Science.gov

Sample records for 26s ribosomal rna

  1. Genotyping of a miso and soy sauce fermentation yeast, Zygosaccharomyces rouxii, based on sequence analysis of the partial 26S ribosomal RNA gene and two internal transcribed spacers.

    PubMed

    Suezawa, Yasuhiko; Suzuki, Motofumi; Mori, Haruhiko

    2008-09-01

    We analyzed sequences of the D1D2 domain of the 26S ribosomal RNA gene (26S rDNA sequence), the internal transcribed spacer 1, the 5.8S ribosomal RNA gene, and the internal transcribed spacer 2 (the ITS sequence) from 46 strains of miso and soy sauce fermentation yeast, Zygosaccharomyces rouxii and a closely related species, Z. mellis, for typing. Based on the 26S rDNA sequence analysis, the Z. rouxii strains were of two types, and the extent of sequence divergence between them was 2.6%. Based on the ITS sequence analysis, they were divided into seven types (I-VII). Between the type strain (type I) and type VI, in particular, a 12% difference was detected. The occurrence of these nine genotypes with a divergence of more than 1% in these two sequences suggests that Z. rouxii is a species complex including novel species and hybrids. Z. mellis strains were of two types (type alpha and type beta) based on the ITS sequence. Z. rouxii could clearly be distinguished from Z. mellis by 26S rDNA and ITS sequence analyses, but not by the 16% NaCl tolerance, when used as the sole key characteristic for differentiation between the two species. PMID:18776675

  2. [Ribosomal RNA Evolution

    NASA Technical Reports Server (NTRS)

    1997-01-01

    It is generally believed that an RNA World existed at an early stage in the history of life. During this early period, RNA molecules are seen to be potentially involved in both catalysis and the storage of genetic information. Translation presents several interrelated themes of inquiry for exobiology. First, it is essential, for understanding the very origin of life, how peptides and eventually proteins might have come to be made on the early Earth in a template directed manner. Second, it is necessary to understand how a machinery of similar complexity to that found in the ribosomes of modern organisms came to exist by the time of the last common ancestor (as detected by 16S rRNA sequence studies). Third, the ribosomal RNAs themselves likely had a very early origin and studies of their history may be very informative about the nature of the RNA World. Moreover, studies of these RNAs will contribute to a better understanding of the potential roles of RNA in early evolution.During the past year we have ave conducted a comparative study of four completely sequenced bacterial genoames. We have focused initially on conservation of gene order. The second component of the project continues to build on the model system for studying the validity of variant 5S rRNA sequences in the vicinity of the modern Vibrio proteolyticus 5S rRNA that we established earlier. This system has made it possible to conduct a detailed and extensive analysis of a local portion of the sequence space. These core methods have been used to construct numerous mutants during the last several years. Although it has been a secondary focus, this work has continued over the last year such that we now have in excess of 125 V. proteolyticus derived constructs which have been made and characterized. We have also continued high resolution NMR work on RNA oligomers originally initiated by G. Kenneth Smith who was funded by a NASA Graduate Student Researcher's Fellowship Award until May of 1996. Mr. Smith

  3. Structure of psoralen-crosslinked ribosomal RNA from Drosophila melanogaster.

    PubMed Central

    Wollenzien, P L; Youvan, D C; Hearst, J E

    1978-01-01

    Ribosomal RNA from Drosophila melanogaster photoreacted with hydroxymethyltrioxsalen has been examined by electron microscopy. Reproducible patterns of hairpins were found in both the 26S and 18S RNA. The frequency of these hairpins and the amount of incorporated drug were dependent upon the conditions under which the crosslinking was performed. A prominent central hairpin occurs in the 26S RNA and the break that interrupts the continuity of the RNA chain is located within it. In addition to several small hairpins, the crosslinked 18S RNA contains a large open loop. Images PMID:417342

  4. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES

    EPA Science Inventory

    This book chapter offers an overview of the use of ribosomal RNA sequences. A history of the technology traces the evolution of techniques to measure bacterial phylogenetic relationships and recent advances in obtaining rRNA sequence information. The manual also describes procedu...

  5. Mitomycin C Inhibits Ribosomal RNA

    PubMed Central

    Snodgrass, Ryan G.; Collier, Abby C.; Coon, Amy E.; Pritsos, Chris A.

    2010-01-01

    Mitomycin C (MMC) is a commonly used and extensively studied chemotherapeutic agent requiring biological reduction for activity. Damage to nuclear DNA is thought to be its primary mechanism of cell death. Due to a lack of evidence for significant MMC activation in the nucleus and for in vivo studies demonstrating the formation of MMC-DNA adducts, we chose to investigate alternative nucleic acid targets. Real-time reverse transcription-PCR was used to determine changes in mitochondrial gene expression induced by MMC treatment. Although no consistent effects on mitochondrial mRNA expression were observed, complementary results from reverse transcription-PCR experiments and gel-shift and binding assays demonstrated that MMC rapidly decreased the transcript levels of 18S ribosomal RNA in a concentration-dependent manner. Under hypoxic conditions, transcript levels of 18S rRNA decreased by 1.5-fold compared with untreated controls within 30 min. Recovery to base line required several hours, indicating that de novo synthesis of 18S was necessary. Addition of MMC to an in vitro translation reaction significantly decreased protein production in the cell-free system. Functional assays performed using a luciferase reporter construct in vivo determined that protein translation was inhibited, further confirming this mechanism of toxicity. The interaction of MMC with ribosomal RNA and subsequent inhibition of protein translation is consistent with mechanisms proposed for other natural compounds. PMID:20418373

  6. Viral IRES RNA structures and ribosome interactions.

    PubMed

    Kieft, Jeffrey S

    2008-06-01

    In eukaryotes, protein synthesis initiates primarily by a mechanism that requires a modified nucleotide 'cap' on the mRNA and also proteins that recruit and position the ribosome. Many pathogenic viruses use an alternative, cap-independent mechanism that substitutes RNA structure for the cap and many proteins. The RNAs driving this process are called internal ribosome-entry sites (IRESs) and some are able to bind the ribosome directly using a specific 3D RNA structure. Recent structures of IRES RNAs and IRES-ribosome complexes are revealing the structural basis of viral IRES' 'hijacking' of the protein-making machinery. It now seems that there are fundamental differences in the 3D structures used by different IRESs, although there are some common features in how they interact with ribosomes. PMID:18468443

  7. Viral IRES RNA structures and ribosome interactions

    PubMed Central

    Kieft, Jeffrey S.

    2009-01-01

    In eukaryotes, protein synthesis initiates primarily by a mechanism that requires a modified nucleotide ‘cap’ on the mRNA and also proteins that recruit and position the ribosome. Many pathogenic viruses use an alternative, cap-independent mechanism that substitutes RNA structure for the cap and many proteins. The RNAs driving this process are called internal ribosome-entry sites (IRESs) and some are able to bind the ribosome directly using a specific 3D RNA structure. Recent structures of IRES RNAs and IRES–ribosome complexes are revealing the structural basis of viral IRES’ ‘hijacking’ of the protein-making machinery. It now seems that there are fundamental differences in the 3D structures used by different IRESs, although there are some common features in how they interact with ribosomes. PMID:18468443

  8. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins

    PubMed Central

    Dedduwa-Mudalige, Gayani N. P.; Chow, Christine S.

    2015-01-01

    Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA) intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA) including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human. PMID:26370969

  9. DNA homologies of ribosomal RNA genes of Neurospora species

    SciTech Connect

    Mukhopadhyay, D.K.; Mimiko, R.; Dutta, S.K.

    1980-01-01

    Ribosomal RNA genes (rDNAs) of Neurospora crassa contain DNA sequences which code for 17S, 5.8S, and 26S rRNAs, in addition to internal and external spacers. As has been reported for many eukaryotes, the DNA sequences which code for 17S, 5.8S, and 26S rRNAs in Neurospora species are probably conserved while the internal and external spacer regions are probably variable sequences. Extensive electron microscopic studies of 45S precursor rRNA of several cold and warm blooded animals confirm that spacer regions vary extensively from species to species. It was desirable to know whether such differences in rDNA sequences exist between Neurospora species. Any such difference should be detectable using standard procedures for DNA homology studies rDNA sequences were isolated from N. crassa mycelial cells using the procedure described previously. The purified rDNA was /sup 3/H-labeled (by nick translation) and reassociated with total DNA isolated from the heterothallic species N. crassa and from three homothalliospecies: N. dodgei, N. lineolata, and N. africana. In addition, /sup 32/P-labeled total DNA of N. crassa was reannealed with unlabeled bulk DNA from N. crassa, N. dodgei, and N. lineolata.

  10. Nonenzymatic microorganism identification based on ribosomal RNA

    NASA Astrophysics Data System (ADS)

    Ives, Jeffrey T.; Pierini, Alicia M.; Stokes, Jeffrey A.; Wahlund, Thomas M.; Read, Betsy; Bechtel, James H.; Bronk, Burt V.

    1999-11-01

    Effective defense against biological warfare (BW) agents requires rapid, fieldable and accurate systems. For micro- organisms like bacteria and viruses, ribosomal RNA (rRNA) provides a valuable target with multiple advantages of species specificity and intrinsic target amplification. Vegetative and spore forms of bacteria contain approximately 104 copies of rRNA. Direct detection of rRNA copies can eliminate some of the interference and preparation difficulties involved in enzymatic amplification methods. In order to apply the advantages of rRNA to BW defense, we are developing a fieldable system based on 16S rRNA, physical disruption of the micro-organism, solid phase hybridization, and fluorescence detection. Our goals include species-specific identification, complete operation from raw sample to identification in 15 minutes or less, and compact, fieldable instrumentation. Initial work on this project has investigated the lysis and hybridization steps, the species-specificity of oligonucleotides probes, and the development of a novel electromagnetic method to physically disrupt the micro- organisms. Target bacteria have been Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis). Continuing work includes further development of methods to rapidly disrupt the micro-organisms and release the rRNA, improved integration and processing, and extension to bacterial and mammalian viruses like MS2 and vesicular stomatitis virus.

  11. Structure of a mitochondrial ribosome with minimal RNA.

    PubMed

    Sharma, Manjuli R; Booth, Timothy M; Simpson, Larry; Maslov, Dmitri A; Agrawal, Rajendra K

    2009-06-16

    The Leishmania tarentolae mitochondrial ribosome (Lmr) is a minimal ribosomal RNA (rRNA)-containing ribosome. We have obtained a cryo-EM map of the Lmr. The map reveals several features that have not been seen in previously-determined structures of eubacterial or eukaryotic (cytoplasmic or organellar) ribosomes to our knowledge. Comparisons of the Lmr map with X-ray crystallographic and cryo-EM maps of the eubacterial ribosomes and a cryo-EM map of the mammalian mitochondrial ribosome show that (i) the overall structure of the Lmr is considerably more porous, (ii) the topology of the intersubunit space is significantly different, with fewer intersubunit bridges, but more tunnels, and (iii) several of the functionally-important rRNA regions, including the alpha-sarcin-ricin loop, have different relative positions within the structure. Furthermore, the major portions of the mRNA channel, the tRNA passage, and the nascent polypeptide exit tunnel contain Lmr-specific proteins, suggesting that the mechanisms for mRNA recruitment, tRNA interaction, and exiting of the nascent polypeptide in Lmr must differ markedly from the mechanisms deduced for ribosomes in other organisms. Our study identifies certain structural features that are characteristic solely of mitochondrial ribosomes and other features that are characteristic of both mitochondrial and chloroplast ribosomes (i.e., organellar ribosomes). PMID:19497863

  12. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA gene.

    PubMed Central

    Kurtzman, C P; Robnett, C J

    1997-01-01

    Clinically important species of Candida and related organisms were compared for extent of nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA (rDNA) gene. This rDNA region is sufficiently variable to allow reliable separation of all known clinically significant yeast species. Of the 204 described species examined, 21 appeared to be synonyms of previously described organisms. Phylogenetic relationships among the species are presented. PMID:9114410

  13. Characterization of three different clusters of 18S-26S ribosomal DNA genes in the sea urchin P. lividus: Genetic and epigenetic regulation synchronous to 5S rDNA.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Caradonna, Fabio

    2016-04-15

    We previously reported the characterization 5S ribosomal DNA (rDNA) clusters in the common sea urchin Paracentrotus lividus and demonstrated the presence of DNA methylation-dependent silencing of embryo specific 5S rDNA cluster in adult tissue. In this work, we show genetic and epigenetic characterization of 18S-26S rDNA clusters in this specie. The results indicate the presence of three different 18S-26S rDNA clusters with different Non-Transcribed Spacer (NTS) regions that have different chromosomal localizations. Moreover, we show that the two largest clusters are hyper-methylated in the promoter-containing NTS regions in adult tissues, as in the 5S rDNA. These findings demonstrate an analogous epigenetic regulation in small and large rDNA clusters and support the logical synchronism in building ribosomes. In fact, all the ribosomal RNA genes must be synchronously and equally transcribed to perform their unique final product. PMID:26789074

  14. Dissociability of free and peptidyl-tRNA bound ribosomes.

    PubMed

    Surguchov, A P; Fominykch, E S; Lyzlova, L V

    1978-06-16

    The influence of peptidyl-tRNA on the dissociation of yeast 80 S ribosomes into subunits was studied. For this purpose temperature-sensitive (ts) suppressor strain of yeast Saccharomyces cervisiae carrying a defect in peptide chain termination was used. It was found that peptidyl-tRNA did not influence the dissociation of ribosomes either at high salt concentration or in the presence of dissociation factor (DF) from yeast. After dissociation of yeast ribosomes in 0.5 M KCl, peptidyl-tRNA remains bound to the 60 S subunit. Some characteristics of the termination process and release of nascent polypeptides from yeast ribosomes are discussed. PMID:355860

  15. Metabolic Labeling in the Study of Mammalian Ribosomal RNA Synthesis.

    PubMed

    Stefanovsky, Victor Y; Moss, Tom

    2016-01-01

    RNA metabolic labeling is a method of choice in the study of dynamic changes in the rate of gene transcription and RNA processing. It is particularly applicable to transcription of the ribosomal RNA genes and their processing products due to the very high levels of ribosomal RNA synthesis. Metabolic labeling can detect changes in ribosomal RNA transcription that occur within a few minutes as opposed to the still widely used RT-PCR or Northern blot procedures that measure RNA pool sizes and at best are able to detect changes occurring over several hours or several days. Here, we describe a metabolic labeling technique applicable to the measurement of ribosomal RNA synthesis and processing rates, as well as to the determination of RNA Polymerase I transcription elongation rates. PMID:27576716

  16. Compilation of small ribosomal subunit RNA structures.

    PubMed Central

    Neefs, J M; Van de Peer, Y; De Rijk, P; Chapelle, S; De Wachter, R

    1993-01-01

    The database on small ribosomal subunit RNA structure contained 1804 nucleotide sequences on April 23, 1993. This number comprises 365 eukaryotic, 65 archaeal, 1260 bacterial, 30 plastidial, and 84 mitochondrial sequences. These are stored in the form of an alignment in order to facilitate the use of the database as input for comparative studies on higher-order structure and for reconstruction of phylogenetic trees. The elements of the postulated secondary structure for each molecule are indicated by special symbols. The database is available on-line directly from the authors by ftp and can also be obtained from the EMBL nucleotide sequence library by electronic mail, ftp, and on CD ROM disk. PMID:8332525

  17. An overview of pre-ribosomal RNA processing in eukaryotes

    PubMed Central

    Henras, Anthony K; Plisson-Chastang, Célia; O'Donohue, Marie-Françoise; Chakraborty, Anirban; Gleizes, Pierre-Emmanuel

    2015-01-01

    Ribosomal RNAs are the most abundant and universal noncoding RNAs in living organisms. In eukaryotes, three of the four ribosomal RNAs forming the 40S and 60S subunits are borne by a long polycistronic pre-ribosomal RNA. A complex sequence of processing steps is required to gradually release the mature RNAs from this precursor, concomitant with the assembly of the 79 ribosomal proteins. A large set of trans-acting factors chaperone this process, including small nucleolar ribonucleoparticles. While yeast has been the gold standard for studying the molecular basis of this process, recent technical advances have allowed to further define the mechanisms of ribosome biogenesis in animals and plants. This renewed interest for a long-lasting question has been fueled by the association of several genetic diseases with mutations in genes encoding both ribosomal proteins and ribosome biogenesis factors, and by the perspective of new anticancer treatments targeting the mechanisms of ribosome synthesis. A consensus scheme of pre-ribosomal RNA maturation is emerging from studies in various kinds of eukaryotic organisms. However, major differences between mammalian and yeast pre-ribosomal RNA processing have recently come to light. WIREs RNA 2015, 6:225–242. doi: 10.1002/wrna.1269 PMID:25346433

  18. DExD/H-box RNA helicases in ribosome biogenesis

    PubMed Central

    Martin, Roman; Straub, Annika U.; Doebele, Carmen; Bohnsack, Markus T.

    2013-01-01

    Ribosome synthesis requires a multitude of cofactors, among them DExD/H-box RNA helicases. Bacterial RNA helicases involved in ribosome assembly are not essential, while eukaryotes strictly require multiple DExD/H-box proteins that are involved in the much more complex ribosome biogenesis pathway. Here, RNA helicases are thought to act in structural remodeling of the RNPs including the modulation of protein binding, and they are required for allowing access or the release of specific snoRNPs from pre-ribosomes. Interestingly, helicase action is modulated by specific cofactors that can regulate recruitment and enzymatic activity. This review summarizes the current knowledge and focuses on recent findings and open questions on RNA helicase function and regulation in ribosome synthesis. PMID:22922795

  19. Ribosomal RNA sequence suggest microsporidia are extremely ancient eukaryotes

    NASA Technical Reports Server (NTRS)

    Vossbrinck, C. R.; Maddox, J. V.; Friedman, S.; Debrunner-Vossbrinck, B. A.; Woese, C. R.

    1987-01-01

    A comparative sequence analysis of the 18S small subunit ribosomal RNA (rRNA) of the microsporidium Vairimorpha necatrix is presented. The results show that this rRNA sequence is more unlike those of other eukaryotes than any known eukaryote rRNA sequence. It is concluded that the lineage leading to microsporidia branched very early from that leading to other eukaryotes.

  20. Motion of individual ribosomes along mRNA

    NASA Astrophysics Data System (ADS)

    Visscher, Koen

    2004-11-01

    Ribosomes move along messenger RNA to translate a sequence of ribonucleotides into a corresponding sequence of amino acids that make up a protein. Efficient motion of ribosomes along the mRNA requires hydrolysis of GTP, converting chemical energy into mechanical work, like better known molecular motors such as kinesin. However, motion is just one of the many tasks of the ribosome, whereas for kinesin, motion itself is the main goal. In keeping with these functional differences, the ribosome is also much larger consisting of more than 50 proteins and with half of its mass made up of ribosomal RNA. Such structural complexity enables indirect ways of coupling GTP hydrolysis to directed motion. In order to elucidate the mechanochemical coupling in ribosomes we have developed a single-molecule assay based on using optical tweezers to record the motion of individual ribosomes along mRNA. Translation rates of 2-4 codons/s have been observed. However, when increasing the force opposing motion, we observe backward slippage of ribosomes along homopolymeric poly(U) messages. Currently, it is not clear if the motor operates in reverse or if backward motion has become completely uncoupled from GTP hydrolysis. Interestingly, force-induced backward motion is of biological relevance because of its possible role in -1 frameshifting, a mechanism used by viruses to regulate gene expression at the level of translation.

  1. Arabidopsis protein arginine methyltransferase 3 is required for ribosome biogenesis by affecting precursor ribosomal RNA processing

    PubMed Central

    Hang, Runlai; Liu, Chunyan; Ahmad, Ayaz; Zhang, Yong; Lu, Falong; Cao, Xiaofeng

    2014-01-01

    Ribosome biogenesis is a fundamental and tightly regulated cellular process, including synthesis, processing, and assembly of rRNAs with ribosomal proteins. Protein arginine methyltransferases (PRMTs) have been implicated in many important biological processes, such as ribosome biogenesis. Two alternative precursor rRNA (pre-rRNA) processing pathways coexist in yeast and mammals; however, how PRMT affects ribosome biogenesis remains largely unknown. Here we show that Arabidopsis PRMT3 (AtPRMT3) is required for ribosome biogenesis by affecting pre-rRNA processing. Disruption of AtPRMT3 results in pleiotropic developmental defects, imbalanced polyribosome profiles, and aberrant pre-rRNA processing. We further identify an alternative pre-rRNA processing pathway in Arabidopsis and demonstrate that AtPRMT3 is required for the balance of these two pathways to promote normal growth and development. Our work uncovers a previously unidentified function of PRMT in posttranscriptional regulation of rRNA, revealing an extra layer of complexity in the regulation of ribosome biogenesis. PMID:25352672

  2. Eukaryotic ribosomes that lack a 5.8S RNA

    NASA Technical Reports Server (NTRS)

    Vossbrinck, C. R.; Woese, C. R.

    1986-01-01

    The 5.8S ribosomal RNA is believed to be a universal eukaryotic characteristic. It has no (size) counterpart among the prokaryotes, although its sequence is homologous with the first 150 or so nucleotides of the prokaryotic large subunit (23S) ribosomal RNA. An exception to this rule is reported here. The microsporidian Vairimorpha necatrix is a eukaryote that has no 5.8S rRNA. As in the prokaryotes, it has a single large subunit rRNA, whose 5-prime region corresponds to the 5.8S rRNA.

  3. Database on the structure of large ribosomal subunit RNA.

    PubMed Central

    De Rijk, P; Van de Peer, Y; Chapelle, S; De Wachter, R

    1994-01-01

    A database on large ribosomal subunit RNA is made available. It contains 258 sequences. It provides sequence, alignment and secondary structure information in computer-readable formats. Files can be obtained using ftp. PMID:7524023

  4. The 16S ribosomal RNA mutation database (16SMDB).

    PubMed Central

    Triman, K L

    1996-01-01

    The 16S ribosomal RNA mutation database (16SMDB) provides a list of mutated positions in 16S ribosomal RNA from Escherichia coli and the identity of each alteration. Information provided for each mutation includes: (i) a brief description of the phenotype(s) associated with each mutation; (ii) whether a mutant phenotype has been detected by in vivo or in vitro methods; (iii) relevant literature citations. The database is available via ftp and on the World Wide Web. PMID:8594570

  5. The 26S proteasome in Schistosoma mansoni: bioinformatics analysis, developmental expression, and RNA interference (RNAi) studies.

    PubMed

    Nabhan, Joseph F; El-Shehabi, Fouad; Patocka, Nicholas; Ribeiro, Paula

    2007-11-01

    The 26S proteasome is a proteolytic complex responsible for the degradation of the vast majority of eukaryotic proteins. Regulated proteolysis by the proteasome is thought to influence cell cycle progression, transcriptional control, and other critical cellular processes. Here, we used a bioinformatics approach to identify the proteasomal constituents of the parasitic trematode Schistosoma mansoni. A detailed search of the S. mansoni genome database identified a total of 31 putative proteasomal subunits, including 17 subunits of the regulatory (19S) complex and 14 predicted catalytic (20S) subunits. A quantitative real-time RT-PCR analysis of subunit expression levels revealed that the S. mansoni proteasome components are differentially expressed among cercaria, schistosomula, and adult worms. In particular, the data suggest that the proteasome may be downregulated during the early stages of schistosomula development and is subsequently upregulated as the parasite matures to the adult stage. To test for biological relevance, we developed a transfection-based RNA interference method to knockdown the expression of the proteasome subunit, SmRPN11/POH1. Transfection of in vitro transformed S. mansoni schistosomula with specific short-interfering RNAs (siRNAs) diminished SmRPN11/POH1 expression nearly 80%, as determined by quantitative RT-PCR analysis, and also decreased parasite viability 78%, whereas no significant effect could be seen after treatment with the same amount of an irrelevant siRNA. These results indicate that the subunit SmRPN11/POH1 is an essential gene in schistosomes and further suggest an important role for the proteasome in parasite development and survival. PMID:17892869

  6. Hierarchical RNA Processing Is Required for Mitochondrial Ribosome Assembly.

    PubMed

    Rackham, Oliver; Busch, Jakob D; Matic, Stanka; Siira, Stefan J; Kuznetsova, Irina; Atanassov, Ilian; Ermer, Judith A; Shearwood, Anne-Marie J; Richman, Tara R; Stewart, James B; Mourier, Arnaud; Milenkovic, Dusanka; Larsson, Nils-Göran; Filipovska, Aleksandra

    2016-08-16

    The regulation of mitochondrial RNA processing and its importance for ribosome biogenesis and energy metabolism are not clear. We generated conditional knockout mice of the endoribonuclease component of the RNase P complex, MRPP3, and report that it is essential for life and that heart and skeletal-muscle-specific knockout leads to severe cardiomyopathy, indicating that its activity is non-redundant. Transcriptome-wide parallel analyses of RNA ends (PARE) and RNA-seq enabled us to identify that in vivo 5' tRNA cleavage precedes 3' tRNA processing, and this is required for the correct biogenesis of the mitochondrial ribosomal subunits. We identify that mitoribosomal biogenesis proceeds co-transcriptionally because large mitoribosomal proteins can form a subcomplex on an unprocessed RNA containing the 16S rRNA. Taken together, our data show that RNA processing links transcription to translation via assembly of the mitoribosome. PMID:27498866

  7. Synthesis of Amplified DNA That Codes for Ribosomal RNA

    PubMed Central

    Crippa, Marco; Tocchini-Valentini, Glauco P.

    1971-01-01

    During the amplification stage in ovaries, the complete repetitive unit of the DNA that codes for ribosomal RNA in Xenopus appears to be transcribed. This large RNA transcript is found in a complex with DNA. Substitution experiments with 5-bromodeoxyuridine do not show any evidence that a complete amplified cistron is used as a template for further amplification. A derivative of rifampicin, 2′,5′-dimethyl-N(4′)benzyl-N(4′)[desmethyl] rifampicin, preferentially inhibits the DNA synthesis responsible for ribosomal gene amplification. These results are consistent with the hypothesis that RNA-dependent DNA synthesis is involved in gene amplification. PMID:5288254

  8. Modification of ribosomal RNA by ribosome-inactivating proteins from plants.

    PubMed Central

    Stirpe, F; Bailey, S; Miller, S P; Bodley, J W

    1988-01-01

    We have surveyed 14 different toxic and nontoxic ribosome-inactivating proteins from plants for the ability to act on the RNA of the eucaryotic 60 S ribosomal subunit. All of these proteins act to introduce a specific modification into 26-28 S RNA which renders the RNA sensitive to cleavage by aniline. Sequence analysis of the 5'-termini of the fragments produced by ricin and saporin following aniline cleavage indicate that both proteins possess identical specificity. Our observations support the conclusion of Endo and Tsurugi (J. Biol. Chem. 262, 8128-8130, 1987) that ricin is a specific N-glycosidase and we have located the site of this cleavage by direct sequence analysis. Our results further suggest that all plant ribosome-inactivating proteins function as specific N-glycosidases with the same specificity. Images PMID:3347493

  9. Protein-guided RNA dynamics during early ribosome assembly

    NASA Astrophysics Data System (ADS)

    Kim, Hajin; Abeysirigunawarden, Sanjaya C.; Chen, Ke; Mayerle, Megan; Ragunathan, Kaushik; Luthey-Schulten, Zaida; Ha, Taekjip; Woodson, Sarah A.

    2014-02-01

    The assembly of 30S ribosomes requires the precise addition of 20 proteins to the 16S ribosomal RNA. How early binding proteins change the ribosomal RNA structure so that later proteins may join the complex is poorly understood. Here we use single-molecule fluorescence resonance energy transfer (FRET) to observe real-time encounters between Escherichia coli ribosomal protein S4 and the 16S 5' domain RNA at an early stage of 30S assembly. Dynamic initial S4-RNA complexes pass through a stable non-native intermediate before converting to the native complex, showing that non-native structures can offer a low free-energy path to protein-RNA recognition. Three-colour FRET and molecular dynamics simulations reveal how S4 changes the frequency and direction of RNA helix motions, guiding a conformational switch that enforces the hierarchy of protein addition. These protein-guided dynamics offer an alternative explanation for induced fit in RNA-protein complexes.

  10. Structural Insights into tRNA Dynamics on the Ribosome

    PubMed Central

    Agirrezabala, Xabier; Valle, Mikel

    2015-01-01

    High-resolution structures at different stages, as well as biochemical, single molecule and computational approaches have highlighted the elasticity of tRNA molecules when bound to the ribosome. It is well acknowledged that the inherent structural flexibility of the tRNA lies at the heart of the protein synthesis process. Here, we review the recent advances and describe considerations that the conformational changes of the tRNA molecules offer about the mechanisms grounded in translation. PMID:25941930

  11. Structural Insights into tRNA Dynamics on the Ribosome.

    PubMed

    Agirrezabala, Xabier; Valle, Mikel

    2015-01-01

    High-resolution structures at different stages, as well as biochemical, single molecule and computational approaches have highlighted the elasticity of tRNA molecules when bound to the ribosome. It is well acknowledged that the inherent structural flexibility of the tRNA lies at the heart of the protein synthesis process. Here, we review the recent advances and describe considerations that the conformational changes of the tRNA molecules offer about the mechanisms grounded in translation. PMID:25941930

  12. Physical mapping of 5S and 18S-5.8S-26S RNA gene families in polyploid series of Cenchrus ciliaris Linnaeus, 1771 (Poaceae)

    PubMed Central

    Kharrat-Souissi, Amina; Siljak-Yakovlev, Sonja; Pustahija, Fatima; Chaieb, Mohamed

    2012-01-01

    Abstract The Buffelgrass (Cenchrus ciliaris L., Poaceae) is one of the most important pasturage grasses due to its high productivity and good forage qualities. This species possess a high adaptability to bioclimatic constraints of arid zones and may be used for the restoration of degraded arid ecosystems. Tunisian populations present three ploidy levels (4x, 5x and 6x) with a basic chromosome number x=9. This study reported for the first time the distribution of the ribosomal genes (rRNA) for pentaploid and hexaploid cytotypes of Cenchrus ciliaris. Molecular cytogenetic study using double fluorescence in situ hybridization has shown that the two rDNA families, 5S and 18S-5.8S-26S (18S), displayed intraspecific variation in number of loci among different ploidy levels. Each ploidy level was characterized by specific number of both 5S and 18S rDNA loci (two loci in tetraploid, five in pentaploid and six in hexaploid level). For three studied cytotypes (4x, 5x and 6x) all 5S rDNA loci were localized on the subcentromeric region of chromosomes, while 18S loci were situated on the telomeric region of short chromosome arms. Data of the FISH experiments show proportional increase of ribosomal loci number during polyploidization processes. PMID:24260668

  13. tRNA dynamics on the ribosome during translation

    PubMed Central

    Blanchard, Scott C.; Kim, Harold D.; Gonzalez, Ruben L.; Puglisi, Joseph D.; Chu, Steven

    2004-01-01

    Using single-molecule fluorescence spectroscopy, time-resolved conformational changes between fluorescently labeled tRNA have been characterized within surface-immobilized ribosomes proceeding through a complete cycle of translation elongation. Fluorescence resonance energy transfer was used to observe aminoacyl-tRNA (aa-tRNA) stably accommodating into the aminoacyl site (A site) of the ribosome via a multistep, elongation factor-Tu dependent process. Subsequently, tRNA molecules, bound at the peptidyl site and A site, fluctuate between two configurations assigned as classical and hybrid states. The lifetime of classical and hybrid states, measured for complexes carrying aa-tRNA and peptidyl-tRNA at the A site, shows that peptide bond formation decreases the lifetime of the classical-state tRNA configuration by ≈6-fold. These data suggest that the growing peptide chain plays a role in modulating fluctuations between hybrid and classical states. Single-molecule fluorescence resonance energy transfer was also used to observe aa-tRNA accommodation coupled with elongation factor G-mediated translocation. Dynamic rearrangements in tRNA configuration are also observed subsequent to the translocation reaction. This work underscores the importance of dynamics in ribosome function and demonstrates single-particle enzymology in a system of more than two components. PMID:15317937

  14. Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA.

    PubMed

    Yamamoto, Hiroshi; Collier, Marianne; Loerke, Justus; Ismer, Jochen; Schmidt, Andrea; Hilal, Tarek; Sprink, Thiemo; Yamamoto, Kaori; Mielke, Thorsten; Bürger, Jörg; Shaikh, Tanvir R; Dabrowski, Marylena; Hildebrand, Peter W; Scheerer, Patrick; Spahn, Christian M T

    2015-12-14

    Internal ribosomal entry sites (IRESs) are structured cis-acting RNAs that drive an alternative, cap-independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo-EM reconstructions of the ribosome 80S- and 40S-bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S•HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 Å for the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P-site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA-driven translation initiation. PMID:26604301

  15. Reverse Translocation of tRNA in the Ribosome

    PubMed Central

    Shoji, Shinichiro; Walker, Sarah E.; Fredrick, Kurt

    2009-01-01

    Summary A widely held view is that directional movement of tRNA in the ribosome is determined by an intrinsic mechanism and driven thermodynamically by transpeptidation. Here, we show that, in certain ribosomal complexes, the pretranslocation (PRE) state is thermodynamically favored over the posttranslocation (POST) state. Spontaneous and efficient conversion from the POST to PRE state is observed when EF-G is depleted from ribosomes in the POST state or when tRNA is added to the E site of ribosomes containing P-site tRNA. In the latter assay, the rate of tRNA movement is increased by streptomycin and neomycin, decreased by tetracycline, and not affected by the acylation state of the tRNA. In one case, we provide evidence that complex conversion occurs by reverse translocation (i.e., direct movement of the tRNAs from the E and P sites to the P and A sites, respectively). These findings have important implications for the energetics of translocation. PMID:17189194

  16. Ribosomal RNA: a key to phylogeny

    NASA Technical Reports Server (NTRS)

    Olsen, G. J.; Woese, C. R.

    1993-01-01

    As molecular phylogeny increasingly shapes our understanding of organismal relationships, no molecule has been applied to more questions than have ribosomal RNAs. We review this role of the rRNAs and some of the insights that have been gained from them. We also offer some of the practical considerations in extracting the phylogenetic information from the sequences. Finally, we stress the importance of comparing results from multiple molecules, both as a method for testing the overall reliability of the organismal phylogeny and as a method for more broadly exploring the history of the genome.

  17. Ribosome heterogeneity in tumorigenesis: the rRNA point of view

    PubMed Central

    Marcel, Virginie; Catez, Frédéric; Diaz, Jean-Jacques

    2015-01-01

    The "specialized ribosome" concept proposes that ribosome variants are produced and differentially regulate translation. Examples supporting this notion demonstrated heterogeneity of ribosomal protein composition. However, ribosome translational activity is carried out by rRNA. We, and others, recently showed that rRNA heterogeneity regulates translation to generate distinct translatomes promoting tumorigenesis. PMID:27305893

  18. RNA structures regulating ribosomal protein biosynthesis in bacilli.

    PubMed

    Deiorio-Haggar, Kaila; Anthony, Jon; Meyer, Michelle M

    2013-07-01

    In Bacilli, there are three experimentally validated ribosomal-protein autogenous regulatory RNAs that are not shared with E. coli. Each of these RNAs forms a unique secondary structure that interacts with a ribosomal protein encoded by a downstream gene, namely S4, S15, and L20. Only one of these RNAs that interacts with L20 is currently found in the RNA Families Database. We created, or modified, existing structural alignments for these three RNAs and used them to perform homology searches. We have determined that each structure exhibits a narrow phylogenetic distribution, mostly relegated to the Firmicute class Bacilli. This work, in conjunction with other similar work, demonstrates that there are most likely many non-homologous RNA regulatory elements regulating ribosomal protein biosynthesis that still await discovery and characterization in other bacterial species. PMID:23611891

  19. RNA structures regulating ribosomal protein biosynthesis in bacilli

    PubMed Central

    Deiorio-Haggar, Kaila; Anthony, Jon; Meyer, Michelle M.

    2013-01-01

    In Bacilli, there are three experimentally validated ribosomal-protein autogenous regulatory RNAs that are not shared with E. coli. Each of these RNAs forms a unique secondary structure that interacts with a ribosomal protein encoded by a downstream gene, namely S4, S15, and L20. Only one of these RNAs that interacts with L20 is currently found in the RNA Families Database. We created, or modified, existing structural alignments for these three RNAs and used them to perform homology searches. We have determined that each structure exhibits a narrow phylogenetic distribution, mostly relegated to the Firmicute class Bacilli. This work, in conjunction with other similar work, demonstrates that there are most likely many non-homologous RNA regulatory elements regulating ribosomal protein biosynthesis that still await discovery and characterization in other bacterial species. PMID:23611891

  20. Chemical probing of the tRNA--ribosome complex.

    PubMed Central

    Peattie, D A; Herr, W

    1981-01-01

    We probed the (Escherichia coli) tRNAPhe--ribosome interaction with the chemical reagents dimethyl sulfate and diethyl pyrocarbonate. This monitored the higher-order structure of the tRNA in this biological complex and identified critical sites in the tRNA molecule involved in binding to the ribosome. The methylation of the N-7 position of guanosine and the N-3 position of cytidine as well as diethyl pyrocarbonate attack on adenosines are sensitive to secondary and tertiary interactions. Here we identify specific bases in E. coli Phe-tRNAPhe affected by the interaction with the ribosome. The 70S ribosome protects the N-3 position of cytidine-74 and 75 in the 3'-terminal C-C-A, suggesting a strong, possibly base pairing, interaction between the ribosome and that universal sequence. The ribosome also induces strong reactivities at the N-7 positions of G-24 and G-46 in the central region of the tRNA molecule near the variable-loop domain as well as less significant reactivities at 11 other guanosines. Two of these, G-10 and G-44, are close to G-24 and G-46 in the center of the molecule; the others (guanosines 1, 5, 6, 18, 19, 63, 65, 69, and 71) are in the coaxial acceptor stem-T stem helix. All of the effects are ribosome induced and occur in the presence or absence of the messenger poly(U). Prior chemical modification of the anticodon bases as well as the two adjacent 3' purines and, less effectively, four purines in the anticodon stem prevent stable poly(U)-directed ribosome binding. Thus, we identify the 3' terminal C-C-A sequence, near the peptidyl transferase site, and the anticodon stem and loop of tRNAPhe as forming critical contacts with the ribosome. Other regions of the molecule become reactive on ribosome binding, but these do not suggest a significant conformational change being more likely due to a change of environment. Images PMID:6166006

  1. Positive modulation of RNA polymerase III transcription by ribosomal proteins

    SciTech Connect

    Dieci, Giorgio; Carpentieri, Andrea; Amoresano, Angela; Ottonello, Simone

    2009-02-06

    A yeast nuclear fraction of unknown composition, named TFIIIE, was reported previously to enhance transcription of tRNA and 5S rRNA genes in vitro. We show that TFIIIE activity co-purifies with a specific subset of ribosomal proteins (RPs) which, as revealed by chromatin immunoprecipitation analysis, generally interact with tRNA and 5S rRNA genes, but not with a Pol II-specific promoter. Only Rpl6Ap and Rpl6Bp, among the tested RPs, were found associated to a TATA-containing tRNA{sup Ile}(TAT) gene. The RPL6A gene also emerged as a strong multicopy suppressor of a conditional mutation in the basal transcription factor TFIIIC, while RPL26A and RPL14A behaved as weak suppressors. The data delineate a novel extra-ribosomal role for one or a few RPs which, by influencing 5S rRNA and tRNA synthesis, could play a key role in the coordinate regulation of the different sub-pathways required for ribosome biogenesis and functionality.

  2. Analysis of interactions between ribosomal proteins and RNA structural motifs

    PubMed Central

    2010-01-01

    Background One important goal of structural bioinformatics is to recognize and predict the interactions between protein binding sites and RNA. Recently, a comprehensive analysis of ribosomal proteins and their interactions with rRNA has been done. Interesting results emerged from the comparison of r-proteins within the small subunit in T. thermophilus and E. coli, supporting the idea of a core made by both RNA and proteins, conserved by evolution. Recent work showed also that ribosomal RNA is modularly composed. Motifs are generally single-stranded sequences of consecutive nucleotides (ssRNA) with characteristic folding. The role of these motifs in protein-RNA interactions has been so far only sparsely investigated. Results This work explores the role of RNA structural motifs in the interaction of proteins with ribosomal RNA (rRNA). We analyze composition, local geometries and conformation of interface regions involving motifs such as tetraloops, kink turns and single extruded nucleotides. We construct an interaction map of protein binding sites that allows us to identify the common types of shared 3-D physicochemical binding patterns for tetraloops. Furthermore, we investigate the protein binding pockets that accommodate single extruded nucleotides either involved in kink-turns or in arbitrary RNA strands. This analysis reveals a new structural motif, called tripod. It corresponds to small pockets consisting of three aminoacids arranged at the vertices of an almost equilateral triangle. We developed a search procedure for the recognition of tripods, based on an empirical tripod fingerprint. Conclusion A comparative analysis with the overall RNA surface and interfaces shows that contact surfaces involving RNA motifs have distinctive features that may be useful for the recognition and prediction of interactions. PMID:20122215

  3. Database on the structure of large ribosomal subunit RNA.

    PubMed Central

    De Rijk, P; Caers, A; Van de Peer, Y; De Wachter, R

    1998-01-01

    The rRNA WWW Server at URL http://rrna.uia.ac.be/ now provides a database of 496 large subunit ribosomal RNA sequences. All these sequences are aligned, incorporate secondary structure information, and can be obtained in a number of formats. Other information about the sequences, such as literature references, accession numbers and taxonomic information is also available and searchable. If necessary, the data on the server can also be obtained by anonymous ftp. PMID:9399830

  4. An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation.

    PubMed

    Savelsbergh, Andreas; Katunin, Vladimir I; Mohr, Dagmar; Peske, Frank; Rodnina, Marina V; Wintermeyer, Wolfgang

    2003-06-01

    The elongation cycle of protein synthesis is completed by translocation, a rearrangement during which two tRNAs bound to the mRNA move on the ribosome. The reaction is promoted by elongation factor G (EF-G) and accelerated by GTP hydrolysis. Here we report a pre-steady-state kinetic analysis of translocation. The kinetic model suggests that GTP hydrolysis drives a conformational rearrangement of the ribosome that precedes and limits the rates of tRNA-mRNA translocation and Pi release from EF-G.GDP.Pi. The latter two steps are intrinsically rapid and take place at random. These results indicate that the energy of GTP hydrolysis is utilized to promote the ribosome rearrangement and to bias spontaneous fluctuations within the ribosome-EF-G complex toward unidirectional movement of mRNA and tRNA. PMID:12820965

  5. Re-analysis of cryoEM data on HCV IRES bound to 40S subunit of human ribosome integrated with recent structural information suggests new contact regions between ribosomal proteins and HCV RNA

    PubMed Central

    Joseph, Agnel Praveen; Bhat, Prasanna; Das, Saumitra; Srinivasan, Narayanaswamy

    2014-01-01

    In this study, we combine available high resolution structural information on eukaryotic ribosomes with low resolution cryo-EM data on the Hepatitis C Viral RNA (IRES) human ribosome complex. Aided further by the prediction of RNA-protein interactions and restrained docking studies, we gain insights on their interaction at the residue level. We identified the components involved at the major and minor contact regions, and propose that there are energetically favorable local interactions between 40S ribosomal proteins and IRES domains. Domain II of the IRES interacts with ribosomal proteins S5 and S25 while the pseudoknot and the downstream domain IV region bind to ribosomal proteins S26, S28 and S5. We also provide support using UV cross-linking studies to validate our proposition of interaction between the S5 and IRES domains II and IV. We found that domain IIIe makes contact with the ribosomal protein S3a (S1e). Our model also suggests that the ribosomal protein S27 interacts with domain IIIc while S7 has a weak contact with a single base RNA bulge between junction IIIabc and IIId. The interacting residues are highly conserved among mammalian homologs while IRES RNA bases involved in contact do not show strict conservation. IRES RNA binding sites for S25 and S3a show the best conservation among related viral IRESs. The new contacts identified between ribosomal proteins and RNA are consistent with previous independent studies on RNA-binding properties of ribosomal proteins reported in literature, though information at the residue level is not available in previous studies. PMID:25268799

  6. Essential ribosome assembly factor Fap7 regulates a hierarchy of RNA-protein interactions during small ribosomal subunit biogenesis.

    PubMed

    Hellmich, Ute A; Weis, Benjamin L; Lioutikov, Anatoli; Wurm, Jan Philip; Kaiser, Marco; Christ, Nina A; Hantke, Katharina; Kötter, Peter; Entian, Karl-Dieter; Schleiff, Enrico; Wöhnert, Jens

    2013-09-17

    Factor activating Pos9 (Fap7) is an essential ribosome biogenesis factor important for the assembly of the small ribosomal subunit with an uncommon dual ATPase and adenylate kinase activity. Depletion of Fap7 or mutations in its ATPase motifs lead to defects in small ribosomal subunit rRNA maturation, the absence of ribosomal protein Rps14 from the assembled subunit, and retention of the nascent small subunit in a quality control complex with the large ribosomal subunit. The molecular basis for the role of Fap7 in ribosome biogenesis is, however, not yet understood. Here we show that Fap7 regulates multiple interactions between the precursor rRNA, ribosomal proteins, and ribosome assembly factors in a hierarchical manner. Fap7 binds to Rps14 with a very high affinity. Fap7 binding blocks both rRNA-binding elements of Rps14, suggesting that Fap7 inhibits premature interactions of Rps14 with RNA. The Fap7/Rps14 interaction is modulated by nucleotide binding to Fap7. Rps14 strongly activates the ATPase activity but not the adenylate kinase activity of Fap7, identifying Rps14 as an example of a ribosomal protein functioning as an ATPase-activating factor. In addition, Fap7 inhibits the RNA cleavage activity of Nob1, the endonuclease responsible for the final maturation step of the small subunit rRNA, in a nucleotide independent manner. Thus, Fap7 may regulate small subunit biogenesis at multiple stages. PMID:24003121

  7. Effect of ribosome shielding on mRNA stability

    NASA Astrophysics Data System (ADS)

    Deneke, Carlus; Lipowsky, Reinhard; Valleriani, Angelo

    2013-08-01

    Based on the experimental evidence that translating ribosomes stabilize the mRNAs, we introduce and study a theoretical model for the dynamic shielding of mRNA by ribosomes. We present an improved fitting of published decay assay data in E. coli and show that only one third of the decay patterns are exponential. Our new transcriptome-wide estimate of the average lifetimes and mRNA half-lives shows that these timescales are considerably shorter than previous estimates. We also explain why there is a negative correlation between mRNA length and average lifetime when the mRNAs are subdivided in classes sharing the same degradation parameters. As a by-product, our model indicates that co-transcriptional translation in E. coli may be less common than previously believed.

  8. Epigeneitc silencing of ribosomal RNA genes by Mybbp1a

    PubMed Central

    2012-01-01

    Background Transcription of the ribosomal RNA gene repeats by Pol I occurs in the nucleolus and is a fundamental step in ribosome biogenesis and protein translation. Due to tight coordination between ribosome biogenesis and cell proliferation, transcription of rRNA and stable maintenance of rDNA clusters are thought to be under intricate control by intercalated mechanisms, particularly at the epigenetic level. Methods and Results Here we identify the nucleolar protein Myb-binding protein 1a (Mybbp1a) as a novel negative regulator of rRNA expression. Suppression of rDNA transcription by Mybbp1a was linked to promoter regulation as illustrated by its binding to the chromatin around the hypermethylated, inactive rDNA gene promoters. Our data further showed that downregulation of Mybbp1a abrogated the local DNA methylation levels and histone marks associated with gene silencing, and altered the promoter occupancy of various factors such UBF and HDACs, consequently leading to elevated rRNA expression. Mechanistically, we propose that Mybbp1a maintains rDNA repeats in a silenced state while in association with the negative epigenetic modifiers HDAC1/2. Conclusions Results from our present work reveal a previously unrecognized co-repressor role of Mybbp1a in rRNA expression. They are further consistent with the scenario that Mybbp1a is an integral constituent of the rDNA epigenetic regulation that underlies the balanced state of rDNA clusters. PMID:22686419

  9. [Mechanism of tRNA translocation on the ribosome].

    PubMed

    Rodnina, M V; Semenkov, Iu P; Savelsbergh, A; Katunin, V I; Peske, F; Wilden, B; Wintermeyer, W

    2001-01-01

    During the translocation step of the elongation cycle of peptide synthesis two tRNAs together with the mRNA move synchronously and rapidly on the ribosome. Translocation is catalyzed by the elongation factor G (EF-G) and requires GTP hydrolysis. The fundamental biochemical features of the process were worked out in the 1970-80s, to a large part by A.S. Spirin and his colleagues. Recent results from pre-steady-state kinetic analysis and cryoelectron microscopy suggest that translocation is a multistep dynamic process that entails large-scale structural rearrangements of both ribosome and EF-G. Kinetic and thermodynamic data, together with the structural information on the conformational changes of the ribosome and of EF-G, provide a detailed mechanistic model of translocation and suggest a mechanism of translocation catalysis by EF-G. PMID:11524952

  10. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation

    PubMed Central

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G.; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S. Kundhavai; Klaholz, Bruno P.; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  11. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation.

    PubMed

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S Kundhavai; Klaholz, Bruno P; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  12. The effect of trichloroethylene and acrylonitrile on RNA and ribosome synthesis and ribosome content in Saccharomyces cells.

    PubMed

    Lochmann, E R; Ehrlich, W; Mangir, M

    1984-04-01

    The effects of trichloroethylene (TCE) and acrylonitrile (ACN) on growth, RNA synthesis, ribosome synthesis, and ribosome content were tested in yeast cells. TCE causes a delay of the growth of a cell culture (prolongation of the lag phase), but does not cause inhibition. Cells exposed to increasing concentrations of ACN show increasing damage, so that, at a certain point of the growth curve, cell division stops altogether. Similar results were obtained when RNA synthesis was investigated: After treatment with TCE, the maximum RNA synthesis of the cell culture was retarded, but subsequently reached the same level as the untreated control cells. In the presence of ACN, however, the rate of RNA synthesis was lowered with increasing ACN concentrations. The same effect was observed upon investigation of ribosome synthesis: Whereas TCE produces only a slight effect, treatment with increasing concentrations of ACN leads to a substantial decrease in ribosome synthesis, and finally to total inhibition. Parallel to this, the content of free and membrane-bound ribosomes is diminished. Obviously, the decrease in ribosome content is caused not only by an inhibition of ribosome synthesis, but also by a degradation of existing ribosomes, as well as by induction of a ribosome-associated RNase. PMID:6714140

  13. Mechanisms for ribotoxin-induced ribosomal RNA cleavage.

    PubMed

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J

    2012-11-15

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥25ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥10ng/ml) and ribosome-inactivating protein ricin (≥300ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. PMID:23022514

  14. Mechanisms for Ribotoxin-induced Ribosomal RNA Cleavage

    PubMed Central

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J.

    2012-01-01

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥10 ng/ml) and ribosome-inactivating protein ricin (≥300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspase 8, 9 and 3 concurrently with apoptosis further suggested rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors cathepsin L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. PMID:23022514

  15. Database on the structure of small ribosomal subunit RNA.

    PubMed Central

    Van de Peer, Y; Caers, A; De Rijk, P; De Wachter, R

    1998-01-01

    About 8600 complete or nearly complete sequences are now available from the Antwerp database on small ribosomal subunit RNA. All these sequences are aligned with one another on the basis of the adopted secondary structure model, which is corroborated by the observation of compensating substitutions in the alignment. Literature references, accession numbers and detailed taxonomic information are also compiled. The database can be consulted via the World Wide Web at URL http://rrna.uia.ac.be/ssu/ PMID:9399829

  16. Database on the structure of large ribosomal subunit RNA.

    PubMed Central

    De Rijk, P; Van de Peer, Y; De Wachter, R

    1996-01-01

    Our database on large ribosomal subunit RNA contained 334 sequences in July, 1995. All sequences in the database are aligned, taking into account secondary structure. The aligned sequences are provided, together with incorporated secondary structure information, in several computer-readable formats. These data can easily be obtained through the World Wide Web. The files in the database are also available via anonymous ftp. PMID:8594610

  17. Length-dependent translation of messenger RNA by ribosomes

    NASA Astrophysics Data System (ADS)

    Valleriani, Angelo; Zhang, Gong; Nagar, Apoorva; Ignatova, Zoya; Lipowsky, Reinhard

    2011-04-01

    A simple measure for the efficiency of protein synthesis by ribosomes is provided by the steady state amount of protein per messenger RNA (mRNA), the so-called translational ratio, which is proportional to the translation rate. Taking the degradation of mRNA into account, we show theoretically that both the translation rate and the translational ratio decrease with increasing mRNA length, in agreement with available experimental data for the prokaryote Escherichia coli. We also show that, compared to prokaryotes, mRNA degradation in eukaryotes leads to a less rapid decrease of the translational ratio. This finding is consistent with the fact that, compared to prokaryotes, eukaryotes tend to have longer proteins.

  18. Short communication: Evaluation of the microbiota of kefir samples using metagenetic analysis targeting the 16S and 26S ribosomal DNA fragments.

    PubMed

    Korsak, N; Taminiau, B; Leclercq, M; Nezer, C; Crevecoeur, S; Ferauche, C; Detry, E; Delcenserie, V; Daube, G

    2015-06-01

    Milk kefir is produced by fermenting milk in the presence of kefir grains. This beverage has several benefits for human health. The aim of this experiment was to analyze 5 kefir grains (and their products) using a targeted metagenetic approach. Of the 5 kefir grains analyzed, 1 was purchased in a supermarket, 2 were provided by the Ministry of Agriculture (Namur, Belgium), and 2 were provided by individuals. The metagenetic approach targeted the V1-V3 fragment of the 16S ribosomal (r)DNA for the grains and the resulting beverages at 2 levels of grain incorporation (5 and 10%) to identify the bacterial species population. In contrast, the 26S rDNA pyrosequencing was performed only on kefir grains with the aim of assessing the yeast populations. In parallel, pH measurements were performed on the kefir obtained from the kefir grains using 2 incorporation rates. Regarding the bacterial population, 16S pyrosequencing revealed the presence of 20 main bacterial species, with a dominance of the following: Lactobacillus kefiranofaciens, Lactococcus lactis ssp. cremoris, Gluconobacter frateurii, Lactobacillus kefiri, Acetobacter orientalis, and Acetobacter lovaniensis. An important difference was noticed between the kefir samples: kefir grain purchased from a supermarket (sample E) harbored a much higher proportion of several operational taxonomic units of Lactococcus lactis and Leuconostoc mesenteroides. This sample of grain was macroscopically different from the others in terms of size, apparent cohesion of the grains, structure, and texture, probably associated with a lower level of Lactobacillus kefiranofaciens. The kefir (at an incorporation rate of 5%) produced from this sample of grain was characterized by a lower pH value (4.5) than the others. The other 4 samples of kefir (5%) had pH values above 5. Comparing the kefir grain and the kefir, an increase in the population of Gluconobacter in grain sample B was observed. This was also the case for Acetobacter orientalis

  19. Phylogenetic relationships of Cryptosporidium determined by ribosomal RNA sequence comparison.

    PubMed

    Johnson, A M; Fielke, R; Lumb, R; Baverstock, P R

    1990-04-01

    Reverse transcription of total cellular RNA was used to obtain a partial sequence of the small subunit ribosomal RNA of Cryptosporidium, a protist currently placed in the phylum Apicomplexa. The semi-conserved regions were aligned with homologous sequences in a range of other eukaryotes, and the evolutionary relationships of Cryptosporidium were determined by two different methods of phylogenetic analysis. The prokaryotes Escherichia coli and Halobacterium cuti were included as outgroups. The results do not show an especially close relationship of Cryptosporidium to other members of the phylum Apicomplexa. PMID:2332273

  20. Database on the structure of large ribosomal subunit RNA.

    PubMed Central

    De Rijk, P; Van de Peer, Y; De Wachter, R

    1997-01-01

    The latest release of the large ribosomal subunit RNA database contains 429 sequences. All these sequences are aligned, and incorporate secondary structure information. The rRNA WWW Server at URL http://rrna.uia.ac.be/ provides researchers with an easily accessible resource to obtain the data in this database in a number of computer-readable formats. A new query interface has been added to the server. If necessary, the data can also be obtained by anonymous ftp from the same site. PMID:9016517

  1. Mechanisms for ribotoxin-induced ribosomal RNA cleavage

    SciTech Connect

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J.

    2012-11-15

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥ 25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥ 10 ng/ml) and ribosome-inactivating protein ricin (≥ 300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Highlights: ► Deoxynivalenol (DON) anisomycin, satratoxin G (SG) and ricin are ribotoxins. ► Ribotoxins induce 18s and 28s rRNA cleavage in the RAW 264.7 macrophage model. ► Ribotoxins induce rRNA cleavage via

  2. Structures of the Bacterial Ribosome in Classical and Hybrid States of tRNA Binding

    SciTech Connect

    Dunkle, Jack A.; Wang, Leyi; Feldman, Michael B.; Pulk, Arto; Chen, Vincent B.; Kapral, Gary J.; Noeske, Jonas; Richardson, Jane S.; Blanchard, Scott C.; Cate, Jamie H. Doudna

    2011-09-06

    During protein synthesis, the ribosome controls the movement of tRNA and mRNA by means of large-scale structural rearrangements. We describe structures of the intact bacterial ribosome from Escherichia coli that reveal how the ribosome binds tRNA in two functionally distinct states, determined to a resolution of {approx}3.2 angstroms by means of x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit site. The structures help to explain how the ratchet-like motion of the two ribosomal subunits contributes to the mechanisms of translocation, termination, and ribosome recycling.

  3. Database on the structure of small ribosomal subunit RNA.

    PubMed Central

    Van de Peer, Y; Jansen, J; De Rijk, P; De Wachter, R

    1997-01-01

    The Antwerp database on small ribosomal subunit RNA now offers more than 6000 nucleotide sequences (August 1996). All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which is corroborated by the observation of compensating substitutions in the alignment. Besides the primary and secondary structure information, literature references, accession numbers and detailed taxonomic information are also compiled. For ease of use, the complete database is made available to the scientific community via World Wide Web at URL http://rrna.uia.ac.be/ssu/ . PMID:9016516

  4. Database on the structure of small ribosomal subunit RNA.

    PubMed Central

    Van de Peer, Y; Van den Broeck, I; De Rijk, P; De Wachter, R

    1994-01-01

    The database on small ribosomal subunit RNA structure contains (June 1994) 2824 nucleotide sequences. All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which in turn is corroborated by the observation of compensating substitutions in the alignment. The complete database is made available to the scientific community through anonymous ftp on our server in Antwerp. A special effort was made to improve electronic retrieval and a program is supplied that allows to create different file formats. The database can also be obtained from the EMBL nucleotide sequence library. PMID:7524022

  5. Database on the structure of small ribosomal subunit RNA.

    PubMed Central

    Van de Peer, Y; Nicolaï, S; De Rijk, P; De Wachter, R

    1996-01-01

    The Antwerp database on small ribosomal subunit RNA offers over 4300 nucleotide sequences (August 1995). All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which in turn is corroborated by the observation of compensating substitutions in the alignment. Besides the primary and secondary structure information, literature references, accession numbers and detailed taxonomic information are also compiled. The complete database is made available to the scientific community through anonymous ftp and World Wide Web(WWW). PMID:8594609

  6. Comparison of ribosomal RNA removal methods for transcriptome sequencing workflows in teleost fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA sequencing (RNA-Seq) is becoming the standard for transcriptome analysis. Removal of contaminating ribosomal RNA (rRNA) is a priority in the preparation of libraries suitable for sequencing. rRNAs are commonly removed from total RNA via either mRNA selection or rRNA depletion. These methods have...

  7. Patterns and regulation of ribosomal RNA transcription in Borrelia burgdorferi

    PubMed Central

    2011-01-01

    Background Borrelia burgdorferi contains one 16S and two tandem sets of 23S-5S ribosomal (r) RNA genes whose patterns of transcription and regulation are unknown but are likely to be critical for survival and persistence in its hosts. Results RT-PCR of B. burgdorferi N40 and B31 revealed three rRNA region transcripts: 16S rRNA-alanine transfer RNA (tRNAAla); tRNAIle; and both sets of 23S-5S rRNA. At 34°C, there were no differences in growth rate or in accumulation of total protein, DNA and RNA in B31 cultured in Barbour-Stoenner-Kelly (BSK)-H whether rabbit serum was present or not. At 23°C, B31 grew more slowly in serum-containing BSK-H than at 34°C. DNA per cell was higher in cells in exponential as compared to stationary phase at either temperature; protein per cell was similar at both temperatures in both phases. Similar amounts of rRNA were produced in exponential phase at both temperatures, and rRNA was down-regulated in stationary phase at either temperature. Interestingly, a relBbu deletion mutant unable to generate (p)ppGpp did not down-regulate rRNA at transition to stationary phase in serum-containing BSK-H at 34°C, similar to the relaxed phenotype of E. coli relA mutants. Conclusions We conclude that rRNA transcription in B. burgdorferi is complex and regulated both by growth phase and by the stringent response but not by temperature-modulated growth rate. PMID:21251259

  8. Interactions between 23S rRNA and tRNA in the ribosomal E site.

    PubMed Central

    Bocchetta, M; Xiong, L; Shah, S; Mankin, A S

    2001-01-01

    Interactions between tRNA or its analogs and 23S rRNA in the large ribosomal subunit were analyzed by RNA footprinting and by modification-interference selection. In the E site, tRNA protected bases G2112, A2392, and C2394 of 23S rRNA. Truncated tRNA, lacking the anticodon stem-loop, protected A2392 and C2394, but not G2112, and tRNA derivatives with a shortened 3' end protected only G2112, but not A2392 or C2394. Modification interference revealed C2394 as the only accessible nucleotide in 23S rRNA whose modification interferes with binding of tRNA in the large ribosomal subunit E site. The results suggest a direct contact between A76 of tRNA A76 and C2394 of 23S rRNA. Protections at G2112 may reflect interaction of this 23S rRNA region with the tRNA central fold. PMID:11214181

  9. The impact of transcriptional tuning on in vitro integrated rRNA transcription and ribosome construction

    PubMed Central

    Fritz, Brian R.; Jewett, Michael C.

    2014-01-01

    In vitro ribosome construction could enable studies of ribosome assembly and function, provide a route toward constructing minimal cells for synthetic biology, and permit the construction of ribosome variants with new functions. Toward these long-term goals, we recently reported on an integrated, one-pot ribosomal RNA synthesis (rRNA), ribosome assembly, and translation technology (termed iSAT) for the construction of Escherichia coli ribosomes in crude ribosome-free S150 extracts. Here, we aimed to improve the activity of iSAT through transcriptional tuning. Specifically, we increased transcriptional efficiency through 3′ modifications to the rRNA gene sequences, optimized plasmid and polymerase concentrations, and demonstrated the use of a T7-promoted rRNA operon for stoichiometrically balanced rRNA synthesis and native rRNA processing. Our modifications produced a 45-fold improvement in iSAT protein synthesis activity, enabling synthesis of 429 ± 15 nmol/l green fluorescent protein in 6 h batch reactions. Further, we show that the translational activity of ribosomes purified from iSAT reactions is about 20% the activity of native ribosomes purified directly from E. coli cells. Looking forward, we believe iSAT will enable unique studies to unravel the systems biology of ribosome biogenesis and open the way to new methods for making and studying ribosomal variants. PMID:24792158

  10. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly

    NASA Astrophysics Data System (ADS)

    Hunziker, Mirjam; Barandun, Jonas; Petfalski, Elisabeth; Tan, Dongyan; Delan-Forino, Clémentine; Molloy, Kelly R.; Kim, Kelly H.; Dunn-Davies, Hywel; Shi, Yi; Chaker-Margot, Malik; Chait, Brian T.; Walz, Thomas; Tollervey, David; Klinge, Sebastian

    2016-06-01

    Early eukaryotic ribosome biogenesis involves large multi-protein complexes, which co-transcriptionally associate with pre-ribosomal RNA to form the small subunit processome. The precise mechanisms by which two of the largest multi-protein complexes--UtpA and UtpB--interact with nascent pre-ribosomal RNA are poorly understood. Here, we combined biochemical and structural biology approaches with ensembles of RNA-protein cross-linking data to elucidate the essential functions of both complexes. We show that UtpA contains a large composite RNA-binding site and captures the 5' end of pre-ribosomal RNA. UtpB forms an extended structure that binds early pre-ribosomal intermediates in close proximity to architectural sites such as an RNA duplex formed by the 5' ETS and U3 snoRNA as well as the 3' boundary of the 18S rRNA. Both complexes therefore act as vital RNA chaperones to initiate eukaryotic ribosome assembly.

  11. Genomic architecture and inheritance of human ribosomal RNA gene clusters

    PubMed Central

    Stults, Dawn M.; Killen, Michael W.; Pierce, Heather H.; Pierce, Andrew J.

    2008-01-01

    The finishing of the Human Genome Project largely completed the detailing of human euchromatic sequences; however, the most highly repetitive regions of the genome still could not be assembled. The 12 gene clusters producing the structural RNA components of the ribosome are critically important for cellular viability, yet fall into this unassembled region of the Human Genome Project. To determine the extent of human variation in ribosomal RNA gene content (rDNA) and patterns of rDNA cluster inheritance, we have determined the physical lengths of the rDNA clusters in peripheral blood white cells of healthy human volunteers. The cluster lengths exhibit striking variability between and within human individuals, ranging from 50 kb to >6 Mb, manifest essentially complete heterozygosity, and provide each person with their own unique rDNA electrophoretic karyotype. Analysis of these rDNA fingerprints in multigenerational human families demonstrates that the rDNA clusters are subject to meiotic rearrangement at a frequency >10% per cluster, per meiosis. With this high intrinsic recombinational instability, the rDNA clusters may serve as a unique paradigm of potential human genomic plasticity. PMID:18025267

  12. Efficient Detection of Pathogenic Leptospires Using 16S Ribosomal RNA

    PubMed Central

    Lindow, Janet; Wunder, Elsio A.; Reis, Mitermayer G.; Usmani-Brown, Sahar; Ledizet, Michel; Ko, Albert; Pal, Utpal

    2015-01-01

    Pathogenic Leptospira species cause a prevalent yet neglected zoonotic disease with mild to life-threatening complications in a variety of susceptible animals and humans. Diagnosis of leptospirosis, which primarily relies on antiquated serotyping methods, is particularly challenging due to presentation of non-specific symptoms shared by other febrile illnesses, often leading to misdiagnosis. Initiation of antimicrobial therapy during early infection to prevent more serious complications of disseminated infection is often not performed because of a lack of efficient diagnostic tests. Here we report that specific regions of leptospiral 16S ribosomal RNA molecules constitute a novel and efficient diagnostic target for PCR-based detection of pathogenic Leptospira serovars. Our diagnostic test using spiked human blood was at least 100-fold more sensitive than corresponding leptospiral DNA-based quantitative PCR assays, targeting the same 16S nucleotide sequence in the RNA and DNA molecules. The sensitivity and specificity of our RNA assay against laboratory-confirmed human leptospirosis clinical samples were 64% and 100%, respectively, which was superior then an established parallel DNA detection assay. Remarkably, we discovered that 16S transcripts remain appreciably stable ex vivo, including untreated and stored human blood samples, further highlighting their use for clinical detection of L. interrogans. Together, these studies underscore a novel utility of RNA targets, specifically 16S rRNA, for development of PCR-based modalities for diagnosis of human leptospirosis, and also may serve as paradigm for detection of additional bacterial pathogens for which early diagnosis is warranted. PMID:26091292

  13. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly

    PubMed Central

    Hunziker, Mirjam; Barandun, Jonas; Petfalski, Elisabeth; Tan, Dongyan; Delan-Forino, Clémentine; Molloy, Kelly R.; Kim, Kelly H.; Dunn-Davies, Hywel; Shi, Yi; Chaker-Margot, Malik; Chait, Brian T.; Walz, Thomas; Tollervey, David; Klinge, Sebastian

    2016-01-01

    Early eukaryotic ribosome biogenesis involves large multi-protein complexes, which co-transcriptionally associate with pre-ribosomal RNA to form the small subunit processome. The precise mechanisms by which two of the largest multi-protein complexes—UtpA and UtpB—interact with nascent pre-ribosomal RNA are poorly understood. Here, we combined biochemical and structural biology approaches with ensembles of RNA–protein cross-linking data to elucidate the essential functions of both complexes. We show that UtpA contains a large composite RNA-binding site and captures the 5′ end of pre-ribosomal RNA. UtpB forms an extended structure that binds early pre-ribosomal intermediates in close proximity to architectural sites such as an RNA duplex formed by the 5′ ETS and U3 snoRNA as well as the 3′ boundary of the 18S rRNA. Both complexes therefore act as vital RNA chaperones to initiate eukaryotic ribosome assembly. PMID:27354316

  14. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans.

    PubMed

    Holdt, Lesca M; Stahringer, Anika; Sass, Kristina; Pichler, Garwin; Kulak, Nils A; Wilfert, Wolfgang; Kohlmaier, Alexander; Herbst, Andreas; Northoff, Bernd H; Nicolaou, Alexandros; Gäbel, Gabor; Beutner, Frank; Scholz, Markus; Thiery, Joachim; Musunuru, Kiran; Krohn, Knut; Mann, Matthias; Teupser, Daniel

    2016-01-01

    Circular RNAs (circRNAs) are broadly expressed in eukaryotic cells, but their molecular mechanism in human disease remains obscure. Here we show that circular antisense non-coding RNA in the INK4 locus (circANRIL), which is transcribed at a locus of atherosclerotic cardiovascular disease on chromosome 9p21, confers atheroprotection by controlling ribosomal RNA (rRNA) maturation and modulating pathways of atherogenesis. CircANRIL binds to pescadillo homologue 1 (PES1), an essential 60S-preribosomal assembly factor, thereby impairing exonuclease-mediated pre-rRNA processing and ribosome biogenesis in vascular smooth muscle cells and macrophages. As a consequence, circANRIL induces nucleolar stress and p53 activation, resulting in the induction of apoptosis and inhibition of proliferation, which are key cell functions in atherosclerosis. Collectively, these findings identify circANRIL as a prototype of a circRNA regulating ribosome biogenesis and conferring atheroprotection, thereby showing that circularization of long non-coding RNAs may alter RNA function and protect from human disease. PMID:27539542

  15. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans

    PubMed Central

    Holdt, Lesca M.; Stahringer, Anika; Sass, Kristina; Pichler, Garwin; Kulak, Nils A.; Wilfert, Wolfgang; Kohlmaier, Alexander; Herbst, Andreas; Northoff, Bernd H.; Nicolaou, Alexandros; Gäbel, Gabor; Beutner, Frank; Scholz, Markus; Thiery, Joachim; Musunuru, Kiran; Krohn, Knut; Mann, Matthias; Teupser, Daniel

    2016-01-01

    Circular RNAs (circRNAs) are broadly expressed in eukaryotic cells, but their molecular mechanism in human disease remains obscure. Here we show that circular antisense non-coding RNA in the INK4 locus (circANRIL), which is transcribed at a locus of atherosclerotic cardiovascular disease on chromosome 9p21, confers atheroprotection by controlling ribosomal RNA (rRNA) maturation and modulating pathways of atherogenesis. CircANRIL binds to pescadillo homologue 1 (PES1), an essential 60S-preribosomal assembly factor, thereby impairing exonuclease-mediated pre-rRNA processing and ribosome biogenesis in vascular smooth muscle cells and macrophages. As a consequence, circANRIL induces nucleolar stress and p53 activation, resulting in the induction of apoptosis and inhibition of proliferation, which are key cell functions in atherosclerosis. Collectively, these findings identify circANRIL as a prototype of a circRNA regulating ribosome biogenesis and conferring atheroprotection, thereby showing that circularization of long non-coding RNAs may alter RNA function and protect from human disease. PMID:27539542

  16. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides.

    PubMed

    Doi, Yohei; Arakawa, Yoshichika

    2007-07-01

    Methylation of 16S ribosomal RNA (rRNA) has recently emerged as a new mechanism of resistance against aminoglycosides among gram-negative pathogens belonging to the family Enterobacteriaceae and glucose-nonfermentative microbes, including Pseudomonas aeruginosa and Acinetobacter species. This event is mediated by a newly recognized group of 16S rRNA methylases, which share modest similarity to those produced by aminoglycoside-producing actinomycetes. Their presence confers a high level of resistance to all parenterally administered aminoglycosides that are currently in clinical use. The responsible genes are mostly located on transposons within transferable plasmids, which provides them with the potential to spread horizontally and may in part explain the already worldwide distribution of this novel resistance mechanism. Some of these organisms have been found to coproduce extended-spectrum beta-lactamases or metallo-beta-lactamases, contributing to their multidrug-resistant phenotypes. A 2-tiered approach, consisting of disk diffusion tests followed by confirmation with polymerase chain reaction, is recommended for detection of 16S rRNA methylase-mediated resistance. PMID:17554708

  17. Ribosomal RNA methylation in Mycobacterium smegmatis SN2.

    PubMed

    Srivastava, R; Gopinathan, K P

    1987-12-01

    Ribosomal RNA (rRNA) from a fast growing nonpathogenic strain of mycobacteria, Mycobacterium smegmatis SN2, was analyzed for the presence of minor nucleotides. Of the sixteen modified nucleotides detected, the identity of twelve has been established and their molar ratios were determined. These nucleotides include m1A, m2A, m6A, m6(2)A, m7G, m5C, rT, CmpC, CmpG, GmpG, UmpG and UmpU. The distinct features of the mycobacterial rRNA modifications include: (i) relatively substantial level of methylation, a feature distinct from that of the tRNA species which are unique in being under methylated in these bacteria, (ii) N1 methyl adenine representing the bulk of the modified bases, (iii) the lack of ribose methylation on any two successive nucleotides, and (iv) the presence of N6,N6-dimethyl adenosines, which are the target sites of the antibiotic kasugamycin, although the bacterial growth is insensitive to the drug. PMID:3440025

  18. A model for the study of ligand binding to the ribosomal RNA helix h44

    SciTech Connect

    Dibrov, Sergey M.; Parsons, Jerod; Hermann, Thomas

    2010-09-02

    Oligonucleotide models of ribosomal RNA domains are powerful tools to study the binding and molecular recognition of antibiotics that interfere with bacterial translation. Techniques such as selective chemical modification, fluorescence labeling and mutations are cumbersome for the whole ribosome but readily applicable to model RNAs, which are readily crystallized and often give rise to higher resolution crystal structures suitable for detailed analysis of ligand-RNA interactions. Here, we have investigated the HX RNA construct which contains two adjacent ligand binding regions of helix h44 in 16S ribosomal RNA. High-resolution crystal structure analysis confirmed that the HX RNA is a faithful structural model of the ribosomal target. Solution studies showed that HX RNA carrying a fluorescent 2-aminopurine modification provides a model system that can be used to monitor ligand binding to both the ribosomal decoding site and, through an indirect effect, the hygromycin B interaction region.

  19. A putative precursor for the small ribosomal RNA from mitochondria of Saccharomyces cerevisiae.

    PubMed Central

    Osinga, K A; Evers, R F; Van der Laan, J C; Tabak, H F

    1981-01-01

    We have characterized a putative precursor RNA (15.5S) for the 15S ribosomal RNA in mitochondria of Saccharomyces cerevisiae. Hybrids were formed with mitochondrial RNA and mtDNA fragments terminally labelled at restriction sites located within the gene coding for 15S ribosomal RNA and treated with S1 nuclease (Berk, A.J. and Sharp, J.A. (1977) 12, 721-732). Sites of resistant hybrids were measured by agarose gel electrophoresis and end points of RNAs determined. The 15.5S RNA is approximately 80 nucleotides longer than the 15S ribosomal RNA, with the extra sequences being located at the 5'-end. Both 15S ribosomal RNA and 15.5S RNA are fully localised within a 2000 base pair HapII fragment. This putative precursor and the mature 15S ribosomal RNA are also found in petite mutants which retain the 15S ribosomal RNA gene. The petite mutant with the smallest genetic complexity has its end point of deletion (junction) just outside the HapII site located in the 5' flank of the 15S ribosomal RNA genes as determined by S1 nuclease analysis. This leaves a DNA stretch approximately 300 base pairs long where an initiation signal for mitochondrial transcription may be present. Images PMID:6262728

  20. Mimicking Ribosomal Unfolding of RNA Pseudoknot in a Protein Channel.

    PubMed

    Zhang, Xinyue; Xu, Xiaojun; Yang, Zhiyu; Burcke, Andrew J; Gates, Kent S; Chen, Shi-Jie; Gu, Li-Qun

    2015-12-23

    Pseudoknots are a fundamental RNA tertiary structure with important roles in regulation of mRNA translation. Molecular force spectroscopic approaches such as optical tweezers can track the pseudoknot's unfolding intermediate states by pulling the RNA chain from both ends, but the kinetic unfolding pathway induced by this method may be different from that in vivo, which occurs during translation and proceeds from the 5' to 3' end. Here we developed a ribosome-mimicking, nanopore pulling assay for dissecting the vectorial unfolding mechanism of pseudoknots. The pseudoknot unfolding pathway in the nanopore, either from the 5' to 3' end or in the reverse direction, can be controlled by a DNA leader that is attached to the pseudoknot at the 5' or 3' ends. The different nanopore conductance between DNA and RNA translocation serves as a marker for the position and structure of the unfolding RNA in the pore. With this design, we provided evidence that the pseudoknot unfolding is a two-step, multistate, metal ion-regulated process depending on the pulling direction. Most notably, unfolding in both directions is rate-limited by the unzipping of the first helix domain (first step), which is Helix-1 in the 5' → 3' direction and Helix-2 in the 3' → 5' direction, suggesting that the initial unfolding step in either pulling direction needs to overcome an energy barrier contributed by the noncanonical triplex base-pairs and coaxial stacking interactions for the tertiary structure stabilization. These findings provide new insights into RNA vectorial unfolding mechanisms, which play an important role in biological functions including frameshifting. PMID:26595106

  1. The Ribosomal RNA is a Useful Marker to Visualize Rhizobia Interacting with Legume Plants

    ERIC Educational Resources Information Center

    Rinaudi, Luciana; Isola, Maria C.; Giordano, Walter

    2004-01-01

    Symbiosis between rhizobia and leguminous plants leads to the formation of nitrogen-fixing root nodules. In the present article, we recommend the use of the ribosomal RNA (rRNA) isolated from legume nodules in an experimental class with the purpose of introducing students to the structure of eukaryotic and prokaryotic ribosomes and of…

  2. Distinct tmRNA sequence elements facilitate RNase R engagement on rescued ribosomes for selective nonstop mRNA decay

    PubMed Central

    Venkataraman, Krithika; Zafar, Hina; Karzai, A. Wali

    2014-01-01

    trans-Translation, orchestrated by SmpB and tmRNA, is the principal eubacterial pathway for resolving stalled translation complexes. RNase R, the leading nonstop mRNA surveillance factor, is recruited to stalled ribosomes in a trans-translation dependent process. To elucidate the contributions of SmpB and tmRNA to RNase R recruitment, we evaluated Escherichia coli–Francisella tularensis chimeric variants of tmRNA and SmpB. This evaluation showed that while the hybrid tmRNA supported nascent polypeptide tagging and ribosome rescue, it suffered defects in facilitating RNase R recruitment to stalled ribosomes. To gain further insights, we used established tmRNA and SmpB variants that impact distinct stages of the trans-translation process. Analysis of select tmRNA variants revealed that the sequence composition and positioning of the ultimate and penultimate codons of the tmRNA ORF play a crucial role in recruiting RNase R to rescued ribosomes. Evaluation of defined SmpB C-terminal tail variants highlighted the importance of establishing the tmRNA reading frame, and provided valuable clues into the timing of RNase R recruitment to rescued ribosomes. Taken together, these studies demonstrate that productive RNase R-ribosomes engagement requires active trans-translation, and suggest that RNase R captures the emerging nonstop mRNA at an early stage after establishment of the tmRNA ORF as the surrogate mRNA template. PMID:25200086

  3. Analysis of a ribosomal RNA operon in the actinomycete Frankia.

    PubMed

    Normand, P; Cournoyer, B; Simonet, P; Nazaret, S

    1992-02-01

    The organisation of ribosomal RNA-encoding (rrn) genes has been studied in Frankia sp. strain ORS020606. The two rrn clusters present in Frankia strain ORS020606 were isolated from genomic banks in phage lambda EMBL3 by hybridization with oligodeoxyribonucleotide probes. The 5'-3' gene order is the usual one for bacteria: 16S-23S-5S. The two clusters are not distinguishable by restriction enzyme mapping inside the coding section, but vary considerably outside it. Sequencing showed that the 16S-rRNA-encoding gene of ORS020606 is very closely related to that of another Alnus-infective Frankia strain (Ag45/Mut15) and highly homologous to corresponding genes of Streptomyces spp. Two possible promoter sequences were detected upstream from the 16S gene, while no tRNA-encoding gene was detected in the whole operon. Regions with a high proportion of divergence for the study of phylogenetic relationships within the genus were looked for and found in the first intergenic spacer, in the 23S and in the 16S gene. PMID:1372279

  4. Eukaryote-specific rRNA expansion segments function in ribosome biogenesis.

    PubMed

    Ramesh, Madhumitha; Woolford, John L

    2016-08-01

    The secondary structure of ribosomal RNA (rRNA) is largely conserved across all kingdoms of life. However, eukaryotes have evolved extra blocks of rRNA sequences, relative to those of prokaryotes, called expansion segments (ES). A thorough characterization of the potential roles of ES remains to be done, possibly because of limitations in the availability of robust systems to study rRNA mutants. We sought to systematically investigate the potential functions, if any, of the ES in 25S rRNA of Saccharomyces cerevisiae by deletion mutagenesis. We deleted 14 of the 16 different eukaryote-specific ES in yeast 25S rRNA individually and assayed their phenotypes. Our results show that all but two of the ES tested are necessary for optimal growth and are required for production of 25S rRNA, suggesting that ES play roles in ribosome biogenesis. Further, we classified expansion segments into groups that participate in early nucleolar, middle, and late nucleoplasmic steps of ribosome biogenesis, by assaying their pre-rRNA processing phenotypes. This study is the first of its kind to systematically identify the functions of eukaryote-specific expansion segments by showing that they play roles in specific steps of ribosome biogenesis. The catalog of phenotypes we identified, combined with previous investigations of the roles ribosomal proteins in large subunit biogenesis, leads us to infer that assembling ribosomes are composed of distinct RNA and protein structural neighborhood clusters that participate in specific steps of ribosome biogenesis. PMID:27317789

  5. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation.

    PubMed

    Peske, Frank; Savelsbergh, Andreas; Katunin, Vladimir I; Rodnina, Marina V; Wintermeyer, Wolfgang

    2004-11-01

    Translocation, a coordinated movement of two tRNAs together with mRNA on the ribosome, is catalyzed by elongation factor G (EF-G). The reaction is accompanied by conformational rearrangements of the ribosome that are, as yet, not well characterized. Here, we analyze those rearrangements by restricting the conformational flexibility of the ribosome by antibiotics binding to specific sites of the ribosome. Paromomycin (Par), viomycin (Vio), spectinomycin (Spc), and hygromycin B (HygB) inhibited the tRNA-mRNA movement, while the other partial reactions of translocation, including the unlocking rearrangement of the ribosome that precedes tRNA-mRNA movement, were not affected. The functional cycle of EF-G, i.e. binding of EF-G.GTP to the ribosome, GTP hydrolysis, Pi release, and dissociation of EF-G.GDP from the ribosome, was not affected either, indicating that EF-G turnover is not coupled directly to tRNA-mRNA movement. The inhibition of translocation by Par and Vio is attributed to the stabilization of tRNA binding in the A site, whereas Spc and HygB had a direct inhibitory effect on tRNA-mRNA movement. Streptomycin (Str) had essentially no effect on translocation, although it caused a large increase in tRNA affinity to the A site. These results suggest that conformational changes in the vicinity of the decoding region at the binding sites of Spc and HygB are important for tRNA-mRNA movement, whereas Str seems to stabilize a conformation of the ribosome that is prone to rapid translocation, thereby compensating the effect on tRNA affinity. PMID:15491605

  6. Effects of induction of rRNA overproduction on ribosomal protein synthesis and ribosome subunit assembly in Escherichia coli.

    PubMed Central

    Yamagishi, M; Nomura, M

    1988-01-01

    Overproduction of rRNA was artificially induced in Escherichia coli cells to test whether the synthesis of ribosomal protein (r-protein) is normally repressed by feedback regulation. When rRNA was overproduced more than twofold from a hybrid plasmid carrying the rrnB operon fused to the lambda pL promoter (pL-rrnB), synthesis of individual r-proteins increased by an average of about 60%. This demonstrates that the synthesis of r-proteins is repressed under normal conditions. The increase of r-protein production, however, for unknown reasons, was not as great as the increase in rRNA synthesis and resulted in an imbalance between the amounts of rRNA and r-protein synthesis. Therefore, only a small (less than 20%) increase in the synthesis of complete 30S and 50S ribosome subunits was detected, and a considerable fraction of the excess rRNA was degraded. Lack of complete cooperativity in the assembly of ribosome subunits in vivo is discussed as a possible explanation for the absence of a large stimulation of ribosome synthesis observed under these conditions. In addition to the induction of intact rRNA overproduction from the pL-rrnB operon, the effects of unbalanced overproduction of each of the two large rRNAs, 16S rRNA and 23S rRNA, on r-protein synthesis were examined using pL-rrnB derivatives carrying a large deletion in either the 23S rRNA gene or the 16S rRNA gene. Operon-specific derepression after 23S or 16S rRNA overproduction correlated with the overproduction of rRNA containing the target site for the operon-specific repressor r-protein. These results are discussed to explain the apparent coupling of the assembly of one ribosomal subunit with that of the other which was observed in earlier studies on conditionally lethal mutants with defects in ribosome assembly. PMID:3053641

  7. Transcription termination and RNA processing in the 3'-end spacer of mouse ribosomal RNA genes.

    PubMed Central

    Miwa, T; Kominami, R; Yoshikura, H; Sudo, K; Muramatsu, M

    1987-01-01

    The 3' termini of ribosomal RNA precursors from mouse FM3A cultured cells are mapped to eight sites within 625 bp downstream from the 3' terminus of 28 S rRNA. Three additional sites are mapped in liver RNA from C3H/He strain mice. Two of them, the sites at 570 bp and 625 bp are assumed to be termination sites in vivo, because they correspond to in vitro termination sites of RNA polymerase I, and 45 S RNAs having these 3' termini decay with kinetics distinct from others. The amount of 45 S RNA having the 3' terminus at other sites is variable among several mouse strains, despite their having the same DNA sequence in these regions. The ability to produce 3' termini in these sites seems to follow Mendel's law of inheritance. Therefore, we postulate that these nine sites are RNA processing sites which are controlled genetically. Images PMID:3031586

  8. EttA regulates translation by binding to the ribosomal E site and restricting ribosome-tRNA dynamics

    PubMed Central

    Chen, Bo; Boël, Grégory; Hashem, Yaser; Ning, Wei; Fei, Jingyi; Wang, Chi; Gonzalez, Ruben L.; Hunt, John F.; Frank, Joachim

    2014-01-01

    Cells express many ribosome-interacting factors whose functions and molecular mechanisms remain unknown. Here, we elucidate the mechanism of a newly characterized regulatory translation factor, Energy-dependent Translational Throttle A (EttA), which is an Escherichia coli representative of the ATP-binding cassette F (ABC-F) protein family. Using cryo-EM, we demonstrate that the ATP-bound form of EttA binds to the ribosomal tRNA exit (E) site, where it forms bridging interactions between the ribosomal L1 stalk and the tRNA bound in the peptidyl-tRNA binding (P) site. Using single-molecule fluorescence resonance energy transfer (smFRET), we show that the ATP-bound form of EttA restricts ribosome and tRNA dynamics required for protein synthesis. This work represents the first example, to our knowledge, where the detailed molecular mechanism of any ABC-F family protein has been determined and establishes a framework for elucidating the mechanisms of other regulatory translation factors. PMID:24389465

  9. Controlling translation elongation efficiency: tRNA regulation of ribosome flux on the mRNA.

    PubMed

    Gorgoni, Barbara; Marshall, Elizabeth; McFarland, Matthew R; Romano, M Carmen; Stansfield, Ian

    2014-02-01

    Gene expression can be regulated by a wide variety of mechanisms. One example concerns the growing body of evidence that the protein-production rate can be regulated at the level of translation elongation by controlling ribosome flux across the mRNA. Variations in the abundance of tRNA molecules cause different rates of translation of their counterpart codons. This, in turn, produces a variable landscape of translational rate across each and every mRNA, with the dynamic formation and deformation of ribosomal queues being regulated by both tRNA availability and the rates of translation initiation and termination. In the present article, a range of examples of tRNA control of gene expression are reviewed, and the use of mathematical modelling to develop a predictive understanding of the consequences of that regulation is discussed and explained. These findings encourage a view that predicting the protein-synthesis rate of each mRNA requires a holistic understanding of how each stage of translation, including elongation, contributes to the overall protein-production rate. PMID:24450645

  10. Silencing of RNA helicase II/Gualpha inhibits mammalian ribosomal RNA production.

    PubMed

    Henning, Dale; So, Rolando B; Jin, Runyan; Lau, Lester F; Valdez, Benigno C

    2003-12-26

    The intricate production of ribosomal RNA is well defined in yeast, but its complexity in higher organisms is barely understood. We recently showed that down-regulation of nucleolar protein RNA helicase II/Gualpha (RH-II/Gualpha or DDX21) in Xenopus oocytes inhibited processing of 20 S rRNA to 18 S and contributed to degradation of 28 S rRNA (Yang, H., Zhou, J., Ochs, R. L., Henning, D., Jin, R., and Valdez, B. C. (2003) J. Biol. Chem. 278, 38847-38859). Since no nucleolar RNA helicase has been functionally characterized in mammalian cells, we used short interfering RNA to search for functions for RH-II/Gualpha and its paralogue RH-II/Gubeta in rRNA production. Silencing of RH-II/Gualpha by more than 80% in HeLa cells resulted in an almost 80% inhibition of 18 and 28 S rRNA production. This inhibition could be reversed by exogenous expression of wild type RH-II/Gualpha. A helicase-deficient mutant form having ATPase activity was able to rescue the production of 28 S but not 18 S rRNA. A phenotype exhibiting inhibition of 18 S and 28 S rRNA production was also observed when the paralogue RH-II/Gubeta was overexpressed. Both down-regulation of RH-II/Gualpha and overexpression of RH-II/Gubeta slowed cell proliferation. The opposite effects of the two paralogues suggest antagonistic functions. PMID:14559904

  11. Interaction of nucleolin with ribosomal RNA genes and its role in RNA polymerase I transcription

    PubMed Central

    Cong, Rong; Das, Sadhan; Ugrinova, Iva; Kumar, Sanjeev; Mongelard, Fabien; Wong, Jiemin; Bouvet, Philippe

    2012-01-01

    Nucleolin is a multi-functional nucleolar protein that is required for ribosomal RNA gene (rRNA) transcription in vivo, but the mechanism by which nucleolin modulates RNA polymerase I (RNAPI) transcription is not well understood. Nucleolin depletion results in an increase in the heterochromatin mark H3K9me2 and a decrease in H4K12Ac and H3K4me3 euchromatin histone marks in rRNA genes. ChIP-seq experiments identified an enrichment of nucleolin in the ribosomal DNA (rDNA) coding and promoter region. Nucleolin is preferentially associated with unmethylated rRNA genes and its depletion leads to the accumulation of RNAPI at the beginning of the transcription unit and a decrease in UBF along the coding and promoter regions. Nucleolin is able to affect the binding of transcription termination factor-1 on the promoter-proximal terminator T0, thus inhibiting the recruitment of TIP5 and HDAC1 and the establishment of a repressive heterochromatin state. These results reveal the importance of nucleolin for the maintenance of the euchromatin state and transcription elongation of rDNA. PMID:22859736

  12. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan.

    PubMed

    Schosserer, Markus; Minois, Nadege; Angerer, Tina B; Amring, Manuela; Dellago, Hanna; Harreither, Eva; Calle-Perez, Alfonso; Pircher, Andreas; Gerstl, Matthias Peter; Pfeifenberger, Sigrid; Brandl, Clemens; Sonntagbauer, Markus; Kriegner, Albert; Linder, Angela; Weinhäusel, Andreas; Mohr, Thomas; Steiger, Matthias; Mattanovich, Diethard; Rinnerthaler, Mark; Karl, Thomas; Sharma, Sunny; Entian, Karl-Dieter; Kos, Martin; Breitenbach, Michael; Wilson, Iain B H; Polacek, Norbert; Grillari-Voglauer, Regina; Breitenbach-Koller, Lore; Grillari, Johannes

    2015-01-01

    Several pathways modulating longevity and stress resistance converge on translation by targeting ribosomal proteins or initiation factors, but whether this involves modifications of ribosomal RNA is unclear. Here, we show that reduced levels of the conserved RNA methyltransferase NSUN5 increase the lifespan and stress resistance in yeast, worms and flies. Rcm1, the yeast homologue of NSUN5, methylates C2278 within a conserved region of 25S rRNA. Loss of Rcm1 alters the structural conformation of the ribosome in close proximity to C2278, as well as translational fidelity, and favours recruitment of a distinct subset of oxidative stress-responsive mRNAs into polysomes. Thus, rather than merely being a static molecular machine executing translation, the ribosome exhibits functional diversity by modification of just a single rRNA nucleotide, resulting in an alteration of organismal physiological behaviour, and linking rRNA-mediated translational regulation to modulation of lifespan, and differential stress response. PMID:25635753

  13. Choreography of molecular movements during ribosome progression along mRNA.

    PubMed

    Belardinelli, Riccardo; Sharma, Heena; Caliskan, Neva; Cunha, Carlos E; Peske, Frank; Wintermeyer, Wolfgang; Rodnina, Marina V

    2016-04-01

    During translation elongation, ribosome translocation along an mRNA entails rotations of the ribosomal subunits, swiveling motions of the small subunit (SSU) head and stepwise movements of the tRNAs together with the mRNA. Here, we reconstructed the choreography of the collective motions of the Escherichia coli ribosome during translocation promoted by elongation factor EF-G, by recording the fluorescence signatures of nine different reporters placed on both ribosomal subunits, tRNA and mRNA. We captured an early forward swiveling of the SSU head taking place while the SSU body rotates in the opposite, clockwise direction. Backward swiveling of the SSU head starts upon tRNA translocation and continues until the post-translocation state is reached. This work places structures of translocation intermediates along a time axis and unravels principles of the motions of macromolecular machines. PMID:26999556

  14. PTRF/Cavin-1 promotes efficient ribosomal RNA transcription in response to metabolic challenges.

    PubMed

    Liu, Libin; Pilch, Paul F

    2016-01-01

    Ribosomal RNA transcription mediated by RNA polymerase I represents the rate-limiting step in ribosome biogenesis. In eukaryotic cells, nutrients and growth factors regulate ribosomal RNA transcription through various key factors coupled to cell growth. We show here in mature adipocytes, ribosomal transcription can be acutely regulated in response to metabolic challenges. This acute response is mediated by PTRF (polymerase I transcription and release factor, also known as cavin-1), which has previously been shown to play a critical role in caveolae formation. The caveolae-independent rDNA transcriptional role of PTRF not only explains the lipodystrophy phenotype observed in PTRF deficient mice and humans, but also highlights its crucial physiological role in maintaining adipocyte allostasis. Multiple post-translational modifications of PTRF provide mechanistic bases for its regulation. The role of PTRF in ribosomal transcriptional efficiency is likely relevant to many additional physiological situations of cell growth and organismal metabolism. PMID:27528195

  15. An RNA trapping mechanism in Alphavirus mRNA promotes ribosome stalling and translation initiation

    PubMed Central

    Toribio, René; Díaz-López, Irene; Boskovic, Jasminka; Ventoso, Iván

    2016-01-01

    During translation initiation, eukaryotic initiation factor 2 (eIF2) delivers the Met-tRNA to the 40S ribosomal subunit to locate the initiation codon (AUGi) of mRNA during the scanning process. Stress-induced eIF2 phosphorylation leads to a general blockade of translation initiation and represents a key antiviral pathway in mammals. However, some viral mRNAs can initiate translation in the presence of phosphorylated eIF2 via stable RNA stem-loop structures (DLP; Downstream LooP) located in their coding sequence (CDS), which promote 43S preinitiation complex stalling on the initiation codon. We show here that during the scanning process, DLPs of Alphavirus mRNA become trapped in ES6S region (680–914 nt) of 18S rRNA that are projected from the solvent side of 40S subunit. This trapping can lock the progress of the 40S subunit on the mRNA in a way that places the upstream initiator AUGi on the P site of 40S subunit, obviating the participation of eIF2. Notably, the DLP structure is released from 18S rRNA upon 60S ribosomal subunit joining, suggesting conformational changes in ES6Ss during the initiation process. These novel findings illustrate how viral mRNA is threaded into the 40S subunit during the scanning process, exploiting the topology of the 40S subunit solvent side to enhance its translation in vertebrate hosts. PMID:26984530

  16. An RNA trapping mechanism in Alphavirus mRNA promotes ribosome stalling and translation initiation.

    PubMed

    Toribio, René; Díaz-López, Irene; Boskovic, Jasminka; Ventoso, Iván

    2016-05-19

    During translation initiation, eukaryotic initiation factor 2 (eIF2) delivers the Met-tRNA to the 40S ribosomal subunit to locate the initiation codon (AUGi) of mRNA during the scanning process. Stress-induced eIF2 phosphorylation leads to a general blockade of translation initiation and represents a key antiviral pathway in mammals. However, some viral mRNAs can initiate translation in the presence of phosphorylated eIF2 via stable RNA stem-loop structures (DLP; Downstream LooP) located in their coding sequence (CDS), which promote 43S preinitiation complex stalling on the initiation codon. We show here that during the scanning process, DLPs of Alphavirus mRNA become trapped in ES6S region (680-914 nt) of 18S rRNA that are projected from the solvent side of 40S subunit. This trapping can lock the progress of the 40S subunit on the mRNA in a way that places the upstream initiator AUGi on the P site of 40S subunit, obviating the participation of eIF2. Notably, the DLP structure is released from 18S rRNA upon 60S ribosomal subunit joining, suggesting conformational changes in ES6Ss during the initiation process. These novel findings illustrate how viral mRNA is threaded into the 40S subunit during the scanning process, exploiting the topology of the 40S subunit solvent side to enhance its translation in vertebrate hosts. PMID:26984530

  17. Transcription of ribosomal RNA: the role of antitermination of RNA polymerase

    NASA Astrophysics Data System (ADS)

    Klumpp, Stefan; Hwa, Terry

    2007-03-01

    The genes encoding ribosomal RNA are transcribed at high rates of 1-2 transcripts per second. These high transcription rates are crucial to maintain the large concentration of ribosomes necessary in fast growing bacteria. To understand how transcription is regulated under these conditions, we developed a model for the traffic of transcribing RNA polymerases (RNAP). Our simulations show that the transcription rate is limited by the elongation stage of transcription rather than by transcript initiation. The maximal transcription rate is severly impaired by RNAP pausing with pause durations in the second range which is ubiquitous under single-molecule conditions. We propose that ribosomal antitermination reduces pauses and thereby increases the transcription rate. This idea is in quantitative agreement with the observed increase of the elongation rate due to antitermination and predicts a two-fold increase of the transcription rate. Antitermination must be highly efficient, since incomplete antitermination with only a few percent of non-antiterminated, i.e. slow, RNAPs completely abolishes its effect. This result suggests that rho-dependent termination may selectively terminate slow RNAPs.

  18. Depurination of ribosomal RNA and inhibition of viral RNA translation by an antiviral protein of Celosia cristata.

    PubMed

    Baranwal, V K; Tumer, Nilgun E; Kapoor, H C

    2002-10-01

    An antiviral protein (25 kD) isolated from leaves of Celosia cristata (CCP 25) was tested for depurination study on ribosomal RNA from yeast. Ribosomal RNA yielded 360 nucleotide base fragment after treatment with CCP 25 indicating that CCP 25 was a ribosome inactivating protein. CCP 25 also inhibited translation of brome mosaic virus (BMV) and pokeweed mosaic virus (PMV) RNAs in rabbit reticulocyte translation system. The radioactive assay showed that incorporation of [35S]-methionine was less in translation proteins of BMV nucleic acid when CCP 25 was added to translation system. This indicated that antiviral protein from Celosia cristata not only depurinated ribosomal RNA but also inhibited translation of viral RNA in vitro. PMID:12693705

  19. Modeling of ribosome dynamics on a ds-mRNA under an external load

    NASA Astrophysics Data System (ADS)

    Shakiba, Bahareh; Dayeri, Maryam; Mohammad-Rafiee, Farshid

    2016-07-01

    Protein molecules in cells are synthesized by macromolecular machines called ribosomes. According to the recent experimental data, we reduce the complexity of the ribosome and propose a model to express its activity in six main states. Using our model, we study the translation rate in different biological relevant situations in the presence of external force and the translation through the RNA double stranded region in the absence or presence of the external force. In the present study, we give a quantitative theory for translation rate and show that the ribosome behaves more like a Brownian Ratchet motor. Our findings could shed some light on understanding behaviors of the ribosome in biological conditions.

  20. Sites of Synthesis and Processing of Ribosomal RNA Precursors within the Nucleolus of Urechis caupo Eggs*

    PubMed Central

    Das, Nirmal K.; Micou-Eastwood, Julie; Ramamurthy, Gollu; Alfert, Max

    1970-01-01

    Nucleoli from unfertilized Urechis eggs, labeled with tritiated RNA precursors, have been isolated for simultaneous autoradiographic localization and biochemical analysis of labeled RNA. The production of the ribosomal RNA precursor (38S) and its first cleavage occur at the fibrillar core region of the nucleolus. The products, predominantly 30S RNA, are then rapidly transported and stored in the granular cortex of the nucleolus. The formation of the nucleolar cortex, therefore, seems to result from an accumulation of partially processed ribosomal RNA with its associated proteins. Images PMID:5289033

  1. Recognition of the 70S ribosome and polysome by the RNA degradosome in Escherichia coli

    PubMed Central

    Tsai, Yi-Chun; Du, Dijun; Domínguez-Malfavón, Lilianha; Dimastrogiovanni, Daniela; Cross, Jonathan; Callaghan, Anastasia J.; García-Mena, Jaime; Luisi, Ben F.

    2012-01-01

    The RNA degradosome is a multi-enzyme assembly that contributes to key processes of RNA metabolism, and it engages numerous partners in serving its varied functional roles. Small domains within the assembly recognize collectively a diverse range of macromolecules, including the core protein components, the cytoplasmic lipid membrane, mRNAs, non-coding regulatory RNAs and precursors of structured RNAs. We present evidence that the degradosome can form a stable complex with the 70S ribosome and polysomes, and we demonstrate the proximity in vivo of ribosomal proteins and the scaffold of the degradosome, RNase E. The principal interactions are mapped to two, independent, RNA-binding domains from RNase E. RhlB, the RNA helicase component of the degradosome, also contributes to ribosome binding, and this is favoured through an activating interaction with RNase E. The catalytic activity of RNase E for processing 9S RNA (the ribosomal 5S RNA precursor) is repressed in the presence of the ribosome, whereas there is little affect on the cleavage of single-stranded substrates mediated by non-coding RNA, suggestings that the enzyme retains capacity to cleave unstructured substrates when associated with the ribosome. We propose that polysomes may act as antennae that enhance the rates of capture of the limited number of degradosomes, so that they become recruited to sites of active translation to act on mRNAs as they become exposed or tagged for degradation. PMID:22923520

  2. Translation Initiation is Controlled by RNA Folding Kinetics via a Ribosome Drafting Mechanism.

    PubMed

    Espah Borujeni, Amin; Salis, Howard M

    2016-06-01

    RNA folding plays an important role in controlling protein synthesis as well as other cellular processes. Existing models have focused on how RNA folding energetics control translation initiation rate under equilibrium conditions but have largely ignored the effects of nonequilibrium RNA folding. We introduce a new mechanism, called "ribosome drafting", that explains how a mRNA's folding kinetics and the ribosome's binding rate collectively control its translation initiation rate. During cycles of translation, ribosome drafting emerges whenever successive ribosomes bind to a mRNA faster than the mRNA can refold, maintaining it in a nonequilibrium state with an acceleration of protein synthesis. Using computational design, time-correlated single photon counting, and expression measurements, we demonstrate that slow-folding and fast-folding RNA structures with equivalent folding energetics can vary protein synthesis rates by 1000-fold. We determine the necessary conditions for ribosome drafting by characterizing mRNAs with rationally designed ribosome binding rates, folding kinetics, and folding energetics, confirming the predictions of a nonequilibrium Markov model of translation. Our results have widespread implications, illustrating how competitive folding and assembly kinetics can shape the gene expression machinery's sequence-structure-function relationship inside cells. PMID:27199273

  3. The size and conformation of Artemia (brine-shrimp) ribosomal RNA free in solution.

    PubMed

    Donceel, K; Nieuwenhuysen, P; Clauwaert, J

    1982-09-01

    The RNA was isolated from the large ribosomal subunits of the brine shrimp Artemia, and its conformation free in solution was studied by determining its sedimentation and diffusion coefficients. A comparison was made of the hydrodynamic radius of the ribosomal subunit and its isolated RNA in various buffers. The conformation of the rRNA free in solution is more extended than when it is incorporated in the ribosome. This is not only the case when the rRNA solution lacks bivalent and polyvalent cations, but even in the presence of Mg2+ and spermidine, which cause a tightening of RNA. Thus the ribosomal proteins should induce a further tightening of the rRNA during the assembly of the ribosome. In the discussion, the reported data on Escherichia coli rRNA species are presented in such a way that large discrepancies between various studied are revealed, and that they can be compared with the data reported here on the larger rRNA of an eukaryote. PMID:7150228

  4. Ribosomal RNA analysis in the diagnosis of Diamond-Blackfan Anaemia.

    PubMed

    Quarello, Paola; Garelli, Emanuela; Carando, Adriana; Mancini, Cecilia; Foglia, Luiselda; Botto, Carlotta; Farruggia, Piero; De Keersmaecker, Kim; Aspesi, Anna; Ellis, Steve R; Dianzani, Irma; Ramenghi, Ugo

    2016-03-01

    Diamond-Blackfan anaemia (DBA) is an inherited disease characterized by pure erythroid aplasia that has been tagged as a 'ribosomopathy'. We report a multi-centre study focused on the analysis of rRNA processing of 53 Italian DBA patients using capillary electrophoresis analysis of rRNA maturation of the 40S and 60S ribosomal subunits. The ratio of 28S/18S rRNA was higher in patients with mutated ribosomal proteins (RPs) of the small ribosomal subunit. In contrast, patients with mutated RPs of the large ribosomal subunit (RPLs) had a lower 28S/18S ratio. The assay reported here would be amenable for development as a diagnostic tool. PMID:26763766

  5. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation

    PubMed Central

    Schäferkordt, Jan; Wagner, Rolf

    2001-01-01

    The effects of base change mutations in a highly conserved sequence (boxC) within the leader of bacterial ribosomal RNAs (rRNAs) was studied. The boxC sequence preceding the 16S rRNA structural gene constitutes part of the RNase III processing site, one of the first cleavage sites on the pathway to mature 16S rRNA. Moreover, rRNA leader sequences facilitate correct 16S rRNA folding, thereby assisting ribosomal subunit formation. Mutations in boxC cause cold sensitivity and result in 16S rRNA and 30S subunit deficiency. Strains in which all rRNA operons are replaced by mutant transcription units are viable. Thermodynamic studies by temperature gradient gel electrophoresis reveal that mutant transcripts have a different, less ordered structure. In addition, RNA secondary structure differences between mutant and wild-type transcripts were determined by chemical and enzymatic probing. Differences are found in the leader RNA sequence itself but also in structurally important regions of the mature 16S rRNA. A minor fraction of the rRNA transcripts from mutant operons is not processed by RNase III, resulting in a significantly extended precursor half-life compared to the wild-type. The boxC mutations also give rise to a new aberrant degradation product of 16S rRNA. This intermediate cannot be detected in strains lacking RNase III. Together the results indicate that the boxC sequence, although important for RNase III processing, is likely to serve additional functions by facilitating correct formation of the mature 16S rRNA structure. They also suggest that quality control steps are acting during ribosome biogenesis. PMID:11504877

  6. Translation by Ribosomes with mRNA Degradation: Exclusion Processes on Aging Tracks

    NASA Astrophysics Data System (ADS)

    Nagar, Apoorva; Valleriani, Angelo; Lipowsky, Reinhard

    2011-12-01

    We investigate the role of degradation of mRNA on protein synthesis using the totally asymmetric simple exclusion process (TASEP) as the underlying model for ribosome dynamics. mRNA degradation has a strong effect on the lifetime distribution of the mRNA, which in turn affects polysome statistics such as the number of ribosomes present on an mRNA strand of a given size. An average over mRNA of all ages is equivalent to an average over possible configurations of the corresponding TASEP—both before steady state and in steady state. To evaluate the relevant quantities for the translation problem, we first study the approach towards steady state of the TASEP, starting with an empty lattice representing an unloaded mRNA. When approaching the high density phase, the system shows two distinct phases with the entry and exit boundaries taking control of the density at their respective ends in the second phase. The approach towards the maximal current phase exhibits the surprising property that the ribosome entry flux can exceed the maximum possible steady state value. In all phases, the averaging over the mRNA age distribution shows a decrease in the average ribosome density profile as a function of distance from the entry boundary. For entry/exit parameters corresponding to the high density phase of TASEP, the average ribosome density profile also has a maximum near the exit end.

  7. Changed in translation: mRNA recoding by -1 programmed ribosomal frameshifting.

    PubMed

    Caliskan, Neva; Peske, Frank; Rodnina, Marina V

    2015-05-01

    Programmed -1 ribosomal frameshifting (-1PRF) is an mRNA recoding event commonly utilized by viruses and bacteria to increase the information content of their genomes. Recent results have implicated -1PRF in quality control of mRNA and DNA stability in eukaryotes. Biophysical experiments demonstrated that the ribosome changes the reading frame while attempting to move over a slippery sequence of the mRNA--when a roadblock formed by a folded downstream segment in the mRNA stalls the ribosome in a metastable conformational state. The efficiency of -1PRF is modulated not only by cis-regulatory elements in the mRNA but also by trans-acting factors such as proteins, miRNAs, and antibiotics. These recent results suggest a molecular mechanism and new important cellular roles for -1PRF. PMID:25850333

  8. Ribosomal protein S7 from Escherichia coli uses the same determinants to bind 16S ribosomal RNA and its messenger RNA

    PubMed Central

    Robert, Francis; Brakier-Gingras, Léa

    2001-01-01

    Ribosomal protein S7 from Escherichia coli binds to the lower half of the 3′ major domain of 16S rRNA and initiates its folding. It also binds to its own mRNA, the str mRNA, and represses its translation. Using filter binding assays, we show in this study that the same mutations that interfere with S7 binding to 16S rRNA also weaken its affinity for its mRNA. This suggests that the same protein regions are responsible for mRNA and rRNA binding affinities, and that S7 recognizes identical sequence elements within the two RNA targets, although they have dissimilar secondary structures. Overexpression of S7 is known to inhibit bacterial growth. This phenotypic growth defect was relieved in cells overexpressing S7 mutants that bind poorly the str mRNA, confirming that growth impairment is controlled by the binding of S7 to its mRNA. Interestingly, a mutant with a short deletion at the C-terminus of S7 was more detrimental to cell growth than wild-type S7. This suggests that the C-terminal portion of S7 plays an important role in ribosome function, which is perturbed by the deletion. PMID:11160889

  9. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments

    PubMed Central

    Ingolia, Nicholas T.; Brar, Gloria A.; Rouskin, Silvia; McGeachy, Anna M.; Weissman, Jonathan S.

    2012-01-01

    Recent studies highlight the importance of translational control in determining protein abundance, underscoring the value of measuring gene expression at the level of translation. We present a protocol for genome-wide, quantitative analysis of in vivo translation by deep sequencing. This ribosome profiling approach maps the exact positions of ribosomes on transcripts by nuclease footprinting. The nuclease-protected mRNA fragments are converted into a DNA library suitable for deep sequencing using a strategy that minimizes bias. The abundance of different footprint fragments in deep sequencing data reports on the amount of translation of a gene. Additionally, footprints reveal the exact regions of the transcriptome that are translated. To better define translated reading frames, we describe an adaptation that reveals the sites of translation initiation by pre-treating cells with harringtonine to immobilize initiating ribosomes. The protocol we describe requires 5–7 days to generate a completed ribosome profiling sequencing library. Sequencing and data analysis requires a further 4 – 5 days. PMID:22836135

  10. Cap-dependent translation is mediated by 'RNA looping' rather than 'ribosome scanning'.

    PubMed

    Jang, Sung Key; Paek, Ki Young

    2016-01-01

    The 40S ribosomal subunit cannot directly recognize the start codon of eukaryotic mRNAs. Instead, it recognizes the start codon after its association with the 5'-cap structure via translation initiation factors. Base-by-base inspection of the 5'UTR by a scanning ribosome is the generally accepted hypothesis of start codon selection. As part of an effort to confirm the underlying mechanism of start codon selection by the 40S ribosome, we investigated the role of eIF4G, which participates in the recruitment of 40S ribosomes to various translation enhancers, such as 5'-cap structure, poly(A) tail, and several internal ribosome entry sites. We found that an artificial translation factor composed of recombinant eIF4G fused with MS2 greatly enhanced translation of an upstream reporter gene when it was tethered to the 3'UTR. These data suggest that the 40S ribosome recruited to a translation enhancer can find the start codon by looping of the intervening RNA segment. The 'RNA-looping' hypothesis of translation start codon recognition was further supported by an analysis of the effect of 5'UTR length on translation efficiency and the mathematically predicted probability of RNA-loop-mediated interactions between the start codon and the 40S ribosome associated at the 5'-end. PMID:26515582

  11. Simulating movement of tRNA into the ribosome during decoding.

    PubMed

    Sanbonmatsu, Kevin Y; Joseph, Simpson; Tung, Chang-Shung

    2005-11-01

    Decoding is the key step during protein synthesis that enables information transfer from RNA to protein, a process critical for the survival of all organisms. We have used large-scale (2.64 x 10(6) atoms) all-atom simulations of the entire ribosome to understand a critical step of decoding. Although the decoding problem has been studied for more than four decades, the rate-limiting step of cognate tRNA selection has only recently been identified. This step, known as accommodation, involves the movement inside the ribosome of the aminoacyl-tRNA from the partially bound "A/T" state to the fully bound "A/A" state. Here, we show that a corridor of 20 universally conserved ribosomal RNA bases interacts with the tRNA during the accommodation movement. Surprisingly, the tRNA is impeded by the A-loop (23S helix 92), instead of enjoying a smooth transition to the A/A state. In particular, universally conserved 23S ribosomal RNA bases U2492, C2556, and C2573 act as a 3D gate, causing the acceptor stem to pause before allowing entrance into the peptidyl transferase center. Our simulations demonstrate that the flexibility of the acceptor stem of the tRNA, in addition to flexibility of the anticodon arm, is essential for tRNA selection. This study serves as a template for simulating conformational changes in large (>10(6) atoms) biological and artificial molecular machines. PMID:16249344

  12. Mutational robustness of 16S ribosomal RNA, shown by experimental horizontal gene transfer in Escherichia coli

    PubMed Central

    Kitahara, Kei; Yasutake, Yoshiaki; Miyazaki, Kentaro

    2012-01-01

    The bacterial ribosome consists of three rRNA molecules and 57 proteins and plays a crucial role in translating mRNA-encoded information into proteins. Because of the ribosome’s structural and mechanistic complexity, it is believed that each ribosomal component coevolves to maintain its function. Unlike 5S rRNA, 16S and 23S rRNAs appear to lack mutational robustness, because they form the structural core of the ribosome. However, using Escherichia coli Δ7 (null mutant of operons) as a host, we have recently shown that an active hybrid ribosome whose 16S rRNA has been specifically substituted with that from non–E. coli bacteria can be reconstituted in vivo. To investigate the mutational robustness of 16S rRNA and the structural basis for its functionality, we used a metagenomic approach to screen for 16S rRNA genes that complement the growth of E. coli Δ7. Various functional genes were obtained from the Gammaproteobacteria and Betaproteobacteria lineages. Despite the large sequence diversity (80.9–99.0% identity with E. coli 16S rRNA) of the functional 16S rRNA molecules, the doubling times (DTs) of each mutant increased only modestly with decreasing sequence identity (average increase in DT, 4.6 s per mutation). The three-dimensional structure of the 30S ribosome showed that at least 40.7% (628/1,542) of the nucleotides were variable, even at ribosomal protein-binding sites, provided that the secondary structures were properly conserved. Our results clearly demonstrate that 16S rRNA functionality largely depends on the secondary structure but not on the sequence itself. PMID:23112186

  13. Studies on the low molecular weight RNA associated with 28S ribosomal RNA from Crotalus durissus terrificus liver.

    PubMed Central

    Giorgini, J F; De Lucca, F L

    1976-01-01

    A low molecular weight RNA was released from the purified rattlesnake 28 S RNA by brief heat treatment as well as by treatment with 80% dimethylsulfoxide or formamide. The sedimentation coeficient of this low molecular weight RNA was found to be 5.5 S, corresponding to a nucleotide number of 140 and a molecular weight of 46 000. It was also observed that 5.5S RNA is present in equimolar ratio to 5 S rRNA. Heat treatment of the purified 60 S ribosomal subunit also released the 5.5 S RNA. The possibility that this low molecular weight RNA is located on the surface of the large ribosomal subunit is discussed. PMID:1250695

  14. The complex of tmRNA-SmpB and EF-G on translocating ribosomes.

    PubMed

    Ramrath, David J F; Yamamoto, Hiroshi; Rother, Kristian; Wittek, Daniela; Pech, Markus; Mielke, Thorsten; Loerke, Justus; Scheerer, Patrick; Ivanov, Pavel; Teraoka, Yoshika; Shpanchenko, Olga; Nierhaus, Knud H; Spahn, Christian M T

    2012-05-24

    Bacterial ribosomes stalled at the 3' end of malfunctioning messenger RNAs can be rescued by transfer-messenger RNA (tmRNA)-mediated trans-translation. The SmpB protein forms a complex with the tmRNA, and the transfer-RNA-like domain (TLD) of the tmRNA then enters the A site of the ribosome. Subsequently, the TLD-SmpB module is translocated to the P site, a process that is facilitated by the elongation factor EF-G, and translation is switched to the mRNA-like domain (MLD) of the tmRNA. Accurate loading of the MLD into the mRNA path is an unusual initiation mechanism. Despite various snapshots of different ribosome-tmRNA complexes at low to intermediate resolution, it is unclear how the large, highly structured tmRNA is translocated and how the MLD is loaded. Here we present a cryo-electron microscopy reconstruction of a fusidic-acid-stalled ribosomal 70S-tmRNA-SmpB-EF-G complex (carrying both of the large ligands, that is, EF-G and tmRNA) at 8.3 Å resolution. This post-translocational intermediate (TI(POST)) presents the TLD-SmpB module in an intrasubunit ap/P hybrid site and a tRNA(fMet) in an intrasubunit pe/E hybrid site. Conformational changes in the ribosome and tmRNA occur in the intersubunit space and on the solvent side. The key underlying event is a unique extra-large swivel movement of the 30S head, which is crucial for both tmRNA-SmpB translocation and MLD loading, thereby coupling translocation to MLD loading. This mechanism exemplifies the versatile, dynamic nature of the ribosome, and it shows that the conformational modes of the ribosome that normally drive canonical translation can also be used in a modified form to facilitate more complex tasks in specialized non-canonical pathways. PMID:22622583

  15. Reduced expression of the mouse ribosomal protein Rpl17 alters the diversity of mature ribosomes by enhancing production of shortened 5.8S rRNA

    PubMed Central

    Wang, Minshi; Parshin, Andrey V.; Shcherbik, Natalia; Pestov, Dimitri G.

    2015-01-01

    Processing of rRNA during ribosome assembly can proceed through alternative pathways but it is unclear whether this could affect the structure of the ribosome. Here, we demonstrate that shortage of a ribosomal protein can change pre-rRNA processing in a way that over time alters ribosome diversity in the cell. Reducing the amount of Rpl17 in mouse cells led to stalled 60S subunit maturation, causing degradation of most of the synthesized precursors. A fraction of pre-60S subunits, however, were able to complete maturation, but with a 5′-truncated 5.8S rRNA, which we named 5.8SC. The 5′ exoribonuclease Xrn2 is involved in the generation of both 5.8SC and the canonical long form of 5.8S rRNA. Ribosomes containing 5.8SC rRNA are present in various mouse and human cells and engage in translation. These findings uncover a previously undescribed form of mammalian 5.8S rRNA and demonstrate that perturbations in ribosome assembly can be a source of heterogeneity in mature ribosomes. PMID:25995445

  16. The development of peptide ligands that target helix 69 rRNA of bacterial ribosomes.

    PubMed

    Dremann, Danielle N; Chow, Christine S

    2016-09-15

    Antibiotic resistance prevents successful treatment of common bacterial infections, making it clear that new target locations and drugs are required to resolve this ongoing challenge. The bacterial ribosome is a common target for antibacterials due to its essential contribution to cell viability. The focus of this work is a region of the ribosome called helix 69 (H69), which was recently identified as a secondary target site for aminoglycoside antibiotics. H69 has key roles in essential ribosomal processes such as subunit association, ribosome recycling, and tRNA selection. Conserved across phylogeny, bacterial H69 also contains two pseudouridines and one 3-methylpseudouridine. Phage display revealed a heptameric peptide sequence that targeted H69. Using solid-phase synthesis, peptide variants with higher affinity and improved selectivity to modified H69 were generated. Electrospray ionization mass spectrometry was used to determine relative apparent dissociation constants of the RNA-peptide complexes. PMID:27492196

  17. Ribosome-associated Asc1/RACK1 is required for endonucleolytic cleavage induced by stalled ribosome at the 3' end of nonstop mRNA.

    PubMed

    Ikeuchi, Ken; Inada, Toshifumi

    2016-01-01

    Dom34-Hbs1 stimulates degradation of aberrant mRNAs lacking termination codons by dissociating ribosomes stalled at the 3' ends, and plays crucial roles in Nonstop Decay (NSD) and No-Go Decay (NGD). In the dom34Δ mutant, nonstop mRNA is degraded by sequential endonucleolytic cleavages induced by a stalled ribosome at the 3' end. Here, we report that ribosome-associated Asc1/RACK1 is required for the endonucleolytic cleavage of nonstop mRNA by stalled ribosome at the 3' end of mRNA in dom34Δ mutant cells. Asc1/RACK1 facilitates degradation of truncated GFP-Rz mRNA in the absence of Dom34 and exosome-dependent decay. Asc1/RACK1 is required for the sequential endonucleolytic cleavages by the stalled ribosome in the dom34Δ mutant, depending on its ribosome-binding activity. The levels of peptidyl-tRNA derived from nonstop mRNA were elevated in dom34Δasc1Δ mutant cells, and overproduction of nonstop mRNA inhibited growth of mutant cells. E3 ubiquitin ligase Ltn1 degrades the arrest products from truncated GFP-Rz mRNA in dom34Δ and dom34Δasc1Δ mutant cells, and Asc1/RACK1 represses the levels of substrates for Ltn1-dependent degradation. These indicate that ribosome-associated Asc1/RACK1 facilitates endonucleolytic cleavage of nonstop mRNA by stalled ribosomes and represses the levels of aberrant products even in the absence of Dom34. We propose that Asc1/RACK1 acts as a fail-safe in quality control for nonstop mRNA. PMID:27312062

  18. Ribosome-associated Asc1/RACK1 is required for endonucleolytic cleavage induced by stalled ribosome at the 3′ end of nonstop mRNA

    PubMed Central

    Ikeuchi, Ken; Inada, Toshifumi

    2016-01-01

    Dom34-Hbs1 stimulates degradation of aberrant mRNAs lacking termination codons by dissociating ribosomes stalled at the 3′ ends, and plays crucial roles in Nonstop Decay (NSD) and No-Go Decay (NGD). In the dom34Δ mutant, nonstop mRNA is degraded by sequential endonucleolytic cleavages induced by a stalled ribosome at the 3′ end. Here, we report that ribosome-associated Asc1/RACK1 is required for the endonucleolytic cleavage of nonstop mRNA by stalled ribosome at the 3′ end of mRNA in dom34Δ mutant cells. Asc1/RACK1 facilitates degradation of truncated GFP-Rz mRNA in the absence of Dom34 and exosome-dependent decay. Asc1/RACK1 is required for the sequential endonucleolytic cleavages by the stalled ribosome in the dom34Δ mutant, depending on its ribosome-binding activity. The levels of peptidyl-tRNA derived from nonstop mRNA were elevated in dom34Δasc1Δ mutant cells, and overproduction of nonstop mRNA inhibited growth of mutant cells. E3 ubiquitin ligase Ltn1 degrades the arrest products from truncated GFP-Rz mRNA in dom34Δ and dom34Δasc1Δ mutant cells, and Asc1/RACK1 represses the levels of substrates for Ltn1-dependent degradation. These indicate that ribosome-associated Asc1/RACK1 facilitates endonucleolytic cleavage of nonstop mRNA by stalled ribosomes and represses the levels of aberrant products even in the absence of Dom34. We propose that Asc1/RACK1 acts as a fail-safe in quality control for nonstop mRNA. PMID:27312062

  19. Disruption of ribosome assembly in yeast blocks cotranscriptional pre-rRNA processing and affects the global hierarchy of ribosome biogenesis.

    PubMed

    Talkish, Jason; Biedka, Stephanie; Jakovljevic, Jelena; Zhang, Jingyu; Tang, Lan; Strahler, John R; Andrews, Philip C; Maddock, Janine R; Woolford, John L

    2016-06-01

    In higher eukaryotes, pre-rRNA processing occurs almost exclusively post-transcriptionally. This is not the case in rapidly dividing yeast, as the majority of nascent pre-rRNAs are processed cotranscriptionally, with cleavage at the A2 site first releasing a pre-40S ribosomal subunit followed by release of a pre-60S ribosomal subunit upon transcription termination. Ribosome assembly is driven in part by hierarchical association of assembly factors and r-proteins. Groups of proteins are thought to associate with pre-ribosomes cotranscriptionally during early assembly steps, whereas others associate later, after transcription is completed. Here we describe a previously uncharacterized phenotype observed upon disruption of ribosome assembly, in which normally late-binding proteins associate earlier, with pre-ribosomes containing 35S pre-rRNA. As previously observed by many other groups, we show that disruption of 60S subunit biogenesis results in increased amounts of 35S pre-rRNA, suggesting that a greater fraction of pre-rRNAs are processed post-transcriptionally. Surprisingly, we found that early pre-ribosomes containing 35S pre-rRNA also contain proteins previously thought to only associate with pre-ribosomes after early pre-rRNA processing steps have separated maturation of the two subunits. We believe the shift to post-transcriptional processing is ultimately due to decreased cellular division upon disruption of ribosome assembly. When cells are grown under stress or to high density, a greater fraction of pre-rRNAs are processed post-transcriptionally and follow an alternative processing pathway. Together, these results affirm the principle that ribosome assembly occurs through different, parallel assembly pathways and suggest that there is a kinetic foot-race between the formation of protein binding sites and pre-rRNA processing events. PMID:27036125

  20. Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing.

    PubMed

    Sloan, Katherine E; Mattijssen, Sandy; Lebaron, Simon; Tollervey, David; Pruijn, Ger J M; Watkins, Nicholas J

    2013-03-01

    Human ribosome production is up-regulated during tumorogenesis and is defective in many genetic diseases (ribosomopathies). We have undertaken a detailed analysis of human precursor ribosomal RNA (pre-rRNA) processing because surprisingly little is known about this important pathway. Processing in internal transcribed spacer 1 (ITS1) is a key step that separates the rRNA components of the large and small ribosomal subunits. We report that this was initiated by endonuclease cleavage, which required large subunit biogenesis factors. This was followed by 3' to 5' exonucleolytic processing by RRP6 and the exosome, an enzyme complex not previously linked to ITS1 removal. In contrast, RNA interference-mediated knockdown of the endoribonuclease MRP did not result in a clear defect in ITS1 processing. Despite the apparently high evolutionary conservation of the pre-rRNA processing pathway and ribosome synthesis factors, each of these features of human ITS1 processing is distinct from those in budding yeast. These results also provide significant insight into the links between ribosomopathies and ribosome production in human cells. PMID:23439679

  1. Group II intron–ribosome association protects intron RNA from degradation

    PubMed Central

    Contreras, Lydia M.; Huang, Tao; Piazza, Carol Lyn; Smith, Dorie; Qu, Guosheng; Gelderman, Grant; Potratz, Jeffrey P.; Russell, Rick; Belfort, Marlene

    2013-01-01

    The influence of the cellular environment on the structures and properties of catalytic RNAs is not well understood, despite great interest in ribozyme function. Here we report on ribosome association of group II introns, which are ribozymes that are important because of their putative ancestry to spliceosomal introns and retrotransposons, their retromobility via an RNA intermediate, and their application as gene delivery agents. We show that group II intron RNA, in complex with the intron-encoded protein from the native Lactoccocus lactis host, associates strongly with ribosomes in vivo. Ribosomes have little effect on intron ribozyme activities; rather, the association with host ribosomes protects the intron RNA against degradation by RNase E, an enzyme previously shown to be a silencer of retromobility in Escherichia coli. The ribosome interacts strongly with the intron, exerting protective effects in vivo and in vitro, as demonstrated by genetic and biochemical experiments. These results are consistent with the ribosome influencing the integrity of catalytic RNAs in bacteria in the face of degradative nucleases that regulate intron mobility. PMID:24046482

  2. Protein-RNA Dynamics in the Central Junction Control 30S Ribosome Assembly.

    PubMed

    Baker, Kris Ann; Lamichhane, Rajan; Lamichhane, Tek; Rueda, David; Cunningham, Philip R

    2016-09-11

    Interactions between ribosomal proteins (rproteins) and ribosomal RNA (rRNA) facilitate the formation of functional ribosomes. S15 is a central domain primary binding protein that has been shown to trigger a cascade of conformational changes in 16S rRNA, forming the functional structure of the central domain. Previous biochemical and structural studies in vitro have revealed that S15 binds a three-way junction of helices 20, 21, and 22, including nucleotides 652-654 and 752-754. All junction nucleotides except 653 are highly conserved among the Bacteria. To identify functionally important motifs within the junction, we subjected nucleotides 652-654 and 752-754 to saturation mutagenesis and selected and analyzed functional mutants. Only 64 mutants with greater than 10% ribosome function in vivo were isolated. S15 overexpression complemented mutations in the junction loop in each of the partially active mutants, although mutations that produced inactive ribosomes were not complemented by overexpression of S15. Single-molecule Förster or fluorescence resonance energy transfer (smFRET) was used to study the Mg(2+)- and S15-induced conformational dynamics of selected junction mutants. Comparison of the structural dynamics of these mutants with the wild type in the presence and absence of S15 revealed specific sequence and structural motifs in the central junction that are important in ribosome function. PMID:27192112

  3. Accommodation of tmRNA-SmpB into stalled ribosomes: a cryo-EM study.

    PubMed

    Weis, Felix; Bron, Patrick; Rolland, Jean-Paul; Thomas, Daniel; Felden, Brice; Gillet, Reynald

    2010-02-01

    In eubacteria, translation of defective messenger RNAs (mRNAs) produces truncated polypeptides that stall on the ribosome. A quality control mechanism referred to as trans-translation is performed by transfer-messenger RNA (tmRNA), a specialized RNA acting as both a tRNA and an mRNA, associated with small protein B (SmpB). So far, a clear view of the structural movements of both the protein and RNA necessary to perform accommodation is still lacking. By using a construct containing the tRNA-like domain as well as the extended helix H2 of tmRNA, we present a cryo-electron microscopy study of the process of accommodation. The structure suggests how tmRNA and SmpB move into the ribosome decoding site after the release of EF-Tu.GDP. While two SmpB molecules are bound per ribosome in a preaccommodated state, our results show that during accommodation the SmpB protein interacting with the small subunit decoding site stays in place while the one interacting with the large subunit moves away. Relative to canonical translation, an additional movement is observed due to the rotation of H2. This suggests that the larger movement required to resume translation on a tmRNA internal open reading frame starts during accommodation. PMID:20038631

  4. Scanning of 16S Ribosomal RNA for Peptide Nucleic Acid Targets.

    PubMed

    Górska, Anna; Markowska-Zagrajek, Agnieszka; Równicki, Marcin; Trylska, Joanna

    2016-08-25

    We have designed a protocol and server to aid in the search for putative binding sites in 16S rRNA that could be targeted by peptide nucleic acid oligomers. Various features of 16S rRNA were considered to score its regions as potential targets for sequence-specific binding that could result in inhibition of ribosome function. Specifically, apart from the functional importance of a particular rRNA region, we calculated its accessibility, flexibility, energetics of strand invasion by an oligomer, as well as similarity to human rRNA. To determine 16S rRNA flexibility in the ribosome context, we performed all-atom molecular dynamics simulations of the 30S subunit in explicit solvent. We proposed a few 16S RNA target sites, and one of them was tested experimentally to verify inhibition of bacterial growth by a peptide nucleic acid oligomer. PMID:27105576

  5. Elucidation of pathways of ribosomal RNA degradation: an essential role for RNase E.

    PubMed

    Sulthana, Shaheen; Basturea, Georgeta N; Deutscher, Murray P

    2016-08-01

    Although normally stable in growing cells, ribosomal RNAs are degraded under conditions of stress, such as starvation, and in response to misassembled or otherwise defective ribosomes in a process termed RNA quality control. Previously, our laboratory found that large fragments of 16S and 23S rRNA accumulate in strains lacking the processive exoribonucleases RNase II, RNase R, and PNPase, implicating these enzymes in the later steps of rRNA breakdown. Here, we define the pathways of rRNA degradation in the quality control process and during starvation, and show that the essential endoribonuclease, RNase E, is required to make the initial cleavages in both degradative processes. We also present evidence that explains why the exoribonuclease, RNase PH, is required to initiate the degradation of rRNA during starvation. The data presented here provide the first detailed description of rRNA degradation in bacterial cells. PMID:27298395

  6. Research Techniques Made Simple: Bacterial 16S Ribosomal RNA Gene Sequencing in Cutaneous Research.

    PubMed

    Jo, Jay-Hyun; Kennedy, Elizabeth A; Kong, Heidi H

    2016-03-01

    Skin serves as a protective barrier and also harbors numerous microorganisms collectively comprising the skin microbiome. As a result of recent advances in sequencing (next-generation sequencing), our understanding of microbial communities on skin has advanced substantially. In particular, the 16S ribosomal RNA gene sequencing technique has played an important role in efforts to identify the global communities of bacteria in healthy individuals and patients with various disorders in multiple topographical regions over the skin surface. Here, we describe basic principles, study design, and a workflow of 16S ribosomal RNA gene sequencing methodology, primarily for investigators who are not familiar with this approach. This article will also discuss some applications and challenges of 16S ribosomal RNA sequencing as well as directions for future development. PMID:26902128

  7. Mutations in the leader region of ribosomal RNA operons cause structurally defective 30 S ribosomes as revealed by in vivo structural probing.

    PubMed

    Balzer, M; Wagner, R

    1998-02-27

    The biogenesis of functional ribosomes is regulated in a very complex manner, involving different proteins and RNA molecules. RNAs are not only essential components of both ribosomal subunits but also transiently interacting factors during particle formation. In eukaryotes snoRNAs act as molecular chaperones to assist maturation, modification and assembly. In a very similar way highly conserved leader sequences of bacterial rRNA operons are involved in the correct formation of 30 S ribosomal subunits. Certain mutations in the rRNA leader region cause severe growth defects due to malfunction of ribosomes which are assembled from such transcription units. To understand how the leader sequences act to facilitate the formation of the correct 30 S subunits we performed in vivo chemical probing to assess structural differences between ribosomes assembled either from rRNA transcribed from wild-type operons or from operons which contain mutations in the rRNA leader region. Cells transformed with plasmids containing the respective rRNA operons were reacted with dimethylsulphate (DMS). Ribosomes were isolated by sucrose gradient centrifugation and modified nucleotides within the 16 S rRNA were identified by primer extension reaction. Structural differences between ribosomes from wild-type and mutant rRNA operons occur in several clusters within the 16 S rRNA secondary structure. The most prominent differences are located in the central domain including the universally conserved pseudoknot structure which connects the 5', the central and the 3' domain of 16 S rRNA. Two other clusters with structural differences fall in the 5' domain where the leader had been shown to interact with mature 16 S rRNA and within the ribosomal protein S4 binding site. The other differences in structure are located in sites which are also known as sites for the action of several antibiotics. The data explain the functional defects of ribosomes from rRNA operons with leader mutations and help to

  8. Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs.

    PubMed

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Greber, Basil J; Franke, Vedran; Hodnik, Vesna; Anderluh, Gregor; Ban, Nenad; Weygand-Durasevic, Ivana

    2014-04-01

    Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysomes. PMID:24569352

  9. Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs

    PubMed Central

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Greber, Basil J.; Franke, Vedran; Hodnik, Vesna; Anderluh, Gregor; Ban, Nenad; Weygand-Durasevic, Ivana

    2014-01-01

    Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysomes. PMID:24569352

  10. Basic Mechanisms in RNA Polymerase I Transcription of the Ribosomal RNA Genes

    PubMed Central

    Goodfellow, Sarah J.; Zomerdijk, Joost C. B. M.

    2013-01-01

    RNA Polymerase (Pol) I produces ribosomal (r)RNA, an essential component of the cellular protein synthetic machinery that drives cell growth, underlying many fundamental cellular processes. Extensive research into the mechanisms governing transcription by Pol I has revealed an intricate set of control mechanisms impinging upon rRNA production. Pol I-specific transcription factors guide Pol I to the rDNA promoter and contribute to multiple rounds of transcription initiation, promoter escape, elongation and termination. In addition, many accessory factors are now known to assist at each stage of this transcription cycle, some of which allow the integration of transcriptional activity with metabolic demands. The organisation and accessibility of rDNA chromatin also impinge upon Pol I output, and complex mechanisms ensure the appropriate maintenance of the epigenetic state of the nucleolar genome and its effective transcription by Pol I. The following review presents our current understanding of the components of the Pol I transcription machinery, their functions and regulation by associated factors, and the mechanisms operating to ensure the proper transcription of rDNA chromatin. The importance of such stringent control is demonstrated by the fact that deregulated Pol I transcription is a feature of cancer and other disorders characterised by abnormal translational capacity. PMID:23150253

  11. The phylogenetic relationships of Rhodosporidium dacryoidum Fell, Hunter et Tallman based on the partial sequences of 18S and 26S ribosomal RNAs: the proposal of Sakaguchia gen. nov., a heterobasidiomycetous yeast genus.

    PubMed

    Yamada, Y; Maeda, K; Mikata, K

    1994-01-01

    The partial base sequences of 18S and 26S rRNAs of Rhodosporidium fluviale, R. lusitaniae, and Erythrobasidium hasegawianum were analyzed. In the 26S rRNA partial base sequencings, R. fluviale CBS 6568 and R. lusitaniae IGC 4599 and IGC 4641 had 81-82 and 77 percent similarities compared with R. toruloides (type species of genus Rhodosporidium) IFO 0559 and IFO 0880. Erythrobasidium hasegawianum IFO 1058 showed 69-71, 59, 63, and 61 percent similarities with R. toruloides IFO 0559 and IFO 0880, L. scottii (type species of genus Leucosporidium) IFO 1923, R. dacryoidum IFO 1930 and IFO 1931, and Kondoa malvinella IFO 1936, respectively. In the 18S rRNA partial base sequencings, R. fluviale CBS 6568 and R. lusitaniae IGC 4599 and IGC 4641 had zero and two base differences with R. toruloides. Erythrobasidium hasegawianum IFO 1058 showed ten, sixteen, three, and twenty base differences with R. toruloides IFO 0559 and IFO 0880, L. scottii IFO 1923, R. dacryoidum IFO 1930 and IFO 1931, and K. malvinella IFO 1936, respectively. Based on the sequence data obtained, a new genus, Sakaguchia was proposed for R. dacryoidum with a new combination, Sakaguchia dacryoides. PMID:7765151

  12. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures

    PubMed Central

    Slinger, Betty L.; Newman, Hunter; Lee, Younghan; Pei, Shermin; Meyer, Michelle M.

    2015-01-01

    RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition. PMID:26675164

  13. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures.

    PubMed

    Slinger, Betty L; Newman, Hunter; Lee, Younghan; Pei, Shermin; Meyer, Michelle M

    2015-12-01

    RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition. PMID:26675164

  14. Modeling of ribosome dynamics on a ds-mRNA under an external load.

    PubMed

    Shakiba, Bahareh; Dayeri, Maryam; Mohammad-Rafiee, Farshid

    2016-07-14

    Protein molecules in cells are synthesized by macromolecular machines called ribosomes. According to the recent experimental data, we reduce the complexity of the ribosome and propose a model to express its activity in six main states. Using our model, we study the translation rate in different biological relevant situations in the presence of external force and the translation through the RNA double stranded region in the absence or presence of the external force. In the present study, we give a quantitative theory for translation rate and show that the ribosome behaves more like a Brownian Ratchet motor. Our findings could shed some light on understanding behaviors of the ribosome in biological conditions. PMID:27421425

  15. Simulating movement of tRNA through the ribosome during hybrid-state formation

    NASA Astrophysics Data System (ADS)

    Whitford, Paul C.; Sanbonmatsu, Karissa Y.

    2013-09-01

    Biomolecular simulations provide a means for exploring the relationship between flexibility, energetics, structure, and function. With the availability of atomic models from X-ray crystallography and cryoelectron microscopy (cryo-EM), and rapid increases in computing capacity, it is now possible to apply molecular dynamics (MD) simulations to large biomolecular machines, and systematically partition the factors that contribute to function. A large biomolecular complex for which atomic models are available is the ribosome. In the cell, the ribosome reads messenger RNA (mRNA) in order to synthesize proteins. During this essential process, the ribosome undergoes a wide range of conformational rearrangements. One of the most poorly understood transitions is translocation: the process by which transfer RNA (tRNA) molecules move between binding sites inside of the ribosome. The first step of translocation is the adoption of a "hybrid" configuration by the tRNAs, which is accompanied by large-scale rotations in the ribosomal subunits. To illuminate the relationship between these rearrangements, we apply MD simulations using a multi-basin structure-based (SMOG) model, together with targeted molecular dynamics protocols. From 120 simulated transitions, we demonstrate the viability of a particular route during P/E hybrid-state formation, where there is asynchronous movement along rotation and tRNA coordinates. These simulations not only suggest an ordering of events, but they highlight atomic interactions that may influence the kinetics of hybrid-state formation. From these simulations, we also identify steric features (H74 and surrounding residues) encountered during the hybrid transition, and observe that flexibility of the single-stranded 3'-CCA tail is essential for it to reach the endpoint. Together, these simulations provide a set of structural and energetic signatures that suggest strategies for modulating the physical-chemical properties of protein synthesis by the

  16. Simulating movement of tRNA through the ribosome during hybrid-state formation.

    PubMed

    Whitford, Paul C; Sanbonmatsu, Karissa Y

    2013-09-28

    Biomolecular simulations provide a means for exploring the relationship between flexibility, energetics, structure, and function. With the availability of atomic models from X-ray crystallography and cryoelectron microscopy (cryo-EM), and rapid increases in computing capacity, it is now possible to apply molecular dynamics (MD) simulations to large biomolecular machines, and systematically partition the factors that contribute to function. A large biomolecular complex for which atomic models are available is the ribosome. In the cell, the ribosome reads messenger RNA (mRNA) in order to synthesize proteins. During this essential process, the ribosome undergoes a wide range of conformational rearrangements. One of the most poorly understood transitions is translocation: the process by which transfer RNA (tRNA) molecules move between binding sites inside of the ribosome. The first step of translocation is the adoption of a "hybrid" configuration by the tRNAs, which is accompanied by large-scale rotations in the ribosomal subunits. To illuminate the relationship between these rearrangements, we apply MD simulations using a multi-basin structure-based (SMOG) model, together with targeted molecular dynamics protocols. From 120 simulated transitions, we demonstrate the viability of a particular route during P/E hybrid-state formation, where there is asynchronous movement along rotation and tRNA coordinates. These simulations not only suggest an ordering of events, but they highlight atomic interactions that may influence the kinetics of hybrid-state formation. From these simulations, we also identify steric features (H74 and surrounding residues) encountered during the hybrid transition, and observe that flexibility of the single-stranded 3'-CCA tail is essential for it to reach the endpoint. Together, these simulations provide a set of structural and energetic signatures that suggest strategies for modulating the physical-chemical properties of protein synthesis by the

  17. Simulating movement of tRNA through the ribosome during hybrid-state formation

    PubMed Central

    Whitford, Paul C.; Sanbonmatsu, Karissa Y.

    2013-01-01

    Biomolecular simulations provide a means for exploring the relationship between flexibility, energetics, structure, and function. With the availability of atomic models from X-ray crystallography and cryoelectron microscopy (cryo-EM), and rapid increases in computing capacity, it is now possible to apply molecular dynamics (MD) simulations to large biomolecular machines, and systematically partition the factors that contribute to function. A large biomolecular complex for which atomic models are available is the ribosome. In the cell, the ribosome reads messenger RNA (mRNA) in order to synthesize proteins. During this essential process, the ribosome undergoes a wide range of conformational rearrangements. One of the most poorly understood transitions is translocation: the process by which transfer RNA (tRNA) molecules move between binding sites inside of the ribosome. The first step of translocation is the adoption of a “hybrid” configuration by the tRNAs, which is accompanied by large-scale rotations in the ribosomal subunits. To illuminate the relationship between these rearrangements, we apply MD simulations using a multi-basin structure-based (SMOG) model, together with targeted molecular dynamics protocols. From 120 simulated transitions, we demonstrate the viability of a particular route during P/E hybrid-state formation, where there is asynchronous movement along rotation and tRNA coordinates. These simulations not only suggest an ordering of events, but they highlight atomic interactions that may influence the kinetics of hybrid-state formation. From these simulations, we also identify steric features (H74 and surrounding residues) encountered during the hybrid transition, and observe that flexibility of the single-stranded 3′-CCA tail is essential for it to reach the endpoint. Together, these simulations provide a set of structural and energetic signatures that suggest strategies for modulating the physical-chemical properties of protein synthesis by

  18. Early life stress inhibits expression of ribosomal RNA in the developing hippocampus.

    PubMed

    Wei, Lan; Hao, Jin; Kaffman, Arie

    2014-01-01

    Children that are exposed to abuse or neglect show abnormal hippocampal function. However, the developmental mechanisms by which early life stress (ELS) impairs normal hippocampal development have not been elucidated. Here we propose that exposure to ELS blunts normal hippocampal growth by inhibiting the availability of ribosomal RNA (rRNA). In support of this hypothesis, we show that the normal mouse hippocampus undergoes a growth-spurt during the second week of life, followed by a gradual decrease in DNA and RNA content that persists into adulthood. This developmental pattern is associated with accelerated ribosomal RNA (rRNA) synthesis during the second week of life, followed by a gradual decline in rRNA levels that continue into adulthood. Levels of DNA methylation at the ribosomal DNA (rDNA) promoter are lower during the second week of life compared to earlier development or adulthood. Exposure to brief daily separation (BDS), a mouse model of early life stress, increased DNA methylation at the ribosomal DNA promoter, decreased rRNA levels, and blunted hippocampal growth during the second week of life. Exposure to acute (3 hrs) maternal separation decreased rRNA and increased DNA methylation at the rDNA proximal promoter, suggesting that exposure to stress early in life can rapidly regulate the availability of rRNA levels in the developing hippocampus. Given the critical role that rRNA plays in supporting normal growth and development, these findings suggest a novel molecular mechanism to explain how stress early in life impairs hippocampus development in the mouse. PMID:25517398

  19. Computational and Experimental Characterization of Ribosomal DNA and RNA G-Quadruplexes

    NASA Astrophysics Data System (ADS)

    Cho, Samuel

    DNA G-quadruplexes in human telomeres and gene promoters are being extensively studied for their role in controlling the growth of cancer cells. Recent studies strongly suggest that guanine (G)-rich genes encoding pre-ribosomal RNA (pre-rRNA) are a potential anticancer target through the inhibition of RNA polymerase I (Pol I) in ribosome biogenesis. However, the structures of ribosomal G-quadruplexes at atomic resolution are unknown, and very little biophysical characterization has been performed on them to date. Here, we have modeled two putative rDNA G-quadruplex structures, NUC 19P and NUC 23P, which we observe via circular dichroism (CD) spectroscopy to adopt a predominantly parallel topology, and their counterpart rRNA. To validate and refine the putative ribosomal G-quadruplex structures, we performed all-atom molecular dynamics (MD) simulations using the CHARMM36 force field in the presence and absence of stabilizing K + or Na + ions. We optimized the CHARMM36 force field K + parameters to be more consistent with quantum mechanical calculations (and the polarizable Drude model force field) so that the K + ion is predominantly in the G-quadruplex channel. Our MD simulations show that the rDNA G-quadruplex have more well-defined, predominantly parallel-topology structures than rRNA and NUC 19P is more structured than NUC 23P, which features extended loops. Our study demonstrates that they are both potential targets for the design of novel chemotherapeutics.

  20. Ribosome collisions and translation efficiency: optimization by codon usage and mRNA destabilization.

    PubMed

    Mitarai, Namiko; Sneppen, Kim; Pedersen, Steen

    2008-09-26

    Individual mRNAs are translated by multiple ribosomes that initiate translation with an interval of a few seconds. The ribosome speed is codon dependent, and ribosome queuing has been suggested to explain specific data for translation of some mRNAs in vivo. By modeling the stochastic translation process as a traffic problem, we here analyze conditions and consequences of collisions and queuing. The model allowed us to determine the on-rate (0.8 to 1.1 initiations/s) and the time (1 s) the preceding ribosome occludes initiation for Escherichia coli lacZ mRNA in vivo. We find that ribosome collisions and queues are inevitable consequences of a stochastic translation mechanism that reduce the translation efficiency substantially on natural mRNAs. The cells minimize collisions by having its mRNAs being unstable and by a highly selected codon usage in the start of the mRNA. The cost of mRNA breakdown is offset by the concomitant increase in translation efficiency. PMID:18619977

  1. PTRF/Cavin-1 promotes efficient ribosomal RNA transcription in response to metabolic challenges

    PubMed Central

    Liu, Libin; Pilch, Paul F

    2016-01-01

    Ribosomal RNA transcription mediated by RNA polymerase I represents the rate-limiting step in ribosome biogenesis. In eukaryotic cells, nutrients and growth factors regulate ribosomal RNA transcription through various key factors coupled to cell growth. We show here in mature adipocytes, ribosomal transcription can be acutely regulated in response to metabolic challenges. This acute response is mediated by PTRF (polymerase I transcription and release factor, also known as cavin-1), which has previously been shown to play a critical role in caveolae formation. The caveolae–independent rDNA transcriptional role of PTRF not only explains the lipodystrophy phenotype observed in PTRF deficient mice and humans, but also highlights its crucial physiological role in maintaining adipocyte allostasis. Multiple post-translational modifications of PTRF provide mechanistic bases for its regulation. The role of PTRF in ribosomal transcriptional efficiency is likely relevant to many additional physiological situations of cell growth and organismal metabolism. DOI: http://dx.doi.org/10.7554/eLife.17508.001 PMID:27528195

  2. Glucocorticoids regulate mRNA levels for subunits of the 19 S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscles.

    PubMed Central

    Combaret, Lydie; Taillandier, Daniel; Dardevet, Dominique; Béchet, Daniel; Rallière, Cécile; Claustre, Agnès; Grizard, Jean; Attaix, Didier

    2004-01-01

    Circulating levels of glucocorticoids are increased in many traumatic and muscle-wasting conditions that include insulin-dependent diabetes, acidosis, infection, and starvation. On the basis of indirect findings, it appeared that these catabolic hormones are required to stimulate Ub (ubiquitin)-proteasome-dependent proteolysis in skeletal muscles in such conditions. The present studies were performed to provide conclusive evidence for an activation of Ub-proteasome-dependent proteolysis after glucocorticoid treatment. In atrophying fast-twitch muscles from rats treated with dexamethasone for 6 days, compared with pair-fed controls, we found (i) increased MG132-inhibitable proteasome-dependent proteolysis, (ii) an enhanced rate of substrate ubiquitination, (iii) increased chymotrypsin-like proteasomal activity of the proteasome, and (iv) a co-ordinate increase in the mRNA expression of several ATPase (S4, S6, S7 and S8) and non-ATPase (S1, S5a and S14) subunits of the 19 S regulatory complex, which regulates the peptidase and the proteolytic activities of the 26 S proteasome. These studies provide conclusive evidence that glucocorticoids activate Ub-proteasome-dependent proteolysis and the first in vivo evidence for a hormonal regulation of the expression of subunits of the 19 S complex. The results suggest that adaptations in gene expression of regulatory subunits of the 19 S complex by glucocorticoids are crucial in the regulation of the 26 S muscle proteasome. PMID:14636157

  3. Adaptive evolution of an artificial RNA genome to a reduced ribosome environment.

    PubMed

    Mizuuchi, Ryo; Ichihashi, Norikazu; Usui, Kimihito; Kazuta, Yasuaki; Yomo, Tetsuya

    2015-03-20

    The reconstitution of an artificial system that has the same evolutionary ability as a living thing is a major challenge in the in vitro synthetic biology. In this study, we tested the adaptive evolutionary ability of an artificial RNA genome replication system, termed the translation-coupled RNA replication (TcRR) system. In a previous work, we performed a study of the long-term evolution of the genome with an excess amount of ribosome. In this study, we continued the evolution experiment in a reduced-ribosome environment and observed that the mutant genome compensated for the reduced ribosome concentration. This result demonstrated the ability of the TcRR system to adapt and may be a step toward generating living things with evolutionary ability. PMID:24933578

  4. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling

    PubMed Central

    Jones, Joshua D.; Chung, Betty Y.-W.; Siddell, Stuart G.; Brierley, Ian

    2016-01-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global “snap-shot” of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  5. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    PubMed

    Irigoyen, Nerea; Firth, Andrew E; Jones, Joshua D; Chung, Betty Y-W; Siddell, Stuart G; Brierley, Ian

    2016-02-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  6. A Nonradioactive Assay to Measure Production and Processing of Ribosomal RNA by 4sU-Tagging.

    PubMed

    Burger, Kaspar; Eick, Dirk

    2016-01-01

    In vivo metabolic pulse labeling is a classical approach to assess production and processing of ribosomal RNA (rRNA). However, conventional labeling techniques can be indirect and require work with radioactivity. Here, we describe in detail a protocol for in vivo metabolic labeling, purification, and readout of nascent rRNA by 4-thiouridine (4sU). We propose 4sU labeling as standard nonradioactive technique for the analysis of rRNA metabolism during ribosome biogenesis. PMID:27576715

  7. mRNA Translocation Occurs During the Second Step of Ribosomal Intersubunit Rotation

    PubMed Central

    Ermolenko, Dmitri N.; Noller, Harry F.

    2010-01-01

    During protein synthesis, mRNA and tRNA undergo coupled translocation through the ribosome in a process that is catalyzed by elongation factor EF-G. Based on cryo-EM reconstructions, counterclockwise and clockwise rotational movements between the large and small ribosomal subunits have been implicated in a proposed ratcheting mechanism to drive the unidirectional movement of translocation. We have used a combination of two fluorescence-based approaches to study the timing of these events: Intersubunit FRET measurements to observe relative rotational movement of the subunits and a fluorescence quenching assay to monitor translocation of mRNA. Binding of EF-G·GTP first induces rapid counterclockwise intersubunit rotation, followed by a slower, clockwise reversal of the rotational movement. Comparison of the rates of these movements reveals that mRNA translocation occurs during the second, clockwise rotation event, corresponding to the transition from the hybrid state to the classical state. PMID:21399643

  8. The Ribosome Shape Directs mRNA Translocation through Entrance and Exit Dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs (transfer ribonucleic acids) and mRNA (messenger ribonucleic acid); here the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal struc...

  9. Coupling of mRNA Structure Rearrangement to Ribosome Movement during Bypassing of Non-coding Regions.

    PubMed

    Chen, Jin; Coakley, Arthur; O'Connor, Michelle; Petrov, Alexey; O'Leary, Seán E; Atkins, John F; Puglisi, Joseph D

    2015-11-19

    Nearly half of the ribosomes translating a particular bacteriophage T4 mRNA bypass a region of 50 nt, resuming translation 3' of this gap. How this large-scale, specific hop occurs and what determines whether a ribosome bypasses remain unclear. We apply single-molecule fluorescence with zero-mode waveguides to track individual Escherichia coli ribosomes during translation of T4's gene 60 mRNA. Ribosomes that bypass are characterized by a 10- to 20-fold longer pause in a non-canonical rotated state at the take-off codon. During the pause, mRNA secondary structure rearrangements are coupled to ribosome forward movement, facilitated by nascent peptide interactions that disengage the ribosome anticodon-codon interactions for slippage. Close to the landing site, the ribosome then scans mRNA in search of optimal base-pairing interactions. Our results provide a mechanistic and conformational framework for bypassing, highlighting a non-canonical ribosomal state to allow for mRNA structure refolding to drive large-scale ribosome movements. PMID:26590426

  10. Protein Folding Activity of Ribosomal RNA Is a Selective Target of Two Unrelated Antiprion Drugs

    PubMed Central

    Tribouillard-Tanvier, Déborah; Dos Reis, Suzana; Gug, Fabienne; Voisset, Cécile; Béringue, Vincent; Sabate, Raimon; Kikovska, Ema; Talarek, Nicolas; Bach, Stéphane; Huang, Chenhui; Desban, Nathalie; Saupe, Sven J.; Supattapone, Surachai; Thuret, Jean-Yves; Chédin, Stéphane; Vilette, Didier; Galons, Hervé; Sanyal, Suparna; Blondel, Marc

    2008-01-01

    Background 6-Aminophenanthridine (6AP) and Guanabenz (GA, a drug currently in use for the treatment of hypertension) were isolated as antiprion drugs using a yeast-based assay. These structurally unrelated molecules are also active against mammalian prion in several cell-based assays and in vivo in a mouse model for prion-based diseases. Methodology/Principal Findings Here we report the identification of cellular targets of these drugs. Using affinity chromatography matrices for both drugs, we demonstrate an RNA-dependent interaction of 6AP and GA with the ribosome. These specific interactions have no effect on the peptidyl transferase activity of the ribosome or on global translation. In contrast, 6AP and GA specifically inhibit the ribosomal RNA-mediated protein folding activity of the ribosome. Conclusion/Significance 6AP and GA are therefore the first compounds to selectively inhibit the protein folding activity of the ribosome. They thus constitute precious tools to study the yet largely unexplored biological role of this protein folding activity. PMID:18478094

  11. Fluctuations in protein synthesis from a single RNA template: Stochastic kinetics of ribosomes

    NASA Astrophysics Data System (ADS)

    Garai, Ashok; Chowdhury, Debashish; Ramakrishnan, T. V.

    2009-01-01

    Proteins are polymerized by cyclic machines called ribosomes, which use their messenger RNA (mRNA) track also as the corresponding template, and the process is called translation. We explore, in depth and detail, the stochastic nature of the translation. We compute various distributions associated with the translation process; one of them—namely, the dwell time distribution—has been measured in recent single-ribosome experiments. The form of the distribution, which fits best with our simulation data, is consistent with that extracted from the experimental data. For our computations, we use a model that captures both the mechanochemistry of each individual ribosome and their steric interactions. We also demonstrate the effects of the sequence inhomogeneities of real genes on the fluctuations and noise in translation. Finally, inspired by recent advances in the experimental techniques of manipulating single ribosomes, we make theoretical predictions on the force-velocity relation for individual ribosomes. In principle, all our predictions can be tested by carrying out in vitro experiments.

  12. RNA structure-based ribosome recruitment: lessons from the Dicistroviridae intergenic region IRESes.

    PubMed

    Pfingsten, Jennifer S; Kieft, Jeffrey S

    2008-07-01

    In eukaryotes, the canonical process of initiating protein synthesis on an mRNA depends on many large protein factors and the modified nucleotide cap on the 5' end of the mRNA. However, certain RNA sequences can bypass the need for these proteins and cap, using an RNA structure-based mechanism called internal initiation of translation. These RNAs are called internal ribosome entry sites (IRESes), and the cap-independent initiation pathway they support is critical for successful infection by many viruses of medical and economic importance. In this review, we briefly describe and compare mechanistic and structural groups of viral IRES RNAs, focusing on those IRESes that are capable of direct ribosome recruitment using specific RNA structures. We then discuss in greater detail some recent advances in our understanding of the intergenic region IRESes of the Dicistroviridae, which use the most streamlined ribosome-recruitment mechanism yet discovered. By combining these findings with knowledge of canonical translation and the behavior of other IRESes, mechanistic models of this RNA structure-based process are emerging. PMID:18515544

  13. Affinity chromatography of Drosophila melanogaster ribosomal proteins to 5S rRNA.

    PubMed

    Stark, B C; Chooi, W Y

    1985-02-20

    The binding of Drosophila melanogaster ribosomal proteins to D. melanogaster 5S rRNA was studied using affinity chromatography of total ribosomal proteins (TP80) on 5S rRNA linked via adipic acid dihydrazide to Sepharose 4B. Ribosomal proteins which bound 5S rRNA at 0.3 M potassium chloride and were eluted at 1 M potassium chloride were identified as proteins 1, L4, 2/3, L14/L16, and S1, S2, S3, S4, S5, by two-dimensional polyacrylamide gel electrophoresis. Using poly A-Sepharose 4B columns as a model of non-specific binding, we found that a subset of TP80 proteins is also bound. This subset, while containing some of the proteins bound by 5S rRNA columns, was distinctly different from the latter subset, indicating that the binding to 5S rRNA was specific for that RNA species. PMID:3923010

  14. Can we estimate bacterial growth rates from ribosomal RNA content?

    SciTech Connect

    Kemp, P.F.

    1995-12-31

    Several studies have demonstrated a strong relationship between the quantity of RNA in bacterial cells and their growth rate under laboratory conditions. It may be possible to use this relationship to provide information on the activity of natural bacterial communities, and in particular on growth rate. However, if this approach is to provide reliably interpretable information, the relationship between RNA content and growth rate must be well-understood. In particular, a requisite of such applications is that the relationship must be universal among bacteria, or alternately that the relationship can be determined and measured for specific bacterial taxa. The RNA-growth rate relationship has not been used to evaluate bacterial growth in field studies, although RNA content has been measured in single cells and in bulk extracts of field samples taken from coastal environments. These measurements have been treated as probable indicators of bacterial activity, but have not yet been interpreted as estimators of growth rate. The primary obstacle to such interpretations is a lack of information on biological and environmental factors that affect the RNA-growth rate relationship. In this paper, the available data on the RNA-growth rate relationship in bacteria will be reviewed, including hypotheses regarding the regulation of RNA synthesis and degradation as a function of growth rate and environmental factors; i.e. the basic mechanisms for maintaining RNA content in proportion to growth rate. An assessment of the published laboratory and field data, the current status of this research area, and some of the remaining questions will be presented.

  15. Characterization of recombinant bacteriophages containing mosquito ribosomal RNA genes

    SciTech Connect

    Park, Y.J.

    1988-01-01

    A family of nine recombinant bacteriophages containing rRNA genes from cultured cells of the mosquito, Aedes albopictus, has been isolated by screening two different genomic DNA libraries - Charon 30 and EMBL 3 using {sup 32}P-labeled 18S and 28S rRNA as probes. These nine recombinant bacteriophages were characterized by restriction mapping, Southern blotting, and S1 nuclease analysis. The 18S rRNA coding region contains an evolutionarily conserved EcoRI site near the 3{prime}-end, and measures 1800 bp. The 28S rRNA genes were divided into {alpha} and {beta} coding regions measuring 1750 bp and 2000 bp, respectively. The gap between these two regions measures about 340 bp. No insertion sequences were found in the rRNA coding regions. The entire rDNA repeat unit had a minimum length of 15.6 kb, including a nontranscribed spacer region. The non-transcribed spacer region of cloned A. albopictus rDNA contained a common series of seven PvuI sites within a 1250 bp region upstream of the 18S rRNA coding region, and a proportion of this region also showed heterogeneity both in the length and in the restriction sites.

  16. Steric interactions lead to collective tilting motion in the ribosome during mRNA-tRNA translocation.

    PubMed

    Nguyen, Kien; Whitford, Paul C

    2016-01-01

    Translocation of mRNA and tRNA through the ribosome is associated with large-scale rearrangements of the head domain in the 30S ribosomal subunit. To elucidate the relationship between 30S head dynamics and mRNA-tRNA displacement, we apply molecular dynamics simulations using an all-atom structure-based model. Here we provide a statistical analysis of 250 spontaneous transitions between the A/P-P/E and P/P-E/E ensembles. Consistent with structural studies, the ribosome samples a chimeric ap/P-pe/E intermediate, where the 30S head is rotated ∼18°. It then transiently populates a previously unreported intermediate ensemble, which is characterized by a ∼10° tilt of the head. To identify the origins of head tilting, we analyse 781 additional simulations in which specific steric features are perturbed. These calculations show that head tilting may be attributed to specific steric interactions between tRNA and the 30S subunit (PE loop and protein S13). Taken together, this study demonstrates how molecular structure can give rise to large-scale collective rearrangements. PMID:26838673

  17. Steric interactions lead to collective tilting motion in the ribosome during mRNA-tRNA translocation

    NASA Astrophysics Data System (ADS)

    Nguyen, Kien; Whitford, Paul C.

    2016-02-01

    Translocation of mRNA and tRNA through the ribosome is associated with large-scale rearrangements of the head domain in the 30S ribosomal subunit. To elucidate the relationship between 30S head dynamics and mRNA-tRNA displacement, we apply molecular dynamics simulations using an all-atom structure-based model. Here we provide a statistical analysis of 250 spontaneous transitions between the A/P-P/E and P/P-E/E ensembles. Consistent with structural studies, the ribosome samples a chimeric ap/P-pe/E intermediate, where the 30S head is rotated ~18°. It then transiently populates a previously unreported intermediate ensemble, which is characterized by a ~10° tilt of the head. To identify the origins of head tilting, we analyse 781 additional simulations in which specific steric features are perturbed. These calculations show that head tilting may be attributed to specific steric interactions between tRNA and the 30S subunit (PE loop and protein S13). Taken together, this study demonstrates how molecular structure can give rise to large-scale collective rearrangements.

  18. The role of L1 stalk:tRNA interaction in the ribosome elongation cycle

    PubMed Central

    Trabuco, Leonardo G.; Schreiner, Eduard; Eargle, John; Cornish, Peter; Ha, Taekjip; Luthey-Schulten, Zaida; Schulten, Klaus

    2010-01-01

    The ribosomal L1 stalk is a mobile structure implicated in directing tRNA movement during translocation through the ribosome. This article investigates three aspects of L1 stalk:tRNA interaction. First, by combining through the molecular dynamics flexible fitting method data from cryo-electron microscopy, X-ray crystallography, and molecular dynamics simulations, atomic models of different tRNAs occupying the hybrid P/E state interacting with the L1 stalk are obtained. These models confirm the assignment of FRET states from previous single-molecule investigations of L1 stalk dynamics. Second, the models reconcile how initiator tRNAfMet interacts less strongly with the L1 stalk than elongator tRNAPhe, as seen in previous single-molecule experiments. Third, results from a simulation of the entire ribosome in which the L1 stalk is moved from a half-closed to its open conformation are found to support the hypothesis that L1 stalk opening is involved in tRNA release from the ribosome. PMID:20691699

  19. Complete sequence and gene organization of the Nosema heliothidis ribosomal RNA gene region.

    PubMed

    Dong, Shinan; Shen, Zhongyuan; Zhu, Feng; Tang, Xudong; Xu, Li

    2011-01-01

    By sequencing the entire ribosomal RNA (rRNA) gene region of Nosema heliothidis isolated from cotton bollworm (Helicoverpa armigera), we showed that its gene organization is similar to the type species, Nosema bombycis: the 5'-large subunit rRNA (2,490 bp)-internal transcribed spacer (192 bp)-small subunit rRNA (1,232 bp)-intergenic spacer (274 bp)-5S rRNA (115 bp)-3'. We constructed two phylogenetic trees, analyzed phylogenetic relationships, examined rRNA organization of microsporidia, and compared the secondary structure of small subunit rRNA with closely related microsporidia. The latter two features may provide important information for the classification and phylogenetic analysis of microsporidia. PMID:21895841

  20. Structural and functional analysis of Escherichia coli ribosomes containing small deletions around position 1760 in the 23S ribosomal RNA.

    PubMed Central

    Zweib, C; Dahlberg, A E

    1984-01-01

    Three different small deletions were produced at a single Pvu 2 restriction site in E. coli 23S rDNA of plasmid pKK 3535 using exonuclease Bal 31. The deletions were located around position 1760 in 23S rRNA and were characterized by DNA sequencing as well as by direct fingerprinting and S1-mapping of the rRNA. Two of the mutant plasmids, Pvu 2-32 and Pvu 2-33, greatly reduced the growth rate of transformed cells while the third mutant, Pvu 2-14 grew as fast as cells containing the wild-type plasmid pKK 3535. All three mutant 23S rRNAs were incorporated into 50S-like particles and were even found in 70S ribosomes and polysomes in vivo. The conformation of mutant 23S rRNA in 50S subunits was probed with a double-strand specific RNase from cobra venom. These analyses revealed changes in the accessibility of cleavage sites near the deletions around position 1760 and in the area around position 800 in all three mutant rRNAs. We suggest, that an altered conformation of the rRNAs at the site of the deletion is responsible for the slow growth of cells containing mutant plasmids Pvu 2-32 and Pvu 2-33. Images PMID:6091057

  1. Validation of two ribosomal RNA removal methods for microbial metatranscriptomics

    SciTech Connect

    He, Shaomei; Wurtzel, Omri; Singh, Kanwar; Froula, Jeff L; Yilmaz, Suzan; Tringe, Susannah G; Wang, Zhong; Chen, Feng; Lindquist, Erika A; Sorek, Rotem; Hugenholtz, Philip

    2010-10-01

    The predominance of rRNAs in the transcriptome is a major technical challenge in sequence-based analysis of cDNAs from microbial isolates and communities. Several approaches have been applied to deplete rRNAs from (meta)transcriptomes, but no systematic investigation of potential biases introduced by any of these approaches has been reported. Here we validated the effectiveness and fidelity of the two most commonly used approaches, subtractive hybridization and exonuclease digestion, as well as combinations of these treatments, on two synthetic five-microorganism metatranscriptomes using massively parallel sequencing. We found that the effectiveness of rRNA removal was a function of community composition and RNA integrity for these treatments. Subtractive hybridization alone introduced the least bias in relative transcript abundance, whereas exonuclease and in particular combined treatments greatly compromised mRNA abundance fidelity. Illumina sequencing itself also can compromise quantitative data analysis by introducing a G+C bias between runs.

  2. The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage

    PubMed Central

    Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A; Gwerder, Myriam; Gutsche, Katrin; Altmeyer, Matthias; Jungmichel, Stephanie; Toledo, Luis I; Fink, Daniel; Rask, Maj-Britt; Grøfte, Merete; Lukas, Claudia; Nielsen, Michael L; Smerdon, Stephen J; Lukas, Jiri; Stucki, Manuel

    2016-01-01

    Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in-trans signaling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identified TCOF1-Treacle, a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1, and demonstrate that NBS1 translocation and accumulation in the nucleoli is Treacle-dependent. Finally, we provide evidence that Treacle-mediated NBS1 recruitment into the nucleoli regulates rRNA silencing in-trans in the presence of distant chromosome breaks. PMID:25064736

  3. Possible involvement of Escherichia coli 23S ribosomal RNA in peptide bond formation.

    PubMed Central

    Nitta, I; Ueda, T; Watanabe, K

    1998-01-01

    Experimental results are presented suggesting that 23S rRNA is directly involved in the peptide bond formation usually performed on the ribosome. Although several reports have indicated that the eubacterial peptidyltransferase reaction does not necessarily require all the ribosomal proteins, the reconstitution of peptidyltransferase activity by a naked 23S rRNA without the help of any of the ribosomal proteins has not been reported previously. It is demonstrated that an E. coli 23S rRNA transcript synthesized by T7 RNA polymerase in vitro was able to promote peptide bond formation in the presence of 0.5% SDS. The reaction was inhibited by the peptidyltransferase-specific antibiotics chloramphenicol and carbomycin, and by digestion with RNases A and T1. Site-directed mutageneses at two highly conserved regions close to the peptidyltransferase center ring, G2252 to U2252 and C2507G2581 to U2507A2581, also suppressed peptide bond formation. These findings strongly suggest that 23S rRNA is the peptidyltransferase itself. PMID:9510328

  4. Targets and Intracellular Signaling Mechanisms for Deoxynivalenol-Induced Ribosomal RNA Cleavage

    PubMed Central

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J.

    2012-01-01

    The trichothecene mycotoxin deoxynivalenol (DON), a known translational inhibitor, induces ribosomal RNA (rRNA) cleavage. Here, we characterized this process relative to (1) specific 18S and 28S ribosomal RNA cleavage sites and (2) identity of specific upstream signaling elements in this pathway. Capillary electrophoresis indicated that DON at concentrations as low as 200 ng/ml evoked selective rRNA cleavage after 6 h and that 1000 ng/ml caused cleavage within 2 h. Northern blot analysis revealed that DON exposure induced six rRNA cleavage fragments from 28S rRNA and five fragments from 18S rRNA. When selective kinase inhibitors were used to identify potential upstream signals, RNA-activated protein kinase (PKR), hematopoietic cell kinase (Hck), and p38 were found to be required for rRNA cleavage, whereas c-Jun N-terminal kinase and extracellular signal-regulated kinase were not. Furthermore, rRNA fragmentation was suppressed by the p53 inhibitors pifithrin-α and pifithrin-μ as well as the pan caspase inhibitor Z-VAD-FMK. Concurrent apoptosis was confirmed by acridine orange/ethidium bromide staining and flow cytometry. DON activated caspases 3, 8, and 9, thus suggesting the possible coinvolvement of both extrinsic and intrinsic apoptotic pathways in rRNA cleavage. Satratoxin G (SG), anisomycin, and ricin also induced specific rRNA cleavage profiles identical to those of DON, suggesting that ribotoxins might share a conserved rRNA cleavage mechanism. Taken together, DON-induced rRNA cleavage is likely to be closely linked to apoptosis activation and appears to involve the sequential activation of PKR/Hck →p38→p53→caspase 8/9→caspase 3. PMID:22491426

  5. Targets and intracellular signaling mechanisms for deoxynivalenol-induced ribosomal RNA cleavage.

    PubMed

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J

    2012-06-01

    The trichothecene mycotoxin deoxynivalenol (DON), a known translational inhibitor, induces ribosomal RNA (rRNA) cleavage. Here, we characterized this process relative to (1) specific 18S and 28S ribosomal RNA cleavage sites and (2) identity of specific upstream signaling elements in this pathway. Capillary electrophoresis indicated that DON at concentrations as low as 200 ng/ml evoked selective rRNA cleavage after 6 h and that 1000 ng/ml caused cleavage within 2 h. Northern blot analysis revealed that DON exposure induced six rRNA cleavage fragments from 28S rRNA and five fragments from 18S rRNA. When selective kinase inhibitors were used to identify potential upstream signals, RNA-activated protein kinase (PKR), hematopoietic cell kinase (Hck), and p38 were found to be required for rRNA cleavage, whereas c-Jun N-terminal kinase and extracellular signal-regulated kinase were not. Furthermore, rRNA fragmentation was suppressed by the p53 inhibitors pifithrin-α and pifithrin-μ as well as the pan caspase inhibitor Z-VAD-FMK. Concurrent apoptosis was confirmed by acridine orange/ethidium bromide staining and flow cytometry. DON activated caspases 3, 8, and 9, thus suggesting the possible coinvolvement of both extrinsic and intrinsic apoptotic pathways in rRNA cleavage. Satratoxin G (SG), anisomycin, and ricin also induced specific rRNA cleavage profiles identical to those of DON, suggesting that ribotoxins might share a conserved rRNA cleavage mechanism. Taken together, DON-induced rRNA cleavage is likely to be closely linked to apoptosis activation and appears to involve the sequential activation of PKR/Hck →p38→p53→caspase 8/9→caspase 3. PMID:22491426

  6. Head swivel on the ribosome facilitates translocation via intra-subunit tRNA hybrid sites

    PubMed Central

    Ratje, Andreas H.; Loerke, Justus; Mikolajka, Aleksandra; Brünner, Matthias; Hildebrand, Peter W.; Starosta, Agata L.; Dönhöfer, Alexandra; Connell, Sean R.; Fucini, Paola; Mielke, Thorsten; Whitford, Paul C.; Onuchic, Jose’ N; Yu, Yanan; Sanbonmatsu, Karissa Y.; Hartmann, Roland K.; Penczek, Pawel A.; Wilson, Daniel N.; Spahn, Christian M.T.

    2011-01-01

    The elongation cycle of protein synthesis involves the delivery of aminoacyl-tRNAs to the A-site of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A-site1,2. The translocation reaction is catalyzed by elongation factor G (EF-G) in a GTP-dependent fashion3. Despite the availability of structures of various EF-G-ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryo-EM analysis to resolve two previously unseen subpopulations within EF-G-ribosome complexes at sub-nanometer resolution, one of them with a partially translocated tRNA. Comparison of these sub-states reveals that translocation of tRNA on the 30S subunit parallels the swiveling of the 30S-head and is coupled to un-ratcheting of the 30S-body. Since the tRNA maintains contact with the P-site on the 30S-head and simultaneously establishes interaction with the E-site on the 30S-platform, a novel intra-subunit pe/E hybrid state is formed. This state is stabilized by domain IV of EF-G, which interacts with the swiveled 30S-head conformation. These findings provide direct structural and mechanistic insight into the “missing link” in terms of tRNA intermediates involved in the universally conserved translocation process. PMID:21124459

  7. Alignment/misalignment hypothesis for tRNA selection by the ribosome.

    PubMed

    Sanbonmatsu, K Y

    2006-08-01

    Transfer RNAs (tRNAs) are the adaptor molecules that allow the ribosome to decode genetic information during protein synthesis. During decoding, the ribosome must chose the tRNA whose anticodon corresponds to the codon inscribed in the messenger RNA to incorporate the correct amino acid into the growing polypeptide chain. Fidelity is improved dramatically by a GTP hydrolysis event. Information about the correctness of the anticodon must be sent from the decoding center to the elongation factor, EF-Tu, where the GTP hydrolysis takes place. A second discrimination event entails the accommodation of the aminoacyl-tRNA into its fully bound A/A state inside the ribosome. Here, we present a hypothesis for a specific mechanism of signal transduction through the tRNA, which operates during GTPase activation and accommodation. We propose that the rigidity of the tRNA plays an important role in the transmission of the decoding signal. While the tRNA must flex during binding and accommodation, its anisotropic stiffness enables precise positioning of the acceptor arm in the A/T state, the A/A state and the accommodation corridor. Correct alignment will result in optimal GTPase activation and accommodation rates. Incorrect tRNAs, however, whose anticodons are misaligned, will also have acceptor arms that are misaligned, resulting in sub-optimal GTPase activation and accommodation rates. In the case of GTPase activation, it is possible that the misalignment of the acceptor arm affects the rate directly, by altering the conformational change of the switch region of EF-Tu, or indirectly, by changing the alignment of EF-Tu with respect to the sarcin-ricin loop (SRL) of the large ribosomal subunit. PMID:16890341

  8. [Precursors of ribosomal RNA in freely suspended callus cells of parsley (Petroselinum sativum)].

    PubMed

    Richter, G

    1973-03-01

    Six high molecular weight, rapidly labelled RNA species were detected in freely suspended callus cells of Petroselinum sativum by means of isotope labelling and electrophoretic separation in agarose-polyacrylamide gels. On the basis of their migration in the latter the RNA species were calculated to have the following molecular weights: 2.9×10(6), 2,4×10(6), 1.9×10(6), 1.4×10(6), 1.0×10(6) and 0.75×10(6) daltons. Thus they can clearly be distinguished from the two ribosomal RNA species (1.3×10(6) and 0.7×10(6) daltons). During incubation of the cells with [(3)H]methyl-methionine as a methyl donator all six components incorporated radioactivity rapidly. With [(3)H]nucleosides or [(3)H]orotic acid as precursors the 2.9×10(6) and the 2.4×10(6) daltons RNA were labelled within 10 min, while the other high molecular weight species appeared after about 20 min of labelling.Prolongation to 45-120 min resulted in accumulation of radioactivity preferentially in the 1.4×10(6) and 0.75×10(6) daltons RNA and in the ribosomal RNA species. The results of cell fractionation experiments provide evidence that these rapidly labelled high molecular weight RNA species are synthesized in the cell nucleus. The kinetics of their synthesis together with the other data obtained strongly support the suggestion that these RNA species function as precursors in the processing of ribosomal RNA. The possible mechanism of this process is discussed. PMID:24468848

  9. Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome

    PubMed Central

    Geggier, Peter; Dave, Richa; Feldman, Michael B.; Terry, Daniel S.; Altman, Roger B.; Munro, James B.; Blanchard, Scott C.

    2010-01-01

    Aminoacyl-tRNA (aa-tRNA), in a ternary complex with Elongation Factor-Tu (EF-Tu) and GTP, enters the aminoacyl (A) site of the ribosome via a multi-step, mRNA codon-dependent mechanism. This process gives rise to the preferential selection of cognate aa-tRNAs for each mRNA codon and consequently the fidelity of gene expression. The ribosome actively facilitates this process by recognizing structural features of the correct substrate, initiated in its decoding site, to accelerate the rates of EF-Tu-catalyzed GTP hydrolysis and ribosome-catalyzed peptide bond formation. Here, the order and timing of conformational events underpinning the aa-tRNA selection process were investigated from multiple structural perspectives using single-molecule fluorescence resonance energy transfer (smFRET). The time resolution of these measurements was extended to 2.5 and 10ms, a 10–50-fold improvement over previous studies. The data obtained reveal that aa-tRNA undergoes fast conformational sampling within the A site, both before and after GTP hydrolysis. This suggests that the alignment of aa-tRNA with respect to structural elements required for irreversible GTP hydrolysis and peptide bond formation plays a key role in the fidelity mechanism. These observations provide direct evidence that the selection process is governed by motions of aa-tRNA within the A site, adding new insights into the physical framework that helps explain how the rates of GTP hydrolysis and peptide bond formation are controlled by the mRNA codon and other fidelity determinants within the system. PMID:20434456

  10. Mechanical insights into ribosomal progression overcoming RNA G-quadruplex from periodical translation suppression in cells.

    PubMed

    Endoh, Tamaki; Sugimoto, Naoki

    2016-01-01

    G-quadruplexes formed on DNA and RNA can be roadblocks to movement of polymerases and ribosome on template nucleotides. Although folding and unfolding processes of the G-quadruplexes are deliberately studied in vitro, how the mechanical and physical properties of the G-quadruplexes affect intracellular biological systems is still unclear. In this study, mRNAs with G-quadruplex forming sequences located either in the 5' untranslated region (UTR) or in the open reading frame (ORF) were constructed to evaluate positional effects of the G-quadruplex on translation suppression in cells. Periodic fluctuation of translation suppression was observed at every three nucleotides within the ORF but not within the 5' UTR. The results suggested that difference in motion of ribosome at the 5' UTR and the ORF determined the ability of the G-quadruplex structure to act as a roadblock to translation in cells and provided mechanical insights into ribosomal progression to overcome the roadblock. PMID:26948955

  11. Ribosome origins: The relative age of 23S rRNA Domains

    NASA Astrophysics Data System (ADS)

    Hury, James; Nagaswamy, Uma; Larios-Sanz, Maia; Fox, George E.

    2006-08-01

    The modern ribosome and its component RNAs are quite large and it is likely that at an earlier time they were much smaller. Hence, not all regions of the modern ribosomal RNAs (rRNA) are likely to be equally old. In the work described here, it is hypothesized that the oldest regions of the RNAs will usually be highly integrated into the machinery. When this is the case, an examination of the interconnectivity between local RNA regions can provide insight to the relative age of the various regions. Herein, we describe an analysis of all known long-range RNA/RNA interactions within the 23S rRNA and between the 23S rRNA and the 16S rRNA in order to assess the interconnectivity between the usual Domains as defined by secondary structure. Domain V, which contains the peptidyl transferase center is centrally located, extensively connected, and therefore likely to be the oldest region. Domain IV and Domain II are extensively interconnected with both themselves and Domain V. A portion of Domain IV is also extensively connected with the 30S subunit and hence Domain IV may be older than Domain II. These results are consistent with other evidence relating to the relative age of RNA regions. Although the relative time of addition of the GTPase center can not be reliably deduced it is pointed out that the development of this may have dramatically affected the progenotes that preceded the last common ancestor.

  12. A tRNA methyltransferase paralog is important for ribosome stability and cell division in Trypanosoma brucei.

    PubMed

    Fleming, Ian M C; Paris, Zdeněk; Gaston, Kirk W; Balakrishnan, R; Fredrick, Kurt; Rubio, Mary Anne T; Alfonzo, Juan D

    2016-01-01

    Most eukaryotic ribosomes contain 26/28S, 5S, and 5.8S large subunit ribosomal RNAs (LSU rRNAs) in addition to the 18S rRNA of the small subunit (SSU rRNA). However, in kinetoplastids, a group of organisms that include medically important members of the genus Trypanosoma and Leishmania, the 26/28S large subunit ribosomal RNA is uniquely composed of 6 rRNA fragments. In addition, recent studies have shown the presence of expansion segments in the large ribosomal subunit (60S) of Trypanosoma brucei. Given these differences in structure, processing and assembly, T. brucei ribosomes may require biogenesis factors not found in other organisms. Here, we show that one of two putative 3-methylcytidine methyltransferases, TbMTase37 (a homolog of human methyltransferase-like 6, METTL6), is important for ribosome stability in T. brucei. TbMTase37 localizes to the nucleolus and depletion of the protein results in accumulation of ribosomal particles lacking srRNA 4 and reduced levels of polysome associated ribosomes. We also find that TbMTase37 plays a role in cytokinesis, as loss of the protein leads to multi-flagellated and multi-nucleated cells. PMID:26888608

  13. A tRNA methyltransferase paralog is important for ribosome stability and cell division in Trypanosoma brucei

    PubMed Central

    Fleming, Ian M. C.; Paris, Zdeněk; Gaston, Kirk W.; Balakrishnan, R.; Fredrick, Kurt; Rubio, Mary Anne T.; Alfonzo, Juan D.

    2016-01-01

    Most eukaryotic ribosomes contain 26/28S, 5S, and 5.8S large subunit ribosomal RNAs (LSU rRNAs) in addition to the 18S rRNA of the small subunit (SSU rRNA). However, in kinetoplastids, a group of organisms that include medically important members of the genus Trypanosoma and Leishmania, the 26/28S large subunit ribosomal RNA is uniquely composed of 6 rRNA fragments. In addition, recent studies have shown the presence of expansion segments in the large ribosomal subunit (60S) of Trypanosoma brucei. Given these differences in structure, processing and assembly, T. brucei ribosomes may require biogenesis factors not found in other organisms. Here, we show that one of two putative 3-methylcytidine methyltransferases, TbMTase37 (a homolog of human methyltransferase-like 6, METTL6), is important for ribosome stability in T. brucei. TbMTase37 localizes to the nucleolus and depletion of the protein results in accumulation of ribosomal particles lacking srRNA 4 and reduced levels of polysome associated ribosomes. We also find that TbMTase37 plays a role in cytokinesis, as loss of the protein leads to multi-flagellated and multi-nucleated cells. PMID:26888608

  14. In Situ Accessibility of Saccharomyces cerevisiae 26S rRNA to Cy3-Labeled Oligonucleotide Probes Comprising the D1 and D2 Domains

    PubMed Central

    Inácio, João; Behrens, Sebastian; Fuchs, Bernhard M.; Fonseca, Álvaro; Spencer-Martins, Isabel; Amann, Rudolf

    2003-01-01

    Fluorescence in situ hybridization (FISH) has proven to be most useful for the identification of microorganisms. However, species-specific oligonucleotide probes often fail to give satisfactory results. Among the causes leading to low hybridization signals is the reduced accessibility of the targeted rRNA site to the oligonucleotide, mainly for structural reasons. In this study we used flow cytometry to determine whole-cell fluorescence intensities with a set of 32 Cy3-labeled oligonucleotide probes covering the full length of the D1 and D2 domains in the 26S rRNA of Saccharomyces cerevisiae PYCC 4455T. The brightest signal was obtained with a probe complementary to positions 223 to 240. Almost half of the probes conferred a fluorescence intensity above 60% of the maximum, whereas only one probe could hardly detect the cells. The accessibility map based on the results obtained can be extrapolated to other yeasts, as shown experimentally with 27 additional species (14 ascomycetes and 13 basidiomycetes). This work contributes to a more rational design of species-specific probes for yeast identification and monitoring. PMID:12732564

  15. Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome.

    PubMed

    Melnikov, Sergey V; Söll, Dieter; Steitz, Thomas A; Polikanov, Yury S

    2016-06-01

    Cisplatin is a widely prescribed anticancer drug, which triggers cell death by covalent binding to a broad range of biological molecules. Among cisplatin targets, cellular RNAs remain the most poorly characterized molecules. Although cisplatin was shown to inactivate essential RNAs, including ribosomal, spliceosomal and telomeric RNAs, cisplatin binding sites in most RNA molecules are unknown, and therefore it remains challenging to study how modifications of RNA by cisplatin contributes to its toxicity. Here we report a 2.6Å-resolution X-ray structure of cisplatin-modified 70S ribosome, which describes cisplatin binding to the ribosome and provides the first nearly atomic model of cisplatin-RNA complex. We observe nine cisplatin molecules bound to the ribosome and reveal consensus structural features of the cisplatin-binding sites. Two of the cisplatin molecules modify conserved functional centers of the ribosome-the mRNA-channel and the GTPase center. In the mRNA-channel, cisplatin intercalates between the ribosome and the messenger RNA, suggesting that the observed inhibition of protein synthesis by cisplatin is caused by impaired mRNA-translocation. Our structure provides an insight into RNA targeting and inhibition by cisplatin, which can help predict cisplatin-binding sites in other cellular RNAs and design studies to elucidate a link between RNA modifications by cisplatin and cisplatin toxicity. PMID:27079977

  16. The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN

    PubMed Central

    Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth

    2015-01-01

    Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078

  17. Phylogenetic Analysis of Ruminant Theileria spp. from China Based on 28S Ribosomal RNA Gene

    PubMed Central

    Gou, Huitian; Guan, Guiquan; Ma, Miling; Liu, Aihong; Liu, Zhijie; Xu, Zongke; Ren, Qiaoyun; Li, Youquan; Yang, Jifei; Chen, Ze

    2013-01-01

    Species identification using DNA sequences is the basis for DNA taxonomy. In this study, we sequenced the ribosomal large-subunit RNA gene sequences (3,037-3,061 bp) in length of 13 Chinese Theileria stocks that were infective to cattle and sheep. The complete 28S rRNA gene is relatively difficult to amplify and its conserved region is not important for phylogenetic study. Therefore, we selected the D2-D3 region from the complete 28S rRNA sequences for phylogenetic analysis. Our analyses of 28S rRNA gene sequences showed that the 28S rRNA was useful as a phylogenetic marker for analyzing the relationships among Theileria spp. in ruminants. In addition, the D2-D3 region was a short segment that could be used instead of the whole 28S rRNA sequence during the phylogenetic analysis of Theileria, and it may be an ideal DNA barcode. PMID:24327775

  18. Structure and Function of the Ribosomal Frameshifting Pseudoknot RNA from Beet Western Yellow Virus

    SciTech Connect

    Egli, M.; Sarkhel, S.; Minasov, G.; Rich, A.

    2010-03-05

    Many viruses reprogram ribosomes to produce two different proteins from two different reading frames. So-called -1 frameshifting often involves pairwise alignment of two adjacent tRNAs at a 'slippery' sequence in the ribosomal A and P sites such that an overlapping codon is shifted upstream by one base relative to the zero frame. In the majority of cases, an RNA pseudoknot located downstream stimulates this type of frameshift. Crystal structures of the frameshifting RNA pseudoknot from Beet Western Yellow Virus (BWYV) have provided a detailed picture of the tertiary interactions stabilizing this folding motif, including a minor-groove triplex and quadruple-base interactions. The structure determined at atomic resolution revealed the locations of several magnesium ions and provided insights into the role of structured water stabilizing the RNA. Systematic in vitro and in vivo mutational analyses based on the structural results revealed specific tertiary interactions and regions in the pseudoknot that drastically change frameshifting efficiency. Here, we summarize recent advances in our understanding of pseudoknot-mediated ribosomal frameshifting on the basis of the insights gained from structural and functional studies of the RNA pseudoknot from BWYV.

  19. Pokeweed antiviral protein depurinates the sarcin/ricin loop of the rRNA prior to binding of aminoacyl-tRNA to the ribosomal A-site

    PubMed Central

    Mansouri, Sheila; Nourollahzadeh, Emad; Hudak, Katalin A.

    2006-01-01

    Ribosome-inactivating proteins, such as the pokeweed antiviral protein (PAP), inhibit translation by depurinating the conserved sarcin/ricin loop of the large ribosomal RNA. Depurinated ribosomes are unable to bind elongation factor 2, and, thus, the translocation step of the elongation cycle is inhibited. Though the consequences of depurination are well characterized, the ribosome conformation required for depurination to take place has not been described. In this report, we correlate biochemical and genetic data to conclude that pokeweed antiviral protein depurinates the sarcin/ricin loop when the A-site of the ribosomal peptidyl-transferase center is unoccupied. We show that prior incubation of ribosomes with puromycin, an analog of the 3′-terminus of aminoacyl-tRNA, inhibits both binding and depurination by PAP in a concentration-dependent manner. Expression of PAP in the yeast strain mak8-1 results in little depurination unless the cells are lysed, a process that would promote loss of aminoacyl-tRNA from the ribosome. The mak8-1 strain is known to exhibit a higher affinity for aminoacyl-tRNA compared with wild-type cells, and therefore, its ribosomes are more resistant to PAP in vivo. These data contribute to the mechanism of action of pokeweed antiviral protein; specifically, they have uncovered the ribosomal conformation required for depurination that leads to subsequent translation inhibition. PMID:16888324

  20. Reduced expression of ribosomal proteins relieves microRNA-mediated repression.

    PubMed

    Janas, Maja M; Wang, Eric; Love, Tara; Harris, Abigail S; Stevenson, Kristen; Semmelmann, Karlheinz; Shaffer, Jonathan M; Chen, Po-Hao; Doench, John G; Yerramilli, Subrahmanyam V B K; Neuberg, Donna S; Iliopoulos, Dimitrios; Housman, David E; Burge, Christopher B; Novina, Carl D

    2012-04-27

    MicroRNAs (miRNAs) regulate physiological and pathological processes by inducing posttranscriptional repression of target messenger RNAs (mRNAs) via incompletely understood mechanisms. To discover factors required for human miRNA activity, we performed an RNAi screen using a reporter cell line of miRNA-mediated repression of translation initiation. We report that reduced expression of ribosomal protein genes (RPGs) dissociated miRNA complexes from target mRNAs, leading to increased polysome association, translation, and stability of miRNA-targeted mRNAs relative to untargeted mRNAs. RNA sequencing of polysomes indicated substantial overlap in sets of genes exhibiting increased or decreased polysomal association after Argonaute or RPG knockdowns, suggesting similarity in affected pathways. miRNA profiling of monosomes and polysomes demonstrated that miRNAs cosediment with ribosomes. RPG knockdowns decreased miRNAs in monosomes and increased their target mRNAs in polysomes. Our data show that most miRNAs repress translation and that the levels of RPGs modulate miRNA-mediated repression of translation initiation. PMID:22541556

  1. Structural alterations of the ribosomal RNA genes in leukemic cells.

    PubMed

    Smirnova, I A

    1992-01-01

    Cloned 6.7 kb EcoR1 fragment of mice rDNA was used as a hybridization probe for rDNA structure analysis in mice, rat and calf haemopoietic tumor and normal cells. EcoR1, BglII and Pst1 restriction fragment length polymorphism (RFLP) was found in neoplastic rDNA and was not revealed in normal ones. The rRNA gene rearrangements were observed not only in spacer region but in coding sequences of the genes. Leukemic cells reveal also rDNA amplification. A role of genetic rearrangements of rDNA for mechanisms of carcinogenesis is suggested. PMID:1342066

  2. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export

    PubMed Central

    Neumann, Bettina; Wu, Haijia; Hackmann, Alexandra; Krebber, Heike

    2016-01-01

    The DEAD-box RNA-helicase Dbp5/Rat8 is known for its function in nuclear mRNA export, where it displaces the export receptor Mex67 from the mRNA at the cytoplasmic side of the nuclear pore complex (NPC). Here we show that Dbp5 is also required for the nuclear export of both pre-ribosomal subunits. Yeast temperature-sensitive dbp5 mutants accumulate both ribosomal particles in their nuclei. Furthermore, Dbp5 genetically and physically interacts with known ribosomal transport factors such as Nmd3. Similar to mRNA export we show that also for ribosomal transport Dbp5 is required at the cytoplasmic side of the NPC. However, unlike its role in mRNA export, Dbp5 does not seem to undergo its ATPase cycle for this function, as ATPase-deficient dbp5 mutants that selectively inhibit mRNA export do not affect ribosomal transport. Furthermore, mutants of GLE1, the ATPase stimulating factor of Dbp5, show no major ribosomal export defects. Consequently, while Dbp5 uses its ATPase cycle to displace the export receptor Mex67 from the translocated mRNAs, Mex67 remains bound to ribosomal subunits upon transit to the cytoplasm, where it is detectable on translating ribosomes. Therefore, we propose a model, in which Dbp5 supports ribosomal transport by capturing ribosomal subunits upon their cytoplasmic appearance at the NPC, possibly by binding export factors such as Mex67. Thus, our findings reveal that although different ribonucleoparticles, mRNAs and pre-ribosomal subunits, use shared export factors, they utilize different transport mechanisms. PMID:26872259

  3. The Small Ribosomal Subunit RNA Isoforms in Plasmodium Cynomolgi

    PubMed Central

    Corredor, V.; Enea, V.

    1994-01-01

    We report the isolation, characterization and analysis of the small subunit rRNA genes in Plasmodium cynomolgi (Ceylon). As in other Plasmodium species, these genes are present in low copy number, are unlinked and form two types that are distinct in sequence and are expressed stage specifically. The asexually expressed (type A) genes are present in four copies in the Ceylon(-) and in five copies in the Berok(-) strain. Surprisingly, the sexually expressed (type B) gene is present in a single copy. The vast majority of the differences between gene types is confined to the variable regions. The pattern of divergence is different from that observed in Plasmodium berghei or in Plasmodium falciparum. Analysis of the small subunit rRNA sequences of P. cynomolgi, P. berghei and P. falciparum, indicates that the two gene types do not evolve independently but rather interact (through gene conversion or some form of recombination) to such an extent as to erase whatever stage-specific sequence signatures they may have had in the last common ancestor. PMID:8005440

  4. Protein-RNA cross-linking in the ribosomes of yeast under oxidative stress.

    PubMed

    Mirzaei, Hamid; Regnier, Fred

    2006-12-01

    Living systems have efficient degradative pathways for dealing with the fact that reactive oxygen species (ROS) derived from cellular metabolism and the environment oxidatively damage proteins and DNA. But aggregation and cross-linking can occur as well, leading to a series of problems including disruption of cellular regulation, mutations, and even cell death. The mechanism(s) by which protein aggregation occurs and the macromolecular species involved are poorly understood. In the study reported here, evidence is provided for a new type of aggregate between proteins and RNA in ribosomes. While studying the effect of oxidative stress induced in the yeast proteome it was noted that ribosomal proteins were widely oxidized. Eighty six percent of the proteins in yeast ribosomes were found to be carbonylated after stressing yeast cell cultures with hydrogen peroxide. Moreover, many of these proteins appeared to be cross-linked based on their coelution patterns during RPC separation. Since they were not in direct contact, it was not clear how this could occur unless it was through the RNA separating them in the ribosome. This was confirmed in a multiple-step process, the first being derivatization of all carbonylated proteins in cell lysates with biotin hydrazide through Schiff base formation. Following reduction of Schiff bases with sodium cyanoborohydride, biotinylated proteins were selected from cell lysates with avidin affinity chromatography. Oxidized proteins thus captured were then selected again using boronate affinity chromatography to capture vicinal diol-containing proteins. This would include proteins cross-linked to an RNA fragment containing a ribose residue with 2',3'-hydroxyl groups. Some glycoproteins would also be selected by this process. LC/MS/MS analyses of tryptic peptides derived from proteins captured by this process along with MASCOT searches resulted in the identification of 37 ribosomal proteins that appear to be cross-linked to RNA

  5. A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants.

    PubMed

    Martinez, German; Castellano, Mayte; Tortosa, Maria; Pallas, Vicente; Gomez, Gustavo

    2014-02-01

    Viroids are plant-pathogenic non-coding RNAs able to interfere with as yet poorly known host-regulatory pathways and to cause alterations recognized as diseases. The way in which these RNAs coerce the host to express symptoms remains to be totally deciphered. In recent years, diverse studies have proposed a close interplay between viroid-induced pathogenesis and RNA silencing, supporting the belief that viroid-derived small RNAs mediate the post-transcriptional cleavage of endogenous mRNAs by acting as elicitors of symptoms expression. Although the evidence supporting the role of viroid-derived small RNAs in pathogenesis is robust, the possibility that this phenomenon can be a more complex process, also involving viroid-induced alterations in plant gene expression at transcriptional levels, has been considered. Here we show that plants infected with the 'Hop stunt viroid' accumulate high levels of sRNAs derived from ribosomal transcripts. This effect was correlated with an increase in the transcription of ribosomal RNA (rRNA) precursors during infection. We observed that the transcriptional reactivation of rRNA genes correlates with a modification of DNA methylation in their promoter region and revealed that some rRNA genes are demethylated and transcriptionally reactivated during infection. This study reports a previously unknown mechanism associated with viroid (or any other pathogenic RNA) infection in plants providing new insights into aspects of host alterations induced by the viroid infectious cycle. PMID:24178032

  6. Quantitative studies of mRNA recruitment to the eukaryotic ribosome.

    PubMed

    Fraser, Christopher S

    2015-07-01

    The process of peptide bond synthesis by ribosomes is conserved between species, but the initiation step differs greatly between the three kingdoms of life. This is illustrated by the evolution of roughly an order of magnitude more initiation factor mass found in humans compared with bacteria. Eukaryotic initiation of translation is comprised of a number of sub-steps: (i) recruitment of an mRNA and initiator methionyl-tRNA to the 40S ribosomal subunit; (ii) migration of the 40S subunit along the 5' UTR to locate the initiation codon; and (iii) recruitment of the 60S subunit to form the 80S initiation complex. Although the mechanism and regulation of initiation has been studied for decades, many aspects of the pathway remain unclear. In this review, I will focus discussion on what is known about the mechanism of mRNA selection and its recruitment to the 40S subunit. I will summarize how the 43S preinitiation complex (PIC) is formed and stabilized by interactions between its components. I will discuss what is known about the mechanism of mRNA selection by the eukaryotic initiation factor 4F (eIF4F) complex and how the selected mRNA is recruited to the 43S PIC. The regulation of this process by secondary structure located in the 5' UTR of an mRNA will also be discussed. Finally, I present a possible kinetic model with which to explain the process of mRNA selection and recruitment to the eukaryotic ribosome. PMID:25742741

  7. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot

    NASA Technical Reports Server (NTRS)

    Su, L.; Chen, L.; Egli, M.; Berger, J. M.; Rich, A.

    1999-01-01

    Many viruses regulate translation of polycistronic mRNA using a -1 ribosomal frameshift induced by an RNA pseudoknot. A pseudoknot has two stems that form a quasi-continuous helix and two connecting loops. A 1.6 A crystal structure of the beet western yellow virus (BWYV) pseudoknot reveals rotation and a bend at the junction of the two stems. A loop base is inserted in the major groove of one stem with quadruple-base interactions. The second loop forms a new minor-groove triplex motif with the other stem, involving 2'-OH and triple-base interactions, as well as sodium ion coordination. Overall, the number of hydrogen bonds stabilizing the tertiary interactions exceeds the number involved in Watson-Crick base pairs. This structure will aid mechanistic analyses of ribosomal frameshifting.

  8. [Eukaryogenesis: a model derivated from ribosomal RNA molecular phylogenise].

    PubMed

    Perasso, R; Baroin-Tourancheau, A

    1992-01-01

    We have undertaken the construction of a broad molecular phylogeny of protists through the comparison of 28S rRNA molecules. The sequences from several major protistan phyla were aligned and combined with a broad database of metazoans, metaphytes, fungi and bacteria and we have derived dendrograms from both distance matrix and parsimony methods. In agreement with classical systematics, a number of monophyletic groups separated by large evolutionary distances were observed (those of the ciliates, the chlorophytes, etc.). From this analysis, several inferences on the eukaryogenesis can be made among which the ancient origin of the cytoskeleton, the late occurrence of the chloroplastic endosymbiosis and the simultaneous emergence of the triploblastic and diploblastic metazoan patterns. PMID:1339595

  9. Multicolor fluorescence detection of ribosomal RNA in microchannels

    NASA Astrophysics Data System (ADS)

    Balberg, Michal; Hristova, Krassimira; Mau, Margit; Frigon, Dominic; Zeringue, Henry C.; Brady, David J.; Beebe, David J.; Raskin, Lutgarde

    2000-03-01

    A micro fluidic device capable of detecting the abundance of bacteria in an environmental solution is described. The micro channels are made of poly(dimethylsioxane) (PDMS) elastomer integrated with fused silica capillaries coated with Aluminum. The detection of specific bacteria is based on molecular probes (beacons) that emit a fluorescent signal only when hybridized to the target. This method allows hybridization in solution, without immobilization, and avoids washing of the unbound probes. By marking 16S rDNA oligonucleotide probes (different genetic sequences) with different color dyes, and detecting the spectral intensity of light in the micro- channel, different micro-organisms can be detected in one sample. Miniaturization of the analytic device allows the use of small quantities of RNA molecules, as target molecules, and improves the detection limits. Future devices should incorporate a parallel array of micro-channels, and enable fast and parallel processing of the molecular signals.

  10. RPFdb: a database for genome wide information of translated mRNA generated from ribosome profiling.

    PubMed

    Xie, Shang-Qian; Nie, Peng; Wang, Yan; Wang, Hongwei; Li, Hongyu; Yang, Zhilong; Liu, Yizhi; Ren, Jian; Xie, Zhi

    2016-01-01

    Translational control is crucial in the regulation of gene expression and deregulation of translation is associated with a wide range of cancers and human diseases. Ribosome profiling is a technique that provides genome wide information of mRNA in translation based on deep sequencing of ribosome protected mRNA fragments (RPF). RPFdb is a comprehensive resource for hosting, analyzing and visualizing RPF data, available at www.rpfdb.org or http://sysbio.sysu.edu.cn/rpfdb/index.html. The current version of database contains 777 samples from 82 studies in 8 species, processed and reanalyzed by a unified pipeline. There are two ways to query the database: by keywords of studies or by genes. The outputs are presented in three levels. (i) Study level: including meta information of studies and reprocessed data for gene expression of translated mRNAs; (ii) Sample level: including global perspective of translated mRNA and a list of the most translated mRNA of each sample from a study; (iii) Gene level: including normalized sequence counts of translated mRNA on different genomic location of a gene from multiple samples and studies. To explore rich information provided by RPF, RPFdb also provides a genome browser to query and visualize context-specific translated mRNA. Overall our database provides a simple way to search, analyze, compare, visualize and download RPF data sets. PMID:26433228

  11. Sequence of the 16S ribosomal RNA from Halobacterium volcanii, an archaebacterium

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Lanter, J. M.; Woese, C. R.

    1983-01-01

    The sequence of the 16S ribosomal RNA (rRNA) from the archaebacterium Halobacterium volcanii has been determined by DNA sequencing methods. The archaebacterial rRNA is similar to its eubacterial counterpart in secondary structure. Although it is closer in sequence to the eubacterial 16S rRNA than to the eukaryotic 16S-like rRNA, the H. volcanii sequence also shows certain points of specific similarity to its eukaryotic counterpart. Since the H. volcanii sequence is closer to both the eubacterial and the eukaryotic sequences than these two are to one another, it follows that the archaebacterial sequence resembles their common ancestral sequence more closely than does either of the other two versions.

  12. 25S ribosomal RNA homologies of basidiomycetous yeasts: taxonomic and phylogenetic implications

    NASA Technical Reports Server (NTRS)

    Baharaeen, S.; Vishniac, H. S.

    1984-01-01

    Genera, families, and possibly orders of basidiomycetous yeasts can be defined by 25S rRNA homology and correlated phenotypic characters. The teleomorphic genera Filobasidium, Leucosporidium, and Rhodosporidium have greater than 96 relative binding percent (rb%) intrageneric 25S rRNA homology and significant intergeneric separation from each other and from Filobasidiella. The anamorphic genus Cryptococcus can be defined by morphology (monopolar budding), colony color, and greater than 75 rb% intrageneric homology; Vanrija is heterogeneous. Agaricostilbum (Phragmobasidiomycetes, Auriculariales), Hansenula (Ascomycotera, Endomycota), Tremella (Phragmobasidiomycetes, Tremellales), and Ustilago (Ustomycota, Ustilaginales) appear equally unrelated to the Cryptococcus, Filobasidiella, and Rhodosporidium spp. used as probes. The Filobasidiaceae and Sporidiaceae, Filobasidiales and Sporidiales, form coherent homology groups which appear to have undergone convergent 25S rRNA evolution, since their relatedness is much greater than that indicated by 5S rRNA homology. Ribosomal RNA homologies do not appear to measure evolutionary distance.

  13. Crystal structure of prokaryotic ribosomal protein L9: a bi-lobed RNA-binding protein.

    PubMed Central

    Hoffman, D W; Davies, C; Gerchman, S E; Kycia, J H; Porter, S J; White, S W; Ramakrishnan, V

    1994-01-01

    The crystal structure of protein L9 from the Bacillus stearothermophilus ribosome has been determined at 2.8 A resolution using X-ray diffraction methods. This primary RNA-binding protein has a highly elongated and unusual structure consisting of two separated domains joined by a long exposed alpha-helix. Conserved, positively charged and aromatic amino acids on the surfaces of both domains probably represent the sites of specific interactions with 23S rRNA. Comparisons with other prokaryotic L9 sequences show that while the length of the connecting alpha-helix is invariant, the sequence within the exposed central region is not conserved. This suggests that the alpha-helix has an architectural role and serves to fix the relative separation and orientation of the N- and C-terminal domains within the ribosome. The N-terminal domain has structural homology to the smaller ribosomal proteins L7/L12 and L30, and the eukaryotic RNA recognition motif (RRM). Images PMID:8306963

  14. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae.

    PubMed Central

    Van de Peer, Y; Rensing, S A; Maier, U G; De Wachter, R

    1996-01-01

    Chlorarachniophytes are amoeboid algae with chlorophyll a and b containing plastids that are surrounded by four membranes instead of two as in plants and green algae. These extra membranes form important support for the hypothesis that chlorarachniophytes have acquired their plastids by the ingestion of another eukaryotic plastid-containing alga. Chlorarachniophytes also contain a small nucleus-like structure called the nucleomorph situated between the two inner and the two outer membranes surrounding the plastid. This nucleomorph is a remnant of the endosymbiont's nucleus and encodes, among other molecules, small subunit ribosomal RNA. Previous phylogenetic analyses on the basis of this molecule provided unexpected and contradictory evidence for the origin of the chlorarachniophyte endosymbiont. We developed a new method for measuring the substitution rates of the individual nucleotides of small subunit ribosomal RNA. From the resulting substitution rate distribution, we derived an equation that gives a more realistic relationship between sequence dissimilarity and evolutionary distance than equations previously available. Phylogenetic trees constructed on the basis of evolutionary distances computed by this new method clearly situate the chlorarachniophyte nucleomorphs among the green algae. Moreover, this relationship is confirmed by transversion analysis of the Chlorarachnion plastid small subunit ribosomal RNA. PMID:8755544

  15. Mitochondrial Enzyme Rhodanese Is Essential for 5 S Ribosomal RNA Import into Human Mitochondria*

    PubMed Central

    Smirnov, Alexandre; Comte, Caroline; Mager-Heckel, Anne-Marie; Addis, Vanessa; Krasheninnikov, Igor A.; Martin, Robert P.; Entelis, Nina; Tarassov, Ivan

    2010-01-01

    5 S rRNA is an essential component of ribosomes. In eukaryotic cells, it is distinguished by particularly complex intracellular traffic, including nuclear export and re-import. The finding that in mammalian cells 5 S rRNA can eventually escape its usual circuit toward nascent ribosomes to get imported into mitochondria has made the scheme more complex, and it has raised questions about both the mechanism of 5 S rRNA mitochondrial targeting and its function inside the organelle. Previously, we showed that import of 5 S rRNA into mitochondria requires unknown cytosolic proteins. Here, one of them was identified as mitochondrial thiosulfate sulfurtransferase, rhodanese. Rhodanese in its misfolded form was found to possess a strong and specific 5 S rRNA binding activity, exploiting sites found earlier to function as signals of 5 S rRNA mitochondrial localization. The interaction with 5 S rRNA occurs cotranslationally and results in formation of a stable complex in which rhodanese is preserved in a compact enzymatically inactive conformation. Human 5 S rRNA in a branched Mg2+-free form, upon its interaction with misfolded rhodanese, demonstrates characteristic functional traits of Hsp40 cochaperones implicated in mitochondrial precursor protein targeting, suggesting that it may use this mechanism to ensure its own mitochondrial localization. Finally, silencing of the rhodanese gene caused not only a proportional decrease of 5 S rRNA import but also a general inhibition of mitochondrial translation, indicating the functional importance of the imported 5 S rRNA inside the organelle. PMID:20663881

  16. Role of a ribosomal RNA phosphate oxygen during the EF-G–triggered GTP hydrolysis

    PubMed Central

    Koch, Miriam; Flür, Sara; Kreutz, Christoph; Ennifar, Eric; Micura, Ronald; Polacek, Norbert

    2015-01-01

    Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases. PMID:25941362

  17. A resource of ribosomal RNA-depleted RNA-Seq data from different normal adult and fetal human tissues

    PubMed Central

    Choy, Jocelyn Y.H.; Boon, Priscilla L.S.; Bertin, Nicolas; Fullwood, Melissa J.

    2015-01-01

    Gene expression is the most fundamental level at which the genotype leads to the phenotype of the organism. Enabled by ultra-high-throughput next-generation DNA sequencing, RNA-Seq involves shotgun sequencing of fragmented RNA transcripts by next-generation sequencing followed by in silico assembly, and is rapidly becoming the most popular method for gene expression analysis. Poly[A]+ RNA-Seq analyses of normal human adult tissue samples such as Illumina’s Human BodyMap 2.0 Project and the RNA-Seq atlas have provided a useful global resource and framework for comparisons with diseased tissues such as cancer. However, these analyses have failed to provide information on poly[A]−RNA, which is abundant in our cells. The most recent advances in RNA-Seq analyses use ribosomal RNA-depletion to provide information on both poly[A]+ and poly[A]−RNA. In this paper, we describe the use of Illumina’s HiSeq 2000 to generate high quality rRNA-depleted RNA-Seq datasets from human fetal and adult tissues. The datasets reported here will be useful in understanding the different expression profiles in different tissues. PMID:26594381

  18. Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome

    PubMed Central

    Melnikov, Sergey V.; Söll, Dieter; Steitz, Thomas A.; Polikanov, Yury S.

    2016-01-01

    Cisplatin is a widely prescribed anticancer drug, which triggers cell death by covalent binding to a broad range of biological molecules. Among cisplatin targets, cellular RNAs remain the most poorly characterized molecules. Although cisplatin was shown to inactivate essential RNAs, including ribosomal, spliceosomal and telomeric RNAs, cisplatin binding sites in most RNA molecules are unknown, and therefore it remains challenging to study how modifications of RNA by cisplatin contributes to its toxicity. Here we report a 2.6Å-resolution X-ray structure of cisplatin-modified 70S ribosome, which describes cisplatin binding to the ribosome and provides the first nearly atomic model of cisplatin–RNA complex. We observe nine cisplatin molecules bound to the ribosome and reveal consensus structural features of the cisplatin-binding sites. Two of the cisplatin molecules modify conserved functional centers of the ribosome—the mRNA-channel and the GTPase center. In the mRNA-channel, cisplatin intercalates between the ribosome and the messenger RNA, suggesting that the observed inhibition of protein synthesis by cisplatin is caused by impaired mRNA-translocation. Our structure provides an insight into RNA targeting and inhibition by cisplatin, which can help predict cisplatin-binding sites in other cellular RNAs and design studies to elucidate a link between RNA modifications by cisplatin and cisplatin toxicity. PMID:27079977

  19. Structure of the small ribosomal subunit RNA of the pulmonate snail, Limicolaria kambeul, and phylogenetic analysis of the Metazoa.

    PubMed

    Winnepennickx, B; Backeljau, T; van de Peer, Y; De Wachter, R

    1992-09-01

    The complete nucleotide sequence of the small ribosomal subunit RNA of the gastropod, Limicolaria kambeul, was determined and used to infer a secondary structure model. In order to clarify the phylogenetic position of the Mollusca among the Metazoa, an evolutionary tree was constructed by neighbor-joining, starting from an alignment of small ribosomal subunit RNA sequences. The Mollusca appear to be a monophyletic group, related to Arthropoda and Chordata in an unresolved trichotomy. PMID:1505675

  20. Identification of bacterial sRNA regulatory targets using ribosome profiling

    PubMed Central

    Wang, Jing; Rennie, William; Liu, Chaochun; Carmack, Charles S.; Prévost, Karine; Caron, Marie-Pier; Massé, Eric; Ding, Ye; Wade, Joseph T.

    2015-01-01

    Bacteria express large numbers of non-coding, regulatory RNAs known as ‘small RNAs’ (sRNAs). sRNAs typically regulate expression of multiple target messenger RNAs (mRNAs) through base-pairing interactions. sRNA:mRNA base-pairing often results in altered mRNA stability and/or altered translation initiation. Computational identification of sRNA targets is challenging due to the requirement for only short regions of base-pairing that can accommodate mismatches. Experimental approaches have been applied to identify sRNA targets on a genomic scale, but these focus only on those targets regulated at the level of mRNA stability. Here, we utilize ribosome profiling (Ribo-seq) to experimentally identify regulatory targets of the Escherichia coli sRNA RyhB. We not only validate a majority of known RyhB targets using the Ribo-seq approach, but also discover many novel ones. We further confirm regulation of a selection of known and novel targets using targeted reporter assays. By mutating nucleotides in the mRNA of a newly discovered target, we demonstrate direct regulation of this target by RyhB. Moreover, we show that Ribo-seq distinguishes between mRNAs regulated at the level of RNA stability and those regulated at the level of translation. Thus, Ribo-seq represents a powerful approach for genome-scale identification of sRNA targets. PMID:26546513

  1. Identification of bacterial sRNA regulatory targets using ribosome profiling.

    PubMed

    Wang, Jing; Rennie, William; Liu, Chaochun; Carmack, Charles S; Prévost, Karine; Caron, Marie-Pier; Massé, Eric; Ding, Ye; Wade, Joseph T

    2015-12-01

    Bacteria express large numbers of non-coding, regulatory RNAs known as 'small RNAs' (sRNAs). sRNAs typically regulate expression of multiple target messenger RNAs (mRNAs) through base-pairing interactions. sRNA:mRNA base-pairing often results in altered mRNA stability and/or altered translation initiation. Computational identification of sRNA targets is challenging due to the requirement for only short regions of base-pairing that can accommodate mismatches. Experimental approaches have been applied to identify sRNA targets on a genomic scale, but these focus only on those targets regulated at the level of mRNA stability. Here, we utilize ribosome profiling (Ribo-seq) to experimentally identify regulatory targets of the Escherichia coli sRNA RyhB. We not only validate a majority of known RyhB targets using the Ribo-seq approach, but also discover many novel ones. We further confirm regulation of a selection of known and novel targets using targeted reporter assays. By mutating nucleotides in the mRNA of a newly discovered target, we demonstrate direct regulation of this target by RyhB. Moreover, we show that Ribo-seq distinguishes between mRNAs regulated at the level of RNA stability and those regulated at the level of translation. Thus, Ribo-seq represents a powerful approach for genome-scale identification of sRNA targets. PMID:26546513

  2. The functional half-life of an mRNA depends on the ribosome spacing in an early coding region.

    PubMed

    Pedersen, Margit; Nissen, Søren; Mitarai, Namiko; Lo Svenningsen, Sine; Sneppen, Kim; Pedersen, Steen

    2011-03-18

    Bacterial mRNAs are translated by closely spaced ribosomes and degraded from the 5'-end, with half-lives of around 2 min at 37 °C in most cases. Ribosome-free or "naked" mRNA is known to be readily degraded, but the initial event that inactivates the mRNA functionally has not been fully described. Here, we characterize a determinant of the functional stability of an mRNA, which is located in the early coding region. Using literature values for the mRNA half-lives of variant lacZ mRNAs in Escherichia coli, we modeled how the ribosome spacing is affected by the translation rate of the individual codons. When comparing the ribosome spacing at various segments of the mRNA to its functional half-life, we found a clear correlation between the functional mRNA half-life and the ribosome spacing in the mRNA region approximately between codon 20 and codon 45. From this finding, we predicted that inserts of slowly translated codons before codon 20 or after codon 45 should shorten or prolong, respectively, the functional mRNA half-life by altering the ribosome density in the important region. These predictions were tested on eight new lacZ variants, and their experimentally determined mRNA half-lives all supported the model. We thus suggest that translation-rate-mediated differences in the spacing between ribosomes in this early coding region is a parameter that determines the mRNAs functional half-life. We present a model that is in accordance with many earlier observations and that allows a prediction of the functional half-life of a given mRNA sequence. PMID:21255584

  3. Conformation of 4.5S RNA in the signal recognition particle and on the 30S ribosomal subunit

    PubMed Central

    GU, SHAN-QING; JÖCKEL, JOHANNES; BEINKER, PHILIPP; WARNECKE, JENS; SEMENKOV, YURI P.; RODNINA, MARINA V.; WINTERMEYER, WOLFGANG

    2005-01-01

    The signal recognition particle (SRP) from Escherichia coli consists of 4.5S RNA and protein Ffh. It is essential for targeting ribosomes that are translating integral membrane proteins to the translocation pore in the plasma membrane. Independently of Ffh, 4.5S RNA also interacts with elongation factor G (EF-G) and the 30S ribosomal subunit. Here we use a cross-linking approach to probe the conformation of 4.5S RNA in SRP and in the complex with the 30S ribosomal subunit and to map the binding site. The UV-activatable cross-linker p-azidophenacyl bromide (AzP) was attached to positions 1, 21, and 54 of wild-type or modified 4.5S RNA. In SRP, cross-links to Ffh were formed from AzP in all three positions in 4.5S RNA, indicating a strongly bent conformation in which the 5′ end (position 1) and the tetraloop region (including position 54) of the molecule are close to one another and to Ffh. In ribosomal complexes of 4.5S RNA, AzP in both positions 1 and 54 formed cross-links to the 30S ribosomal subunit, independently of the presence of Ffh. The major cross-linking target on the ribosome was protein S7; minor cross-links were formed to S2, S18, and S21. There were no cross-links from 4.5S RNA to the 50S subunit, where the primary binding site of SRP is located close to the peptide exit. The functional role of 4.5S RNA binding to the 30S subunit is unclear, as the RNA had no effect on translation or tRNA translocation on the ribosome. PMID:16043501

  4. An intercistronic region and ribosome-binding site in bacterial messenger RNA.

    PubMed Central

    Platt, T; Yanofsky, C

    1975-01-01

    A messenger RNA fragment about 220 nucleotides long has been isolated from 32-P-labeled tryptophan operon mRNA of Escherichia coli. When point mutations at the end of trpB and the beginning of trpA were introduced, the resulting nucleotide changes were found; hence the mRNA fragment must include the trpB-trpA intercistronic region. Most of the nucleotide sequences can be assigned to specific locations in the structural genes, based on the amino-acid sequences of the trpB and trpA proteins. In vitro, ribosomes bind to this piece of mRNA and protect from nuclease attack a region about 40 nucleotides long, containing a central AUG codon. The triplet codons to the 3' side of this AUG correspond to the first seven amino acids of the trpA protein; the codons to the 5' side correspond to the last six amino acids of the trpB protein. Translation of trpB is terminated by single UGA codon, which overlaps the trpA AUG initiation codon: UGAUG. Thus the untranslated "intercistronic" region consists of only two nucleotides. The RNA sequence spanning this region undoubtedly fulfills two functions, specifying ribosome recognition signals as well as encoding amino-acid sequences. Images PMID:1094468

  5. A unique combination of rare mitochondrial ribosomal RNA variants affects the kinetics of complex I assembly.

    PubMed

    Porcelli, Anna Maria; Calvaruso, Maria Antonietta; Iommarini, Luisa; Kurelac, Ivana; Zuntini, Roberta; Ferrari, Simona; Gasparre, Giuseppe

    2016-06-01

    Mitochondrial DNA (mtDNA) mutations in respiratory complexes subunits contribute to a large spectrum of human diseases. Nonetheless, ribosomal RNA variants remain largely under-investigated from a functional point of view. We here report a unique combination of two rare mitochondrial rRNA variants detected by serendipity in a subject with chronic granulomatous disease and never reported to co-occur within the same mitochondrial haplotype. In silico prediction of the mitochondrial ribosomal structure showed a dramatic rearrangement of the rRNA secondary structure. Functional investigation of cybrids carrying this unique haplotype demonstrated that the co-occurrence of the two rRNA variants determines a slow-down of the mitochondrial protein synthesis, especially in cells with an elevated metabolic rate, which impairs the assembly kinetics of Complex I, induces a bioenergetic defect and stimulates reactive oxygen species production. In conclusion, our results point to a sub-pathogenic role for these two rare mitochondrial rRNA variants, when found in the unique combination here reported in a single individual. PMID:27102412

  6. RNA Mimicry by the Fap7 Adenylate Kinase in Ribosome Biogenesis

    PubMed Central

    Réty, Stéphane; Lebaron, Simon; Deschamps, Patrick; Bareille, Joseph; Jombart, Julie; Robert-Paganin, Julien; Delbos, Lila; Chardon, Florian; Zhang, Elodie; Charenton, Clément; Tollervey, David; Leulliot, Nicolas

    2014-01-01

    During biogenesis of the 40S and 60S ribosomal subunits, the pre-40S particles are exported to the cytoplasm prior to final cleavage of the 20S pre-rRNA to mature 18S rRNA. Amongst the factors involved in this maturation step, Fap7 is unusual, as it both interacts with ribosomal protein Rps14 and harbors adenylate kinase activity, a function not usually associated with ribonucleoprotein assembly. Human hFap7 also regulates Cajal body assembly and cell cycle progression via the p53–MDM2 pathway. This work presents the functional and structural characterization of the Fap7–Rps14 complex. We report that Fap7 association blocks the RNA binding surface of Rps14 and, conversely, Rps14 binding inhibits adenylate kinase activity of Fap7. In addition, the affinity of Fap7 for Rps14 is higher with bound ADP, whereas ATP hydrolysis dissociates the complex. These results suggest that Fap7 chaperones Rps14 assembly into pre-40S particles via RNA mimicry in an ATP-dependent manner. Incorporation of Rps14 by Fap7 leads to a structural rearrangement of the platform domain necessary for the pre-rRNA to acquire a cleavage competent conformation. PMID:24823650

  7. Specific interactions of the L10(L12)4 ribosomal protein complex with mRNA, rRNA, and L11.

    PubMed

    Iben, James R; Draper, David E

    2008-03-01

    Large ribosomal subunit proteins L10 and L12 form a pentameric protein complex, L10(L12) 4, that is intimately involved in the ribosome elongation cycle. Its contacts with rRNA or other ribosomal proteins have been only partially resolved by crystallography. In Escherichia coli, L10 and L12 are encoded from a single operon for which L10(L12) 4 is a translational repressor that recognizes a secondary structure in the mRNA leader. In this study, L10(L12) 4 was expressed from the moderate thermophile Bacillus stearothermophilus to quantitatively compare strategies for binding of the complex to mRNA and ribosome targets. The minimal mRNA recognition structure is widely distributed among bacteria and has the potential to form a kink-turn structure similar to one identified in the rRNA as part of the L10(L12) 4 binding site. Mutations in equivalent positions between the two sequences have similar effects on L10(L12) 4-RNA binding affinity and identify the kink-turn motif and a loop AA sequence as important recognition elements. In contrast to the larger rRNA structure, the mRNA apparently positions the kink-turn motif and loop for protein recognition without the benefit of Mg (2+)-dependent tertiary structure. The mRNA and rRNA fragments bind L10(L12) 4 with similar affinity ( approximately 10 (8) M (-1)), but fluorescence binding studies show that a nearby protein in the ribosome, L11, enhances L10(L12) 4 binding approximately 100-fold. Thus, mRNA and ribosome targets use similar RNA features, held in different structural contexts, to recognize L10(L12) 4, and the ribosome ensures the saturation of its L10(L12) 4 binding site by means of an additional protein-protein interaction. PMID:18247578

  8. The Structural Basis for mRNA Recognition and Cleavage by the Ribosome-Dependent Endonuclease RelE

    PubMed Central

    Neubauer, Cajetan; Gao, Yong-Gui; Andersen, Kasper R.; Dunham, Christine M.; Kelley, Ann C.; Hentschel, Jendrik; Gerdes, Kenn; Ramakrishnan, V.; Brodersen, Ditlev E.

    2009-01-01

    Summary Translational control is widely used to adjust gene expression levels. During the stringent response in bacteria, mRNA is degraded on the ribosome by the ribosome-dependent endonuclease, RelE. The molecular basis for recognition of the ribosome and mRNA by RelE and the mechanism of cleavage are unknown. Here, we present crystal structures of E. coli RelE in isolation (2.5 Å) and bound to programmed Thermus thermophilus 70S ribosomes before (3.3 Å) and after (3.6 Å) cleavage. RelE occupies the A site and causes cleavage of mRNA after the second nucleotide of the codon by reorienting and activating the mRNA for 2′-OH-induced hydrolysis. Stacking of A site codon bases with conserved residues in RelE and 16S rRNA explains the requirement for the ribosome in catalysis and the subtle sequence specificity of the reaction. These structures provide detailed insight into the translational regulation on the bacterial ribosome by mRNA cleavage. PMID:20005802

  9. Decrease in Ribosomal RNA in Candida albicans Induced by Serum Exposure

    PubMed Central

    Fleischmann, Jacob; Rocha, Miguel A.

    2015-01-01

    Candida albicans is an important polymorphic human pathogen. It can switch from a unicellular yeast form to germinating hypha, which may play a role in making it the successful pathogen it is. This hyphal transformation can be triggered by various extracellular stimuli, the most potent one being serum from any source. We have previously reported that Candida albicans transiently polyadenylates portions of both the large and small subunits of ribosomal RNA, shortly after serum exposure. Northern blots at the same time suggested that serum might induce a decrease in total ribosomal RNA. We have carried out a number of experiments to carefully assess this possibility and now report that serum significantly reduces ribosomal RNA in Candida albicans. Fluorometric measurements, Northern blotting and quantitative RT-PCR, have all confirmed this decrease. Timed experiments show that serum induces this decrease rapidly, as it was seen in as early as five minutes. Cell mass is not decreased as total cellular protein content remains the same and metabolic activity does not appear to slow, as assessed by XTT assay, and by the observation that cells form hyphal structures robustly. Another hyphal inducer, N-acetylglucosamine, also caused RNA decrease, but to a lesser extent. We also observed it in non-germinating yeast, such as Candida glabrata. The reason for this decrease is unknown and overall our data suggests that decrease in rRNA does not play a causal role in hyphal transformation. Rapid and significant decrease in a molecule so central to the yeast’s biology is of some importance, and further studies, such as its effect on protein metabolism, will be required to better understand its purpose. PMID:25946110

  10. Evaluating bacterial activity from cell-specific ribosomal RNA content measured with oligonucleotide probes

    SciTech Connect

    Kemp, P.F.; Lee, S.; LaRoche, J.

    1992-10-01

    We describe a procedure for measuring the cell-specific quantity of ribosomal RNA (rRNA) and DNA in order to evaluate the frequency distribution of activity among cells. The procedure is inherently quantitative, does not require sample incubation and potentially can be taxon-specific. Fluorescently-labelled oligonucleotide probes are hybridized to the complementary 16S rRNA sequences in preserved, intact cells. The resulting cell fluorescence is proportional to cellular rRNA content and can be measured with a microscope-mounted photometer system, by image analysis, or by flow cytometry. Similarly, DNA content is measured as fluorescence of cells stained with the DNA specific fluorochrome DAPI. These are either prepared as separate samples for purposes of enumeration and DNA measurements, or are dual-labelled cells which are also hybridized with oligonucleotide probes.

  11. Evaluating bacterial activity from cell-specific ribosomal RNA content measured with oligonucleotide probes

    SciTech Connect

    Kemp, P.F.; Lee, S.; LaRoche, J.

    1992-01-01

    We describe a procedure for measuring the cell-specific quantity of ribosomal RNA (rRNA) and DNA in order to evaluate the frequency distribution of activity among cells. The procedure is inherently quantitative, does not require sample incubation and potentially can be taxon-specific. Fluorescently-labelled oligonucleotide probes are hybridized to the complementary 16S rRNA sequences in preserved, intact cells. The resulting cell fluorescence is proportional to cellular rRNA content and can be measured with a microscope-mounted photometer system, by image analysis, or by flow cytometry. Similarly, DNA content is measured as fluorescence of cells stained with the DNA specific fluorochrome DAPI. These are either prepared as separate samples for purposes of enumeration and DNA measurements, or are dual-labelled cells which are also hybridized with oligonucleotide probes.

  12. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools

    PubMed Central

    Quast, Christian; Pruesse, Elmar; Yilmaz, Pelin; Gerken, Jan; Schweer, Timmy; Yarza, Pablo; Peplies, Jörg; Glöckner, Frank Oliver

    2013-01-01

    SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches. PMID:23193283

  13. Sequence characterization of 5S ribosomal RNA from eight gram positive procaryotes

    NASA Technical Reports Server (NTRS)

    Woese, C. R.; Luehrsen, K. R.; Pribula, C. D.; Fox, G. E.

    1976-01-01

    Complete nucleotide sequences are presented for 5S rRNA from Bacillus subtilis, B. firmus, B. pasteurii, B. brevis, Lactobacillus brevis, and Streptococcus faecalis, and 5S rRNA oligonucleotide catalogs and partial sequence data are given for B. cereus and Sporosarcina ureae. These data demonstrate a striking consistency of 5S rRNA primary and secondary structure within a given bacterial grouping. An exception is B. brevis, in which the 5S rRNA sequence varies significantly from that of other bacilli in the tuned helix and the procaryotic loop. The localization of these variations suggests that B. brevis occupies an ecological niche that selects such changes. It is noted that this organism produces antibiotics which affect ribosome function.

  14. Phylogenetic relationships of the green alga Volvox carteri deduced from small-subunit ribosomal RNA comparisons.

    PubMed

    Rausch, H; Larsen, N; Schmitt, R

    1989-09-01

    The 1788-nucleotide sequence of the small-subunit ribosomal RNA (srRNA) coding region from the chlorophyte Volvox carteri was determined. The secondary structure bears features typical of the universal model of srRNA, including about 40 helices and a division into four domains. Phylogenetic relationships to 17 other eukaryotes, including two other chlorophytes, were explored by comparing srRNA sequences. Similarity values and the inspection of phylogenetic trees derived by distance matrix methods revealed a close relationship between V. carteri and Chlamydomonas reinhardtii. The results are consistent with the view that these Volvocales, and the third green alga, Nanochlorum eucaryotum, are more closely related to higher plants than to any other major eukaryotic group, but constitute a distinct lineage that has long been separated from the line leading to the higher plants. PMID:2506359

  15. Ribosomal pausing at a frameshifter RNA pseudoknot is sensitive to reading phase but shows little correlation with frameshift efficiency.

    PubMed

    Kontos, H; Napthine, S; Brierley, I

    2001-12-01

    Here we investigated ribosomal pausing at sites of programmed -1 ribosomal frameshifting, using translational elongation and ribosome heelprint assays. The site of pausing at the frameshift signal of infectious bronchitis virus (IBV) was determined and was consistent with an RNA pseudoknot-induced pause that placed the ribosomal P- and A-sites over the slippery sequence. Similarly, pausing at the simian retrovirus 1 gag/pol signal, which contains a different kind of frameshifter pseudoknot, also placed the ribosome over the slippery sequence, supporting a role for pausing in frameshifting. However, a simple correlation between pausing and frameshifting was lacking. Firstly, a stem-loop structure closely related to the IBV pseudoknot, although unable to stimulate efficient frameshifting, paused ribosomes to a similar extent and at the same place on the mRNA as a parental pseudoknot. Secondly, an identical pausing pattern was induced by two pseudoknots differing only by a single loop 2 nucleotide yet with different functionalities in frameshifting. The final observation arose from an assessment of the impact of reading phase on pausing. Given that ribosomes advance in triplet fashion, we tested whether the reading frame in which ribosomes encounter an RNA structure (the reading phase) would influence pausing. We found that the reading phase did influence pausing but unexpectedly, the mRNA with the pseudoknot in the phase which gave the least pausing was found to promote frameshifting more efficiently than the other variants. Overall, these experiments support the view that pausing alone is insufficient to mediate frameshifting and additional events are required. The phase dependence of pausing may be indicative of an activity in the ribosome that requires an optimal contact with mRNA secondary structures for efficient unwinding. PMID:11713298

  16. Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana.

    PubMed

    Merret, Rémy; Nagarajan, Vinay K; Carpentier, Marie-Christine; Park, Sunhee; Favory, Jean-Jacques; Descombin, Julie; Picart, Claire; Charng, Yee-Yung; Green, Pamela J; Deragon, Jean-Marc; Bousquet-Antonelli, Cécile

    2015-04-30

    The reprogramming of gene expression in heat stress is a key determinant to organism survival. Gene expression is downregulated through translation initiation inhibition and release of free mRNPs that are rapidly degraded or stored. In mammals, heat also triggers 5'-ribosome pausing preferentially on transcripts coding for HSC/HSP70 chaperone targets, but the impact of such phenomenon on mRNA fate remains unknown. Here, we provide evidence that, in Arabidopsis thaliana, heat provokes 5'-ribosome pausing leading to the XRN4-mediated 5'-directed decay of translating mRNAs. We also show that hindering HSC/HSP70 activity at 20°C recapitulates heat effects by inducing ribosome pausing and co-translational mRNA turnover. Strikingly, co-translational decay targets encode proteins with high HSC/HSP70 binding scores and hydrophobic N-termini, two characteristics that were previously observed for transcripts most prone to pausing in animals. This work suggests for the first time that stress-induced variation of translation elongation rate is an evolutionarily conserved process leading to the polysomal degradation of thousands of 'non-aberrant' mRNAs. PMID:25845591

  17. Analysis of two domains with novel RNA-processing activities throws light on the complex evolution of ribosomal RNA biogenesis

    PubMed Central

    Burroughs, A. Maxwell; Aravind, L.

    2014-01-01

    Ribosomal biogenesis has been extensively investigated, especially to identify the elusive nucleases and cofactors involved in the complex rRNA processing events in eukaryotes. Large-scale screens in yeast identified two biochemically uncharacterized proteins, TSR3 and TSR4, as being key players required for rRNA maturation. Using multiple computational approaches we identify the conserved domains comprising these proteins and establish sequence and structural features providing novel insights regarding their roles. TSR3 is unified with the DTW domain into a novel superfamily of predicted enzymatic domains, with the balance of the available evidence pointing toward an RNase role with the archaeo-eukaryotic TSR3 proteins processing rRNA and the bacterial versions potentially processing tRNA. TSR4, its other eukaryotic homologs PDCD2/rp-8, PDCD2L, Zfrp8, and trus, the predominantly bacterial DUF1963 proteins, and other uncharacterized proteins are unified into a new domain superfamily, which arose from an ancient duplication event of a strand-swapped, dimer-forming all-beta unit. We identify conserved features mediating protein-protein interactions (PPIs) and propose a potential chaperone-like function. While contextual evidence supports a conserved role in ribosome biogenesis for the eukaryotic TSR4-related proteins, there is no evidence for such a role for the bacterial versions. Whereas TSR3-related proteins can be traced to the last universal common ancestor (LUCA) with a well-supported archaeo-eukaryotic branch, TSR4-related proteins of eukaryotes are derived from within the bacterial radiation of this superfamily, with archaea entirely lacking them. This provides evidence for “systems admixture,” which followed the early endosymbiotic event, playing a key role in the emergence of the uniquely eukaryotic ribosome biogenesis process. PMID:25566315

  18. A cis-acting element in retroviral genomic RNA links Gag-Pol ribosomal frameshifting to selective viral RNA encapsidation

    PubMed Central

    Chamanian, Mastooreh; Purzycka, Katarzyna J.; Wille, Paul T.; Ha, Janice S.; McDonald, David; Gao, Yong; Le Grice, Stuart F.J.; Arts, Eric J.

    2013-01-01

    SUMMARY During retroviral RNA encapsidation two full length genomic (g) RNAs are selectively incorporated into assembling virions. Packaging involves a cis-acting packaging element (ψ) within the 5'-untranslated region of unspliced HIV-1 RNA genome. However, the mechanism(s) that selects and limits gRNAs for packaging remains uncertain. Using a dual complementation system involving bipartite HIV-1 gRNA, we observed that gRNA packaging is additionally dependent on a cis-acting RNA element, the Genomic RNA Packaging Enhancer (GRPE), found within the gag p1–p6 domain and overlapping the Gag-Pol ribosomal frameshift signal. Deleting or disrupting the two conserved GRPE stem-loops diminished gRNA packaging and infectivity >50-fold, while deleting gag sequences between ψ and GRPE had no effect. Downregulating the translation termination factor eRF1 produces defective virus particles containing 20-times more gRNA. Thus, only the HIV-1 RNAs employed for Gag-Pol translation may be specifically selected for encapsidation, possibly explaining the limitation of two gRNAs per virion. PMID:23414758

  19. Mitomycin C inhibits ribosomal RNA: a novel cytotoxic mechanism for bioreductive drugs.

    PubMed

    Snodgrass, Ryan G; Collier, Abby C; Coon, Amy E; Pritsos, Chris A

    2010-06-18

    Mitomycin C (MMC) is a commonly used and extensively studied chemotherapeutic agent requiring biological reduction for activity. Damage to nuclear DNA is thought to be its primary mechanism of cell death. Due to a lack of evidence for significant MMC activation in the nucleus and for in vivo studies demonstrating the formation of MMC-DNA adducts, we chose to investigate alternative nucleic acid targets. Real-time reverse transcription-PCR was used to determine changes in mitochondrial gene expression induced by MMC treatment. Although no consistent effects on mitochondrial mRNA expression were observed, complementary results from reverse transcription-PCR experiments and gel-shift and binding assays demonstrated that MMC rapidly decreased the transcript levels of 18S ribosomal RNA in a concentration-dependent manner. Under hypoxic conditions, transcript levels of 18S rRNA decreased by 1.5-fold compared with untreated controls within 30 min. Recovery to base line required several hours, indicating that de novo synthesis of 18S was necessary. Addition of MMC to an in vitro translation reaction significantly decreased protein production in the cell-free system. Functional assays performed using a luciferase reporter construct in vivo determined that protein translation was inhibited, further confirming this mechanism of toxicity. The interaction of MMC with ribosomal RNA and subsequent inhibition of protein translation is consistent with mechanisms proposed for other natural compounds. PMID:20418373

  20. Global shape mimicry of tRNA within a viral internal ribosome entry site mediates translational reading frame selection

    PubMed Central

    Au, Hilda H.; Cornilescu, Gabriel; Mouzakis, Kathryn D.; Ren, Qian; Burke, Jordan E.; Lee, Seonghoon; Butcher, Samuel E.; Jan, Eric

    2015-01-01

    The dicistrovirus intergenic region internal ribosome entry site (IRES) adopts a triple-pseudoknotted RNA structure and occupies the core ribosomal E, P, and A sites to directly recruit the ribosome and initiate translation at a non-AUG codon. A subset of dicistrovirus IRESs directs translation in the 0 and +1 frames to produce the viral structural proteins and a +1 overlapping open reading frame called ORFx, respectively. Here we show that specific mutations of two unpaired adenosines located at the core of the three-helical junction of the honey bee dicistrovirus Israeli acute paralysis virus (IAPV) IRES PKI domain can uncouple 0 and +1 frame translation, suggesting that the structure adopts distinct conformations that contribute to 0 or +1 frame translation. Using a reconstituted translation system, we show that ribosomes assembled on mutant IRESs that direct exclusive 0 or +1 frame translation lack reading frame fidelity. Finally, a nuclear magnetic resonance/small-angle X-ray scattering hybrid approach reveals that the PKI domain of the IAPV IRES adopts an RNA structure that resembles a complete tRNA. The tRNA shape-mimicry enables the viral IRES to gain access to the ribosome tRNA-binding sites and form intermolecular contacts with the ribosome that are necessary for initiating IRES translation in a specific reading frame. PMID:26554019

  1. Global shape mimicry of tRNA within a viral internal ribosome entry site mediates translational reading frame selection.

    PubMed

    Au, Hilda H; Cornilescu, Gabriel; Mouzakis, Kathryn D; Ren, Qian; Burke, Jordan E; Lee, Seonghoon; Butcher, Samuel E; Jan, Eric

    2015-11-24

    The dicistrovirus intergenic region internal ribosome entry site (IRES) adopts a triple-pseudoknotted RNA structure and occupies the core ribosomal E, P, and A sites to directly recruit the ribosome and initiate translation at a non-AUG codon. A subset of dicistrovirus IRESs directs translation in the 0 and +1 frames to produce the viral structural proteins and a +1 overlapping open reading frame called ORFx, respectively. Here we show that specific mutations of two unpaired adenosines located at the core of the three-helical junction of the honey bee dicistrovirus Israeli acute paralysis virus (IAPV) IRES PKI domain can uncouple 0 and +1 frame translation, suggesting that the structure adopts distinct conformations that contribute to 0 or +1 frame translation. Using a reconstituted translation system, we show that ribosomes assembled on mutant IRESs that direct exclusive 0 or +1 frame translation lack reading frame fidelity. Finally, a nuclear magnetic resonance/small-angle X-ray scattering hybrid approach reveals that the PKI domain of the IAPV IRES adopts an RNA structure that resembles a complete tRNA. The tRNA shape-mimicry enables the viral IRES to gain access to the ribosome tRNA-binding sites and form intermolecular contacts with the ribosome that are necessary for initiating IRES translation in a specific reading frame. PMID:26554019

  2. Ccr4-Not Regulates RNA Polymerase I Transcription and Couples Nutrient Signaling to the Control of Ribosomal RNA Biogenesis

    PubMed Central

    Laribee, R. Nicholas; Hosni-Ahmed, Amira; Workman, Jason J.; Chen, Hongfeng

    2015-01-01

    Ribosomal RNA synthesis is controlled by nutrient signaling through the mechanistic target of rapamycin complex 1 (mTORC1) pathway. mTORC1 regulates ribosomal RNA expression by affecting RNA Polymerase I (Pol I)-dependent transcription of the ribosomal DNA (rDNA) but the mechanisms involved remain obscure. This study provides evidence that the Ccr4-Not complex, which regulates RNA Polymerase II (Pol II) transcription, also functions downstream of mTORC1 to control Pol I activity. Ccr4-Not localizes to the rDNA and physically associates with the Pol I holoenzyme while Ccr4-Not disruption perturbs rDNA binding of multiple Pol I transcriptional regulators including core factor, the high mobility group protein Hmo1, and the SSU processome. Under nutrient rich conditions, Ccr4-Not suppresses Pol I initiation by regulating interactions with the essential transcription factor Rrn3. Additionally, Ccr4-Not disruption prevents reduced Pol I transcription when mTORC1 is inhibited suggesting Ccr4-Not bridges mTORC1 signaling with Pol I regulation. Analysis of the non-essential Pol I subunits demonstrated that the A34.5 subunit promotes, while the A12.2 and A14 subunits repress, Ccr4-Not interactions with Pol I. Furthermore, ccr4Δ is synthetically sick when paired with rpa12Δ and the double mutant has enhanced sensitivity to transcription elongation inhibition suggesting that Ccr4-Not functions to promote Pol I elongation. Intriguingly, while low concentrations of mTORC1 inhibitors completely inhibit growth of ccr4Δ, a ccr4Δ rpa12Δ rescues this growth defect suggesting that the sensitivity of Ccr4-Not mutants to mTORC1 inhibition is at least partially due to Pol I deregulation. Collectively, these data demonstrate a novel role for Ccr4-Not in Pol I transcriptional regulation that is required for bridging mTORC1 signaling to ribosomal RNA synthesis. PMID:25815716

  3. Cap-dependent translation is mediated by ‘RNA looping’ rather than ‘ribosome scanning’

    PubMed Central

    Jang, Sung Key; Paek, Ki Young

    2016-01-01

    Abstract The 40S ribosomal subunit cannot directly recognize the start codon of eukaryotic mRNAs. Instead, it recognizes the start codon after its association with the 5′-cap structure via translation initiation factors. Base-by-base inspection of the 5′UTR by a scanning ribosome is the generally accepted hypothesis of start codon selection. As part of an effort to confirm the underlying mechanism of start codon selection by the 40S ribosome, we investigated the role of eIF4G, which participates in the recruitment of 40S ribosomes to various translation enhancers, such as 5′-cap structure, poly(A) tail, and several internal ribosome entry sites. We found that an artificial translation factor composed of recombinant eIF4G fused with MS2 greatly enhanced translation of an upstream reporter gene when it was tethered to the 3′UTR. These data suggest that the 40S ribosome recruited to a translation enhancer can find the start codon by looping of the intervening RNA segment. The ‘RNA-looping’ hypothesis of translation start codon recognition was further supported by an analysis of the effect of 5′UTR length on translation efficiency and the mathematically predicted probability of RNA-loop–mediated interactions between the start codon and the 40S ribosome associated at the 5′-end. PMID:26515582

  4. rRNA Pseudouridylation Defects Affect Ribosomal Ligand Binding and Translational Fidelity from Yeast to Human Cells

    PubMed Central

    Jack, Karen; Bellodi, Cristian; Landry, Dori M.; Niederer, Rachel; Meskauskas, Arturas; Musalgaonkar, Sharmishtha; Kopmar, Noam; Krasnykh, Olya; Dean, Alison M.; Thompson, Sunnie R.; Ruggero, Davide; Dinman, Jonathan D.

    2011-01-01

    Summary How pseudouridylation (Ψ), the most common and evolutionarily conserved modification of rRNA, regulates ribosome activity is poorly understood. Medically, Ψ is important because the rRNA Ψ synthase, DKC1, is mutated in X-linked Dyskeratosis Congenita (X-DC) and Hoyeraal-Hreidarsson syndrome (HH). Here we characterize ribosomes isolated from a yeast strain where Cbf5p, the yeast homologue of DKC1, is catalytically impaired through a D95A mutation (cbf5-D95A). Ribosomes from cbf5-D95A cells display decreased affinities for tRNA binding to the A- and P-sites as well as the cricket paralysis virus IRES (Internal Ribosome Entry Site), which interacts with both the P- and E-sites of the ribosome. This biochemical impairment in ribosome activity manifests as decreased translational fidelity and IRES-dependent translational initiation, which are also evident in mouse and human cells deficient for DKC1 activity. These findings uncover specific roles for Ψ modification in ribosome-ligand interactions that are conserved in yeast, mouse, and humans. PMID:22099312

  5. Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome

    PubMed Central

    Wilden, Berthold; Savelsbergh, Andreas; Rodnina, Marina V.; Wintermeyer, Wolfgang

    2006-01-01

    The translocation of tRNA and mRNA through the ribosome is promoted by elongation factor G (EF-G), a GTPase that hydrolyzes GTP during the reaction. Recently, it was reported that, in contrast to previous observations, the affinity of EF-G was much weaker for GTP than for GDP and that ribosome-catalyzed GDP–GTP exchange would be required for translocation [Zavialov AV, Hauryliuk VV, Ehrenberg M (2005) J Biol 4:9]. We have reinvestigated GTP/GDP binding and show that EF-G binds GTP and GDP with affinities in the 20 to 40 μM range (37°C), in accordance with earlier reports. Furthermore, GDP exchange, which is extremely rapid on unbound EF-G, is retarded, rather than accelerated, on the ribosome, which, therefore, is not a nucleotide-exchange factor for EF-G. The EF-G·GDPNP complex, which is very labile, is stabilized 30,000-fold by binding to the ribosome. These findings, together with earlier kinetic results, reveal that EF-G enters the pretranslocation ribosome in the GTP-bound form and indicate that, upon ribosome-complex formation, the nucleotide-binding pocket of EF-G is closed, presumably in conjunction with GTPase activation. GTP hydrolysis is required for rapid tRNA–mRNA movement, and Pi release induces further rearrangements of both EF-G and the ribosome that are required for EF-G turnover. PMID:16940356

  6. Human Ribosomal RNA-Derived Resident MicroRNAs as the Transmitter of Information upon the Cytoplasmic Cancer Stress.

    PubMed

    Yoshikawa, Masaru; Fujii, Yoichi Robertus

    2016-01-01

    Dysfunction of ribosome biogenesis induces divergent ribosome-related diseases including ribosomopathy and occasionally results in carcinogenesis. Although many defects in ribosome-related genes have been investigated, little is known about contribution of ribosomal RNA (rRNA) in ribosome-related disorders. Meanwhile, microRNA (miRNA), an important regulator of gene expression, is derived from both coding and noncoding region of the genome and is implicated in various diseases. Therefore, we performed in silico analyses using M-fold, TargetScan, GeneCoDia3, and so forth to investigate RNA relationships between rRNA and miRNA against cellular stresses. We have previously shown that miRNA synergism is significantly correlated with disease and the miRNA package is implicated in memory for diseases; therefore, quantum Dynamic Nexus Score (DNS) was also calculated using MESer program. As a result, seventeen RNA sequences identical with known miRNAs were detected in the human rRNA and termed as rRNA-hosted miRNA analogs (rmiRNAs). Eleven of them were predicted to form stem-loop structures as pre-miRNAs, and especially one stem-loop was completely identical with hsa-pre-miR-3678 located in the non-rDNA region. Thus, these rmiRNAs showed significantly high DNS values, participation in regulation of cancer-related pathways, and interaction with nucleolar RNAs, suggesting that rmiRNAs may be stress-responsible resident miRNAs which transmit stress-tuning information in multiple levels. PMID:27517048

  7. Human Ribosomal RNA-Derived Resident MicroRNAs as the Transmitter of Information upon the Cytoplasmic Cancer Stress

    PubMed Central

    2016-01-01

    Dysfunction of ribosome biogenesis induces divergent ribosome-related diseases including ribosomopathy and occasionally results in carcinogenesis. Although many defects in ribosome-related genes have been investigated, little is known about contribution of ribosomal RNA (rRNA) in ribosome-related disorders. Meanwhile, microRNA (miRNA), an important regulator of gene expression, is derived from both coding and noncoding region of the genome and is implicated in various diseases. Therefore, we performed in silico analyses using M-fold, TargetScan, GeneCoDia3, and so forth to investigate RNA relationships between rRNA and miRNA against cellular stresses. We have previously shown that miRNA synergism is significantly correlated with disease and the miRNA package is implicated in memory for diseases; therefore, quantum Dynamic Nexus Score (DNS) was also calculated using MESer program. As a result, seventeen RNA sequences identical with known miRNAs were detected in the human rRNA and termed as rRNA-hosted miRNA analogs (rmiRNAs). Eleven of them were predicted to form stem-loop structures as pre-miRNAs, and especially one stem-loop was completely identical with hsa-pre-miR-3678 located in the non-rDNA region. Thus, these rmiRNAs showed significantly high DNS values, participation in regulation of cancer-related pathways, and interaction with nucleolar RNAs, suggesting that rmiRNAs may be stress-responsible resident miRNAs which transmit stress-tuning information in multiple levels. PMID:27517048

  8. tRNA structure and ribosomal function. I. tRNA nucleotide 27-43 mutations enhance first position wobble.

    PubMed

    Schultz, D W; Yarus, M

    1994-02-01

    Transfer RNA su7 G36 is a derivative of tRNA(Trp) with a 3'GUC anticodon complementary to the glutamine codon CAG. This tRNA requires a normally forbidden G-U wobble at the first codon position to suppress a UAG (amber) termination codon. Measurement of amber suppression by mutated su7 G36 tRNAs and correction for tRNA levels and aminoacylation allowed calculation of KUAG, a linearized index of in vivo ribosomal function. Following saturating mutagenesis of the anticodon arm of su7 G36, screening for UAG suppression using a lacZ reporter yielded tRNAs with up to 40-fold increased first position G-U wobble, judged from KUAG. The parental anticodon helix has minimized this type of miscoding, and virtually all changes in the top base-pair of the anticodon helix, nucleotides (nt) 27-43, increased the error. Thus, misincorporation of amino acids due to aberrant first position wobble is apparently prevented by normal tRNA structure, which is specifically altered by substitution at nt 27-43, the top base-pair of the anticodon helix. All 16 permutations of nt 27-43, the hotspot for increased wobble, were subsequently constructed and compared. Comparison of values for tRNA coding function, tRNA level, and aminoacylation for the 16 suggest that a tRNA conformational change, specifically involving both nt 27-43, differentially affects all these tRNA functions. This conformational alteration, which presumably occurs normally on the ribosome, appears more complex than simple breakage of the normal 27-43 base-pair. We suggest that the change is in the angle and/or flexibility of the tRNA L-shape. Among these 16 tRNAs, efficient wobble is strongly and inversely correlated with good aminoacylation and high tRNA levels; this quality may have been selected. Constraints on the sequences of natural tRNAs suggest that nt 27-43 have effects on function in many tRNAs. PMID:8107080

  9. Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana.

    PubMed

    Campell, B R; Song, Y; Posch, T E; Cullis, C A; Town, C D

    1992-03-15

    We have isolated a genomic clone containing Arabidopsis thaliana 5S ribosomal RNA (rRNA)-encoding genes (rDNA) by screening an A. thaliana library with a 5S rDNA probe from flax. The clone isolated contains seven repeat units of 497 bp, plus 11 kb of flanking genomic sequence at one border. Sequencing of individual subcloned repeat units shows that the sequence of the 5S rRNA coding region is very similar to that reported for other flowering plants. Four A. thaliana ecotypes were found to contain approx. 1000 copies of 5S rDNA per haploid genome. Southern-blot analysis of genomic DNA indicates that 5S rDNA occurs in long tandem arrays, and shows the presence of numerous restriction-site polymorphisms among the six ecotypes studied. PMID:1348233

  10. pH-dependent structural changes of helix 69 from Escherichia coli 23S ribosomal RNA

    PubMed Central

    Abeysirigunawardena, Sanjaya C.; Chow, Christine S.

    2008-01-01

    Helix 69 in 23S rRNA is a region in the ribosome that participates in a considerable number of RNA–RNA and RNA–protein interactions. Conformational flexibility is essential for such a region to interact and accommodate protein factors at different stages of protein biosynthesis. In this study, pH-dependent structural and stability changes were observed for helix 69 through a variety of spectroscopic techniques, such as circular dichroism spectroscopy, UV melting, and nuclear magnetic resonance spectroscopy. In Escherichia coli 23S rRNA, helix 69 contains pseudouridine residues at positions 1911, 1915, and 1917. The presence of these pseudouridines was found to be essential for the pH-induced conformational changes. Some of the pH-dependent changes appear to be localized to the loop region of helix 69, emphasizing the importance of the highly conserved nature of residues in this region. PMID:18268024

  11. Aminoglycoside Resistance: The Emergence of Acquired 16S Ribosomal RNA Methyltransferases.

    PubMed

    Doi, Yohei; Wachino, Jun-Ichi; Arakawa, Yoshichika

    2016-06-01

    Aminoglycoside-producing Actinobacteria are known to protect themselves from their own aminoglycoside metabolites by producing 16S ribosomal RNA methyltransferase (16S-RMTase), which prevents them from binding to the 16S rRNA targets. Ten acquired 16S-RMTases have been reported from gram-negative pathogens. Most of them posttranscriptionally methylate residue G1405 of 16S rRNA resulting in high-level resistance to gentamicin, tobramycin, amikacin, and plazomicin. Strains that produce 16S-RMTase are frequently multidrug-resistant or even extensively drug-resistant. Although the direct clinical impact of high-level aminoglycoside resistance resulting from production of 16S-RMTase is yet to be determined, ongoing spread of this mechanism will further limit treatment options for multidrug-resistant and extensively drug-resistant gram-negative infections. PMID:27208771

  12. Connecting energy landscapes with experimental rates for aminoacyl-tRNA accommodation in the ribosome.

    PubMed

    Whitford, Paul C; Onuchic, José N; Sanbonmatsu, Karissa Y

    2010-09-29

    Using explicit-solvent simulations of the 70S ribosome, the barrier-crossing attempt frequency was calculated for aminoacyl-tRNA elbow-accommodation. In seven individual trajectories (200-300 ns, each, for an aggregate time of 2.1 μs), the relaxation time of tRNA structural fluctuations was determined to be ∼10 ns, and the barrier-crossing attempt frequency of tRNA accommodation is ∼1-10 μs(-1). These calculations provide a quantitative relationship between the free-energy barrier and experimentally measured rates of accommodation, which demonstrate that the free-energy barrier of elbow-accommodation is less than 15 k(B)T, in vitro and in vivo. PMID:20806913

  13. Connecting energy landscapes with experimental rates for aminoacyl-tRNA accommodation in the ribosome

    PubMed Central

    Whitford, Paul C.; Onuchic, José N.; Sanbonmatsu, Karissa Y.

    2010-01-01

    Using explicit-solvent simulations of the 70S ribosome, the barrier-crossing attempt frequency was calculated for aminoacyl-tRNA elbow-accommodation. In seven individual trajectories (200–300 ns, each), the relaxation time of tRNA structural fluctuations was determined to be ~ 10 ns and the barrier-crossing attempt-frequency of tRNA accommodation is ~ 1–10 µs−1. These calculations provide a quantitative relationship between the free-energy barrier and experimentally-measured rates of accommodation, which demonstrate that the free-energy barrier of elbow-accommodation is less than 15 kBT, in vitro and in vivo. PMID:20806913

  14. A rapid and simple pipeline for synthesis of mRNA-ribosome-V(H)H complexes used in single-domain antibody ribosome display.

    PubMed

    Bencurova, Elena; Pulzova, Lucia; Flachbartova, Zuzana; Bhide, Mangesh

    2015-06-01

    The single-domain antibody (VHH) is a promising building block for a number of antibody-based applications. Ribosome display can successfully be used in the production of VHH. However, the construction of the expression cassette, confirmation of the translation and proper folding of the nascent chain, and the purification of the ribosome complexes, remain cumbersome tasks. Additionally, selection of the most suitable expression system can be challenging. We have designed primers that will amplify virtually all Camelidae VHH. With the help of a double-overlap extension (OE) polymerase chain reaction (PCR) we have fused VHH with the F1 fragment (T7 promoter and species-independent translation sequence) and the F2 fragment (mCherry, Myc-tag, tether, SecM arrest sequence and 3' stem loop) to generate a full-length DNA cassette. OE-PCR generated fragments were incubated directly with cell-free lysates (Leishmania torentolae, rabbit reticulocyte or E. coli) for the synthesis of mRNA-VHH-mCherry-ribosome complexes in vitro. Alternatively, the cassette was ligated in pQE-30 vector and transformed into E. coli to produce ribosome complexes in vivo. The results showed that the same expression cassette could be used to synthesize ribosome complexes with different expression systems. mCherry reporter served to confirm the synthesis and proper folding of the nascent chain, Myc-tag was useful in the rapid purification of ribosome complexes, and combination of the SecM sequence and 3' stem loop made the cassette universal, both for cells-free and E. coli in vivo. This rapid and universal pipeline can effectively be used in antibody ribosome display and VHH production. PMID:25902394

  15. RNA chaperones stimulate formation and yield of the U3 snoRNA-pre-rRNA duplexes needed for eukaryotic ribosome biogenesis

    PubMed Central

    Gérczei, Tímea; Shah, Binal N.; Manzo, Anthony J.; Walter, Nils G.; Correll, Carl C.

    2010-01-01

    To satisfy the high demand for ribosome synthesis in rapidly growing eukaryotic cells, short duplexes between the U3 small nucleolar RNA (snoRNA) and the precursor ribosomal RNA (pre-rRNA) must form quickly and with high yield. These interactions, designated the U3-ETS and U3-18S duplexes, are essential to initiate the processing of small subunit rRNA. Previously, we showed in vitro that duplexes corresponding to those in Saccharomyces cerevisiae are only observed after addition of one of two proteins: Imp3p or Imp4p. Here, we used fluorescence-based and other in vitro assays to determine whether these proteins possess RNA chaperone activities and to assess whether these activities are sufficient to satisfy the duplex yield and rate requirements expected in vivo. Assembly of both proteins with the U3 snoRNA into a chaperone complex destabilizes a U3-stem structure, apparently to expose its 18S base-pairing site. As a result, the chaperone complex accelerates formation of the U3-18S duplex from an undetectable rate to one comparable to the intrinsic rate observed for hybridizing short duplexes. The chaperone complex also stabilizes the U3-ETS duplex by 2.7 kcal/mol. These chaperone activities provide high U3-ETS duplex yield and rapid U3-18S duplex formation over a broad concentration range to help ensure that the U3-pre-rRNA interactions limit neither ribosome biogenesis nor rapid cell growth. The thermodynamic and kinetic framework used is general and thus suitable to investigate the mechanism of action of other RNA chaperones. PMID:19482034

  16. The novel organization and complete sequence of the ribosomal RNA gene of Nosema bombycis.

    PubMed

    Huang, Wei-Fone; Tsai, Shu-Jen; Lo, Chu-Fang; Soichi, Yamane; Wang, Chung-Hsiung

    2004-05-01

    We present here for the first time the complete DNA sequence data (4301bp) of the ribosomal RNA (rRNA) gene of the microsporidian type species, Nosema bombycis. Sequences for the large subunit gene (LSUrRNA: 2497bp, GenBank Accession No. ), the internal transcribed spacer (ITS: 179bp, GenBank Accession No. ), the small subunit gene (SSUrRNA: 1232bp), intergenic spacer (IGS: 279bp), and 5S region (114bp) are also given, and the secondary structure of the large subunit is discussed. The organization of the N. bombycis rRNA gene is LSUrRNA-ITS-SSUrRNA-IGS-5S. This novel arrangement, in which the LSU is 5' of the SSU, is the reverse of the organizational sequence (i.e., SSU-ITS-LSU) found in all previously reported microsporidian rRNAs, including Nosema apis. This unique character in the type species may have taxonomic implications for the members of the genus Nosema. PMID:15050536

  17. Epigenetic repression of ribosomal RNA transcription by ROCK-dependent aberrant cytoskeletal organization

    PubMed Central

    Wu, Tse-Hsiang; Kuo, Yuan-Yeh; Lee, Hsiao-Hui; Kuo, Jean-Cheng; Ou, Meng-Hsin; Chang, Zee-Fen

    2016-01-01

    It is known that ribosomal RNA (rRNA) synthesis is regulated by cellular energy and proliferation status. In this study, we investigated rRNA gene transcription in response to cytoskeletal stress. Our data revealed that the cell shape constrained by isotropic but not elongated micropatterns in HeLa cells led to a significant reduction in rRNA transcription dependent on ROCK. Expression of a dominant-active form of ROCK also repressed rRNA transcription. Isotropic constraint and ROCK over-activation led to different types of aberrant F-actin organization, but their suppression effects on rRNA transcription were similarly reversed by inhibition of histone deacetylase (HDAC) or overexpression of a dominant negative form of Nesprin, which shields the signal transmitted from actin filament to the nuclear interior. We further showed that the binding of HDAC1 to the active fraction of rDNA genes is increased by ROCK over-activation, thus reducing H3K9/14 acetylation and suppressing transcription. Our results demonstrate an epigenetic control of active rDNA genes that represses rRNA transcription in response to the cytoskeletal stress. PMID:27350000

  18. RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus

    PubMed Central

    Ishimaru, Daniella; Plant, Ewan P.; Sims, Amy C.; Yount, Boyd L.; Roth, Braden M.; Eldho, Nadukkudy V.; Pérez-Alvarado, Gabriela C.; Armbruster, David W.; Baric, Ralph S.; Dinman, Jonathan D.; Taylor, Deborah R.; Hennig, Mirko

    2013-01-01

    Messenger RNA encoded signals that are involved in programmed -1 ribosomal frameshifting (-1 PRF) are typically two-stemmed hairpin (H)-type pseudoknots (pks). We previously described an unusual three-stemmed pseudoknot from the severe acute respiratory syndrome (SARS) coronavirus (CoV) that stimulated -1 PRF. The conserved existence of a third stem–loop suggested an important hitherto unknown function. Here we present new information describing structure and function of the third stem of the SARS pseudoknot. We uncovered RNA dimerization through a palindromic sequence embedded in the SARS-CoV Stem 3. Further in vitro analysis revealed that SARS-CoV RNA dimers assemble through ‘kissing’ loop–loop interactions. We also show that loop–loop kissing complex formation becomes more efficient at physiological temperature and in the presence of magnesium. When the palindromic sequence was mutated, in vitro RNA dimerization was abolished, and frameshifting was reduced from 15 to 5.7%. Furthermore, the inability to dimerize caused by the silent codon change in Stem 3 of SARS-CoV changed the viral growth kinetics and affected the levels of genomic and subgenomic RNA in infected cells. These results suggest that the homodimeric RNA complex formed by the SARS pseudoknot occurs in the cellular environment and that loop–loop kissing interactions involving Stem 3 modulate -1 PRF and play a role in subgenomic and full-length RNA synthesis. PMID:23275571

  19. Maturation of 23S ribosomal RNA requires the exoribonuclease RNase T.

    PubMed Central

    Li, Z; Pandit, S; Deutscher, M P

    1999-01-01

    Ribosomal RNAs are generally synthesized as long, primary transcripts that must be extensively processed to generate the mature, functional species. In Escherichia coli, it is known that the initial 30S precursor is cleaved during its synthesis by the endonuclease RNase III to generate precursors to the 16S, 23S, and 5S rRNAs. However, despite extensive study, the processes by which these intermediate products are converted to their mature forms are poorly understood. In this article, we describe the maturation of 23S rRNA. Based on Northern analysis of RNA isolated from a variety of mutant strains lacking one or multiple ribonucleases, we show that maturation of the 3' terminus requires the action of RNase T, an enzyme previously implicated in the end turnover of tRNA and in the maturation of small, stable RNAs. Although other exoribonucleases can participate in shortening the 3' end of the initial RNase III cleavage product, RNase T is required for removal of the last few residues. In the absence of RNase T, 23S rRNA products with extra 3' residues accumulate and are incorporated into ribosomes, with only small effects on cell growth. Purified RNase T accurately and efficiently converts these immature ribosomes to their mature forms in vitro, whereas free RNA is processed relatively poorly. In vivo, the processing defect at the 3' end has no effect on 5' maturation, indicating that the latter process proceeds independently. We also find that a portion of the 23S rRNA that accumulates in many RNase T- cells becomes polyadenylated because of the action of poly(A) polymerase I. The requirement for RNase T in 23S rRNA maturation is discussed in relation to a model in which only this enzyme, among the eight exoribonucleases present in E. coli, is able to efficiently remove nucleotides close to the double-stranded stem generated by the pairing of the 5' and 3' termini of most stable RNAs. PMID:9917073

  20. Crystal Structure of a Luteoviral RNA Pseudoknot and Model for a Minimal Ribosomal Frameshifting Motif

    SciTech Connect

    Pallan, Pradeep S.; Marshall, William S.; Harp, Joel; Jewett III, Frederic C.; Wawrzak, Zdzislaw; Brown II, Bernard A.; Rich, Alexander; Egli, Martin

    2010-03-08

    To understand the role of structural elements of RNA pseudoknots in controlling the extent of -1-type ribosomal frameshifting, we determined the crystal structure of a high-efficiency frameshifting mutant of the pseudoknot from potato leaf roll virus (PLRV). Correlations of the structure with available in vitro frameshifting data for PLRV pseudoknot mutants implicate sequence and length of a stem-loop linker as modulators of frameshifting efficiency. Although the sequences and overall structures of the RNA pseudoknots from PLRV and beet western yellow virus (BWYV) are similar, nucleotide deletions in the linker and adjacent minor groove loop abolish frameshifting only with the latter. Conversely, mutant PLRV pseudoknots with up to four nucleotides deleted in this region exhibit nearly wild-type frameshifting efficiencies. The crystal structure helps rationalize the different tolerances for deletions in the PLRV and BWYV RNAs, and we have used it to build a three-dimensional model of the PRLV pseudoknot with a four-nucleotide deletion. The resulting structure defines a minimal RNA pseudoknot motif composed of 22 nucleotides capable of stimulating -1-type ribosomal frameshifts.

  1. MMB-GUI: a fast morphing method demonstrates a possible ribosomal tRNA translocation trajectory.

    PubMed

    Tek, Alex; Korostelev, Andrei A; Flores, Samuel Coulbourn

    2016-01-01

    Easy-to-use macromolecular viewers, such as UCSF Chimera, are a standard tool in structural biology. They allow rendering and performing geometric operations on large complexes, such as viruses and ribosomes. Dynamical simulation codes enable modeling of conformational changes, but may require considerable time and many CPUs. There is an unmet demand from structural and molecular biologists for software in the middle ground, which would allow visualization combined with quick and interactive modeling of conformational changes, even of large complexes. This motivates MMB-GUI. MMB uses an internal-coordinate, multiscale approach, yielding as much as a 2000-fold speedup over conventional simulation methods. We use Chimera as an interactive graphical interface to control MMB. We show how this can be used for morphing of macromolecules that can be heterogeneous in biopolymer type, sequence, and chain count, accurately recapitulating structural intermediates. We use MMB-GUI to create a possible trajectory of EF-G mediated gate-passing translocation in the ribosome, with all-atom structures. This shows that the GUI makes modeling of large macromolecules accessible to a wide audience. The morph highlights similarities in tRNA conformational changes as tRNA translocates from A to P and from P to E sites and suggests that tRNA flexibility is critical for translocation completion. PMID:26673695

  2. MMB-GUI: a fast morphing method demonstrates a possible ribosomal tRNA translocation trajectory

    PubMed Central

    Tek, Alex; Korostelev, Andrei A.; Flores, Samuel Coulbourn

    2016-01-01

    Easy-to-use macromolecular viewers, such as UCSF Chimera, are a standard tool in structural biology. They allow rendering and performing geometric operations on large complexes, such as viruses and ribosomes. Dynamical simulation codes enable modeling of conformational changes, but may require considerable time and many CPUs. There is an unmet demand from structural and molecular biologists for software in the middle ground, which would allow visualization combined with quick and interactive modeling of conformational changes, even of large complexes. This motivates MMB-GUI. MMB uses an internal-coordinate, multiscale approach, yielding as much as a 2000-fold speedup over conventional simulation methods. We use Chimera as an interactive graphical interface to control MMB. We show how this can be used for morphing of macromolecules that can be heterogeneous in biopolymer type, sequence, and chain count, accurately recapitulating structural intermediates. We use MMB-GUI to create a possible trajectory of EF-G mediated gate-passing translocation in the ribosome, with all-atom structures. This shows that the GUI makes modeling of large macromolecules accessible to a wide audience. The morph highlights similarities in tRNA conformational changes as tRNA translocates from A to P and from P to E sites and suggests that tRNA flexibility is critical for translocation completion. PMID:26673695

  3. Ribosomal protein S1 induces a conformational change of tmRNA; more than one protein S1 per molecule of tmRNA.

    PubMed

    Bordeau, Valérie; Felden, Brice

    2002-08-01

    tmRNA (10Sa RNA, ssrA) acts to rescue stalled bacterial ribosomes while encoding a peptide tag added trans-translationally to the nascent peptide, targeting it for proteolysis. Ribosomal protein S1 is required for tmRNA binding to isolated and poly U-programmed ribosomes. Mobility assays on native gels indicate that the binding curves of both recombinant and purified proteins S1 from E. coli is biphasic with apparent binding constants of approximately 90 and approximately 300 nM, respectively, suggesting that more than one protein interacts with tmRNA. Structural probing of native tmRNA in the presence and absence of the purified protein suggest that when S1 binds, tmRNA undergoes a significant conformational change. In the presence of the protein, nucleotides from tmRNA with enhanced (H2, H3, PK1, PK2, PK4, in and around the first triplet to be translated), or decreased (H5 and PK2), reactivity towards a probe specific for RNA single-strands are scattered throughout the molecule, with the exception of the tRNA-like domain that may be dispensable for the interaction. Converging experimental evidence suggests that ribosomal protein S1 binds to pseudoknot PK2. Previous structural studies of tmRNA in solution have revealed several discrepancies between the probing data and the phylogeny, and most of these are reconciled when analyzing tmRNA structure in complex with the protein(s). Ribosomal protein(s) S1 is proposed to set tmRNA in the mRNA mode, relieving strains that may develop when translating a looped mRNA. PMID:12457560

  4. Phylogenetic position of Cryothecomonas inferred from nuclear-encoded small subunit ribosomal RNA.

    PubMed

    Kühn, S; Lange, M; Medlin, L K

    2000-12-01

    The systematic position of the genus Cryothecomonas has been determined from an analysis of the nuclear-encoded small subunit ribosomal RNA gene of Cryothecomonas longipes and two strains of Cryothecomonas aestivalis. Our phylogenetic trees inferred from maximum likelihood, distance and maximum parsimony methods robustly show that the genus Cryothecomonas clusters within the phylum Cercozoa, and is related to the sarcomonad flagellate Heteromita globosa. Morphological data supporting the taxonomic placement of Cryothecomonas near the sarcomonad flagellates has been compiled from the literature. The high number of nucleotide substitutions found between two morphologically indistinguishable strains of Cryothecomonas aestivalis suggests the possibility of cryptic species within Cryothecomonas aestivalis. PMID:11212894

  5. Mechanical insights into ribosomal progression overcoming RNA G-quadruplex from periodical translation suppression in cells

    PubMed Central

    Endoh, Tamaki; Sugimoto, Naoki

    2016-01-01

    G-quadruplexes formed on DNA and RNA can be roadblocks to movement of polymerases and ribosome on template nucleotides. Although folding and unfolding processes of the G-quadruplexes are deliberately studied in vitro, how the mechanical and physical properties of the G-quadruplexes affect intracellular biological systems is still unclear. In this study, mRNAs with G-quadruplex forming sequences located either in the 5′ untranslated region (UTR) or in the open reading frame (ORF) were constructed to evaluate positional effects of the G-quadruplex on translation suppression in cells. Periodic fluctuation of translation suppression was observed at every three nucleotides within the ORF but not within the 5′ UTR. The results suggested that difference in motion of ribosome at the 5′ UTR and the ORF determined the ability of the G-quadruplex structure to act as a roadblock to translation in cells and provided mechanical insights into ribosomal progression to overcome the roadblock. PMID:26948955

  6. Mechanical insights into ribosomal progression overcoming RNA G-quadruplex from periodical translation suppression in cells

    NASA Astrophysics Data System (ADS)

    Endoh, Tamaki; Sugimoto, Naoki

    2016-03-01

    G-quadruplexes formed on DNA and RNA can be roadblocks to movement of polymerases and ribosome on template nucleotides. Although folding and unfolding processes of the G-quadruplexes are deliberately studied in vitro, how the mechanical and physical properties of the G-quadruplexes affect intracellular biological systems is still unclear. In this study, mRNAs with G-quadruplex forming sequences located either in the 5‧ untranslated region (UTR) or in the open reading frame (ORF) were constructed to evaluate positional effects of the G-quadruplex on translation suppression in cells. Periodic fluctuation of translation suppression was observed at every three nucleotides within the ORF but not within the 5‧ UTR. The results suggested that difference in motion of ribosome at the 5‧ UTR and the ORF determined the ability of the G-quadruplex structure to act as a roadblock to translation in cells and provided mechanical insights into ribosomal progression to overcome the roadblock.

  7. The prolyl isomerase, FKBP25, interacts with RNA-engaged nucleolin and the pre-60S ribosomal subunit.

    PubMed

    Gudavicius, Geoff; Dilworth, David; Serpa, Jason J; Sessler, Nicole; Petrotchenko, Evgeniy V; Borchers, Christoph H; Nelson, Christopher J

    2014-07-01

    Peptidyl-proline isomerases of the FK506-binding protein (FKBP) family belong to a class of enzymes that catalyze the cis-trans isomerization of prolyl-peptide bonds in proteins. A handful of FKBPs are found in the nucleus, implying that the isomerization of proline in nuclear proteins is enzymatically controlled. FKBP25 is a nuclear protein that has been shown to associate with chromatin modifiers and transcription factors. In this study, we performed the first proteomic characterization of FKBP25 and found that it interacts with numerous ribosomal proteins, ribosomal processing factors, and a small selection of chromatin modifiers. In agreement with previous reports, we found that nucleolin is a major FKBP25-interacting protein and demonstrated that this interaction is dependent on rRNA. FKBP25 interacts with the immature large ribosomal subunit in nuclear extract but does not associate with mature ribosomes, implicating this FKBP's action in ribosome biogenesis. Despite engaging nascent 60S ribosomes, FKBP25 does not affect steady-state levels of rRNAs or its pre-rRNA intermediates. We conclude that FKBP25 is likely recruited to preribosomes to chaperone one of the protein components of the ribosome large subunit. PMID:24840943

  8. Mapping of the RNA recognition site of Escherichia coli ribosomal protein S7.

    PubMed Central

    Robert, F; Gagnon, M; Sans, D; Michnick, S; Brakier-Gingras, L

    2000-01-01

    Bacterial ribosomal protein S7 initiates the folding of the 3' major domain of 16S ribosomal RNA by binding to its lower half. The X-ray structure of protein S7 from thermophilic bacteria was recently solved and found to be a modular structure, consisting of an alpha-helical domain with a beta-ribbon extension. To gain further insights into its interaction with rRNA, we cloned the S7 gene from Escherichia coli K12 into a pET expression vector and introduced 4 deletions and 12 amino acid substitutions in the protein sequence. The binding of each mutant to the lower half of the 3' major domain of 16S rRNA was assessed by filtration on nitrocellulose membranes. Deletion of the N-terminal 17 residues or deletion of the B hairpins (residues 72-89) severely decreased S7 affinity for the rRNA. Truncation of the C-terminal portion (residues 138-178), which includes part of the terminal alpha-helix, significantly affected S7 binding, whereas a shorter truncation (residues 148-178) only marginally influenced its binding. Severe effects were also observed with several strategic point mutations located throughout the protein, including Q8A and F17G in the N-terminal region, and K35Q, G54S, K113Q, and M115G in loops connecting the alpha-helices. Our results are consistent with the occurrence of several sites of contact between S7 and the 16S rRNA, in line with its role in the folding of the 3' major domain. PMID:11105763

  9. Nucleotide sequence of an exceptionally long 5.8S ribosomal RNA from Crithidia fasciculata.

    PubMed

    Schnare, M N; Gray, M W

    1982-03-25

    In Crithidia fasciculata, a trypanosomatid protozoan, the large ribosomal subunit contains five small RNA species (e, f, g, i, j) in addition to 5S rRNA [Gray, M.W. (1981) Mol. Cell. Biol. 1, 347-357]. The complete primary sequence of species i is shown here to be pAACGUGUmCGCGAUGGAUGACUUGGCUUCCUAUCUCGUUGA ... AGAmACGCAGUAAAGUGCGAUAAGUGGUApsiCAAUUGmCAGAAUCAUUCAAUUACCGAAUCUUUGAACGAAACGG ... CGCAUGGGAGAAGCUCUUUUGAGUCAUCCCCGUGCAUGCCAUAUUCUCCAmGUGUCGAA(C)OH. This sequence establishes that species i is a 5.8S rRNA, despite its exceptional length (171-172 nucleotides). The extra nucleotides in C. fasciculata 5.8S rRNA are located in a region whose primary sequence and length are highly variable among 5.8S rRNAs, but which is capable of forming a stable hairpin loop structure (the "G+C-rich hairpin"). The sequence of C. fasciculata 5.8S rRNA is no more closely related to that of another protozoan, Acanthamoeba castellanii, than it is to representative 5.8S rRNA sequences from the other eukaryotic kingdoms, emphasizing the deep phylogenetic divisions that seem to exist within the Kingdom Protista. PMID:7079176

  10. Transformation of Chloroplast Ribosomal RNA Genes in Chlamydomonas: Molecular and Genetic Characterization of Integration Events

    PubMed Central

    Newman, S. M.; Boynton, J. E.; Gillham, N. W.; Randolph-Anderson, B. L.; Johnson, A. M.; Harris, E. H.

    1990-01-01

    Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas. PMID:1981764

  11. Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA structural elements in the ribosome

    PubMed Central

    Beššeová, Ivana; Réblová, Kamila; Leontis, Neocles B.; Šponer, Jiří

    2010-01-01

    We present extensive explicit solvent molecular dynamics analysis of three RNA three-way junctions (3WJs) from the large ribosomal subunit: the 3WJ formed by Helices 90–92 (H90–H92) of 23S rRNA; the 3WJ formed by H42–H44 organizing the GTPase associated center (GAC) of 23S rRNA; and the 3WJ of 5S rRNA. H92 near the peptidyl transferase center binds the 3′-CCA end of amino-acylated tRNA. The GAC binds protein factors and stimulates GTP hydrolysis driving protein synthesis. The 5S rRNA binds the central protuberance and A-site finger (ASF) involved in bridges with the 30S subunit. The simulations reveal that all three 3WJs possess significant anisotropic hinge-like flexibility between their stacked stems and dynamics within the compact regions of their adjacent stems. The A-site 3WJ dynamics may facilitate accommodation of tRNA, while the 5S 3WJ flexibility appears to be essential for coordinated movements of ASF and 5S rRNA. The GAC 3WJ may support large-scale dynamics of the L7/L12-stalk region. The simulations reveal that H42–H44 rRNA segments are not fully relaxed and in the X-ray structures they are bent towards the large subunit. The bending may be related to L10 binding and is distributed between the 3WJ and the H42–H97 contact. PMID:20507916

  12. In vivo tmRNA protection by SmpB and pre-ribosome binding conformation in solution

    PubMed Central

    Ranaei-Siadat, Ehsan; Mérigoux, Cécile; Seijo, Bili; Ponchon, Luc; Saliou, Jean-Michel; Bernauer, Julie; Sanglier-Cianférani, Sarah; Dardel, Fréderic

    2014-01-01

    TmRNA is an abundant RNA in bacteria with tRNA and mRNA features. It is specialized in trans-translation, a translation rescuing system. We demonstrate that its partner protein SmpB binds the tRNA-like region (TLD) in vivo and chaperones the fold of the TLD-H2 region. We use an original approach combining the observation of tmRNA degradation pathways in a heterologous system, the analysis of the tmRNA digests by MS and NMR, and co-overproduction assays of tmRNA and SmpB. We study the conformation in solution of tmRNA alone or in complex with one SmpB before ribosome binding using SAXS. Our data show that Mg2+ drives compaction of the RNA structure and that, in the absence of Mg2+, SmpB has a similar effect albeit to a lesser extent. Our results show that tmRNA is intrinsically structured in solution with identical topology to that observed on complexes on ribosomes which should facilitate its subsequent recruitment by the 70S ribosome, free or preloaded with one SmpB molecule. PMID:25135523

  13. Ribosomal RNA genes of Trypanosoma brucei. Cloning of a rRNA gene containing a mobile element.

    PubMed Central

    Hasan, G; Turner, M J; Cordingley, J S

    1982-01-01

    An ordered restriction map of the ribosomal RNA genes of Trypanosoma brucei brucei is presented. Bgl II fragments of T.b.brucei genomic DNA were cloned into pAT 153, and the clones containing rDNA identified. Restriction maps were established and the sense strands identified. One clone was shown by heteroduplex mapping to contain a 1.1 kb inserted sequence which was demonstrated to be widely distributed throughout the genomes of members of the subgenus Trypanozoon. However, in two other subgenera of Trypanosoma, Nannomonas and Schizotrypanum, the sequence is far less abundant. Analysis of the genomic DNA from two serodemes of T.b.brucei showed that the sequence was present in the rRNA of only one of them, implying that the sequence is a mobile element and that its appearance in rDNA is a comparitively recent occurrence. Images PMID:6294613

  14. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family

    PubMed Central

    2010-01-01

    Background In flowering plants and animals the most common ribosomal RNA genes (rDNA) organisation is that in which 35S (encoding 18S-5.8S-26S rRNA) and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae), a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing), gene copy number (quantitative PCR) and chromosomal position (FISH) of 5S and 35S rRNA genes in ~200 species representing the family diversity and other closely related groups. Results Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases), tribe Gnaphalieae (100%) and in the "Heliantheae alliance" (23%). The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes. Conclusions Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic structure of rDNA units

  15. Phylogenetic relationships among Vairimorpha and Nosema species (Microspora) based on ribosomal RNA sequence data.

    PubMed

    Baker, M D; Vossbrinck, C R; Maddox, J V; Undeen, A H

    1994-09-01

    A portion (approximately 350 nucleotides) of the large subunit ribosomal RNA (rRNA) 5' to the 580 region (Escherichia coli numbering) was sequenced using the reverse transcriptase dideoxy method and compared for several species of Nosema and Vairimorpha. Comparison among Nosema species suggests that this genus is composed of several unrelated groups. The group which includes the type species, Nosema bombycis, consists of closely related species found primarily in Lepidoptera. Other Nosema species sequenced (Nosema kingi, Nosema algerae, and Nosema locustae) do not appear to be closely related to each other or to the lepidopteran Nosema group. Comparison among the Vairimorpha species indicates that two distinct but very closely related groups exist. The Lymantria group consists of species isolated from the gypsy moth, Lymantria dispar, while the Vairimorpha necatrix group consists of species isolated from other Lepidoptera. Intergeneric comparison of the sequence data suggests that the lepidopteran Nosema species are closely related to the Vairimorpha species. PMID:7963643

  16. Characterization of active ribosomal RNA harboring MITEs insertion in microsporidian Nosema bombycis genome.

    PubMed

    Liu, Handeng; Pan, Guoqing; Dang, Xiaoqun; Li, Tian; Zhou, Zeyang

    2013-03-01

    Microsporidia are a group of obligate intracellular parasites of medical and agricultural importance, which can infect almost all animals, including human beings. Using the genome data of Nosema bombycis, four families of miniature inverted-repeat transposable elements (MITEs) in ribosomal DNA (rDNA) were characterized in the microsporidian N. bombycis and were named LSUME1, ITSME1, SSUME1, and SSUME2, respectively. The genome-wide investigation of these MITEs shows that these MITEs families distribute randomly in N. bombycis genome. All insertion sequences have conserved characteristics of MITEs, the direct repeat sequence and terminal inverted-repeat sequence at both ends of each MITEs sequence. Additionally, using the CLC RNA Workbench Software, secondary structures of rRNA containing MITEs sequence have been predicted and were located in variable region or expansion segment. Furthermore, using two different probes, one is prepared by MITE sequence only (short probe) and the other is prepared by MITE sequence flanking partial rDNA sequence (long probe); northern blotting and dot blotting have been performed to detect the transcriptional and functional activity of the rDNA containing MITEs insertion. Fortunately, we found that the rDNA, which harbors the MITE, not only can be transcripted but also can form a complete ribosome. This is an interesting thing that one gene can keep active even when it has been inserted with another sequence. But the biological and structural significance of this observation is not readily apparent. PMID:23254587

  17. Human Argonaute 2 Is Tethered to Ribosomal RNA through MicroRNA Interactions.

    PubMed

    Atwood, Blake L; Woolnough, Jessica L; Lefevre, Gaelle M; Saint Just Ribeiro, Mariana; Felsenfeld, Gary; Giles, Keith E

    2016-08-19

    The primary role of the RNAi machinery is to promote mRNA degradation within the cytoplasm in a microRNA-dependent manner. However, both Dicer and the Argonaute protein family have expanded roles in gene regulation within the nucleus. To further our understanding of this role, we have identified chromatin binding sites for AGO2 throughout the 45S region of the human rRNA gene. The location of these sites was mirrored by the positions of AGO2 cross-linking sites identified via PAR-CLIP-seq. AGO2 binding to the rRNA within the nucleus was confirmed by RNA immunoprecipitation and quantitative-PCR. To explore a possible mechanism by which AGO2 could be recruited to the rRNA, we identified 1174 regions within the 45S rRNA transcript that have the ability to form a perfect duplex with position 2-6 (seed sequence) of each microRNA expressed in HEK293T cells. Of these potential AGO2 binding sites, 479 occurred within experimentally verified AGO2-rRNA cross-linking sites. The ability of AGO2 to cross-link to rRNA was almost completely lost in a DICER knock-out cell line. The transfection of miR-92a-2-3p into the noDICE cell line facilitated AGO2 cross-linking at a region of the rRNA that has a perfect seed match at positions 3-8, including a single G-U base pair. Knockdown of AGO2 within HEK293T cells causes a slight, but statistically significant increase in the overall rRNA synthesis rate but did not impact the ratio of processing intermediates or the recruitment of the Pol I transcription factor UBTF. PMID:27288410

  18. The Conserved Endoribonuclease YbeY Is Required for Chloroplast Ribosomal RNA Processing in Arabidopsis1

    PubMed Central

    Liu, Jinwen; Zhou, Wenbin; Liu, Guifeng; Yang, Chuanping; Sun, Yi; Wu, Wenjuan; Cao, Shenquan; Wang, Chong; Hai, Guanghui; Wang, Zhifeng; Bock, Ralph; Huang, Jirong

    2015-01-01

    Maturation of chloroplast ribosomal RNAs (rRNAs) comprises several endoribonucleolytic and exoribonucleolytic processing steps. However, little is known about the specific enzymes involved and the cleavage steps they catalyze. Here, we report the functional characterization of the single Arabidopsis (Arabidopsis thaliana) gene encoding a putative YbeY endoribonuclease. AtYbeY null mutants are seedling lethal, indicating that AtYbeY function is essential for plant growth. Knockdown plants display slow growth and show pale-green leaves. Physiological and ultrastructural analyses of atybeY mutants revealed impaired photosynthesis and defective chloroplast development. Fluorescent microcopy analysis showed that, when fused with the green fluorescence protein, AtYbeY is localized in chloroplasts. Immunoblot and RNA gel-blot assays revealed that the levels of chloroplast-encoded subunits of photosynthetic complexes are reduced in atybeY mutants, but the corresponding transcripts accumulate normally. In addition, atybeY mutants display defective maturation of both the 5′ and 3′ ends of 16S, 23S, and 4.5S rRNAs as well as decreased accumulation of mature transcripts from the transfer RNA genes contained in the chloroplast rRNA operon. Consequently, mutant plants show a severe deficiency in ribosome biogenesis, which, in turn, results in impaired plastid translational activity. Furthermore, biochemical assays show that recombinant AtYbeY is able to cleave chloroplast rRNAs as well as messenger RNAs and transfer RNAs in vitro. Taken together, our findings indicate that AtYbeY is a chloroplast-localized endoribonuclease that is required for chloroplast rRNA processing and thus for normal growth and development. PMID:25810095

  19. Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways

    PubMed Central

    Whitford, Paul C.; Geggier, Peter; Altman, Roger B.; Blanchard, Scott C.; Onuchic, José N.; Sanbonmatsu, Karissa Y.

    2010-01-01

    The ribosome is a massive ribonucleoprotein complex (∼2.4 MDa) that utilizes large-scale structural fluctuations to produce unidirectional protein synthesis. Accommodation is a key conformational change during transfer RNA (tRNA) selection that allows movement of tRNA into the ribosome. Here, we address the structure–function relationship that governs accommodation using all-atom molecular simulations and single-molecule fluorescence resonance energy transfer (smFRET). Simulations that employ an all-atom, structure-based (Gō-like) model illuminate the interplay between configurational entropy and effective enthalpy during the accommodation process. This delicate balance leads to spontaneous reversible accommodation attempts, which are corroborated by smFRET measurements. The dynamics about the endpoints of accommodation (the A/T and A/A conformations) obtained from structure-based simulations are validated by multiple 100–200 ns explicit-solvent simulations (3.2 million atoms for a cumulative 1.4 μs), and previous crystallographic analysis. We find that the configurational entropy of the 3′-CCA end of aminoacyl-tRNA resists accommodation, leading to a multistep accommodation process that encompasses a distribution of parallel pathways. The calculated mechanism is robust across simulation methods and protocols, suggesting that the structure of the accommodation corridor imposes stringent limitations on the accessible pathways. The identified mechanism and observed parallel pathways establish an atomistic framework for interpreting a large body of biochemical data and demonstrate that conformational changes during translation occur through a stochastic trial-and-error process, rather than in concerted lock-step motions. PMID:20427512

  20. Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways.

    PubMed

    Whitford, Paul C; Geggier, Peter; Altman, Roger B; Blanchard, Scott C; Onuchic, José N; Sanbonmatsu, Karissa Y

    2010-06-01

    The ribosome is a massive ribonucleoprotein complex ( approximately 2.4 MDa) that utilizes large-scale structural fluctuations to produce unidirectional protein synthesis. Accommodation is a key conformational change during transfer RNA (tRNA) selection that allows movement of tRNA into the ribosome. Here, we address the structure-function relationship that governs accommodation using all-atom molecular simulations and single-molecule fluorescence resonance energy transfer (smFRET). Simulations that employ an all-atom, structure-based (Gō-like) model illuminate the interplay between configurational entropy and effective enthalpy during the accommodation process. This delicate balance leads to spontaneous reversible accommodation attempts, which are corroborated by smFRET measurements. The dynamics about the endpoints of accommodation (the A/T and A/A conformations) obtained from structure-based simulations are validated by multiple 100-200 ns explicit-solvent simulations (3.2 million atoms for a cumulative 1.4 micros), and previous crystallographic analysis. We find that the configurational entropy of the 3'-CCA end of aminoacyl-tRNA resists accommodation, leading to a multistep accommodation process that encompasses a distribution of parallel pathways. The calculated mechanism is robust across simulation methods and protocols, suggesting that the structure of the accommodation corridor imposes stringent limitations on the accessible pathways. The identified mechanism and observed parallel pathways establish an atomistic framework for interpreting a large body of biochemical data and demonstrate that conformational changes during translation occur through a stochastic trial-and-error process, rather than in concerted lock-step motions. PMID:20427512

  1. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes

    PubMed Central

    Pruesse, Elmar; Peplies, Jörg; Glöckner, Frank Oliver

    2012-01-01

    Motivation: In the analysis of homologous sequences, computation of multiple sequence alignments (MSAs) has become a bottleneck. This is especially troublesome for marker genes like the ribosomal RNA (rRNA) where already millions of sequences are publicly available and individual studies can easily produce hundreds of thousands of new sequences. Methods have been developed to cope with such numbers, but further improvements are needed to meet accuracy requirements. Results: In this study, we present the SILVA Incremental Aligner (SINA) used to align the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA uses a combination of k-mer searching and partial order alignment (POA) to maintain very high alignment accuracy while satisfying high throughput performance demands. SINA was evaluated in comparison with the commonly used high throughput MSA programs PyNAST and mothur. The three BRAliBase III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1 accuracy. A larger benchmark MSA comprising 38 772 sequences could be reproduced with 98.9 and 99.3% accuracy using reference MSAs comprising 1000 and 5000 sequences. SINA was able to achieve higher accuracy than PyNAST and mothur in all performed benchmarks. Availability: Alignment of up to 500 sequences using the latest SILVA SSU/LSU Ref datasets as reference MSA is offered at http://www.arb-silva.de/aligner. This page also links to Linux binaries, user manual and tutorial. SINA is made available under a personal use license. Contact: epruesse@mpi-bremen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22556368

  2. Label- and amplification-free electrochemical detection of bacterial ribosomal RNA.

    PubMed

    Henihan, Grace; Schulze, Holger; Corrigan, Damion K; Giraud, Gerard; Terry, Jonathan G; Hardie, Alison; Campbell, Colin J; Walton, Anthony J; Crain, Jason; Pethig, Ronald; Templeton, Kate E; Mount, Andrew R; Bachmann, Till T

    2016-07-15

    Current approaches to molecular diagnostics rely heavily on PCR amplification and optical detection methods which have restrictions when applied to point of care (POC) applications. Herein we describe the development of a label-free and amplification-free method of pathogen detection applied to Escherichia coli which overcomes the bottleneck of complex sample preparation and has the potential to be implemented as a rapid, cost effective test suitable for point of care use. Ribosomal RNA is naturally amplified in bacterial cells, which makes it a promising target for sensitive detection without the necessity for prior in vitro amplification. Using fluorescent microarray methods with rRNA targets from a range of pathogens, an optimal probe was selected from a pool of probe candidates identified in silico. The specificity of probes was investigated on DNA microarray using fluorescently labeled 16S rRNA target. The probe yielding highest specificity performance was evaluated in terms of sensitivity and a LOD of 20 pM was achieved on fluorescent glass microarray. This probe was transferred to an EIS end point format and specificity which correlated to microarray data was demonstrated. Excellent sensitivity was facilitated by the use of uncharged PNA probes and large 16S rRNA target and investigations resulted in an LOD of 50 pM. An alternative kinetic EIS assay format was demonstrated with which rRNA could be detected in a species specific manner within 10-40min at room temperature without wash steps. PMID:27016627

  3. Cloning, in vitro transcription, and biological activity of Escherichia coli 23S ribosomal RNA.

    PubMed

    Weitzmann, C J; Cunningham, P R; Ofengand, J

    1990-06-25

    The 23S rRNA gene was excised from the rrnB operon of pKK3535 and ligated into pUC19 behind the strong class III T7 promoter so that the correct 5' end of mature 23S RNA was produced upon transcription by T7 RNA polymerase. At the 3' end, generation of a restriction site for linearization required the addition of 2 adenosine residues to the mature 23S sequence. In vitro runoff transcripts were indistinguishable from natural 23S RNA in size on denaturing gels and in 5'-terminal sequence. The length and sequence of the 3' terminal T1 fragment was also as expected from the DNA sequence, except that an additional C, A, or U residue was added to 21%, 18%, or 5% of the molecules, respectively. Typical transcription reactions yielded 500-700 moles RNA per mole template. This transcript was used as a substrate for methyl transfer from S-adenosyl methionine catalyzed by Escherichia coli cell extracts. The majority (50-65%) of activity observed in a crude (S30) extract appeared in the post-ribosomal supernatant (S100). Activities catalyzing formation of m5C, m5U, m2G, and m6A residues in the synthetic transcript were observed. PMID:2194163

  4. Stimulation of -1 programmed ribosomal frameshifting by a metabolite-responsive RNA pseudoknot.

    PubMed

    Chou, Ming-Yuan; Lin, Szu-Chieh; Chang, Kung-Yao

    2010-06-01

    Specific recognition of metabolites by functional RNA motifs within mRNAs has emerged as a crucial regulatory strategy for feedback control of biochemical reactions. Such riboswitches have been demonstrated to regulate different gene expression processes, including transcriptional termination and translational initiation in prokaryotic cells, as well as splicing in eukaryotic cells. The regulatory process is usually mediated by modulating the accessibility of specific sequence information of the expression platforms via metabolite-induced RNA conformational rearrangement. In eukaryotic systems, viral and the more limited number of cellular decoding -1 programmed ribosomal frameshifting (PRF) are commonly promoted by a 3' mRNA pseudoknot. In addition, such -1 PRF is generally constitutive rather than being regulatory, and usually results in a fixed ratio of products. We report here an RNA pseudoknot capable of stimulating -1 PRF whose efficiency can be tuned in response to the concentration of S-adenosylhomocysteine (SAH), and the improvement of its frameshifting efficiency by RNA engineering. In addition to providing an alternative approach for small-molecule regulation of gene expression in eukaryotic cells, such a metabolite-responsive pseudoknot suggests a plausible mechanism for metabolite-driven translational regulation of gene expression in eukaryotic systems. PMID:20435898

  5. Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA

    PubMed Central

    Nguyen, Le Xuan Truong; Mitchell, Beverly S.

    2013-01-01

    Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation. PMID:24297901

  6. Molecular Identification of Ptychodera flava (Hemichordata: Enteropneusta): Reconsideration in Light of Nucleotide Polymorphism in the 18S Ribosomal RNA Gene.

    PubMed

    Urata, Makoto

    2015-06-01

    Seven nuclear and mitochondrial DNA markers were examined in 12 specimens of Ptychodera flava, a model acorn worm used in molecular biology, collected in Japan from three local populations with different modes of living. A comparison of intraspecific results did not show genetically isolated populations despite the species' enclave habitats and asexual reproduction. Moreover, both the nuclear 18S ribosomal RNA gene and mitochondrial 16S ribosomal RNA gene sequences were identical to those from Moorea in French Polynesia, nearly 10,000 kilometers away from Japan. I also provide the first definitive information regarding polymorphisms in 18S ribosomal RNA gene, the external transcribed spacer (ETS), internal transcribed spacers (ITS), and mitochondrial cytochrome c oxidase subunit 1 (mtCO1) sequence in hemichordates using newly designed primer sets, and I show both high larval vagility and certain criteria for the molecular identification of this species. PMID:26003987

  7. The ribosome triggers the stringent response by RelA via a highly distorted tRNA

    PubMed Central

    Agirrezabala, Xabier; Fernández, Israel S; Kelley, Ann C; Cartón, David Gil; Ramakrishnan, Venki; Valle, Mikel

    2013-01-01

    The bacterial stringent response links nutrient starvation with the transcriptional control of genes. This process is initiated by the stringent factor RelA, which senses the presence of deacylated tRNA in the ribosome as a symptom of amino-acid starvation to synthesize the alarmone (p)ppGpp. Here we report a cryo-EM study of RelA bound to ribosomes bearing cognate, deacylated tRNA in the A-site. The data show that RelA on the ribosome stabilizes an unusual distorted form of the tRNA, with the acceptor arm making contact with RelA and far from its normal location in the peptidyl transferase centre. PMID:23877429

  8. The ribosome triggers the stringent response by RelA via a highly distorted tRNA.

    PubMed

    Agirrezabala, Xabier; Fernández, Israel S; Kelley, Ann C; Cartón, David Gil; Ramakrishnan, Venki; Valle, Mikel

    2013-09-01

    The bacterial stringent response links nutrient starvation with the transcriptional control of genes. This process is initiated by the stringent factor RelA, which senses the presence of deacylated tRNA in the ribosome as a symptom of amino-acid starvation to synthesize the alarmone (p)ppGpp. Here we report a cryo-EM study of RelA bound to ribosomes bearing cognate, deacylated tRNA in the A-site. The data show that RelA on the ribosome stabilizes an unusual distorted form of the tRNA, with the acceptor arm making contact with RelA and far from its normal location in the peptidyl transferase centre. PMID:23877429

  9. B chromosomes showing active ribosomal RNA genes contribute insignificant amounts of rRNA in the grasshopper Eyprepocnemis plorans.

    PubMed

    Ruiz-Estévez, Mercedes; Badisco, Liesbeth; Broeck, Jozef Vanden; Perfectti, Francisco; López-León, María Dolores; Cabrero, Josefa; Camacho, Juan Pedro M

    2014-12-01

    The genetic inertness of supernumerary (B) chromosomes has recently been called into question after finding several cases of gene activity on them. The grasshopper Eyprepocnemis plorans harbors B chromosomes containing large amounts of ribosomal DNA (rDNA) units, some of which are eventually active, but the amount of rRNA transcripts contributed by B chromosomes, compared to those of the standard (A) chromosomes, is unknown. Here, we address this question by means of quantitative PCR (qPCR) for two different ITS2 amplicons, one coming from rDNA units located in both A and B chromosomes (ITS2(A+B)) and the other being specific to B chromosomes (ITS2(B)). We analyzed six body parts in nine males showing rDNA expression in their B chromosomes in the testis. Amplification of the ITS2(B) amplicon was successful in RNA extracted from all six body parts analyzed, but showed relative quantification (RQ) values four orders of magnitude lower than those obtained for the ITS(A+B) amplicon. RQ values differed significantly between body parts for the two amplicons, with testis, accessory gland and wing muscle showing threefold higher values than head, gastric cecum and hind leg. We conclude that the level of B-specific rDNA expression is extremely low even in individuals where B chromosome rDNA is not completely silenced. Bearing in mind that B chromosomes carry the largest rDNA cluster in the E. plorans genome, we also infer that the relative contribution of B chromosome rRNA genes to ribosome biogenesis is insignificant, at least in the body parts analyzed. PMID:24997085

  10. Evolutionarily conserved autoregulation of alternative pre-mRNA splicing by ribosomal protein L10a

    PubMed Central

    Takei, Satomi; Togo-Ohno, Marina; Suzuki, Yutaka; Kuroyanagi, Hidehito

    2016-01-01

    Alternative splicing of pre-mRNAs can regulate expression of protein-coding genes by generating unproductive mRNAs rapidly degraded by nonsense-mediated mRNA decay (NMD). Many of the genes directly regulated by alternative splicing coupled with NMD (AS-NMD) are related to RNA metabolism, but the repertoire of genes regulated by AS-NMD in vivo is to be determined. Here, we analyzed transcriptome data of wild-type and NMD-defective mutant strains of the nematode worm Caenorhabditis elegans and demonstrate that eight of the 82 cytoplasmic ribosomal protein (rp) genes generate unproductively spliced mRNAs. Knockdown of any of the eight rp genes exerted a dynamic and compensatory effect on alternative splicing of its own transcript and inverse effects on that of the other rp genes. A large subunit protein L10a, termed RPL-1 in nematodes, directly and specifically binds to an evolutionarily conserved 39-nt stretch termed L10ARE between the two alternative 5′ splice sites in its own pre-mRNA to switch the splice site choice. Furthermore, L10ARE-mediated splicing autoregulation of the L10a-coding gene is conserved in vertebrates. These results indicate that L10a is an evolutionarily conserved splicing regulator and that homeostasis of a subset of the rp genes are regulated at the level of pre-mRNA splicing in vivo. PMID:26961311

  11. One step engineering of the small-subunit ribosomal RNA using CRISPR/Cas9.

    PubMed

    Kannan, Krishna; Tsvetanova, Billyana; Chuang, Ray-Yuan; Noskov, Vladimir N; Assad-Garcia, Nacyra; Ma, Li; Hutchison Iii, Clyde A; Smith, Hamilton O; Glass, John I; Merryman, Chuck; Venter, J Craig; Gibson, Daniel G

    2016-01-01

    Bacteria are indispensable for the study of fundamental molecular biology processes due to their relatively simple gene and genome architecture. The ability to engineer bacterial chromosomes is quintessential for understanding gene functions. Here we demonstrate the engineering of the small-ribosomal subunit (16S) RNA of Mycoplasma mycoides, by combining the CRISPR/Cas9 system and the yeast recombination machinery. We cloned the entire genome of M. mycoides in yeast and used constitutively expressed Cas9 together with in vitro transcribed guide-RNAs to introduce engineered 16S rRNA genes. By testing the function of the engineered 16S rRNA genes through genome transplantation, we observed surprising resilience of this gene to addition of genetic elements or helix substitutions with phylogenetically-distant bacteria. While this system could be further used to study the function of the 16S rRNA, one could envision the "simple" M. mycoides genome being used in this setting to study other genetic structures and functions to answer fundamental questions of life. PMID:27489041

  12. One step engineering of the small-subunit ribosomal RNA using CRISPR/Cas9

    PubMed Central

    Kannan, Krishna; Tsvetanova, Billyana; Chuang, Ray-Yuan; Noskov, Vladimir N.; Assad-Garcia, Nacyra; Ma, Li; Hutchison III, Clyde A.; Smith, Hamilton O.; Glass, John I.; Merryman, Chuck; Venter, J. Craig; Gibson, Daniel G.

    2016-01-01

    Bacteria are indispensable for the study of fundamental molecular biology processes due to their relatively simple gene and genome architecture. The ability to engineer bacterial chromosomes is quintessential for understanding gene functions. Here we demonstrate the engineering of the small-ribosomal subunit (16S) RNA of Mycoplasma mycoides, by combining the CRISPR/Cas9 system and the yeast recombination machinery. We cloned the entire genome of M. mycoides in yeast and used constitutively expressed Cas9 together with in vitro transcribed guide-RNAs to introduce engineered 16S rRNA genes. By testing the function of the engineered 16S rRNA genes through genome transplantation, we observed surprising resilience of this gene to addition of genetic elements or helix substitutions with phylogenetically-distant bacteria. While this system could be further used to study the function of the 16S rRNA, one could envision the “simple” M. mycoides genome being used in this setting to study other genetic structures and functions to answer fundamental questions of life. PMID:27489041

  13. Ribosomal Database Project: data and tools for high throughput rRNA analysis

    PubMed Central

    Cole, James R.; Wang, Qiong; Fish, Jordan A.; Chai, Benli; McGarrell, Donna M.; Sun, Yanni; Brown, C. Titus; Porras-Alfaro, Andrea; Kuske, Cheryl R.; Tiedje, James M.

    2014-01-01

    Ribosomal Database Project (RDP; http://rdp.cme.msu.edu/) provides the research community with aligned and annotated rRNA gene sequence data, along with tools to allow researchers to analyze their own rRNA gene sequences in the RDP framework. RDP data and tools are utilized in fields as diverse as human health, microbial ecology, environmental microbiology, nucleic acid chemistry, taxonomy and phylogenetics. In addition to aligned and annotated collections of bacterial and archaeal small subunit rRNA genes, RDP now includes a collection of fungal large subunit rRNA genes. RDP tools, including Classifier and Aligner, have been updated to work with this new fungal collection. The use of high-throughput sequencing to characterize environmental microbial populations has exploded in the past several years, and as sequence technologies have improved, the sizes of environmental datasets have increased. With release 11, RDP is providing an expanded set of tools to facilitate analysis of high-throughput data, including both single-stranded and paired-end reads. In addition, most tools are now available as open source packages for download and local use by researchers with high-volume needs or who would like to develop custom analysis pipelines. PMID:24288368

  14. The human insulin receptor mRNA contains a functional internal ribosome entry segment

    PubMed Central

    Spriggs, Keith A.; Cobbold, Laura C.; Ridley, Simon H.; Coldwell, Mark; Bottley, Andrew; Bushell, Martin; Willis, Anne E.; Siddle, Kenneth

    2009-01-01

    Regulation of mRNA translation is an important mechanism determining the level of expression of proteins in eukaryotic cells. Translation is most commonly initiated by cap-dependent scanning, but many eukaryotic mRNAs contain internal ribosome entry segments (IRESs), providing an alternative means of initiation capable of independent regulation. Here, we show by using dicistronic luciferase reporter vectors that the 5′-UTR of the mRNA encoding human insulin receptor (hIR) contains a functional IRES. RNAi-mediated knockdown showed that the protein PTB was required for maximum IRES activity. Electrophoretic mobility shift assays confirmed that PTB1, PTB2 and nPTB, but not unr or PTB4, bound to hIR mRNA, and deletion mapping implicated a CCU motif 448 nt upstream of the initiator AUG in PTB binding. The IR-IRES was functional in a number of cell lines, and most active in cells of neuronal origin, as assessed by luciferase reporter assays. The IRES was more active in confluent than sub-confluent cells, but activity did not change during differentiation of 3T3-L1 fibroblasts to adipocytes. IRES activity was stimulated by insulin in sub-confluent cells. The IRES may function to maintain expression of IR protein in tissues such as the brain where mRNA translation by cap-dependent scanning is less effective. PMID:19654240

  15. Human NAT10 Is an ATP-dependent RNA Acetyltransferase Responsible for N4-Acetylcytidine Formation in 18 S Ribosomal RNA (rRNA)*

    PubMed Central

    Ito, Satoshi; Horikawa, Sayuri; Suzuki, Tateki; Kawauchi, Hiroki; Tanaka, Yoshikazu; Suzuki, Takeo; Suzuki, Tsutomu

    2014-01-01

    Human N-acetyltransferase 10 (NAT10) is known to be a lysine acetyltransferase that targets microtubules and histones and plays an important role in cell division. NAT10 is highly expressed in malignant tumors, and is also a promising target for therapies against laminopathies and premature aging. Here we report that NAT10 is an ATP-dependent RNA acetyltransferase responsible for formation of N4-acetylcytidine (ac4C) at position 1842 in the terminal helix of mammalian 18 S rRNA. RNAi-mediated knockdown of NAT10 resulted in growth retardation of human cells, and this was accompanied by high-level accumulation of the 30 S precursor of 18 S rRNA, suggesting that ac4C1842 formation catalyzed by NAT10 is involved in rRNA processing and ribosome biogenesis. PMID:25411247

  16. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway

    PubMed Central

    Belew, Ashton Trey; Meskauskas, Arturas; Musalgaonkar, Sharmishtha; Advani, Vivek M.; Sulima, Sergey O.; Kasprzak, Wojciech K.; Shapiro, Bruce A.; Dinman, Jonathan D.

    2015-01-01

    Programmed –1 ribosomal frameshift (–1 PRF) signals redirect translating ribosomes to slip back one base on messenger RNAs. Although well characterized in viruses, how these elements may regulate cellular gene expression is not understood. Here we describe a –1 PRF signal in the human mRNA encoding CCR5, the HIV-1 co-receptor. CCR5 mRNA-mediated –1 PRF is directed by an mRNA pseudoknot, and is stimulated by at least two microRNAs. Mapping the mRNA–miRNA interaction suggests that formation of a triplex RNA structure stimulates –1 PRF. A –1 PRF event on the CCR5 mRNA directs translating ribosomes to a premature termination codon, destabilizing it through the nonsense-mediated mRNA decay pathway. At least one additional mRNA decay pathway is also involved. Functional –1 PRF signals that seem to be regulated by miRNAs are also demonstrated in mRNAs encoding six other cytokine receptors, suggesting a novel mode through which immune responses may be fine-tuned in mammalian cells. PMID:25043019

  17. Regulation of ribosomal RNA expression across the lifespan is fine-tuned by maternal diet before implantation.

    PubMed

    Denisenko, Oleg; Lucas, Emma S; Sun, Congshan; Watkins, Adam J; Mar, Daniel; Bomsztyk, Karol; Fleming, Tom P

    2016-07-01

    Cells and organisms respond to nutrient deprivation by decreasing global rates of transcription, translation and DNA replication. To what extent such changes can be reversed is largely unknown. We examined the effect of maternal dietary restriction on RNA synthesis in the offspring. Low protein diet fed either throughout gestation or for the preimplantation period alone reduced cellular RNA content across fetal somatic tissues during challenge and increased it beyond controls in fetal and adult tissues after challenge release. Changes in transcription of ribosomal RNA, the major component of cellular RNA, were responsible for this phenotype as evidenced by matching alterations in RNA polymerase I density and DNA methylation at ribosomal DNA loci. Cellular levels of the ribosomal transcription factor Rrn3 mirrored the rRNA expression pattern. In cell culture experiments, Rrn3 overexpression reduced rDNA methylation and increased rRNA expression; the converse occurred after inhibition of Rrn3 activity. These observations define novel mechanism where poor nutrition before implantation irreversibly alters basal rates of rRNA transcription thereafter in a process mediated by rDNA methylation and Rrn3 factor. PMID:27060415

  18. Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species

    PubMed Central

    Sulpice, Ronan; Ishihara, Hirofumi; Schlereth, Armin; Cawthray, Gregory R; Encke, Beatrice; Giavalisco, Patrick; Ivakov, Alexander; Arrivault, StÉphanie; Jost, Ricarda; Krohn, Nicole; Kuo, John; Laliberté, Etienne; Pearse, Stuart J; Raven, John A; Scheible, Wolf-rüdiger; Teste, François; Veneklaas, Erik J; Stitt, Mark; Lambers, Hans

    2014-01-01

    Abstract Proteaceae species in south-western Australia occur on phosphorus- (P) impoverished soils. Their leaves contain very low P levels, but have relatively high rates of photosynthesis. We measured ribosomal RNA (rRNA) abundance, soluble protein, activities of several enzymes and glucose 6-phosphate (Glc6P) levels in expanding and mature leaves of six Proteaceae species in their natural habitat. The results were compared with those for Arabidopsis thaliana. Compared with A. thaliana, immature leaves of Proteaceae species contained very low levels of rRNA, especially plastidic rRNA. Proteaceae species showed slow development of the photosynthetic apparatus (‘delayed greening’), with young leaves having very low levels of chlorophyll and Calvin–Benson cycle enzymes. In mature leaves, soluble protein and Calvin–Benson cycle enzyme activities were low, but Glc6P levels were similar to those in A. thaliana. We propose that low ribosome abundance contributes to the high P efficiency of these Proteaceae species in three ways: (1) less P is invested in ribosomes; (2) the rate of growth and, hence, demand for P is low; and (3) the especially low plastidic ribosome abundance in young leaves delays formation of the photosynthetic machinery, spreading investment of P in rRNA. Although Calvin–Benson cycle enzyme activities are low, Glc6P levels are maintained, allowing their effective use. PMID:24895754

  19. Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species.

    PubMed

    Sulpice, Ronan; Ishihara, Hirofumi; Schlereth, Armin; Cawthray, Gregory R; Encke, Beatrice; Giavalisco, Patrick; Ivakov, Alexander; Arrivault, Stéphanie; Jost, Ricarda; Krohn, Nicole; Kuo, John; Laliberté, Etienne; Pearse, Stuart J; Raven, John A; Scheible, Wolf-Rüdiger; Teste, François; Veneklaas, Erik J; Stitt, Mark; Lambers, Hans

    2014-06-01

    Proteaceae species in south-western Australia occur on phosphorus- (P) impoverished soils. Their leaves contain very low P levels, but have relatively high rates of photosynthesis. We measured ribosomal RNA (rRNA) abundance, soluble protein, activities of several enzymes and glucose 6-phosphate (Glc6P) levels in expanding and mature leaves of six Proteaceae species in their natural habitat. The results were compared with those for Arabidopsis thaliana. Compared with A. thaliana, immature leaves of Proteaceae species contained very low levels of rRNA, especially plastidic rRNA. Proteaceae species showed slow development of the photosynthetic apparatus (‘delayed greening’), with young leaves having very low levels of chlorophyll and Calvin-Benson cycle enzymes. In mature leaves, soluble protein and Calvin-Benson cycle enzyme activities were low, but Glc6P levels were similar to those in A. thaliana. We propose that low ribosome abundance contributes to the high P efficiency of these Proteaceae species in three ways: (1) less P is invested in ribosomes; (2) the rate of growth and, hence, demand for P is low; and (3) the especially low plastidic ribosome abundance in young leaves delays formation of the photosynthetic machinery, spreading investment of P in rRNA. Although Calvin-Benson cycle enzyme activities are low, Glc6P levels are maintained, allowing their effective use. PMID:24895754

  20. Why base tautomerization does not cause errors in mRNA decoding on the ribosome

    PubMed Central

    Satpati, Priyadarshi; Åqvist, Johan

    2014-01-01

    The structure of the genetic code implies strict Watson–Crick base pairing in the first two codon positions, while the third position is known to be degenerate, thus allowing wobble base pairing. Recent crystal structures of near-cognate tRNAs accommodated into the ribosomal A-site, however, show canonical geometry even with first and second position mismatches. This immediately raises the question of whether these structures correspond to tautomerization of the base pairs. Further, if unusual tautomers are indeed trapped why do they not cause errors in decoding? Here, we use molecular dynamics free energy calculations of ribosomal complexes with cognate and near-cognate tRNAs to analyze the structures and energetics of G-U mismatches in the first two codon positions. We find that the enol tautomer of G is almost isoenergetic with the corresponding ketone in the first position, while it is actually more stable in the second position. Tautomerization of U, on the other hand is highly penalized. The presence of the unusual enol form of G thus explains the crystallographic observations. However, the calculations also show that this tautomer does not cause high codon reading error frequencies, as the resulting tRNA binding free energies are significantly higher than for the cognate complex. PMID:25352546

  1. Connecting the Kinetics and Energy Landscape of tRNA Translocation on the Ribosome

    PubMed Central

    Whitford, Paul C.; Blanchard, Scott C.; Cate, Jamie H. D.; Sanbonmatsu, Karissa Y.

    2013-01-01

    Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states. PMID:23555233

  2. Connecting the kinetics and energy landscape of tRNA translocation on the ribosome.

    PubMed

    Whitford, Paul C; Blanchard, Scott C; Cate, Jamie H D; Sanbonmatsu, Karissa Y

    2013-01-01

    Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states. PMID:23555233

  3. Purification and properties of new ribosome-inactivating proteins with RNA N-glycosidase activity.

    PubMed

    Bolognesi, A; Barbieri, L; Abbondanza, A; Falasca, A I; Carnicelli, D; Battelli, M G; Stirpe, F

    1990-11-30

    Ribosome-inactivating proteins (RIPs) similar to those already known (Stirpe & Barbieri (1986) FEBS Lett. 195, 1-8) were purified from the seeds of Asparagus officinalis (two proteins, asparin 1 and 2), of Citrullus colocynthis (two proteins, colocin 1 and 2), of Lychnis chalcedonica (lychnin) and of Manihot palmata (mapalmin), from the roots of Phytolacca americana (pokeweed antiviral protein from roots, PAP-R) and from the leaves of Bryonia dioica (bryodin-L). The two latter proteins can be considered as isoforms, respectively, of previously purified PAP, from the leaves of P. americana, and of bryodin-R, from the roots of B. dioica. All proteins have an Mr at approx, 30,000, and an alkaline isoelectric point. Bryodin-L, colocins, lychnin and mapalmin are glycoproteins. All RIPs inhibit protein synthesis by a rabbit reticulocyte lysate and phenylalanine polymerization by isolated ribosomes and alter rRNA in a similar manner as the A-chain of ricin and related toxins (Endo et al. (1987) J. Biol. Chem. 262, 5908-5912). PMID:2248976

  4. Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene.

    PubMed

    Honda, D; Yokochi, T; Nakahara, T; Raghukumar, S; Nakagiri, A; Schaumann, K; Higashihara, T

    1999-01-01

    Labyrinthulids and thraustochytrids are unicellular heterotrophs, formerly considered as fungi, but presently are recognized as members in the stramenopiles of the kingdom Protista sensu lato. We determined the 18S ribosomal RNA gene sequences of 14 strains from different species of the six genera and analyzed the molecular phylogenetic relationships. The results conflict with the current classification based on morphology, at the genus and species levels. These organisms are separated, based on signature sequences and unique inserted sequences, into two major groups, which were named the labyrinthulid phylogenetic group and the thraustochytrid phylogenetic group. Although these groupings are in disagreement with many conventional taxonomic characters, they correlated better with the sugar composition of the cell wall. Thus, the currently used taxonomic criteria need serious reconsideration. PMID:10568038

  5. Small-subunit ribosomal RNA gene sequences of Phaeodarea challenge the monophyly of Haeckel's Radiolaria.

    PubMed

    Polet, Stephane; Berney, Cédric; Fahrni, José; Pawlowski, Jan

    2004-03-01

    In his grand monograph of Radiolaria, Ernst Haeckel originally included Phaeodarea together with Acantharea and Polycystinea, all three taxa characterized by the presence of a central capsule and the possession of axopodia. Cytological and ultrastructural studies, however, questioned the monophyly of Radiolaria, suggesting an independent evolutionary origin of the three taxa, and the first molecular data on Acantharea and Polycystinea brought controversial results. To test further the monophyly of Radiolaria, we sequenced the complete small subunit ribosomal RNA gene of three phaeodarians and three polycystines. Our analyses reveal that phaeodarians clearly branch among the recently described phylum Cercozoa, separately from Acantharea and Polycystinea. This result enhances the morphological variability within the phylum Cercozoa, which already contains very heterogeneous groups of protists. Our study also confirms the common origin of Acantharea and Polycystinea, which form a sister-group to the Cercozoa, and allows a phylogenetic reinterpretation of the morphological features of the three radiolarian groups. PMID:15144058

  6. A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes.

    PubMed Central

    Kambhampati, S

    1995-01-01

    Cockroaches are among the most ancient winged insects, the earliest fossils dating back to about 400 million years. Several conflicting phylogenies for cockroach families, subfamilies, and genera have been proposed in the past. In addition, the relationship of Cryptocercidae to other cockroach families and the relationship between the cockroach, Cryptocercus punctulatus, and the termite, Mastotermes darwiniensis, have generated debate. In this paper, a phylogeny for cockroaches, mantids, and termites based on DNA sequence of the mitochondrial ribosomal RNA genes is presented. The results indicated that cockroaches are a monophyletic group, whose sister group is Mantoidea. The inferred relationship among cockroach families was in agreement with the presently accepted phylogeny. However, there was only partial congruence at the subfamily and the generic levels. The phylogeny inferred here does not support a close relationship between C. punctulatus and M. darwiniensis. The apparent synapomorphies of these two species are likely a manifestation of convergent evolution because there are similarities in biology and habitat. PMID:7534409

  7. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes.

    PubMed

    Talia, Paola; Sede, Silvana M; Campos, Eleonora; Rorig, Marcela; Principi, Dario; Tosto, Daniela; Hopp, H Esteban; Grasso, Daniel; Cataldi, Angel

    2012-04-01

    Sequence analysis of the 16S ribosomal RNA gene was used to study bacterial diversity of a pristine forest soil and of two cultures of the same soil enriched with cellulolytic bacteria. Our analysis revealed high bacterial diversity in the native soil sample, evidencing at least 10 phyla, in which Actinobacteria, Proteobacteria and Acidobacteria accounted for more than 76% of all sequences. In both enriched samples, members of Proteobacteria were the most frequently represented. The majority of bacterial genera in both enriched samples were identified as Brevundimonas and Caulobacter, but members of Devosia, Sphingomonas, Variovorax, Acidovorax, Pseudomonas, Xanthomonas, Stenotrophomonas, Achromobacter and Delftia were also found. In addition, it was possible to identify cellulolytic taxa such as Acidothermus, Micromonospora, Streptomyces, Paenibacillus and Pseudomonas, which indicates that this ecosystem could be an attractive source for study of novel enzymes for cellulose degradation. PMID:22202170

  8. A variant of Plasmodium ovale; analysis of its 18S ribosomal RNA gene sequence.

    PubMed

    Miyake, H; Suwa, S; Kimura, M; Wataya, Y

    1997-01-01

    We report here a new variant of human malaria parasite found by comparison of diagnostic results obtained from a new DNA diagnostic method named microtiter plate-hybridization (MPH) and traditional microscopic method. Total five cases of malaria were diagnosed as microscopy-positive but MPH-negative; one case was found in epidemiological research in Vietnam and four cases were obtained from imported malaria in Japan. Although they were quite similar to typical P. ovale morphologically in microscopy, sequence analysis of PCR-amplified DNA fragment revealed that their 18S ribosomal RNA gene sequence was different from published sequence of P. ovale. Combination of MPH and microscopic examination provides us a new method for detection of a new type of malaria parasite which is difficult to distinguish morphologically. PMID:9586115

  9. Depletion of U3 small nucleolar RNA inhibits cleavage in the 5' external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA.

    PubMed Central

    Hughes, J M; Ares, M

    1991-01-01

    Multiple processing events are required to convert a single eukaryotic pre-ribosomal RNA (pre-rRNA) into mature 18S (small subunit), 5.8S and 25-28S (large subunit) rRNAs. We have asked whether U3 small nucleolar RNA is required for pre-rRNA processing in vivo by depleting Saccharomyces cerevisiae of U3 by conditional repression of U3 synthesis. The resulting pattern of accumulation and depletion of specific pre-rRNAs indicates that U3 is required for multiple events leading to the maturation of 18S rRNA. These include an initial cleavage within the 5' external transcribed spacer, resembling the U3 dependent initial processing event of mammalian pre-rRNA. Formation of large subunit rRNAs is unaffected by U3 depletion. The similarity between the effects of U3 depletion and depletion of U14 small nucleolar RNA and the nucleolar protein fibrillarin (NOP1) suggests that these could be components of a single highly conserved processing complex. Images PMID:1756730

  10. Structure of ERA in complex with the 3′ end of 16S rRNA: Implications for ribosome biogenesis

    SciTech Connect

    Tu, Chao; Zhou, Xiaomei; Tropea, Joseph E.; Austin, Brian P.; Waugh, David S.; Court, Donald L.; Ji, Xinhua

    2009-10-09

    ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the {sub 1531}AUCACCUCCUUA{sub 1542} sequence at the 3' end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a 'twist' for noneukaryotic ERA proteins by also recognizing the CCUCC.

  11. Depletion of Free 30S Ribosomal Subunits in Escherichia coli by Expression of RNA Containing Shine-Dalgarno-Like Sequences

    PubMed Central

    Mawn, Mary V.; Fournier, Maurille J.; Tirrell, David A.; Mason, Thomas L.

    2002-01-01

    We have constructed synthetic coding sequences for the expression of poly(α,l-glutamic acid) (PLGA) as fusion proteins with dihydrofolate reductase (DHFR) in Escherichia coli. These PLGA coding sequences use both GAA and GAG codons for glutamic acid and contain sequence elements (5′-GAGGAGG-3′) that resemble the consensus Shine-Dalgarno (SD) sequence found at translation initiation sites in bacterial mRNAs. An unusual feature of DHFR-PLGA expression is that accumulation of the protein is inversely related to the level of induction of its mRNA. Cellular protein synthesis was inhibited >95% by induction of constructs for either translatable or untranslatable PLGA RNAs. Induction of PLGA RNA resulted in the depletion of free 30S ribosomal subunits and the appearance of new complexes in the polyribosome region of the gradient. Unlike normal polyribosomes, these complexes were resistant to breakdown in the presence of puromycin. The novel complexes contained 16S rRNA, 23S rRNA, and PLGA RNA. We conclude that multiple noninitiator SD-like sequences in the PLGA RNA inhibit cellular protein synthesis by sequestering 30S small ribosomal subunits and 70S ribosomes in nonfunctional complexes on the PLGA mRNA. PMID:11751827

  12. Identification of ribosomal RNA methyltransferase gene ermF in Riemerella anatipestifer.

    PubMed

    Luo, Hongyan; Liu, Mafeng; Wang, Lanying; Zhou, Wangshu; Wang, Mingshu; Cheng, Anchun; Jia, Renyong; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Chen, Xiaoyue; Zhu, Dekang

    2015-01-01

    Riemerella anatipestifer is a major bacterial pathogen of waterfowl, globally responsible for avian septicaemic disease. As chemotherapy is the predominant method for the prevention and treatment of R. anatipestifer infection in poultry, the widespread use of antibiotics has favoured the emergence of antibiotic-resistant strains. However, little is known about R. anatipestifer susceptibility to macrolide antibiotics and its resistance mechanism. We report for the first time the identification of a macrolide resistance mechanism in R. anatipestifer that is mediated by the ribosomal RNA methyltransferase ermF. We identified the presence of the ermF gene in 64/206 (31%) R. anatipestifer isolates from different regions in China. An ermF deletion strain was constructed to investigate the function of the ermF gene on the resistance to high levels of macrolides. The ermF mutant strain showed significantly decreased resistance to macrolide and lincosamide, exhibiting 1024-, 1024-, 4- and >2048-fold reduction in the minimum inhibitory concentrations for erythromycin, azithromycin, tylosin and lincomycin, respectively. Furthermore, functional analysis of ermF expression in E. coli XL1-blue showed that the R. anatipestifer ermF gene was functional in E. coli XL1-blue and conferred resistance to high levels of erythromycin (100 µg/ml), supporting the hypothesis that the ermF gene is associated with high-level macrolide resistance. Our work suggests that ribosomal RNA modification mediated by the ermF methyltransferase is the predominant mechanism of resistance to erythromycin in R. anatipestifer isolates. PMID:25690020

  13. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites.

    PubMed

    Ratje, Andreas H; Loerke, Justus; Mikolajka, Aleksandra; Brünner, Matthias; Hildebrand, Peter W; Starosta, Agata L; Dönhöfer, Alexandra; Connell, Sean R; Fucini, Paola; Mielke, Thorsten; Whitford, Paul C; Onuchic, José N; Yu, Yanan; Sanbonmatsu, Karissa Y; Hartmann, Roland K; Penczek, Pawel A; Wilson, Daniel N; Spahn, Christian M T

    2010-12-01

    The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A site. The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner. Despite the availability of structures of various EF-G-ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within Thermus thermophilus EF-G-ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P site) on the 30S head and simultaneously establishes interaction with the exit site (E site) on the 30S platform, a novel intra-subunit 'pe/E' hybrid state is formed. This state is stabilized by domain IV of EF-G, which interacts with the swivelled 30S-head conformation. These findings provide direct structural and mechanistic insight into the 'missing link' in terms of tRNA intermediates involved in the universally conserved translocation process. PMID:21124459

  14. Immature large ribosomal subunits containing the 7S pre-rRNA can engage in translation in Saccharomyces cerevisiae.

    PubMed

    Rodríguez-Galán, Olga; García-Gómez, Juan J; Kressler, Dieter; de la Cruz, Jesús

    2015-01-01

    Evolution has provided eukaryotes with mechanisms that impede immature and/or aberrant ribosomes to engage in translation. These mechanisms basically either prevent the nucleo-cytoplasmic export of these particles or, once in the cytoplasm, the release of associated assembly factors, which interfere with the binding of translation initiation factors and/or the ribosomal subunit joining. We have previously shown that aberrant yeast 40S ribosomal subunits containing the 20S pre-rRNA can engage in translation. In this study, we describe that cells harbouring the dob1-1 allele, encoding a mutated version of the exosome-assisting RNA helicase Mtr4, accumulate otherwise nuclear pre-60S ribosomal particles containing the 7S pre-rRNA in the cytoplasm. Polysome fractionation analyses revealed that these particles are competent for translation and do not induce elongation stalls. This phenomenon is rather specific since most mutations in other exosome components or co-factors, impairing the 3' end processing of the mature 5.8S rRNA, accumulate 7S pre-rRNAs in the nucleus. In addition, we confirm that pre-60S ribosomal particles containing either 5.8S + 30 or 5.8S + 5 pre-rRNAs also engage in translation elongation. We propose that 7S pre-rRNA processing is not strictly required for pre-60S r-particle export and that, upon arrival in the cytoplasm, there is no specific mechanism to prevent translation by premature pre-60S r-particles containing 3' extended forms of mature 5.8S rRNA. PMID:26151772

  15. End-targeting proteomics of isolated chromatin segments of a mammalian ribosomal RNA gene promoter

    PubMed Central

    Ide, Satoru; Dejardin, Jerome

    2015-01-01

    The unbiased identification of proteins associated with specific loci is crucial for understanding chromatin-based processes. The proteomics of isolated chromatin fragment (PICh) method has previously been developed to purify telomeres and identify associated proteins. This approach is based on the affinity capture of endogenous chromatin segments by hybridization with oligonucleotide containing locked nucleic acids. However, PICh is only efficient with highly abundant genomic targets, limiting its applicability. Here we develop an approach for identifying factors bound to the promoter region of the ribosomal RNA genes that we call end-targeting PICh (ePICh). Using ePICh, we could specifically enrich the RNA polymerase I pre-initiation complex, including the selectivity factor 1. The high purity of the ePICh material allowed the identification of ZFP106, a novel factor regulating transcription initiation by targeting RNA polymerase I to the promoter. Our results demonstrate that ePICh can uncover novel proteins controlling endogenous regulatory elements in mammals. PMID:25812914

  16. End-targeting proteomics of isolated chromatin segments of a mammalian ribosomal RNA gene promoter.

    PubMed

    Ide, Satoru; Dejardin, Jerome

    2015-01-01

    The unbiased identification of proteins associated with specific loci is crucial for understanding chromatin-based processes. The proteomics of isolated chromatin fragment (PICh) method has previously been developed to purify telomeres and identify associated proteins. This approach is based on the affinity capture of endogenous chromatin segments by hybridization with oligonucleotide containing locked nucleic acids. However, PICh is only efficient with highly abundant genomic targets, limiting its applicability. Here we develop an approach for identifying factors bound to the promoter region of the ribosomal RNA genes that we call end-targeting PICh (ePICh). Using ePICh, we could specifically enrich the RNA polymerase I pre-initiation complex, including the selectivity factor 1. The high purity of the ePICh material allowed the identification of ZFP106, a novel factor regulating transcription initiation by targeting RNA polymerase I to the promoter. Our results demonstrate that ePICh can uncover novel proteins controlling endogenous regulatory elements in mammals. PMID:25812914

  17. Wnt5a Signals through DVL1 to Repress Ribosomal DNA Transcription by RNA Polymerase I.

    PubMed

    Dass, Randall A; Sarshad, Aishe A; Carson, Brittany B; Feenstra, Jennifer M; Kaur, Amanpreet; Obrdlik, Ales; Parks, Matthew M; Prakash, Varsha; Love, Damon K; Pietras, Kristian; Serra, Rosa; Blanchard, Scott C; Percipalle, Piergiorgio; Brown, Anthony M C; Vincent, C Theresa

    2016-08-01

    Ribosome biogenesis is essential for cell growth and proliferation and is commonly elevated in cancer. Accordingly, numerous oncogene and tumor suppressor signaling pathways target rRNA synthesis. In breast cancer, non-canonical Wnt signaling by Wnt5a has been reported to antagonize tumor growth. Here, we show that Wnt5a rapidly represses rDNA gene transcription in breast cancer cells and generates a chromatin state with reduced transcription of rDNA by RNA polymerase I (Pol I). These effects were specifically dependent on Dishevelled1 (DVL1), which accumulates in nucleolar organizer regions (NORs) and binds to rDNA regions of the chromosome. Upon DVL1 binding, the Pol I transcription activator and deacetylase Sirtuin 7 (SIRT7) releases from rDNA loci, concomitant with disassembly of Pol I transcription machinery at the rDNA promoter. These findings reveal that Wnt5a signals through DVL1 to suppress rRNA transcription. This provides a novel mechanism for how Wnt5a exerts tumor suppressive effects and why disruption of Wnt5a signaling enhances mammary tumor growth in vivo. PMID:27500936

  18. Competing pathways control host resistance to virus via tRNA modification and programmed ribosomal frameshifting.

    PubMed

    Maynard, Nathaniel D; Macklin, Derek N; Kirkegaard, Karla; Covert, Markus W

    2012-01-01

    Viral infection depends on a complex interplay between host and viral factors. Here, we link host susceptibility to viral infection to a network encompassing sulfur metabolism, tRNA modification, competitive binding, and programmed ribosomal frameshifting (PRF). We first demonstrate that the iron-sulfur cluster biosynthesis pathway in Escherichia coli exerts a protective effect during lambda phage infection, while a tRNA thiolation pathway enhances viral infection. We show that tRNA(Lys) uridine 34 modification inhibits PRF to influence the ratio of lambda phage proteins gpG and gpGT. Computational modeling and experiments suggest that the role of the iron-sulfur cluster biosynthesis pathway in infection is indirect, via competitive binding of the shared sulfur donor IscS. Based on the universality of many key components of this network, in both the host and the virus, we anticipate that these findings may have broad relevance to understanding other infections, including viral infection of humans. PMID:22294093

  19. Identification of a Recently Active Mammalian SINE Derived from Ribosomal RNA

    PubMed Central

    Longo, Mark S.; Brown, Judy D.; Zhang, Chu; O’Neill, Michael J.; O’Neill, Rachel J.

    2015-01-01

    Complex eukaryotic genomes are riddled with repeated sequences whose derivation does not coincide with phylogenetic history and thus is often unknown. Among such sequences, the capacity for transcriptional activity coupled with the adaptive use of reverse transcription can lead to a diverse group of genomic elements across taxa, otherwise known as selfish elements or mobile elements. Short interspersed nuclear elements (SINEs) are nonautonomous mobile elements found in eukaryotic genomes, typically derived from cellular RNAs such as tRNAs, 7SL or 5S rRNA. Here, we identify and characterize a previously unknown SINE derived from the 3′-end of the large ribosomal subunit (LSU or 28S rDNA) and transcribed via RNA polymerase III. This new element, SINE28, is represented in low-copy numbers in the human reference genome assembly, wherein we have identified 27 discrete loci. Phylogenetic analysis indicates these elements have been transpositionally active within primate lineages as recently as 6 MYA while modern humans still carry transcriptionally active copies. Moreover, we have identified SINE28s in all currently available assembled mammalian genome sequences. Phylogenetic comparisons indicate that these elements are frequently rederived from the highly conserved LSU rRNA sequences in a lineage-specific manner. We propose that this element has not been previously recognized as a SINE given its high identity to the canonical LSU, and that SINE28 likely represents one of possibly many unidentified, active transposable elements within mammalian genomes. PMID:25637222

  20. Evidence That Antibiotics Bind to Human Mitochondrial Ribosomal RNA Has Implications for Aminoglycoside Toxicity.

    PubMed

    Hong, Seoyeon; Harris, Kimberly A; Fanning, Kathryn D; Sarachan, Kathryn L; Frohlich, Kyla M; Agris, Paul F

    2015-07-31

    Aminoglycosides are a well known antibiotic family used to treat bacterial infections in humans and animals, but which can be toxic. By binding to the decoding site of helix44 of the small subunit RNA of the bacterial ribosome, the aminoglycoside antibiotics inhibit protein synthesis, cause misreading, or obstruct peptidyl-tRNA translocation. Although aminoglycosides bind helix69 of the bacterial large subunit RNA as well, little is known about their interaction with the homologous human helix69. To probe the role this binding event plays in toxicity, changes to thermal stability, base stacking, and conformation upon aminoglycoside binding to the human cytoplasmic helix69 were compared with those of the human mitochondrial and Escherichia coli helix69. Surprisingly, binding of gentamicin and kanamycin A to the chemically synthesized terminal hairpins of the human cytoplasmic, human mitochondrial, and E. coli helix69 revealed similar dissociation constants (1.3-1.7 and 4.0-5.4 μM, respectively). In addition, aminoglycoside binding enhanced conformational stability of the human mitochondrial helix69 by increasing base stacking. Proton one-dimensional and two-dimensional NMR suggested significant and specific conformational changes of human mitochondrial and E. coli helix69 upon aminoglycoside binding, as compared with human cytoplasmic helix69. The conformational changes and similar aminoglycoside binding affinities observed for human mitochondrial helix69 and E. coli helix69, as well as the increase in structural stability shown for the former, suggest that this binding event is important to understanding aminoglycoside toxicity. PMID:26060252

  1. Wnt5a Signals through DVL1 to Repress Ribosomal DNA Transcription by RNA Polymerase I

    PubMed Central

    Dass, Randall A.; Sarshad, Aishe A.; Feenstra, Jennifer M.; Kaur, Amanpreet; Pietras, Kristian; Serra, Rosa; Blanchard, Scott C.; Percipalle, Piergiorgio; Brown, Anthony M. C.; Vincent, C. Theresa

    2016-01-01

    Ribosome biogenesis is essential for cell growth and proliferation and is commonly elevated in cancer. Accordingly, numerous oncogene and tumor suppressor signaling pathways target rRNA synthesis. In breast cancer, non-canonical Wnt signaling by Wnt5a has been reported to antagonize tumor growth. Here, we show that Wnt5a rapidly represses rDNA gene transcription in breast cancer cells and generates a chromatin state with reduced transcription of rDNA by RNA polymerase I (Pol I). These effects were specifically dependent on Dishevelled1 (DVL1), which accumulates in nucleolar organizer regions (NORs) and binds to rDNA regions of the chromosome. Upon DVL1 binding, the Pol I transcription activator and deacetylase Sirtuin 7 (SIRT7) releases from rDNA loci, concomitant with disassembly of Pol I transcription machinery at the rDNA promoter. These findings reveal that Wnt5a signals through DVL1 to suppress rRNA transcription. This provides a novel mechanism for how Wnt5a exerts tumor suppressive effects and why disruption of Wnt5a signaling enhances mammary tumor growth in vivo. PMID:27500936

  2. Combined heat shock protein 90 and ribosomal RNA sequence phylogeny supports multiple replacements of dinoflagellate plastids.

    PubMed

    Shalchian-Tabrizi, Kamran; Minge, Marianne A; Cavalier-Smith, Tom; Nedreklepp, Joachim M; Klaveness, Dag; Jakobsen, Kjetill S

    2006-01-01

    Dinoflagellates harbour diverse plastids obtained from several algal groups, including haptophytes, diatoms, cryptophytes, and prasinophytes. Their major plastid type with the accessory pigment peridinin is found in the vast majority of photosynthetic species. Some species of dinoflagellates have other aberrantly pigmented plastids. We sequenced the nuclear small subunit (SSU) ribosomal RNA (rRNA) gene of the "green" dinoflagellate Gymnodinium chlorophorum and show that it is sister to Lepidodinium viride, indicating that their common ancestor obtained the prasinophyte (or other green alga) plastid in one event. As the placement of dinoflagellate species that acquired green algal or haptophyte plastids is unclear from small and large subunit (LSU) rRNA trees, we tested the usefulness of the heat shock protein (Hsp) 90 gene for dinoflagellate phylogeny by sequencing it from four species with aberrant plastids (G. chlorophorum, Karlodinium micrum, Karenia brevis, and Karenia mikimotoi) plus Alexandrium tamarense, and constructing phylogenetic trees for Hsp90 and rRNAs, separately and together. Analyses of the Hsp90 and concatenated data suggest an ancestral origin of the peridinin-containing plastid, and two independent replacements of the peridinin plastid soon after the early radiation of the dinoflagellates. Thus, the Hsp90 gene seems to be a promising phylogenetic marker for dinoflagellate phylogeny. PMID:16677346

  3. A conserved heptamer motif for ribosomal RNA transcription termination in animal mitochondria.

    PubMed Central

    Valverde, J R; Marco, R; Garesse, R

    1994-01-01

    A search of sequence data bases for a tridecamer transcription termination signal, previously described in human mtDNA as being responsible for the accumulation of mitochondrial ribosomal RNAs (rRNAs) in excess over the rest of mitochondrial genes, has revealed that this termination signal occurs in equivalent positions in a wide variety of organisms from protozoa to mammals. Due to the compact organization of the mtDNA, the tridecamer motif usually appears as part of the 3' adjacent gene sequence. Because in phylogenetically widely separated organisms the mitochondrial genome has experienced many rearrangements, it is interesting that its occurrence near the 3' end of the large rRNA is independent of the adjacent gene. The tridecamer sequence has diverged in phylogenetically widely separated organisms. Nevertheless, a well-conserved heptamer--TGGCAGA, the mitochondrial rRNA termination box--can be defined. Although extending the experimental evidence of its role as a transcription termination signal in humans will be of great interest, its evolutionary conservation strongly suggests that mitochondrial rRNA transcription termination could be a widely conserved mechanism in animals. Furthermore, the conservation of a homologous tridecamer motif in one of the last 3' secondary loops of nonmitochondrial 23S-like rRNAs suggests that the role of the sequence has changed during mitochondrial evolution. PMID:7515499

  4. Identification of molecular interactions between P-site tRNA and the ribosome essential for translocation

    PubMed Central

    Feinberg, Jason S.; Joseph, Simpson

    2001-01-01

    Translocation of the tRNA–mRNA complex is a fundamental step in the elongation cycle of protein synthesis. Our studies show that the ribosome can translocate a P-site-bound tRNAMet with a break in the phosphodiester backbone between positions 56 and 57 in the TΨC-loop. We have used this fragmented P-site-bound tRNAMet to identify two 2′-hydroxyl groups at positions 71 and 76 in the 3′-acceptor arm that are essential for translocation. Crystallographic data show that the 2′-hydroxyl group at positions 71 and 76 contacts the backbone of 23S rRNA residues 1892 and 2433–2434, respectively, in the ribosomal E site. These results establish a set of functional interactions between P-site tRNA and 23S rRNA that are essential for translocation. PMID:11562497

  5. Characterization and Physical Mapping of Ribosomal RNA Gene Families in Plantago

    PubMed Central

    DHAR, MANOJ K.; FRIEBE, BERND; KAUL, SANJANA; GILL, BIKRAM S.

    2006-01-01

    • Background and Aims The organization of rRNA genes in cultivated Plantago ovata Forsk. and several of its wild allies was analysed to gain insight into the phylogenetic relationships of these species in the genus which includes some 200 species. • Methods Specific primers were designed to amplify the internal transcribed spacer (ITS1 and ITS2) regions from seven Plantago species and the resulting fragments were cloned and sequenced. Similarly, using specific primers, the 5S rRNA genes from these species were amplified and subsequently cloned. Fluorescence in-situ hybridization (FISH) was used for physical mapping of 5S and 45S ribosomal RNA genes. • Results The ITS1 region is 19–29 bp longer than the ITS2 in different Plantago species. The 5S rRNA gene-repeating unit varies in length from 289 to 581 bp. Coding regions are highly conserved across species, but the non-transcribed spacers (NTS) do not match any database sequences. The clone from the cultivated species P. ovata was used for physical mapping of these genes by FISH. Four species have one FISH site while three have two FISH sites. In P. lanceolata and P. rhodosperma, the 5S and 45S (18S-5·8S-25S) sites are coupled. • Conclusions Characterization of 5S and 45S rRNA genes has indicated a possible origin of P. ovata, the only cultivated species of the genus and also the only species with x = 4, from a species belonging to subgenus Psyllium. Based on the studies reported here, P. ovata is closest to P. arenaria, although on the basis of other data the two species have been placed in different subgenera. FISH mapping can be used as an efficient tool to help determine phylogenetic relationships in the genus Plantago and show the interrelationship between P. lanceolata and P. lagopus. PMID:16481363

  6. [Characterization of Black and Dichothrix Cyanobacteria Based on the 16S Ribosomal RNA Gene Sequence

    NASA Technical Reports Server (NTRS)

    Ortega, Maya

    2010-01-01

    My project focuses on characterizing different cyanobacteria in thrombolitic mats found on the island of Highborn Cay, Bahamas. Thrombolites are interesting ecosystems because of the ability of bacteria in these mats to remove carbon dioxide from the atmosphere and mineralize it as calcium carbonate. In the future they may be used as models to develop carbon sequestration technologies, which could be used as part of regenerative life systems in space. These thrombolitic communities are also significant because of their similarities to early communities of life on Earth. I targeted two cyanobacteria in my research, Dichothrix spp. and whatever black is, since they are believed to be important to carbon sequestration in these thrombolitic mats. The goal of my summer research project was to molecularly identify these two cyanobacteria. DNA was isolated from each organism through mat dissections and DNA extractions. I ran Polymerase Chain Reactions (PCR) to amplify the 16S ribosomal RNA (rRNA) gene in each cyanobacteria. This specific gene is found in almost all bacteria and is highly conserved, meaning any changes in the sequence are most likely due to evolution. As a result, the 16S rRNA gene can be used for bacterial identification of different species based on the sequence of their 16S rRNA gene. Since the exact sequence of the Dichothrix gene was unknown, I designed different primers that flanked the gene based on the known sequences from other taxonomically similar cyanobacteria. Once the 16S rRNA gene was amplified, I cloned the gene into specialized Escherichia coli cells and sent the gene products for sequencing. Once the sequence is obtained, it will be added to a genetic database for future reference to and classification of other Dichothrix sp.

  7. Identification of characteristic oligonucleotides in the bacterial 16S ribosomal RNA sequence dataset

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengdong; Willson, Richard C.; Fox, George E.

    2002-01-01

    MOTIVATION: The phylogenetic structure of the bacterial world has been intensively studied by comparing sequences of 16S ribosomal RNA (16S rRNA). This database of sequences is now widely used to design probes for the detection of specific bacteria or groups of bacteria one at a time. The success of such methods reflects the fact that there are local sequence segments that are highly characteristic of particular organisms or groups of organisms. It is not clear, however, the extent to which such signature sequences exist in the 16S rRNA dataset. A better understanding of the numbers and distribution of highly informative oligonucleotide sequences may facilitate the design of hybridization arrays that can characterize the phylogenetic position of an unknown organism or serve as the basis for the development of novel approaches for use in bacterial identification. RESULTS: A computer-based algorithm that characterizes the extent to which any individual oligonucleotide sequence in 16S rRNA is characteristic of any particular bacterial grouping was developed. A measure of signature quality, Q(s), was formulated and subsequently calculated for every individual oligonucleotide sequence in the size range of 5-11 nucleotides and for 15mers with reference to each cluster and subcluster in a 929 organism representative phylogenetic tree. Subsequently, the perfect signature sequences were compared to the full set of 7322 sequences to see how common false positives were. The work completed here establishes beyond any doubt that highly characteristic oligonucleotides exist in the bacterial 16S rRNA sequence dataset in large numbers. Over 16,000 15mers were identified that might be useful as signatures. Signature oligonucleotides are available for over 80% of the nodes in the representative tree.

  8. Mapping translation 'hot-spots' in live cells by tracking single molecules of mRNA and ribosomes

    PubMed Central

    Katz, Zachary B; English, Brian P; Lionnet, Timothée; Yoon, Young J; Monnier, Nilah; Ovryn, Ben; Bathe, Mark; Singer, Robert H

    2016-01-01

    Messenger RNA localization is important for cell motility by local protein translation. However, while single mRNAs can be imaged and their movements tracked in single cells, it has not yet been possible to determine whether these mRNAs are actively translating. Therefore, we imaged single β-actin mRNAs tagged with MS2 stem loops colocalizing with labeled ribosomes to determine when polysomes formed. A dataset of tracking information consisting of thousands of trajectories per cell demonstrated that mRNAs co-moving with ribosomes have significantly different diffusion properties from non-translating mRNAs that were exposed to translation inhibitors. These data indicate that ribosome load changes mRNA movement and therefore highly translating mRNAs move slower. Importantly, β-actin mRNA near focal adhesions exhibited sub-diffusive corralled movement characteristic of increased translation. This method can identify where ribosomes become engaged for local protein production and how spatial regulation of mRNA-protein interactions mediates cell directionality. DOI: http://dx.doi.org/10.7554/eLife.10415.001 PMID:26760529

  9. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    PubMed Central

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-01-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement. PMID:26072700

  10. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome.

    PubMed

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V

    2015-01-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement. PMID:26072700

  11. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    NASA Astrophysics Data System (ADS)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  12. S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA

    PubMed Central

    Fuchs, Ryan T.; Grundy, Frank J.; Henkin, Tina M.

    2007-01-01

    The SMK box is a conserved riboswitch motif found in the 5′ untranslated region of metK genes [encoding S-adenosylmethionine (SAM) synthetase] in lactic acid bacteria, including Enterococcus, Streptococcus, and Lactococcus sp. Previous studies showed that this RNA element binds SAM in vitro, and SAM binding causes a structural rearrangement that sequesters the Shine–Dalgarno (SD) sequence by pairing with an anti-SD (ASD) element. A model was proposed in which SAM binding inhibits metK translation by preventing binding of the ribosome to the SD region of the mRNA. In the current work, the addition of SAM was shown to inhibit binding of 30S ribosomal subunits to SMK box RNA; in contrast, the addition of S-adenosylhomocysteine (SAH) had no effect. A mutant RNA, which has a disrupted SD-ASD pairing, was defective in SAM binding and showed no reduction of ribosome binding in the presence of SAM, whereas a compensatory mutation that restored SD-ASD pairing restored the response to SAM. Primer extension inhibition assays provided further evidence for SD-ASD pairing in the presence of SAM. These results strongly support the model that SMK box translational repression operates through occlusion of the ribosome binding site and that SAM binding requires the SD-ASD pairing. PMID:17360376

  13. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis

    PubMed Central

    Zorbas, Christiane; Nicolas, Emilien; Wacheul, Ludivine; Huvelle, Emmeline; Heurgué-Hamard, Valérie; Lafontaine, Denis L. J.

    2015-01-01

    At the heart of the ribosome lie rRNAs, whose catalytic function in translation is subtly modulated by posttranscriptional modifications. In the small ribosomal subunit of budding yeast, on the 18S rRNA, two adjacent adenosines (A1781/A1782) are N6-dimethylated by Dim1 near the decoding site, and one guanosine (G1575) is N7-methylated by Bud23-Trm112 at a ridge between the P- and E-site tRNAs. Here we establish human DIMT1L and WBSCR22-TRMT112 as the functional homologues of yeast Dim1 and Bud23-Trm112. We report that these enzymes are required for distinct pre-rRNA processing reactions leading to synthesis of 18S rRNA, and we demonstrate that in human cells, as in budding yeast, ribosome biogenesis requires the presence of the modification enzyme rather than its RNA-modifying catalytic activity. We conclude that a quality control mechanism has been conserved from yeast to human by which binding of a methyltransferase to nascent pre-rRNAs is a prerequisite to processing, so that all cleaved RNAs are committed to faithful modification. We further report that 18S rRNA dimethylation is nuclear in human cells, in contrast to yeast, where it is cytoplasmic. Yeast and human ribosome biogenesis thus have both conserved and distinctive features. PMID:25851604

  14. Thalamic WNT3 Secretion Spatiotemporally Regulates the Neocortical Ribosome Signature and mRNA Translation to Specify Neocortical Cell Subtypes

    PubMed Central

    Kraushar, Matthew L.; Viljetic, Barbara; Wijeratne, H. R. Sagara; Thompson, Kevin; Jiao, Xinfu; Pike, Jack W.; Medvedeva, Vera; Groszer, Matthias; Kiledjian, Megerditch; Hart, Ronald P.

    2015-01-01

    Neocortical development requires tightly controlled spatiotemporal gene expression. However, the mechanisms regulating ribosomal complexes and the timed specificity of neocortical mRNA translation are poorly understood. We show that active mRNA translation complexes (polysomes) contain ribosomal protein subsets that undergo dynamic spatiotemporal rearrangements during mouse neocortical development. Ribosomal protein specificity within polysome complexes is regulated by the arrival of in-growing thalamic axons, which secrete the morphogen Wingless-related MMTV (mouse mammary tumor virus) integration site 3 (WNT3). Thalamic WNT3 release during midneurogenesis promotes a change in the levels of Ribosomal protein L7 in polysomes, thereby regulating neocortical translation machinery specificity. Furthermore, we present an RNA sequencing dataset analyzing mRNAs that dynamically associate with polysome complexes as neocortical development progresses, and thus may be regulated spatiotemporally at the level of translation. Thalamic WNT3 regulates neocortical translation of two such mRNAs, Foxp2 and Apc, to promote FOXP2 expression while inhibiting APC expression, thereby driving neocortical neuronal differentiation and suppressing oligodendrocyte maturation, respectively. This mechanism may enable targeted and rapid spatiotemporal control of ribosome composition and selective mRNA translation in complex developing systems like the neocortex. SIGNIFICANCE STATEMENT The neocortex is a highly complex circuit generating the most evolutionarily advanced complex cognitive and sensorimotor functions. An intricate progression of molecular and cellular steps during neocortical development determines its structure and function. Our goal is to study the steps regulating spatiotemporal specificity of mRNA translation that govern neocortical development. In this work, we show that the timed secretion of Wingless-related MMTV (mouse mammary tumor virus) integration site 3 (WNT3) by

  15. RNA helicase DDX5 is a p53-independent target of ARF that participates in ribosome biogenesis

    PubMed Central

    Saporita, Anthony J.; Chang, Hsiang-Chun; Winkeler, Crystal L.; Apicelli, Anthony J.; Kladney, Raleigh D.; Wang, Jianbo; Townsend, R. Reid; Michel, Loren S.; Weber, Jason D.

    2011-01-01

    The p19ARF tumor suppressor limits ribosome biogenesis and responds to hyperproliferative signals to activate the p53 checkpoint response. While its activation of p53 has been well characterized, ARF’s role in restraining nucleolar ribosome production is poorly understood. Here we report the use of a mass spectroscopic analysis to identify protein changes within the nucleoli of Arf-deficient mouse cells. Through this approach, we discovered that ARF limited the nucleolar localization of the RNA helicase DDX5 which promotes the synthesis and maturation of rRNA, ultimately increasing ribosome output and proliferation. ARF inhibited the interaction between DDX5 and nucleophosmin (NPM), preventing association of DDX5 with the rDNA promoter and nuclear pre-ribosomes. In addition, Arf-deficient cells transformed by oncogenic RasV12 were addicted to DDX5, since reduction of DDX5 was sufficient to impair RasV12-driven colony formation in soft agar and tumor growth in mice. Taken together, our findings indicate that DDX5 is a key p53-independent target of the ARF tumor suppressor and is a novel non-oncogene participant in ribosome biogenesis. PMID:21937682

  16. The ribosomal RNA transcription unit of Entamoeba invadens: accumulation of unprocessed pre-rRNA and a long non coding RNA during encystation.

    PubMed

    Ojha, Sandeep; Singh, Nishant; Bhattacharya, Alok; Bhattacharya, Sudha

    2013-01-01

    The ribosomal RNA genes in Entamoeba spp. are located on extrachromosomal circular molecules. Unlike model organisms where rRNA transcription stops during growth stress, Entamoeba histolytica continues transcription; but unprocessed pre-rRNA accumulates during stress, along with a novel class of circular transcripts from the 5'-external transcribed spacer (ETS). To determine the fate of rRNA transcription during stage conversion between trophozoite to cyst we analyzed Entamoeba invadens, a model system for differentiation studies in Entamoeba. We characterized the complete rDNA transcription unit by mapping the ends of pre-rRNA and mature rRNAs. The 3' end of mature 28S rRNA was located 321 nt downstream of the end predicted by sequence homology with E. histolytica. The major processing sites were mapped in external and internal transcribed spacers. The promoter located within 146 nt upstream of 5' ETS was used to transcribe the pre-rRNA. On the other hand, a second promoter located at the 3' end of 28S rDNA was used to transcribe almost the entire intergenic spacer into a long non coding (nc) RNA (>10 kb). Interestingly we found that the levels of pre-rRNA and long ncRNA, measured by northern hybridization, decreased initially in cells shifted to encystation medium, after which they began to increase and reached high levels by 72 h when mature cysts were formed. Unlike E. histolytica, no circular transcripts were found in E. invadens. E. histolytica and E. invadens express fundamentally different ncRNAs from the rDNA locus, which may reflect their adaptation to different hosts (human and reptiles, respectively). This is the first description of rDNA organization and transcription in E. invadens, and provides the framework for further studies on regulation of rRNA synthesis during cyst formation. PMID:24200639

  17. Time-Dependent Decay of mRNA and Ribosomal RNA during Platelet Aging and Its Correlation with Translation Activity

    PubMed Central

    Angénieux, Catherine; Maître, Blandine; Eckly, Anita; Lanza, François; Gachet, Christian; de la Salle, Henri

    2016-01-01

    Previous investigations have indicated that RNAs are mostly present in the minor population of the youngest platelets, whereas translation in platelets could be biologically important. To attempt to solve this paradox, we studied changes in the RNA content of reticulated platelets, i.e., young cells brightly stained by thiazole orange (TObright), a fluorescent probe for RNAs. We provoked in mice strong thrombocytopenia followed by dramatic thrombocytosis characterized by a short period with a vast majority of reticulated platelets. During thrombocytosis, the TObright platelet count rapidly reached a maximum, after which TOdim platelets accumulated, suggesting that most of the former were converted into the latter within 12 h. Experiments on platelets, freshly isolated or incubated ex vivo at 37°C, indicated that their “RNA content”, here corresponding to the amounts of extracted RNA, and the percentage of TObright platelets were positively correlated. The “RNA Content” normalized to the number of platelets could be 20 to 40 fold higher when 80–90% of the cells were reticulated (20–40 fg/platelet), than when only 5–10% of control cells were TObright (less than 1fg/platelet). TObright platelets, incubated ex vivo at 37°C or transfused into mice, became TOdim within 24 h. Ex vivo at 37°C, platelets lost about half of their ribosomal and beta actin RNAs within 6 hours, and more than 98% of them after 24 hours. Accordingly, fluorescence in situ hybridization techniques confirmed the presence of beta actin mRNAs in most reticulated-enriched platelets, but detected them in only a minor subset of control platelets. In vitro, constitutive translation decreased considerably within less than 6 hours, questioning how protein synthesis in platelets, especially in non-reticulated ones, could have a biological function in vivo. Nevertheless, constitutive transient translation in young platelets under pathological conditions characterized by a dramatic increase in

  18. Isolation of ribosome bound nascent polypeptides in vitro to identify translational pause sites along mRNA.

    PubMed

    Jha, Sujata S; Komar, Anton A

    2012-01-01

    The rate of translational elongation is non-uniform. mRNA secondary structure, codon usage and mRNA associated proteins may alter ribosome movement on the message(for review see 1). However, it's now widely accepted that synonymous codon usage is the primary cause of non-uniform translational elongation rates(1). Synonymous codons are not used with identical frequency. A bias exists in the use of synonymous codons with some codons used more frequently than others(2). Codon bias is organism as well as tissue specific(2,3). Moreover, frequency of codon usage is directly proportional to the concentrations of cognate tRNAs(4). Thus, a frequently used codon will have higher multitude of corresponding tRNAs, which further implies that a frequent codon will be translated faster than an infrequent one. Thus, regions on mRNA enriched in rare codons (potential pause sites) will as a rule slow down ribosome movement on the message and cause accumulation of nascent peptides of the respective sizes(5-8). These pause sites can have functional impact on the protein expression, mRNA stability and protein folding(for review see 9). Indeed, it was shown that alleviation of such pause sites can alter ribosome movement on mRNA and subsequently may affect the efficiency of co-translational (in vivo) protein folding(1,7,10,11). To understand the process of protein folding in vivo, in the cell, that is ultimately coupled to the process of protein synthesis it is essential to gain comprehensive insights into the impact of codon usage/tRNA content on the movement of ribosomes along mRNA during translational elongation. Here we describe a simple technique that can be used to locate major translation pause sites for a given mRNA translated in various cell-free systems(6-8). This procedure is based on isolation of nascent polypeptides accumulating on ribosomes during in vitro translation of a target mRNA. The rationale is that at low-frequency codons, the increase in the residence time of the

  19. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed Central

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-01-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit. PMID:12515387

  20. Natural-abundance stable carbon isotopes of small-subunit ribosomal RNA (SSU rRNA) from Guaymas Basin (Mexico)

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Mendlovitz, H.; Albert, D.; Teske, A. P.

    2012-12-01

    Small-subunit ribosomal RNA (SSU rRNA) is a phylogenetically informative molecule found in all species. Because it is poorly preserved in most environments, it is a useful marker for active microbial populations. We are using the natural-abundance stable carbon isotopic composition of specific microbial groups to help identify the carbon substrates contributing to microbial biomass in a variety of marine environments. At Guaymas Basin, hydrothermal fluids interact with abundant sedimentary organic carbon to produce natural gas and petroleum. Where this reaches the sediment surface, it can support dense patches of seafloor life, including Beggiatoa mats. We report here on the stable carbon isotopic composition of SSU rRNA from a Beggiatoa mat transect, a cold background site, a warm site with high oil concentration, and a second Beggiatoa mat. The central part of the transect mat overlay the steepest temperature gradient, and was visually dominated by orange Beggiatoa. This was fringed by white Beggiatoa mat and bare, but still warm, sediment. Methane concentrations were saturating beneath the orange and white mats and at the oily site, lower beneath bare sediment, and below detection at the background site. Our initial hypotheses were that rRNA isotopic composition would be strongly influenced by methane supply, and that archaeal rRNA might be lighter than bacterial due to contributions from methanogens and anaerobic methane oxidizers. We used biotin-labeled oligonucleotides to capture Bacterial and Archaeal SSU rRNA for isotopic determination. Background-site rRNA was isotopically heaviest, and bacterial RNA from below 2 cm at the oily site was lightest, consistent with control by methane. Within the transect mat, however, the pattern was more complicated; at some sediment depths, rRNA from the mat periphery was isotopically lightest. Part of this may be due to the spatially and temporally variable paths followed by hydrothermal fluid, which can include horizontal

  1. Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate.

    PubMed

    Scala, F; Brighenti, E; Govoni, M; Imbrogno, E; Fornari, F; Treré, D; Montanaro, L; Derenzini, M

    2016-02-25

    Many drugs currently used in chemotherapy work by hindering the process of ribosome biogenesis. In tumors with functional p53, the inhibition of ribosome biogenesis may contribute to the efficacy of this treatment by inducing p53 stabilization. As the level of stabilized p53 is critical for the induction of cytotoxic effects, it seems useful to highlight those cancer cell characteristics that can predict the degree of p53 stabilization following the treatment with inhibitors of ribosome biogenesis. In the present study we exposed a series of p53 wild-type human cancer cell lines to drugs such as actinomycin D (ActD), doxorubicin, 5-fluorouracil and CX-5461, which hinder ribosomal RNA (rRNA) synthesis. We found that the amount of stabilized p53 was directly related to the level of ribosome biogenesis in cells before the drug treatment. This was due to different levels of inactivation of the ribosomal proteins-MDM2 pathway of p53 digestion. Inhibition of rRNA synthesis always caused cell cycle arrest, independent of the ribosome biogenesis rate of the cells, whereas apoptosis occurred only in cells with a high rDNA transcription rate. The level of p53 stabilization induced by drugs acting in different ways from the inhibition of ribosome biogenesis, such as hydroxyurea (HU) and nutlin-3, was independent of the level of ribosome biogenesis in cells and always lower than that occurring after the inhibition of rRNA synthesis. Interestingly, in cells with a low ribosome biogenesis rate, the combined treatment with ActD and HU exerted an additive effect on p53 stabilization. These results indicated that (i) drugs inhibiting ribosome biogenesis may be highly effective in p53 wild-type cancers with a high ribosome biogenesis rate, as they induce apoptotic cell death, and (ii) the combination of drugs capable of stabilizing p53 through different mechanisms may be useful for treating cancers with a low ribosome biogenesis rate. PMID:25961931

  2. Ribosome Shut-Down by 16S rRNA Fragmentation in Stationary-Phase Escherichia coli.

    PubMed

    Luidalepp, Hannes; Berger, Stefan; Joss, Oliver; Tenson, Tanel; Polacek, Norbert

    2016-05-22

    Stationary-phase bacterial cells are characterized by vastly reduced metabolic activities yielding a dormant-like phenotype. Several hibernation programs ensure the establishment and maintenance of this resting growth state. Some of the stationary phase-specific modulations affect the ribosome and its translational activity directly. In stationary-phase Escherichia coli, we observed the appearance of a 16S rRNA fragmentation event at the tip of helix 6 within the small ribosomal subunit (30S). Stationary-phase 30S subunits showed markedly reduced activities in protein biosynthesis. On the other hand, the functional performance of stationary-phase large ribosomal subunits (50S) was indistinguishable from particles isolated from exponentially growing cells. Introduction of the 16S rRNA cut in vitro at helix 6 of exponential phase 30S subunits renders them less efficient in protein biosynthesis. This indicates that the helix 6 fragmentation is necessary and sufficient to attenuate translational activities of 30S ribosomal subunits. These results suggest that stationary phase-specific cleavage of 16S rRNA within the 30S subunit is an efficient means to reduce global translation activities under non-proliferating growth conditions. PMID:27067112

  3. The sequence of 28S ribosomal RNA varies within and between human cell lines.

    PubMed Central

    Leffers, H; Andersen, A H

    1993-01-01

    The primary structure of 28S ribosomal RNA constitutes a conserved core which is similar among most 23S-like rRNAs and expansion segments which occur at specific positions in the sequence. The expansion segments account for most of the size difference between prokaryotic (archaeal and eubacterial) and eukaryotic rRNAs and they exhibit a sequence variation which is unique among rRNAs. We have investigated the sequence variation of one of the expansion segments, V8, by sequencing a total of 111 V8 segments from 9 different human cell lines and tissues and have found 35 different variants. The variation occur mainly at two 'hot spots' which are separated by 170 nucleotides in the primary sequence but are neighbours in the secondary structure. The sequence of V8 segments varies both within and between human cell lines and tissues. The implications for the evolution of the eukaryotic 28S rRNA are discussed together with possible functions of the expansion segments. We also present a secondary structure model for the V8 segment based on comparative sequence analysis and chemical and enzymatic foot printing. Images PMID:8464736

  4. Functional variants of 5S rRNA in the ribosomes of common sea urchin Paracentrotus lividus.

    PubMed

    Dimarco, Eufrosina; Cascone, Eleonora; Bellavia, Daniele; Caradonna, Fabio

    2012-10-15

    We have previously reported a molecular and cytogenetic characterization of three different 5S rDNA clusters in the sea urchin Paracentrotus lividus; this study, performed at DNA level only, lends itself as starting point to verify that these clusters could contain transcribed genes, then, to demonstrate the presence of heterogeneity at functional RNA level, also. In the present work we report in P. lividus ribosomes the existence of several transcribed variants of the 5S rRNA and we associate all transcribed variants to the cluster to which belong. Our finding is the first demonstration of the presence of high heterogeneity in functional 5S rRNA molecules in animal ribosomes, a feature that had been considered a peculiarity of some plants. PMID:22967708

  5. Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation

    PubMed Central

    Fei, Jingyi; Bronson, Jonathan E.; Hofman, Jake M.; Srinivas, Rathi L.; Wiggins, Chris H.; Gonzalez, Ruben L.

    2009-01-01

    Determining the mechanism by which tRNAs rapidly and precisely transit through the ribosomal A, P, and E sites during translation remains a major goal in the study of protein synthesis. Here, we report the real-time dynamics of the L1 stalk, a structural element of the large ribosomal subunit that is implicated in directing tRNA movements during translation. Within pretranslocation ribosomal complexes, the L1 stalk exists in a dynamic equilibrium between open and closed conformations. Binding of elongation factor G (EF-G) shifts this equilibrium toward the closed conformation through one of at least two distinct kinetic mechanisms, where the identity of the P-site tRNA dictates the kinetic route that is taken. Within posttranslocation complexes, L1 stalk dynamics are dependent on the presence and identity of the E-site tRNA. Collectively, our data demonstrate that EF-G and the L1 stalk allosterically collaborate to direct tRNA translocation from the P to the E sites, and suggest a model for the release of E-site tRNA. PMID:19717422

  6. Involvement of multiple basic amino acids in yeast ribosomal protein L1 in 5S rRNA recognition.

    PubMed

    Yeh, L C; Lee, J C

    1995-01-01

    The role of basic amino acid residues located at the C-terminal region of the yeast ribosomal protein L1 in 5S rRNA binding was characterized in vitro and in vivo. Mutant proteins containing single or multiple amino acid substitutions were generated by site-directed mutagenesis of the L1 gene carried on a plasmid. In vitro RNP formation was examined by production of the mutant protein in the presence of the RNA molecule. The thermostability of the resultant RNP was also studied. Effects of these mutations on cell viability and ribosome assembly were characterized by transformation of a conditional null L1 yeast mutant with the mutated L1 gene expressed from the plasmid. Substitution of any one of the lysine or arginine residue did not affect significantly RNA binding in vitro or cell growth in vivo. However, several mutant proteins with substitutions of two of these basic amino acids bound RNA weakly and the RNPs were less stable. Cells expressing these mutant proteins were lethal. Theoretical structural prediction of these amino acids further provided information regarding their collective contributions to RNA recognition and to interaction between the RNP and other components of the 60S ribosomal subunit. PMID:8643400

  7. Universal bacterial identification by mass spectrometry of 16S ribosomal RNA cleavage products

    NASA Astrophysics Data System (ADS)

    Jackson, George W.; McNichols, Roger J.; Fox, George E.; Willson, Richard C.

    2007-03-01

    The public availability of over 180,000 bacterial 16S ribosomal RNA (rRNA) sequences has facilitated microbial identification and classification using nucleic acid hybridization and other molecular approaches. Species-specific PCR, microarrays, and in situ hybridization are based on the presence of unique subsequences in the target sequence and therefore require prior knowledge of what organisms are likely to be present in a sample. Mass spectrometry is not limited by a pre-synthesized inventory of probe/primer sequences. It has already been demonstrated that organism identification can be recovered from mass spectra using various methods including base-specific cleavage of nucleic acids. The feasibility of broad bacterial identification by comparing such mass spectral patterns to predictive databases derived from virtually all previously sequenced strains has yet to be demonstrated, however. Herein, we present universal bacterial identification by base-specific cleavage, mass spectrometry, and an efficient coincidence function for rapid spectral scoring against a large database of predicted "mass catalogs". Using this approach in conjunction with universal PCR of the 16S rDNA gene, four bacterial isolates and an uncultured clone were successfully identified against a database of predicted cleavage products derived 6rom over 47,000 16S rRNA sequences representing all major bacterial taxaE At present, the conventional DNA isolation and PCR steps require approximately 2 h, while subsequent transcription, enzymatic cleavage, mass spectrometric analysis, and database comparison require less than 45 min. All steps are amenable to high-throughput implementation.

  8. Nucleotide sequence neighbouring a late modified guanylic residue within the 28S ribosomal RNA of several eukaryotic cells.

    PubMed Central

    Eladari, M E; Hampe, A; Galibert, F

    1977-01-01

    The nucleotide sequence of a particular T1 oligonucleotide found in 41S and 28S RNAs of several cellular cell lines (human, mouse, rat and chicken fibroblast) but absent in 45S ribosomal RNA has been deduced. Its primary structure : A-U-U*-G*-psi-U-C-A-C-C-C-A-C-U-A-A-U-A-Gp shows the presence of a modified G residue which explains the existence of this oligonucleotide in the T1 fingerprint of 41S RNA and 28S. Its absence on the 45S RNA T1 fingerprint is accounted for by a late modification. Images PMID:561392

  9. A Ribosome-Binding, 3′ Translational Enhancer Has a T-Shaped Structure and Engages in a Long-Distance RNA-RNA Interaction

    PubMed Central

    Gao, Feng; Kasprzak, Wojciech; Stupina, Vera A.

    2012-01-01

    Many plant RNA viruses contain elements in their 3′ untranslated regions (3′ UTRs) that enhance translation. The PTE (Panicum mosaic virus-like translational enhancer) of Pea enation mosaic virus (PEMV) binds to eukaryotic initiation factor 4E (eIF4E), but how this affects translation from the 5′ end is unknown. We have discovered a three-way branched element just upstream of the PEMV PTE that engages in a long-distance kissing-loop interaction with a coding sequence hairpin that is critical for the translation of a reporter construct and the accumulation of the viral genome in vivo. Loss of the long-distance interaction was more detrimental than elimination of the adjacent PTE, indicating that the RNA-RNA interaction supports additional translation functions besides relocating the PTE to the 5′ end. The branched element is predicted by molecular modeling and molecular dynamics to form a T-shaped structure (TSS) similar to the ribosome-binding TSS of Turnip crinkle virus (TCV). The PEMV element binds to plant 80S ribosomes with a Kd (dissociation constant) of 0.52 μM and to 60S subunits with a Kd of 0.30 μM. Unlike the TCV TSS, the PEMV element also binds 40S subunits (Kd, 0.36 μM). Mutations in the element that suppressed translation reduced either ribosome binding or the RNA-RNA interaction, suggesting that ribosome binding is important for function. This novel, multifunctional element is designated a kl-TSS (kissing-loop T-shaped structure) to distinguish it from the TCV TSS. The kl-TSS has sequence and structural features conserved with the upper portion of most PTE-type elements, which, with the exception of the PEMV PTE, can engage in similar long-distance RNA-RNA interactions. PMID:22761367

  10. RNA Cytidine Acetyltransferase of Small-Subunit Ribosomal RNA: Identification of Acetylation Sites and the Responsible Acetyltransferase in Fission Yeast, Schizosaccharomyces pombe

    PubMed Central

    Taoka, Masato; Ishikawa, Daisuke; Nobe, Yuko; Ishikawa, Hideaki; Yamauchi, Yoshio; Terukina, Goro; Nakayama, Hiroshi; Hirota, Kouji; Takahashi, Nobuhiro; Isobe, Toshiaki

    2014-01-01

    The eukaryotic small-subunit (SSU) ribosomal RNA (rRNA) has two evolutionarily conserved acetylcytidines. However, the acetylation sites and the acetyltransferase responsible for the acetylation have not been identified. We performed a comprehensive MS-based analysis covering the entire sequence of the fission yeast, Schizosaccharomyces pombe, SSU rRNA and identified two acetylcytidines at positions 1297 and 1815 in the 3′ half of the rRNA. To identify the enzyme responsible for the cytidine acetylation, we searched for an S. pombe gene homologous to TmcA, a bacterial tRNA N-acetyltransferase, and found one potential candidate, Nat10. A temperature-sensitive strain of Nat10 with a mutation in the Walker A type ATP-binding motif abolished the cytidine acetylation in SSU rRNA, and the wild-type Nat10 supplemented to this strain recovered the acetylation, providing evidence that Nat10 is necessary for acetylation of SSU rRNA. The Nat10 mutant strain showed a slow-growth phenotype and was defective in forming the SSU rRNA from the precursor RNA, suggesting that cytidine acetylation is necessary for ribosome assembly. PMID:25402480

  11. Steric interactions lead to collective tilting motion in the ribosome during mRNA–tRNA translocation

    PubMed Central

    Nguyen, Kien; Whitford, Paul C.

    2016-01-01

    Translocation of mRNA and tRNA through the ribosome is associated with large-scale rearrangements of the head domain in the 30S ribosomal subunit. To elucidate the relationship between 30S head dynamics and mRNA–tRNA displacement, we apply molecular dynamics simulations using an all-atom structure-based model. Here we provide a statistical analysis of 250 spontaneous transitions between the A/P–P/E and P/P–E/E ensembles. Consistent with structural studies, the ribosome samples a chimeric ap/P–pe/E intermediate, where the 30S head is rotated ∼18°. It then transiently populates a previously unreported intermediate ensemble, which is characterized by a ∼10° tilt of the head. To identify the origins of head tilting, we analyse 781 additional simulations in which specific steric features are perturbed. These calculations show that head tilting may be attributed to specific steric interactions between tRNA and the 30S subunit (PE loop and protein S13). Taken together, this study demonstrates how molecular structure can give rise to large-scale collective rearrangements. PMID:26838673

  12. Erythromycin and 5S rRNA binding properties of the spinach chloroplast ribosomal protein CL22.

    PubMed Central

    Carol, P; Rozier, C; Lazaro, E; Ballesta, J P; Mache, R

    1993-01-01

    The spinach chloroplast ribosomal protein (r-protein) CL22 contains a central region homologous to the Escherichia coli r-protein L22 plus long N- and C-terminal extensions. We show in this study that the CL22 combines two properties which in E. coli ribosome are split between two separate proteins. The CL22 which binds to the 5S rRNA can also be linked to an erythromycin derivative added to the 50S ribosomal subunit. This latter property is similar to that of the E. coli L22 and suggests a similar localization in the 50S subunit. We have overproduced the r-protein CL22 and deleted forms of this protein in E. coli. We show that the overproduced CL22 binds to the chloroplast 5S rRNA and that the deleted protein containing the N- and C-terminal extensions only has lost the 5S rRNA binding property. We suggest that the central homologous regions of the CL22 contains the RNA binding domain. Images PMID:8441674

  13. Colicin E3 cleavage of 16S rRNA impairs decoding and accelerates tRNA translocation on Escherichia coli ribosomes

    PubMed Central

    Lancaster, Lorna E; Savelsbergh, Andreas; Kleanthous, Colin; Wintermeyer, Wolfgang; Rodnina, Marina V

    2008-01-01

    The cytotoxin colicin E3 targets the 30S subunit of bacterial ribosomes and specifically cleaves 16S rRNA at the decoding centre, thereby inhibiting translation. Although the cleavage site is well known, it is not clear which step of translation is inhibited. We studied the effects of colicin E3 cleavage on ribosome functions by analysing individual steps of protein synthesis. We find that the cleavage affects predominantly the elongation step. The inhibitory effect of colicin E3 cleavage originates from the accumulation of sequential impaired decoding events, each of which results in low occupancy of the A site and, consequently, decreasing yield of elongating peptide. The accumulation leads to an almost complete halt of translation after reading of a few codons. The cleavage of 16S rRNA does not impair monitoring of codon–anticodon complexes or GTPase activation during elongation-factor Tu-dependent binding of aminoacyl-tRNA, but decreases the stability of the codon–recognition complex and slows down aminoacyl-tRNA accommodation in the A site. The tRNA–mRNA translocation is faster on colicin E3-cleaved than on intact ribosomes and is less sensitive to inhibition by the antibiotic viomycin. PMID:18485067

  14. Ribosomal protein S6 is highly expressed in non-Hodgkin lymphoma and associates with mRNA containing a 5' terminal oligopyrimidine tract.

    PubMed

    Hagner, P R; Mazan-Mamczarz, K; Dai, B; Balzer, E M; Corl, S; Martin, S S; Zhao, X F; Gartenhaus, R B

    2011-03-31

    The molecular mechanism(s) linking tumorigenesis and morphological alterations in the nucleolus are presently coming into focus. The nucleolus is the cellular organelle in which the formation of ribosomal subunits occurs. Ribosomal biogenesis occurs through the transcription of ribosomal RNA (rRNA), rRNA processing and production of ribosomal proteins. An error in any of these processes may lead to deregulated cellular translation, evident in multiple cancers and 'ribosomopathies'. Deregulated protein synthesis may be achieved through the overexpression of ribosomal proteins as seen in primary leukemic blasts with elevated levels of ribosomal proteins S11 and S14. In this study, we demonstrate that ribosomal protein S6 (RPS6) is highly expressed in primary diffuse large B-cell lymphoma (DLBCL) samples. Genetic modulation of RPS6 protein levels with specifically targeted short hairpin RNA (shRNA) lentiviruses led to a decrease in the actively proliferating population of cells compared with control shRNA. Low-dose rapamycin treatments have been shown to affect the translation of 5' terminal oligopyrimidine (5' TOP) tract mRNA, which encodes the translational machinery, implicating RPS6 in 5' TOP translation. Recently, it was shown that disruption of 40S ribosomal biogenesis through specific small inhibitory RNA knockdown of RPS6 defined RPS6 as a critical regulator of 5' TOP translation. For the first time, we show that RPS6 associates with multiple mRNAs containing a 5' TOP tract. These findings expand our understanding of the mechanism(s) involved in ribosomal biogenesis and deregulated protein synthesis in DLBCL. PMID:21102526

  15. Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences.

    PubMed

    Hori, H; Osawa, S

    1987-09-01

    A phylogenetic tree of most of the major groups of organisms has been constructed from the 352 5S ribosomal RNA sequences now available. The tree suggests that there are several major groups of eubacteria that diverged during the early stages of their evolution. Metabacteria (= archaebacteria) and eukaryotes separated after the emergence of eubacteria. Among eukaryotes, red algae emerged first; and, later, thraustochytrids (a Proctista group), ascomycetes (yeast), green plants (green algae and land plants), "yellow algae" (brown algae, diatoms, and chrysophyte algae), basidiomycetes (mushrooms and rusts), slime- and water molds, various protozoans, and animals emerged, approximately in that order. Three major types of photosynthetic eukaryotes--i.e., red algae (= Chlorophyll a group), green plants (Chl. a + b group) and yellow algae (Chl. a + c)--are remotely related to one another. Other photosynthetic unicellular protozoans--such as Cyanophora (Chl. a), Euglenophyta (Chl. a + b), Cryptophyta (Chl. a + c), and Dinophyta (Chl. a + c)--seem to have separated shortly after the emergence of the yellow algae. PMID:2452957

  16. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions

    NASA Technical Reports Server (NTRS)

    Chicurel, M. E.; Singer, R. H.; Meyer, C. J.; Ingber, D. E.

    1998-01-01

    The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs). In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins to the cytoskeleton and to immobilized signal-transducing molecules. Cell adhesion to the ECM also induces a rapid increase in the translation of preexisting messenger RNAs. Gene expression can be controlled locally by targeting mRNAs to specialized cytoskeletal domains. Here we investigate whether cell binding to the ECM promotes formation of a cytoskeletal microcompartment specialized for translational control at the site of integrin binding. High-resolution in situ hybridization revealed that mRNA and ribosomes rapidly and specifically localized to FACs that form when cells bind to ECM-coated microbeads. Relocation of these protein synthesis components to the FAC depended on the ability of integrins to mechanically couple the ECM to the contractile cytoskeleton and on associated tension-moulding of the actin lattice. Our results suggest a new type of gene regulation by integrins and by mechanical stress which may involve translation of mRNAs into proteins near the sites of signal reception.

  17. Nucleotide excision repair of the 5 S ribosomal RNA gene assembled into a nucleosome.

    PubMed

    Liu, X; Smerdon, M J

    2000-08-01

    A-175-base pair fragment containing the Xenopus borealis somatic 5 S ribosomal RNA gene was used as a model system to determine the effect of nucleosome assembly on nucleotide excision repair (NER) of the major UV photoproduct (cyclobutane pyrimidine dimer (CPD)) in DNA. Xenopus oocyte nuclear extracts were used to carry out repair in vitro on reconstituted, positioned 5 S rDNA nucleosomes. Nucleosome structure strongly inhibits NER at many CPD sites in the 5 S rDNA fragment while having little effect at a few sites. The time course of CPD removal at 35 different sites indicates that >85% of the CPDs in the naked DNA fragment have t(12) values <2 h, whereas <26% of the t(12) values in nucleosomes are <2 h, and 15% are >8 h. Moreover, removal of histone tails from these mononucleosomes has little effect on the repair rates. Finally, nucleosome inhibition of repair shows no correlation with the rotational setting of a 14-nucleotide-long pyrimidine tract located 30 base pairs from the nucleosome dyad. These results suggest that inhibition of NER by mononucleosomes is not significantly influenced by the rotational orientation of CPDs on the histone surface, and histone tails play little (or no) role in this inhibition. PMID:10821833

  18. Phylogeny of chloromonas (chlorophyceae): A study of 18S ribosomal RNA gene sequences

    SciTech Connect

    Buchheim, M.A.; Buchheim, J.A.; Chapman, R.L.

    1997-04-01

    The unicellular, biflagellate genus Chloromonas differs from its ally, Chlamydomonas, primarily by the absence of pyrenoids in the vegetative stage of the former. As with most green flagellate genera, little is known about phylogenetic affinities within and among Chloromonas species. Phylogenetic analyses of nuclear-encoded small-subunit ribosomal RNA gene sequences demonstrate that a sampling of five Chloromonas taxa, obtained from major culture collections, do not form a monophyletic group. However, only three of these isolates, Chloromonas clathrata, Chloromonas serbinowi, and Chloromonas rosae, are diagnosable morphologically as Chloromonas species by the absence of a pyrenoid in the vegetative stage. The three diagnosable Chloromonas taxa form an alliance with two pyrenoid-bearing chlamydomonads, Chlamydomonas augustae and Chlamydomonas macrostellata. With the exception of Chloromonas serbinowi, which represents the basal lineage within the clade, each of the diagnosable Chloromonas taxa and their pyrenoid-bearing Chlamydomonas allies were isolated originally from mountain soils, snow, or cold peat. These observations suggest that hibitat, independent of pyrenoid status, may be most closely linked to the natural history of this clade of chlamydomonad flagellates. 51 refs., 3 figs., 3 tabs.

  19. Simple detection of the 5S ribosomal RNA of Pneumocystis carinii using in situ hybridisation.

    PubMed Central

    Kobayashi, M; Urata, T; Ikezoe, T; Hakoda, E; Uemura, Y; Sonobe, H; Ohtsuki, Y; Manabe, T; Miyagi, S; Miyoshi, I

    1996-01-01

    AIMS: To investigate the effectiveness of digoxigenin incorporated double stranded DNA probes produced by the polymerase chain reaction (PCR), for the detection of Pneumocystis carinii, using in situ hybridisation (ISH). METHODS: Formalin fixed, paraffin wax embedded sections of 26 human lung samples from 11 patients with P carinii pneumonia (PCP), and 15 with various types of fungal and viral pneumonia, were obtained during necropsy or transbronchial lung biopsy. Three additional PCP induced rat lung samples were also tested. PCR probes were prepared using the digoxigenin labelling mixture, and they were amplified from the DNA of a PCP induced rat lung after administration of dexamethasone, on the basis that 5S ribosomal RNA sequences are identical in human and rat P carinii. ISH was performed using this probe, and visualised using the digoxigenin nucleic acid detection kit. An immunohistochemical study using anti-human Pneumocystis monoclonal antibody was also carried out in parallel. RESULTS: ISH positively stained eight (of eight) lung necropsy specimens from patients with PCP, three (of three) transbronchial lung biopsy specimens from patients with PCP, and none of the three PCP induced rat lung specimens. In contrast, none of the specimens from patients with pneumonia caused by Aspergillus sp (n = 5), Candida sp (n = 4), Cryptococcus sp (n = 2), mucormycosis (n = 2), or cytomegalovirus (n = 2) were positive on ISH or immunohistochemistry. CONCLUSIONS: Using a digoxigenin labelled PCR probe for the entire 5S rRNA sequence in conjunction with conventional staining, ISH is highly reactive and specific for the diagnosis of PCP. Images PMID:9038753

  20. Ribosomal Protein S14 of Saccharomyces cerevisiae Regulates Its Expression by Binding to RPS14B Pre-mRNA and to 18S rRNA

    PubMed Central

    Fewell, Sheara W.; Woolford, John L.

    1999-01-01

    Production of ribosomal protein S14 in Saccharomyces cerevisiae is coordinated with the rate of ribosome assembly by a feedback mechanism that represses expression of RPS14B. Three-hybrid assays in vivo and filter binding assays in vitro demonstrate that rpS14 directly binds to an RNA stem-loop structure in RPS14B pre-mRNA that is necessary for RPS14B regulation. Moreover, rpS14 binds to a conserved helix in 18S rRNA with approximately five- to sixfold-greater affinity. These results support the model that RPS14B regulation is mediated by direct binding of rpS14 either to its pre-mRNA or to rRNA. Investigation of these interactions with the three-hybrid system reveals two regions of rpS14 that are involved in RNA recognition. D52G and E55G mutations in rpS14 alter the specificity of rpS14 for RNA, as indicated by increased affinity for RPS14B RNA but reduced affinity for the rRNA target. Deletion of the C terminus of rpS14, where multiple antibiotic resistance mutations map, prevents binding of rpS14 to RNA and production of functional 40S subunits. The emetine-resistant protein, rpS14-EmRR, which contains two mutations near the C terminus of rpS14, does not bind either RNA target in the three-hybrid or in vitro assays. This is the first direct demonstration that an antibiotic resistance mutation alters binding of an r protein to rRNA and is consistent with the hypothesis that antibiotic resistance mutations can result from local alterations in rRNA structure. PMID:9858605

  1. EF4 disengages the peptidyl-tRNA CCA end and facilitates back-translocation on the 70S ribosome.

    PubMed

    Zhang, Dejiu; Yan, Kaige; Liu, Guangqiao; Song, Guangtao; Luo, Jiejian; Shi, Yi; Cheng, Erchao; Wu, Shan; Jiang, Taijiao; Lou, Jizhong; Gao, Ning; Qin, Yan

    2016-02-01

    EF4 catalyzes tRNA back-translocation through an unknown mechanism. We report cryo-EM structures of Escherichia coli EF4 in post- and pretranslocational ribosomes (Post- and Pre-EF4) at 3.7- and 3.2-Å resolution, respectively. In Post-EF4, peptidyl-tRNA occupies the peptidyl (P) site, but the interaction between its CCA end and the P loop is disrupted. In Pre-EF4, the peptidyl-tRNA assumes a unique position near the aminoacyl (A) site, denoted the A site/EF4 bound (A/4) site, with a large displacement at its acceptor arm. Mutagenesis analyses suggest that a specific region in the EF4 C-terminal domain (CTD) interferes with base-pairing between the peptidyl-tRNA 3'-CCA and the P loop, whereas the EF4 CTD enhances peptidyl-tRNA interaction at the A/4 site. Therefore, EF4 induces back-translocation by disengaging the tRNA's CCA end from the peptidyl transferase center of the translating ribosome. PMID:26809121

  2. RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants.

    PubMed

    Hillwig, Melissa S; Contento, Anthony L; Meyer, Alexander; Ebany, Danielle; Bassham, Diane C; Macintosh, Gustavo C

    2011-01-18

    RNase T2 enzymes are conserved in most eukaryotic genomes, and expression patterns and phylogenetic analyses suggest that they may carry out an important housekeeping role. However, the nature of this role has been elusive. Here we show that RNS2, an intracellular RNase T2 from Arabidopsis thaliana, is essential for normal ribosomal RNA recycling. This enzyme is the main endoribonuclease activity in plant cells and localizes to the endoplasmic reticulum (ER), ER-derived structures, and vacuoles. Mutants lacking RNS2 activity accumulate RNA intracellularly, and rRNA in these mutants has a longer half-life. Normal rRNA turnover seems essential to maintain cell homeostasis because rns2 mutants display constitutive autophagy. We propose that RNS2 is part of a process that degrades rRNA to recycle its components. This process appears to be conserved in all eukaryotes. PMID:21199950

  3. RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants

    PubMed Central

    Hillwig, Melissa S.; Contento, Anthony L.; Meyer, Alexander; Ebany, Danielle; Bassham, Diane C.; MacIntosh, Gustavo C.

    2011-01-01

    RNase T2 enzymes are conserved in most eukaryotic genomes, and expression patterns and phylogenetic analyses suggest that they may carry out an important housekeeping role. However, the nature of this role has been elusive. Here we show that RNS2, an intracellular RNase T2 from Arabidopsis thaliana, is essential for normal ribosomal RNA recycling. This enzyme is the main endoribonuclease activity in plant cells and localizes to the endoplasmic reticulum (ER), ER-derived structures, and vacuoles. Mutants lacking RNS2 activity accumulate RNA intracellularly, and rRNA in these mutants has a longer half-life. Normal rRNA turnover seems essential to maintain cell homeostasis because rns2 mutants display constitutive autophagy. We propose that RNS2 is part of a process that degrades rRNA to recycle its components. This process appears to be conserved in all eukaryotes. PMID:21199950

  4. Cockayne syndrome protein A is a transcription factor of RNA polymerase I and stimulates ribosomal biogenesis and growth

    PubMed Central

    Koch, Sylvia; Garcia Gonzalez, Omar; Assfalg, Robin; Schelling, Adrian; Schäfer, Patrick; Scharffetter-Kochanek, Karin; Iben, Sebastian

    2014-01-01

    Mutations in the Cockayne syndrome A (CSA) protein account for 20% of Cockayne syndrome (CS) cases, a childhood disorder of premature aging and early death. Hitherto, CSA has exclusively been described as DNA repair factor of the transcription-coupled branch of nucleotide excision repair. Here we show a novel function of CSA as transcription factor of RNA polymerase I in the nucleolus. Knockdown of CSA reduces pre-rRNA synthesis by RNA polymerase I. CSA associates with RNA polymerase I and the active fraction of the rDNA and stimulates re-initiation of rDNA transcription by recruiting the Cockayne syndrome proteins TFIIH and CSB. Moreover, compared with CSA deficient parental CS cells, CSA transfected CS cells reveal significantly more rRNA with induced growth and enhanced global translation. A previously unknown global dysregulation of ribosomal biogenesis most likely contributes to the reduced growth and premature aging of CS patients. PMID:24781187

  5. The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans.

    PubMed

    Tomioka, N; Sugiura, M

    1983-01-01

    The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans, has been determined. Its coding region is estimated to be 1,487 base pairs long, which is nearly identical to those reported for chloroplast 16S rRNA genes and is about 4% shorter than that of the Escherichia coli gene. The 16S rRNA sequence of A. nidulans has 83% homology with that of tobacco chloroplast and 74% homology with that of E. coli. Possible stem and loop structures of A. nidulans 16S rRNA sequences resemble more closely those of chloroplast 16S rRNAs than those of E. coli 16S rRNA. These observations support the endosymbiotic theory of chloroplast origin. PMID:6412038

  6. Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation.

    PubMed

    Weinberg, David E; Shah, Premal; Eichhorn, Stephen W; Hussmann, Jeffrey A; Plotkin, Joshua B; Bartel, David P

    2016-02-23

    Ribosome-footprint profiling provides genome-wide snapshots of translation, but technical challenges can confound its analysis. Here, we use improved methods to obtain ribosome-footprint profiles and mRNA abundances that more faithfully reflect gene expression in Saccharomyces cerevisiae. Our results support proposals that both the beginning of coding regions and codons matching rare tRNAs are more slowly translated. They also indicate that emergent polypeptides with as few as three basic residues within a ten-residue window tend to slow translation. With the improved mRNA measurements, the variation attributable to translational control in exponentially growing yeast was less than previously reported, and most of this variation could be predicted with a simple model that considered mRNA abundance, upstream open reading frames, cap-proximal structure and nucleotide composition, and lengths of the coding and 5' UTRs. Collectively, our results provide a framework for executing and interpreting ribosome-profiling studies and reveal key features of translational control in yeast. PMID:26876183

  7. Methylation sites in Escherichia coli ribosomal RNA: localization and identification of four new sites of methylation in 23S rRNA.

    PubMed

    Smith, J E; Cooperman, B S; Mitchell, P

    1992-11-10

    Four previously undetermined sites of methylation are mapped in Escherichia coli 23S rRNA employing a novel combination of methods. First, using a double-isotope approach, the total number of methyl groups in 23S rRNA was determined to be 14.9 +/- 1.6. Second, hybridization of methyl-labeled rRNA to complementary DNA restriction fragments and PAGE analysis were used to purify RNA-DNA heteroduplexes and to quantify methyl groups within specific 23S rRNA fragments. Third, the methylated nucleosides in these fragments were identified and quantified using HPLC, confirming the presence of 14 methylation sites in 23S rRNA, four more than had been previously identified. In contrast, a similar set of analyses conducted on 16S rRNA gave evidence for 10 sites of methylation, at all approximate locations consistent with published 16S methylated nucleoside identities and locations. Selected regions of the 23S rRNA molecule containing previously unidentified methylated nucleosides were released by site-directed cleavage with ribonuclease H and isolated by PAGE. Sites of methylation within the RNA fragments were determined by classical oligonucleotide analyses. The four newly identified methylation sites in 23S rRNA are m2G-1835, m5C-1962, m6A-2503, and m2G at one of positions 2445-2447. Together with previously described sites of modification, these new sites form a group that is clustered in a current model for the three-dimensional organization of the 23S rRNA in the 50S ribosomal subunit, at a locus congruent with nucleotides previously implicated in ribosomal function. PMID:1384701

  8. Seasonal Succession Leads to Habitat-Dependent Differentiation in Ribosomal RNA:DNA Ratios among Freshwater Lake Bacteria

    PubMed Central

    Denef, Vincent J.; Fujimoto, Masanori; Berry, Michelle A.; Schmidt, Marian L.

    2016-01-01

    Relative abundance profiles of bacterial populations measured by sequencing DNA or RNA of marker genes can widely differ. These differences, made apparent when calculating ribosomal RNA:DNA ratios, have been interpreted as variable activities of bacterial populations. However, inconsistent correlations between ribosomal RNA:DNA ratios and metabolic activity or growth rates have led to a more conservative interpretation of this metric as the cellular protein synthesis potential (PSP). Little is known, particularly in freshwater systems, about how PSP varies for specific taxa across temporal and spatial environmental gradients and how conserved PSP is across bacterial phylogeny. Here, we generated 16S rRNA gene sequencing data using simultaneously extracted DNA and RNA from fractionated (free-living and particulate) water samples taken seasonally along a eutrophic freshwater estuary to oligotrophic pelagic transect in Lake Michigan. In contrast to previous reports, we observed frequent clustering of DNA and RNA data from the same sample. Analysis of the overlap in taxa detected at the RNA and DNA level indicated that microbial dormancy may be more common in the estuary, the particulate fraction, and during the stratified period. Across spatiotemporal gradients, PSP was often conserved at the phylum and class levels. PSPs for specific taxa were more similar across habitats in spring than in summer and fall. This was most notable for PSPs of the same taxa when located in the free-living or particulate fractions, but also when contrasting surface to deep, and estuary to Lake Michigan communities. Our results show that community composition assessed by RNA and DNA measurements are more similar than previously assumed in freshwater systems. However, the similarity between RNA and DNA measurements and taxa-specific PSPs that drive community-level similarities are conditional on spatiotemporal factors. PMID:27199936

  9. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA ratios among freshwater lake bacteria

    DOE PAGESBeta

    Denef, Vincent J.; Fujimoto, Masanori; Berry, Michelle A.; Schmidt, Marian L.

    2016-04-29

    Relative abundance profiles of bacterial populations measured by sequencing DNA or RNA of marker genes can widely differ. These differences, made apparent when calculating ribosomal RNA:DNA ratios, have been interpreted as variable activities of bacterial populations. However, inconsistent correlations between ribosomal RNA:DNA ratios and metabolic activity or growth rates have led to a more conservative interpretation of this metric as the cellular protein synthesis potential (PSP). Little is known, particularly in freshwater systems, about how PSP varies for specific taxa across temporal and spatial environmental gradients and how conserved PSP is across bacterial phylogeny. Here, we generated 16S rRNA genemore » sequencing data using simultaneously extracted DNA and RNA from fractionated (free-living and particulate) water samples taken seasonally along a eutrophic freshwater estuary to oligotrophic pelagic transect in Lake Michigan. In contrast to previous reports, we observed frequent clustering of DNA and RNA data from the same sample. Analysis of the overlap in taxa detected at the RNA and DNA level indicated that microbial dormancy may be more common in the estuary, the particulate fraction, and during the stratified period. Across spatiotemporal gradients, PSP was often conserved at the phylum and class levels. PSPs for specific taxa were more similar across habitats in spring than in summer and fall. This was most notable for PSPs of the same taxa when located in the free-living or particulate fractions, but also when contrasting surface to deep, and estuary to Lake Michigan communities. Our results show that community composition assessed by RNA and DNA measurements are more similar than previously assumed in freshwater systems. Furthermore, the similarity between RNA and DNA measurements and taxa-specific PSPs that drive community-level similarities are conditional on spatiotemporal factors.« less

  10. Synchronous tRNA movements during translocation on the ribosome are orchestrated by elongation factor G and GTP hydrolysis.

    PubMed

    Holtkamp, Wolf; Wintermeyer, Wolfgang; Rodnina, Marina V

    2014-10-01

    The translocation of tRNAs through the ribosome proceeds through numerous small steps in which tRNAs gradually shift their positions on the small and large ribosomal subunits. The most urgent questions are: (i) whether these intermediates are important; (ii) how the ribosomal translocase, the GTPase elongation factor G (EF-G), promotes directed movement; and (iii) how the energy of GTP hydrolysis is coupled to movement. In the light of recent advances in biophysical and structural studies, we argue that intermediate states of translocation are snapshots of dynamic fluctuations that guide the movement. In contrast to current models of stepwise translocation, kinetic evidence shows that the tRNAs move synchronously on the two ribosomal subunits in a rapid reaction orchestrated by EF-G and GTP hydrolysis. EF-G combines the energy regimes of a GTPase and a motor protein and facilitates tRNA movement by a combination of directed Brownian ratchet and power stroke mechanisms. PMID:25118068

  11. Phylogenetic origins of the plant mitochondrion based on a comparative analysis of 5S ribosomal RNA sequences

    NASA Technical Reports Server (NTRS)

    Villanueva, E.; Delihas, N.; Luehrsen, K. R.; Fox, G. E.; Gibson, J.

    1985-01-01

    The complete nucleotide sequences of 5S ribosomal RNAs from Rhodocyclus gelatinosa, Rhodobacter sphaeroides, and Pseudomonas cepacia were determined. Comparisons of these 5S RNA sequences show that rather than being phylogenetically related to one another, the two photosynthetic bacterial 5S RNAs share more sequence and signature homology with the RNAs of two nonphotosynthetic strains. Rhodobacter sphaeroides is specifically related to Paracoccus denitrificans and Rc. gelatinosa is related to Ps. cepacia. These results support earlier 16S ribosomal RNA studies and add two important groups to the 5S RNA data base. Unique 5S RNA structural features previously found in P. denitrificans are present also in the 5S RNA of Rb. sphaeroides; these provide the basis for subdivisional signatures. The immediate consequence of obtaining these new sequences is that it is possible to clarify the phylogenetic origins of the plant mitochondrion. In particular, a close phylogenetic relationship is found between the plant mitochondria and members of the alpha subdivision of the purple photosynthetic bacteria, namely, Rb. sphaeroides, P. denitrificans, and Rhodospirillum rubrum.

  12. De novo Synthesis and Assembly of rRNA into Ribosomal Subunits during Cold Acclimation in Escherichia coli.

    PubMed

    Piersimoni, Lolita; Giangrossi, Mara; Marchi, Paolo; Brandi, Anna; Gualerzi, Claudio O; Pon, Cynthia L

    2016-04-24

    During the cold adaptation that follows a cold stress, bacterial cells undergo many physiological changes and extensive reprogramming of their gene expression pattern. Bulk gene expression is drastically reduced, while a set of cold shock genes is selectively and transiently expressed. The initial stage of cold acclimation is characterized by the establishment of a stoichiometric imbalance of the translation initiation factors (IFs)/ribosomes ratio that contributes to the preferential translation of cold shock transcripts. Whereas de novo synthesis of the IFs following cold stress has been documented, nothing was known concerning the activity of the rrn operons during the cold acclimation period. In this work, we focus on the expression of the rrn operons and the fate of rRNA after temperature downshift. We demonstrate that in Escherichia coli, rRNA synthesis does not stop during the cold acclimation phase, but continues with greater contribution of the P2 compared to the P1 promoter and all seven rrn operons are active, although their expression levels change with respect to pre-stress conditions. Eight hours after the 37°→10°C temperature downshift, the newly transcribed rRNA represents up to 20% of total rRNA and is preferentially found in the polysomes. However, with respect to the de novo synthesis of the IFs, both rRNA transcription and maturation are slowed down drastically by cold stress, thereby accounting in part for the stoichiometric imbalance of the IFs/ribosomes. Overall, our data indicate that new ribosomes, which are possibly suitable to function at low temperature, are slowly assembled during cold acclimation. PMID:26953262

  13. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation

    PubMed Central

    Wang, Xin; Xi, Wen; Toomey, Shaun; Chiang, Yueh-Chin; Hasek, Jiri; Laue, Thomas M.; Denis, Clyde L.

    2016-01-01

    Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation. PMID:26953568

  14. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation.

    PubMed

    Wang, Xin; Xi, Wen; Toomey, Shaun; Chiang, Yueh-Chin; Hasek, Jiri; Laue, Thomas M; Denis, Clyde L

    2016-01-01

    Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation. PMID:26953568

  15. Potential pitfalls of modelling ribosomal RNA data in phylogenetic tree reconstruction: Evidence from case studies in the Metazoa

    PubMed Central

    2011-01-01

    Background Failure to account for covariation patterns in helical regions of ribosomal RNA (rRNA) genes has the potential to misdirect the estimation of the phylogenetic signal of the data. Furthermore, the extremes of length variation among taxa, combined with regional substitution rate variation can mislead the alignment of rRNA sequences and thus distort subsequent tree reconstructions. However, recent developments in phylogenetic methodology now allow a comprehensive integration of secondary structures in alignment and tree reconstruction analyses based on rRNA sequences, which has been shown to correct some of these problems. Here, we explore the potentials of RNA substitution models and the interactions of specific model setups with the inherent pattern of covariation in rRNA stems and substitution rate variation among loop regions. Results We found an explicit impact of RNA substitution models on tree reconstruction analyses. The application of specific RNA models in tree reconstructions is hampered by interaction between the appropriate modelling of covarying sites in stem regions, and excessive homoplasy in some loop regions. RNA models often failed to recover reasonable trees when single-stranded regions are excessively homoplastic, because these regions contribute a greater proportion of the data when covarying sites are essentially downweighted. In this context, the RNA6A model outperformed all other models, including the more parametrized RNA7 and RNA16 models. Conclusions Our results depict a trade-off between increased accuracy in estimation of interdependencies in helical regions with the risk of magnifying positions lacking phylogenetic signal. We can therefore conclude that caution is warranted when applying rRNA covariation models, and suggest that loop regions be independently screened for phylogenetic signal, and eliminated when they are indistinguishable from random noise. In addition to covariation and homoplasy, other factors, like non

  16. Mutation at position 791 in Escherichia coli 16S ribosomal RNA affects processes involved in the initiation of protein synthesis.

    PubMed Central

    Tapprich, W E; Goss, D J; Dahlberg, A E

    1989-01-01

    A single base was mutated from guanine to adenine at position 791 in 16S rRNA in the Escherichia coli rrnB operon on the multicopy plasmid pKK3535. The plasmid-coded rRNA was processed and assembled into 30S ribosomal subunits in E. coli and caused a retardation of cell growth. The mutation affected crucial functional roles of the 30S subunit in the initiation of protein synthesis. The affinity of the mutant 30S subunits for 50S subunits was reduced and the association equilibrium constant for initiation factor 3 was decreased by a factor of 10 compared to wild-type 30S subunits. The interrelationship among the region of residue 790 in 16S rRNA, subunit association, and initiation factor 3 binding during initiation complex formation, as revealed by this study, offers insights into the functional role of rRNA in protein synthesis. PMID:2662189

  17. Conservation and divergence of transcriptional coregulations between box C/D snoRNA and ribosomal protein genes in Ascomycota

    PubMed Central

    Diao, Li-Ting; Xiao, Zhen-Dong; Leng, Xiao-Min; Li, Bin; Li, Jun-Hao; Luo, Yu-Ping; Li, Si-Guang; Yu, Chuan-He; Zhou, Hui

    2014-01-01

    Coordinated assembly of the ribosome is essential for proper translational activity in eukaryotic cells. It is therefore critical to coordinate the expression of components of ribosomal programs with the cell's nutritional status. However, coordinating expression of these components is poorly understood. Here, by combining experimental and computational approaches, we systematically identified box C/D snoRNAs in four fission yeasts and found that the expression of box C/D snoRNA and ribosomal protein (RP) genes were orchestrated by a common Homol-D box, thereby ensuring a constant balance of these two genetic components. Interestingly, such transcriptional coregulations could be observed in most Ascomycota species and were mediated by different cis-regulatory elements. Via the reservation of cis elements, changes in spatial configuration, the substitution of cis elements, and gain or loss of cis elements, the regulatory networks of box C/D snoRNAs evolved to correspond with those of the RP genes, maintaining transcriptional coregulation between box C/D snoRNAs and RP genes. Our results indicate that coregulation via common cis elements is an important mechanism to coordinate expression of the RP and snoRNA genes, which ensures a constant balance of these two components. PMID:25002674

  18. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu

    PubMed Central

    Agirrezabala, Xabier; Frank, Joachim

    2010-01-01

    The ribosome is a complex macromolecular machine that translates the message encoded in the messenger RNA and synthesizes polypeptides by linking the individual amino acids carried by the cognate transfer RNAs (tRNAs). The protein elongation cycle, during which the tRNAs traverse the ribosome in a coordinated manner along a path of more than 100 Å, is facilitated by large-scale rearrangements of the ribosome. These rearrangements go hand in hand with conformational changes of tRNA as well as elongation factors EF-Tu and EF-G – GTPases that catalyze tRNA delivery and translocation, respectively. This review focuses on the structural data related to the dynamics of the ribosomal machinery, which are the basis, in conjunction with existing biochemical, kinetic, and fluorescence resonance energy transfer data, of our knowledge of the decoding and translocation steps of protein elongation. PMID:20025795

  19. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu.

    PubMed

    Agirrezabala, Xabier; Frank, Joachim

    2009-08-01

    The ribosome is a complex macromolecular machine that translates the message encoded in the messenger RNA and synthesizes polypeptides by linking the individual amino acids carried by the cognate transfer RNAs (tRNAs). The protein elongation cycle, during which the tRNAs traverse the ribosome in a coordinated manner along a path of more than 100 A, is facilitated by large-scale rearrangements of the ribosome. These rearrangements go hand in hand with conformational changes of tRNA as well as elongation factors EF-Tu and EF-G - GTPases that catalyze tRNA delivery and translocation, respectively. This review focuses on the structural data related to the dynamics of the ribosomal machinery, which are the basis, in conjunction with existing biochemical, kinetic, and fluorescence resonance energy transfer data, of our knowledge of the decoding and translocation steps of protein elongation. PMID:20025795

  20. Slow formation of stable complexes during coincubation of minimal rRNA and ribosomal protein S4.

    PubMed

    Mayerle, Megan; Bellur, Deepti L; Woodson, Sarah A

    2011-09-23

    Ribosomal protein S4 binds and stabilizes a five-helix junction or five-way junction (5WJ) in the 5' domain of 16S ribosomal RNA (rRNA) and is one of two proteins responsible for nucleating 30S ribosome assembly. Upon binding, both protein S4 and 5WJ reorganize their structures. We show that labile S4 complexes rearrange into stable complexes within a few minutes at 42 °C, with longer coincubation leading to an increased population of stable complexes. In contrast, prefolding the rRNA has a smaller effect on stable S4 binding. Experiments with minimal rRNA fragments show that this structural change depends only on 16S residues within the S4 binding site. SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemical probing experiments showed that S4 strongly stabilizes 5WJ and the helix (H) 18 pseudoknot, which become tightly folded within the first minute of S4 binding. However, a kink in H16 that makes specific contacts with the S4 N-terminal extension, as well as a right-angle motif between H3, H4, and H18, requires a minute or more to become fully structured. Surprisingly, S4 structurally reorganizes the 530-loop and increases the flexibility of H3, which is proposed to undergo a conformational switch during 30S assembly. These elements of the S4 binding site may require other 30S proteins to reach a stable conformation. PMID:21821049

  1. Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA–like structural element in the ribosomal decoding center

    PubMed Central

    Koh, Cha San; Brilot, Axel F.; Grigorieff, Nikolaus; Korostelev, Andrei A.

    2014-01-01

    In cap-dependent translation initiation, the open reading frame (ORF) of mRNA is established by the placement of the AUG start codon and initiator tRNA in the ribosomal peptidyl (P) site. Internal ribosome entry sites (IRESs) promote translation of mRNAs in a cap-independent manner. We report two structures of the ribosome-bound Taura syndrome virus (TSV) IRES belonging to the family of Dicistroviridae intergenic IRESs. Intersubunit rotational states differ in these structures, suggesting that ribosome dynamics play a role in IRES translocation. Pseudoknot I of the IRES occupies the ribosomal decoding center at the aminoacyl (A) site in a manner resembling that of the tRNA anticodon-mRNA codon. The structures reveal that the TSV IRES initiates translation by a previously unseen mechanism, which is conceptually distinct from initiator tRNA-dependent mechanisms. Specifically, the ORF of the IRES-driven mRNA is established by the placement of the preceding tRNA-mRNA–like structure in the A site, whereas the 40S P site remains unoccupied during this initial step. PMID:24927574

  2. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB

    PubMed Central

    Pruesse, Elmar; Quast, Christian; Knittel, Katrin; Fuchs, Bernhard M.; Ludwig, Wolfgang; Peplies, Jörg; Glöckner, Frank Oliver

    2007-01-01

    Sequencing ribosomal RNA (rRNA) genes is currently the method of choice for phylogenetic reconstruction, nucleic acid based detection and quantification of microbial diversity. The ARB software suite with its corresponding rRNA datasets has been accepted by researchers worldwide as a standard tool for large scale rRNA analysis. However, the rapid increase of publicly available rRNA sequence data has recently hampered the maintenance of comprehensive and curated rRNA knowledge databases. A new system, SILVA (from Latin silva, forest), was implemented to provide a central comprehensive web resource for up to date, quality controlled databases of aligned rRNA sequences from the Bacteria, Archaea and Eukarya domains. All sequences are checked for anomalies, carry a rich set of sequence associated contextual information, have multiple taxonomic classifications, and the latest validly described nomenclature. Furthermore, two precompiled sequence datasets compatible with ARB are offered for download on the SILVA website: (i) the reference (Ref) datasets, comprising only high quality, nearly full length sequences suitable for in-depth phylogenetic analysis and probe design and (ii) the comprehensive Parc datasets with all publicly available rRNA sequences longer than 300 nucleotides suitable for biodiversity analyses. The latest publicly available database release 91 (August 2007) hosts 547 521 sequences split into 461 823 small subunit and 85 689 large subunit rRNAs. PMID:17947321

  3. Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding.

    PubMed Central

    Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I

    2001-01-01

    Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding. PMID:11350033

  4. The ribosomal database project.

    PubMed Central

    Larsen, N; Olsen, G J; Maidak, B L; McCaughey, M J; Overbeek, R; Macke, T J; Marsh, T L; Woese, C R

    1993-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome data along with related programs and services. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams and various software packages for handling, analyzing and displaying alignments and trees. The data are available via ftp and electronic mail. Certain analytic services are also provided by the electronic mail server. PMID:8332524

  5. Structure of the RNA binding domain of a DEAD-box helicase bound to its ribosomal RNA target reveals a novel mode of recognition by an RNA recognition motif

    PubMed Central

    Hardin, John W.; Hu, YaoXiong; McKay, David B.

    2010-01-01

    DEAD-box RNA helicases of the bacterial DbpA subfamily are localized to their biological substrate when a carboxy-terminal RNA recognition motif (RRM) domain binds tightly and specifically to a segment of 23S ribosomal RNA (rRNA) that includes hairpin 92 of the peptidyl transferase center. A complex between a fragment of 23S rRNA and the RNA binding domain (RBD) of the Bacillus subtilis DbpA protein YxiN was crystallized and its structure determined to 2.9 Å resolution, revealing an RNA recognition mode that differs from those observed with other RRMs. The RBD is bound between two RNA strands at a three-way junction. Multiple phosphates of the RNA backbone interact with an electropositive band generated by lysines of the RBD. Nucleotides of the single-stranded loop of hairpin 92 interact with the RBD, including the guanosine base of G2553, which forms three hydrogen bonds with the peptide backbone. A G2553U mutation reduces the RNA binding affinity by two orders of magnitude, confirming that G2553 is a sequence specificity determinant in RNA binding. Binding of the RBD to 23S rRNA in the late stages of ribosome subunit maturation would position the ATP-binding duplex destabilization fragment of the protein for interaction with rRNA in the peptidyl transferase cleft of the subunit, allowing it to “melt out” unstable secondary structures and allow proper folding. PMID:20673833

  6. A Nucleolar Protein, Ribosomal RNA Processing 1 Homolog B (RRP1B), Enhances the Recruitment of Cellular mRNA in Influenza Virus Transcription

    PubMed Central

    Su, Wen-Chi; Hsu, Shih-Feng; Lee, Yi-Yuan; Jeng, King-Song

    2015-01-01

    ABSTRACT Influenza A virus (IAV) undergoes RNA transcription by a unique capped-mRNA-dependent transcription, which is carried out by the viral RNA-dependent RNA polymerase (RdRp), consisting of the viral PA, PB1, and PB2 proteins. However, how the viral RdRp utilizes cellular factors for virus transcription is not clear. Previously, we conducted a genome-wide pooled short hairpin RNA (shRNA) screen to identify host factors important for influenza A virus replication. Ribosomal RNA processing 1 homolog B (RRP1B) was identified as one of the candidates. RRP1B is a nucleolar protein involved in ribosomal biogenesis. Upon IAV infection, part of RRP1B was translocated from the nucleolus to the nucleoplasm, where viral RNA synthesis likely takes place. The depletion of RRP1B significantly reduced IAV mRNA transcription in a minireplicon assay and in virus-infected cells. Furthermore, we showed that RRP1B interacted with PB1 and PB2 of the RdRp and formed a coimmunoprecipitable complex with RdRp. The depletion of RRP1B reduced the amount of capped mRNA in the RdRp complex. Taken together, these findings indicate that RRP1B is a host factor essential for IAV transcription and provide a target for new antivirals. IMPORTANCE Influenza virus is an important human pathogen that causes significant morbidity and mortality and threatens the human population with epidemics and pandemics every year. Due to the high mutation rate of the virus, antiviral drugs targeting viral proteins might ultimately lose their effectiveness. An alternative strategy that explores the genetic stability of host factors indispensable for influenza virus replication would thus be desirable. Here, we characterized the rRNA processing 1 homolog B (RRP1B) protein as an important cellular factor for influenza A virus transcription. We showed that silencing RRP1B hampered viral RNA-dependent RNA polymerase (RdRp) activity, which is responsible for virus transcription and replication. Furthermore, we

  7. The PIN domain endonuclease Utp24 cleaves pre-ribosomal RNA at two coupled sites in yeast and humans.

    PubMed

    Wells, Graeme R; Weichmann, Franziska; Colvin, David; Sloan, Katherine E; Kudla, Grzegorz; Tollervey, David; Watkins, Nicholas J; Schneider, Claudia

    2016-06-20

    During ribosomal RNA (rRNA) maturation, cleavages at defined sites separate the mature rRNAs from spacer regions, but the identities of several enzymes required for 18S rRNA release remain unknown. PilT N-terminus (PIN) domain proteins are frequently endonucleases and the PIN domain protein Utp24 is essential for early cleavages at three pre-rRNA sites in yeast (A0, A1 and A2) and humans (A0, 1 and 2a). In yeast, A1 is cleaved prior to A2 and both cleavages require base-pairing by the U3 snoRNA to the central pseudoknot elements of the 18S rRNA. We found that yeast Utp24 UV-crosslinked in vivo to U3 and the pseudoknot, placing Utp24 close to cleavage at site A1. Yeast and human Utp24 proteins exhibited in vitro endonuclease activity on an RNA substrate containing yeast site A2. Moreover, an intact PIN domain in human UTP24 was required for accurate cleavages at sites 1 and 2a in vivo, whereas mutation of another potential site 2a endonuclease, RCL1, did not affect 18S production. We propose that Utp24 cleaves sites A1/1 and A2/2a in yeast and human cells. PMID:27034467

  8. The PIN domain endonuclease Utp24 cleaves pre-ribosomal RNA at two coupled sites in yeast and humans

    PubMed Central

    Wells, Graeme R.; Weichmann, Franziska; Colvin, David; Sloan, Katherine E.; Kudla, Grzegorz; Tollervey, David; Watkins, Nicholas J.; Schneider, Claudia

    2016-01-01

    During ribosomal RNA (rRNA) maturation, cleavages at defined sites separate the mature rRNAs from spacer regions, but the identities of several enzymes required for 18S rRNA release remain unknown. PilT N-terminus (PIN) domain proteins are frequently endonucleases and the PIN domain protein Utp24 is essential for early cleavages at three pre-rRNA sites in yeast (A0, A1 and A2) and humans (A0, 1 and 2a). In yeast, A1 is cleaved prior to A2 and both cleavages require base-pairing by the U3 snoRNA to the central pseudoknot elements of the 18S rRNA. We found that yeast Utp24 UV-crosslinked in vivo to U3 and the pseudoknot, placing Utp24 close to cleavage at site A1. Yeast and human Utp24 proteins exhibited in vitro endonuclease activity on an RNA substrate containing yeast site A2. Moreover, an intact PIN domain in human UTP24 was required for accurate cleavages at sites 1 and 2a in vivo, whereas mutation of another potential site 2a endonuclease, RCL1, did not affect 18S production. We propose that Utp24 cleaves sites A1/1 and A2/2a in yeast and human cells. PMID:27034467

  9. The SBP2 protein central to selenoprotein synthesis contacts the human ribosome at expansion segment 7L of the 28S rRNA.

    PubMed

    Kossinova, Olga; Malygin, Alexey; Krol, Alain; Karpova, Galina

    2014-07-01

    SBP2 is a pivotal protein component in selenoprotein synthesis. It binds the SECIS stem-loop in the 3' UTR of selenoprotein mRNA and interacts with both the specialized translation elongation factor and the ribosome at the 60S subunit. In this work, our goal was to identify the binding partners of SBP2 on the ribosome. Cross-linking experiments with bifunctional reagents demonstrated that the SBP2-binding site on the human ribosome is mainly formed by the 28S rRNA. Direct hydroxyl radical probing of the entire 28S rRNA revealed that SBP2 bound to 80S ribosomes or 60S subunits protects helix ES7L-E in expansion segment 7 of the 28S rRNA. Diepoxybutane cross-linking confirmed the interaction of SBP2 with helix ES7L-E. Additionally, binding of SBP2 to the ribosome led to increased reactivity toward chemical probes of a few bases in ES7L-E and in the universally conserved helix H89, indicative of conformational changes in the 28S rRNA in response to SBP2 binding. This study revealed for the first time that SBP2 makes direct contacts with a discrete region of the human 28S rRNA. PMID:24850884

  10. GTP hydrolysis by EF-G synchronizes tRNA movement on small and large ribosomal subunits

    PubMed Central

    Holtkamp, Wolf; Cunha, Carlos E; Peske, Frank; Konevega, Andrey L; Wintermeyer, Wolfgang; Rodnina, Marina V

    2014-01-01

    Elongation factor G (EF-G) promotes the movement of two tRNAs and the mRNA through the ribosome in each cycle of peptide elongation. During translocation, the tRNAs transiently occupy intermediate positions on both small (30S) and large (50S) ribosomal subunits. How EF-G and GTP hydrolysis control these movements is still unclear. We used fluorescence labels that specifically monitor movements on either 30S or 50S subunits in combination with EF-G mutants and translocation-specific antibiotics to investigate timing and energetics of translocation. We show that EF-G–GTP facilitates synchronous movements of peptidyl-tRNA on the two subunits into an early post-translocation state, which resembles a chimeric state identified by structural studies. EF-G binding without GTP hydrolysis promotes only partial tRNA movement on the 50S subunit. However, rapid 30S translocation and the concomitant completion of 50S translocation require GTP hydrolysis and a functional domain 4 of EF-G. Our results reveal two distinct modes for utilizing the energy of EF-G binding and GTP hydrolysis and suggest that coupling of GTP hydrolysis to translocation is mediated through rearrangements of the 30S subunit. PMID:24614227

  11. GTP hydrolysis by EF-G synchronizes tRNA movement on small and large ribosomal subunits.

    PubMed

    Holtkamp, Wolf; Cunha, Carlos E; Peske, Frank; Konevega, Andrey L; Wintermeyer, Wolfgang; Rodnina, Marina V

    2014-05-01

    Elongation factor G (EF-G) promotes the movement of two tRNAs and the mRNA through the ribosome in each cycle of peptide elongation. During translocation, the tRNAs transiently occupy intermediate positions on both small (30S) and large (50S) ribosomal subunits. How EF-G and GTP hydrolysis control these movements is still unclear. We used fluorescence labels that specifically monitor movements on either 30S or 50S subunits in combination with EF-G mutants and translocation-specific antibiotics to investigate timing and energetics of translocation. We show that EF-G-GTP facilitates synchronous movements of peptidyl-tRNA on the two subunits into an early post-translocation state, which resembles a chimeric state identified by structural studies. EF-G binding without GTP hydrolysis promotes only partial tRNA movement on the 50S subunit. However, rapid 30S translocation and the concomitant completion of 50S translocation require GTP hydrolysis and a functional domain 4 of EF-G. Our results reveal two distinct modes for utilizing the energy of EF-G binding and GTP hydrolysis and suggest that coupling of GTP hydrolysis to translocation is mediated through rearrangements of the 30S subunit. PMID:24614227

  12. Slow formation of stable complexes during coincubation of a minimal rRNA and ribosomal protein S4

    PubMed Central

    Mayerle, Megan; Bellur, Deepti L.; Woodson, Sarah A.

    2011-01-01

    Ribosomal protein S4 binds and stabilizes a five-helix junction in the 5’ domain of the 16S rRNA, and is one of two proteins responsible for nucleating 30S ribosome assembly. Upon binding, both protein S4 and the five-helix junction reorganize their structures. We show that labile S4 complexes rearrange to stable complexes within a few minutes at 42°C, with longer coincubation leading to an increased population of stable complexes. In contrast, prefolding the rRNA has a smaller effect on stable S4 binding. Experiments with minimal rRNA fragments show this structural change depends only on 16S residues within the S4 binding site. SHAPE chemical-probing experiments showed that S4 strongly stabilizes the five-helix junction and helix 18 pseudoknot, which become tightly folded within the first minute of S4 binding. However, a kink in helix 16 that makes specific contacts with the S4 N-terminal extension, and a right angle motif between helices 3, 4 and 18, require a minute or more to become fully structured. Surprisingly, S4 structurally reorganizes the 530-loop and increases the flexibility of helix 3, which is proposed to undergo a conformational switch during 30S assembly. These elements of the S4 binding site may require other 30S proteins to reach a stable conformation. PMID:21821049

  13. Direct Activation of Ribosome-Associated Double-Stranded RNA-Dependent Protein Kinase (PKR) by Deoxynivalenol, Anisomycin and Ricin: A New Model for Ribotoxic Stress Response Induction

    PubMed Central

    Zhou, Hui-Ren; He, Kaiyu; Landgraf, Jeff; Pan, Xiao; Pestka, James J.

    2014-01-01

    Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is a critical upstream mediator of the ribotoxic stress response (RSR) to the trichothecene deoxynivalenol (DON) and other translational inhibitors. Here, we employed HeLa cell lysates to: (1) characterize PKR’s interactions with the ribosome and ribosomal RNA (rRNA); (2) demonstrate cell-free activation of ribosomal-associated PKR and (3) integrate these findings in a unified model for RSR. Robust PKR-dependent RSR was initially confirmed in intact cells. PKR basally associated with 40S, 60S, 80S and polysome fractions at molar ratios of 7, 2, 23 and 3, respectively. Treatment of ATP-containing HeLa lysates with DON or the ribotoxins anisomycin and ricin concentration-dependently elicited phosphorylation of PKR and its substrate eIF2α. These phosphorylations could be blocked by PKR inhibitors. rRNA immunoprecipitation (RNA-IP) of HeLa lysates with PKR-specific antibody and sequencing revealed that in the presence of DON or not, the kinase associated with numerous discrete sites on both the 18S and 28S rRNA molecules, a number of which contained double-stranded hairpins. These findings are consistent with a sentinel model whereby multiple PKR molecules basally associate with the ribosome positioning them to respond to ribotoxin-induced alterations in rRNA structure by dimerizing, autoactivating and, ultimately, evoking RSR. PMID:25521494

  14. ASSOCIATION OF ERYTHROMYCIN SUSCEPTIBILITY AND ABSENCE OF INTERVENING SEQUENCES IN 23S RIBOSOMAL RNA GENES OF CAMPYLOBACTER COLI ISOLATED FROM TURKEYS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain Campylobacter strains have been found to harbor a transcribed intervening sequence (IVS) in at least one copy of the 23S ribosomal RNA gene. Following transcription, the IVS is excised, leading to fragmentation of the 23S rRNA. The origin and possible functions of the IVS are unknown. Furthe...

  15. Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains.

    PubMed

    Shen, Peter S; Park, Joseph; Qin, Yidan; Li, Xueming; Parsawar, Krishna; Larson, Matthew H; Cox, James; Cheng, Yifan; Lambowitz, Alan M; Weissman, Jonathan S; Brandman, Onn; Frost, Adam

    2015-01-01

    In Eukarya, stalled translation induces 40S dissociation and recruitment of the ribosome quality control complex (RQC) to the 60S subunit, which mediates nascent chain degradation. Here we report cryo-electron microscopy structures revealing that the RQC components Rqc2p (YPL009C/Tae2) and Ltn1p (YMR247C/Rkr1) bind to the 60S subunit at sites exposed after 40S dissociation, placing the Ltn1p RING (Really Interesting New Gene) domain near the exit channel and Rqc2p over the P-site transfer RNA (tRNA). We further demonstrate that Rqc2p recruits alanine- and threonine-charged tRNA to the A site and directs the elongation of nascent chains independently of mRNA or 40S subunits. Our work uncovers an unexpected mechanism of protein synthesis, in which a protein--not an mRNA--determines tRNA recruitment and the tagging of nascent chains with carboxy-terminal Ala and Thr extensions ("CAT tails"). PMID:25554787

  16. Slip of grip of a molecular motor on a crowded track: Modeling shift of reading frame of ribosome on RNA template

    NASA Astrophysics Data System (ADS)

    Mishra, Bhavya; Schütz, Gunter M.; Chowdhury, Debashish

    2016-06-01

    We develop a stochastic model for the programmed frameshift of ribosomes synthesizing a protein while moving along a mRNA template. Normally the reading frame of a ribosome decodes successive triplets of nucleotides on the mRNA in a step-by-step manner. We focus on the programmed shift of the ribosomal reading frame, forward or backward, by only one nucleotide which results in a fusion protein; it occurs when a ribosome temporarily loses its grip to its mRNA track. Special “slippery” sequences of nucleotides and also downstream secondary structures of the mRNA strand are believed to play key roles in programmed frameshift. Here we explore the role of an hitherto neglected parameter in regulating ‑1 programmed frameshift. Specifically, we demonstrate that the frameshift frequency can be strongly regulated also by the density of the ribosomes, all of which are engaged in simultaneous translation of the same mRNA, at and around the slippery sequence. Monte Carlo simulations support the analytical predictions obtained from a mean-field analysis of the stochastic dynamics.

  17. HCV IRES interacts with the 18S rRNA to activate the 40S ribosome for subsequent steps of translation initiation

    PubMed Central

    Malygin, Alexey A.; Kossinova, Olga A.; Shatsky, Ivan N.; Karpova, Galina G.

    2013-01-01

    Previous analyses of complexes of 40S ribosomal subunits with the hepatitis C virus (HCV) internal ribosome entry site (IRES) have revealed contacts made by the IRES with ribosomal proteins. Here, using chemical probing, we show that the HCV IRES also contacts the backbone and bases of the CCC triplet in the 18S ribosomal RNA (rRNA) expansion segment 7. These contacts presumably provide interplay between IRES domain II and the AUG codon close to ribosomal protein S5, which causes a rearrangement of 18S rRNA structure in the vicinity of the universally conserved nucleotide G1639. As a result, G1639 becomes exposed and the corresponding site of the 40S subunit implicated in transfer RNA discrimination can select . These data are the first demonstration at nucleotide resolution of direct IRES–rRNA interactions and how they induce conformational transition in the 40S subunit allowing the HCV IRES to function without AUG recognition initiation factors. PMID:23873958

  18. Cloning, sequencing, and characterization of ribosomal protein and RNA polymerase genes from the region analogous to the alpha-operon of escherichia coli in halophilic archaea, halobacterium halobium.

    PubMed

    Sano, K; Taguchi, A; Furumoto, H; Uda, T; Itoh, T

    1999-10-14

    A determination was made of the nucleotide sequence of the 3215-bp region of a ribosomal protein gene cluster (HS13, HS4, HS11, and HeL18), RNA polymerase (RNA poly D), and tRNA genes (tRNAser and tRNAarg) of halophilic Archaea Halobacterium halobium, which is analogous to the alpha-operon of Escherichia coli (tRNAser-HS13-HS4-HS11-RNA poly D-tRNAarg-HeL18). The seven-gene string was preceded by a pseudoknot-like structure similar to the proposed S4 ribosomal protein binding site of the alpha-operon mRNA leader in E. coli. Using an inducible expression system H. halobium HS4 was produced in large amounts in E. coli, and immunoblot analysis showed the S4 to constitute a 21-kDa polypeptide component of the ribosome. Analysis of the deduced amino acids sequence revealed that the HS13, HS4, and HS11 sequences including the RNA polymerase subunit are more similar to their eukaryotic than to their bacterial counterparts. HeL18, located downstream of the gene cluster analogous to the E. coli alpha-operon (S13-S11-S4-RNA poly D-L17), was similar to both the eukaryotic (eL18) and eubacterial ribosomal protein L15 located in the spc-operon, but not to L17 positioned as the terminal gene of the bacterial alpha-operon. PMID:10527834

  19. The Ribosomal Database Project.

    PubMed Central

    Maidak, B L; Larsen, N; McCaughey, M J; Overbeek, R; Olsen, G J; Fogel, K; Blandy, J; Woese, C R

    1994-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services, and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (rdp.life.uiuc.edu), electronic mail (server/rdp.life.uiuc.edu) and gopher (rdpgopher.life.uiuc.edu). The electronic mail server also provides ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for chimeric nature of newly sequenced rRNAs, and automated alignment. PMID:7524021

  20. A Single Acetylation of 18 S rRNA Is Essential for Biogenesis of the Small Ribosomal Subunit in Saccharomyces cerevisiae*

    PubMed Central

    Ito, Satoshi; Akamatsu, Yu; Noma, Akiko; Kimura, Satoshi; Miyauchi, Kenjyo; Ikeuchi, Yoshiho; Suzuki, Takeo; Suzuki, Tsutomu

    2014-01-01

    Biogenesis of eukaryotic ribosome is a complex event involving a number of non-ribosomal factors. During assembly of the ribosome, rRNAs are post-transcriptionally modified by 2′-O-methylation, pseudouridylation, and several base-specific modifications, which are collectively involved in fine-tuning translational fidelity and/or modulating ribosome assembly. By mass-spectrometric analysis, we demonstrated that N4-acetylcytidine (ac4C) is present at position 1773 in the 18 S rRNA of Saccharomyces cerevisiae. In addition, we found an essential gene, KRE33 (human homolog, NAT10), that we renamed RRA1 (ribosomal RNA cytidine acetyltransferase 1) encoding an RNA acetyltransferase responsible for ac4C1773 formation. Using recombinant Rra1p, we could successfully reconstitute ac4C1773 in a model rRNA fragment in the presence of both acetyl-CoA and ATP as substrates. Upon depletion of Rra1p, the 23 S precursor of 18 S rRNA was accumulated significantly, which resulted in complete loss of 18 S rRNA and small ribosomal subunit (40 S), suggesting that ac4C1773 formation catalyzed by Rra1p plays a critical role in processing of the 23 S precursor to yield 18 S rRNA. When nuclear acetyl-CoA was depleted by inactivation of acetyl-CoA synthetase 2 (ACS2), we observed temporal accumulation of the 23 S precursor, indicating that Rra1p modulates biogenesis of 40 S subunit by sensing nuclear acetyl-CoA concentration. PMID:25086048

  1. Single methylation of 23S rRNA triggers late steps of 50S ribosomal subunit assembly.

    PubMed

    Arai, Taiga; Ishiguro, Kensuke; Kimura, Satoshi; Sakaguchi, Yuriko; Suzuki, Takeo; Suzuki, Tsutomu

    2015-08-25

    Ribosome biogenesis requires multiple assembly factors. In Escherichia coli, deletion of RlmE, the methyltransferase responsible for the 2'-O-methyluridine modification at position 2552 (Um2552) in helix 92 of the 23S rRNA, results in slow growth and accumulation of the 45S particle. We demonstrate that the 45S particle that accumulates in ΔrlmE is a genuine precursor that can be assembled into the 50S subunit. Indeed, 50S formation from the 45S precursor could be promoted by RlmE-mediated Um2552 formation in vitro. Ribosomal protein L36 (encoded by rpmJ) was completely absent from the 45S precursor in ΔrlmE, and we observed a strong genetic interaction between rlmE and rpmJ. Structural probing of 23S rRNA and high-salt stripping of 45S components revealed that RlmE-mediated methylation promotes interdomain interactions via the association between helices 92 and 71, stabilized by the single 2'-O-methylation of Um2552, in concert with the incorporation of L36, triggering late steps of 50S subunit assembly. PMID:26261349

  2. A Genome-Wide Analysis of RNA Pseudoknots That Stimulate Efficient −1 Ribosomal Frameshifting or Readthrough in Animal Viruses

    PubMed Central

    Cheng, Qiang; Du, Zhihua

    2013-01-01

    Programmed −1 ribosomal frameshifting (PRF) and stop codon readthrough are two translational recoding mechanisms utilized by some RNA viruses to express their structural and enzymatic proteins at a defined ratio. Efficient recoding usually requires an RNA pseudoknot located several nucleotides downstream from the recoding site. To assess the strategic importance of the recoding pseudoknots, we have carried out a large scale genome-wide analysis in which we used an in-house developed program to detect all possible H-type pseudoknots within the genomic mRNAs of 81 animal viruses. Pseudoknots are detected downstream from ~85% of the recoding sites, including many previously unknown pseudoknots. ~78% of the recoding pseudoknots are the most stable pseudoknot within the viral genomes. However, they are not as strong as some designed pseudoknots that exhibit roadblocking effect on the translating ribosome. Strong roadblocking pseudoknots are not detected within the viral genomes. These results indicate that the decoding pseudoknots have evolved to possess optimal stability for efficient recoding. We also found that the sequence at the gag-pol frameshift junction of HIV1 harbors potential elaborated pseudoknots encompassing the frameshift site. A novel mechanism is proposed for possible involvement of the elaborated pseudoknots in the HIV1 PRF event. PMID:24298557

  3. Single methylation of 23S rRNA triggers late steps of 50S ribosomal subunit assembly

    PubMed Central

    Arai, Taiga; Ishiguro, Kensuke; Kimura, Satoshi; Sakaguchi, Yuriko; Suzuki, Takeo; Suzuki, Tsutomu

    2015-01-01

    Ribosome biogenesis requires multiple assembly factors. In Escherichia coli, deletion of RlmE, the methyltransferase responsible for the 2′-O-methyluridine modification at position 2552 (Um2552) in helix 92 of the 23S rRNA, results in slow growth and accumulation of the 45S particle. We demonstrate that the 45S particle that accumulates in ΔrlmE is a genuine precursor that can be assembled into the 50S subunit. Indeed, 50S formation from the 45S precursor could be promoted by RlmE-mediated Um2552 formation in vitro. Ribosomal protein L36 (encoded by rpmJ) was completely absent from the 45S precursor in ΔrlmE, and we observed a strong genetic interaction between rlmE and rpmJ. Structural probing of 23S rRNA and high-salt stripping of 45S components revealed that RlmE-mediated methylation promotes interdomain interactions via the association between helices 92 and 71, stabilized by the single 2′-O-methylation of Um2552, in concert with the incorporation of L36, triggering late steps of 50S subunit assembly. PMID:26261349

  4. Advantages and limitations of ribosomal RNA PCR and DNA sequencing for identification of bacteria in cardiac valves of danish patients.

    PubMed

    Kemp, Michael; Bangsborg, Jette; Kjerulf, Anne; Schmidt, Thomas Andersen; Christensen, John; Irmukhamedov, Akhmadjon 6; Bruun, Niels Eske; Dargis, Rimtas; Andresen, Keld; Christensen, Jens Jørgen

    2013-01-01

    Studies on the value of culture-independent molecular identification of bacteria in cardiac valves are mostly restricted to comparing agreement of identification to what is obtained by culture to the number of identified bacteria in culture-negative cases. However, evaluation of the usefulness of direct molecular identification should also address weaknesses, their relevance in the given setting, and possible improvements. In this study cardiac valves from 56 Danish patients referred for surgery for infective endocarditis were analysed by microscopy and culture as well as by PCR targeting part of the bacterial 16S rRNA gene followed by DNA sequencing of the PCR product. PCR and DNA sequencing identified significant bacteria in 49 samples from 43 patients, including five out of 13 culture-negative cases. No rare, exotic, or intracellular bacteria were identified. There was a general agreement between bacterial identity obtained by ribosomal PCR and DNA sequencing from the valves and bacterial isolates from blood culture. However, DNA sequencing of the 16S rRNA gene did not discriminate well among non-haemolytic streptococci, especially within the Streptococcus mitis group. Ribosomal PCR with subsequent DNA sequencing is an efficient and reliable method of identifying the cause of IE, but exact species identification of some of the most common causes, i.e. non-haemolytic streptococci, may be improved with other molecular methods. PMID:24403979

  5. Yeast telomere maintenance is globally controlled by programmed ribosomal frameshifting and the nonsense-mediated mRNA decay pathway

    PubMed Central

    Advani, Vivek M.; Belew, Ashton T.; Dinman, Jonathan D.

    2013-01-01

    We have previously shown that ~10% of all eukaryotic mRNAs contain potential programmed -1 ribosomal frameshifting (-1 PRF) signals and that some function as mRNA destabilizing elements through the Nonsense-Mediated mRNA Decay (NMD) pathway by directing translating ribosomes to premature termination codons. Here, the connection between -1 PRF, NMD and telomere end maintenance are explored. Functional -1 PRF signals were identified in the mRNAs encoding two components of yeast telomerase, EST1 and EST2, and in mRNAs encoding proteins involved in recruiting telomerase to chromosome ends, STN1 and CDC13. All of these elements responded to mutants and drugs previously known to stimulate or inhibit -1 PRF, further supporting the hypothesis that they promote -1 PRF through the canonical mechanism. All affected the steady-state abundance of a reporter mRNA and the wide range of -1 PRF efficiencies promoted by these elements enabled the determination of an inverse logarithmic relationship between -1 PRF efficiency and mRNA accumulation. Steady-state abundances of the endogenous EST1, EST2, STN1 and CDC13 mRNAs were similarly inversely proportional to changes in -1 PRF efficiency promoted by mutants and drugs, supporting the hypothesis that expression of these genes is post-transcriptionally controlled by -1 PRF under native conditions. Overexpression of EST2 by ablation of -1 PRF signals or inhibition of NMD promoted formation of shorter telomeres and accumulation of large budded cells at the G2/M boundary. A model  is presented describing how limitation and maintenance of correct stoichiometries of telomerase components by -1 PRF is used to maintain yeast telomere length. PMID:24563826

  6. A pseudouridylation switch in rRNA is implicated in ribosome function during the life cycle of Trypanosoma brucei

    PubMed Central

    Chikne, Vaibhav; Doniger, Tirza; Rajan, K. Shanmugha; Bartok, Osnat; Eliaz, Dror; Cohen-Chalamish, Smadar; Tschudi, Christian; Unger, Ron; Hashem, Yaser; Kadener, Sebastian; Michaeli, Shulamit

    2016-01-01

    The protozoan parasite Trypanosoma brucei, which causes devastating diseases in humans and animals in sub-Saharan Africa, undergoes a complex life cycle between the mammalian host and the blood-feeding tsetse fly vector. However, little is known about how the parasite performs most molecular functions in such different environments. Here, we provide evidence for the intriguing possibility that pseudouridylation of rRNA plays an important role in the capacity of the parasite to transit between the insect midgut and the mammalian bloodstream. Briefly, we mapped pseudouridines (Ψ) on rRNA by Ψ-seq in procyclic form (PCF) and bloodstream form (BSF) trypanosomes. We detected 68 Ψs on rRNA, which are guided by H/ACA small nucleolar RNAs (snoRNA). The small RNome of both life cycle stages was determined by HiSeq and 83 H/ACAs were identified. We observed an elevation of 21 Ψs modifications in BSF as a result of increased levels of the guiding snoRNAs. Overexpression of snoRNAs guiding modification on H69 provided a slight growth advantage to PCF parasites at 30 °C. Interestingly, these modifications are predicted to significantly alter the secondary structure of the large subunit (LSU) rRNA suggesting that hypermodified positions may contribute to the adaption of ribosome function during cycling between the two hosts. PMID:27142987

  7. Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site

    PubMed Central

    Calviño, Fabiola R.; Kharde, Satyavati; Ori, Alessandro; Hendricks, Astrid; Wild, Klemens; Kressler, Dieter; Bange, Gert; Hurt, Ed; Beck, Martin; Sinning, Irmgard

    2015-01-01

    During 60S biogenesis, mature 5S RNP consisting of 5S RNA, RpL5 and RpL11, assembles into a pre-60S particle, where docking relies on RpL11 interacting with helix 84 (H84) of the 25S RNA. How 5S RNP is assembled for recruitment into the pre-60S is not known. Here we report the crystal structure of a ternary symportin Syo1–RpL5-N–RpL11 complex and provide biochemical and structural insights into 5S RNP assembly. Syo1 guards the 25S RNA-binding surface on RpL11 and competes with H84 for binding. Pull-down experiments show that H84 releases RpL11 from the ternary complex, but not in the presence of 5S RNA. Crosslinking mass spectrometry visualizes structural rearrangements on incorporation of 5S RNA into the Syo1–RpL5–RpL11 complex supporting the formation of a pre-5S RNP. Our data underline the dual role of Syo1 in ribosomal protein transport and as an assembly platform for 5S RNP. PMID:25849277

  8. Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site.

    PubMed

    Calviño, Fabiola R; Kharde, Satyavati; Ori, Alessandro; Hendricks, Astrid; Wild, Klemens; Kressler, Dieter; Bange, Gert; Hurt, Ed; Beck, Martin; Sinning, Irmgard

    2015-01-01

    During 60S biogenesis, mature 5S RNP consisting of 5S RNA, RpL5 and RpL11, assembles into a pre-60S particle, where docking relies on RpL11 interacting with helix 84 (H84) of the 25S RNA. How 5S RNP is assembled for recruitment into the pre-60S is not known. Here we report the crystal structure of a ternary symportin Syo1-RpL5-N-RpL11 complex and provide biochemical and structural insights into 5S RNP assembly. Syo1 guards the 25S RNA-binding surface on RpL11 and competes with H84 for binding. Pull-down experiments show that H84 releases RpL11 from the ternary complex, but not in the presence of 5S RNA. Crosslinking mass spectrometry visualizes structural rearrangements on incorporation of 5S RNA into the Syo1-RpL5-RpL11 complex supporting the formation of a pre-5S RNP. Our data underline the dual role of Syo1 in ribosomal protein transport and as an assembly platform for 5S RNP. PMID:25849277

  9. Expression of ribosomal RNA genes in lines of barley with a standard karyotype and with a translocated nucleolar organizer

    SciTech Connect

    Karag'ozov, L.K.; Ananiev, E.D.; Mateeva, Z.E.; Khadzhiolov, A.A.

    1986-10-01

    The authors have investigated the rRNA synthesis and the sensitivity of rRNA genes to the action of DNAase I in developing embryos of two forms of barley. The Frigga variety has a standard karyotype and the T/sub 506/ line is characterized by translocation of the nucleolar organizer, which leads to a reduction in the number of nucleoli observed in the telophase. The results of the investigation of rRNA synthesis in vivo and of the activity of RNA polymerase I in isolated nuclei revealed the absence of differences between the two barley forms. They have established that the genes of ribosomal RNAs possess greater sensitivity to digestion by DNAase the authors compared to that of the total nuclear DNA. They conclude that the translocation of one of the nucleolar organizers causes a delay in the appearance of its activity during the telophase, this not changing the expression of the rRNA genes in the subsequent stages of cell development.

  10. A pseudouridylation switch in rRNA is implicated in ribosome function during the life cycle of Trypanosoma brucei.

    PubMed

    Chikne, Vaibhav; Doniger, Tirza; Rajan, K Shanmugha; Bartok, Osnat; Eliaz, Dror; Cohen-Chalamish, Smadar; Tschudi, Christian; Unger, Ron; Hashem, Yaser; Kadener, Sebastian; Michaeli, Shulamit

    2016-01-01

    The protozoan parasite Trypanosoma brucei, which causes devastating diseases in humans and animals in sub-Saharan Africa, undergoes a complex life cycle between the mammalian host and the blood-feeding tsetse fly vector. However, little is known about how the parasite performs most molecular functions in such different environments. Here, we provide evidence for the intriguing possibility that pseudouridylation of rRNA plays an important role in the capacity of the parasite to transit between the insect midgut and the mammalian bloodstream. Briefly, we mapped pseudouridines (Ψ) on rRNA by Ψ-seq in procyclic form (PCF) and bloodstream form (BSF) trypanosomes. We detected 68 Ψs on rRNA, which are guided by H/ACA small nucleolar RNAs (snoRNA). The small RNome of both life cycle stages was determined by HiSeq and 83 H/ACAs were identified. We observed an elevation of 21 Ψs modifications in BSF as a result of increased levels of the guiding snoRNAs. Overexpression of snoRNAs guiding modification on H69 provided a slight growth advantage to PCF parasites at 30 °C. Interestingly, these modifications are predicted to significantly alter the secondary structure of the large subunit (LSU) rRNA suggesting that hypermodified positions may contribute to the adaption of ribosome function during cycling between the two hosts. PMID:27142987

  11. Interactions of nucleolin and ribosomal protein L26 (RPL26) in translational control of human p53 mRNA.

    PubMed

    Chen, Jing; Guo, Kexiao; Kastan, Michael B

    2012-05-11

    Ribosomal protein RPL26 enhances p53 translation after DNA damage, and this regulation depends upon interactions between the 5'- and 3'-UTRs of human p53 mRNA (Takagi, M., Absalon, M. J., McLure, K. G., and Kastan, M. B. (2005) Cell 123, 49-63; Chen, J., and Kastan, M. B. (2010) Genes Dev. 24, 2146-2156). In contrast, nucleolin (NCL) suppresses the translation of p53 mRNA and its induction after DNA damage. We confirmed reports that RPL26 and NCL interact with each other and then explored the potential role of this interaction in the translational control of p53 after stress. NCL repression of p53 translation utilizes both the 5'- and 3'-UTRs of p53 mRNA, and NCL binds to the same 5'-3'-UTR interaction region that is critical for the recruitment of RPL26 to p53 mRNA after DNA damage. We also found that NCL is able to oligomerize, consistent with a model in which NCL stabilizes this double-stranded RNA structure. We found that the RNA-binding domain of NCL participates in binding to p53 mRNA, is required for both NCL dimerization and NCL-mediated translational repression, and is the domain of NCL that interacts with RPL26. Excessive RPL26 disrupts NCL dimerization, and point mutations in the NCL-interacting region of RPL26 reduce NCL-RPL26 interactions and attenuate both RPL26 binding to human p53 mRNA and p53 induction by RPL26. These observations suggest a model in which the base pairings in the p53 UTR interaction regions are critical for both translational repression and stress induction of p53 by NCL and RPL26, respectively, and that disruption of a NCL-NCL homodimer by RPL26 may be the switch between translational repression and activation after stress. PMID:22433872

  12. Mycobacterial toxin MazF-mt6 inhibits translation through cleavage of 23S rRNA at the ribosomal A site.

    PubMed

    Schifano, Jason M; Edifor, Regina; Sharp, Jared D; Ouyang, Ming; Konkimalla, Arvind; Husson, Robert N; Woychik, Nancy A

    2013-05-21

    The Mycobacterium tuberculosis genome contains an unusually high number of toxin-antitoxin modules, some of which have been suggested to play a role in the establishment and maintenance of latent tuberculosis. Nine of these toxin-antitoxin loci belong to the mazEF family, encoding the intracellular toxin MazF and its antitoxin inhibitor MazE. Nearly every MazF ortholog recognizes a unique three- or five-base RNA sequence and cleaves mRNA. As a result, these toxins selectively target a subset of the transcriptome for degradation and are known as "mRNA interferases." Here we demonstrate that a MazF family member from M. tuberculosis, MazF-mt6, has an additional role--inhibiting translation through targeted cleavage of 23S rRNA in the evolutionarily conserved helix/loop 70. We first determined that MazF-mt6 cleaves mRNA at (5')UU↓CCU(3') sequences. We then discovered that MazF-mt6 also cleaves M. tuberculosis 23S rRNA at a single UUCCU in the ribosomal A site that contacts tRNA and ribosome recycling factor. To gain further mechanistic insight, we demonstrated that MazF-mt6-mediated cleavage of rRNA can inhibit protein synthesis in the absence of mRNA cleavage. Finally, consistent with the position of 23S rRNA cleavage, MazF-mt6 destabilized 50S-30S ribosomal subunit association. Collectively, these results show that MazF toxins do not universally act as mRNA interferases, because MazF-mt6 inhibits protein synthesis by cleaving 23S rRNA in the ribosome active center. PMID:23650345

  13. A 5.8S nuclear ribosomal RNA gene sequence database: applications to ecology and evolution

    NASA Technical Reports Server (NTRS)

    Cullings, K. W.; Vogler, D. R.

    1998-01-01

    We complied a 5.8S nuclear ribosomal gene sequence database for animals, plants, and fungi using both newly generated and GenBank sequences. We demonstrate the utility of this database as an internal check to determine whether the target organism and not a contaminant has been sequenced, as a diagnostic tool for ecologists and evolutionary biologists to determine the placement of asexual fungi within larger taxonomic groups, and as a tool to help identify fungi that form ectomycorrhizae.

  14. Initiation factor IF 2 binds to the alpha-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA.

    PubMed Central

    La Teana, A; Gualerzi, C O; Dahlberg, A E

    2001-01-01

    During initiation of protein synthesis in bacteria, translation initiation factor IF2 is responsible for the recognition of the initiator tRNA (fMet-tRNA). To perform this function, IF2 binds to the ribosome interacting with both 30S and 50S ribosomal subunits. Here we report the topographical localization of translation initiation factor IF2 on the 70S ribosome determined by base-specific chemical probing. Our results indicate that IF2 specifically protects from chemical modification two sites in domain V of 23S rRNA, namely A2476 and A2478, and residues around position 2660 in domain VI, the so-called sarcin-ricin loop. These footprints are generated by IF2 regardless of the presence of fMet-tRNA, GTP, mRNA, and IF1. IF2 causes no specific protection of 16S rRNA. We observe a decreased reactivity of residues A1418 and A1483, which is an indication that the initiation factor has a tightening effect on the association of ribosomal subunits. This result, confirmed by sucrose density gradient analysis, seems to be a universally conserved property of IF2. PMID:11497435

  15. Elongation factor G-induced structural change in helix 34 of 16S rRNA related to translocation on the ribosome.

    PubMed Central

    Matassova, A B; Rodnina, M V; Wintermeyer, W

    2001-01-01

    During the translocation step of the elongation cycle, two tRNAs together with the mRNA move synchronously and rapidly on the ribosome. The movement is catalyzed by the binding of elongation factor G (EF-G) and driven by GTP hydrolysis. Here we study structural changes of the ribosome related to EF-G binding and translocation by monitoring the accessibility of ribosomal RNA (rRNA) for chemical modification by dimethyl sulfate or cleavage by hydroxyl radicals generated by Fe(II)-EDTA. In the state of the ribosome that is formed upon binding of EF-G but before the movement of the tRNAs takes place, residues 1054,1196, and 1201 in helix 34 in 16S rRNA are strongly protected. The protections depend on EF-G binding, but do not require GTP hydrolysis, and are lost upon translocation. Mutants of EF-G, which are active in ribosome binding and GTP hydrolysis but impaired in translocation, do not bring about the protections. According to cryo-electron microscopy (Stark et al., Cell, 2000, 100:301-309), there is no contact of EF-G with the protected residues of helix 34 in the pretranslocation state, suggesting that the observed protections are due to an induced conformational change. Thus, the present results indicate that EF-G binding to the pretranslocation ribosome induces a structural change of the head of the 30S subunit that is essential for subsequent tRNA-mRNA movement in translocation. PMID:11780642

  16. A retrograde adeno-associated virus for collecting ribosome-bound mRNA from anatomically defined projection neurons

    PubMed Central

    Cook-Snyder, Denise R.; Jones, Alexander; Reijmers, Leon G.

    2015-01-01

    The brain contains a large variety of projection neurons with different functional properties. The functional properties of projection neurons arise from their connectivity with other neurons and their molecular composition. We describe a novel tool for obtaining the gene expression profiles of projection neurons that are anatomically defined by the location of their soma and axon terminals. Our tool utilizes adeno-associated virus serotype 9 (AAV9), which we found to retrogradely transduce projection neurons after injection at the site of the axon terminals. We used AAV9 to express Enhanced Green Fluorescent Protein (EGFP)-tagged ribosomal protein L10a (EGFP-L10a), which enables the immunoprecipitation of EGFP-tagged ribosomes and associated mRNA with a method known as Translating Ribosome Affinity Purification (TRAP). To achieve high expression of the EGFP-L10a protein in projection neurons, we placed its expression under control of a 1.3 kb alpha-calcium/calmodulin-dependent protein kinase II (Camk2a) promoter. We injected the AAV9-Camk2a-TRAP virus in either the hippocampus or the bed nucleus of the stria terminalis (BNST) of the mouse brain. In both brain regions the 1.3 kb Camk2a promoter did not confer complete cell-type specificity around the site of injection, as EGFP-L10a expression was observed in Camk2a-expressing neurons as well as in neuronal and non-neuronal cells that did not express Camk2a. In contrast, cell-type specific expression was observed in Camk2a-positive projection neurons that were retrogradely transduced by AAV9-Camk2a-TRAP. Injection of AAV9-Camk2a-TRAP into the BNST enabled the use of TRAP to collect ribosome-bound mRNA from basal amygdala projection neurons that innervate the BNST. AAV9-Camk2a-TRAP provides a single-virus system that can be used for the molecular profiling of anatomically defined projection neurons in mice and other mammalian model organisms. In addition, AAV9-Camk2a-TRAP may enable the discovery of protein synthesis

  17. DExD-box RNA-helicases in Listeria monocytogenes are important for growth, ribosomal maturation, rRNA processing and virulence factor expression

    PubMed Central

    Bäreclev, Caroline; Vaitkevicius, Karolis; Netterling, Sakura; Johansson, Jörgen

    2014-01-01

    RNA-helicases are proteins required for the unwinding of occluding secondary RNA structures, especially at low temperatures. In this work, we have deleted all 4 DExD-box RNA helicases in various combinations in the Gram-positive pathogen Listeria monocytogenes. Our results show that 3 out of 4 RNA-helicases were important for growth at low temperatures, whereas the effect was less prominent at 37°C. Over-expression of one RNA-helicase, Lmo1450, was able to overcome the reduced growth of the quadruple mutant strain at temperatures above 26°C, but not at lower temperatures. The maturation of ribosomes was affected in different degrees in the various strains at 20°C, whereas the effect was marginal at 37°C. This was accompanied by an increased level of immature 23S rRNA precursors in some of the RNA-helicase mutants at low temperatures. Although the expression of the PrfA regulated virulence factors ActA and LLO decreased in the quadruple mutant strain, this strain showed a slightly increased infection ability. Interestingly, even though the level of the virulence factor LLO was decreased in the quadruple mutant strain as compared with the wild-type strain, the hly-transcript (encoding LLO) was increased. Hence, our results could suggest a role for the RNA-helicases during translation. In this work, we show that DExD-box RNA-helicases are involved in bacterial virulence gene-expression and infection of eukaryotic cells. PMID:25590644

  18. Transcriptomic profiling of Ichthyophthirius multifiliis reveals polyadenylation of the large subunit ribosomal RNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyadenylation of eukaryotic transcripts is usually restricted to mRNA, whereby providing transcripts with stability from degradation by nucleases. Conversely, an RNA degradation pathway can be signaled through poly (A) tailing in prokaryotic, archeal, and organeller biology. Recently polyadenyla...

  19. LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions

    PubMed Central

    Liu, Xiuju; Huang, Henry; Wilkinson, Scott C.; Zhong, Diansheng; Khuri, Fadlo R.; Fu, Haian; Marcus, Adam; He, Yulong; Zhou, Wei

    2016-01-01

    We analyzed the mechanism underlying 5-aminoimidazole-4-carboxamide riboside (AICAR) mediated apoptosis in LKB1-null non-small cell lung cancer (NSCLC) cells. Metabolic profile analysis revealed depletion of the intracellular pyrimidine pool after AICAR treatment, but uridine was the only nucleotide precursor capable of rescuing this apoptosis, suggesting the involvement of RNA metabolism. Because half of RNA transcription in cancer is for pre-ribosomal RNA (rRNA) synthesis, which is suppressed by over 90% after AICAR treatment, we evaluated the role of TIF-IA-mediated rRNA synthesis. While the depletion of TIF-IA by RNAi alone promoted apoptosis in LKB1-null cells, the overexpression of a wild-type or a S636A TIF-IA mutant, but not a S636D mutant, attenuated AICAR-induced apoptosis. In LKB1-null H157 cells, pre-rRNA synthesis was not suppressed by AICAR when wild-type LKB1 was present, and cellular fractionation analysis indicated that TIF-IA quickly accumulated in the nucleus in the presence of a wild-type LKB1 but not a kinase-dead mutant. Furthermore, ectopic expression of LKB1 was capable of attenuating AICAR-induced death in AMPK-null cells. Because LKB1 promotes cell survival by modulating TIF-IA-mediated pre-rRNA synthesis, this discovery suggested that targeted depletion of uridine related metabolites may be exploited in the clinic to eliminate LKB1-null cancer cells. PMID:26506235

  20. NML-mediated rRNA base methylation links ribosomal subunit formation to cell proliferation in a p53-dependent manner.

    PubMed

    Waku, Tsuyoshi; Nakajima, Yuka; Yokoyama, Wataru; Nomura, Naoto; Kako, Koichiro; Kobayashi, Akira; Shimizu, Toshiyuki; Fukamizu, Akiyoshi

    2016-06-15

    Ribosomal RNAs (rRNAs) act as scaffolds and ribozymes in ribosomes, and these functions are modulated by post-transcriptional modifications. However, the biological role of base methylation, a well-conserved modification of rRNA, is poorly understood. Here, we demonstrate that a nucleolar factor, nucleomethylin (NML; also known as RRP8), is required for the N(1)-methyladenosine (m(1)A) modification in 28S rRNAs of human and mouse cells. NML also contributes to 60S ribosomal subunit formation. Intriguingly, NML depletion increases 60S ribosomal protein L11 (RPL11) levels in the ribosome-free fraction and protein levels of p53 through an RPL11-MDM2 complex, which activates the p53 pathway. Consequently, the growth of NML-depleted cells is suppressed in a p53-dependent manner. These observations reveal a new biological function of rRNA base methylation, which links ribosomal subunit formation to p53-dependent inhibition of cell proliferation in mammalian cells. PMID:27149924

  1. 16S-23S ribosomal RNA spacer regions of Acetobacter europaeus and A. xylinum, tRNA genes and antitermination sequences.

    PubMed

    Sievers, M; Alonso, L; Gianotti, S; Boesch, C; Teuber, M

    1996-08-15

    The 16S-23S ribosomal RNA spacer regions of Acetobacter europaeus DSM 6160, A. xylinum NCIB 11664 and A. xylinum CL27 were amplified by PCR. Specific PCR products were obtained from each strain and their nucleotide sequences determined. The spacer region of A. europaeus comprises 768 nucleotides (nt), that of A. xylinum 778 nt and that of A. xylinum CL27 759 nt. Genes encoding tRNAIle and tRNAAla were identified. Putative antitermination sequences were found between the tRNAAla sequence and the 5'-terminus of the 23S rRNA coding sequence. The boxA element has the nucleotide sequence TGCTCTTTGATA. Based on hybridization data of digested chromosomal DNA with spacer-specific probes, the copy number of the rrn operons on the chromosome of Acetobacter strains is estimated to be four. PMID:8759788

  2. The AAA-ATPase molecular chaperone Cdc48/p97 disassembles sumoylated centromeres, decondenses heterochromatin, and activates ribosomal RNA genes

    PubMed Central

    Mérai, Zsuzsanna; Chumak, Nina; García-Aguilar, Marcelina; Hsieh, Tzung-Fu; Nishimura, Toshiro; Schoft, Vera K.; Bindics, János; Ślusarz, Lucyna; Arnoux, Stéphanie; Opravil, Susanne; Mechtler, Karl; Zilberman, Daniel; Fischer, Robert L.; Tamaru, Hisashi

    2014-01-01

    Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48ANPL4 complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction. PMID:25344531

  3. The AAA-ATPase molecular chaperone Cdc48/p97 disassembles sumoylated centromeres, decondenses heterochromatin, and activates ribosomal RNA genes.

    PubMed

    Mérai, Zsuzsanna; Chumak, Nina; García-Aguilar, Marcelina; Hsieh, Tzung-Fu; Nishimura, Toshiro; Schoft, Vera K; Bindics, János; Slusarz, Lucyna; Arnoux, Stéphanie; Opravil, Susanne; Mechtler, Karl; Zilberman, Daniel; Fischer, Robert L; Tamaru, Hisashi

    2014-11-11

    Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48A(NPL4) complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction. PMID:25344531

  4. Complete Sequence Construction of the Highly Repetitive Ribosomal RNA Gene Repeats in Eukaryotes Using Whole Genome Sequence Data.

    PubMed

    Agrawal, Saumya; Ganley, Austen R D

    2016-01-01

    The ribosomal RNA genes (rDNA) encode the major rRNA species of the ribosome, and thus are essential across life. These genes are highly repetitive in most eukaryotes, forming blocks of tandem repeats that form the core of nucleoli. The primary role of the rDNA in encoding rRNA has been long understood, but more recently the rDNA has been implicated in a number of other important biological phenomena, including genome stability, cell cycle, and epigenetic silencing. Noncoding elements, primarily located in the intergenic spacer region, appear to mediate many of these phenomena. Although sequence information is available for the genomes of many organisms, in almost all cases rDNA repeat sequences are lacking, primarily due to problems in assembling these intriguing regions during whole genome assemblies. Here, we present a method to obtain complete rDNA repeat unit sequences from whole genome assemblies. Limitations of next generation sequencing (NGS) data make them unsuitable for assembling complete rDNA unit sequences; therefore, the method we present relies on the use of Sanger whole genome sequence data. Our method makes use of the Arachne assembler, which can assemble highly repetitive regions such as the rDNA in a memory-efficient way. We provide a detailed step-by-step protocol for generating rDNA sequences from whole genome Sanger sequence data using Arachne, for refining complete rDNA unit sequences, and for validating the sequences obtained. In principle, our method will work for any species where the rDNA is organized into tandem repeats. This will help researchers working on species without a complete rDNA sequence, those working on evolutionary aspects of the rDNA, and those interested in conducting phylogenetic footprinting studies with the rDNA. PMID:27576718

  5. Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number.

    PubMed

    Gyorfy, Zsuzsanna; Draskovits, Gabor; Vernyik, Viktor; Blattner, Frederick F; Gaal, Tamas; Posfai, Gyorgy

    2015-02-18

    Ribosomal RNA (rrn) operons, characteristically present in several copies in bacterial genomes (7 in E. coli), play a central role in cellular physiology. We investigated the factors determining the optimal number of rrn operons in E. coli by constructing isogenic variants with 5-10 operons. We found that the total RNA and protein content, as well as the size of the cells reflected the number of rrn operons. While growth parameters showed only minor differences, competition experiments revealed a clear pattern: 7-8 copies were optimal under conditions of fluctuating, occasionally rich nutrient influx and lower numbers were favored in stable, nutrient-limited environments. We found that the advantages of quick adjustment to nutrient availability, rapid growth and economic regulation of ribosome number all contribute to the selection of the optimal rrn operon number. Our results suggest that the wt rrn operon number of E. coli reflects the natural, 'feast and famine' life-style of the bacterium, however, different copy numbers might be beneficial under different environmental conditions. Understanding the impact of the copy number of rrn operons on the fitness of the cell is an important step towards the creation of functional and robust genomes, the ultimate goal of synthetic biology. PMID:25618851

  6. Genetic and structural analysis of base substitutions in the central pseudoknot of Thermus thermophilus 16S ribosomal RNA

    PubMed Central

    Gregory, Steven T.; Dahlberg, Albert E.

    2009-01-01

    Characterization of base substitutions in rRNAs has provided important insights into the mechanism of protein synthesis. Knowledge of the structural effects of such alterations is limited, and could be greatly expanded with the development of a genetic system based on an organism amenable to both genetics and structural biology. Here, we describe the genetic analysis of base substitutions in 16S ribosomal RNA of the extreme thermophile Thermus thermophilus, and an analysis of the conformational effects of these substitutions by structure probing with base-specific modifying agents. Gene replacement methods were used to construct a derivative of strain HB8 carrying a single 16S rRNA gene, allowing the isolation of spontaneous streptomycin-resistant mutants and subsequent genetic mapping of mutations by recombination. The residues altered to give streptomycin resistance reside within the central pseudoknot structure of 16S rRNA comprised of helices 1 and 27, and participate in the U13–U20–A915 base triple, the G21–A914 type II sheared G–A base pair, or the G885–C912 Watson–Crick base pair closing helix 27. Substitutions at any of the three residues engaged in the base triple were found to confer resistance. Results from structure probing of the pseudoknot are consistent with perturbation of RNA conformation by these substitutions, potentially explaining their streptomycin-resistance phenotypes. PMID:19144908

  7. Synthesis and characterization of modified nucleotides in the 970 hairpin loop of Escherichia coli 16S ribosomal RNA

    PubMed Central

    Abeydeera, N. Dinuka

    2009-01-01

    The synthesis of the 6-O-DPC-2-N-methylguanosine (m2G) nucleoside and the corresponding 5′-O-DMT-2′-O-TOM-protected 6-O-DPC-2-N-methylguanosine phosphoramidite is reported [DPC, diphenyl carbamoyl; DMT, 4, 4′-dimethoxytrityl; TOM, [(triisopropylsilyl)oxy]methyl]. The availability of the phosphoramidite allows for syntheses of hairpin RNAs with site-selective incorporation of 2-N-methylguanosine modification. Four 18-nt hairpin RNA analogues representing the 970-loop region (helix 31 or h31; U960–A975) of Escherichia coli 16S rRNA were synthesized with and without modifications in the loop region. Subsequently, stabilities and conformations of the singly and doubly modified RNAs were examined and compared with the corresponding unmodified RNA. Thermodynamic parameters and circular dichroism spectra are presented for the four helix 31 RNA analogues. Surprisingly, methylations in the loop region of helix 31 slightly destabilize the hairpin, which may have subtle effects on ribosome function. The hairpin construct is suitable for future ligand-binding experiments. PMID:19628400

  8. Differences in 23S ribosomal RNA mutations between wild-type and mutant macrolide-resistant Chlamydia trachomatis isolates

    PubMed Central

    JIANG, YONG; ZHU, HUI; YANG, LI-NA; LIU, YUAN-JUN; HOU, SHU-PING; QI, MAN-LI; LIU, QUAN-ZHONG

    2015-01-01

    The aim of the present study was to determine the in vitro susceptibility of wild-type and mutant clinical isolates of Chlamydia (C.) trachomatis strains to erythromycin, azithromycin and josamycin, and to identify the resistance-conferring 23S ribosomal (r)RNA mutations in the isolates. The wild-type resistant isolates were defined as those with minimum inhibitory concentration values above the tissue concentration of the antibiotic in the urogenital system. Furthermore, all resistant C. trachomatis isolates were exposed to sub-inhibitory concentrations of macrolides, and 13 resistant mutants were selected following serial passages. Among the 8 wild-type isolates that were resistant to erythromycin, 3 isolates had a mutation at T2611C in the 23S rRNA gene while the others did not show any 23S rRNA mutations. The selected mutant isolates showed a 4- to 16-fold reduction in in vitro sensitivities. With regard to the mutant strains, the T2611C mutation was found in 10 isolates, A2057G mutation in 6 isolates, and A2059G mutation in 1 isolate. Thus, the macrolide-resistant isolates of the wild-type strain had different mutations from those selected by exposure to sub-inhibitory concentrations of macrolides. Also, since 23S rRNA mutations were not identified in certain isolates, it was considered that other molecular mechanisms may also be responsible for the macrolide resistance of C. trachomatis. PMID:26622462

  9. Dysfunction in Ribosomal Gene Expression in the Hypothalamus and Hippocampus following Chronic Social Defeat Stress in Male Mice as Revealed by RNA-Seq

    PubMed Central

    Smagin, Dmitry A.; Kovalenko, Irina L.; Galyamina, Anna G.; Bragin, Anatoly O.; Orlov, Yuriy L.; Kudryavtseva, Natalia N.

    2016-01-01

    Chronic social defeat stress leads to the development of anxiety- and depression-like states in male mice and is accompanied by numerous molecular changes in brain. The influence of 21-day period of social stress on ribosomal gene expression in five brain regions was studied using the RNA-Seq database. Most Rps, Rpl, Mprs, and Mprl genes were upregulated in the hypothalamus and downregulated in the hippocampus, which may indicate ribosomal dysfunction following chronic social defeat stress. There were no differentially expressed ribosomal genes in the ventral tegmental area, midbrain raphe nuclei, or striatum. This approach may be used to identify a pharmacological treatment of ribosome biogenesis abnormalities in the brain of patients with “ribosomopathies.” PMID:26839715

  10. Physical and biochemical nature of the bacterial cytoplasm: movement and localization of mRNA and the 30S subunits of ribosomes.

    PubMed

    Trevors, J T

    2012-05-01

    There is a paucity of knowledge on how mRNA transcripts in the spatially crowded, but molecularly organized bacterial cytoplasm contact the 30S ribosomal subunits. Does simple diffusion in the cytoplasm account for transcript-ribosome interactions given that a large number of ribosomes (e.g., about 72,000 in Escherichia coli during exponential growth) can be present in the cytoplasm? Or are undiscovered mechanisms present where specific transcripts are directed to specific ribosomes at specific cytoplasmic locations, while others are mobilized in a random manner? Moreover, is it possible that cytoplasmic mobilization occurs in bacteria, driven possibly by thermal infrared (IR) radiation and the generation of exclusion zone (EZ) water? These aspects will be discussed in this article and hypotheses presented. PMID:22710107

  11. Dysfunction in Ribosomal Gene Expression in the Hypothalamus and Hippocampus following Chronic Social Defeat Stress in Male Mice as Revealed by RNA-Seq.

    PubMed

    Smagin, Dmitry A; Kovalenko, Irina L; Galyamina, Anna G; Bragin, Anatoly O; Orlov, Yuriy L; Kudryavtseva, Natalia N

    2016-01-01

    Chronic social defeat stress leads to the development of anxiety- and depression-like states in male mice and is accompanied by numerous molecular changes in brain. The influence of 21-day period of social stress on ribosomal gene expression in five brain regions was studied using the RNA-Seq database. Most Rps, Rpl, Mprs, and Mprl genes were upregulated in the hypothalamus and downregulated in the hippocampus, which may indicate ribosomal dysfunction following chronic social defeat stress. There were no differentially expressed ribosomal genes in the ventral tegmental area, midbrain raphe nuclei, or striatum. This approach may be used to identify a pharmacological treatment of ribosome biogenesis abnormalities in the brain of patients with "ribosomopathies." PMID:26839715

  12. Conditional expression of RPA190, the gene encoding the largest subunit of yeast RNA polymerase I: effects of decreased rRNA synthesis on ribosomal protein synthesis.

    PubMed Central

    Wittekind, M; Kolb, J M; Dodd, J; Yamagishi, M; Mémet, S; Buhler, J M; Nomura, M

    1990-01-01

    The synthesis of ribosomal proteins (r proteins) under the conditions of greatly reduced RNA synthesis were studied by using a strain of the yeast Saccharomyces cerevisiae in which the production of the largest subunit (RPA190) of RNA polymerase I was controlled by the galactose promoter. Although growth on galactose medium was normal, the strain was unable to sustain growth when shifted to glucose medium. This growth defect was shown to be due to a preferential decrease in RNA synthesis caused by deprivation of RNA polymerase I. Under these conditions, the accumulation of r proteins decreased to match the rRNA synthesis rate. When proteins were pulse-labeled for short periods, no or only a weak decrease was observed in the differential synthesis rate of several r proteins (L5, L39, L29 and/or L28, L27 and/or S21) relative to those of control cells synthesizing RPA190 from the normal promoter. Degradation of these r proteins synthesized in excess was observed during subsequent chase periods. Analysis of the amounts of mRNAs for L3 and L29 and their locations in polysomes also suggested that the synthesis of these proteins relative to other cellular proteins were comparable to those observed in control cells. However, Northern analysis of several r-protein mRNAs revealed that the unspliced precursor mRNA for r-protein L32 accumulated when rRNA synthesis rates were decreased. This result supports the feedback regulation model in which excess L32 protein inhibits the splicing of its own precursor mRNA, as proposed by previous workers (M. D. Dabeva, M. A. Post-Beittenmiller, and J. R. Warner, Proc. Natl. Acad. Sci. USA 83:5854-5857, 1986). Images PMID:2183018

  13. A stable hairpin preceded by a short open reading frame promotes nonlinear ribosome migration on a synthetic mRNA leader.

    PubMed Central

    Hemmings-Mieszczak, M; Hohn, T

    1999-01-01

    The regulation of cauliflower mosaic virus (CaMV) pregenomic 35S RNA translation occurs via nonlinear ribosome migration (ribosome shunt) and is mediated by an elongated hairpin structure in the leader. The replacement of the viral leader by a series of short, low-energy stems in either orientation supports efficient ribosomal shunting, showing that the stem per se, and not its sequence, is recognized by the translation machinery. The requirement for cis-acting sequences from the unstructured terminal regions of the viral leader was analyzed: the 5'-terminal polypyrimidine stretch and the short upstream open reading frame (uORF) A stimulate translation, whereas the 3'-flanking region seems not to be essential. Based on these results, an artificial leader was designed with a stable stem flanked by unstructured sequences derived from parts of the 5'- and 3'-proximal regions of the CaMV 35S RNA leader. This artificial leader is shunt-competent in translation assays in vivo and in vitro, indicating that a low-energy stem, broadly used as a device to successfully interfere with ribosome scanning, can efficiently support translation, if preceded by a short uORF. The synthetic 140-nt leader can functionally replace the CaMV 35S RNA 600-nt leader, thus implicating the universal role that nonlinear ribosome scanning could play in translation initiation in eukaryotes. PMID:10496216

  14. Structural insights into ribosome translocation.

    PubMed

    Ling, Clarence; Ermolenko, Dmitri N

    2016-09-01

    During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF-G) in bacteria and elongation factor 2 (EF-2) in eukaryotes. Recent structural and single-molecule studies revealed that tRNA and mRNA translocation within the ribosome is accompanied by cyclic forward and reverse rotations between the large and small ribosomal subunits parallel to the plane of the intersubunit interface. In addition, during ribosome translocation, the 'head' domain of small ribosomal subunit undergoes forward- and back-swiveling motions relative to the rest of the small ribosomal subunit around the axis that is orthogonal to the axis of intersubunit rotation. tRNA/mRNA translocation is also coupled to the docking of domain IV of EF-G into the A site of the small ribosomal subunit that converts the thermally driven motions of the ribosome and tRNA into the forward translocation of tRNA/mRNA inside the ribosome. Despite recent and enormous progress made in the understanding of the molecular mechanism of ribosome translocation, the sequence of structural rearrangements of the ribosome, EF-G and tRNA during translocation is still not fully established and awaits further investigation. WIREs RNA 2016, 7:620-636. doi: 10.1002/wrna.1354 For further resources related to this article, please visit the WIREs website. PMID:27117863

  15. Molecular dissection of the prototype foamy virus (PFV) RNA 5′-UTR identifies essential elements of a ribosomal shunt

    PubMed Central

    Schepetilnikov, Mikhail; Schott, Gregory; Katsarou, Konstantina; Thiébeauld, Odon; Keller, Mario; Ryabova, Lyubov A.

    2009-01-01

    The prototype foamy virus (PFV) is a nonpathogenic retrovirus that shows promise as a vector for gene transfer. The PFV (pre)genomic RNA starts with a long complex leader that can be folded into an elongated hairpin, suggesting an alternative strategy to cap-dependent linear scanning for translation initiation of the downstream GAG open reading frame (ORF). We found that the PFV leader carries several short ORFs (sORFs), with the three 5′-proximal sORFs located upstream of a structural element. Scanning-inhibitory hairpin insertion analysis suggested a ribosomal shunt mechanism, whereby ribosomes start scanning at the leader 5′-end and initiate at the downstream ORF via bypass of the central leader regions, which are inhibitory for scanning. We show that the efficiency of shunting depends strongly on the stability of the structural element located downstream of either sORFs A/A′ or sORF B, and on the translation event at the corresponding 5′-proximal sORF. The PFV shunting strategy mirrors that of Cauliflower mosaic virus in plants; however, in mammals shunting can operate in the presence of a less stable structural element, although it is greatly improved by increasing the number of base pairings. At least one shunt configuration was found in primate FV (pre)genomic RNAs. PMID:19638424

  16. Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin

    PubMed Central

    Allain, Frédéric H.-T.; Bouvet, Philippe; Dieckmann, Thorsten; Feigon, Juli

    2000-01-01

    The structure of the 28 kDa complex of the first two RNA binding domains (RBDs) of nucleolin (RBD12) with an RNA stem–loop that includes the nucleolin recognition element UCCCGA in the loop was determined by NMR spectroscopy. The structure of nucleolin RBD12 with the nucleolin recognition element (NRE) reveals that the two RBDs bind on opposite sides of the RNA loop, forming a molecular clamp that brings the 5′ and 3′ ends of the recognition sequence close together and stabilizing the stem–loop. The specific interactions observed in the structure explain the sequence specificity for the NRE sequence. Binding studies of mutant proteins and analysis of conserved residues support the proposed interactions. The mode of interaction of the protein with the RNA and the location of the putative NRE sites suggest that nucleolin may function as an RNA chaperone to prevent improper folding of the nascent pre-rRNA. PMID:11118222

  17. A new fungal large subunit ribosomal RNA primer for high-throughput sequencing surveys.

    PubMed

    Mueller, Rebecca C; Gallegos-Graves, La Verne; Kuske, Cheryl R

    2016-02-01

    The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300-400 bp region of the D2 hypervariable region of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R-LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Together, these findings show that the LR22R-LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods. PMID:26656064

  18. A new fungal large subunit ribosomal RNA primer for high throughput sequencing surveys

    SciTech Connect

    Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.

    2015-12-09

    The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300–400 bp region of the D2 hypervariable region of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R–LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Altogether, these findings show that the LR22R–LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods.

  19. A new fungal large subunit ribosomal RNA primer for high throughput sequencing surveys

    DOE PAGESBeta

    Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.

    2015-12-09

    The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300–400 bp region of the D2 hypervariable regionmore » of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R–LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Altogether, these findings show that the LR22R–LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods.« less

  20. Internal translation initiation and eIF4F/ATP-independent scanning of mRNA by eukaryotic ribosomal particles

    PubMed Central

    Agalarov, Sultan Ch.; Sakharov, Pavel A.; Fattakhova, Dina Kh.; Sogorin, Evgeny A.; Spirin, Alexander S.

    2014-01-01

    The recombinant mRNAs with 5′-untranslated region, called omega leader, of tobacco mosaic virus RNA are known to be well translated in eukaryotic cell-free systems, even if deprived of cap structure. Using the method of primer extension inhibition (toe-printing), the ribosomal particles were shown to initiate translation at uncapped omega leader when its 5′-end was blocked by a stable RNA-DNA double helix, thus providing evidence for internal initiation. The scanning of the leader sequence and the formation of ribosomal 48S initiation complexes at the initiation AUG codon occurred in the absence of ATP-dependent initiation factor eIF4F, as well as without ATP. The latter results implied the ability of ribosomal initiation complexes for ATP-independent, diffusional wandering (also called bi-directional movement) along the leader sequence during scanning. PMID:24657959

  1. A Neurospora crassa ribosomal protein gene, homologous to yeast CRY1, contains sequences potentially coordinating its transcription with rRNA genes.

    PubMed Central

    Tyler, B M; Harrison, K

    1990-01-01

    We have isolated and sequenced a Neurospora crassa ribosomal protein gene (designated crp-2) strongly homologous to the rp59 gene (CRY1) of yeast and the S14 ribosomal protein gene of mammals. The inferred sequence of the crp-2 protein is more homologous (83%) to the mammalian S14 sequence than to the yeast rp59 sequence (69%). The gene has three intervening sequences (IVSs) two of which are offset 7 bp from the position of IVSs in the mammalian genes. None correspond to the position of the IVS in the yeast gene. Crp-2 was mapped by RFLP analysis to the right arm of linkage group III. The 5' region of the gene contains three copies of a sequence, the Ribo box, previously shown to be required for transcription of both 5S and 40S rRNA genes. We speculate that the Ribo box may coordinate ribosomal protein and rRNA gene transcription. Images PMID:1977135

  2. Intra-Genomic Ribosomal RNA Polymorphism and Morphological Variation in Elphidium macellum Suggests Inter-Specific Hybridization in Foraminifera

    PubMed Central

    Pillet, Loïc; Fontaine, Delia; Pawlowski, Jan

    2012-01-01

    Elphidium macellum is a benthic foraminifer commonly found in the Patagonian fjords. To test whether its highly variable morphotypes are ecophenotypes or different genotypes, we analysed 70 sequences of the SSU rRNA gene from 25 specimens. Unexpectedly, we identified 11 distinct ribotypes, with up to 5 ribotypes co-occurring within the same specimen. The ribotypes differ by varying blocks of sequence located at the end of stem-loop motifs in the three expansion segments specific to foraminifera. These changes, distinct from typical SNPs and indels, directly affect the structure of the expansion segments. Their mosaic distribution suggests that ribotypes originated by recombination of two or more clusters of ribosomal genes. We propose that this expansion segment polymorphism (ESP) could originate from hybridization of morphologically different populations of Patagonian Elphidium. We speculate that the complex geological history of Patagonia enhanced divergence of coastal foraminiferal species and contributed to increasing genetic and morphological variation. PMID:22393402

  3. Cloning of the 16S ribosomal RNA gene of a psychrophilic bacterium from the Alaskan Fox Permafrost Tunnel

    NASA Astrophysics Data System (ADS)

    Marsic, Damien; Pikuta, Elena V.; Hoover, Richard B.; Ng, Joseph D.

    2002-02-01

    Extreme cold environments on Earth, such as polar regions or deep ocean harbor a variety of life forms that have developed unique molecular mechanisms that allow them not only to survive, but also to proliferate under hostile conditions. Such organisms are specially relevant to astrobiology studies because they help determine the environmental limits within which life can exist. They can also have a huge potential for biotechnological applications, because of the unique properties of their macromolecules. In this study we focused on a newly isolated bacterium from the Fox Permafrost Tunnel, FTR1, that grows anaerobically at +2 degree(s)C. We describe the molecular phylogenetic analysis of this microorganism, through the cloning, sequencing and analysis of its 16S ribosomal RNA gene. Our results suggests that FTR1 is a novel species belonging to the Carnobacterium genus.

  4. Microinjection of purified ornithine decarboxylase into Xenopus oocytes selectively stimulates ribosomal RNA synthesis.

    PubMed Central

    Russell, D H

    1983-01-01

    This study has utilized stage VI oocytes of Xenopus laevis which have amplified the rDNA gene 1,000-fold to assess whether the microinjection of ornithine decarboxylase (OrnDCase) would stimulate [alpha-32P]guanosine incorporation into 45S and 18S/28S RNA selectively. The injection of purified OrnDCase into individual oocytes resulted in a greater than 2-fold increase in the incorporation of [32P]guanosine into 45S RNA and 18S/28S RNA with no increased incorporation into low molecular weight RNA. Further, an irreversible inhibitor of OrnDCase, alpha-difluoromethylornithine (CHF2-Orn), rapidly inhibited the endogenous activity of OrnDCase when added to the buffered Hepes solution bathing the oocytes and also inhibited the incorporation of [32P]guanosine into rRNA. The inhibitory effect of CHF2-Orn could not be reversed totally by addition of 10 microM putrescine to the oocytes. OrnDCase injected into oocytes in the presence of CHF2-Orn in the media did not stimulate incorporation of [32P]guanosine label into rRNA. However, when CHF2-Orn was removed from the buffered medium at the time of the injection of label and enzyme, a 3-fold increase of 32P incorporation into 18S/28S RNA occurred. Therefore, in an in vivo model in which amplified extrachromosomal rDNA gene copies are present, the microinjection of OrnDCase was capable of specifically stimulating rRNA synthesis. CHF2-Orn, a suicide enzyme inactivator of OrnDCase, was able to inhibit rRNA synthesis and, after washout, there was a more marked stimulation of rRNA synthesis than occurred after only the injection of OrnDCase alone. These data suggest further that OrnDCase is the labile protein that regulates the initiation of RNA synthesis. PMID:6402779

  5. A deeply conserved, noncanonical miRNA hosted by ribosomal DNA

    PubMed Central

    Chak, Li-Ling; Mohammed, Jaaved; Lai, Eric C.; Tucker-Kellogg, Greg

    2015-01-01

    Advances in small RNA sequencing technologies and comparative genomics have fueled comprehensive microRNA (miRNA) gene annotations in humans and model organisms. Although new miRNAs continue to be discovered in recent years, these have universally been lowly expressed, recently evolved, and of debatable endogenous activity, leading to the general assumption that virtually all biologically important miRNAs have been identified. Here, we analyzed small RNAs that emanate from the highly repetitive rDNA arrays of Drosophila. In addition to endo-siRNAs derived from sense and antisense strands of the pre-rRNA sequence, we unexpectedly identified a novel, deeply conserved, noncanonical miRNA. Although this miRNA is widely expressed, this miRNA was not identified by previous studies due to bioinformatics filters removing such repetitive sequences. Deep-sequencing data provide clear evidence for specific processing with precisely defined 5′ and 3′ ends. Furthermore, we demonstrate that the mature miRNA species is incorporated in the effector complexes and has detectable trans regulatory activity. Processing of this miRNA requires Dicer-1, whereas the Drosha–Pasha complex is dispensable. The miRNA hairpin sequence is located in the internal transcribed spacer 1 region of rDNA and is highly conserved among Dipteran species that were separated from their common ancestor ∼100 million years ago. Our results suggest that biologically active miRNA genes may remain unidentified even in well-studied organisms. PMID:25605965

  6. Destabilization of the P Site Codon-Anticodon Helix Results from Movement of tRNA into the P/E Hybrid State within the Ribosome

    PubMed Central

    McGarry, Kevin G.; Walker, Sarah E.; Wang, Huanyu; Fredrick, Kurt

    2008-01-01

    Summary Retention of the reading frame in ribosomal complexes after single-round translocation depends on the acylation state of the tRNA. When tRNA lacking a peptidyl group is translocated to the P site, the mRNA slips to allow re-pairing of the tRNA with a nearby out-of-frame codon. Here, we show that this ribosomal activity results from movement of tRNA into the P/E hybrid state. Slippage of mRNA is suppressed by 3′ truncation of the translocated tRNA, increased MgCl2 concentration, and mutation C2394A of the 50S E site, and each of these conditions inhibits P/E-state formation. Mutation G2252U of the 50S P site stimulates mRNA slippage, suggesting that decreased affinity of tRNA for the P/P state also destabilizes mRNA in the complex. The effects of G2252U are suppressed by C2394A, further implicating the P/E state in mRNA destabilization. This work uncovers a functional attribute of the P/E state crucial for understanding translation. PMID:16307924

  7. Rapid identification of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) using ribosomal RNA internal transcribed spacer 1.

    PubMed

    Perera, Omaththage P; Allen, Kerry C; Jain, Devendra; Purcell, Matthew; Little, Nathan S; Luttrell, Randall G

    2015-01-01

    Rapid identification of invasive species is crucial for deploying management strategies to prevent establishment. Recent Helicoverpa armigera (Hübner) invasions and subsequent establishment in South America has increased the risk of this species invading North America. Morphological similarities make differentiation of H. armigera from the native Helicoverpa zea (Boddie) difficult. Characteristics of adult male genitalia and nucleotide sequence differences in mitochondrial DNA are two of the currently available methods to differentiate these two species. However, current methods are likely too slow to be employed as rapid detection methods. In this study, conserved differences in the internal transcribed spacer 1 (ITS1) of the ribosomal RNA genes were used to develop species-specific oligonucleotide primers that amplified ITS1 fragments of 147 and 334 bp from H. armigera and H. zea, respectively. An amplicon (83 bp) from a conserved region of 18S ribosomal RNA subunit served as a positive control. Melting temperature differences in ITS1 amplicons yielded species-specific dissociation curves that could be used in high resolution melt analysis to differentiate the two Helicoverpa species. In addition, a rapid and inexpensive procedure for obtaining amplifiable genomic DNA from a small amount of tissue was identified. Under optimal conditions, the process was able to detect DNA from one H. armigera leg in a pool of 25 legs. The high resolution melt analysis combined with rapid DNA extraction could be used as an inexpensive method to genetically differentiate large numbers of H. armigera and H. zea using readily available reagents. PMID:26516166

  8. Rapid Identification of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) Using Ribosomal RNA Internal Transcribed Spacer 1

    PubMed Central

    Perera, Omaththage P.; Allen, Kerry C.; Jain, Devendra; Purcell, Matthew; Little, Nathan S.; Luttrell, Randall G.

    2015-01-01

    Rapid identification of invasive species is crucial for deploying management strategies to prevent establishment. Recent Helicoverpa armigera (Hübner) invasions and subsequent establishment in South America has increased the risk of this species invading North America. Morphological similarities make differentiation of H. armigera from the native Helicoverpa zea (Boddie) difficult. Characteristics of adult male genitalia and nucleotide sequence differences in mitochondrial DNA are two of the currently available methods to differentiate these two species. However, current methods are likely too slow to be employed as rapid detection methods. In this study, conserved differences in the internal transcribed spacer 1 (ITS1) of the ribosomal RNA genes were used to develop species-specific oligonucleotide primers that amplified ITS1 fragments of 147 and 334 bp from H. armigera and H. zea, respectively. An amplicon (83 bp) from a conserved region of 18S ribosomal RNA subunit served as a positive control. Melting temperature differences in ITS1 amplicons yielded species-specific dissociation curves that could be used in high resolution melt analysis to differentiate the two Helicoverpa species. In addition, a rapid and inexpensive procedure for obtaining amplifiable genomic DNA from a small amount of tissue was identified. Under optimal conditions, the process was able to detect DNA from one H. armigera leg in a pool of 25 legs. The high resolution melt analysis combined with rapid DNA extraction could be used as an inexpensive method to genetically differentiate large numbers of H. armigera and H. zea using readily available reagents. PMID:26516166

  9. Site-specific fluorescence dynamics in an RNA ‘thermometer’ reveals the role of ribosome binding in its temperature-sensitive switch function

    PubMed Central

    Narayan, Satya; Kombrabail, Mamta H.; Das, Sudipta; Singh, Himanshu; Chary, Kandala V. R.; Rao, Basuthkar J.; Krishnamoorthy, Guruswamy

    2015-01-01

    RNA thermometers control the translation of several heat shock and virulence genes by their temperature-sensitive structural transitions. Changes in the structure and dynamics of MiniROSE RNA, which regulates translation in the temperature range of 20–45°C, were studied by site specifically replacing seven adenine residues with the fluorescent analog, 2-aminopurine (2-AP), one at a time. Dynamic fluorescence observables of 2-AP-labeled RNAs were compared in their free versus ribosome-bound states for the first time. Noticeably, position dependence of fluorescence observables, which was prominent at 20°C, was persistent even at 45ºC, suggesting the persistence of structural integrity up to 45ºC. Interestingly, position-dependent dispersion of fluorescence lifetime and quenching constant at 45°C was ablated in ribosome-bound state, when compared to those at 20°C, underscoring loss of structural integrity at 45°C, in ribosome-bound RNA. Significant increase in the value of mean lifetime for 2-AP corresponding to Shine–Dalgarno sequences, when the temperature was raised from 20 to 45°C, to values seen in the presence of urea at 45°C was a strong indicator of melting of the 3D structure of MiniROSE RNA at 45°C, only when it was ribosome bound. Taken all together, we propose a model where we invoke that ribosome binding of the RNA thermometer critically regulates temperature sensing functions in MiniROSE RNA. PMID:25477380

  10. The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of Pre-rRNA processing factors.

    PubMed

    Tafforeau, Lionel; Zorbas, Christiane; Langhendries, Jean-Louis; Mullineux, Sahra-Taylor; Stamatopoulou, Vassiliki; Mullier, Romain; Wacheul, Ludivine; Lafontaine, Denis L J

    2013-08-22

    Mature ribosomal RNAs (rRNAs) are produced from polycistronic precursors following complex processing. Precursor (pre)-rRNA processing has been extensively characterized in yeast and was assumed to be conserved in humans. We functionally characterized 625 nucleolar proteins in HeLa cells and identified 286 required for processing, including 74 without a yeast homolog. For selected candidates, we demonstrated that pre-rRNA processing defects are conserved in different cell types (including primary cells), defects are not due to activation of a p53-dependent nucleolar tumor surveillance pathway, and they precede cell-cycle arrest and apoptosis. We also investigated the exosome's role in processing internal transcribed spacers (ITSs) and report that 3' end maturation of 18S rRNA involves EXOSC10/Rrp6, a yeast ITS2 processing factor. We conclude that human cells adopt unique strategies and recruit distinct trans-acting factors to carry out essential processing steps, posing fundamental implications for understanding ribosomopathies at the molecular level and developing effective therapeutic agents. PMID:23973377

  11. Global stabilization of rRNA structure by ribosomal proteins S4, S17 and S20

    PubMed Central

    Ramaswamy, Priya; Woodson, Sarah A.

    2009-01-01

    Summary Ribosomal proteins stabilize the folded structure of the rRNA and enable the recruitment of further proteins to the complex. Quantitative hydroxyl radical footprinting was used to measure the extent to which three different primary assembly proteins, S4, S17 and S20, stabilize the 3D structure of the E. coli 16S 5′ domain. The stability of the complexes was perturbed by varying the concentration of MgCl2. Each protein influences the stability of the rRNA tertiary interactions beyond its immediate binding site. S4 and S17 stabilize the entire 5′ domain, while S20 has a more local effect. Multi-stage folding of individual helices within the 5′ domain shows that each protein stabilizes a different ensemble of structural intermediates, that include non-native interactions at low Mg2+. We propose that the combined interactions of S4, S17 and S20 with different helical junctions bias the free energy landscape toward a few RNA conformations that are competent to add the secondary assembly protein S16 in the next step of assembly. PMID:19616559

  12. Molecular Diagnosis of Periprosthetic Joint Infection by Quantitative RT-PCR of Bacterial 16S Ribosomal RNA

    PubMed Central

    Lee, Mel S.; Chang, Wen-Hsin; Chen, Su-Chin; Hsieh, Pang-Hsin; Shih, Hsin-Nung; Ueng, Steve W. N.; Lee, Gwo-Bin

    2013-01-01

    The diagnosis of periprosthetic joint infection is sometimes straightforward with purulent discharge from the fistula tract communicating to the joint prosthesis. However it is often difficult to differentiate septic from aseptic loosening of prosthesis because of the high culture-negative rates in conventional microbiologic culture. This study used quantitative reverse transcription polymerase chain reaction (RT-qPCR) to amplify bacterial 16S ribosomal RNA in vitro and in 11 clinical samples. The in vitro analysis demonstrated that the RT-qPCR method was highly sensitive with the detection limit of bacterial 16S rRNA being 0.148 pg/μl. Clinical specimens were analyzed using the same protocol. The RT-qPCR was positive for bacterial detection in 8 culture-positive cases (including aerobic, anaerobic, and mycobacteria) and 2 culture-negative cases. It was negative in one case that the final diagnosis was confirmed without infection. The molecular diagnosis of bacterial infection using RT-qPCR to detect bacterial 16S rRNA around a prosthesis correlated well with the clinical findings. Based on the promising clinical results, we were attempting to differentiate bacterial species or drug-resistant strains by using species-specific primers and to detect the persistence of bacteria during the interim period before the second stage reimplantation in a larger scale of clinical subjects. PMID:24453929

  13. HIV-1 RNA dimerization initiation site is structurally similar to the ribosomal A site and binds aminoglycoside antibiotics.

    PubMed

    Ennifar, Eric; Paillart, Jean-Christophe; Marquet, Roland; Ehresmann, Bernard; Ehresmann, Chantal; Dumas, Philippe; Walter, Philippe

    2003-01-24

    Human immunodeficiency virus (HIV) genomic RNA is packaged into virions as a dimer. The first step of dimerization is the formation of a kissing-loop complex at the so-called dimerization initiation site (DIS). We found an unexpected and fortuitous resemblance between the HIV-1 DIS kissing-loop complex and the eubacterial 16 S ribosomal aminoacyl-tRNA site (A site), which is the target of aminoglycoside antibiotics. Similarities exist not only at the primary and secondary structure level but also at the tertiary structure level, as revealed by comparison of the respective DIS and A site crystal structures. Gel shift, inhibition of lead-induced cleavage, and footprinting experiments showed that paromomycin and neomycin specifically bind to the kissing-loop complex formed by the DIS, with an affinity and a geometry similar to that observed for the A site. Modeling of the aminoglycoside-DIS complex allowed us to identify antibiotic modifications likely to increase the affinity and/or the specificity for the DIS. This could be a starting point for designing antiviral drugs against HIV-1 RNA dimerization. PMID:12435744

  14. The nucleotide sequence of the large ribosomal RNA gene and the adjacent tRNA genes from rat mitochondria.

    PubMed Central

    Saccone, C; Cantatore, P; Gadaleta, G; Gallerani, R; Lanave, C; Pepe, G; Kroon, A M

    1981-01-01

    We have sequenced the Eco R(1) fragment D from rat mitochondrial DNA. It contains one third of the tRNA (Val) gene (the remaining part has been sequenced from the 3' end of the Eco R(1) fragment A) the complete gene for the large mt 16S rRNA, the tRNA (Leu) gene and the 5' end of an unidentified reading frame. The mt gene for the large rRNA from rat has been aligned with the homologous genes from mouse and human using graphic computer programs. Hypervariable regions at the center of the molecule and highly conserved regions toward the 3' end have been detected. The mt gene for tRNA Leu is of the conventional type and its primary structure is highly conserved among mammals. The mt gene for tRNA(Val) shows characteristics similar to those of other mt tRNA genes but the degree of homology is lower. Comparative studies confirm that AGA and AGG are read as stop codons in mammalian mitochondria. PMID:6913863

  15. An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Larsen, N.; Woese, C. R.; Stetter, K. O.

    1993-01-01

    The 16S rRNA genes of Pyrobaculum aerophilum and Pyrobaculum islandicum were amplified by the polymerase chain reaction, and the resulting products were sequenced directly. The two organisms are closely related by this measure (over 98% similar). However, they differ in that the (lone) 16S rRNA gene of Pyrobaculum aerophilum contains a 713-bp intron not seen in the corresponding gene of Pyrobaculum islandicum. To our knowledge, this is the only intron so far reported in the small subunit rRNA gene of a prokaryote. Upon excision the intron is circularized. A secondary structure model of the intron-containing rRNA suggests a splicing mechanism of the same type as that invoked for the tRNA introns of the Archaea and Eucarya and 23S rRNAs of the Archaea. The intron contains an open reading frame whose protein translation shows no certain homology with any known protein sequence.

  16. Nucleotide sequence of 5S ribosomal RNA from Aspergillus nidulans and Neurospora crassa.

    PubMed Central

    Piechulla, B; Hahn, U; McLaughlin, L W; Küntzel, H

    1981-01-01

    The nucleotide sequences of 5S rRNA molecules isolated from the cytosol and the mitochondria of the ascomycetes A. nidulans and N. crassa were determined by partial chemical cleavage of 3'-terminally labelled RNA. The sequence identity of the cytosolic and mitochondrial RNA preparations confirms the absence of mitochondrion-specific 5S rRNA in these fungi. The sequences of the two organisms differ in 35 positions, and each sequence differs from yeast 5S rRNA in 44 positions. Both molecules contain the sequence GCUC in place of GAAC or GAUY found in all other 5S rRNAs, indicating that this region is not universally involved in base-pairing to the invariant GTpsiC sequence of tRNAs. Images PMID:6453331

  17. Massive-Scale RNA-Seq Analysis of Non Ribosomal Transcriptome in Human Trisomy 21

    PubMed Central

    Costa, Valerio; Angelini, Claudia; D'Apice, Luciana; Mutarelli, Margherita; Casamassimi, Amelia; Sommese, Linda; Gallo, Maria Assunta; Aprile, Marianna; Esposito, Roberta; Leone, Luigi; Donizetti, Aldo; Crispi, Stefania; Rienzo, Monica; Sarubbi, Berardo; Calabrò, Raffaele; Picardi, Marco; Salvatore, Paola; Infante, Teresa; De Berardinis, Piergiuseppe; Napoli, Claudio; Ciccodicola, Alfredo

    2011-01-01

    Hybridization- and tag-based technologies have been successfully used in Down syndrome to identify genes involved in various aspects of the pathogenesis. However, these technologies suffer from several limits and drawbacks and, to date, information about rare, even though relevant, RNA species such as long and small non-coding RNAs, is completely missing. Indeed, none of published works has still described the whole transcriptional landscape of Down syndrome. Although the recent advances in high-throughput RNA sequencing have revealed the complexity of transcriptomes, most of them rely on polyA enrichment protocols, able to detect only a small fraction of total RNA content. On the opposite end, massive-scale RNA sequencing on rRNA-depleted samples allows the survey of the complete set of coding and non-coding RNA species, now emerging as novel contributors to pathogenic mechanisms. Hence, in this work we analysed for the first time the complete transcriptome of human trisomic endothelial progenitor cells to an unprecedented level of resolution and sensitivity by RNA-sequencing. Our analysis allowed us to detect differential expression of even low expressed genes crucial for the pathogenesis, to disclose novel regions of active transcription outside yet annotated loci, and to investigate a plethora of non-polyadenilated long as well as short non coding RNAs. Novel splice isoforms for a large subset of crucial genes, and novel extended untranslated regions for known genes—possibly novel miRNA targets or regulatory sites for gene transcription—were also identified in this study. Coupling the rRNA depletion of samples, followed by high-throughput RNA-sequencing, to the easy availability of these cells renders this approach very feasible for transcriptome studies, offering the possibility of investigating in-depth blood-related pathological features of Down syndrome, as well as other genetic disorders. PMID:21533138

  18. Reconstitution of biologically active 50S ribosomal subunits with artificial 5S RNA molecules carrying disturbances in the base pairing within the molecular stalk.

    PubMed Central

    Raué, H A; Lorenz, S; Erdmann, V A; Planta, R J

    1981-01-01

    Bacillus stearothermophilus 50S ribosomal subunits were reconstituted in vitro using artificial 5S RNA molecules constructed by combining parts of major and minor type (Raué et al. (1976) Europ. J. Biochem. 68, 169-176) B. licheniformis 5S RNA. The artificial 5S RNA molecules carry defined disturbances (A.C juxtapositions and extra G.U pairs) in the base pairing between the 5'- and 3'-terminal sequences of the molecule (the molecular stalk region). The biological activity of the reconstituted subunits was determined in an E. coli cell-free system programmed with poly-U. The results show that conservation of the base pairing within the molecular stalk is not required for biological activity of 5S RNA. Disturbances of the base pairing within this region do reduce the rate of reconstitution, however. Normal base pairing in the molecular stalk is thus required to ensure efficient ribosome assembly. PMID:6164987

  19. Mitochondrial 12S ribosomal RNA A1555G mutation associated with cardiomyopathy and hearing loss following high-dose chemotherapy and repeated aminoglycoside exposure.

    PubMed

    Skou, Anne-Sofie; Tranebjærg, Lisbeth; Jensen, Tim; Hasle, Henrik

    2014-02-01

    A 19-month-old girl with the A1555G mitochondrial mutation in the 12S ribosomal RNA gene and acute myelogenous leukemia developed dilated cardiomyopathy and bilateral sensorineural hearing loss before undergoing allogeneic stem cell transplantation. She had received gentamicin during episodes of febrile neutropenia. Testing for the A1555G mutation is recommended in patients frequently treated with aminoglycosides. PMID:24252789

  20. Stochastic and nonstochastic post-transcriptional silencing of chitinase and beta-1,3-glucanase genes involves increased RNA turnover-possible role for ribosome-independent RNA degradation.

    PubMed Central

    Holtorf, H; Schöb, H; Kunz, C; Waldvogel, R; Meins, F

    1999-01-01

    Stochastic and nonstochastic post-transcriptional gene silencing (PTGS) in Nicotiana sylvestris plants carrying tobacco class I chitinase (CHN) and beta-1,3-glucanase transgenes differs in incidence, stability, and pattern of expression. Measurements with inhibitors of RNA synthesis (cordycepin, actinomycin D, and alpha-amanitin) showed that both forms of PTGS are associated with increased sequence-specific degradation of transcripts, suggesting that increased RNA turnover may be a general feature of PTGS. The protein synthesis inhibitors cycloheximide and verrucarin A did not inhibit degradation of CHN RNA targeted for PTGS, confirming that PTGS-related RNA degradation does not depend on ongoing protein synthesis. Because verrucarin A, unlike cycloheximide, dissociates mRNA from ribosomes, our results also suggest that ribosome-associated RNA degradation pathways may not be involved in CHN PTGS. PMID:10072405

  1. Comment on ``Length-dependent translation of messenger RNA by ribosomes''

    NASA Astrophysics Data System (ADS)

    Zhang, Yunxin

    2012-02-01

    In a recent paper by Valleriani [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.83.042903 83, 042903 (2011)], a simple model for the translation of messenger RNA (mRNA) is presented. Using this model, the protein translational ratio r, defined as the ratio of protein translation rate ωtl from mRNA to protein degradation rate ωp, is obtained. The key point in obtaining the translational ratio r is to get the protein translation rate ωtl. In Valleriani 's paper, ωtl is obtained as the mean value of the measured translation rate, which is the ratio of the synthesized protein number to the mRNA lifetime. However, in experiments, different methods might be used to obtain the value of ωtl. Therefore, to apply Valleriani 's model to more general experiments, in this Comment three methods to obtain the translation rate ωtl, and consequently the translational ratio r, are presented. Based on one of the methods which might be employed in most of the experiments, we find that the translational ratio r decays exponentially with mRNA length in prokaryotic cells, and decays reciprocally with mRNA length in eukaryotic cells. This result is slight different from that which was obtained in Valleriani 's paper.

  2. Role of conserved nucleotides in building the 16 S rRNA binding site for ribosomal protein S15.

    PubMed

    Serganov, A; Bénard, L; Portier, C; Ennifar, E; Garber, M; Ehresmann, B; Ehresmann, C

    2001-01-26

    Ribosomal protein S15 recognizes a highly conserved target on 16 S rRNA, which consists of two distinct binding regions. Here, we used extensive site-directed mutagenesis on a Escherichia coli 16 S rRNA fragment containing the S15 binding site, to investigate the role of conserved nucleotides in protein recognition and to evaluate the relative contribution of the two sites. The effect of mutations on S15 recognition was studied by measuring the relative binding affinity, RNA probing and footprinting. The crystallographic structure of the Thermus thermophilus complex allowed molecular modelling of the E. coli complex and facilitated interpretation of biochemical data. Binding is essentially driven by site 1, which includes a three-way junction constrained by a conserved base triple and cross-strand stacking. Recognition is based mainly on shape complementarity, and the role of conserved nucleotides is to maintain a unique backbone geometry. The wild-type base triple is absolutely required for protein interaction, while changes in the conserved surrounding nucleotides are partially tolerated. Site 2, which provides functional groups in a conserved G-U/G-C motif, contributes only modestly to the stability of the interaction. Binding to this motif is dependent on binding at site 1 and is allowed only if the two sites are in the correct relative orientation. Non-conserved bulged nucleotides as well as a conserved purine interior loop, although not directly involved in recognition, are used to provide an appropriate flexibility between the two sites. In addition, correct binding at the two sites triggers conformational adjustments in the purine interior loop and in a distal region, which are known to be involved for subsequent binding of proteins S6 and S18. Thus, the role of site 1 is to anchor S15 to the rRNA, while binding at site 2 is aimed to induce a cascade of events required for subunit assembly. PMID:11162092

  3. Design and properties of efficient tRNA:EF-Tu FRET system for studies of ribosomal translation

    PubMed Central

    Chudaev, Maxim; Poruri, Kiran; Goldman, Emanuel; Jakubowski, Hieronim; Jain, Mohit Raja; Chen, Wei; Li, Hong; Tyagi, Sanjay; Mandecki, Wlodek

    2013-01-01

    Formation of the ternary complex between GTP-bound form of elongation factor Tu (EF-Tu) and aminoacylated transfer RNA (aa-tRNA) is a key event in protein biosynthesis. Here we show that fluorescently modified Escherichia coli EF-Tu carrying three mutations, C137A, C255V and E348C, and fluorescently modified Phe-tRNAPhe form functionally active ternary complex that has properties similar to those of the naturally occurring (unmodified) complex. Similarities include the binding and binding rate constants, behavior in gel retardation assay, as well as activities in tRNA protection and in vitro translation assays. Proper labeling of EF-Tu was demonstrated in MALDI mass spectroscopy experiments. To generate the mutant EF-Tu, a series of genetic constructions were performed. Two native cysteine residues in the wild-type EF-Tu at positions 137 and 255 were replaced by Ala and Val, respectively, and an additional cysteine was introduced either in position 324 or 348. The assembly FRET assay showed a 5- to 7-fold increase of Cy5-labeled EF-Tu E348C mutant fluorescence upon formation of ternary complex with charged tRNAPhe(Cy3-labeled) when the complex was excited at 532 nm and monitored at 665 nm. In a control experiment, we did not observe FRET using uncharged tRNAPhe(Cy3), nor with wild-type EF-Tu preparation that was allowed to react with Cy5 maleimide, nor in the absence of GTP. The results obtained demonstrate that the EF-Tu:tRNA FRET system described can be used for investigations of ribosomal translation in many types of experiments. PMID:23447652

  4. Target of Rapamycin Regulates Development and Ribosomal RNA Expression through Kinase Domain in Arabidopsis1[W][OA

    PubMed Central

    Ren, Maozhi; Qiu, Shuqing; Venglat, Prakash; Xiang, Daoquan; Feng, Li; Selvaraj, Gopalan; Datla, Raju

    2011-01-01

    Target of rapamycin (TOR) is a central regulator of cell growth, cell death, nutrition, starvation, hormone, and stress responses in diverse eukaryotes. However, very little is known about TOR signaling and the associated functional domains in plants. We have taken a genetic approach to dissect TOR functions in Arabidopsis (Arabidopsis thaliana) and report here that the kinase domain is essential for the role of TOR in embryogenesis and 45S rRNA expression. Twelve new T-DNA insertion mutants, spanning 14.2 kb of TOR-encoding genomic region, have been characterized. Nine of these share expression of defective kinase domain and embryo arrest at 16 to 32 cell stage. However, three T-DNA insertion lines affecting FATC domain displayed normal embryo development, indicating that FATC domain was dispensable in Arabidopsis. Genetic complementation showed that the TOR kinase domain alone in tor-10/tor-10 mutant background can rescue early embryo lethality and restore normal development. Overexpression of full-length TOR or kinase domain in Arabidopsis displayed developmental abnormalities in meristem, leaf, root, stem, flowering time, and senescence. We further show that TOR, especially the kinase domain, plays a role in ribosome biogenesis by activating 45S rRNA production. Of the six putative nuclear localization sequences in the kinase domain, nuclear localization sequence 6 was identified to confer TOR nuclear targeting in transient expression assays. Chromatin immunoprecipitation studies revealed that the HEAT repeat domain binds to 45S rRNA promoter and the 5′ external transcribed spacer elements motif. Together, these results show that TOR controls the embryogenesis, postembryonic development, and 45S rRNA production through its kinase domain in Arabidopsis. PMID:21266656

  5. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA

    PubMed Central

    Haag, Sara; Kretschmer, Jens

    2015-01-01

    Ribosomal (r)RNAs are extensively modified during ribosome synthesis and their modification is required for the fidelity and efficiency of translation. Besides numerous small nucleolar RNA-guided 2′-O methylations and pseudouridinylations, a number of individual RNA methyltransferases are involved in rRNA modification. WBSCR22/Merm1, which is affected in Williams–Beuren syndrome and has been implicated in tumorigenesis and metastasis formation, was recently shown to be involved in ribosome synthesis, but its molecular functions have remained elusive. Here we show that depletion of WBSCR22 leads to nuclear accumulation of 3′-extended 18SE pre-rRNA intermediates resulting in impaired 18S rRNA maturation. We map the 3′ ends of the 18SE pre-rRNA intermediates accumulating after depletion of WBSCR22 and in control cells using 3′-RACE and deep sequencing. Furthermore, we demonstrate that WBSCR22 is required for N7-methylation of G1639 in human 18S rRNA in vivo. Interestingly, the catalytic activity of WBSCR22 is not required for 18S pre-rRNA processing, suggesting that the key role of WBSCR22 in 40S subunit biogenesis is independent of its function as an RNA methyltransferase. PMID:25525153

  6. FRET Characterization of Complex Conformational Changes in a Large 16S Ribosomal RNA Fragment Site-Specifically Labeled Using Unnatural Base Pairs.

    PubMed

    Lavergne, Thomas; Lamichhane, Rajan; Malyshev, Denis A; Li, Zhengtao; Li, Lingjun; Sperling, Edit; Williamson, James R; Millar, David P; Romesberg, Floyd E

    2016-05-20

    Ribosome assembly has been studied intensively using Förster resonance energy transfer (FRET) with fluorophore-labeled fragments of RNA produced by chemical synthesis. However, these studies are limited by the size of the accessible RNA fragments. We have developed a replicable unnatural base pair (UBP) formed between (d)5SICS and (d)MMO2 or (d)NaM, which efficiently directs the transcription of RNA containing unnatural nucleotides. We now report the synthesis and evaluation of several of the corresponding ribotriphosphates bearing linkers that enable the chemoselective attachment of different functionalities. We found that the RNA polymerase from T7 bacteriophage does not incorporate NaM derivatives but does efficiently incorporate 5SICS(CO), whose linker enables functional group conjugation via Click chemistry, and when combined with the previously identified MMO2(A), whose amine side chains permits conjugation via NHS coupling chemistry, enables site-specific double labeling of transcribed RNA. To study ribosome assembly, we transcribed RNA corresponding to a 243-nt fragment of the central domain of Thermus thermophilus 16S rRNA containing 5SICS(CO) and MMO2(A) at defined locations and then site-specifically attached the fluorophores Cy3 and Cy5. FRET was characterized using single-molecule total internal reflection fluorescence (smTIRF) microscopy in the presence of various combinations of added ribosomal proteins. We demonstrate that each of the fragment's two three-helix junctions exist in open and closed states, with the latter favored by sequential protein binding. These results elucidate early and previously uncharacterized folding events underlying ribosome assembly and demonstrate the applicability of UBPs for biochemical, structural, and functional studies of RNAs. PMID:26942998

  7. Cytoskeletal protein filamin A is a nucleolar protein that suppresses ribosomal RNA gene transcription.

    PubMed

    Deng, Wensheng; Lopez-Camacho, Cesar; Tang, Jen-Yang; Mendoza-Villanueva, Daniel; Maya-Mendoza, Apolinar; Jackson, Dean A; Shore, Paul

    2012-01-31

    Filamin A (FLNA) is an actin-binding protein with a well-established role in the cytoskeleton, where it determines cell shape and locomotion by cross-linking actin filaments. Mutations in FLNA are associated with a wide range of genetic disorders. Here we demonstrate a unique role for FLNA as a nucleolar protein that associates with the RNA polymerase I (Pol I) transcription machinery to suppress rRNA gene transcription. We show that depletion of FLNA by siRNAs increased rRNA expression, rDNA promoter activity and cell proliferation. Immunodepletion of FLNA from nuclear extracts resulted in a decrease in rDNA promoter-driven transcription in vitro. FLNA coimmunoprecipitated with the Pol I components actin, TIF-IA, and RPA40, and their occupancy of the rDNA promoter was increased in the absence of FLNA in vivo. The FLNA actin-binding domain is essential for the suppression of rRNA expression and for inhibiting recruitment of the Pol I machinery to the rDNA promoter. These findings reveal an additional role for FLNA as a regulator of rRNA gene expression and have important implications for our understanding of the role of FLNA in human disease. PMID:22307607

  8. Modified nucleotides in T1 RNase oligonucleotides of 18S ribosomal RNA of the Novikoff hepatoma.

    PubMed

    Choi, Y C; Busch, H

    1978-06-27

    The primary structure of 18S rRNA of the Novikoff hepatoma cells was investigated. Regardless of whether the primary sequence of 18S rRNA is finally determined by RNA sequencing methods or DNA sequencing methods, it is important to identify numbers and types of the modified nucleotides and accordingly the present study was designed to localize the modified regions in T1 RNase derived oligonucleotide. Modified nucleotides found in 66 different oligonucleotide sequences included 2 m62A, 1 m6A, 1 m7G, 1m1cap3psi, 7 Cm, 13 Am, 9 Gm, 11 Um, and 38 psi residues. A number of these modified nucleotides are now placed in defined sequences of T1 RNase oligonucleotides which are now being searched for in larger fragments derived from partial T1 RNase digests of 18S rRNA. Improved homochromatography fingerprinting (Choi et al. (1976) Cancer Res. 36, 4301) of T1 RNase derived oligonucleotides provided a distinctive pattern for 18S rRNA of Novikoff hepatoma ascites cells. The 116 spots obtained by homochromatography contain 176 oligonucleotide sequences. PMID:209819

  9. Development of a model ribosomal RNA hybridization assay for the detection of Sarcocystis and other coccidia.

    PubMed Central

    Gajadhar, A A; Marquardt, W C; Blair, C D

    1992-01-01

    Two regions of the primary structure of the small subunit rRNA of Sarcocystis muris bradyzoites were compared with nucleotide sequences of S. gigantea, Toxoplasma gondii, Plasmodium berghei and Mus musculus and used to design genus- and species-specific probes for the detection and identification of coccidia. Total cellular RNA of purified S. muris, S. cruzi, T. gondii and Eimeria nieschulzi and coccidia-infected tissues of mouse, ox, sheep and pig, were assayed using twenty-base oligomers labelled with 32P. Hybridization occurred at temperatures ranging from 21 degrees C to 41 degrees C or 51 degrees C. One probe detected only S. muris and another successfully hybridized to several members of coccidia, including S. muris, S. cruzi, T. gondii and E. nieschulzi. One ng of total cellular RNA was sufficient to yield detectable hybrids in slot blot assays. The excellent sensitivity suggests that rRNA-based probes are capable of detecting individual parasites, and can assay low levels of coccidial infections not detectable by other methods. The results of this study show that it is possible to customize the specificity of rRNA-based probes for diagnostic, epidemiological or taxonomic purposes. Images Fig. 2. Fig. 3. PMID:1423056

  10. Mitochondrial 16S ribosomal RNA gene for forensic identification of crocodile species.

    PubMed

    Naga Jogayya, K; Meganathan, P R; Dubey, Bhawna; Haque, I

    2013-05-01

    All crocodilians are under various threats due to over exploitation and these species have been listed in Appendix I or II of CITES. Lack of molecular techniques for the forensic identification of confiscated samples makes it difficult to enforce the law. Therefore, we herein present a molecular method developed on the basis on 16S rRNA gene of mitochondrial DNA for identification of crocodile species. We have developed a set of 16S rRNA primers for PCR based identification of crocodilian species. These novel primers amplify partial 16S rRNA sequences of six crocodile species which can be later combined to obtain a larger region (1290 bp) of 16S rRNA gene. This 16S rRNA gene could be used as an effective tool for forensic authentication of crocodiles. The described primers hold great promise in forensic identification of crocodile species, which can aid in the effective enforcement of law and conservation of these species. PMID:23622485

  11. Interactions of the TnaC nascent peptide with rRNA in the exit tunnel enable the ribosome to respond to free tryptophan.

    PubMed

    Martínez, Allyson K; Gordon, Emily; Sengupta, Arnab; Shirole, Nitin; Klepacki, Dorota; Martinez-Garriga, Blanca; Brown, Lewis M; Benedik, Michael J; Yanofsky, Charles; Mankin, Alexander S; Vazquez-Laslop, Nora; Sachs, Matthew S; Cruz-Vera, Luis R

    2014-01-01

    A transcriptional attenuation mechanism regulates expression of the bacterial tnaCAB operon. This mechanism requires ribosomal arrest induced by the regulatory nascent TnaC peptide in response to free L-tryptophan (L-Trp). In this study we demonstrate, using genetic and biochemical analyses, that in Escherichia coli, TnaC residue I19 and 23S rRNA nucleotide A2058 are essential for the ribosome's ability to sense free L-Trp. We show that the mutational change A2058U in 23S rRNA reduces the concentration dependence of L-Trp-mediated tna operon induction, whereas the TnaC I19L change suppresses this phenotype, restoring the sensitivity of the translating A2058U mutant ribosome to free L-Trp. These findings suggest that interactions between TnaC residue I19 and 23S rRNA nucleotide A2058 contribute to the creation of a regulatory L-Trp binding site within the translating ribosome. PMID:24137004

  12. Analysis of the conformation of the 3' major domain of Escherichia coli16S ribosomal RNA using site-directed photoaffinity crosslinking.

    PubMed Central

    Montpetit, A; Payant, C; Nolan, J M; Brakier-Gingras, L

    1998-01-01

    The 3' major domain of Escherichia coli 16S rRNA, which occupies the head of the small ribosomal subunit, is involved in several functions of the ribosome. We have used a site-specific crosslinking procedure to gain further insights into the higher-order structure of this domain. Circularly permuted RNAs were used to introduce an azidophenacyl group at specific positions within the 3' major domain. Crosslinks were generated in a high-ionic strength buffer that has been used for ribosome reconstitution studies and so enables the RNA to adopt a structure recognized by ribosomal proteins. The crosslinking sites were identified by primer extension and confirmed by assessing the mobility of the crosslinked RNA lariats in denaturing polyacrylamide gels. Eight crosslinks were characterized. Among them, one crosslink demonstrates that helix 28 is proximal to the top of helix 34, and two others show that the 1337 region, located in an internal loop at the junction of helices 29, 30, 41, and 42, is proximal to the center of helix 30 and to a segment connecting helix 28 to helix 29. These relationships of vicinity have previously been observed in native 30S subunits, which suggests that the free domain adopts a conformation similar to that within the 30S subunit. Furthermore, crosslinks were obtained in helix 34, which suggest that the upper and lower portions of this helix are in close proximity. PMID:9814765

  13. gar2 is a nucleolar protein from Schizosaccharomyces pombe required for 18S rRNA and 40S ribosomal subunit accumulation.

    PubMed Central

    Gulli, M P; Girard, J P; Zabetakis, D; Lapeyre, B; Melese, T; Caizergues-Ferrer, M

    1995-01-01

    Several nucleolar proteins, such as nucleolin, NOP1/fibrillarin, SSB1, NSR1 and GAR1 share a common glycine and arginine rich structural motif called the GAR domain. To identify novel nucleolar proteins from fission yeast we screened Schizosaccharomyces pombe genomic DNA libraries with a probe encompassing the GAR structural motif. Here we report the identification and characterization of a S.pombe gene coding for a novel nucleolar protein, designated gar2. The structure of the fission yeast gar2 is reminiscent of that of nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. In addition, like these proteins, gar2 has a nucleolar localisation. The disruption of the gar2+ gene affects normal cell growth, leads to an accumulation of 35S pre-rRNA and a decrease of mature 18S rRNA steady state levels. Moreover, ribosomal profiles of the mutant show an increase of free 60S ribosomal subunits and an absence of free 40S ribosomal subunits. gar2 is able to rescue a S.cerevisiae mutant lacking NSR1, thus establishing gar2 as a functional homolog of NSR1. We propose that gar2 helps the assembly of pre-ribosomal particles containing 18S rRNA. Images PMID:7596817

  14. Species-specific repeat units in the intergenic spacer of the ribosomal RNA cistron of Anopheles aquasalis Curry.

    PubMed

    Perera, O P; Cockburn, A F; Mitchell, S E; Conn, J; Seawright, J A

    1998-11-01

    A genomic DNA library of Anopheles aquasalis Curry was screened for clones that hybridized more intensely to DNA from A. aquasalis than to DNA from A. benarrochi Gabaldon, Cova Garcia, and Lopez, A. konderi Galvao and Damasceno, A. nuneztovari Gabaldon cytotypes A, B, and C, A. oswaldoi (Peryassu), A. rangeli Gabaldon, Cova Garcia, and Lopez, or A. trinkae Faran. Two specific clones (2.5 kilobasepairs [kbp] and 3.0 kbp) from A. aquasalis were isolated. Both A. aquasalis-specific clones were from the intergenic spacer region of the ribosomal RNA (rRNA) cistron. Upon digestion with Rsa I, a 900-bp fragment from the clone AA-1 hybridized specifically to A. aquasalis DNA. Analysis of the DNA sequence of this fragment revealed four tandemly repeated 36-bp units. Three of these repeat units were identical, and the fourth was 94% identical to the others. The DNA sequence of a highly conserved region of these repeats was used to synthesize an oligonucleotide probe specific to A. aquasalis. PMID:9840580

  15. An overview of the secondary structure of the V4 region of eukaryotic small-subunit ribosomal RNA.

    PubMed Central

    Nickrent, D L; Sargent, M L

    1991-01-01

    The V4 region of the small subunit (18S) ribosomal RNA was examined in 72 different sequences representing a broad sample eukaryotic diversity. This domain is the most variable region of the 18S rRNA molecule and ranges in length from ca. 230 to over 500 bases. Based upon comparative analysis, secondary structural models were constructed for all sequences and the resulting generalized model shows that most organisms possess seven helices for this region. The protists and two insects show from one to as many as four helices in addition to the above seven. In this report, we summarize secondary structure information presented elsewhere for the V4 region, describe the general features for helical and apical regions, and identify signature sequences useful in helix identification. Our model generally agrees with other current concepts; however, we propose modifications or alternative structures for the start of the V4 region, the large protist inserts, and the sector that may possibly contain a pseudoknot. PMID:2014163

  16. Accuracy of initial codon selection by aminoacyl-tRNAs on the mRNA-programmed bacterial ribosome

    PubMed Central

    Zhang, Jingji; Ieong, Ka-Weng; Johansson, Magnus; Ehrenberg, Måns

    2015-01-01

    We used a cell-free system with pure Escherichia coli components to study initial codon selection of aminoacyl-tRNAs in ternary complex with elongation factor Tu and GTP on messenger RNA-programmed ribosomes. We took advantage of the universal rate-accuracy trade-off for all enzymatic selections to determine how the efficiency of initial codon readings decreased linearly toward zero as the accuracy of discrimination against near-cognate and wobble codon readings increased toward the maximal asymptote, the d value. We report data on the rate-accuracy variation for 7 cognate, 7 wobble, and 56 near-cognate codon readings comprising about 15% of the genetic code. Their d values varied about 400-fold in the 200–80,000 range depending on type of mismatch, mismatch position in the codon, and tRNA isoacceptor type. We identified error hot spots (d = 200) for U:G misreading in second and U:U or G:A misreading in third codon position by His-tRNAHis and, as also seen in vivo, Glu-tRNAGlu. We suggest that the proofreading mechanism has evolved to attenuate error hot spots in initial selection such as those found here. PMID:26195797

  17. Preparative-scale isolation and purification of procaryotic and eucaryotic ribosomal 5 S RNA: Bacillus subtilis, Neurospora crassa, and wheat germ.

    PubMed

    Li, S J; Chang, L H; Chen, S; Marshall, A G

    1984-05-01

    Ribosomal 5 S RNA from three different organisms has been isolated in high yield and purity. Without prior isolation of ribosomes, a presoak in buffer followed by phenol extraction, DE-32 ion-exchange chromatography, and Sephadex G-75 gel-permeation chromatography yields at least 5-10 mg of electrophoretically homogeneous 5 S RNA from 100 g of cells. Ribonuclease activity is eliminated by various combinations of low temperature, sodium dodecyl sulfate, phenol, and bentonite. High-molecular-weight contaminants are suppressed by either 65 degrees C heat treatment or lowered sodium dodecyl sulfate concentration. For the eucaryotes, 5.8 S RNA contamination is reduced either by low temperature in the initial solubilization or by postponing 65 degrees C heat treatment until after the phenol extraction step. PMID:6204554

  18. Use of molecular beacons to probe for messenger RNA release from ribosomes during 5'-translational blockage by consecutive low-usage codons in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Gao, Wenwu; Tyagi, Sanjay; Kramer, Fred R.; Goldman, Emanuel

    2000-03-01

    In `5'-translational blockage,' significantly reduced yields of proteins are synthesized in Escherichia coli when consecutive low-usage codons are inserted near translation starts of messages (with reduced or no effect when these same codons are inserted downstream). We tested the hypothesis that ribosomes encountering these low-usage codons prematurely release the mRNA. RNA from polysome gradients was fractionated into pools of polysomes, monosomes and ribosomes-free. New hybridization probes, called `molecular beacons,' and standard slot-blots, were used to detect test messages containing either consecutive low-usage AGG (arginine) or synonymous high-usage CGU insertions near the 5' end. The results show an approximately twofold increase in the ratio of free to bound mRNA when the low-usage codons were present compared to high-usage codons. In contrast, there was no difference in the ratio of free to bound mRNA when consecutive low-usage CUA or high-usage CUG (leucine) codons were inserted, or when the arginine codons were inserted near the 3' end. These data indicate that at least some mRNA is released from ribosomes during 5'-translational blockage by arginine but not leucine codons, and they support proposals that premature termination of translation can occur in some conditions in vivo in the absence of a stop codon.

  19. An active role for the ribosome in determining the fate of oxidized mRNA.

    PubMed

    Simms, Carrie L; Hudson, Benjamin H; Mosior, John W; Rangwala, Ali S; Zaher, Hani S

    2014-11-20

    Chemical damage to RNA affects its functional properties and thus may pose a significant hurdle to the translational apparatus; however, the effects of damaged mRNA on the speed and accuracy of the decoding process and their interplay with quality-control processes are not known. Here, we systematically explore the effects of oxidative damage on the decoding process using a well-defined bacterial in vitro translation system. We find that the oxidative lesion 8-oxoguanosine (8-oxoG) reduces the rate of peptide-bond formation by more than three orders of magnitude independent of its position within the codon. Interestingly, 8-oxoG had little effect on the fidelity of the selection process, suggesting that the modification stalls the translational machinery. Consistent with these findings, 8-oxoG mRNAs were observed to accumulate and associate with polyribosomes in yeast strains in which no-go decay is compromised. Our data provide compelling evidence that mRNA-surveillance mechanisms have evolved to cope with damaged mRNA. PMID:25456128

  20. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    SciTech Connect

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B.

    2011-07-15

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Angstrom-Sign resolution.

  1. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    NASA Astrophysics Data System (ADS)

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B.

    2011-07-01

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Å resolution.

  2. Binding of Neomycin-Class Aminoglycoside Antibiotics to Mutant Ribosomes with Alterations in the A Site of 16S rRNA

    PubMed Central

    Hobbie, Sven N.; Pfister, Peter; Bruell, Christian; Sander, Peter; François, Boris; Westhof, Eric; Böttger, Erik C.

    2006-01-01

    Aminoglycoside antibiotics that bind to the aminoacyl-tRNA site (A site) of the ribosome are composed of a common neamine core in which a glycopyranosyl ring is attached to position 4 of a 2-deoxystreptamine moiety. The core is further substituted by one (ribostamycin), two (neomycin and paromomycin), or three (lividomycin A) additional sugars attached to position 5 of the 2-deoxystreptamine. To study the role of rings III, IV, and V in aminoglycoside binding, we used isogenic Mycobacterium smegmatis ΔrrnB mutants carrying homogeneous populations of mutant ribosomes with alterations in the 16S rRNA A site. MICs were determined to investigate drug-ribosome interactions, and the results were compared with that of the previously published crystal structure of paromomycin bound to the ribosomal A site. Our analysis demonstrates that the stacking interaction between ring I and G1491 is largely sequence independent, that rings III and IV each increase the strength of drug binding to the ribosome, that ring IV of the 6′-NH3+ aminoglycosides compensates for loss of interactions between ring II and U1495 and between ring III and G1491, that the aminoglycosides rely on pseudo-base pairing between ring I and A1408 for binding independently of the number of sugar rings attached to the neamine core, that addition of ring V to the 6′-OH 4,5-aminoglycoside paromomycin does not alter the mode of binding, and that alteration of the U1406 · U1495 wobble base pair to the Watson-Crick interaction pair 1406C-1495G yields ribosomal drug susceptibilities to 4,5-aminoglycosides comparable to those seen with the wild-type A site. PMID:16569869

  3. New Hosts of Simplicimonas similis and Trichomitus batrachorum Identified by 18S Ribosomal RNA Gene Sequences

    PubMed Central

    Dimasuay, Kris Genelyn B.; Lavilla, Orlie John Y.; Rivera, Windell L.

    2013-01-01

    Trichomonads are obligate anaerobes generally found in the digestive and genitourinary tract of domestic animals. In this study, four trichomonad isolates were obtained from carabao, dog, and pig hosts using rectal swab. Genomic DNA was extracted using Chelex method and the 18S rRNA gene was successfully amplified through novel sets of primers and undergone DNA sequencing. Aligned isolate sequences together with retrieved 18S rRNA gene sequences of known trichomonads were utilized to generate phylogenetic trees using maximum likelihood and neighbor-joining analyses. Two isolates from carabao were identified as Simplicimonas similis while each isolate from dog and pig was identified as Pentatrichomonas hominis and Trichomitus batrachorum, respectively. This is the first report of S. similis in carabao and the identification of T. batrachorum in pig using 18S rRNA gene sequence analysis. The generated phylogenetic tree yielded three distinct groups mostly with relatively moderate to high bootstrap support and in agreement with the most recent classification. Pathogenic potential of the trichomonads in these hosts still needs further investigation. PMID:23936631

  4. Guanine nucleotide depletion inhibits pre-ribosomal RNA synthesis and causes nucleolar disruption.

    PubMed

    Huang, Min; Ji, Yanshan; Itahana, Koji; Zhang, Yanping; Mitchell, Beverly

    2008-01-01

    Inosine monophosphate dehydrogenase (IMPDH) is a pivotal enzyme in the de novo pathway of guanine nucleotide biosynthesis. Inhibitors of this enzyme decrease intracellular guanine nucleotide levels by 50-80% and have potential as anti-neoplastic agents. Both mycophenolic acid (MPA) and AVN-944 are highly specific inhibitors of IMPDH that cause cell cycle arrest or apoptosis in lymphocytes and leukemic cell lines. We have examined the mechanisms by which these two agents cause cytotoxicity. Both MPA and AVN-944 inhibit the growth of K562 cells, and induce apoptosis in Raji B and CCRF-CEM T cells. Both compounds strikingly inhibit RNA synthesis within 2 h of exposure. Depletion of guanine nucleotides by MPA and AVN-944 also causes an early and near-complete reduction in levels of the 45S precursor rRNA synthesis and the concomitant translocation of nucleolar proteins including nucleolin, nucleophosmin, and nucleostemin from the nucleolus to the nucleoplasm. This efflux correlates temporally with the sustained induction of p53 in cell lines with wild-type p53. We conclude that inhibition of IMPDH causes a primary reduction in rRNA synthesis and secondary nucleolar disruption and efflux of nucleolar proteins that most likely mediate cell cycle arrest or apoptosis. The ability of AVN-944 to induce apoptosis in a number of leukemic cell lines supports its potential utility in the treatment of hematologic malignancies. PMID:17462731

  5. Mutations within the LINC-HELLP non-coding RNA differentially bind ribosomal and RNA splicing complexes and negatively affect trophoblast differentiation.

    PubMed

    van Dijk, Marie; Visser, Allerdien; Buabeng, Kwadwo M L; Poutsma, Ankie; van der Schors, Roel C; Oudejans, Cees B M

    2015-10-01

    LINC-HELLP, showing chromosomal linkage with the pregnancy-specific HELLP syndrome in Dutch families, reduces differentiation from a proliferative to an invasive phenotype of first-trimester extravillous trophoblasts. Here we show that mutations in LINC-HELLP identified in HELLP families negatively affect this trophoblast differentiation either by inducing proliferation rate or by causing cell cycle exit as shown by a decrease in both proliferation and invasion. As LincRNAs predominantly function through interactions with proteins, we identified the directly interacting proteins using chromatin isolation by RNA purification followed by protein mass spectrometry. We found 22 proteins predominantly clustering in two functional networks, i.e. RNA splicing and the ribosome. YBX1, PCBP1, PCBP2, RPS6 and RPL7 were validated, and binding to these proteins was influenced by the HELLP mutations carried. Finally, we show that the LINC-HELLP transcript levels are significantly upregulated in plasma of women in their first trimester of pregnancy compared with non-pregnant women, whereas this upregulation seems absent in a pilot set of patients later developing pregnancy complications, indicative of its functional significance in vivo. PMID:26173455

  6. Paradigms of ribosome synthesis: Lessons learned from ribosomal proteins

    PubMed Central

    Gamalinda, Michael; Woolford, John L

    2015-01-01

    The proteome in all cells is manufactured via the intricate process of translation by multimolecular factories called ribosomes. Nevertheless, these ribonucleoprotein particles, the largest of their kind, also have an elaborate assembly line of their own. Groundbreaking discoveries that bacterial ribosomal subunits can be self-assembled in vitro jumpstarted studies on how ribosomes are constructed. Until recently, ribosome assembly has been investigated almost entirely in vitro with bacterial small subunits under equilibrium conditions. In light of high-resolution ribosome structures and a more sophisticated toolkit, the past decade has been defined by a burst of kinetic studies in vitro and, importantly, also a shift to examining ribosome maturation in living cells, especially in eukaryotes. In this review, we summarize the principles governing ribosome assembly that emerged from studies focusing on ribosomal proteins and their interactions with rRNA. Understanding these paradigms has taken center stage, given the linkage between anomalous ribosome biogenesis and proliferative disorders. PMID:26779413

  7. Ribosome shunting in the cauliflower mosaic virus 35S RNA leader is a special case of reinitiation of translation functioning in plant and animal systems

    PubMed Central

    Ryabova, Lyubov A.; Hohn, Thomas

    2000-01-01

    The shunt model predicts that small ORFs (sORFs) within the cauliflower mosaic virus (CaMV) 35S RNA leader and downstream ORF VII are translated by different mechanisms, that is, scanning–reinitiation and shunting, respectively. Wheat germ extract (WGE) and rabbit reticulocyte lysate (RRL) in vitro translation systems were used to discriminate between these two processes and to study the mechanism of ribosomal shunt. In both systems, expression downstream of the leader occurred via ribosomal shunt under the control of a stable stem and a small ORF preceding it. Shunting ribosomes were also able to initiate quite efficiently at non-AUG start codons just downstream of the shunt landing site in WGE but not in RRL. The short sORF MAGDIS from the mammalian AdoMetDC RNA, which conditionally suppresses reinitiation at a downstream ORF, prevented shunting if placed at the position of sORF A, the 5′-proximal ORF of the CaMV leader. We have demonstrated directly that sORF A is translated and that proper termination of translation at the 5′-proximal ORF is absolutely required for both shunting and linear ribosome migration. These findings strongly indicate that shunting is a special case of reinitiation. PMID:10766738

  8. Microsporidian Encephalitozoon cuniculi, a unicellular eukaryote with an unusual chromosomal dispersion of ribosomal genes and a LSU rRNA reduced to the universal core.

    PubMed Central

    Peyretaillade, E; Biderre, C; Peyret, P; Duffieux, F; Méténier, G; Gouy, M; Michot, B; Vivarès, C P

    1998-01-01

    Microsporidia are eukaryotic parasites lacking mitochondria, the ribosomes of which present prokaryote-like features. In order to better understand the structural evolution of rRNA molecules in microsporidia, the 5S and rDNA genes were investigated in Encephalitozoon cuniculi . The genes are not in close proximity. Non-tandemly arranged rDNA units are on every one of the 11 chromosomes. Such a dispersion is also shown in two other Encephalitozoon species. Sequencing of the 5S rRNA coding region reveals a 120 nt long RNA which folds according to the eukaryotic consensus structural shape. In contrast, the LSU rRNA molecule is greatly reduced in length (2487 nt). This dramatic shortening is essentially due to truncation of divergent domains, most of them being removed. Most variable stems of the conserved core are also deleted, reducing the LSU rRNA to only those structural features preserved in all living cells. This suggests that the E.cuniculi LSU rRNA performs only the basic mechanisms of translation. LSU rRNA phylogenetic analysis with the BASEML program favours a relatively recent origin of the fast evolving microsporidian lineage. Therefore, the prokaryote-like ribosomal features, such as the absence of ITS2, may be derived rather than primitive characters. PMID:9671812

  9. Phylogenetic position of the genus Perkinsus (Protista, Apicomplexa) based on small subunit ribosomal RNA.

    PubMed

    Goggin, C L; Barker, S C

    1993-07-01

    Parasites of the genus Perkinsus destroy marine molluscs worldwide. Their phylogenetic position within the kingdom Protista is controversial. Nucleotide sequence data (1792 bp) from the small subunit rRNA gene of Perkinsus sp. from Anadara trapezia (Mollusca: Bivalvia) from Moreton Bay, Queensland, was used to examine the phylogenetic affinities of this enigmatic genus. These data were aligned with nucleotide sequences from 6 apicomplexans, 3 ciliates, 3 flagellates, a dinoflagellate, 3 fungi, maize and human. Phylogenetic trees were constructed after analysis with maximum parsimony and distance matrix methods. Our analyses indicate that Perkinsus is phylogenetically closer to dinoflagellates and to coccidean and piroplasm apicomplexans than to fungi or flagellates. PMID:8366895

  10. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994.

    PubMed Central

    Gutell, R R

    1994-01-01

    A collection of diverse 16S and 16S-like rRNA secondary structure diagrams are available. This set of rRNAs contains representative structures from all of the major phylogenetic groupings--Archaea, (eu)Bacteria, and the nucleus, mitochondrion, and chloroplast of Eucarya. Within this broad phylogenetic sampling are examples of the major forms of structural diversity currently known for this class of rRNAs. These structure diagrams are available online through our computer-network WWW server and anonymous ftp, as well as from the author in hardcopy format. PMID:7524024

  11. Beyond the Ribosome: Extra-translational Functions of tRNA Fragments

    PubMed Central

    Diebel, Kevin W.; Zhou, Kun; Clarke, Aaron B.; Bemis, Lynne T.

    2016-01-01

    High-throughput sequencing studies of small RNAs reveal a complex milieu of noncoding RNAs in biological samples. Early data analysis was often limited to microRNAs due to their regulatory nature and potential as biomarkers; however, many more classes of noncoding RNAs are now being recognized. A class of fragments initially excluded from analysis were those derived from transfer RNAs (tRNAs) because they were thought to be degradation products. More recently, critical cellular function has been attributed to tRNA fragments (tRFs), and their conservation across all domains of life has propelled them into an emerging area of scientific study. The biogenesis of tRFs is currently being elucidated, and initial studies show that a diverse array of tRFs are generated from all parts of a tRNA molecule. The goal of this review was to present what is currently known about tRFs and their potential as biomarkers for the earlier detection of disease. PMID:26843810

  12. Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome.

    PubMed

    Anda, Mizue; Ohtsubo, Yoshiyuki; Okubo, Takashi; Sugawara, Masayuki; Nagata, Yuji; Tsuda, Masataka; Minamisawa, Kiwamu; Mitsui, Hisayuki

    2015-11-17

    rRNA is essential for life because of its functional importance in protein synthesis. The rRNA (rrn) operon encoding 16S, 23S, and 5S rRNAs is located on the "main" chromosome in all bacteria documented to date and is frequently used as a marker of chromosomes. Here, our genome analysis of a plant-associated alphaproteobacterium, Aureimonas sp. AU20, indicates that this strain has its sole rrn operon on a small (9.4 kb), high-copy-number replicon. We designated this unusual replicon carrying the rrn operon on the background of an rrn-lacking chromosome (RLC) as the rrn-plasmid. Four of 12 strains close to AU20 also had this RLC/rrn-plasmid organization. Phylogenetic analysis showed that those strains having the RLC/rrn-plasmid organization represented one clade within the genus Aureimonas. Our finding introduces a previously unaddressed viewpoint into studies of genetics, genomics, and evolution in microbiology and biology in general. PMID:26534993

  13. Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing.

    PubMed

    Naveed, Muhammad; Mubeen, Samavia; Khan, SamiUllah; Ahmed, Iftikhar; Khalid, Nauman; Suleria, Hafiz Ansar Rasul; Bano, Asghari; Mumtaz, Abdul Samad

    2014-01-01

    In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh) gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ). Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization. PMID:25477935

  14. Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing

    PubMed Central

    Naveed, Muhammad; Mubeen, Samavia; khan, SamiUllah; Ahmed, Iftikhar; Khalid, Nauman; Suleria, Hafiz Ansar Rasul; Bano, Asghari; Mumtaz, Abdul Samad

    2014-01-01

    In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh) gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ). Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization. PMID:25477935

  15. Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome

    PubMed Central

    Anda, Mizue; Ohtsubo, Yoshiyuki; Okubo, Takashi; Sugawara, Masayuki; Nagata, Yuji; Tsuda, Masataka; Minamisawa, Kiwamu; Mitsui, Hisayuki

    2015-01-01

    rRNA is essential for life because of its functional importance in protein synthesis. The rRNA (rrn) operon encoding 16S, 23S, and 5S rRNAs is located on the “main” chromosome in all bacteria documented to date and is frequently used as a marker of chromosomes. Here, our genome analysis of a plant-associated alphaproteobacterium, Aureimonas sp. AU20, indicates that this strain has its sole rrn operon on a small (9.4 kb), high-copy-number replicon. We designated this unusual replicon carrying the rrn operon on the background of an rrn-lacking chromosome (RLC) as the rrn-plasmid. Four of 12 strains close to AU20 also had this RLC/rrn-plasmid organization. Phylogenetic analysis showed that those strains having the RLC/rrn-plasmid organization represented one clade within the genus Aureimonas. Our finding introduces a previously unaddressed viewpoint into studies of genetics, genomics, and evolution in microbiology and biology in general. PMID:26534993

  16. Prevalent Ciliate Symbiosis on Copepods: High Genetic Diversity and Wide Distribution Detected Using Small Subunit Ribosomal RNA Gene

    PubMed Central

    Guo, Zhiling; Liu, Sheng; Hu, Simin; Li, Tao; Huang, Yousong; Liu, Guangxing; Zhang, Huan; Lin, Senjie

    2012-01-01

    Toward understanding the genetic diversity and distribution of copepod-associated symbiotic ciliates and the evolutionary relationships with their hosts in the marine environment, we developed a small subunit ribosomal RNA gene (18S rDNA)-based molecular method and investigated the genetic diversity and genotype distribution of the symbiotic ciliates on copepods. Of the 10 copepod species representing six families collected from six locations of Pacific and Atlantic Oceans, 9 were found to harbor ciliate symbionts. Phylogenetic analysis of the 391 ciliate 18S rDNA sequences obtained revealed seven groups (ribogroups), six (containing 99% of all the sequences) belonging to subclass Apostomatida, the other clustered with peritrich ciliate Vorticella gracilis. Among the Apostomatida groups, Group III were essentially identical to Vampyrophrya pelagica, and the other five groups represented the undocumented ciliates that were close to Vampyrophrya/Gymnodinioides/Hyalophysa. Group VI ciliates were found in all copepod species but one (Calanus sinicus), and were most abundant among all ciliate sequences obtained, indicating that they are the dominant symbiotic ciliates universally associated with copepods. In contrast, some ciliate sequences were found only in some of the copepods examined, suggesting the host selectivity and geographic differentiation of ciliates, which requires further verification by more extensive sampling. Our results reveal the wide occurrence and high genetic diversity of symbiotic ciliates on marin