. We have recovered these sequences, mostly >1 kb in length, for 36 mammalian species. Sequence alignment and transcript folding comparisons reveal the rRNA transcript secondary structure. Mammalian ITS regions, though quite long, still fold into the recognizable secondary structure of other eukaryotes. The ITS2 in particular bears the four standard helix loops, and loops II and III have the hallmark characters universal to eukaryotes. Both sequence and insertions/deletions of transcript secondary structure helices observed here support the four superorder taxonomy of Placentalia. On the family level, major unique indels, neatly excising entire helices, will be useful when additional species are represented, resulting in significant further understanding of the details of mammalian evolutionary history. Furthermore, the identification of a highly conserved element of ITS1 common to warm-blooded vertebrates may aid in deciphering the complex mechanism of RNA transcript processing. This is the last major group of terrestrial vertebrates for which rRNA ITS secondary structure has been resolved. PMID:24260162

  19. Phylogenetic Analyses of Meloidogyne Small Subunit rDNA

    PubMed Central

    De Ley, Irma Tandingan; De Ley, Paul; Vierstraete, Andy; Karssen, Gerrit; Moens, Maurice; Vanfleteren, Jacques

    2002-01-01

    Phylogenies were inferred from nearly complete small subunit (SSU) 18S rDNA sequences of 12 species of Meloidogyne and 4 outgroup taxa (Globodera pallida, Nacobbus abberans, Subanguina radicicola, and Zygotylenchus guevarai). Alignments were generated manually from a secondary structure model, and computationally using ClustalX and Treealign. Trees were constructed using distance, parsimony, and likelihood algorithms in PAUP* 4.0b4a. Obtained tree topologies were stable across algorithms and alignments, supporting 3 clades: clade I = [M. incognita (M. javanica, M. arenaria)]; clade II = M. duytsi and M. maritima in an unresolved trichotomy with (M. hapla, M. microtyla); and clade III = (M. exigua (M. graminicola, M. chitwoodi)). Monophyly of [(clade I, clade II) clade III] was given maximal bootstrap support (mbs). M. artiellia was always a sister taxon to this joint clade, while M. ichinohei was consistently placed with mbs as a basal taxon within the genus. Affinities with the outgroup taxa remain unclear, although G. pallida and S. radicicola were never placed as closest relatives of Meloidogyne. Our results show that SSU sequence data are useful in addressing deeper phylogeny within Meloidogyne, and that both M. ichinohei and M. artiellia are credible outgroups for phylogenetic analysis of speciations among the major species. PMID:19265950

  20. Short communication: Identification and technological characterization of yeast strains isolated from samples of water buffalo Mozzarella cheese.

    PubMed

    Aponte, M; Pepe, O; Blaiotta, G

    2010-06-01

    Sixty yeast cultures were isolated from samples of water buffalo Mozzarella, a popular "pasta filata" cheese, originating on 16 farms located in the provinces of Salerno, Caserta, and Frosinone (Italy). Strains were identified by means of 5.8S internal transcribed spacer rDNA PCR-RFLP combined with 26S rRNA gene partial sequencing and characterized for their ability to exert biochemical properties of technological interest. The recorded dominance of fermenting yeasts such as the lactose-fermenting Kluyveromyces marxianus (38.3% of the total isolates) and the galactose-fermenting Saccharomyces cerevisiae (21.6% of the total isolates) suggests that these yeasts contribute to the organoleptic definition of the water buffalo Mozzarella. The speciographic analysis revealed the presence of 7 other species rarely or never reported in a dairy environment belonging to the genera Pichia and Candida, whose role in Mozzarella cheese organoleptic properties need to be further investigated.

  1. Expression of I-CreI Endonuclease Generates Deletions Within the rDNA of Drosophila

    PubMed Central

    Paredes, Silvana; Maggert, Keith A.

    2009-01-01

    The rDNA arrays in Drosophila contain the cis-acting nucleolus organizer regions responsible for forming the nucleolus and the genes for the 28S, 18S, and 5.8S/2S RNA components of the ribosomes and so serve a central role in protein synthesis. Mutations or alterations that affect the nucleolus organizer region have pleiotropic effects on genome regulation and development and may play a role in genomewide phenomena such as aging and cancer. We demonstrate a method to create an allelic series of graded deletions in the Drosophila Y-linked rDNA of otherwise isogenic chromosomes, quantify the size of the deletions using real-time PCR, and monitor magnification of the rDNA arrays as their functions are restored. We use this series to define the thresholds of Y-linked rDNA required for sufficient protein translation, as well as establish the rate of Y-linked rDNA magnification in Drosophila. Finally, we show that I-CreI expression can revert rDNA deletion phenotypes, suggesting that double-strand breaks are sufficient to induce rDNA magnification. PMID:19171942

  2. Emodin potentiates the antiproliferative effect of interferon α/β by activation of JAK/STAT pathway signaling through inhibition of the 26S proteasome

    PubMed Central

    He, Yujiao; Huang, Junmei; Wang, Ping; Shen, Xiaofei; Li, Sheng; Yang, Lijuan; Liu, Wanli; Suksamrarn, Apichart; Zhang, Guolin; Wang, Fei

    2016-01-01

    The 26S proteasome is a negative regulator of type I interferon (IFN-α/β) signaling. Inhibition of the 26S proteasome by small molecules may be a new strategy to enhance the efficacy of type I IFNs and reduce their side effects. Using cell-based screening assay for new 26S proteasome inhibitors, we found that emodin, a natural anthraquinone, was a potent inhibitor of the human 26S proteasome. Emodin preferably inhibited the caspase-like and chymotrypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Computational modeling showed that emodin exhibited an orientation/conformation favorable to nucleophilic attack in the active pocket of the β1, β2, and β5 subunits of the 26S proteasome. Emodin increased phosphorylation of STAT1, decreased phosphorylation of STAT3 and increased endogenous gene expression stimulated by IFN-α. Emodin inhibited IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Emodin also sensitized the antiproliferative effect of IFN-α in HeLa cervical carcinoma cells and reduced tumor growth in Huh7 hepatocellular carcinoma-bearing mice. These results suggest that emodin potentiates the antiproliferative effect of IFN-α by activation of JAK/STAT pathway signaling through inhibition of 26S proteasome-stimulated IFNAR1 degradation. Therefore, emodin warrants further investigation as a new means to enhance the efficacy of IFN-α/β. PMID:26683360

  3. IDENTIFICATION OF CRYPTOSPORIDIUM SPECIES AND SOURCES IN RAW WASTEWATER USING A SMALL SUBUNIT RRNA-BASED PCR-RFLP TOOL

    EPA Science Inventory

    The species composition and source of Cryptosporidium oocysts in wastewater have never been determined, even though it is widely assumed that these oocysts are from human sewage. Recent molecular characterizations of Cryptosporidium parasites make it possible to differentiate hum...

  4. Isolation and identification of cutaneous leishmaniasis species by PCR-RFLP in Ilam province, the west of Iran.

    PubMed

    Kermanjani, Ali; Akhlaghi, Lame; Oormazdi, Hormozd; Hadighi, Ramtin

    2017-03-01

    Cutaneous leishmaniasis (CL) is one of the most common parasitic diseases and public health problems in Iran. CL is endemic in most parts of Ilam province, in the west of Iran. The distance from the center of country, the great number of divers rural areas, and lack of specialists and laboratory facilities have been the major causes of Leishmania species remaining unknown in this region. Polymerase chain reaction followed by restriction fragment length polymorphism was performed to identify the Leishmania species in 61 patients with cutaneous lesions. Eventually L. major was confirmed as the cause of cutaneous leishmaniasis in Ilam province, the west of Iran.

  5. PCR-RFLP Provides Discrimination for Total flaA Sequence Analysis in Clinical Campylobacter jejuni Isolates.

    PubMed

    Ghorbanalizadgan, Mahdi; Bakhshi, Bita; Najar-Peerayeh, Shahin

    2016-09-21

    The aims of this study were to determine the genetic relatedness among 20 clinical Campylobacter jejuni samples isolated from children with diarrhea in Iran and to introduce the best method of discrimination based on flagellin gene (flaA) sequence divergence. A total of 400 stool specimens were obtained from children under 5 years of age from July 2012 to June 2013. Primers were designed based on conserved sequences flanking the flaA gene that encompassed and amplified the entire flaA gene and followed by sequencing and data analysis with MEGA version 6.0.6 software. Ninety amino acids and 560 nucleotide polymorphic sequences were detected within 1,681 bp of the flaA sequence of which 43 (2.5%) and 12 (0.7%) were singletons, respectively. New repeat boxes within the flaA sequences were found in this study. Unweighted Pair Group Method with Arithmetic Mean dendrogram based on nucleotides of the full length flaA gene, the flaA short variable region gene and the in silico flaA phylogenic tree of DdeI restriction fragment length polymorphism (RFLP) profiles produced very similar clustering with a diversity index of 0.86 for each of the 3 methods. We conclude that flaA typing based on DdeI RFLP of the PCR products is a cheap, rapid, and reliable method for the epidemiological study of C. jejuni isolates of clinical origin in resource-limited regions or in large-scale population surveillance.

  6. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    ERIC Educational Resources Information Center

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  7. Hypervariable spacer regions are good sites for developing specific PCR-RFLP markers and PCR primers for screening actinorhizal symbionts.

    PubMed

    Varehese, Rajani; Chauhan, Vineeta S; Misra, Arvind K

    2003-06-01

    While the ribosomal RNA like highly conserved genes are good molecular chronometers for establishing phylogenetic relationships, they can also be useful in securing the amplification of adjoining hyper-variable regions. These regions can then be used for developing specific PCR primers or PCR-RFL profiles to be used as molecular markers. We report here the use of ITS region of rrn operon of Frankia for developing PCR-RFL profiles capable of discriminating between closely related frankiae. We have also made use of the ITS1 region of the nuclear rrn operon of Alnus nepalensis (D Don) for designing a PCR primer for specific amplification of nuclear DNA of this tree.

  8. PCR-RFLP Markers Identify Three Lineages of the North American and European Populations of Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora ramorum, the cause of Sudden Oak Death, has a wide host range and is found in the northern hemisphere. It is thought to be introduced to North America and Europe, but its origin is unknown. It has three major clonal lineages and two mating types. Sexual reproduction can only occur when ...

  9. A comprehensive experiment for molecular biology: Determination of single nucleotide polymorphism in human REV3 gene using PCR-RFLP.

    PubMed

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-02-01

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of DNA polymerase ζ and SNPs in this gene are associated with altered susceptibility to cancer. This newly designed experiment is composed of three parts, including genomic DNA extraction, gene amplification by PCR, and genotyping by RFLP. By combining these activities, the students are not only able to learn a series of biotechniques in molecular biology, but also acquire the ability to link the learned knowledge with practical applications. This comprehensive experiment will help the medical students improve the conceptual understanding of SNP and the technical understanding of SNP detection. © 2017 by The International Union of Biochemistry and Molecular Biology, 2017.

  10. Sectional relationships in the genus Musa L. inferred from the PCR-RFLP of organelle DNA sequences.

    PubMed

    Nwakanma, D C; Pillay, M; Okoli, B E; Tenkouano, A

    2003-09-01

    The objective of this study was to construct a molecular phylogeny of the genus Musa using restriction-site polymorphisms of the chloroplast (cpDNA) and mitochondrial DNA (mtDNA). Six cpDNA and two mtDNA sequences were amplified individually in polymerase chain reaction (PCR) experiments in 13 species representing the four sections of Musa. Ensete ventricosum (W.) Ch. was used as the outgroup. The amplified products were digested with ten restriction endonucleases. A total of 79 restriction-site changes were scored in the sample. Wagner parsimony using the branch and bound option defined two lines of evolution in Musa. One lineage comprised species of the sections Australimusa and Callimusa which have a basic number of x = 10 chromosomes, while most species of sections Eumusa and Rhodochlamys ( x = 11) formed the other lineage. Musa laterita Cheesman ( Rhodochlamys) had identical organellar genome patterns as some subspecies of the Musa acuminata Colla complex. The progenitors of the cultivated bananas, M. acuminata and Musa balbisiana Colla, were evolutionarily distinct from each other. Musa balbisiana occupied a basal position in the cladogram indicating an evolutionarily primitive status. The close phylogenetic relationship between M. laterita and M. acuminata suggests that species of the section Rhodochlamys may constitute a secondary genepool for the improvement of cultivated bananas.

  11. Ochratoxigenic Black Species of Aspergilli in Grape Fruits of Northern Italy Identified by an Improved PCR-RFLP Procedure

    PubMed Central

    Spadaro, Davide; Patharajan, Subban; Lorè, Alessia; Garibaldi, Angelo; Gullino, Maria Lodovica

    2012-01-01

    A collection of 356 isolates of Aspergillus spp. collected during 2006 and 2007 from grapevines in northern Italy were identified through Internal Transcribed Spacer based Restriction Fragment Length Polymorphism (ITS-RFLP) and tested for ochratoxin A (OTA) production. Restriction endonuclease digestion of the ITS products using the endonucleases HhaI, HinfI and RsaI, distinguished five different RFLPs. From each pattern, three samples were sequenced and the nucleotide sequences showed different species corresponding to Aspergillus niger, A. carbonarius, A. tubingensis, A. japonicus and A. aculeatus. By comparing the sequences of the ITS regions, also the uniseriate species A. japonicus and A. aculeatus could be differentiated by HinfI digestion of the ITS products. Among the aspergilli, A. niger was the major species associated with grapes during 2006 (57.4%), while A. carbonarius was the major species during 2007 (46.6%). All the strains of Aspergillus were tested for their ability to produce OTA on Yeast extract sucrose medium (YES), as it was tested as an optimal substrate for the evaluation of OTA production by black aspergilli. Out of 356 isolates, 63 (17.7%) isolates produced OTA ranging from 0.05 to 3.0 µg mL−1. Most of the ochratoxigenic isolates were A. carbonarius (46) in both years, but also some strains of A. tubingensis (11) and A. japonicus (6) produced lower amounts of OTA. PMID:22474565

  12. Analysis of the rDNA internal transcribed spacer region of the Fusarium species by polymerase chain reaction-restriction fragment length polymorphism

    PubMed Central

    ZARRIN, MAJID; GANJ, FARZANEH; FARAMARZI, SAMA

    2016-01-01

    The Fusarium species are a widely spread phytopathogen identified in an extensive variety of hosts. The Fusarium genus is one of the most heterogeneous fungi and is difficult to classify. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis is a useful method in detection of DNA polymorphism in objective sequences. The aim of the present study was to identify the phylogenetic associations and usefulness of the internal transcribed spacer (ITS) region as a genetic marker within the most clinically important strain of the Fusarium species. A total of 50 strains of Fusarium spp. were used in the study, including environmental, clinical and reference isolates. The primers ITS1 and ITS4 were used in the study. Two restriction enzymes, HaeIII and SmaI, were assessed for the digestion of PCR products. A PCR product of ~550-base pairs was generated for each Fusarium species. The digested products with HaeIII and SmaI demonstrated that the bands generated for the medically significant Fusarium species, including F. solani, F. oxysporum, F. verticillidea, F. proliferatum and F. fujikuri, have different restriction enzyme patterns. In conclusion, it appears that the PCR-RFLP method used in the present study produces a sufficient restriction profile for differentiation of the most medically significant Fusarium species. PMID:27073635

  13. Mouse homologue of yeast Prp19 interacts with mouse SUG1, the regulatory subunit of 26S proteasome.

    PubMed

    Sihn, Choong-Ryoul; Cho, Si Young; Lee, Jeong Ho; Lee, Tae Ryong; Kim, Sang Hoon

    2007-04-27

    Yeast Prp19 has been shown to involve in pre-mRNA splicing and DNA repair as well as being an ubiquitin ligase. Mammalian homologue of yeast Prp19 also plays on similar functional activities in cells. In the present study, we isolated mouse SUG1 (mSUG1) as binding partner of mouse Prp19 (mPrp19) by the yeast two-hybrid system. We confirmed the interaction of mPrp9 with mSUG1 by GST pull-down assay and co-immunoprecipitation assay. The N-terminus of mPrp19 including U-box domain was associated with the C-terminus of mSUG1. Although, mSUG1 is a regulatory subunit of 26S proteasome, mPrp19 was not degraded in the proteasome-dependent pathway. Interestingly, GFP-mPrp19 fusion protein was co-localized with mSUG1 protein in cytoplasm as the formation of the speckle-like structures in the presence of a proteasome inhibitor MG132. In addition, the activity of proteasome was increased in cells transfected with mPrp19. Taken together, these results suggest that mPrp19 involves the regulation of protein turnover and may transport its substrates to 26S proteasome through mSUG1 protein.

  14. Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses.

    PubMed

    Cheng, Tian-Fan; Jia, Xiao-Ming; Ma, Xiao-Hang; Lin, Hai-Ping; Zhao, Yu-Hua

    2004-01-01

    In this study, 18S rDNA and ITS-5.8S rDNA regions of four Shiraia bambusicola isolates collected from different species of bamboos were amplified by PCR with universal primer pairs NS1/NS8 and ITS5/ITS4, respectively, and sequenced. Phylogenetic analyses were conducted on three selected datasets of rDNA sequences. Maximum parsimony, distance and maximum likelihood criteria were used to infer trees. Morphological characteristics were also observed. The positioning of Shiraia in the order Pleosporales was well supported by bootstrap, which agreed with the placement by Amano (1980) according to their morphology. We did not find significant inter-hostal differences among these four isolates from different species of bamboos. From the results of analyses and comparison of their rDNA sequences, we conclude that Shiraia should be classified into Pleosporales as Amano (1980) proposed and suggest that it might be positioned in the family Phaeosphaeriaceae.

  15. Evidence that the Arabidopsis Ubiquitin C-terminal Hydrolases 1 and 2 associate with the 26S proteasome and the TREX-2 complex.

    PubMed

    Tian, Gang; Lu, Qing; Kohalmi, Susanne E; Rothstein, Steven J; Cui, Yuhai

    2012-11-01

    The 26S proteasome interacts with a number of different proteins, while the TREX-2 complex is an important component of the mRNA export machinery. In animals and yeast, members of the Ubiquitin C-terminal Hydrolase 37 (UCH37) family are found to associate with the 26S proteasome, but this has not been demonstrated in plants. The Arabidopsis UCH1 and UCH2 are orthologous to UCH37. Here, we show that UCH1 and UCH2 interact with the 26S proteasome lid subunits. In addition, the two UCHs also interact with TREX-2 components. Our data suggest that Arabidopsis UCHs may serve as a link between the 26S proteasome lid complex and the TREX-2 complex.

  16. Protein kinase NII and the regulation of rDNA transcription in mammalian cells.

    PubMed Central

    Belenguer, P; Baldin, V; Mathieu, C; Prats, H; Bensaid, M; Bouche, G; Amalric, F

    1989-01-01

    Transcription of ribosomal RNA genes is generally accepted to correlate with cell growth. Using primary cultures of adult bovine aortic endothelial (ABAE) cells, we have shown that transcription of rDNA in confluent cells falls to 5% of the transcription level in growing cells. Protein kinase NII appears to be a limiting factor to promote rDNA transcription in isolated nuclei of confluent cells. Protein kinase NII was detected by immunocytochemistry in the cytoplasm, nuclei and nucleoli of growing cells while it was no longer present in nucleoli of confluent cells. The kinase activity, in isolated nuclei, was estimated by endogenous phosphorylation of a specific substrate, nucleolin. A 10% residual activity was present in confluent cell nuclei compared to growing cell nuclei. Concomitantly, the transcription 'in vitro' of rDNA in the corresponding nuclei was also highly reduced (by 85%). Addition of exogenous protein kinase NII to confluent cell nuclei induced a strong increase in the phosphorylation of specific proteins including nucleolin. In parallel, the transcription of rDNA was increased by a factor of 5, to nearly the level observed in nuclei prepared from growing cells. These data suggest that, in confluent cells, factors necessary for rDNA transcription machinery are present but inactive in the nucleolus and that the phosphorylation of one or several of these factors (nucleolin, topoisomerase I,...) by protein kinase NII is a key event in the regulation of rDNA transcription. Images PMID:2780290

  17. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    SciTech Connect

    Samaras, Susan E.; Chen, Billy; Koch, Stephen R.; Sawyer, Douglas B.; Lim, Chee Chew; Davidson, Jeffrey M.

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. Black-Right-Pointing-Pointer Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. Black-Right-Pointing-Pointer Differential degradation appears related to nuclear vs. sarcolemmal localization. Black-Right-Pointing-Pointer Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  18. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato

    PubMed Central

    Sahu, Pranav Pankaj; Sharma, Namisha; Puranik, Swati; Chakraborty, Supriya; Prasad, Manoj

    2016-01-01

    Involvement of 26S proteasomal subunits in plant pathogen-interactions, and the roles of each subunit in independently modulating the activity of many intra- and inter-cellular regulators controlling physiological and defense responses of a plant were well reported. In this regard, we aimed to functionally characterize a Solanum lycopersicum 26S proteasomal subunit RPT4a (SlRPT4) gene, which was differentially expressed after Tomato leaf curl New Delhi virus (ToLCNDV) infection in tolerant cultivar H-88-78-1. Molecular analysis revealed that SlRPT4 protein has an active ATPase activity. SlRPT4 could specifically bind to the stem-loop structure of intergenic region (IR), present in both DNA-A and DNA-B molecule of the bipartite viral genome. Lack of secondary structure in replication-associated gene fragment prevented formation of DNA-protein complex suggesting that binding of SlRPT4 with DNA is secondary structure specific. Interestingly, binding of SlRPT4 to IR inhibited the function of RNA Pol-II and subsequently reduced the bi-directional transcription of ToLCNDV genome. Virus-induced gene silencing of SlRPT4 gene incited conversion of tolerant attributes of cultivar H-88-78-1 into susceptibility. Furthermore, transient overexpression of SlRPT4 resulted in activation of programmed cell death and antioxidant enzymes system. Overall, present study highlights non-proteolytic function of SlRPT4 and their participation in defense pathway against virus infection in tomato. PMID:27252084

  19. Rice Stripe Tenuivirus Nonstructural Protein 3 Hijacks the 26S Proteasome of the Small Brown Planthopper via Direct Interaction with Regulatory Particle Non-ATPase Subunit 3

    PubMed Central

    Xu, Yi; Wu, Jianxiang; Fu, Shuai; Li, Chenyang; Zhu, Zeng-Rong

    2015-01-01

    ABSTRACT The ubiquitin/26S proteasome system plays a vital role in regulating host defenses against pathogens. Previous studies have highlighted different roles for the ubiquitin/26S proteasome in defense during virus infection in both mammals and plants, but their role in the vectors that transmit those viruses is still unclear. In this study, we determined that the 26S proteasome is present in the small brown planthopper (SBPH) (Laodelphgax striatellus) and has components similar to those in plants and mammals. There was an increase in the accumulation of Rice stripe virus (RSV) in the transmitting vector SBPH after disrupting the 26S proteasome, indicating that the SBPH 26S proteasome plays a role in defense against RSV infection by regulating RSV accumulation. Yeast two-hybrid analysis determined that a subunit of the 26S proteasome, named RPN3, could interact with RSV NS3. Transient overexpression of RPN3 had no effect on the RNA silencing suppressor activity of RSV NS3. However, NS3 could inhibit the ability of SBPH rpn3 to complement an rpn3 mutation in yeast. Our findings also indicate that the direct interaction between RPN3 and NS3 was responsible for inhibiting the complementation ability of RPN3. In vivo, we found an accumulation of ubiquitinated protein in SBPH tissues where the RSV titer was high, and silencing of rpn3 resulted in malfunction of the SBPH proteasome-mediated proteolysis. Consequently, viruliferous SBPH in which RPN3 was repressed transmitted the virus more effectively as a result of higher accumulation of RSV. Our results suggest that the RSV NS3 protein is able to hijack the 26S proteasome in SBPH via a direct interaction with the RPN3 subunit to attenuate the host defense response. IMPORTANCE We show, for the first time, that the 26S proteasome components are present in the small brown planthopper and play a role in defense against its vectored plant virus (RSV). In turn, RSV encodes a protein that subverts the SBPH 26S proteasome

  20. Molecular phylogeny and barcoding of Caulerpa (Bryopsidales) based on the tufA, rbcL, 18S rDNA and ITS rDNA genes.

    PubMed

    Kazi, Mudassar Anisoddin; Reddy, C R K; Jha, Bhavanath

    2013-01-01

    The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters.

  1. Molecular Phylogeny and Barcoding of Caulerpa (Bryopsidales) Based on the tufA, rbcL, 18S rDNA and ITS rDNA Genes

    PubMed Central

    Kazi, Mudassar Anisoddin; Reddy, C. R. K.; Jha, Bhavanath

    2013-01-01

    The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters. PMID:24340028

  2. Budding Yeast Rif1 Controls Genome Integrity by Inhibiting rDNA Replication

    PubMed Central

    Albert, Benjamin; Hafner, Lukas; Lezaja, Aleksandra; Costanzo, Michael; Boone, Charlie; Shore, David

    2016-01-01

    The Rif1 protein is a negative regulator of DNA replication initiation in eukaryotes. Here we show that budding yeast Rif1 inhibits DNA replication initiation at the rDNA locus. Absence of Rif1, or disruption of its interaction with PP1/Glc7 phosphatase, leads to more intensive rDNA replication. The effect of Rif1-Glc7 on rDNA replication is similar to that of the Sir2 deacetylase, and the two would appear to act in the same pathway, since the rif1Δ sir2Δ double mutant shows no further increase in rDNA replication. Loss of Rif1-Glc7 activity is also accompanied by an increase in rDNA repeat instability that again is not additive with the effect of sir2Δ. We find, in addition, that the viability of rif1Δ cells is severely compromised in combination with disruption of the MRX or Ctf4-Mms22 complexes, both of which are implicated in stabilization of stalled replication forks. Significantly, we show that removal of the rDNA replication fork barrier (RFB) protein Fob1, alleviation of replisome pausing by deletion of the Tof1/Csm3 complex, or a large deletion of the rDNA repeat array all rescue this synthetic growth defect of rif1Δ cells lacking in addition either MRX or Ctf4-Mms22 activity. These data suggest that the repression of origin activation by Rif1-Glc7 is important to avoid the deleterious accumulation of stalled replication forks at the rDNA RFB, which become lethal when fork stability is compromised. Finally, we show that Rif1-Glc7, unlike Sir2, has an important effect on origin firing outside of the rDNA locus that serves to prevent activation of the DNA replication checkpoint. Our results thus provide insights into a mechanism of replication control within a large repetitive chromosomal domain and its importance for the maintenance of genome stability. These findings may have important implications for metazoans, where large blocks of repetitive sequences are much more common. PMID:27820830

  3. Mutations Affecting RNA Polymerase I-Stimulated Exchange and Rdna Recombination in Yeast

    PubMed Central

    Lin, Y. H.; Keil, R. L.

    1991-01-01

    HOT1 is a cis-acting recombination-stimulatory sequence isolated from the rDNA repeat unit of yeast. The ability of HOT1 to stimulate mitotic exchange appears to depend on its ability to promote high levels of RNA polymerase I transcription. A qualitative colony color sectoring assay was developed to screen for trans-acting mutations that alter the activity of HOT1. Both hypo-recombination and hyper-recombination mutants were isolated. Genetic analysis of seven HOT1 recombination mutants (hrm) that decrease HOT1 activity shows that they behave as recessive nuclear mutations and belong to five linkage groups. Three of these mutations, hrm1, hrm2, and hrm3, also decrease rDNA exchange but do not alter recombination in the absence of HOT1. Another mutation, hrm4, decreases HOT1-stimulated recombination but does not affect rDNA recombination or exchange in the absence of HOT1. Two new alleles of RAD52 were also isolated using this screen. With regard to HOT1 activity, rad52 is epistatic to all four hrm mutations indicating that the products of the HRM genes and of RAD52 mediate steps in the same recombination pathway. Finding mutations that decrease both the activity of HOT1 and exchange in the rDNA supports the hypothesis that HOT1 plays a role in rDNA recombination. PMID:2016045

  4. The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization.

    PubMed

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Martí, Dardo Andrea; Mariguela, Tatiane Casagrande; Cabral-de-Mello, Diogo Cavalcanti

    2016-08-01

    The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit.

  5. Internal phylogeny of the Chilopoda (Myriapoda, Arthropoda) using complete 18S rDNA and partial 28S rDNA sequences.

    PubMed Central

    Giribet, G; Carranza, S; Riutort, M; Baguñà, J; Ribera, C

    1999-01-01

    The internal phylogeny of the 'myriapod' class Chilopoda is evaluated for 12 species belonging to the five extant centipede orders, using 18S rDNA complete gene sequence and 28S rDNA partial gene sequence data. Equally and differentially weighted parsimony, neighbour-joining and maximum-likelihood were used for phylogenetic reconstruction, and bootstrapping and branch support analyses were performed to evaluate tree topology stability. The results show that the Chilopoda constitute a monophyletic group that is divided into two lines, Notostigmophora (= Scutigeromorpha) and Pleurostigmophora, as found in previous morphological analyses. The Notostigmophora are markedly modified for their epigenic mode of life. The first offshoot of the Pleurostigmophora are the Lithobiomorpha, followed by the Craterostigmomorpha and by the Epimorpha s. str. (= Scolopendromorpha + Geophilomorpha), although strong support for the monophyly of the Epimorpha s. lat. (= Craterostigmomorpha + Epimorpha s. str.) is only found in the differentially weighted parsimony analysis. PMID:10087567

  6. Introns and their flanking sequences of Bombyx mori rDNA.

    PubMed Central

    Fujiwara, H; Ogura, T; Takada, N; Miyajima, N; Ishikawa, H; Maekawa, H

    1984-01-01

    We obtained two different clones (16 kb and 13 kb) of B. mori rDNA with intron sequence within the 28S-rRNA coding region. The sequence surrounding the intron was found to be highly conserved as indicated in several eukaryotes (Tetrahymena, Drosophila and Xenopus). The 28S rRNA-coding sequence of 16 kb and 13 kb clone was interrupted at precisely the same sites as those where the D. melanogaster rDNA interrupted by the type I and type II intron, respectively. The intron sequences of B. mori were different from those of D. melanogaster. In 16 kb clone, the intron was flanked by 14 bp duplication of the junction sequence, which was also present once within the 28S rRNA-coding region of rDNA without intron. This 14 bp sequence was identical with those surrounding the introns of Dipteran rDNAs. PMID:6091041

  7. Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences

    USGS Publications Warehouse

    Redberg, G.L.; Hibbett, D.S.; Ammirati, J.F.; Rodriguez, R.J.

    2003-01-01

    The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.

  8. TOPORS, a Dual E3 Ubiquitin and Sumo1 Ligase, Interacts with 26 S Protease Regulatory Subunit 4, Encoded by the PSMC1 Gene.

    PubMed

    Czub, Barbara; Shah, Amna Z; Alfano, Giovanna; Kruczek, Przemysław M; Chakarova, Christina F; Bhattacharya, Shomi S

    2016-01-01

    The significance of the ubiquitin-proteasome system (UPS) for protein degradation has been highlighted in the context of neurodegenerative diseases, including retinal dystrophies. TOPORS, a dual E3 ubiquitin and SUMO1 ligase, forms a component of the UPS and selected substrates for its enzymatic activities, such as DJ-1/PARK7 and APOBEC2, are important for neuronal as well as retinal homeostasis, respectively. TOPORS is ubiquitously expressed, yet its mutations are only known to result in autosomal dominant retinitis pigmentosa. We performed a yeast two-hybrid (Y2H) screen of a human retinal cDNA library in order to identify interacting protein partners of TOPORS from the retina, and thus begin delineating the putative disease mechanism(s) associated with the retina-specific phenotype resulting from mutations in TOPORS. The screen led to isolation of the 26 S protease regulatory subunit 4 (P26s4/ PSMC1), an ATPase indispensable for correct functioning of UPS-mediated proteostasis. The interaction between endogenous TOPORS and P26s4 proteins was validated by co-immuno-precipitation from mammalian cell extracts and further characterised by immunofluorescent co-localisation studies in cell lines and retinal sections. Findings from hTERT-RPE1 and 661W cells demonstrated that TOPORS and P26s4 co-localise at the centrosome in cultured cells. Immunofluorescent staining of mouse retinae revealed a strong P26s4 reactivity at the interface between retinal pigmented epithelium (RPE) layer and the photoreceptors outer segments (OS). This finding leads us to speculate that P26s4, along with TOPORS, may have a role(s) in RPE phagocytosis, in addition to contributing to the overall photoreceptor and retinal homeostasis via the UPS.

  9. TOPORS, a Dual E3 Ubiquitin and Sumo1 Ligase, Interacts with 26 S Protease Regulatory Subunit 4, Encoded by the PSMC1 Gene

    PubMed Central

    Czub, Barbara; Shah, Amna Z.; Alfano, Giovanna; Kruczek, Przemysław M.; Chakarova, Christina F.; Bhattacharya, Shomi S.

    2016-01-01

    The significance of the ubiquitin-proteasome system (UPS) for protein degradation has been highlighted in the context of neurodegenerative diseases, including retinal dystrophies. TOPORS, a dual E3 ubiquitin and SUMO1 ligase, forms a component of the UPS and selected substrates for its enzymatic activities, such as DJ-1/PARK7 and APOBEC2, are important for neuronal as well as retinal homeostasis, respectively. TOPORS is ubiquitously expressed, yet its mutations are only known to result in autosomal dominant retinitis pigmentosa. We performed a yeast two-hybrid (Y2H) screen of a human retinal cDNA library in order to identify interacting protein partners of TOPORS from the retina, and thus begin delineating the putative disease mechanism(s) associated with the retina-specific phenotype resulting from mutations in TOPORS. The screen led to isolation of the 26 S protease regulatory subunit 4 (P26s4/ PSMC1), an ATPase indispensable for correct functioning of UPS-mediated proteostasis. The interaction between endogenous TOPORS and P26s4 proteins was validated by co-immuno-precipitation from mammalian cell extracts and further characterised by immunofluorescent co-localisation studies in cell lines and retinal sections. Findings from hTERT-RPE1 and 661W cells demonstrated that TOPORS and P26s4 co-localise at the centrosome in cultured cells. Immunofluorescent staining of mouse retinae revealed a strong P26s4 reactivity at the interface between retinal pigmented epithelium (RPE) layer and the photoreceptors outer segments (OS). This finding leads us to speculate that P26s4, along with TOPORS, may have a role(s) in RPE phagocytosis, in addition to contributing to the overall photoreceptor and retinal homeostasis via the UPS. PMID:26872363

  10. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis.

    PubMed

    Lee, Boo-Ja; Kwon, Sun Jae; Kim, Sung-Kyu; Kim, Ki-Jeong; Park, Chang-Jin; Kim, Young-Jin; Park, Ohkmae K; Paek, Kyung-Hee

    2006-12-15

    Two-dimensional gel electrophoresis (2-DE) was applied for the screening of Tobacco mosaic virus (TMV)-induced hot pepper (Capsicum annuum cv. Bugang) nuclear proteins. From differentially expressed protein spots, we acquired the matched peptide mass fingerprint (PMF) data, analyzed by MALDI-TOF MS, from the non-redundant hot pepper EST protein FASTA database using the VEMS 2.0 software. Among six identified nuclear proteins, the hot pepper 26S proteasome subunit RPN7 (CaRPN7) was subjected to further study. The level of CaRPN7 mRNA was specifically increased during incompatible TMV-P(0) interaction, but not during compatible TMV-P(1.2) interaction. When CaRPN7::GFP fusion protein was targeted in onion cells, the nuclei had been broken into pieces. In the hot pepper leaves, cell death was exacerbated and genomic DNA laddering was induced by Agrobacterium-mediated transient overexpression of CaPRN7. Thus, this report presents that the TMV-induced CaRPN7 may be involved in programmed cell death (PCD) in the hot pepper plant.

  11. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis

    SciTech Connect

    Lee, Boo-Ja; Kwon, Sun Jae; Kim, Sung-Kyu; Kim, Ki-Jeong; Park, Chang-Jin; Kim, Young-Jin; Park, Ohkmae K.; Paek, Kyung-Hee . E-mail: khpaek95@korea.ac.kr

    2006-12-15

    Two-dimensional gel electrophoresis (2-DE) was applied for the screening of Tobacco mosaic virus (TMV)-induced hot pepper (Capsicum annuum cv. Bugang) nuclear proteins. From differentially expressed protein spots, we acquired the matched peptide mass fingerprint (PMF) data, analyzed by MALDI-TOF MS, from the non-redundant hot pepper EST protein FASTA database using the VEMS 2.0 software. Among six identified nuclear proteins, the hot pepper 26S proteasome subunit RPN7 (CaRPN7) was subjected to further study. The level of CaRPN7 mRNA was specifically increased during incompatible TMV-P{sub 0} interaction, but not during compatible TMV-P{sub 1.2} interaction. When CaRPN7::GFP fusion protein was targeted in onion cells, the nuclei had been broken into pieces. In the hot pepper leaves, cell death was exacerbated and genomic DNA laddering was induced by Agrobacterium-mediated transient overexpression of CaPRN7. Thus, this report presents that the TMV-induced CaRPN7 may be involved in programmed cell death (PCD) in the hot pepper plant.

  12. Systematics of Mexiconema cichlasomae (Nematoda: Daniconematidae) based on sequences of SSU rDNA.

    PubMed

    Mejia-Madrid, H H; Aguirre-Macedo, M L

    2011-02-01

    The molecular characterization of the daniconematid dracunculoid Mexiconema cichlasomae Moravec, Vidal, and Salgado-Maldonado, 1992 through the sequencing of SSU rDNA from adult individuals is presented herein. Additionally, preliminary genetic relationships of this nematode are inferred from alignment of sequences generated previously for other dracunculoids. Maximum parsimony and maximum likelihood analyses recovered identical trees. As anticipated by previous taxonomic work, M. cichlasomae is putatively closely related to skrjabillanid dracunculoids represented by Molnaria intestinalis (Dogiel and Bychovsky, 1934) and Skrjabillanus scardinii Molnár, 1966 SSU rDNA sequences, but the relationships of this newly discovered clade to other dracunculoid clades remain unresolved.

  13. Identification of species Leucochloridium paradoxum and L. perturbatum (Trematoda) based on rDNA sequences.

    PubMed

    Zhukova, A; Prokhorova, E E; Tokmakova, A S; Tsymbalenko, N V; Ataev, G L

    2014-01-01

    The full nucleotide sequences of DNA ribosome cluster of Leucochloridium paradoxum Carus, 1835 and L. perturbatum Pojmanska, 1967 were obtained. rDNA was extracted from 40 isolates of Leucochloridium sp. and analyzed using specific primers. The intraspecific genetically identity of morphologically detected L. paradoxum and L. perturbatum sporocysts was proven. A noticeable interspecific divergence between L. paradoxum and L. perturbatum was indicated. Using rDNA genotyping a case of double infection of snail Succinea sp. with L. paradoxum and L. perturbatum sporocysts was detected.

  14. Zygosaccharomyces rouxii strains CECT 11923 and Z. rouxii CECT 10425: Two new putative hybrids?

    PubMed

    Wrent, Petra; Rivas, Eva-María; Peinado, José M; de Silóniz, María-Isabel

    2017-01-16

    Based on IGS-PCR RFLP polymorphism, we previously detected two Z. rouxii strains (CECT 11923 and CECT 10425) that clustered with hybrid strains (NCYC 1682, NCYC 3060 and NCYC 3061). Given the recently recognized important industrial role of hybrids, their detection is very useful. Based on the IGS1 rDNA region alignment of hybrid strains and the Z. rouxii CECT 11923 and CECT 10425, in this work, we developed a pair of Zygosaccharomyces hybrid-specific primers, HibZF/HibZR. Positive amplicons were only obtained in the Zygosaccharomyces spp. hybrids included in this study and the CECT 11923 and CECT 10425 strains analyzed here. In the present study, we applied molecular tools to highlight the nature of these strains; they are quite different from each other as well as from Z. rouxii type strain. Based on the presence of two heterologous copies of nuclear-encoded genes (SOD2 and HIS3), the sequences of divergent 5.8S-ITS rDNA, D1/D2 26S rDNA copies and, the amplification with species-specific primer for Z. rouxii and Z. pseudorouxii, we hypothesize that the CECT 11923 strain might be a hybrid strain. Whereas, CECT 10425, the sequence analysis of 5.8S-ITS rDNA and D1/D2 26S rDNA copies presented 99-100% sequence identity with Zygosaccharomyces sp. NBRC 10669 (LN849119.1) and Z. sapae ABT 301(T). Nevertheless, we discard that it could be a Z. sapae strain based on the results obtained in this study. Namely, the amplification with hybrid-specific primer designed in this study, the number of divergent copies of HIS3 (2), the fact that it only possesses one SOD2 gene and the amplification with species-specific primer for Z. pseudorouxii, therefore it could be a new species or a hybrid strain.

  15. Copper modulates the degradation of copper chaperone for Cu,Zn superoxide dismutase by the 26 S proteosome.

    PubMed

    Bertinato, Jesse; L'Abbé, Mary R

    2003-09-12

    Copper chaperones are copper-binding proteins that directly insert copper into specific targets, preventing the accumulation of free copper ions that can be toxic to the cell. Despite considerable advances in the understanding of copper transfer from copper chaperones to their target, to date, there is no information regarding how the activity of these proteins is regulated in higher eukaryotes. The insertion of copper into the antioxidant enzyme Cu,Zn superoxide dismutase (SOD1) depends on the copper chaperone for SOD1 (CCS). We have recently reported that CCS protein is increased in tissues of rats fed copper-deficient diets suggesting that copper may regulate CCS expression. Here we show that whereas copper deficiency increased CCS protein in rats, mRNA level was unaffected. Rodent and human cell lines cultured in the presence of the specific copper chelator 2,3,2-tetraamine displayed a dose-dependent increase in CCS protein that could be reversed with the addition of copper but not iron or zinc to the cells. Switching cells from copper-deficient to copper-rich medium promoted the rapid degradation of CCS, which could be blocked by the proteosome inhibitors MG132 and lactacystin but not a cysteine protease inhibitor or inhibitors of the lysosomal degradation pathway. In addition, CCS degradation was slower in copper-deficient cells than in cells cultured in copper-rich medium. Together, these data show that copper regulates CCS expression by modulating its degradation by the 26 S proteosome and suggest a novel role for CCS in prioritizing the utilization of copper when it is scarce.

  16. Top2 and Sgs1-Top3 Act Redundantly to Ensure rDNA Replication Termination

    PubMed Central

    Fredsøe, Jacob; Nielsen, Ida; Pedersen, Jakob Madsen; Bentsen, Iben Bach; Lisby, Michael; Bjergbaek, Lotte; Andersen, Anni H

    2015-01-01

    Faithful DNA replication with correct termination is essential for genome stability and transmission of genetic information. Here we have investigated the potential roles of Topoisomerase II (Top2) and the RecQ helicase Sgs1 during late stages of replication. We find that cells lacking Top2 and Sgs1 (or Top3) display two different characteristics during late S/G2 phase, checkpoint activation and accumulation of asymmetric X-structures, which are both independent of homologous recombination. Our data demonstrate that checkpoint activation is caused by a DNA structure formed at the strongest rDNA replication fork barrier (RFB) during replication termination, and consistently, checkpoint activation is dependent on the RFB binding protein, Fob1. In contrast, asymmetric X-structures are formed independent of Fob1 at less strong rDNA replication fork barriers. However, both checkpoint activation and formation of asymmetric X-structures are sensitive to conditions, which facilitate fork merging and progression of replication forks through replication fork barriers. Our data are consistent with a redundant role of Top2 and Sgs1 together with Top3 (Sgs1-Top3) in replication fork merging at rDNA barriers. At RFB either Top2 or Sgs1-Top3 is essential to prevent formation of a checkpoint activating DNA structure during termination, but at less strong rDNA barriers absence of the enzymes merely delays replication fork merging, causing an accumulation of asymmetric termination structures, which are solved over time. PMID:26630413

  17. Molecular rDNA phylogeny of Telotylenchidae Siddiqi, 1960 and evaluation of tail termini

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three stunt nematode species, Tylenchorhynchus leviterminalis, T. claytoni and Bitylenchus dubius were characterized with segments of small subunit 18S and large subunit 28S rDNA sequences and placed in molecular phylogenetic context with other taxa of Telotylechidae in GenBank. In 18S trees, the sp...

  18. Physical mapping of 5S and 45S rDNA loci in pufferfishes (Tetraodontiformes).

    PubMed

    Noleto, Rafael Bueno; Vicari, Marcelo Ricardo; Cipriano, Roger Raupp; Artoni, Roberto Ferreira; Cestari, Marta Margarete

    2007-06-01

    Chromosomal features, location and variation of the major and minor rDNA genes cluster were studied in three pufferfish species: Sphoeroides greeleyi and Sphoeroides testudineus (Tetraodontidae) and Cyclichthys spinosus (Diodontidae). The location of the major rDNA was revealed with an 18S probe in two loci for all species. The minor rDNA loci (5S rDNA) was found in one chromosome pair in tetraodontid fishes and four sites located on two distinct chromosomal pairs in C. spinosus. A syntenical organization was not observed among the ribosomal genes. Signal homogeneity for GC/AT-DNA specific fluorochromes was observed in diodontid fish except in the NORs regions, which were CMA3-positive. Giemsa karyotypes of tetraodontid species presents 2n=46, having the same diploid value of other Sphoeroides species that have been investigated. On the other hand, the karyotype of C. spinosus, described for the first time, shows 2n=50 chromosomes (4m+18sm+12st+16a). The foreknowledge of the karyotypic structure of this group and also the physical mapping of certain genes could be very helpful for further DNA sequence analysis.

  19. Evolution of Ribosomal DNA (Rdna) Genetic Structure in Colonial Californian Populations of Avena Barbata

    PubMed Central

    Cluster, P. D.; Allard, R. W.

    1995-01-01

    DNA samples from 980 plants of Avena barbata from 48 ecologically diverse sites in California and Oregon were assayed to determine their genotype for two duplicated loci governing rDNA variants. More than 40 different rDNA genotypes were observed among which 5 made up 96% of our sample in environmentally homogeneous sites; predominant genotypes were less frequent and recombinant genotypes were more frequent in environmentally heterogeneous sites. The spatial distribution of each predominant rDNA genotype was nearly an exact overlay on both macro- and microgeographical scales of a distinctive habitat and also of the distribution of an eight-locus morphological-allozyme variant genotype. In all, seven different habitat-genotype combinations (ecotypes) were distinguishable on the basis of their morphological-allozyme-rDNA genotypes. None of these seven genotypes has been found in ancestral Spanish populations; thus the above predominant multilocus genotypes (ecotypes) of the colonial populations evidently evolved subsequent to the recent introduction (within 150-200 generations) of A. barbata to California. The precise associations of specific alleles and genotypes of the morphological allozyme and rDNA loci with different specifiable habitats leads us to the conclusion that natural selection favoring particular multilocus combinations of alleles in different habitats was the main guiding force in shaping the internal genetic structure of local populations as well as the overall adaptive landscape of A. barbata over California and Oregon. PMID:7713443

  20. A pilot study to investigate the role of the 26S proteasome in radiotherapy resistance and loco-regional recurrence following breast conserving therapy for early breast cancer.

    PubMed

    Elfadl, Dalia; Hodgkinson, Victoria C; Long, Ervine D; Scaife, Lucy; Drew, Philip J; Lind, Michael J; Cawkwell, Lynn

    2011-08-01

    Breast conserving therapy is a currently accepted method for managing patients with early stage breast cancer. However, approximately 7% of patients may develop loco-regional tumour recurrence within 5 years. We previously reported that expression of the 26S proteasome may be associated with radio-resistance. Here we aimed to analyse the 26S proteasome in a pilot series of early breast cancers and correlate the findings with loco-regional recurrence. Fourteen patients with early breast cancer who developed loco-regional recurrence within 4 years of completing breast conserving therapy were selected according to strict criteria and compared with those from 14 patients who were disease-free at 10 years. Decreased expression of the 26S proteasome was significantly associated with radio-resistance, manifested as the development of a loco-regional recurrence within 4 years of breast conserving therapy (p = 0.018). This small pilot study provides further suggestion that the 26S proteasome may be associated with response to radiotherapy.

  1. Distribution of 45S rDNA sites in chromosomes of plants: Structural and evolutionary implications

    PubMed Central

    2012-01-01

    Background 45S rDNA sites are the most widely documented chromosomal regions in eukaryotes. The analysis of the distribution of these sites along the chromosome in several genera has suggested some bias in their distribution. In order to evaluate if these loci are in fact non-randomly distributed and what is the influence of some chromosomal and karyotypic features on the distribution of these sites, a database was built with the position and number of 45S rDNA sites obtained by FISH together with other karyotypic data from 846 plant species. Results In angiosperms the most frequent numbers of sites per diploid karyotype were two and four, suggesting that in spite of the wide dispersion capacity of these sequences the number of rDNA sites tends to be restricted. The sites showed a preferential distribution on the short arms, mainly in the terminal regions. Curiously, these sites were frequently found on the short arms of acrocentric chromosomes where they usually occupy the whole arm. The trend to occupy the terminal region is especially evident in holokinetic chromosomes, where all of them were terminally located. In polyploids there is a trend towards reduction in the number of sites per monoploid complement. In gymnosperms, however, the distribution of rDNA sites varied strongly among the sampled families. Conclusions The location of 45S rDNA sites do not vary randomly, occurring preferentially on the short arm and in the terminal region of chromosomes in angiosperms. The meaning of this preferential location is not known, but some hypotheses are considered and the observed trends are discussed. PMID:23181612

  2. Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder

    PubMed Central

    Teschler, Stefanie; Gotthardt, Julia; Dammann, Gerhard; Dammann, Reinhard H.

    2016-01-01

    Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5′-external transcribed spacer/5′ETS) and the promoter of the proline rich membrane anchor 1 gene (PRIMA1) in peripheral blood samples of 24 female patients (mean age (33 ± 11) years) diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7) years). A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5′ETS were significantly lower (0.9-fold) in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5′ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD. PMID:26742039

  3. Three rDNA Loci-Based Phylogenies of Tintinnid Ciliates (Ciliophora, Spirotrichea, Choreotrichida).

    PubMed

    Zhang, Qianqian; Agatha, Sabine; Zhang, Wuchang; Dong, Jun; Yu, Ying; Jiao, Nianzhi; Gong, Jun

    2017-03-01

    To improve understanding of diversity, phylogeny and evolution in tintinnid ciliates, it is essential to link multiple molecular markers with properly identified and documented morphospecies. Accordingly, 54 tintinnid morphospecies/isolates mainly from the Yellow and East China Seas were collected and analysed. Using single-cell approaches, sequences were obtained for three rDNA loci (18S, ITS1-5.8S-ITS2, D1-D5 region of 28S). Twenty-six tintinnid morphospecies (29 isolates) are documented by micrographs, measurements, morphologically described, and compared with the original species description. Three rDNA loci-based phylogenetic analyses were then performed for these identified isolates. Sequences from 25 unidentified species/isolates were also included in the comparison of the three rDNA loci. Ribosomal DNA genes of the genus Leprotintinnus were analysed for the first time, showing that Leprotintinnus was closely related to Tintinnopsis radix and branched distinctly apart from the family Tintinnidiidae. Four novel clades (VI to IX) of the Tintinnopsis complex emerged in the 18S genealogies. Analyses of the relative variability in the ITS and 28S regions vs. the 18S rDNA showed that the ITS1-5.8S-ITS2 and ITS2 regions well co-varied with the 18S rDNA when the variations of the latter were less than 3%, whereas at difference of less than 1%, no correlation was found between the compared loci. These findings highlight the difficulties in using variable locus-based cut-off divergences in circumscribing tintinnid morphospecies.

  4. How well do ITS rDNA sequences differentiate species of true morels (Morchella)?

    PubMed

    Du, Xi-Hui; Zhao, Qi; Yang, Zhu L; Hansen, Karen; Taskin, Hatira; Büyükalaca, Saadet; Dewsbury, Damon; Moncalvo, Jean-Marc; Douhan, Greg W; Robert, Vincent A R G; Crous, Pedro W; Rehner, Stephen A; Rooney, Alejandro P; Sink, Stacy; O'Donnell, Kerry

    2012-01-01

    Arguably more mycophiles hunt true morels (Morchella) during their brief fruiting season each spring in the northern hemisphere than any other wild edible fungus. Concerns about overharvesting by individual collectors and commercial enterprises make it essential that science-based management practices and conservation policies are developed to ensure the sustainability of commercial harvests and to protect and preserve morel species diversity. Therefore, the primary objectives of the present study were to: (i) investigate the utility of the ITS rDNA locus for identifying Morchella species, using phylogenetic species previously inferred from multilocus DNA sequence data as a reference; and (ii) clarify insufficiently identified sequences and determine whether the named sequences in GenBank were identified correctly. To this end, we generated 553 Morchella ITS rDNA sequences and downloaded 312 additional ones generated by other researchers from GenBank using emerencia and analyzed them phylogenetically. Three major findings emerged: (i) ITS rDNA sequences were useful in identifying 48/62 (77.4%) of the known phylospecies; however, they failed to identify 12 of the 22 species within the species-rich Elata Subclade and two closely related species in the Esculenta Clade; (ii) at least 66% of the named Morchella sequences in GenBank are misidentified; and (iii) ITS rDNA sequences of up to six putatively novel Morchella species were represented in GenBank. Recognizing the need for a dedicated Web-accessible reference database to facilitate the rapid identification of known and novel species, we constructed Morchella MLST (http://www.cbs.knaw.nl/morchella/), which can be queried with ITS rDNA sequences and those of the four other genes used in our prior multilocus molecular systematic studies of this charismatic genus.

  5. Dietary apigenin potentiates the inhibitory effect of interferon-α on cancer cell viability through inhibition of 26S proteasome-mediated interferon receptor degradation

    PubMed Central

    Li, Sheng; Yang, Li-juan; Wang, Ping; He, Yu-jiao; Huang, Jun-mei; Liu, Han-wei; Shen, Xiao-fei; Wang, Fei

    2016-01-01

    Background Type I interferons (IFN-α/β) have broad and potent immunoregulatory and antiproliferative activities. However, it is still known whether the dietary flavonoids exhibit their antiviral and anticancer properties by modulating the function of type I IFNs. Objective This study aimed at determining the role of apigenin, a dietary plant flavonoid abundant in common fruits and vegetables, on the type I IFN-mediated inhibition of cancer cell viability. Design Inhibitory effect of apigenin on human 26S proteasome, a known negative regulator of type I IFN signaling, was evaluated in vitro. Molecular docking was conducted to know the interaction between apigenin and subunits of 26S proteasome. Effects of apigenin on JAK/STAT pathway, 26S proteasome-mediated interferon receptor stability, and cancer cells viability were also investigated. Results Apigenin was identified to be a potent inhibitor of human 26S proteasome in a cell-based assay. Apigenin inhibited the chymotrypsin-like, caspase-like, and trypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Results from computational modeling of the potential interactions of apigenin with the chymotrypsin site (β5 subunit), caspase site (β1 subunit), and trypsin site (β2 subunit) of the proteasome were consistent with the observed proteasome inhibitory activity. Apigenin enhanced the phosphorylation of signal transducer and activator of transcription proteins (STAT1 and STAT2) and promoted the endogenous IFN-α-regulated gene expression. Apigenin inhibited the IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Apigenin also sensitized the inhibitory effect of IFN-α on viability of cervical carcinoma HeLa cells. Conclusion These results suggest that apigenin potentiates the inhibitory effect of IFN-α on cancer cell viability by activating JAK/STAT signaling pathway through inhibition of 26S proteasome

  6. rDNA genetic imbalance and nucleolar chromatin restructuring is induced by distant hybridization between Raphanus sativus and Brassica alboglabra.

    PubMed

    Long, Hong; Chen, Chunli; Wang, Bing; Feng, Yanni

    2015-01-01

    The expression of rDNA in hybrids inherited from only one progenitor refers to nucleolar dominance. The molecular basis for choosing which genes to silence remains unclear. We report genetic imbalance induced by distant hybridization correlates with formation of rDNA genes (NORs) in the hybrids between Raphanus sativus L. and Brassica alboglabra Bailey. Moreover, increased CCGG methylation of rDNA in F1 hybrids is concomitant with Raphanus-derived rDNA gene silencing and rDNA transcriptional inactivity revealed by nucleolar configuration restriction. Newly formed rDNA gene locus occurred through chromosomal in F1 hybrids via chromosomal imbalance. NORs are gained de novo, lost, and/or transposed in the new genome. Inhibition of methyltransferases leads to changes in nucleolar architecture, implicating a key role of methylation in control of nucleolar dominance and vital nucleolar configuration transition. Our findings suggest that gene imbalance and methylation-related chromatin restructuring is important for rDNA gene silencing that may be crucial for synthesis of specific proteins.

  7. Rapid and direct detection of clostridium chauvoei by PCR of the 16S-23S rDNA spacer region and partial 23S rDNA sequences.

    PubMed

    Sasaki, Y; Yamamoto, K; Kojima, A; Tetsuka, Y; Norimatsu, M; Tamura, Y

    2000-12-01

    Clostridium chauvoei causes blackleg, which is difficult to distinguish from the causative clostridia of malignant edema. Therefore, a single-step PCR system was developed for specific detection of C. chauvoei DNA using primers derived from the 16S-23S rDNA spacer region and partial 23S rDNA sequences. The specificity of the single-step PCR system was demonstrated by testing 37 strains of clostridia and 3 strains of other genera. A 509 bp PCR product, which is a C. choauvoei-specific PCR product, could be amplified from all of the C. chauvoei strains tested, but not from the other strains. Moreover, this single-step PCR system specifically detected C. chauvoei DNA in samples of muscle from mice 24 hr after inoculation with 100 spores of C. chauvoei, and in clinical materials from a cow affected with blackleg. These results suggest that our single-step PCR system may be useful for direct detection of C. chauvoei in culture and in clinical materials from animals affected with blackleg.

  8. When molecules support morphology: Phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA.

    PubMed

    Budaeva, Nataliya; Schepetov, Dmitry; Zanol, Joana; Neretina, Tatiana; Willassen, Endre

    2016-01-01

    Onuphid polychaetes are tubicolous marine worms commonly reported worldwide from intertidal areas to hadal depths. They often dominate in benthic communities and have economic importance in aquaculture and recreational fishing. Here we report the phylogeny of the family Onuphidae based on the combined analyses of nuclear (18S rDNA) and mitochondrial (16S rDNA) genes. Results of Bayesian and Maximum Likelihood analyses supported the monophyly of Onuphidae and its traditional subdivision into two monophyletic subfamilies: Onuphinae and Hyalinoeciinae. Ten of 22 recognized genera were monophyletic with strong node support; four more genera included in this study were either monotypic or represented by a single species. None of the genera appeared para- or polyphyletic and this indicates a strong congruence between the traditional morphology-based systematics of the family and the newly obtained molecular-based phylogenetic reconstructions. Intergeneric relationships within Hyalinoeciinae were not resolved. Two strongly supported monophyletic groups of genera were recovered within Onuphinae: ((Onuphis, Aponuphis), Diopatra, Paradiopatra) and (Hirsutonuphis, (Paxtonia, (Kinbergonuphis, Mooreonuphis))). A previously accepted hypothesis on the subdivision of Onuphinae into the Onuphis group of genera and the Diopatra group of genera was largely rejected.

  9. Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants.

    PubMed

    Muchová, Veronika; Amiard, Simon; Mozgová, Iva; Dvořáčková, Martina; Gallego, Maria E; White, Charles; Fajkus, Jiří

    2015-01-01

    Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology-dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock-out mutants in RAD51B, one of the Rad51 paralogs of A. thaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B-dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double-stranded breaks (measured as γ-H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S-phase, and is ATM-independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non-transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double-stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single-stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability.

  10. Divergent nuclear 18S rDNA paralogs in a turkey coccidium, Eimeria meleagrimitis, complicate molecular systematics and identification.

    PubMed

    El-Sherry, Shiem; Ogedengbe, Mosun E; Hafeez, Mian A; Barta, John R

    2013-07-01

    Multiple 18S rDNA sequences were obtained from two single-oocyst-derived lines of each of Eimeria meleagrimitis and Eimeria adenoeides. After analysing the 15 new 18S rDNA sequences from two lines of E. meleagrimitis and 17 new sequences from two lines of E. adenoeides, there were clear indications that divergent, paralogous 18S rDNA copies existed within the nuclear genome of E. meleagrimitis. In contrast, mitochondrial cytochrome c oxidase subunit I (COI) partial sequences from all lines of a particular Eimeria sp. were identical and, in phylogenetic analyses, COI sequences clustered unambiguously in monophyletic and highly-supported clades specific to individual Eimeria sp. Phylogenetic analysis of the new 18S rDNA sequences from E. meleagrimitis showed that they formed two distinct clades: Type A with four new sequences; and Type B with nine new sequences; both Types A and B sequences were obtained from each of the single-oocyst-derived lines of E. meleagrimitis. Together these rDNA types formed a well-supported E. meleagrimitis clade. Types A and B 18S rDNA sequences from E. meleagrimitis had a mean sequence identity of only 97.4% whereas mean sequence identity within types was 99.1-99.3%. The observed intraspecific sequence divergence among E. meleagrimitis 18S rDNA sequence types was even higher (approximately 2.6%) than the interspecific sequence divergence present between some well-recognized species such as Eimeria tenella and Eimeria necatrix (1.1%). Our observations suggest that, unlike COI sequences, 18S rDNA sequences are not reliable molecular markers to be used alone for species identification with coccidia, although 18S rDNA sequences have clear utility for phylogenetic reconstruction of apicomplexan parasites at the genus and higher taxonomic ranks.

  11. Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome.

    PubMed

    Dawson, Simon; Apcher, Sebastien; Mee, Maureen; Higashitsuji, Hiroaki; Baker, Rohan; Uhle, Stefan; Dubiel, Wolfgang; Fujita, Jun; Mayer, R John

    2002-03-29

    A yeast two-hybrid screen with the human S6 (TBP7, RPT3) ATPase of the 26 S proteasome has identified gankyrin, a liver oncoprotein, as an interacting protein. Gankyrin interacts with both free and regulatory complex-associated S6 ATPase and is not stably associated with the 26 S particle. Deletional mutagenesis shows that the C-terminal 78 amino acids of the S6 ATPase are necessary and sufficient to mediate the interaction with gankyrin. Deletion of an orthologous gene in Saccharomyces cerevisiae suggests that it is dispensable for cell growth and viability. Overexpression and precipitation of tagged gankyrin from cultured cells detects a complex containing co-transfected tagged S6 ATPase (or endogenous S6) and endogenous cyclin D-dependent kinase CDK4. The proteasomal ATPases are part of the AAA (ATPases associated with diverse cellular activities) family, members of which are molecular chaperones; gankyrin complexes may therefore influence CDK4 function during oncogenesis.

  12. Interpopulation hybridization generates meiotically stable rDNA epigenetic variants in allotetraploid Tragopogon mirus.

    PubMed

    Matyášek, Roman; Dobešová, Eva; Húska, Dalibor; Ježková, Ivana; Soltis, Pamela S; Soltis, Douglas E; Kovařík, Aleš

    2016-02-01

    Uniparental silencing of 35S rRNA genes (rDNA), known as nucleolar dominance (ND), is common in interspecific hybrids. Allotetraploid Tragopogon mirus composed of Tragopogon dubius (d) and Tragopogon porrifolius (p) genomes shows highly variable ND. To examine the molecular basis of such variation, we studied the genetic and epigenetic features of rDNA homeologs in several lines derived from recently and independently formed natural populations. Inbred lines derived from T. mirus with a dominant d-rDNA homeolog transmitted this expression pattern over generations, which may explain why it is prevalent among natural populations. In contrast, lines derived from the p-rDNA dominant progenitor were meiotically unstable, frequently switching to co-dominance. Interpopulation crosses between progenitors displaying reciprocal ND resulted in d-rDNA dominance, indicating immediate suppression of p-homeologs in F1 hybrids. Original p-rDNA dominance was not restored in later generations, even in those segregants that inherited the corresponding parental rDNA genotype, thus indicating the generation of additional p-rDNA and d-rDNA epigenetic variants. Despite preserved intergenic spacer (IGS) structure, they showed altered cytosine methylation and chromatin condensation patterns, and a correlation between expression, hypomethylation of RNA Pol I promoters and chromatin decondensation was apparent. Reversion of such epigenetic variants occurred rarely, resulting in co-dominance maintained in individuals with distinct genotypes. Generally, interpopulation crosses may generate epialleles that are not present in natural populations, underlying epigenetic dynamics in young allopolyploids. We hypothesize that highly expressed variants with distinct IGS features may induce heritable epigenetic reprogramming of the partner rDNA arrays, harmonizing the expression of thousands of genes in allopolyploids.

  13. Intragenomic and interspecific 5S rDNA sequence variation in five Asian pines.

    PubMed

    Liu, Zhan-Lin; Zhang, Daming; Wang, Xiao-Quan; Ma, Xiao-Fei; Wang, Xiao-Ru

    2003-01-01

    Patterns of intragenomic and interspecific variation of 5S rDNA in Pinus (Pinaceae) were studied by cloning and sequencing multiple 5S rDNA repeats from individual trees. Five pines, from both subgenera, Pinus and Strobus, were selected. The 5S rDNA repeat in pines has a conserved 120-base pair (bp) transcribed region and an intergenic spacer region of variable length (382-608 bp). The evolutionary rate in the spacer region is three- to sevenfold higher than in the genic region. We found substantial sequence divergence between the two subgenera. Intragenomic sequence heterogeneity was high for all species, and more than 86% of the clones within each individual were unique. The 5S gene tree revealed that different 5S repeats within individuals are polyphyletic, indicating that their ancestral divergence preceded the speciation events. The degrees of interspecific and intragenomic divergence among diploxylon pines are similar. The observed sequence patterns suggest that concerted evolution has been acting after the diversification of the two subgenera but very weak after the speciation of the four diploxylon pines. Sequence patterns in P. densata are consistent with hybrid origin. It had higher intragenomic diversity and maintained polymorphic copies of the parental types in addition to new and recombinant types unique to the hybrid.

  14. Molecular organization of the 5S rDNA gene type II in elasmobranchs

    PubMed Central

    Castro, Sergio I.; Hleap, Jose S.; Cárdenas, Heiber; Blouin, Christian

    2016-01-01

    ABSTRACT The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS. PMID:26488198

  15. Taenia spp.: 18S rDNA microsatellites for molecular systematic diagnosis.

    PubMed

    Foronda, P; Casanova, J C; Martinez, E; Valladares, B; Feliu, C

    2005-06-01

    The 18S rDNA gene of adult worms of Taenia parva found in Genetta genetta in the Iberian Peninsula and larval stages of T. pisiformis from the wild rabbit (Oryctolagus cuniculus) in Tenerife (Canary Islands) were amplified and sequenced. The sequences of the 18S rDNA gene of T. parva (1768 bp) and T. pisiformis (1760 bp) are reported for the first time (GenBank accession nos. AJ555167-AJ555168 and AJ555169-AJ555170, respectively). In 168 alignment positions microsatellites in the 18S rDNA of both taxa were detected for the first time (TGC in T. parva and TGCT in T. pisiformis) and differences in their sequences with different repetition numbers were observed. The use of nucleotide sequences of this gene in the resolution of systematic problems in cestodes is discussed with reference to the systematic status of Taenia spp. and mainly in human taeniids such as T. solium, T. saginata, and Asian human isolates of Taenia.

  16. PICH promotes mitotic chromosome segregation: Identification of a novel role in rDNA disjunction.

    PubMed

    Nielsen, Christian F; Hickson, Ian D

    2016-10-17

    PICH is an SNF2-family DNA translocase that appears to play a role specifically in mitosis. Characterization of PICH in human cells led to the initial discovery of "ultra-fine DNA bridges" (UFBs) that connect the 2 segregating DNA masses in the anaphase of mitosis. These bridge structures, which arise from specific regions of the genome, are a normal feature of anaphase but had escaped detection previously because they do not stain with commonly used DNA dyes. Nevertheless, UFBs are important for genome maintenance because defects in UFB resolution can lead to cytokinesis failure. We reported recently that PICH stimulates the unlinking (decatenation) of entangled DNA by Topoisomerase IIα (Topo IIα), and is important for the resolution of UFBs. We also demonstrated that PICH and Topo IIα co-localize at the rDNA (rDNA). In this Extra View article, we discuss the mitotic roles of PICH and explore further the role of PICH in the timely segregation of the rDNA locus.

  17. Inheritance of the group I rDNA intron in Tetrahymena pigmentosa.

    PubMed

    Nielsen, H; Simon, E M; Engberg, J

    1992-01-01

    We have previously argued from phylogenetic sequence data that the group I intron in the rRNA genes of Tetrahymena was acquired by different Tetrahymena species at different times during evolution. We have now approached the question of intron mobility experimentally by crossing intron+ and intron- strains looking for a strong polarity in the inheritance of the intron (intron homing). Based on the genetic analysis we find that the intron in T. pigmentosa is inherited as a neutral character and that intron+ and intron- alleles segregate in a Mendelian fashion with no sign of intron homing. In an analysis of vegetatively growing cells containing intron+ and intron- rDNA, initially in the same macronucleus, we similarly find no evidence of intron homing. During the course of this work, we observed to our surprise that progeny clones from some crosses contained three types of rDNA. One possible explanation is that T. pigmentosa has two rdn loci in contrast to the single locus found in T. thermophila. Some of the progeny clones from the genetic analysis were expanded for several hundred generations, and allelic assortment of the rDNA was demonstrated by subcloning analysis.

  18. Phylogenetic Analysis of Geographically Diverse Radopholus similis via rDNA Sequence Reveals a Monomorphic Motif.

    PubMed

    Kaplan, D T; Thomas, W K; Frisse, L M; Sarah, J L; Stanton, J M; Speijer, P R; Marin, D H; Opperman, C H

    2000-06-01

    The nucleic acid sequences of rDNA ITS1 and the rDNA D2/D3 expansion segment were compared for 57 burrowing nematode isolates collected from Australia, Cameroon, Central America, Cuba, Dominican Republic, Florida, Guadeloupe, Hawaii, Nigeria, Honduras, Indonesia, Ivory Coast, Puerto Rico, South Africa, and Uganda. Of the 57 isolates, 55 were morphologically similar to Radopholus similis and seven were citrus-parasitic. The nucleic acid sequences for PCR-amplified ITS1 and for the D2/D3 expansion segment of the 28S rDNA gene were each identical for all putative R. similis. Sequence divergence for both the ITS1 and the D2/D3 was concordant with morphological differences that distinguish R. similis from other burrowing nematode species. This result substantiates previous observations that the R. similis genome is highly conserved across geographic regions. Autapomorphies that would delimit phylogenetic lineages of non-citrus-parasitic R. similis from those that parasitize citrus were not observed. The data presented herein support the concept that R. similis is comprised of two pathotypes-one that parasitizes citrus and one that does not.

  19. Cytogenetic study on antlions (Neuroptera, Myrmeleontidae): first data on telomere structure and rDNA location

    PubMed Central

    Kuznetsova, Valentina G.; Khabiev, Gadzhimurad N.; Anokhin, Boris A.

    2016-01-01

    Abstract Myrmeleontidae, commonly known as “antlions”, are the most diverse family of the insect order Neuroptera, with over 1700 described species (in 191 genera) of which 37 species (in 21 genera) have so far been studied in respect to standard karyotypes. In the present paper we provide first data on the occurrence of the “insect-type” telomeric repeat (TTAGG)n and location of 18S rDNA clusters in the antlion karyotypes studied using fluorescence in situ hybridization (FISH). We show that males of Palpares libelluloides (Linnaeus, 1764) (Palparinae), Acanthaclisis occitanica (Villers, 1789) (Acanthaclisinae) and Distoleon tetragrammicus (Fabricius, 1798) (Nemoleontinae) have rDNA clusters on a large bivalent, two last species having an additional rDNA cluster on one of the sex chromosomes, most probably the X. (TTAGG)n - containing telomeres are clearly characteristic of Palpares libelluloides and Acanthaclisis occitanica; the presence of this telomeric motif in Distoleon tetragrammicus is questionable. In addition, we detected the presence of the (TTAGG)n telomeric repeat in Libelloides macaronius (Scopoli, 1763) from the family Ascalaphidae (owlflies), a sister group to the Myrmeleontidae. We presume that the “insect” motif (TTAGG)n was present in a common ancestor of the families Ascalaphidae and Myrmeleontidae within the neuropteran suborder Myrmeleontiformia. PMID:28123685

  20. The identification and differentiation of the Candida parapsilosis complex species by polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer region of the rDNA

    PubMed Central

    Barbedo, Leonardo Silva; Figueiredo-Carvalho, Maria Helena Galdino; Muniz, Mauro de Medeiros; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis: C. para- psilosis sensu stricto, Candida orthopsilosis, andCandida metapsilosis. In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories. PMID:27074256

  1. Further evidence for the variability of the 18S rDNA loci in the family Tingidae (Hemiptera, Heteroptera)

    PubMed Central

    Golub, Natalia V.; Golub, Viktor B.; Kuznetsova, Valentina G.

    2016-01-01

    Abstract As of now, within the lace bug family Tingidae (Cimicomorpha), only 1.5% of the species described have been cytogenetically studied. In this paper, male karyotypes of Stephanitis caucasica, Stephanitis pyri, Physatocheila confinis, Lasiacantha capucina, Dictyla rotundata and Dictyla echii were studied using FISH mapping with an 18S rDNA marker. The results show variability: the major rDNA sites are predominantly located on a pair of autosomes but occasionally on the X and Y chromosomes. All currently available data on the distribution of the major rDNA in the Tingidae karyotypes are summarized and shortly discussed. Our main concern is to clarify whether the chromosomal position of rDNA loci can contribute to resolving the phylogenetic relationships among the Tingidae taxa. PMID:28123675

  2. H4K16 acetylation affects recombination and ncRNA transcription at rDNA in Saccharomyces cerevisiae.

    PubMed

    Cesarini, Elisa; D'Alfonso, Anna; Camilloni, Giorgio

    2012-07-01

    Transcription-associated recombination is an important process involved in several aspects of cell physiology. In the ribosomal DNA (rDNA) of Saccharomyces cerevisiae, RNA polymerase II transcription-dependent recombination has been demonstrated among the repeated units. In this study, we investigate the mechanisms controlling this process at the chromatin level. On the basis of a small biased screening, we found that mutants of histone deacetylases and chromatin architectural proteins alter both the amount of Pol II-dependent noncoding transcripts and recombination products at rDNA in a coordinated manner. Of interest, chromatin immunoprecipitation analyses in these mutants revealed a corresponding variation of the histone H4 acetylation along the rDNA repeat, particularly at Lys-16. Here we provide evidence that a single, rapid, and reversible posttranslational modification-the acetylation of the H4K16 residue-is involved in the coordination of transcription and recombination at rDNA.

  3. Dynamics of R1 and R2 elements in the rDNA locus of Drosophila simulans.

    PubMed Central

    Pérez-González, C E; Eickbush, T H

    2001-01-01

    The mobile elements R1 and R2 insert specifically into the rRNA gene locus (rDNA locus) of arthropods, a locus known to undergo concerted evolution, the recombinational processes that preserve the sequence homogeneity of all repeats. To monitor how rapidly individual R1 and R2 insertions are turned over in the rDNA locus by these processes, we have taken advantage of the many 5' truncation variants that are generated during the target-primed reverse transcription mechanism used by these non-LTR retrotransposons for their integration. A simple PCR assay was designed to reveal the pattern of the 5' variants present in the rDNA loci of individual X chromosomes in a population of Drosophila simulans. Each rDNA locus in this population was found to have a large, unique collection of 5' variants. Each variant was present at low copy number, usually one copy per chromosome, and was seldom distributed to other chromosomes in the population. The failure of these variants to spread to other units in the same rDNA locus suggests a strong recombinational bias against R1 and R2 that results in the individual copies of these elements being rapidly lost from the rDNA locus. This bias suggests a significantly higher frequency of R1 and R2 retrotransposition than we have previously suggested. PMID:11514447

  4. BEND3 represses rDNA transcription by stabilizing a NoRC component via USP21 deubiquitinase

    PubMed Central

    Khan, Abid; Giri, Sumanprava; Wang, Yating; Chakraborty, Arindam; Ghosh, Archit K.; Anantharaman, Aparna; Aggarwal, Vasudha; Sathyan, Kizhakke M.; Ha, Taekjip; Prasanth, Kannanganattu V.; Prasanth, Supriya G.

    2015-01-01

    Ribosome biogenesis dictates the translational capacity of cells. Several mechanisms establish and maintain transcriptional output from eukaryotic ribosomal DNA (rDNA) loci. rDNA silencing is one such mechanism that ensures the inactivity and hence the maintenance of a silenced state of a subset of rRNA gene copies. Whereas oncogenic agents stimulate rRNA gene transcription, tumor suppressors decrease rRNA gene transcription. We demonstrate in mammalian cells that BANP, E5R, and Nac1 (BEN) domain 3 (BEND3), a quadruple BEN domain-containing protein, localizes in nucleoli and binds to ribosomal RNA gene promoters to help repress rRNA genes. Loss of BEND3 increases histone H3K4 trimethylation and, correspondingly, decreases rDNA promoter DNA methylation, consistent with a role for BEND3 in rDNA silencing. BEND3 associates with the nucleolar-remodeling complex (NoRC), and SUMOylated BEND3 stabilizes NoRC component TTF-1–interacting protein 5 via association with ubiquitin specific protease 21 (USP21) debiquitinase. Our results provide mechanistic insights into how the novel rDNA transcription repressor BEND3 acts together with NoRC to actively coordinate the establishment of rDNA silencing. PMID:26100909

  5. BEND3 represses rDNA transcription by stabilizing a NoRC component via USP21 deubiquitinase.

    PubMed

    Khan, Abid; Giri, Sumanprava; Wang, Yating; Chakraborty, Arindam; Ghosh, Archit K; Anantharaman, Aparna; Aggarwal, Vasudha; Sathyan, Kizhakke M; Ha, Taekjip; Prasanth, Kannanganattu V; Prasanth, Supriya G

    2015-07-07

    Ribosome biogenesis dictates the translational capacity of cells. Several mechanisms establish and maintain transcriptional output from eukaryotic ribosomal DNA (rDNA) loci. rDNA silencing is one such mechanism that ensures the inactivity and hence the maintenance of a silenced state of a subset of rRNA gene copies. Whereas oncogenic agents stimulate rRNA gene transcription, tumor suppressors decrease rRNA gene transcription. We demonstrate in mammalian cells that BANP, E5R, and Nac1 (BEN) domain 3 (BEND3), a quadruple BEN domain-containing protein, localizes in nucleoli and binds to ribosomal RNA gene promoters to help repress rRNA genes. Loss of BEND3 increases histone H3K4 trimethylation and, correspondingly, decreases rDNA promoter DNA methylation, consistent with a role for BEND3 in rDNA silencing. BEND3 associates with the nucleolar-remodeling complex (NoRC), and SUMOylated BEND3 stabilizes NoRC component TTF-1-interacting protein 5 via association with ubiquitin specific protease 21 (USP21) debiquitinase. Our results provide mechanistic insights into how the novel rDNA transcription repressor BEND3 acts together with NoRC to actively coordinate the establishment of rDNA silencing.

  6. Overexpression of Ribosomal RNA in the Development of Human Cervical Cancer Is Associated with rDNA Promoter Hypomethylation

    PubMed Central

    Zhou, Hong; Wang, Yapei; Lv, Qiongying; Zhang, Juan; Wang, Qing; Gao, Fei; Hou, Haoli; Zhang, Hao; Zhang, Wei; Li, Lijia

    2016-01-01

    The ribosomal RNA (rRNA) gene encodes rRNA for protein synthesis. Aberrant expression of the rRNA gene has been generally observed in tumor cells and levels of its promoter methylation as an epigenetic regulator affect rRNA gene transcription. The possible relationship between expression and promoter methylation of rDNA has not been examined in human clinical cervical cancer. Here we investigate rRNA gene expression by quantitative real time PCR, and promoter methylation levels by HpaII/MspI digestion and sodium bisulfite sequencing in the development of human cervical cancer. We find that indeed rRNA levels are elevated in most of cervical intraepithelial neoplasia (CIN) specimens as compared with non-cancer tissues. The rDNA promoter region in cervical intraepithelial neoplasia (CIN) tissues reveals significant hypomethylation at cytosines in the context of CpG dinucleotides, accompanied with rDNA chromatin decondensation. Furthermore treatment of HeLa cells with the methylation inhibitor drug 5-aza-2’-deoxycytidine (DAC) demonstrates the negative correlation between the expression of 45S rDNA and the methylation level in the rDNA promoter region. These data suggest that a decrease in rDNA promoter methylation levels can result in an increase of rRNA synthesis in the development of human cervical cancer. PMID:27695092

  7. Evolutionary Dynamics of rDNA Clusters in Chromosomes of Five Clam Species Belonging to the Family Veneridae (Mollusca, Bivalvia)

    PubMed Central

    Pérez-García, Concepción; Hurtado, Ninoska S.; Morán, Paloma; Pasantes, Juan J.

    2014-01-01

    The chromosomal changes accompanying bivalve evolution are an area about which few reports have been published. To improve our understanding on chromosome evolution in Veneridae, ribosomal RNA gene clusters were mapped by fluorescent in situ hybridization (FISH) to chromosomes of five species of venerid clams (Venerupis corrugata, Ruditapes philippinarum, Ruditapes decussatus, Dosinia exoleta, and Venus verrucosa). The results were anchored to the most comprehensive molecular phylogenetic tree currently available for Veneridae. While a single major rDNA cluster was found in each of the five species, the number of 5S rDNA clusters showed high interspecies variation. Major rDNA was either subterminal to the short arms or intercalary to the long arms of metacentric or submetacentric chromosomes, whereas minor rDNA signals showed higher variability. Major and minor rDNAs map to different chromosome pairs in all species, but in R. decussatus one of the minor rDNA gene clusters and the major rDNA cluster were located in the same position on a single chromosome pair. This interspersion of both sequences was confirmed by fiber FISH. Telomeric signals appeared at both ends of every chromosome in all species. FISH mapping data are discussed in relation to the molecular phylogenetic trees currently available for Veneridae. PMID:24967400

  8. Karyotype, chromosomal characteristics of multiple rDNA clusters and intragenomic variability of ribosomal ITS2 in Caryophyllaeides fennica (Cestoda).

    PubMed

    Orosová, Martina; Ivica, Králová-Hromadová; Eva, Bazsalovicsová; Marta, Spakulová

    2010-09-01

    Karyotype and chromosomal characteristics, i.e. number and location of ribosomal DNA (rDNA) clusters, and sequence variation of the ribosomal internal transcribed spacer 2 (ITS2) were studied in a monozoic (unsegmented) tapeworm, Caryophyllaeides fennica (Caryophyllidea), using conventional and Ag-staining, fluorescent in situ hybridization (FISH) with 18S rDNA probe, and PCR amplification, cloning and sequencing of the complete ribosomal ITS2 spacer. The karyotype of this species was composed of ten pairs of metacentric (m) chromosomes (2n=20). All chromosomes except the pair No. 2 displayed DAPI-positive heterochromatin in centromeric regions. In addition, two distinct interstitial DAPI-positive bands were identified on chromosome pair No. 7. FISH with 18S rDNA probe revealed four clusters of major ribosomal genes situated in the pericentromeric region of the short arms in two pairs of metacentric chromosomes Nos. 8 and 9. Hybridization signals were stronger in the pair No. 8, indicating a higher amount of rDNA repeats at this nucleolar organizer region (NOR). Analysis of 15 ITS2 rDNA sequences (five recombinant clones from each of three individuals) showed 13 structurally different ribotypes, distinguished by 26 nucleotide substitutions and variable numbers and combinations of short repetitive motifs that allowed sorting the sequences into four ITS2 variants. These results contribute to recently published evidence for the intraindividual ribosomal ITS sequence variability in basal tapeworms with multiple rDNA loci and imply that both phenomena may be mutually linked.

  9. Molecular analysis of complete ssu to lsu rdna sequence in the harmful dinoflagellate alexandrium tamarense (korean isolate, HY970328M)

    NASA Astrophysics Data System (ADS)

    Ki, Jang-Seu; Han, Myung-Soo

    2005-09-01

    New PCR primers (N=18) were designed for the isolation of complete SSU to LSU rDNA sequences from the dinoflagellate Alexandrium tamarense. Standard PCR, employing each primer set selected for amplifications of less than 1.5 kb, successfully amplified the expected rDNA regions of A. tamarense (Korean isolate, HY970328M). Complete SSU, LSU rDNAs and ITS sequences, including 5.8S rDNA, were recorded at 1,800 bp, 520 bp and 3,393 bp, respectively. The LSU rDNA sequence was the first report in Alexandrium genus. No intron was found in the LSU rRNA coding region. Twelve D-domains within the LSU rDNA were put together into 1,879 bp (44.4% G+C), and cores into 1514 bp (42.8% G+C). The core sequence was significantly different (0.0867 of genetic distance, 91% sequence similarity) in comparison with Prorocentrum micans (GenBank access. no. X16108). The D2 region was the longest in length (300 bp) and highly variable among the 12 D-domains. In a phylogenetic analysis using complete LSU rDNA sequences of a variety of phytoplankton, A tamarense was clearly separated with high resolution against other species. The result suggests that the sequence may resolve the taxonomic ambiguities of Alexandrium genus, particularly of the tamarensis complex.

  10. Mitochondrial 16S rDNA analysis of Tunisian androctonus species (Scorpions, Buthidae): phylogenetic approach.

    PubMed

    Ben Othmen, A; Said, K; Ben Alp, Z; Chatti, N; Ready, P D

    2006-01-01

    Tunisian Androctonus species, for long time discussed, were recognized on the basis of mitochondrial 16S rDNA sequences. Although the analysed nucleotide sequence is rather short (about 300 bp), the obtained phlogenetic trees revealed that A. amoreuxi and A. aeneas form two well-supported sister clades against A. australis haplotypes. Each specimen of the very rare species A. aeneas showed a specific haplotype, but together formed a well-defined clade. Some A. amoreuxi specimens highlighted unidirectional mitochondrial introgression from neighbouring A. australis population. Within A. australis, previously described, subspecies subdivision (A. a .hector and A. a. garzonii) was not supported.

  11. Karyotypic features including organizations of the 5S, 45S rDNA loci and telomeres of Scadoxus multiflorus (Amaryllidaceae)

    PubMed Central

    Monkheang, Pansa; Chaveerach, Arunrat; Sudmoon, Runglawan; Tanee, Tawatchai

    2016-01-01

    Abstract Scadoxus multiflorus Martyn, 1795 is an ornamental plant with brilliantly colored flowers. Even though its chromosomes are rather large, there is no karyotype description reported so far. Therefore, conventional and molecular cytogenetic studies including fluorescence in situ hybridization (FISH) with 45S and 5S rDNA, and human telomere sequence (TTAGGG)n probes (Arabidopsis-type telomere probes yielded negative results) were carried out. The chromosome number is as reported previously, 2n = 18. The nine chromosome pairs include two large submetacentric, five large acrocentric, one medium acrocentric, two small metacentric and eight small submetacentric chromosomes. Hybridization sites of the 45S rDNA signals were on the short arm ends of chromosomes #1, #3 and #8, while 5S rDNA signals appeared on the long arm of chromosome 3, in one homologue as a double signal. The telomere signals were restricted to all chromosome ends. Three chromosome pairs could be newly identified, chromosome pair 3 by 5S rDNA and chromosomes #1, #3 and #8 by 45S rDNA loci. In addition to new information about rDNA locations we show that the ends of Scadoxus multiflorus chromosomes harbor human instead of Arabidopsis-type telomere sequences. Overall, the Scadoxus multiflorus karyotype presents chromosomal heteromorphy concerning size, shape and 45S and 5S rDNA positioning. As Scadoxus Rafinesque, 1838 and related species are poorly studied on chromosomal level the here presented data is important for better understanding of evolution in Amaryllidaceae. PMID:28123684

  12. Chromosomal evolution of rDNA and H3 histone genes in representative Romaleidae grasshoppers from northeast Brazil

    PubMed Central

    2013-01-01

    Background Grasshoppers from the Romaleidae family are well distributed in the Neotropical Region and represent a diversified and multicolored group in which the karyotype is conserved. Few studies have been conducted to understand the evolutionary dynamics of multigene families. Here, we report the chromosomal locations of the 18S and 5S rDNA and H3 histone multigene families in four grasshopper species from the Romaleidae family, revealed by fluorescent in situ hybridization (FISH). Results The 5S rDNA gene was located in one or two chromosome pairs, depending on the species, and was found in a basal distribution pattern. Its chromosomal location was highly conserved among these species. The 18S rDNA was located in a single medium-sized chromosomal pair in all species analyzed. Its chromosomal location was near the centromere in the proximal or pericentromeric regions. The location of the H3 histone gene was highly conserved, with slight chromosomal location differences among some species. To our knowledge, this is the first report of a megameric chromosome carrying both the chromosomal markers 18S rDNA and the H3 histone genes, thereby expanding our understanding of such chromosomes. Conclusions The 5S and 18S rDNA genes and the H3 histone genes showed a conservative pattern in the species that we analyzed. A basal distribution pattern for 5S rDNA was observed with a location on the fourth chromosomal pair, and it was identified as the possible ancestral bearer. The 18S rDNA and H3 histone genes were restricted to a single pair of chromosomes, representing an ancestral pattern. Our results reinforce the known taxonomic relationships between Chromacris and Xestotrachelus, which are two close genera. PMID:24090216

  13. Conflicting results obtained by RAPD-PCR and large-subunit rDNA sequences in determining and comparing yeast strains isolated from flowers: a comparison of two methods.

    PubMed

    Herzberg, Michael; Fischer, Reinhard; Titze, Andreas

    2002-07-01

    Sixty-six yeast strains isolated from the nectar of various plant species in Central Europe were characterized by randomly amplified polymorphic DNA PCR (RAPD-PCR) and by sequencing of the variable D1/D2 domain of large-subunit (26S) rDNA. The usefulness of both methods for the determination and comparison of unknown ascomycetous and basidiomycetous yeast strains was compared and evaluated. The reproducibility of RAPD-PCR was shown to be low and the information obtained by this method was clearly not as precise as that obtained from sequence analysis. Numerous imponderables make RAPD-PCR analysis unreliable, at least as a means of identifying yeasts in ecological studies. The lack of standard protocols for RAPD-PCR analysis and the absence of a general database of banding patterns made it impossible to identify unknown yeast strains or to recognize new species. In contrast to RAPD-PCR, sequence analysis of the D1/D2 domain was found to be a fast and reliable method for the rapid identification of yeast species and was also shown to be an invaluable tool for the discovery of new species.

  14. Nucleotide sequencing and analysis of 16S rDNA and 16S-23S rDNA internal spacer region (ISR) of Taylorella equigenitalis, as an important pathogen for contagious equine metritis (CEM).

    PubMed

    Kagawa, S; Nagano, Y; Tazumi, A; Murayama, O; Millar, B C; Moore, J E; Matsuda, M

    2006-05-01

    The primer set for 16S rDNA amplified an amplicon of about 1500 bp in length for three strains of Taylorella equigenitalis (NCTC11184(T), Kentucky188 and EQ59). Sequence differences of the 16S rDNA among the six sequences, including three reference sequences, occurred at only a few nucleotide positions and thus, an extremely high sequence similarity of the 16S rDNA was first demonstrated among the six sequences. In addition, the primer set for 16S-23S rDNA internal spacer region (ISR) amplified two amplicons about 1300 bp and 1200 bp in length for the three strains. The ISRs were estimated to be about 920 bp in length for large ISR-A and about 830 bp for small ISR-B. Sequence alignment of the ISR-A and ISR-B demonstrated about 10 base differences between NCTC11184(T) and EQ59 and between Kentucky188 and EQ59. However, only minor sequence differences were demonstrated between the ISR-A and ISR-B from NCTC11184(T) and Kentucky188, respectively. A typical order of the intercistronic tRNAs with the 29 nucleotide spacer of 5'-16S rDNA-tRNA(Ile)-tRNA(Ala)-23S rDNA-3' was demonstrated in the all ISRs. The ISRs may be useful for the discrimination amongst isolates of T. equigenitalis if sequencing is employed.

  15. Phylogenetic relationships between Bacillus species and related genera inferred from 16s rDNA sequences

    PubMed Central

    Wei Wang, Mi Sun

    2009-01-01

    Neighbor-joining, maximum-parsimony, minimum-evolution, maximum-likelihood and Bayesian trees constructed based on 16S rDNA sequences of 181 type strains of Bacillus species and related taxa manifested nine phylogenetic groups. The phylogenetic analysis showed that Bacillus was not a monophyletic group. B. subtilis was in Group 1. Group 4, 6 and 8 respectively consisted of thermophiles, halophilic or halotolerant bacilli and alkaliphilic bacilli. Group 2, 4 and 8 consisting of Bacillus species and related genera demonstrated that the current taxonomic system did not agree well with the 16S rDNA evolutionary trees. The position of Caryophanaceae and Planococcaceae in Group 2 suggested that they might be transferred into Bacillaceae, and the heterogeneity of Group 2 implied that some Bacillus species in it might belong to several new genera. Group 9 was mainly comprised of the genera (excluding Bacillus) of Bacillaceae, so some Bacillus species in Group 9: B. salarius, B. qingdaonensis and B. thermcloacae might not belong to Bacillus. Four Bacillus species, B. schlegelii, B. tusciae, B. edaphicus and B. mucilaginosus were clearly placed outside the nine groups. PMID:24031394

  16. Genetic and Molecular Organization of Ribosomal DNA (Rdna) Variants in Wild and Cultivated Barley

    PubMed Central

    Allard, R. W.; Maroof, MAS.; Zhang, Q.; Jorgensen, R. A.

    1990-01-01

    Twenty rDNA spacer-length variants (slvs) have been identified in barley. These slvs form a ladder in which each variant (with one exception) differs from its immediate neighbors by a 115-bp subrepeat. The 20 slvs are organized in two families, one forming an eight-step ladder (slvs 100-107) in the nucleolus organizer region (NOR) of chromosome 7 and the other a 12-step ladder (slvs 108a-118) in the NOR of chromosome 6. The eight shorter slvs (100-107) segregate and serve as markers of eight alleles of Mendelian locus Rrn2 and the 12 longer slvs (108a-118) segregate and serve as markers of 12 alleles of Mendelian locus Rrn1. Most barley plants (90%) are homozygous for two alleles, including one from each the 100-107 and the 108a-118 series. Two types of departures from this typical pattern of molecular and genetic organization were identified, one featuring compound alleles marked by two slvs of Rrn1 or of Rrn2, and the other featuring presence in Rrn1 of alleles normally found in Rrn2, and vice versa. The individual and joint effects on adaptedness of the rDNA alleles are discussed. It was concluded that selection acting on specific genotypes plays a major role in molding the strikingly different allelic and genotypic frequency distributions seen in populations of wild and cultivated barley from different ecogeographical regions. PMID:2249766

  17. Asymmetric Epigenetic Modification and Elimination of rDNA Sequences by Polyploidization in Wheat[W

    PubMed Central

    Guo, Xiang

    2014-01-01

    rRNA genes consist of long tandem repeats clustered on chromosomes, and their products are important functional components of the ribosome. In common wheat (Triticum aestivum), rDNA loci from the A and D genomes were largely lost during the evolutionary process. This biased DNA elimination may be related to asymmetric transcription and epigenetic modifications caused by the polyploid formation. Here, we observed both sets of parental nucleolus organizing regions (NORs) were expressed after hybridization, but asymmetric silencing of one parental NOR was immediately induced by chromosome doubling, and reversing the ploidy status could not reactivate silenced NORs. Furthermore, increased CHG and CHH DNA methylation on promoters was accompanied by asymmetric silencing of NORs. Enrichment of H3K27me3 and H3K9me2 modifications was also observed to be a direct response to increased DNA methylation and transcriptional inactivation of NOR loci. Both A and D genome NOR loci with these modifications started to disappear in the S4 generation and were completely eliminated by the S7 generation in synthetic tetraploid wheat. Our results indicated that asymmetric epigenetic modification and elimination of rDNA sequences between different donor genomes may lead to stable allopolyploid wheat with increased differentiation and diversity. PMID:25415973

  18. 16S-23S rDNA internal transcribed spacer regions in four Proteus species.

    PubMed

    Cao, Boyang; Wang, Min; Liu, Lei; Zhou, Zhemin; Wen, Shaoping; Rozalski, Antoni; Wang, Lei

    2009-04-01

    Proteus is a Gram-negative, facultative anaerobic bacterium. In this study, 813 Proteus 16S-23S rDNA internal transcribed spacer (ITS) sequences were determined from 46 Proteus strains, including 388 ITS from 22 P. mirabilis strains, 211 ITS from 12 P. vulgaris strains, 169 ITS from 10 P. penneri strains, and 45 ITS from 2 P. myxofaciens strains. The Proteus strains carry mainly two types of ITS, ITS(Glu) (containing tRNA(Glu (UUC)) gene) and ITS(Ile+Ala) (containing tRNA(Ile (GAU)) and tRNA(Ala (UGC)) gene), and are in the forms of 28 variants with 25 genomic origins. The ITS sequences are a mosaic-like structure consisting of three conservative regions and two variable regions. The nucleotide identity of ITS subtypes in strains of the same species ranges from 96.2% to 100%. The divergence of Proteus ITS divergence was most likely due to intraspecies recombinations or horizontal transfers of sequence blocks. The phylogenetic relationship deduced from the second variable region of ITS sequences of the three facultative human pathogenic species P. mirabilis, P. vulgaris and P. penneri is similar with that based on 16S rDNA sequences, but has higher resolution to differentiate closely related P. vulgaris and P. penneri. This study is the first comprehensive study of ITS in four Proteus species and laid solid foundation for the development of high-throughput technology for quick and accurate identification of the important foodborne and nosocomial pathogens.

  19. Protein purification in multicompartment electrolyzers for crystal growth of r-DNA products in microgravity

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Giorgio; Casale, Elena; Carter, Daniel; Snyder, Robert S.; Wenisch, Elisabeth; Faupel, Michel

    1990-01-01

    Recombinant-DNA (deoxyribonucleic acid) (r-DNA) proteins, produced in large quantities for human consumption, are now available in sufficient amounts for crystal growth. Crystallographic analysis is the only method now available for defining the atomic arrangements within complex biological molecules and decoding, e.g., the structure of the active site. Growing protein crystals in microgravity has become an important aspect of biology in space, since crystals that are large enough and of sufficient quality to permit complete structure determinations are usually obtained. However even small amounts of impurities in a protein preparation are anathema for the growth of a regular crystal lattice. A multicompartment electrolyzer with isoelectric, immobiline membranes, able to purify large quantities of r-DNA proteins is described. The electrolyzer consists of a stack of flow cells, delimited by membranes of very precise isoelectric point (pI, consisting of polyacrylamide supported by glass fiber filters containing Immobiline buffers and titrants to uniquely define a pI value) and very high buffering power, able to titrate all proteins tangent or crossing such membranes. By properly selecting the pI values of two membranes delimiting a flow chamber, a single protein can be kept isoelectric in a single flow chamber and thus, be purified to homogeneity (by the most stringent criterion, charge homogeneity).

  20. Reduced rDNA copy number does not affect "competitive" chromosome pairing in XYY males of Drosophila melanogaster.

    PubMed

    Maggert, Keith A

    2014-03-20

    The ribosomal DNA (rDNA) arrays are causal agents in X-Y chromosome pairing in meiosis I of Drosophila males. Despite broad variation in X-linked and Y-linked rDNA copy number, polymorphisms in regulatory/spacer sequences between rRNA genes, and variance in copy number of interrupting R1 and R2 retrotransposable elements, there is little evidence that different rDNA arrays affect pairing efficacy. I investigated whether induced rDNA copy number polymorphisms affect chromosome pairing in a "competitive" situation in which complex pairing configurations were possible using males with XYY constitution. Using a common normal X chromosome, one of two different full-length Y chromosomes, and a third chromosome from a series of otherwise-isogenic rDNA deletions, I detected no differences in X-Y or Y-Y pairing or chromosome segregation frequencies that could not be attributed to random variation alone. This work was performed in the context of an undergraduate teaching program at Texas A&M University, and I discuss the pedagogical utility of this and other such experiments.

  1. Reduced rDNA Copy Number Does Not Affect “Competitive” Chromosome Pairing in XYY Males of Drosophila melanogaster

    PubMed Central

    Maggert, Keith A.

    2014-01-01

    The ribosomal DNA (rDNA) arrays are causal agents in X-Y chromosome pairing in meiosis I of Drosophila males. Despite broad variation in X-linked and Y-linked rDNA copy number, polymorphisms in regulatory/spacer sequences between rRNA genes, and variance in copy number of interrupting R1 and R2 retrotransposable elements, there is little evidence that different rDNA arrays affect pairing efficacy. I investigated whether induced rDNA copy number polymorphisms affect chromosome pairing in a “competitive” situation in which complex pairing configurations were possible using males with XYY constitution. Using a common normal X chromosome, one of two different full-length Y chromosomes, and a third chromosome from a series of otherwise-isogenic rDNA deletions, I detected no differences in X-Y or Y-Y pairing or chromosome segregation frequencies that could not be attributed to random variation alone. This work was performed in the context of an undergraduate teaching program at Texas A&M University, and I discuss the pedagogical utility of this and other such experiments. PMID:24449686

  2. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice

    PubMed Central

    Burleigh, J. Gordon; Light, Jessica E.; Reed, David L.

    2016-01-01

    Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain. PMID:27547523

  3. Distribution of 18S rDNA sites and absence of the canonical TTAGG insect telomeric repeat in parasitoid Hymenoptera.

    PubMed

    Gokhman, Vladimir E; Anokhin, Boris A; Kuznetsova, Valentina G

    2014-08-01

    Karyotypes of six species belonging to three main clades of parasitoid Hymenoptera, the superfamilies Ichneumonoidea (Ichneumonidae: Ichneumon amphibolus), Cynipoidea (Cynipidae: Diplolepis rosae) and Chalcidoidea (Eurytomidae: Eurytoma robusta, Eu. serratulae and Eu. compressa, and Torymidae: Torymus bedeguaris) were studied using FISH with 18S rDNA and telomeric (TTAGG)n probes. Haploid karyotypes of D. rosae, Eu. robusta and Eu. serratulae carried the only 18S rDNA hybridization signal, whereas those of I. amphibolus and Eu. compressa carried three and two rDNA clusters respectively. In addition, three rDNA sites were visualized in the aneuploid female of T. bedeguaris. The number of rDNA clusters in parasitoid Hymenoptera generally correlates to the chromosome number. Apart from the overwhelming majority of the studied species of aculeate Hymenoptera, no hybridization signals were obtained from FISH with the telomeric (TTAGG)n probe in the examined parasitoid species. These data suggest absence of the canonical (TTAGG)n insect telomeric motif in the Ichneumonoidea, Cynipoidea and Chalcidoidea, and perhaps in parasitoid Hymenoptera in general.

  4. Fragile Sites of 'Valencia' Sweet Orange (Citrus sinensis) Chromosomes Are Related with Active 45s rDNA.

    PubMed

    Lan, Hong; Chen, Chun-Li; Miao, Yin; Yu, Chang-Xiu; Guo, Wen-Wu; Xu, Qiang; Deng, Xiu-Xin

    2016-01-01

    Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in 'Valencia' C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of 'Valencia' C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid 'Valencia' C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in 'Valencia' sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in 'Valencia' sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites.

  5. Altered gravity influences rDNA and NopA100 localization in nucleoli

    NASA Astrophysics Data System (ADS)

    Sobol, M. A.; Kordyum, E. L.

    Fundamental discovery of gravisensitivity of cells no specified to gravity perception focused increasing attention on an elucidation of the mechanisms involved in altered gravity effects at the cellular and subcellular levels. The nucleolus is the transcription site of rRNA genes as well as the site of processing and initial packaging of their transcripts with ribosomal and nonribosomal proteins. The mechanisms inducing the changes in the subcomponents of the nucleolus that is morphologically defined yet highly dynamic structure are still unknown in detail. To understand the functional organization of the nucleolus as in the control as under altered gravity conditions it is essential to determine both the precise location of rDNA and the proteins playing the key role in rRNA processing. Lepidium sativum seeds were germinated in 1% agar medium on the slow horizontal clinostat (2 rpm) and in the stationary conditions. We investigated the root meristematic cells dissected from the seedlings grown in darkness for two days. The investigations were carried out with anti-DNA and anti-NopA100 antibodies labeling as well as with TdT procedure, and immunogold electron microscopy. In the stationary growth conditions, the anti-DNA antibody as well TdT procedure were capable of detecting fibrillar centers (FCs) and the dense fibrillar component (DFC) in the nucleolus. In FCs, gold particles were revealed on the condensed chromatin inclusions, internal fibrils of decondensed rDNA and the transition zone FC-DFC. Quantitatively, FCs appeared 1,5 times more densely labeled than DFC. NopA100 was localized in FCs and in DFC. In FCs, the most of protein was revealed in the transition zone FC-DFC. After a quantitative study, FCs and the transition zone FC-DFC appeared to contain NopA100 1,7 times more than DFC. Under the conditions of altered gravity, quantitative data clearly showed a redistribution of nucleolar DNA and NopA100 between FCs and DFC in comparison with the control. In

  6. Chromosomal position effects reveal different cis-acting requirements for rDNA transcription and sex chromosome pairing in Drosophila melanogaster.

    PubMed Central

    Briscoe, A; Tomkiel, J E

    2000-01-01

    In Drosophila melanogaster, the rDNA loci function in ribosome biogenesis and nucleolar formation and also as sex chromosome pairing sites in male meiosis. These activities are not dependent on the heterochromatic location of the rDNA, because euchromatic transgenes are competent to form nucleoli and restore pairing to rDNA-deficient X chromosomes. These transgene studies, however, do not address requirements for the function of the endogenous rDNA loci within the heterochromatin. Here we describe two chromosome rearrangements that disrupt rDNA functions. Both rearrangements are translocations that cause an extreme bobbed visible phenotype and XY nondisjunction and meiotic drive in males. However, neither rearrangement interacts with a specific Y chromosome, Ymal(+), that induces male sterility in combination with rDNA deletions. Molecular studies show that the translocations are not associated with gross rearrangements of the rDNA repeat arrays. Rather, suppression of the bobbed phenotypes by Y heterochromatin suggests that decreased rDNA function is caused by a chromosomal position effect. While both translocations affect rDNA transcription, only one disrupts meiotic XY pairing, indicating that there are different cis-acting requirements for rDNA transcription and rDNA-mediated meiotic pairing. PMID:10880481

  7. Distribution of 45S rDNA in Modern Rose Cultivars (Rosa hybrida), Rosa rugosa, and Their Interspecific Hybrids Revealed by Fluorescence in situ Hybridization.

    PubMed

    Ding, Xiao-Liu; Xu, Ting-Liang; Wang, Jing; Luo, Le; Yu, Chao; Dong, Gui-Min; Pan, Hui-Tang; Zhang, Qi-Xiang

    2016-01-01

    To elucidate the evolutionary dynamics of the location and number of rDNA loci in the process of polyploidization in the genus Rosa, we examined 45S rDNA sites in the chromosomes of 6 modern rose cultivars (R. hybrida), 5 R. rugosa cultivars, and 20 hybrid progenies by fluorescence in situ hybridization. Variation in the number of rDNA sites in parents and their interspecific hybrids was detected. As expected, 4 rDNA sites were observed in the genomes of 4 modern rose cultivars, while 3 hybridization sites were observed in the 2 others. Two expected rDNA sites were found in 2 R. rugosa cultivars, while in the other 3 R. rugosa cultivars 4 sites were present. Among the 20 R. hybrida × R. rugosa offspring, 13 carried the expected number of rDNA sites, and 1 had 6 hybridization sites, which exceeded the expected number by far. The other 6 offspring had either 2 or 3 hybridization sites, which was less than expected. Differences in the number of rDNA loci were observed in interspecific offspring, indicating that rDNA loci exhibit instability after distant hybridization events. Abnormal chromosome pairing may be the main factor explaining the variation in rDNA sites during polyploidization.

  8. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice.

    PubMed

    Holland, Michelle L; Lowe, Robert; Caton, Paul W; Gemma, Carolina; Carbajosa, Guillermo; Danson, Amy F; Carpenter, Asha A M; Loche, Elena; Ozanne, Susan E; Rakyan, Vardhman K

    2016-07-29

    A suboptimal early-life environment, due to poor nutrition or stress during pregnancy, can influence lifelong phenotypes in the progeny. Epigenetic factors are thought to be key mediators of these effects. We show that protein restriction in mice from conception until weaning induces a linear correlation between growth restriction and DNA methylation at ribosomal DNA (rDNA). This epigenetic response remains into adulthood and is restricted to rDNA copies associated with a specific genetic variant within the promoter. Related effects are also found in models of maternal high-fat or obesogenic diets. Our work identifies environmentally induced epigenetic dynamics that are dependent on underlying genetic variation and establishes rDNA as a genomic target of nutritional insults.

  9. The Large Subunit rDNA Sequence of Plasmodiophora brassicae Does not Contain Intra-species Polymorphism

    PubMed Central

    Schwelm, Arne; Berney, Cédric; Dixelius, Christina; Bass, David; Neuhauser, Sigrid

    2016-01-01

    Clubroot disease caused by Plasmodiophora brassicae is one of the most important diseases of cultivated brassicas. P. brassicae occurs in pathotypes which differ in the aggressiveness towards their Brassica host plants. To date no DNA based method to distinguish these pathotypes has been described. In 2011 polymorphism within the 28S rDNA of P. brassicae was reported which potentially could allow to distinguish pathotypes without the need of time-consuming bioassays. However, isolates of P. brassicae from around the world analysed in this study do not show polymorphism in their LSU rDNA sequences. The previously described polymorphism most likely derived from soil inhabiting Cercozoa more specifically Neoheteromita-like glissomonads. Here we correct the LSU rDNA sequence of P. brassicae. By using FISH we demonstrate that our newly generated sequence belongs to the causal agent of clubroot disease. PMID:27750174

  10. Structural insights into the COP9 signalosome and its common architecture with the 26S proteasome lid and eIF3.

    PubMed

    Enchev, Radoslav I; Schreiber, Anne; Beuron, Fabienne; Morris, Edward P

    2010-03-14

    The evolutionary conserved COP9 signalosome (CSN), a large multisubunit complex, plays a central role in regulating ubiquitination and cell signaling. Here we report recombinant insect cell expression and two-step purification of human CSN and demonstrate its functional assembly. We further obtain a three-dimensional structure of both native and recombinant CSN using electron microscopy and single particle analysis. Antibody labeling of CSN5 and segmentation of the structure suggest a likely subunit distribution and the architecture of its helical repeat subunits is revealed. We compare the structure of CSN with its homologous complexes, the 26S proteasome lid and eIF3, and propose a conserved architecture implying similar assembly pathways and/or conserved substrate interaction modes.

  11. Lab-on-a-chip-based PCR-RFLP assay for the confirmed detection of short-length feline DNA in food.

    PubMed

    Ali, Md Eaqub; Al Amin, Md; Hamid, Sharifah Bee Abd; Hossain, M A Motalib; Mustafa, Shuhaimi

    2015-01-01

    Wider availability but lack of legal market trades has given feline meat a high potential for use as an adulterant in common meat and meat products. However, mixing of feline meat or its derivatives in food is a sensitive issue, since it is a taboo in most countries and prohibited in certain religions such as Islam and Judaism. Cat meat also has potential for contamination with of severe acute respiratory syndrome, anthrax and hepatitis, and its consumption might lead to an allergic reaction. We developed a very short-amplicon-length (69 bp) PCR assay, authenticated the amplified PCR products by AluI-restriction digestion followed by its separation and detection on a lab-on-a-chip-based automated electrophoretic system, and proved its superiority over the existing long-amplicon-based assays. Although it has been assumed that longer DNA targets are susceptible to breakdown under compromised states, scientific evidence for this hypothesis has been rarely documented. Strong evidence showed that shorter targets are more stable than the longer ones. We confirmed feline-specificity by cross-challenging the primers against 10 different species of terrestrial, aquatic and plant origins in the presence of a 141-bp site of an 18S rRNA gene as a universal eukaryotic control. RFLP analysis separated 43- and 26-bp fragments of AluI-digest in both the gel-image and electropherograms, confirming the original products. The tested detection limit was 0.01% (w/w) feline meat in binary and ternary admixed as well as meatball matrices. Shorter target, better stability and higher sensitivity mean such an assay would be valid for feline identification even in degraded specimens.

  12. Genetic divergence and phylogenetic relationships in grey mullets (Teleostei: Mugilidae) based on PCR-RFLP analysis of mtDNA segments.

    PubMed

    Papasotiropoulos, V; Klossa-Kilia, E; Kilias, G; Alahiotis, S

    2002-04-01

    The genetic differentiation and phylogenetic relationships among five species of the Mugilidae family (Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens) were investigated at the mtDNA level, on samples taken from Messolongi lagoon-Greece. RFLP analysis of three PCR-amplified mtDNA gene segments (12s rRNA, 16s rRNA, and CO I) was used. Ten, eight, and nine restriction enzymes were found to have at least one recognition site at 12s rRNA, 16s rRNA, and CO I genes, respectively. Several fragment patterns were revealed to be species-specific, and thus they could be useful in species taxonomy as diagnostic markers, as well as for further evolutionary studies. Seven different haplotypes were detected. The greatest amount of genetic differentiation was observed at the interspecific level, while little variation was revealed at the intraspecific level. The highest values of nucleotide sequence divergence were observed between M. cephalus and all the other species, while the lowest was found between C. labrosus and L. saliens. Dendrograms obtained by the three different methods (UPGMA, Neighbor-Joining, and Dollo parsimony), were found to exhibit in all cases the same topology. According to this, the most distinct species is M. cephalus, while the other species are clustered in two separate groups, thefirst one containing L. aurata and L. ramada, the other L. saliens and C. labrosus. This last clustering makes the monophyletic origin of the genus Liza questionable.

  13. [The divergence of the dolly varden char Salvelinus malma in Asian Northern Pacific populations inferred from the PCR-RFLP analysis of the mitochondrial DNA].

    PubMed

    Oleĭnik, A G; Skurikhina, L A; Brykov, V A

    2002-10-01

    Genetic differentiation of the dolly varden char Salvelinus malma Walbaum was studied in five populations from the western part of the Northern Pacific. Using restriction analysis (RFLP), we examined polymorphism of three mitochondrial DNA (mtDNA) fragments amplified in polymerase chain reaction (PCR). MtDNA haplotypes were shown to fall into two phylogenetic groups, which probably reflect the existence of two previously described subspecies of Asian dolly varden, S. malma malma and S. malma krascheninnikovi. The divergence of mtDNA nucleotide sequences in the dolly varden subspecies (about 4%) corresponds to the differences between the valid char species from the genus Salvelinus.

  14. [Differentiation of Dolly Varden char Salvelinus malma from Asia and North America inferred from PCR-RFLP analysis of mitochondrial DNA].

    PubMed

    Oleĭnik, A G; Skurikhina, L A; Brykov, V A; Crane, P A; Wenburg, J K

    2005-05-01

    Genetic differentiation of Dolly Varden char Salvelinus malma Walbaum from the Asian and North American Pacific coasts was studied. We examined restriction fragment length polymorphism of three mitochondrial DNA (mtDNA) fragments amplified in polymerase chain reaction, which encoded four NADH dehydrogenase subunits, the cytochrome b gene, and a D-loop segment. The mtDNA haplotypes were shown to form three phylogenetic groups, whose geographic distribution corresponded to three Dolly Varden subspecies: S. malma malma, S. malma krascheninnikovi, and S. malma lordi. The nucleotide sequence divergence between S. malma malma and S. malma krascheninnikovi was 3.8%; between S. malma malma and S. malma lordi, 3.1%; and between S. malma krascheninnikovi and S. malma lordi, 2.5%. The northern Dolly Varden S. malma malma from Asia was shown to be genetically identical to that from North America.

  15. A TaqI PCR-RFLP detecting a novel SNP in exon 2 of the bovine POU1F1 gene.

    PubMed

    Pan, Chuanying; Lan, Xianyong; Chen, Hong; Guo, Yikun; Shu, Jianhong; Lei, Chuzhao; Wang, Xinzhuang

    2008-08-01

    PCR-SSCP and DNA sequencing methods were applied to reveal three novel single nucleotide polymorphisms (SNPs) in exon 2 of the POU1F1 gene in 963 Chinese cattle belonging to eight breeds. Among them, a silent SNP (NM_174579:c.545G > A) detected by TaqI endonuclease is described. Frequencies of the POU1F1-G allele varied from 0.685 to 1.000. The association of TaqI polymorphism with growth traits was analyzed in 251 Nanyang cattle. No significant associations of the TaqI polymorphism with body weight and average daily gain for different growth periods (6, 12, 18, and 24 months old) were observed (P > 0.05), as well as for body sizes (P > 0.05).

  16. Associations of a HinfI PCR-RFLP of POU1F1 gene with growth traits in Qinchuan cattle.

    PubMed

    Zhang, Chunlei; Liu, Bo; Chen, Hong; Lan, Xianyong; Lei, Chuzhao; Zhang, Zhiqing; Zhang, Runfeng

    2009-01-01

    The objectives of the present study were to estimate the allele and genotype frequencies of the POU1F1/HinfI polymorphisms in beef cattle belonging to four different genetic groups and to determine the effects of these polymorphisms on growth traits in cattle. The 451-bp PCR products of POU1F1 gene digested with HinfI exhibited three genotypes and two alleles, which were at Hardy-Weinberg equilibrium (P > 0.05). Genotype BB was the predominant genotype and B the predominant allele in the studied populations. There was significant difference between Limousin x Qinchuan and Qinchuan in the distribution of genotypes (P < 0.0001). The association of the polymorphism of the POU1F1 gene with growth traits among Qinchuan, Limousin x Qinchuan, Angus x Qinchuan and Germany Yellow x Qinchuan crosses was analyzed. Body weight and wither height of individuals with genotypes AB were higher (P < 0.05)than that of individuals with genotype BB in the Germany Yellow x Qinchua cross, but were not in the other three populations (P > 0.05).

  17. Genetic relationship in mulberry (Morus L.) inferred through PCR-RFLP and trnD-trnT sequence data of chloroplast DNA.

    PubMed

    Hu, Dechang; Zhang, Ping; Sun, Yan-Lin; Zhang, Shumin; Wang, Zhaohong; Chen, Chuanjie

    2014-05-04

    Ten universal primer pairs of the plant chloroplast genome were used to amplify the chloroplast DNA (cpDNA) non-coding regions in eight mulberry (Morus spp.) genotypes, including M. mongolica, M. bombycis, M. alba, M. atropurpurea and M. multicaulis. Subsequently, the polymerase chain reaction (PCR) products were digested by seven restriction enzymes and the trnD-trnT fragment for sequence alignment, and the variations were expected to provide the genetic information for system classification. The results from this study showed that: (1) 10 cpDNA primer pairs could be used for successful amplification in the tested materials, with approximately 17.1 kb of the chloroplast genome analysed. The 152 marker loci were detected by 70 primer/restriction endonuclease combinations, among which the trnD-trnT non-coding region digested by AluI, HinfI, MvaI and RsaI was detected by visible fragment length variation in different genotypes of the genus Morus. (2) eight Morus L. genotypes were divided into two groups based on the digesting pattern discrepancy through cpDNA. The M. multicaulis genotypes displayed diversity on an intraspecies level. 'Nongsang No.12' was identical with the female parent 'Beiqu No.1' (M. atropurpurea) in the surveyed sequence, but different from the male parent 'Tongxiangqing' (M. multicaulis), suggesting that the cpDNA was maternal inheritance in Morus L. (3) There were two deletion fragments (451-456 bp; 840-863bp) and six base point mutations in the trnD-trnT region based on homologous sequence alignment. The sequence of trnD-trnT in the cpDNA of mulberry could provide more genetic information for phylogenetic analysis and pedigree identification.

  18. Group-specific PCR-RFLP and real-time PCR methods for detection and tentative discrimination of strictly anaerobic beer-spoilage bacteria of the class Clostridia.

    PubMed

    Juvonen, Riikka; Koivula, Teija; Haikara, Auli

    2008-07-15

    The strictly anaerobic brewery contaminants of the genera Pectinatus, Megasphaera, Selenomonas and Zymophilus in the class Clostridia constitute an important group of spoilage bacteria of unpasteurised, packaged beers. The aim of this study was to develop and evaluate group-specific PCR methods to detect and differentiate these bacteria in beer. A group-specific primer pair targeting a 342-bp variable region of the 16S rRNA gene was designed and evaluated in end-point PCR with gel electrophoresis and in real-time PCR with SYBR Green I dye. Significant cross-reactions with DNAs from any of the forty-two brewery-related, non-target microbes or from real brewery samples were not detected in either PCR system. The group-specific end-point and real-time PCR products could be differentiated according to species/genus and spoilage potential using restriction fragment length polymorphism (KpnI, XmnI, BssHII, ScaI) and melting point curve analysis, respectively. In combination with a rapid DNA extraction method, the PCR reactions detected ca 10(0)-10(3) CFU per 25 ml of beer depending on the strain and on the PCR system. The end-point and real-time PCR analysis took 6-7 h and 2-3 h, respectively. Pre-PCR enrichment of beer samples for 1-3 days ensured the detection of even a single cultivable cell. The PCR and cultivation results of real brewery samples were mostly congruent but the PCR methods were occasionally more sensitive. The PCR methods developed allow the detection of all the nine beer-spoilage Pectinatus, Megasphaera, Selenomonas and Zymophilus species in a single reaction and their differentiation below group level and reduce the analysis time for testing of their presence in beer samples by 1-2 days. The methods can be applied for brewery routine quality control and for studying occurrence, diversity and numbers of the strictly anaerobic beer spoilers in the brewing process.

  19. Use of PCR-RFLP analysis to monitor fungicide resistance in Cercospora beticola populations from sugarbeet (Beta vulgaris) in Michigan, United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic resistance to Quinone outside inhibitor (QoI) and benzimidazole fungicides may be responsible for a recent decline in efficacy of chemical control management strategies for Cercospora leaf spot (CLS) caused by Cercospora beticola (Sacc.) in Michigan sugarbeet (Beta vulgaris L.) fields. The t...

  20. IDENTIFICATION OF CRYPTOSPORIDIUM SPECIES AND THE SOURCES IN RAW WASTEWATER USING A SMALL SUBUNIT RRNA-BASED PCR-RFLP TOOL

    EPA Science Inventory

    The species composition and source of Cryptosporidium oocysts in wastewater have never been determined, even though it is widely assumed that these oocysts are from human sewage. Recent molecular characterizations of Cryptosporidium parasites make it possible to differentiate hum...

  1. Genotyping of Toxic Pufferfish Based on Specific PCR-RFLP Products As Determined by Liquid Chromatography/Quadrupole-Orbitrap Hybrid Mass Spectrometry.

    PubMed

    Miyaguchi, Hajime; Yamamuro, Tadashi; Ohta, Hikoto; Nakahara, Hiroaki; Suzuki, Shinichi

    2015-10-28

    A method based on liquid chromatography-electrospray mass spectrometric analysis of the enzymatically digested amplicons derived from the mitochondrial 16S rRNA gene was established for the discrimination of toxic pufferfish. A MonoBis C18 narrow-bore silica monolith column (Kyoto Monotech) and a Q Exactive mass spectrometer (Thermo Fisher) were employed for separation and detection, respectively. Monoisotopic masses of the oligonucleotides were calculated using Protein Deconvolution 3.0 software (Thermo Fisher). Although a lock mass standard was not used, excellent accuracy (mass error, 0.83 ppm on average) and precision (relative standard deviation, 0.49 ppm on average) were achieved, and a mass accuracy of <2.8 ppm was maintained for at least 180 h without additional calibration. The present method was applied to 29 pufferfish samples, and results were consistent with Sanger sequencing.

  2. SYBR Green real-time PCR-RFLP assay targeting the plasmodium cytochrome B gene--a highly sensitive molecular tool for malaria parasite detection and species determination.

    PubMed

    Xu, Weiping; Morris, Ulrika; Aydin-Schmidt, Berit; Msellem, Mwinyi I; Shakely, Delér; Petzold, Max; Björkman, Anders; Mårtensson, Andreas

    2015-01-01

    A prerequisite for reliable detection of low-density Plasmodium infections in malaria pre-elimination settings is the availability of ultra-sensitive and high-throughput molecular tools. We developed a SYBR Green real-time PCR restriction fragment length polymorphism assay (cytb-qPCR) targeting the cytochrome b gene of the four major human Plasmodium species (P. falciparum, P. vivax, P. malariae, and P. ovale) for parasite detection and species determination with DNA extracted from dried blood spots collected on filter paper. The performance of cytb-qPCR was first compared against four reference PCR methods using serially diluted Plasmodium samples. The detection limit of the cytb-qPCR was 1 parasite/μl (p/μl) for P. falciparum and P. ovale, and 2 p/μl for P. vivax and P. malariae, while the reference PCRs had detection limits of 0.5-10 p/μl. The ability of the PCR methods to detect low-density Plasmodium infections was then assessed using 2977 filter paper samples collected during a cross-sectional survey in Zanzibar, a malaria pre-elimination setting in sub-Saharan Africa. Field samples were defined as 'final positive' if positive in at least two of the five PCR methods. Cytb-qPCR preformed equal to or better than the reference PCRs with a sensitivity of 100% (65/65; 95%CI 94.5-100%) and a specificity of 99.9% (2910/2912; 95%CI 99.7-100%) when compared against 'final positive' samples. The results indicate that the cytb-qPCR may represent an opportunity for improved molecular surveillance of low-density Plasmodium infections in malaria pre-elimination settings.

  3. PCR-RFLP-based typing for differentiation of Tomato yellow leaf curl virus (TYLCV) genotypes from infected host plants in Korea.

    PubMed

    Oh, Sung; Kim, Seongdae; Vinod, Nagarajan; Koo, Jung Mo; Jang, Kyung Min; Choi, Chang Won; Kim, Seong Hwan; Kim, Young Shik

    2013-12-01

    A polymerase chain reaction (PCR) using two sets of primers designed from published Tomato yellow leaf curl virus (TYLCV) genomes was developed to distinguish from the TYLCV-IL groups. The specificity of the two sets of primers was proven by testing against control TYLCV genomes and the symptomatic leaves of 34 different tomato cultivars naturally infected with TYLCV in greenhouses. One set for TYLCV-IL strain-specific primers (TYLCV-UNI-F and TYLCV-UNI-R) amplified full-length genome fragments from all the 34 tomato cultivars. Another set for TYLCV-IL group-II strain-specific primers (TYLCV-GPII-F and TYLCV-GPII-R) amplified target DNA fragments from only 9 tomato cultivars. Digestion by BglII and EcoRV of the PCR amplicons produced restriction fragment length polymorphism pattern that distinguished the TYLCV-IL group-I with two fragments from the TYLCV-IL group-II with no digested fragment. PCR coupled with BglII and EcoRV digestion confirmed that the 9 tomato cultivars were infected with the TYLCV-IL group-II and the remained 25 tomato cultivars were infected with the TYLCV-IL group-I.

  4. Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes.

    PubMed

    Brandão, Pedro F B; Torimura, Masaki; Kurane, Ryuichiro; Bull, Alan T

    2002-01-01

    The search for exploitable biology is a major task for biotechnology-based industries. In this context, discrimination between previously tested or recovered micro-organisms (dereplication) is imperative, in order to reduce screening costs by sorting large collections of isolates, which are then subjected to further detailed evaluation. Pyrolysis mass spectrometry (PyMS) is a whole-cell fingerprinting technique that enables the rapid and reproducible sorting of micro-organisms, uses small samples and has the advantage of being fully automated. In this study, we compare chemometric fingerprinting with a ribotyping fingerprinting method, in order to investigate the extent to which pyrogroups formed by PyMS analysis relate to genetic diversity, using polymerase chain reaction-restriction fragment length polymorphism-single-strand conformational polymorphism (PRS). A mixture of environmental strains of mycolic acid containing actinomycetes was used to mimic the selection of colonies from primary isolation plates. The congruence found between the clusters defined by the chemometric and molecular fingerprinting techniques was very high and demonstrated the effectiveness of PyMS as a rapid sorting and dereplicating procedure for putatively novel strains, criteria that are critical for biotechnological screens. Moreover, PyMS analysis revealed significant variation within pyrogroups that contained strains with the same genotypic (PRS) characteristics, thus emphasising its discriminatory capacity at the infraspecies level.

  5. [PCR rDNA 16S used for the etiological diagnosis of blood culture negative endocarditis].

    PubMed

    Baty, G; Lanotte, P; Hocqueloux, L; Prazuck, T; Bret, L; Romano, M; Mereghetti, L

    2010-06-01

    We report the case of a 55 year-old man presenting with a double aortic and mitral endocarditis for which resected valve culture was repeatedly negative. Specific PCR made on valves because of highly positive blood tests for Bartonella henselae remained negative. A molecular approach was made with 16S rDNA PCR, followed by sequencing. Bartonella quintana was identified as the etiology of endocarditis. B. quintana, "fastidious" bacteria, even if hard to identify in a laboratory, is often reported as a blood culture negative endocarditis (BCNE) agent. Molecular biology methods have strongly improved the diagnosis of BCNE. We propose a review of the literature focusing on the interest of broad-spectrum PCR on valve for the etiological diagnosis of BCNE.

  6. Genotyping Clostridium botulinum toxinotype A isolates from patients using amplified rDNA restriction analysis.

    PubMed

    Pourshafie, M; Vahdani, P; Popoff, M

    2005-10-01

    In this study, the application of amplified rDNA restriction analysis (ARDRA) for characterizing Clostridium botulinum toxinotype A strains isolated from individuals with botulism was evaluated. Ten restriction enzymes were tested for their suitability in ARDRA as a typing method and HhaI was selected for the best outcome. Analysis of HhaI restriction profiles of the amplified products divided C. botulinum isolates into three clusters. Non-toxigenic Clostridium sporogenes strains showed an ARDRA restriction pattern that was distinct from those observed for C. botulinum. The successful use of ARDRA for subdivision of C. botulinum in this study confirmed that this technique is a powerful method for typing of C. botulinum toxinotype A clonal diversity. In addition, it is rapid, sensitive and simple.

  7. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  8. Hosts, distribution and genetic divergence (16S rDNA) of Amblyomma dubitatum (Acari: Ixodidae).

    PubMed

    Nava, Santiago; Venzal, José M; Labruna, Marcelo B; Mastropaolo, Mariano; González, Enrique M; Mangold, Atilio J; Guglielmone, Alberto A

    2010-08-01

    We supply information about hosts and distribution of Amblyomma dubitatum. In addition, we carry out an analysis of genetic divergence among specimens of A. dubitatum from different localities and with respect to other Neotropical Amblyomma species, using sequences of 16S rDNA gene. Although specimens of A. dubitatum were collected on several mammal species as cattle horse, Tapirus terrestris, Mazama gouazoubira, Tayassu pecari, Sus scrofa, Cerdocyon thous, Myocastor coypus, Allouata caraya, Glossophaga soricina and man, most records of immature and adult stages of A. dubitatum were made on Hydrochoerus hydrochaeris, making this rodent the principal host for all parasitic stages of this ticks. Cricetidae rodents (Lundomys molitor, Scapteromys tumidus), opossums (Didelphis albiventris) and vizcacha (Lagostomus maximus) also were recorded as hosts for immature stages. All findings of A. dubitatum correspond to localities of Argentina, Brazil, Paraguay and Uruguay, and they were concentrated in the Biogeographical provinces of Pampa, Chaco, Cerrado, Brazilian Atlantic Forest, Parana Forest and Araucaria angustifolia Forest. The distribution of A. dubitatum is narrower than that of its principal host, therefore environmental variables rather than hosts determine the distributional ranges of this tick. The intraspecific genetic divergence among 16S rDNA sequences of A. dubitatum ticks collected in different localities from Argentina, Brazil and Uruguay was in all cases lower than 0.8%, whereas the differences with the remaining Amblyomma species included in the analysis were always bigger than 6.8%. Thus, the taxonomic status of A. dubitatum along its distribution appears to be certain at the specific level.

  9. Secondary structure prediction for complete rDNA sequences (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, and comparison of divergent domains structures across Acari.

    PubMed

    Zhao, Ya-E; Wang, Zheng-Hang; Xu, Yang; Wu, Li-Ping; Hu, Li

    2013-10-01

    According to base pairing, the rRNA folds into corresponding secondary structures, which contain additional phylogenetic information. On the basis of sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2 and 28S rDNA) of Demodex, we predicted the secondary structure of the complete rDNA sequence (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, which was in concordance with that of the main arthropod lineages in past studies. And together with the sequence data from GenBank, we also predicted the secondary structures of divergent domains in SSU rRNA of 51 species and in LSU rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea and Ixodoidea). The multiple alignment among the four superfamilies in Acari showed that, insertions from Tetranychoidea SSU rRNA formed two newly proposed helixes, and helix c3-2b of LSU rRNA was absent in Demodex (Cheyletoidea) taxa. Generally speaking, LSU rRNA presented more remarkable differences than SSU rRNA did, mainly in D2, D3, D5, D7a, D7b, D8 and D10.

  10. Divergence between C. melo and African Cucumis Species Identified by Chromosome Painting and rDNA Distribution Pattern.

    PubMed

    Li, Kunpeng; Wang, Huaisong; Wang, Jiming; Sun, Jianying; Li, Zongyun; Han, Yonghua

    2016-01-01

    The 5S and 45S rDNA sites are useful chromosome landmarks and can provide valuable information about karyotype evolution and species interrelationships. In this study, we employed fluorescence in situ hybridization (FISH) to determine the number and chromosomal location of 5S and 45S rDNA loci in 8 diploid Cucumis species. Two oligonucleotide painting probes specific for the rDNA-bearing chromosomes in C. melo were hybridized to other Cucumis species in order to investigate the homeologies among the rDNA-carrying chromosomes in Cucumis species. The analyzed diploid species showed 3 types of rDNA distribution patterns, which provided clear cytogenetic evidence on the divergence between C. melo and wild diploid African Cucumis species. The present results not only show species interrelationships in the genus Cucumis, but the rDNA FISH patterns can also be used as cytological markers for the discrimination of closely related species. The data will be helpful for breeders to choose the most suitable species from various wild species for improvement of cultivated melon.

  11. Network analysis provides insights into evolution of 5S rDNA arrays in Triticum and Aegilops.

    PubMed Central

    Allaby, R G; Brown, T A

    2001-01-01

    We have used network analysis to study gene sequences of the Triticum and Aegilops 5S rDNA arrays, as well as the spacers of the 5S-DNA-A1 and 5S-DNA-2 loci. Network analysis describes relationships between 5S rDNA sequences in a more realistic fashion than conventional tree building because it makes fewer assumptions about the direction of evolution, the extent of sexual isolation, and the pattern of ancestry and descent. The networks show that the 5S rDNA sequences of Triticum and Aegilops species are related in a reticulate manner around principal nodal sequences. The spacer networks have multiple principal nodes of considerable antiquity but the gene network has just one principal node, corresponding to the correct gene sequence. The networks enable orthologous groups of spacer sequences to be identified. When orthologs are compared it is seen that the patterns of intra- and interspecific diversity are similar for both genes and spacers. We propose that 5S rDNA arrays combine sequence conservation with a large store of mutant variations, the number of correct gene copies within an array being the result of neutral processes that act on gene and spacer regions together. PMID:11238418

  12. Polymorphism and recombination for rDNA in the putatively asexual microsporidian Nosema ceranae, a pathogen of honeybees.

    PubMed

    Sagastume, Soledad; del Aguila, Carmen; Martín-Hernández, Raquel; Higes, Mariano; Henriques-Gil, Nuno

    2011-01-01

    Nosema ceranae is currently one of the major pathogens of honeybees, related to the worldwide colony losses phenomenon. The genotyping of strains based on ribosomal DNA (rDNA) can be misleading if the repeated units are not identical. The analysis of cloned rDNA fragments containing the intergenic spacer (IGS) and part of the rDNA small-subunit (SSU) gene, from N. ceranae isolates from different European and Central Asia populations, revealed a high diversity of sequences. The variability involved single-nucleotide polymorphisms and insertion/deletions, resulting in 79 different haplotypes. Two sequences from the same isolate could be as different as any pair of sequences from different samples; in contrast, identical haplotypes were also found in very different geographical origins. Consequently, haplotypes cannot be organized in a consistent phylogenetic tree, clearly indicating that rDNA is not a reliable marker for the differentiation of N. ceranae strains. The results indicate that recombination between different sequences may produce new variants, which is quite surprising in microsporidia, usually considered to have an asexual mode of reproduction. The diversity of sequences and their geographical distribution indicate that haplotypes of different lineages may occasionally be present in a same cell and undergo homologue recombination, therefore suggesting a sexual haplo-diploid cycle.

  13. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING BACTEROIDETES 16S RDNA-BASED ASSAYS

    EPA Science Inventory

    Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate between ruminant and human fecal pollution. These assays are rapid and relatively inexpensive but have been used in a limited number of studies. In this study, we evaluated the efficacy o...

  14. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING PCR AND PHYLOGENETIC ANALYSES OF BACTEROIDETES 16S RDNA

    EPA Science Inventory

    Traditional methods for assessing fecal pollution in environmental systems, such as monitoring for fecal coliforms are not capable of discriminating between different sources fecal pollution. Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate betw...

  15. Radiolaria Divided into Polycystina and Spasmaria in Combined 18S and 28S rDNA Phylogeny

    PubMed Central

    Dolven, Jane K.; Ose, Randi F.; Klaveness, Dag; Kristensen, Tom; Bjørklund, Kjell R.; Shalchian-Tabrizi, Kamran

    2011-01-01

    Radiolarians are marine planktonic protists that belong to the eukaryote supergroup Rhizaria together with Foraminifera and Cercozoa. Radiolaria has traditionally been divided into four main groups based on morphological characters; i.e. Polycystina, Acantharia, Nassellaria and Phaeodaria. But recent 18S rDNA phylogenies have shown that Phaeodaria belongs within Cerocozoa, and that the previously heliozoan group Taxopodida should be included in Radiolaria. 18S rDNA phylogenies have not yet resolved the sister relationship between the main Radiolaria groups, but nevertheless suggests that Spumellaria, and thereby also Polycystina, are polyphyletic. Very few sequences other than 18S rDNA have so far been generated from radiolarian cells, mostly due to the fact that Radiolaria has been impossible to cultivate and single cell PCR has been hampered by low success rate. Here we have therefore investigated the mutual evolutionary relationship of the main radiolarian groups by using the novel approach of combining single cell whole genome amplification with targeted PCR amplification of the 18S and 28S rDNA genes. Combined 18S and 28S phylogeny of sequences obtained from single cells shows that Radiolaria is divided into two main lineages: Polycystina (Spumellaria+Nassellaria) and Spasmaria (Acantharia+Taxopodida). Further we show with high support that Foraminifera groups within Radiolaria supporting the Retaria hypothesis. PMID:21853146

  16. Microbial rRNA: rDNA gene ratios may be unexpectedly low due to extracellular DNA preservation in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested a method of estimating the activity of detectable individual bacterial and archaeal OTUs within a community by calculating ratios of absolute 16S rRNA to rDNA copy numbers. We investigated phylogenetically coherent patterns of activity among soil prokaryotes in non-growing soil communitie...

  17. Rates of R1 and R2 retrotransposition and elimination from the rDNA locus of Drosophila melanogaster.

    PubMed Central

    Pérez-González, César E; Eickbush, Thomas H

    2002-01-01

    R1 and R2 elements are non-LTR retrotransposons that insert specifically into the 28S rRNA genes of arthropods. The process of concerted evolution of the rDNA locus should give rise to rapid turnover of these mobile elements compared to elements that insert at sites throughout a genome. To estimate the rate of R1 and R2 turnover we have examined the insertion of new elements and elimination of old elements in the Harwich mutation accumulation lines of Drosophila melanogaster, a set of inbred lines maintained for >350 generations. Nearly 300 new insertion and elimination events were observed in the 19 Harwich lines. The retrotransposition rate for R1 was 18 times higher than the retrotransposition rate for R2. Both rates were within the range previously found for retrotransposons that insert outside the rDNA loci in D. melanogaster. The elimination rates of R1 and R2 from the rDNA locus were similar to each other but over two orders of magnitude higher than that found for other retrotransposons. The high rates of R1 and R2 elimination from the rDNA locus confirm that these elements must maintain relatively high rates of retrotransposition to ensure their continued presence in this locus. PMID:12399390

  18. ITS1 sequence variabilities correlate with 18S rDNA sequence types in the genus Acanthamoeba (Protozoa: Amoebozoa).

    PubMed

    Köhsler, Martina; Leitner, Brigitte; Blaschitz, Marion; Michel, Rolf; Aspöck, Horst; Walochnik, Julia

    2006-01-01

    The subgenus classification of the ubiquitously spread and potentially pathogenic acanthamoebae still poses a great challenge. Fifteen 18S rDNA sequence types (T1-T15) have been established, but the vast majority of isolates fall into sequence type T4, and so far, there is no means to reliably differentiate within T4. In this study, the first internal transcribed spacer (ITS1), a more variable region than the 18S rRNA gene, was sequenced, and the sequences of 15 different Acanthamoeba isolates were compared to reveal if ITS1 sequence variability correlates with 18S rDNA sequence typing and if the ITS1 sequencing allows a differentiation within T4. It was shown that the variability in ITS1 is tenfold higher than in the 18S rDNA, and that ITS1 clusters correlate with the 18S rDNA clusters and thus corroborate the Acanthamoeba sequence type system. Moreover, high sequence dissimilarities and distinctive microsatellite patterns could enable a more detailed differentiation within T4.

  19. Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus

    PubMed Central

    Sochorová, Jana; Coriton, Olivier; Kuderová, Alena; Lunerová, Jana; Chèvre, Anne-Marie; Kovařík, Aleš

    2017-01-01

    Background and aims Brassica napus (AACC, 2n = 38, oilseed rape) is a relatively recent allotetraploid species derived from the putative progenitor diploid species Brassica rapa (AA, 2n = 20) and Brassica oleracea (CC, 2n = 18). To determine the influence of intensive breeding conditions on the evolution of its genome, we analysed structure and copy number of rDNA in 21 cultivars of B. napus, representative of genetic diversity. Methods We used next-generation sequencing genomic approaches, Southern blot hybridization, expression analysis and fluorescence in situ hybridization (FISH). Subgenome-specific sequences derived from rDNA intergenic spacers (IGS) were used as probes for identification of loci composition on chromosomes. Key Results Most B. napus cultivars (18/21, 86 %) had more A-genome than C-genome rDNA copies. Three cultivars analysed by FISH (‘Darmor’, ‘Yudal’ and ‘Asparagus kale’) harboured the same number (12 per diploid set) of loci. In B. napus ‘Darmor’, the A-genome-specific rDNA probe hybridized to all 12 rDNA loci (eight on the A-genome and four on the C-genome) while the C-genome-specific probe showed weak signals on the C-genome loci only. Deep sequencing revealed high homogeneity of arrays suggesting that the C-genome genes were largely overwritten by the A-genome variants in B. napus ‘Darmor’. In contrast, B. napus ‘Yudal’ showed a lack of gene conversion evidenced by additive inheritance of progenitor rDNA variants and highly localized hybridization signals of subgenome-specific probes on chromosomes. Brassica napus ‘Asparagus kale’ showed an intermediate pattern to ‘Darmor’ and ‘Yudal’. At the expression level, most cultivars (95 %) exhibited stable A-genome nucleolar dominance while one cultivar (‘Norin 9’) showed co-dominance. Conclusions The B. napus cultivars differ in the degree and direction of rDNA homogenization. The prevalent direction of gene conversion (towards the A-genome) correlates

  20. Phylogeny of gregarines (Apicomplexa) as inferred from small-subunit rDNA and beta-tubulin.

    PubMed

    Leander, Brian S; Clopton, Richard E; Keeling, Patrick J

    2003-01-01

    Gregarines are thought to be deep-branching apicomplexans. Accordingly, a robust inference of gregarine phylogeny is crucial to any interpretation of apicomplexan evolution, but molecular sequences from gregarines are restricted to a small number of small-subunit (SSU) rDNA sequences from derived taxa. This work examines the usefulness of SSU rDNA and beta-tubulin sequences for inferring gregarine phylogeny. SSU rRNA genes from Lecudina (Mingazzini) sp., Monocystis agilis Stein, Leidyana migrator Clopton and Gregarina polymorpha Dufour, as well as the beta-tubulin gene from Leidyana migrator, were sequenced. The results of phylogenetic analyses of alveolate taxa using both genes were consistent with an early origin of gregarines and the putative 'sister' relationship between gregarines and Cryptosporidium, but neither phylogeny was strongly supported. In addition, two SSU rDNA sequences from unidentified marine eukaryotes were found to branch among the gregarines: one was a sequence derived from the haemolymph parasite of the giant clam, Tridacna crocea, and the other was a sequence misattributed to the foraminiferan Ammonium beccarii. In all of our analyses, the SSU rDNA sequence from Colpodella sp. clustered weakly with the apicomplexans, which is consistent with ultrastructural data. Altogether, the exact position of gregarines with respect to Cryptosporidium and other apicomplexans remains to be confirmed, but the congruence of SSU rDNA and beta-tubulin trees with one another and with morphological data does suggest that further sampling of molecular data will eventually put gregarine diversity into a phylogenetic context.

  1. Sex chromosomes and associated rDNA form a heterochromatic network in the polytene nuclei of Bactrocera oleae (Diptera: Tephritidae).

    PubMed

    Drosopoulou, Elena; Nakou, Ifigeneia; Síchová, Jindra; Kubíčková, Svatava; Marec, František; Mavragani-Tsipidou, Penelope

    2012-06-01

    The olive fruit fly, Bactrocera oleae, has a diploid set of 2n = 12 chromosomes including a pair of sex chromosomes, XX in females and XY in males, but polytene nuclei show only five polytene chromosomes, obviously formed by five autosome pairs. Here we examined the fate of the sex chromosomes in the polytene complements of this species using fluorescence in situ hybridization (FISH) with the X and Y chromosome-derived probes, prepared by laser microdissection of the respective chromosomes from mitotic metaphases. Specificity of the probes was verified by FISH in preparations of mitotic chromosomes. In polytene nuclei, both probes hybridized strongly to a granular heterochromatic network, indicating thus underreplication of the sex chromosomes. The X chromosome probe (in both female and male nuclei) highlighted most of the granular mass, whereas the Y chromosome probe (in male nuclei) identified a small compact body of this heterochromatic network. Additional hybridization signals of the X probe were observed in the centromeric region of polytene chromosome II and in the telomeres of six polytene arms. We also examined distribution of the major ribosomal DNA (rDNA) using FISH with an 18S rDNA probe in both mitotic and polytene chromosome complements of B. oleae. In mitotic metaphases, the probe hybridized exclusively to the sex chromosomes. The probe signals localized a discrete rDNA site at the end of the short arm of the X chromosome, whereas they appeared dispersed over the entire dot-like Y chromosome. In polytene nuclei, the rDNA was found associated with the heterochromatic network representing the sex chromosomes. Only in nuclei with preserved nucleolar structure, the probe signals were scattered in the restricted area of the nucleolus. Thus, our study clearly shows that the granular heterochromatic network of polytene nuclei in B. oleae is formed by the underreplicated sex chromosomes and associated rDNA.

  2. Macrolide Resistance in Treponema pallidum Correlates With 23S rDNA Mutations in Recently Isolated Clinical Strains

    PubMed Central

    Molini, Barbara J.; Tantalo, Lauren C.; Sahi, Sharon K.; Rodriguez, Veronica I.; Brandt, Stephanie L.; Fernandez, Mark C.; Godornes, Charmie B.; Marra, Christina M.; Lukehart, Sheila A.

    2016-01-01

    Background High rates of 23S rDNA mutations implicated in macrolide resistance have been identified in Treponema pallidum samples from syphilis patients in many countries. Nonetheless, some clinicians have been reluctant to abandon azithromycin as a treatment for syphilis, citing the lack of a causal association between these mutations and clinical evidence of drug resistance. Although azithromycin resistance has been demonstrated in vivo for the historical Street 14 strain, no recent T. pallidum isolates have been tested. We used the well-established rabbit model of syphilis to determine the in vivo efficacy of azithromycin against 23S rDNA mutant strains collected in 2004 to 2005 from patients with syphilis in Seattle, Wash. Methods Groups of 9 rabbits were each infected with a strain containing 23S rDNA mutation A2058G (strains UW074B, UW189B, UW391B) or A2059G (strains UW228B, UW254B, and UW330B), or with 1 wild type strain (Chicago, Bal 3, and Mexico A). After documentation of infection, 3 animals per strain were treated with azithromycin, 3 were treated with benzathine penicillin G, and 3 served as untreated control groups. Treatment efficacy was documented by darkfield microscopic evidence of T. pallidum, serological response, and rabbit infectivity test. Results Azithromycin uniformly failed to cure rabbits infected with strains harboring either 23S rDNA mutation, although benzathine penicillin G was effective. Infections caused by wild type strains were successfully treated by either azithromycin or benzathine penicillin G. Conclusions A macrolide resistant phenotype was demonstrated for all strains harboring a 23S rDNA mutation, demonstrating that either A2058G or A2059G mutation confers in vivo drug resistance. PMID:27513385

  3. Fragile Sites of ‘Valencia’ Sweet Orange (Citrus sinensis) Chromosomes Are Related with Active 45s rDNA

    PubMed Central

    Lan, Hong; Chen, Chun-Li; Miao, Yin; Yu, Chang-Xiu; Guo, Wen-Wu; Xu, Qiang; Deng, Xiu-Xin

    2016-01-01

    Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in ‘Valencia’ C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of ‘Valencia’ C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid ‘Valencia’ C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in ‘Valencia’ sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in ‘Valencia’ sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites. PMID:26977938

  4. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome

    PubMed Central

    Yu, Shoukai; Lemos, Bernardo

    2016-01-01

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. PMID:27797956

  5. PUB22 and PUB23 U-BOX E3 ligases directly ubiquitinate RPN6, a 26S proteasome lid subunit, for subsequent degradation in Arabidopsis thaliana.

    PubMed

    Cho, Seok Keun; Bae, Hansol; Ryu, Moon Young; Wook Yang, Seong; Kim, Woo TaeK

    2015-09-04

    Drought stress strongly affects plant growth and development, directly connected with crop yields, accordingly. However, related to the function of U-BOX E3 ligases, the underlying molecular mechanisms of desiccation stress response in plants are still largely unknown. Here we report that PUB22 and PUB23, two U-box E3 ligase homologs, tether ubiquitins to 19S proteasome regulatory particle (RP) subunit RPN6, leading to its degradation. RPN6 was identified as an interacting substrate of PUB22 by yeast two-hybrid screening, and in vitro pull-down assay confirmed that RPN6 interacts not only with PUB22, but also with PUB23. Both PUB22 and PUB23 were able to conjugate ubiquitins on RPN6 in vitro. Furthermore, RPN6 showed a shorter protein half-life in PUB22 overexpressing plants than in wild-type, besides RPN6 was significantly stabilized in pub22pub23 double knockout plants. Taken together, these results solidify a notion that PUB22 and PUB23 can alter the activity of 26S proteasome in response to drought stress.

  6. Induction of 26S proteasome subunit PSMB5 by the bifunctional inducer 3-methylcholanthrene through the Nrf2-ARE, but not the AhR/Arnt-XRE, pathway

    SciTech Connect

    Kwak, Mi-Kyoung . E-mail: mkwak@yumail.ac.kr; Kensler, Thomas W.

    2006-07-14

    The 26S proteasome is responsible for degradation of abnormal intracellular proteins, including oxidatively damaged proteins and may play a role as a component of a cellular antioxidative system. However, little is known about regulation of proteasome expression. In the present study, regulation of proteasome expression by the bifunctional enzyme inducer and a specific signaling pathway for this regulation were investigated in murine neuroblastoma cells. Expression of catalytic core subunits including PSMB5 and peptidase activities of the proteasome were elevated following incubation with 3-methylcholanthrene (3-MC). Studies using reporter genes containing the murine Psmb5 promoter showed that transcriptional activity of this gene was enhanced by 3-MC. Overexpression of AhR/Arnt did not affect activation of the Pmsb5 promoter by 3-MC and deletion of the xenobiotic response elements (XREs) from this promoter exerted modest effects on inducibility in response to 3-MC. However, mutation of the proximal AREs of the Psmb5 promoter largely abrogated its inducibility by 3-MC. In addition, this promoter showed a blunted response toward 3-MC in the absence of nrf2; 3-MC incubation increased nuclear levels of Nrf2 only in wild-type cells. Collectively, these results indicate that expression of proteasome subunit PSMB5 is modulated by bifunctional enzyme inducers in a manner independent of the AhR/Arnt-XRE pathway but dependent upon the Nrf2-ARE pathway.

  7. Degradation of the encephalomyocarditis virus and hepatitis A virus 3C proteases by the ubiquitin/26S proteasome system in vivo

    SciTech Connect

    Schlax, Peter E.; Zhang Jin; Lewis, Elizabeth; Planchart, Antonio; Lawson, T. Glen . E-mail: tlawson@bates.edu

    2007-04-10

    We have isolated stably transfected mouse embryonic fibroblast cell lines that inducibly express either the mature encephalomyocarditis virus (EMCV) or hepatitis A virus (HAV) 3C protease and have used these cells to demonstrate that both proteins are subject to degradation in vivo by the ubiquitin/26S proteasome system. The detection of 3C protease expression in these cells requires inducing conditions and the presence of one of several proteasome inhibitors. Both 3C proteases are incorporated into conjugates with ubiquitin in vivo. HAV 3C protease expression has deleterious effects on cell viability, as determined by observation and counting of cells cultured in the absence or presence of inducing conditions. The EMCV 3C protease was found to be preferentially localized to the nucleus of induced cells, while the HAV 3C protease remains in the cytoplasm. The absence of polyubiquitinated EMCV 3C protease conjugates in nuclear fraction preparations suggests that localization to the nucleus can protect this protein from ubiquitination.

  8. Stress-responsive mitogen-activated protein kinases interact with the EAR motif of a poplar zinc finger protein and mediate its degradation through the 26S proteasome.

    PubMed

    Hamel, Louis-Philippe; Benchabane, Meriem; Nicole, Marie-Claude; Major, Ian T; Morency, Marie-Josée; Pelletier, Gervais; Beaudoin, Nathalie; Sheen, Jen; Séguin, Armand

    2011-11-01

    Mitogen-activated protein kinases (MAPKs) contribute to the establishment of plant disease resistance by regulating downstream signaling components, including transcription factors. In this study, we identified MAPK-interacting proteins, and among the newly discovered candidates was a Cys-2/His-2-type zinc finger protein named PtiZFP1. This putative transcription factor belongs to a family of transcriptional repressors that rely on an ERF-associated amphiphilic repression (EAR) motif for their repression activity. Amino acids located within this repression motif were also found to be essential for MAPK binding. Close examination of the primary protein sequence revealed a functional bipartite MAPK docking site that partially overlaps with the EAR motif. Transient expression assays in Arabidopsis (Arabidopsis thaliana) protoplasts suggest that MAPKs promote PtiZFP1 degradation through the 26S proteasome. Since features of the MAPK docking site are conserved among other EAR repressors, our study suggests a novel mode of defense mechanism regulation involving stress-responsive MAPKs and EAR repressors.

  9. Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms.

    PubMed

    Lemaire, Benny; Huysmans, Suzy; Smets, Erik; Merckx, Vincent

    2011-09-01

    Rate variation in genes from all three genomes has been observed frequently in plant lineages with a parasitic and mycoheterotrophic mode of life. While the loss of photosynthetic ability leads to a relaxation of evolutionary constraints in genes involved in the photosynthetic apparatus, it remains to be determined how prevalent increased substitution rates are in nuclear DNA of non-photosynthetic angiosperms. In this study we infer rates of molecular evolution of 18S rDNA of all parasitic and mycoheterotorphic plant families (except Lauraceae and Polygalaceae) using relative rate tests. In several holoparasitic and mycoheterotrophic plant lineages extremely high substitution rates are observed compared to other photosynthetic angiosperms. The position and frequency of these substitutions have been identified to understand the mutation dynamics of 18S rRNA in achlorophyllous plants. Despite the presence of significantly elevated substitution rates, very few mutations occur in major functional and structural regions of the small ribosomal molecule, providing evidence that the efficiency of the translational apparatus in non-photosynthetic plants has not been affected.

  10. Application of polymerase chain reaction based on ITS1 rDNA to speciate Eimeria.

    PubMed

    Jenkins, M C; Miska, K; Klopp, S

    2006-03-01

    A method was developed to recover Eimeria spp. oocysts directly from poultry litter and determine which species of Eimeria were present using polymerase chain reaction (PCR) based on the ITS1 rDNA sequence. The species composition of Eimeria oocysts was also compared before and after propagation in susceptible chickens to determine if the relative proportion of each species changed after expansion. In samples from two broiler operations, ITS1-PCR was able to detect Eimeria spp. oocysts recovered from litter, with Eimeria acervulina, Eimeria maxima, and Eimeria praecox being the predominant species present therein. Although Eimeria tenella was found in one sample, the other species--Eimeria brunetti, Eimeria necatrix, and Eimeria mitis-were not detected. The species composition as determined by ITS1-PCR did not appear to appreciably alter after expansion in susceptible chickens. The described method represents a rapid means for determining the major Eimeria species in a poultry operation and may be helpful in choosing a particular live oocyst vaccine formulation to protect chickens against coccidiosis.

  11. Molecular phylogeny of monogeneans parasitizing African freshwater Cichlidae inferred from LSU rDNA sequences.

    PubMed

    Mendlová, Monika; Pariselle, Antoine; Vyskočilová, Martina; Simková, Andrea

    2010-11-01

    The African freshwater fish of Cichlidae are parasitized by five genera of monogeneans belonging to Dactylogyridea. Ectoparasitic Scutogyrus, Onchobdella, and the highly diversified Cichlidogyrus represent three genera located on the gills, while the endoparasitic Enterogyrus and Urogyrus are located in the stomach and the urinary bladder, respectively. Representatives of four dactylogyridean genera (except for Urogyrus) were collected from seven cichlid species in West Africa. The aim of this study was to investigate the phylogenetic relationships between ectoparasitic and endoparasitic dactylogyridaen monogeneans specific to African freshwater Cichlidae and other representatives of Dactylogyridae, including a wide range of species from both freshwater and marine environments. All phylogenetic analyses point to the polyphyletic origin of the subfamily Ancyrocephalinae. Both Enterogyrus and Onchobdella were found to be monophyletic. The phylogenetic position of Scutogyrus longicornis was placed within the Cichlidogyrus species, which suggests the non-monophyly of Cichlidogyrus. Therefore, we have proposed a taxonomical revision of the species recently considered to be Scutogyrus. However, these four dactylogyridean genera-specific to cichlids do not form a monophyletic group. Using LSU rDNA analyses, we found that Enterogyrus and Onchobdella form a clade with Protogyrodactylus, i.e., the parasite species does not live in cichlids, which suggests that endoparasitism in cichlid monogeneans is not an ancestral feature.

  12. 18S rDNA phylogeny of lamproderma and allied genera (Stemonitales, Myxomycetes, Amoebozoa).

    PubMed

    Fiore-Donno, Anna Maria; Kamono, Akiko; Meyer, Marianne; Schnittler, Martin; Fukui, Manabu; Cavalier-Smith, Thomas

    2012-01-01

    The phylogenetic position of the slime-mould genus Lamproderma (Myxomycetes, Amoebozoa) challenges traditional taxonomy: although it displays the typical characters of the order Stemonitales, it appears to be sister to Physarales. This study provides a small subunit (18S or SSU) ribosomal RNA gene-based phylogeny of Lamproderma and its allies, with new sequences from 49 specimens in 12 genera. We found that the order Stemonitales and Lamproderma were both ancestral to Physarales and that Lamproderma constitutes several clades intermingled with species of Diacheopsis, Colloderma and Elaeomyxa. We suggest that these genera may have evolved from Lamproderma by multiple losses of fruiting body stalks and that many taxonomic revisions are needed. We found such high genetic diversity within three Lamproderma species that they probably consist of clusters of sibling species. We discuss the contrasts between genetic and morphological divergence and implications for the morphospecies concept, highlighting the phylogenetically most reliable morphological characters and pointing to others that have been overestimated. In addition, we showed that the first part (~600 bases) of the SSU rDNA gene is a valuable tool for phylogeny in Myxomycetes, since it displayed sufficient variability to distinguish closely related taxa and never failed to cluster together specimens considered of the same species.

  13. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing

    NASA Technical Reports Server (NTRS)

    Shi, T.; Reeves, R. H.; Gilichinsky, D. A.; Friedmann, E. I.

    1997-01-01

    Viable bacteria were found in permafrost core samples from the Kolyma-Indigirka lowland of northeast Siberia. The samples were obtained at different depths; the deepest was about 3 million years old. The average temperature of the permafrost is -10 degrees C. Twenty-nine bacterial isolates were characterized by 16S rDNA sequencing and phylogenetic analysis, cell morphology, Gram staining, endospore formation, and growth at 30 degrees C. The majority of the bacterial isolates were rod shaped and grew well at 30 degrees C; but two of them did not grow at or above 28 degrees C, and had optimum growth temperatures around 20 degrees C. Thirty percent of the isolates could form endospores. Phylogenetic analysis revealed that the isolates fell into four categories: high-GC Gram-positive bacteria, beta-proteobacteria, gamma-proteobacteria, and low-GC Gram-positive bacteria. Most high-GC Gram-positive bacteria and beta-proteobacteria, and all gamma-proteobacteria, came from samples with an estimated age of 1.8-3.0 million years (Olyor suite). Most low-GC Gram-positive bacteria came from samples with an estimated age of 5,000-8,000 years (Alas suite).

  14. 18S rDNA Phylogeny of Lamproderma and Allied Genera (Stemonitales, Myxomycetes, Amoebozoa)

    PubMed Central

    Fiore-Donno, Anna Maria; Kamono, Akiko; Meyer, Marianne; Schnittler, Martin; Fukui, Manabu; Cavalier-Smith, Thomas

    2012-01-01

    The phylogenetic position of the slime-mould genus Lamproderma (Myxomycetes, Amoebozoa) challenges traditional taxonomy: although it displays the typical characters of the order Stemonitales, it appears to be sister to Physarales. This study provides a small subunit (18S or SSU) ribosomal RNA gene-based phylogeny of Lamproderma and its allies, with new sequences from 49 specimens in 12 genera. We found that the order Stemonitales and Lamproderma were both ancestral to Physarales and that Lamproderma constitutes several clades intermingled with species of Diacheopsis, Colloderma and Elaeomyxa. We suggest that these genera may have evolved from Lamproderma by multiple losses of fruiting body stalks and that many taxonomic revisions are needed. We found such high genetic diversity within three Lamproderma species that they probably consist of clusters of sibling species. We discuss the contrasts between genetic and morphological divergence and implications for the morphospecies concept, highlighting the phylogenetically most reliable morphological characters and pointing to others that have been overestimated. In addition, we showed that the first part (∼600 bases) of the SSU rDNA gene is a valuable tool for phylogeny in Myxomycetes, since it displayed sufficient variability to distinguish closely related taxa and never failed to cluster together specimens considered of the same species. PMID:22530009

  15. Differential elimination of rDNA genes in bobbed mutants of Drosophila melanogaster.

    PubMed Central

    Terracol, R; Prud'homme, N

    1986-01-01

    In Drosophila melanogaster, the multiply repeated genes encoding 18S and 28S rRNA are located on the X and Y chromosomes. A large percentage of these repeats are interrupted in the 28S region by insertions of two types. We compared the restriction patterns from a subcloned wild-type Oregon R strain to those of spontaneous and ethyl methanesulfonate-induced bobbed mutants. Bobbed mutations were found to be deficiencies that modified the organization of the rDNA locus. Genes without insertions were deleted about twice as often as genes with type I insertions. Type II insertion genes were not decreased in number, except in the mutant having the most bobbed phenotype. Reversion to wild type was associated with an increase in gene copy number, affecting exclusively genes without insertions. One hypothesis which explains these results is the partial clustering of genes by type. The initial deletion could then be due either to an unequal crossover or to loss of material without exchange. Some of our findings indicated that deletion may be associated with an amplification phenomenon, the magnitude of which would be dependent on the amount of clustering of specific gene types at the locus. Images PMID:3023865

  16. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    PubMed Central

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K.; Maitra, S. S.

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process. PMID:26568700

  17. Phylogenetic analysis of Culicoides species from France based on nuclear ITS1-rDNA sequences.

    PubMed

    Perrin, A; Cetre-Sossah, C; Mathieu, B; Baldet, T; Delecolle, J-C; Albina, E

    2006-06-01

    Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) play important roles in the transmission of viral diseases affecting wild and domestic ruminants and horses, including Bluetongue (BT) and African horse sickness (AHS) respectively. In southern Europe, BT has been largely transmitted by the classical Afro-Asian vector Culicoides imicola Kieffer. However, other species such as C. obsoletus Meigen, C. scoticus Downs & Kettle and C. pulicaris Linné may also be involved in BTV transmission. As a consequence of the discovery of C. imicola followed by BTV-2 outbreaks on the island of Corsica in October 2000, further studies on these biting midges have been carried out. To better characterize the evolution and phylogenetic relations of Culicoides, molecular analysis in parallel with a morphology-based taxonomic approach were performed. Phylogenetic analyses of French Culicoides species were undertaken using the ribosomal DNA (rDNA) internal transcribed spacer 1 (ITS1) as a molecular target. This region was shown to be useful in understanding evolutionary and genetic relationships between species. Construction of several trees showed that molecular phylogeny within the genus Culicoides correlates not only with morphological-based taxonomy but also with ecological patterns.

  18. Verification of false-positive blood culture results generated by the BACTEC 9000 series by eubacterial 16S rDNA and panfungal 18S rDNA directed polymerase chain reaction (PCR).

    PubMed

    Daxboeck, Florian; Dornbusch, Hans Jürgen; Krause, Robert; Assadian, Ojan; Wenisch, Christoph

    2004-01-01

    A small but significant proportion of blood cultures processed by the BACTEC 9000 series systems is signaled positive, while subsequent Gram's stain and culture on solid media yield no pathogens. In this study, 15 "false-positive" vials (7 aerobes, 8 anaerobes) from 15 patients were investigated for the presence of bacteria and fungi by eubacterial 16S rDNA and panfungal 18S rDNA amplification, respectively. All samples turned out negative by both methods. Most patients (7) had neutropenia, which does not support the theory that high leukocyte counts enhance the generation of false-positive results. In conclusion, the results of this study indicate that false-negative results generated by the BACTEC 9000 series are inherent to the automated detection and not due to the growth of fastidious organisms.

  19. Molecular phylogeny of the butterfly tribe Satyrini (Nymphalidae: Satyrinae) with emphasis on the utility of ribosomal mitochondrial genes 16s rDNA and nuclear 28s rDNA.

    PubMed

    Yang, Mingsheng; Zhang, Yalin

    2015-07-09

    The tribe Satyrini is one of the most diverse groups of butterflies, but no robust phylogenetic hypothesis for this group has been achieved. Two rarely used 16s and 28s ribosomal and another seven protein-coding genes were used to reconstruct the phylogeny of the Satyrini, with further aim to evaluate the informativeness of the ribosomal genes. Our maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) analyses consistently recovered three well-supported clades for the eleven sampled subtribes of Satyrini: clade I includes Eritina and Coenonymphina, being sister to the clade II + clade III; clade II contains Parargina, Mycalesina and Lethina, and the other six subtribes constitute clade III. The placements of the taxonomically unstable Davidina Oberthür and geographically restricted Paroeneis Moore in Satyrina are confirmed for the first time based on molecular evidence. The close relationships of Callerebia Butler, Loxerebia Watkins and Argestina Riley are well-supported. We suggest that Rhaphicera Butler belongs to Lethina. The partitioned Bremer support (PBS) values of MP analysis show that the 16s rDNA contributes well to the nodes representing all the taxa from subtribe to species levels, and the 28s rDNA is informative at the subtribe level. Furthermore, our ML analyses show that the ribosomal genes 16s rDNA and 28s rDNA are informative, because most node support values are lower in the ML tree after the removal of them than that in ML tree constructed based on the full nine-gene dataset. This indicates that some other ribosomal genes should be tentatively used through combining with traditionally used protein-coding genes in further analysis on phylogeny of Satyrini, providing that proper representatives are sampled.

  20. Distribution of 5S and 45S rDNA sites in plants with holokinetic chromosomes and the "chromosome field" hypothesis.

    PubMed

    Sousa, A; Barros e Silva, A E; Cuadrado, A; Loarce, Y; Alves, M V; Guerra, M

    2011-08-01

    Secondary constrictions or 45S rDNA sites are commonly reported to be located mainly in the terminal regions of the chromosomes. This distribution has been assumed to be related to the existence of a "chromosome field" lying between the centromere and the telomere, an area in which certain cytogenetic events may predominantly occur. If this hypothesis is true this distribution should not be observed in holokinetic chromosomes, as they do not have a localized centromere. In order to evaluate this hypothesis, a comparative study was made of the distributions of 5S and 45S rDNA sites using fluorescence in situ hybridization in representatives of the genera Eleocharis, Diplacrum, Fimbristylis, Kyllinga and Rhynchospora, all of which belong to the family Cyperaceae. The numbers of sites per diploid chromosome complement varied from 2 to ∼10 for 5S rDNA, and from 2 to ∼45 for 45S rDNA. All of the 11 species analyzed had terminally located 45S rDNA sites on the chromosomes whereas the 5S rDNA sites also generally had terminal distributions, except for the Rhynchospora species, where their position was almost always interstitial. These results, together with other previously published data, suggest that the variation in the number and position of the rDNA sites in species with holokinetic chromosomes is non-random and similar to that reported for species with monocentric chromosomes. Therefore, the predominant terminal position of the 45S rDNA sites does not appear to be influenced by the centromere-telomere polarization as suggested by the "chromosome field" hypothesis. Additionally, the hybridization of 5S and 45S rDNA sites provides interesting markers to distinguish several chromosomes on the rather symmetrical karyotypes of Cyperaceae.

  1. TP53INP2/DOR, a mediator of cell autophagy, promotes rDNA transcription via facilitating the assembly of the POLR1/RNA polymerase I preinitiation complex at rDNA promoters.

    PubMed

    Xu, Yinfeng; Wan, Wei; Shou, Xin; Huang, Rui; You, Zhiyuan; Shou, Yanhong; Wang, Lingling; Zhou, Tianhua; Liu, Wei

    2016-07-02

    Cells control their metabolism through modulating the anabolic and catabolic pathways. TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2), participates in cell catabolism by serving as a promoter of autophagy. Here we uncover a novel function of TP53INP2 in protein synthesis, a major biosynthetic and energy-consuming anabolic process. TP53INP2 localizes to the nucleolus through its nucleolar localization signal (NoLS) located at the C-terminal domain. Chromatin immunoprecipitation (ChIP) assays detected an association of TP53INP2 with the ribosomal DNA (rDNA), when exclusion of TP53INP2 from the nucleolus repressed rDNA promoter activity and the production of ribosomal RNA (rRNA) and proteins. The removal of TP53INP2 also impaired the association of the POLR1/RNA polymerase I preinitiation complex (PIC) with rDNA. Further, TP53INP2 interacts directly with POLR1 PIC, and is required for the assembly of the complex. These data indicate that TP53INP2 promotes ribosome biogenesis through facilitating rRNA synthesis at the nucleolus, suggesting a dual role of TP53INP2 in cell metabolism, assisting anabolism on the nucleolus, and stimulating catabolism off the nucleolus.

  2. Genetic diversity of Leishmania tropica strains isolated from clinical forms of cutaneous leishmaniasis in rural districts of Herat province, Western Afghanistan, based on ITS1-rDNA.

    PubMed

    Fakhar, Mahdi; Pazoki Ghohe, Hossein; Rasooli, Sayed Abobakar; Karamian, Mehdi; Mohib, Abdul Satar; Ziaei Hezarjaribi, Hajar; Pagheh, Abdol Sattar; Ghatee, Mohammad Amin

    2016-07-01

    Despite the high incidence of cutaneous leishmaniasis (CL) in Afghanistan, there is a little information concerning epidemiological status of the disease and phylogenetic relationship and population structure of causative agents. This study was conducted to determine the prevalence and distribution of CL cases and investigate the Leishmania tropica population structure in rural districts of Heart province in the West of Afghanistan in comparison to neighboring foci. Overall, 4189 clinically suspected CL cases from 177 villages (including 12 districts) in Herat province were enrolled in the referral laboratory of WHO sub-office in Herat city from January 2012 to December 2013. 3861 cases were confirmed as CL by microscopic examination of Giemsa-stained slides. ITS1 PCR-RFLP analysis showed dominance of L. tropica (more than 98%) among 127 randomly chosen samples. Analysis of the ITS1 sequences revealed 4 sequence types among the 21 L. tropica isolates. Comparison of sequence types from Herat rural districts with the representatives of L. tropica from Iran, India, and Herat city showed two main population groups (cluster A and B). All isolates from Herat province, India and Southeast, East, and Central Iran were found exclusively in cluster A. The close proximity of West Afghanistan focus and Birjand county as the capital of Southern Khorasan province in East Iran can explain relatively equal to the genetic composition of L. tropica in these two neighboring regions. In addition, two populations were found among L. tropica isolates from Herat rural districts. Main population showed more similarity to some isolates from Birjand county in East Iran while minor population probably originated from the Southeast and East Iranian L. tropica. Recent study provided valuable information concerning the population structure of L. tropica and epidemiology of ACL in the West of Afghanistan, which could be the basis for molecular epidemiology studies in other regions of Afghanistan.

  3. Diversity of mitochondrial large subunit rDNA haplotypes of Glomus intraradices in two agricultural field experiments and two semi-natural grasslands.

    PubMed

    Börstler, Boris; Thiéry, Odile; Sýkorová, Zuzana; Berner, Alfred; Redecker, Dirk

    2010-04-01

    Glomus intraradices, an arbuscular mycorrhizal fungus (AMF), is frequently found in a surprisingly wide range of ecosystems all over the world. It is used as model organism for AMF and its genome is being sequenced. Despite the ecological importance of AMF, little has been known about their population structure, because no adequate molecular markers have been available. In the present study we analyse for the first time the intraspecific genetic structure of an AMF directly from colonized roots in the field. A recently developed PCR-RFLP approach for the mitochondrial rRNA large subunit gene (mtLSU) of these obligate symbionts was used and complemented by sequencing and primers specific for a particularly frequent mtLSU haplotype. We analysed root samples from two agricultural field experiments in Switzerland and two semi-natural grasslands in France and Switzerland. RFLP type composition of G. intraradices (phylogroup GLOM A-1) differed strongly between agricultural and semi-natural sites and the G. intraradices populations of the two agricultural sites were significantly differentiated. RFLP type richness was higher in the agricultural sites compared with the grasslands. Detailed sequence analyses which resolved multiple sequence haplotypes within some RFLP types even revealed that there was no overlap of haplotypes among any of the study sites except between the two grasslands. Our results demonstrate a surprisingly high differentiation among semi-natural and agricultural field sites for G. intraradices. These findings will have major implications on our views of processes of adaptation and specialization in these plant/fungus associations.

  4. Chromosome analysis and rDNA FISH in the stag beetle Dorcus parallelipipedus L. (Coleoptera: Scarabaeoidea: Lucanidae).

    PubMed

    Colomba, M S; Vitturi, R; Zunino, M

    2000-01-01

    In the present work the chromosome complement (2n = 18; 8AA + XY) of the stag beetle Dorcus parallelipipedus L. (Scarabaeoidea: Lucanidae) is analyzed using conventional Giemsa staining, banding techniques and ribosomal fluorescent in situ hybridization (rDNA FISH). rDNA FISH remains the unique tool for providing a clear-cut identification of Nucleolar Organizer Regions (NORs) when conventional banding methods such as silver- and CMA3-staining proved to be inadequate. The dull, homogeneous CMA3 fluorescence of all chromosomes indicates the absence of markedly GC rich compartmentalized regions in D. parallelipipedus genome. Silver impregnation inadequacy in detecting NOR regions is to be sought in the unusual extensive silver stainability of heterochromatic material which, on the contrary of what stated for vertebrates, seems to be a common feature in Scarabaeoidea species.

  5. Variability of 18rDNA loci in four lace bug species (Hemiptera, Tingidae) with the same chromosome number

    PubMed Central

    Golub, Natalia V.; Golub, Viktor B.; Kuznetsova, Valentina G.

    2015-01-01

    Abstract Male karyotypes of Elasmotropis testacea (Herrich-Schaeffer, 1835), Tingis cardui (Linnaeus, 1758), Tingis crispata (Herrich-Schaeffer, 1838), and Agramma femorale Thomson, 1871 (Heteroptera, Cimicomorpha, Tingidae) were analyzed using conventional chromosome staining and FISH with 18S rDNA and (TTAGG)n telomeric probes. The FISH technique was applied for the first time in the Tingidae. In spite of the fact that all species showed the same chromosome number (2n = 12 + XY), they have significant differences in the number and position of rDNA loci. FISH with the classical insect (TTAGG)n probe produced no signals on chromosomes suggesting telomeres in lace bugs to be of some other molecular composition. Tingidae share absence of the (TTAGG)n telomeric sequence with all so far studied taxa of the advanced true bug infraorders Cimicomorpha and Pentatomomorpha. PMID:26753071

  6. Molecular analysis of a NOR site polymorphism in brown trout (Salmo trutta): organization of rDNA intergenic spacers.

    PubMed

    Castro, J; Sánchez, L; Martínez, P; Lucchini, S D; Nardi, I

    1997-12-01

    Using restriction endonuclease mapping, we have analyzed the organization of rDNA (DNA coding for ribosomal RNA (rRNA)) units in the salmonid fish Salmo trutta, as an initial step toward understand the molecular basis of a nucleolar organizer region (NOR) site polymorphism detected in this species. The size of the rDNA units ranged between 15 and 23 kb, with remarkable variation both within individuals and between populations. Three regions of internal tandem repetitiveness responsible for this length polymorphism were located to the intergenic spacers. NOR site polymorphic individuals showed a higher number of length classes, in some cases forming a complete 1 kb fragment ladder. The amount of rRNA genes was as much as 8-fold higher in polymorphic individuals compared with standard individuals. All individuals from the most polymorphic population showed a 14-kb insertion of unknown nature in a small proportion (below 25%) of the 28S rRNA genes.

  7. Differentiating sex chromosomes of the dioecious Spinacia oleracea L. (spinach) by FISH of 45S rDNA.

    PubMed

    Lan, T; Zhang, S; Liu, B; Li, X; Chen, R; Song, W

    2006-01-01

    Spinacia oleracea L. (spinach) is a dioecious species with both male and female plants having 2n = 2x = 12 chromosomes, consisting of two large metacentrics, two long subtelocentrics, two short subtelocentrics, two acrocentrics, and four submetacentrics. The location of 45S rDNA was investigated on metaphase chromosomes using fluorescence in situ hybridization (FISH). The numbers of 45S rDNA foci in diploid sets of chromosomes from females was six and from males was five. All the fluorescent foci lay in secondary constrictions and the satellites. Our results indicate that an XY-type sex chromosome system could be present in spinach where the Y chromosome lacks a 45S RNA focus.

  8. Usefulness of 16S rDNA sequencing for the diagnosis of infective endocarditis caused by Corynebacterium diphtheriae.

    PubMed

    Pathipati, Padmaja; Menon, Thangam; Kumar, Naveen; Francis, Thara; Sekar, Prem; Cherian, Kotturathu Mammen

    2012-08-01

    We report a rare case of infective endocarditis caused by Corynebacterium diphtheriae in an 8-year-old boy, 2 years after a right ventricular outflow tract reconstruction with a bovine Contegra valved conduit. The patient recovered well after an RV-PA conduit enblock explantation and replacement with an aortic homograft with antibiotic treatment. All bacteriological cultures of excised tissue and blood were negative. The aetiological agent was identified as C. diphtheriae subsp. gravis by 16s rDNA sequencing.

  9. Sequence analysis of the ITS region and 5.8S rDNA of Porphyra haitanensis

    NASA Astrophysics Data System (ADS)

    Li, Yanyan; Shen, Songdong; He, Lihong; Xu, Pu; Wang, Guangce

    2009-09-01

    The sequences of the ITS (internal transcribed spacer) and 5.8S rDNA of three cultivated strains of Porphyra haitanensis thalli (NB, PT and ST) were amplified, sequenced and analyzed. In addition, the phylogenic relationships of the sequences identified in this study with those of other Porphyra retrieved from GenBank were evaluated. The results are as follows: the sequences of the ITS and 5.8S rDNA were essentially identical among the three strains. The sequences of ITS1 were 331 bp to 334 bp, while those of the 5.8S rDNA were 158 bp and the sequences of ITS2 ranged from 673 bp to 681 bp. The sequences of the ITS had a high level of homology (up to 99.5%) with that of P. haitanensis (DQ662228) retrieved from GenBank, but were only approximately 50% homologous with those of other species of Porphyra. The results obtained when a phylogenetic tree was constructed coincided with the results of the homology analysis. These results suggest that the three cultivated strains of P. haitanensis evolved conservatively and that the ITS showed evolutionary consistency. However, the sequences of the ITS and 5.8S rDNA of different Porphyra species showed great variations. Therefore, the relationship of Porphyra interspecies phyletic evolution could be judged, which provides the proof for Porphyra identification study. However, proper classifications of the subspecies and the populations of Porphyra should be determined through the use of other molecular techniques to determine the genetic variability and rational phylogenetic relationships.

  10. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    PubMed

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs.

  11. Karyotype characterization reveals active 45S rDNA sites located on chromosome termini in Smilax rufescens (Smilacaceae).

    PubMed

    Pizzaia, D; Oliveira, V M; Martins, A R; Appezzato-da-Glória, B; Forni-Martins, E; Aguiar-Perecin, M L R

    2013-04-25

    The genus Smilax (Smilacaceae) includes species of medicinal interest; consequently, their identification is important for the control of raw material used in the manufacture of phytotherapeutic products. We investigated the karyotype of Smilax rufescens in order to look for patterns that would be useful for comparative studies of this genus. To accomplish this, we developed procedures to grow plants and optimize root pretreatment with mitotic fuse inhibitors to obtain metaphase spreads showing clear chromosome morphology. The karyotype, analyzed in Feulgen-stained preparations, was asymmetric, with N = 16 chromosomes gradually decreasing in size; the larger ones were subtelocentric and the smaller chromosomes were submetacentric or metacentric. Nearly terminal secondary constrictions were visualized on the short arm of chromosome pairs 7, 11, and 14, but they were clearly detected only in one of the homologues of each pair. The nucleolus organizer regions (NORs) were mapped by silver staining and fluorescent in situ hybridization of 45S rDNA probes. Silver signals (Ag-NORs) colocalized with rDNA loci were detected at the termini of the short arm of 6 chromosomes. The secondary constriction heteromorphism observed in Feulgen-stained metaphases suggests that differential rRNA gene expression between homologous rDNA loci can occur, resulting in different degrees of chromatin decondensation. In addition, a heteromorphic chromosome pair was identified and was interpreted as being a sex chromosome pair in this dioecious species.

  12. Two different and functional nuclear rDNA genes in the abalone Haliotis tuberculata: tissue differential expression.

    PubMed

    Van Wormhoudt, Alain; Gaume, Béatrice; Le Bras, Yvan; Roussel, Valérie; Huchette, Sylvain

    2011-10-01

    Analysis of the 18S rDNA sequences of Haliotis tuberculata tuberculata and H. t. coccinea subtaxa identified two different types of 18S rDNA genes and ITS1 regions. These two different genes were also detected in H. marmorata, H. rugosa and H. diversicolor that are separated from H. tuberculata by 5-65 mya. The mean divergence value between type I and type II sequences ranged from 7.25% for 18S to 80% for ITS1. ITS1 type II is homologous with the ITS1 consensus sequences published for many abalone species, whereas ITS1 type I presented only minor homology with a unique database entry for H. iris ITS1. A phylogenetic analysis makes a clear separation between type I and type II ITS1 sequences and supports grouping H. t. tuberculata, H. t. coccinea and H. marmorata together. The two subtaxa do not show any significant differences between the homologous 18S rDNA sequences. A general structure of the ITS1 transcript was proposed, with four major helices for the two types. The two genes were expressed and, for the first time, a putative differential expression of ITS1 type I was detected in the gills, digestive gland and gonads whereas ITS1 type II was expressed in all tissues.

  13. Karyotype characterization and evolution in South American species of Lathyrus (Notolathyrus, Leguminosae) evidenced by heterochromatin and rDNA mapping.

    PubMed

    Chalup, Laura; Samoluk, Sergio Sebastián; Neffa, Viviana Solís; Seijo, Guillermo

    2015-11-01

    Notolathyrus is a section of South American endemic species of the genus Lathyrus. The origin, phylogenetic relationship and delimitation of some species are still controversial. The present study provides an exhaustive analysis of the karyotypes of approximately half (10) of the species recognized for section Notolathyrus and four outgroups (sections Lathyrus and Orobus) by cytogenetic mapping of heterochromatic bands and 45S and 5S rDNA loci. The bulk of the parameters analyzed here generated markers to identify most of the chromosomes in the complements of the analyzed species. Chromosome banding showed interspecific variation in the amount and distribution of heterochromatin, and together with the distribution of rDNA loci, allowed the characterization of all the species studied here. Additionally, some of the chromosome parameters described (st chromosomes and the 45S rDNA loci) constitute the first diagnostic characters for the Notolathyrus section. Evolutionary, chromosome data revealed that the South American species are a homogeneous group supporting the monophyly of the section. Variation in the amount of heterochromatin was not directly related to the variation in DNA content of the Notolathyrus species. However, the correlation observed between the amount of heterochromatin and some geographical and bioclimatic variables suggest that the variation in the heterochromatic fraction should have an adaptive value.

  14. Evolutionary dynamics of rDNA genes on chromosomes of the Eucinostomus fishes: cytotaxonomic and karyoevolutive implications.

    PubMed

    Calado, L L; Bertollo, L A C; Cioffi, M B; Costa, G W W F; Jacobina, U P; Molina, W F

    2014-11-27

    Several chromosomal features of Gerreidae fish have been found to be conserved. In this group, it is unclear whether the high degree of chromosomal stasis is maintained when analyzing more dynamic regions of chromosomes, such as rDNA sites that generally show a higher level of variability. Thus, cytogenetic analyses were performed on 3 Atlantic species of the genus Eucinostomus using conventional banding (C-banding, Ag-NOR), AT- and GC-specific fluorochromes, and fluorescence in situ hybridization mapping of telomeric sequences and 5S and 18S rDNA sites. The results showed that although the karyotypical macrostructure of these species is similar (2n = 48 chromosomes, simple Ag-NORs seemingly located on homeologous chromosomes and centromeric heterochromatin pattern), there are differences in the positions of rDNA subunits 5S and 18S. Thus, the ribosomal sites have demonstrated to be effective cytotaxonomic markers in Eucinostomus, presenting a different evolutionary dynamics in relation to other chromosomal regions and allowing access to important evolutionary changes in this group.

  15. Comparison of 16S rDNA analysis and rep-PCR genomic fingerprinting for molecular identification of Yersinia pseudotuberculosis.

    PubMed

    Kim, Wonyong; Song, Mi-Ok; Song, Wonkeun; Kim, Ki-Jung; Chung, Sang-In; Choi, Chul-Soon; Park, Yong-Ha

    2003-01-01

    16S rDNA sequence analysis and repetitive element sequence-based PCR (rep-PCR) genomic fingerprinting were evaluated on 11 type strains of the genus Yersinia and 17 recognized serotype strains of Y. pseudotuberculosis to investigate their genetic relatedness and to establish the value of techniques for the identification of Y. pseudotuberculosis. A phylogenetic tree constructed from 16S rDNA sequences showed that the type strains of Yersinia species formed distinct clusters with the exception of Y. pestis and Y. pseudotuberculosis. Moreover, Y. pestis NCTC 5923T was found to be closely related to Y. pseudotuberculosis serotypes 1b, 3, and 7. Dendrograms generated from REP-PCR, and ERIC-PCR data revealed that members of the genus Yersinia differed from each other with the degree of similarity 62% and 58%, respectively. However, the BOX-PCR results showed that Y. pestis 5923T clustered with the Y. pseudotuberculosis group with a degree of similarity 74%. According to these findings, 16S rDNA sequence analysis was unable to reliably discriminate Y. pseudotuberculosis from Y. pestis. However, REP-PCR and especially ERIC-PCR provided an effective means of differentiating between members of the taxa.

  16. Immunological inter-strain crossreactivity correlated to 18S rDNA sequence types in Acanthamoeba spp.

    PubMed

    Walochnik, J; Obwaller, A; Aspöck, H

    2001-02-01

    Various species of the genus Acanthamoeba have been described as potential pathogens; however, differentiation of acanthamoebae remains problematic. The genus has been divided into 12 18S rDNA sequence types, most keratitis causing strains exhibiting sequence type T4. We recently isolated a keratitis causing Acanthamoeba strain showing sequence type T6, but being morphologically identical to a T4 strain. The aim of our study was to find out, whether the 18S rDNA sequence based identification correlates to immunological differentiation. The protein and antigen profiles of the T6 isolate and three reference Acanthamoeba strains were investigated using two sera from Acanthamoeba keratitis patients and one serum from an asymptomatic individual. It was shown, that the T6 strain produces a distinctly different immunological pattern, while patterns within T4 were identical. Affinity purified antibodies were used to further explore immunological cross-reactivity between sequence types. Altogether, the results of our study support the Acanthamoeba 18S rDNA sequence type classification in the investigated strains.

  17. Primary and secondary structure analyses of the rDNA group-I introns of the Zygnematales (Charophyta).

    PubMed

    Bhattacharya, D; Damberger, S; Surek, B; Melkonian, M

    1996-02-01

    The Zygnematales (Charophyta) contain a group-I intron (subgroupIC1) within their nuclear-encoded small subunit ribosomal DNA (SSU rDNA) coding region. This intron, which is inserted after position 1506 (relative to the SSU rDNA of Escherichia coli), is proposed to have been vertically inherited since the origin of the Zygnematales approximately 350-400 million years ago. Primary and secondary structure analyses were carried out to model group-I intron evolution in the Zygnematales. Secondary structure analyses support genetic data regarding sequence conservation within regions known to be functionally important for in vitro self-splicing of group-I introns. Comparisons of zygnematalean group-I intron secondary structures also provided some new insights into sequences that may have important roles in in vivo RNA splicing. Sequence analyses showed that sequence divergence rates and the nucleotide compositions of introns and coding regions within any one taxon varied widely, suggesting that the "1506" group-I introns and rDNA coding regions in the Zygnematales evolve independently.

  18. ARS5 is a component of the 26S proteasome complex and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis

    PubMed Central

    Sung, Dong-Yul; Kim, Tae-Houn; Komives, Elizabeth A.; Mendoza-Cózatl, David G.; Schroeder, Julian I.

    2010-01-01

    Summary A forward genetic screen in Arabidopsis led to the isolation of several arsenic tolerance mutants. ars5 is the strongest arsenate and arsenite resistant mutant identified in this genetic screen. Here, we report the characterization and cloning of the ars5 mutant gene. ars5 is shown to exhibit an increased accumulation of arsenic and thiol compounds during arsenic stress. Rough mapping together with microarray-based expression mapping identified the ars5 mutation in the alpha subunit F (PAF1) of the 26S proteasome complex. Characterization of an independent paf1 T-DNA insertion allele and complementation by PAF1 confirmed that paf1 mutation is responsible for the enhanced thiol accumulation and the arsenic tolerance phenotypes. Arsenic tolerance was not observed in a knockout mutant of the highly homologous PAF2 gene. However, genetic complementation of ars5 by over expression of PAF2 suggests that the PAF2 protein is functionally equivalent to PAF1 when expressed at high levels. No detectible difference was observed in total ubiquitinylated protein profiles between ars5 and wild type Arabidopsis, suggesting that the arsenic tolerance observed in ars5 is not derived from a general impairment in proteasome-mediated protein degradation. Quantitative RT-PCR showed that arsenic induces enhanced transcriptional activation of several key genes that function in glutathione and phytochelatin biosynthesis in wild type and this arsenic-induction of gene expression is more dramatic in ars5. The enhanced transcriptional response to arsenic and the increased accumulation of thiol compounds in ars5 compared to WT suggest the presence of a positive regulation pathway for thiol biosynthesis that is enhanced in the ars5 background. PMID:19453443

  19. Characterization and Quantification of Intact 26S Proteasome Proteins by Real-Time Measurement of Intrinsic Fluorescence Prior to Top-down Mass Spectrometry

    PubMed Central

    Russell, Jason D.; Scalf, Mark; Book, Adam J.; Ladror, Daniel T.; Vierstra, Richard D.; Smith, Lloyd M.; Coon, Joshua J.

    2013-01-01

    Quantification of gas-phase intact protein ions by mass spectrometry (MS) is impeded by highly-variable ionization, ion transmission, and ion detection efficiencies. Therefore, quantification of proteins using MS-associated techniques is almost exclusively done after proteolysis where peptides serve as proxies for estimating protein abundance. Advances in instrumentation, protein separations, and informatics have made large-scale sequencing of intact proteins using top-down proteomics accessible to the proteomics community; yet quantification of proteins using a top-down workflow has largely been unaddressed. Here we describe a label-free approach to determine the abundance of intact proteins separated by nanoflow liquid chromatography prior to MS analysis by using solution-phase measurements of ultraviolet light-induced intrinsic fluorescence (UV-IF). UV-IF is measured directly at the electrospray interface just prior to the capillary exit where proteins containing at least one tryptophan residue are readily detected. UV-IF quantification was demonstrated using commercially available protein standards and provided more accurate and precise protein quantification than MS ion current. We evaluated the parallel use of UV-IF and top-down tandem MS for quantification and identification of protein subunits and associated proteins from an affinity-purified 26S proteasome sample from Arabidopsis thaliana. We identified 26 unique proteins and quantified 13 tryptophan-containing species. Our analyses discovered previously unidentified N-terminal processing of the β6 (PBF1) and β7 (PBG1) subunit - such processing of PBG1 may generate a heretofore unknown additional protease active site upon cleavage. In addition, our approach permitted the unambiguous identification and quantification both isoforms of the proteasome-associated protein DSS1. PMID:23536786

  20. Combination of quercetin and tannic acid in inhibiting 26S proteasome affects S5a and 20S expression, and accumulation of ubiquitin resulted in apoptosis in cancer chemoprevention.

    PubMed

    Chang, Tsui-Ling; Wang, Chi-Hsien

    2013-04-01

    To look for oral proteasome inhibitors, daily injested food is the best source for cancer chemoprevention. A combination of active components from vegetables, coffee, tea, and fruit could be more efficient to inhibit 26S proteasome activities for preventing cancer diseases. Tannic acid and quercetin have been shown to strongly inhibit 26S proteasome activity, but the molecular target involved remains unknown. Overlay assay, peptide assay, Western blot, and 2-D gels were used to assess the combination of quercetin and tannic acid as a potential inhibitor. Here, we demonstrated that the combination of quercetin and tannic acid (1) synergistically suppresses chymotrypsin-, caspase-, and trypsin-like proteolytic activities, (2) are tightly binding substrates, (3) do not perturb the proteasome structure, (4) inhibit the 26S proteasome affected by ubiquitin, ATP, or β-casein, and (5) inhibit β-casein degradation by the 26S proteasome in vitro. Finally, the inhibition of the proteasome by a combination of quercetin plus tannic acid in Hep-2 cells resulted in the induction of S5a at low dose, accumulation of ubiquitin, and the cleavage of pro-caspase-3, followed by the induction of apoptotic cell death. Evaluating the combination of quercetin and tannic acid as an oral drug to prevent cancer may provide a pharmacological rationale to pursue preclinical trials of this combination.

  1. Analysis of the unexplored features of rrs (16S rDNA) of the Genus Clostridium

    PubMed Central

    2011-01-01

    Background Bacterial taxonomy and phylogeny based on rrs (16S rDNA) sequencing is being vigorously pursued. In fact, it has been stated that novel biological findings are driven by comparison and integration of massive data sets. In spite of a large reservoir of rrs sequencing data of 1,237,963 entries, this analysis invariably needs supplementation with other genes. The need is to divide the genetic variability within a taxa or genus at their rrs phylogenetic boundaries and to discover those fundamental features, which will enable the bacteria to naturally fall within them. Within the large bacterial community, Clostridium represents a large genus of around 110 species of significant biotechnological and medical importance. Certain Clostridium strains produce some of the deadliest toxins, which cause heavy economic losses. We have targeted this genus because of its high genetic diversity, which does not allow accurate typing with the available molecular methods. Results Seven hundred sixty five rrs sequences (> 1200 nucleotides, nts) belonging to 110 Clostridium species were analyzed. On the basis of 404 rrs sequences belonging to 15 Clostridium species, we have developed species specific: (i) phylogenetic framework, (ii) signatures (30 nts) and (iii) in silico restriction enzyme (14 Type II REs) digestion patterns. These tools allowed: (i) species level identification of 95 Clostridium sp. which are presently classified up to genus level, (ii) identification of 84 novel Clostridium spp. and (iii) potential reduction in the number of Clostridium species represented by small populations. Conclusions This integrated approach is quite sensitive and can be easily extended as a molecular tool for diagnostic and taxonomic identification of any microbe of importance to food industries and health services. Since rapid and correct identification allows quicker diagnosis and consequently treatment as well, it is likely to lead to reduction in economic losses and mortality

  2. The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes.

    PubMed

    Njiru, Z K; Constantine, C C; Guya, S; Crowther, J; Kiragu, J M; Thompson, R C A; Dávila, A M R

    2005-02-01

    There are 11 different pathogenic trypanosomes in trypanosomiasis endemic regions of Africa. Their detection and characterisation by molecular methods relies on species-specific primers; consequently several PCR tests have to be made on each sample. Primers ITS1 CF and ITS1 BR, previously designed to amplify the internal transcribed spacer (ITS1) of rDNA, have been evaluated for use in a universal diagnostic test for all pathogenic trypanosomes. Blood was collected from 373 cattle and 185 camels. The primers gave constant PCR products with the stocks of each taxon tested. Members of subgenus Trypanozoon (T. brucei brucei, T. evansi, T. b. rhodesiense and T. b. gambiense) gave a constant product of approximately 480 bp; T. congolense, savannah 700 bp, T. congolense kilifi 620 bp and T. congolense forest 710 bp: T. simiae 400 bp, T. simiae tsavo 370 bp, T. godfreyi 300 bp and T. vivax 250 bp. The sensitivity of the test ranged from 10 pg for Trypanozoon, T. congolense clade and T. vivax to 100 pg for T. simiae and T. godfreyi. The primers detected cases of multi-taxa samples, although the sensitivity was reduced with an increase in the combinations. A better detection rate of trypanosome DNA was recorded with buffy coats than from direct blood. With the field samples, the diagnostic sensitivity was close to the sensitivity obtained using single reactions with species-specific primers for Trypanozoon 38/40 (95%) and T. congolense savannah 30/33 (90.9%) but was lower with T. vivax 25/31 (77.4%). The primers offer promise as a routine diagnostic tool through the use of a single PCR; however, further evaluation is recommended.

  3. Organization and variation analysis of 5S rDNA in different ploidy-level hybrids of red crucian carp × topmouth culter.

    PubMed

    He, Weiguo; Qin, Qinbo; Liu, Shaojun; Li, Tangluo; Wang, Jing; Xiao, Jun; Xie, Lihua; Zhang, Chun; Liu, Yun

    2012-01-01

    Through distant crossing, diploid, triploid and tetraploid hybrids of red crucian carp (Carassius auratus red var., RCC♀, Cyprininae, 2n = 100) × topmouth culter (Erythroculter ilishaeformis Bleeker, TC♂, Cultrinae, 2n = 48) were successfully produced. Diploid hybrids possessed 74 chromosomes with one set from RCC and one set from TC; triploid hybrids harbored 124 chromosomes with two sets from RCC and one set from TC; tetraploid hybrids had 148 chromosomes with two sets from RCC and two sets from TC. The 5S rDNA of the three different ploidy-level hybrids and their parents were sequenced and analyzed. There were three monomeric 5S rDNA classes (designated class I: 203 bp; class II: 340 bp; and class III: 477 bp) in RCC and two monomeric 5S rDNA classes (designated class IV: 188 bp, and class V: 286 bp) in TC. In the hybrid offspring, diploid hybrids inherited three 5S rDNA classes from their female parent (RCC) and only class IV from their male parent (TC). Triploid hybrids inherited class II and class III from their female parent (RCC) and class IV from their male parent (TC). Tetraploid hybrids gained class II and class III from their female parent (RCC), and generated a new 5S rDNA sequence (designated class I-N). The specific paternal 5S rDNA sequence of class V was not found in the hybrid offspring. Sequence analysis of 5S rDNA revealed the influence of hybridization and polyploidization on the organization and variation of 5S rDNA in fish. This is the first report on the coexistence in vertebrates of viable diploid, triploid and tetraploid hybrids produced by crossing parents with different chromosome numbers, and these new hybrids are novel specimens for studying the genomic variation in the first generation of interspecific hybrids, which has significance for evolution and fish genetics.

  4. Association of Malassezia species with psoriatic lesions.

    PubMed

    Rudramurthy, Shivaprakash M; Honnavar, Prasanna; Chakrabarti, Arunaloke; Dogra, Sunil; Singh, Pankaj; Handa, Sanjeev

    2014-08-01

    The aetiology of psoriasis remains elusive. Among multiple factors hypothesised, association of Malassezia spp. is supported by response to topical antifungals. The objective of this study was to evaluate the association of Malassezia spp. with psoriatic lesion. The subjects included 50 consecutive patients with psoriasis, and 50 age- and sex-matched healthy controls. Samples were collected using scotch tape over one square inch area from the lesional and non-lesional sites. The isolated Malassezia spp. were identified by phenotypic methods and confirmed by ITS2 PCR-RFLP and sequencing of D1/D2 region of 26S rDNA. Psoriatic lesions were seen commonly on scalp (28%, 14), chest (22%, 11) and arms (16%, 8). Majority of cases presented with chronic plaque form (76%, 38; P < 0.05). From psoriatic lesions, most frequently isolated Malassezia species was M. furfur (70.6%, 24), followed by M. japonica (11.8%, 4) and M. globosa (8.8%, 3). From healthy individuals M. furfur, M. sympodialis, mixture of M. furfur and M. globosa was isolated in 73.3%, 10% and 16.7% (22, 3 and 5) of cases respectively. The average number of colonies isolated from scalp lesions of the patients was significantly higher (P = 0.03) than healthy areas. Although no strong association of Malassezia species was formed with psoriatic lesion in general, the fungi may play a role in exacerbation of scalp psoriasis.

  5. Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription

    PubMed Central

    Kang, Jian; Kusnadi, Eric P.; Ogden, Allison J.; Hicks, Rodney J.; Bammert, Lukas; Kutay, Ulrike; Hung, Sandy; Sanij, Elaine; Hannan, Ross D.; Hannan, Katherine M.; Pearson, Richard B.

    2016-01-01

    Dysregulation of RNA polymerase I (Pol I)-dependent ribosomal DNA (rDNA) transcription is a consistent feature of malignant transformation that can be targeted to treat cancer. Understanding how rDNA transcription is coupled to the availability of growth factors and nutrients will provide insight into how ribosome biogenesis is maintained in a tumour environment characterised by limiting nutrients. We demonstrate that modulation of rDNA transcription initiation, elongation and rRNA processing is an immediate, co-regulated response to altered amino acid abundance, dependent on both mTORC1 activation of S6K1 and MYC activity. Growth factors regulate rDNA transcription initiation while amino acids modulate growth factor-dependent rDNA transcription by primarily regulating S6K1-dependent rDNA transcription elongation and processing. Thus, we show for the first time amino acids regulate rRNA synthesis by a distinct, post-initiation mechanism, providing a novel model for integrated control of ribosome biogenesis that has implications for understanding how this process is dysregulated in cancer. PMID:27385002

  6. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis.

    PubMed

    Godon, J J; Zumstein, E; Dabert, P; Habouzit, F; Moletta, R

    1997-07-01

    The bacterial community structure of a fluidized-bed reactor fed by vinasses (wine distillation waste) was analyzed. After PCR amplification, four small-subunit (SSU) rDNA clone libraries of Bacteria, Archaea, Procarya, and Eucarya populations were established. The community structure was determined by operational taxonomic unit (OTU) phylogenetic analyses of 579 partial rDNA sequences (about 500 bp long). A total of 146 OTUs were found, comprising 133, 6, and 7 from the Bacteria, Archaea, and Eucarya domains, respectively. A total of 117 bacterial OTU were affiliated with major phyla: low-G+C gram-positive bacteria, Cytophaga-Flexibacter-Bacteroides, Proteobacteria, high-G+C gram-positive bacteria, and Spirochaetes, where the clone distribution was 34, 26, 17, 6, and 4%, respectively. The other 16 bacterial OTUs represent 13% of the clones. They were either affiliated with narrow phyla such as Planctomyces-Chlamydia, green nonsulfur bacteria, or Synergistes, or deeply branched on the phylogenetic tree. A large number of bacterial OTUs are not closely related to any other hitherto determined sequences. The most frequent bacterial OTUs represents less than 5% of the total bacterial SSU rDNA sequences. However, the 20 more frequent bacterial OTUs describe at least 50% of these sequences. Three of the six Archaea OTUs correspond to 95% of the Archaea population and are very similar to already known methanogenic species: Methanosarcina barkeri, Methanosarcina frisius, and Methanobacterium formicicum. In contrast, the three other Archaea OTUs are unusual and are related to thermophilic microorganisms such as Crenarchaea or Thermoplasma spp. Five percent of the sequences analyzed were chimeras and were removed from the analysis.

  7. Male meiosis, heterochromatin characterization and chromosomal location of rDNA in Microtomus lunifer (Berg, 1900) (Hemiptera: Reduviidae: Hammacerinae)

    PubMed Central

    Poggio, María Georgina; Bressa, María José; Papeschi, Alba Graciela

    2011-01-01

    Abstract In the present work, we analysed the male meiosis, the content and distribution of heterochromatin and the number and location of nucleolus organizing regions in Microtomus lunifer (Berg, 1900) by means of standard technique, C- and fluorescent bandings, and fluorescent in situ hybridization with an 18S rDNA probe. This species is the second one cytogenetically analysed within the Hammacerinae. Its male diploid chromosome number is 31 (2n=28+X1X2Y), including a minute pair of m-chromosomes. The diploid autosomal number and the presence of m-chromosomes are similar to those reported in Microtomus conspicillaris (Drury, 1782) (2n=28+XY). However, Microtomus lunifer has a multiple sex chromosome system X1X2Y (male) that could have originated by fragmentation of the ancestral X chromosome. Taking into account that Microtomus conspicillaris and Microtomus lunifer are the only two species within Reduviidae that possess m-chromosomes, the presence of this pair could be a synapomorphy for the species of this genus. C- and fluorescent bandings showed that the amount of heterochromatin in Microtomus lunifer was small, and only a small CMA3 bright band was observed in the largest autosomal pair at one terminal region. FISH with the 18S rDNA probe demonstrated that ribosomal genes were terminally placed on the largest autosomal pair. Our present results led us to propose that the location of rDNA genes could be associated with variants of the sex chromosome systems in relation with a kind of the sex chromosome systems within this family. Furthermore, the terminal location of NOR in the largest autosomal pair allowed us to use it as a chromosome marker and, thus, to infer that the kinetic activity of both ends is not a random process, and there is an inversion of this activity. PMID:24260616

  8. Sequence subfamilies of satellite repeats related to rDNA intergenic spacer are differentially amplified on Vicia sativa chromosomes.

    PubMed

    Macas, Jiri; Navrátilová, Alice; Mészáros, Tibor

    2003-10-01

    We cloned and sequenced the Vicia sativa 25S-18S rDNA intergenic spacer (IGS) and the satellite repeat S12, thought to be related to the spacer sequence. The spacer was shown to contain three types of subrepeats (A, B, and C) with monomers of 173 bp (A), 10 bp (B), and 66 bp (C), separated by unique or partially duplicated sequences. Two spacer variants were detected in V. sativa that differed in length (2990 and 3168 bp) owing to an extra copy of the subrepeat A. The A subrepeats were also shown to be highly homologous to the satellite repeat S12, which is located in large clusters on chromosomes 4, 5, and 6, and is not associated with the rDNA loci. Sequencing of additional S12 clones retrieved from a shotgun genomic library allowed definition of three subfamilies of this repeat based on minor differences in their nucleotide sequences. Two of these subfamilies could be discriminated from the rest of the S12 sequences as well as from the IGS A subrepeats using specific oligonucleotide primers that labeled only a subset of the S12 loci when used in the primed in situ DNA labeling (PRINS) reaction on mitotic chromosomes. These experiments showed that, in spite of the high overall similarity of the IGS A subrepeats and the S12 satellite repeats, there are S12 subfamilies that are divergent from the common consensus and are present at only some of the chromosomes containing the S12 loci. Thus, the subfamilies may have evolved at these loci following the spreading of the A subrepeats from the IGS to genomic regions outside the rDNA clusters.

  9. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis.

    PubMed Central

    Godon, J J; Zumstein, E; Dabert, P; Habouzit, F; Moletta, R

    1997-01-01

    The bacterial community structure of a fluidized-bed reactor fed by vinasses (wine distillation waste) was analyzed. After PCR amplification, four small-subunit (SSU) rDNA clone libraries of Bacteria, Archaea, Procarya, and Eucarya populations were established. The community structure was determined by operational taxonomic unit (OTU) phylogenetic analyses of 579 partial rDNA sequences (about 500 bp long). A total of 146 OTUs were found, comprising 133, 6, and 7 from the Bacteria, Archaea, and Eucarya domains, respectively. A total of 117 bacterial OTU were affiliated with major phyla: low-G+C gram-positive bacteria, Cytophaga-Flexibacter-Bacteroides, Proteobacteria, high-G+C gram-positive bacteria, and Spirochaetes, where the clone distribution was 34, 26, 17, 6, and 4%, respectively. The other 16 bacterial OTUs represent 13% of the clones. They were either affiliated with narrow phyla such as Planctomyces-Chlamydia, green nonsulfur bacteria, or Synergistes, or deeply branched on the phylogenetic tree. A large number of bacterial OTUs are not closely related to any other hitherto determined sequences. The most frequent bacterial OTUs represents less than 5% of the total bacterial SSU rDNA sequences. However, the 20 more frequent bacterial OTUs describe at least 50% of these sequences. Three of the six Archaea OTUs correspond to 95% of the Archaea population and are very similar to already known methanogenic species: Methanosarcina barkeri, Methanosarcina frisius, and Methanobacterium formicicum. In contrast, the three other Archaea OTUs are unusual and are related to thermophilic microorganisms such as Crenarchaea or Thermoplasma spp. Five percent of the sequences analyzed were chimeras and were removed from the analysis. PMID:9212428

  10. Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae.

    PubMed

    Lewinska, Anna; Miedziak, Beata; Kulak, Klaudia; Molon, Mateusz; Wnuk, Maciej

    2014-06-01

    The nucleolus is speculated to be a regulator of cellular senescence in numerous biological systems (Guarente, Genes Dev 11(19):2449-2455, 1997; Johnson et al., Curr Opin Cell Biol 10(3):332-338, 1998). In the budding yeast Saccharomyces cerevisiae, alterations in nucleolar architecture, the redistribution of nucleolar protein and the accumulation of extrachromosomal ribosomal DNA circles (ERCs) during replicative aging have been reported. However, little is known regarding rDNA stability and changes in nucleolar activity during chronological aging (CA), which is another yeast aging model used. In the present study, the impact of aberrant cell cycle checkpoint control (knock-out of BUB1, BUB2, MAD1 and TEL1 genes in haploid and diploid hemizygous states) on CA-mediated changes in the nucleolus was studied. Nucleolus fragmentation, changes in the nucleolus size and the nucleolus/nucleus ratio, ERC accumulation, expression pattern changes and the relocation of protein involved in transcriptional silencing during CA were revealed. All strains examined were affected by oxidative stress, aneuploidy (numerical rather than structural aberrations) and DNA damage. However, the bub1 cells were the most prone to aneuploidy events, which may contribute to observed decrease in chronological lifespan. We postulate that chronological aging may be affected by redox imbalance-mediated chromosome XII instability leading to both rDNA instability and whole chromosome aneuploidy. CA-mediated nucleolus fragmentation may be a consequence of nucleolus enlargement and/or Nop2p upregulation. Moreover, the rDNA content of chronologically aging cells may be a factor determining the subsequent replicative lifespan. Taken together, we demonstrated that the nucleolus state is also affected during CA in yeast.

  11. PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1990-01-01

    The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.

  12. Molecular systematics of the genus Troglophilus (Rhaphidophoridae, Orthoptera) in Turkey: mitochondrial 16S rDNA evidences

    PubMed Central

    Taylan, Mehmet Sait; Russo, Claudio Di; Rampini, Mauro; Ketmaier, Valerio

    2013-01-01

    Abstract This study focuses on the evolutionary relationships among Turkish species of the cave cricket genus Troglophilus.Fifteen populations were studied for sequence variation in a fragment (543 base pairs) of the mitochondrial DNA (mtDNA) 16S rDNA gene (16S) to reconstruct their phylogenetic relationships and biogeographic history. Genetic data retrieved three main clades and at least three divergent lineages that could not be attributed to any of the taxa known for the area. Molecular time estimates suggest that the diversification of the group took place between the Messinian and the Plio-Pleistocene. PMID:23653493

  13. Comparative analysis of bacteria associated with different mosses by 16S rRNA and 16S rDNA sequencing.

    PubMed

    Tian, Yang; Li, Yan Hong

    2017-01-01

    To understand the differences of the bacteria associated with different mosses, a phylogenetic study of bacterial communities in three mosses was carried out based on 16S rDNA and 16S rRNA sequencing. The mosses used were Hygroamblystegium noterophilum, Entodon compressus and Grimmia montana, representing hygrophyte, shady plant and xerophyte, respectively. In total, the operational taxonomic units (OTUs), richness and diversity were different regardless of the moss species and the library level. All the examined 1183 clones were assigned to 248 OTUs, 56 genera were assigned in rDNA libraries and 23 genera were determined at the rRNA level. Proteobacteria and Bacteroidetes were considered as the most dominant phyla in all the libraries, whereas abundant Actinobacteria and Acidobacteria were detected in the rDNA library of Entodon compressus and approximately 24.7% clones were assigned to Candidate division TM7 in Grimmia montana at rRNA level. The heatmap showed the bacterial profiles derived from rRNA and rDNA were partly overlapping. However, the principle component analysis of all the profiles derived from rDNA showed sharper differences between the different mosses than that of rRNA-based profiles. This suggests that the metabolically active bacterial compositions in different mosses were more phylogenetically similar and the differences of the bacteria associated with different mosses were mainly detected at the rDNA level. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA sequencing is preferred approach to have a good understanding on the constitution of the microbial communities in mosses.

  14. An uncommon co-localization of rDNA 5S with major rDNA clusters in Callichthyidae (Siluriformes): a report case in Corydoras carlae Nijssen & Isbrücker, 1983

    PubMed Central

    da Rocha, Rafael Henrique; Baumgärtner, Lucas; Paiz, Leonardo Marcel; Margarido, Vladimir Pavan; Fernandes, Carlos Alexandre; Gubiani, Éder André

    2016-01-01

    Abstract Corydoras Lacepède, 1803 is the most specious genus of Corydoradinae subfamily and many of its species are still unknown in relation to molecular cytogenetic markers. However, the diploid number and karyotypic formula were recorded for many species of this group. In current study, we provided the first cytogenetic information of Corydoras carlae Nijssen & Isbrücker, 1983, an endemic fish species from Iguassu River basin, Paraná State, Brazil. The individuals were collected in Florido River, a tributary of Iguassu River and analysed with respect to diploid number, heterochromatin distribution pattern, Ag-NORs and mapping of 5S and 18S ribosomal genes. The karyotype of this species comprises 46 chromosomes arranged in 22m+22sm+2st. The heterochromatin is distributed in centromeric and pericentromeric positions in most of the chromosomes, and also associated with NORs. The Ag-NORs were detected in the terminal position on the long arm of the metacentric pair 6. The double-FISH technique showed that 5S rDNA and 18S rDNA were co-localized in the terminal portion on the long arm of the metacentric pair 6. This condition of co-localization of ribosomal genes in Corydoras carlae seems to represent a marker for this species. PMID:28123681

  15. Yeast counterparts of subunits S5a and p58 (S3) of the human 26S proteasome are encoded by two multicopy suppressors of nin1-1.

    PubMed Central

    Kominami, K; Okura, N; Kawamura, M; DeMartino, G N; Slaughter, C A; Shimbara, N; Chung, C H; Fujimuro, M; Yokosawa, H; Shimizu, Y; Tanahashi, N; Tanaka, K; Toh-e, A

    1997-01-01

    Nin1p, a component of the 26S proteasome of Saccharomyces cerevisiae, is required for activation of Cdc28p kinase at the G1-S-phase and G2-M boundaries. By exploiting the temperature-sensitive phenotype of the nin1-1 mutant, we have screened for genes encoding proteins with related functions to Nin1p and have cloned and characterized two new multicopy suppressors, SUN1 and SUN2, of the nin1-1 mutation. SUN1 can suppress a null nin1 mutation, whereas SUN2, an essential gene, does not. Sun1p is a 268-amino acid protein which shows strong similarity to MBP1 of Arabidopsis thaliana, a homologue of the S5a subunit of the human 26S proteasome. Sun1p binds ubiquitin-lysozyme conjugates as do S5a and MBP1. Sun2p (523 amino acids) was found to be homologous to the p58 subunit of the human 26S proteasome. cDNA encoding the p58 component was cloned. Furthermore, expression of a derivative of p58 from which the N-terminal 150 amino acids had been removed restored the function of a null allele of SUN2. During glycerol density gradient centrifugation, both Sun1p and Sun2p comigrated with the known proteasome components. These results, as well as other structural and functional studies, indicate that both Sun1p and Sun2p are components of the regulatory module of the yeast 26S proteasome. Images PMID:9017604

  16. Phylogenetic Relationships Among Xiphinema and Xiphidorus Nematode Species from Brazil Inferred from 18S rDNA Sequences

    PubMed Central

    Oliveira, Claudio M. G.; Hübschen, Judith; Brown, Derek J. F.; Ferraz, Luiz C. C. B.; Wright, Frank; Neilson, Roy

    2004-01-01

    Maximum likelihood trees produced from 18S rDNA sequences separated 14 Xiphinema and five Xiphidorus nematode species from Brazil into distinct groups that concurred with their current morphological taxonomic status. Species belonging to the X. americanum group (X. brevicolle, X. diffusum, X. oxycaudatum, and X. peruvianum) formed a single group that was clearly separated from the other Xiphinema species. As with previous taxonomic studies that noted only minor morphological differences between putative X. americanum group species, separation of these species based upon 18S rDNA sequences was inconclusive. Thus it is probable that instead of comprising distinct species, the X. americanum group may in fact represent numerous morphotypes with large inter- and intra- population morphological variability that may be environmentally driven. Within the cluster representing non X. americanum group species, there was little statistical support to clearly separate species. However, three subgroups, comprising (i) the X. setariae/vulgare complex, (ii) X. ifacolum and X. paritaliae, and (iii) X. brasiliense and X. ensiculiferum were well resolved. PMID:19262801

  17. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses.

    PubMed

    Lee, Jiyoung; Phung, Nguyet Thu; Chang, In Seop; Kim, Byung Hong; Sung, Ha Chin

    2003-06-27

    A fuel cell-type electrochemical device has been used to enrich microbes oxidizing acetate with concomitant electricity generation without using an electron mediator from activated sludge. The device generated a stable current of around 5 mA with complete oxidation of 5 mM acetate at the hydraulic retention time of 2.5 h after 4 weeks of enrichment. Over 70% of electrons available from acetate oxidation was recovered as current. Carbon monoxide or hydrogen did not influence acetate oxidation or current generation from the microbial fuel cell (MFC). Denaturing gradient gel electrophoresis showed that DNA extracted from the acetate-enriched MFC had different 16S rDNA patterns from those of sludge or glucose+glutamate-enriched MFCs. Nearly complete 16S rDNA sequence analyses showed that diverse bacteria were enriched in the MFC fed with acetate. Electron microscopic observations showed biofilm developed on the electrode, but not microbial clumps observed in MFCs fed with complex fuel such as glucose and wastewater from a corn-processing factory.

  18. Identification of Hortaea werneckii Isolated from mangrove plant Aegiceras comiculatum based on morphology and rDNA sequences.

    PubMed

    Chen, Juan; Xing, Xiao-Ke; Zhang, Li-Chun; Xing, Yong-Mei; Guo, Shun-Xing

    2012-12-01

    Hortaea werneckii is a black yeast-like ascomycetous fungi associated with the human superficial infection tinea nigra, which commonly occurs in tropical and subtropical countries. Now, this fungus has been found in the halophilic environment all over the world and recognized as a new model organism in exploring the mechanisms of salt tolerance in eukaryotes. During a survey of endophytic fungi of mangrove forest at South China Sea, two isolates of H. werneckii were recovered from medicinal plant of Aegiceras comiculatum. The isolates were identified by morphological characters and phylogenetic analyses (e.g., ITS rDNA, LSU rDNA and translation elongation factor EF1α). Some physiological tests such as thermotolerance, acid tolerance (pH) and NaCl tolerance as well as pathogenicity test in vitro for the strains of Hortaea were performed. It is the first report that H. werneckii was isolated from medicinal plant of A. comiculatum in south sea of China as the endophytic fungi.

  19. Generalized structure and evolution of ITS1 and ITS2 rDNA in black flies (Diptera: Simuliidae).

    PubMed

    LaRue, Bernard; Gaudreau, Christine; Bagre, Hubert O; Charpentier, Guy

    2009-12-01

    A sample of 15 Nearctic black fly species spread over five genera is used to perform the first systematic study of the internal transcribed spacer 1 (ITS1) from the nuclear rDNA transcription unit of Simuliidae. ITS1 from the Prosimuliini tribe is a conserved, repeat-free and highly structured sequence of about 490 nucleotides (nt), while Simuliini exhibit a medium-sized or short version, the latter minimally 95 nt long. All size versions possess a common 39 nt core made from eight short blocks interspersed among highly variable sequences. Conversely, that variability which generally excludes ITS1 from phylogenetic applications translates for many species into polymorphisms suggesting the general feasibility of ITS1-based population studies. We show in a parallel investigation that ITS2, the other rDNA transcribed spacer, is length-constrained around 270 nt and possesses a three-domain fold anchored by four conserved regions representing about 40% of the whole sequence. An alignment guided by this secondary structure leads to a phylogeny, derived through the GTR model, which convincingly displays the basal divergence between Simuliini and Prosimuliini. However, the poorer support of some intermediate nodes could indicate rapid divergence events within Simulium.

  20. Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences.

    PubMed

    Zhao, Ya-E; Wu, Li-Ping

    2012-09-01

    To confirm phylogenetic relationships in Demodex mites based on mitochondrial 16S rDNA partial sequences, mtDNA 16S partial sequences of ten isolates of three Demodex species from China were amplified, recombined, and sequenced and then analyzed with two Demodex folliculorum isolates from Spain. Lastly, genetic distance was computed, and phylogenetic tree was reconstructed. MEGA 4.0 analysis showed high sequence identity among 16S rDNA partial sequences of three Demodex species, which were 95.85 % in D. folliculorum, 98.53 % in Demodex canis, and 99.71 % in Demodex brevis. The divergence, genetic distance, and transition/transversions of the three Demodex species reached interspecies level, whereas there was no significant difference of the divergence (1.1 %), genetic distance (0.011), and transition/transversions (3/1) of the two geographic D. folliculorum isolates (Spain and China). Phylogenetic trees reveal that the three Demodex species formed three separate branches of one clade, where D. folliculorum and D. canis gathered first, and then gathered with D. brevis. The two Spain and five China D. folliculorum isolates did not form sister clades. In conclusion, 16S mtDNA are suitable for phylogenetic relationship analysis in low taxa (genus or species), but not for intraspecies determination of Demodex. The differentiation among the three Demodex species has reached interspecies level.

  1. Phylogenetic position of Creptotrema funduli in the Allocreadiidae based on partial 28S rDNA sequences.

    PubMed

    Curran, Stephen S; Pulis, Eric E; Hugg, Dennis O; Brown, Jessica P; Manuel, Lynnae C; Overstreet, Robin M

    2012-08-01

    The infrequently reported allocreadiid digenean Creptotrema funduli Mueller, 1934 is documented from the blackstripe topminnow, Fundulus notatus (Cyprinodontiformes: Fundulidae), in the headwaters of the Biloxi River, Harrison County, Mississippi. Specimens from Mississippi were compared with the type material from Fundulus diaphanus menona from Oneida Lake, New York, and no substantial difference was found. A fragment of ribosomal DNA, comprising a short portion of the 3' end of 18S nuclear rDNA gene, internal transcribed spacer (ITS) genes (including ITS1, 5.8S, and ITS2), and the 5' end of the 28S gene including variable domains D1-D3 was sequenced for the species. A portion of the 28S rDNA gene from C. funduli, plus similar fragments from 8 other allocreadiids and the callodistomatid Prosthenhystera sp., were aligned and subjected to maximum likelihood and Bayesian inference analyses. Resulting phylogenetic trees were derived from the analyses and used to estimate the relationship of Creptotrema Travassos, Artigas, and Pereira, 1928 with other allocreadiids. Creptotrema was found to be closely related to Megalogonia Surber, 1928 and 3 Neotropical genera, i.e., Wallinia Pearse, 1920, Creptotrematina Yamaguti, 1954, and Auriculostoma Scholz, Aguirre-Macedo, and Choudhury, 2004. No molecular data were available for species in Creptotrema prior to this study, so the ITS1, 5.8S, and ITS2 genes have been made available for comparative studies involving neotropical species in the genus.

  2. Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken).

    PubMed

    Valenzuela-González, Fabiola; Martínez-Porchas, Marcel; Villalpando-Canchola, Enrique; Vargas-Albores, Francisco

    2016-03-01

    Ultrafast-metagenomic sequence classification using exact alignments (Kraken) is a novel approach to classify 16S rDNA sequences. The classifier is based on mapping short sequences to the lowest ancestor and performing alignments to form subtrees with specific weights in each taxon node. This study aimed to evaluate the classification performance of Kraken with long 16S rDNA random environmental sequences produced by cloning and then Sanger sequenced. A total of 480 clones were isolated and expanded, and 264 of these clones formed contigs (1352 ± 153 bp). The same sequences were analyzed using the Ribosomal Database Project (RDP) classifier. Deeper classification performance was achieved by Kraken than by the RDP: 73% of the contigs were classified up to the species or variety levels, whereas 67% of these contigs were classified no further than the genus level by the RDP. The results also demonstrated that unassembled sequences analyzed by Kraken provide similar or inclusively deeper information. Moreover, sequences that did not form contigs, which are usually discarded by other programs, provided meaningful information when analyzed by Kraken. Finally, it appears that the assembly step for Sanger sequences can be eliminated when using Kraken. Kraken cumulates the information of both sequence senses, providing additional elements for the classification. In conclusion, the results demonstrate that Kraken is an excellent choice for use in the taxonomic assignment of sequences obtained by Sanger sequencing or based on third generation sequencing, of which the main goal is to generate larger sequences.

  3. Rapid identification and classification of bacteria by 16S rDNA restriction fragment melting curve analyses (RFMCA).

    PubMed

    Rudi, Knut; Kleiberg, Gro H; Heiberg, Ragnhild; Rosnes, Jan T

    2007-08-01

    The aim of this work was to evaluate restriction fragment melting curve analyses (RFMCA) as a novel approach for rapid classification of bacteria during food production. RFMCA was evaluated for bacteria isolated from sous vide food products, and raw materials used for sous vide production. We identified four major bacterial groups in the material analysed (cluster I-Streptococcus, cluster II-Carnobacterium/Bacillus, cluster III-Staphylococcus and cluster IV-Actinomycetales). The accuracy of RFMCA was evaluated by comparison with 16S rDNA sequencing. The strains satisfying the RFMCA quality filtering criteria (73%, n=57), with both 16S rDNA sequence information and RFMCA data (n=45) gave identical group assignments with the two methods. RFMCA enabled rapid and accurate classification of bacteria that is database compatible. Potential application of RFMCA in the food or pharmaceutical industry will include development of classification models for the bacteria expected in a given product, and then to build an RFMCA database as a part of the product quality control.

  4. Chromosomal Locations of 5S and 45S rDNA in Gossypium Genus and Its Phylogenetic Implications Revealed by FISH

    PubMed Central

    Gan, Yimei; Liu, Fang; Chen, Dan; Wu, Qiong; Qin, Qin; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2013-01-01

    We investigated the locations of 5S and 45S rDNA in Gossypium diploid A, B, D, E, F, G genomes and tetraploid genome (AD) using multi-probe fluorescent in situ hybridization (FISH) for evolution analysis in Gossypium genus. The rDNA numbers and sizes, and synteny relationships between 5S and 45S were revealed using 5S and 45S as double-probe for all species, and the rDNA-bearing chromosomes were identified for A, D and AD genomes with one more probe that is single-chromosome-specific BAC clone from G. hirsutum (A1D1). Two to four 45S and one 5S loci were found in diploid-species except two 5S loci in G. incanum (E4), the same as that in tetraploid species. The 45S on the 7th and 9th chromosomes and the 5S on the 9th chromosomes seemed to be conserved in A, D and AD genomes. In the species of B, E, F and G genomes, the rDNA numbers, sizes, and synteny relationships were first reported in this paper. The rDNA pattern agrees with previously reported phylogenetic history with some disagreements. Combined with the whole-genome sequencing data from G. raimondii (D5) and the conserved cotton karyotype, it is suggested that the expansion, decrease and transposition of rDNA other than chromosome rearrangements might occur during the Gossypium evolution. PMID:23826377

  5. Activated levels of rRNA synthesis in fission yeast are driven by an intergenic rDNA region positioned over 2500 nucleotides upstream of the initiation site.

    PubMed Central

    Liu, Z; Zhao, A; Chen, L; Pape, L

    1997-01-01

    RNA polymerase I-catalyzed synthesis of the Schizosaccharomyces pombe approximately 37S pre-rRNAs was shown to be sensitive to regulatory sequences located several kilobases upstream of the initiation site for the rRNA gene. An in vitro transcription system for RNA polymerase I-catalyzed RNA synthesis was established that supports correct and activated transcription from templates bearing a full S. pombe rRNA gene promoter. A 780 bp region starting at -2560 significantly stimulates transcription of ac is-located rDNA promoter and competes with an rDNA promoter in trans, thus displaying some of the activities of rDNA transcriptional enhancers in vitro. Deletion of a 30 bp enhancer-homologous domain in this 780 bp far upstream region blocked its cis-stimulatory effect. The sequence of the S. pombe 3.5 kb intergenic spacer was determined and its organization differs from that of vertebrate, Drosophila, Acanthamoeba and plant intergenic rDNA spacers: it does not contain multiple, imperfect copies of the rRNA gene promoter nor repetitive elements of 140 bp, as are found in vertebrate rDNA enhancers. PMID:9016610

  6. Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A<->T+C<->G in the mitogenome of Kamimuria wangi.

    PubMed

    Seligmann, Hervé

    2016-07-01

    Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (X<->Y, i.e. A<->C) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the A<->T+C<->G exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are "regular", stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA.

  7. Physical Mapping of the 5S and 18S rDNA in Ten Species of Hypostomus Lacépède 1803 (Siluriformes: Loricariidae): Evolutionary Tendencies in the Genus

    PubMed Central

    César Venere, Paulo; Thums Konerat, Jocicléia; Henrique Zawadzki, Cláudio; Ricardo Vicari, Marcelo; Margarido, Vladimir Pavan

    2014-01-01

    Hypostomus is a diverse group with unclear aspects regarding its biology, including the mechanisms that led to chromosome diversification within the group. Fluorescence in situ hybridization (FISH) with 5S and 18S rDNA probes was performed on ten Hypostomini species. Hypostomus faveolus, H. cochliodon, H. albopunctatus, H. aff. paulinus, and H. topavae had only one chromosome pair with 18S rDNA sites, while H. ancistroides, H. commersoni, H. hermanni, H. regani, and H. strigaticeps had multiple 18S rDNA sites. Regarding the 5S rDNA genes, H. ancistroides, H. regani, H. albopunctatus, H. aff. paulinus, and H. topavae had 5S rDNA sites on only one chromosome pair and H. faveolus, H. cochliodon, H. commersoni, H. hermanni, and H. strigaticeps had multiple 5S rDNA sites. Most species had 18S rDNA sites in the telomeric region of the chromosomes. All species but H. cochliodon had 5S rDNA in the centromeric/pericentromeric region of one metacentric pair. Obtained results are discussed based on existent phylogenies for the genus, with comments on possible dispersion mechanisms to justify the variability of the rDNA sites in Hypostomus. PMID:25405240

  8. Physical mapping of the 5S and 18S rDNA in ten species of Hypostomus Lacépède 1803 (Siluriformes: Loricariidae): evolutionary tendencies in the genus.

    PubMed

    Bueno, Vanessa; Venere, Paulo César; Thums Konerat, Jocicléia; Zawadzki, Cláudio Henrique; Vicari, Marcelo Ricardo; Margarido, Vladimir Pavan

    2014-01-01

    Hypostomus is a diverse group with unclear aspects regarding its biology, including the mechanisms that led to chromosome diversification within the group. Fluorescence in situ hybridization (FISH) with 5S and 18S rDNA probes was performed on ten Hypostomini species. Hypostomus faveolus, H. cochliodon, H. albopunctatus, H. aff. paulinus, and H. topavae had only one chromosome pair with 18S rDNA sites, while H. ancistroides, H. commersoni, H. hermanni, H. regani, and H. strigaticeps had multiple 18S rDNA sites. Regarding the 5S rDNA genes, H. ancistroides, H. regani, H. albopunctatus, H. aff. paulinus, and H. topavae had 5S rDNA sites on only one chromosome pair and H. faveolus, H. cochliodon, H. commersoni, H. hermanni, and H. strigaticeps had multiple 5S rDNA sites. Most species had 18S rDNA sites in the telomeric region of the chromosomes. All species but H. cochliodon had 5S rDNA in the centromeric/pericentromeric region of one metacentric pair. Obtained results are discussed based on existent phylogenies for the genus, with comments on possible dispersion mechanisms to justify the variability of the rDNA sites in Hypostomus.

  9. Genetic diversity based on 28S rDNA sequences among populations of Culex quinquefasciatus collected at different locations in Tamil Nadu, India.

    PubMed

    Sakthivelkumar, S; Ramaraj, P; Veeramani, V; Janarthanan, S

    2015-09-01

    The basis of the present study was to distinguish the existence of any genetic variability among populations of Culex quinquefasciatus which would be a valuable tool in the management of mosquito control programmes. In the present study, population of Cx. quinquefasciatus collected at different locations in Tamil Nadu were analyzed for their genetic variation based on 28S rDNA D2 region nucleotide sequences. A high degree of genetic polymorphism was detected in the sequences of D2 region of 28S rDNA on the predicted secondary structures in spite of high nucleotide sequence similarity. The findings based on secondary structure using rDNA sequences suggested the existence of a complex genotypic diversity of Cx. quinquefasciatus population collected at different locations of Tamil Nadu, India. This complexity in genetic diversity in a single mosquito population collected at different locations is considered an important issue towards their influence and nature of vector potential of these mosquitoes.

  10. Karyotype Diversification and Evolution in Diploid and Polyploid South American Hypochaeris (Asteraceae) Inferred from rDNA Localization and Genetic Fingerprint Data

    PubMed Central

    Weiss-Schneeweiss, Hanna; Tremetsberger, Karin; Schneeweiss, Gerald M.; Parker, John S.; Stuessy, Tod F.

    2008-01-01

    Background and Aims Changes in chromosome structure and number play an important role in plant evolution. A system well-suited to studying different modes of chromosome evolution is the genus Hypochaeris (Asteraceae) with its centre of species' diversity in South America. All South American species uniformly have a chromosome base number of x = 4 combined with variation in rDNA number and distribution, and a high frequency of polyploidy. The aim of this paper is to assess directions and mechanisms of karyotype evolution in South American species by interpreting both newly obtained and previous data concerning rDNA localization in a phylogenetic context. Methods Eleven Hypochaeris species from 18 populations were studied using fluorescence in situ hybridization (FISH) with 35S and 5S rDNA probes. A phylogenetic framework was established from neighbour-net analysis of amplified fragment length polymorphism (AFLP) fingerprint data. Key Results A single 5S rDNA locus is invariably found on the short arm of chromosome 2. Using 35S rDNA loci, based on number (one or two) and localization (interstitial on the long arm of chromosome 2, but sometimes lacking, and terminal or interstitial on the short arm of chromosome 3, only very rarely lacking), seven karyotype groups can be distinguished; five of these include polyploids. Karyotype groups with more than one species do not form monophyletic groups. Conclusions Early evolution of Hypochaeris in South America was characterized by considerable karyotype differentiation resulting from independent derivations from an ancestral karyotype. There was marked diversification with respect to the position and evolution of the 35S rDNA locus on chromosome 3, probably involving inversions and/or transpositions, and on chromosome 2 (rarely 3) concerning inactivation and loss. Among these different karyotype assemblages, the apargioides group and its derivatives constitute by far the majority of species. PMID:18285356

  11. Protective antibody titres and antigenic competition in multivalent Dichelobacter nodosus fimbrial vaccines using characterised rDNA antigens.

    PubMed

    Raadsma, H W; O'Meara, T J; Egerton, J R; Lehrbach, P R; Schwartzkoff, C L

    1994-03-01

    The relationship between K-agglutination antibody titres and protection against experimental challenge with Dichelobacter nodosus, the effect of increasing the number of D. nodosus fimbrial antigens, and the importance of the nature of additional antigens in multivalent vaccines on antibody response and protection against experimental challenge with D. nodosus were examined in Merino sheep. A total of 204 Merino sheep were allocated to one of 12 groups, and vaccinated with preparations containing a variable number of rDNA D. nodosus fimbrial antigens. The most complex vaccine contained ten fimbrial antigens from all major D. nodosus serogroups, while the least complex contained a single fimbrial antigen. In addition to D. nodosus fimbrial antigens, other bacterial rDNA fimbrial antigens (Moraxella bovis Da12d and Escherichia coli K99), and bovine serum albumin (BSA) were used in some vaccines. Antibody titres to fimbrial antigens and BSA were measured by agglutination and ELISA tests, respectively. Antibody titres were determined on five occasions (Weeks 0, 3, 6, 8, and 11 after primary vaccination). All sheep were exposed to an experimental challenge with virulent isolates of D. nodosus from either serogroup A or B, 8 weeks after primary vaccination. For D. nodosus K-agglutinating antibody titres, a strong negative correlation between antibody titre and footrot lesion score was observed. This relationship was influenced by the virulence of the challenge strain. Increasing the number of fimbrial antigens in experimental rDNA D. nodosus fimbrial vaccines resulted in a linear decrease in K-agglutinating antibody titres to individual D. nodosus serogroups. Similarly, a linear decrease in protection to challenge with homologous serogroups was observed as the number of D. nodosus fimbrial antigens represented in the vaccine increased. The reduction in antibody titres in multicomponent vaccines is thought to be due to antigenic competition. The level of competition

  12. Usefulness of the MicroSeq 500 16S rDNA bacterial identification system for identification of anaerobic Gram positive bacilli isolated from blood cultures

    PubMed Central

    Lau, S K P; Ng, K H L; Woo, P C Y; Yip, K‐t; Fung, A M Y; Woo, G K S; Chan, K‐m; Que, T‐l

    2006-01-01

    Using full 16S ribosomal RNA (rRNA) gene sequencing as the gold standard, 20 non‐duplicating anaerobic Gram positive bacilli isolated from blood cultures were analysed by the MicroSeq 500 16S rDNA bacterial identification system. The MicroSeq system successfully identified 13 of the 20 isolates. Four and three isolates were misidentified at the genus and species level, respectively. Although the MicroSeq 500 16S rDNA bacterial identification system is better than three commercially available identification systems also evaluated, its database needs to be expanded for accurate identification of anaerobic Gram positive bacilli. PMID:16443743

  13. [Sequence analysis of 16S rDNA gene of endosymbiont of Acanthamoeba sp. CB/S1 isolated from soil].

    PubMed

    Xuan, Ying-hua; Cui, Chun-quan; Zheng, Shan-zi

    2011-04-30

    The endosymbiont of Acanthamoeba sp. CB/SI was identified by orcein-carmine staining and 16S rDNA sequence analysis. The endosymbiont bacteria were rod-shaped and darkly stained, and irregularly localized within the cytoplasm. The length of the 16S rDNA was 1534 bp and its DNA sequence was closely related to those of Candidatus Amoebophilus asiaticus and Acanthamoeba sp. KA/E21 with 98% homology. Phylogenetic analysis showed that the endosymbiont of CB/SI, the endosymbiont of KA/E21, Candidatus Amoebophilus asiaticus, the endosymbiont of Ixodes scapularis, and the endosymbiont of Encarsia pergandiella constitute a monophyletic lineage in phylogenetic tree.

  14. Identification of goose (Anser anser) and mule duck (Anasplatyrhynchos x Cairina moschata) foie gras by multiplex polymerase chain reaction amplification of the 5S RDNA gene.

    PubMed

    Rodríguez, M A; García, T; González, I; Asensio, L; Fernández, A; Lobo, E; Hernández, P E; Martín, R

    2001-06-01

    Polymerase chain reaction (PCR) amplification of the nuclear 5S rDNA gene has been used for the identification of goose and mule duck foie gras. Two species-specific reverse primers were designed and used in a multiplex reaction, together with a forward universal primer, to amplify specific fragments of the 5S rDNA in each species. The different sizes of the species-specific amplicons, separated by agarose gel electrophoresis, allowed clear identification of goose and mule duck foie gras samples. This genetic marker can be useful for detecting fraudulent substitution of the duck liver for the more expensive goose liver.

  15. Use of single-strand conformation polymorphism of amplified 16S rDNA for grouping of bacteria isolated from foods.

    PubMed

    Takahashi, Hajime; Kimura, Bon; Tanaka, Yuichiro; Mori, Mayumi; Yokoi, Asami; Fujii, Tateo

    2008-04-01

    The grouping method for isolated strains from foods using single-strand conformation polymorphism (SSCP) after PCR amplification of a portion of 16S rDNA was developed. This method was able to group the strains from various food samples based on 16S rDNA sequence. As 97.8% of the isolated strains from various foods were grouped correctly, use of the PCR-SSCP method enables the prompt and labor-saving analysis of microbial population of food-derived bacterial strains. Advantages in speed and accuracy of bacterial population identification by the PCR-SSCP method have practical application for food suppliers and testing laboratories.

  16. Karyotype, banding and rDNA FISH in the scarab beetle Anoplotrupes stercorosus (Coleoptera Scarabaeoidea: Geotrupidae). Description and comparative analysis.

    PubMed

    Colomba, Mariastella; Vitturi, Roberto; Volpe, Nicola; Lannino, Antonella; Zunino, Mario

    2004-01-01

    Six specimens of Anoplotrupes stercorosus (Coleoptera Scarabaeoidea: Geotrupidae) were analysed using conventional staining, banding techniques and fluorescent in situ hybridization with a ribosomal probe (rDNA FISH). Detailed karyotype description was also joined to a comparative analysis between present data and those previously reported for Thorectes intermedius [Chromosome Res. 7 (1999) 1]. The two species, both belonging to the tribe Geotrupini, show the same modal number but different autosomal morphology which is in contrast with the high chromosome stability argued for Geotrupinae during the last three decades. Moreover, a detailed comparison reveals the occurrence of a plesiomorphic condition in A. stercorosus with respect to the apomorphic one of T. intermedius. This finding agrees with phylogenetic relationships proposed for the two genera based on morphological and anatomical characters.

  17. Granulomatous prostatitis due to Cryptococcus neoformans: diagnostic usefulness of special stains and molecular analysis of 18S rDNA.

    PubMed

    Wada, R; Nakano, N; Yajima, N; Yoneyama, T; Wakasaya, Y; Murakami, C; Yamato, K; Yagihashi, S

    2008-01-01

    A 57-year-old Japanese man complained of pain on micturition. The prostate was of normal size but hard. Transrectal needle biopsy demonstrated granulomatous prostatitis with small focal abscesses. Staining with periodic acid-Schiff, Grocott's methenamine silver and Fontana-Masson revealed yeast-form fungus in the granulomas. The mucoid capsule of the fungus stained with mucicarmine. PCR specific for cryptococcal 18S rDNA using DNA extracted from the pathological specimen was positive, and the sequence was homologous to Cryptococcus neoformans. A diagnosis of cryptococcal granulomatous prostatitis was made. The patient was then found to suffer from meningitis and lung abscess, and was treated with amphotericin B and flucytosine. Careful histological and molecular studies are beneficial to reach the correct diagnosis and to prevent an unfavorable outcome of disseminated cryptococcosis.

  18. Surface water-borne multidrug and heavy metal-resistant Staphylococcus isolates characterized by 16S rDNA sequencing.

    PubMed

    Yilmaz, Fadime; Orman, Nazlı; Serim, Gamze; Kochan, Ceren; Ergene, Aysun; Icgen, Bulent

    2013-12-01

    Four Staphylococcus isolates having both multidrug- and multimetal-resistant ability were isolated from surface water. Further identification of the isolates was obtained through biochemical tests and 16S rDNA gene sequencing. One methicillin-resistant and two methicillin-sensitive isolates were determined as Staphylococcus aureus. The other isolate was identified as Staphylococcus warneri. The antibiotic and heavy metal resistance profiles of the Staphylococcus isolates were determined by using 26 antibiotics and 17 heavy metals. S. aureus isolates displayed resistance to most of the β-lactam antibiotics tested. All Staphylococcus isolates were resistant to heavy metals including silver, lithium, and barium. Due to a possible health risk of these pathogenic bacteria, a need exists for an accurate assessment of their acquired resistance to multiple drugs and metals.

  19. Loop mediated isothermal amplification of 5.8S rDNA for specific detection of Tritrichomonas foetus.

    PubMed

    Oyhenart, Jorge; Martínez, Florencia; Ramírez, Rosana; Fort, Marcelo; Breccia, Javier D

    2013-03-31

    Tritrichomonas foetus is the causative agent of bovine trichomonosis, a sexually transmitted disease leading to infertility and abortion. A test based on loop mediated isothermal amplification (LAMP) targeting the 5.8S rDNA subunit was designed for the specific identification of T. foetus. The LAMP assay was validated using 28 T. foetus and 35 non-T. foetus trichomonads strains. It did not exhibit cross-reaction with closely related parasites commonly found in smegma cultures like Tetratrichomonas spp. and Pentatrichomonas hominis. Bovine smegma did not show interferences for the detection of the parasite and, the sensitivity of the method (4×10(3) CFU/mL, approximately 10 cells/reaction) was slightly higher than that found for PCR amplification with TFR3 and TFR4 primers. The LAMP approach has potential applications for diagnosis and control of T. foetus and, practical use for low skill operators in rural areas.

  20. Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan

    NASA Astrophysics Data System (ADS)

    Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka

    2004-08-01

    In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.

  1. FISH-mapping of the 5S rDNA locus in chili peppers (Capsicum-Solanaceae).

    PubMed

    Aguilera, Patricia M; Debat, Humberto J; Scaldaferro, Marisel A; Martí, Dardo A; Grabiele, Mauro

    2016-03-01

    We present here the physical mapping of the 5S rDNA locus in six wild and five cultivated taxa of Capsicum by means of a genus-specific FISH probe. In all taxa, a single 5S locus per haploid genome that persistently mapped onto the short arm of a unique metacentric chromosome pair at intercalar position, was found. 5S FISH signals of almost the same size and brightness intensity were observed in all the analyzed taxa. This is the first cytological characterization of the 5S in wild taxa of Capsicum by using a genus-derived probe, and the most exhaustive and comprehensive in the chili peppers up to now. The information provided here will aid the cytomolecular characterization of pepper germplasm to evaluate variability and can be instrumental to integrate physical, genetic and genomic maps already generated in the genus.

  2. Distribution, hosts, 16S rDNA sequences and phylogenetic position of the Neotropical tick Amblyomma parvum (Acari: Ixodidae).

    PubMed

    Nava, S; Szabó, M P J; Mangold, A J; Guglielmone, A A

    2008-07-01

    The hosts, distribution, intraspecific genetic variation and phylogenetic position of Amblyomma parvum (Acari: Ixodidae) have recently been re-assessed. Data on this tick's hosts and distribution were obtained not only from existing literature but also from unpublished records. Sequences of the ticks' mitochondrial 16S ribosomal DNA (rDNA) were used to evaluate genetic variation among specimens of A. parvum from different localities in Argentina and Brazil, and to explore the phylogenetic relationships between this tick and other Amblyomma species. Although several species of domestic and wild mammal act as hosts for adult A. parvum, most collected adults of this species have come from cattle and goats. Caviid rodents of the subfamily Caviinae appear to be the hosts for the immature stages. So far, A. parvum has been detected in 12 Neotropical biogeographical provinces (Chaco, Cerrado, Eastern Central America, Venezuelan Coast, Pantanal, Parana Forest, Caatinga, Chiapas, Venezuelan Llanos, Monte, Western Panamanian Isthmus, and Roraima) but the Chaco province has provided significantly more specimens than any other (P<0.0001). The 16S rDNA sequences showed just 0.0%-1.1% divergence among the Argentinean A. parvum investigated and no more than 0.2% divergence among the Brazilian specimens. The observed divergence between the Argentinean and Brazilian specimens was, however, greater (3.0%-3.7%). Although there is now molecular and morphological evidence to indicate that A. parvum, A. pseudoparvum, A. auricularium and A. pseudoconcolor are members of a natural group, previous subgeneric classifications do not reflect this grouping. The subgeneric status of these tick species therefore needs to be re-evaluated. The 16S-rDNA-based evaluation of divergence indicates that the gene flow between Argentinean and Brazilian 'A. parvum' is very limited and that the Argentinean 'A. parvum' may be a different species to the Brazilian.

  3. Multiple Group I Introns in the Small-Subunit rDNA of Botryosphaeria dothidea: Implication for Intraspecific Genetic Diversity

    PubMed Central

    Xu, Chao; Wang, Chunsheng; Sun, Xinyao; Zhang, Rong; Gleason, Mark L.; Eiji, Tanaka; Sun, Guangyu

    2013-01-01

    Botryosphaeria dothidea is a widespread and economically important pathogen on various fruit trees, and it often causes die-back and canker on limbs and fruit rot. In characterizing intraspecies genetic variation within this fungus, group I introns, rich in rDNA of fungi, may provide a productive region for exploration. In this research, we analysed complete small subunit (SSU) ribosomal DNA (rDNA) sequences of 37 B. dothidea strains, and found four insertions, designated Bdo.S943, Bdo.S1199-A, Bdo.S1199-B and Bdo.S1506, at three positions. Sequence analysis and structure prediction revealed that both Bdo.S943 and Bdo.S1506 belonged to subgroup IC1 of group I introns, whereas Bdo.S1199-A and Bdo.S1199-B corresponded to group IE introns. Moreover, Bdo.S1199-A was found to host an open reading frame (ORF) for encoding the homing endonuclease (HE), whereas Bdo.S1199-B, an evolutionary descendant of Bdo.S1199-A, included a degenerate HE. The above four introns were novel, and were the first group I introns observed and characterized in this species. Differential distribution of these introns revealed that all strains could be separated into four genotypes. Genotype III (no intron) and genotype IV (Bdo.S1199-B) were each found in only one strain, whereas genotype I (Bdo.S1199-A) and genotype II (Bdo.S943 and Bdo.S1506) occurred in 95% of the strains. There is a correlation between B. dothidea genotypes and hosts or geographic locations. Thus, these newly discovered group I introns can help to advance understanding of genetic differentiation within B. dothidea. PMID:23844098

  4. Multiple group I introns in the small-subunit rDNA of Botryosphaeria dothidea: implication for intraspecific genetic diversity.

    PubMed

    Xu, Chao; Wang, Chunsheng; Sun, Xinyao; Zhang, Rong; Gleason, Mark L; Eiji, Tanaka; Sun, Guangyu

    2013-01-01

    Botryosphaeria dothidea is a widespread and economically important pathogen on various fruit trees, and it often causes die-back and canker on limbs and fruit rot. In characterizing intraspecies genetic variation within this fungus, group I introns, rich in rDNA of fungi, may provide a productive region for exploration. In this research, we analysed complete small subunit (SSU) ribosomal DNA (rDNA) sequences of 37 B. dothidea strains, and found four insertions, designated Bdo.S943, Bdo.S1199-A, Bdo.S1199-B and Bdo.S1506, at three positions. Sequence analysis and structure prediction revealed that both Bdo.S943 and Bdo.S1506 belonged to subgroup IC1 of group I introns, whereas Bdo.S1199-A and Bdo.S1199-B corresponded to group IE introns. Moreover, Bdo.S1199-A was found to host an open reading frame (ORF) for encoding the homing endonuclease (HE), whereas Bdo.S1199-B, an evolutionary descendant of Bdo.S1199-A, included a degenerate HE. The above four introns were novel, and were the first group I introns observed and characterized in this species. Differential distribution of these introns revealed that all strains could be separated into four genotypes. Genotype III (no intron) and genotype IV (Bdo.S1199-B) were each found in only one strain, whereas genotype I (Bdo.S1199-A) and genotype II (Bdo.S943 and Bdo.S1506) occurred in 95% of the strains. There is a correlation between B. dothidea genotypes and hosts or geographic locations. Thus, these newly discovered group I introns can help to advance understanding of genetic differentiation within B. dothidea.

  5. Molecular identification of four phenotypes of human Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Classification of Demodex mites has long depended on hosts and morphological characteristics. However, the fact that two species coexist in the same host and phenotype is easily influenced by environment causes difficulty and indeterminacy in traditional classification. Genotype, which directly reflects the molecular structure characteristics, is relatively stable. In this study, species identification of four phenotypes of human Demodex mites was conducted. Mites were morphologically classified into four phenotypes: long- and short-bodied Demodex folliculorum with finger-like terminus and Demodex brevis with finger- or cone-like terminus. The mitochondrial 16S ribosomal DNA (rDNA) fragment of individual mite was amplified, cloned, sequenced, and aligned. Sequence divergences, genetic distances, transition/transversion rates, and phylogenetic trees were analyzed. The results demonstrated that the 16S rDNA sequence of three phenotypes with finger-like terminus was 337 bp, and that of phenotype with cone-like terminus was 342 bp. The divergences, genetic distances, and transition/transversion rates among the three phenotypes with finger-like terminus were 0.0-2.7%, 0.000-0.029, and 5.0-7/0 (5/1-7/0), respectively, indicating an intraspecific variation. Yet, those between these three phenotypes and the one with cone-like terminus were 21.6-22.8%, 2.510-2.589, and 0.47-0.59 (22/47-27/46), respectively, suggesting an interspecific variation. The five phylogenetic trees showed that the three phenotypes with finger-like terminus clustered into one branch, while the phenotype with cone-like terminus clustered into another. In conclusion, terminus is a major morphological characteristic for the identification of human Demodex species. The three phenotypes with finger-like terminus belong to D. folliculorum, while the phenotype with cone-like terminus belongs to D. brevis. Molecular identification can verify and replenish morphological identification.

  6. Morphology and 18S rDNA of Henneguya gurlei (Myxosporea) from Ameiurus nebulosus (Siluriformes) in North Carolina

    USGS Publications Warehouse

    Iwanowicz, L.R.; Iwanowicz, D.D.; Pote, L.M.; Blazer, V.S.; Schill, W.B.

    2008-01-01

    Henneguya gurlei was isolated from Ameiurus nebulosus captured in North Carolina and redescribed using critical morphological features and 18S small-subunit ribosomal RNA (SSU rDNA) gene sequence. Plasmodia are white, spherical, or subspherical, occur in clusters, measure up to 1.8 mm in length, and are located on the dorsal, pectoral, and anal fins. Histologically, plasmodia are located in the dermis and subdermally, and the larger cysts disrupt the melanocyte pigment layer. The spore body is lanceolate, 18.2 ?? 0.3 ??m (range 15.7-20.3) in length, and 5.4 ?? 0.1 ??m (range 3.8-6.1) in width in valvular view. The caudal appendages are 41.1 ?? 1.1 ??m (range 34.0-49.7) in length. Polar capsules are pyriform and of unequal size. The longer polar capsule measures 6.2 ?? 0.1 ??m (range 5.48-7.06), while the shorter is 5.7 ?? 0.1 ??m (range 4.8-6.4) in length. Polar capsule width is 1.2 ?? 0.03 ??m (range 1.0-1.54). The total length of the spore is 60.9 ?? 1.2 ??m (range 48.7-68.5). Morphologically, this species is similar to other species of Henneguya that are known to infect ictalurids. Based on SSU rDNA sequences, this species is most closely related to H. exilis and H. ictaluri, which infect Ictalurus punctatus. ?? American Society of Parasitologists 2008.

  7. Bacterial diversity in water samples from uranium wastes as demonstrated by 16S rDNA and ribosomal intergenic spacer amplification retrievals.

    PubMed

    Radeva, Galina; Selenska-Pobell, Sonja

    2005-11-01

    Bacterial diversity was assessed in water samples collected from several uranium mining wastes in Ger many and in the United States by using 16S rDNA and ribosomal intergenic spacer amplification retrievals. The results obtained using the 16S rDNA retrieval showed that the samples collected from the uranium mill tailings of Schlema/Alberoda, Germany, were predominated by Nitrospina-like bacteria, whereas those from the mill tailings of Shiprock, New Mexico, USA, were predominated by gamma-Pseudomonas and Frauteria spp. Additional smaller populations of the Cytophaga-Flavobacterium-Bacteroides group and alpha- and delta-Proteobacteria were identified in the Shiprock samples as well. Proteobacteria and Cytophaga-Flavobacterium-Bacteroides were also found in the third uranium mill tailings studied, Gittersee/Coschütz, Germany, but the groups of the predominant clones were rather small. Most of the clones of the Gittersee/Coschütz samples represented individual sequences, which indicates a high level of bacterial diversity. The samples from the fourth uranium waste studied, Steinsee Deponie B1, Germany, were predominantly occupied by Acinetobacter spp. The ribosomal intergenic spacer amplification retrieval provided results complementary to those obtained by the 16S rDNA analyses. For instance, in the Shiprock samples, an additional predominant bacterial group was identified and affiliated with Nitrosomonas sp., whereas in the Gittersee/Coschütz samples, anammox populations were identified that were not retrieved by the applied 16S rDNA approach.

  8. Validation of the 16S rDNA and COI DNA barcoding technique for rapid molecular identification of stored product psocids (Insecta: Psocodea: Liposcelididae).

    PubMed

    Yang, Qianqian; Zhao, Shuo; Kucerová, Zuzana; Stejskal, Václav; Opit, George; Qin, Meng; Cao, Yang; Li, Fujun; Li, Zhihong

    2013-02-01

    Psocids are serious storage pests, and their control is hampered by the fact that different species respond differently to insecticides used for the control of stored-product insect pests. Additionally, psocids of genus Liposcelis that are commonly associated with stored-products are difficult to identify using morphological characteristics. The goal of this study was to validate molecular identification of stored-product psocids of genus Liposcelis based on 16S rDNA and cytochrome oxidase I (COI) DNA barcoding. Unidentified liposcelids (Liposcelis DK) imported from Denmark to China were compared with 14 population samples of seven common species (L. bostrychophila, L. brunnea, L. corrodens, L. decolor, L. entomophila, L. mendax, and L. paeta). The explored species (DK) liposcelids shared >98% sequence similarity for both the 16S rDNA and COI genes with the reference L. corrodens samples (98.32 and 98.94% for 16S rDNA and COI, respectively). A neighbor-joining tree revealed that the explored DK sample and the reference L. corrodens samples belong to the same clade. These molecular results were verified by morphological identification of DK specimens, facilitated by SEM microphotography. The DNA barcoding method and the neighbor-joining phylogenetic analyses indicated that both the 16S rDNA and COI genes were suitable for Liposcelis species identification. DNA barcoding has great potential for use in fast and accurate liposcelid identification.

  9. Randomly detected genetically modified (GM) maize (Zea mays L.) near a transport route revealed a fragile 45S rDNA phenotype.

    PubMed

    Waminal, Nomar Espinosa; Ryu, Ki Hyun; Choi, Sun-Hee; Kim, Hyun Hee

    2013-01-01

    Monitoring of genetically modified (GM) crops has been emphasized to prevent their potential effects on the environment and human health. Monitoring of the inadvertent dispersal of transgenic maize in several fields and transport routes in Korea was carried out by qualitative multiplex PCR, and molecular analyses were conducted to identify the events of the collected GM maize. Cytogenetic investigations through fluorescence in situ hybridization (FISH) of the GM maize were performed to check for possible changes in the 45S rDNA cluster because this cluster was reported to be sensitive to replication and transcription stress. Three GM maize kernels were collected from a transport route near Incheon port, Korea, and each was found to contain NK603, stacked MON863 x NK603, and stacked NK603 x MON810 inserts, respectively. Cytogenetic analysis of the GM maize containing the stacked NK603 x MON810 insert revealed two normal compact 5S rDNA signals, but the 45S rDNA showed a fragile phenotype, demonstrating a "beads-on-a-string" fragmentation pattern, which seems to be a consequence of genetic modification. Implications of the 45S rDNA cluster fragility in GM maize are also discussed.

  10. Quantitative analysis of dinoflagellates and diatoms community via Miseq sequencing of actin gene and v9 region of 18S rDNA

    PubMed Central

    Guo, Liliang; Sui, Zhenghong; Liu, Yuan

    2016-01-01

    Miseq sequencing and data analysis for the actin gene and v9 region of 18S rDNA of 7 simulated samples consisting of different mixture of dinoflagellates and diatoms were carried out. Not all the species were detectable in all the 18S v9 samples, and sequence percent in all the v9 samples were not consistent with the corresponding cell percent which may suggest that 18S rDNA copy number in different cells of these species differed greatly which result in the large deviation of the amplification. And 18S rDNA amplification of the microalgae was prone to be contaminated by fungus. The amplification of actin gene all was from the dinoflagellates because of its targeted degenerate primers. All the actin sequences of dinoflagellates were detected in the act samples except act4, and sequence percentage of the dinoflagellates in the act samples was not completely consistent with the dinoflagellates percentage of cell samples, but with certain amplification deviations. Indexes of alpha diversity of actin gene sequencing may be better reflection of community structure, and beta diversity analysis could cluster the dinoflagellates samples with identical or similar composition together and was distinguishable with blooming simulating samples at the generic level. Hence, actin gene was more proper than rDNA as the molecular marker for the community analysis of the dinoflagellates. PMID:27721499

  11. A Simple Method for the Extraction, PCR-amplification, Cloning, and Sequencing of Pasteuria 16S rDNA from Small Numbers of Endospores

    PubMed Central

    Atibalentja, N.; Noel, G. R.; Ciancio, A.

    2004-01-01

    For many years the taxonomy of the genus Pasteuria has been marred with confusion because the bacterium could not be cultured in vitro and, therefore, descriptions were based solely on morphological, developmental, and pathological characteristics. The current study sought to devise a simple method for PCR-amplification, cloning, and sequencing of Pasteuria 16S rDNA from small numbers of endospores, with no need for prior DNA purification. Results show that DNA extracts from plain glass bead-beating of crude suspensions containing 10,000 endospores at 0.2 × 10⁶ endospores ml-1 were sufficient for PCR-amplification of Pasteuria 16S rDNA, when used in conjunction with specific primers. These results imply that for P. penetrans and P. nishizawae only one parasitized female of Meloidogyne spp. and Heterodera glycines, respectively, should be sufficient, and as few as eight cadavers of Belonolaimus longicaudatus with an average number of 1,250 endospores of "Candidatus Pasteuria usgae" are needed for PCR-amplification of Pasteuria 16S rDNA. The method described in this paper should facilitate the sequencing of the 16S rDNA of the many Pasteuria isolates that have been reported on nematodes and, consequently, expedite the classification of those isolates through comparative sequence analysis. PMID:19262793

  12. Phylogenetic analyses of four species of Ulva and Monostroma grevillei using ITS, rbc L and 18S rDNA sequence data

    NASA Astrophysics Data System (ADS)

    Lin, Zhongheng; Shen, Songdong; Chen, Weizhou; Li, Huihui

    2013-01-01

    Chlorophyta species are common in the southern and northern coastal areas of China. In recent years, frequent green tide incidents in Chinese coastal waters have raised concerns and attracted the attention of scientists. In this paper, we sequenced the 18S rDNA genes, the internal transcribed spacer (ITS) regions and the rbc L genes in seven organisms and obtained 536-566 bp long ITS sequences, 1 377-1 407 bp long rbc L sequences and 1 718-1 761 bp long partial 18S rDNA sequences. The GC base pair content was highest in the ITS regions and lowest in the rbc L genes. The sequencing results showed that the three Ulva prolifera (or U. pertusa) gene sequences from Qingdao and Nan'ao Island were identical. The ITS, 18S rDNA and rbc L genes in U. prolifera and U. pertusa from different sea areas in China were unchanged by geographic distance. U. flexuosa had the least evolutionary distance from U. californica in both the ITS regions (0.009) and the 18S rDNA (0.002). These data verified that Ulva and Enteromorpha are not separate genera.

  13. Variation in copy number of the 28S rDNA of Aspergillus fumigatus measured by droplet digital PCR and analog quantitative real-time PCR.

    PubMed

    Alanio, Alexandre; Sturny-Leclère, Aude; Benabou, Marion; Guigue, Nicolas; Bretagne, Stéphane

    2016-08-01

    Droplet digital PCR (ddPCR) after DNA digestion yielded a 28S rDNA copy number of 61 to 86 copies/genome when testing 10 unrelated Aspergillus fumigatus isolates, higher than with quantitative PCR. Unfortunately, ddPCR after DNA digestion did not improve the sensitivity of our PCR assay when testing serum patients with invasive aspergillosis.

  14. Co-located 18S/5S rDNA arrays: an ancient and unusual chromosomal trait in Julidini species (Labridae, Perciformes)

    PubMed Central

    Amorim, Karlla Danielle Jorge; Cioffi, Marcelo de Bello; Bertollo, Luiz Antonio Carlos; Soares, Rodrigo Xavier; de Souza, Allyson Santos; da Costa, Gideão Wagner Werneck Felix; Molina, Wagner Franco

    2016-01-01

    Abstract Wrasses (Labridae) are extremely diversified marine fishes, whose species exhibit complex interactions with the reef environment. They are widely distributed in the Indian, Pacific and Atlantic oceans. Their species have displayed a number of karyotypic divergent processes, including chromosomal regions with complex structural organization. Current cytogenetic information for this family is phylogenetically and geographically limited and mainly based on conventional cytogenetic techniques. Here, the distribution patterns of heterochromatin, GC-specific chromosome regions and Ag-NORs, and the organization of 18S and 5S rDNA sites of the Atlantic species Thalassoma noronhanum (Boulenger, 1890), Halichoeres poeyi (Steindachner, 1867), Halichoeres radiatus (Linnaeus, 1758), Halichoeres brasiliensis (Bloch, 1791) and Halichoeres penrosei Starks, 1913, belonging to the tribe Julidini were analyzed. All the species exhibited 2n=48 chromosomes with variation in the number of chromosome arms among genera. Thalassoma noronhanum has 2m+46a, while species of the genus Halichoeres Rüppell, 1835 share karyotypes with 48 acrocentric chromosomes. The Halichoeres species exhibit differences in the heterochromatin distribution patterns and in the number and distribution of 18S and 5S rDNA sites. The occurrence of 18S/5S rDNA syntenic arrangements in all the species indicates a functionally stable and adaptive genomic organization. The phylogenetic sharing of this rDNA organization highlights a marked and unusual chromosomal singularity inside the family Labridae. PMID:28123678

  15. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities.

    PubMed

    Logares, Ramiro; Sunagawa, Shinichi; Salazar, Guillem; Cornejo-Castillo, Francisco M; Ferrera, Isabel; Sarmento, Hugo; Hingamp, Pascal; Ogata, Hiroyuki; de Vargas, Colomban; Lima-Mendez, Gipsi; Raes, Jeroen; Poulain, Julie; Jaillon, Olivier; Wincker, Patrick; Kandels-Lewis, Stefanie; Karsenti, Eric; Bork, Peer; Acinas, Silvia G

    2014-09-01

    Sequencing of 16S rDNA polymerase chain reaction (PCR) amplicons is the most common approach for investigating environmental prokaryotic diversity, despite the known biases introduced during PCR. Here we show that 16S rDNA fragments derived from Illumina-sequenced environmental metagenomes (mi tags) are a powerful alternative to 16S rDNA amplicons for investigating the taxonomic diversity and structure of prokaryotic communities. As part of the Tara Oceans global expedition, marine plankton was sampled in three locations, resulting in 29 subsamples for which metagenomes were produced by shotgun Illumina sequencing (ca. 700 Gb). For comparative analyses, a subset of samples was also selected for Roche-454 sequencing using both shotgun (m454 tags; 13 metagenomes, ca. 2.4 Gb) and 16S rDNA amplicon (454 tags; ca. 0.075 Gb) approaches. Our results indicate that by overcoming PCR biases related to amplification and primer mismatch, mi tags may provide more realistic estimates of community richness and evenness than amplicon 454 tags. In addition, mi tags can capture expected beta diversity patterns. Using mi tags is now economically feasible given the dramatic reduction in high-throughput sequencing costs, having the advantage of retrieving simultaneously both taxonomic (Bacteria, Archaea and Eukarya) and functional information from the same microbial community.

  16. Chromosomal localization of 45S rDNA, sex-specific C values, and heterochromatin distribution in Coccinia grandis (L.) Voigt.

    PubMed

    Bhowmick, Biplab Kumar; Yamamoto, Masashi; Jha, Sumita

    2016-01-01

    Coccinia grandis is a widely distributed dioecious cucurbit in India, with heteromorphic sex chromosomes and X-Y sex determination mode. The present study aids in the cytogenetic characterization of four native populations of this plant employing distribution patterns of 45S rDNA on chromosomes and guanine-cytosine (GC)-rich heterochromatin in the genome coupled with flow cytometric determination of genome sizes. Existence of four nucleolar chromosomes could be confirmed by the presence of four telomeric 45S rDNA signals in both male and female plants. All four 45S rDNA sites are rich in heterochromatin evident from the co-localization of telomeric chromomycin A (CMA)(+ve) signals. The size of 45S rDNA signal was found to differ between the homologues of one nucleolar chromosome pair. The distribution of heterochromatin is found to differ among the male and female populations. The average GC-rich heterochromatin content of male and female populations is 23.27 and 29.86 %, respectively. Moreover, the male plants have a genome size of 0.92 pg/2C while the female plants have a size of 0.73 pg/2C, reflecting a huge genomic divergence between the genders. The great variation in genome size is owing to the presence of Y chromosome in the male populations, playing a multifaceted role in sexual divergence in C. grandis.

  17. Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella.

    PubMed

    Hejazi, Mohammad A; Barzegari, Abolfazl; Gharajeh, Nahid Hosseinzadeh; Hejazi, Mohammad S

    2010-04-08

    Comparison of 18S rDNA gene sequences is a very promising method for identification and classification of living organisms. Molecular identification and discrimination of different Dunaliella species were carried out based on the size of 18S rDNA gene and, number and position of introns in the gene. Three types of 18S rDNA structure have already been reported: the gene with a size of ~1770 bp lacking any intron, with a size of ~2170 bp consisting one intron near 5' terminus, and with a size of ~2570 bp harbouring two introns near 5' and 3' termini. Hereby, we report a new 18S rDNA gene arrangement in terms of intron localization and nucleotide sequence in a Dunaliella isolated from Iranian salt lakes (ABRIINW-M1/2). PCR amplification with genus-specific primers resulted in production of a ~2170 bp DNA band, which is similar to that of D. salina 18S rDNA gene containing only one intron near 5' terminus. Whilst, sequence composition of the gene revealed the lack of any intron near 5' terminus in our isolate. Furthermore, another alteration was observed due to the presence of a 440 bp DNA fragment near 3' terminus. Accordingly, 18S rDNA gene of the isolate is clearly different from those of D. salina and any other Dunaliella species reported so far. Moreover, analysis of ITS region sequence showed the diversity of this region compared to the previously reported species. 18S rDNA and ITS sequences of our isolate were submitted with accesion numbers of EU678868 and EU927373 in NCBI database, respectively. The optimum growth rate of this isolate occured at the salinity level of 1 M NaCl. The maximum carotenoid content under stress condition of intense light (400 mumol photon m-2 s-1), high salinity (4 M NaCl) and deficiency of nitrate and phosphate nutritions reached to 240 ng/cell after 15 days.

  18. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories.

    PubMed

    Woo, P C Y; Lau, S K P; Teng, J L L; Tse, H; Yuen, K-Y

    2008-10-01

    In the last decade, as a result of the widespread use of PCR and DNA sequencing, 16S rDNA sequencing has played a pivotal role in the accurate identification of bacterial isolates and the discovery of novel bacteria in clinical microbiology laboratories. For bacterial identification, 16S rDNA sequencing is particularly important in the case of bacteria with unusual phenotypic profiles, rare bacteria, slow-growing bacteria, uncultivable bacteria and culture-negative infections. Not only has it provided insights into aetiologies of infectious disease, but it also helps clinicians in choosing antibiotics and in determining the duration of treatment and infection control procedures. With the use of 16S rDNA sequencing, 215 novel bacterial species, 29 of which belong to novel genera, have been discovered from human specimens in the past 7 years of the 21st century (2001-2007). One hundred of the 215 novel species, 15 belonging to novel genera, have been found in four or more subjects. The largest number of novel species discovered were of the genera Mycobacterium (n = 12) and Nocardia (n = 6). The oral cavity/dental-related specimens (n = 19) and the gastrointestinal tract (n = 26) were the most important sites for discovery and/or reservoirs of novel species. Among the 100 novel species, Streptococcus sinensis, Laribacter hongkongensis, Clostridium hathewayi and Borrelia spielmanii have been most thoroughly characterized, with the reservoirs and routes of transmission documented, and S. sinensis, L. hongkongensis and C. hathewayi have been found globally. One of the greatest hurdles in putting 16S rDNA sequencing into routine use in clinical microbiology laboratories is automation of the technology. The only step that can be automated at the moment is input of the 16S rDNA sequence of the bacterial isolate for identification into one of the software packages that will generate the result of the identity of the isolate on the basis of its sequence database. However

  19. Purification, crystallization and preliminary X-ray data collection of the N-terminal domain of the 26S proteasome regulatory subunit p27 and its complex with the ATPase domain of Rpt5 from Mus musculus.

    PubMed

    Diao, Wentao; Yang, Xue; Zhou, Hao

    2014-05-01

    The protein 26S proteasome regulatory subunit p27 is one of the four chaperones that help in the assembly of the 19S regulatory particle (RP) of the 26S proteasome. In the present work, the N-terminus of p27 (residues 1-128) from Mus musculus was cloned, expressed, purified and crystallized alone and in complex with the C-terminal ATPase domain of Rpt5 (residues 173-442). The crystals of p27((1-128)) diffracted to 1.7 Å resolution and belonged to space group P212121, with unit-cell parameters a = 26.79, b = 30.39, c = 145.06 Å. Resolution-dependent Matthews coefficient probability analysis suggested the presence of only one molecule per asymmetric unit, with 40.5% solvent content and a VM value of 2.02 Å(3) Da(-1). The crystal of the p27((1-128))-Rpt5((173-442)) complex diffracted to 4 Å resolution and belonged to space group P222, with unit-cell parameters a = 75.93, b = 76.08, c = 336.85 Å. The presence of four heterodimers in the asymmetric unit with 53.2% solvent content and a VM value of 2.63 Å(3) Da(-1) or five heterodimers in the asymmetric unit with 41.5% solvent content and a VM value of 2.10 Å(3) Da(-1) is assumed.

  20. The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

    PubMed Central

    2011-01-01

    Background Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. Results We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. Conclusions We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution. PMID:21627815

  1. The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae).

    PubMed

    Vierna, J; Jensen, K T; Martínez-Lage, A; González-Tizón, A M

    2011-08-01

    The linkage between 5S ribosomal DNA and other multigene families has been detected in many eukaryote lineages, but whether it provides any selective advantage remains unclear. In this work, we report the occurrence of linked units of 5S ribosomal DNA (5S rDNA) and U1 small nuclear DNA (U1 snDNA) in 10 razor shell species (Mollusca: Bivalvia: Pharidae) from four different genera. We obtained several clones containing partial or complete repeats of both multigene families in which both types of genes displayed the same orientation. We provide a comprehensive collection of razor shell 5S rDNA clones, both with linked and nonlinked organisation, and the first bivalve U1 snDNA sequences. We predicted the secondary structures and characterised the upstream and downstream conserved elements, including a region at -25 nucleotides from both 5S rDNA and U1 snDNA transcription start sites. The analysis of 5S rDNA showed that some nontranscribed spacers (NTSs) are more closely related to NTSs from other species (and genera) than to NTSs from the species they were retrieved from, suggesting birth-and-death evolution and ancestral polymorphism. Nucleotide conservation within the functional regions suggests the involvement of purifying selection, unequal crossing-overs and gene conversions. Taking into account this and other studies, we discuss the possible mechanisms by which both multigene families could have become linked in the Pharidae lineage. The reason why 5S rDNA is often found linked to other multigene families seems to be the result of stochastic processes within genomes in which its high copy number is determinant.

  2. Ribosomal DNA (rDNA) identification of the culturable bacterial flora on monetary coinage from 17 currencies.

    PubMed

    Xu, Jiru; Moore, John E; Millar, B Cherie

    2005-03-01

    The aim of the investigation reported in this paper was to identify the bacterial microflora on monetary coinage from 17 countries by employment of polymerase chain reaction (PCR) sequenced-based molecular identification of rDNA from bacterial cultures. Silver, bronze, and other alloy coins (approximately 300 g) from 17 currencies were enriched individually by aerobic culturing in tryptone soya broth for 72 hours at 30 degrees C. Next, 20 microL of broth was inoculated onto Columbia blood agar supplemented with 5 percent volume-pervolume (v/v) defibrinated horse blood for 72 hours at 30 degrees C, and resulting colonies were purified by further subculture, as detailed above, for a further 72 hours. All colonies were identified by initial PCR amplification of a partial region of the 16S rDNA gene locus, which was then sequenced, and the sequence was aligned according to the BLASTn algorithm. Twenty-five isolates were obtained from the coinage; of these, 25 (100 percent) were Gram positive, and the most prevalent genus observed was Bacillus (B. megaterium, B. lentus, B. litoralis, B. subtilis, B. circulans and other Bacillus spp.), which accounted for 10 of 25 isolates (40 percent) and was isolated from 10 of 17 countries (58.8 percent). It was followed in prevalence by Staphylococcus spp. (Staph. aureus, Staph. epidermidis, Staph. hominis, Staph. schleiferi), which accounted for 7 of 25 isolates (28 percent) and were isolated from 7 of 17 countries (41.2 percent). Given the organisms identified in this study, it is not believed that monetary coinage presents any particular risk to public health. The authors support the principles of basic hygiene, however, in terms of proper handwashing and the avoidance of handling money when working with food or dressing wounds and skin lesions, In conclusion, the study demonstrated that money from 17 countries was contaminated by environmental Gram-positive flora, in particular Bacillus spp., and that the universal 16S r

  3. Paenibacillus larvae 16S-23S rDNA intergenic transcribed spacer (ITS) regions: DNA fingerprinting and characterization.

    PubMed

    Dingman, Douglas W

    2012-07-01

    Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions.

  4. Expression of a chimeric human/salmon calcitonin gene integrated into the Saccharomyces cerevisiae genome using rDNA sequences as recombination sites.

    PubMed

    Sun, Hengyi; Zang, Xiaonan; Liu, Yuantao; Cao, Xiaofei; Wu, Fei; Huang, Xiaoyun; Jiang, Minjie; Zhang, Xuecheng

    2015-12-01

    Calcitonin participates in controlling homeostasis of calcium and phosphorus and plays an important role in bone metabolism. The aim of this study was to endow an industrial strain of Saccharomyces cerevisiae with the ability to express chimeric human/salmon calcitonin (hsCT) without the use of antibiotics. To do so, a homologous recombination plasmid pUC18-rDNA2-ura3-P pgk -5hsCT-rDNA1 was constructed, which contains two segments of ribosomal DNA of 1.1 kb (rDNA1) and 1.4 kb (rDNA2), to integrate the heterologous gene into host rDNA. A DNA fragment containing five copies of a chimeric human/salmon calcitonin gene (5hsCT) under the control of the promoter for phosphoglycerate kinase (P pgk ) was constructed to express 5hsCT in S. cerevisiae using ura3 as a selectable auxotrophic marker gene. After digestion by restriction endonuclease HpaI, a linear fragment, rDNA2-ura3-P pgk -5hsCT-rDNA1, was obtained and transformed into the △ura3 mutant of S. cerevisiae by the lithium acetate method. The ura3-P pgk -5hsCT sequence was introduced into the genome at rDNA sites by homologous recombination, and the recombinant strain YS-5hsCT was obtained. Southern blot analysis revealed that the 5hsCT had been integrated successfully into the genome of S. cerevisiae. The results of Western blot and ELISA confirmed that the 5hsCT protein had been expressed in the recombinant strain YS-5hsCT. The expression level reached 2.04 % of total proteins. S. cerevisiae YS-5hsCT decreased serum calcium in mice by oral administration and even 0.01 g lyophilized S. cerevisiae YS-5hsCT/kg decreased serum calcium by 0.498 mM. This work has produced a commercial yeast strain potentially useful for the treatment of osteoporosis.

  5. Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences

    NASA Astrophysics Data System (ADS)

    Gebhardt, Katharina; Knebelsberger, Thomas

    2015-09-01

    We morphologically analyzed 79 cephalopod specimens from the North and Baltic Seas belonging to 13 separate species. Another 29 specimens showed morphological features of either Alloteuthis mediaor Alloteuthis subulata or were found to be in between. Reliable identification features to distinguish between A. media and A. subulata are currently not available. The analysis of the DNA barcoding region of the COI gene revealed intraspecific distances (uncorrected p) ranging from 0 to 2.13 % (average 0.1 %) and interspecific distances between 3.31 and 22 % (average 15.52 %). All species formed monophyletic clusters in a neighbor-joining analysis and were supported by bootstrap values of ≥99 %. All COI haplotypes belonging to the 29 Alloteuthis specimens were grouped in one cluster. Neither COI nor 18S rDNA sequences helped to distinguish between the different Alloteuthis morphotypes. For species identification purposes, we recommend the use of COI, as it showed higher bootstrap support of species clusters and less amplification and sequencing failure compared to 18S. Our data strongly support the assumption that the genus Alloteuthis is only represented by a single species, at least in the North Sea. It remained unclear whether this species is A. subulata or A. media. All COI sequences including important metadata were uploaded to the Barcode of Life Data Systems and can be used as reference library for the molecular identification of more than 50 % of the cephalopod fauna known from the North and Baltic Seas.

  6. Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing.

    PubMed

    Wolcott, Randall D; Hanson, John D; Rees, Eric J; Koenig, Lawrence D; Phillips, Caleb D; Wolcott, Richard A; Cox, Stephen B; White, Jennifer S

    2016-01-01

    The extent to which microorganisms impair wound healing is an ongoing controversy in the management of chronic wounds. Because the high diversity and extreme variability of the microbiota between individual chronic wounds lead to inconsistent findings in small cohort studies, evaluation of a large number of chronic wounds using identical sequencing and bioinformatics methods is necessary for clinicians to be able to select appropriate empiric therapies. In this study, we utilized 16S rDNA pyrosequencing to analyze the composition of the bacterial communities present in samples obtained from patients with chronic diabetic foot ulcers (N = 910), venous leg ulcers (N = 916), decubitus ulcers (N = 767), and nonhealing surgical wounds (N = 370). The wound samples contained a high proportion of Staphylococcus and Pseudomonas species in 63 and 25% of all wounds, respectively; however, a high prevalence of anaerobic bacteria and bacteria traditionally considered commensalistic was also observed. Our results suggest that neither patient demographics nor wound type influenced the bacterial composition of the chronic wound microbiome. Collectively, these findings indicate that empiric antibiotic selection need not be based on nor altered for wound type. Furthermore, the results provide a much clearer understanding of chronic wound microbiota in general; clinical application of this new knowledge over time may help in its translation to improved wound healing outcomes.

  7. Characterization of fecal microbiota from a Salmonella endemic cattle herd as determined by oligonucleotide fingerprinting of rDNA genes.

    PubMed

    Patton, Toni G; Scupham, Alexandra J; Bearson, Shawn M D; Carlson, Steve A

    2009-05-12

    The gastrointestinal (GI) tract microbiota is composed of complex communities. For all species examined thus far, culture and molecular analyses show that these communities are highly diverse and individuals harbor unique consortia. The objective of the current work was to examine inter-individual diversity of cattle fecal microbiota and determine whether Salmonella shedding status correlated with community richness or evenness parameters. Using a ribosomal gene array-based approach, oligonucleotide fingerprinting of ribosomal genes (OFRG), we analyzed 1440 16S genes from 19 fecal samples obtained from a cattle herd with a history of salmonellosis. Identified bacteria belonged to the phyla Firmicutes (53%), Bacteroidetes (17%), and Proteobacteria (17%). Sequence analysis of 16S rDNA gene clones revealed that Spirochaetes and Verrucomicrobia were also present in the feces. The majority of Firmicutes present in the feces belonged to the order Clostridiales, which was verified via dot blot analysis. beta-Proteobacteria represented 1.5% of the bacterial community as determined by real-time PCR. Statistical analysis of the 16S libraries from the 19 animals indicated very high levels of species richness and evenness, such that individual libraries represented unique populations. Finally, this study did not identify species that prevented Salmonella colonization or resulted from Salmonella colonization.

  8. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences.

    PubMed Central

    Black, W C; Piesman, J

    1994-01-01

    Ticks are parasitiform mites that are obligate hematophagous ectoparasites of amphibians, reptiles, birds, and mammals. A phylogeny for tick families, subfamilies, and genera has been described based on morphological characters, life histories, and host associations. To test the existing phylogeny, we sequenced approximately 460 bp from the 3' end of the mitochondrial 16S rRNA gene (rDNA) in 36 hard- and soft-tick species; a mesostigmatid mite, Dermanyssus gallinae, was used as an outgroup. Phylogenies derived using distance, maximum-parsimony, or maximum-likelihood methods were congruent. The existing phylogeny was largely supported with four exceptions. In hard ticks (Ixodidae), members of Haemaphysalinae were monophyletic with the primitive Amblyomminae and members of Hyalomminae grouped within the Rhipicephalinae. In soft ticks (Argasidae), the derived phylogeny failed to support a monophyletic relationship among members of Ornithodorinae and supported placement of Argasinae as basal to the Ixodidae, suggesting that hard ticks may have originated from an Argas-like ancestor. Because most Argas species are obligate bird octoparasites, this result supports earlier suggestions that hard ticks did not evolve until the late Cretaceous. PMID:7937832

  9. Patterns of rDNA and telomeric sequences diversification: contribution to repetitive DNA organization in Phyllostomidae bats.

    PubMed

    Calixto, Merilane da Silva; de Andrade, Izaquiel Santos; Cabral-de-Mello, Diogo Cavalcanti; Santos, Neide; Martins, Cesar; Loreto, Vilma; de Souza, Maria José

    2014-02-01

    Chromosomal organization and the evolution of genome architecture can be investigated by physical mapping of the genes for 45S and 5S ribosomal DNAs (rDNAs) and by the analysis of telomeric sequences. We studied 12 species of bats belonging to four subfamilies of the family Phyllostomidae in order to correlate patterns of distribution of heterochromatin and the multigene families for rDNA. The number of clusters for 45S gene ranged from one to three pairs, with exclusively location in autosomes, except for Carollia perspicillata that had in X chromosome. The 5S gene all the species studied had only one site located on an autosomal pair. In no species the 45S and 5S genes collocated. The fluorescence in situ hybridization (FISH) probe for telomeric sequences revealed fluorescence on all telomeres in all species, except in Carollia perspicillata. Non-telomeric sites in the pericentromeric region of the chromosomes were observed in most species, ranged from one to 12 pairs. Most interstitial telomeric sequences were coincident with heterochromatic regions. The results obtained in the present work indicate that different evolutionary mechanisms are acting in Phyllostomidae genome architecture, as well as the occurrence of Robertsonian fusion during the chromosomal evolution of bats without a loss of telomeric sequences. These data contribute to understanding the organization of multigene families and telomeric sequences on bat genome as well as the chromosomal evolutionary history of Phyllostomidae bats.

  10. Taiwanese Trichogramma of Asian Corn Borer: Morphology, ITS-2 rDNA Characterization, and Natural Wolbachia Infection

    PubMed Central

    Wu, Li-Hsin; Hoffmann, Ary A.; Thomson, Linda J.

    2016-01-01

    Egg parasitoids of the genus Trichogramma are natural enemies of many lepidopteran borers in agricultural areas around the world. It is important to identify the correct species and ideally focus on endemic Trichogramma for pest control in particular crops. In this study, Trichogramma wasps were collected from parasitized eggs of Asian corn borer in Southwestern Taiwan. Three Trichogramma species, Trichogramma ostriniae Pang and Chen, Trichogramma chilonis Ishii, and T. sp. y, were identified based on morphology and the nucleotide sequence of the internal transcribed spacer 2 (ITS-2) region of rDNA. Although T. ostriniae and T. sp. y appear to be morphologically similar, ITS-2 identity between these two taxa is only 89%. Surprisingly, a commercially released Trichogramma colony thought to be T. chilonis possessed 99% identity (ITS-2) with the field T. sp. y individuals. This suggests past contamination leading to subsitution of the laboratory-reared T. chilonis colony by T. sp. y. Natural populations of all three Trichogramma species were found to be infected by a single Wolbachia strain which was identified using a wsp gene sequence. PMID:26896674

  11. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi.

    PubMed

    Lindner, Daniel L; Carlsen, Tor; Henrik Nilsson, R; Davey, Marie; Schumacher, Trond; Kauserud, Håvard

    2013-06-01

    The rDNA internal transcribed spacer (ITS) region has been accepted as a DNA barcoding marker for fungi and is widely used in phylogenetic studies; however, intragenomic ITS variability has been observed in a broad range of taxa, including prokaryotes, plants, animals, and fungi, and this variability has the potential to inflate species richness estimates in molecular investigations of environmental samples. In this study 454 amplicon pyrosequencing of the ITS1 region was applied to 99 phylogenetically diverse axenic single-spore cultures of fungi (Dikarya: Ascomycota and Basidiomycota) to investigate levels of intragenomic variation. Three species (one Basidiomycota and two Ascomycota), in addition to a positive control species known to contain ITS paralogs, displayed levels of molecular variation indicative of intragenomic variation; taxon inflation due to presumed intragenomic variation was ≈9%. Intragenomic variability in the ITS region appears to be widespread but relatively rare in fungi (≈3-5% of species investigated in this study), suggesting this problem may have minor impacts on species richness estimates relative to PCR and/or pyrosequencing errors. Our results indicate that 454 amplicon pyrosequencing represents a powerful tool for investigating levels of ITS intragenomic variability across taxa, which may be valuable for better understanding the fundamental mechanisms underlying concerted evolution of repetitive DNA regions.

  12. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi

    PubMed Central

    Lindner, Daniel L; Carlsen, Tor; Henrik Nilsson, R; Davey, Marie; Schumacher, Trond; Kauserud, Håvard

    2013-01-01

    The rDNA internal transcribed spacer (ITS) region has been accepted as a DNA barcoding marker for fungi and is widely used in phylogenetic studies; however, intragenomic ITS variability has been observed in a broad range of taxa, including prokaryotes, plants, animals, and fungi, and this variability has the potential to inflate species richness estimates in molecular investigations of environmental samples. In this study 454 amplicon pyrosequencing of the ITS1 region was applied to 99 phylogenetically diverse axenic single-spore cultures of fungi (Dikarya: Ascomycota and Basidiomycota) to investigate levels of intragenomic variation. Three species (one Basidiomycota and two Ascomycota), in addition to a positive control species known to contain ITS paralogs, displayed levels of molecular variation indicative of intragenomic variation; taxon inflation due to presumed intragenomic variation was ≈9%. Intragenomic variability in the ITS region appears to be widespread but relatively rare in fungi (≈3–5% of species investigated in this study), suggesting this problem may have minor impacts on species richness estimates relative to PCR and/or pyrosequencing errors. Our results indicate that 454 amplicon pyrosequencing represents a powerful tool for investigating levels of ITS intragenomic variability across taxa, which may be valuable for better understanding the fundamental mechanisms underlying concerted evolution of repetitive DNA regions. PMID:23789083

  13. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    PubMed

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples.

  14. Intraspecific Genetic Variation and Phylogenetic Analysis of Dirofilaria immitis Samples from Western China Using Complete ND1 and 16S rDNA Gene Sequences

    PubMed Central

    Liu, Tianyu; Liang, Yinan; Zhong, Xiuqin; Wang, Ning; Hu, Dandan; Zhou, Xuan; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2014-01-01

    Dirofilaria immitis (heartworm) is the causative agent of an important zoonotic disease that is spread by mosquitoes. In this study, molecular and phylogenetic characterization of D. immitis were performed based on complete ND1 and 16S rDNA gene sequences, which provided the foundation for more advanced molecular diagnosis, prevention, and control of heartworm diseases. The mutation rate and evolutionary divergence in adult heartworm samples from seven dogs in western China were analyzed to obtain information on genetic diversity and variability. Phylogenetic relationships were inferred using both maximum parsimony (MP) and Bayes methods based on the complete gene sequences. The results suggest that D. immitis formed an independent monophyletic group in which the 16S rDNA gene has mutated more rapidly than has ND1. PMID:24639299

  15. Distribution of Mosquitoes in the South East of Argentina and First Report on the Analysis Based on 18S rDNA and COI Sequences

    PubMed Central

    Díaz-Nieto, Leonardo M.; Maciá, Arnaldo; Parisi, Gustavo; Farina, Juan L.; Vidal-Domínguez, María E.; Perotti, M. Alejandra; Berón, Corina M.

    2013-01-01

    Although Mar del Plata is the most important city on the Atlantic coast of Argentina, mosquitoes inhabiting such area are almost uncharacterized. To increase our knowledge in their distribution, we sampled specimens of natural populations. After the morphological identification based on taxonomic keys, sequences of DNA from small ribosomal subunit (18S rDNA) and cytochrome c oxidase I (COI) genes were obtained from native species and the phylogenetic analysis of these sequences were done. Fourteen species from the genera Uranotaenia, Culex, Ochlerotatus and Psorophora were found and identified. Our 18S rDNA and COI-based analysis indicates the relationships among groups at the supra-species level in concordance with mosquito taxonomy. The introduction and spread of vectors and diseases carried by them are not known in Mar del Plata, but some of the species found in this study were reported as pathogen vectors. PMID:24098700

  16. Evidence for 5S rDNA Horizontal Transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families

    PubMed Central

    2012-01-01

    Background The Batrachoididae family is a group of marine teleosts that includes several species with more complicated physiological characteristics, such as their excretory, reproductive, cardiovascular and respiratory systems. Previous studies of the 5S rDNA gene family carried out in four species from the Western Atlantic showed two types of this gene in two species but only one in the other two, under processes of concerted evolution and birth-and-death evolution with purifying selection. Here we present results of the 5S rDNA and another two gene families in Halobatrachus didactylus, an Eastern Atlantic species, and draw evolutionary inferences regarding the gene families. In addition we have also mapped the genes on the chromosomes by two-colour fluorescence in situ hybridization (FISH). Results Two types of 5S rDNA were observed, named type α and type β. Molecular analysis of the 5S rDNA indicates that H. didactylus does not share the non-transcribed spacer (NTS) sequences with four other species of the family; therefore, it must have evolved in isolation. Amplification with the type β specific primers amplified a specific band in 9 specimens of H. didactylus and two of Sparus aurata. Both types showed regulatory regions and a secondary structure which mark them as functional genes. However, the U2 snRNA gene and the ITS-1 sequence showed one electrophoretic band and with one type of sequence. The U2 snRNA sequence was the most variable of the three multigene families studied. Results from two-colour FISH showed no co-localization of the gene coding from three multigene families and provided the first map of the chromosomes of the species. Conclusions A highly significant finding was observed in the analysis of the 5S rDNA, since two such distant species as H. didactylus and Sparus aurata share a 5S rDNA type. This 5S rDNA type has been detected in other species belonging to the Batrachoidiformes and Perciformes orders, but not in the Pleuronectiformes

  17. Molecular confirmation of the genomic constitution of Douglasdeweya (Triticeae: Poaceae): demonstration of the utility of the 5S rDNA sequence as a tool for haplome identification.

    PubMed

    Baum, Bernard R; Johnson, Douglas A

    2008-06-01

    A new genus Douglasdeweya containing the two species, Douglasdeweya deweyi and D. wangii was published in 2005 by Yen et al. based upon the results of cytogenetical and morphological findings. The genome constitution of Douglasdeweya-PPStSt-allowed its segregation from the genus Pseudoroegneria which contains the StSt or StStStSt genomes. Our previous work had demonstrated the utility of using 5S rDNA units, especially the non-transcribed spacer sequence variation, for the resolution of genomes (haplomes) previously established by cytology. Here, we show that sequence analysis of the 5S DNA units from these species strongly supports the proposed species relationships of Yen et al. (Can J Bot 83:413-419, 2005), i.e., the PP genome from Agropyron and the StSt genome from Pseudoroegneria. Analysis of the 5S rDNA units constitutes a powerful tool for genomic research especially in the Triticeae.

  18. [An intriguing model for 5S rDNA sequences dispersion in the genome of freshwater stingray Potamotrygon motoro (Chondrichthyes: Potamotrygonidae)].

    PubMed

    Cruz, V P; Oliveira, C; Foresti, F

    2015-01-01

    5S rDNA genes of the stingray Potamotrygon motoro were PCR replicated, purified, cloned and sequenced. Two distinct classes of segments of different sizes were obtained. The smallest, with 342 bp units, was classified as class I, and the largest, with 1900 bp units, was designated as class II. Alignment with the consensus sequences for both classes showed changes in a few bases in the 5S rDNA genes. TATA-like sequences were detected in the nontranscribed spacer (NTS) regions of class I and a microsatellite (GCT) 10 sequence was detected in the NTS region of class II. The results obtained can help to understand the molecular organization of ribosomal genes and the mechanism of gene dispersion.

  19. Inhibition of DNA Methylation Alters Chromatin Organization, Nuclear Positioning and Activity of 45S rDNA Loci in Cycling Cells of Q. robur

    PubMed Central

    Horvat, Tomislav; Maglica, Željka; Vojta, Aleksandar; Zoldoš, Vlatka

    2014-01-01

    Around 2200 copies of genes encoding ribosomal RNA (rRNA) in pedunculate oak, Quercus robur, are organized into two rDNA loci, the major (NOR-1) and the minor (NOR-2) locus. We present the first cytogenetic evidence indicating that the NOR-1 represents the active nucleolar organizer responsible for rRNA synthesis, while the NOR-2 probably stays transcriptionally silent and does not participate in the formation of the nucleolus in Q. robur, which is a situation resembling the well-known phenomenon of nucleolar dominance. rDNA chromatin topology analyses in cycling root tip cells by light and electron microscopy revealed the minor locus to be highly condensed and located away from the nucleolus, while the major locus was consistently associated with the nucleolus and often exhibited different levels of condensation. In addition, silver precipitation was confined exclusively to the NOR-1 locus. Also, NOR-2 was highly methylated at cytosines and rDNA chromatin was marked with histone modifications characteristic for repressive state. After treatment of the root cells with the methylation inhibitor 5-aza-2′-deoxycytidine, we observed an increase in the total level of rRNA transcripts and a decrease in DNA methylation level at the NOR-2 locus. Also, NOR-2 sites relocalized with respect to the nuclear periphery/nucleolus, however, the relocation did not affect the contribution of this locus to nucleolar formation, nor did it affect rDNA chromatin decondensation, strongly suggesting that NOR-2 has lost the function of rRNA synthesis and nucleolar organization. PMID:25093501

  20. Detection and characterization of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18s rDNA.

    PubMed Central

    Kowalchuk, G A; Gerards, S; Woldendorp, J W

    1997-01-01

    Marram grass (Ammophila arenaria L.), a sand-stabilizing plant species in coastal dune areas, is affected by a specific pathosystem thought to include both plant-pathogenic fungi and nematodes. To study the fungal component of this pathosystem, we developed a method for the cultivation-independent detection and characterization of fungi infecting plant roots based on denaturing gradient gel electrophoresis (DGGE) of specifically amplified DNA fragments coding for 18S rRNA (rDNA). A nested PCR strategy was employed to amplify a 569-bp region of the 18S rRNA gene, with the addition of a 36-bp GC clamp, from fungal isolates, from roots of test plants infected in the laboratory, and from field samples of marram grass roots from both healthy and degenerating stands from coastal dunes in The Netherlands. PCR products from fungal isolates were subjected to DGGE to examine the variation seen both between different fungal taxa and within a single species. DGGE of the 18S rDNA fragments could resolve species differences from fungi used in this study yet was unable to discriminate between strains of a single species. The 18S rRNA genes from 20 isolates of fungal species previously recovered from A. arenaria roots were cloned and partially sequenced to aid in the interpretation of DGGE data. DGGE patterns recovered from laboratory plants showed that this technique could reliably identify known plant-infecting fungi. Amplification products from field A. arenaria roots also were analyzed by DGGE, and the major bands were excised, reamplified, sequenced, and subjected to phylogenetic analysis. Some recovered 18S rDNA sequences allowed for phylogenetic placement to the genus level, whereas other sequences were not closely related to known fungal 18S rDNA sequences. The molecular data presented here reveal fungal diversity not detected in previous culture-based surveys. PMID:9327549

  1. Phylogeny of coral-inhabiting barnacles (Cirripedia; Thoracica; Pyrgomatidae) based on 12S, 16S and 18S rDNA analysis.

    PubMed

    Simon-Blecher, N; Huchon, D; Achituv, Y

    2007-09-01

    The traditional phylogeny of the coral-inhabiting barnacles, the Pyrgomatidae, is based on morphological characteristics, mainly of the hard parts. It has been difficult to establish the phylogenetic relationships among Pyrgomatidae because of the apparent convergence of morphological characteristics, and due to the use of non-cladistic systematics, which emphasize ancestor-descendant relationships rather than sister-clade relationships. We used partial sequences of two mithochondrial genes, 12S rDNA and 16S rDNA, and a nuclear gene, 18S rDNA, to infer the molecular phylogeny of the pyrgomatids. Our phylogenetic results allowed us to reject previous classifications of Pyrgomatidae based on morphological characteristics. Our results also suggested the possibility of paraphyly of the Pyrgomatidae. The hydrocoral barnacle Wanella is not found on the same clade as the other pyrgomatids, but rather, with the free-living balanids. The basal position of Megatrema and Ceratoconcha is supported. The archeaobalanid Armatobalanus is grouped with Cantellius at the base of the Indo-Pacific pyrgomatines. Fusion of the shell plate and modification of the opercular valves are homoplasious features that occurred more than three times on different clades. The monophyly of the "Savignium" group, comprising four nominal genera, is also not supported, and the different taxa are placed on different clades.

  2. Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies

    PubMed Central

    Beckers, Bram; Op De Beeck, Michiel; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Boerjan, Wout; Vangronsveld, Jaco

    2016-01-01

    Next-generation sequencing technologies have revolutionized the methods for studying microbial ecology by enabling high-resolution community profiling. However, the use of these technologies in unraveling the plant microbiome remains challenging. Many bacterial 16S rDNA primer pairs also exhibit high affinity for non-target DNA such as plastid (mostly chloroplast) DNA and mitochondrial DNA. Therefore, we experimentally tested a series of commonly used primers for the analysis of plant-associated bacterial communities using 454 pyrosequencing. We evaluated the performance of all selected primer pairs in the study of the bacterial microbiomes present in the rhizosphere soil, root, stem and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) based on (a) co-amplification of non-target DNA, (b) low amplification efficiency for pure chloroplast DNA (real-time PCR), (c) high retrieval of bacterial 16S rDNA, (d) high operational taxonomic unit (OTU) richness and Inverse Simpson diversity and (e) taxonomic assignment of reads. Results indicate that experimental evaluation of primers provide valuable information that could contribute in the selection of suitable primer pairs for 16S rDNA metabarcoding studies in plant-microbiota research. Furthermore, we show that primer pair 799F-1391R outperforms all other primer pairs in our study in the elimination of non-target DNA and retrieval of bacterial OTUs. PMID:27242686

  3. Nucleotide excision repair and photolyase repair of UV photoproducts in nucleosomes: assessing the existence of nucleosome and non-nucleosome rDNA chromatin in vivo.

    PubMed

    Tremblay, Maxime; Toussaint, Martin; D'Amours, Annie; Conconi, Antonio

    2009-02-01

    The genome is organized into nuclear domains, which create microenvironments that favor distinct chromatin structures and functions (e.g., highly repetitive sequences, centromeres, telomeres, noncoding sequences, inactive genes, RNA polymerase II and III transcribed genes, and the nucleolus). Correlations have been drawn between gene silencing and proximity to a heterochromatic compartment. At the other end of the scale are ribosomal genes, which are transcribed at a very high rate by RNA polymerase I (~60% of total transcription), have a loose chromatin structure, and are clustered in the nucleolus. The rDNA sequences have 2 distinct structures: active rRNA genes, which have no nucleosomes; and inactive rRNA genes, which have nucleosomes. Like DNA transcription and replication, DNA repair is modulated by the structure of chromatin, and the kinetics of DNA repair vary among the nuclear domains. Although research on DNA repair in all chromosomal contexts is important to understand the mechanisms of genome maintenance, this review focuses on nucleotide excision repair and photolyase repair of UV photoproducts in the first-order packing of DNA in chromatin: the nucleosome. In addition, it summarizes the studies that have demonstrated the existence of the 2 rDNA chromatins, and the way this feature of the rDNA locus allows for direct comparison of DNA repair in 2 very different structures: nucleosome and non-nucleosome DNA.

  4. A comparison of random sequence reads versus 16S rDNA sequences for estimating the biodiversity of a metagenomic library.

    PubMed

    Manichanh, Chaysavanh; Chapple, Charles E; Frangeul, Lionel; Gloux, Karine; Guigo, Roderic; Dore, Joel

    2008-09-01

    The construction of metagenomic libraries has permitted the study of microorganisms resistant to isolation and the analysis of 16S rDNA sequences has been used for over two decades to examine bacterial biodiversity. Here, we show that the analysis of random sequence reads (RSRs) instead of 16S is a suitable shortcut to estimate the biodiversity of a bacterial community from metagenomic libraries. We generated 10,010 RSRs from a metagenomic library of microorganisms found in human faecal samples. Then searched them using the program BLASTN against a prokaryotic sequence database to assign a taxon to each RSR. The results were compared with those obtained by screening and analysing the clones containing 16S rDNA sequences in the whole library. We found that the biodiversity observed by RSR analysis is consistent with that obtained by 16S rDNA. We also show that RSRs are suitable to compare the biodiversity between different metagenomic libraries. RSRs can thus provide a good estimate of the biodiversity of a metagenomic library and, as an alternative to 16S, this approach is both faster and cheaper.

  5. The establishment of species-specific primers for the molecular identification of ten stored-product psocids based on ITS2 rDNA.

    PubMed

    Zhao, Zi-Hua; Cui, Bing-Yi; Li, Zhi-Hong; Jiang, Fan; Yang, Qian-Qian; Kučerová, Zuzana; Stejskal, Václav; Opit, George; Cao, Yang; Li, Fu-Jun

    2016-02-16

    Psocids are important stored product pests found worldwide that can be spread through grain trade. Most stored-product psocids, including eggs, nymphs, and adults, are very small (~1 mm) and difficult to identify morphologically. Here, we collected 10 economically important stored-product Liposcelis spp. psocids (L. bostrychophila, L. entomophila, L. decolor, L. paeta, L. brunnea, L. corrodens, L. mendax, L. rufa, L. pearmani, and L. tricolor) from 35 geographical locations in 5 countries (China, Czech Republic, Denmark, Germany, and the United States). The ITS2 rDNA gene was extracted and sequenced. The interspecific genetic distance of the stored-product psocids was significantly higher than the intraspecific genetic distance according to the barcoding gap analysis. Ten pairs of species-specific primers based on the ITS2 rDNA were developed for psocid identification. The sensitivity estimation indicated that the species-specific primers could correctly amplify the target ITS2 gene and successfully identify psocids at 1.0 ng/mL. Additionally, these species-specific primers could quantify specificity and identify 10 stored-product psocids; this approach could also be used to accurately identify other stored-product psocids. This work provides a practical approach for the precise examination of 10 stored-product psocid species and also contributes to the development of an identification method using ITS2 rDNA.

  6. Reconstructing the Phylogeny of Capsosiphon fulvescens (Ulotrichales, Chlorophyta) from Korea Based on rbcL and 18S rDNA Sequences.

    PubMed

    Sun, Sang-Mi; Yang, Seung Hwan; Golokhvast, Kirill S; Le, Bao; Chung, Gyuhwa

    2016-01-01

    Capsosiphon fulvescens is a filamentous green algae in the class Ulvophyceae. It has been consumed as food with unique flavor and soft texture to treat stomach disorders and hangovers, and its economic value justifies studying its nutritional and potential therapeutic effects. In contrast to these applications, only a few taxonomic studies have been conducted on C. fulvescens. In particular, classification and phylogenetic relationships of the C. fulvescens below the order level are controversial. To determine its phylogenetic position in the class, we used rbcL and 18S rDNA sequences as molecular markers to construct phylogenetic trees. The amplified rbcL and 18S rDNA sequences from 4 C. fulvescens isolates (Jindo, Jangheung, Wando, and Koheung, Korea) were used for phylogenetic analysis by employing three different phylogenetic methods: neighbor joining (NJ), maximum parsimony (MP), and maximum likelihood (ML). The rbcL phylogenetic tree showed that all taxa in the order Ulvales were clustered as a monophyletic group and resolved the phylogenetic position of C. fulvescens in the order Ulotrichales. The significance of our study is that the 18S rDNA phylogenetic tree shows the detailed taxonomic position of C. fulvescens. In our result, C. fulvescens is inferred as a member of Ulotrichaceae, along with Urospora and Acrosiphonia.

  7. Fruiting body and soil rDNA sampling detects complementary assemblage of Agaricomycotina (Basidiomycota, Fungi) in a hemlock-dominated forest plot in southern Ontario.

    PubMed

    Porter, Teresita M; Skillman, Jane E; Moncalvo, Jean-Marc

    2008-07-01

    This is the first study to assess the diversity and community structure of the Agaricomycotina in an ectotrophic forest using above-ground fruiting body surveys as well as soil rDNA sampling. We recovered 132 molecular operational taxonomic units, or 'species', from fruiting bodies and 66 from soil, with little overlap. Fruiting body sampling primarily recovered fungi from the Agaricales, Russulales, Boletales and Cantharellales. Many of these species are ectomycorrhizal and form large fruiting bodies. Soil rDNA sampling recovered fungi from these groups in addition to taxa overlooked during the fruiting body survey from the Atheliales, Trechisporales and Sebacinales. Species from these groups form inconspicuous, resupinate and corticioid fruiting bodies. Soil sampling also detected fungi from the Hysterangiales that form fruiting bodies underground. Generally, fruiting body and soil rDNA samples recover a largely different assemblage of fungi at the species level; however, both methods identify the same dominant fungi at the genus-order level and ectomycorrhizal fungi as the prevailing type. Richness, abundance, and phylogenetic diversity (PD) identify the Agaricales as the dominant fungal group above- and below-ground; however, we find that molecularly highly divergent lineages may account for a greater proportion of total diversity using the PD measure compared with richness and abundance. Unless an exhaustive inventory is required, the rapidity and versatility of DNA-based sampling may be sufficient for a first assessment of the dominant taxonomic and ecological groups of fungi in forest soil.

  8. Molecular Systematic of Three Species of Oithona (Copepoda, Cyclopoida) from the Atlantic Ocean: Comparative Analysis Using 28S rDNA

    PubMed Central

    Cepeda, Georgina D.; Blanco-Bercial, Leocadio; Bucklin, Ann; Berón, Corina M.; Viñas, María D.

    2012-01-01

    Species of Oithona (Copepoda, Cyclopoida) are highly abundant, ecologically important, and widely distributed throughout the world oceans. Although there are valid and detailed descriptions of the species, routine species identifications remain challenging due to their small size, subtle morphological diagnostic traits, and the description of geographic forms or varieties. This study examined three species of Oithona (O. similis, O. atlantica and O. nana) occurring in the Argentine sector of the South Atlantic Ocean based on DNA sequence variation of a 575 base-pair region of 28S rDNA, with comparative analysis of these species from other North and South Atlantic regions. DNA sequence variation clearly resolved and discriminated the species, and revealed low levels of intraspecific variation among North and South Atlantic populations of each species. The 28S rDNA region was thus shown to provide an accurate and reliable means of identifying the species throughout the sampled domain. Analysis of 28S rDNA variation for additional species collected throughout the global ocean will be useful to accurately characterize biogeographical distributions of the species and to examine phylogenetic relationships among them. PMID:22558245

  9. Molecular systematic of three species of Oithona (Copepoda, Cyclopoida) from the Atlantic Ocean: comparative analysis using 28S rDNA.

    PubMed

    Cepeda, Georgina D; Blanco-Bercial, Leocadio; Bucklin, Ann; Berón, Corina M; Viñas, María D

    2012-01-01

    Species of Oithona (Copepoda, Cyclopoida) are highly abundant, ecologically important, and widely distributed throughout the world oceans. Although there are valid and detailed descriptions of the species, routine species identifications remain challenging due to their small size, subtle morphological diagnostic traits, and the description of geographic forms or varieties. This study examined three species of Oithona (O. similis, O. atlantica and O. nana) occurring in the Argentine sector of the South Atlantic Ocean based on DNA sequence variation of a 575 base-pair region of 28S rDNA, with comparative analysis of these species from other North and South Atlantic regions. DNA sequence variation clearly resolved and discriminated the species, and revealed low levels of intraspecific variation among North and South Atlantic populations of each species. The 28S rDNA region was thus shown to provide an accurate and reliable means of identifying the species throughout the sampled domain. Analysis of 28S rDNA variation for additional species collected throughout the global ocean will be useful to accurately characterize biogeographical distributions of the species and to examine phylogenetic relationships among them.

  10. A comparative cytogenetic study of Drosophila parasitoids (Hymenoptera, Figitidae) using DNA-binding fluorochromes and FISH with 45S rDNA probe.

    PubMed

    Gokhman, Vladimir E; Bolsheva, Nadezhda L; Govind, Shubha; Muravenko, Olga V

    2016-06-01

    Karyotypes of Leptopilina boulardi (Barbotin, Carton et Keiner-Pillault, 1979) (n = 9), L. heterotoma (Thomson, 1862) (n = 10), L. victoriae Nordlander, 1980 (n = 10) and Ganaspis xanthopoda (Ashmead, 1896) (n = 9) (Hymenoptera, Figitidae) were studied using DNA-binding ligands with different base specificity [propidium iodide (PI), chromomycin A3 (CMA3) and 4',6-diamidino-2-phenylindole (DAPI)], and fluorescence in situ hybridization (FISH) with a 45S rDNA probe. Fluorochrome staining was similar between the different fluorochromes, except for a single CMA3- and PI-positive and DAPI-negative band per haploid karyotype of each species. FISH with 45S rDNA probe detected a single rDNA site in place of the bright CMA3-positive band, thus identifying the nucleolus organizing region (NOR). Chromosomal locations of NORs were similar for both L. heterotoma and L. victoriae, but strongly differed in L. boulardi as well as in G. xanthopoda. Phylogenetic aspects of NOR localization in all studied species are briefly discussed.

  11. The establishment of species-specific primers for the molecular identification of ten stored-product psocids based on ITS2 rDNA

    PubMed Central

    Zhao, Zi-Hua; Cui, Bing-Yi; Li, Zhi-Hong; Jiang, Fan; Yang, Qian-Qian; Kučerová, Zuzana; Stejskal, Václav; Opit, George; Cao, Yang; Li, Fu-Jun

    2016-01-01

    Psocids are important stored product pests found worldwide that can be spread through grain trade. Most stored-product psocids, including eggs, nymphs, and adults, are very small (~1 mm) and difficult to identify morphologically. Here, we collected 10 economically important stored-product Liposcelis spp. psocids (L. bostrychophila, L. entomophila, L. decolor, L. paeta, L. brunnea, L. corrodens, L. mendax, L. rufa, L. pearmani, and L. tricolor) from 35 geographical locations in 5 countries (China, Czech Republic, Denmark, Germany, and the United States). The ITS2 rDNA gene was extracted and sequenced. The interspecific genetic distance of the stored-product psocids was significantly higher than the intraspecific genetic distance according to the barcoding gap analysis. Ten pairs of species-specific primers based on the ITS2 rDNA were developed for psocid identification. The sensitivity estimation indicated that the species-specific primers could correctly amplify the target ITS2 gene and successfully identify psocids at 1.0 ng/mL. Additionally, these species-specific primers could quantify specificity and identify 10 stored-product psocids; this approach could also be used to accurately identify other stored-product psocids. This work provides a practical approach for the precise examination of 10 stored-product psocid species and also contributes to the development of an identification method using ITS2 rDNA. PMID:26880378

  12. Loss of Ubp3 increases silencing, decreases unequal recombination in rDNA, and shortens the replicative life span in Saccharomyces cerevisiae.

    PubMed

    Oling, David; Masoom, Rehan; Kvint, Kristian

    2014-06-15

    Ubp3 is a conserved ubiquitin protease that acts as an antisilencing factor in MAT and telomeric regions. Here we show that ubp3∆ mutants also display increased silencing in ribosomal DNA (rDNA). Consistent with this, RNA polymerase II occupancy is lower in cells lacking Ubp3 than in wild-type cells in all heterochromatic regions. Moreover, in a ubp3∆ mutant, unequal recombination in rDNA is highly suppressed. We present genetic evidence that this effect on rDNA recombination, but not silencing, is entirely dependent on the silencing factor Sir2. Further, ubp3∆ sir2∆ mutants age prematurely at the same rate as sir2∆ mutants. Thus our data suggest that recombination negatively influences replicative life span more so than silencing. However, in ubp3∆ mutants, recombination is not a prerequisite for aging, since cells lacking Ubp3 have a shorter life span than isogenic wild-type cells. We discuss the data in view of different models on how silencing and unequal recombination affect replicative life span and the role of Ubp3 in these processes.

  13. Karyotype analysis of Panax ginseng C.A.Meyer, 1843 (Araliaceae) based on rDNA loci and DAPI band distribution.

    PubMed

    Waminal, Nomar Espinosa; Park, Hye Mi; Ryu, Kwang Bok; Kim, Joo Hyung; Yang, Tae-Jin; Kim, Hyun Hee

    2012-01-01

    Ginseng has long been considered a valuable plant owing to its medicinal properties; however, genomic information based on chromosome characterization and physical mapping of cytogenetic markers has been very limited. Dual-color FISH karyotype and DAPI banding analyses of Panax ginseng C. A. Meyer, 1843 were conducted using 5S and 45S rDNA probes. The somatic chromosome complement was 2n=48 with lengths from 3.3 μm to 6.3 μm. The karyotype was composed of 12 metacentric, 9 submetacentric, and 3 subtelocentric pairs. The 5S rDNA probe localized to the intercalary region of the short arm of pair 11, while the 45S rDNA was located at the secondary constriction of the subtelocentric satellited chromosome 14. DAPI bands were clearly observed for most chromosomes, with various signal intensities and chromosomal distributions that consequently improved chromosome identification. As a result, all 24 chromosomes could be distinguished and numbers were assigned to each chromosome for the first time. The results presented here will be useful for the on-going ginseng genome sequencing and further molecular-cytogenetic studies and breeding programs of ginseng.

  14. Molecular Cytogenetic Analysis of Cucumis Wild Species Distributed in Southern Africa: Physical Mapping of 5S and 45S rDNA with DAPI.

    PubMed

    Yagi, Kouhei; Pawełkowicz, Magdalena; Osipowski, Paweł; Siedlecka, Ewa; Przybecki, Zbigniew; Tagashira, Norikazu; Hoshi, Yoshikazu; Malepszy, Stefan; Pląder, Wojciech

    2015-01-01

    Wild Cucumis species have been divided into Australian/Asian and African groups using morphological and phylogenetic characteristics, and new species have been described recently. No molecular cytogenetic information is available for most of these species. The crossability between 5 southern African Cucumis species (C. africanus, C. anguria, C. myriocarpus, C. zeyheri, and C. heptadactylus) has been reported; however, the evolutionary relationship among them is still unclear. Here, a molecular cytogenetic analysis using FISH with 5S and 45 S ribosomal DNA (rDNA) was used to investigate these Cucumis species based on sets of rDNA-bearing chromosomes (rch) types I, II and III. The molecular cytogenetic and phylogenetic results suggested that at least 2 steps of chromosomal rearrangements may have occurred during the evolution of tetraploid C. heptadactylus. In step 1, an additional 45 S rDNA site was observed in the chromosome (type III). In particular, C. myriocarpus had a variety of rch sets. Our results suggest that chromosomal rearrangements may have occurred in the 45 S rDNA sites. We propose that polyploid evolution occurred in step 2. This study provides insights into the chromosomal characteristics of African Cucumis species and contributes to the understanding of chromosomal evolution in this genus.

  15. Karyotype analysis of Panax ginseng C.A.Meyer, 1843 (Araliaceae) based on rDNA loci and DAPI band distribution

    PubMed Central

    Waminal, Nomar Espinosa; Park, Hye Mi; Ryu, Kwang Bok; Kim, Joo Hyung; Yang, Tae-Jin; Kim, Hyun Hee

    2012-01-01

    Abstract Ginseng has long been considered a valuable plant owing to its medicinal properties; however, genomic information based on chromosome characterization and physical mapping of cytogenetic markers has been very limited. Dual-color FISH karyotype and DAPI banding analyses of Panax ginseng C. A. Meyer, 1843 were conducted using 5S and 45S rDNA probes. The somatic chromosome complement was 2n=48 with lengths from 3.3 μm to 6.3 μm. The karyotype was composed of 12 metacentric, 9 submetacentric, and 3 subtelocentric pairs. The 5S rDNA probe localized to the intercalary region of the short arm of pair 11, while the 45S rDNA was located at the secondary constriction of the subtelocentric satellited chromosome 14. DAPI bands were clearly observed for most chromosomes, with various signal intensities and chromosomal distributions that consequently improved chromosome identification. As a result, all 24 chromosomes could be distinguished and numbers were assigned to each chromosome for the first time. The results presented here will be useful for the on-going ginseng genome sequencing and further molecular-cytogenetic studies and breeding programs of ginseng. PMID:24260682

  16. Chromosomal localization of 5S rDNA in Chinese shrimp ( Fenneropenaeus chinensis): a chromosome-specific marker for chromosome identification

    NASA Astrophysics Data System (ADS)

    Huan, Pin; Zhang, Xiaojun; Li, Fuhua; Zhao, Cui; Zhang, Chengsong; Xiang, Jianhai

    2010-03-01

    Chinese shrimp ( Fenneropenaeus chinensis) is an economically important aquaculture species in China. However, cytogenetic and genomic data is limited in the organism partly because the chromosomes are difficult to isolate and analyze. In this study, fluorescence in-situ hybridization (FISH) was used to identify the chromosomes of F. chinensis. The 5S ribosomal RNA gene (rDNA) of F. chinensis was isolated, cloned and then used as a hybridization probe. The results show that the 5S rDNA was located on one pair of homologous chromosomes in F. chinensis. In addition, triploid shrimp were used to evaluate the feasibility of chromosome identification using FISH and to validate the method. It was confirmed that 5S rDNA can be used as a chromosome-specific probe for chromosome identification in F. chinensis. The successful application of FISH in F. chinensis shows that chromosome-specific probes can be developed and this finding will facilitate further research on the chromosomes of penaeid shrimps.

  17. Targeting of the human F8 at the multicopy rDNA locus in Hemophilia A patient-derived iPSCs using TALENickases.

    PubMed

    Pang, Jialun; Wu, Yong; Li, Zhuo; Hu, Zhiqing; Wang, Xiaolin; Hu, Xuyun; Wang, Xiaoyan; Liu, Xionghao; Zhou, Miaojin; Liu, Bo; Wang, Yanchi; Feng, Mai; Liang, Desheng

    2016-03-25

    Hemophilia A (HA) is a monogenic disease due to lack of the clotting factor VIII (FVIII). This deficiency may lead to spontaneous joint hemorrhages or life-threatening bleeding but there is no cure for HA until very recently. In this study, we derived induced pluripotent stem cells (iPSCs) from patients with severe HA and used transcription activator-like effector nickases (TALENickases) to target the factor VIII gene (F8) at the multicopy ribosomal DNA (rDNA) locus in HA-iPSCs, aiming to rescue the shortage of FVIII protein. The results revealed that more than one copy of the exogenous F8 could be integrated into the rDNA locus. Importantly, we detected exogenous F8 mRNA and FVIII protein in targeted HA-iPSCs. After they were differentiated into endothelial cells (ECs), the exogenous FVIII protein was still detectable. Thus, it is showed that the multicopy rDNA locus could be utilized as an effective target site in patient-derived iPSCs for gene therapy. This strategy provides a novel iPSCs-based therapeutic option for HA and other monogenic diseases.

  18. [Molecular identification and detection of moon jellyfish (Aurelia sp.) based on partial sequencing of mitochondrial 16S rDNA and COI].

    PubMed

    Wang, Jian-Yan; Zhen, Yu; Wang, Guo-shan; Mi, Tie-Zhu; Yu, Zhi-gang

    2013-03-01

    Taking the moon jellyfish Aurelia sp. commonly found in our coastal sea areas as test object, its genome DNA was extracted, the partial sequences of mt-16S rDNA (650 bp) and mt-COI (709 bp) were PCR-amplified, and, after purification, cloning, and sequencing, the sequences obtained were BLASTn-analyzed. The sequences of greater difference with those of the other jellyfish were chosen, and eight specific primers for the mt-16S rDNA and mt-COI of Aurelia sp. were designed, respectively. The specificity test indicated that the primer AS3 for the mt-16S rDNA and the primer AC3 for the mt-COI were excellent in rapidly detecting the target jellyfish from Rhopilema esculentum, Nemopilema nomurai, Cyanea nozakii, Acromitus sp., and Aurelia sp., and thus, the techniques for the molecular identification and detection of moon jellyfish were preliminarily established, which could get rid of the limitations in classical morphological identification of Aurelia sp. , being able to find the Aurelia sp. in the samples more quickly and accurately.

  19. ITS2-rDNA Sequence Variation of Phlebotomus sergenti s.l. (Dip: Psychodidae) Populations in Iran

    PubMed Central

    Moin-Vaziri, Vahideh; Oshaghi, Mohammad Ali; Yaghoobi-Ershadi, Mohammad Reza; Derakhshandeh-Peykar, Pupak; Abaei, Mohammad Reza; Mohtarami, Fatemeh; Zahraei-Ramezani, Ali Reza; Nadim, Aboulhassan

    2016-01-01

    Background: Phlebotomus sergenti s.l. is considered the most likely vector of Leishmania tropica in Iran. Although two morphotypes- P. sergenti sergenti (A) and P. sergenti similis (B)-have been formally described, further morphological and a molecular analysis of mitochondrial cytochrome oxidase I (mtDNA-COI) gene revealed inconsistencies and suggests that the variation between the morphotypes is intraspecific and the morphotypes might be identical species. Methods: We examined the sequence of the ITS2-rDNA of Iranian specimens of P. sergenti s.l., comprising P. cf sergenti, P. cf similis, and intermediate morphotypes, together with available data in Genbank. Results: Sequence analysis showed 5.2% variation among P. sergenti s.l. morphotypes. Almost half of the variation was due to the number of an AT microsatellite repeats in the center of the spacer. Nine haplotypes were found in the species constructing three main lineages corresponding to the origin of the colonies located in southwest (SW), northeast (NE), and northwest-center-southeast (NCS). Lineages NCS and NE included both typical P. cf sergenti and P. cf similis and intermediate morphotypes. Conclusion: Phylogenetic sequence analysis revealed that, except for one Iranian sample, which was close to the European samples, other Iranian haplotypes were associated with the northeastern Mediterranean populations including Turkey, Cyprus, Syria, and Pakistan. Similar to the sequences of mtDNA COI gene, ITS2 sequences could not resolve P. sergenti from P. similis and did not support the possible existence of sibling species or subspecies within P. sergenti s.l.. PMID:28032098

  20. Nucleotide sequences at the boundaries between gene and insertion regions in the rDNA of Drosophilia melanogaster.

    PubMed

    Dawid, I B; Rebbert, M L

    1981-10-10

    Ribosomal RNA genes interrupted by type 1 insertions of 1 kb and 0.5 kb have been sequenced through the insertion region and compared with an uninterrupted gene. The 0.5 kb insertion is flanked by a duplication of a 14 bp segment that is present once in the uninterrupted gene; the 1 kb insertion is flanked by a duplication of 11 of these 14 bp. Short insertions are identical in their entire length to downstream regions of long insertions. No internal repeats occur in the insertion. The presence of target site duplications suggests that type 1 insertions arose by the introduction of transposable elements into rDNA. Short sequence homologies between the upstream ends of the insertions and the 28S' boundaries of the rRNA coding region suggest that short type 1 insertions may have arisen by recombination from longer insertions. We have sequenced both boundaries of two molecules containing type 2 insertions and the upstream boundary of a third; the points of interruption at the upstream boundary (28S' site) differ from each other in steps of 2 bp. Between the boundary in the 0.5 kb type 1 insertion and the type 2 boundaries there are distances of 74, 76, and 78 bp. At the downstream boundary (28S'' site) the two sequenced type 2 insertions are identical. The rRNA coding region of one molecule extends across the insertion without deletion or duplication, but a 2 bp deletion in the RNA coding region is present in the second molecule. Stretches of 13 or 22 adenine residues occur at the downstream (28S'') end of the two type 2 insertions.

  1. Human papillomavirus 16 oncoprotein E7 stimulates UBF1-mediated rDNA gene transcription, inhibiting a p53-independent activity of p14ARF.

    PubMed

    Dichamp, Isabelle; Séité, Paule; Agius, Gérard; Barbarin, Alice; Beby-Defaux, Agnès

    2014-01-01

    High-risk human papillomavirus oncoproteins E6 and E7 play a major role in HPV-related cancers. One of the main functions of E7 is the degradation of pRb, while E6 promotes the degradation of p53, inactivating the p14ARF-p53 pathway. pRb and p14ARF can repress ribosomal DNA (rDNA) transcription in part by targeting the Upstream Binding Factor 1 (UBF1), a key factor in the activation of RNA polymerase I machinery. We showed, through ectopic expression and siRNA silencing of p14ARF and/or E7, that E7 stimulates UBF1-mediated rDNA gene transcription, partly because of increased levels of phosphorylated UBF1, preventing the inhibitory function of p14ARF. Unexpectedly, activation of rDNA gene transcription was higher in cells co-expressing p14ARF and E7, compared to cells expressing E7 alone. We did not find a difference in P-UBF1 levels that could explain this data. However, p14ARF expression induced E7 to accumulate into the nucleolus, where rDNA transcription takes place, providing an opportunity for E7 to interact with nucleolar proteins involved in this process. GST-pull down and co-immunoprecipitation assays showed interactions between p14ARF, UBF1 and E7, although p14ARF and E7 are not able to directly interact. Co-expression of a pRb-binding-deficient mutant (E7C24G) and p14ARF resulted in EC24G nucleolar accumulation, but not in a significant higher activation of rDNA transcription, suggesting that the inactivation of pRb is involved in this phenomenon. Thus, p14ARF fails to prevent E7-mediated UBF1 phosphorylation, but could facilitate nucleolar pRb inactivation by targeting E7 to the nucleolus. While others have reported that p19ARF, the mouse homologue of p14ARF, inhibits some functions of E7, we showed that E7 inhibits a p53-independent function of p14ARF. These results point to a mutually functional interaction between p14ARF and E7 that might partly explain why the sustained p14ARF expression observed in most cervical pre-malignant lesions and

  2. High penetrance of a pan-canina type rDNA family in intersection Rosa hybrids suggests strong selection of bivalent chromosomes in the section Caninae.

    PubMed

    Crhak Khaitova, Lucie; Werlemark, Gun; Kovarikova, Alena; Nybom, Hilde; Kovarik, Ales

    2014-01-01

    All dogroses (Rosa sect. Caninae) are characterized by the peculiar canina meiosis in which genetic material is unevenly distributed between female and male gametes. The pan-canina rDNA family (termed beta) appears to be conserved in all dogroses analyzed so far. Here, we have studied rDNAs in experimental hybrids obtained from open pollination of F1 plants derived from 2 independent intersectional crosses between the pentaploid dogrose species (2n = 5x = 35) Rosa rubiginosa as female parent (producing 4x egg cells due to the unique asymmetrical canina meiosis) and the tetraploid (2n = 4x = 28) garden rose R. hybrida 'André Brichet' as male parent (producing 2x pollen after normal meiosis). We analyzed the structure of rDNA units by molecular methods [CAPS and extensive sequencing of internal transcribed spacers (ITS)] and determined the number of loci on chromosomes by FISH. FISH showed that R. rubiginosa and 'André Brichet' harbored 5 and 4 highly heteromorphic rDNA loci, respectively. In the second generation of hybrid lines, we observed a reduced number of loci (4 and 5 instead of the expected 6). In R. rubiginosa and 'André Brichet', 2-3 major ITS types were found which is consistent with a weak homogenization pressure maintaining high diversity of ITS types in this genus. In contrast to expectation (the null hypothesis of Mendelian inheritance of ITS families), we observed reduced ITS diversity in some individuals of the second generation which might derive from self-fertilization or from a backcross to R. rubiginosa. In these individuals, the pan-canina beta family appeared to be markedly enriched, while the paternal families were lost or diminished in copies. Although the mechanism of biased meiotic transmission of certain rDNA types is currently unknown, we speculate that the bivalent-forming chromosomes carrying the beta rDNA family exhibit extraordinary pairing efficiency and/or are subjected to strong selection in Caninae polyploids.

  3. 18S rDNA analysis of alkenone-producing haptophyte(s) preserved in surface sediments of Lake Toyoni, Japan

    NASA Astrophysics Data System (ADS)

    McColl, J. L.; Couto, J.; Bendle, J. A.; Henderson, A. C.; Seki, O.; Phoenix, V. R.; Toney, J. L.

    2013-12-01

    Alkenones (long chain ketones) are readily preserved in sedimentary archives and have the potential to provide quantitative reconstructions of past water temperature. Alkenones are produced by a limited number of haptophyte algae in the marine and also some lacustrine systems. However, lakes are heterogeneous: an individual lake will have a unique combination of ecological conditions, haptophyte species and seasonal alkenone production that contributes to the sedimentary record. Haptophyte algae species have different sensitivities to temperature; therefore identifying the alkenone producer(s) prior to down-core temperature reconstructions is critical before selecting the most appropriate temperature calibration. We present a study from Lake Toyoni, a freshwater lake in Hokkaido, Japan that has alkenones preserved in surface sediments. The aim of this study is to identify the alkenone producer(s) within the lake using 18S rDNA analyses. Preserved rDNA of planktonic phototrophic algae was extracted from surface sediments of Lake Toyoni and phylogenetic analyses of the rDNA sequences suggest alkenones are produced by a single haptophyte within the class Prymnesiophyceae (order Isochrysidales). The Lake Toyoni alkenone-producer shares a distinct phylotype with a haptophyte reported from water filter samples collected in Lake BrayaSø, Greenland (D'Andrea et al., 2006). Similarity between the 18S rDNA sequences from Lake Toyoni and Lake BrayaSø provides a basis for applying (and updating) the Greenland lake temperature calibration. Applying this temperature calibration (T°C = 40.8 [UK37] + 31.8, R2=0.96; n=34) to the surface sediment alkenone unsaturation index from Lake Toyoni gives an estimated lake surface temperature (LST) of 8°C. This is in line with observed LST at Lake Toyoni, which ranges between 7 - 22°C (Apr 2011 to Nov 2011). The occurrence and identification of a single alkenone producer in Lake Toyoni means problems posed by a mixture of haptophytes in

  4. Molecular Identification of Helicoverpa armigera (Lepidoptera: Noctuidae: Heliothinae) in Argentina and Development of a Novel PCR-RFLP Method for its Rapid Differentiation From H. zea and H. gelotopoeon.

    PubMed

    Arneodo, Joel D; Balbi, Emilia I; Flores, Fernando M; Sciocco-Cap, Alicia

    2015-12-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae: Heliothinae) is among the most voracious global pests of agriculture. Adults of this species were identified recently in northern Argentina by dissection of male genitalia. In this work, a rapid and simple molecular tool was designed to distinguish H. armigera from the morphologically similar indigenous bollworms Helicoverpa zea (Boddie) and Helicoverpa gelotopoeon (Dyar), regardless of the life stage. Amplification of partial COI gene with a new primer pair, and subsequent digestion with endonuclease HinfI, yielded different RFLP profiles for the three main Helicoverpa pests currently present in South America. The method was validated in Helicoverpa specimens collected across Argentina, whose identity was further corroborated by COI sequencing and phylogenetic analysis. The data reported here constitute the first molecular confirmation of this pest in the country. The survey revealed the occurrence of H. armigera in northern and central Argentina, including the main soybean- and maize-producing area.

  5. Mitochondrial DNA Restriction Fragment Length Polymorphism (RFLP) and 18S Small-Subunit Ribosomal DNA PCR-RFLP Analyses of Acanthamoeba Isolated from Contact Lens Storage Cases of Residents in Southwestern Korea

    PubMed Central

    Kong, Hyun-Hee; Shin, Ji-Yeol; Yu, Hak-Sun; Kim, Jin; Hahn, Tae-Won; Hahn, Young-Ho; Chung, Dong-Il

    2002-01-01

    We applied ribosomal DNA PCR-restriction fragment length polymorphism (RFLP) and mitochondrial DNA (mtDNA) RFLP analyses to 43 Acanthamoeba environmental isolates (KA/LH1 to KA/LH43) from contact lens storage cases in southwestern Korea. These isolates were compared to American Type Culture Collection strains and clinical isolates (KA/E1 to KA/E12) from patients with keratitis. Seven riboprint patterns were seen. To identify the species of the isolates, a phylogenetic tree was constructed based on the comparison of riboprint patterns with reference strains. Four types accounted for 39 of the isolates belonging to the A. castellanii complex. The most predominant (48.8%) type was A. castellanii KA/LH2 type, which had identical riboprint and mtDNA RFLP patterns to those of A. castellanii Castellani, KA/E3 and KA/E8. The riboprint and mtDNA RFLP patterns of the KA/LH7 (20.9%) type were identical to those of A. castellanii Ma, a corneal isolate from the United States. The riboprint and mtDNA RFLP patterns of the KA/LH1 (18.6%) type were the same as those of A. lugdunensis L3a, KA/E2, and KA/E12. The prevalent pattern for each type of Acanthamoeba in southwestern Korea was very different from that from southeastern Korea and Seoul, Korea. It is noteworthy that 38 (88.4%) out of 43 isolates from contact lens storage cases of the residents in southwestern Korea revealed mtDNA RFLP and riboprint patterns identical to those found for clinical isolates in our area. This indicates that most isolates from contact lens storage cases in the surveyed area are potential keratopathogens. More attention should be paid to the disinfection of contact lens storage cases to prevent possible amoebic keratitis. PMID:11923331

  6. Mitochondrial DNA restriction fragment length polymorphism (RFLP) and 18S small-subunit ribosomal DNA PCR-RFLP analyses of Acanthamoeba isolated from contact lens storage cases of residents in southwestern Korea.

    PubMed

    Kong, Hyun-Hee; Shin, Ji-Yeol; Yu, Hak-Sun; Kim, Jin; Hahn, Tae-Won; Hahn, Young-Ho; Chung, Dong-Il

    2002-04-01

    We applied ribosomal DNA PCR-restriction fragment length polymorphism (RFLP) and mitochondrial DNA (mtDNA) RFLP analyses to 43 Acanthamoeba environmental isolates (KA/LH1 to KA/LH43) from contact lens storage cases in southwestern Korea. These isolates were compared to American Type Culture Collection strains and clinical isolates (KA/E1 to KA/E12) from patients with keratitis. Seven riboprint patterns were seen. To identify the species of the isolates, a phylogenetic tree was constructed based on the comparison of riboprint patterns with reference strains. Four types accounted for 39 of the isolates belonging to the A. castellanii complex. The most predominant (48.8%) type was A. castellanii KA/LH2 type, which had identical riboprint and mtDNA RFLP patterns to those of A. castellanii Castellani, KA/E3 and KA/E8. The riboprint and mtDNA RFLP patterns of the KA/LH7 (20.9%) type were identical to those of A. castellanii Ma, a corneal isolate from the United States. The riboprint and mtDNA RFLP patterns of the KA/LH1 (18.6%) type were the same as those of A. lugdunensis L3a, KA/E2, and KA/E12. The prevalent pattern for each type of Acanthamoeba in southwestern Korea was very different from that from southeastern Korea and Seoul, Korea. It is noteworthy that 38 (88.4%) out of 43 isolates from contact lens storage cases of the residents in southwestern Korea revealed mtDNA RFLP and riboprint patterns identical to those found for clinical isolates in our area. This indicates that most isolates from contact lens storage cases in the surveyed area are potential keratopathogens. More attention should be paid to the disinfection of contact lens storage cases to prevent possible amoebic keratitis.

  7. Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences

    PubMed Central

    Hoppenrath, Mona; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F; Leander, Brian S

    2009-01-01

    Background Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids. Complex organelles like these are evolutionary innovations found only in a few athecate dinoflagellates. Moreover, the taxonomy of warnowiids is extremely confusing and inferences about the evolutionary history of this lineage are mired by the absence of molecular phylogenetic data from any member of the group. In this study, we provide the first molecular phylogenetic data for warnowiids and couple them with a review of warnowiid morphological features in order to formulate a hypothetical framework for understanding character evolution within the group. These data also enabled us to evaluate the evolutionary relationship(s) between warnowiids and the other group of dinoflagellates with complex organelles: polykrikoids. Results Molecular phylogenetic analyses of SSU and LSU rDNA sequences demonstrated that warnowiids form a well-supported clade that falls within the more inclusive Gymnodinium sensu stricto clade. These data also confirmed that polykrikoids are members of the Gymnodinium sensu stricto clade as well; however, a specific sister relationship between the warnowiid clade and the polykrikoid clade was unresolved in all of our analyses. Nonetheless, the new DNA sequences from different isolates of warnowiids provided organismal anchors for several previously unidentified sequences derived from environmental DNA surveys of marine biodiversity. Conclusion Comparative morphological data and molecular phylogenetic data demonstrate that the polykrikoid and the warnowiid clade are

  8. Rapid identification of bovine mastitis pathogens by high-resolution melt analysis of 16S rDNA sequences.

    PubMed

    Ajitkumar, Praseeda; Barkema, Herman W; De Buck, Jeroen

    2012-03-23

    Accurate identification of mastitis pathogens is often compromised when using conventional culture-based methods. Here, we report a novel, rapid assay tested for speciation of bacterial mastitis pathogens using high-resolution melt analysis (HRMA) of 16S rDNA sequences. Real-time PCR amplification of 16S rRNA gene fragment, spanning the variable region V5 and V6 was performed with a resulting amplicon of 290bp. First, a library was generated of melt curves of 9 common pathogens that are implicated in bovine mastitis. Six of the isolates, Escherichia coli, Streptococcus agalactiae, Klebsiella pneumoniae, Streptococcus uberis, Staphylococcus aureus and Mycoplasma bovis, were type strains while the other 3, Arcanobacterium pyogenes, Corynebacterium bovis and Streptococcus dysgalactiae, were bovine mastitis field isolates. Four of the type strains, E. coli, S. agalactiae, K. pneumoniae and S. aureus, were found to be of human origin, while the other 3 type strains were isolated from bovine infections. Secondly, the melt curves and corresponding amplicon sequences of A. pyogenes, E. coli, S. agalactiae, S. dysgalactiae, K. pneumoniae, S. uberis and S. aureus were compared with 10 bovine mastitis field isolates of each pathogen. Based on the distinct differences in melt curves and sequences between human and bovine isolates of E. coli and K. pneumoniae, it was deemed necessary to select a set of bovine strains for these pathogens to be used as reference strains in the HRMA. Next, the HRMA was validated by three interpreters analyzing the differential clustering pattern of melt curves of 60 bacterial cultures obtained from mastitis milk samples. The three test interpreters were blinded to the culture and sequencing results of the isolates. Overall accuracy of the validation assay was 95% as there was difficulty in identifying the streptococci due to heterogeneity observed in the PCR amplicons of S. uberis. The present study revealed that broad-range real-time PCR with

  9. Effects of altered gravity on a distribution of rDNA and nucleolar proteins and the expression of nucleolar proteins in plants

    NASA Astrophysics Data System (ADS)

    Sobol, Margaryta; Kordyum, Elizabeth; Medina, Francisco Javier

    The nucleolus is an inner nuclear organelle originated from the activity of hundreds of rRNA genes, typically spanning several megabases. It morphologically reflects the functional events leading to ribosome biogenesis, from the transcription of rDNA through the processing of nascent pre-rRNA to the assembly of pre-ribosomes. A typical nucleolus consists of three major elements, namely fibrillar centers (FCs), the dense fibrillar component (DFC), and granular component (GC). The rate of ribosome biosynthesis and the subnucleolar structure are reliable monitors of the general level of cell metabolism and, consequently, of the rate of cellular growth, being influenced with many external factors, among which altered gravity could be included. Thus, we can hypothesize that the structural organization of the nucleolar subcomponents and the level, distribution and quantitative/qualitative characteristics of the nucleolar proteins would be changed under conditions of altered gravity. To confirm our hypothesis, we applied parallel procedures, such as cytochemistry, immunofluorescence, confocal laser microscopy, immunogold electron microscopy, monoand bi-dimensional electrophoresis and immunoblotting in root meristematic cells from two-day cress seedlings grown under slow horizontal clinorotation (2 rpm) and in stationary control. The complex model of the ultrastructural organization and functions of the nucleolus was created based on the location of rDNA and the nucleolar proteins fibrillarin, NhL90 and NhL68, these latter being cress nucleolin homologues. The principal stages of ribosome biogenesis, namely ribosomal gene activation, rDNA transcription and pre-rRNA processing were reflected in this model. Compared to the pattern shown in control ground gravity conditions, we found firstly a redistribution of both rDNA and nucleolar proteins in nucleolar subcomponents, induced by clinorotation. Under the conditions of altered gravity, nucleolar DNA concentrated

  10. Molecular Identification and Prevalence of Malassezia Species in Pityriasis Versicolor Patients From Kashan, Iran

    PubMed Central

    Talaee, Rezvan; Katiraee, Farzad; Ghaderi, Maryam; Erami, Mahzad; Kazemi Alavi, Azam; Nazeri, Mehdi

    2014-01-01

    Background: Malassezia species are lipophilic yeasts found on the skin surface of humans and other warm-blooded vertebrates. It is associated with various human diseases, especially pityriasis versicolor, which is a chronic superficial skin disorder. Objectives: The aim of the present study was to identify Malassezia species isolated from patients’ samples affected by pityriasis versicolor, using molecular methods in Kashan, Iran. Patients and Methods: A total of 140 subjects, suspected of having pityriasis versicolor from Kashan, were clinically diagnosed and then confirmed by direct microscopic examination. The scraped skin specimens were inoculated in modified Dixon’s medium. DNA was extracted from the colonies and PCR amplification was carried out for the 26s rDNA region. PCR products were used to further restriction fragment length polymorphism by CfoI enzyme. Results: Direct examination was positive in 93.3% of suspected pityriasis versicolor lesions. No statistically significant difference was observed in the frequency of Malassezia species between women and men. The highest prevalence of tinea versicolor was seen in patients 21–30 years-of-age. No difference could be seen in the frequency of Malassezia species depending on the age of the patients. In total, 65% of patients with pityriasis versicolor had hyperhidrosis. The most commonly isolated Malassezia species in the pityriasis versicolor lesions were; Malassezia globosa (66%), M. furfur (26%), M. restricta (3%), M. sympodialis (3%), and M. slooffiae (2%). Malassezia species were mainly isolated from the neck and chest. Conclusions: This study showed M. globosa to be the most common Malassezia species isolated from Malassezia skin disorders in Kashan, Iran. The PCR-RFLP method was useful in the rapid identification of the Malassezia species. By using these methods, the detection and identification of individual Malassezia species from clinical samples was substantially easier. PMID:25485051

  11. Morphological convergence characterizes the evolution of Xanthophyceae (Heterokontophyta): evidence from nuclear SSU rDNA and plastidial rbcL genes.

    PubMed

    Negrisolo, Enrico; Maistro, Silvia; Incarbone, Matteo; Moro, Isabella; Dalla Valle, Luisa; Broady, Paul A; Andreoli, Carlo

    2004-10-01

    Xanthophyceae are a group of heterokontophyte algae. Few molecular studies have investigated the evolutionary history and phylogenetic relationships of this class. We sequenced the nuclear-encoded SSU rDNA and chloroplast-encoded rbcL genes of several xanthophycean species from different orders, families, and genera. Neither SSU rDNA nor rbcL genes show intraspecific sequence variation and are good diagnostic markers for characterization of problematic species. New sequences, combined with those previously available, were used to create different multiple alignments. Analyses included sequences from 26 species of Xanthophyceae plus three Phaeothamniophyceae and two Phaeophyceae taxa used as outgroups. Phylogenetic analyses were performed according to Bayesian inference, maximum likelihood, and maximum parsimony methods. We explored effects produced on the phylogenetic outcomes by both taxon sampling as well as selected genes. Congruent results were obtained from analyses performed on single gene multiple alignments as well as on a data set including both SSU rDNA and rbcL sequences. Trees obtained in this study show that several currently recognized xanthophycean taxa do not form monophyletic groups. The order Mischococcales is paraphyletic, while Tribonematales and Botrydiales are polyphyletic even if evidence for the second order is not conclusive. Botrydiales and Vaucheriales, both including siphonous taxa, do not form a clade. The families Botrydiopsidaceae, Botryochloridaceae, and Pleurochloridaceae as well as the genera Botrydiopsis and Chlorellidium are polyphyletic. The Centritractaceae and the genus Bumilleriopsis also appear to be polyphyletic but their monophyly cannot be completely rejected with current evidence. Our results support morphological convergence at any taxonomic rank in the evolution of the Xanthophyceae. Finally, our phylogenetic analyses exclude an origin of the Xanthophyceae from a Vaucheria-like ancestor and favor a single early origin

  12. Dead element replicating: degenerate R2 element replication and rDNA genomic turnover in the Bacillus rossius stick insect (Insecta: Phasmida).

    PubMed

    Martoni, Francesco; Eickbush, Danna G; Scavariello, Claudia; Luchetti, Andrea; Mantovani, Barbara

    2015-01-01

    R2 is an extensively investigated non-LTR retrotransposon that specifically inserts into the 28S rRNA gene sequences of a wide range of metazoans, disrupting its functionality. During R2 integration, first strand synthesis can be incomplete so that 5' end deleted copies are occasionally inserted. While active R2 copies repopulate the locus by retrotransposing, the non-functional truncated elements should frequently be eliminated by molecular drive processes leading to the concerted evolution of the rDNA array(s). Although, multiple R2 lineages have been discovered in the genome of many animals, the rDNA of the stick insect Bacillus rossius exhibits a peculiar situation: it harbors both a canonical, functional R2 element (R2Brfun) as well as a full-length but degenerate element (R2Brdeg). An intensive sequencing survey in the present study reveals that all truncated variants in stick insects are present in multiple copies suggesting they were duplicated by unequal recombination. Sequencing results also demonstrate that all R2Brdeg copies are full-length, i. e. they have no associated 5' end deletions, and functional assays indicate they have lost the active ribozyme necessary for R2 RNA maturation. Although it cannot be completely ruled out, it seems unlikely that the degenerate elements replicate via reverse transcription, exploiting the R2Brfun element enzymatic machinery, but rather via genomic amplification of inserted 28S by unequal recombination. That inactive copies (both R2Brdeg or 5'-truncated elements) are not eliminated in a short term in stick insects contrasts with findings for the Drosophila R2, suggesting a widely different management of rDNA loci and a lower efficiency of the molecular drive while achieving the concerted evolution.

  13. Enterohemorrhagic Escherichia coli O157 in milk and dairy products from Libya: Isolation and molecular identification by partial sequencing of 16S rDNA

    PubMed Central

    Garbaj, Aboubaker M.; Awad, Enas M.; Azwai, Salah M.; Abolghait, Said K.; Naas, Hesham T.; Moawad, Ashraf A.; Gammoudi, Fatim T.; Barbieri, Ilaria; Eldaghayes, Ibrahim M.

    2016-01-01

    Aim: The aim of this work was to isolate and molecularly identify enterohemorrhagic Escherichia coli (EHEC) O157 in milk and dairy products in Libya, in addition; to clear the accuracy of cultural and biochemical identification as compared with molecular identification by partial sequencing of 16S rDNA for the existing isolates. Materials and Methods: A total of 108 samples of raw milk (cow, she-camel, and goat) and locally made dairy products (fermented cow’s milk, Maasora, Ricotta and ice cream) were collected from some regions (Janzour, Tripoli, Kremiya, Tajoura and Tobruk) in Libya. Samples were subjected to microbiological analysis for isolation of E. coli that was detected by conventional cultural and molecular method using polymerase chain reaction and partial sequencing of 16S rDNA. Results: Out of 108 samples, only 27 isolates were found to be EHEC O157 based on their cultural characteristics (Tellurite-Cefixime-Sorbitol MacConkey) that include 3 isolates from cow’s milk (11%), 3 isolates from she-camel’s milk (11%), two isolates from goat’s milk (7.4%) and 7 isolates from fermented raw milk samples (26%), isolates from fresh locally made soft cheeses (Maasora and Ricotta) were 9 (33%) and 3 (11%), respectively, while none of the ice cream samples revealed any growth. However, out of these 27 isolates, only 11 were confirmed to be E. coli by partial sequencing of 16S rDNA and E. coli O157 Latex agglutination test. Phylogenetic analysis revealed that majority of local E. coli isolates were related to E. coli O157:H7 FRIK944 strain. Conclusion: These results can be used for further studies on EHEC O157 as an emerging foodborne pathogen and its role in human infection in Libya. PMID:27956766

  14. Microbial diversity in polluted harbor sediments I: Bacterial community assessment based on four clone libraries of 16S rDNA

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Ki, Jang-Seu; Qian, Pei-Yuan

    2008-02-01

    Bacteria, as the most abundant sediment organism, play a major role in the fate of pollutants. Therefore, many pollutant-related bacteria have been studied in harbor sediments, yet the entire bacterial profiles have not been reported. The bacterial diversity and community structures from sediments in Victoria Harbor (Hong Kong), including two polluted (VH and VHW) and two adjacent (open oceanic, TLC; estuary discharge affected, PC) sites, were characterized by analyses of four 16S rDNA clone libraries. Upon comparisons of RFLP patterns from 254 clones in the libraries, 178 unique phylotypes were retrieved. LIBSHUFF and Rarefaction analyses indicated that the sediment bacterial communities at the four sites showed high 16S rDNA richness and were significantly different from each other. Phylogenetic analysis of full-length 16S rDNA revealed 19 bacterial phyla in Victoria Harbor sediments. γ- and δ-proteobacteria, holophaga/acidobacteria, and planctomycetales were recorded in all the libraries. In addition, γ- and δ-proteobacteria were dominant at all sites (33.33-11.67%). Besides these two phyla, ɛ-proteobacteria, firmicutes, aminobacterium, holophaga/acidobacteria and bacteroidetes were judged to be major components of a given library since they constituted 10% or more of the total OTUs of the given library. The cyanobacteria, verrucomicrobia, β-proteobacteria, aminobacterium, chlorofiexi, and candidate division OP1, OP8 were detected in minor proportions in various libraries. A portion of the clones were only distantly related to sequences in the GenBank, suggesting bacteria in Victoria Harbor sediments were unique and diversified.

  15. The ecological roles of bacterial populations in the surface sediments of coastal lagoon environments in Japan as revealed by quantification and qualification of 16S rDNA.

    PubMed

    Tsuboi, Shun; Amemiya, Takashi; Seto, Koji; Itoh, Kiminori; Rajendran, Narasimmalu

    2013-05-01

    Based on quantification and qualification of bacterial 16S rDNA, we verified the bacterial ecological characteristics of surface sediments of Lakes Shinji and Nakaumi, which are representative of coastal lagoons in Japan. Quantification and qualification of the 16S rDNA sequences was carried out using real time polymerase chain reaction and polymerase chain reaction denaturing gradient gel electrophoresis and non-metric multidimensional scaling, respectively. The results revealed that the copy number per gram of sediment ranged from 8.33 × 10(8) (Lake Nakaumi) to 1.69 × 10(11) (Honjo area), suggesting that bacterial carbon contributed only 0.05-9.64 % of the total carbon content in the samples. Compared with other aquatic environments, these results indicate that sedimentary bacteria are not likely to be important transporters of nutrients to higher trophic levels, or to act as carbon sinks in the lagoons. The bacterial compositions of Lake Shinji and Lake Nakaumi and the Honjo area were primarily influenced by sediment grain sizes and salinity, respectively. Statistical comparisons of the environmental properties suggested that the areas that were oxygen-abundant (Lake Shinji) and at a higher temperature (Honjo area) presented efficient organic matter degradation. The 16S rDNA copy number per gram of carbon and nitrogen showed the same tendency. Consequently, the primary roles of bacteria were degradation and preservation of organic materials, and this was affected by oxygen and temperature. These roles were supported by the bacterial diversity rather than the differences in the community compositions of the sedimentary bacteria in these coastal lagoons.

  16. The formation of diploid and triploid hybrids of female grass carp × male blunt snout bream and their 5S rDNA analysis

    PubMed Central

    2013-01-01

    Background Hybridization is a useful strategy to alter the genotypes and phenotypes of the offspring. It could transfer the genome of one species to another through combing the different genome of parents in the hybrid offspring. And the offspring may exhibit advantages in growth rate, disease resistance, survival rate and appearance, which resulting from the combination of the beneficial traits from both parents. Results Diploid and triploid hybrids of female grass carp (Ctenopharyngodon idellus, GC, Cyprininae, 2n = 48) × male blunt snout bream (Megalobrama amblycephala, BSB, Cultrinae, 2n = 48) were successfully obtained by distant hybridization. Diploid hybrids had 48 chromosomes, with one set from GC and one set from BSB. Triploid hybrids possessed 72 chromosomes, with two sets from GC and one set from BSB. The morphological traits, growth rates, and feeding ecology of the parents and hybrid offspring were compared and analyzed. The two kinds of hybrid offspring exhibited significantly phenotypic divergence from GC and BSB. 2nGB hybrids showed similar growth rate compared to that of GC, and 3nGB hybrids significantly higher results. Furthermore, the feeding ecology of hybrid progeny was omnivorous. The 5S rDNA of GC, BSB and their hybrid offspring were also cloned and sequenced. There was only one type of 5S rDNA (designated type I: 180 bp) in GC and one type of 5S rDNA (designated type II: 188 bp) in BSB. However, in the hybrid progeny, diploid and triploid hybrids both inherited type I and type II from their parents, respectively. In addition, a chimera of type I and type II was observed in the genome of diploid and triploid hybrids, excepting a 10 bp of polyA insertion in type II sequence of the chimera of the diploid hybrids. Conclusions This is the first report of diploid and triploid hybrids being produced by crossing GC and BSB, which have the same chromosome number. The obtainment of two new hybrid offspring has significance in fish

  17. Determination of phylogenetic relationships among Eimeria species, which parasitize cattle, on the basis of nuclear 18S rDNA sequence.

    PubMed

    Kokuzawa, Takuya; Ichikawa-Seki, Madoka; Itagaki, Tadashi

    2013-11-01

    We analyzed almost complete 18S rDNA sequences of 10 bovine Eimeria species, namely Eimeria alabamensis, E. auburnensis, E. bovis, E. bukidnonensis, E. canadensis, E. cylindrica, E. ellipsoidalis, E. subspherica, E. wyomingensis and E. zuernii. Although these sequences showed intraspecific variation in 8 species, the sequences of each species were clustered in monophyletic groups in all species, except E. auburnensis. The sequences constituted 3 distinct clusters in a phylogenetic tree with relatively high bootstrap values; however, the members including each cluster shared no similarities in oocyst morphology.

  18. Development of a PCR assay based on the 16S-23S rDNA internal transcribed spacer for identification of strictly anaerobic bacterium Zymophilus.

    PubMed

    Felsberg, Jurgen; Jelínková, Markéta; Kubizniaková, Petra; Matoulková, Dagmar

    2015-06-01

    PCR-primers were designed for identification of strictly anaerobic bacteria of the genus Zymophilus based on genus-specific sequences of the 16S-23S rDNA internal transcribed spacer region. The specificity of the primers was tested against 37 brewery-related non-target microorganisms that could potentially occur in the same brewery specimens. None DNA was amplified from any of the non-Zymophilus strains tested including genera from the same family (Pectinatus, Megasphaera, Selenomonas), showing thus 100% specificity. PCR assay developed in this study allows an extension of the spectra of detected beer spoilage microorganisms in brewery laboratories.

  19. Identification of dominant bacteria in feces and colonic mucosa from healthy Spanish adults by culturing and by 16S rDNA sequence analysis.

    PubMed

    Delgado, Susana; Suárez, Adolfo; Mayo, Baltasar

    2006-04-01

    The aim of this work was to examine by culturing the changes in the total and indicator populations of the feces of two individuals over 1 year and to identify the dominant microbial components of a single sample of feces from each donor. Populations and dominant bacteria from a sample of colonic mucosa from a further individual were also assessed. The culture results were then compared to those obtained with the same samples by 16S rDNA cloning and sequencing. High interindividual variation in representative microbial populations of the gastrointestinal tract (GIT) was revealed by both the culture and the culture-independent techniques. Species belonging to Clostridium clusters (XIVa, IV, and XVIII) predominated in both the fecal and the mucosal samples (except in the mucose cultured isolates), members of Clostridium coccoides cluster XIVa being the most numerous microorganisms. Species of gamma-proteobacteria (Escherichia coli and Shigella spp.), bifidobacteria, and actinobacteria appeared in lower numbers than those of clostridia. From the mucosal cultured sample, only facultative anaerobes and bifidobacteria were recovered, suggesting destruction of the anaerobe population during processing. In accordance with this, the microbial diversity revealed by 16S rDNA sequence analysis was greater than that revealed by culturing. Despite large interindividual differences, distinct human communities may have group-associated GIT microbiota characteristics, such as the low number of Bacteroides seen in the subjects in this study.

  20. Evolutionary history of trypanosomes from South American caiman (Caiman yacare) and African crocodiles inferred by phylogenetic analyses using SSU rDNA and gGAPDH genes.

    PubMed

    Viola, L B; Almeida, R S; Ferreira, R C; Campaner, M; Takata, C S A; Rodrigues, A C; Paiva, F; Camargo, E P; Teixeira, M M G

    2009-01-01

    In this study, using a combined data set of SSU rDNA and gGAPDH gene sequences, we provide phylogenetic evidence that supports clustering of crocodilian trypanosomes from the Brazilian Caiman yacare (Alligatoridae) and Trypanosoma grayi, a species that circulates between African crocodiles (Crocodilydae) and tsetse flies. In a survey of trypanosomes in Caiman yacare from the Brazilian Pantanal, the prevalence of trypanosome infection was 35% as determined by microhaematocrit and haemoculture, and 9 cultures were obtained. The morphology of trypomastigotes from caiman blood and tissue imprints was compared with those described for other crocodilian trypanosomes. Differences in morphology and growth behaviour of caiman trypanosomes were corroborated by molecular polymorphism that revealed 2 genotypes. Eight isolates were ascribed to genotype Cay01 and 1 to genotype Cay02. Phylogenetic inferences based on concatenated SSU rDNA and gGAPDH sequences showed that caiman isolates are closely related to T. grayi, constituting a well-supported monophyletic assemblage (clade T. grayi). Divergence time estimates based on clade composition, and biogeographical and geological events were used to discuss the relationships between the evolutionary histories of crocodilian trypanosomes and their hosts.

  1. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored.

  2. Evidence for male XO sex-chromosome system in Pentodon bidens punctatum (Coleoptera Scarabaeoidea: Scarabaeidae) with X-linked 18S-28S rDNA clusters.

    PubMed

    Vitturi, Roberto; Colomba, Mariastella; Volpe, Nicola; Lannino, Antonella; Zunino, Mario

    2003-12-01

    In scarab beetle species of the genus Pentodon, the lack of analysis of sex chromosomes in females along with the poor characterization of sex chromosomes in the males, prevented all previous investigations from conclusively stating sex determination system. In this study, somatic chromosomes from females and spermatogonial chromosomes from males of Pentodon bidens punctatum (Coleoptera: Scarabaeoidea: Scarabaeidae) from Sicily have been analyzed using non-differential Giemsa staining. Two modal numbers of chromosomes were obtained: 2n = 20 and 19 in females and males, respectively. This finding along with other karyological characteristics such as the occurrence of one unpaired, heterotypic chromosome at metaphase-I and two types of metaphase-II spreads in spermatocytes demonstrate that a XO male/XX female sex determining mechanism - quite unusual among Scarabaeoidea - operates in the species investigated here. Spermatocyte chromosomes have also been examined after a number of banding techniques and fluorescent in situ hybridization with ribosomal sequences as a probe (rDNA FISH). The results obtained showed that silver and CMA(3) staining were inadequate to localize the chromosome sites of nucleolus organizer regions (NORs) due to the over-all stainability of both constitutive heterochromatin and heterochromatin associated to the NORs. This suggests that heterochromatic DNA of P. b. punctatum is peculiar as compared with other types of heterochromatin studied so far in other invertebrate taxa. By rDNA FISH major ribosomal genes were mapped on the X chromosome.

  3. Phylogeographic structure of cotton pest Adelphocoris suturalis (Hemiptera: Miridae): strong subdivision in China inferred from mtDNA and rDNA ITS markers

    PubMed Central

    Zhang, Lijuan; Li, Hu; Li, Shujuan; Zhang, Aibing; Kou, Fei; Xun, Huaizhu; Wang, Pei; Wang, Ying; Song, Fan; Cui, Jianxin; Cui, Jinjie; Gouge, Dawn H.; Cai, Wanzhi

    2015-01-01

    Phylogeographic patterns of some extant plant and vertebrate species have been well studied; however, they are poorly understood in the majority of insects. The study documents analysis of mitochondrial (COI, CYTB and ND5) and nuclear (5.8S rDNA, ITS2 and 28S rDNA) data from 419 individuals of Adelphocoris suturalis, which is one of the main cotton pests found in the 31 locations in China and Japan involved in the study. Results show that the species is highly differentiated between populations from central China and peripheral China regions. Analysis of molecular variance showed a high level of geographical differentiation at different hierarchical levels. Isolation-by-distance test showed no significant correlation between genetic distance and geographical distance among A. suturalis populations, which suggested gene flow is not restricted by distance. In seven peripheral populations, the high levels of genetic differentiation and the small Nem values implied that geographic barriers were more likely restrict gene flow. Neutrality tests and the Bayesian skyline plot suggested population expansion likely happened during the cooling transition between Last Interglacial and Last Glacial Maximum. All lines of evidence suggest that physical barriers, Pleistocene climatic oscillations and geographical heterogeneity have affected the population structure and distribution of this insect in China. PMID:26388034

  4. Phylogenetic position of Phthiraptera (Insecta: Paraneoptera) and elevated rate of evolution in mitochondrial 12S and 16S rDNA.

    PubMed

    Yoshizawa, Kazunori; Johnson, Kevin P

    2003-10-01

    Phthiraptera (chewing and sucking lice) and Psocoptera (booklice and barklice) are closely related to each other and compose the monophyletic taxon Psocodea. However, there are two hypotheses regarding their phylogenetic relationship: (1) monophyletic Psocoptera is the sister group of Phthiraptera or (2) Psocoptera is paraphyletic, and Liposcelididae of Psocoptera is the sister group of Phthiraptera. Each hypothesis is supported morphologically and/or embryologically, and this problem has not yet been resolved. In the present study, the phylogenetic position of Phthiraptera was examined using mitochondrial 12S and 16S rDNA sequences, with three methods of phylogenetic analysis. Results of all analyses strongly supported the close relationship between Phthiraptera and Liposcelididae. Results of the present analyses also provided some insight into the elevated rate of evolution in mitochondrial DNA (mtDNA) in Phthiraptera. An elevated substitution rate of mtDNA appears to originate in the common ancestor of Phthiraptera and Liposcelididae, and directly corresponds to an increased G+C content. Therefore, the elevated substitution rate of mtDNA in Phthiraptera and Liposcelididae appears to be directional. A high diversity of 12S rDNA secondary structure was also observed in wide range of Phthiraptera and Liposcelididae, but these structures seem to have evolved independently in different clades.

  5. Molecular analysis of the 16S-23S rDNA internal spacer region (ISR) and truncated tRNA(Ala) gene segments in Campylobacter lari.

    PubMed

    Hayashi, K; Tazumi, A; Nakanishi, S; Nakajima, T; Matsubara, K; Ueno, H; Moore, J E; Millar, B C; Matsuda, M

    2012-06-01

    Following PCR amplification and sequencing, nucleotide sequence alignment analyses demonstrated the presence of two kinds of 16S-23S rDNA internal spacer regions (ISRs), namely, long length ISRs of 837-844 base pair (bp) [n = six for urease-negative (UN) Campylobacter lari isolates, UN C. lari JCM2530(T), RM2100, 176, 293, 299 and 448] and short length ISRs of 679-725 bp [n = six for UN C. lari: n = 14 for urease-positive thermophilic Campylobacter (UPTC) isolates]. The analyses also indicated that the short length ISRs mainly lacked the 156 bp sequence from the nucleotide positions 122-277 bp in long length ISRs for UN C. lari JCM2530(T). The 156 bp sequences shared 94.9-96.8 % sequence similarity among six isolates. Surprisingly, atypical tRNA(Ala) gene segment (5' end 35 bp), which was extremely truncated, occurred within the 156 bp sequences in the long length ISRs, as an unexpected tRNA(Ala) pseudogene. An order of the intercistronic tRNA genes within the short nucleotide spacer of 5'-16S rDNA-tRNA(Ala)-tRNA(Ile)-23S rDNA-3' occurred in all the C. lari isolates examined.

  6. Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa.

    PubMed

    Cavalier-Smith, Thomas

    2014-10-01

    Gregarine 18S ribosomal DNA trees are hard to resolve because they exhibit the most disparate rates of rDNA evolution of any eukaryote group. As site-heterogeneous tree-reconstruction algorithms can give more accurate trees, especially for technically unusually challenging groups, I present the first site-heterogeneous rDNA trees for 122 gregarines and an extensive set of 452 appropriate outgroups. While some features remain poorly resolved, these trees fit morphological diversity better than most previous, evolutionarily less realistic, maximum likelihood trees. Gregarines are probably polyphyletic, with some 'eugregarines' and all 'neogregarines' (both abandoned as taxa) being more closely related to Cryptosporidium and Rhytidocystidae than to archigregarines. I establish a new subclass Orthogregarinia (new orders Vermigregarida, Arthrogregarida) for gregarines most closely related to Cryptosporidium and group Orthogregarinia, Cryptosporidiidae, and Rhytidocystidae as revised class Gregarinomorphea. Archigregarines are excluded from Gregarinomorphea and grouped with new orders Velocida (Urosporoidea superfam. n. and Veloxidium) and Stenophorida as a new sporozoan class Paragregarea. Platyproteum and Filipodium never group with Orthogregarinia or Paragregarea and are sufficiently different morphologically to merit a new order Squirmida. I revise gregarine higher-level classification generally in the light of site-heterogeneous-model trees, discuss their evolution, and also sporozoan cell structure and life-history evolution, correcting widespread misinterpretations.

  7. Chromosomal Mapping of Repetitive Sequences (Rex3, Rex6, and rDNA Genes) in Hybrids Between Colossoma macropomum (Cuvier, 1818) and Piaractus mesopotamicus (Holmberg, 1887).

    PubMed

    Ribeiro, Leila Braga; Moraes Neto, Americo; Artoni, Roberto Ferreira; Matoso, Daniele Aparecida; Feldberg, Eliana

    2017-01-09

    Some species of Characiformes are known for their high economic value, such as Colossoma macropomum and Piaractus mesopotamicus, and are used in aquaculture programs to generate hybrid tambacu (interbreeding of C. macropomum females and P. mesopotamicus males). The present work aimed to investigate the location of the Rex3 and Rex6 transposable elements in the hybrid and in the species, in addition to checking the genomic organization of the 18S and 5S rDNA in tambacu. The diploid number found for the hybrid was equal to 54 chromosomes, with heterochromatic blocks distributed mainly in the centromeric portions. The chromosomal location of the mobile elements Rex3 and Rex6 in C. macropomum, P. mesopotamicus, and in the hybrid between these species enabled knowledge expansion and the generation of data on such mobile elements. In addition, the location of such elements is not related to the distribution of ribosomal DNA sites. The mapping of the 18S rDNA was shown to be effective in cytogenetic identification of the hybrid tambacu, allowing for differentiation from the parent species and from the hybrid between C. macropomum and the other species from Piaractus (P. brachypomus).

  8. Karyotype stability in the family Issidae (Hemiptera, Auchenorrhyncha) revealed by chromosome techniques and FISH with telomeric (TTAGG)n and 18S rDNA probes

    PubMed Central

    Maryańska-Nadachowska, Anna; Anokhin, Boris A.; Gnezdilov, Vladimir M.; Kuznetsova, Valentina G.

    2016-01-01

    Abstract We report several chromosomal traits in 11 species from 8 genera of the planthopper family Issidae, the tribes Issini, Parahiraciini and Hemisphaeriini. All species present a 2n = 27, X(0) chromosome complement known to be ancestral for the family. The karyotype is conserved in structure and consists of a pair of very large autosomes; the remaining chromosomes gradually decrease in size and the X chromosome is one of the smallest in the complement. For selected species, analyses based on C-, AgNOR- and CMA3-banding techniques were also carried out. By fluorescence in situ hybridization, the (TTAGG)n probe identified telomeres in all species, and the major rDNA loci were detected on the largest pair of autosomes. In most species, ribosomal loci were found in an interstitial position while in two species they were located in telomeric regions suggesting that chromosomal rearrangements involving the rDNA segments occurred in the evolution of the family Issidae. Furthermore, for 8 species the number of testicular follicles is provided for the first time. PMID:27830046

  9. Formal Revision of the Alexandrium tamarense Species Complex (Dinophyceae) Taxonomy: The Introduction of Five Species with Emphasis on Molecular-based (rDNA) Classification

    PubMed Central

    John, Uwe; Litaker, R. Wayne; Montresor, Marina; Murray, Shauna; Brosnahan, Michael L.; Anderson, Donald M.

    2015-01-01

    The Alexandrium tamarense species complex is one of the most studied marine dinoflagellate groups due to its ecological, toxicological and economic importance. Several members of this complex produce saxitoxin and its congeners – potent neurotoxins that c