Science.gov

Sample records for 275i major alkaloids

  1. Indolizidine 239Q and Quinolizidine 275I. Major alkaloids in two Argentinian bufonid toads (Melanophryniscus)

    PubMed Central

    Daly, John W.; Garraffo, H. Martin; Spande, Thomas F.; Yeh, Herman J. C.; Peltzer, Paola M.; Cacivio, Pedro; Baldo, J. Diego; Faivovich, Julián

    2008-01-01

    Alkaloid profiles in skin of poison frogs/toads (Dendrobatidae, Mantellidae, Bufonidae, and Myobatrachidae) are highly dependent on diet and hence on the nature of habitat. Extracts of the two species of toads (Melanophryniscus klappenbachi and M. cupreuscapularis) from similar habitats in the Corrientes/Chaco Provinces of Argentina have similar profiles of alkaloids, which differ considerably from profiles from other Melanophryniscus species from Brazil, Uruguay and Argentina. Structures of two major alkaloids 239Q (1) and 275I (2) were determined by mass, FTIR, and NMR spectral analysis as 5Z,9Z-3-(1-hydroxybutyl)-5-propylindolizidine and 6Z,10E-4,6-di(pent-4-enyl) quinolizidine, respectively. A third alkaloid, 249F (3), is postulated to be a homopumiliotoxin with an unprecedented conjugated exocyclic diene moiety. PMID:18848574

  2. Three New Pyridine Alkaloids from Vinca major Cultivated in Pakistan.

    PubMed

    Wei, Xin; Khan, Afsar; Song, Da; Dai, Zhi; Liu, Ya-Ping; Yu, Hao-Fei; Wang, Bei; Zhu, Pei-Feng; Ding, Cai-Feng; Zhao, Xu-Dong; Wang, Yi-Fen; Luo, Xiao-Dong

    2017-08-01

    Three new pyridine type alkaloids, (-)-vinmajpyridines A-C (1-3), along with two known alkaloids, have been isolated from the aerial parts of Vinca major cultivated in Pakistan. Their structures have been elucidated by means of NMR and HRESIMS spectroscopic data. The new alkaloids were evaluated for their cytotoxicity against glioma initiating cell lines (GITC-3(#) and GITC-18(#)), glioblastoma cell lines (U-87MG and T98G), and lung cancer cell line A-549, but none of them was active at 20 μg/mL concentration.

  3. Three new monoterpenoid indole alkaloids from Vinca major.

    PubMed

    Zhang, Zhi-Jun; Du, Ru-Nan; He, Juan; Wu, Xing-De; Li, Yan; Li, Rong-Tao; Zhao, Qin-Shi

    2016-01-01

    Three new monoterpenoid indole alkaloids, 19-hydroxyl-10-methoxy-19, 20-dihydrovinorine (1), 19-O-acetyl-10-methoxy-19, 20-dihydrovinorine (2), and 19, 21α-dihydroxyl-10-methoxy-19, 20-dihydrovinorine (3), along with five known analogues (4-8), were isolated from the whole plants of Vinca major. The new structures were elucidated by extensive NMR and MS analysis and comparison with known compounds. In addition, compounds 1-3 were evaluated for their cytotoxicities against five human cancer cell lines.

  4. Seasonal accumulation of major alkaloids in organs of pharmaceutical crop Narcissus Carlton.

    PubMed

    Lubbe, Andrea; Gude, Henk; Verpoorte, Robert; Choi, Young Hae

    2013-04-01

    Narcissus pseudonarcissus (L.) cv. Carlton is being cultivated as a main source of galanthamine from the bulbs. After galanthamine, haemanthamine and narciclasine are the next most abundant alkaloids in this cultivar. Both these compounds are promising chemical scaffolds for potential anticancer drugs. For further research and drug development, a reliable supply of these compounds will be needed. In this study a field experiment was conducted to investigate the levels of galanthamine, haemanthamine and narciclasine in plants of N. pseudonarcissus cv. Carlton. In a field experiment alkaloids in the bulbs, leaves and roots were analyzed by quantitative (1)H NMR to monitor the variations during the growing season. Major primary and secondary metabolites were identified in the various plant parts. Multivariate data analysis was performed on the (1)H NMR spectra to investigate how metabolites changed in the plant organs over time. The results show that the leaves have relatively high concentrations of the alkaloids before flowering. The bulbs had lower concentrations of the compounds of interest but would have a higher total yield of alkaloids due to bigger biomass. Narcissus pseudonarcissus cv. Carlton represents a good source of galanthamine, and can potentially be a source of the other major alkaloids depending on choice of organ and harvest time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. UPLC Separation and QTof–MS Identification of Major Alkaloids in Plumula Nelumbinis

    PubMed Central

    Lin, Zongtao; Yang, Ruinan; Guan, Zheng; Chen, Ailiang; Li, Wei

    2016-01-01

    Introduction As an essential medicine and tea source in many countries, Plumula Nelumbinis potentially exerts its major biological activities through its alkaloids. However, its activities are not fully understood due to the lack of studies on its chemical components. Objective To establish an Ultra Performance Liquid Chromatography–Diode-Array Detector (UPLC–DAD) method, combined with an Electrospray Ionization–Quadrupole Time-of-flight Mass Spectrometry (ESI–QTof MS), for the separation and identification of Plumula Nelumbinis alkaloids. Methods The eluant from an UPLC separation of an ethanol extract of Plumula Nelumbinis was directly infused into an ESI–QTof MS system. Both positive and negative ion modes of ESI with low and high Collision Energy (CE) were used to obtain sufficient MS information. Results 21 alkaloids were tentatively identified based on their chromatographic characteristics, UV spectra, exact mass, MS fragments, and literature reports. They consist of 6 bis-1-benzyltetrahydroisoquinoline, 11 benzyltetrahydroisoquinoline (containing 2 glycoalkaloids and 2 quaternary ammoniums), 2 aporphine, one proaporphine, and one indole alkaloids. Eleven were identified in Plumula Nelumbinis for the first time and 7 were firstly reported in Nelumbo nucifera Gaertn. Five compounds, namely norcoclaurine-4′-O-glucoside, norcoclaurine-6-O-glucoside, isolotusine, 6-demethyl-4′-methyl-N-methylcoclaurine and N-norisoliensinine, were characterized and proposed as new compounds. Conclusion The established UPLC–DAD–ESI–QTof–MS method is efficient for systematic identification of the alkaloids in Plumula Nelumbinis extract. PMID:24733684

  6. Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy.

    PubMed

    Desgagné-Penix, Isabel; Facchini, Peter J

    2012-10-01

    Papaverine, a major benzylisoquinoline alkaloid in opium poppy (Papaver somniferum), is used as a vasodilator and antispasmodic. Conversion of the initial intermediate (S)-norcoclaurine to papaverine involves 3'-hydroxylation, four O-methylations and dehydrogenation. However, our understanding of papaverine biosynthesis remains controversial more than a century after an initial scheme was proposed. In vitro assays and in vivo labeling studies have been insufficient to establish the sequence of conversions, the potential role of the intermediate (S)-reticuline, and the enzymes involved. We used virus-induced gene silencing in opium poppy to individually suppress the expression of six genes with putative roles in papaverine biosynthesis. Suppression of the gene encoding coclaurine N-methyltransferase dramatically increased papaverine levels at the expense of N-methylated alkaloids, indicating that the main biosynthetic route to papaverine proceeds via N-desmethylated compounds rather than through (S)-reticuline. Suppression of genes encoding (S)-3'-hydroxy-N-methylcoclaurine 4-O-methyltransferase and norreticuline 7-O-methyltransferase, which accept certain N-desmethylated alkaloids, reduced papaverine content. In contrast, suppression of genes encoding N-methylcoclaurine 3'-hydroxylase or reticuline 7-O-methyltransferase, which are specific for N-methylated alkaloids, did not affect papaverine levels. Suppression of norcoclaurine 6-O-methyltransferase transcript levels significantly suppressed total alkaloid accumulation, implicating (S)-coclaurine as a key branch-point intermediate. The differential detection of N-desmethylated compounds in response to suppression of specific genes highlights the primary route to papaverine.

  7. Vinca Alkaloids

    PubMed Central

    Moudi, Maryam; Go, Rusea; Yien, Christina Yong Seok; Nazre, Mohd.

    2013-01-01

    Vinca alkaloids are a subset of drugs obtained from the Madagascar periwinkle plant. They are naturally extracted from the pink periwinkle plant, Catharanthus roseus G. Don and have a hypoglycemic as well as cytotoxic effects. They have been used to treat diabetes, high blood pressure and have been used as disinfectants. The vinca alkaloids are also important for being cancer fighters. There are four major vinca alkaloids in clinical use: Vinblastine (VBL), vinorelbine (VRL), vincristine (VCR) and vindesine (VDS). VCR, VBL and VRL have been approved for use in the United States. Vinflunine is also a new synthetic vinca alkaloid, which has been approved in Europe for the treatment of second-line transitional cell carcinoma of the urothelium is being developed for other malignancies. Vinca alkaloids are the second-most-used class of cancer drugs and will stay among the original cancer therapies. Different researches and studies for new vinca alkaloid applications will be carried out in this regard. PMID:24404355

  8. Ultra-performance LC separation and quadrupole time-of-flight MS identification of major alkaloids in Plumula Nelumbinis.

    PubMed

    Lin, Zongtao; Yang, Ruinan; Guan, Zheng; Chen, Ailiang; Li, Wei

    2014-01-01

    As an essential medicine and tea source in many countries, Plumula Nelumbinis potentially exerts its major biological activities through its alkaloids. However, the activities of Plumula Nelumbinis are not fully understood due to the lack of studies on its chemical components. To establish an ultra-performance liquid chromatography combined with diode-array detector (UPLC/DAD) method, coupled to an electrospray ionisation with quadrupole time-of-flight mass spectrometry (ESI/QTOF/MS) method, for the separation and identification of Plumula Nelumbinis alkaloids. The eluant from an UPLC separation of an ethanol extract of Plumula Nelumbinis was directly infused into an ESI/QTOF/MS system. Both positive and negative ion modes of ESI with low and high collision energy (CE) were used to obtain sufficient MS information. Twenty-one alkaloids were tentatively identified based on their chromatographic characteristics, UV spectra, exact mass, MS fragments and literature reports. They consist of six bis-1-benzyltetrahydroisoquinoline, eleven benzyltetrahydroisoquinoline (including two glycoalkaloids and two quaternary ammoniums), two aporphine, one proaporphine and one indole alkaloids. Eleven were identified in Plumula Nelumbinis for the first time and seven were first reported in Nelumbo nucifera Gaertn. Five compounds, namely norcoclaurine-4'-O-glucoside, norcoclaurine-6-O-glucoside, isolotusine, 6-demethyl-4-demethylN-methylcoclaurine and N-norisoliensinine, were characterised and proposed as new compounds. The established UPLC/DAD - ESI/QTOF/MS method is efficient for systematic identification of the alkaloids in Plumula Nelumbinis extract. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Separation and enrichment of major quinolizidine type alkaloids from Sophora alopecuroides using macroporous resins.

    PubMed

    Yang, Jin; Zhang, Liyan; Zhu, Guihua; Li, Li

    2014-01-15

    Matrine (MT), oxymatrine (OM) and sophoridine (SP) are three bioactive alkaloids in Sophora alopecuroides. In the present study, the chromatographic characteristics of six widely used macroporous resins, namely NKA, NKA-9, HPD-100, HPD-722, HPD-750, and AB-8, respectively, towards the separation and enrichment of the three alkaloids from the aqueous extract of S. alopecuroides are critically evaluated. The results indicated that AB-8 resin offered the best absorption and desorption capacity and its adsorption data fitted best to the Freundlich isotherm. Dynamic adsorption and desorption experiments on packed columns of AB-8 resin have been investigated for optimization of chromatographic parameters. The adsorption of the alkaloids on the resin was best achieved by 5 bed volume (BV) of sample solution of pH 10 with a flow rate of 2BV/h. The desorption of the compounds from the resin was effectively completed by using 5BV of 80% ethanol in water at a flow rate of 2BV/h. After one run of adsorption and desorption, the contents of MT, OM, and SP were increased from 9.30, 8.39 and 9.84% to 22.22, 21.44 and 28.02%, the recovery were 69.4, 78.3 and 72.6%, respectively. This method would provide useful information to the industrial production of the alkaloids from S. alopecuroides. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. [Alkaloids of Pausinystalia macroceras].

    PubMed

    Leboef, M; Cavé, A; Mangeney, P; Bouquet, A

    1981-04-01

    A study of the alkaloidal content of trunk-barks of Pausinystalia macroceras (K. Schum.) Pierre, Rubiaceae, resulted in the isolation of six alkaloids, five of which are indole alkaloids that belong to the yohimbane and heteroyohimbane groups; among them, yohimbine was found in major amount. Moreover, the levorotatory isomer of calycanthine, a quinoline dimeric tryptophane derived base, has been isolated for the first time. The phytochemical significance of calycanthine and related alkaloids is discussed.

  11. Relationship between the endophyte embellisia spp. and the toxic alkaloid swainsonine in major locoweed species (Astragalus and Oxytropis)

    USDA-ARS?s Scientific Manuscript database

    Locoweeds (Astragalus and Oxytropis spp. which contain the toxic alkaloid swainsonine) cause widespread poisoning of livestock on western rangelands. There are 354 species of Astragalus and 22 species of Oxytropis in the US and Canada. Recently a fungal endophyte, Embellisia spp., was isolated fro...

  12. Rapid quantification of four major bioactive alkaloids in Corydalis decumbens (Thunb.) Pers. by pressurised liquid extraction combined with liquid chromatography-triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Shen, Yan; Han, Chao; Jiang, Yongxiang; Zhou, Xiujin; Zhu, Zhenou; Lei, Xinxiang

    2011-05-30

    A new method based on pressurised liquid extraction (PLE) followed by liquid chromatography-triple quadrupole linear ion trap mass spectrometry (LC-QTrap-MS) analysis has been developed for the identification and quantification of four major alkaloids in extracts of Corydalis decumbens (Thunb.) Pers. PLE extractions were performed using 90% ethanol; temperature was set at 100°C and pressure at 1500 psi. HPLC analysis was performed on a Waters XBridge™ C(18) column (150 mm × 2.1mm i.d., 3.5 μm) eluted by a mobile phase of acetonitrile and 0.2% acetic acid. Data acquisition was carried out in multiple reaction monitoring transitions (MRMs) mode, monitoring two MRM transitions to ensure an accurate identification of target compounds in the samples. Additional identification and confirmation of target compounds were performed using the enhanced product ion modus (EPI) of the linear ion trap. The novel LC-QTrap-MS platform offers the best sensitivity and specificity for characterization and quantitative determination of the four alkaloids in C. decumbens (Thunb.) Pers. and fulfils the quality criteria for routine laboratory application.

  13. Diterpenoid alkaloids.

    PubMed

    Wang, Feng-Peng; Chen, Qiao-Hong; Liu, Xiao-Yu

    2010-04-01

    The lasting attention that researchers have devoted to diterpenoid alkaloids is due to their various bioactivities and toxicities, structural complexity, and intriguing chemistry. From 1998 to the end of 2008, more than 300 new diterpenoid alkaloids were isolated from Nature. This review focuses on their structural relationships, and investigations into their chemical reactions, synthesis, and biological activities. A table that lists the names, plant sources, and structural types is given along with 363 references.

  14. Analysis of Ergot Alkaloids

    PubMed Central

    Crews, Colin

    2015-01-01

    The principles and application of established and newer methods for the quantitative and semi-quantitative determination of ergot alkaloids in food, feed, plant materials and animal tissues are reviewed. The techniques of sampling, extraction, clean-up, detection, quantification and validation are described. The major procedures for ergot alkaloid analysis comprise liquid chromatography with tandem mass spectrometry (LC-MS/MS) and liquid chromatography with fluorescence detection (LC-FLD). Other methods based on immunoassays are under development and variations of these and minor techniques are available for specific purposes. PMID:26046699

  15. Analysis of Ergot Alkaloids.

    PubMed

    Crews, Colin

    2015-06-03

    The principles and application of established and newer methods for the quantitative and semi-quantitative determination of ergot alkaloids in food, feed, plant materials and animal tissues are reviewed. The techniques of sampling, extraction, clean-up, detection, quantification and validation are described. The major procedures for ergot alkaloid analysis comprise liquid chromatography with tandem mass spectrometry (LC-MS/MS) and liquid chromatography with fluorescence detection (LC-FLD). Other methods based on immunoassays are under development and variations of these and minor techniques are available for specific purposes.

  16. Inhibition of Na(+),K(+)-ATPase by the extract of Stephania cephararantha HAYATA and bisbenzylisoquinoline alkaloid cycleanine, a major constituent.

    PubMed

    Satoh, Kanako; Nagai, Fumiko; Ono, Minoru; Aoki, Naoto

    2003-08-01

    The Stephania cephararantha HAYATA extract, and its constituent bisbenzylisoquinoline alkaloids, such as cycleanine, cepharanthine, isotetrandrine, berbamine, homoaromoline, and cepharanoline were studied for effects on Na(+),K(+)-ATPase activity. The S. cephararantha HAYATA extract inhibited Na(+),K(+)-ATPase activity with an apparent IC(50) value of 540 microg/mL. Cycleanine markedly inhibited Na(+),K(+)-ATPase activity with an IC(50) value of 6.2 x 10(-4)M. It slightly inhibited Mg(2+)-ATPase, H(+)-ATPase, and Ca(2+)-ATPase. No effects on alkaline and acid phosphatase activities were observed. The inhibition by isotetrandrine, homoaromoline, cepharanthine, and berbamine was less marked, and cepharanoline showed no effect. Five synthetic analogues of cepharanthine slightly inhibited the activity. The mechanism of inhibition by cycleanine on Na(+),K(+)-ATPase activity was examined in detail, and the following results were obtained in the overall reaction: (1) the mode of inhibition was noncompetitive with respect to ATP; (2) the degree of inhibition was decreased with a decrease of K(+) concentration; (3) it was not affected by Na(+) concentration; (4) the inhibition mechanism was different from that of ouabain. The activity of K(+)-dependent p-nitrophenyl phosphatase, a partial reaction of Na(+),K(+)-ATPase, did not appear to have been inhibited by cycleanine in the reaction mixture containing 15 mM K(+) (optimum condition). However, cycleanine increased the K(0.5) value for K(+) and reduced the K(i) values for Na(+) and ATP, in K(+)-dependent p-nitrophenyl phosphatase. Cycleanine might interact with the enzyme in Na.E(1)-P form and prevents the reaction step from Na.E(1)-P to E(2)-P.

  17. Genetic variation in alkaloid accumulation in leaves of Nicotiana *

    PubMed Central

    Sun, Bo; Zhang, Fen; Zhou, Guo-jun; Chu, Guo-hai; Huang, Fang-fang; Wang, Qiao-mei; Jin, Li-feng; Lin, Fu-cheng; Yang, Jun

    2013-01-01

    Alkaloids are plant secondary metabolites that are widely distributed in Nicotiana species and contribute greatly to the quality of tobacco leaves. Some alkaloids, such as nornicotine and myosmine, have adverse effects on human health. To reduce the content of harmful alkaloids in tobacco leaves through conventional breeding, a genetic study of the alkaloid variation among different genotypes is required. In this study, alkaloid profiles in leaves of five Nicotiana tabacum cultivars and Nicotiana tomentosiformis were investigated. Six alkaloids were identified from all six genotypes via gas chromatograph-mass spectrometry (GC-MS). Significant differences in alkaloid content were observed both among different leaf positions and among cultivars. The contents of nornicotine and myosmine were positively and significantly correlated (R 2=0.881), and were also separated from those of other alkaloids by clustering. Thus, the genotype plays a major role in alkaloid accumulation, indicating a high potential for manipulation of alkaloid content through traditional breeding. PMID:24302710

  18. Genetic variation in alkaloid accumulation in leaves of Nicotiana.

    PubMed

    Sun, Bo; Zhang, Fen; Zhou, Guo-jun; Chu, Guo-hai; Huang, Fang-fang; Wang, Qiao-mei; Jin, Li-feng; Lin, Fu-cheng; Yang, Jun

    2013-12-01

    Alkaloids are plant secondary metabolites that are widely distributed in Nicotiana species and contribute greatly to the quality of tobacco leaves. Some alkaloids, such as nornicotine and myosmine, have adverse effects on human health. To reduce the content of harmful alkaloids in tobacco leaves through conventional breeding, a genetic study of the alkaloid variation among different genotypes is required. In this study, alkaloid profiles in leaves of five Nicotiana tabacum cultivars and Nicotiana tomentosiformis were investigated. Six alkaloids were identified from all six genotypes via gas chromatograph-mass spectrometry (GC-MS). Significant differences in alkaloid content were observed both among different leaf positions and among cultivars. The contents of nornicotine and myosmine were positively and significantly correlated (R(2)=0.881), and were also separated from those of other alkaloids by clustering. Thus, the genotype plays a major role in alkaloid accumulation, indicating a high potential for manipulation of alkaloid content through traditional breeding.

  19. Effects of Chelidonium majus extracts and major alkaloids on hERG potassium channels and on dog cardiac action potential - a safety approach.

    PubMed

    Orvos, Péter; Virág, László; Tálosi, László; Hajdú, Zsuzsanna; Csupor, Dezső; Jedlinszki, Nikoletta; Szél, Tamás; Varró, András; Hohmann, Judit

    2015-01-01

    Chelidonium majus or greater celandine is spread throughout the world, and it is a very common and frequent component of modern phytotherapy. Although C. majus contains alkaloids with remarkable physiological effect, moreover, safety pharmacology properties of this plant are not widely clarified, medications prepared from this plant are often used internally. In our study the inhibitory effects of C. majus herb extracts and alkaloids on hERG potassium current as well as on cardiac action potential were investigated. Our data show that hydroalcoholic extracts of greater celandine and its alkaloids, especially berberine, chelidonine and sanguinarine have a significant hERG potassium channel blocking effect. These extracts and alkaloids also prolong the cardiac action potential in dog ventricular muscle. Therefore these compounds may consequently delay cardiac repolarization, which may result in the prolongation of the QT interval and increase the risk of potentially fatal ventricular arrhythmias. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kasım Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  1. Arecoline, a major alkaloid of areca nut, inhibits p53, represses DNA repair, and triggers DNA damage response in human epithelial cells.

    PubMed

    Tsai, Yi-Shan; Lee, Ka-Wo; Huang, Jau-Ling; Liu, Yu-Sen; Juo, Suh-Hang Hank; Kuo, Wen-Rei; Chang, Jan-Gowth; Lin, Chang-Shen; Jong, Yuh-Jyh

    2008-07-30

    The International Agency for Research on Cancer declared that areca nut was carcinogenic to human. Areca nut is the main component of betel quid (BQ), which is commonly consumed in Asia. Epidemiological studies have shown that BQ chewing is a predominant risk factor for oral and pharyngeal cancers. It has been known that areca nut is genotoxic to human epithelial cells. However, the molecular and cellular mechanisms underlying areca nut-associated genotoxicity are not fully understood. Here we showed that arecoline, a major alkaloid of areca nut, might contribute to oral carcinogenesis through inhibiting p53 and DNA repair. We found, on the biological aspect, that arecoline could induce gamma-H2AX phosphorylation, a sensitive DNA damage marker, in KB, HEp-2, and 293 cells, suggesting that DNA damages were elicited by arecoline. This phenomenon was supported by the observations of arecoline-induced hyperphosphorylation of ATM, Nbs1, Chk1/2, p53, and Cdc25C, as well as G2/M cell cycle arrest, indicating that a cellular DNA damage response was activated. To explore the possible mechanism accounting for arecoline-elicited DNA damages, we found that arecoline could inhibit p53 by its expression and transactivation function. As a result, the expression of p53-regulated p21(WAF1) and the p53-activated DNA repair were repressed by arecoline. Finally, we showed that p53 mRNA transcripts were frequently down-regulated in BQ-associated oral cancer, suggesting that arecoline-mediated p53 inhibition might play a role in BQ-associated tumorigenesis.

  2. Solid-phase extraction and reversed-phase high-performance liquid chromatography of the five major alkaloids in Narcissus confusus.

    PubMed

    López, Susana; Bastida, Jaume; Viladomat, Francesc; Codina, Carles

    2002-01-01

    A novel, fast and precise method, combining solid-phase extraction and reversed-phase high-performance liquid chromatography is described for the quantitative determination of five alkaloids (galanthamine, N-formylnorgalanthamine, haemanthamine, homolycorine and tazettine/pretazettine) from bulbs of wild Narcissus confusus, a high galanthamine-containing plant species growing in the Iberian Peninsula.

  3. Selectivity of major isoquinoline alkaloids from Chelidonium majus towards telomeric G-quadruplex: A study using a transition-FRET (t-FRET) assay.

    PubMed

    Noureini, Sakineh Kazemi; Esmaeili, Hosein; Abachi, Farzane; Khiali, Soraia; Islam, Barira; Kuta, Martyna; Saboury, Ali A; Hoffmann, Marcin; Sponer, Jiri; Parkinson, Gary; Haider, Shozeb

    2017-08-01

    Natural bioproducts are invaluable resources in drug discovery. Isoquinoline alkaloids of Chelidonium majus constitute a structurally diverse family of natural products that are of great interest, one of them being their selectivity for human telomeric G-quadruplex structure and telomerase inhibition. The study focuses on the mechanism of telomerase inhibition by stabilization of telomeric G-quadruplex structures by berberine, chelerythrine, chelidonine, sanguinarine and papaverine. Telomerase activity and mRNA levels of hTERT were estimated using quantitative telomere repeat amplification protocol (q-TRAP) and qPCR, in MCF-7 cells treated with different groups of alkaloids. The selectivity of the main isoquinoline alkaloids of Chelidonium majus towards telomeric G-quadruplex forming sequences were explored using a sensitive modified thermal FRET-melting measurement in the presence of the complementary oligonucleotide CT22. We assessed and monitored G-quadruplex topologies using circular dichroism (CD) methods, and compared spectra to previously well-characterized motifs, either alone or in the presence of the alkaloids. Molecular modeling was performed to rationalize ligand binding to the G-quadruplex structure. The results highlight strong inhibitory effects of chelerythrine, sanguinarine and berberine on telomerase activity, most likely through substrate sequestration. These isoquinoline alkaloids interacted strongly with telomeric sequence G-quadruplex. In comparison, chelidonine and papaverine had no significant interaction with the telomeric quadruplex, while they strongly inhibited telomerase at transcription level of hTERT. Altogether, all of the studied alkaloids showed various levels and mechanisms of telomerase inhibition. We report on a comparative study of anti-telomerase activity of the isoquinoline alkaloids of Chelidonium majus. Chelerythrine was most effective in inhibiting telomerase activity by substrate sequesteration through G

  4. Alkaloids from Delphinium pentagynum.

    PubMed

    Díaz, Jesús G; Ruiz, Juan García; Herz, Werner

    2004-07-01

    Aerial parts of a collection of Delphinium pentagynum Lam. from Niebla, Southern Spain, furnished one diterpene alkaloid, 2-dehydrodeacetylheterophylloidine, two norditerpene alkaloids, 14-demethyl-14-isobutyrylanhweidelphinine and 14-demethyl-14-acetylanhweidelphinine, the known alkaloids 14-deacetylnudicauline, methyllycaconitine, 14-deacetyl-14-isobutyrylnudicauline, 14-acetylbrowniine, browniine, delcosine, lycoctonine, 18-methoxygadesine, neoline, karakoline and the aporphine alkaloid magnoflorine. Structures of the alkaloids were established by MS, 1D and 2-D NMR techniques.

  5. Ergot and Its Alkaloids

    PubMed Central

    Schiff, Paul L.

    2006-01-01

    This manuscript reviews the history and pharmacognosy of ergot, and describes the isolation/preparation, chemistry, pharmacodynamics, and pharmacotherapeutics of the major ergot alkaloids and their derivatives. A brief discussion of the hallucinogenic properties of lysergic acid diethylamide is also featured. An abbreviated form of the material found in this paper is presented in a 4-hour didactic format to third-professional year PharmD students as part of their study of vascular migraine headaches, Parkinson's disease, and naturally occurring hallucinogens/hallucinogen derivatives in the modular course offering Neurology/Psychiatry. PMID:17149427

  6. Exploiting plant alkaloids.

    PubMed

    Schläger, Sabrina; Dräger, Birgit

    2016-02-01

    Alkaloid-containing plants have been used for medicine since ancient times. Modern pharmaceuticals still rely on alkaloid extraction from plants, some of which grow slowly, are difficult to cultivate and produce low alkaloid yields. Microbial cells as alternative alkaloid production systems are emerging. Before industrial application of genetically engineered bacteria and yeasts, several steps have to be taken. Original alkaloid-forming enzymes have to be elucidated from plants. Their activity in the heterologous host cells, however, may be low. The exchange of individual plant enzymes for alternative catalysts with better performance and optimal fermentation parameters appear promising. The overall aim is enhancement and stabilization of alkaloid yields from microbes in order to replace the tedious extraction of low alkaloid concentrations from intact plants.

  7. Amaryllidaceae and Sceletium alkaloids.

    PubMed

    Jin, Zhong

    2009-03-01

    Alkaloids from the plants of Amaryllidaceae family consists of an unique class of nitrogen-containing compounds showing diverse and significant biological activities, including anticancer and acetylcholinesterase (AChE) inhibitory activities. This review summarizes the research into the isolation, structure elucidation, biological activity, and chemical aspects of the Amaryllidaceae alkaloids over the last two years. In addition, structurally closely related Sceletium alkaloids are also discussed.

  8. Arecoline, a major alkaloid of the areca nut, causes neurotoxicity through enhancement of oxidative stress and suppression of the antioxidant protective system.

    PubMed

    Shih, Yu-Tzu; Chen, Po See; Wu, Chi-Han; Tseng, Yu-Ting; Wu, Yang-Chang; Lo, Yi-Ching

    2010-11-30

    Arecoline, an areca nut alkaloid, has been noted for its potential cognition-enhancing effects in patients with Alzheimer dementia. However, it has been confirmed that areca nut use is associated with oral and pharyngeal cancers. In addition, arecoline is genotoxic and cytotoxic both in vitro and in vivo through oxidative stress-dependent mechanisms. The aim of this study was to investigate whether arecoline would interfere with the antioxidant defense system and induce cytotoxicity in rat primary cortical neurons. Results indicate that arecoline (50-200 μM) induces neuronal cell death, and catalase, NADPH oxidase inhibitors (diphenyleneiodonium chloride and apocynin), and a caspase inhibitor (z-VAD-fmk) can prevent arecoline-induced cell death. Furthermore, arecoline increased reactive oxygen species production and upregulated protein expression and mRNA levels of NADPH oxidase 2, which could be attenuated by catalase and NADPH oxidase inhibitors. Arecoline also attenuated neuronal antioxidant defense by decreasing glutathione (GSH) level and superoxide dismutase activity. In addition, arecoline enhanced the expression of proapoptotic proteins (cytochrome c, Bax, caspase-9, and caspase-3) and attenuated the expression of the antiapoptotic protein Bcl-2. Moreover, NADPH oxidase inhibitors could attenuate the arecoline-induced GSH depletion and reverse arecoline-induced changes in proapoptotic and antiapoptotic proteins. In conclusion, the results indicate that arecoline could induce neuronal apoptotic death by attenuating antioxidant defense and enhancing oxidative stress. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. A comparison of the antimalarial activity of the cinchona alkaloids against Plasmodium falciparum in vitro.

    PubMed

    Wesche, D L; Black, J

    1990-06-01

    The effects of four major cinchona alkaloids: (-) quinine, (+) quinidine, (-)cinchonidine, and (+)cinchonine against Plasmodium falciparum FCQ-27/PNG were studied. The alkaloids were tested in vitro as either single alkaloids, racemic mixtures of stereoisomers, or as an equimolar combination of all four alkaloids. Results indicate (+)quinidine to be most effective and both (+)stereoisomers were more potent than the (-)stereoisomers. Inhibitory concentrations 50% (Ki) of racemic mixtures of stereoisomers were similar to those of the (+)stereoisomers alone. The Ki of four alkaloids in equimolar combination were similar to that of the (-) cinchonidine/(+)cinchonine racemic mixture. A total alkaloidal extract of Cinchona sp. was tested and compared with the pure alkaloids. HPLC analysis indicated that (+)cinchonine, (-)cinchonidine and (-)quinine were present in a ratio of approximately 1:1:2, respectively. The total alkaloid extract, with (-)stereoisomers predominating, was less effective than the four alkaloids in combination. The nature of the interaction between stereoisomers was investigated and appears to be one of addition.

  10. Two Faces of Alkaloids

    NASA Astrophysics Data System (ADS)

    Dostál, Jirí

    2000-08-01

    Alkaloids can occur in two forms, denoted as ammonium salts and free bases. These forms differ substantially in their properties and in some cases in their structures. The article discusses and compares the salts and free bases of six well-known alkaloids: nicotine, morphine, cocaine, sanguinarine, allocryptopine, and magnoflorine. Relevance for the biological and medical uses of these compounds is emphasized.

  11. Amaryllidaceae and Sceletium alkaloids.

    PubMed

    Jin, Zhong

    2016-10-26

    Covering: July 2012 to June 2015. Previous review: Nat. Prod. Rep., 2013, 30, 849-868The latest progress on the isolation, identification, biological activity and synthetic studies of the structurally diverse alkaloids from plants of family Amaryllidaceae has been summarized in this review. In addition, the structurally related alkaloids isolated from Sceletium species were discussed as well.

  12. Alkaloids from Menispermum dauricum.

    PubMed

    Yu, Bing-Wu; Chen, Jian-Yong; Wang, Yan-Ping; Cheng, Kin-Fin; Li, Xiao-Yu; Qin, Guo-Wei

    2002-10-01

    The alkaloids, dechloroacutumidine and 1-epidechloroacutumine, together with three known alkaloids, acutumidine, acutumine, and dechloroacutumine, were isolated from the rhizomes of Menispermum dauricum and their structures established by spectral and chemical methods. The cytotoxicity of each compound against the growth of human cell lines was studied, and acutumine selectively inhibited T-cell growth.

  13. BIAdb: A curated database of benzylisoquinoline alkaloids

    PubMed Central

    2010-01-01

    Background Benzylisoquinoline is the structural backbone of many alkaloids with a wide variety of structures including papaverine, noscapine, codeine, morphine, apomorphine, berberine, protopine and tubocurarine. Many benzylisoquinoline alkaloids have been reported to show therapeutic properties and to act as novel medicines. Thus it is important to collect and compile benzylisoquinoline alkaloids in order to explore their usage in medicine. Description We extract information about benzylisoquinoline alkaloids from various sources like PubChem, KEGG, KNApSAcK and manual curation from literature. This information was processed and compiled in order to create a comprehensive database of benzylisoquinoline alkaloids, called BIAdb. The current version of BIAdb contains information about 846 unique benzylisoquinoline alkaloids, with multiple entries in term of source, function leads to total number of 2504 records. One of the major features of this database is that it provides data about 627 different plant species as a source of benzylisoquinoline and 114 different types of function performed by these compounds. A large number of online tools have been integrated, which facilitate user in exploring full potential of BIAdb. In order to provide additional information, we give external links to other resources/databases. One of the important features of this database is that it is tightly integrated with Drugpedia, which allows managing data in fixed/flexible format. Conclusions A database of benzylisoquinoline compounds has been created, which provides comprehensive information about benzylisoquinoline alkaloids. This database will be very useful for those who are working in the field of drug discovery based on natural products. This database will also serve researchers working in the field of synthetic biology, as developing medicinally important alkaloids using synthetic process are one of important challenges. This database is available from http

  14. Alkaloids from Narcissus serotinus.

    PubMed

    Pigni, Natalia B; Ríos-Ruiz, Segundo; Martínez-Francés, Vanessa; Nair, Jerald J; Viladomat, Francesc; Codina, Carles; Bastida, Jaume

    2012-09-28

    Narcissus serotinus belongs to the Amaryllidaceae family, a group well known for an exclusive variety of alkaloids with interesting biological activities. This study was aimed at identifying the alkaloid constituents of N. serotinus collected in the Spanish region of Valencia, using a combination of chromatographic, spectroscopic, and spectrometric methods, including GC-MS and 2D NMR techniques. GC-MS analysis allowed for the direct identification of five known compounds. In addition, the isolation and structure elucidation of six new Amaryllidaceae alkaloids are described.

  15. Alkaloids of Ocotea brachybotra.

    PubMed

    Vecchietti, V; Casagrande, C; Ferrari, G

    1977-11-01

    Aporphine, proaporphine and morphinane alkaloids were isolated from the leaves of a Brazilian Lauracea, Ocotea brachybotra (Meiss.) Mez. The known alkaloids were identified through their physico-chemical properties as: (I) (+/-)-glaziovine, (II) dicentrine, (III) ocopodine, (IV) cassynthicine, (V) predicentrine, (VI) leucoxine, (IX) sinacutine and (X) pallidine. The structure of (VI) leucoxine was confirmed by a detailed analysis of the N.M.R. spectra recorded in various conditions. New morphinane alkaloids, (XI) ocobotrine and (XII) 14-espisinomenine, having the unusual B/C-trans configuration were also isolated. Their structures were determined using spectroscopic methods and chemical correlations.

  16. Occurrence of halogenated alkaloids.

    PubMed

    Gribble, Gordon W

    2012-01-01

    Once considered to be isolation artifacts or chemical "mistakes" of nature, the number of naturally occurring organohalogen compounds has grown from a dozen in 1954 to >5000 today. Of these, at least 25% are halogenated alkaloids. This is not surprising since nitrogen-containing pyrroles, indoles, carbolines, tryptamines, tyrosines, and tyramines are excellent platforms for biohalogenation, particularly in the marine environment where both chloride and bromide are plentiful for biooxidation and subsequent incorporation into these electron-rich substrates. This review presents the occurrence of all halogenated alkaloids, with the exception of marine bromotyrosines where coverage begins where it left off in volume 61 of The Alkaloids. Whereas the biological activity of these extraordinary compounds is briefly cited for some examples, a future volume of The Alkaloids will present full coverage of this topic and will also include selected syntheses of halogenated alkaloids. Natural organohalogens of all types, especially marine and terrestrial halogenated alkaloids, comprise a rapidly expanding class of natural products, in many cases expressing powerful biological activity. This enormous proliferation has several origins: (1) a revitalization of natural product research in a search for new drugs, (2) improved compound characterization methods (multidimensional NMR, high-resolution mass spectrometry), (3) specific enzyme-based and other biological assays, (4) sophisticated collection methods (SCUBA and remote submersibles for deep ocean marine collections), (5) new separation and purification techniques (HPLC and countercurrent separation), (6) a greater appreciation of traditional folk medicine and ethobotany, and (7) marine bacteria and fungi as novel sources of natural products. Halogenated alkaloids are truly omnipresent in the environment. Indeed, one compound, Q1 (234), is ubiquitous in the marine food web and is found in the Inuit from their diet of whale

  17. Marine Indole Alkaloids

    PubMed Central

    Netz, Natalie; Opatz, Till

    2015-01-01

    Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed. PMID:26287214

  18. Alkaloids from Esenbeckia pilocarpoides.

    PubMed

    Bevalot, F; Fournet, A; Moretti, C; Vaquette, J

    1984-12-01

    A preliminary screening showed the occurrence of alkaloids only in root bark and roots of ESENBECKIA PILOCARPOIDES H. B. K., (Rutaceae). Six alkaloids have been isolated and identified from root bark: one acridone, 1-hydroxy-3-methoxy- N-methyl-acridone; four furoquinolines, maculine, flindersiamine, kokusaginine, kokusagine; the sixth, isomaculine, a furo-4-quinolone, known as a synthetic product, has been isolated for the first time from a natural source.

  19. Sarpagine and related alkaloids

    PubMed Central

    Namjoshi, Ojas A.; Cook, James M.

    2016-01-01

    The sarpagine-related macroline and ajmaline alkaloids share a common biosynthetic origin, and bear important structural similarities, as expected. These indole alkaloids are widely dispersed in 25 plant genera, principally in the Apocynaceae family. Very diverse and interesting biological properties have been reported for this group of natural products. Isolation of new sarpagine-related alkaloids as well as the asymmetric synthesis of these structurally complex molecules are of paramount importance to the synthetic and medicinal chemists. A total of 115 newly isolated sarpagine-related macroline and ajmaline alkaloids, along with their physicochemical properties have been included in this chapter. A general and efficient strategy for the synthesis of these monomeric alkaloids, as well as bisindoles has been presented, which involves application of the asymmetric Pictet–Spengler reaction (>98% ee) as a key step because of the ease of scale up of the tetracyclic template. Also included in this chapter are the syntheses of the sarpagine-related alkaloids, published since the year 2000. PMID:26827883

  20. Benzylisoquinoline alkaloid biosynthesis in opium poppy.

    PubMed

    Beaudoin, Guillaume A W; Facchini, Peter J

    2014-07-01

    Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy.

  1. The expanding universe of alkaloid biosynthesis.

    PubMed

    De Luca, V; Laflamme, P

    2001-06-01

    Characterization of many of the major gene families responsible for the generation of central intermediates and for their decoration, together with the development of large genomics and proteomics databases, has revolutionized our capability to identify exotic and interesting natural-product pathways. Over the next few years, these tools will facilitate dramatic advances in our knowledge of the biosynthesis of alkaloids, which will far surpass that which we have learned in the past 50 years. These tools will also be exploited for the rapid characterization of regulatory genes, which control the development of specialized cell factories for alkaloid biosynthesis.

  2. Accumulation of quinolizidine alkaloids in plants and cell suspension cultures: genera lupinus, cytisus, baptisia, genista, laburnum, and sophora.

    PubMed

    Wink, M; Witte, L; Hartmann, T; Theuring, C; Volz, V

    1983-08-01

    The patterns of quinolizidine alkaloids in cell cultures of 10 species of Fabaceae were analyzed by high-resolution GLC and GLC-MS and compared with the alkaloids present in the leaves of the respective plants. Lupanine was produced in all 10 cell suspension cultures as the main alkaloid. It was accompanied by sparteine, tetrahydrorhombifoline, 17-oxosparteine, 13-hydroxylupanine, 4-hydroxylupanine, 17-oxolupanine, and 13-hydroxylupanine esters as minor alkaloids in some species. The alkaloid patterns of the plants differed markedly in that alpha-pyridone alkaloids were the major alkaloids in the genera Cytisus, Genista, Laburnum and Sophora but were not accumulated in the cell cultures. These data further support the assumption that the pathway leading to lupanine is the basic pathway of quinolizidine alkaloids biosynthesis and that the other alkaloids are derived from lupanine.

  3. Comparative qualitative and quantitative determination of alkaloids in narcotic and condiment Papaver somniferum cultivars.

    PubMed

    Frick, Susanne; Kramell, Robert; Schmidt, Jürgen; Fist, Anthony J; Kutchan, Toni M

    2005-05-01

    In the present study morphinan, tetrahydrobenzylisoquinoline, benzo[c]phenanthridine, and phthalideisoquinoline alkaloids were determined qualitatively and quantitatively by HPLC and LC-MS analysis in tissues of the Tasmanian Papaver somniferum L. elite cultivar C048-6-14-64. The data were compared with the results from the low-morphine cultivar "Marianne". In the elite cultivar, 91.2% of the latex alkaloids consist of the three pharmaceutically most valuable alkaloids: morphine, codeine, and thebaine. In the root system, the major alkaloids are sanguinarine/10-hydroxysanguinarine and dihydrosanguinarine/10-hydroxydihydrosanguinarine. In the stems and leaves of C048-6-14-64, the same alkaloids were measured as in the latex. In the stems, a gradient in relative total alkaloid content from the top downward toward the roots was observed. The concentration of morphine was decreasing toward the roots, whereas an increasing gradient from the upper to the lower stem parts was detected for codeine. The relative total alkaloid concentration in leaves remained constant; no gradient was observed. The cultivar "Marianne" displayed a shifted pattern of alkaloid accumulation and reduced levels of total alkaloid. In the condiment cultivar, 80.5% of the alkaloids of the latex consisted of the two phthalideisoquinoline alkaloids narcotoline and noscapine. Only 18.8% of the relative total alkaloid content were morphinan alkaloids. In contrast to the narcotic cultivar, in which the benzo[c]phenanthridines in roots dominated over the morphinan and tetrahydrobenzylisoquinoline alkaloids, the concentration of benzo[c]phenanthridines in "Marianne" was similar to that of morphinan and tetrahydrobenzylisoquinoline alkaloids. These data suggest a differential alkaloid regulation in each cultivar of P. somniferum.

  4. Cytotoxicity of Hymenocallis expansa alkaloids.

    PubMed

    Antoun, M D; Mendoza, N T; Ríos, Y R; Proctor, G R; Wickramaratne, D B; Pezzuto, J M; Kinghorn, A D

    1993-08-01

    From the bulbs and leaves of Hymenocallis expansa (Amaryllidaceae), three alkaloid constituents were identified: (+)-tazettine, (+)-hippeastrine, and (-)-haemanthidine. These alkaloids demonstrated significant cytotoxicity when tested against a panel of human and murine tumor cell lines.

  5. Alkaloids from Hippeastrum papilio.

    PubMed

    de Andrade, Jean Paulo; Berkov, Strahil; Viladomat, Francesc; Codina, Carles; Zuanazzi, José Angelo S; Bastida, Jaume

    2011-08-18

    Galanthamine, an acetylcholinesterase inhibitor marketed as a hydrobromide salt (Razadyne®, Reminyl®) for the treatment of Alzheimer's disease (AD), is obtained from Amaryllidaceae plants, especially those belonging to the genera Leucojum, Narcissus, Lycoris and Ungernia. The growing demand for galanthamine has prompted searches for new sources of this compound, as well as other bioactive alkaloids for the treatment of AD. In this paper we report the isolation of the new alkaloid 11β-hydroxygalanthamine, an epimer of the previously isolated alkaloid habranthine, which was identified using NMR techniques. It has been shown that 11β-hydroxygalanthamine has an important in vitro acetylcholinesterase inhibitory activity. Additionally, Hippeastrum papilio yielded substantial quantities of galanthamine.

  6. The Iboga Alkaloids.

    PubMed

    Lavaud, Catherine; Massiot, Georges

    Iboga alkaloids are a particular class of indolomonoterpenes most often characterized by an isoquinuclidine nucleus. Their first occurrence was detected in the roots of Tabernanthe iboga, a sacred plant to the people of Gabon, which made it cult object. Ibogaine is the main representative of this class of alkaloids and its psychoactive properties are well documented. It has been proposed as a drug cessation treatment and has a wide range of activities in targeting opioids, cocaine, and alcohol. The purpose of this chapter is to provide a background on this molecule and related compounds and to update knowledge on the most recent advances made. Difficulties linked to the status of ibogaine as a drug in several countries have hampered its development, but 18-methoxycoronaridine is currently under evaluation for the same purposes and for the treatment of leishmaniasis. The chapter is divided into six parts: an introduction aiming at defining what is called an iboga alkaloid, and this is followed by current knowledge on their biosynthesis, which unfortunately remains a "black box" as far as the key construction step is concerned. Many of these alkaloids are still being discovered and the third and fourth parts of the chapter discuss the analytical tools in use for this purpose and give lists of new monomeric and dimeric alkaloids belonging to this class. When necessary, the structures are discussed especially with regard to absolute configuration determinations, which remain a point of weakness in their assignments. Part V gives an account of progress made in the synthesis, partial and total, which the authors believe is key to providing solid solutions to the industrial development of the most promising molecules. The last part of the chapter is devoted to the biological properties of iboga alkaloids, with particular emphasis on ibogaine and 18-methoxycoronaridine.

  7. [A new alkaloid from Menispermum dauricum DC--N-desmethyldauricine].

    PubMed

    Pan, X P

    1992-01-01

    A new phenolic dauricine-type alkaloid together with the know dauricine were isolated from the rhizoma of Menispermum dauricum DC cultivated in Xianning district, Hubei province. Dauricine was obtained as the major alkaloid and was confirmed by comparison with authentic sample. The new alkaloid is an unstable white powder: Based on spectrometric analysis (UV, IR, FAB-MS and 1HNMR) and N-methylation which offered dauricine dimethiodide (V), the structure was elucidated as RR, N-desmethyldauricine (II), which was isolated for the first time from nature.

  8. Lysine-derived Alkaloids: Overview and Update on Biosynthesis and Medicinal Applications with Emphasis on Quinolizidine Alkaloids.

    PubMed

    Bunsupa, Somnuk; Yamazaki, Mami; Saito, Kazuki

    2017-01-01

    Plants produce a vast variety of specialized metabolites which can be a rich source for lead compounds for the development of new drugs. Alkaloids are one the largest groups of plant specialized metabolites important for natural product based pharmaceuticals. Of these, lysine (Lys)-derived alkaloids exhibit a wide range of pharmacological properties which are beneficial for humans. For instance they have anticancer, anti-Alzheimer's disease, anti-inflammatory, hypocholesterolemic and antiarrhtymic effects. Lys-derived alkaloids are widely distributed throughout the plant kingdom: they can be found in various species from clubmosses to flowering plants. Lys is one of the most essential amino acids for humans and livestock and is synthesized in the plastids of land plants. Lys-derived alkaloids can be divided into four major groups including quinolizidine, lycopodium, piperidine, and indolizidine alkaloids. Despite the importance of these compounds, the biosynthetic pathways of Lys-derived alkaloids are not well understood. With the exception of indolizidine alkaloids, Lys decarboxylase (LDC) is the enzyme involved in the first committed step of the biosynthesis by catalyzing the transformation of L-Lys into cadaverine. Cadaverine is then oxidized by copper amine oxidase (CuAO) and spontaneously cyclized to Δ1-piperideine Schiff base which is a universal intermediate for the production of various Lys-derived alkaloids. In this review, we briefly summarize the recent understanding about the structures, occurrences, analytical procedures, biosyntheses, and potential health effects and medical applications of Lys-derived alkaloids with emphasis on quinolizidine alkaloids (QAs). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Simple Indolizidine and Quinolizidine Alkaloids.

    PubMed

    Michael, Joseph P

    2016-01-01

    This review of simple indolizidine and quinolizidine alkaloids (i.e., those in which the parent bicyclic systems are in general not embedded in polycyclic arrays) is an update of the previous coverage in Volume 55 of this series (2001). The present survey covers the literature from mid-1999 to the end of 2013; and in addition to aspects of the isolation, characterization, and biological activity of the alkaloids, much emphasis is placed on their total synthesis. A brief introduction to the topic is followed by an overview of relevant alkaloids from fungal and microbial sources, among them slaframine, cyclizidine, Steptomyces metabolites, and the pantocins. The important iminosugar alkaloids lentiginosine, steviamine, swainsonine, castanospermine, and related hydroxyindolizidines are dealt with in the subsequent section. The fourth and fifth sections cover metabolites from terrestrial plants. Pertinent plant alkaloids bearing alkyl, functionalized alkyl or alkenyl substituents include dendroprimine, anibamine, simple alkaloids belonging to the genera Prosopis, Elaeocarpus, Lycopodium, and Poranthera, and bicyclic alkaloids of the lupin family. Plant alkaloids bearing aryl or heteroaryl substituents include ipalbidine and analogs, secophenanthroindolizidine and secophenanthroquinolizidine alkaloids (among them septicine, julandine, and analogs), ficuseptine, lasubines, and other simple quinolizidines of the Lythraceae, the simple furyl-substituted Nuphar alkaloids, and a mixed quinolizidine-quinazoline alkaloid. The penultimate section of the review deals with the sizable group of simple indolizidine and quinolizidine alkaloids isolated from, or detected in, ants, mites, and terrestrial amphibians, and includes an overview of the "dietary hypothesis" for the origin of the amphibian metabolites. The final section surveys relevant alkaloids from marine sources, and includes clathryimines and analogs, stellettamides, the clavepictines and pictamine, and bis

  10. The Securinega alkaloids.

    PubMed

    Chirkin, Eqor; Atkatlian, William; Porée, François-Hugues

    2015-01-01

    Securinega alkaloids represent a family of plant secondary metabolites known for 50 years. Securinine (1), the most abundant and studied alkaloid of this series was isolated by Russian researchers in 1956. In the following years, French and Japanese scientists reported other Securinega compounds and extensive work was done to elucidate their intriguing structures. The homogeneity of this family relies mainly on its tetracyclic chemical backbone, which features a butenolide moiety (cycle D) and an azabicyclo[3.2.1]octane ring system (rings B and C). Interestingly, after a period of latency of 20 years, the Securinega topic reemerged as a prolific source of new natural structures and to date more than 50 compounds have been identified and characterized. The oligomeric subgroup gathering dimeric, trimeric, and tetrameric units is of particular interest. The unprecedented structure of the Securinega alkaloids was the subject of extensive synthetic efforts culminating in several efficient and elegant total syntheses. The botanical distribution of these alkaloids seems limited to the Securinega, Flueggea, Margaritaria, and Breynia genera (Phyllanthaceae). However, only a limited number of plant species have been considered for their alkaloid contents, and additional phytochemical as well as genetic studies are needed. Concerning the biosynthesis, experiments carried out with radiolabelled aminoacids allowed to identify lysine and tyrosine as the precursors of the piperidine ring A and the CD rings of securinine (1), respectively. Besides, plausible biosynthetic pathways were proposed for virosaine A (38) and B (39), flueggine A (46), and also the different oligomers flueggenine A-D (48-51), fluevirosinine A (56), and flueggedine (20). The case of nirurine (45) and secu'amamine (37) remains elusive and additional studies seem necessary to understand their mode of production. The scope of biological of activities of the Securinega alkaloids was mainly centered on the CNS

  11. Alkaloids in Bulgarian Pancratium maritimum L.

    PubMed

    Berkov, Strahil; Evstatieva, Luba; Popov, Simeon

    2004-01-01

    A GC/MS analysis of alkaloids from leaves, bulbs and roots of Pancratium maritimum was performed. From the identified 16 alkaloids, 5 alkaloids were reported for the first time for this plant. Several compounds with pharmacological activity were found. Haemanthamine was main alkaloid in the leaves and bulbs whereas galanthane was found to be main alkaloid in roots.

  12. A new Amaryllidaceae alkaloid from the bulbs of Lycoris radiata.

    PubMed

    Huang, Sheng-Dian; Zhang, Yu; He, Hong-Ping; Li, Shi-Fei; Tang, Gui-Hua; Chen, Duo-Zhi; Cao, Ming-Ming; DI, Ying-Tong; Hao, Xiao-Jiang

    2013-07-01

    To study the Amaryllidaceae alkaloids of the bulbs of Lycoris radiata. The chemical constituents were isolated and purified by various chromatographic techniques, and the chemical structures were elucidated on the basis of spectroscopic methods. In addition, the antiviral activities of alkaloids 1-10 were evaluated using flu virus A. One new homolycorine-type alkaloid 2α-methoxy-6-O-ethyloduline (1), together with nine known alkaloids 2α-methoxy-6-O-methyloduline (2), trispherine (3), 8-O-demethylhomolycorine (4), homolycorine (5), 9-O-demethylhomolycorine (6), oduline (7), lycorenine (8), 6α-O-methyllycorenine (9) and O-ethyllycorenine (10) were obtained. Alkaloid 1 is a new compound, and 1-3 were major alkaloids in this plant. Alkaloids 1-3 showed weak antiviral activities against flu virus A with IC50 values of 2.06, 0.69, and 2.71 μg·mL-1 and CC50 values of 14.37, 4.79, and 80.12 μg·mL-1, respectively. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  13. Formicine ants: An arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs

    PubMed Central

    Saporito, Ralph A.; Garraffo, H. Martin; Donnelly, Maureen A.; Edwards, Adam L.; Longino, John T.; Daly, John W.

    2004-01-01

    A remarkable diversity of bioactive lipophilic alkaloids is present in the skin of poison frogs and toads worldwide. Originally discovered in neotropical dendrobatid frogs, these alkaloids are now known from mantellid frogs of Madagascar, certain myobatrachid frogs of Australia, and certain bufonid toads of South America. Presumably serving as a passive chemical defense, these alkaloids appear to be sequestered from a variety of alkaloid-containing arthropods. The pumiliotoxins represent a major, widespread, group of alkaloids that are found in virtually all anurans that are chemically defended by the presence of lipophilic alkaloids. Identifying an arthropod source for these alkaloids has been a considerable challenge for chemical ecologists. However, an extensive collection of neotropical forest arthropods has now revealed a putative arthropod source of the pumiliotoxins. Here we report on the presence of pumiliotoxins in formicine ants of the genera Brachymyrmex and Paratrechina, as well as the presence of these ants in the stomach contents of the microsympatric pumiliotoxin-containing dendrobatid frog, Dendrobates pumilio. These pumiliotoxins are major alkaloids in D. pumilio, and Brachymyrmex and Paratrechina ants now represent the only known dietary sources of these toxic alkaloids. These findings further support the significance of ant-specialization and alkaloid sequestration in the evolution of bright warning coloration in poison frogs and toads. PMID:15128938

  14. Bioactive alkaloid extracts from Narcissus broussonetii: mass spectral studies.

    PubMed

    de Andrade, Jean Paulo; Pigni, Natalia Belén; Torras-Claveria, Laura; Berkov, Strahil; Codina, Carles; Viladomat, Francesc; Bastida, Jaume

    2012-11-01

    Plants of the Amaryllidaceae family are a well-known source of tetrahydroisoquinoline alkaloids with a wide range of biological activities, including antiviral, antitumoral, antiparasitic, psychopharmacological, and acetylcholinesterase inhibitory, among others. Recent advances in the use of GC or LC coupled to MS have allowed a chemically guided isolation of uncommon and bioactive alkaloids. In the present work, analytical methods were applied to study the alkaloid profile of Narcissus broussonetii, a plant endemic to North Africa. Using the GC-MS technique and an in-home mass fragmentation database, twenty-three alkaloids were identified, including the very rare dinitrogenous alkaloids obliquine, plicamine, and secoplicamine. Applying LC-ESI-LTQ-Orbitrap-MS, fragmentation profiles were found to be similar for obliquine and plicamine but different for secoplicamine. Pretazettine, a potent cytotoxic alkaloid, was also isolated from N. broussonetii, although its identification by GC-MS was only possible after a BSTFA-derivatization. The silylated crude methanolic extract only showed the presence of pretazettine-TMS, confirming that tazettine was formed after the alkaloid extraction. The same observation was made in Narcissus cultivars in which tazettine had been detected as the major alkaloid. As part of an ongoing project on MS of Amaryllidaceae alkaloids, the silylated tazettine and pretazettine were studied by GC-MS/MS, and found to differ in their fragmentation routes. Finally, the EtOAc extract of N. broussonetii showed notable in vitro activity against Trypanosoma cruzi, with an IC(50) value of 1.77 μg/ml. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Indole alkaloids from Geissospermum reticulatum.

    PubMed

    Reina, M; Ruiz-Mesia, W; López-Rodríguez, M; Ruiz-Mesia, L; González-Coloma, A; Martínez-Díaz, R

    2012-05-25

    Ten indole alkaloids were isolated from Geissospermum reticulatum, seven (1-7) from the leaves and three (8-10) from the bark. Seven were aspidospermatan-type alkaloids (1-3, 5-9), including four (5-8) with a 1-oxa-3-cyclopentene group in their molecule, which we named geissospermidine subtype. Compounds 1-3, 5-8, and 10 had not been reported previously as natural products, while 4 and 9 were the known alkaloids O-demethylaspidospermine and flavopereirine. Their structures were determined by spectroscopic techniques including 1D and 2D NMR experiments (COSY, NOESY, HSQC, HMBC). Additionally, X-ray crystallographic analyses of 1, 2, and 6 were performed. Antiparasitic activities of the ethanolic and alkaloidal extracts and of the pure alkaloids were tested against Trypanosoma cruzi and Leishmania infantum. In general, the extracts exhibited selective action and were more active against Leishmania than against Trypanosoma. Alkaloid 4 was also very active against L. infantum.

  16. Arginine decarboxylase as the source of putrescine for tobacco alkaloids

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Galston, A. W.

    1986-01-01

    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  17. Arginine decarboxylase as the source of putrescine for tobacco alkaloids

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Galston, A. W.

    1986-01-01

    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  18. Quinolizidine alkaloids from Lupinus lanatus

    NASA Astrophysics Data System (ADS)

    Neto, Alexandre T.; Oliveira, Carolina Q.; Ilha, Vinicius; Pedroso, Marcelo; Burrow, Robert A.; Dalcol, Ionara I.; Morel, Ademir F.

    2011-10-01

    In this study, one new quinolizidine alkaloid, lanatine A ( 1), together with three other known alkaloids, 13-α- trans-cinnamoyloxylupanine ( 2), 13-α-hydroxylupanine ( 3), and (-)-multiflorine ( 4) were isolated from the aerial parts of Lupinus lanatus (Fabaceae). The structures of alkaloids 1- 4 were elucidated by spectroscopic data analysis. The stereochemistry of 1 was determined by single crystal X-ray analysis. Bayesian statistical analysis of the Bijvoet differences suggests the absolute stereochemistry of 1. In addition, the antimicrobial potential of alkaloids 1- 4 is also reported.

  19. Quinoline alkaloids from Acronychia laurifolia.

    PubMed

    Cui, B; Chai, H; Dong, Y; Horgen, F D; Hansen, B; Madulid, D A; Soejarto, D D; Farnsworth, N R; Cordell, G A; Pezzuto, J M; Kinghorn, A D

    1999-09-01

    Bioassay-directed fractionation of a root extract of Acronychia laurifolia (Rutaceae) using the KB-V1+ human tumor cell line led to the isolation of six quinoline alkaloids. One of these alkaloids is novel, namely, 2,3-methylenedioxy-4,7-dimethoxyquinoline and the other five were identified as the known compounds, evolitrine, gamma-fagarine, skimmianine, kokusaginine and maculosidine. Two known bis-tetrahydrofuran lignans, sesamolin and yangambin, were also identified. The structure of the new alkaloid was determined by spectroscopic methods. All of the isolates were evaluated against a panel of human cancer cell lines; four of the alkaloids showed weak cytotoxic activity.

  20. Comparative study of fourteen alkaloids from Uncaria rhynchophylla hooks and leaves using HPLC-diode array detection-atmospheric pressure chemical ionization/MS method.

    PubMed

    Qu, Jialin; Gong, Tianxing; Ma, Bin; Zhang, Lin; Kano, Yoshihiro; Yuan, Dan

    2012-01-01

    The purpose of the study is to compare alkaloid profile of Uncaria rhynchophylla hooks and leaves. Ten oxindole alkaloids and four glycosidic indole alkaloids were identified using HPLC-diode array detection (DAD) or LC-atmospheric pressure chemical ionization (APCI)-MS method, and a HPLC-UV method for simultaneous quantification of major alkaloids was validated. The hooks are characterized by high levels of four oxindole alkaloids rhynchophylline (R), isorhynchophylline (IR), corynoxeine (C) and isocorynoxeine (IC), while the leaves contained high level of two glycosidic indole alkaloids vincoside lactam (VL) and strictosidine (S). The presented methods have proven its usefulness in chemical characterization of U. rhynchophylla hooks and leaves.

  1. Individual and Geographic Variation of Skin Alkaloids in Three Swamp-Forest Species of Madagascan Poison Frogs (Mantella).

    PubMed

    Andriamaharavo, Nirina R; Garraffo, H Martin; Spande, Thomas F; Giddings, Lesley-Ann; Vieites, David R; Vences, Miguel; Saporito, Ralph A

    2015-09-01

    Seventy skins of three mantellid frog species from Madagascan swamp-forest habitats, Mantella aurantiaca, M. crocea, and M. milotympanum, were individually examined for skin alkaloids using GC/MS. These poison frogs were found to differ significantly in their alkaloid composition from species of Mantella originating from non-flooded rainforest in eastern Madagascar, which were examined in earlier work. Only 16 of the previously detected 106 alkaloids were represented among the 60 alkaloids from the swamp-forest frogs of the present study. We hypothesize this difference is related mainly to habitat but cannot exclude a phylogenetic component as the three swamp-forest species are a closely related monophyletic group. The paucity of alkaloids with unbranched-carbon skeletons (ant-derived) and the commonness of alkaloids with branched-carbon skeletons (mite-derived) indicate that oribatid mites are a major source of alkaloids in these species of mantellids. Furthermore, most of the alkaloids have an oxygen atom in their formulae. Differences in alkaloids were observed among species, populations of the same species, and habitats. In M. aurantiaca, small geographic distances among populations were associated with differences in alkaloid profiles, with a remote third site illustrating even greater differences. The present study and an earlier study of three other mantellid species suggest that oribatid mites, and not ants, are the major source of alkaloids in the species of mantellids examined thus far.

  2. Identification, occurrence and activity of quinazoline alkaloids in Peganum harmala.

    PubMed

    Herraiz, Tomás; Guillén, Hugo; Arán, Vicente J; Salgado, Antonio

    2017-05-01

    Peganum harmala L. is a medicinal plant from the Mediterranean region and Asia currently used for recreative psychoactive purposes (Ayahuasca analogue), and increasingly involved in toxic cases. Its psychopharmacological and toxicological properties are attributed to quinazoline and β-carboline alkaloids. In this work three major quinazoline alkaloids were isolated from P. harmala extracts and characterized as peganine (vasicine), deoxypeganine (deoxyvasicine) and a novel compound identified by HPLC-DAD-MS and NMR as peganine β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside (peganine glycoside). Peganine appeared in flowers and leaves in high levels; high amounts of deoxypeganine and peganine were found in immature and green fruits whereas peganine and peganine glycoside accumulated in high amount in dry seeds reaching up to 1 and 3.9% (w/w), respectively. Roots and stems contained low amount of quinazolines. Seeds extracts containing both quinazoline and β-carboline alkaloids potently inhibited human monoamine oxidase (MAO)-A. However, quinazoline alkaloids did not contribute to MAO inhibition that was due to β-carbolines, suggesting that MAO-related psychoactive or toxic actions do not arise from quinazolines. Quinazoline alkaloids were poor radical scavengers in the ABTS assay whereas seed extracts had good activity. Quinazoline alkaloids are known to exert bronchodilator and abortifacient actions, and could contribute to such effects reported in P. harmala.

  3. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum.

    PubMed

    Dewey, Ralph E; Xie, Jiahua

    2013-10-01

    Alkaloids represent an extensive group of nitrogen-containing secondary metabolites that are widely distributed throughout the plant kingdom. The pyridine alkaloids of tobacco (Nicotiana tabacum L.) have been the subject of particularly intensive investigation, driven largely due to the widespread use of tobacco products by society and the role that nicotine (16) (see Fig. 1) plays as the primary compound responsible for making the consumption of these products both pleasurable and addictive. In a typical commercial tobacco plant, nicotine (16) comprises about 90% of the total alkaloid pool, with the alkaloids nornicotine (17) (a demethylated derivative of nicotine), anatabine (15) and anabasine (5) making up most of the remainder. Advances in molecular biology have led to the characterization of the majority of the genes encoding the enzymes directly responsible the biosynthesis of nicotine (16) and nornicotine (17), while notable gaps remain within the anatabine (15) and anabasine (5) biosynthetic pathways. Several of the genes involved in the transcriptional regulation and transport of nicotine (16) have also been elucidated. Investigations of the molecular genetics of tobacco alkaloids have not only provided plant biologists with insights into the mechanisms underlying the synthesis and accumulation of this important class of plant alkaloids, they have also yielded tools and strategies for modifying the tobacco alkaloid composition in a manner that can result in changing the levels of nicotine (16) within the leaf, or reducing the levels of a potent carcinogenic tobacco-specific nitrosamine (TSNA). This review summarizes recent advances in our understanding of the molecular genetics of alkaloid biosynthesis in tobacco, and discusses the potential for applying information accrued from these studies toward efforts designed to help mitigate some of the negative health consequences associated with the use of tobacco products.

  4. Transcription factors in alkaloid biosynthesis.

    PubMed

    Yamada, Yasuyuki; Sato, Fumihiko

    2013-01-01

    Higher plants produce a large variety of low-molecular weight secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used pharmaceutically. Whereas alkaloid chemistry has been intensively investigated, alkaloid biosynthesis, including the relevant biosynthetic enzymes, genes and their regulation, and especially transcription factors, is largely unknown, as only a limited number of plant species produce certain types of alkaloids and they are difficult to study. Recently, however, several groups have succeeded in isolating the transcription factors that are involved in the biosynthesis of several types of alkaloids, including bHLH, ERF, and WRKY. Most of them show Jasmonate (JA) responsiveness, which suggests that the JA signaling cascade plays an important role in alkaloid biosynthesis. Here, we summarize the types and functions of transcription factors that have been isolated in alkaloid biosynthesis, and characterize their similarities and differences compared to those in other secondary metabolite pathways, such as phenylpropanoid and terpenoid biosyntheses. The evolution of this biosynthetic pathway and regulatory network, as well as the application of these transcription factors to metabolic engineering, is discussed.

  5. Recognition of pyrrolizidine alkaloid esters in the invasive aquatic plant Gymnocoronis spilanthoides (Asteraceae).

    PubMed

    Boppré, Michael; Colegate, Steven M

    2015-01-01

    The freshwater aquatic plant Gymnocoronis spilanthoides (Senegal tea plant, jazmín del bañado, Falscher Wasserfreund) is an invasive plant in many countries. Behavioural observations of pyrrolizidine alkaloid-pharmacophagous butterflies suggested the presence of pyrrolizidine alkaloids in the plant. To determine whether the attraction of the butterflies to the plant is an accurate indicator of pyrrolizidine alkaloids in G. spilanthoides. The alkaloid fraction of a methanolic extract of G. spilanthoides was analysed using HPLC with electrospray ionisation MS and MS/MS. Two HPLC approaches were used, that is, a C18 reversed-phase column with an acidic mobile phase, and a porous graphitic carbon column with a basic mobile phase. Pyrrolizidine alkaloids were confirmed, with the free base forms more prevalent than the N-oxides. The major alkaloids detected were lycopsamine and intermedine. The porous graphitic carbon HPLC column, with basic mobile phase conditions, resulted in better resolution of more pyrrolizidine alkaloids including rinderine, the heliotridine-based epimer of intermedine. Based on the MS/MS and high-resolution MS data, gymnocoronine was tentatively identified as an unusual C9 retronecine ester with 2,3-dihydroxy-2-propenylbutanoic acid. Among several minor-abundance monoester pyrrolizidines recognised, spilanthine was tentatively identified as an ester of isoretronecanol with the unusual 2-acetoxymethylbutanoic acid. The butterflies proved to be reliable indicators for the presence of pro-toxic 1,2-dehydropyrrolizidine alkaloids in G. spilanthoides, the first aquatic plant shown to produce these alkaloids. The presence of the anti-herbivory alkaloids may contribute to the plant's invasive capabilities and would certainly be a consideration in any risk assessment of deliberate utilisation of the plant. The prolific growth of the plant and the structural diversity of its pyrrolizidine alkaloids may make it ideal for investigating biosynthetic

  6. Identification and developmental expression profiling of putative alkaloid biosynthetic genes in Corydalis yanhusuo bulbs

    PubMed Central

    Liao, Dengqun; Wang, Pengfei; Jia, Chan; Sun, Peng; Qi, Jianjun; Zhou, Lili; Li, Xian’en

    2016-01-01

    Alkaloids in bulbs of Corydalis (C.) yanhusuo are the major pharmacologically active compounds in treatment of blood vessel diseases, tumors and various pains. However, due to the absence of gene sequences in C. yanhusuo, the genes involved in alkaloid biosynthesis and their expression during bulb development remain unknown. We therefore established the first transcriptome database of C. yanhusuo via Illumina mRNA-Sequencing of a RNA composite sample collected at Bulb initiation (Day 0), early enlargement (Day 10) and maturation (Day 30). 25,013,630 clean 90 bp paired-end reads were de novo assembled into 47,081 unigenes with an average length of 489 bp, among which 30,868 unigenes (65.56%) were annotated in four protein databases. Of 526 putative unigenes involved in biosynthesis o f various alkaloids, 187 were identified as the candidate genes involved in the biosynthesis of benzylisoquinoline alkaloids (BIAs), the only alkaloid type reported in C. yanhusuo untill now. BIAs biosynthetic genes were highly upregulated in the overall pathway during bulb development. Identification of alkaloid biosynthetic genes in C. yanhusuo provide insights on pathways and molecular regulation of alkaloid biosynthesis, to initiate metabolic engineering in order to improve the yield of interesting alkaloids and to identify potentially new alkaloids predicted from the transcriptomic information. PMID:26777987

  7. Identification and developmental expression profiling of putative alkaloid biosynthetic genes in Corydalis yanhusuo bulbs.

    PubMed

    Liao, Dengqun; Wang, Pengfei; Jia, Chan; Sun, Peng; Qi, Jianjun; Zhou, Lili; Li, Xian'en

    2016-01-18

    Alkaloids in bulbs of Corydalis (C.) yanhusuo are the major pharmacologically active compounds in treatment of blood vessel diseases, tumors and various pains. However, due to the absence of gene sequences in C. yanhusuo, the genes involved in alkaloid biosynthesis and their expression during bulb development remain unknown. We therefore established the first transcriptome database of C. yanhusuo via Illumina mRNA-Sequencing of a RNA composite sample collected at Bulb initiation (Day 0), early enlargement (Day 10) and maturation (Day 30). 25,013,630 clean 90 bp paired-end reads were de novo assembled into 47,081 unigenes with an average length of 489 bp, among which 30,868 unigenes (65.56%) were annotated in four protein databases. Of 526 putative unigenes involved in biosynthesis o f various alkaloids, 187 were identified as the candidate genes involved in the biosynthesis of benzylisoquinoline alkaloids (BIAs), the only alkaloid type reported in C. yanhusuo untill now. BIAs biosynthetic genes were highly upregulated in the overall pathway during bulb development. Identification of alkaloid biosynthetic genes in C. yanhusuo provide insights on pathways and molecular regulation of alkaloid biosynthesis, to initiate metabolic engineering in order to improve the yield of interesting alkaloids and to identify potentially new alkaloids predicted from the transcriptomic information.

  8. Alkaloid variation in New Zealand kōwhai, Sophora species.

    PubMed

    McDougal, Owen M; Heenan, Peter B; Jaksons, Peter; Sansom, Catherine E; Smallfield, Bruce M; Perry, Nigel B; van Klink, John W

    2015-10-01

    Alkaloid contents of leaf and seed samples of eight species of Sophora native to New Zealand, plus Sophora cassioides from Chile are reported. Fifty-six leaf and forty-two seed samples were analysed for alkaloid content by proton nuclear magnetic resonance spectroscopy, which showed major alkaloids as cytisine, N-methyl cytisine and matrine. GC analyses quantified these and identified further alkaloid components. The alkaloids identified were cytisine, sparteine, and matrine-types common to Sophora from other regions of the world. Cytisine, N-methyl cytisine, and matrine were generally the most abundant alkaloids across all species with seeds containing the highest concentrations of alkaloids. However, there was no clear taxonomic grouping based on alkaloid composition. A quantitative analysis of various parts of two Sophora microphylla trees showed that the seeds were the richest source of alkaloids (total 0.4-0.5% DM), followed by leaf and twig (0.1-0.3%) and then bark (0.04-0.06%), with only low amounts (<0.02%) found in the roots. This study represents the most comprehensive phytochemical investigation of New Zealand Sophora species to date and presents data for three species of Sophora for which no prior chemistry has been reported.

  9. Cellular distribution of alkaloids and their translocation via phloem and xylem: the importance of compartment pH.

    PubMed

    Nowak, M; Selmar, D

    2016-11-01

    The physico-chemical background of alkaloid allocation within plants is outlined and discussed exemplarily for pyrrolizidine alkaloids (PAs) and nicotine. The trigger for this discourse is the finding that, for example, PAs, which are taken up from the soil, are translocated in the xylem, whereas - when genuinely present in plants - they are allocated as N-oxides via phloem. Special emphasis is put on the impact of different pH values in certain compartments, as this entails significant changes in the relative lipophilic character of alkaloids: tertiary alkaloids diffuse readily through biomembranes, while the corresponding protonated alkaloids are retained in acidic compartments, i.e. vacuoles or xylem. Therefore, this phenomenon, well known as the 'ion trap mechanism', is also relevant for long-distance transport of alkaloids. Any efficient allocation of typical tertiary alkaloids within the phloem can thus be excluded. In contrast, due to their strongly increased hydrophilic properties, alkaloid-N-oxides or quarternary alkaloids cannot diffuse through biomembranes and, consequently, would be retained in the acidic xylem during translocation. The major aim of this paper is to sharpen the mind for the chemical peculiarities of alkaloids and to consider them adequately in forthcoming investigations on allocation of alkaloids.

  10. Purine alkaloids in Paullinia.

    PubMed

    Weckerle, Caroline S; Stutz, Michael A; Baumann, Thomas W

    2003-10-01

    Among the few purine alkaloid-containing genera consumed as stimulants, Paullinia is the least investigated with respect to both chemotaxonomy and within-the-plant allocation of caffeine and its allies. Since purine alkaloids (PuA) have been proved to be valuable marker compounds in chemotaxonomy, 34 species of Paullinia and related genera were screened for them, but only one, P. pachycarpa, was positive in addition to the already known P. cupana and P. yoco. The PuA allocation in P. pachycarpa was examined and found to be restricted to theobromine in the stem, leaves and flowers. Moreover, the theobromine concentration in the stem cortex increased significantly towards the base of the plant. Since the stem cortex of P. yoco is traditionally used by the natives of Colombia and Ecuador to prepare a caffeine-rich beverage, we suspected that within the genus Paullinia the PuA are preferentially allocated to the older parts of the stem and not to young shoots like e.g., in the coffee plant (Coffea spp.). Indeed, the axis (greenhouse) of P. cupana (guaraná), known for its caffeine-rich seeds, exhibited a basipetal PuA gradient (0.005-0.145%). Moreover, the analysis of young cortex samples (herbarium) and of one piece of old stem (museum collection) revealed the same for P. yoco, even though we found much less (0.5 vs 2.5%) caffeine in the old cortex as compared to the only two analyses in 1926 of similar material. However, this discrepancy may be explained by the high variability of the PuA pattern we detected among yoco, the diversity of which the Indians take advantage.

  11. Biosynthetic Pathways of Ergot Alkaloids

    PubMed Central

    Gerhards, Nina; Neubauer, Lisa; Tudzynski, Paul; Li, Shu-Ming

    2014-01-01

    Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes. PMID:25513893

  12. Nonaqueous CE ESI-IT-MS analysis of Amaryllidaceae alkaloids.

    PubMed

    Zhang, Yulin; Chen, Zilin

    2013-03-01

    The Amaryllidaceae are widely distributed medical plants. Lycorine, lycoramine, lycoremine, and lycobetaine are the major active alkaloids in Amaryllidaceae plants. A nonaqueous CE ESI-IT-MS method for separation, identification, and quantification of the Amaryllidaceae alkaloids has been developed. The MS(1-3) behavior has been studied and the fragmentation pathways of main fragment ions have been proposed. The effects of several factors such as composition and concentration of buffer, applied voltage, composition, and flow rate of the sheath liquid, nebulizing gas pressure, flow rate, and temperature of drying gas were investigated. Under the optimal conditions, the linear concentration range of these compounds was wide with the correlation coefficient (R(2) ) >0.99. RSDs of migration time and peak areas were <10%. The LODs were <240 ng/mL. The proposed method can be successfully applied to the determination of the related alkaloids in the Lycoris radiata roots.

  13. Wild daffodils of the section Ganymedes from the Iberian Peninsula as a source of mesembrane alkaloids.

    PubMed

    Pigni, Natalia B; Ríos-Ruiz, Segundo; Luque, F Javier; Viladomat, Francesc; Codina, Carles; Bastida, Jaume

    2013-11-01

    The aim of this work was to perform a detailed study of the alkaloid content of Narcissus triandrus, as well as a complete analysis of the alkaloid profile of 18 wild populations, comprising all the taxa of the section Ganymedes. Through the application of a combination of spectroscopic and chromatographic methods, the isolation and structural elucidation of 3 compounds are reported for the first time from a natural source (2-oxomesembrenone, 7,7a-dehydromesembrenone and 2-oxoepimesembranol), together with the identification of 5 major common mesembrane alkaloids. Additionally, the GC-MS analysis of the alkaloid profile demonstrated the regular presence of mesembranes in all the studied plants, showing mesembrenone as the predominant compound without any typical Amaryllidaceae alkaloid being detected. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The use of genomics and metabolomics methods to quantify fungal endosymbionts and alkaloids in grasses.

    PubMed

    Rasmussen, Susanne; Lane, Geoffrey A; Mace, Wade; Parsons, Anthony J; Fraser, Karl; Xue, Hong

    2012-01-01

    The association of plants with endosymbiotic micro-organisms poses a particular challenge to metabolomics studies. The presence of endosymbionts can alter metabolic profiles of plant tissues by introducing non-plant metabolites such as fungal specific alkaloids, and by metabolic interactions between the two organisms. An accurate quantification of the endosymbiont and its metabolites is therefore critical for studies of interactions between the two symbionts and the environment.Here, we describe methods that allow the quantification of the ryegrass Neotyphodium lolii fungal endosymbiont and major alkaloids in its host plant Lolium perenne. Fungal concentrations were quantified in total genomic DNA (gDNA) isolated from infected plant tissues by quantitative PCR (qPCR) using primers specific for chitinase A from N. lolii. To quantify the fungal alkaloids, we describe LC-MS based methods which provide coverage of a wide range of alkaloids of the indolediterpene and ergot alkaloid classes, together with peramine.

  15. Newly discovered ergot alkaloids in Sorghum ergot Claviceps africana occurring for the first time in Israel.

    PubMed

    Shimshoni, J A; Cuneah, O; Sulyok, M; Krska, R; Sionov, E; Barel, S; Meller Harel, Y

    2017-03-15

    Sorghum ergot is a disease caused commonly by C. africana. In 2015, ergot was identified for the first time in sorghum fields in Israel, leading to measures of eradication and quarantine. The aims of the study were to identify the ergot species by molecular and ergot alkaloid profile analysis, to determine the ergot alkaloid profile in pure honeydew and in infected sorghum silages and to estimate the safety of sorghum silages as a feed source. C. africana was rapidly and reliably identified by microscopical and molecular analysis. Dihydroergosine was identified as the major ergot alkaloid. Dihydrolysergol and dihydroergotamine were identified for the first time as significant ergot alkaloid components within the C. africana sclerotia, thereby providing for the first time a proof for the natural occurrence of dihydroergotamine. The sorghum silages were found to be safe for feed consumption, since the ergot alkaloids and the regulated mycotoxins were below their regulated limits.

  16. Alkaloid profiles, concentration, and pools in velvet lupine (Lupinus leucophyllus) over the growing season.

    PubMed

    Lee, Stephen T; Ralphs, Michael H; Panter, Kip E; Cook, Daniel; Gardner, Dale R

    2007-01-01

    Lupinus leucophyllus is one of many lupine species known to contain toxic and/or teratogenic alkaloids that can cause congenital birth defects. The concentrations of total alkaloids and the individual major alkaloids were measured in three different years from different plant parts over the phenological development of the plant. All of the alkaloids were found in the different plant tissues throughout the growing season, although their levels varied in different tissues. Concentrations of total alkaloids and the individual alkaloids varied on an annual basis and in their distribution in the different tissues. Anagyrine levels were highest in the floral tissue, lupanine and unknown F accumulated to the greatest level in the vegetative tissue, and 5,6-dehydrolupanine accumulated to the highest level in the stem. These alkaloids appear to be in a metabolically active state with the teratogenic alkaloid anagyrine accumulating to its highest level in the developing seed. The latter is, thus, the phenological stage posing the greatest danger to grazing livestock.

  17. The cathedulin alkaloids.

    PubMed

    Crombie, L

    1980-01-01

    Studies on fresh and dried leaf and shoot material of Catha edulis (khat) collected in Ethiopia, Kenya and the Yemen Arab Republic have led to the isolation, separation and characterization of new celastraceous alkaloids, the cathedulins, with molecular weights in the 600-1,200 range. All the cathedulins whose structures have been investigated prove to be polyesters or lactones of a sesquiterpene polyol core and fall into three groups: (a) low molecular weight esters of pentahydroxydihydroagarofuran; (b) cathedulins of medium molecular weight characterized by the possession of a euonyminol core and an evonimic acid dilactone bridge; and (c) high molecular weight, more complex esters of euonyminol. Chemical evidence and spectral data were used in assigning structures to the cathedulins studied as well as in placing the various esterifying acids on the different hydroxyl positions of the sesquiterpene core. In addition to cathedulins, neutral products isolated from khat include beta-sitosterol and its glycoside, friedeline, and hydroxylated delta 4-exo-relatives of the latter. Moreover, the pigmented root-bark contains triterpenoid quinones including celastrol, pristimerin, iguesterin and tingenone (tingenin A and B).

  18. Simultaneous determination of polyphenols and major purine alkaloids in Greek Sideritis species, herbal extracts, green tea, black tea, and coffee by high-performance liquid chromatography-diode array detection.

    PubMed

    Samanidou, Victoria; Tsagiannidis, Anastasios; Sarakatsianos, Ioannis

    2012-02-01

    Herein, a high-performance liquid chromatography-diode array detection method has been developed for the simultaneous determination of 15 phenolic antioxidants: flavan-3-ols, (-)-epigallocatechin, (+)-catechin, (-)-epigallocatechin gallate, (-)-epicatechin, (-)-epicatechin gallate, (-)-gallocatechin, a phenolic acid (gallic acid), a hydroxycinnamic acid (chlorogenic acid), flavones (apigenin), flavonols (kaempferol, quercetin, and myricetin), and purine alkaloids (caffeine theophylline, theobromine) in different herb extracts, tea, and coffee varieties. The developed method was validated and successfully applied in order to determine the polyphenolic content to estimate the antioxidant activity of the Sideritis species commonly known as Greek mountain tea. To the best of our knowledge, this is the first report on the quantitative determination of catechins and other polyphenols in Greek mountain tea. Acidic hydrolysis was necessary for the simultaneous determination of the aglycones of the target analytes. According to our results, chlorogenic acid, myricetin, apigenin, catechin, and epicatechin gallate are found in the Sideritis species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Chemistry of the Akuammiline Alkaloids.

    PubMed

    Adams, Gregory L; Smith, Amos B

    2016-01-01

    An update on the literature covering the akuammiline family of alkaloids is presented. This chapter begins with a summary of new akuammiline alkaloids reported since 2000 and is followed by an overview of new reported bioactivities of akuammiline alkaloids since 2000. The remainder of the chapter comprises a comprehensive review of the synthetic chemistry that has been reported in the last 50 years concerning akuammiline alkaloids and their structural motifs.

  20. 27 CFR 21.99 - Brucine alkaloid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Brucine alkaloid. 21.99... Brucine alkaloid. (a) Identification test. Add a few drops of concentrated nitric acid to about 10 mg of brucine alkaloid. A vivid red color is produced. Dilute the red solution with a few drops of water and...

  1. 27 CFR 21.99 - Brucine alkaloid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Brucine alkaloid. 21.99... Brucine alkaloid. (a) Identification test. Add a few drops of concentrated nitric acid to about 10 mg of brucine alkaloid. A vivid red color is produced. Dilute the red solution with a few drops of water and...

  2. 27 CFR 21.99 - Brucine alkaloid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Brucine alkaloid. 21.99... Brucine alkaloid. (a) Identification test. Add a few drops of concentrated nitric acid to about 10 mg of brucine alkaloid. A vivid red color is produced. Dilute the red solution with a few drops of water and...

  3. 27 CFR 21.99 - Brucine alkaloid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Brucine alkaloid. 21.99... Brucine alkaloid. (a) Identification test. Add a few drops of concentrated nitric acid to about 10 mg of brucine alkaloid. A vivid red color is produced. Dilute the red solution with a few drops of water and...

  4. 27 CFR 21.99 - Brucine alkaloid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Brucine alkaloid. 21.99... Brucine alkaloid. (a) Identification test. Add a few drops of concentrated nitric acid to about 10 mg of brucine alkaloid. A vivid red color is produced. Dilute the red solution with a few drops of water and...

  5. Piperidine alkaloids from Alocasia macrorrhiza.

    PubMed

    Huang, Wenjie; Yi, Xiaomin; Feng, Jianying; Wang, Yihai; He, Xiangjiu

    2017-11-01

    Six previously undescribed piperidine alkaloids were isolated from the rhizomes of Alocasia macrorrhiza (L.) Schott. Their structures were elucidated based on 1D and 2D NMR, IR, HR-ESI-MS spectroscopic analysis and the application of a modified Mosher method. All isolated alkaloids were evaluated for cytotoxicity against five human cancer cell lines (CNE-1, Detroit 562, Fadu, MGC-803, and MCF-7) using the MTT method. Only one compound exhibited cytotoxic effects against Detroit 562, Fadu, and MCF-7 cell lines with IC50 values less than 10 μM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Hypolipidemic Effects of Alkaloids from Rhizoma Coptidis in Diet-Induced Hyperlipidemic Hamsters.

    PubMed

    He, Kai; Kou, Shuming; Zou, Zongyao; Hu, Yinran; Feng, Min; Han, Bing; Li, Xuegang; Ye, Xiaoli

    2016-05-01

    This study was conducted to evaluate the antihyperlipidemic activity of five major alkaloids in Rhizoma Coptidis using high-fat- and high-cholesterol-induced hyperlipidemic hamsters. Hyperlipidemic hamsters were treated with coptisine, berberine, jatrorrhizine, palmatine, epiberberine, and total Rhizoma Coptidis alkaloids with a dose of 46.7 mg/kg × day for 140 days. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids were examined after alkaloid treatment. The results showed that all therapy agents prevented body weight gain, reduced the serum total cholesterol, and increased the high-density lipoprotein cholesterol of hamsters. Berberine, jatrorrhizine, and total Rhizoma Coptidis alkaloids decreased the triglyceride level in hyperlipidemic hamsters, while coptisine, jatrorrhizine, palmatine, and total Rhizoma Coptidis alkaloids significantly suppressed the elevation of the low-density lipoprotein cholesterol level. The fecal excretion of bile acids was significantly elevated by berberine, coptisine, jatrorrhizine, palmatine, total Rhizoma Coptidis alkaloids, and orlistat. Notably, total Rhizoma Coptidis alkaloids possess a much stronger lipid-lowering effect than the pure Rhizoma Coptidis alkaloids. Quantitative reverse transcription-polymerase chain reaction analyses revealed that Rhizoma Coptidis alkaloids could retard the synthesis of cholesterol by downregulating the mRNA expression of 3-hydroxy-3-methyl glutaryl coenzyme A reductase and accelerate the clearance of lipids by upregulating the low-density lipoprotein receptor, cholesterol 7α-hydroxylase, and uncoupling protein-2 expression. These findings highlight the critical role of Rhizoma Coptidis alkaloids in hyperlipidemia treatment. Thus, they need to be considered in future therapeutic approaches.

  7. Unravelling the architecture and dynamics of tropane alkaloid biosynthesis pathways using metabolite correlation networks.

    PubMed

    Nguyen, Thi-Kieu-Oanh; Jamali, Arash; Lanoue, Arnaud; Gontier, Eric; Dauwe, Rebecca

    2015-08-01

    The tropane alkaloid spectrum in Solanaceae is highly variable within and between species. Little is known about the topology and the coordination of the biosynthetic pathways leading to the variety of tropine and pseudotropine derived esters in the alkaloid spectrum, or about the metabolic dynamics induced by tropane alkaloid biosynthesis stimulating conditions. A good understanding of the metabolism, including all ramifications, is however necessary for the development of strategies to increase the abundance of pharmacologically interesting compounds such as hyoscyamine and scopolamine. The present study explores the tropane alkaloid metabolic pathways in an untargeted approach involving a correlation-based network analysis. Using GC-MS metabolite profiling, the variation and co-variation among tropane alkaloids and primary metabolites was monitored in 60 Datura innoxia Mill. individuals, of which half were exposed to tropane alkaloid biosynthesis stimulating conditions by co-culture with Agrobacterium rhizogenes. Considerable variation was evident in the relative proportions of the tropane alkaloids. Remodeling of the tropane alkaloid spectrum under co-culture with A. rhizogenes involved a specific and strong increase of hyoscyamine production and revealed that the accumulation of hyoscyamine, 3-tigloyloxy-6,7-epoxytropane, and 3-methylbutyryloxytropane was controlled independently of the majority of tropane alkaloids. Based on correlations between metabolites, we propose a biosynthetic origin of hygrine, the order of esterification of certain di-oxygenated tropanes, and that the rate of acetoxylation contributes to control of hyoscyamine production. Overall, this study shows that the biosynthesis of tropane alkaloids may be far more complex and finely controlled than previously expected.

  8. Tissue distribution and biosynthesis of 1,2-saturated pyrrolizidine alkaloids in Phalaenopsis hybrids (Orchidaceae).

    PubMed

    Frölich, Cordula; Hartmann, Thomas; Ober, Dietrich

    2006-07-01

    Phalaenopsis hybrids contain two 1,2-saturated pyrrolizidine monoesters, T-phalaenopsine (necine base trachelanthamidine) and its stereoisomer Is-phalaenopsine (necine base isoretronecanol). T-Phalaenopsine is the major alkaloid accounting for more than 90% of total alkaloid. About equal amounts of alkaloid were genuinely present as free base and its N-oxide. The structures were confirmed by GC-MS. The quantitative distribution of phalaenopsine in various organs and tissues of vegetative rosette plants and flowering plants revealed alkaloid in all tissues. The highest concentrations were found in young and developing tissues (e.g., root tips and young leaves), peripheral tissues (e.g., of flower stalks) and reproductive organs (flower buds and flowers). Within flowers, parts that usually attract insect visitors (e.g., labellum with colorful crests as well as column and pollinia) show the highest alkaloid levels. Tracer feeding experiments with (14)C-labeled putrecine revealed that in rosette plants the aerial roots were the sites of phalaenopsine biosynthesis. However active biosynthesis was only observed in roots still attached to the plant but not in excised roots. There is a slow but substantial translocation of newly synthesized alkaloid from the roots to other plant organs. A long-term tracer experiment revealed that phalaenopsine shows neither turnover nor degradation. The results are discussed in the context of a polyphyletic molecular origin of the biosynthetic pathways of pyrrolizidine alkaloids in various scattered angiosperm taxa. The ecological role of the so called non-toxic 1,2-saturated pyrrolizidine alkaloids is discussed in comparison to the pro-toxic 1,2-unsaturated pyrrolizidine alkaloids. Evidence from the plant-insect interphase is presented indicating a substantial role of the 1,2-saturated alkaloids in plant and insect defense.

  9. Alkaloids with antioxidant activities from Aconitum handelianum.

    PubMed

    Yin, Tian-Peng; Cai, Le; Xing, Yun; Yu, Jing; Li, Xue-Jiao; Mei, Rui-Feng; Ding, Zhong-Tao

    2016-06-01

    A new C20-diterpenoid alkaloid handelidine (1) and twenty-seven known alkaloids (2-28) were isolated from the roots of Aconitum handelianum. Their structures were established on the basis of extensive spectroscopic analyses. The study indicated that denudatine-type C20-diterpenoid alkaloids with vicinal-triol system and benzyltetrahydroisoquinoline alkaloids exhibited significant antioxidant activities measured by three antioxidant test systems. The aconitine-type C19-diterpenoid alkaloids could serve as potential secondary antioxidants for their strong binding effects to metal ions.

  10. Pro-toxic dehydropyrrolizidine alkaloids in the traditional Andean herbal medicine “asmachilca”

    PubMed Central

    Colegate, Steven M.; Boppré, Michael; Monzón, Julio; Betz, Joseph M.

    2015-01-01

    Ethnopharmacological relevance Asmachilca is a Peruvian medicinal herb preparation ostensibly derived from Eupatorium gayanum Wedd. = Aristeguietia gayana (Wedd.) R.M. King & H. Rob. (Asteraceae: Eupatorieae). Decoctions of the plant have a reported bronchodilation effect that is purported to be useful in the treatment of respiratory allergies, common cold and bronchial asthma. However, its attractiveness to pyrrolizidine alkaloid-pharmacophagous insects indicated a potential for toxicity for human consumers. Aim of the study To determine if commercial asmachilca samples, including fully processed herbal teas, contain potentially toxic 1,2-dehydropyrrolizidine alkaloids. Materials and methods Two brands of “Asmachilca” herbal tea bags and four other commercial samples of botanical materials for preparing asmachilca medicine were extracted and analyzed using HPLC-esi(+)MS and MS/MS for the characteristic retention times and mass spectra of known dehydropyrrolizidine alkaloids. Other suspected dehydropyrrolizidine alkaloids were tentatively identified based on MS/MS profiles and high resolution molecular weight determinations. Further structure elucidation of isolated alkaloids was based on 1D and 2D NMR spectroscopy. Results Asmachilca attracted many species of moths which are known to pharmacophagously gather dehydropyrrolizidine alkaloids. Analysis of 5 of the asmachilca samples revealed the major presence of the dehydropyrrolizidine alkaloid monoesters rinderine and supinine, and their N-oxides. The 6th sample was very similar but did not contain supinine or its N-oxide. Small quantities of other dehydropyrrolizidine alkaloid monoesters, including echinatine and intermedine, were also detected. In addition, two major metabolites, previously undescribed, were isolated and identified as dehydropyrrolizidine alkaloid monoesters with two “head-to-tail” linked viridifloric and/or trachelanthic acids. Estimates of total pyrrolizidine alkaloid and N

  11. GC-MS investigation of Amaryllidaceae alkaloids in Galanthus xvalentinei nothosubsp. subplicatus.

    PubMed

    Sarikaya, Buket Bozkurt; Berkov, Strahil; Bastida, Jaume; Kaya, Gulen Irem; Onur, Mustafa Ali; Somer, Nehir Unver

    2013-03-01

    A GC-MS analysis of alkaloids in the aerial parts and bulbs of Galanthus xvalentinei nothosubsp. subplicatus was performed for the first time. Totally, twenty-six alkaloids were identified, of which tazettine and galanthindole were the major ones. Acetylcholinesterase inhibitory activity of the alkaloidal extracts was determined using modified in vitro Ellman's method. Significant anticholinesterase activity was observed in the tested samples (bulbs: IC50 = 21.3 microg/mL, aerial parts: IC50 = 16.3 microg/mL).

  12. Structural and quantitative analysis of Equisetum alkaloids.

    PubMed

    Cramer, Luise; Ernst, Ludger; Lubienski, Marcus; Papke, Uli; Schiebel, Hans-Martin; Jerz, Gerold; Beuerle, Till

    2015-08-01

    Equisetum palustre L. is known for its toxicity for livestock. Several studies in the past addressed the isolation and identification of the responsible alkaloids. So far, palustrine (1) and N(5)-formylpalustrine (2) are known alkaloids of E. palustre. A HPLC-ESI-MS/MS method in combination with simple sample work-up was developed to identify and quantitate Equisetum alkaloids. Besides the two known alkaloids six related alkaloids were detected in different Equisetum samples. The structure of the alkaloid palustridiene (3) was derived by comprehensive 1D and 2D NMR experiments. N(5)-Acetylpalustrine (4) was also thoroughly characterized by NMR for the first time. The structure of N(5)-formylpalustridiene (5) is proposed based on mass spectrometry results. Twenty-two E. palustre samples were screened by a HPLC-ESI-MS/MS method after development of a simple sample work-up and in most cases the set of all eight alkaloids were detected in all parts of the plant. A high variability of the alkaloid content and distribution was found depending on plant organ, plant origin and season ranging from 88 to 597mg/kg dried weight. However, palustrine (1) and the alkaloid palustridiene (3) always represented the main alkaloids. For the first time, a comprehensive identification, quantitation and distribution of Equisetum alkaloids was achieved.

  13. Alkaloids from cyanobacteria with diverse powerful bioactivities.

    PubMed

    Vasas, G; Borbely, G; Nánási, P; Nánási, P P

    2010-09-01

    Alkaloid containing plants represent a heterogeneous group both taxonomically and chemically, a basic nitrogen being the unifying factor for the various classes. As most alkaloids are extremely toxic, organisms containing them do not feature strongly in medicine but they have always been important in the allopathic system. Typical alkaloids are derived from plant sources, they are basic, they contain one or more nitrogen, and they usually have marked physiological actions in humans or other mammalian species. This review will present various alkaloids generated by cyanobacteria, highlighting their complex structures, powerful bioactivities, and pharmacological properties. The main groups of cyanobacterial alkaloids include the neuromuscular transmission blocker anatoxins, the ion channel blocker saxitoxins, the degenerated amino acid β-methylamino-L-alanine, the protein synthesis inhibitor guanidine alkaloid cylindrospermopsins, and cyanobacterial indol alkaloids with antiviral, antifungal, and cytotoxic activity.

  14. Endophyte-associated ergot alkaloids

    USDA-ARS?s Scientific Manuscript database

    Fescue toxicosis is a very costly (greater than $600 million/annually) for the cattle, horse and small ruminant industries. The tall fescue forage responsible for this intoxication is infected with an endophytic fungus (Neotyphodium coenophialum) that produces ergot alkaloids, which are toxic to th...

  15. Effect of ergot alkaloids associated with fescue toxicosis on hepatic cytochrome P450 and antioxidant proteins

    SciTech Connect

    Settivari, Raja S.; Evans, Tim J.; Rucker, Ed; Rottinghaus, George E.; Spiers, Donald E.

    2008-03-15

    Intake of ergot alkaloids found in endophyte-infected tall fescue grass is associated with decreased feed intake and reduction in body weight gain. The liver is one of the target organs of fescue toxicosis with upregulation of genes involved in xenobiotic metabolism and downregulation of genes associated with antioxidant pathways. It was hypothesized that short-term exposure of rats to ergot alkaloids would change hepatic cytochrome P450 (CYP) and antioxidant expression, as well as reduce antioxidant enzyme activity and hepatocellular proliferation rates. Hepatic gene expression of various CYPs, selected nuclear receptors associated with the CYP induction, and antioxidant enzymes were measured using real-time PCR. Hepatic expression of CYP, antioxidant and proliferating cell nuclear antigen (PCNA) proteins were measured using Western blots. The CYP3A1 protein expression was evaluated using primary rat hepatocellular cultures treated with ergovaline, one of the major ergot alkaloids produced by fescue endophyte, in order to assess the direct role of ergot alkaloids in CYP induction. The enzyme activities of selected antioxidants were assayed spectrophotometrically. While hepatic CYP and nuclear receptor expression were increased in ergot alkaloid-exposed rats, the expression and activity of antioxidant enzymes were reduced. This could potentially lead to increased oxidative stress, which might be responsible for the decrease in hepatocellular proliferation after ergot alkaloid exposure. This study demonstrated that even short-term exposure to ergot alkaloids can potentially induce hepatic oxidative stress which can contribute to the pathogenesis of fescue toxicosis.

  16. Effect of polyamine biosynthetic inhibitors on alkaloids and organogenesis in tobacco callus cultures.

    PubMed

    Tiburcio, A F; Kaur-Sawhney, R; Galston, A W

    1987-01-01

    We studied the effects of inhibitors of ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and spermidine synthase (Spd synthase) on organogenesis and the titers of polyamines (PA) and alkaloids in tobacco calli. DL-alpha-diffluromethylarginine (DFMA) and D-arginine (D-Arg), both inhibitors of ADC activity, were more effective than DL-alpha-difluromethylorinithine (DFMO), an inhibitor of ODC, in reducing titers of PA and the putrescine (Put)-derived alkaloids (nornicotine and nicotine). Dicyclohexylammonium sulfate (DCHA), an inhibitor of Spd synthase, was also more efficient than DFMO in reducing PA and alkaloid levels. Root organogenesis is inversely related to the titers of Put and alkaloids. Thus, DFMA and D-Arg, which strongly inhibit Put and alkaloid biosynthesis, markedly promote root organogenesis, while control callus with high Put and alkaloid content showed poor root organization. These results suggest that morphological differentiation is not required for activation of secondary metabolic pathways and support the view that ADC has a major role in the generation of Put going to the pyrrolidine ring of tobacco alkaloids.

  17. The Catharanthus alkaloids: pharmacognosy and biotechnology.

    PubMed

    van Der Heijden, Robert; Jacobs, Denise I; Snoeijer, Wim; Hallard, Didier; Verpoorte, Robert

    2004-03-01

    The Catharanthus (or Vinca) alkaloids comprise a group of about 130 terpenoid indole alkaloids. Vinblastine is now marketed for more than 40 years as an anticancer drug and became a true lead compound for drug development. Due to the pharmaceutical importance and the low content in the plant of vinblastine and the related alkaloid vincristine, Catharanthus roseus became one of the best-studied medicinal plants. Consequently it developed as a model system for biotechnological studies on plant secondary metabolism. The aim of this review is to acquaint a broader audience with the recent progress in this research and with its exciting perspectives. The pharmacognostical aspects of the Catharanthus alkaloids cover botanical (including some historical), phytochemical and analytical data. An up-to-date view on the biosynthesis of the alkaloids is given. The pharmacological aspects of these alkaloids and their semi-synthetic derivatives are only discussed briefly. The biotechnological part focuses on alternative production systems for these alkaloids, for example by in vitro culture of C. roseus cells. Subsequently it will be discussed to what extent the alkaloid biosynthetic pathway can be manipulated genetically ("metabolic engineering"), aiming at higher production levels of the alkaloids. Another approach is to produce the alkaloids (or their precursors) in other organisms such as yeast. Despite the availability of only a limited number of biosynthetic genes, the research on C. roseus has already led to a broad scientific spin-off. It is clear that many interesting results can be expected when more genes become available.

  18. Ergot alkaloid transport across ruminant gastric tissues.

    PubMed

    Hill, N S; Thompson, F N; Stuedemann, J A; Rottinghaus, G W; Ju, H J; Dawe, D L; Hiatt, E E

    2001-02-01

    Ergot alkaloids cause fescue toxicosis when livestock graze endophyte-infected tall fescue. It is generally accepted that ergovaline is the toxic component of endophyte-infected tall fescue, but there is no direct evidence to support this hypothesis. The objective of this study was to examine relative and potential transport of ergoline and ergopeptine alkaloids across isolated gastric tissues in vitro. Sheep ruminal and omasal tissues were surgically removed and placed in parabiotic chambers. Equimolar concentrations of lysergic acid, lysergol, ergonovine, ergotamine, and ergocryptine were added to a Kreb's Ringer phosphate (KRP) solution on the mucosal side of the tissue. Tissue was incubated in near-physiological conditions for 240 min. Samples were taken from KRP on the serosal side of the chambers at times 0, 30, 60, 120, 180, and 240 min and analyzed for ergot alkaloids by competitive ELISA. The serosal KRP remaining after incubation was freeze-dried and the alkaloid species quantified by HPLC. The area of ruminal and omasal tissues was measured and the potential transportable alkaloids calculated by multiplying the moles of transported alkaloids per square centimeter of each tissue type by the surface area of the tissue. Studies were conducted to compare alkaloid transport in reticular, ruminal, and omasal tissues and to determine whether transport was active or passive. Ruminal tissue had greater ergot alkaloid transport potential than omasal tissue (85 vs 60 mmol) because of a larger surface area. The ruminal posterior dorsal sac had the greatest potential for alkaloid transport, but the other ruminal tissues were not different from one another. Alkaloid transport was less among reticular tissues than among ruminal tissues. Transport of alkaloids seemed to be an active process. The alkaloids with greatest transport potential were lysergic acid and lysergol. Ergopeptine alkaloids tended to pass across omasal tissues in greater quantities than across ruminal

  19. Alkaloids from Hippeastrum equestre. Part I. Phamine, a new phenanthridone alkaloid.

    PubMed

    Döpke, W; Pham, L H; Gründemann, E; Bartoszek, M; Flatau, S

    1995-12-01

    From the bulbs of Vietnamese Hippeastrum equestre Herb. (Amaryllidaceae), besides the well known alkaloids lycorine, tazettine, and hippeastrine, a new alkaloid, phamine, has been isolated. Its structure was established by spectroscopic methods.

  20. Angustilobine and andranginine type indole alkaloids and an uleine-secovallesamine bisindole alkaloid from Alstonia angustiloba.

    PubMed

    Ku, Wai-Foong; Tan, Shin-Jowl; Low, Yun-Yee; Komiyama, Kanki; Kam, Toh-Seok

    2011-12-01

    A total of 20 alkaloids were isolated from the leaf and stem-bark extracts of Alstonia angustiloba, of which two are hitherto unknown. One is an alkaloid of the angustilobine type (angustilobine C), while the other is a bisindole alkaloid angustiphylline, derived from the union of uleine and secovallesamine moieties. The structures of these alkaloids were established using NMR and MS analysis. Angustilobine C showed moderate cytotoxicity towards KB cells.

  1. Progress of pharmacological studies on alkaloids from Apocynaceae.

    PubMed

    Liu, Lu; Cao, Jian-Xin; Yao, Yuan-Cheng; Xu, Sheng-Ping

    2013-01-01

    Alkaloid was a kind of biological active ingredient. There were various types of alkaloids in Apocynaceae. This paper reviewed the progress on alkaloids from Apocynaceae, which contained origin, structure, and pharmacological activity.

  2. The alkaloids of Delphinium cashmirianum.

    PubMed

    Shamma, M; Chinnasamy, P; Miana, G A; Khan, A; Bashir, M; Salazar, M; Patil, P; Beal, J L

    1979-01-01

    Dephinium cashmirianum Royle (Ranunculaceae) has yielded the new base cashmiradelphine (12), together with the known alkaloids anthranoyllycoctonine (9), lycaconitine (15), avadharidine (17), lappaconitine (4), and N-deacetyllappaconitine (7). Pyridinium chlorochromate oxidation of lycoctonine furnished the new aldehyde lycoctonal (11). The arrhythmogenic and heart rate effects of several of these diterpenoidal alkaloids have been measured on the isolated guinea atria. Lappaconitine was arrhythmogenic at 10(-4)M concentrations. But in contrast to the reference drug aconitine, lappaconitine did not increase the heart rate. In anesthetized rabbits injected with lappaconitine, N-deacetyllappaconitine, and lappaconine up to 1 mg/kg, cardiac arrhythmia was quickly observed. Even up to 5 mg/kg, the other substances were non-arrhythmogenic.

  3. [Recent results on the pharmacodynamics of Strychnos malgaches alkaloids].

    PubMed

    Rasoanaivo, P; Ratsimamanga-Urverg, S; Frappier, F

    1996-01-01

    Investigation of Strychnos (Loganiaceae) shrubs and trees was initiated by their traditional uses of their inherent poisons on arrows: this led to the discovery of strychnine and curare alkaloids. Subsequently, phytochemical investigation of several Strychnos species has shown great structural diversity of the alkaloid constituent which also display various biological effects, i.e. convulsive and relaxant effects on muscles, and antimicrobial, antitumor and antihypertensive properties. Ethnobotanical field work conducted in different regions of Madagascar revealed that infusion of three Strychnos species, S. mostueoides, S. myrtoides and S. diplotricha, is used in association with subcurative doses of chloroquine to treat chronic malaria. Bioassayfractionation led to the isolation of two major bioactive components, strychnobrasiline and malagashanine. Whereas strychnobrasiline is a previously known chemical compound, malagashanine is the first in a series of a new subtype of Strychnos alkaloids. These two alkaloids are devoid of intrinsic antimalarial effects, both in vitro (IC50 = 73.0 micrograms/ml for strychnobrasiline and 69.1 micrograms/ml for malagashanine) and in vivo (10 mg/kg conferred a 5% suppression of parasitemia). When these alkaloids are combined with chloroquine at doses much lower than required for antiplasmodial effects, they greatly enhance the chloroquine action in a dose dependent manner as seen by the isobologram method. Several minor alkaloids structurally related to malagashanine were also isolated from Madagascan Strychnos. They all enhance, to greater or lesser degrees, the chloroquine effectiveness. Interestingly, there is a positive correlation between the ethnomedical use of the three Strychnos species as chloroquine adjuvants and the chloroquine-potentiating effects of malagashanine and strychnobrasiline isolated from them. After preliminary toxicological studies, infusion of stem barks of S. myrtoides in association with chloroquine

  4. New aporphine alkaloids of Ocotea minarum.

    PubMed

    Vecchietti, V; Casagrande, C; Ferrari, G; Severini Ricca, G

    1979-10-01

    Fourteen aporphine alkaloids were isolated from the leaves of a Brazilian Lauracea, Ocotea minarum Nees (Mez). The known alkaloids were identified through their physico-chemical properties as: leucoxylonine (VII), dicentrine (IV), ocoteine (V), leucoxine (VI), ocopodine (VIII), predicentrine (IX), dicentrinone (XIV) and thalicminine (XV). Six new aporphine alkaloids were also isolated: ocotominarine (I), ocominarine (III), nor-leucoxylonine (XI), iso-oconovine (xii), 4-hydroxydicentrine (XIII) and ocominarone (XVI). Their structures were determined using spectroscopic methods and chemical correlations.

  5. Four new fluorenone alkaloids and one new dihydroazafluoranthene alkaloid from Caulophyllum robustum Maxim.

    PubMed

    Wang, Xiao-Ling; Liu, Bing-Rui; Chen, Chien-Kuang; Wang, Jun-Ru; Lee, Shoei-Sheng

    2011-09-01

    Four new fluorenone alkaloids, caulophylline A-D (1-4), and one new dihydroazafluoranthene alkaloid, caulophylline E (5) were isolated from the roots of Caulophyllum robustum Maxim. Their structures were elucidated by spectroscopic analysis. Among the isolated alkaloids, Caulophylline E showed good scavenging effects against DPPH radical with IC(50) of 39 μM.

  6. Guanidine alkaloids from Plumbago zeylanica.

    PubMed

    Cong, Hai-Jian; Zhang, Shu-Wei; Shen, Yu; Zheng, Yong; Huang, Yu-Jie; Wang, Wen-Qiong; Leng, Ying; Xuan, Li-Jiang

    2013-07-26

    Eleven new guanidine alkaloids, plumbagines A-G (2-8) and plumbagosides A-D (9-12), as well as two known analogues (1, 13), were isolated from the aerial parts of Plumbago zeylanica. Their structures were elucidated by spectroscopic analyses including 1D and 2D NMR, MS, IR, and CD methods. The absolute configuration of 1 was determined by single-crystal X-ray diffraction of its derivative (1a).

  7. Alkaloids from Boophone haemanthoides (Amaryllidaceae).

    PubMed

    Nair, Jerald J; Rárová, Lucie; Strnad, Miroslav; Bastidad, Jaume; van Staden, Johannes

    2013-12-01

    In this study, the South African Amaryllid Boophone haemanthoides was examined for its phytochemical composition and cytotoxicity. In the process eight alkaloid structures, including the new compound distichaminol, were identified in bulb ethanolic extracts. Of the isolates, lycorine and distichamine exhibited strong activities against human acute lymphoblastic leukemia (CEM), breast adenocarcinoma (MCF7) and cervical adenocarcinoma (HeLa) cells with IC50S ranging from 1.8 to 9.2 microM.

  8. A new view on the codonocarpine type alkaloids of Capparis decidua.

    PubMed

    Forster, Yvonne; Ghaffar, Abdul; Bienz, Stefan

    2016-08-01

    Several spermidine alkaloids are described in literature as constituents of the root bark of Capparis decidua. Since some of the proposed structures, however, are in conflict with the expected biosynthetic paths, an extract of the root bark of the plant was re-investigated. Four major spermidine alkaloids of the codonocarpine type were identified and their structures elucidated: of the four compounds, isocodonocarpine was described previously for C. decidua and cadabicine was proposed as a possible constituent as well. Codonocarpine was found for the first time in an extract of C. decidua but was previously isolated from a closely related plant. Capparidisinine, finally, is an alkaloid with a structure that has never been described before. The structures of the four alkaloids are substantiated by NMR and MS data, and the four compounds are in logical agreement with biosynthetic considerations: they would arise from α,ω-bis-adducts of spermidine with coumaric and/or ferulic acids, followed by phenol oxidation.

  9. Nine new tropane alkaloids from Datura stramonium L. identified by GC/MS.

    PubMed

    El Bazaoui, Ahmed; Bellimam, My Ahmed; Soulaymani, Abdelmajid

    2011-03-01

    Sixty seven tropane alkaloids were identified in the organs of Datura stramonium L. by GC/MS. Nine new tropane alkaloids, 3,7-dihydroxy-6-propionyloxytropane, 6,7-dehydro-3-tigloyloxytropane, 3-tigloyloxy-6,7-epoxytropane, 3,7-dihydroxy-6-(2'-methylbutyryloxy)tropane, 6,7-dehydroapoatropine, 3-(3'-methoxytropoyloxy)tropane, 3-tigloyloxy-6-isobutyryloxy-7-hydroxytropane, 3-tropoyloxy-6-isobutyryloxytropane, 3β-tropoyloxy-6β-isovaleroyloxytropane were tentatively identified. The alkaloids cyclotropine, dihydroaposcopolamine, 6,7-dehydrohyoscyamine and 4'-hydroxylittorine are reported for the first time for the genus Datura and 6,7-dehydrotropine for the family Solanaceae. Hyoscyamine and scopolamine figure as the major tropane alkaloids in the plant organs.

  10. Determination of Ephedra Alkaloids by Liquid Chromatography/Tandem Mass Spectrometry

    PubMed Central

    Sullivan, Darryl; Wehrmann, James; Schmitz, John; Crowley, Richard; Eberhard, Jeffrey

    2008-01-01

    In conjunction with an AOAC Task Group on dietary supplements, a liquid chromatography/tandem mass spectrometry (LC–MS/MS) method was validated for measurement of 6 major alkaloids in raw ephedra sinica herb, ephedra extracts, ephedra tablets, complex dietary supplements containing ephedra, and a high-protein drink mix containing ephedra. The amount of ephedrine-type alkaloids present was determined by LC with mass selective detection. Six replicates of each matrix were analyzed on 3 separate occasions. The presence of 6 ephedrine-type alkaloids was detected at a level >0.5 μg/g based on a 0.5 g sample. The standard curve range for this assay is from 0.02 to 1.0 μg/mL. Appropriate dilutions covered a wide range of specific alkaloid concentrations. The calibration curves for all 6 analytes had correlation coefficients >0.995. PMID:12852561

  11. New alkaloids from Pancratium maritimum.

    PubMed

    Ibrahim, Sabrin R M; Mohamed, Gamal A; Shaala, Lamiaa A; Youssef, Diaa T A; El Sayed, Khalid A

    2013-10-01

    As a part of ongoing search efforts for the discovery of anticancer lead entities from natural sources, bulbs and flowers of the amaryllidaceous plant Pancratium maritimum have been investigated. Fractionation of the extracts of the fresh flowers and bulbs of P. maritimum led to the isolation of four new alkaloids, namely pancrimatines A (1) and B (2), norismine (3), and pancrimatine C (4), together with the previously reported N-methyl-8,9-methylenedioxy-6-phenanthridone (5), trispheridine (6), and N-methyl-8,9-methylenedioxyphenanthridine (7). The structures of these alkaloids were established on the basis of extensive 1D and 2D NMR and high-resolution mass spectral analyses as well as comparison with the literature. Compounds 2 and 7 showed antiproliferative and antimigratory activity against the highly metastatic human prostate cancer cell line PC-3 cells without cytotoxicity. The phenanthridine alkaloid class was identified as having potential for use to control prostate cancer proliferation and migration. Georg Thieme Verlag KG Stuttgart · New York.

  12. Six new alkaloids from Melodinus henryi.

    PubMed

    Ma, Ke; Wang, Jun-Song; Luo, Jun; Kong, Ling-Yi

    2015-01-01

    A total of six new alkaloids, melodinhenines A-F (1-6), were isolated from Melodinus henryi. Melodinhenines A and B are new eburnan-vindolinine-type bisindole alkaloids and melodinhenines C-F are new quinolinic melodinus alkaloids. Their structures were elucidated through extensive spectroscopic methods including 2D NMR and HRESIMS analyses. The absolute configuration of 1 and 2 was determined using ECD exciton chirality method. To the best of our knowledge, this is the first report on the determination of the absolute configuration of eburnan-vindolinine-type bisindole alkaloid using this method.

  13. Morphinane alkaloid dimers from Sinomenium acutum.

    PubMed

    Jin, Hui-Zi; Wang, Xiao-Ling; Wang, Hong-Bing; Wang, Yu-Bo; Lin, Li-Ping; Ding, Jian; Qin, Guo-Wei

    2008-01-01

    Two new morphinane alkaloid dimers, 2,2'-disinomenine (1) and 7',8'-dihydro-1,1'-disinomenine (2), and known 1, 1'-disinomenine (3), were isolated from ethanol extracts of stems of Sinomenium acutum. Their structures were elucidated on the basis of spectroscopic methods. The absolute configuration of alkaloids 1-3 was determined by direct comparison of their CD spectra with the known alkaloid sinomenine. The isolated alkaloids were tested for cytotoxicity against A549, P388, and HeLa cell lines, and 1 and 3 showed weak inhibition against A549 and Hela cells.

  14. 13,14-dihydrocoptisine--the genuine alkaloid from Chelidonium majus.

    PubMed

    Paulsen, Jana; Yahyazadeh, Mahdi; Hänsel, Sophie; Kleinwächter, Maik; Ibrom, Kerstin; Selmar, Dirk

    2015-03-01

    The genuine major benzylisoquinoline alkaloid occurring in the traditional medicinal plant greater celandine (Chelidonium majus L.) is 13,14-dihydrocoptisine and not - as described previously - coptisine. Structure of 13,14-dihydrocoptisine was elucidated. The discrepancy between the alkaloid pattern of the living plants and that of detached and dried leaves is due to the rapid and prompt conversion of 13,14-dihydrocoptisine to coptisine in the course of tissue injuries. Indeed, apart from the major alkaloid, some minor alkaloids might also be converted; this however is not in the centre of focus of this paper. This conversion is initiated by the change of pH. In vivo 13,14-dihydrocoptisine is localized in the acidic vacuoles, where it is stable. In contrast, in the neutral milieu, which results when vacuoles are destroyed in the course of tissue injuries, the genuine alkaloid is oxidized to yield coptisine. Accordingly, when alkaloids from C.majus should be analyzed, any postmortal conversion of 13,14-dihydrocoptisine has to be prevented.

  15. Monanchorin, a bicyclic alkaloid from the sponge Monanchora ungiculata.

    PubMed

    Meragelman, Karina M; McKee, Tawnya C; McMahon, James B

    2004-07-01

    Monanchorin, a guanidine alkaloid with an unusual bicyclic skeleton, together with the known pentacyclic alkaloid crambescidin acid have been isolated from the aqueous extract of the sponge Monanchoraungiculata.

  16. Alkaloids of the flowers of Pancratium maritimum.

    PubMed

    Youssef, D T; Frahm, A W

    1998-10-01

    The defatted ethanolic extract of the fresh flowers of Pancratium maritimum L. yielded the four known alkaloids lycorine, maritidine, lycoramine, and galanthamine. The structures of the isolated alkaloids were determined mainly through spectroscopic studies including one- and two-dimensional NMR (COSY, NOESY, DEPT, HETCOR, and HMBC) and CD techniques. Some spectral data are newly reported or revised.

  17. Halogenated Indole Alkaloids from Marine Invertebrates

    PubMed Central

    Pauletti, Patrícia Mendonça; Cintra, Lucas Silva; Braguine, Caio Guedes; da Silva Filho, Ademar Alves; Silva, Márcio Luís Andrade e; Cunha, Wilson Roberto; Januário, Ana Helena

    2010-01-01

    This review discusses the isolation, structural elucidation, and biological activities of halogenated indole alkaloids obtained from marine invertebrates. Meridianins and related compounds (variolins, psammopemmins, and aplicyanins), as well as aplysinopsins and leptoclinidamines, are focused on. A compilation of the 13C-NMR spectral data of these selected natural indole alkaloids is also provided. PMID:20559487

  18. Halogenated indole alkaloids from marine invertebrates.

    PubMed

    Pauletti, Patrícia Mendonça; Cintra, Lucas Silva; Braguine, Caio Guedes; da Silva Filho, Ademar Alves; Silva, Márcio Luís Andrade E; Cunha, Wilson Roberto; Januário, Ana Helena

    2010-04-28

    This review discusses the isolation, structural elucidation, and biological activities of halogenated indole alkaloids obtained from marine invertebrates. Meridianins and related compounds (variolins, psammopemmins, and aplicyanins), as well as aplysinopsins and leptoclinidamines, are focused on. A compilation of the (13)C-NMR spectral data of these selected natural indole alkaloids is also provided.

  19. Alkaloids of Nelumbo lutea (Wild.) pers. (Nymphaeaceae)

    PubMed

    Zelenski, S G

    1977-11-01

    A phytochemical investigation of an alcoholic extract of the petioles of Nelumbo lutea resulted in the identification of the alkaloids N-methylasimilobine, anonaine, and roemerine. The alkaloids nuciferine, armepavine, N-nornuciferine, and N-norarmepavine, previously previously reported in the whole plant, were also identified.

  20. A new indole alkaloid from Alstonia scholaris.

    PubMed

    Jain, Luna; Pandey, M B; Singh, Sarita; Singh, A K; Pandey, V B

    2009-01-01

    A new indole alkaloid, N-formylscholarine, together with picrinine, strictamine and nareline has been isolated from the fruit pods of Alstonia scholaris, and their structures were established by various spectral data. This is the first report of these alkaloids in A. scholaris fruit pods.

  1. Cytotoxic oxoisoaporphine alkaloids from Menispermum dauricum.

    PubMed

    Yu, B W; Meng, L H; Chen, J Y; Zhou, T X; Cheng, K F; Ding, J; Qin, G W

    2001-07-01

    Four new oxoisoaporphine alkaloids, daurioxoisoporphines A-D (1-4), were isolated from the rhizomes of Menispermum dauricum. The structures of these alkaloids were established by spectroscopic methods. The cytotoxic evaluation of 1 and 2 is reported against four cancer cell lines.

  2. Plant alkaloids of the polymethyleneamine series

    NASA Astrophysics Data System (ADS)

    Rogoza, Ludmila N.; Salakhutdinov, Nariman F.; Tolstikov, Genrikh A.

    2005-04-01

    The published data on the structures and biological activities of the plant alkaloids of the biogenic polymethyleneamine series, viz., putrescine (1,4-diaminobutane), spermidine (1,8-diamino-4 -azaoctane), and spermine (1,12-diamino-4,9-diazadodecane), are considered and systematised. The structures and biological activities of some synthetic analogues of these alkaloids are also presented.

  3. Alkaloids from Rauwolfia cubana Stem Bark.

    PubMed

    Martinez, J A; Gomez, C; Santana, T; Velez, H

    1989-06-01

    Six indole alkaloids, tetrahydroalstonine, aricine, 16- EPI-affinine, ajmaline, amerovolfine, and amerovolficine have been isolated from the ethanolic extract of the stem bark of RAUWOLFIA CUBANA A. DC. Amerovolfine ( N(alpha)-demethylaccedine) and amerovolficine (16-demethoxy-carbonylpagicerine) are new alkaloids related to 16- EPI-affinine, and their structures have been determined by spectroscopic analysis.

  4. Glycoalkaloids and calystegine alkaloids in potatoes

    USDA-ARS?s Scientific Manuscript database

    Potatoes contain two classes of alkaloids: the glycoalkaloids and the calystegines. The presence of glycoalkaloids in potatoes and their toxicity has been known for more than a century and much has been written about them. Discovery of the nortropane calystegine alkaloids is more recent, and the k...

  5. The alkaloid alstonine: a review of its pharmacological properties.

    PubMed

    Elisabetsky, E; Costa-Campos, L

    2006-03-01

    Indole compounds, related to the metabolism of tryptophan, constitute an extensive family, and are found in bacteria, plants and animals. Indolic compounds possess significant and complex physiological roles, and especially indole alkaloids have historically constituted a class of major importance in the development of new plant derived drugs. The indole alkaloid alstonine has been identified as the major component of a plant-based remedy, used in Nigeria to treat mental illnesses by traditional psychiatrists. Although it is certainly difficult to compare the very concept of mental disorders in different cultures, the traditional use of alstonine is remarkably compatible with its profile in experimental animals. Even though alstonine in mice models shows a psychopharmacological profile closer to the newer atypical antipsychotic agents, it also shows important differences and what seems to be an exclusive mechanism of action, not entirely clarified at this point. Considering the seemingly unique mode of action of alstonine and that its traditional use can be viewed as indicative of bioavailability and safety, this review focuses on the effects of alstonine in the central nervous system, particularly on its unique profile as an antipsychotic agent. We suggest that a thorough understanding of traditional medical concepts of health and disease in general and traditional medical practices in particular, can lead to true innovation in paradigms of drug action and development. Overall, the study of this unique indole alkaloid may be considered as another example of the richness of medicinal plants and traditional medical systems in the discovery of new prototypic drugs.

  6. The Alkaloid Alstonine: A Review of Its Pharmacological Properties

    PubMed Central

    Elisabetsky, E.; Costa-Campos, L.

    2006-01-01

    Indole compounds, related to the metabolism of tryptophan, constitute an extensive family, and are found in bacteria, plants and animals. Indolic compounds possess significant and complex physiological roles, and especially indole alkaloids have historically constituted a class of major importance in the development of new plant derived drugs. The indole alkaloid alstonine has been identified as the major component of a plant-based remedy, used in Nigeria to treat mental illnesses by traditional psychiatrists. Although it is certainly difficult to compare the very concept of mental disorders in different cultures, the traditional use of alstonine is remarkably compatible with its profile in experimental animals. Even though alstonine in mice models shows a psychopharmacological profile closer to the newer atypical antipsychotic agents, it also shows important differences and what seems to be an exclusive mechanism of action, not entirely clarified at this point. Considering the seemingly unique mode of action of alstonine and that its traditional use can be viewed as indicative of bioavailability and safety, this review focuses on the effects of alstonine in the central nervous system, particularly on its unique profile as an antipsychotic agent. We suggest that a thorough understanding of traditional medical concepts of health and disease in general and traditional medical practices in particular, can lead to true innovation in paradigms of drug action and development. Overall, the study of this unique indole alkaloid may be considered as another example of the richness of medicinal plants and traditional medical systems in the discovery of new prototypic drugs. PMID:16550222

  7. Photoreduction and ketone-sensitized reduction of alkaloids.

    PubMed

    Görner, Helmut; Miskolczy, Zsombor; Megyesi, Mónika; Biczók, László

    2011-01-01

    The photoprocesses of berberine, palmatine, coralyne, sanguinarine, flavopereirine and ellipticine were studied in several solvents. The quantum yields Φ(Δ) of singlet molecular oxygen formation of berberine, palmatine and sanguinarine are moderate in dichloromethane (0.2-0.6) and much smaller in acetonitrile or trifluoroethanol. For the other alkaloids examined, Φ(Δ) is rather independent of solvent polarity. The direct and ketone-sensitized photolysis, using steady-state irradiation at 313 nm or 248/308 nm laser pulses, was studied by absorption and fluorescence spectroscopy. Thereby, radicals were observed yielding eventually dihydro derivatives as major products, which are thermally back-converted on admission of oxygen. The quantum yield of conversion of alkaloids to dihydroalkaloids is enhanced in the presence of triethylamine. The reaction in the presence of ketones and electron or H-atom donors has a quantum yield of close to unity.

  8. Opioid peptides and opiate alkaloids in immunoregulatory processes.

    PubMed

    Stefano, George B; Kream, Richard M

    2010-06-30

    Among the various non-neuronal cell types known to express and utilize neuropeptides, those of the immune system have received much attention in recent years. In particular, comparative studies in vertebrates and invertebrates have shown that endogenous opioid peptides are engaged in receptor mediated autoregulatory immune and neuroendocrine processes. The majority of these immune processes are stimulatory, as determined by their effects on conformational changes indicative of immunocyte activation, cellular motility, and phagocytosis. Endogenous opioid peptides form an effective network of messenger molecules in cooperation with cytokines, opiate alkaloids, and certain regulatory enzymes (neutral endopeptidase 24.11). Peptide-mediated immunostimulatory effects observed in this system are operationally counteracted by the inhibitory effects of morphine and related opiates. Opioid/opiate signaling processes are mediated by several types of receptors with different degrees of selectivity. Among them the recently identified, opioid insensitive µ(3) receptor deserves attention on account of its specificity for opiate alkaloids.

  9. In vivo Cytotoxicity Studies of Amaryllidaceae Alkaloids.

    PubMed

    Nair, Jerald J; Bastida, Jaume; van Staden, Johannes

    2016-01-01

    The plant family Amaryllidaceae is recognizable for its esthetic floral characteristics, its widespread usage in traditional medicine as well as its unique alkaloid principles. Few alkaloid-producing families rival the Amaryllidaceae in terms of the diversity of its structures as well as their wide applicability on the biological landscape. In particular, cytotoxic effects have come to be a dominant theme in the biological properties of Amaryllidacea alkaloids. To this extent, a significant number of structures have been subjected to in vitro studies in numerous cell lines from which several targets have been identified as promising chemotherapeutics. By contrast, in vivo models of study involving these alkaloids have been carried out to a lesser extent and should prove crucial in the continued development of a clinical target such as pancratistatin. This survey examines the cytotoxic effects of Amaryllidaceae alkaloids in vivo and contrasts these against the corresponding in vitro effects.

  10. Indole Alkaloids from Alocasia macrorrhiza.

    PubMed

    Zhu, Ling-Hua; Chen, Cheng; Wang, Hui; Ye, Wen-Cai; Zhou, Guang-Xiong

    2012-01-01

    Five new indole alkaloids, alocasins A-E (3-7), together with known hyrtiosin B (1) and hyrtiosulawesin (2) were isolated from Alocasia macrorrhiza (L.) SCHOTT; their structures were elucidated on the basis of spectroscopic data. Compounds 1-7 were in vitro tested for cytostatic activity on human throat cancer (Hep-2), human hepatocarcinoma (Hep-G2), and human nasopharyngeal carcinoma epithelial (CNE) cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method; compounds 2, 3, 6 and 7 showed mild antiproliferative activity against Hep-2 and Hep-G2 whereas compounds 2 and 4 showed gentle antiproliferative activity against CNE.

  11. Depth-related alkaloid variation in Mediterranean Aplysina sponges.

    PubMed

    Putz, Annika; Kloeppel, Anne; Pfannkuchen, Martin; Brümmer, Franz; Proksch, Peter

    2009-01-01

    Total amounts and patterns of bromoisoxazoline alkaloids of Aplysina sponges from Croatia (Mediterranean Sea) were analyzed along an underwater slope ranging from 1.8 to 38.5 m. Total amounts of alkaloids varied from sample to sample and showed no correlation with depth. In contrast, striking differences of alkaloid patterns were found between sponges from shallow sites (1.8-11.8 m) and those collected from deeper sites (11.8-38.5 m). Sponges from shallow depths consistently exhibited alkaloid patterns typical for Aplysina aerophoba with aerophobin-2 (2) and isofistularin-3 (3) as main constituents. Sponges from deeper sites (below 11.8 m) resembled Aplysina cavernicola with aerothionin (4) and aplysinamisin-1 (1) as major compounds. The typical A. cavernicola pigment 3,4-dihydroxyquinoline-2-carboxylic acid (6), however, could not be detected in A. aerophoba sponges but was replaced by the A. aerophoba pigment uranidine (5) which appeared to be present in all sponge samples analyzed. During transplantation experiments sponges from sites below 30 m featuring the A. cavernicola chemotype of bromoisoxazoline alkaloids were translocated to shallower habitats (10 m). The alkaloid patterns in transplanted sponges were found to be stable over a period of 12 months and unaffected by this change in depth. In a further experiment, clones of Aplysina sponges from shallow depths of 5-6 m resembling the A. aerophoba chemotype were either kept in situ under natural light conditions or artificially shaded by excluding photosynthetically active radiation (PAR). Neither 4 nor 1 were detected in artificially shaded sponges over an observation period of 12 months. In summary, two chemically distinct types of Aplysina sponges were discovered in this study that proved to be remarkably stable with regard to the bromoisoxazoline patterns and unaffected either by changing the light conditions or depth. It is not clear presently whether the Aplysina sponges collected from depths < 11.8 m

  12. Identification and characterization of indole and oxindole alkaloids from leaves of mitragyna speciosa korth using liquid chromatography-accurate QToF mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Alkaloids have been reported to be the major physiologically active constituents in Mitragyna. An analytical method was developed to provide an alternative, fast method for characterization of alkaloids from various Mitragyna speciosa samples. The separation was achieved using a reversed phase (C-8)...

  13. The effect of body condition on serum concentrations of two teratogenic alkaloids (anagyrine and ammodendrine) from Lupines (Lupinus spp.) that cause crooked calf disease.

    USDA-ARS?s Scientific Manuscript database

    Several species of lupine (Lupinus spp.) are toxic to livestock, causing death losses in sheep and cattle but more commonly “crooked calf disease” in pregnant range cows. The major toxic alkaloids in lupine are of the quinolizidine alkaloid group and include the teratogen anagyrine, which is primari...

  14. Enantioselective synthesis of alkaloids from phenylglycinol-derived lactams.

    PubMed

    Amat, Mercedes; Llor, Núria; Griera, Rosa; Pérez, Maria; Bosch, Joan

    2011-04-01

    This review is focused on recent synthetic achievements and ongoing work in our laboratory using phenylglycinol-derived oxazolopiperidone lactams as starting materials for the enantioselective synthesis of piperidine-containing alkaloids: madangamines, 2,5-disubstituted decahydroquinoline and 1-substituted tetrahydroisoquinoline alkaloids, the indole alkaloids 20S- and 20R-dihydrocleavamine and quebrachamine, and indole alkaloids of the uleine and silicine groups.

  15. Effect of MDL-Type alkaloids on tall larkspur toxicosis

    USDA-ARS?s Scientific Manuscript database

    Larkspur plants contain numerous norditerpenoid alkaloids which include the 7, 8-methylenedioxylycoctonine (MDL) -type alkaloids and the N-(methylsuccinimido) anthranoyllycoctonine (MSAL) -type alkaloids. The MSAL-type alkaloids are generally much more toxic (typically > 20x) than the MDL-type alka...

  16. Effect of MDL-type alkaloids on tall larkspur toxicosis

    USDA-ARS?s Scientific Manuscript database

    Larkspur plants contain numerous norditerpenoid alkaloids which include the 7, 8-methylenedioxylycoctonine (MDL) -type alkaloids and the N-(methylsuccinimido) anthranoyllycoctonine (MSAL) -type alkaloids. The MSAL-type alkaloids are generally much more toxic (typically > 20x). Toxicity of many tal...

  17. Comparative Study of Alkaloid Pattern of Four Bulgarian Fumaria species.

    PubMed

    Doncheva, Tsvetelina; Yordanova, Gabriela; Vutov, Vassil; Kostova, Nadezhda; Philipov, Stefan

    2016-02-01

    The alkaloid pattern of four Fumaria species (Fumaria kralikii, Fumaria rostellata, Fumaria schleicherii, Fumaria thureii) growing in Bulgaria was investigated by GC-MS and twenty isoquinoline alkaloids were determined. Phytochemical investigation of the alkaloid composition on Fumaria thuretii Boiss was made for the first time. The alkaloid profile of the species was compared at two levels, between different species and within two species from different habitats. Two chemotypical groups, based on the types of isoquinoline alkaloids were suggested. To group A belong species F. kralikii, F. rostellata (F. r. 1) and F. thuretii containing more than 50% spirobenzylisoquinoline alkaloids of the crude alkaloid mixtures. To group B belong species F. rostellata (F. r. 2) and F. schleicherii containing more than 40% protopine alkaloids and relatively high percentage phthaldeisoquinoline alkaloids (11-19%). In group A phthaldeisoquinoline alkaloids were not detected.

  18. Bromopyrrole Alkaloids from Okinawan Marine Sponges Agelas spp.

    PubMed

    Tanaka, Naonobu; Kusama, Taishi; Kashiwada, Yoshiki; Kobayashi, Jun'ichi

    2016-01-01

    In our continuing study for structurally and biogenetically interesting natural products from marine organisms, Okinawan marine sponges Agelas spp. were investigated, resulting in the isolation of 18 unique alkaloids including five dimeric bromopyrrole alkaloids (1-5), ten monomeric bromopyrrole alkaloids (6-15), and three conjugates of monomeric bromopyrrole alkaloid and hydroxykynurenine (16-18). In this mini-review, the isolation, structure elucidation, and antimicrobial activities of these alkaloids are summarized.

  19. Quantitative 1H Nuclear Magnetic Resonance Metabolite Profiling as a Functional Genomics Platform to Investigate Alkaloid Biosynthesis in Opium Poppy1[W

    PubMed Central

    Hagel, Jillian M.; Weljie, Aalim M.; Vogel, Hans J.; Facchini, Peter J.

    2008-01-01

    Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a versatile model system to study plant alkaloid metabolism. The plant is widely cultivated as the only commercial source of the narcotic analgesics morphine and codeine. Variations in plant secondary metabolism as a result of genetic diversity are often associated with perturbations in other metabolic pathways. As part of a functional genomics platform, we used 1H nuclear magnetic resonance (NMR) metabolite profiling for the analysis of primary and secondary metabolism in opium poppy. Aqueous and chloroform extracts of six different opium poppy cultivars were subjected to chemometric analysis. Principle component analysis of the 1H NMR spectra for latex extracts clearly distinguished two varieties, including a low-alkaloid variety and a high-thebaine, low-morphine cultivar. Distinction was also made between pharmaceutical-grade opium poppy cultivars and a condiment variety. Such phenotypic differences were not observed in root extracts. Loading plots confirmed that morphinan alkaloids contributed predominantly to the variance in latex extracts. Quantification of 34 root and 21 latex metabolites, performed using Chenomx NMR Suite version 4.6, showed major differences in the accumulation of specific alkaloids in the latex of the low-alkaloid and high-thebaine, low-morphine varieties. Relatively few differences were found in the levels of other metabolites, indicating that the variation was specific for alkaloid metabolism. Exceptions in the low-alkaloid cultivar included an increased accumulation of the alkaloid precursor tyramine and reduced levels of sucrose, some amino acids, and malate. Real-time polymerase chain reaction analysis of 42 genes involved in primary and secondary metabolism showed differential gene expression mainly associated with alkaloid biosynthesis. Reduced alkaloid levels in the condiment variety were associated with the

  20. Quantitative analysis of bioactive carbazole alkaloids in Murraya koenigii.

    PubMed

    Joshi, Trapti; Mahar, Rohit; Singh, Sumit K; Srivastava, Piush; Shukla, Sanjeev K; Mishra, Dipak K; Bhatta, R S; Kanojiya, Sanjeev

    2015-02-01

    Carbazole alkaloids induce apoptosis in HL-60 cells through activation of the caspase-9/caspase-3 pathway and they are targeted as potential anticancer agents. Thus, the naturally occurring carbazole alkaloids become important as precursors for lead optimization in drug development. A method based on ultra performance liquid chromatography coupled with photodiode-array detection was developed using reverse phase isocratic elution with 85:15 acetonitrile and ammonium acetate buffer (5 mM). Seven samples of Murrya koenigii (L.) Spreng. from north-central India (Uttar Pradesh) were analyzed. All three targeted analytes, koenimbidine (mk1), koenimbine (mk2) and mahanimbine (mk3), were well separated within 4.0 min with linearity of the calibration curves (r2 > 0.999). The limits of detection and quantification of mk1, mk2 and mk3 were 0.7, 0.4, 0.04 μg/mL and 2.14, 1.21, 0.12 μg/mL, respectively. The natural abundance of mk1, mk2 and mk3 was 0.06-0.20, 0.04-0.69 and 0.13-0.42%, w/w, respectively, in the dried powdered leaves, whereas, the tissue specific distribution of carbazole alkaloids was observed in the order of predominance, mk1 leaf>root>fruit>stem, mk2 fruit>leaf >stem>root, and mk3 fruit>leaf>root>stem. The developed method was validated for limits of detection and quantification, repeatability, accuracy, precision and stability. This is the first report on the natural abundance of the major carbazole alkaloids in M. koenigii and the method developed can be used in HPLC/UPLC systems.

  1. Mesembrine alkaloids: Review of their occurrence, chemistry, and pharmacology.

    PubMed

    Krstenansky, John L

    2017-01-04

    Mesembrine alkaloids are considered to be the primary active constituents of the South African medicinal plant Sceletium tortuosum (L.) N.E.Br. (Aizoaceae), and it is used as the dried or fermented aerial material from the plant, which is known as kanna (aka, channa, kougoed). Traditional regional use ranged from relieving thirst, mild analgesia, and alteration of mood. Current interest has focused primarily on the antidepressant action of preparations based on the plant and commercialization is expanding the recognition and availability of these preparations. Searches for the keywords "Sceletium or mesembrine" were performed in "PubMed-NCBI", "Chemical Abstracts SciFinder" and "Thomson Reuters Web of Science" databases in addition to the inclusion of references cited within prior reviews and scientific reports. Additionally the "SciFinder" database was searched using 3a-phenyl-cis-octahydroindole in the SciFinder Substructure Module (SSM). Plant taxonomy was validated by the database "The Plant List". This review focuses on the chemistry, analysis, and pharmacology of the mesembrine alkaloids. Despite a long history of medicinal used and research investigation, there has been a renewed interest in the pharmacological properties of the mesembrine alkaloids and much of the pharmacology has only recently been published. The two major active alkaloids mesembrine and mesembrenone are still in the process of being more fully characterized pharmacologically. They are serotonin reuptake inhibitors, which provides a rationale for the plant's traditional use as an antidepressant, but other actions are beginning to appear in the literature. Additionally, mesembrenone has reasonably potent PDE4 inhibitory activity. This review intends to provide an overview of the available literature, summarize the current findings, and put them in perspective with earlier studies and reviews. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Widespread Chemical Detoxification of Alkaloid Venom by Formicine Ants.

    PubMed

    LeBrun, Edward G; Diebold, Peter J; Orr, Matthew R; Gilbert, Lawrence E

    2015-10-01

    The ability to detoxify defensive compounds of competitors provides key ecological advantages that can influence community-level processes. Although common in plants and bacteria, this type of detoxification interaction is extremely rare in animals. Here, using laboratory behavioral assays and analyses of videotaped interactions in South America, we report widespread venom detoxification among ants in the subfamily Formicinae. Across both data sets, nine formicine species, representing all major clades, used a stereotyped grooming behavior to self-apply formic acid (acidopore grooming) in response to fire ant (Solenopsis invicta and S. saevissima) venom exposure. In laboratory assays, this behavior increased the survivorship of species following exposure to S. invicta venom. Species expressed the behavior when exposed to additional alkaloid venoms, including both compositionally similar piperidine venom of an additional fire ant species and the pyrrolidine/pyrroline alkaloid venom of a Monomorium species. In addition, species expressed the behavior following exposure to the uncharacterized venom of a Crematogaster species. However, species did not express acidopore grooming when confronted with protein-based ant venoms or when exposed to monoterpenoid-based venom. This pattern, combined with the specific chemistry of the reaction of formic acid with venom alkaloids, indicates that alkaloid venoms are targets of detoxification grooming. Solenopsis thief ants, and Monomorium species stand out as brood-predators of formicine ants that produce piperidine, pyrrolidine, and pyrroline venom, providing an important ecological context for the use of detoxification behavior. Detoxification behavior also represents a mechanism that can influence the order of assemblage dominance hierarchies surrounding food competition. Thus, this behavior likely influences ant-assemblages through a variety of ecological pathways.

  3. The Genus Diphasiastrum and Its Lycopodium Alkaloids.

    PubMed

    Halldorsdottir, Elsa Steinunn; Kowal, Natalia Magdalena; Olafsdottir, Elin Soffia

    2015-08-01

    The genus Diphasiastrum includes at least 23 species distributed primarily across the northern temperate and subarctic areas of the world. These plants produce an array of lycopodium alkaloids, and some species such as Diphasiastrum complanatum have been used in traditional medicine for ages for various conditions. Hybridization is common in this group of plants and they have always been a challenge for taxonomists and other scientists studying them. To date, 11 Diphasiastrum species have been reported to produce lycopodium alkaloids. In this review, reported alkaloids and their distribution patterns across these species along with taxonomical and bioactivity considerations are reviewed and discussed.

  4. Racemic alkaloids from the fungus Ganoderma cochlear.

    PubMed

    Wang, Xin-Long; Dou, Man; Luo, Qi; Cheng, Li-Zhi; Yan, Yong-Ming; Li, Rong-Tao; Cheng, Yong-Xian

    2017-01-01

    Seven pairs of new alkaloid enantiomers, ganocochlearines C-I (1, 3-8), and three pairs of known alkaloids were isolated from the fruiting bodies of Ganoderma cochlear. The chemical structures of new compounds were elucidated on the basis of 1D and 2D NMR data. The absolute configurations of compounds 1, 3-10 were assigned by ECD calculations. Biological activities of these isolates against renal fibrosis were accessed in rat normal or diseased renal interstitial fibroblast cells. Importantly, the plausible biosynthetic pathway for this class of alkaloids was originally proposed.

  5. Polycyclic Guanidine Alkaloids from Poecilosclerida Marine Sponges.

    PubMed

    Sfecci, Estelle; Lacour, Thierry; Amade, Philippe; Mehiri, Mohamed

    2016-04-09

    Sessile marine sponges provide an abundance of unique and diversified scaffolds. In particular, marine guanidine alkaloids display a very wide range of biological applications. A large number of cyclic guanidine alkaloids, including crambines, crambescins, crambescidins, batzelladines or netamins have been isolated from Poecilosclerida marine sponges. In this review, we will explore the chemodiversity of tri- and pentacyclic guanidine alkaloids. NMR and MS data tools will also be provided, and an overview of the wide range of bioactivities of crambescidins and batzelladines derivatives will be given.

  6. Marine Pyridoacridine Alkaloids: Biosynthesis and Biological Activities.

    PubMed

    Ibrahim, Sabrin R M; Mohamed, Gamal A

    2016-01-01

    Pyridoacridines are a class of strictly marine-derived alkaloids that constitute one of the largest chemical families of marine alkaloids. During the last few years, both natural pyridoacridines and their analogues have constituted excellent targets for synthetic works. They have been the subject of intense study due to their significant biological activities; cytotoxic, antibacterial, antifungal, antiviral, insecticidal, anti-HIV, and anti-parasitic activities. In the present review, 95 pyridoacridine alkaloids isolated from marine organisms are discussed in term of their occurrence, biosynthesis, biological activities, and structural assignment.

  7. Polycyclic Guanidine Alkaloids from Poecilosclerida Marine Sponges

    PubMed Central

    Sfecci, Estelle; Lacour, Thierry; Amade, Philippe; Mehiri, Mohamed

    2016-01-01

    Sessile marine sponges provide an abundance of unique and diversified scaffolds. In particular, marine guanidine alkaloids display a very wide range of biological applications. A large number of cyclic guanidine alkaloids, including crambines, crambescins, crambescidins, batzelladines or netamins have been isolated from Poecilosclerida marine sponges. In this review, we will explore the chemodiversity of tri- and pentacyclic guanidine alkaloids. NMR and MS data tools will also be provided, and an overview of the wide range of bioactivities of crambescidins and batzelladines derivatives will be given. PMID:27070629

  8. Alkaloids from Narcissus angustifolius subsp. transcarpathicus (Amaryllidaceae).

    PubMed

    Labraña, Josep; Machocho, Alex King'ori; Kricsfalusy, Vladimir; Brun, Reto; Codina, Carles; Viladomat, Francesc; Bastida, Jaume

    2002-08-01

    Seven alkaloids have been isolated from fresh bulbs of Narcissus angustifolius subsp. transcarpathicus (Amaryllidaceae). Nangustine, reported here for the first time, is the first 5,11-methanomorphanthridine alkaloid with a C-3/C-4 substitution. The structure and stereochemistry of this new alkaloid, as well as those previously known, have been determined by physical and spectroscopic methods. Spectroscopic data of pancracine have been completed. The in vitro assay activity against the parasitic protozoa Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum was carried out with the compounds nangustine and pancracine.

  9. Gelsemium alkaloids, immunosuppressive agents from Gelsemium elegans.

    PubMed

    Xu, You-Kai; Liao, Shang-Gao; Na, Zhi; Hu, Hua-Bin; Li, Yan; Luo, Huai-Rong

    2012-09-01

    Bioassay-guided isolation of the stems of Gelsemium elegans has led to the isolation of two new Gelsemium alkaloids, 21-(2-oxopropyl)-koumine (1) and 11-methoxygelselegine (2), and two known alkaloids, koumine (3) and gelselegine (4). The structures of 1-2 were determined by spectroscopic (for both) and single-crystal X-ray diffraction (for 1) analysis. All compounds isolated were evaluated for their potential as immunosuppressive agents and the data suggested that Gelsemium alkaloids of different structural types possibly have potential as immunosuppressive agents. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. 4-Quinolone alkaloids from Melochia odorata.

    PubMed

    Jadulco, Raquel C; Pond, Christopher D; Van Wagoner, Ryan M; Koch, Michael; Gideon, Osia G; Matainaho, Teatulohi K; Piskaut, Pius; Barrows, Louis R

    2014-01-24

    The methanol extract of Melochia odorata yielded three 4-quinolone alkaloids including waltherione A (1) and two new alkaloids, waltherione C (2) and waltherione D (3). Waltheriones A and C showed significant activities in an in vitro anti-HIV cytoprotection assay at concentrations of 56.2 and 0.84 μM and inhibition of HIV P24 formation of more than 50% at 1.7 and 0.95 μM, respectively. The structures of the alkaloids were established by spectroscopic data interpretation.

  11. 4-Quinolone Alkaloids from Melochia odorata

    PubMed Central

    Jadulco, Raquel C.; Pond, Christopher D.; Van Wagoner, Ryan M.; Koch, Michael; Gideon, Osia G.; Matainaho, Teatulohi K.; Piskaut, Pius; Barrows, Louis R.

    2014-01-01

    The methanol extract of Melochia odorata yielded three 4-quinolone alkaloids including waltherione A (1) and two new alkaloids, waltherione C (2) and waltherione D (3). Waltheriones A and C showed significant activities in an in vitro anti-HIV cytoprotection assay at concentrations of 56.2 and 0.84 μM, and inhibition of HIV P24 formation of more than 50% at 1.7 and 0.95 μM, respectively. The structures of the alkaloids were established by spectroscopic data interpretation. PMID:24392742

  12. Isoquinoline and isoindole alkaloids from Menispermum dauricum.

    PubMed

    Zhang, Xiaoqi; Ye, Wencai; Zhao, Shouxun; Che, Chun-Tao

    2004-04-01

    Three isoquinoline alkaloids and an isoindole alkaloid, along with eight known compounds, were isolated from the roots of Menispermum dauricum (Menispermacese). The alkaloids were characterized as 7-hydroxy-6-methoxy-1(2H)-isoquinolinone, 6,7-dimethoxy-N-methyl-3,4-dioxo-1(2H)-isoquinolinone, 1-(4-hydroxybenzoyl)-7-hydroxy-6-methoxy-isoquinoline and 6-hydroxy-5-methoxy-N-methylphthalimide, on the basis of spectral evidence including 1D- and 2D-NMR and MS analyses.

  13. Synthesis of morphine alkaloids and derivatives.

    PubMed

    Rinner, Uwe; Hudlicky, Tomas

    2012-01-01

    This review summarizes recent developments in the total synthesis of morphine alkaloids and some of the semisynthetic derivatives. The literature is covered for the period of 5 years after the publication of the last review in 2005. The syntheses that appeared in this period are covered in detail and are placed in the context of all syntheses of opiate alkaloids since the original one published by Gates in 1952. The introduction covers the historical aspects of total synthesis of these alkaloids. The synthesis of some of the medicinally useful derivatives is reviewed in the last section along with some of the methodology required for their preparation.

  14. Application of Liquid Chromatography/Ion Trap Mass Spectrometry Technique to Determine Ergot Alkaloids in Grain Products

    PubMed Central

    Szymczyk, Krystyna; Jędrzejczak, Renata; Roszko, Marek

    2015-01-01

    Summary A liquid chromatography/ion trap mass spectrometry-based method to determine six ergot alkaloids and their isomers is presented. The samples were cleaned on neutral alumina-based solid-phase extraction cartridges. The following method parameters were obtained (depending on the analyte and spiking level): method recovery from 63.0 to 104.6%, relative standard deviation below 18%, linear range from 1 to 325 µg/kg, linear correlation coefficient not less than 0.98. The developed analytical procedure was applied to determine the levels of ergot alkaloids in 65 samples of selected rye-based food products (flour – 34 samples, bran – 12 samples, rye – 18 samples, flakes – 1 sample). Measurable levels of alkaloids were found in majority of the analysed samples, particularly in rye flour. Additionally, alkaloids were determined in ergot sclerotia isolated from rye grains. Total content was nearly 0.01% (97.9 mg/kg). However, the alkaloid profile was dominated by ergocristine at 45.6% (44.7 mg/kg), an alkaloid not commonly found in the tested food products. Ergocorninine at 0.2% (0.2 mg/kg) was the least abundant alkaloid. PMID:27904328

  15. Airways antiallergic effect and pharmacokinetics of alkaloids from Alstonia scholaris.

    PubMed

    Zhao, Yun-Li; Cao, Jing; Shang, Jian-Hua; Liu, Ya-Ping; Khan, Afsar; Wang, Heng-Shan; Qian, Yi; Liu, Lu; Ye, Min; Luo, Xiao-Dong

    2017-04-15

    Alstonia scholaris (L.) R. Br. (Apocynaceae), an important herbal medicine, has been widely used to treat respiratory tract diseases, such as cough, asthma, phlegm, and chronic obstructive pulmonary disease. To evaluate pharmacological effect of alkaloids from A. scholaris on ovalbumin induced airways allergic inflammatory model, and explore whether the dosing frequency is related to pharmacokinetics. After oral administration of total alkaloids, the pharmacokinetic study of it was investigated. In addition, anti-allergic studies were carried out on ovalbumin-sensitized airways allergic inflammatory model of mice. The pharmacokinetics of total alkaloids (TA) was investigated in SD rat plasma by a fully-validated LC-MS/MS method. Then, an ovalbumin (OVA)-sensitized airways allergic inflammatory model was established, in which mice were intra-gastrically administrated by 3 times a day (8.3 and 16.7mg/kg) based on the pharmacokinetic behavior of TA) and single (25, 50mg/kg) treatment regimen. Dexamethasone was used as a positive control for corticosteroid drugs. Cellular infiltration was assessed in the broncho-alveolar lavage fluid (BALF). Expressions of interleukin-4 (IL-4) and interleukin-10 (IL-10) in the BALF were determined, levels of immunoglobulin E (IgE) and eotaxin in serum were measured, and superoxide dismutase (SOD) activities as well as malondialdehyde (MDA) content in the serum and BALF were examined. Finally, histopathological examination in the lung was assessed by H. E. staining. The time course of plasma concentration of 4 bioactive indole alkaloids fitted an open two-compartment model after oral administration of total alkaloids at doses of 10, 25, and 50mg/kg. The area under the curve and the maximum concentration values of four major alkaloids increased dose-dependently, and half-life suggested a short-lasting pharmacological effect. Then, an ovalbumin-provoked airways allergic inflammatory model indicated that the pharmacological effect of

  16. Opiate alkaloids in Ascaris suum.

    PubMed

    Pryor, S C; Putnam, Jennifer; Hoo, Nanyamka

    2004-01-01

    The parasitic worm Ascaris suum contains the opiate alkaloids morphine and morphine-6-glucuronide as determined by HPLC coupled to electrochemical detection and by gas chromatography/mass spectrometry. The level of morphine in muscle tissue of female and male is 252 +/- 32.68, 1168 +/- 278 and 180 +/- 23.47 (ng/g of wet tissue), respectively. The level of M6G in muscle tissue of female and male is 167 +/- 28.37 and 92 +/- 11.45 (ng/g of wet tissue), respectively. Furthermore, Ascaris maintained for 5 days contained a significant amount of morphine, as did their medium, demonstrating their ability to synthesize the opiate alkaloid. The anatomic distribution of morphine was examined by indirect immunofluorescent staining and HPLC of various tissues dissected from male and female adult worms. Immunofluorescence revealed morphine in the subcuticle layers, in the animals' nerve chords and in the female reproductive organs. Morphine was found to be most prevalent in the muscle tissue and there is significantly more morphine in females than males, probably due to the large amounts in the female uterus. Morphine (10(-9) M) and morphine-6-glucuronide (10(-9) M) stimulated the release of NO from Ascaris muscle tissue. Naloxone (10(-7) M), and L-NAME (10(-6) M) blocked (P < 0.005) morphine-stimulated NO release from A. suum muscle. CTOP (10(-7) M) did not block morphine's NO release. However, naloxone could not block M6G stimulated NO release by muscle tissue, whereas CTOP (10(-7) M) blocked its release. These findings were in seeming contradiction to our inability to isolate a mu opiate receptor messenger RNA by RT-PCR using a human mu primer. This suggests that a novel mu opiate receptor was present and selective toward M6G.

  17. Antiprotozoal and antioxidant alkaloids from Alternanthera littoralis.

    PubMed

    Koolen, Hector H F; Pral, Elizabeth M F; Alfieri, Silvia C; Marinho, Jane V N; Serain, Alessandra F; Hernández-Tasco, Alvaro J; Andreazza, Nathalia L; Salvador, Marcos J

    2017-02-01

    Five alkaloids, in addition to hydroxytyrosol and uridine, were isolated from aerial parts of Alternanthera littoralis P. Beauv. Among the isolated compounds, alternamide A was an unusual tricyclic alkaloid with a bridged benzoazepine core. All isolated alkaloids have a catechol moiety, indicating a possible common biosynthetic route. Their structures were established by 1D and 2D NMR spectroscopy in combination with extensive tandem MS experiments by collisional induced dissociation (CID). The antiprotozoal activity of the isolated compounds was assayed against trypomastigote forms of Trypanosoma cruzi and amastigotes of Leishmania amazonensis. Alternamine A was the most active compound, reducing markedly the viability of both parasites. Antioxidant capacities evaluated by ORACFL assay showed that the isolated alkaloids (mainly alternamide B) contributed to the high activity recorded for the ethanolic crude extract; possibly, the catechol moiety present in all structures plays a central role in this result.

  18. Steroidal alkaloid toxicity to fish embryos.

    PubMed

    Crawford, L; Kocan, R M

    1993-02-01

    Embryos of two species of fish were evaluated for their suitability as model systems for steroidal alkaloid toxicity, the Japanese rice fish, medaka (Oryzius latipes) and the rainbow trout (Oncorhynchus mykiss). Additionally, the equine neurotoxic sesquiterpene lactone repin, was also tested. A PROBIT program was used to evaluate the EC1, EC50 and EC99 as well as the associated confidence limits. The steroidal alkaloids tested were the Solanum potato glycoalkaloids alpha-chaconine, alpha-solanine, the aglyclones solanidine and solasodine and the Veratrum alkaloid, jervine. Embryo mortality, likely due to structural or functional abnormalities in the early development stages of the embryo, were the only response observed in both species. The rainbow trout exhibited a toxic response to chaconine, solasidine, repin and solanine but the medaka embryos were only affected by the compounds, chaconine and solanine. Rainbow trout may indeed serve as a good lower vertebrate model for studying the toxicity of steroidal alkaloids.

  19. Anxiolytic Activity of Diterpene Alkaloid Songorine.

    PubMed

    Nesterova, Yu V; Povet'eva, T N; Suslov, N I; Shults, E E; Ziuz'kov, G N; Aksinenko, S G; Afanas'eva, O G; Krapivin, A V; Kharina, T G

    2015-09-01

    Antianxiety action of diterpene alkaloid songorine was studied using Vogel conflict test. Songorine in a dose of 0.25 mg/kg demonstrated high anxiolytic activity comparable to that of phenazepam and produced no sedative effect.

  20. Piperidine alkaloids: Human and food animal teratogens

    USDA-ARS?s Scientific Manuscript database

    Piperidine alkaloids are acutely toxic to adult livestock species and produce musculoskeletal deformities in neonatal animals. These teratogenic effects include multiple congenital contracture (MCC) deformities and cleft palate in cattle, pigs, sheep, and goats. Poisonous plants containing teratogen...

  1. Differences in Tolerance to Host Cactus Alkaloids in Drosophila koepferae and D. buzzatii

    PubMed Central

    Soto, Ignacio M.; Carreira, Valeria P.; Corio, Cristian; Padró, Julián; Soto, Eduardo M.; Hasson, Esteban

    2014-01-01

    The evolution of cactophily in the genus Drosophila was a major ecological transition involving over a hundred species in the Americas that acquired the capacity to cope with a variety of toxic metabolites evolved as feeding deterrents in Cactaceae. D. buzzatii and D. koepferae are sibling cactophilic species in the D. repleta group. The former is mainly associated with the relatively toxic-free habitat offered by prickly pears (Opuntia sulphurea) and the latter has evolved the ability to use columnar cacti of the genera Trichocereus and Cereus that contain an array of alkaloid secondary compounds. We assessed the effects of cactus alkaloids on fitness-related traits and evaluated the ability of D. buzzatii and D. koepferae to exploit an artificial novel toxic host. Larvae of both species were raised in laboratory culture media to which we added increasing doses of an alkaloid fraction extracted from the columnar cactus T. terschekii. In addition, we evaluated performance on an artificial novel host by rearing larvae in a seminatural medium that combined the nutritional quality of O. sulphurea plus amounts of alkaloids found in fresh T. terschekii. Performance scores in each rearing treatment were calculated using an index that took into account viability, developmental time, and adult body size. Only D. buzzatii suffered the effects of increasing doses of alkaloids and the artificial host impaired viability in D. koepferae, but did not affect performance in D. buzzatii. These results provide the first direct evidence that alkaloids are key determinants of host plant use in these species. However, the results regarding the artificial novel host suggest that the effects of alkaloids on performance are not straightforward as D. koepferae was heavily affected. We discuss these results in the light of patterns of host plan evolution in the Drosophila repleta group. PMID:24520377

  2. Identification and quantification of the main active anticancer alkaloids from the root of Glaucium flavum.

    PubMed

    Bournine, Lamine; Bensalem, Sihem; Wauters, Jean-Noël; Iguer-Ouada, Mokrane; Maiza-Benabdesselam, Fadila; Bedjou, Fatiha; Castronovo, Vincent; Bellahcène, Akeila; Tits, Monique; Frédérich, Michel

    2013-12-02

    Glaucium flavum is used in Algerian folk medicine to remove warts (benign tumors). Its local appellations are Cheqiq el-asfar and Qarn el-djedyane. We have recently reported the anti-tumoral activity of Glaucium flavum root alkaloid extract against human cancer cells, in vitro and in vivo. The principal identified alkaloid in the extract was protopine. This study aims to determine which component(s) of Glaucium flavum root extract might possess potent antitumor activity on human cancer cells. Quantitative estimation of Glaucium flavum alkaloids was realized by HPLC-DAD. Glaucium flavum effect on human normal and cancer cell viability was determined using WST-1 assay. Quantification of alkaloids in Glaucium flavum revealed that the dried root part contained 0.84% of protopine and 0.07% of bocconoline (w/w), while the dried aerial part contained only 0.08% of protopine, glaucine as the main alkaloid, and no bocconoline. In vitro evaluation of the growth inhibitory activity on breast cancer and normal cells demonstrated that purified protopine did not reproduce the full cytotoxic activity of the alkaloid root extract on cancer cell lines. On the other hand, bocconoline inhibited strongly the viability of cancer cells with an IC50 of 7.8 µM and only a low cytotoxic effect was observed against normal human cells. Our results showed for the first time that protopine is the major root alkaloid of Glaucium flavum. Finally, we are the first to demonstrate a specific anticancer effect of Glaucium flavum root extract against breast cancer cells, which can be attributed, at least in part, to bocconoline.

  3. Differences in tolerance to host cactus alkaloids in Drosophila koepferae and D. buzzatii.

    PubMed

    Soto, Ignacio M; Carreira, Valeria P; Corio, Cristian; Padró, Julián; Soto, Eduardo M; Hasson, Esteban

    2014-01-01

    The evolution of cactophily in the genus Drosophila was a major ecological transition involving over a hundred species in the Americas that acquired the capacity to cope with a variety of toxic metabolites evolved as feeding deterrents in Cactaceae. D. buzzatii and D. koepferae are sibling cactophilic species in the D. repleta group. The former is mainly associated with the relatively toxic-free habitat offered by prickly pears (Opuntia sulphurea) and the latter has evolved the ability to use columnar cacti of the genera Trichocereus and Cereus that contain an array of alkaloid secondary compounds. We assessed the effects of cactus alkaloids on fitness-related traits and evaluated the ability of D. buzzatii and D. koepferae to exploit an artificial novel toxic host. Larvae of both species were raised in laboratory culture media to which we added increasing doses of an alkaloid fraction extracted from the columnar cactus T. terschekii. In addition, we evaluated performance on an artificial novel host by rearing larvae in a seminatural medium that combined the nutritional quality of O. sulphurea plus amounts of alkaloids found in fresh T. terschekii. Performance scores in each rearing treatment were calculated using an index that took into account viability, developmental time, and adult body size. Only D. buzzatii suffered the effects of increasing doses of alkaloids and the artificial host impaired viability in D. koepferae, but did not affect performance in D. buzzatii. These results provide the first direct evidence that alkaloids are key determinants of host plant use in these species. However, the results regarding the artificial novel host suggest that the effects of alkaloids on performance are not straightforward as D. koepferae was heavily affected. We discuss these results in the light of patterns of host plan evolution in the Drosophila repleta group.

  4. New furocarbazole alkaloids from Lonicera quinquelocularis.

    PubMed

    Khan, Dilfaraz; Khan, Shafiullah; Badshah, Syed; Ali, Hazrat; Ullah, Hamid; Muhammad, Zia; Woodward, Simon

    2016-01-01

    Two new furocarbazole alkaloids, 3-formyl-6,7-dimethoxy-furo[1,2]carbazole (1) and methyl-6,7-dimethoxy-furo[1,2]carbazole-3-carboxylate (2), along with two known carbazole alkaloids, 3-formyl-2-hydroxy-7-methoxycarbazole (3) and methyl 2,7-dimethoxycarbazole-3-carboxylate (4) were isolated from the ethyl acetate soluble fraction of Lonicera quinquelocularis. Their structures were established on the basis of spectroscopic analysis.

  5. Alkaloids from Fissistigma latifolium (Dunal) Merr.

    PubMed

    Alias, Asmah; Hazni, Hazrina; Jaafar, Faridahanim Mohd; Awang, Khalijah; Ismail, Nor Hadiani

    2010-06-24

    A phytochemical study of the bark of Fissistigma latifolium (Annonaceae) yielded a new aporphine alkaloid, (-)-N-methylguattescidine (1), and eight known alkaloids: liriodenine (2), oxoxylopine (3), (-)-asimilobine (4), dimethyltryptamine (5), (-)-remerine (6), (-)-anonaine (7), columbamine (8) and lysicamine (9). The compounds were isolated using various chromatographic methods and structural elucidation was accomplished by means of spectroscopic methods, notably 1D-NMR ((1)H, (13)C, DEPT), 2D-NMR (COSY, HMQC, HMBC), UV, IR and MS.

  6. Integration of Transcriptome, Proteome and Metabolism Data Reveals the Alkaloids Biosynthesis in Macleaya cordata and Macleaya microcarpa

    PubMed Central

    Liu, Fuqing; Huang, Peng; Zhu, Pengcheng; Chen, Jinjun; Shi, Mingming; Guo, Fang; Cheng, Pi; Zeng, Jing; Liao, Yifang; Gong, Jing; Zhang, Hong-Mei; Wang, Depeng; Guo, An-Yuan; Xiong, Xingyao

    2013-01-01

    Background The Macleaya spp., including Macleaya cordata and Macleaya microcarpa, are traditional anti-virus, inflammation eliminating, and insecticide herb medicines for their isoquinoline alkaloids. They are also known as the basis of the popular natural animal food addictive in Europe. However, few studies especially at genomics level were conducted on them. Hence, we performed the Macleaya spp. transcriptome and integrated it with iTRAQ proteome analysis in order to identify potential genes involved in alkaloids biosynthesis. Methodology and Principal Findings We elaborately designed the transcriptome, proteome and metabolism profiling for 10 samples of both species to explore their alkaloids biosynthesis. From the transcriptome data, we obtained 69367 and 78255 unigenes for M. cordata and M. microcarpa, in which about two thirds of them were similar to sequences in public databases. By metabolism profiling, reverse patterns for alkaloids sanguinarine, chelerythrine, protopine, and allocryptopine were observed in different organs of two species. We characterized the expressions of enzymes in alkaloid biosynthesis pathways. We also identified more than 1000 proteins from iTRAQ proteome data. Our results strongly suggest that the root maybe the organ for major alkaloids biosynthesis of Macleaya spp. Except for biosynthesis, the alkaloids storage and transport were also important for their accumulation. The ultrastructure of laticifers by SEM helps us to prove the alkaloids maybe accumulated in the mature roots. Conclusions/Significance To our knowledge this is the first study to elucidate the genetic makeup of Macleaya spp. This work provides clues to the identification of the potential modulate genes involved in alkaloids biosynthesis in Macleaya spp., and sheds light on researches for non-model medicinal plants by integrating different high-throughput technologies. PMID:23326424

  7. Inhibition of myeloperoxidase activity by the alkaloids of Peganum harmala L. (Zygophyllaceae).

    PubMed

    Bensalem, Sihem; Soubhye, Jalal; Aldib, Iyas; Bournine, Lamine; Nguyen, Anh Tho; Vanhaeverbeek, Michel; Rousseau, Alexandre; Boudjeltia, Karim Zouaoui; Sarakbi, Ahmad; Kauffmann, Jean Michel; Nève, Jean; Prévost, Martine; Stévigny, Caroline; Maiza-Benabdesselam, Fadila; Bedjou, Fatiha; Van Antwerpen, Pierre; Duez, Pierre

    2014-06-11

    Seeds and aerial parts of Peganum harmala L. are widely used in Algeria as anti-inflammatory remedies. Evaluation of Peganum harmala total alkaloids extracts and pure β-carboline compounds as an anti-inflammatory treatment by the inhibition of an enzyme key of inflammatory, myeloperoxidase (MPO) and HPLC quantification of the alkaloids from the different parts of plant. MPO inhibition was tested using taurine chloramine test. The inhibition of LDL oxidation induced by MPO was carried out. The molecular docking analysis of Peganum harmala alkaloids on MPO was performed using the Glide XP docking protocol and scoring function and the redox potential of alkaloids was determined using an Epsilon potentiostat. The concentration of harmala alkaloids was determined using HPLC analysis. The HPLC profiling of the active total alkaloids indicates that β-carboline e.g. harmine, harmaline, harmane, harmol and harmalol are major components. As β-carbolines resemble tryptamine, of which derivatives are efficient inhibitors of MPO, the harmala alkaloids were tested for their activity on this enzyme. Total alkaloids of the seeds and of the aerial parts strongly inhibited MPO at 20µg/mL (97±5% and 43±4%, respectively) whereas, at the same concentration, those of the roots showed very low inhibition (15±6%). Harmine, harmaline and harmane demonstrated a significant inhibition of MPO at IC50 of 0.26, 0.08 and 0.72µM respectively. These alkaloids exerted a similar inhibition effects on MPO-induced LDL oxidation. Molecular docking analysis of Peganum harmala alkaloids on MPO showed that all active Peganum harmala alkaloids have a high affinity on the active site of MPO (predicted free energies of binding up to -3.1kcal/mol). Measurement of redox potentials versus the normal hydrogen electrode clearly differentiated (i) the high MPO inhibitory activity of harmine, harmaline and harmane (+1014, 1014 and 1003mV, respectively); and (ii) the low activity of harmalol and harmol (+629

  8. Metabolite fingerprinting of Camptotheca acuminata and the HPLC-ESI-MS/MS analysis of camptothecin and related alkaloids.

    PubMed

    Montoro, Paola; Maldini, Mariateresa; Piacente, Sonia; Macchia, Mario; Pizza, Cosimo

    2010-01-20

    The major phytochemical constituents, namely, alkaloids, flavonoids and ellagic acid derivatives, of leaves of Camptotheca acuminata were identified using high performance liquid chromatography (HPLC) coupled with electrospray mass spectrometry (ESI-MS) in extracts of plants cultivated in Italy and collected at different growth stages. Alkaloids related to camptothecin were identified and quantified by HPLC coupled with ESI-tandem mass spectrometry (MS/MS) employing, respectively, an ion trap and a triple quadrupole mass analyser. The fragmentation patterns of alkaloids related to camptothecin were analysed and a specific Multiple Reaction Monitoring HPLC-MS/MS method was developed for the quantitative determination of these constituents. The described method provides high sensitivity and specificity for the characterisation and quantitative determination of the alkaloids in C. acuminata.

  9. Human ABCB1 confers cells resistance to cytotoxic guanidine alkaloids from Pterogyne nitens.

    PubMed

    Satake, Kazuhiro; Tsukamoto, Megumi; Mitani, Yuji; Regasini, Luis Octavio; da Silva Bolzani, Vanderlan; Efferth, Thomas; Nakagawa, Hiroshi

    2015-01-01

    Multidrug resistance (MDR) caused by human ABCB1 (P-glycoprotein/MDR1) is one of the major obstacles in chemotherapy. To understand the mechanism of MDR by ABCB1 and circumvent the MDR, in the present study, we established human ABCB1-expressing cells (Flp-In-293/ABCB1 cells) and examined the cytotoxic effects of four guanidine alkaloids from Pterogyne nitens (galegine, nitensidine A, pterogynidine and pterogynine) using Flp-In-293/Mock and Flp-In-293/ABCB1 cells. The activity of ABCB1 in Flp-In-293/ABCB1 cells were confirmed by typical substrates for ABCB1 (taxol and vinblastine) in MTT assay. Flp-In-293/ABCB1 cells were also resistant to the four guanidine alkaloids as well as taxol and vinblastine compared to Flp-In-293/Mock cells although the four guanidine alkaloids exhibited cytotoxicity against the two Flp-In-293 cells. Furthermore, the four guanidine alkaloids were also found to stimulate the ATPase activity of ABCB1 in ATPase assays. These results suggest that ABCB1 can confer the resistance to the cytotoxic guanidine alkaloids by transporting them.

  10. Alkaloid defenses of co-mimics in a putative Müllerian mimetic radiation.

    PubMed

    Stuckert, Adam M M; Saporito, Ralph A; Venegas, Pablo J; Summers, Kyle

    2014-04-04

    Polytypism in aposematic species is unlikely according to theory, but commonly seen in nature. Ranitomeya imitator is a poison frog species exhibiting polytypic mimicry of three congeneric model species (R. fantastica, R. summersi, and two morphs of R. variabilis) across four allopatric populations (a "mimetic radiation"). In order to investigate chemical defenses in this system, a key prediction of Müllerian mimicry, we analyzed the alkaloids of both models and mimics from four allopatric populations. In this study we demonstrate distinct differences in alkaloid profiles between co-mimetic species within allopatric populations. We further demonstrate that R. imitator has a greater number of distinct alkaloid types than the model species and more total alkaloids in all but one population. Given that R. imitator is the more abundant species in these populations, R. imitator is likely driving the majority of predator-learned avoidance in these complexes. The success of Ranitomeya imitator as a putative advergent mimic may be a direct result of differences in alkaloid sequestration. Furthermore, we propose that automimicry within co-mimetic species is an important avenue of research.

  11. Alkaloid variation among epichloid endophytes of sleepygrass (Achnatherum robustum) and consequences for resistance to insect herbivores.

    PubMed

    Shymanovich, Tatsiana; Saari, Susanna; Lovin, Mary E; Jarmusch, Alan K; Jarmusch, Scott A; Musso, Ashleigh M; Charlton, Nikki D; Young, Carolyn A; Cech, Nadja B; Faeth, Stanley H

    2015-01-01

    Epichloid endophytes are well known symbionts of many cool-season grasses that may alleviate environmental stresses for their hosts. For example, endophytes produce alkaloid compounds that may be toxic to invertebrate or vertebrate herbivores. Achnatherum robustum, commonly called sleepygrass, was aptly named due to the presence of an endophyte that causes toxic effects to livestock and wildlife. Variation in alkaloid production observed in two A. robustum populations located near Weed and Cloudcroft in the Lincoln National Forest, New Mexico, suggests two different endophyte species are present in these populations. Genetic analyses of endophyte-infected samples revealed major differences in the endophyte alkaloid genetic profiles from the two populations, which were supported with chemical analyses. The endophyte present in the Weed population was shown to produce chanoclavine I, paspaline, and terpendoles, so thus resembles the previously described Epichloë funkii. The endophyte present in the Cloudcroft population produces chanoclavineI, ergonovine, lysergic acid amide, and paspaline, and is an undescribed endophyte species. We observed very low survival rates for aphids feeding on plants infected with the Cloudcroft endophyte, while aphid survival was better on endophyte infected plants in the Weed population. This observation led to the hypothesis that the alkaloid ergonovine is responsible for aphid mortality. Direct testing of aphid survival on oat leaves supplemented with ergonovine provided supporting evidence for this hypothesis. The results of this study suggest that alkaloids produced by the Cloudcroft endophyte, specifically ergonovine, have insecticidal properties.

  12. Antibacterial monoterpenoid indole alkaloids from Alstonia scholaris cultivated in temperate zone.

    PubMed

    Liu, Lu; Chen, Ying-Ying; Qin, Xu-Jie; Wang, Bei; Jin, Qiong; Liu, Ya-Ping; Luo, Xiao-Dong

    2015-09-01

    Three new monoterpenoid indole alkaloids, named normavacurine-21-one (1), 5-hydroxy-19, 20-E-alschomine (2), and 5-hydroxy-19, 20-Z-alschomine (3), together with thirteen known indole alkaloids (4-16) were isolated from the leaves of Alstonia scholaris cultivated in Kunming. Their structures were elucidated on the basis of extensive spectroscopic analysis, as well as by comparison with the reported spectroscopic data. The leaves of A. scholaris cultivated in Kunming, contained picrinine-type alkaloids, scholaricin-type alkaloids and nareline as major alkaloids. New compounds 1-3 might be derived from a common biogenetic precursor (5). Compounds 1, 5 and 10 exhibited significant antibacterial activity against Enterococcus faecalis, and 3, 9 and 14 against Pseudomonas aeruginosa with an MIC value of 0.781 μg/mL, while 14 showed moderate activity against Klepsiella pneumonia with an MIC value of 1.56 μg/mL. Copyright © 2015. Published by Elsevier B.V.

  13. Piperidine alkaloids in sitka spruce with varying levels of resistance to white pine weevil (Coleoptera: Curculionidae).

    PubMed

    Gerson, Elizabeth A; Kelsey, Rick G

    2002-06-01

    Our objective was to evaluate piperidine alkaloids as potential resistance factors in Sitka spruce, Picea sitchensis (Bong.) Carr, at risk to attack by white pine weevils, Pissodes strobi (Peck). We sampled 72 seedlings in each of two replicated field trials in the Oregon Coast Range. The seedlings were grown from open-pollinated seeds of putatively "resistant" or "susceptible" off-site parental sources. Alkaloid concentrations in bark and foliage were measured in previously unattacked trees at the time of weevil host selection. Leader mortality was evaluated in the fall to gauge actual resistance in the sample trees. Five families had < or = 25% topkill and seven sustained >50% topkill. Alkaloid concentrations differed significantly among families, but the major alkaloids did not appear to be functionally linked with topkill or useful indicators of resistance. However, our study design did not address all potential resistance mechanisms. Therefore, before concluding that Sitka spruce alkaloids have no influence on white pine weevils, complementary laboratory and field experiments are needed.

  14. Alkaloid defenses of co-mimics in a putative Müllerian mimetic radiation

    PubMed Central

    2014-01-01

    Background Polytypism in aposematic species is unlikely according to theory, but commonly seen in nature. Ranitomeya imitator is a poison frog species exhibiting polytypic mimicry of three congeneric model species (R. fantastica, R. summersi, and two morphs of R. variabilis) across four allopatric populations (a "mimetic radiation"). In order to investigate chemical defenses in this system, a key prediction of Müllerian mimicry, we analyzed the alkaloids of both models and mimics from four allopatric populations. Results In this study we demonstrate distinct differences in alkaloid profiles between co-mimetic species within allopatric populations. We further demonstrate that R. imitator has a greater number of distinct alkaloid types than the model species and more total alkaloids in all but one population. Conclusions Given that R. imitator is the more abundant species in these populations, R. imitator is likely driving the majority of predator-learned avoidance in these complexes. The success of Ranitomeya imitator as a putative advergent mimic may be a direct result of differences in alkaloid sequestration. Furthermore, we propose that automimicry within co-mimetic species is an important avenue of research. PMID:24707851

  15. Indole Alkaloids from Marine Sources as Potential Leads against Infectious Diseases

    PubMed Central

    França, Paulo H. B.; Barbosa, Daniel P.; da Silva, Daniel L.; Ribeiro, Êurica A. N.; Santana, Antônio E. G.; Santos, Bárbara V. O.; Barbosa-Filho, José M.; Quintans, Jullyana S. S.; Barreto, Rosana S. S.; Quintans-Júnior, Lucindo J.; de Araújo-Júnior, João X.

    2014-01-01

    Indole alkaloids comprise a large and complex class of natural products found in a variety of marine sources. Infectious diseases remain a major threat to public health, and in the absence of long-term protective vaccines, the control of these infectious diseases is based on a small number of chemotherapeutic agents. Furthermore, the emerging resistance against these drugs makes it urgently necessary to discover and develop new, safe and, effective anti-infective agents. In this regard, the aim of this review is to highlight indole alkaloids from marine sources which have been shown to demonstrate activity against infectious diseases. PMID:24995289

  16. [Isolation and identification of alkaloids form Menispermum dauricum growing in Xianning].

    PubMed

    Pan, X; Hu, C; Zeng, F; Zhang, S; Xu, J

    1998-09-01

    The alkaloids of rhizoma of Menispermum dauricum DC growing in Xianning have been subjected to isolation and identification. The results showed that its two major constituents, which are only next of dauricine in content, are dauricinoline and daurinoline, instead of the commonly found daurisoline in the same plant materials from North China.

  17. Bioactive 1 4-Dihydroxy-5-phenyl-2-pyridinone alkaloids from Septoria pistaciarum

    USDA-ARS?s Scientific Manuscript database

    Four new 1,4-dihydroxy-5-phenyl-2-pyridinone alkaloids (1-4) were isolated from an EtOAc extract of a culture medium of Septoria pistaciarum. The structures of these compounds were determined by spectroscopic methods, and the absolute configuration of the major compound 1 by X-ray crystallographic a...

  18. Alkaloid-Containing Plants Poisonous to Cattle and Horses in Europe.

    PubMed

    Cortinovis, Cristina; Caloni, Francesca

    2015-12-08

    Alkaloids, nitrogen-containing secondary plant metabolites, are of major interest to veterinary toxicology because of their occurrence in plant species commonly involved in animal poisoning. Based on epidemiological data, the poisoning of cattle and horses by alkaloid-containing plants is a relatively common occurrence in Europe. Poisoning may occur when the plants contaminate hay or silage or when forage alternatives are unavailable. Cattle and horses are particularly at risk of poisoning by Colchicum autumnale (meadow saffron), Conium maculatum (poison hemlock), Datura stramonium (jimson weed), Equisetum palustre (marsh horsetail), Senecio spp. (ragwort and groundsel) and Taxus baccata (European yew). This review of poisonous alkaloid-containing plants describes the distribution of these plants, conditions under which poisoning occurs, active toxic principles involved and subsequent clinical signs observed.

  19. Alkaloid-Containing Plants Poisonous to Cattle and Horses in Europe

    PubMed Central

    Cortinovis, Cristina; Caloni, Francesca

    2015-01-01

    Alkaloids, nitrogen-containing secondary plant metabolites, are of major interest to veterinary toxicology because of their occurrence in plant species commonly involved in animal poisoning. Based on epidemiological data, the poisoning of cattle and horses by alkaloid-containing plants is a relatively common occurrence in Europe. Poisoning may occur when the plants contaminate hay or silage or when forage alternatives are unavailable. Cattle and horses are particularly at risk of poisoning by Colchicum autumnale (meadow saffron), Conium maculatum (poison hemlock), Datura stramonium (jimson weed), Equisetum palustre (marsh horsetail), Senecio spp. (ragwort and groundsel) and Taxus baccata (European yew). This review of poisonous alkaloid-containing plants describes the distribution of these plants, conditions under which poisoning occurs, active toxic principles involved and subsequent clinical signs observed. PMID:26670251

  20. Lupine induced "crooked calf disease" in Washington and Oregon: identification of the alkaloid profiles in Lupinus sulfureus, Lupinus leucophyllus, and Lupinus sericeus.

    PubMed

    Lee, Stephen T; Cook, Daniel; Panter, Kip E; Gardner, Dale R; Ralphs, Michael H; Motteram, Ernie S; Pfister, James A; Gay, Clive C

    2007-12-26

    Several lupines (Lupinus spp.) present on western U.S. rangelands contain alkaloids that are teratogenic to livestock and cause congenital birth defects in calves (crooked calf disease). Periodically, large losses of calves due to lupine-induced "crooked calf disease" occur in northern Oregon and eastern Washington state. Five lupine populations from this area representing three species (L. leucophyllus, L. sulfureus, and L. sericeus) were evaluated taxonomically and by gas chromatography/mass spectrometry, and the major alkaloids in each lupine species were identified. The teratogenic alkaloid anagyrine was present in both of the lupine species responsible for the high outbreaks in east-central Washington and northeastern Oregon. However, the alkaloid profiles of the two lupines identified as L. leucophyllus were dissimilar, as were the alkaloid profiles of the two lupines identified as L. sulfureus. Botanical classification is not sufficient to determine potential teratogenicity, and it must be followed by chemical characterization to determine risk to livestock.

  1. Sophora alopecuroides L. var. alopecuroides alleviates morphine withdrawal syndrome in mice: involvement of alkaloid fraction and matrine

    PubMed Central

    Kianbakht, Saeed; Hashem Dabaghian, Fataneh

    2016-01-01

    Objective(s): Evaluation of the Sophora alopecuroides var. alopecuroides seed effects on morphine withdrawal syndrome in mice and determination of the alkaloid composition of the seed total extract. Materials and Methods: The effects of the seed total extract, alkaloid fraction and major compound matrine on the mice morphine withdrawal syndrome were compared to saline and methadone. Mice were made dependent on morphine by morphine sulfate injection 3 times a day for 3 days. The withdrawal jumping and diarrhea were induced by administration of naloxone 2 hr after the 10th injection of morphine sulfate on the day 4. The total extract (100, 200, 300 mg/kg), alkaloid fraction (5, 10, 20 mg/kg), matrine (5, 15, 30 mg/kg), methadone (10 mg/kg) or saline were injected 30 min before naloxone. All drugs were administered by subcutaneous injection. The total extract alkaloid composition was also determined by gas chromatography (GC) and GC-MS analysis. Results: All doses of the total extract, alkaloid fraction and matrine as well as methadone decreased jumping and diarrhea significantly compared to the saline. The effects of the total extract and alkaloid fraction were not significantly different from methadone. But, there were significant differences between the effects of matrine and methadone. Matrine, cytisine, sophoridine, n-methyl cytisine, sophocarpine and sophoramine were the major alkaloids. There was no nicotine in the total extract. Conclusion: S. alopecuroides var. alopecuroides suppresses opioid withdrawal with efficacy comparable to methadone. Matrine may be one of the alkaloids responsible for the effect of the plant. PMID:27872705

  2. Multicomponent Therapeutics of Berberine Alkaloids

    PubMed Central

    Luo, Jiaoyang; Yan, Dan; Yang, Meihua; Dong, Xiaoping; Xiao, Xiaohe

    2013-01-01

    Although berberine alkaloids (BAs) are reported to be with broad-spectrum antibacterial and antiviral activities, the interactions among BAs have not been elucidated. In the present study, methicillin-resistant Staphylococcus aureus (MRSA) was chosen as a model organism, and modified broth microdilution was applied for the determination of the fluorescence absorption values to calculate the anti-MRSA activity of BAs. We have initiated four steps to seek the optimal combination of BAs that are (1) determining the anti-MRSA activity of single BA, (2) investigating the two-component combination to clarify the interactions among BAs by checkerboard assay, (3) investigating the multicomponent combination to determine the optimal ratio by quadratic rotation-orthogonal combination design, and (4) in vivo and in vitro validation of the optimal combination. The results showed that the interactions among BAs are related to their concentrations. The synergetic combinations included “berberine and epiberberine,” “jatrorrhizine and palmatine” and “jatrorrhizine and coptisine”; the antagonistic combinations included “coptisine and epiberberine”. The optimal combination was berberine : coptisine : jatrorrhizine : palmatine : epiberberine = 0.702 : 0.863 : 1 : 0.491 : 0.526, and the potency of the optimal combination on cyclophosphamide-immunocompromised mouse model was better than the natural combinations of herbs containing BAs. PMID:23634170

  3. Biological activity of alkaloids from Solanum dulcamara L.

    PubMed

    Kumar, Padma; Sharma, Bindu; Bakshi, Nidhi

    2009-01-01

    Alkaloids are well known for their antimicrobial activity. Though all natural alkaloids come from plants, not all plants produce alkaloids. Plants of the Solanaceae family are known for their high alkaloid content. Alkaloids are found in all plant parts like roots, stems, leaves, flowers, fruits and seeds. In the present study, those plant parts of Solanum dulcamara were selected which have been reported to produce a high content of a specific alkaloid: solanine (from unripe fruits), solasodine (from flowers) and beta-solamarine (from roots). These alkaloids were extracted from various parts of S. dulcamara by well-established methods and were screened for their antibacterial activity. Human pathogenic bacteria, viz., Enterobacter aerogenes, Escherichia coli, Staphylococcus aureus, were selected for the study. All three alkaloids inhibited the growth of E. coli and S. aureus. However, no significant activity was observed against E. aerogenes. Minimum inhibitory concentration and minimum bactericidal concentration were also evaluated.

  4. Actions of Piperidine Alkaloid Teratogens at Fetal Nicotinic Acetylcholine Receptors.

    USDA-ARS?s Scientific Manuscript database

    Teratogenic alkaloids are found in many species of plants including Conium maculatum L., Nicotiana glauca, Nicotiana tabaccum, and multiple Lupinus spp. Fetal musculoskeletal defects produced by alkaloids from these plants include arthrogyropisis, scoliosis, torticollis, kyposis, lordosis, and clef...

  5. Hemlock alkaloids from Socrates to poison aloes.

    PubMed

    Reynolds, Tom

    2005-06-01

    Hemlock (Conium maculatum L. Umbelliferae) has long been known as a poisonous plant. Toxicity is due to a group of piperidine alkaloids of which the representative members are coniine and gamma-coniceine. The latter is the more toxic and is the first formed biosynthetically. Its levels in relation to coniine vary widely according to environmental conditions and to provenance of the plants. Surprisingly, these piperidine alkaloids have turned up in quite unrelated species in the monocotyledons as well as the dicotyledons. Aloes, for instance, important medicinal plants, are not regarded as poisonous although some species are very bitter. Nevertheless a small number of mostly local species contain the alkaloids, especially gamma-coniceine and there have been records of human poisoning. The compounds are recognized by their characteristic mousy smell. Both acute and chronic symptoms have been described. The compounds are neurotoxins and death results from respiratory failure, recalling the effects of curare. Chronic non-lethal ingestion by pregnant livestock leads to foetal malformation. Both acute and chronic toxicity are seen with stock in damp meadows and have been recorded as problems especially in North America. The alkaloids derive biosynthetically from acetate units via the polyketide pathway in contrast to other piperidine alkaloids which derive from lysine.

  6. The alkaloids of the madangamine group.

    PubMed

    Amat, Mercedes; Pérez, Maria; Ballette, Roberto; Proto, Stefano; Bosch, Joan

    2015-01-01

    This chapter is focused on madangamines, a small group of complex diamine alkaloids isolated from marine sponges of the order Haplosclerida, and covers their isolation, characterization, biogenesis, biological activity, and synthesis. Structurally, madangamines are pentacyclic alkaloids with an unprecedented skeletal type, characterized by a common diazatricyclic core and two peripheral macrocyclic rings. The isolation of these alkaloids from Xestospongia ingens (madangamines A-E) and Pachychalina alcaloidifera (madangamine F) is described in detail. Physical and complete spectroscopic 1H and 13C NMR data are included. The proposed biogenesis of madangamines from ammonia, a functionalized three-carbon unit, and saturated or unsaturated linear long-chain dialdehydes, via partially reduced bis-alkylpyridine macrocycles, is discussed. The synthesis of alkaloids of the madangamine group has been little explored, with only one total synthesis reported so far, that of (+)-madangamine D. This review also describes several model synthetic approaches to the diazatricyclic ABC core of these alkaloids, as well as model studies on the construction of the (Z,Z)-unsaturated 11-membered E macrocycle common to madangamines A-E, the 13- and 14-membered D rings of madangamines C-E, and the all-cis-triunsaturated 15-membered D ring of madangamine A. Some members of this group have shown significant in vitro cytotoxicity against a number of cancer cell lines.

  7. Mitochondria: a promising target for anticancer alkaloids.

    PubMed

    Urra, Félix A; Cordova-Delgado, Miguel; Pessoa-Mahana, Hernan; Ramírez-Rodríguez, Oney; Weiss-Lopez, Boris; Ferreira, Jorge; Araya-Maturana, Ramiro

    2013-01-01

    A great number of alkaloids exhibit high potential in cancer research. Some of them are anticancer drugs with well-defined clinical uses, exerting their action on microtubules dynamics or DNA replication and topology. On the other hand, mitochondria have been recognized as an essential organelle in the establishment of tumor characteristics, especially the resistance to cell death, high proliferative capacity and adaptation to unfavorable cellular environment. Interestingly, many alkaloids exert their anticancer activities affecting selectively some functions of the tumor mitochondria by 1) modulating OXPHOS and ADP/ATP transport, 2) increasing ROS levels and mitochondrial potential dissipation by crosstalk between endoplasmic reticulum (ER) and mitochondria, 3) inducing mitochondria-dependent apoptosis and autophagy, 4) inhibiting mitochondrial metabolic pathways and 5) by alteration of the morphology and biogenesis of this organelle. These antecedents show the relevance of developing research about the effects of alkaloids on functions controlled by tumor mitochondria, offering an attractive target for the design of new alkaloid derivatives, considering organelle- specific delivery strategies. This review describes mitochondria as a central component in the anticancer action of a set of alkaloids, in a way to illustrate the importance of this organelle in medicinal chemistry.

  8. Biotechnology and genetics of ergot alkaloids.

    PubMed

    Tudzynski, P; Correia, T; Keller, U

    2001-12-01

    Ergot alkaloids, i.e. ergoline-derived toxic metabolites, are produced by a wide range of fungi, predominantly by members of the grass-parasitizing family of the Clavicipitaceae. Naturally occurring alkaloids like the D-lysergic acid amides, produced by the "ergot fungus" Claviceps purpurea, have been used as medicinal agents for a long time. The pharmacological effects of the various ergot alkaloids and their derivatives are due to the structural similarity of the tetracyclic ring system to neurotransmitters such as noradrenaline, dopamine or serotonin. In addition to "classical" indications, e.g. migraine or blood pressure regulation, there is a wide spectrum of potential new applications of this interesting group of compounds. The biotechnology of ergot alkaloids has a long tradition, and efficient parasitic and submerse production processes have been developed; the biochemistry of the pathway and the physiology of production have been worked out in detail. The recent identification of a cluster of genes involved in ergot alkaloid biosynthesis in C. purpurea and the availability of molecular genetic techniques allow the development of strategies for rational drug design of ergoline-related drugs by enzyme engineering and by biocombinatorial approaches.

  9. Simulation of the type of coralin alkaloid-DNA binding

    NASA Astrophysics Data System (ADS)

    Kulikov, K. G.; Koshlan, T. V.

    2015-05-01

    Interaction between a synthesized coralin protoberberine alkaloid and the DNA double helix of the calf's thymus in a salt solution is studied by optical absorption spectroscopy and spectropolarimetry. The dependence of the spectral characteristics of the alkaloid on a ratio between the DNA base pair concentration and the alkaloid molecule concentration is considered. The parameters of bonds between the coralin alkaloid and the DNA double helix are determined using modified McGhee-von Hippel equations.

  10. [Study on optimum extraction conditions of alkaloids from Pinellia ternate].

    PubMed

    Zeng, Jianhong; Peng, Zhengsong; Mao, Zicheng; Wei, Shuhong

    2003-05-01

    The optimum extraction conditions of alkaloids from Pinellia ternate (Thunb.) Breit were studied by orthogonal test. The results showed that the highest extraction rate of the alkaloids could be obtained by smashing the material in 60 (sieve number) of fragmentation and socking the material in 2.575 mol/L ammonia water, extracting alkaloids with 18 times as much chlorolform at room temperature for 25 hours. The highest extraction rate of alkaloids was 0.0817%.

  11. The Double-Bond Configuration of Corynanthean Alkaloids and Its Impact on Monoterpenoid Indole Alkaloid Biosynthesis.

    PubMed

    Eckermann, Ruben; Gaich, Tanja

    2016-04-11

    Experimental evidence is provided for the coherence of the double-bond geometry and the occurrence of "secondary cyclizations" in the biosynthesis of monoterpenoid indole alkaloids. Biosynthetically, akuammiline, C-mavacurine, and Strychnos alkaloids are proposed to be derived from the corynanthean alkaloid geissoschizine, a key intermediate in the biosynthetic pathway of these monoterpenoid indole alkaloids. This process occurs by so-called "secondary cyclizations" from geissoschizine or its derivatives. Although corynanthean alkaloids like geissoschizine incorporate E or Z double bonds located at C19-C20, the alkaloids downstream in the biosynthesis exclusively exhibit the E double bond. This study shows that secondary cyclizations preferentially occur with the E isomer of geissoschizine or its derivatives. This is attributed to the flexibility of the quinolizidine system of the corynanthean alkaloids, which can adopt a cis or trans conformation. For the secondary cyclization to take place, the cis-quinolizidine conformation is required. Experimental evidence supports the hypothesis that the E double bond of geissoschizine induces the cis conformation, whereas the Z double bond induces the trans conformation, which prohibits secondary cyclization of the Z compounds.

  12. Alkaloid profiles of Mimosa tenuiflora and associated methods of analysis

    USDA-ARS?s Scientific Manuscript database

    The alkaloid contents of the leaves and seeds of M. tenuiflora collected from northeastern Brazil were studied. Alkaloids were isolated by classical acid/base extraction procedures and by cation exchange solid phase extraction. The crude alkaloid fractions were then analysed by thin layer chromatogr...

  13. Two new alkaloids of the crinane series from Pancratium sickenbergeri.

    PubMed

    Abou-Donia, Amina H; Amer, Masouda E; Darwish, Fikria A; Kassem, Fahima F; Hammoda, Hala M; Abdel-Kader, Maged S; Zhou, Bing-Nan; Kingston, David G I

    2002-04-01

    Two new alkaloids; ent-6alpha/6beta-hydroxybuphanisine, (-)-8-demethylmaritidine and seven known alkaloids were isolated from Pancratium sickenbergeri grown in Egypt. Three of the known alkaloids were tested in the NCI cytotoxicity screen, but were found to be inactive.

  14. Pancratium canariense as an important source of amaryllidaceae alkaloids.

    PubMed

    Cedrón, Juan C; Oberti, Juan C; Estévez-Braun, Ana; Ravelo, Angel G; Del Arco-Aguilar, Marcelino; López, Matías

    2009-01-01

    Four new alkaloids (1-4) have been isolated from a methanolic extract of bulbs of Pancratium canariense, together with 12 known alkaloids (5-16). The structures of the new alkaloids were determined by extensive 1D and 2D NMR spectroscopic studies and X-ray diffraction.

  15. Two new amaryllidaceae alkaloids from the bulbs of Lycoris radiata.

    PubMed

    Wang, Lei; Zhang, Xiao-Qi; Yin, Zhi-Qi; Wang, Ying; Ye, Wen-Cai

    2009-06-01

    Two new Amaryllidaceae alkaloids, named lycoranines A (1) and B (2), were isolated from the bulbs of Lycoris radiata. Their structures were elucidated on the basis of extensive spectroscopic analysis. Compound 2 was a new-type alkaloid, which provided a new insight into the biosynthesis of alkaloids in Amaryllidaceae plants.

  16. Development of an Alkaloid-Pyrone Annulation: Synthesis of Pleiomaltinine**

    PubMed Central

    Ziegler, Robert E.; Tan, Shin-Jowl; Kam, Toh-Seok

    2012-01-01

    Odd Couple Methodology for the synthesis of alkaloid-pyrones using a novel pyrone annulation of β–carbolines and indoles with 3-siloxy-4-pyrones is reported. The approach has enabled semisynthesis of the unprecedented alkaloid-pyrone pleiomaltinine from the plant-derived indole-alkaloid pleiocarpamine. PMID:22893619

  17. 21 CFR 119.1 - Dietary supplements containing ephedrine alkaloids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Dietary supplements containing ephedrine alkaloids... UNREASONABLE RISK § 119.1 Dietary supplements containing ephedrine alkaloids. Dietary supplements containing ephedrine alkaloids present an unreasonable risk of illness or injury under conditions of use recommended...

  18. 21 CFR 119.1 - Dietary supplements containing ephedrine alkaloids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Dietary supplements containing ephedrine alkaloids... UNREASONABLE RISK § 119.1 Dietary supplements containing ephedrine alkaloids. Dietary supplements containing ephedrine alkaloids present an unreasonable risk of illness or injury under conditions of use recommended...

  19. 21 CFR 119.1 - Dietary supplements containing ephedrine alkaloids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Dietary supplements containing ephedrine alkaloids... UNREASONABLE RISK § 119.1 Dietary supplements containing ephedrine alkaloids. Dietary supplements containing ephedrine alkaloids present an unreasonable risk of illness or injury under conditions of use recommended...

  20. 21 CFR 119.1 - Dietary supplements containing ephedrine alkaloids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Dietary supplements containing ephedrine alkaloids... UNREASONABLE RISK § 119.1 Dietary supplements containing ephedrine alkaloids. Dietary supplements containing ephedrine alkaloids present an unreasonable risk of illness or injury under conditions of use recommended...

  1. 21 CFR 119.1 - Dietary supplements containing ephedrine alkaloids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Dietary supplements containing ephedrine alkaloids... UNREASONABLE RISK § 119.1 Dietary supplements containing ephedrine alkaloids. Dietary supplements containing ephedrine alkaloids present an unreasonable risk of illness or injury under conditions of use recommended...

  2. New alkaloids from the leaves of Evodia rutaecarpa.

    PubMed

    Xia, Xiao; Luo, Jian-Guang; Liu, Rui-Huan; Yang, Ming-Hua; Kong, Ling-Yi

    2016-10-01

    One new indole alkaloid (1) and one new indole alkaloidal glycoside (2), together with nine known alkaloids (3-11), were isolated from the leaves of Evodia rutaecarpa. Their structures were determined on the basis of spectroscopic and chemical methods. Compound 4 exhibited potent activity against Pseudomonas aeruginosa with an MIC value of 7.13 μg/ml.

  3. Variation of alkaloid contents and antimicrobial activities of Papaver rhoeas L. growing in Turkey and northern Cyprus.

    PubMed

    Çoban, İlkcan; Toplan, Gizem Gülsoy; Özbek, Berna; Gürer, Çağlayan Unsal; Sarıyar, Günay

    2017-12-01

    Papaver rhoeas L. (Papaveraceae) corn poppy, widely distributed in Turkey, is used to make a cough syrup for children, as a tea for disturbed sleep, for pain relief and as a sedative in folk medicine. Samples of P. rhoeas collected from eight different locations in Turkey and three from northern Cyprus were investigated for their alkaloid content and screened for their antimicrobial activities. From the aerial parts of P. rhoeas samples, alkaloids were isolated by column and preparative thin-layer chromatography. The alkaloids were identified by comparing their spectral data (UV, IR and (1)H-NMR) and TLC Rf values with those of authentic samples. The antimicrobial study was carried out by microbroth dilution technique against six strains of bacteria and three strains of fungi. Twelve different alkaloids belonging to proaporphine (mecambrine), aporphine (roemerine), promorphinan (salutaridine), protopine (coulteropine and protopine) and rhoeadine (epiglaucamine, glaucamine, glaudine, isorhoeadine, isorhoeagenine, rhoeadine and rhoeagenine) groups were isolated. The most significant activity was observed with the alkaloid extract of P8 against Staphylococcus aureus with a MIC value of 1.22 μg/mL and against Candida albicans with a MIC value of 2.4 μg/mL. The results indicate that P. rhoeas samples (P8 and P9), which contain roemerine as their major alkaloid, were the most active extracts.

  4. [Evaluation of antimicrobial activity of indol alkaloids].

    PubMed

    Rojas Hernández, N M

    1979-01-01

    In pursuing the study of the antimicrobial properties of alkaloids prepared from Cuban plants the activity of 10 indol alkaloids and 4 semisynthetic variables obtained from three plants--Catharanthus roseus G. Don., Vallesia antillana Wood and Ervatamia coronaria Staph, of the family Apocynaceae--growing in Cuba was assessed in vitro. The alkaloids and the variables used were catharantine, vindoline, vindolinine, perivine, reserpine, tabernaemontanine, tetrahydroalstonine, aparicine, vindolinic acid, reserpic acid and vindolininol. These were faced to 40 bacterial strains from the genera Salmonella, Shigella, Proteus, Escherichia, Pseudomonas, Staphylococcus and Corynebacterium as well as to fungi and yeasts from the genera Aspergillus, kCunnighamella, kCandida and Saccharomyces. The method involving cylindric sections in a double agar layer was applied and lectures were obtained at 24-48 hours of incubation at 25 degrees C for fungi and yeasts and 37 degrees C for bacteria. Inhibition zones are reported in millimeters.

  5. An efficient synthesis of loline alkaloids

    NASA Astrophysics Data System (ADS)

    Cakmak, Mesut; Mayer, Peter; Trauner, Dirk

    2011-07-01

    Loline (1) is a small alkaloid that, in spite of its simple-looking structure, has posed surprising challenges to synthetic chemists. It has been known for more than a century and has been the subject of extensive biological investigations, but only two total syntheses have been achieved to date. Here, we report an asymmetric total synthesis of loline that, with less then ten steps, is remarkably short. Our synthesis incorporates a Sharpless epoxidation, a Grubbs olefin metathesis and an unprecedented transannular aminobromination, which converts an eight-membered cyclic carbamate into a bromopyrrolizidine. The synthesis is marked by a high degree of chemo- and stereoselectivity and gives access to several members of the loline alkaloid family. It delivers sufficient material to support a programme aimed at studying the complex interactions between plants, fungi, insects and bacteria brokered by loline alkaloids.

  6. Two new alkaloids from Narcissus serotinus L.

    PubMed

    Pigni, Natalia B; Berkov, Strahil; Elamrani, Abdelaziz; Benaissa, Mohammed; Viladomat, Francesc; Codina, Carles; Bastida, Jaume

    2010-10-14

    The Amaryllidaceae family is well known for the presence of an exclusive group of alkaloids with a wide range of biological activities. Narcissus serotinus L. is a plant belonging to this family and its geographical distribution is mainly located along the Mediterranean coast. In the present work, specimens collected near Casablanca (Morocco) were used to study the alkaloid content of this species. Starting with 350 g of the whole plant we used standard extraction and purification procedures to obtain fractions and compounds for GC-MS and NMR analysis. As well as five known alkaloids, we isolated two new compounds: 1-O-(3´-acetoxybutanoyl)lycorine and narseronine. The latter has been previously published, but with an erroneous structure.

  7. Ether bridge formation in loline alkaloid biosynthesis

    PubMed Central

    Pan, Juan; Bhardwaj, Minakshi; Faulkner, Jerome R.; Nagabhyru, Padmaja; Charlton, Nikki D.; Higashi, Richard M.; Miller, Anne-Frances; Young, Carolyn A.; Grossman, Robert B.; Schardl, Christopher L.

    2014-01-01

    Lolines are potent insecticidal agents produced by endophytic fungi of cool-season grasses. These alkaloids are composed of a pyrrolizidine ring system and an uncommon ether bridge linking carbons 2 and 7. Previous results indicated that 1-aminopyrrolizidine was a pathway intermediate. We used RNA interference to knock down expression of lolO, resulting in the accumulation of a novel alkaloid identified as exo-1-acetamidopyrrolizidine based on high-resolution MS and NMR. Genomes of endophytes differing in alkaloid profiles were sequenced, revealing that those with mutated lolO accumulated exo-1-acetamidopyrrolizidine but no lolines. Heterologous expression of wild-type lolO complemented a lolO mutant, resulting in the production of N-acetylnorloline. These results indicated that the non-heme iron oxygenase, LolO, is required for ether bridge formation, probably through oxidation of exo-1-acetamidopyrrolizidine. PMID:24374065

  8. Amaryllidaceae alkaloids: Absolute configuration and biological activity.

    PubMed

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2017-09-01

    Plants belonging to the Amaryllidaceae family are well known for their ornamental and medicinal use. Plant members of this group are distributed through both tropical and subtropical regions of the world and are dominant in Andean South America, the Mediterranean basin, and southern Africa. Amaryllidaceae plants have been demonstrated to be a good source of alkaloids with a large spectrum of biological activities, the latter being strictly related to the absolute stereochemistry of the alkaloid scaffold. Among them, great importance for practical applications in medicine has galanthamine, which has already spawned an Alzheimer's prescription drug as a potent and selective inhibitor of the enzyme acetylcholinesterase. Furthermore, lycorine as well as its related isocarbostyryl analogs narciclasine and pancratistatine have shown a strong anticancer activity in vitro against different solid tumors with malignant prognosis. This review addresses the assignment of the absolute configuration of several Amaryllidaceae alkaloids and its relationship with their biological activities. © 2017 Wiley Periodicals, Inc.

  9. Diterpenoid alkaloids and flavonoids from Delphinium trichophorum.

    PubMed

    Lin, Chao-Zhan; Zhao, Zhong-Xiang; Xie, Si-Min; Mao, Ju-Hua; Zhu, Chen-Chen; Li, Xiao-Hui; Zeren-dawa, Bairi; Suolang-qimei, Kangsa; Zhu, Dun; Xiong, Tian-Qin; Wu, Ai-Zhi

    2014-01-01

    Five hetisane-type C20-diterpenoid alkaloids, trichodelphinines A-E, one delnudine-type C20-diterpenoid alkaloid, trichodelphinine F and three known flavonoids, quercetin, quercetin 3-O-β-D-glucopyranoside, and quercetin 3-O-β-D-glucopyranoside-7-O-α-L-arabinopyranoside, were isolated from whole plants of Delphinium trichophorum Franch. Their structures were elucidated on the basis of extensive spectroscopic analysis, including HSQC, HMBC, (1)H-(1)H COSY, NOESY and X-ray crystallographic analysis, and from chemical evidence. The cytotoxic activities of the diterpenoid alkaloids were evaluated using the MTT method, and the IC50 values of their cytotoxicity against A549 cancer cells ranged from 12.03 to 52.79 μM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Rotational Investigation of Tropane Alkaloids

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Lesarri, Alberto; Ecija, Patricia; Grabow, Jens-Uwe; Fernández, Jose A.; Castano, Fernando

    2010-06-01

    We report an investigation of the rotational spectrum of several tropane alkaloids using the new Balle-Flygare-type FT-MW spectrometer built at the University of the Basque Country. The initial work focused on the azabicycles of tropinone, scopine and scopoline, vaporized using heating methods. For tropinone the spectrum confirmed the presence of equatorial and axial conformers originated by the inversion of the N-methyl group, with the tropane motif adopting a distorted chair configuration. The determination of substitution and effective structures for the two conformers included the 13C, 15N and 18O isotopomers observed in natural abundance. The structures revealed the flexibility and structural changes associated to the N-methyl inversion, mostly a flattening at the nitrogen atom and a simultaneous rising of the carbonyl group in the axial form. The investigation of scopine gave an intense spectrum, but it was inconsistent with the structural models expected for this molecule. The carrier of the new spectrum was later identified as scopoline, generated in situ by an intramolecular reaction at the moderate temperatures of the nozzle. A single conformation was detected for scopoline, with an ether bridge seriously distorting the tropane motif. E. J. Cocinero, A. Lesarri, P. écija, J.-U. Grabow, J. A. Fernández, F. Castaño, in publication, 2010 E. J. Cocinero, A. Lesarri, P. Écija, J.-U. Grabow, J. A. Fernández, F. Castaño, Phys. Chem. Chem. Phys.,in press, 2010

  11. Gas-phase dissociation study of erythrinian alkaloids by electrospray ionization mass spectrometry and computational methods.

    PubMed

    Guaratini, T; Feitosa, L G P; Silva, D B; Lopes, N P; Lopes, J L C; Vessecchi, R

    2017-09-01

    Alkaloids from plants of the genus Erythrina display important biological activities, including anxiolytic action. Characterization of these alkaloids by mass spectrometry (MS) has contributed to the construction of a spectral library, has improved understanding of their structures and has supported the proposal of fragmentation mechanisms in light of density functional calculations. In this study, we have used low-resolution and high-resolution MS(n) analyses to investigate the fragmentation patterns of erythrinian alkaloids; we have employed the B3LYP/6-31+G(d,p) model to obtain their reactive sites. To suggest the fragmentation mechanism of these alkaloids, we have studied their protonation sites by density functional calculation, and we have obtained their molecular electrostatic potential map and their gas-phase basicity values. These analyses have indicated the most basic sites on the basis of the proton affinities of the nitrogen and oxygen atoms. The protonated molecules were generated by two major fragmentations, namely, neutral loss of CH3 OH followed by elimination of H2 O. High-resolution analysis confirmed elimination of NH3 by comparison with the losses of H2 and •CH3 . NH3 was eliminated from compounds that did not bear a substituent on ring C. The benzylic carbocation initiated the dissociation mechanism, and the first reaction involved charge transfer from a lone pair of electrons in the oxygen atoms. The second reaction consisted of ring contraction with loss of a CO molecule. The presence of hydroxy and epoxy groups could change the intensity or the occurrence of the fragmentation pathways. Given that erythrinian alkaloids are applied in therapeutics and are promising leads for the development of new drugs, the present results could aid identification of several analogues of these alkaloids in biological samples and advance pharmacokinetic studies of new plant derivatives based on MS(n) and MS/MS analyses. Copyright © 2017 John Wiley & Sons

  12. Thin-Layer Chromatography/Desorption Electrospray Ionization Mass Spectrometry: Investigation of Goldenseal Alkaloids

    SciTech Connect

    Van Berkel, Gary J; Tomkins, Bruce A; Kertesz, Vilmos

    2007-01-01

    Desorption electrospray ionization mass spectrometry was investigated as a means to qualitatively identify and to quantify analytes directly from developed normal-phase thin layer chromatography plates. The atmospheric sampling capillary of a commercial ion trap mass spectrometer was extended to permit sampling and ionization of analytes in bands separated on intact TLC plates (up to 10 cm x 10 cm). A surface positioning software package and the appropriate hardware enabled computer-controlled surface scanning along the length of development lanes or at fixed RF value across the plates versus the stationary desorption electrospray emitter. Goldenseal (Hydrastis canadensis) and related alkaloids and commercial dietary supplements were used as standards and samples. Alkaloid standards and samples were spotted and separated on aluminum- or glass-backed plates using established literature methods. The mass spectral signal levels as a function of desorption spray solvent were investigated with acetonitrile proving superior to methanol. The detection levels (ca. 5 ng each or 14 -28 pmol) in mass spectral full scan mode were determined statistically from the calibration curves (2.5 - 100 pmol) for the standards berberine, palmatine and hydrastinine spotted as a mixture and separated on the plates. Qualitative screening of the major alkaloids present in six different over-the-counter "goldenseal" dietary supplements was accomplished by obtaining full scan mass spectra during surface scans along the development lane in the direction of increasing RF value. In one sample, alkaloids were detected that strongly suggested the presence of at least one additional herb undeclared on the product label. These same data indicated the misidentification of one of the alkaloids in the TLC literature. Quantities of the alkaloids present in two of the samples determined using the mass spectral data were in reasonable agreement with the label values indicating the quantitative ability of

  13. Linkage analysis of a rare alkaloid present in a tetraploid potato with Solanum chacoense background.

    PubMed

    Sagredo, B; Lorenzen, J; Casper, H; Lafta, A

    2011-02-01

    The potato genotype ND4382-19 has Solanum chacoense Bitt. in its genetic background. Foliar alkaloid analysis of it and its progeny ND5873 (ND4382-19 × Chipeta) by gas chromatography-mass spectrometry (GC-MS) showed that, in addition to the expected alkaloids (solanidine, leptinidine, and acetyl-leptinidine), there was an aglycone of another rare alkaloid. Its molecular mass and some of the m/z fragment ions were similar to leptinidine, but the major fragment ion was the m/z 150 peak of solanidine. This fragmentation pattern suggested that this alkaloid is a solanidine-based compound with mass equal to leptinidine. Leptinidine differs from solanidine by an extra -OH group, but the GC-MS fragmentation pattern of the rare compound indicated hydroxylation at a different position than the C-23 of leptinidine. The exact chemical structure is still unknown, and further analysis, such as NMR will be necessary to determine the structure. Segregation analysis of ND5873 (ND4382-19 × Chipeta) showed that presence of this rare compound segregated in a 1:1 ratio, indicating that a single gene controlled its synthesis and/or accumulation in foliar tissue. Analysis with AFLP and microsatellite markers indicated that the locus-controlling presence of this alkaloid resided on potato chromosome I, with the nearest flanking AFLP markers 0.6 and 9.4 cM apart. This rare alkaloid was present in the foliage and not detected in potato tubers. Its presence in leaves did not affect resistance/susceptibility to Colorado potato beetle.

  14. Bithiophenic MALDI matrices as valuable leads for the selective detection of alkaloids.

    PubMed

    Jaber, Ali; Seraphin, Denis; Guilet, David; Osuga, Junichi; Cheble, Edmond; Ibrahim, Ghassan; Richomme, Pascal; Schinkovitz, Andreas

    2017-10-03

    Alkaloids represent a group of biologically most interesting compounds commonly used in modern medicines but also known for exhibiting severe toxic effects. Therefore, the detection of alkaloids is an important issue in quality control of plants, dietary supplements, and herbal pharmaceutical and mostly facilitated by methods such as GC or LC-MS. However, benefitting from the development of selective matrices as well as requiring very little sample preparation, MALDI-MS may also provide a valuable supplement to these standard analytical methods. With this in mind, the present study highlights recent advances in the development of bithiophenic matrix molecules designed for the selective detection of alkaloids. Overall four new bithiophenic matrix molecules (BMs) were tested on different analytes belonging to various chemical families such as alkaloids, curcuminoids, benzopyrones, flavonoids, steroids, and peptides (I). All BMs were further compared to the commercial matrices α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) in terms of their signal response as well as their matrix noise formation (II). Based on these results the most promising candidate, 3-(5'-pentafluorophenylmethylsulfanyl-[2,2']bithiophenyl-5-ylsulfanyl)propionitrile (PFPT3P), was tested on highly complex samples such as the crude extracts of Colchicum autumnale, RYTMOPASC ® solution (a herbal pharmaceutical containing sparteine and rubijervine), as well as strychnine-spiked human plasma (III). For the latter, an evaluation of the limit of detection was performed. Eventually, a simplified protocol for the direct MALDI detection of major alkaloids from pulverized plant material of Atropa belladonna and Senecio vulgaris is presented (IV). Graphical abstract Selective MALDI MATRICES for Alkaloid Detection.

  15. Antitussive indole alkaloids from Kopsia hainanensis.

    PubMed

    Tan, Min-Jia; Yin, Chun; Tang, Chun-Ping; Ke, Chang-Qiang; Lin, Ge; Ye, Yang

    2011-06-01

    Three new indole alkaloids, named kopsihainins A-C (1-3), and two known compounds, kopsinine (4) and methyl demethoxycarbonylchanofruticosinate (5), were isolated from the stems of Kopsia hainanensis. Their structures were determined using extensive spectroscopic methods. The two main constituents 4 and 5 exhibited significant antitussive activity in a citric acid induced guinea pig cough model. The antitussive effect of 4 was demonstrated to interact with the δ-opioid receptor. This is the first report of antitussive effects of aspidofractinine type and chanofruticosinate type alkaloids. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Alkaloids from Hippeastrum morelianum Lem. (Amaryllidaceae).

    PubMed

    Giordani, Raquel B; de Andrade, Jean P; Verli, Hugo; Dutilh, Julie H; Henriques, Amélia T; Berkov, Strahil; Bastida, Jaume; Zuanazzi, José Angelo S

    2011-10-01

    The Amaryllidaceae family has proven to be a rich source of active molecules. As part of an ongoing project, we report a phytochemical study of Hippeastrum morelianum (Amaryllidaceae), from which we have isolated two homolycorine-type alkaloids, the new 2α,7-dimethoxyhomolycorine (1) and the poorly described candimine (2), as well as six known alkaloids: tazettine, pretazettine, 3-epimacronine, haemanthamine, hamayne and trisphaeridine. For reference purposes, the NMR of the isolated compounds was unequivocally described, based on 2D NMR measurements including (1)H-(1)H COSY, (1)H-(1)H NOESY, HSQC and HMBC.

  17. Leucovernine and acetylleucovernine, alkaloids from Leucojum vernum.

    PubMed

    Forgo, Peter; Hohmann, Judit

    2005-11-01

    The fresh bulbs of Leucojum vernum provided seven tyrosine-derived alkaloids; two of them have not been reported before and are named leucovernine and acetylleucovernine. The five known alkaloids were N-demethylgalanthamine, hippeastrine, 9-O-demethylhomolycorine, 5alpha-hydroxyhomolycorine, and 11-hydroxyvittatine. These compounds have been isolated from this species for the first time. The structure determination was carried out by the combination of liquid-phase one- and two-dimensional NMR spectroscopy and high-resolution mass spectrometry.

  18. Marine alkaloids (-)-pictamine and (-)-lepadin B block neuronal nicotinic acetylcholine receptors.

    PubMed

    Tsuneki, Hiroshi; You, Yueren; Toyooka, Naoki; Sasaoka, Toshiyasu; Nemoto, Hideo; Dani, John A; Kimura, Ikuko

    2005-04-01

    Ascidians (sea squirts) contain a wealth of alkaloids, but their influence over neuronal nicotinic acetylcholine receptors (nAChRs) has not been evaluated. In this study, we examined the effects of two synthetic compounds, (-)-pictamine, a quinolizidine alkaloid from Clavelina picta, and (-)-lepadin B, a decahydroquinoline alkaloid from Clavelina lepadiformis, on major types of neuronal nicotinic receptors (alpha4beta2 and alpha7) expressed in Xenopus oocytes. We found that these alkaloids are potent blockers at these receptors: acetylcholine-elicited currents through alpha4beta2 and alpha7 receptors were blocked by (-)-pictamine with IC(50) values of 1.5 microM and 1.3 microM, respectively, and by (-)-lepadin B with IC(50) values of 0.9 microM and 0.7 microM, respectively. Interestingly, no recovery was observed after the removal of (-)-pictamine in oocytes expressing alpha4beta2 receptors, whereas the inhibited alpha7 currents quickly recovered after the removal of (-)-pictamine. Since there are few compounds that elicit irreversible blocks of alpha4beta2 receptors, (-)-pictamine will be a novel, valuable tool to remove the alpha4beta2-nAChR action from neuronal activities mediated by these two major types of nAChRs.

  19. Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: enzymatic adaptation of Bombyx mori to mulberry defense.

    PubMed

    Hirayama, Chikara; Konno, Kotaro; Wasano, Naoya; Nakamura, Masatoshi

    2007-12-01

    Mulberry leaves (Morus spp.) exude latex rich in sugar-mimic alkaloids, 1,4-dideoxy-1,4-imino-d-arabinitol (d-AB1) and 1-deoxynojirimycin (DNJ), as a defense against herbivorous insects. Sugar-mimic alkaloids are inhibitors of sugar-metabolizing enzymes, and are toxic to the Eri silkworm, Samia ricini, a generalist herbivore, but not at all to the domesticated silkworm, Bombyx mori, a mulberry specialist. To address the phenomena, we fed both larvae diets containing different sugar sources (sucrose, glucose or none) with or without sugar-mimic alkaloids from mulberry latex. In S. ricini, addition of sugar-mimic alkaloids to the sucrose (the major sugar in mulberry leaves) diet reduced both growth and the absorption ratio of sugar, but it reduced neither in B. mori. The midgut soluble sucrase activity of S. ricini was low and inhibited by very low concentrations of sugar-mimic alkaloids (IC(50)=0.9-8.2microM), but that of B. mori was high and not inhibited even by very high concentrations (IC(50)>1000microM) of sugar-mimic alkaloids. In S. ricini, the addition of sugar-mimic alkaloids to the glucose diet still had considerable negative effects on growth, although it did not reduce the absorption ratio of glucose. The hemolymph of S. ricini fed sugar-mimic alkaloids contained sugar-mimic alkaloids. The trehalose concentration in the hemolymph increased significantly in S. ricini fed sugar-mimic alkaloids, but not in B. mori. The trehalase activities of S. ricini were lower and inhibited by lower concentrations of sugar-mimic alkaloids than those of B. mori. These results suggest that sugar-mimic alkaloids in mulberry latex exert toxicity to S. ricini larvae first by inhibiting midgut sucrase and digestion of sucrose, and secondly, after being absorbed into hemolymph, by inhibiting trehalase and utilization of trehalose, the major blood sugar. Further, our results reveal that B. mori larvae evolved enzymatic adaptation to mulberry defense by developing sucrase and

  20. Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Valluri, Jagan V.

    2011-01-01

    A methodology for growing three-dimensional plant tissue models in a hydrodynamic focusing bioreactor (HFB) has been developed. The methodology is expected to be widely applicable, both on Earth and in outer space, as a means of growing plant cells and aggregates thereof under controlled conditions for diverse purposes, including research on effects of gravitation and other environmental factors upon plant growth and utilization of plant tissue cultures to produce drugs in quantities greater and at costs lower than those of conventional methodologies. The HFB was described in Hydro focus - ing Bioreactor for Three-Dimensional Cell Culture (MSC-22358), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 66. To recapitulate: The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear liquid culture environment simultaneously with the herding of suspended cells and tissue assemblies and removal of unwanted air bubbles. The HFB includes a rotating cell-culture vessel with a centrally located sampling port and an internal rotating viscous spinner attached to a rotating base. The vessel and viscous spinner can be made to rotate at the same speed and direction or different speeds and directions to tailor the flow field and the associated hydrodynamic forces in the vessel in order to obtain low-shear suspension of cells and control of the locations of cells and air bubbles. For research and pharmaceutical-production applications, the HFB offers two major benefits: low shear stress, which promotes the assembly of cells into tissue-like three-dimensional constructs; and randomization of gravitational vectors relative to cells, which affects production of medicinal compounds. Presumably, apposition of plant cells in the absence of shear forces promotes cell-cell contacts, cell aggregation, and cell differentiation. Only gentle mixing is necessary for distributing nutrients and oxygen. It has been postulated that inasmuch as cells in the simulated

  1. Honatisine, a novel diterpenoid alkaloid, and six known alkaloids from Delphinium honanense and their cytotoxic activity.

    PubMed

    He, Yang Qing; Ma, Zhan Ying; Wei, Xiao Mei; Liu, Dong Jie; Du, Bao Zhong; Yao, Bing Hua; Gao, Li Ming

    2011-11-01

    A novel diterpene alkaloid named honatisine (1) has been isolated from the whole plants of Delphinium honanense, along with six known alkaloids, siwanine E (2), isoatisine (3), atisine (4), delcorinine (5), uraphine (6), and nordhagenine A (7). Their structures were deduced on the basis of their spectral data. All of them were evaluated by a SRB assay for their cytotoxicity, and compound 1 showed a significant cytotoxic activity (IC(50) =3.16 μM) against the MCF-7 cell line.

  2. Therapeutic Potential of Steroidal Alkaloids in Cancer and Other Diseases.

    PubMed

    Jiang, Qi-Wei; Chen, Mei-Wan; Cheng, Ke-Jun; Yu, Pei-Zhong; Wei, Xing; Shi, Zhi

    2016-01-01

    Steroidal alkaloids are a class of secondary metabolites isolated from plants, amphibians, and marine invertebrates. Evidence accumulated in the recent two decades demonstrates that steroidal alkaloids have a wide range of bioactivities including anticancer, antimicrobial, anti-inflammatory, antinociceptive, etc., suggesting their great potential for application. It is therefore necessary to comprehensively summarize the bioactivities, especially anticancer activities and mechanisms of steroidal alkaloids. Here we systematically highlight the anticancer profiles both in vitro and in vivo of steroidal alkaloids such as dendrogenin, solanidine, solasodine, tomatidine, cyclopamine, and their derivatives. Furthermore, other bioactivities of steroidal alkaloids are also discussed. The integrated molecular mechanisms in this review can increase our understanding on the utilization of steroidal alkaloids and contribute to the development of new drug candidates. Although the therapeutic potentials of steroidal alkaloids look promising in the preclinical and clinical studies, further pharmacokinetic and clinical studies are mandated to define their efficacy and safety in cancer and other diseases.

  3. Alkaloid production by callous tissue cultures of Cereus peruvianus (Cactaceae).

    PubMed

    de Oliveira, Arildo José Braz; Machado, Maria Fátima Pires da Silva

    2003-02-01

    The morphologically undifferentiated cells of nonregenerant callous tissue of Cereus peruvianus cultured in the original medium and in medium supplemented with tyrosine were used as an alkaloid source. Comparison of alkaloid production by C. peruvianus plants and by callous tissues indicated that alkaloid levels were almost twice as high in callous tissues as in shoots of C. peruvianus plants. The ratio of alkaloid concentration between mature plant and morphologically undifferentiated cells of callous tissue was 1:1.7. A relationship between culture medium containing tyrosine and alkaloid production was also observed in the callous tissues of C. peruvianus. Since increased alkaloid production may be induced by additional factors such as tyrosine, increasing levels of tyrosine or other conditions of the culture medium may be considered factors for inducing higher alkaloid production by C. peruvianus callous tissues.

  4. The thermodynamics of vinca alkaloid-induced tubulin spirals formation.

    PubMed

    Lobert, Sharon; Ingram, Jeffrey W; Correia, John J

    2007-03-01

    Vinca alkaloids are antimitotic, anticancer agents that induce tubulin to form spiral polymers at physiological protein concentrations. We used sedimentation velocity to investigate the effects of six vinca alkaloids on tubulin spiraling. Fitting to a Wyman linkage model reveals a drug dependent change of over two orders of magnitude in spiraling potential, K(1)K(2). Thermodynamic analysis of LnK(1)K(2) data demonstrates large and positive DeltaS values, indicating that tubulin spiral formation is entropically-driven. From the curvature in van't Hoff plots of vinblastine data, we estimate DeltaC(p) for GTP and GDP conditions to be -439 and -396 cal/mol K. Partitioning of DeltaS into the hydrophobic effect, DeltaS(HE), change in rotational/translational freedom, DeltaS(RT) and change in protein conformation, DeltaS(other), demonstrates that the major driving force for tubulin spiral formation is burial of hydrophobic surfaces and that protein conformational changes do not make a significant contribution. Spiraling potential is an indicator of antimitotic activity in vivo, although turbidity studies indicate that there is no correlation between spiraling potential and microtubule inhibition in vitro. Mechanisms that explain this discrepancy are discussed.

  5. Apoptosis-Inducing Effects of Amaryllidaceae Alkaloids.

    PubMed

    Nair, Jerald J; van Staden, Johannes; Bastida, Jaume

    2016-01-01

    The Amaryllidaceae occupies a privileged status amongst medicinal plants in having delivered the Alzheimer's drug galanthamine to the clinical market. Following its resounding success, there have been several positive indicators for the emergence of an anticancer drug from the family due to the potent antiproliferative activities manifested by several of its alkaloid constituents. Of these, the phenanthridones such as pancratistatin hold most promise as potential chemotherapeutics having succumbed to various phases of clinical trials. Other cytotoxic targets of the Amaryllidaceae are to be found within the lycorane and crinane groups, as exemplified by crinine and lycorine. Although the molecular targets of these alkaloids still remain elusive, much effort has gone into understanding their mode of action in cancer cells. Recent findings have shown that the apoptotic pathway may be a key factor in cancer cell death instigated by Amaryllidaceae alkaloids. As such, this review seeks to: (a) examine the apoptotic effects of Amaryllidaceae alkaloids in cancer cells; (b) explore the molecular basis to these effects; and (c) provide a pharmacophoric rationale in support of these activities. (c) provide a pharmacophoric rationale in support of these activities.

  6. New indole alkaloid from Peschiera affinis (Apocynaceae).

    PubMed

    Santos, Allana Kellen L; Machado, Luciana L; Bizerra, Ayla Marcia C; Monte, Francisco José Q; Santiago, Gilvandete M P; Braz-Filho, Raimundo; Lemos, Telma L G

    2012-06-01

    A new indole alkaloid of the pyridocarbazole type, named 6N-hydroxy-olivacine, and two known compounds, 2N-oxide-olivacine and olivacine, were isolated from roots of Peschiera affinis. The structures of the compounds were determined by spectroscopic {IR and extensive NMR (COSY, HMQC, HMBCand NOESY)} and EIMS analysis.

  7. Four new Amaryllidaceae alkaloids from Zephyranthes candida.

    PubMed

    Shitara, Nanase; Hirasawa, Yusuke; Hasumi, Shunsuke; Sasaki, Tadahiro; Matsumoto, Misaki; Wong, Chin Piow; Kaneda, Toshio; Asakawa, Yoshinori; Morita, Hiroshi

    2014-07-01

    Four new Amaryllidaceae alkaloids (1-4) possessing a homolycorine-type or a crinine-type skeleton have been isolated from the aerial part of Zephyranthes candida, and their structures were elucidated on the basis of spectroscopic data. The stereochemistry was elucidated by combination of NOESY correlations and CD analyses.

  8. The Alkaloid Profiles of Lupinus sulphureus

    USDA-ARS?s Scientific Manuscript database

    Lupines are common plants found on the rangelands in the western United States. Lupines are known to contain alkaloids that can be toxic and teratogenic causing congenital birth defects (crooked calf disease). One such lupine, Lupinus sulphureus, occurs in parts of Oregon, Washington, and British ...

  9. Dehydropyrrolizidine alkaloid toxicity, cytotoxicity, and carcinogenicity

    USDA-ARS?s Scientific Manuscript database

    Dehyro-pyrrolizidine alkaloid (PA)-containing plants compose about 5% of the world’s flowering plants and they commonly poison livestock, wildlife and humans. Previous work has produced considerable understanding of PA toxicity, species susceptibility, conditions and routes of exposure, toxin metab...

  10. Ergot alkaloids decrease rumen epithelial blood flow

    USDA-ARS?s Scientific Manuscript database

    Two experiments were conducted to determine if ergot alkaloids affect blood flow to the absorptive surface of the rumen of steers. Steers (n=8 total) were pair-fed alfalfa cubes at 1.5× NEM and received ground endophyte-infected tall fescue seed (E+) or endophyte-free tall fescue seed (E-) via rumen...

  11. Photochemical N-demethylation of alkaloids.

    PubMed

    Ripper, J A; Tiekink, E R; Scammells, P J

    2001-02-26

    Certain alkaloids were observed to undergo N-demethylation processes under photochemical conditions. Tropine, acetyltropine, tropinone, and atropine were cleanly N-demethylated upon treatment with tetraphenylporphin, oxygen, and light. Dextromethorphan also underwent a N-demethylation reaction, but reacted further to afford an imine. In contrast, 14-acyloxycodeinones underwent a photochemically induced tandem N-demethylation acyl migration.

  12. Direct infusion ESI-IT-MSn alkaloid profile and isolation of tetrahydroharman and other alkaloids from Bocageopsis pleiosperma maas (Annonaceae).

    PubMed

    Soares, Elzalina R; da Silva, Felipe M A; de Almeida, Richardson A; de Lima, Bruna R; da Silva Filho, Francinaldo A; Barison, Andersson; Koolen, Hector H F; Pinheiro, Maria Lúcia B; de Souza, Afonso D L

    2015-01-01

    The Annonaceae family is known as a promising abundant source of secondary metabolites, especially annonaceous acetogenins, terpenoids and isoquinoline-derived alkaloids. Although widely investigated from the phytochemical viewpoint, this family still presents some largely unexplored genera, e.g. the Bocageopsis. To investigate the alkaloid content of Bocageopsis pleiosperma Maas using direct infusion electrospray ionisation ion trap tandem mass spectrometry (ESI-IT-MS(n)) analysis. Dichloromethane extracts of aerial parts were subjected to acid-base partitioning to yield the alkaloidal fractions. These fractions were analysed by direct infusion into a (+)ESI-IT-MS(n) system. The alkaloidal fraction from the leaves was also obtained on a large scale and subjected to chromatographic separation. The tentative MS(n) -based identification of alkaloids in leaves, twigs and trunk bark showed that aporphine alkaloids were restricted to the leaves and twigs, tetrahydroprotoberberine alkaloids were only found in the twigs and trunk bark while benzylisoquinoline alkaloids were found in the leaves, twigs and trunk bark. Chromatographic separation of the leaf alkaloidal fraction yielded the aporphine alkaloids nornuciferine, asimilobine and isoboldine, the β-carboline alkaloid tetrahydroharman and some mixtures containing benzylisoquinoline and aporphine alkaloids, all described for the first time in the Bocageopsis genus. Furthermore, tetrahydroharman has not previously been reported in the Magnoliales order. Direct infusion ESI-IT-MS(n) analysis of alkaloids allowed fast recognition of alkaloidal classes previously reported in the Annonaceae family, aiding the chromatographic step and allowing a selective isolation of compounds previously not identified in the Bocageopsis genus. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Phylogeny Predicts the Quantity of Antimalarial Alkaloids within the Iconic Yellow Cinchona Bark (Rubiaceae: Cinchona calisaya)

    PubMed Central

    Maldonado, Carla; Barnes, Christopher J.; Cornett, Claus; Holmfred, Else; Hansen, Steen H.; Persson, Claes; Antonelli, Alexandre; Rønsted, Nina

    2017-01-01

    Considerable inter- and intraspecific variation with respect to the quantity and composition of plant natural products exists. The processes that drive this variation remain largely unknown. Understanding which factors determine chemical diversity has the potential to shed light on plant defenses against herbivores and diseases and accelerate drug discovery. For centuries, Cinchona alkaloids were the primary treatment of malaria. Using Cinchona calisaya as a model, we generated genetic profiles of leaf samples from four plastid (trnL-F, matK, rps16, and ndhF) and one nuclear (ITS) DNA regions from twenty-two C. calisaya stands sampled in the Yungas region of Bolivia. Climatic and soil parameters were characterized and bark samples were analyzed for content of the four major alkaloids using HPLC-UV to explore the utility of evolutionary history (phylogeny) in determining variation within species of these compounds under natural conditions. A significant phylogenetic signal was found for the content of two out of four major Cinchona alkaloids (quinine and cinchonidine) and their total content. Climatic parameters, primarily driven by changing altitude, predicted 20.2% of the overall alkaloid variation, and geographical separation accounted for a further 9.7%. A clade of high alkaloid producing trees was identified that spanned a narrow range of altitudes, from 1,100 to 1,350 m. However, climate expressed by altitude was not a significant driver when accounting for phylogeny, suggesting that the chemical diversity is primarily driven by phylogeny. Comparisons of the relative effects of both environmental and genetic variability in determining plant chemical diversity have scarcely been performed at the genotypic level. In this study we demonstrate there is an essential need to do so if the extensive genotypic variation in plant biochemistry is to be fully understood. PMID:28382048

  14. Modulation of CYPs, P-gp, and PXR by Eschscholzia californica (California Poppy) and Its Alkaloids.

    PubMed

    Manda, Vamshi K; Ibrahim, Mohamed A; Dale, Olivia R; Kumarihamy, Mallika; Cutler, Stephen J; Khan, Ikhlas A; Walker, Larry A; Muhammad, Ilias; Khan, Shabana I

    2016-04-01

    Eschscholzia californica, a native US plant, is traditionally used as a sedative, analgesic, and anxiolytic herb. With the rapid rise in the use of herbal supplements together with over-the-counter and prescription drugs, the risk for potential herb-drug interactions is also increasing. Most of the clinically relevant pharmacokinetic drug interactions occur due to modulation of cytochrome P450 enzymes (CYPs), P-glycoprotein, and the pregnane X receptor by concomitantly used herbs. This study aimed to determine the effects of an EtOH extract, aqueous extract (tea), basic CHCl3 fractions, and isolated major alkaloids, namely protopine (1), escholtzine (2), allocryptopine (3), and californidine (4), of E. californica on the activity of cytochrome P450s, P-glycoprotein and the pregnane X receptor. The EtOH extract and fractions showed strong time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19, and reversible inhibition of CYP 2D6. Among the alkaloids, escholtzine (2) and allocryptopine (3) exhibited time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19 (IC50 shift ratio > 2), while protopine (1) and allocryptopine (3) showed reversible inhibition of CYP 2D6 enzyme. A significant activation of the pregnane X receptor (> 2-fold) was observed with the EtOH extract, basic CHCl3 fraction, and alkaloids (except protopine), which resulted into an increased expression of mRNA and the activity of CYP 3A4 and CYP 1A2. The expression of P-glycoprotein was unaffected. However, aqueous extract (tea) and its main alkaloid californidine (4) did not affect cytochrome P450s, P-glycoprotein, or the pregnane X receptor. This data suggests that EtOH extract of E. californica and its major alkaloids have a potential of causing interactions with drugs that are metabolized by cytochrome P450s, while the tea seems to be safer.

  15. Prehistoric peyote use: alkaloid analysis and radiocarbon dating of archaeological specimens of Lophophora from Texas.

    PubMed

    El-Seedi, Hesham R; De Smet, Peter A G M; Beck, Olof; Possnert, Göran; Bruhn, Jan G

    2005-10-03

    Two archaeological specimens of peyote buttons, i.e. dried tops of the cactus Lophophora williamsii (Lem.) Coulter, from the collection of the Witte Museum in San Antonio, was subjected to radiocarbon dating and alkaloid analysis. The samples were presumably found in Shumla Cave No. 5 on the Rio Grande, Texas. Radiocarbon dating shows that the calibrated 14C age of the weighted mean of the two individual dated samples corresponds to the calendric time interval 3780-3660 BC (one sigma significance). Alkaloid extraction yielded approximately 2% of alkaloids. Analysis with thin-layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS) led to the identification of mescaline in both samples. No other peyote alkaloids could be identified. The two peyote samples appear to be the oldest plant drug ever to yield a major bioactive compound upon chemical analysis. The identification of mescaline strengthens the evidence that native North Americans recognized the psychotropic properties of peyote as long as 5700 years ago.

  16. Natural alkaloids as P-gp inhibitors for multidrug resistance reversal in cancer.

    PubMed

    Joshi, Prashant; Vishwakarma, Ram A; Bharate, Sandip B

    2017-09-29

    The biggest challenge associated with cancer chemotherapy is the development of cross multi-drug resistance to almost all anti-cancer agents upon chronic treatment. The major contributing factor for this resistance is efflux of the drugs by the p-glycoprotein pump. Over the years, inhibitors of this pump have been discovered to administer them in combination with chemotherapeutic agents. The clinical failure of first and second generation P-gp inhibitors (such as verapamil and cyclosporine analogs) has led to the discovery of third generation potent P-gp inhibitors (tariquidar, zosuquidar, laniquidar). Most of these inhibitors are nitrogenous compounds and recently a natural alkaloid CBT-01(®) (tetrandrine) has advanced to the clinical phase. CBT-01 demonstrated positive results in Phase-I study in combination with paclitaxel, which warranted conducting it's Phase II/III trial. Apart from this, there exist a large number of natural alkaloids possessing potent inhibition of P-gp efflux pump and other related pumps responsible for the development of resistance. Despite the extensive contribution of alkaloids in this area, has never been reviewed. The present review provides a comprehensive account on natural alkaloids possessing P-gp inhibition activity and their potential for multidrug resistance reversal in cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Determination of mycotoxins, alkaloids, phytochemicals, antioxidants and cytotoxicity in Asiatic ginseng (Ashwagandha, Dong quai, Panax ginseng).

    PubMed

    Filipiak-Szok, Anna; Kurzawa, M; Szłyk, E; Twarużek, M; Błajet-Kosicka, A; Grajewski, J

    2017-01-01

    Mycotoxins and selected hazardous alkaloids in the medicinal plants (Panax ginseng, Angelica sinensis, and Withania somnifera) and dietary supplements were determined. Purine alkaloids were found in majority of samples; however, isoquinoline alkaloids were less abundant than indole. The predominant alkaloids appear to be caffeine (purine group), harman (indole group) and berberine (isoquinoline). Examined medicinal plants and dietary supplements were contaminated by mycotoxins (especially ochratoxin A 1.72-5.83 µg kg(-1)), and many species of mold (e.g. Cladosporium, Eurotium, Aspergillus, Rhizopus, Penicillium). MTT cytotoxicity tests revealed that plant and supplements extracts exhibited medium or high cytotoxicity (only Dong quai-low). Moreover, antioxidant activity, total phenolics content and selected phytochemicals were analyzed by spectrophotometric and chromatographic methods. Quercetin and rutin were predominant flavonols (1.94-9.51 and 2.20-7.28 mg 100 g(-1), respectively). Analysis of phenolic acids revealed-gallic acid, as the most abundant, except Panax ginseng, where ferulic acid was prevailing. The results were analyzed by chemometric methods (cluster analysis, ANOVA).

  18. Detection of a new piperideine alkaloid in the pygidial glands of some Stenus beetles.

    PubMed

    Wittmann, Isabel; Schierling, Andreas; Dettner, Konrad; Göhl, Matthias; Schmidt, Jürgen; Seifert, Karlheinz

    2015-09-01

    Rove beetles of the genus Stenus produce and store bioactive alkaloids like stenusine (3), 3-(2-methylbut-1-enyl)pyridine (4), and cicindeloine (5) in their pygidial glands to protect themselves from predation and microorganismic infestation. The biosynthesis of stenusine (3), 3-(2-methylbut-1-enyl)pyridine (4), and cicindeloine (5) was previously investigated in Stenus bimaculatus, Stenus similis, and Stenus solutus, respectively. The piperideine alkaloid cicindeloine (5) occurs also as a major compound in the pygidial gland secretion of Stenus cicindeloides. The three metabolites follow the same biosynthetic pathway, where the N-heterocyclic ring is derived from L-lysine and the side chain from L-isoleucine. The different alkaloids are finally obtained by few modifications of shared precursor molecules, such as 2,3,4,5-tetrahydro-5-(2-methylbutylidene)pyridine (1). This piperideine alkaloid was synthesized and detected by GC/MS and GC at a chiral phase in the pygidial glands of Stenus similis, Stenus tarsalis, and Stenus cicindeloides.

  19. Inhibitory effect of steroidal alkaloids on drug transport and multidrug resistance in human cancer cells.

    PubMed

    Lavie, Y; Harel-Orbital, T; Gaffield, W; Liscovitch, M

    2001-01-01

    Intrinsic or acquired resistance of tumor cells to multiple cytotoxic drugs (multidrug resistance MDR) is a major cause of failure of cancer chemotherapy. MDR is often caused by elevated expression of drug transporters such as P-glycoprotein (P-gp) or multidrug resistance protein (MRP). A number of compounds, termed chemosensitizers, have little or no cytotoxic action of their own, but inhibit (P-gp) or MRP-mediated drug export and are capable of sensitizing MDR cells to the cytotoxic effects of chemotherapeutic drugs. Here we examined the ability of steroidal alkaloids of plant origin, namely the Veratrum sp. alkaloid cyclopamine and the Lycopersicon sp. alkaloid tomatidine, to act as potent and effective chemosensitizers in multidrug resistant tumor cells. Drug uptake was determined by measuring accumulation of tetramethylrosamine in multidrug resistant NCI AdrR human adenocarcinoma cells. Resistance to adriamycin and vinblastine was determined by utilizing the MTT cell survival assay. Cyclopamine and tomatidine elevate tetramethylrosamine uptake by NCI AdrR cells and sensitize the cells to the cytotoxic action of adriamycin and vinblastine. In both cases these agents are comparable in patency and efficacy to verapamil, a reversal agent commonly used in MDR research. It is concluded that steroidal alkaloids of plant origin act as inhibitors of P-gp-mediated drug transport and multidrug resistance and therefore may serve as chemosensitizers in combination chemotherapy with conventional cytotoxic drugs for treating multidrug resistant cancer.

  20. A Tale of Three Cell Types: Alkaloid Biosynthesis Is Localized to Sieve Elements in Opium Poppy

    PubMed Central

    Bird, David A.; Franceschi, Vincent R.; Facchini, Peter J.

    2003-01-01

    Opium poppy produces a diverse array of pharmaceutical alkaloids, including the narcotic analgesics morphine and codeine. The benzylisoquinoline alkaloids of opium poppy accumulate in the cytoplasm, or latex, of specialized laticifers that accompany vascular tissues throughout the plant. However, immunofluorescence labeling using affinity-purified antibodies showed that three key enzymes, (S)-N-methylcoclaurine 3′-hydroxylase (CYP80B1), berberine bridge enzyme (BBE), and codeinone reductase (COR), involved in the biosynthesis of morphine and the related antimicrobial alkaloid sanguinarine, are restricted to the parietal region of sieve elements adjacent or proximal to laticifers. The localization of laticifers was demonstrated using antibodies specific to the major latex protein (MLP), which is characteristic of the cell type. In situ hybridization showed that CYP80B1, BBE, and COR gene transcripts were found in the companion cell paired with each sieve element, whereas MLP transcripts were restricted to laticifers. The biosynthesis and accumulation of alkaloids in opium poppy involves cell types not implicated previously in plant secondary metabolism and dramatically extends the function of sieve elements beyond the transport of solutes and information macromolecules in plants. PMID:14508000

  1. High performance liquid chromatography analysis of canthinone alkaloids from Eurycoma longifolia.

    PubMed

    Choo, Chee-Yan; Chan, Kit-Lam

    2002-04-01

    A reversed phase-high performance liquid chromatography method with a photodiode array detector was developed for the simultaneous determination of three major alkaloids, 9-methoxycanthin-6-one (1), 3-methylcanthin-5,6-dione (2) and its 9-methoxy analogue (3) in Eurycoma longifolia Jack. These alkaloids were easily separated by a gradient elution protocol of 20 - 42 % acetonitrile in 0.1 % acetic acid. Compound 1 showed characteristic absorption at 350 nm only whereas its dione analogues, 2 and 3 displayed strong absorptions at both 350 and 451 nm. The linear calibration ranges were 0.7 - 50 microg x mL(-1) for 1, 1.5-50 microg x mL(-1) for 2 and 3.1 -100 microg x mL(-1) for 3. The recoveries of the three alkaloids were 90.8-101.0% with relative standard deviations from 0.35 to 6.31 % (n = 3). The limits of detection for all the alkaloids were within the range of 0.35 - 0.7 microg x mL(-1). This method was successfully applied to the phytochemical analysis of E. longifolia roots obtained from different sources.

  2. Evaluation of the analgesic effect of alkaloid extract of Peganum harmala L.: possible mechanisms involved.

    PubMed

    Farouk, Loubna; Laroubi, Amine; Aboufatima, Rachida; Benharref, Ahmed; Chait, Abderrahman

    2008-02-12

    The seeds of Peganum harmala L. (Pgh) (Zygophyllaceae) have been used in Moroccan traditional medicine for treatment of a various diseases and to relieve dolorous process. The major objective of this paper was to investigate the mechanism of the analgesia induced by alkaloid extract of Peganum harmala. In the present work, the antinociceptive action was assayed in several experimental models in mice: writhing, formalin, and hot plate tests. The alkaloid extract (12.5 and 25mg/kg) and in a dose-dependent manner significantly reduced the nociception by acetic acid intraperitoneal injection (p<0.001). In the formalin test, the extract also significantly reduced the painful stimulus in both phases of the test (p<0.001). Treatment with the extract when given by (i.p. or i.c.v.) or with morphine (10mg/kg, i.p.) produced a significant increase of the reaction time in hot plate test. These result showed that the alkaloid extract of Pgh contains active analgesic principles acting both centrally and peripherally. Furthermore, this antinociceptive effect has been avoided by naloxone at a dose of 1mg/kg in the first phase of formalin and hot plate tests indicating that this extract act partly through an opioid-mediated mechanism. In conclusion, the alkaloid extract of Peganum harmala seems to have both central and peripheral antinociceptive activities which may be mediated by opioid receptors.

  3. Chemotaxis disruption in Pratylenchus scribneri by tall fescue root extracts and alkaloids.

    PubMed

    Bacetty, Ada A; Snook, Maurice E; Glenn, Anthony E; Noe, James P; Nagabhyru, Padmaja; Bacon, Charles W

    2009-07-01

    Tall fescue (Festuca arundinacea) forms a symbiotic relationship with the clavicipitalean fungal endophyte Neotyphodium coenophialum. Endophyte-infected grass is tolerant to nematode, but the factors responsible are unknown. One objective of this work was to determine if root extracts of tall fescue effected chemoreceptor activity of Pratylenchus scribneri by using an in vitro chemoreception bioassay. Another objective was to determine if specific ergot alkaloids (ergovaline, ergotamine, a-ergocryptine, ergonovine), and loline alkaloids, all produced by the fungal endophyte, altered chemotaxis with this bioassay. Methanolic extract from roots altered chemotaxis activities in this nematode but only from roots of plants cultured 45 > or = d, which repelled nematodes. Extracts prepared from noninfected grasses were attractants. This assay indicated that the alkaloids were either repellents or attractants. N-formylloline was an attractant at concentrations of 20 microg/ml and lower, while at higher concentrations it was a repellent. Ergovaline, the major ergot alkaloid produced by the endophyte, was repellent at both high and low concentrations and caused complete death of the nematodes.

  4. Insecticidal Constituents and Activity of Alkaloids from Cynanchum mongolicum.

    PubMed

    Ge, Yang; Liu, Pingping; Yang, Rui; Zhang, Liu; Chen, Hongxing; Camara, Ibrahima; Liu, Yiqing; Shi, Wangpeng

    2015-09-21

    Based on MS and NMR data and bioassay-guided tracing, three insecticidal alkaloids I, II and III from Cynanchum mongolicum were identified to be antofine N-oxide, antofine and tylophorine. Alkaloid I was more toxic than alkaloids II and III, but they were less active against Spodoptera litura than total alkaloids. The contact toxicity from these alkaloids against the aphid Lipaphis erysimi was significant, as the 24 h-LC50 values of alkaloids I, II, III and total alkaloids were 292.48, 367.21, 487.791 and 163.52 mg/L, respectively. The development disruption of S. litura larvae was tested, the pupation and emergence rates of S. litura decreased and the acute mortality of S. litura increased significantly by day 3 after being injected in their body cavity with 10-40 mg/L of total alkaloid. The ecdysone titer of treated S. litura larvae and prepupae declined with increasing alkaloid concentration. The alkaloids of Cynanchum mongolicum are potential insect growth inhibitors.

  5. Carbazole alkaloids from Murraya koenigii trigger apoptosis and autophagic flux inhibition in human oral squamous cell carcinoma cells.

    PubMed

    Utaipan, Tanyarath; Athipornchai, Anan; Suksamrarn, Apichart; Jirachotikoon, Canussanun; Yuan, Xiaohong; Lertcanawanichakul, Monthon; Chunglok, Warangkana

    2017-01-01

    Carbazole alkaloids, a major constituent of Murraya koenigii (L.) Sprengel (Rutaceae), exhibit biological effects such as anticancer activity via the induction of apoptosis, and they represent candidate chemotherapeutic agents. Oral squamous cell carcinoma (OSCC) is the most prevalent cancer of the oral cavity and a growing and serious health problem worldwide. In this study, we investigated the anticancer properties and mechanisms of action of two carbazole alkaloids derived from M. koenigii leaves, mahanine and isomahanine, in the OSCC cell line CLS-354. At 15 μM, mahanine and isomahanine were cytotoxic to CLS-354 cells, triggering apoptosis via caspase-dependent and -independent mechanisms. Autophagosomes, visualised using monodansylcadaverine (MDC) labelling, were numerous in carbazole alkaloid-treated cells. Mahanine and isomahanine markedly induced the expression of the autophagosome marker microtubule-associated protein 1 light chain 3, type II (LC3B-II). Genetic and chemical inhibition of autophagy via silencing of the Autophagy protein 5 gene and exposure to bafilomycin A1 (BafA1), respectively, did not arrest carbazole alkaloid-induced apoptosis, indicating that it occurs independently of autophagic activation. Surprisingly, both carbazole alkaloids caused increased accumulation of p62/sequestosome1 (p62/SQSTM1), with coordinated expression of LC3B-II and cleaved caspase-3, suggesting inhibition of autophagic flux. Our results suggest that inhibition of autophagic flux is associated with carbazole alkaloid-induced apoptosis. Our findings provide evidence of a novel cytotoxic action of natural carbazole alkaloids and support their use as candidate chemotherapeutic agents for the treatment of OSCC.

  6. Modulation of P-glycoprotein by Stemona alkaloids in human multidrug resistance leukemic cells and structural relationships.

    PubMed

    Umsumarng, Sonthaya; Pitchakarn, Pornsiri; Yodkeeree, Supachai; Punfa, Wanisa; Mapoung, Sariya; Ramli, Rosdayati Alino; Pyne, Stephen G; Limtrakul, Pornngarm

    2017-10-15

    Multidrug resistance (MDR) is a major reason for the failure of chemotherapy in the treatment of cancer patients. P-gp over-expression in MDR cancer cells is a multifactorial phenomenon with biochemical resistance mechanisms. Stemofoline (STF), isolated from Stemona bukillii, has been reported to be an MDR reversing compound. This study investigated whether other Stemona alkaloids that had been purified from Stemonaceae plants exerted MDR modulation activity. MTT assay was performed to determine the MDR reversing property of the alkaloids. Modulation of P-gp function by these compounds was investigated using cell cycle analysis and P-gp fluorescent substrate accumulation assays. P-gp expression was determined by Western blot analysis. We preliminarily examined the safety of these compounds in normal human fibroblasts and human peripheral blood mononuclear cells (PBMCs) using the MTT assay, and in red blood cells (human and rat) through in vitro hemolysis assays. Three of the eight alkaloids tested, isostemofoline (ISTF), 11Z -didehydrostemofoline (11Z-DSTF) and 11E-didehydrostemofoline (11E-DSTF), enhanced the chemotherapeutic sensitivity of MDR leukemic K562/Adr cells, which overexpressed P-gp. The P-gp functional studies showed that these three alkaloids increased the accumulation of P-gp substrates, calcein-AM (C-AM) and rhodamine123 (Rho 123) in K562/Adr cells, while this effect was not seen in drug sensitive parental K562 cells. Whereas, the alkaloids did not alter P-gp expression as was determined by Western blotting analysis. The alkaloids reversed MDR via the inhibition of P-gp function. For pharmaceutical safety testing, the alkaloids were found to be not toxic to normal human fibroblasts and PBMCs. Moreover, the effective compounds did not induce hemolysis in either human or rat erythrocytes. These compounds may be introduced as potential candidate molecules for treating cancers exhibiting P-gp-mediated MDR. Copyright © 2017 Elsevier GmbH. All rights

  7. Polar alkaloids from the Caribbean marine sponge Niphates digitalis.

    PubMed

    Regalado, Erik L; Mendiola, Judith; Laguna, Abilio; Nogueiras, Clara; Thomas, Olivier P

    2010-08-01

    A method involving flash chromatography, semi-preparative phenylhexyl RP HPLC-DAD-ELSD combined with analytic polar-RP HPLC-DAD, was applied to separate and purify six highly nitrogenated bases and a bicyclic amidine alkaloid, the major components of the marine sponge Niphates digitalis. Their structures were identified as 1,8-diazabicyclo[5.4.0]undec-7-ene (1), deoxycytidine (2), phenylalanine (3), adenosine (4), deoxyguanosine (5), adenine (6) and thymidine (7) on the basis of spectroscopic data analyses. This is the first report of these compounds in a marine sponge belonging to the Niphates genus and the first evidence of the presence of 1 from a natural source.

  8. The biology and chemistry of the zoanthamine alkaloids.

    PubMed

    Behenna, Douglas C; Stockdill, Jennifer L; Stoltz, Brian M

    2008-01-01

    Marine natural products have long played an important role in natural products chemistry and drug discovery. Mirroring the rich variety and complicated interactions of the marine environment, the substances isolated from sea creatures tend to be incredibly diverse in both molecular structure and biological activity. The natural products isolated from the polyps of marine zoanthids are no exception. The zoanthamine alkaloids, the first of which were isolated over 20 years ago, are of particular interest to the synthetic community because they feature a novel structural framework and exhibit a broad range of biological activities. In this Review, we summarize the major contributions to understanding the zoanthamine natural products with regard to their isolation and structure determination, as well as studies on their biological activity and total synthesis.

  9. Recent developments in the chemistry of quinazolinone alkaloids.

    PubMed

    Kshirsagar, U A

    2015-09-28

    Quinazolinones, an important class of fused heterocyclic alkaloids has attracted high attention in organic and medicinal chemistry due to their significant and wide range of biological activities. There are approximately 150 naturally occurring quinazolinone alkaloids known till 2005. Several new quinazolinone alkaloids (∼55) have been isolated in the last decade. Natural quinazolinones with exotic structural features and remarkable biological activities have incited a lot of activities in the synthetic community towards the development of new synthetic strategies and approaches for the total synthesis of quinazolinone alkaloids. This review is focused on these advances in the chemistry of quinazolinone alkaloids in the last decade. This article covers the newly isolated quinazolinone natural products with their biological activities and the recently reported total syntheses of quinazolinone alkaloids from 2006 to 2015.

  10. Alkaloids Isolated from Natural Herbs as the Anticancer Agents

    PubMed Central

    Lu, Jin-Jian; Bao, Jiao-Lin; Chen, Xiu-Ping; Huang, Min; Wang, Yi-Tao

    2012-01-01

    Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery. Several alkaloids isolated from natural herbs exhibit antiproliferation and antimetastasis effects on various types of cancers both in vitro and in vivo. Alkaloids, such as camptothecin and vinblastine, have already been successfully developed into anticancer drugs. This paper focuses on the naturally derived alkaloids with prospective anticancer properties, such as berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine, and summarizes the mechanisms of action of these compounds. Based on the information in the literature that is summarized in this paper, the use of alkaloids as anticancer agents is very promising, but more research and clinical trials are necessary before final recommendations on specific alkaloids can be made. PMID:22988474

  11. Toxicosis by Plant Alkaloids in Humans and Animals in Colombia

    PubMed Central

    Diaz, Gonzalo J.

    2015-01-01

    Due to its tropical location, chains of mountains, inter-Andean valleys, Amazon basin area, eastern plains and shores on both the Atlantic and Pacific Oceans, Colombia has many ecosystems and the second largest plant biodiversity in the world. Many plant species, both native and naturalized, are currently recognized as toxic for both animals and humans, and some of them are known to cause their toxic effects due to their alkaloid content. Among these, there are plants containing the hepatotoxic pyrrolizidine alkaloids, neurotoxins such as the indolizidine alkaloid swainsonine and the piperidine alkaloids coniine and γ-coniceine and tropane alkaloids. Unfortunately, the research in toxic plants in Colombia is not nearly proportional to its plant biodiversity and the scientific information available is only very scarce. The present review aims at summarizing the scarce information about plant alkaloid toxicosis in animals and humans in Colombia. PMID:26690479

  12. Toxicosis by Plant Alkaloids in Humans and Animals in Colombia.

    PubMed

    Diaz, Gonzalo J

    2015-12-11

    Due to its tropical location, chains of mountains, inter-Andean valleys, Amazon basin area, eastern plains and shores on both the Atlantic and Pacific Oceans, Colombia has many ecosystems and the second largest plant biodiversity in the world. Many plant species, both native and naturalized, are currently recognized as toxic for both animals and humans, and some of them are known to cause their toxic effects due to their alkaloid content. Among these, there are plants containing the hepatotoxic pyrrolizidine alkaloids, neurotoxins such as the indolizidine alkaloid swainsonine and the piperidine alkaloids coniine and γ-coniceine and tropane alkaloids. Unfortunately, the research in toxic plants in Colombia is not nearly proportional to its plant biodiversity and the scientific information available is only very scarce. The present review aims at summarizing the scarce information about plant alkaloid toxicosis in animals and humans in Colombia.

  13. Quinolizidine alkaloid biosynthesis: recent advances and future prospects

    PubMed Central

    Bunsupa, Somnuk; Yamazaki, Mami; Saito, Kazuki

    2012-01-01

    Lys-derived alkaloids, including piperidine, quinolizidine, indolizidine, and lycopodium alkaloids, are widely distributed throughout the plant kingdom. Several of these alkaloids have beneficial properties for humans and have been used in medicine. However, the molecular mechanisms underlying the biosynthesis of these alkaloids are not well understood. In the present article, we discuss recent advances in our understanding of Lys-derived alkaloids, especially the biochemistry, molecular biology, and biotechnology of quinolizidine alkaloid (QA) biosynthesis. We have also highlighted Lys decarboxylase (LDC), the enzyme that catalyzes the first committed step of QA biosynthesis and answers a longstanding question about the molecular entity of LDC activity in plants. Further prospects using current advanced technologies, such as next-generation sequencing, in medicinal plants have also been discussed. PMID:23112802

  14. Chlorinated alkaloids in Menispermum dauricum DC: root culture.

    PubMed

    Sugimoto, Y; Babiker, H A; Saisho, T; Furumoto, T; Inanaga, S; Kato, M

    2001-05-18

    Feeding experiments using (36)Cl showed that Menispermum dauricum root culture produces four alkaloids containing chlorine. They included the novel alkaloids dauricumine and dauricumidine as well as the known alkaloids acutumine and acutumidine. The structures of novel alkaloids were established by spectroscopic, crystallographic, and chemical methods. These four alkaloids were labeled with (36)Cl, isolated, and fed independently to root cultures. Mutual conversion between acutumine and acutumidine, and between dauricumine and dauricumidine by N-methylation and N-demethylation, was demonstrated. Moreover, dauricumine was converted to acutumine and acutumidine. Epimerization of acutumidine to dauricumidine or vice versa was not observed. These results suggest that dauricumine is the first chlorinated alkaloid formed in cultured M. dauricum roots. Skewed distribution of radioactivity derived from labeled dauricumine is proof that epimerization at C-1 proceeds at a lower rate than N-demethylation.

  15. Pharmacokinetics Studies of 12 Alkaloids in Rat Plasma after Oral Administration of Zuojin and Fan-Zuojin Formulas.

    PubMed

    Qian, Ping; Zhang, You-Bo; Yang, Yan-Fang; Xu, Wei; Yang, Xiu-Wei

    2017-01-30

    administration of ZJ and FZJ extracts. The results could be interpreted as follows: firstly, inhibition effect on GI motility caused by the high content CR alkaloids (especially berberine) in ZJ could delay the Tmax, and increase the absorption and systemic exposure levels of the other alkaloids, and also lead to the double peak phenomenon of these alkaloids. However, for quaternary protoberberine alkaloids (QPA), double peaks were primarily caused by the different Ka value in two intestinal absorption sites. Secondly, absorption was the major obstacle to the systemic exposure level of the alkaloids from CR and EF. In silico and PK studies suggested that the absorption of these alkaloids, except QPAs, mainly depended on their solubility rather than permeability. Thirdly, EF could promote the absorption and accelerate the elimination of QPAs, and had a greater influence on the former than the latter. At last the integrated PK analysis suggested that berberine and dehydroevodiamine could be regarded as the representative components to reflect the PK behaviors of CR and EF alkaloids after administration of ZJ and FZJ. In conclusion, the absorption, elimination and systemic exposure level of these alkaloids were mainly influenced by the proportion of EF and CR, the pharmacological effect on GI motility, and the physicochemical property of these alkaloids. These findings would be helpful for a better understanding of the activities and clinical applications of ZJ, FZJ and other related TCM prescriptions.

  16. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae

    PubMed Central

    Hawkins, Kristy M; Smolke, Christina D

    2010-01-01

    The benzylisoquinoline alkaloids (BIAs) are a diverse class of metabolites that exhibit a broad range of pharmacological activities and are synthesized through plant biosynthetic pathways comprised of complex enzyme activities and regulatory strategies. We have engineered yeast to produce the key intermediate reticuline and downstream BIA metabolites from a commercially available substrate. An enzyme tuning strategy was implemented that identified activity differences between variants from different plants and determined optimal expression levels. By synthesizing both stereoisomer forms of reticuline and integrating enzyme activities from three plant sources and humans, we demonstrated the synthesis of metabolites in the sanguinarine/berberine and morphinan branches. We also demonstrated that a human P450 enzyme exhibits a novel activity in the conversion of (R)-reticuline to the morphinan alkaloid salutaridine. Our engineered microbial hosts offer access to a rich group of BIA molecules and associated activities that will be further expanded through synthetic chemistry and biology approaches. PMID:18690217

  17. Two new morphinane alkaloids from Sinomenium acutum.

    PubMed

    Wang, Xiao-Ling; Liu, Bing-Rui; Wang, Jun-Ru; Chen, Chien-Kuang; Qin, Guo-Wei; Lee, Shoei-Sheng

    2011-06-01

    Two new morphinane alkaloids, 1-hydroxy-10-oxo-sinomenine (1) and 4,5-epoxy-14-hydroxy sinomenine N-oxide (2), have been isolated from the stems of Sinomenium acutum. Their structures were established by various spectral analyses, especially 2D NMR experiments. The structure of 2 was confirmed by single crystal X-ray diffraction. The absolute configurations of 1 and 2 were deduced by comparison of CD spectra with the known alkaloid sinomenine (3). Compound 1 was tested for DPPH inhibition and gave IC(50) of 27.9 μM. Compound 2 was tested for neuroprotective effect and showed significant activity against β-amyloid(25-35)-induced oxidative injury (*P < 0.05) at 10 μM in PC-12 cells.

  18. Total synthesis of the Daphniphyllum alkaloid daphenylline

    NASA Astrophysics Data System (ADS)

    Lu, Zhaoyong; Li, Yong; Deng, Jun; Li, Ang

    2013-08-01

    The Daphniphyllum alkaloids are a large class of natural products isolated from a genus of evergreen plants widely used in Chinese herbal medicine. They display a remarkable range of biological activities, including anticancer, antioxidant, and vasorelaxation properties as well as elevation of nerve growth factor. Daphenylline is a structurally unique member among the predominately aliphatic Daphniphyllum alkaloids, and contains a tetrasubstituted arene moiety mounted on a sterically compact hexacyclic scaffold. Herein, we describe the first total synthesis of daphenylline. A gold-catalysed 6-exo-dig cyclization reaction and a subsequent intramolecular Michael addition reaction, inspired by Dixon's seminal work, were exploited to construct the bridged 6,6,5-tricyclic motif of the natural product at an early stage, and the aromatic moiety was forged through a photoinduced olefin isomerization/6π-electrocyclization cascade followed by an oxidative aromatization process.

  19. Determination of Ephedrine Alkaloids in Botanicals and Dietary Supplements by HPLC-UV

    PubMed Central

    Roman, Mark C.; Gray, D.; Luo, G.; McClanahan, R.; Perez, R.; Roper, C.; Roscoe, V.; Shevchuk, C.; Suen, E.; Sullivan, D.; Walther, H.J.

    2008-01-01

    An international collaborative study was conducted of a high-performance liquid chromatography (HPLC)-UV method for the determination of the major (ephedrine [EP] and pseudoephedrine [PS]) and minor (norephedrine [NE], norpseudoephedrine [NP], methylephedrine [ME], and methylpseudoephedrine [MP]) alkaloids in selected dietary supplements representative of the commercially available products. Ten collaborating laboratories determined the ephedrine-type alkaloid content in 8 blind replicate samples. Five products contained ephedra ground herb or ephedra extract. These 5 products included ground botanical raw material of Ephedra sinica, a common powdered extract of Ephedra sinica, a finished product containing only Ephedra sinica ground botanical raw material, a complex multicomponent dietary supplement containing Ma Huang, and a high-protein chocolate flavored drink mix containing Ma Huang extract. In addition, collaborating laboratories received a negative control and negative control spiked with ephedrine alkaloids at high and low levels for recovery studies. Test extracts were treated to solid-phase extraction using a strong-cation exchange column to help remove interferences. The HPLC analyses were performed on a polar-embedded phenyl column using UV detection at 210 nm. Repeatability relative standard deviations (RSDr) ranged from 0.64–3.0% for EP and 2.0–6.6% for PS, excluding the high protein drink mix. Reproducibility relative standard deviations (RSDR) ranged from 2.1–6.6% for EP and 9.0–11.4% for PS, excluding the high protein drink mix. Recoveries ranged from 84.7–87.2% for EP and 84.6–98.2% for PS. The data developed for the minor alkaloids are more variable with generally unsatisfactory HORRATS(i.e., >2). However, since these alkaloids generally add little to the total alkaloid content of the products, the method gives satisfactory results in measuring total alkaloid content (RSDr 0.85–3.13%; RSDR 2.03–10.97%, HORRAT 0.69–3

  20. GC-MS investigation of tropane alkaloids in Datura stramonium.

    PubMed

    Philipov, Stefan; Berkov, Strahil

    2002-01-01

    Alkaloids, GS-MS, Datura stramonium The alkaloid spectrum in roots, leaves and seeds of Datura stramonium L. was investigated by GC-MS. Twenty-nine tropane alkaloids are detected. Twelve of them are new constituents for the species and the two tropane esters 3-(3'-acetoxytropoyloxy)tropane (21) and 3-(2'-hydroxytropoyloxy)tropane (26) are described for the first time.

  1. Two new alkaloids from Capparis himalayensis.

    PubMed

    Li, Yun-Qiu; Yang, Shi-Lin; Li, He-Ran; Xu, Li-Zhen

    2008-02-01

    Two new alkaloids, Capparin A (1) and B (2), along with seven known compounds 6-methoxyindoline-2,3-dione (3), wogonin (4), oroxylin A (5), kaempferol (6), apigenin (7), quercetin (8) and luteolin (9), were isolated from the whole plant of Capparis himalayensis. Their structures have been established on the basis of spectral methods and the structure of 1 was confirmed by X-ray crystallographic analysis.

  2. Muscarine, imidaozle, oxazole and thiazole alkaloids.

    PubMed

    Jin, Zhong

    2013-06-01

    Covering: July 2010 to June 2012. Previous review: Nat. Prod. Rep., 2011, 28, 1143-1191. Structurally diverse alkaloids containing five-membered heterocyclic subunits, such as imidazole, oxazole, thiazole, as well as their saturated congeners, are widely distributed in terrestrial and marine organisms and microorganisms. These naturally occurring secondary metabolites often exhibit extensive and pharmacologically important biological activities. The latest progress involving isolation, biological activities, chemical synthetic studies, and biosynthetic pathways of these natural products has been summarized in this review.

  3. New indole alkaloids from Sarcocephalus latifolius.

    PubMed

    Abreu, P; Pereira, A

    2001-01-01

    Phytochemical investigation of the root extract of Sarcocephalus latifolius has led to the isolation of the new indole alkaloids 21-O-methylstrictosamide aglycone and 21-O-ethylstrictosamide aglycone, together with strictosamide, angustine, nauclefine, angustidine, angustoline, 19-O-ethylangustoline, naucleidinal, 19-epi-naucleidinal, quinovic acid-3 beta-O-beta-D-fucopyranoside, quinovic acid-3 beta-O-alpha-L-rhamnopyranoside, scopoletin, and beta-sitosterol. Strictosamide displayed moderate antiplasmodial activity against Plasmodium falciparum.

  4. A new alkaloid from Narcissus serotinus L.

    PubMed

    Vrondeli, A; Kefalas, P; Kokkalou, E

    2005-07-01

    A new alkaloid derivative of [2]benzopyrano-[3,4-c] indole, isomer of 3-epimacronine, 4-methoxy-5-methyl-1,2,3,5,6,6alphaR-hexahydro-[1,3]dioxolo[4',5':6,7]isochromeno [3,4-c]indol-8-one, has been isolated from Narcissus serotinus L. (Amaryllidaceae) and its structure was elucidated by mass and spectral analysis.

  5. Synthesis studies on the Melodinus alkaloid meloscine

    PubMed Central

    Feldman, Ken S.; Antoline, Joshua F.

    2012-01-01

    The pentacyclic Melodinus alkaloid (±)-meloscine was synthesized in 19 chemical steps from 2-bromobenzaldehyde through a route featuring an allenyl azide cyclization cascade to deliver the core azabicyclo[3.3.0]octane substructure. Peripheral functionalization of this core included a Tollens-type aldol condensation to set the quaternary center at C(20) and a diastereoselective ring closing metathesis to forge the tetrahydropyridine ring. PMID:23316092

  6. Unique monoterpenoid indole alkaloids from Alstonia scholaris.

    PubMed

    Cai, Xiang-Hai; Du, Zhi-Zhi; Luo, Xiao-Dong

    2007-04-26

    [structure: see text] A pair of geometrically isomeric monoterpenoid indole alkaloids with a skeleton rearrangement and two additional carbons, named (19,20) E-alstoscholarine (1) and (19,20) Z-alstoscholarine (2), were obtained from the leaf extract of Alstonia scholaris. Their structures were elucidated on the basis of spectroscopic methods and then confirmed by X-ray crystal diffraction. The biogenesis of these compounds was also proposed.

  7. En route to sugar-alkaloid conjugates.

    PubMed

    Sowa, Carsten-Endres; Thiem, Joachim

    2011-09-06

    After stereoselective addition of N-iodosuccinimide to glycals subsequent dehalogenation results in formation of N-glycopyranosyl succinimides. By UV irradiation both azepindiones and preferentially [5.3.1.0(2,6)] tricyclic oxalactams could be obtained. Their transformation into a number of novel sugar conjugates resembling some prominent alkaloid N-pyrrol components by thiation and reduction is reported. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Biosynthesis and Regulation of Bioprotective Alkaloids in the Gramineae Endophytic Fungi with Implications for Herbivores Deterrents.

    PubMed

    Luo, Hongping; Xie, Longxiang; Zeng, Jie; Xie, Jianping

    2015-12-01

    Four kinds of bioprotective alkaloids-peramine, loline, ergot alkaloid, indole-diterpenes, produced by grass-fungal endophyte symbioses, are deterrents or toxic to vertebrate and invertebrate herbivores. Ergot alkaloids have pharmacological properties and widely are used clinically. The regulation of alkaloids biosynthesis is under intensive study to improve the yield for better agricultural and medicinal application. In this paper, we summarize the structure, related genes, regulation, and toxicity of alkaloids. We focus on the biosynthesis and the regulation network of alkaloids.

  9. [Identification of aminoalcohol-diterpenoid alkaloids in Aconiti Lateralis Radix Praeparata and study of their cardiac effects].

    PubMed

    Wang, Lu; Ding, Jia-Yu; Liu, Xiu-Xiu; Tang, Ming-Hai; Chao, Ruo-Bing; Wang, Feng-Peng

    2014-12-01

    In order to affirm the cardioactive components in Fuzi, we identified a group of aminoalcohol- diterpenoid alkaloids in Fuzi using ultra high-performance liquid chromatography coupled with electrospray ionization mass spectrometer (UPLC-ESI-MS) method. Among a total of forty-one isolated ingredients, thirteen major aminoalcohol-diterpenoid alkaloids were identified by comparing their retention times and MS spectra with those of the reference substances. Moreover, Fuzi samples from different places of origin and with different processing methods were examined and their components displayed a pattern of high similarity, though the relative abundance varies probably due to their different processing methods. Furthermore, the cardiac effect of each identified alkaloid was individually evaluated using the isolated bullfrog heart perfusion experiment. Among the thirteen aminoalcohol diterpenoid alkaloids tested, six of them significantly enhanced the amplitude rates. Taken together, we affirm that the cardioactive components in Fuzi are aminoalcohol-diterpenoid alkaloids, shedding light on future studies of the mechanisms and development of these cardioactive compounds.

  10. Direct and comprehensive analysis of ginsenosides and diterpene alkaloids in Shenfu injection by combinatory liquid chromatography-mass spectrometric techniques.

    PubMed

    Yang, Hua; Liu, Lei; Gao, Wen; Liu, Ke; Qi, Lian-Wen; Li, Ping

    2014-04-01

    Shenfu injection (SFI) is a widely used Chinese herbal formulation for cardiac diseases prepared from red ginseng and processed aconite root. Clinical observations and pharmacological effects on SFI have been well investigated. Chemical analysis and quality control studies of this formulation, however, are relatively limited, especially regarding toxic aconite alkaloids. In this work, a high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-QTOF MS) method was applied to comprehensive analysis of constituents in SFI. Highly sensitive MS allows direct analysis of injections without additional sample pretreatment required. Using diagnostic ions and fragmentation rules, we identified 23 trace diterpene alkaloids, nineteen ginseng saponins, one panaxytriol, and one 5-hydroxymethylfurfural in SFI. A LC-MS method with selected ion monitoring was then used to quantify 24 major alkaloids and ginsenosides. The method was validated in terms of linearity, accuracy and precision. Especially, the limits of quantification were low to 0.4-18ng/mL for diterpene alkaloids. The total concentrations of saponins and alkaloids were about 676-742μg/mL and 3-7μg/mL in five batches of SFI samples, respectively. Finally, cosine ratio and euclidean distance were introduced to evaluate the batch-to-batch reproducibility of SFI samples, and the results demonstrated high quality consistency. Global identification and quantification of complex constituents based on LC-MS promises wide applications in quality control and batch monitoring for herbal products.

  11. Anticancer Alkaloids from Trees: Development into Drugs

    PubMed Central

    Isah, Tasiu

    2016-01-01

    Trees have made an enormous phytochemical contribution in anticancer drugs' development more than any other life form. The contributions include alkaloids that are biosynthesized in various ways and yield. Lead alkaloids isolated from the trees are taxol and camptothecins that currently have annual sales in billion dollars. Other important alkaloids isolated from these life forms include rohitukine, harringtonine, acronycine, thalicarpine, usambarensine, ellipticine, and matrines. Studies on their mechanism of action and target on the DNA and protein of cancerous cells aided the development of potent hemisynthesized congeners. The molecules and their congeners passed/are passing a long period of historical development before approved as antineoplastic drugs for cancer chemotherapy. Some of them did not find the application as anticancer drugs due to ineffectiveness in clinical trials; others are generating research interest in the antineoplastic activity at the present and have reached clinical trial stages. Potentials in antineoplastic molecules from trees are high and are hoped to be commensurate with cancer types afflicting human society in the future. PMID:28082790

  12. Drug development against tuberculosis: Impact of alkaloids.

    PubMed

    Mishra, Shardendu K; Tripathi, Garima; Kishore, Navneet; Singh, Rakesh K; Singh, Archana; Tiwari, Vinod K

    2017-09-08

    Despite of the advances made in the treatment and management, tuberculosis (TB) still remains one of main public health problem. The contrary effects of first and second-line anti-tuberculosis drugs have generated extended research interest in natural products in the hope of devising new antitubercular leads. Interestingly, plethoras of natural products have been discovered to exhibit activity towards various resistant strains of M. tuberculosis. Extensive applications of alkaloids in the field of therapeutics is well-established and nowday's researches being pursued to develop new potent drugs from natural sources for tuberculosis. Alkaloids are categorized in quite a few groups according to their structures and isolation from both terrestrial and marine sources. These new drugs might be a watershed in the battle against tuberculosis. This review summarizes alkaloids, which were found active against Mycobacteria since last ten years with special attention on the study of structure-activity relationship (SAR) and mode of action with their impact in drug discovery and development against tuberculosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Indole alkaloids from the leaves of Philippine Alstonia scholaris.

    PubMed

    Macabeo, Allan Patrick G; Krohn, Karsten; Gehle, Dietmar; Read, Roger W; Brophy, Joseph J; Cordell, Geoffrey A; Franzblau, Scott G; Aguinaldo, Alicia M

    2005-05-01

    The first seco-uleine alkaloids, manilamine (1) (18-hydroxy-19,20-dehydro-7,21-seco-uleine) and N4-methyl angustilobine B (2), were isolated from the (pH 5) alkaloid extract of Philippine Alstonia scholaris leaves together with the known indole alkaloids 19,20-(E)-vallesamine (3), angustilobine B N4-oxide (4), 20(S)-tubotaiwine (5), and 6,7-seco-angustilobine B (6). The structure of the alkaloids was established from MS and NMR experiments.

  14. New Perspectives in the Chemistry of Marine Pyridoacridine Alkaloids.

    PubMed

    Plodek, Alois; Bracher, Franz

    2016-01-26

    Secondary metabolites from marine organisms are a rich source of novel leads for drug development. Among these natural products, polycyclic aromatic alkaloids of the pyridoacridine type have attracted the highest attention as lead compounds for the development of novel anti-cancer and anti-infective drugs. Numerous sophisticated total syntheses of pyridoacridine alkaloids have been worked out, and many of them have also been extended to the synthesis of libraries of analogues of the alkaloids. This review summarizes the progress in the chemistry of pyridoacridine alkaloids that was made in the last one-and-a-half decades.

  15. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids.

    PubMed

    Kishimoto, Shinji; Sato, Michio; Tsunematsu, Yuta; Watanabe, Kenji

    2016-08-18

    Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid), saframycin (tetrahydroisoquinoline alkaloid), strictosidine (monoterpene indole alkaloid), ergotamine (ergot alkaloid) and opiates (benzylisoquinoline and morphinan alkaloid). This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details.

  16. Plant alkaloids as drug leads for Alzheimer's disease.

    PubMed

    Ng, Yu Pong; Or, Terry Cho Tsun; Ip, Nancy Y

    2015-10-01

    Alzheimer's disease (AD) is a neurodegenerative illness associated with dementia and is most prevalent among the elderly population. Current medications can only treat symptoms. Alkaloids are structurally diverse and have been an important source of therapeutics for various brain disorders. Two US Food and Drug Administration (FDA)-approved acetylcholinesterase inhibitors for AD, galantamine and rivastigmine, are in fact alkaloids. In addition, clinical trials of four other extensively studied alkaloids-huperzine A, caffeine, nicotine, and indomethacin-have been conducted but do not convincingly demonstrate their clinical efficacy for AD. Interestingly, rhynchophylline, a known neuroprotective alkaloid, was recently discovered by in silico screening as an inhibitor of EphA4, a novel target for AD. Here, we review the pathophysiological mechanisms underlying AD, current treatment strategies, and therapeutic potential of several selected plant alkaloids in AD, highlighting their various drug targets and the key supportive preclinical and clinical studies. Future research should include more rigorous clinical studies of the most promising alkaloids, the further development of recently discovered candidate alkaloids, and the continual search for new alkaloids for relevant drug targets. It remains promising that an alkaloid drug candidate could significantly affect the progression of AD in addition to providing symptomatic relief.

  17. Drug Delivery Systems and Combination Therapy by Using Vinca Alkaloids

    PubMed Central

    Lee, Chun-Ting; Huang, Yen-Wei; Yang, Chih-Hui; Huang, Keng-Shiang

    2015-01-01

    Developing new methods for chemotherapy drug delivery has become a topic of great concern. Vinca alkaloids are among the most widely used chemotherapy reagents for tumor therapy; however, their side effects are particularly problematic for many medical doctors. To reduce the toxicity and enhance the therapeutic efficiency of vinca alkaloids, many researchers have developed strategies such as using liposome-entrapped drugs, chemical- or peptide-modified drugs, polymeric packaging drugs, and chemotherapy drug combinations. This review mainly focuses on the development of a vinca alkaloid drug delivery system and the combination therapy. Five vinca alkaloids (eg, vincristine, vinblastine, vinorelbine, vindesine, and vinflunine) are reviewed. PMID:25877096

  18. New Perspectives in the Chemistry of Marine Pyridoacridine Alkaloids

    PubMed Central

    Plodek, Alois; Bracher, Franz

    2016-01-01

    Secondary metabolites from marine organisms are a rich source of novel leads for drug development. Among these natural products, polycyclic aromatic alkaloids of the pyridoacridine type have attracted the highest attention as lead compounds for the development of novel anti-cancer and anti-infective drugs. Numerous sophisticated total syntheses of pyridoacridine alkaloids have been worked out, and many of them have also been extended to the synthesis of libraries of analogues of the alkaloids. This review summarizes the progress in the chemistry of pyridoacridine alkaloids that was made in the last one-and-a-half decades. PMID:26821033

  19. Alkaloid patterns in some varieties of Datura stramonium.

    PubMed

    Berkov, Strahil; Zayed, Rawia; Doncheva, Tsvetelina

    2006-04-01

    A comparative GC-MS investigation of the alkaloid patterns of three varieties of Datura stramonium vars. stramonium, tatula and godronii, was carried out. Twenty-five tropane alkaloids were identified in the plant organs. Alkaloid patterns of the roots, leaves and seeds of the varieties grown at equal conditions in Bulgaria were very similar. In contrast, alkaloid pattern of D. stramonium var. stramonium, grown in Egypt, showed significant differences indicating that it is influenced more strongly by the environmental factors than genetic ones.

  20. Analytical methods for determination of alkaloids and saponins from roots of Caulophyllum thalictroids (L) Michx using UPLC HPLC and HPTLC

    USDA-ARS?s Scientific Manuscript database

    A comparison study of analytical methods including HPLC, UPLC and HPTLC are presented in this paper for the determination of major alkaloid and triterpene saponins from the roots of Caulophyllum thalictroides (L.) Michx. (blue cohosh) and dietary supplements claiming to contain blue cohosh. The meth...

  1. Dehatrine, an antimalarial bisbenzylisoquinoline alkaloid from the Indonesian medicinal plant Beilschmiedia madang, isolated as a mixture of two rotational isomers.

    PubMed

    Kitagawa, I; Minagawa, K; Zhang, R S; Hori, K; Doi, M; Inoue, M; Ishida, T; Kimura, M; Uji, T; Shibuya, H

    1993-05-01

    Through bioassay-guided separations of the chemical constituents of the Indonesian medicinal plant Beilschmiedia madang BL. a bisbenzylisoquinoline alkaloid was obtained as the major antimalarial principle. The physicochemical properties of the alkaloid were consistent with the proposed structure of dehatrine. However, the alkaloid isolated by us was shown to be a mixture of two rotational isomers. The X-ray crystallographic analysis of 1 has shown that two rotamers are incorporated in a single crystal in 1:1 ratio. The complex NMR spectrum of 1 has also been defined as a mixture of two rotamers by extensive use of 2D (COSY and COLOC) techniques. Dehatrine has been shown to significantly inhibit the growth of cultured Plasmodium falciparum K1 strain (cholorquine resistant) with similar activity to quinine.

  2. Dietary alkaloid sequestration in a poison frog: an experimental test of alkaloid uptake in Melanophryniscus stelzneri (Bufonidae).

    PubMed

    Hantak, Maggie M; Grant, Taran; Reinsch, Sherri; McGinnity, Dale; Loring, Marjorie; Toyooka, Naoki; Saporito, Ralph A

    2013-12-01

    Several lineages of brightly colored anurans independently evolved the ability to secrete alkaloid-containing defensive chemicals from granular glands in the skin. These species, collectively referred to as 'poison frogs,' form a polyphyletic assemblage that includes some species of Dendrobatidae, Mantellidae, Myobatrachidae, Bufonidae, and Eleutherodactylidae. The ability to sequester alkaloids from dietary arthropods has been demonstrated experimentally in most poison frog lineages but not in bufonid or eleutherodactylid poison frogs. As with other poison frogs, species of the genus Melanophryniscus (Bufonidae) consume large numbers of mites and ants, suggesting they might also sequester defensive alkaloids from dietary sources. To test this hypothesis, fruit flies dusted with alkaloid/nutritional supplement powder were fed to individual Melanophryniscus stelzneri in two experiments. In the first experiment, the alkaloids 5,8-disubstituted indolizidine 235B' and decahydroquinoline were administered to three individuals for 104 days. In the second experiment, the alkaloids 3,5-disubstituted indolizidine 239Q and decahydroquinoline were given to three frogs for 153 days. Control frogs were fed fruit flies dusted only with nutritional supplement. Gas chromatography/mass spectrometry analyses revealed that skin secretions of all experimental frogs contained alkaloids, whereas those of all control frogs lacked alkaloids. Uptake of decahydroquinoline was greater than uptake of 5,8-disubstituted indolizidine, and uptake of 3,5-disubstituted indolizidine was greater than uptake of decahydroquinoline, suggesting greater uptake efficiency of certain alkaloids. Frogs in the second experiment accumulated a greater amount of alkaloid, which corresponds to the longer duration and greater number of alkaloid-dusted fruit flies that were consumed. These findings provide the first experimental evidence that bufonid poison frogs sequester alkaloid-based defenses from dietary

  3. The comparative toxicity of a reduced, crude comfrey (Symphytum officinale) alkaloid extract and the pure, comfrey-derived pyrrolizidine alkaloids, lycopsamine and intermedine in chicks (Gallus gallus domesticus).

    PubMed

    Brown, Ammon W; Stegelmeier, Bryan L; Colegate, Steven M; Gardner, Dale R; Panter, Kip E; Knoppel, Edward L; Hall, Jeffery O

    2016-05-01

    Comfrey (Symphytum officinale), a commonly used herb, contains dehydropyrrolizidine alkaloids that, as a group of bioactive metabolites, are potentially hepatotoxic, pneumotoxic, genotoxic and carcinogenic. Consequently, regulatory agencies and international health organizations have recommended comfrey be used for external use only. However, in many locations comfrey continues to be ingested as a tisane or as a leafy vegetable. The objective of this work was to compare the toxicity of a crude, reduced comfrey alkaloid extract to purified lycopsamine and intermedine that are major constituents of S. officinale. Male, California White chicks were orally exposed to daily doses of 0.04, 0.13, 0.26, 0.52 and 1.04 mmol lycopsamine, intermedine or reduced comfrey extract per kg bodyweight (BW) for 10 days. After another 7 days chicks were euthanized. Based on clinical signs of poisoning, serum biochemistry, and histopathological analysis the reduced comfrey extract was more toxic than lycopsamine and intermedine. This work suggests a greater than additive effect of the individual alkaloids and/or a more potent toxicity of the acetylated derivatives in the reduced comfrey extract. It also suggests that safety recommendations based on purified compounds may underestimate the potential toxicity of comfrey.

  4. Monoterpene Indole Alkaloids from the Fruit of Tabernaemontana litoralis and Differential Alkaloid Composition in Various Fruit Components.

    PubMed

    Qu, Yang; Simonescu, Razvan; De Luca, Vincenzo

    2016-12-23

    Two new monoterpene indole alkaloids, isoakuammiline (1) and 18-hydroxypseudovincadifformine (2), and five known alkaloids, coronaridine (3), heyneanine (4), 3,19-oxidocoronaridine (5), tabersonine, and strictosidine, were identified from the fruit of Tabernaemontana litoralis. The structures of the alkaloids were determined using NMR and MS data analyses. While 18-hydroxypseudovincadifformine (2) showed a new hydroxylation pattern, isoakuammiline (1) revealed a novel skeleton for monoterpene indole alkaloids. In spite of the isolation of stemmadenine from the fruit tissues in other Tabernaemontana species, this vital biosynthetic precursor of iboga, aspidosperma, and pseudoaspidosperma skeletons was not found in T. litoralis.

  5. Alkaloids and Coumarins from the Leaves of Amyris diatripa.

    PubMed

    Laguna, A

    1984-02-01

    The alkaloids edulinine and (+/-) isoplatydesmine were isolated from the leaves of Amyris diatripa, being the first report of the presence of alkaloids in species of this genus. The presence of coumarins in the plant was also shown by isolation of psoralen, bergapten, marmesin, ulopterol and suberenol.

  6. Evolution of alkaloid biosynthesis in the genus Narcissus.

    PubMed

    Berkov, Strahil; Martínez-Francés, Vanessa; Bastida, Jaume; Codina, Carles; Ríos, Segundo

    2014-03-01

    In an attempt to reveal the relationships between alkaloid biosynthesis and phylogeny, we investigated by GC-MS the alkaloid patterns of 22 species and 3 hybrids (from 45 locations) from seven main sections of the genus Narcissus (Amaryllidaceae). The results indicate that the first alkaloids to evolve in the genus Narcissus were of the lycorine- and homolycorine-type. The alkaloid pattern of the Nevadensis section supports its recent separation from the Pseudonarcissus section. The plants of Narcissus pallidulus (Ganymedes section) show a predominance of Sceletium-type compounds, which are quite rare in the Amaryllidaceae family. Two successful evolutionary strategies involving alkaloid biosynthesis and leading to an expansion in taxa and occupied area were determined. Firstly, a diversification of alkaloid patterns and a high alkaloid concentration in the organs of the large Narcissus species (in the Pseudonarcissus section) resulted in an improved chemical defence in diverse habitats. Secondly, both plant size and alkaloid biosynthesis were reduced (in the Bulbocodium and Apodanthi sections) relegated to dry pastures and rocky places. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. MULTICOMPONENT REACTIONS IN ALKALOID-BASED DRUG DISCOVERY

    PubMed Central

    Magedov, I. V.; Kornienko, A.

    2016-01-01

    Multicomponent reactions are emerging as a powerful tool in alkaloid-based drug discovery. This Highlight describes several recent (all published in 2011) examples of the employment of multicomponent reactions for the synthesis of biologically active alkaloids and their medicinally relevant analogues. PMID:27917001

  8. Antiproliferative and Structure Activity Relationships of Amaryllidaceae Alkaloids.

    PubMed

    Cedrón, Juan C; Ravelo, Ángel G; León, Leticia G; Padrón, José M; Estévez-Braun, Ana

    2015-07-30

    The antiproliferative activity of a set of seven natural Amaryllidaceae alkaloids and 32 derivatives against four cancer cell lines (A2780, SW1573, T47-D and WiDr) was determined. The best antiproliferative activities were achieved with alkaloids derived from pancracine (2), haemanthamine (6) and haemantidine (7). For each skeleton, some structure-activity relationships were outlined.

  9. Effects of Ergot Alkaloids on Bovine Sperm Motility In Vitro

    USDA-ARS?s Scientific Manuscript database

    Ergot alkaloids are synthesized by endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum (Schreb.) S.J. Darbyshire). Our objective was to determine direct effects of ergot alkaloids (ergotamine, dihydroergotamine and ergonovine) on the motility of bovine spermatozoa in vit...

  10. Identification of the quinolizidine alkaloids in Sophora leachiana

    USDA-ARS?s Scientific Manuscript database

    Sophora is a diverse genus representing herbs, shrubs, and trees that occurs throughout the world, primarily in the northern hemisphere. Sophora species contain a variety of quinolizidine alkaloids that are toxic and potentially teratogenic. However, there are no previous reports on the alkaloid c...

  11. Caste specific alkaloid chemistry of Solenopsis maboya and S

    Treesearch

    J.A. Torres; V.E. Zottig; J.E. Co; T.H. Jones; R.R. Snelling

    2001-01-01

    Examination of the alkaloids of Solenopsis maboya Snelling and comparison with those previously found in S. Torresi Snelling, reveals a clear example of caste-specific alkaloid production in the queens and workers of each species. The queens of Solenopsis maboya contain a single piperidine while the workers produce a different piperidine along with two indolizidine...

  12. New indole alkaloids from the roots of Ochrosia acuminata.

    PubMed

    Salim, Angela A; Garson, Mary J; Craik, David J

    2004-10-01

    Two new indole alkaloids, polyneuridine-N-oxide (1) and 17-hydroxy-10-methoxy-yohimbane (2), together with seven known alkaloids were isolated from the roots of Ochrosia acuminata collected in Savu, Indonesia. 9-Methoxyellipticine (3) and ellipticine (4) were responsible for the antitumor activities of the extract. The structures of all compounds were elucidated using MS and NMR methods.

  13. Alstiphyllanines A-D, indole alkaloids from Alstonia macrophylla.

    PubMed

    Hirasawa, Yusuke; Arai, Hiroko; Zaima, Kazumasa; Oktarina, Rice; Rahman, Abdul; Ekasari, Wiwied; Widyawaruyanti, Aty; Indrayanto, Gunawan; Zaini, Noor Cholies; Morita, Hiroshi

    2009-02-27

    Four new alkaloids, alstiphyllanines A-D (1-4), were isolated from Alstonia macrophylla, and their structures were determined by MS and 2D NMR analyses. Alkaloids 1-4 showed moderate antiplasmodial activity against Plasmodium falciparum and vasorelaxant activity against phenylephrine-induced contraction of isolated rat aorta.

  14. Leptopyrine, new alkaloid from Leptopyrum fumarioides L. (Ranunculaceae).

    PubMed

    Doncheva, Tsvetelina; Solongo, Amgalan; Kostova, Nadezhda; Gerelt-Od, Yadamsuren; Selenge, Dangaa; Philipov, Stefan

    2015-01-01

    A new type of isoquinoline alkaloid leptopyrine was isolated from the aerial parts of Leptopyrum fumarioides L. (Ranunculaceae) of Mongolian origin. The known alkaloids protopine and thalifoline were isolated for the first time from this the species. All structures were established by physical and spectral analyses.

  15. Tall fescue seed extraction and partial purification of ergot alkaloids

    USDA-ARS?s Scientific Manuscript database

    Many substances in the tall fescue/endophyte association (Schedonorus arundinaceus/Epichloë coenophiala) have biological activity. Of these compounds only the ergot alkaloids are known to have significant mammalian toxicity and the predominant ergot alkaloids are ergovaline and ergovalinine. Because...

  16. A cage-monoterpene indole alkaloid from Alstonia scholaris.

    PubMed

    Cai, Xiang-Hai; Tan, Qin-Gang; Liu, Ya-Ping; Feng, Tao; Du, Zhi-Zhi; Li, Wei-Qi; Luo, Xiao-Dong

    2008-02-21

    An unprecedented cage-like alkaloid, scholarisine A was isolated from the leaves of Alstonia scholaris and its structure determined on the basis of 1D and 2D NMR, FTIR, UV, and high-resolution mass spectroscopic data. This alkaloid might be derived from picrinine via oxygenation, rearrangement, and lactonization.

  17. Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sauerwein, M; Sporer, F; Wink, M; Müller, W E

    1994-09-01

    Fourteen quinolizidine alkaloids, isolated from Lupinus albus, L. mutabilis, and Anagyris foetida, were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. Of the compounds tested, the alpha-pyridones, N-methylcytisine and cytisine, showed the highest affinities at the nicotinic receptor, while several quinolizidine alkaloid types were especially active at the muscarinic receptor.

  18. [A new alkaloid of Menispermum dauricum DC--dauriciline].

    PubMed

    Pang, X P; Chen, Y W; Li, X J; Long, J G

    1991-01-01

    A new phenolic dauricine-type alkaloid, named "dauriciline", was isolated from the rhizome of Menispermum dauricum DC. It is a pale yellow powder. Based on spectrometric analysis (UV.FAB-MS and 1HNMR) and chemical reaction the structure of the new alkaloid was elucidated as RR,7,7'-demethyldauricine (VI).

  19. DNA topoisomerase I inhibitory alkaloids from Corydalis saxicola.

    PubMed

    Cheng, Xuanxuan; Wang, Dongmei; Jiang, Lin; Yang, Depo

    2008-07-01

    Chemical studies of the Chinese herb Corydalis saxicola Bunting led to the isolation and identification of 14 alkaloids, 1-14. Seven of these compounds, 4-9 and 11, were obtained from this plant for the first time. Feruloylagmatine (7) is the first guanidine-type alkaloid to be identified in the family Papaveraceae and in dicotyledonous plants. All of the isolated compounds were assayed for inhibitory activity against human DNA topoisomerase I. A DNA cleavage assay demonstrated that these alkaloids specifically inhibit topoisomerase through stabilization of the enzyme-DNA complex. Among the isolated alkaloids, (-)-pallidine (8) and (-)-scoulerine (11) showed strong inhibitory activities toward topoisomerase I that were comparable to camptothecin, a typical topoisomerase I inhibitor. A preliminary structure-activity relationship study suggested that the quaternary ammonium ion might play an important role in topoisomerase I inhibition by the isoquinoline alkaloids. These data indicated that DNA topoisomerase I inhibition represents probably one of the anticarcinogenic mechanisms of C. saxicola.

  20. Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer.

    PubMed

    Ajanal, Manjunath; Gundkalle, Mahadev B; Nayak, Shradda U

    2012-04-01

    Herbal formulation standardization by adopting newer technique is need of the hour in the field of Ayurvedic pharmaceutical industry. As very few reports exist. These kind of studies would certainly widen the herbal research area. Chitrakadivati is one such popular herbal formulation used in Ayurveda. Many of its ingredients are known for presence of alkaloids. Presence of alkaloid was tested qualitatively by Dragondroff's method then subjected to quantitative estimation by UV-Spectrophotometer. This method is based on the reaction between alkaloid and bromocresol green (BCG). Study discloses that out of 16 ingredients, 9 contain alkaloid. Chitrakadivati has shown 0.16% of concentration of alkaloid and which is significantly higher than it's individual ingredients.

  1. Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer

    PubMed Central

    Ajanal, Manjunath; Gundkalle, Mahadev B.; Nayak, Shradda U.

    2012-01-01

    Background: Herbal formulation standardization by adopting newer technique is need of the hour in the field of Ayurvedic pharmaceutical industry. As very few reports exist. These kind of studies would certainly widen the herbal research area. Chitrakadivati is one such popular herbal formulation used in Ayurveda. Many of its ingredients are known for presence of alkaloids. Methodology: Presence of alkaloid was tested qualitatively by Dragondroff's method then subjected to quantitative estimation by UV-Spectrophotometer. This method is based on the reaction between alkaloid and bromocresol green (BCG). Results and Conclusion: Study discloses that out of 16 ingredients, 9 contain alkaloid. Chitrakadivati has shown 0.16% of concentration of alkaloid and which is significantly higher than it's individual ingredients. PMID:23661869

  2. hERG Blockade by Iboga Alkaloids.

    PubMed

    Alper, Kenneth; Bai, Rong; Liu, Nian; Fowler, Steven J; Huang, Xi-Ping; Priori, Silvia G; Ruan, Yanfei

    2016-01-01

    The iboga alkaloids are a class of naturally occurring and synthetic compounds, some of which modify drug self-administration and withdrawal in humans and preclinical models. Ibogaine, the prototypic iboga alkaloid that is utilized clinically to treat addictions, has been associated with QT prolongation, torsades de pointes and fatalities. hERG blockade as IKr was measured using the whole-cell patch clamp technique in HEK 293 cells. This yielded the following IC50 values: ibogaine manufactured by semisynthesis via voacangine (4.09 ± 0.69 µM) or by extraction from T. iboga (3.53 ± 0.16 µM); ibogaine's principal metabolite noribogaine (2.86 ± 0.68 µM); and voacangine (2.25 ± 0.34 µM). In contrast, the IC50 of 18-methoxycoronaridine, a product of rational synthesis and current focus of drug development was >50 µM. hERG blockade was voltage dependent for all of the compounds, consistent with low-affinity blockade. hERG channel binding affinities (K i) for the entire set of compounds, including 18-MC, ranged from 0.71 to 3.89 µM, suggesting that 18-MC binds to the hERG channel with affinity similar to the other compounds, but the interaction produces substantially less hERG blockade. In view of the extended half-life of noribogaine, these results may relate to observations of persistent QT prolongation and cardiac arrhythmia at delayed intervals of days following ibogaine ingestion. The apparent structure-activity relationships regarding positions of substitutions on the ibogamine skeleton suggest that the iboga alkaloids might provide an informative paradigm for investigation of the structural biology of the hERG channel.

  3. [Non-alkaloid constituents of Gelsemium elegans].

    PubMed

    Zhang, Binfeng; Chou, Guixin; Wang, Zhengtao

    2009-09-01

    To study the non-alkaloid chemical constituents of Gelsemium elegans. Compounds were isolated and purified by repeated column chromatography, and their structures were elucidated by spectroscopic methods. Ten compounds were isolated and their structures were identified as tamarixin (1), tamarixetin 3-O-beta-D-galactopyranoside (2), scopolin (3), scopoletin (4), uradine (5), caffeic acid (6), caffeic acid ethyl ester (7), ferulic acid ethyl ester (8), ethyl-alpha-D-fructofuranoside (9), and ethyl-beta-D-fructopyranoside (10). Compounds 1-3,5-10 are firstly isolated from this plant and compounds 1, 2, and 5-10 are isolated from the genus Gelsemium for the first time.

  4. Cytotoxic guanidine alkaloids from Pterogyne nitens.

    PubMed

    Regasini, Luis Octávio; Castro-Gamboa, Ian; Silva, Dulce Helena Siqueira; Furlan, Maysa; Barreiro, Eliezer Jesus; Ferreira, Paulo Michel Pinheiro; Pessoa, Cláudia; Lotufo, Letícia Veras Costa; de Moraes, Manoel Odorico; Young, Maria Claudia Marx; Bolzani, Vanderlan da Silva

    2009-03-27

    As part of a bioprospecting program aimed at the discovery of potential anticancer drugs, two new guanidine-type alkaloids, nitensidines D and E (1, 2), and the known pterogynine (3), pterogynidine (4), and galegine (5), were isolated from the leaves of Pterogyne nitens. The structures of 1 and 2 were established on the basis of spectroscopic data interpretation. These compounds were tested against a small panel of human cancer cell lines. Compound 2 exhibited cytotoxicity for HL-60 (human myeloblastic leukemia) and SF-245 (human glioblastoma) cells.

  5. Alkaloids from Piper sarmentosum and Piper nigrum.

    PubMed

    Ee, G C L; Lim, C M; Lim, C K; Rahmani, M; Shaari, K; Bong, C F J

    2009-01-01

    Detailed chemical studies on the roots of Piper sarmentosum and Piper nigrum have resulted in several alkaloids. The roots of P. sarmentosum gave a new aromatic compound, 1-nitrosoimino-2,4,5-trimethoxybenzene (1). Piper nigrum roots gave pellitorine (2), (E)-1-[3',4'-(methylenedioxy)cinnamoyl]piperidine (3), 2,4-tetradecadienoic acid isobutyl amide (4), piperine (5), sylvamide (6), cepharadione A (7), piperolactam D (8) and paprazine (9). Structural elucidation of these compounds was achieved through NMR and MS techniques. Cytotoxic activity screening of the plant extracts indicated some activity.

  6. Enantioselective Total Synthesis of Tricyclic Myrmicarin Alkaloids

    PubMed Central

    Movassaghi, Mohammad; Ondrus, Alison E.

    2010-01-01

    An enantioselective gram-scale synthesis of a key dihydroindolizine intermediate for the preparation of myrmicarin alkaloids is described. Key transformations in this convergent approach include a stereospecific palladium–catalyzed N-vinylation of a pyrrole with a vinyl triflate, a copper–catalyzed enantioselective conjugate reduction of a β-pyrrolyl enoate, and a regioselective Friedel-Crafts reaction. The synthesis of optically active and isomerically pure samples of (4aR)-myrmicarins 215A, 215B, and 217 in addition to their respective C4a-epimers is presented. PMID:16178549

  7. A new pyrroloquinazoline alkaloid from Linaria vulgaris.

    PubMed

    Hua, Huiming; Cheng, Maosheng; Li, Xian; Pei, Yuehu

    2002-10-01

    A new alkaloid, 1,2,3,9-tetrahydropyrrolo(2,1-b)quinazolin-1-carboxylic acid (1), together with eight known compounds, 7-hydroxy vasicine (2), benzyl alcohol beta-D-(2'-O-beta-xylopyranosyl)glucopyranoside (3), benzyl alcohol O-beta-D-glucopyranoside (4), benzyl alcohol O-beta-D-primveroside (5), 3,5-dimethyl-4-hydroxy benzaldehyde (6), gluco-syringic acid (7), syringin (8), and liriodendrin (9), were isolated from the plants of Linaria vulgaris. Their structures were established by spectroscopic methods.

  8. New ester alkaloids from lupins (genus lupinus).

    PubMed

    Mühlbauer, P; Witte, L; Wink, M

    1988-06-01

    Esters of 13-hydroxylupanine and 4-hydroxylupanine with acetic, propionic, butyric, isobutyric, valeric, isovaleric, tiglic, benzoic, and TRANS-cinnamic acid have been synthesized and characterized by capillary gas-liquid chromatography and mass spectrometry (EI-MS, CI-MS). In LUPINUS POLYPHYLLUS, L. ALBUS, L. ANGUSTIFOLIUS, and L. MUTABILIS we could identify new ester alkaloids (e.g. 13-propyloxylupanine, 13-butyryloxylupanine, 13-isobutyryloxylupanine, and 4-tigloyloxylupanine) besides the known esters, i.e. 13-acetoxylupanine, 13-isovaleroyloxylupanine, 13-angeloyloxylupanine, 13-tigloyloxylupanine, 13-benzoyloxylupanine, 13- CIS-cinnamoyloxylupanine nine, and 13- TRANS-cinnamoyloxylupanine.

  9. Accumulation of Ergopeptide Alkaloids in Symbiotic Tall Fescue Grown under Deficits of Soil Water and Nitrogen Fertilizer

    PubMed Central

    Arechavaleta, M.; Bacon, C. W.; Plattner, R. D.; Hoveland, C. S.; Radcliffe, D. E.

    1992-01-01

    The fungus Acremonium coenophialum is endophytically associated with tall fescue (Festuca arundinacea Schreber). Within this symbiotum the fungus produces ergopeptide alkaloids, which are associated with livestock toxicoses. Environmental effects on the production of ergot alkaloids within the symbiotum are unknown. We conducted a greenhouse study of the effects of flooding, nitrogen rate during fertilization (11, 73, and 220 mg of N per pot weekly), nitrogen form (3.4 and 34 mg of N as NH4+ or NO3- per pot), and drought stress (-0.03, -0.05, and -0.50 MPa) on ergopeptide alkaloid concentrations in one genotype of nonsymbiotic and symbiotic tall fescue grown in plastic pots. It was determined that the concentration of ergovaline, the major type of ergopeptide alkaloid, was increased but was not as high as that in nonflooded controls. Total ergopeptide and ergovaline concentrations in plants receiving high (220 mg of N per pot) and low (11 mg of N per pot) levels of NH4NO3 fertilization were not affected by flooding. The form of nitrogen was important since all concentrations of NO3--N increased ergopeptide alkaloid content, as opposed to the effects of NH4+-N, which was effective only at high concentrations (34 mg of N per pot). Ergopeptide concentrations were highest in drought-stressed plants grown at -0.50 MPa and fertilized at the moderate or high N rate. The results suggest that within this genotype, ergopeptide alkaloid biosynthesis by the fungus is not appreciably affected by flooding but is greatly increased by high rates of N fertilization and moderate water deficit. PMID:16348675

  10. Predicting toxicity of tall larkspur (Delphinium barbeyi): measurement of the variation in alkaloid concentration among plants and among years.

    PubMed

    Ralphs, M H; Gardner, D R; Turner, D L; Pfister, J A; Thacker, E

    2002-11-01

    Tall larkspur (Delphinium barbeyi) is the principal mountain larkspur responsible for the majority of cattle deaths on mountain rangelands in western Colorado and central and southern Utah in the United States. Ten plants in each of two tall larkspur populations in the mountains near Ferron and Salina, Utah, were marked, and single stalks were harvested periodically through the growing season for 4 yr. Toxic alkaloid concentration [alkaloids containing the N-(methylsuccimimido)-anthranilik ester group] was determined by Fourier transform infrared (FTIR) spectroscopy. Individual larkspur plants varied in alkaloid concentrations, especially in early growth (14-38 mg/g). As the concentration declined over the growing season, variation among plants also declined. There were yearly differences in alkaloid concentration among individual plants (P < 0.01) and populations (P < 0.001), even after accounting for differences in phenological growth between years. Variables such as precipitation, temperature, days since snow melt, growing degree days (sum of mean temperature each day from snow melt), and plant height and weight were all considered in a Mallows Cp multiple regression selection procedure to predict alkaloid concentration. The mixed model procedure in SAS adjusted the regression equation for locations and years. Growing degree days was the best single predictor of alkaloid levels: In y = (3.581 - 0.00423 GDD), R2 = 0.85. Internal validation of this equation within individual years and locations from which the equation was developed, produced correlations between observed versus predicted values ranging from r = 0.73 to 0.93. External validations on nine other larkspur populations produced correlations ranging from r = 0.76 to 0.99. This predictive equation can provide a tool for ranchers and land managers to make management decisions of when to graze cattle in larkspur areas.

  11. Non-competitive Inhibition of Nicotinic Acetylcholine Receptors by Ladybird Beetle Alkaloids.

    PubMed

    Leong, Ron L; Xing, Hong; Braekman, Jean-Claude; Kem, William R

    2015-10-01

    Ladybird beetles (Family Coccinellidae) secrete an alkaloid rich venom from their leg joints that protects them from predators. Coccinellines, the major venom constituents, are alkaloids composed of three fused piperidine rings that share a common nitrogen atom. Although many coccinellines have been isolated and chemically characterized, their pharmacological properties are essentially unknown. Using radioligand binding and functional assays we investigated the actions of several coccinellines on skeletal muscle and α7 nicotinic acetylcholine receptors (nAChRs). The alkaloids were shown to displace the specific binding of tritiated piperidyl-N-(1-(2-thienyl)cyclohexyl)-3,4-piperidine ([(3)H]-TCP), which has been shown to bind deep within the ion channel of the electric fish (Torpedo) muscle nAChR. The stereoisomers precoccinelline and hippodamine (whose nitrogens are predicted to be ionized at physiological pH) and their respective analogs N-methyl-precoccinelline and N-methyl-hippodamine (whose quaternary nitrogens are permanently charged) displayed similar IC50s for inhibition of [(3)H]-TCP binding. However, the corresponding precoccinelline and hippodamine N-oxides, coccinelline and convergine (which have an electronegative oxygen bonded to an electropositive nitrogen) displayed significantly higher binding IC50s. Finally, exochomine, a dimeric coccinelline containing the hippodamine structure, displayed the highest IC50 (lowest affinity) for displacing specific [(3)H]-TCP binding. The presence of a desensitizing concentration (10(-3) M) of carbachol (CCh) had little or no effect on the affinity of the Torpedo nAChR for the three coccinellines tested. High concentrations of the coccinellid alkaloids did not affect binding of [(3)H]-cytisine to Torpedo receptor ACh binding sites. Inhibition of the alpha7 nAChR with pre-equilibrated precoccinelline was insurmountable with respect to ACh concentration. We conclude that the coccinellines bind to one or more

  12. The effect of 7, 8-Methylenedioxylycoctonine -Type Diterpenoid Alkaloids on the Toxicity of Methyllycaconitine in Mice

    USDA-ARS?s Scientific Manuscript database

    Larkspur plants contain numerous norditerpenoid alkaloids which include the 7, 8-methylenedioxylycoctonine (MDL-type) alkaloids and the N-(methylsuccinimido) anthranoyllycoctonine (MSAL-type) alkaloids. The MSAL-type alkaloids are generally much more toxic (typically > 20x). The toxicity of many t...

  13. Aspidofractinine and Eburnane Alkaloids from a North Borneo Kopsia. Ring-Contracted, Additional Ring-Fused, and Paucidactine-Type Aspidofractinine Alkaloids from K. pauciflora.

    PubMed

    Yap, Wai-Sum; Gan, Chew-Yan; Sim, Kae-Shin; Lim, Siew-Huah; Low, Yun-Yee; Kam, Toh-Seok

    2016-01-22

    Eleven new indole alkaloids (1-11) comprising seven aspidofractinine and four eburnane alkaloids, were isolated from the stem-bark extract of Kopsia pauciflora occurring in Malaysian Borneo. The aspidofractinine alkaloids include a ring-contracted, an additional ring-fused, a paucidactine regioisomer, two paucidactine, and one kopsine alkaloid. The structures of several of these alkaloids were also confirmed by X-ray diffraction analyses. The bisindole alkaloids isolated, norpleiomutine and kopsoffinol, showed in vitro growth inhibitory activity against human PC-3, HCT-116, MCF-7, and A549 cells and moderate effects in reversing multidrug-resistance in vincristine-resistant human KB cells.

  14. Cytotoxicity and accumulation of ergot alkaloids in human primary cells.

    PubMed

    Mulac, Dennis; Humpf, Hans-Ulrich

    2011-04-11

    Ergot alkaloids are secondary metabolites produced by fungi of the species Claviceps. Toxic effects after consumption of contaminated grains are described since mediaeval times. Of the more than 40 known ergot alkaloids six are found predominantly. These are ergotamine, ergocornine, ergocryptine, ergocristine, ergosine and ergometrine, along with their corresponding isomeric forms (-inine-forms). Toxic effects are known to be induced by an interaction of the ergot alkaloids as neurotransmitters, like dopamine or serotonin. Nevertheless data concerning cytotoxic effects are missing and therefore a screening of the six main ergot alkaloids was performed in human primary cells in order to evaluate the toxic potential. As it is well known that ergot alkaloids isomerize easily the stability was tested in the cell medium. Based on these results factors were calculated to correct the used concentration values to the biologically active lysergic (-ine) form. These factors range from 1.4 for the most stable compound ergometrine to 5.0 for the most unstable ergot alkaloid ergocristine. With these factors, reflecting the instability, several controverse literature data concerning the toxicity could be explained. To evaluate the cytotoxic effects of ergot alkaloids, human cells in primary culture were used. These cells remain unchanged in contrast to cell lines and the data allow a better comparison to the in vivo situation than using immortalized cell lines. To characterize the effects on primary cells, renal proximal tubule epithelial cells (RPTEC) and normal human astrocytes (NHA) were used. The parameters necrosis (LDH-release) and apoptosis (caspase-3-activation, DNA condensation and fragmentation) were distinguished. The results show that depending on the individual structure of the peptide ergot alkaloids the toxic properties change. While ergometrine as a lysergic acid amide did not show any effect, the peptide ergot alkaloids revealed a different toxic potential. Of

  15. Neurotoxic Alkaloids: Saxitoxin and Its Analogs

    PubMed Central

    Wiese, Maria; D’Agostino, Paul M.; Mihali, Troco K.; Moffitt, Michelle C.; Neilan, Brett A.

    2010-01-01

    Saxitoxin (STX) and its 57 analogs are a broad group of natural neurotoxic alkaloids, commonly known as the paralytic shellfish toxins (PSTs). PSTs are the causative agents of paralytic shellfish poisoning (PSP) and are mostly associated with marine dinoflagellates (eukaryotes) and freshwater cyanobacteria (prokaryotes), which form extensive blooms around the world. PST producing dinoflagellates belong to the genera Alexandrium, Gymnodinium and Pyrodinium whilst production has been identified in several cyanobacterial genera including Anabaena, Cylindrospermopsis, Aphanizomenon Planktothrix and Lyngbya. STX and its analogs can be structurally classified into several classes such as non-sulfated, mono-sulfated, di-sulfated, decarbamoylated and the recently discovered hydrophobic analogs—each with varying levels of toxicity. Biotransformation of the PSTs into other PST analogs has been identified within marine invertebrates, humans and bacteria. An improved understanding of PST transformation into less toxic analogs and degradation, both chemically or enzymatically, will be important for the development of methods for the detoxification of contaminated water supplies and of shellfish destined for consumption. Some PSTs also have demonstrated pharmaceutical potential as a long-term anesthetic in the treatment of anal fissures and for chronic tension-type headache. The recent elucidation of the saxitoxin biosynthetic gene cluster in cyanobacteria and the identification of new PST analogs will present opportunities to further explore the pharmaceutical potential of these intriguing alkaloids. PMID:20714432

  16. Cardiovascular pharmacological effects of bisbenzylisoquinoline alkaloid derivatives.

    PubMed

    Qian, Jia-Qing

    2002-12-01

    Tetrandrine, dauricine, daurisoline and neferine are bisbenzylisoquinoline alkaloid derivatives isolated from Chinese traditional medicine and herbs. The cardiovascular pharmacological effects and the mechanism of actions of these compounds were reviewed. Tetrandrine isolated from Stephania tetrandra S Moore possesses antihypertensive and antiarrhythmic effects. The antihypertensive effects of tetrandrine have been demonstrated in experimental hypertensive animals and in hypertensive patients. Recent studies showed that in addition to its calcium antagonistic effect, tetrandrine interacted with M receptors. Modulation by M receptor is one of the pharmacological mechanisms of cardiovascular effects of tetrandrine. Dauricine and daurisoloine were isolated from Menispermum dauricum DC. The antiarrhythmic effects of dauricine have been verified in different experimental arrhythmic models and in cardiac arrhythmic patients. Dauricine blocked the cardiac transmembrane Na+,K+ and Ca2+ ion currents. Differing from quinidine and sotalol, which exhibited reverse use-dependent effect, dauricine prolonged APD in a normal use-dependent manner in experimental studies. The antiarrhythmic effect of daurisoline and neferine which is an alkaloid isolated from Nelumbo nucifera Gaertn, and their mechanisms of actions have also been studied. The antiarrhythmic effect of daurisoline is more potent than that of dauricine.

  17. Antifungal Indole Alkaloids from Winchia calophylla.

    PubMed

    Yang, Mei-Li; Chen, Jia; Sun, Meng; Zhang, Dong-Bo; Gao, Kun

    2016-05-01

    Ten indole alkaloids (1-10) were obtained from an antifungal extract of Winchia calophylla, of which two (2 and 4) were new. N(4)-Methyl-10-hydroxyl-desacetylakuammilin (2) was an akuammiline-type indole alkaloid. N(1)-Methyl-echitaminic acid (4) was an unusual zwitterion with a basic vincorine-type skeleton. This is the first report of 10 in W. calophylla. The structures of all of the compounds were determined based on spectroscopic data, and their bioactivities were assessed. Compound 1 showed potent activity against the plant pathogenic fungi of Penicillium italicum and Fusarium oxysporum f.sp cubens with IC50 s of 10.4 and 11.5 µM, respectively, and 3 inhibited Rhizoctonia solani with an IC50 of 11.7 µM. Compounds 2 and 4 showed weak cytotoxicity against the human leukemic cell line HL-60 in vitro with IC50 s of 51.4 and 75.3 µM, respectively. Compounds 1 and 2 displayed weak activity against acetylcholinesterase with IC50 s around 61.3 and 52.6 µM, respectively.

  18. Anti-parasitic Guanidine and Pyrimidine Alkaloids from the Marine Sponge Monanchora arbuscula.

    PubMed

    Santos, Mario F C; Harper, Philip M; Williams, David E; Mesquita, Juliana T; Pinto, Érika G; da Costa-Silva, Thais A; Hajdu, Eduardo; Ferreira, Antonio G; Santos, Raquel A; Murphy, Patrick J; Andersen, Raymond J; Tempone, Andre G; Berlinck, Roberto G S

    2015-05-22

    HPLC-UV-ELSD-MS-guided fractionation of the anti-parasitic extract obtained from the marine sponge Monanchora arbuscula, collected off the southeastern coast of Brazil, led to the isolation of a series of guanidine and pyrimidine alkaloids. The pyrimidines monalidine A (1) and arbusculidine A (7), as well as the guanidine alkaloids batzellamide A (8) and hemibatzelladines 9-11, represent new minor constituents that were identified by analysis of spectroscopic data. The total synthesis of monalidine A confirmed its structure. Arbusculidine A (7), related to the ptilocaulin/mirabilin/netamine family of tricyclic guanidine alkaloids, is the first in this family to possess a benzene ring. Batzellamide A (8) and hemibatzelladines 9-11 represent new carbon skeletons that are related to the batzelladines. Evaluation of the anti-parasitic activity of the major known metabolites, batzelladines D (12), F (13), L (14), and nor-L (15), as well as of synthetic monalidine A (1), against Trypanosoma cruzi and Leishmania infantum is also reported, along with a detailed investigation of parasite cell-death pathways promoted by batzelladine L (14) and norbatzelladine L (15).

  19. Measurement of some Benzylisoquinoline Alkaloids in Different Organs of Persian Poppy during Ontogenetical Stages.

    PubMed

    Rezaei, Mahdi; Naghavi, Mohammad Reza; Hosseinzadeh, Abdol Hadi; Abbasi, Alireza

    2016-05-01

    Papaver bracteatum, a perennial species, has been known as a rich source of thebaine and a potential alternative to Papaver somniferum for the production of codeine and some semisynthetic antagonist drugs. In this study, ion mobility spectrum (IMS) of the root, leaf, bottom part of stem, upper part of stem, capsule wall, petal, and capsule content during developmental stages of P. bracteatum including annual rosette, perennial rosette, bud initiation, pendulous bud, preflowering, and lancing were investigated. The IMS revealed thebaine, papaverine, and noscapine as the major components of the extracted alkaloids. Based on the results of the study it appears that, at least in part, there is a competition among the biosynthesis pathways of papaverine, noscapine, and morphinan alkaloids from a common source. Root and capsule wall were the most potent organs for extraction of thebaine, while lancing stage was the best developmental stage for thebaine exploitation. However, it seems that total biomass of root and capsule wall plays a key role in the final selection of favorite organ. Although papaverine and noscapine in the stem at preflowering stage had the most quantity, significant amounts were found in the capsule wall. In general, total alkaloid content of leaf was lower than the other plant parts.

  20. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms.

    PubMed

    Liscombe, David K; MacLeod, Benjamin P; Loukanina, Natalia; Nandi, Owi I; Facchini, Peter J

    2005-10-01

    Benzylisoquinoline alkaloids (BIAs) consist of more than 2500 diverse structures largely restricted to the order Ranunculales and the eumagnoliids. However, BIAs also occur in the Rutaceae, Lauraceae, Cornaceae and Nelumbonaceae, and sporadically throughout the order Piperales. Several of these alkaloids function in the defense of plants against herbivores and pathogens--thus the capacity for BIA biosynthesis is expected to play an important role in the reproductive fitness of certain plants. Biochemical and molecular phylogenetic approaches were used to investigate the evolution of BIA biosynthesis in basal angiosperms. The occurrence of (S)-norcoclaurine synthase (NCS; EC 4.2.1.78) activity in 90 diverse plant species was compared to the distribution of BIAs superimposed onto a molecular phylogeny. These results support the monophyletic origin of BIA biosynthesis prior to the emergence of the eudicots. Phylogenetic analysis of NCS, berberine bridge enzyme and several O-methyltransferases suggest a latent molecular fingerprint for BIA biosynthesis in angiosperms not known to accumulate such alkaloids. The limited occurrence of BIAs outside the Ranunculales and eumagnoliids suggests the requirement for a highly specialized, yet evolutionarily unstable cellular platform to accommodate or reactivate the pathway in divergent taxa. The molecular cloning and functional characterization of NCS from opium poppy (Papaver somniferum L.) is also reported. Pathogenesis--related (PR)10 and Bet v 1 major allergen proteins share homology with NCS, but recombinant polypeptides were devoid of NCS activity.

  1. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms.

    PubMed

    Liscombe, David K; Macleod, Benjamin P; Loukanina, Natalia; Nandi, Owi I; Facchini, Peter J

    2005-06-01

    Benzylisoquinoline alkaloids (BIAs) consist of more than 2500 diverse structures largely restricted to the order Ranunculales and the eumagnoliids. However, BIAs also occur in the Rutaceae, Lauraceae, Cornaceae and Nelumbonaceae, and sporadically throughout the order Piperales. Several of these alkaloids function in the defense of plants against herbivores and pathogens - thus, the capacity for BIA biosynthesis is expected to play an important role in the reproductive fitness of certain plants. Biochemical and molecular phylogenetic approaches were used to investigate the evolution of BIA biosynthesis in basal angiosperms. The occurrence of (S)-norcoclaurine synthase (NCS; EC 4.2.1.78) activity in 90 diverse plant species was compared to the distribution of BIAs superimposed onto a molecular phylogeny. These results support the monophyletic origin of BIA biosynthesis prior to the emergence of the eudicots. Phylogenetic analyses of NCS, berberine bridge enzyme and several O-methyltransferases suggest a latent molecular fingerprint for BIA biosynthesis in angiosperms not known to accumulate such alkaloids. The limited occurrence of BIAs outside the Ranunculales and eumagnoliids suggests the requirement for a highly specialized, yet evolutionarily unstable cellular platform to accommodate or reactivate the pathway in divergent taxa. The molecular cloning and functional characterization of NCS from opium poppy (Papaver somniferum L.) is also reported. Pathogenesis-related (PR)10 and Bet v 1 major allergen proteins share homology with NCS, but recombinant polypeptides were devoid of NCS activity.

  2. The effect of isoquinoline alkaloids on opiate withdrawal.

    PubMed

    Capasso, A; Piacente, S; De Tommasi, N; Rastrelli, L; Pizza, C

    2006-01-01

    Our interest has been centered on isoquinoline alkaloids obtained from Argemone mexicana (Papaveraceae), Aristolochia constricta (Aristolochiaceae) and the opium alkaloid, papaverine. In this respect, the effect of these isoquinoline alkaloids was investigated on contractions induced by naloxone of isolated guinea pig ileum acutely exposed to morphine in vitro. The activity of these alkaloids was compared to the control compound, papaverine. Furthermore, the effect of these isoquinoline alkaloids was also determined on naloxone-precipitated withdrawal in isolated guinea pig ileum exposed to DAMGO (highly selective mu opioid receptor agonist) and U50-488H (highly selective kappa opioid receptor agonist) to test whether the possible interaction of isoquinoline alkaloids on opioid withdrawal involves mu- and/or kappa-opioid receptors. Isoquinoline alkaloids from A. mexicana (from 5 x 10(-6) to 1 x 10(-4) M), from A. constricta (1 x 10(-5) x 10(-5)-1 x 10(-4) M) as well as papaverine treatment (1 x 10(-7)-5 x 10(-6)-1 x 10(-6) M) before or after the opioid agonists were able of both preventing and reversing the naloxone-induced contraction after exposure to mu (morphine and DAMGO) or kappa (U50-488H) opiate receptor agonists in a concentration-dependent manner. Both acetylcholine response and electrical stimulation were also reduced by isoquinoline alkaloids and papaverine treatment as well as the final opiate withdrawal was still reduced. The results of the present study indicate that isoquinoline alkaloids as well as papaverine were able to produce significant influence on the opiate withdrawal in vitro and these compounds were able to exert their effects both at mu and kappa opioid agonists.

  3. A new cytotoxic carbazole alkaloid and two new other alkaloids from Clausena excavata.

    PubMed

    Peng, Wen-Wen; Zeng, Guang-Zhi; Song, Wei-Wu; Tan, Ning-Hua

    2013-07-01

    One new carbazole alkaloid, excavatine A (1), and two additional new alkaloids, excavatine B (2) and excavatine C (3), were isolated from the stems and leaves of Clausena excavata Burm.f. (Rutaceae). Their structures were determined on the basis of detailed spectroscopic analyses, especially 2D-NMR and HR-EI-MS data. Compounds 1-3 were tested for their cytotoxic activities against A549, HeLa, and BGC-823 cancer cell lines, and for their antimicrobial activities against Candida albicans and Staphylococcus aureus. Only 1 exhibited cytotoxicity against A549 and HeLa cell lines with the IC50 values of 5.25 and 1.91 μg/ml, respectively.

  4. The Amaryllidaceae alkaloids: biosynthesis and methods for enzyme discovery.

    PubMed

    Kilgore, Matthew B; Kutchan, Toni M

    2016-06-01

    Amaryllidaceae alkaloids are an example of the vast diversity of secondary metabolites with great therapeutic promise. The identification of novel compounds in this group with over 300 known structures continues to be an area of active study. The recent identification of norbelladine 4'-O-methyltransferase (N4OMT), an Amaryllidaceae alkaloid biosynthetic enzyme, and the assembly of transcriptomes for Narcissus sp. aff. pseudonarcissus and Lycoris aurea highlight the potential for discovery of Amaryllidaceae alkaloid biosynthetic genes with new technologies. Recent technical advances of interest include those in enzymology, next generation sequencing, genetic modification, nuclear magnetic resonance spectroscopy (NMR), and mass spectrometry (MS).

  5. Indole Alkaloids from the Leaves of Nauclea officinalis.

    PubMed

    Fan, Long; Liao, Cheng-Hui; Kang, Qiang-Rong; Zheng, Kai; Jiang, Ying-Chun; He, Zhen-Dan

    2016-07-23

    Three new indole alkaloids, named naucleamide G (1), and nauclealomide B and C (5 and 6), were isolated from the n-BuOH-soluble fraction of an EtOH extract of the leaves of Nauclea officinalis, together with three known alkaloids, paratunamide C (2), paratunamide D (3) and paratunamide A (4). The structures with absolute configurations of the new compounds were identified on the basis of 1D and 2D NMR, HRESIMS, acid hydrolysis and quantum chemical circular dichroism (CD) calculation. According to the structures of isolated indole alkaloids, their plausible biosynthetic pathway was deduced.

  6. γ-Lactam alkaloids from the flower buds of daylily.

    PubMed

    Matsumoto, Takahiro; Nakamura, Seikou; Nakashima, Souichi; Ohta, Tomoe; Yano, Mamiko; Tsujihata, Junichiro; Tsukioka, Junko; Ogawa, Keiko; Fukaya, Masashi; Yoshikawa, Masayuki; Matsuda, Hisashi

    2016-07-01

    Four new alkaloids, hemerocallisamines IV-VII, were isolated from the methanol extract of flower buds of daylily. The chemical structures of the new compounds were elucidated on the basis of chemical and physicochemical evidence. The absolute stereochemistry of the hemerocallisamines IV-VI was elucidated by the application of the modified Mosher's method, HPLC analysis, and optical rotation. In the present study, the isolated alkaloids significantly inhibited the aggregation of Aβ42 in vitro. This is the first report about bioactive alkaloids with a γ-lactam ring from daylily. In addition, isolated nucleosides showed accelerative effects on neurite outgrowth under the non-fasting condition.

  7. New indole alkaloids from the bark of Alstonia scholaris.

    PubMed

    Salim, Angela A; Garson, Mary J; Craik, David J

    2004-09-01

    A new indole alkaloid, akuammiginone (1), and a new glycosidic indole alkaloid, echitamidine-N-oxide 19-O-beta-d-glucopyranoside (2), together with the five known alkaloids, echitaminic acid (3), echitamidine N-oxide (4), N(b)-demethylalstogustine N-oxide (5), akuammicine N-oxide (6), and N(b)-demethylalstogustine (7), were isolated from the trunk bark of Alstonia scholaris collected in Timor, Indonesia. The structures of all compounds were elucidated by spectroscopic methods. This is the first report of compounds 3-5and 7 in A. scholaris. Some NMR assignments of the known compounds were revised.

  8. Morphinane alkaloids with cell protective effects from Sinomenium acutum.

    PubMed

    Bao, Guan-Hu; Qin, Guo-Wei; Wang, Rui; Tang, Xi-Can

    2005-07-01

    One new morphinane alkaloid, sinomenine N-oxide (1), and one new natural occurring morphinane alkaloid, N-demethylsinomenine (2), together with six known alkaloids, 7,8-didehydro-4-hydroxy-3,7-dimethoxymorphinan-6-ol (3), sinomenine (4), sinoacutine (5), N-norsinoacutine, acutumine, and acutumidine, were isolated from the stems of Sinomenium acutum. Their structures were elucidated on the basis of spectroscopic analysis and chemical methods. Compounds 2, 3, and 5 have protective effects against hydrogen peroxide-induced cell injury.

  9. The Amaryllidaceae alkaloids: biosynthesis and methods for enzyme discovery

    PubMed Central

    Kilgore, Matthew B.; Kutchan, Toni M.

    2015-01-01

    Amaryllidaceae alkaloids are an example of the vast diversity of secondary metabolites with great therapeutic promise. The identification of novel compounds in this group with over 300 known structures continues to be an area of active study. The recent identification of norbelladine 4′-O-methyltransferase (N4OMT), an Amaryllidaceae alkaloid biosynthetic enzyme, and the assembly of transcriptomes for Narcissus sp. aff. pseudonarcissus and Lycoris aurea highlight the potential for discovery of Amaryllidaceae alkaloid biosynthetic genes with new technologies. Recent technical advances of interest include those in enzymology, next generation sequencing, genetic modification, nuclear magnetic resonance spectroscopy (NMR), and mass spectrometry (MS). PMID:27340382

  10. Alkaloid content of the seeds from Erythroxylum Coca var. Coca.

    PubMed

    Casale, John F; Toske, Steven G; Colley, Valerie L

    2005-11-01

    Alkaloid extracts from the seeds of Erythroxylum Coca var. Coca grown in the Chapare Valley of Bolivia were subjected to gas and liquid chromatographic-mass spectrometric analyses. Several alkaloids from these seeds were detected and characterized, including methylecgonidine, tropine, 3alpha-acetoxytropane, ecgonine methyl ester, cuscohygrine, N-norbenzoyltropine, benzoyltropine, hexanoylecgonine methyl ester, cocaine, cis-cinnamoylcocaine, and trans-cinnamoylcocaine. Methylecgonidine was determined to be the primary constituent and not an analytical artifact. Additionally, two significant new uncharacterized alkaloids were established as present. Recent evidence suggests that some cocaine processors are adding this seed extraction material to cocaine extracted from coca leaf and may impact cocaine impurity signature profiles.

  11. Spatial and temporal patterns of alkaloid variation in the poison frog Oophaga pumilio in Costa Rica and Panama over 30 years.

    PubMed

    Saporito, Ralph A; Donnelly, Maureen A; Jain, Poonam; Martin Garraffo, H; Spande, Thomas F; Daly, John W

    2007-11-01

    A total of 232 alkaloids, representing 21 structural classes were detected in skin extracts from the dendrobatid poison frog Oophaga pumilio, collected from 53 different populations from over 30 years of research. The highly toxic pumiliotoxins and allopumiliotoxins, along with 5,8-disubstitiuted and 5,6,8-trisubstituted indolizidines, all of which are proposed to be of dietary mite origin, were common constituents in most extracts. One decahydroquinoline (DHQ), previously shown be of ant origin, occurred in many extracts often as a major alkaloid, while other DHQs occurred rather infrequently. Histrionicotoxins, thought to be of ant origin, did not appear to possess a specific pattern of occurrence among the populations, but when present, were usually found as major components. Certain 3,5-disubstituted pyrrolizidines and indolizidines, known to be of ant origin, did occur in extracts, but infrequently. Alkaloid composition differed with regard to geographic location of frog populations, and for populations that were sampled two or more times during the 30-year period significant changes in alkaloid profiles sometimes occurred. The results of this study indicate that chemical defense in a dendrobatid poison frog is dependent on geographic location and habitat type, which presumably controls the abundance and nature of alkaloid-containing arthropods.

  12. Transcriptomic insight into terpenoid and carbazole alkaloid biosynthesis, and functional characterization of two terpene synthases in curry tree (Murraya koenigii)

    PubMed Central

    Meena, Seema; Rajeev Kumar, Sarma; Dwivedi, Varun; Kumar Singh, Anup; Chanotiya, Chandan S.; Akhtar, Md. Qussen; Kumar, Krishna; Kumar Shasany, Ajit; Nagegowda, Dinesh A.

    2017-01-01

    Curry tree (Murraya koenigii L.) is a rich source of aromatic terpenes and pharmacologically important carbazole alkaloids. Here, M. koenigii leaf transcriptome was generated to gain insight into terpenoid and alkaloid biosynthesis. Analysis of de novo assembled contigs yielded genes for terpene backbone biosynthesis and terpene synthases. Also, gene families possibly involved in carbazole alkaloid formation were identified that included polyketide synthases, prenyltransferases, methyltransferases and cytochrome P450s. Further, two genes encoding terpene synthases (MkTPS1 and MkTPS2) with highest in silico transcript abundance were cloned and functionally characterized to determine their involvement in leaf volatile formation. Subcellular localization using GFP fusions revealed the plastidial and cytosolic localization of MkTPS1 and MkTPS2, respectively. Enzymatic characterization demonstrated the monoterpene synthase activity of recombinant MkTPS1, which produced primarily (−)-sabinene from geranyl diphosphate (GPP). Recombinant MkTPS2 exhibited sesquiterpene synthase activity and formed (E,E)-α-farnesene as the major product from farnesyl diphosphate (FPP). Moreover, mRNA expression and leaf volatile analyses indicated that MkTPS1 accounts for (−)-sabinene emitted by M. koenigii leaves. Overall, the transcriptome data generated in this study will be a great resource and the start point for characterizing genes involved in the biosynthetic pathway of medicinally important carbazole alkaloids. PMID:28272514

  13. Synthesis and Anticancer Activity of Epipolythiodiketopiperazine Alkaloids

    PubMed Central

    Boyer, Nicolas; Morrison, Karen C.; Kim, Justin; Hergenrother, Paul J.; Movassaghi, Mohammad

    2013-01-01

    The epipolythiodiketopiperazine (ETP) alkaloids are a highly complex class of natural products with potent anticancer activity. Herein, we report the application of a flexible and scalable synthesis, allowing the construction of dozens of ETP derivatives. The evaluation of these compounds against cancer cell lines in culture allows for the first expansive structure–activity relationship (SAR) to be defined for monomeric and dimeric ETP-containing natural products and their synthetic cognates. Many ETP derivatives demonstrate potent anticancer activity across a broad range of cancer cell lines, and kill cancer cellsviainduction of apoptosis. Several traits thatbode well for the translational potential of the ETP class of natural products includeconcise and efficient synthetic access, potent induction of apoptotic cell death, activity against a wide range of cancer types, and a broad tolerance for modifications at multiple sitesthat should facilitate small-molecule drug development, mechanistic studies, and evaluation in vivo. PMID:23914293

  14. Heterocyclic Amaryllidaceae Alkaloids: Biosynthesis and Pharmacological Applications.

    PubMed

    Hotchandani, Tarun; Desgagne-Penix, Isabel

    2017-01-01

    Amaryllidaceae alkaloids (AAs), which are natural heterocyclic compounds, are isolated from Amaryllidaceae plants such as narcissus, snowdrop and spider lily. AAs have been extensively studied due to their multiple pharmacological properties. Nevertheless, knowledge of AA synthesis in plants is lacking and most genes encoding enzymes involved in their production remain unknown. AAs are structurally complex compounds which are challenging for total chemical synthesis that is economically viable. Therefore the understanding of AA biosynthesis could allow for the development of biotechnologies for the production of natural AAs or analogues, maintaining or improving their pharmacological properties. In this review, we describe the progress regarding the biosynthesis and pharmacological properties of AAs. The most recent developments in neurological, anti-cancer and anti-microbial bioactivities of heterocyclic AAs are covered.

  15. Photofragmentation mechanisms in protonated chiral cinchona alkaloids.

    PubMed

    Kumar, Sunil; Lucas, Bruno; Fayeton, Jacqueline; Scuderi, Debora; Alata, Ivan; Broquier, Michel; Barbu-Debus, Katia Le; Lepère, Valeria; Zehnacker, Anne

    2016-08-10

    The photo-stability of protonated cinchona alkaloids is studied in the gas phase by a multi-technique approach. A multi-coincidence technique is used to demonstrate that the dissociation is a direct process. Two dissociation channels are observed. They result from the C8-C9 cleavage, accompanied or not by hydrogen migration. The branching ratio between the two photo-fragments is different for the two pseudo-enantiomers quinine and quinidine. Mass spectrometry experiments coupling UV photo-dissociation of the reactants and structural characterization of the ionic photo-products by Infra-Red Multiple Photo-Dissociation (IRMPD) spectroscopy provide unambiguous information on their structure. In addition, quantum chemical calculations allow proposing a reactive scheme and discussing it in terms of the ground-state geometry of the reactant.

  16. Tetrahydroberberine, a pharmacologically active naturally occurring alkaloid.

    PubMed

    Pingali, Subramanya; Donahue, James P; Payton-Stewart, Florastina

    2015-04-01

    Tetrahydroberberine (systematic name: 9,10-dimethoxy-5,8,13,13a-tetrahydro-6H-benzo[g][1,3]benzodioxolo[5,6-a]quinolizine), C20H21NO4, a widely distributed naturally occurring alkaloid, has been crystallized as a racemic mixture about an inversion center. A bent conformation of the molecule is observed, with an angle of 24.72 (5)° between the arene rings at the two ends of the reduced quinolizinium core. The intermolecular hydrogen bonds that play an apparent role in crystal packing are 1,3-benzodioxole -CH2···OCH3 and -OCH3···OCH3 interactions between neighboring molecules.

  17. Total Synthesis and Study of Myrmicarin Alkaloids

    PubMed Central

    Ondrus, Alison E.

    2010-01-01

    The myrmicarins are a family of air and temperature sensitive alkaloids that possess unique structural features. Our concise enantioselective synthesis of the tricyclic myrmicarins enabled evaluation of a potentially biomimetic assembly of the complex members via direct dimerization of simpler structures. These studies revealed that myrmicarin 215B undergoes efficient and highly diastereoselective Brønsted acid-induced dimerization to generate a new heptacyclic structure, isomyrmicarin 430A. Mechanistic analysis demonstrated that heterodimerization between myrmicarin 215B and a conformationally restricted azafulvenium ion precursor afforded a functionalized isomyrmicarin 430A structure in a manner that was consistent with a highly efficient, non-concerted ionic process. Recent advancement in heterodimerization between tricyclic derivatives has enabled the preparation of strategically functionalized hexacyclic structures. The design and synthesis of structurally versatile dimeric compounds has greatly facilitated manipulation of these structures en route to more complex myrmicarin derivatives. PMID:19585010

  18. Steroidal alkaloid glycosides from Solanum suaveolens.

    PubMed

    Ripperger, H; Porzel, A

    1997-12-01

    In addition to khasianine, solamargine, xylosylsolamargine and solasonine, three steroidal alkaloid glycosides, solasuaveoline, dihydrosolasuaveoline and isosolasuaveoline, have been isolated from aerial parts of Solanum suaveolens. The structures have been assigned by NMR investigations as (25R)-3 beta-{O-beta-D-glucopyranosyl-(1-->2)-O-beta-D- glucopyranosyl-(1-->4)-[O-alpha-L-rhamnopyranosyl-(1-->2)]-beta-D- galactopyranosyloxy}-22 alpha N-spirosol-5-ene, (25R)-3 beta-{O-beta-D-glucopyranosyl-(1-->2)-O- beta-D-glucopyranosyl-(1-->4)-[O-alpha-L-rhamnopyranosyl-(1-->2)]-beta-D - galactopyranosyloxy}-5 alpha, 22 alpha N-spirosolane and (25R)-3 beta-{O-beta-D-glucopyranosyl-(1-->6)-O- beta-D-glucopyranosyl-(1-->3)-[O-alpha-L-rhamnopyranosyl-(1-->2)]-beta-D - galactopyranosyloxy}-22 alpha N-spirosol-5-ene, respectively.

  19. One new alkaloid from Chelidonium majus L.

    PubMed

    Zhang, Wen-Juan; You, Chun-Xue; Wang, Cheng-Fang; Fan, Li; Wang, Ying; Su, Yang; Deng, Zhi-Wei; Du, Shu-Shan

    2014-01-01

    One new alkaloid, together with 10 known compounds were isolated from the aerial parts of Chelidonium majus L. by repeated silica gel column chromatography. Their chemical structures were elucidated on the basis of physicochemical and spectroscopic data. Among them, 6-acetonyldihydrochelerythrine (4), 6-acetonyldihydrosanguinarine (5), 6-ketenesanguinarine (6), demethylchelerythrine (7) and demethylsanguinarine (11) were isolated for the first time from this plant. Compound 6 was identified as a new compound. These compounds were screened for cytotoxicity against human non-small lung carcinoma (H1299), breast cancer (MCF-7) and liver cancer (SMMC-7721). In a series of cytotoxic tests, compounds 9 and 10 displayed potent cytotoxic activity against H1299, MCF-7 and SMMC-7721, with the IC50 values of 8.16-35.25 μg/mL.

  20. Erythroidine alkaloids: a novel class of phytoestrogens.

    PubMed

    Djiogue, Sefirin; Halabalaki, Maria; Njamen, Dieudonné; Kretzschmar, Georg; Lambrinidis, George; Hoepping, Josephine; Raffaelli, Francesca M; Mikros, Emmanuel; Skaltsounis, Alexios-Leandros; Vollmer, Günter

    2014-07-01

    Erythrina poeppigiana is a medicinal plant which is widely used in Asia, Latin America, and Africa in traditional remedies for gynecological complications and maladies. In continuation of studies for the discovery of novel phytoestrogens, four erythroidine alkaloids, namely α-erythroidine, β-erythroidine, and their oxo-derivatives 8-oxo-α-erythroidine and 8-oxo-β-erythroidine, were isolated and structurally characterized from the methanolic extract of the stem bark of E. poeppigiana. Due to the high amounts of erythroidines in the extract and considering the widespread utilization of Erythrina preparations in traditional medicine, the exploration of their estrogenic properties was performed. The estrogenicity of the isolated erythroidines was assayed in various estrogen receptor-(ER)-dependent test systems, including receptor binding affinity, cell culture based ER-dependent reporter gene assays, and gene expression studies in cultured cells using reverse transcription polymerase chain reaction techniques. α-Erythroidine and β-erythroidine showed binding affinity values for ERα of 0.015 ± 0.010% and 0.005 ± 0.010%, respectively, whereas only β-erythroidine bound to ERβ (0.006 ± 0.010%). In reporter gene assays, both erythroidines exhibited a significant dose-dependent estrogenic stimulation of ER-dependent reporter gene activity in osteosarcoma cells detectable already at 10 nM. Results were confirmed in the MVLN cells, a bioluminescent variant of MCF-7 breast cancer cells. Further, α-erythroidine and β-erythroidine both induced the enhanced expression of the specific ERα-dependent genes trefoil factor-1 and serum/glucocorticoid regulated kinase 3 in MCF-7 cells, confirming estrogenicity. Additionally, using molecular docking simulations, a potential mode of binding on ERα, is proposed, supporting the experimental evidences. This is the first time that an estrogenic profile is reported for erythroidine alkaloids, potentially a new class of

  1. Crinine-type alkaloids from Hippeastrum aulicum and H. calyptratum.

    PubMed

    de Andrade, Jean Paulo; Guo, Ying; Font-Bardia, Mercè; Calvet, Teresa; Dutilh, Jullie; Viladomat, Francesc; Codina, Carles; Nair, Jerald J; Zuanazzi, Jose A Silveira; Bastida, Jaume

    2014-07-01

    An ongoing search for alkaloids in the Amaryllidaceae species using GC-MS resulted in the identification of two crinine-type alkaloids, aulicine (1) and 3-O-methyl-epimacowine, (2) from the indigenous Brazilian species Hippeastrum aulicum and Hippeastrum calyptratum, respectively. In addition, two alkaloids, 11-oxohaemanthamine (3) and 7-methoxy-O-methyllycorenine (4) were both isolated from H. aulicum. Furthermore, we provide here complete NMR spectroscopic data for the homolycorine analogues nerinine (5) and albomaculine (6). The absolute stereochemistry of the 5,10b-ethano bridge in the crinine variants was determined by circular dichroism and X-ray crystallographic analysis, thus presenting the first direct evidence for the presence of crinine-type alkaloids in the genus Hippeastrum. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Activity of pyrrolizidine alkaloids against biofilm formation and Trichomonas vaginalis

    USDA-ARS?s Scientific Manuscript database

    Crotalaria genus belongs to the subfamily Papilionoideae comprising about 600 species spread throughout tropical, neotropical and subtropical regions. In this study, seeds of Crolatalaria pallida were used to the isolation of usaramine, a pyrrolizidine alkaloid. Thus, Pseudomonas aeruginosa and Stap...

  3. Marine bromopyrrole alkaloids: synthesis and diverse medicinal applications.

    PubMed

    Rane, Rajesh; Sahu, Niteshkumar; Shah, Chetan; Karpoormath, Rajshekhar

    2014-01-01

    Marine organisms have been found to be a very rich source of bioactive molecules. Among marine organisms, sponges have been proven to be excellent producers of secondary metabolites. More than 5,300 compounds have been isolated from sponges with around 200 new molecules reported each year. Bromopyrrole alkaloids constitute a family of exclusively marine alkaloids and represent a fascinating example of the large variety of compounds formed by marine sponges which exhibit different biological activities such as antifeedent, anti-biofilm, anticancer, antiinflammatory, antimicrobial, immunomodulatory, analgesic, antiserotonergic, antiangiogenic, antihistaminic, chitinase inhibitor and actimyosin ATPase activator. More than 140 derivatives with different structures and biological activities, have been isolated from more than 20 different sponges. Most of these alkaloids share a key building block, pyrrole-imidazole with oroidin being their underlying structural motif. In this review detailed account of isolation and medicinal application of marine bromopyrrole alkaloids and their synthetic derivatives are discussed.

  4. Microcalorimetry studies of the antimicrobial actions of Aconitum alkaloids.

    PubMed

    Shi, Yan-bin; Liu, Lian; Shao, Wei; Wei, Ting; Lin, Gui-mei

    2015-08-01

    The metabolic activity of organisms can be measured by recording the heat output using microcalorimetry. In this paper, the total alkaloids in the traditional Chinese medicine Radix Aconiti Lateralis were extracted and applied to Escherichia coli and Staphylococcus aureus. The effect of alkaloids on bacteria growth was studied by microcalorimetry. The power-time curves were plotted with a thermal activity monitor (TAM) air isothermal microcalorimeter and parameters such as growth rate constant (μ), peak-time (Tm), inhibitory ratio (I), and enhancement ratio (E) were calculated. The relationships between the concentration of Aconitum alkaloids and μ of E. coli or S. aureus were discussed. The results showed that Aconitum alkaloids had little effect on E. coli and had a potentially inhibitory effect on the growth of S. aureus.

  5. Alkaloids with Different Carbon Units from Myrioneuron faberi.

    PubMed

    Cao, Ming-Ming; Zhang, Yu; Huang, Sheng-Dian; Di, Ying-Tong; Peng, Zong-Gen; Jiang, Jian-Dong; Yuan, Chun-Mao; Chen, Duo-Zhi; Li, Shun-Lin; He, Hong-Ping; Hao, Xiao-Jiang

    2015-11-25

    Three new Myrioneuron alkaloids, myrifamines A-C (1-3), with unique skeletons were isolated from Myrioneuron faberi. The absolute configuration of 1 was confirmed by single-crystal X-ray diffraction analysis, and the stereochemistry of the other two alkaloids was determined using a combination of ROESY experiments and calculated and experimental electronic circular dichroism spectra. Myrifamine C (3) is the first example of a symmetric dimer among the Myrioneuron alkaloids. Known alkaloids myrionamide (4) and schoberine (5) were also isolated, and experimental NMR and X-ray diffraction data suggest their structural revision. Compound 2 showed significant inhibitory activity toward the hepatitis C virus in vitro, with a therapeutic index (CC50/EC50) greater than 108.7.

  6. Microcalorimetry studies of the antimicrobial actions of Aconitum alkaloids*

    PubMed Central

    Shi, Yan-bin; Liu, Lian; Shao, Wei; Wei, Ting; Lin, Gui-mei

    2015-01-01

    The metabolic activity of organisms can be measured by recording the heat output using microcalorimetry. In this paper, the total alkaloids in the traditional Chinese medicine Radix Aconiti Lateralis were extracted and applied to Escherichia coli and Staphylococcus aureus. The effect of alkaloids on bacteria growth was studied by microcalorimetry. The power-time curves were plotted with a thermal activity monitor (TAM) air isothermal microcalorimeter and parameters such as growth rate constant (μ), peak-time (Tm), inhibitory ratio (I), and enhancement ratio (E) were calculated. The relationships between the concentration of Aconitum alkaloids and μ of E. coli or S. aureus were discussed. The results showed that Aconitum alkaloids had little effect on E. coli and had a potentially inhibitory effect on the growth of S. aureus. PMID:26238544

  7. [Diketopiperazine alkaloids from the fungus Penicillium piscarium Westling].

    PubMed

    Kozlovskiĭ, A G; Vinokurova, N G; Adanin, V M

    2000-01-01

    Fungi of the species Penicillium piscarium produced diketopiperazine alkaloids (isorugulosuvine, puberuline, verrucosine, prolyltryptophanyldiketopiperazine, 12,13-dehydroprolyltryptophanyldiketopiperazine, fellutanine A, phenylalanylphenylalanyldiketopiperazine, as well as roquefortine and 3,12-dihydroroquefortine whose precursors are tryptophan, phenylalanine, leucine, proline, and histidine.

  8. Effects of Psychotria colorata alkaloids in brain opioid system.

    PubMed

    Amador, T A; Elisabetsky, E; Souza, D O

    1996-01-01

    An ethnopharmacological survey showed that home remedies prepared with flowers and fruits of Psychotria colorata are used by Amazonian peasants as pain killers. Psychopharmacological in vivo evaluation of alkaloids obtained from leaves and flowers of this species showed a marked dose-dependent naloxone-reversible analgesic activity, therefore suggesting an opioid-like pharmacological profile. This paper reports an inhibitory effect of P. colorata flower alkaloids on [3H]naloxone binding in rat striata as well as a decrease in adenylate cyclase basal activity. The alkaloids did not affect [3H] GMP-PNP binding. These findings provide a neurochemical basis for the opioid-like activity previously detected in vivo and point to Psychotria alkaloids as a potential source of new bioactive opiate derivatives.

  9. Quantitative determination of ergot alkaloids in biological fluids by radioimmunoassay.

    PubMed Central

    Kleimola, T T

    1978-01-01

    1 Cross-reactivity of ergot alkaloids with an antiserum produced against lysergic acid conjugated with human serum, albumin was utilized to develop a radioimmunoassay for ergotamine, dihydroergotamine, dihydroergotoxine, ergometrine and methylergometrine in biological fluids. The antisera showed no cross-reactivity with simpler indole structures. 2 A procedure for extraction and concentration of alkaloids in biological fluids was developed. 3 The assay is sensitive for 1.8 ng/ml ergotamine, 1.5 ng/ml dihydroergotamine, 2.2 ng/ml dihydroergotoxine, 0.7 ng/ml ergotmetrine and 0.5 ng/ml methylergometrine. 4 The assay is sufficiently sensitive to permit the measurement of urine and plasma ergot alkaloid levels and it is suitable for determination in cases where a known ergot alkaloid is used. PMID:687503

  10. Clavicipitaceous fungi associated with ergoline alkaloid-containing convolvulaceae.

    PubMed

    Ahimsa-Müller, Mahalia A; Markert, Anne; Hellwig, Sabine; Knoop, Volker; Steiner, Ulrike; Drewke, Christel; Leistner, Eckhard

    2007-12-01

    Ergoline alkaloids are a group of physiologically active natural products occurring in taxonomically unrelated fungal and plant taxa Clavicipitaceae (Hypocreales) and Convolvulaceae (Solanales). We show in the present paper that clavicipitaceous fungi are associated with four different ergoline alkaloid-containing plant taxa of the family Convolvulaceae. These fungi are macroscopically visible on the adaxial surface when young leaf buds are opened or are detectable by molecular biological techniques in seeds. Detectability of the fungus correlates with the absence or presence of ergoline alkaloids within the respective plant organ. The fungi contain the gene (dmaW) responsible for the committed step in ergoline alkaloid biosynthesis. Sequencing of ribosomal DNA (18S rDNA and internal transcribed spacer) as well as the dmaW gene (partial) and construction of phylogenetic trees show that the fungi are clavicipitaceous, not identical but very closely related.

  11. Biologically active quinoline and quinazoline alkaloids part I.

    PubMed

    Shang, Xiao-Fei; Morris-Natschke, Susan L; Liu, Ying-Qian; Guo, Xiao; Xu, Xiao-Shan; Goto, Masuo; Li, Jun-Cai; Yang, Guan-Zhou; Lee, Kuo-Hsiung

    2017-09-13

    Quinoline and quinazoline alkaloids, two important classes of N-based heterocyclic compounds, have attracted tremendous attention from researchers worldwide since the 19th century. Over the past 200 years, many compounds from these two classes were isolated from natural sources, and most of them and their modified analogs possess significant bioactivities. Quinine and camptothecin are two of the most famous and important quinoline alkaloids, and their discoveries opened new areas in antimalarial and anticancer drug development, respectively. In this review, we survey the literature on bioactive alkaloids from these two classes and highlight research achievements prior to the year 2008 (Part I). Over 200 molecules with a broad range of bioactivities, including antitumor, antimalarial, antibacterial and antifungal, antiparasitic and insecticidal, antiviral, antiplatelet, anti-inflammatory, herbicidal, antioxidant and other activities, were reviewed. This survey should provide new clues or possibilities for the discovery of new and better drugs from the original naturally occurring quinoline and quinazoline alkaloids. © 2017 Wiley Periodicals, Inc.

  12. Ergot alkaloids induce vasoconstriction of bovine foregut vasculature

    USDA-ARS?s Scientific Manuscript database

    Alkaloids produced by the Neotyphodium coenophialum endophyte in association with tall fescue (Lolium arundinaceum) are imputed to cause peripheral symptoms of fescue toxicosis. We hypothesized that theses compounds could correspondingly affect foregut vasculature. The objective of this study was to...

  13. Computational Studies on Cinchona Alkaloid-Catalyzed Asymmetric Organic Reactions.

    PubMed

    Tanriver, Gamze; Dedeoglu, Burcu; Catak, Saron; Aviyente, Viktorya

    2016-06-21

    Remarkable progress in the area of asymmetric organocatalysis has been achieved in the last decades. Cinchona alkaloids and their derivatives have emerged as powerful organocatalysts owing to their reactivities leading to high enantioselectivities. The widespread usage of cinchona alkaloids has been attributed to their nontoxicity, ease of use, stability, cost effectiveness, recyclability, and practical utilization in industry. The presence of tunable functional groups enables cinchona alkaloids to catalyze a broad range of reactions. Excellent experimental studies have extensively contributed to this field, and highly selective reactions were catalyzed by cinchona alkaloids and their derivatives. Computational modeling has helped elucidate the mechanistic aspects of cinchona alkaloid catalyzed reactions as well as the origins of the selectivity they induce. These studies have complemented experimental work for the design of more efficient catalysts. This Account presents recent computational studies on cinchona alkaloid catalyzed organic reactions and the theoretical rationalizations behind their effectiveness and ability to induce selectivity. Valuable efforts to investigate the mechanisms of reactions catalyzed by cinchona alkaloids and the key aspects of the catalytic activity of cinchona alkaloids in reactions ranging from pharmaceutical to industrial applications are summarized. Quantum mechanics, particularly density functional theory (DFT), and molecular mechanics, including ONIOM, were used to rationalize experimental findings by providing mechanistic insights into reaction mechanisms. B3LYP with modest basis sets has been used in most of the studies; nonetheless, the energetics have been corrected with higher basis sets as well as functionals parametrized to include dispersion M05-2X, M06-2X, and M06-L and functionals with dispersion corrections. Since cinchona alkaloids catalyze reactions by forming complexes with substrates via hydrogen bonds and long

  14. Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-α and PPAR-γ.

    PubMed

    Choi, Jae Sue; Kim, Ji-Hye; Ali, Md Yousof; Min, Byung-Sun; Kim, Gun-Do; Jung, Hyun Ah

    2014-10-01

    Obesity is a complex, multifactorial, and chronic disease that increases the risk for type 2 diabetes, coronary heart disease and hypertension, and has become a major worldwide health problem. Developing novel anti-obesity drugs from natural products is a promising solution to the global health problem of obesity. While screening anti-obesity potentials of natural products, the methanol extract of the rhizome of Coptis chinensis (Coptidis Rhizoma) was found to significantly inhibit adipocyte differentiation and lipid contents in 3T3-L1 cells, as assessed by Oil-Red O staining. Five known alkaloids, berberine, epiberberine, coptisine, palmatine, and magnoflorine, were isolated from the n-BuOH fraction of the methanol extract of Coptidis Rhizoma. We determined the chemical structure of these alkaloids through comparisons of published nuclear magnetic resonance (NMR) spectral data. Furthermore, we screened these alkaloids for their ability to inhibit adipogenesis over a range of concentrations (12.5-50 μM). All five Coptidis Rhizoma alkaloids significantly inhibited lipid accumulation in 3T3-L1 cells without affecting cell viability in a concentration dependent manner. In addition, the five alkaloids significantly reduced the expression levels of several adipocyte marker genes including proliferator activated receptor-γ (PPAR-γ) and CCAAT/enhancer-binding protein-α (C/EBP-α). In the present study, we found that the isolated alkaloids inhibited adipogenesis in a dose-dependent manner in 3T3-L1 cells; this inhibition was attributed to their abilities to downregulate the protein levels of the adipocyte marker proteins PPAR-γ and C/EBP-α. Thus, these results suggest that Coptidis Rhizoma extract and its isolated alkaloids may be of therapeutic interest with respect to the treatment of obesity.

  15. Unusual alkaloids of the highland species Astragalus cryptanthus Wedd. (Fabaceae).

    PubMed

    Echeverría, Javier; Espinoza, Sergio M; Niemeyer, Hermann M

    2017-01-01

    Two unusual caprolactam alkaloids, 3-(dimethylamino)hexahydro-2H-azepin-2-one and 3-(methylamino)-hexahydro-2H-azepin-2-one, were isolated from the aerial parts of Astragalus cryptanthus Wedd.; their structures were unambiguously determined based on data from extensive 1D and 2D NMR, GC-MS and FT-IR spectroscopic analyses. This is the first report of this alkaloid type in the genus Astragalus.

  16. Alkaloids from roots of Stemona sessilifolia and their antitussive activities.

    PubMed

    Yang, Xin-Zhou; Zhu, Jian-Yu; Tang, Chun-Ping; Ke, Chang-Qiang; Lin, Ge; Cheng, Tin-Yan; Rudd, John A; Ye, Yang

    2009-02-01

    Protostemonamide ( 1), a new protostemonine-type alkaloid, and 12 known compounds were isolated from the roots of Stemona sessilifolia. Their structures were elucidated by 1 D and 2 D NMR spectral and other spectroscopic studies. The main alkaloidal constituents, protostemonine ( 2), stemospironine ( 4), and maistemonine ( 7), showed significant antitussive activity in a citric acid-induced guinea pig cough model following peripheral administration; stemonamine ( 11) had antitussive activity following i. c. v. administration.

  17. Bioactive guanidine alkaloids from two Caribbean marine sponges.

    PubMed

    Laville, Rémi; Thomas, Olivier P; Berrué, Fabrice; Marquez, Diana; Vacelet, Jean; Amade, Philippe

    2009-09-01

    Seven new guanidine alkaloids (1-7) together with the known batzelladines A, F, H, and L, ptilomycalin A, and fromiamycalin were isolated from the Caribbean marine sponges Monanchora arbuscula and Clathria calla. Molecular structures were assigned on the basis of detailed analysis of 1D and 2D NMR spectra and mass spectrometry data, and bioactivities of the alkaloids were evaluated against human cancer cell lines and malaria protozoa.

  18. Furoquinoline alkaloids from the southern African Rutaceae Teclea natalensis.

    PubMed

    Tarus, Paul K; Coombes, Philip H; Crouch, Neil R; Mulholland, Dulcie A; Moodley, B

    2005-03-01

    The chloroform and ethyl acetate extracts of the leaves of Teclea natalensis have yielded two furoquinoline alkaloids, 6-[(2,3-epoxy-3-methylbutyl)oxy]-4,7-dimethoxyfuro[2,3-b]quinoline and 4,7-dimethoxy-6-[(3-methyl-2-butenyl)oxy]furo[2,3-b]quinoline, and the known alkaloids 4,7-dimethoxy-8-[(3-methyl-2-butenyl)oxy]furo[2,3-b]quinoline, flindersiamine and dictamnine.

  19. Detection and quantification of pyrrolizidine alkaloids in antibacterial medical honeys.

    PubMed

    Cramer, Luise; Beuerle, Till

    2012-12-01

    In recent years, there has been an increasing interest in antibacterial honey for wound care ranging from minor abrasions and burns to leg ulcers and surgical wounds. On the other hand, several recent studies demonstrated that honey for human consumption was contaminated with natural occurring, plant derived pyrrolizidine alkaloids.1,2-Unsaturated pyrrolizidine alkaloids are a group of secondary plant metabolites that show developmental, hepato-, and geno-toxicity as well as carcinogenic effects in animal models and in in vitro test systems. Hence, it was of particular interest to analyze the pyrrolizidine alkaloid content of medical honeys intended for wound care.19 different medical honey samples and/or batches were analyzed by applying a recently established pyrrolizidine alkaloid sum parameter method. 1,2-Unsaturated pyrrolizidine alkaloids were converted into the common necin backbone structures and were analyzed and quantified by GC-MS in the selected ion monitoring mode.All but one medical honey analyzed were pyrrolizidine alkaloid positive. The results ranged from 10.6 µg retronecine equivalents per kg to 494.5 µg retronecine equivalents/kg medical honey. The average pyrrolizidine alkaloid content of all positive samples was 83.6 µg retronecine equivalents/kg medical honey (average of all samples was 79.3 µg retronecine equivalents/kg medical honey). The limit of detection was 2.0 µg retronecine equivalents/kg medical honey, while the limit of quantification was 6.0 µg retronecine equivalents/kg medical honey (S/N > 7/1).Based on the data presented here and considering the fact that medical honeys can be applied to open wounds, it seems reasonable to discuss the monitoring of 1,2-unsaturated pyrrolizidine alkaloids in honey intended for wound treatment.

  20. Recent Progress in the Chemistry of Daphniphyllum Alkaloids †.

    PubMed

    Chattopadhyay, Amit Kumar; Hanessian, Stephen

    2017-03-08

    Daphniphyllum is an evergreen species known since 1826. After initial systematic investigations, more than 320 members of this family have been isolated, which comprise complex and fascinating structures. Unique azapolycyclic architectures containing one or more quaternary stereocenters render these alkaloids synthetically challenging. This review covers efforts toward the synthesis of Daphniphyllum alkaloids spanning the period from 2005 to the beginning of 2016, including reported biological activities as well as the isolation of new members of this genus.

  1. Hybrid Monoterpenoid Indole Alkaloids Obtained as Artifacts from Rauvolfia tetraphylla.

    PubMed

    Gao, Yuan; Zhou, Dong-Sheng; Hai, Ping; Li, Yan; Wang, Fei

    2015-10-01

    Five new hybrid monoterpenoid indole alkaloids bearing an unusual 2,2-dimethyl-4-oxopiperidin-6-yl moiety, namely rauvotetraphyllines F-H (1, 3, 4), 17-epi-rauvotetraphylline F (2) and 21-epi-rauvotetraphylline H (5), were isolated from the aerial parts of Rauvolfia tetraphylla. Their structures were established by extensive spectroscopic analysis. The new alkaloids were evaluated for their cytotoxicity in vitro against five human cancer cell lines.

  2. Monoterpenoid Indole Alkaloids from Inadequately Dried Leaves of Alstonia scholaris.

    PubMed

    Qin, Xu-Jie; Zhao, Yun-Li; Song, Chang-Wei; Wang, Bei; Chen, Ying-Ying; Liu, Lu; Li, Qiong; Li, Dan; Liu, Ya-Ping; Luo, Xiao-Dong

    2015-08-01

    Six new indole alkaloids, named alstoniascholarines L-Q (1-6), together with nineteen known analogues were isolated from the inadequately dried leaves of Alstonia scholaris. Their structures were elucidated on the basis of extensive analysis of spectroscopic data and by comparison of their physical and spectroscopic data with the literature values. In addition, the new alkaloids were tested for their cytotoxic and neurite outgrowth-promoting activities.

  3. Indole and beta-carboline alkaloids from Geissospermum sericeum.

    PubMed

    Steele, Jonathan C P; Veitch, Nigel C; Kite, Geoffrey C; Simmonds, Monique S J; Warhurst, David C

    2002-01-01

    The indole alkaloid geissoschizoline (1) and two new derivatives, geissoschizoline N(4)-oxide (2) and 1,2-dehydrogeissoschizoline (3), were obtained from the bark of Geissospermum sericeum together with the beta-carboline alkaloid flavopereirine (4). The in vitro antiplasmodial activity of these compounds was evaluated in chloroquine-resistant (K1) and chloroquine-sensitive (T9-96) Plasmodium falciparum. Their cytotoxicity was determined in a human (KB) cell line.

  4. Pro-toxic 1,2-Dehydropyrrolizidine Alkaloid Esters, Including Unprecedented 10-Membered Macrocyclic Diesters, in the Medicinally-used Alafia cf. caudata and Amphineurion marginatum (Apocynaceae: Apocynoideae: Nerieae and Apocyneae).

    PubMed

    Colegate, Steven M; Gardner, Dale R; Betz, Joseph M; Fischer, Ottmar W; Liede-Schumann, Sigrid; Boppré, Michael

    2016-09-01

    Within the Apocynoideae (Apocynaceae) pro-toxic dehydropyrrolizidine alkaloids have been reported only in Echiteae. However, attraction of pyrrolizidine alkaloid-pharmacophagous insects suggested their presence in Alafia cf. caudata Stapf (Nerieae: Alafiinae) and Amphineurion marginatum (Roxb.) D.J. Middleton (Apocyneae: Amphineuriinae), both used as medicinal plants. To confirm the presence of dehydropyrrolizidine alkaloids in Alafia cf. caudata and Amphineurion marginatum and identify their structures. Methanol extracts of air-dried roots, stems and leaves of non-flowering plants were analysed using HPLC-ESI(+)MS and MS/MS or collision-induced dissociation MS in low and/or high resolution modes. Pyrrolizidine alkaloids were tentatively identified based on the mass spectrometry data. Solid phase extraction combined with semi-preparative HPLC were used to isolate major alkaloids. Structures were elucidated using NMR spectroscopy. Monoesters of retronecine with senecioic, hydroxysenecioic or syringic acids were identified in roots of Alafia cf. caudata. Two unprecedented 10-membered macrocyclic dehydropyrrolizidine alkaloid diesters were isolated from roots of Amphineurion marginatum. Pyrrolizidine alkaloids were detected in root and leaf material of Alafia cf. caudata at 0.34 and 0.01% dry weight (DW), and 0.13, 0.02 and 0.09% DW in root, leaf and stem material of Amphineurion marginatum. The presence of pro-toxic dehydropyrrolizidine alkaloids suggests that medical preparations of these plants pose potential health risks to consumers. Dehydropyrrolizidine alkaloids are evidently more widespread in Apocynoideae than previously assumed, and it would seem rewarding to study other members of this family for the presence of pyrrolizidines, dehydropyrrolizidines and dihydropyrrolizines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Identification of Toxic Pyrrolizidine Alkaloids and Their Common Hepatotoxicity Mechanism

    PubMed Central

    Yan, Xinmiao; Kang, Hong; Feng, Jun; Yang, Yiyan; Tang, Kailin; Zhu, Ruixin; Yang, Li; Wang, Zhengtao; Cao, Zhiwei

    2016-01-01

    Pyrrolizidine Alkaloids (PAs) are currently one of the most important botanical hepatotoxic ingredients. Glutathion (GSH) metabolism is the most reported pathway involved in hepatotoxicity mechanism of PAs. We speculate that, for different PAs, there should be a common mechanism underlying their hepatotoxicity in GSH metabolism. Computational methods were adopted to test our hypothesis in consideration of the limitations of current experimental approaches. Firstly, the potential targets of 22 PAs (from three major PA types) in GSH metabolism were identified by reverse docking; Secondly, glutathione S-transferase A1 (GSTA1) and glutathione peroxidase 1 (GPX1) targets pattern was found to be a special characteristic of toxic PAs with stepwise multiple linear regressions; Furthermore, the molecular mechanism underlying the interactions within toxic PAs and these two targets was demonstrated with the ligand-protein interaction analysis; Finally, GSTA1 and GPX1 were proved to be significant nodes in GSH metabolism. Overall, toxic PAs could be identified by GSTA1 and GPX1 targets pattern, which suggests their common hepatotoxicity mechanism: the interfering of detoxication in GSH metabolism. In addition, all the strategies developed here could be extended to studies on toxicity mechanism of other toxins. PMID:26959016

  6. Identification of Toxic Pyrrolizidine Alkaloids and Their Common Hepatotoxicity Mechanism.

    PubMed

    Yan, Xinmiao; Kang, Hong; Feng, Jun; Yang, Yiyan; Tang, Kailin; Zhu, Ruixin; Yang, Li; Wang, Zhengtao; Cao, Zhiwei

    2016-03-07

    Pyrrolizidine Alkaloids (PAs) are currently one of the most important botanical hepatotoxic ingredients. Glutathion (GSH) metabolism is the most reported pathway involved in hepatotoxicity mechanism of PAs. We speculate that, for different PAs, there should be a common mechanism underlying their hepatotoxicity in GSH metabolism. Computational methods were adopted to test our hypothesis in consideration of the limitations of current experimental approaches. Firstly, the potential targets of 22 PAs (from three major PA types) in GSH metabolism were identified by reverse docking; Secondly, glutathione S-transferase A1 (GSTA1) and glutathione peroxidase 1 (GPX1) targets pattern was found to be a special characteristic of toxic PAs with stepwise multiple linear regressions; Furthermore, the molecular mechanism underlying the interactions within toxic PAs and these two targets was demonstrated with the ligand-protein interaction analysis; Finally, GSTA1 and GPX1 were proved to be significant nodes in GSH metabolism. Overall, toxic PAs could be identified by GSTA1 and GPX1 targets pattern, which suggests their common hepatotoxicity mechanism: the interfering of detoxication in GSH metabolism. In addition, all the strategies developed here could be extended to studies on toxicity mechanism of other toxins.

  7. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    PubMed Central

    Young, Carolyn A.; Schardl, Christopher L.; Panaccione, Daniel G.; Florea, Simona; Takach, Johanna E.; Charlton, Nikki D.; Moore, Neil; Webb, Jennifer S.; Jaromczyk, Jolanta

    2015-01-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  8. Cytotoxicity studies of lycorine alkaloids of the Amaryllidaceae.

    PubMed

    Nair, Jerald J; van Staden, Johannes

    2014-08-01

    The plant family Amaryllidaceae is renowned for its unique alkaloid constituents which possess a significant array of structural diversity. Several of these alkaloids are known for their interesting biological properties, of which galanthamine and pancratistatin have acquired a privileged status due to their relevance in the pharmaceutical arena. In particular, galanthamine represents the first prescription drug emanating from the Amaryllidaceae after its approval by the FDA in 2001 for the treatment of Alzheimer's disease. Following on this commercial success there have been sustained projections for the emergence of an anticancer agent related to pancratistatin due to the potency, selectivity, low toxicity and high tolerability typifying targets of this series of alkaloids. The lycorine series of alkaloids have also garnered widespread interest as cytotoxic agents and were amongst the earliest of the Amaryllidaceae constituents to exhibit such activity. To date over 100 of such naturally-occurring or synthetically-derived alkaloids have been screened for cytotoxic effects against a number of cancer cell lines. This survey examines the cytotoxic properties of lycorine alkaloids, highlights the outcomes of structure-activity relationship orientated studies and affords plausible insights to the mechanistic rationale behind these effects.

  9. Evaluation of Aconitum diterpenoid alkaloids as antiproliferative agents.

    PubMed

    Wada, Koji; Ohkoshi, Emika; Zhao, Yu; Goto, Masuo; Morris-Natschke, Susan L; Lee, Kuo-Hsiung

    2015-04-01

    Little information has been reported on the antitumor effects of the diterpenoid alkaloid constituents of Aconitum plants, used in the herbal drug 'bushi'. This study was aimed at determining the antitumor activities of Aconitum C19-and C20-diterpenoid alkaloids and synthetic derivatives against lung (A549), prostate (DU145), nasopharyngeal (KB), and vincristine-resistant nasopharyngeal (KB-VIN) cancer cell lines. Newly synthesized C20-diterpenoid alkaloid derivatives showed substantial suppressive effects against all human tumor cell lines tested. In contrast, natural and derivatized C19-diterpenoid alkaloids showed only a slight or no effect. Most of the active compounds were hetisine-type C20-diterpenoid alkaloids, specifically kobusine and pseudokobusine analogs with two different substitution patterns, C-11 and C-11,15. Notably, several C20-diterpenoid alkaloids were more potent against multidrug-resistant KB subline KB-VIN cells. Pseudokobusine 11-3'-trifluoromethylbenzoate (94) is a possible promising new lead meriting additional evaluation against multidrug-resistant tumors.

  10. Chemistry and Biology of the Pyrrole-Imidazole Alkaloids.

    PubMed

    Lindel, Thomas

    2017-01-01

    More than a decade after our last review on the chemistry of the pyrrole-imidazole alkaloids, it was time to analyze once more the developments in that field. The comprehensive article focusses on the total syntheses of pyrrole-imidazole alkaloids that have appeared since 2005. The classic monomeric pyrrole-imidazole alkaloids have all been synthesized, sometimes primarily to demonstrate the usefulness of a new method, as in the case of the related molecules agelastatin A and cyclooroidin with more than 15 syntheses altogether. The phakellin skeleton has been made more than 10 times, too, with a focus on the target structure itself. Thus, some of the pyrrole-imidazole alkaloids are now available in gram amounts, and the supply problem has been solved. The total synthesis of the dimeric pyrrole-imidazole alkaloids is still mostly in its pioneering phase with two routes to palau'amine and massadine discovered and three routes to the axinellamines and ageliferin. In addition, the review summarizes recent discoveries regarding the biological activity of the pyrrole-imidazole alkaloids. Regarding the biosynthesis of sceptrin, a pathway is proposed that starts from nagelamide I and proceeds via two electrocyclizations and reduction.

  11. Evaluation of Aconitum diterpenoid alkaloids as antiproliferative agents

    PubMed Central

    Wada, Koji; Ohkoshi, Emika; Zhao, Yu; Goto, Masuo; Morris-Natschke, Susan L.; Lee, Kuo-Hsiung

    2015-01-01

    Little information has been reported on the antitumor effects of the diterpenoid alkaloid constituents of Aconitum plants, used in the herbal drug “bushi”. This study was aimed at determining the antitumor activities of Aconitum C19-and C20-diterpenoid alkaloids and synthetic derivatives against lung (A549), prostate (DU145), nasopharyngeal (KB), and vincristine-resistant nasopharyngeal (KB-VIN) cancer cell lines. Newly synthesized C20-diterpenoid alkaloid derivatives showed substantial suppressive effects against all human tumor cell lines tested. In contrast, natural and derivatized C19-diterpenoid alkaloids showed only a slight or no effect. Most of the active compounds were hetisine-type C20-diterpenoid alkaloids, specifically kobusine and pseudokobusine analogs with two different substitution patterns, C-11 and C-11,15. Notably, several C20-diterpenoid alkaloids were more potent against multidrug-resistant KB subline KB-VIN cells. Pseudokobusine 11-3′-trifluoromethylbenzoate (94) is a possible promising new lead meriting additional evaluation against multidrug-resistant tumors. PMID:25770782

  12. Tropane alkaloids and calystegines as chemotaxonomic markers in the Solanaceae.

    PubMed

    Pigatto, Aline G S; Blanco, Carolina C; Mentz, Lilian A; Soares, Geraldo L G

    2015-01-01

    This study assessed the occurrence and distribution of tropane alkaloids and calystegines in genera of the family Solanaceae to identify patterns of distribution and make evolutionary inferences. A database of tropane alkaloids and calystegines occurrences was constructed from the results of a search of scientific websites and a hand search of periodicals. The terms "Solanaceae", "tropane alkaloids", and "calystegines" were used as index terms for a full-text article search unrestricted by date of publications. The number of occurrence and chemical diversity indices were calculated and cluster analysis and principal components analysis were performed. Overall, 996 occurrences were reported, 879 of tropane alkaloids (88.3%) and 117 of calystegines (11.7%). The calystegines were significantly more relevant than tropane alkaloids for characterization of distinct groups of genera on both analyses performed here. This corroborates the trend toward a chemical dichotomy observed on database analysis and somewhat reinforces the correlation between geographic distribution and occurrence of secondary metabolites, as the presence of calystegines alone (without tropane alkaloids) was only reported in genera that have South America as their center of diversity.

  13. Identification and determination of ergot alkaloids in Morning Glory cultivars.

    PubMed

    Nowak, Julia; Woźniakiewicz, Michał; Klepacki, Piotr; Sowa, Anna; Kościelniak, Paweł

    2016-05-01

    Seeds of plants from Ipomoea genera contain numerous ergot alkaloids, including psychoactive ergine and ergometrine, and are often abused as so-called "legal highs." In this work, an analytical method for determination of ergine and ergometrine, and identification of other alkaloids was developed, optimized, and validated. Three extraction techniques, ultrasound-assisted extraction in bath, or with sonotrode, and microwave-assisted extraction were evaluated, and it was concluded that ultrasonic bath is the most suitable technique for extraction of ergot alkaloids. The extraction method was later optimized using a Doehlert experimental design with response surface methodology and used together with the optimized LC-Q-TOF-MS method. The analytical procedure was validated in terms of recovery and matrix effect, repeatability, and intermediate precision. Limits of detection and quantification were 1.0 and 3.0 ng mL(-1), respectively, and were sufficient for determination of ergot alkaloids in Ipomoea seeds. The analysis revealed that from five kinds of seeds purchased from different vendors, only three contained ergot alkaloids. Concentration of alkaloids and their relative abundance was similar in samples representative for whole seeds packs; however, when single seeds were analyzed, significant discrepancies in ergine and ergometrine concentrations were detected.

  14. [ALKALOIDS OF PEGANUM HARMALA L. AND THEIR BIOLOGICAL ACTIVITY].

    PubMed

    Vachnadze, V; Suladze, T; Vachnadze, N; Kintsurashvili, L; Novikova, J

    2015-06-01

    Peganum Harmala L., Peganасеае widely distributed in Georgia. On the basis of chemical analysis of the composition of alkaloids it was found out that the plant contains quinazoline derivatives, among which dominats alkaloid d, 1 peganine: С11Н12NО2, m.p. 198-99ºC (СН3ОН). UV, λmax 275 (lgε 3,95). In IR-spectrum (KBr) 1625 cm- (-N=C) 3200-370 (OH)cm-1 . Mass- spectrum: М+ 171(100%). It was studied the dynamics of accumulation for total alkaloids and d, l - peganine: in the budding phase the amount of alkaloids was - 3,71%, d, l - peganine 0,07÷0,09%; in the phase of mass flowering the sum of alkaloids - 4,51% ,d, l - peganine - 0,1÷0,13%; in the phase of ripeness total alkaloids - 3.92%; d,l - peganine - 0,08÷0,1. The study of specific pharmacological activity showed that the d,l - peganine similar to peganine at a dose of 30 mg/kg causes a decrease in heart rate by 30÷40 beats/min, which is characteristic for anticholinesterases, in parallel with this, a decrease in cholinesterase activity in blood serum has been observed.

  15. Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants.

    PubMed

    Hagel, Jillian M; Morris, Jeremy S; Lee, Eun-Jeong; Desgagné-Penix, Isabel; Bross, Crystal D; Chang, Limei; Chen, Xue; Farrow, Scott C; Zhang, Ye; Soh, Jung; Sensen, Christoph W; Facchini, Peter J

    2015-09-18

    Benzylisoquinoline alkaloids (BIAs) represent a diverse class of plant specialized metabolites sharing a common biosynthetic origin beginning with tyrosine. Many BIAs have potent pharmacological activities, and plants accumulating them boast long histories of use in traditional medicine and cultural practices. The decades-long focus on a select number of plant species as model systems has allowed near or full elucidation of major BIA pathways, including those of morphine, sanguinarine and berberine. However, this focus has created a dearth of knowledge surrounding non-model species, which also are known to accumulate a wide-range of BIAs but whose biosynthesis is thus far entirely unexplored. Further, these non-model species represent a rich source of catalyst diversity valuable to plant biochemists and emerging synthetic biology efforts. In order to access the genetic diversity of non-model plants accumulating BIAs, we selected 20 species representing 4 families within the Ranunculales. RNA extracted from each species was processed for analysis by both 1) Roche GS-FLX Titanium and 2) Illumina GA/HiSeq platforms, generating a total of 40 deep-sequencing transcriptome libraries. De novo assembly, annotation and subsequent full-length coding sequence (CDS) predictions indicated greater success for most species using the Illumina-based platform. Assembled data for each transcriptome were deposited into an established web-based BLAST portal ( www.phytometasyn.ca) to allow public access. Homology-based mining of libraries using BIA-biosynthetic enzymes as queries yielded ~850 gene candidates potentially involved in alkaloid biosynthesis. Expression analysis of these candidates was performed using inter-library FPKM normalization methods. These expression data provide a basis for the rational selection of gene candidates, and suggest possible metabolic bottlenecks within BIA metabolism. Phylogenetic analysis was performed for each of 15 different enzyme/protein groupings

  16. Effect of Iboga Alkaloids on µ-Opioid Receptor-Coupled G Protein Activation

    PubMed Central

    Antonio, Tamara; Childers, Steven R.; Rothman, Richard B.; Dersch, Christina M.; King, Christine; Kuehne, Martin; Bornmann, William G.; Eshleman, Amy J.; Janowsky, Aaron; Simon, Eric R.; Reith, Maarten E. A.; Alper, Kenneth

    2013-01-01

    Objective The iboga alkaloids are a class of small molecules defined structurally on the basis of a common ibogamine skeleton, some of which modify opioid withdrawal and drug self-administration in humans and preclinical models. These compounds may represent an innovative approach to neurobiological investigation and development of addiction pharmacotherapy. In particular, the use of the prototypic iboga alkaloid ibogaine for opioid detoxification in humans raises the question of whether its effect is mediated by an opioid agonist action, or if it represents alternative and possibly novel mechanism of action. The aim of this study was to independently replicate and extend evidence regarding the activation of μ-opioid receptor (MOR)-related G proteins by iboga alkaloids. Methods Ibogaine, its major metabolite noribogaine, and 18-methoxycoronaridine (18-MC), a synthetic congener, were evaluated by agonist-stimulated guanosine-5´-O-(γ-thio)-triphosphate ([35S]GTPγS) binding in cells overexpressing the recombinant MOR, in rat thalamic membranes, and autoradiography in rat brain slices. Results And Significance In rat thalamic membranes ibogaine, noribogaine and 18-MC were MOR antagonists with functional Ke values ranging from 3 uM (ibogaine) to 13 uM (noribogaine and 18MC). Noribogaine and 18-MC did not stimulate [35S]GTPγS binding in Chinese hamster ovary cells expressing human or rat MORs, and had only limited partial agonist effects in human embryonic kidney cells expressing mouse MORs. Ibogaine did not did not stimulate [35S]GTPγS binding in any MOR expressing cells. Noribogaine did not stimulate [35S]GTPγS binding in brain slices using autoradiography. An MOR agonist action does not appear to account for the effect of these iboga alkaloids on opioid withdrawal. Taken together with existing evidence that their mechanism of action also differs from that of other non-opioids with clinical effects on opioid tolerance and withdrawal, these findings suggest a

  17. Beta-carboline and quinoline alkaloids in root cultures and intact plants of Peganum harmala.

    PubMed

    Zayed, Rawin; Wink, Michael

    2005-01-01

    Alkaloid profiles of root and shoot cultures, seedlings and mature plants were analysed by capillary GLC and GLC-MS. beta-Carboline alkaloids, such as harmine, harmaline dominate in normal and root cultures transformed by Agrobacterium rhizogenes, as well as in roots and fruits of the plant. In shoots, flowers and shoot cultures quinoline alkaloids such as peganine, deoxypeganine, vasicinone and deoxyvasicinone widely replace the beta-carboline alkaloids. In root cultures, the formation of beta-carboline alkaloids can be induced by methyljasmonate and several other elicitors indicating that these alkaloids are part of the reactive chemical defence system of Peganum harmala.

  18. The good and the bad: alkaloid screening and brineshrimp bioassays of aqueous extracts of 31 medicinal plants of eastern Nicaragua.

    PubMed

    Coe, Felix G; Parikh, Dimpi M; Johnson, Caley A; Anderson, Gregory J

    2012-03-01

    Presence/absence tests for alkaloids of 31 medicinal vascular plant species from 31 genera and 26 families of eastern Nicaragua provided a baseline for bioactivity tests. To determine the bioactivity and cytoxicity of aqueous extracts of widely used medicinal species in eastern Nicaragua. Ethnomedicinal applications were obtained from interviews of traditional healers. We used Dragendorff's reagent to test alkaloids and brine shrimp for cytotoxicity of aqueous extracts. Twenty-nine of the 31 species tested positive for alkaloids. The median lethal concentration that kills 50% of the larvae within 24 h of contact with the extract (LC(50) was less than 1000 µg/mL for 4 (13%) species (the usual cytotoxic category), 1001-5000 µg/mL for 23 (74%) species, and between 5001-7500 µg/mL for the remaining 4 (13%) species. Twenty-five of the ethnomedicines contain alkaloids but are not cytotoxic. In contrast to first suppositions, we suggest that this is a good and desirable, and perhaps expected, outcome. Medicinal plants that are cytotoxic may obviously control or kill bacteria or other pathogens, but may also negatively affect the patient; some high alkaloid levels have been associated with carcinogens. Thus, perhaps the majority of effective medicinals should be expected to be noncytotoxic. We suggest that this is a new paradigm for consideration of the overall value and effectiveness of medicinals. Of course, medicinals also can be effective in numerous ways (e.g., organ stimulation or other physiological functions) other than simply as antimicrobials or antipathogens.

  19. Application of high-performance capillary electrophoresis to the quantitative analysis of nicotine and profiling of other alkaloids in ATF-regulated tobacco products.

    PubMed

    Lu, G H; Ralapati, S

    1998-01-01

    Tobacco products regulated by the Bureau of Alcohol, Tobacco and Firearms (ATF), are classified at different excise tax rates according to the Code of Federal Regulations. These include the smoking (cigars, cigarettes, pipe tobacco and roll-your-own) and smokeless (chewing tobacco and snuff) tobacco products. The active principal components in all tobacco products belong to a class of compounds known as alkaloids. Nicotine is the major tobacco alkaloid, comprising about 98% of the total alkaloids. It is also the primary determinant of what constitutes a tobacco product from a regulatory standpoint. Nornicotine, anabasine and anatabine constitute the minor tobacco alkaloids of importance and interest to ATF. We have previously shown capillary electrophoresis (CE) to be a powerful analytical tool for monitoring nicotine in ATF-regulated products. Here we have extended those CE studies to (i) quantitate nicotine in ATF-regulated tobacco products and (ii) to characterize these different tobacco products according to their alkaloid profiles. Results from these studies will be presented.

  20. Effect of Alkaloid-Free and Alkaloid-Rich preparations from Uncaria tomentosa bark on mitotic activity and chromosome morphology evaluated by Allium Test.

    PubMed

    Kuraś, Mieczysław; Pilarski, Radosław; Nowakowska, Julita; Zobel, Alicja; Brzost, Krzysztof; Antosiewicz, Justyna; Gulewicz, Krzysztof

    2009-01-12

    Uncaria tomentosa (Willd.) DC. is the most popular Peruvian plant, used in folk medicine for different purposes. It contains thousands of active compounds with great content of alkaloids. Two different fractions of Alkaloid-Rich and Alkaloid-Free were researched on chromosome morphology, mitotic activity and phases indexes. Cells of Allium Test (meristematic cells of root tips) were incubated up to 24h in different concentrations of Alkaloid-Free and Alkaloid-Rich fraction obtained from Uncaria tomentosa bark followed by 48 h of postincubation in water. The chromosome morphology was analyzed and the content of mitotic and phase indexes were done. Individual compounds, oxindole alkaloids, phenolic compounds and sugars were determined. In Alkaloid-Rich and Alkaloid-Free fractions (different in chemical composition) we observed condensation and contraction of chromosomes (more in Alkaloid-Rich) with retardation and/or inhibition of mitoses and changed mitotic phases. Postincubation reversed results in the highest concentration which was lethal (in mostly Alkaloid-Rich fraction). Our studies indicate that different action can depend on different groups of active compounds in a preparation either containing alkaloids or not. Other fraction analysis may be useful in the future.

  1. Alkaloids and athlete immune function: caffeine, theophylline, gingerol, ephedrine, and their congeners.

    PubMed

    Senchina, David S; Hallam, Justus E; Kohut, Marian L; Nguyen, Norah A; Perera, M Ann d N

    2014-01-01

    Plant alkaloids are found in foods, beverages, and supplements consumed by athletes for daily nutrition, performance enhancement, and immune function improvement. This paper examined possible immunomodulatory roles of alkaloids in exercise contexts, with a focus on human studies. Four representative groups were scrutinized: (a) caffeine (guaranine, mateine); (b) theophylline and its isomers, theobromine and paraxanthine; (c) ginger alkaloids including gingerols and shogaol; and (d) ephedra alkaloids such as ephedrine and pseudoephedrine. Emerging or prospective alkaloid sources (Goji berry, Noni berry, and bloodroot) were also considered. Human in vitro and in vivo studies on alkaloids and immune function were often conflicting. Caffeine may be immunomodulatory in vivo depending on subject characteristics, exercise characteristics, and immune parameters measured. Caffeine may exhibit antioxidant capacities. Ginger may exert in vivo anti-inflammatory effects in certain populations, but it is unclear whether these effects are due to alkaloids or other biochemicals. Evidence for an immunomodulatory role of alkaloids in energy drinks, cocoa, or ephedra products in vivo is weak to nonexistent. For alkaloid sources derived from plants, variability in the reviewed studies may be due to the presence of unrecognized alkaloids or non-alkaloid compounds (which may themselves be immunomodulatory), and pre-experimental factors such as agricultural or manufacturing differences. Athletes should not look to alkaloids or alkaloid-rich sources as a means of improving immune function given their inconsistent activities, safety concerns, and lack of commercial regulation.

  2. Liquid chromatographic analysis of cinchona alkaloids in beverages.

    PubMed

    Horie, Masao; Oishi, Mitsuo; Ishikawa, Fusako; Shindo, Tetsuya; Yasui, Akiko; Ogino, Shuzo; Ito, Koichi

    2006-01-01

    A method for the determination of Cinchona extract (whose main components are the alkaloids cinchonine, cinchonidine, quinidine, and quinine) in beverages by liquid chromatography was developed. A beverage with an alcohol content of more than 10% was loaded onto an OASIS HLB solid-phase extraction cartridge, after it was adjusted to pH 10 with 28% ammonium hydroxide. Other beverages were centrifuged at 4000 rpm for 5 min, and the supernatant was loaded onto the cartridge. The cartridge was washed with water followed by 15% methanol, and the Cinchona alkaloids were eluted with methanol. The Cinchona alkaloids in the eluate were chromatographed on an L-column ODS (4.6 mm id x 150 mm) with methanol and 20 mmol/L potassium dihydrogen phosphate (3 + 7) as the mobile phase. Cinchona alkaloids were monitored with an ultraviolet (UV) detector at 230 nm, and with a fluorescence detector at 405 nm for cinchonine and cinchonidine and 450 nm for quinidine and quinine (excitation at 235 nm). The calibration curves for Cinchona alkaloids with the UV detector showed good linearity in the range of 2-400 microg/mL. The detection limit of each Cinchona alkaloid, taken to be the concentration at which the absorption spectrum could be identified, was 2 microg/mL. The recovery of Cinchona alkaloids added at a level of 100 microg/g to various kinds of beverages was 87.6-96.5%, and the coefficients of variation were less than 3.3%. A number of beverage samples, some labeled to contain bitter substances, were analyzed by the proposed method. Quinine was detected in 2 samples of carbonated beverage.

  3. Dehydropyrrolizidine Alkaloid Toxicity, Cytotoxicity, and Carcinogenicity

    PubMed Central

    Stegelmeier, Bryan L.; Colegate, Steven M.; Brown, Ammon W.

    2016-01-01

    Dehydropyrrolizidine alkaloid (DHPA)-producing plants have a worldwide distribution amongst flowering plants and commonly cause poisoning of livestock, wildlife, and humans. Previous work has produced considerable understanding of DHPA metabolism, toxicity, species susceptibility, conditions, and routes of exposure, and pathogenesis of acute poisoning. Intoxication is generally caused by contaminated grains, feed, flour, and breads that result in acute, high-dose, short-duration poisoning. Acute poisoning produces hepatic necrosis that is usually confirmed histologically, epidemiologically, and chemically. Less is known about chronic poisoning that may result when plant populations are sporadic, used as tisanes or herbal preparations, or when DHPAs contaminate milk, honey, pollen, or other animal-derived products. Such subclinical exposures may contribute to the development of chronic disease in humans or may be cumulative and probably slowly progress until liver failure. Recent work using rodent models suggest increased neoplastic incidence even with very low DHPA doses of short durations. These concerns have moved some governments to prohibit or limit human exposure to DHPAs. The purpose of this review is to summarize some recent DHPA research, including in vitro and in vivo DHPA toxicity and carcinogenicity reports, and the implications of these findings with respect to diagnosis and prognosis for human and animal health. PMID:27916846

  4. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae.

    PubMed

    Fossati, Elena; Narcross, Lauren; Ekins, Andrew; Falgueyret, Jean-Pierre; Martin, Vincent J J

    2015-01-01

    Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. The feasibility of morphinan synthesis in recombinant Saccharomyces cerevisiae starting from the precursor (R,S)-norlaudanosoline was investigated. Chiral analysis of the reticuline produced by the expression of opium poppy methyltransferases showed strict enantioselectivity for (S)-reticuline starting from (R,S)-norlaudanosoline. In addition, the P. somniferum enzymes salutaridine synthase (PsSAS), salutaridine reductase (PsSAR) and salutaridinol acetyltransferase (PsSAT) were functionally co-expressed in S. cerevisiae and optimization of the pH conditions allowed for productive spontaneous rearrangement of salutaridinol-7-O-acetate and synthesis of thebaine from (R)-reticuline. Finally, we reconstituted a 7-gene pathway for the production of codeine and morphine from (R)-reticuline. Yeast cell feeding assays using (R)-reticuline, salutaridine or codeine as substrates showed that all enzymes were functionally co-expressed in yeast and that activity of salutaridine reductase and codeine-O-demethylase likely limit flux to morphine synthesis. The results of this study describe a significant advance for the synthesis of morphinans in S. cerevisiae and pave the way for their complete synthesis in recombinant microbes.

  5. Anxiolytic properties of the antipsychotic alkaloid alstonine.

    PubMed

    Costa-Campos, L; Dassoler, S C; Rigo, A P; Iwu, M; Elisabetsky, E

    2004-03-01

    Anxiolytic properties may be a crucial feature of newer antipsychotics associated with the improvement of negative symptoms in schizophrenic patients. The indole alkaloid alstonine acts as an atypical antipsychotic in behavioral models, but differs in its dopamine and serotonin binding profile. The purpose of this study was to verify if alstonine possesses anxiolytic properties in mice. The hole-board and light/dark models were used; moreover, the participation of D(1), 5-HT(2), NMDA and gamma-aminobutyric acid (GABA) receptors was likewise investigated. Alstonine clearly behaves as anxiolytic in both hole-board and light/dark situations. Pretreatment with the 5-HT(2A/2C) serotonin receptor antagonist ritanserin reverted the effects of alstonine in both the hole-board and light/dark models, suggesting the involvement of these receptors in the alstonine mechanism of action. The involvement of glutamate NMDA receptors should also be considered, given that alstonine partially reversed the increase in locomotion induced by MK-801 in the hole board, as well as MK-801-induced hyperlocomotion in motor activity apparatus.

  6. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae

    PubMed Central

    Fossati, Elena; Narcross, Lauren; Ekins, Andrew; Falgueyret, Jean-Pierre; Martin, Vincent J. J.

    2015-01-01

    Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. The feasibility of morphinan synthesis in recombinant Saccharomyces cerevisiae starting from the precursor (R,S)-norlaudanosoline was investigated. Chiral analysis of the reticuline produced by the expression of opium poppy methyltransferases showed strict enantioselectivity for (S)-reticuline starting from (R,S)-norlaudanosoline. In addition, the P. somniferum enzymes salutaridine synthase (PsSAS), salutaridine reductase (PsSAR) and salutaridinol acetyltransferase (PsSAT) were functionally co-expressed in S. cerevisiae and optimization of the pH conditions allowed for productive spontaneous rearrangement of salutaridinol-7-O-acetate and synthesis of thebaine from (R)-reticuline. Finally, we reconstituted a 7-gene pathway for the production of codeine and morphine from (R)-reticuline. Yeast cell feeding assays using (R)-reticuline, salutaridine or codeine as substrates showed that all enzymes were functionally co-expressed in yeast and that activity of salutaridine reductase and codeine-O-demethylase likely limit flux to morphine synthesis. The results of this study describe a significant advance for the synthesis of morphinans in S. cerevisiae and pave the way for their complete synthesis in recombinant microbes. PMID:25905794

  7. Bovine lateral saphenous veins exposed to ergopeptine alkaloids do not relax

    USDA-ARS?s Scientific Manuscript database

    The ergot alkaloid, ergovaline has demonstrated a persistent binding and sustained contractile response in several vascular models. It was hypothesized that different alkaloids isolated from tall fescue (Lolium arundinaceum) will contribute to this response differently. The objective was to compare ...

  8. Bovine lateral saphenous veins exposed to ergopeptine alkaloids do not relax

    USDA-ARS?s Scientific Manuscript database

    The ergot alkaloid ergovaline has demonstrated a persistent and sustained contractile response in several different vascular models. It was hypothesized that different alkaloids isolated from tall fescue (Lolium arundinaceum) will contribute to this contractile response differently. The objective wa...

  9. Alkaloids of the Annonaceae: occurrence and a compilation of their biological activities.

    PubMed

    Lúcio, Ana Silvia Suassuna Carneiro; Almeida, Jackson Roberto Guedes da Silva; Da-Cunha, Emídio Vasconcelos Leitão; Tavares, Josean Fechine; Barbosa Filho, Jos Maria

    2015-01-01

    This chapter presents an overview of the chemistry and pharmacology of the alkaloids found in species of the Annonaceae family. The occurrence of alkaloids from Annonaceae species, as well as their chemical structures and pharmacological activities are summarized in informative and easy-to-understand tables. Within the Annonaceae family, the genera Annona, Duguetia, and Guatteria have led to many important publications. Valuable and comprehensive information about the structure of these alkaloids is provided. The alkaloids of the aporphine type represent the predominant group in this family. Many of the isolated alkaloids exhibit unique structures. In addition to the chemical structures, the pharmacological activities of some alkaloids are also presented in this chapter. Thus, the leishmanicidal, antimicrobial, antitumor, cytotoxic, and antimalarial activities observed for these alkaloids are highlighted. The chapter is presented as a contribution for the scientific community, mainly to enable the search for alkaloids in species belonging to the Annonaceae family.

  10. 6,7-diepicastanospermine, a tetrahydroxyindolizidine alkaloid inhibitor of amyloglucosidase

    SciTech Connect

    Molyneux, R.J.; Benson, M. ); Pan, Y.T.; Tropea, J.E.; Kaushal, G.P.; Elbein, A.D. )

    1991-10-15

    A tetrahydroxyindolizidine alkaloid, 6,7-diepicastanospermine, was isolated from the seeds of Castanospermum australe by extraction with methanol and purified to homogeneity using ion-exchange, preparative thin-layer, and radial chromatography. A very low yield of a pyrrolidine alkaloid, N-(hydroxyethyl)-2-(hydroxymethyl)-3-hydroxypyrrolidine, was also obtained by analogous methods. The purity of both alkaloids was established by gas chromatography of their trimethylsilyl (TMS) derivatives as better than 99%. The molecular weight of each alkaloid was established as 189 and 161, respectively, by mass spectrometry, and the structure of each was deduced from their {sup 1}H and {sup 13}C NMR spectra. The structure of the pyrrolidine alkaloids which co-occur in C. australe. 6,7-Diepicastanospermine was found to be a moderately good inhibitor of the fungal {alpha}-glucosidase, amyloglucosidase and a relatively weak inhibitor of {beta}-glucosidase. It failed to inhibit {alpha}-glucosidase. It failed to inhibit {alpha}- or {beta}-galactosidase, {alpha}- or {beta}-mannosidase, or {alpha}-L-fucosidase. Comparison of its inhibitory activity toward amyloglucosidase with those of its isomers, castanospermine and 6-epicastanospermine, demonstrated that epimerization of a single hydroxyl group can produce significant alteration of such inhibitory properties.

  11. Micelle assisted structural conversion with fluorescence modulation of benzophenanthridine alkaloids

    NASA Astrophysics Data System (ADS)

    Pradhan, Ankur Bikash; Bhuiya, Sutanwi; Haque, Lucy; Tiwari, Richa; Das, Suman

    2017-01-01

    In this study we have reported the anionic surfactant (Sodium dodecyl sulfate, SDS) driven structural conversion of two benzophenanthridine plant alkaloids namely Chelerythrine (herein after CHL) and Sanguinarine (herein after SANG). Both the alkaloids exist in two forms: the charged iminium and the neutral alkanolamine form. The iminium form is stable at low pH (< 6.5) and the alkanolamine form exists at higher pH (> 10.1). The fluorescence intensity of the alkanolamine form is much stronger than the iminium form. The iminium form of both the alkaloids remains stable whereas the alkanolamine form gets converted to the iminium form in the SDS micelle environment. The iminium form possesses positive charge and it seems that electrostatic interaction between the positively charged iminium and negatively charged surfactant leads to the stabilization of the iminium form in the Stern layer of the anionic micelle. Whereas the conversion of the alkanolamine form into the iminium form takes place and that can be monitored in naked eye since the iminium form is orange in colour and the alkanolamine form has blue violet emission. Such a detail insight about the photophysical properties of the benzophenanthridine alkaloids would be a valuable addition in the field of alkaloid-surfactant interaction.

  12. Mutagenicity and recombinagenicity of Ocotea acutifolia (Lauraceae) aporphinoid alkaloids.

    PubMed

    Guterres, Zaira da Rosa; da Silva, Ana Francisca Gomes; Garcez, Walmir Silva; Garcez, Felipe Rodrigues; Fernandes, Carlos Alexandre; Garcez, Fernanda Rodrigues

    2013-09-18

    The somatic mutation and recombination test (SMART) in wing cells of Drosophila melanogaster was used to test the mutagenic and recombinogenic activities of five aporphinoid alkaloids isolated from Ocotea acutifolia: thalicminine (1), (+)-dicentrine (2), (+)-ocoteine (3), (+)-6S-ocoteine N-oxide (4), and (+)-leucoxine (5). Third-stage larvae derived from the standard cross with wing cell markers mwh and/or flr(3) were treated chronically. The frequencies of mutant spots observed in marked heterozygous descendants revealed significant dose-dependent genotoxicity for alkaloids 1-4; compounds 1 and 2 were the most active. Alkaloids 1-4 also induced mitotic recombination. The presence of a methoxyl group at C-3 (as in compound 3) lowers its genotoxic effect relative to that of unsubstituted analogue 2, and the introduction of an N-oxide functionality (3 vs. 4) further reduces genotoxicity. The very planar conformation of oxo-aporphine alkaloid 1 may account for its higher genotoxicity vs. its less-planar analogues 3 and 4. As previously reported for (+)-dicentrine (2), alkaloids 1, 3, and 4 may also be DNA intercalating agents, interfering with the catalytic activity of topoisomerases. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Ornithine Decarboxylase, Polyamines, and Pyrrolizidine Alkaloids in Senecio and Crotalaria

    PubMed Central

    Birecka, Helena; Birecki, Mieczyslaw; Cohen, Eric J.; Bitonti, Alan J.; McCann, Peter P.

    1988-01-01

    When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here—using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors—endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence—with relatively very high levels of these compounds—in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence. PMID:16665870

  14. Alkaloid Constituents of the Amaryllidaceae Plant Amaryllis belladonna L.

    PubMed

    Tallini, Luciana R; Andrade, Jean Paulo de; Kaiser, Marcel; Viladomat, Francesc; Nair, Jerald J; Zuanazzi, José Angelo S; Bastida, Jaume

    2017-08-31

    The plant family Amaryllidaceae is well-known for its unique alkaloid constituents, which exhibit a wide range of biological activities. Its representative, Amaryllis belladonna, has a geographical distribution covering mainly southern Africa, where it has significant usage in the traditional medicine of the native people. In this study, A. belladonna samples collected in Brazil were examined for alkaloid content. Alkaloid profiles of A. belladonna bulbs were generated by a combination of chromatographic, spectroscopic and spectrometric methods, including GC-MS and 2D NMR. In vitro screening against four different parasitic protozoa (Trypanosoma cruzi, T. brucei rhodesiense, Leishmania donovani and Plasmodium falciparum) was carried out using the A. belladonna crude methanol extract, as well as three of its alkaloid isolates. Twenty-six different Amaryllidaceae alkaloids were identified in the A. belladonna bulb samples, and three of them were isolated. Evidence for their respective biosynthetic pathways was afforded via their mass-spectral fragmentation data. Improved data for 1-O-acetylcaranine was provided by 2D NMR experiments, together with new ¹H-NMR data for buphanamine. The crude extract and 3-O-acetylhamayne exhibited good antiprotozoal activity in vitro, although both with a high cytotoxic index.

  15. Alkaloidal components in the poisonous plant, Ipomoea carnea (Convolvulaceae).

    PubMed

    Haraguchi, Mitsue; Gorniak, Silvana L; Ikeda, Kyoko; Minami, Yasuhiro; Kato, Atsushi; Watson, Alison A; Nash, Robert J; Molyneux, Russell J; Asano, Naoki

    2003-08-13

    Natural intoxication of livestock by the ingestion of Ipomoea carnea (Convolvulaceae) sometimes occurs in tropical regions of the world. Polyhydroxylated alkaloids were isolated from the leaves, flowers, and seeds of the poisonous plant and characterized. Chromatographic separation of the leaf extract resulted in the isolation of swainsonine (1), 2-epi-lentiginosine (2), calystegines B(1) (3), B(2) (4), B(3) (5), and C(1) (6), and N-methyl-trans-4-hydroxy-l-proline (7). The contents of 1 in the fresh leaves and flowers were 0.0029 and 0.0028%, respectively, whereas the contents of 1, 3, and 4 in the seeds were approximately 10 times higher than those in the leaves and flowers. Alkaloids 3, 4, and 6 showed a potent inhibitory activity toward rat lysosomal beta-glucosidase, with IC(50) values of 2.1, 0.75, and 0.84 microM, respectively, and alkaloid 5 was a moderate inhibitor of alpha- and beta-mannosidases. Although alkaloid 1 is known as a powerful inhibitor of lysosomal alpha-mannosidase (IC(50) = 0.02 microM), alkaloid 2, which has been thought to be an intermediate in the biosynthesis of 1, was also a potent inhibitor of alpha-mannosidase with an IC(50) value of 4.6 microM.

  16. Synthesis and Evaluation of Strychnos Alkaloids as MDR Reversal Agents for Cancer Cell Eradication

    DTIC Science & Technology

    2014-01-01

    Synthesis and evaluation of Strychnos alkaloids as MDR reversal agents for cancer cell eradication Surendrachary Munagala a, Gopal Sirasani a...November 2013 Accepted 8 December 2013 Available online 21 December 2013 Keywords: Total synthesis Strychnos alkaloids P-glycoprotein ABCB1 Multidrug...Strychnos alkaloids and their derivatives. Molecular mod- eling of these alkaloids docked to a homology model of Pgp was employed to optimize ligand

  17. Diterpene alkaloids with an aza-ent-kaurane skeleton from Isodon rubescens.

    PubMed

    Liu, Xu; Yang, Jing; Wang, Wei-Guang; Li, Yan; Wu, Ji-Zhou; Pu, Jian-Xin; Sun, Han-Dong

    2015-02-27

    Two compounds belonging to a new group of diterpene alkaloids, kaurines A and B (1 and 2), and an alkaloid bearing a succinimide moiety (3) were obtained from Isodon rubescens. Their structures and absolute configurations were determined by spectroscopy and quantum-chemical computational (13)C NMR and ECD data analysis. These alkaloids differ from known diterpene alkaloids and diterpenoids and are presumably biosynthesized from ent-kaurane diterpenoids.

  18. Discovery of indole alkaloids with cannabinoid CB1 receptor antagonistic activity.

    PubMed

    Kitajima, Mariko; Iwai, Masumi; Kikura-Hanajiri, Ruri; Goda, Yukihiro; Iida, Mitsuru; Yabushita, Hisatoshi; Takayama, Hiromitsu

    2011-04-01

    Three indole alkaloids, voacamine (1), 3,6-oxidovoacangine (2), and a new alkaloid, 5-hydroxy-3,6-oxidovoacangine (3), isolated from Voacanga africana were found to exhibit potent cannabinoid CB1 receptor antagonistic activity. This is the first example of CB1 antagonists derived from natural alkaloids. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. HPTLC and GC/MS Study of Amaryllidaceae Alkaloids of Two Narcissus Species.

    PubMed

    Shawky, Eman; Abou-Donia, Amina H; Darwish, Fikria A; Toaima, Soad M; Takla, Sarah S; Pigni, Natalia B; Bastida, Jaume

    2015-08-01

    In this article, we report on the alkaloid profile and dynamic of alkaloid content and diversity in two Narcissus plants at different stages of development. The alkaloid profile of the two Narcissus species was investigated by GC/MS and HPTLC. Fifty eight Amaryllidaceae alkaloids were detected, and 25 of them were identified in the different organs of N. tazetta and N. papyraceus. The alkaloid 3-O-methyl-9-O-demethylmaritidine is tentatively identified here for the first time from the Amaryllidaceae family, and four alkaloids (tazettamide, sternbergine, 1-O-acetyllycorine, 2,11-didehydro-2-dehydroxylycorine) are tentatively identified for the first time in the genus Narcissus. The different organs of the two species analyzed showed remarkable differences in their alkaloid pattern, type of biosynthesis, main alkaloid and number of alkaloids. Lycorine-type alkaloids dominated the alkaloid, metabolism in N. papyraceus, while alkaloids of narciclasine-, galanthamine- and homolycorine-types were found only in the species N. tazetta L. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  20. The serum concentrations of lupine alkaloids in orally-dosed Holstein cattle

    USDA-ARS?s Scientific Manuscript database

    Teratogenic alkaloid-containing Lupinus spp. cause significant losses to the cattle industry. Previous research has suggested that Holstein cattle clear toxic Delphinium alkaloids from their serum at a greater rate than beef cattle. The toxicokinetics of lupine alkaloids in Holsteins are not known...

  1. A Bisindole Alkaloid with Hedgehog Signal Inhibitory Activity from the Myxomycete Perichaena chrysosperma.

    PubMed

    Shintani, Akinori; Toume, Kazufumi; Rifai, Yusnita; Arai, Midori A; Ishibashi, Masami

    2010-10-22

    6-Hydroxy-9'-methoxystaurosporinone (1), a new bisindole alkaloid, was isolated from field-collected fruiting bodies of the myxomycete Perichaena chrysosperma, together with two known compounds. The structure of the new alkaloid was elucidated from spectral data, and compound 1 was shown to have hedgehog signal inhibitory activity. A related new alkaloid, 6,9'-dihydroxystaurosporinone (4), was also isolated from Arcyria cinerea.

  2. Identification and quantification of isoquinoline alkaloids in the genus Sarcocapnos by GC-MS.

    PubMed

    Suau, R; Cabezudo, B; Valpuesta, M; Posadas, N; Diaz, A; Torres, G

    2005-01-01

    Six cularine alkaloids, cularicine, O-methylcularicine, celtisine, cularidine, cularine and celtine, three isocularine alkaloids, sarcophylline, sarcocapnine and sarcocapnidine, and five non-cularine alkaloids, glaucine, protopine, ribasine, dihydrosanguinarine and chelidonine, were identified and quantified by GC-MS in nine taxa of the genus Sarcocapnos (Fumariaceae). The chemotaxonomic significance of the results is discussed.

  3. [Clavine alkaloid biosynthesis by the fungus Penicillium palitans westling 1911 isolated from ancient permafrost deposits].

    PubMed

    Kozlovskiĭ, A G; Zhelifonova, V P; Antipova, T V

    2009-01-01

    The relic strain of Penicillium palitans isolated from the ancient permafrost deposits produces clavine alkaloids such as festuclavine, fumigaclavine A, and fumigaclavine B. Alkaloid biosynthesis is concurrent with the growth. Tryptophan and zinc ion additives to the culture medium stimulate the synthesis of alkaloids.

  4. [Analysis of total alkaloids in Meconopsis quintuplinervia from different localtites of Qinghai].

    PubMed

    Yang, Shi-bing; Liu, De-ming; Liu, Yang; Lu, Xue-feng; Hu, Feng-zu; Peng, Min

    2006-05-01

    The contents of total alkaloids in Meconopsis quintuplinervia Regel, grown in the different localtites of Qinghai Province, are detected by the method of spectrophometry. The result showed that total alkaloid in different localities were 0. 0262% to approximately 0.0788% , its mean was 0.0502%. The content of total alkaloids in the herb increased with elevation, not with latitude.

  5. The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen Ayahuasca, stimulate adult neurogenesis in vitro.

    PubMed

    Morales-García, Jose A; de la Fuente Revenga, Mario; Alonso-Gil, Sandra; Rodríguez-Franco, María Isabel; Feilding, Amanda; Perez-Castillo, Ana; Riba, Jordi

    2017-07-13

    Banisteriopsis caapi is the basic ingredient of ayahuasca, a psychotropic plant tea used in the Amazon for ritual and medicinal purposes, and by interested individuals worldwide. Animal studies and recent clinical research suggests that B. caapi preparations show antidepressant activity, a therapeutic effect that has been linked to hippocampal neurogenesis. Here we report that harmine, tetrahydroharmine and harmaline, the three main alkaloids present in B. caapi, and the harmine metabolite harmol, stimulate adult neurogenesis in vitro. In neurospheres prepared from progenitor cells obtained from the subventricular and the subgranular zones of adult mice brains, all compounds stimulated neural stem cell proliferation, migration, and differentiation into adult neurons. These findings suggest that modulation of brain plasticity could be a major contribution to the antidepressant effects of ayahuasca. They also expand the potential application of B. caapi alkaloids to other brain disorders that may benefit from stimulation of endogenous neural precursor niches.

  6. Epidihydropinidine, the main piperidine alkaloid compound of Norway spruce (Picea abies) shows promising antibacterial and anti-Candida activity.

    PubMed

    Fyhrquist, Pia; Virjamo, Virpi; Hiltunen, Eveliina; Julkunen-Tiitto, Riitta

    2017-03-01

    This study reports for the first time promising antibacterial and antifungal effects of epidihydropinidine, the major piperidine alkaloid in the needles and bark of Norway spruce, Picea abies (L.) Karsten. Epidihydropinidine was growth inhibitory against all bacterial and fungal strains used in our investigation, showing the lowest MIC value of 5.37μg/mL against Pseudomonas aeruginosa, Enterococcus faecalis, Candida glabrata and C. albicans. Epidihydropinidine was nearly three times more active than tetracycline against P. aeruginosa and E. faecalis. Promising antibacterial effects were also recorded against Staphylococcus aureus and Bacillus cereus (MIC 10.75μg/mL) as well as against Salmonella enterica (MIC and MBC 43μg/mL). Our preliminary results suggest that epidihydropinidine as well related alkaloids of Norway spruce could be powerful candidates for new antibiotics and for preventing food spoilage.

  7. Pyrrolizidine alkaloid-derived DNA adducts as a common biological biomarker of pyrrolizidine alkaloid-induced tumorigenicity.

    PubMed

    Xia, Qingsu; Zhao, Yuewei; Von Tungeln, Linda S; Doerge, Daniel R; Lin, Ge; Cai, Lining; Fu, Peter P

    2013-09-16

    Pyrrolizidine alkaloid-containing plants are the most common poisonous plants affecting livestock, wildlife, and humans. The U.S. National Toxicology Program (NTP) classified riddelliine, a tumorigenic pyrrolizidine alkaloid, as "reasonably anticipated to be a human carcinogen" in the NTP 12th Report on Carcinogens in 2011. We previously determined that four DNA adducts were formed in rats dosed with riddelliine. The structures of the four DNA adducts were elucidated as (i) a pair of epimers of 7-hydroxy-9-(deoxyguanosin-N(2)-yl)dehydrosupinidine adducts (termed as DHP-dG-3 and DHP-dG-4) as the predominant adducts; and (ii) a pair of epimers of 7-hydroxy-9-(deoxyadenosin-N(6)-yl)dehydrosupinidine adducts (termed as DHP-dA-3 and DHP-dA-4 adducts). In this study, we selected a nontumorigenic pyrrolizidine alkaloid, platyphylliine, a pyrrolizidine alkaloid N-oxide, riddelliine N-oxide, and nine tumorigenic pyrrolizidine alkaloids (riddelliine, retrorsine, monocrotaline, lycopsamine, retronecine, lasiocarpine, heliotrine, clivorine, and senkirkine) for study in animals. Seven of the nine tumorigenic pyrrolizidine alkaloids, with the exception of lycopsamine and retronecine, are liver carcinogens. At 8-10 weeks of age, female F344 rats were orally gavaged for 3 consecutive days with 4.5 and 24 μmol/kg body weight test article in 0.5 mL of 10% DMSO in water. Twenty-four hours after the last dose, the rats were sacrificed, livers were removed, and liver DNA was isolated for DNA adduct analysis. DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts were formed in the liver of rats treated with the individual seven hepatocarcinogenic pyrrolizidine alkaloids and riddelliine N-oxide. These DNA adducts were not formed in the liver of rats administered retronecine, the nontumorigenic pyrrolizidine alkaloid, platyphylliine, or vehicle control. These results indicate that this set of DNA adducts, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, is a common biological biomarker of

  8. Phytochemical and biological investigations of Amaryllidaceae alkaloids: a review.

    PubMed

    Ding, Yan; Qu, Dan; Zhang, Kai-Mei; Cang, Xiao-Xin; Kou, Zi-Nong; Xiao, Wei; Zhu, Jing-Bo

    2017-01-01

    Amaryllidaceae is a family that includes 75 genera and about 1100 species, which have a long history of medicinal use. Many plants have been proven to possess efficacy for neurological injury and inflammatory conditions. This article summarizes 357 Amaryllidaceae alkaloids, and cites 166 174 references over the last three decades. These alkaloids are classified into 14 skeleton types, and their abundant sources are also included. Modern pharmacology studies demonstrate that alkaloids that exclusively occur in Amaryllidaceae plant possess wide-ranging pharmacological actions, especially effects on the central nervous system, as well as antitumor, antimicrobial, and anti-inflammatory activities. Effective monomeric compounds from Amaryllidaceae screened for pharmacological activity in vivo and in vitro are also summarized.

  9. Mechanistic insights to the cytotoxicity of Amaryllidaceae alkaloids.

    PubMed

    Nair, Jerald J; Rárová, Lucie; Strnad, Miroslav; Bastida, Jaume; van Staden, Johannes

    2015-01-01

    With over 500 individual compounds, the Amaryllidaceae alkaloids represent a large and structurally diverse group of phytochemicals. Coupled to this structural diversity is the significant array of biological properties manifested by many of its members, of which their relevance in motor neuron disease and cancer chemotherapy has attracted considerable attention. To this extent, galanthamine has evolved into a successful commercial drug for Alzheimer's disease since its approval by the FDA in 2001. Concurrently, there have been several positive indicators for the emergence of an anticancer drug from the Amaryllidaceae due to the potency of several of its representatives as cell line specific antiproliferative agents. In this regard, the phenanthridones such as pancratistatin and narciclasine have offered most promise since their advancement into clinical trials, following which there has been renewed interest in the cytotoxic properties of these alkaloids. Given this background, this review seeks to highlight the various mechanisms which have been invoked to corroborate the cytotoxic effects of Amaryllidaceae alkaloids.

  10. Effect of alkaloids isolated from Amaryllidaceae on herpes simplex virus.

    PubMed

    Renard-Nozaki, J; Kim, T; Imakura, Y; Kihara, M; Kobayashi, S

    1989-01-01

    Studies were carried out on the effects of Amaryllidaceae alkaloids and their derivatives upon herpes simplex virus (type 1), the relationship between their structure and antiviral activity and the mechanism of this activity. All alkaloids used in these experiments were biosynthesized from N-benzylphenethylamine; the apogalanthamine group was synthesized in our laboratory; those which may eventually prove to be antiviral agents had a hexahydroindole ring with two functional hydroxyl groups. Benzazepine compounds were neither cytotoxic nor antiviral, but many structures containing dibenzazocine were toxic at low concentrations. It was established that the antiviral activity of alkaloids is due to the inhibition of multiplication and not to the direct inactivation of extracellular viruses. The mechanism of the antiviral effect could be partly explained as a blocking of viral DNA polymerase activity.

  11. The role of biocatalysis in the asymmetric synthesis of alkaloids

    PubMed Central

    2013-01-01

    Alkaloids are not only one of the most intensively studied classes of natural products, their wide spectrum of pharmacological activities also makes them indispensable drug ingredients in both traditional and modern medicine. Among the methods for their production, biotechnological approaches are gaining importance, and biocatalysis has emerged as an essential tool in this context. A number of chemo-enzymatic strategies for alkaloid synthesis have been developed over the years, in which the biotransformations nowadays take an increasingly ‘central’ role. This review summarises different applications of biocatalysis in the asymmetric synthesis of alkaloids and discusses how recent developments and novel enzymes render innovative and efficient chemo-enzymatic production routes possible. PMID:25580241

  12. Manzamine alkaloids: isolation, cytotoxicity, antimalarial activity and SAR studies.

    PubMed

    Ashok, Penta; Ganguly, Swastika; Murugesan, Sankaranarayanan

    2014-11-01

    The infectious disease Malaria is caused by different species of the genus Plasmodium. Resistance to quinoline antimalarial drugs and decreased susceptibility to artemisinin-based combination therapy have increased the need for novel antimalarial agents. Historically, natural products have been used for the treatment of infectious diseases. Identification of natural products and their semi-synthetic derivatives with potent antimalarial activity is an important method for developing novel antimalarial agents. Manzamine alkaloids are a unique group of β-carboline alkaloids isolated from various species of marine sponge displaying potent antimalarial activity against drug-sensitive and -resistant strains of Plasmodium. In this review, we demonstrate antimalarial potency, cytotoxicity and antimalarial SAR of manzamine alkaloids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Cytotoxic alkaloids from stems, leaves and twigs of Dasymaschalon blumei.

    PubMed

    Chanakul, Waraporn; Tuchinda, Patoomratana; Anantachoke, Natthinee; Pohmakotr, Manat; Piyachaturawat, Pawinee; Jariyawat, Surawat; Suksen, Kanoknetr; Jaipetch, Tharworn; Nuntasaen, Narong; Reutrakul, Vichai

    2011-10-01

    Bioassay-guided fractionation of the cytotoxic ethyl acetate extract from the stems of Dasymaschalon blumei (Annonaceae) led to the isolation of four aristololactam alkaloids, including the hitherto unknown 3,5-dihydroxy-2,4-dimethoxyaristolactam (1), as well as the three known compounds, aristolactam BI, goniopedaline, and griffithinam. Additionally, the cytotoxic extract from the combined leaves and twigs of the same plant yielded three known oxoaporphine alkaloids, oxodiscoguattine, dicentrinone, and duguevalline. The structures of aristolactams and oxoaporphine alkaloids were elucidated on the basis of spectroscopic methods. All isolates were evaluated for cytotoxicity against a panel of mammalian cancer cell lines and a noncancerous human embryonic kidney cell Hek 293. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Quinolizidine alkaloids from the curare adjuvant Clathrotropis glaucophylla.

    PubMed

    Sagen, Anne Lise; Gertsch, Jürg; Becker, Rita; Heilmann, Jörg; Sticher, Otto

    2002-12-01

    The bark of Clathrotropis glaucophylla (Fabaceae) is used as admixture of curare arrow poison by the Yanomami; Amerindians in Venezuela. A new quinolizidine alkaloid (QA), (-)-13alpha-hydroxy-15alpha-(1-hydroxyethyl)-anagyrine [(-)-clathrotropine], was isolated from the alkaloid extract of C. glaucophylla bark, together with eleven known QAs: (-)-anagyrine, (-)-thermopsine, (-)-baptifoline, (-)-epibaptifoline, (-)-rhombifoline, (-)-tinctorine, (-)-cytisine, (-)-N-methylcytisine, (-)-lupanine, (-)-6alpha-hydroxylupanine and (+)-5,6-dehydrolupanine. The isolation and structure elucidation were performed with the aid of chromatographic (TLC, HPLC and CC) and spectroscopic (UV and 1D/2D NMR) methods, and mass spectrometry. To our knowledge, this is the first time quinolizidine alkaloids have been isolated from an arrow poison ingredient. It is also the first report on Clathrotropis species being used for preparation of arrow poison.

  15. beta-Carboline alkaloids: biochemical and pharmacological functions.

    PubMed

    Cao, Rihui; Peng, Wenlie; Wang, Zihou; Xu, Anlong

    2007-01-01

    beta-Carboline alkaloids are a large group of natural and synthetic indole alkaloids with different degrees of aromaticity, some of which are widely distributed in nature, including various plants, foodstuffs, marine creatures, insects, mammalians as well as human tissues and body fluids. These compounds are of great interest due to their diverse biological activities. Particularly, these compounds have been shown to intercalate into DNA, to inhibit CDK, Topisomerase, and monoamine oxidase, and to interact with benzodiazepine receptors and 5-hydroxy serotonin receptors. Furthermore, these chemicals also demonstrated a broad spectrum of pharmacological properties including sedative, anxiolytic, hypnotic, anticonvulsant, antitumor, antiviral, antiparasitic as well as antimicrobial activities. In this review, we summerized the biochemical and pharmacological functions of beta-carboline alkaloids.

  16. In vitro production of alkaloids: Factors, approaches, challenges and prospects

    PubMed Central

    Ahmad, Sayeed; Garg, Madhukar; Tamboli, Ennus Tajuddin; Abdin, M. Z.; Ansari, S. H.

    2013-01-01

    The wide diversity of plant secondary metabolites is largely used for the production of various pharmaceutical compounds. In vitro cell tissue or organ culture has been employed as a possible alternative to produce such industrial compounds. Tissue culture techniques provide continuous, reliable, and renewable source of valuable plant pharmaceuticals and might be used for the large-scale culture of the plant cells from which these secondary metabolites can be extracted. Alkaloids are one of the most important secondary metabolites known to play a vital role in various pharmaceutical applications leading to an increased commercial importance in recent years. The tissue culture techniques may be utilized to improve their production of alkaloids via somaclonal variations and genetic transformations. The focus of this review is toward the application of different tissue culture methods/techniques employed for the in vitro production of alkaloids with a systematic approach to improve their production. PMID:23922453

  17. Aza-tryptamine substrates in monoterpene indole alkaloid biosynthesis

    PubMed Central

    Lee, Hyang-Yeol; Yerkes, Nancy; O’Connor, Sarah E.

    2009-01-01

    Biosynthetic pathways can be hijacked to yield novel compounds by introduction of novel starting materials. Here we have altered tryptamine, which serves as the starting substrate for a variety of alkaloid biosynthetic pathways, by replacing the indole with one of four aza-indole isomers. We show that two aza-tryptamine substrates can be successfully incorporated into the products of the monoterpene indole alkaloid pathway in Catharanthus roseus. Use of unnatural heterocycles in precursor directed biosynthesis, in both microbial and plant natural product pathways, has not been widely demonstrated, and successful incorporation of starting substrate analogs containing the aza-indole functionality has not been previously reported. This work serves as a starting point to explore fermentation of aza-alkaloids from other tryptophan and tryptamine derived natural product pathways. PMID:20064432

  18. Aza-tryptamine substrates in monoterpene indole alkaloid biosynthesis.

    PubMed

    Lee, Hyang-Yeol; Yerkes, Nancy; O'Connor, Sarah E

    2009-12-24

    Biosynthetic pathways can be hijacked to yield novel compounds by introduction of novel starting materials. Here we have altered tryptamine, which serves as the starting substrate for a variety of alkaloid biosynthetic pathways, by replacing the indole with one of four aza-indole isomers. We show that two aza-tryptamine substrates can be successfully incorporated into the products of the monoterpene indole alkaloid pathway in Catharanthus roseus. Use of unnatural heterocycles in precursor-directed biosynthesis, in both microbial and plant natural product pathways, has not been widely demonstrated, and successful incorporation of starting substrate analogs containing the aza-indole functionality has not been previously reported. This work serves as a starting point to explore fermentation of aza-alkaloids from other tryptophan- and tryptamine-derived natural product pathways.

  19. Analysis of Amaryllidaceae alkaloids from Narcissus by GC-MS and capillary electrophoresis.

    PubMed

    Gotti, R; Fiori, J; Bartolini, M; Cavrini, V

    2006-09-11

    Amaryllidaceae are known as ornamental plants, furthermore some species of this family contain galanthamine, an acetylcholinesterase inhibitor approved for the treatment of Alzheimer's disease, and other alkaloids with interesting pharmacological activity. In the present work, the quali- and quantitative analysis of Amaryllidaceae-type alkaloids in the bulbs of Narcissus species is presented using different analytical approaches. Extracts of Narcissus pseudonarcissus cv. Carlton and Narcissus jonquilla Quail, were first examined by GC-MS using a Rtx-5 MS (programmed temperature) and the major alkaloids were identified. Together with galanthamine, high contents of haemanthamine, were found. Galanthamine was reliably quantified by GC-MS, whereas haemanthamine partly decomposed under the GC conditions, thus alternative analytical methods were investigated. Firstly, reversed-phase HPLC-ESI-MS was applied to identify and isolate at semipreparative levels haemanthamine. The compound was fully characterized by MS/MS and (1)H NMR and then used as a reference substance. The quantitation of both galanthamine and haemanthamine was then accomplished by capillary electrophoresis with spectrophotometric detection. A non-aqueous (NACE) approach was selected in order to use a running buffer fully compatible with samples in organic solvent. In particular, a mixture methanol-acetonitrile (75:25, v/v) containing ammonium acetate (90 mM) was used as a background electrolyte. The same analytical sample was subjected to GC-MS and NACE analysis; the different selectivity displayed by these techniques allowed different separation profiles that can be useful in phytochemical characterization of the extracts. The GC-MS and NACE methods were validated and applied to the quantitation of galanthamine (GC-MS and NACE) and haemanthamine (NACE) in bulbs of N. jonquilla.

  20. Quantitative determination of Amaryllidaceae alkaloids from Galanthus reginae-olgae subsp. vernalis and in vitro activities relevant for neurodegenerative diseases.

    PubMed

    Conforti, Filomena; Loizzo, Monica Rosa; Marrelli, Mariangela; Menichini, Federica; Statti, Giancarlo A; Uzunov, Dimitar; Menichini, Francesco

    2010-01-01

    In the present work the qualitative and quantitative analysis of Amaryllidaceae-type alkaloids in the aerial parts and bulbs of Galanthus reginae-olgae Orph. subsp. vernalis Kamari is presented for the first time using GC-MS analysis. The alkaloids galanthamine, lycorine, and tazettine were identified in both extracts while crinine and neronine were found only in the bulbs. The yield of alkaloid fraction from bulbs (36.8%) is very high compared to the yield from aerial parts (9.34%). Lycorine was the major component in both fractions. The antioxidant potential was determined by three complementary methods. The preparations to reduce the stable free radical DPPH to the yellow-colored 1,1-diphenyl-2-picrylhydrazyl with IC(50) values of 39 and 29 mug/mL for MeOH extracts from aerial parts and bulbs, respectively. The higher activity was given by EtOAc fraction of aerial parts with IC(50) of 10 mug/mL. This activity is probably due to the presence in EtOAc fraction of polar compounds such as polyphenols. The fraction exhibited a significant antioxidant capacity also in the beta-carotene-linoleic acid test system. A higher level of antioxidant activity was observed for EtOAc fraction from bulbs with IC(50) of 10 mug/mL after 30 min and 9 mug/mL after 60 min of incubation. In contrast, the fraction from bulbs performed poorly in the lipid peroxidation liposomes assay. Significant activity was obtained for dichloromethane fraction from aerial parts (IC(50) of 74 mug/mL). The major abundance of alkaloid in dichloromethane fraction may be responsible of the bulbs anti-cholinesterase highest activity (38.5%) at 0.5 mg/mL.

  1. Comparative Analysis of Amaryllidaceae Alkaloids from Three Lycoris Species.

    PubMed

    Tian, Yongqiang; Zhang, Chunyun; Guo, Mingquan

    2015-12-07

    The major active constituents from Amaryllidaceae family were reported to be Amaryllidaceae alkaloids (AAs), which exhibited a wide spectrum of biological activities, such as anti-tumor, anti-viral, and acetyl-cholinesterase-inhibitory activities. In order to better understand their potential as a source of bioactive AAs and the phytochemical variations among three different species of Lycoris herbs, the HPLC fingerprint profiles of Lycoris aurea (L. aurea), L. radiata, and L. guangxiensis were firstly determined and compared using LC-UV and LC-MS/MS. As a result, 39 peaks were resolved and identified as AAs, of which nine peaks were found in common for all these three species, while the other 30 peaks could be revealed as characteristic AAs for L. aurea, L. radiata and L. guangxiensis, respectively. Thus, these AAs can be used as chemical markers for the identification and quality control of these plant species. To further reveal correlations between chemical components and their pharmaceutical activities of these species at the molecular level, the bioactivities of the total AAs from the three plant species were also tested against HepG2 cells with the inhibitory rate at 78.02%, 84.91% and 66.81% for L. aurea, L. radiata and L. guangxiensis, respectively. This study firstly revealed that the three species under investigation were different not only in the types of AAs, but also in their contents, and both contributed to their pharmacological distinctions. To the best of our knowledge, the current research provides the most detailed phytochemical profiles of AAs in these species, and offers valuable information for future valuation and exploitation of these medicinal plants.

  2. Characterization of chemical constituents and rats metabolites of an alkaloidal extract of Alstonia scholaris leaves by liquid chromatography coupled with mass spectrometry.

    PubMed

    Cao, Jing; Shen, Hong-Mei; Wang, Qi; Qian, Yi; Guo, Hong-Cheng; Li, Kai; Qiao, Xue; Guo, De-An; Luo, Xiao-Dong; Ye, Min

    2016-07-15

    Alstonia scholaris has been used in "Dai" ethnic medicine to treat chronic respiratory diseases for a long history, and the major bioactive constituents are alkaloids. An alkaloidal extract of A. scholaris leaves (AAS) has been developed into an investigational new drug, and has been approved for phase I/II clinical trials by China Food and Drug Administration. However, little is known on the chemical composition and in vivo metabolism of AAS, thus far. In this study, an ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC/qTOF-MS) method was established to characterize the chemical constituents of AAS. Samples were separated on an ACQUITY UPLC CSH column (2.1×100mm, 1.7μm) with acetonitrile and water containing 0.3% formic acid as the mobile phase. On the basis of high-accuracy mass spectral analysis, a total of 35 alkaloids were characterized from AAS, including 11 scholaricine-type, 9 vallesamine-type, 12 picrinine-type, and 3 tubotaiwine-type alkaloids. Furthermore, the metabolic pathways of 4 representative alkaloids in rats were studied. They mainly undertook hydroxylation and glucuronidation reactions. Based on the above metabolic pathways, the metabolism of AAS (10mg/kg) in rats after oral administration was studied by LC/MS. A total of 33 compounds in plasma, 40 compounds in urine, and 38 compounds in feces were characterized. The results indicated that scholaricine-type alkaloids could get into circulation more readily than the other types. This is the first systematic study on chemical profiling and metabolites identification of AAS. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Antitussive stemoninine alkaloids from the roots of Stemona tuberosa.

    PubMed

    Lin, Li-Gen; Li, Kan Man; Tang, Chun-Ping; Ke, Chang-Qiang; Rudd, John A; Lin, Ge; Ye, Yang

    2008-06-01

    Investigation of the roots of Stemona tuberosa afforded five minor constituents, stemoenonine (1), 9a- O-methylstemoenonine (2), oxystemoenonine (3), 1,9a- seco-stemoenonine (4), and oxystemoninine (5), along with the known compound stemoninoamide (6). Their structures were elucidated by 1D and 2D NMR spectra and other spectroscopic studies. Alkaloids 1, 2, and 6, as well as the representative stemoninine-type alkaloid, stemoninine (7), were screened for antitussive activity in the citric acid-induced guinea pig cough model. Compounds 6 and 7 exhibited strong antitussive activity after oral and intraperitoneal administrations.

  4. Recent Advances in the Synthesis of Morphine and Related Alkaloids

    NASA Astrophysics Data System (ADS)

    Chida, Noritaka

    Morphine, an alkaloid isolated from the opium poppy, has been widely used as an analgesic, and has been a fascinating synthetic target of organic chemists. After the first total synthesis reported in 1952, a number of synthetic studies toward morphine have been reported, and findings obtained in such studies have greatly contributed to the progress of synthetic organic chemistry as well as medicinal chemistry. This review provides an overview of recent studies toward the total synthesis of morphine and related alkaloids. Work reported in the literature since 2004 will be reviewed.

  5. Binding of tropane alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sporer, F; Sauerwein, M; Wink, M

    1995-07-01

    Fourteen tropane and related alkaloids were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. The biogenetic intermediates littorine, 6 beta-hydroxyhyoscyamine, 7 beta-hydroxyhyoscyamine exhibit similar affinities at the muscarinic receptor as scopolamine and atropine. The quarternary derivatives N-methylatropine and N-methylscopolamine show the highest binding with IC50 values of less than 100 pM and 300 pM, respectively. The tropane alkaloids (including cocaine) also bind to the nicotinic acetylcholine receptor, albeit with much lower affinities.

  6. New cyclopeptide alkaloid and lignan glycoside from Justicia procumbens.

    PubMed

    Jin, Hong; Chen, Li; Tian, Ying; Li, Bin; Dong, Jun-Xing

    2015-01-01

    This study reported a new cyclopeptide alkaloid, justicianene A (1), and a new lignan glycoside, procumbenoside H (2), isolated from Justicia procumbens. The structures of the new compounds were elucidated by means of spectroscopic analysis, including extensive 2D NMR studies and mass spectrometry. Cyclopeptide alkaloids were first observed from the genus Justicia. Compound 2 was cytotoxic against human LoVo colon carcinoma cells with an IC50 value of 17.908 ± 1.949 μM.

  7. Two novel phenethylamine alkaloids from streptomyces sp. YIM10049.

    PubMed

    Yang, Xueqiong; He, Guangwei; Zhao, Lixing; Yang, Yabin; Liu, Yun; Xu, Lihua; Ding, Zhongtao

    2012-12-01

    Two novel phenethylamine alkaloids were isolated from Streptomyces sp. YIM 10049. On the basis of spectral data, their structures were determined as (S)-N-(cu-phenylethyl)-2 -hydroxyl-acrylimine (1) and (S)-N-nitroso-1-amino-p-hydroxy phenylethanol (2). Three known compounds, indole-3-carboxylic acid (3), cyclo(L-Ala-L-Tyr)(4), and bis(2-ethylhexyl) phthalate (5), were also isolated and characterized. Compound 1 is a rare enol tautomer, and compound 2 an unusual phenethylamine alkaloid with a N-NO group.

  8. Alkaloid-derived molecules in low rank Argonne premium coals.

    SciTech Connect

    Winans, R. E.; Tomczyk, N. A.; Hunt, J. E.

    2000-11-30

    Molecules that are probably derived from alkaloids have been found in the extracts of the subbituminous and lignite Argonne Premium Coals. High resolution mass spectrometry (HRMS) and liquid chromatography mass spectrometry (LCMS) have been used to characterize pyridine and supercritical extracts. The supercritical extraction used an approach that has been successful for extracting alkaloids from natural products. The first indication that there might be these natural products in coals was the large number of molecules found containing multiple nitrogen and oxygen heteroatoms. These molecules are much less abundant in bituminous coals and absent in the higher rank coals.

  9. In vitro inhibitory activities of Lauraceae aporphine alkaloids.

    PubMed

    Coy Barrera, Ericsson David; Cuca Suárez, Luis Enrique

    2010-03-01

    The in vitro anti-inflammatory effect of eight aporphine alkaloids isolated from the leaves of two Lauraceae plants (Pleurothyrium cinereum and Ocotea macrophylla) was evaluated through inhibition of two isozymes of cyclooxygenase (COX-1 and COX-2), 5-lipoxygenase (5-LOX), and platelet aggregation induced by PAF, AA and ADP. All alkaloids exhibited inhibitory activities against COX-2 (IC50 25.9-116 microM range) and PAF- and AA-induced platelet aggregation, while only four and three of them were good COX-1 and 5-LOX inhibitors, respectively. (+)-N-acetyl-nornantenine 6 was the most potent COX-2, 5-LOX, AA and PAF inhibitor.

  10. Hapalindole-related Alkaloids from the Cultured Cyanobacterium Fischerella ambigua

    PubMed Central

    Mo, Shunyan; Krunic, Aleksej; Santarsiero, Bernard D.; Franzblau, Scott G.; Orjala, Jimmy

    2010-01-01

    Four new hapalindole-related alkaloids, namely fischambiguines A and B, ambiguine P, ambiguine Q nitrile as well as ambiguine G nitrile were identified from the cultured cyanobacterium Fischerella ambigua (UTEX 1903). The structures were determined by spectroscopic analysis including MS, 1D and 2D NMR and X-ray crystallography. The alkaloids possessed fused penta- and hexacyclic carbon skeletons. Fischambiguine B displayed a strong inhibitory activity against Mycobacterium tuberculosis with an MIC value of 2 μM, with no detectable cytotoxicity in a Vero cell line. PMID:20965528

  11. Chemiluminescence detection of opium poppy (Papaver somniferum) alkaloids.

    PubMed

    Francis, Paul S; Adcock, Jacqui L; Costin, Jason W; Purcell, Stuart D; Pfeffer, Frederick M; Barnett, Neil W

    2008-11-04

    A review with 98 references. The determination of the opium poppy (Papaver somniferum) alkaloids and their semi-synthetic derivatives has important applications in industrial process monitoring, clinical analysis and forensic science. Liquid-phase chemiluminescence reagents such as tris(2,2'-bipyridyl)ruthenium(II) and acidic potassium permanganate exhibit remarkable sensitivity and complementary selectivity for many P. somniferum alkaloids, which has been exploited in the development of a range of analytical procedures using flow analysis, high-performance liquid chromatography, capillary electrophoresis and microfluidic instrumentation.

  12. Anxiolytic effects of erythrinian alkaloids from Erythrina mulungu.

    PubMed

    Flausino, Otavio; Santos, Luciana de Avila; Verli, Hugo; Pereira, Ana Maria; Bolzani, Vanderlan da Silva; Nunes-de-Souza, Ricardo Luiz

    2007-01-01

    One new erythrinian alkaloid derivative, (+)-11alpha-hydroxyerythravine (1), and the known (+)-erythravine (2) and (+)-alpha-hydroxyerysotrine (3) were isolated from the flowers of Erythrina mulungu. Their structures were determined by spectroscopic/spectrometric data interpretation of 1H, 13C, and 2D NMR and MS experiments. The relative configuration was established by NOESY analysis, while the conformation adopted by these molecules was evaluated through molecular modeling studies and coupling constants obtained by NMR analysis. Furthermore, the anxiolytic effects of the E. mulungu aqueous alcoholic crude extract and of the purified alkaloids were evaluated using the elevated T-maze test.

  13. Dracunculus medinensis and Schistosoma mansoni contain opiate alkaloids.

    PubMed

    Zhu, W; Baggerman, G; Secor, W Evan; Casares, F; Pryor, S C; Fricchione, G L; Ruiz-Tiben, E; Eberhard, M L; Bimi, L; Stefano, G B

    2002-04-01

    The results of analysis, by high-performance liquid chromatography coupled with electrochemical detection and by nano-electrospray-ionization, double quadrupole/orthogonal-acceleration, time-of-flight mass spectrometry, indicate that adult Dracunculus medinensis and Schistosoma mansoni both contain the opiate alkaloid morphine and that D. medinesis also contains the active metabolite of morphine, morphine 6-glucuronide. From these and previous observations, it would appear that many helminths are probably using opiate alkaloids as potent immunosuppressive and antinociceptive signal molecules, to down-regulate immunosurveillance responsiveness and pain signalling in their hosts.

  14. New 14-Membered Cyclopeptide Alkaloids from Zizyphus oxyphylla Edgew

    PubMed Central

    Kaleem, Waqar Ahmad; Nisar, Muhammad; Qayum, Mughal; Zia-Ul-Haq, Muhammad; Adhikari, Achyut; De Feo, Vincenzo

    2012-01-01

    Two new 14-membered cyclopeptide alkaloids, Oxyphylline B (4) and Oxyphylline C (5), along with three known 13-membered cyclopeptide alkaloids, were isolated from stem and roots of Zizyphus oxyphylla Edgew. The compounds were tested for antibacterial activity. Oxyphylline B (4) showed comparatively better antibacterial activities against Escherichia coli (MIC, 5 μg/mL) than other compounds. This compound also exhibited weak antimicrobial activities against Staphylococcus aureus (MIC, 25 μg/mL), Pseudomonas aeruginosa (MIC, 50 μg/mL) and Salmonella typhi (MIC, 50 μg/mL). PMID:23109868

  15. New 14-membered cyclopeptide alkaloids from Zizyphus oxyphylla Edgew.

    PubMed

    Kaleem, Waqar Ahmad; Nisar, Muhammad; Qayum, Mughal; Zia-Ul-Haq, Muhammad; Adhikari, Achyut; De Feo, Vincenzo

    2012-01-01

    Two new 14-membered cyclopeptide alkaloids, Oxyphylline B (4) and Oxyphylline C (5), along with three known 13-membered cyclopeptide alkaloids, were isolated from stem and roots of Zizyphus oxyphylla Edgew. The compounds were tested for antibacterial activity. Oxyphylline B (4) showed comparatively better antibacterial activities against Escherichia coli (MIC, 5 μg/mL) than other compounds. This compound also exhibited weak antimicrobial activities against Staphylococcus aureus (MIC, 25 μg/mL), Pseudomonas aeruginosa (MIC, 50 μg/mL) and Salmonella typhi (MIC, 50 μg/mL).

  16. Genetics of ergoline alkaloid formation in Penicillium roquefortii.

    PubMed Central

    Hong, S L; Robbers, J E

    1985-01-01

    Auxotrophic, spore color, and alkaloid biosynthetic mutants of Penicillium roquefortii were selected after N-methyl-N'-nitro-N-nitrosoguanidine treatment. Diploids were obtained via protoplast fusion techniques, and the segregants from a diploid were genetically analyzed. The data demonstrated the potential of parasexual recombination in this organism. Evidence was obtained which suggests that the his and sts (sensitivity to Sulfatase) genes may be linked. The genetic information obtained in this study can serve as a starting point for further mapping of genes in P. roquefortii, and indications are that this organism may serve as a promising vehicle for the genetic study of the formation of ergoline alkaloids. PMID:4073893

  17. CYP96T1 of Narcissus sp. aff. pseudonarcissus Catalyzes Formation of the Para-Para' C-C Phenol Couple in the Amaryllidaceae Alkaloids.

    PubMed

    Kilgore, Matthew B; Augustin, Megan M; May, Gregory D; Crow, John A; Kutchan, Toni M

    2016-01-01

    The Amaryllidaceae alkaloids are a family of amino acid derived alkaloids with many biological activities; examples include haemanthamine, haemanthidine, galanthamine, lycorine, and maritidine. Central to the biosynthesis of the majority of these alkaloids is a C-C phenol-coupling reaction that can have para-para', para-ortho', or ortho-para' regiospecificity. Through comparative transcriptomics of Narcissus sp. aff. pseudonarcissus, Galanthus sp., and Galanthus elwesii we have identified a para-para' C-C phenol coupling cytochrome P450, CYP96T1, capable of forming the products (10bR,4aS)-noroxomaritidine and (10bS,4aR)-noroxomaritidine from 4'-O-methylnorbelladine. CYP96T1 was also shown to catalyzed formation of the para-ortho' phenol coupled product, N-demethylnarwedine, as less than 1% of the total product. CYP96T1 co-expresses with the previously characterized norbelladine 4'-O-methyltransferase. The discovery of CYP96T1 is of special interest because it catalyzes the first major branch in Amaryllidaceae alkaloid biosynthesis. CYP96T1 is also the first phenol-coupling enzyme characterized from a monocot.

  18. CYP96T1 of Narcissus sp. aff. pseudonarcissus Catalyzes Formation of the Para-Para' C-C Phenol Couple in the Amaryllidaceae Alkaloids

    PubMed Central

    Kilgore, Matthew B.; Augustin, Megan M.; May, Gregory D.; Crow, John A.; Kutchan, Toni M.

    2016-01-01

    The Amaryllidaceae alkaloids are a family of amino acid derived alkaloids with many biological activities; examples include haemanthamine, haemanthidine, galanthamine, lycorine, and maritidine. Central to the biosynthesis of the majority of these alkaloids is a C-C phenol-coupling reaction that can have para-para', para-ortho', or ortho-para' regiospecificity. Through comparative transcriptomics of Narcissus sp. aff. pseudonarcissus, Galanthus sp., and Galanthus elwesii we have identified a para-para' C-C phenol coupling cytochrome P450, CYP96T1, capable of forming the products (10bR,4aS)-noroxomaritidine and (10bS,4aR)-noroxomaritidine from 4′-O-methylnorbelladine. CYP96T1 was also shown to catalyzed formation of the para-ortho' phenol coupled product, N-demethylnarwedine, as less than 1% of the total product. CYP96T1 co-expresses with the previously characterized norbelladine 4′-O-methyltransferase. The discovery of CYP96T1 is of special interest because it catalyzes the first major branch in Amaryllidaceae alkaloid biosynthesis. CYP96T1 is also the first phenol-coupling enzyme characterized from a monocot. PMID:26941773

  19. Alkaloids and Phenolic Compounds from Sida rhombifolia L. (Malvaceae) and Vasorelaxant Activity of Two Indoquinoline Alkaloids.

    PubMed

    Chaves, Otemberg Souza; Teles, Yanna Carolina Ferreira; Monteiro, Matheus Morais de Oliveira; Mendes Junior, Leônidas das Graças; Agra, Maria de Fátima; Braga, Valdir de Andrade; Silva, Tânia Maria Sarmento; Souza, Maria de Fátima Vanderlei de

    2017-01-06

    The follow-up of phytochemical and pharmacological studies of Sida rhombifolia L. (Malvaceae) aims to strengthen the chemosystematics and pharmacology of Sida genera and support the ethnopharmacological use of this species as hypotensive herb. The present work reports phytoconstituents isolated and identified from aerial parts of S. rhombifolia by using chromatographic and spectroscopic methods. The study led to the isolation of scopoletin (1), scoporone (2), ethoxy-ferulate (3), kaempferol (4), kaempferol-3-O-β-d-glycosyl-6''-α-d-rhamnose (5), quindolinone (6), 11-methoxy-quindoline (7), quindoline (8), and the cryptolepine salt (9). The alkaloids quindolinone (6) and cryptolepine salt (9) showed vasorelaxant activity in rodent isolated mesenteric arteries.

  20. Elimination of ergoline alkaloids following treatment of Ipomoea asarifolia (Convolvulaceae) with fungicides.

    PubMed

    Kucht, Sabine; Gross, Julia; Hussein, Yasser; Grothe, Torsten; Keller, Ullrich; Basar, Simla; König, Wilfried A; Steiner, Ulrike; Leistner, Eckhard

    2004-08-01

    Ergoline alkaloids are constituents of Clavicipitaceous fungi living on Poaceae plants. Ergoline alkaloids as well as volatile oil are also present in Ipomoea asarifolia Roem. & Schult (Convolvulaceae). Treatment of this plant with two fungicides (Folicur, Pronto Plus) eliminates the ergoline alkaloids but not the volatile oil. Elimination of ergoline alkaloids occurs concomitantly with loss of fungal hyphae associated with secretory glands on the upper leaf surface of the Ipomoea plant. Our observations suggest that accumulation of ergoline alkaloids in the Convolvulaceae may depend on the presence of a plant-associated fungus.

  1. [Effects of steaming and baking on content of alkaloids in Aconite Lateralis Radix (Fuzi)].

    PubMed

    Yang, Chang-lin; Huang, Zhi-fang; Zhang, Yi-han; Liu, Yu-hong; Liu, Yun-huan; Chen, Yan; Yi, Jin-hai

    2014-12-01

    To study the effect of steaming and baking process on contents of alkaloids in Aconite Lateralis Radix (Fuzi), 13 alkaloids were analyzed by UPLC-MS/MS equipped with ESI ion source in MRM mode. In steaming process, the contents of diester-diterpenoid alkaloids decreased rapidly, the contents of monoester-diterpenoid alkaloids firstly increased, reached the peak at 40 min, and then deceased gradually. The contents of aconine alkaloids (mesaconine, aconine and hypaconine) increased all the time during processing, while the contents of fuziline, songorine, karacoline, salsolionl were stable or slightly decreased. In baking process, dynamic variations of alkaloids were different from that in the steaming process. Diester-diterpenoid alkaloids were degraded slightly slower than in steaming process. Monoester-diterpenoid alkaloids, aconine alkaloids and the total alkaloids had been destroyed at different degrees, their contents were significantly lower than the ones in steaming Fuzi at the same processing time. This experiment revealed the dynamic variations of alkaloids in the course of steaming and baking. Two processing methods which can both effectively remove the toxic ingredients and retain the active ingredients are simple and controllable, and are valuable for popularization and application.

  2. Alkaloids in the human food chain--natural occurrence and possible adverse effects.

    PubMed

    Koleva, Irina I; van Beek, Teris A; Soffers, Ans E M F; Dusemund, Birgit; Rietjens, Ivonne M C M

    2012-01-01

    Alkaloid-containing plants are an intrinsic part of the regular Western diet. The present paper summarizes the occurrence of alkaloids in the food chain, their mode of action and possible adverse effects including a safety assessment. Pyrrolizidine alkaloids are a reason for concern because of their bioactivation to reactive alkylating intermediates. Several quinolizidine alkaloids, β-carboline alkaloids, ergot alkaloids and steroid alkaloids are active without bioactivation and mostly act as neurotoxins. Regulatory agencies are aware of the risks and have taken or are considering appropriate regulatory actions for most alkaloids. These vary from setting limits for the presence of a compound in feed, foods and beverages, trying to define safe upper limits, advising on a strategy aiming at restrictions in use, informing the public to be cautious or taking specific plant varieties from the market. For some alkaloids known to be present in the modern food chain, e.g., piperine, nicotine, theobromine, theophylline and tropane alkaloids risks coming from the human food chain are considered to be low if not negligible. Remarkably, for many alkaloids that are known constituents of the modern food chain and of possible concern, tolerable daily intake values have so far not been defined. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Alkaloids from single skins of the Argentinian toad Melanophryniscus rubriventris (ANURA, BUFONIDAE): An unexpected variability in alkaloid profiles and a profusion of new structures.

    PubMed

    Garraffo, H Martin; Andriamaharavo, Nirina R; Vaira, Marcos; Quiroga, María F; Heit, Cecilia; Spande, Thomas F

    2012-12-01

    GC-MS analysis of single-skins of ten Melanophryniscus rubriventris toads (five collections of two toads each) captured during their breeding season in NW Argentina has revealed a total of 127 alkaloids of which 56 had not been previously detected in any frog or toad. Included among these new alkaloids are 23 new diastereomers of previously reported alkaloids. What is particularly distinguishing about the alkaloid profiles of these ten collections is the occurrence of many of the alkaloids, whether known or new to us, in only one of the ten skins sampled, despite two skins being obtained from each breeding site of the five populations. Many of the alkaloids are of classes known to have structures with branched-chains (e.g. pumiliotoxins and tricyclic structures) that are considered to derive from dietary mites. A large number of previously reported and new alkaloids are also of unclassified structures. Only a very few 3,5-disubstituted-indolizidine or -pyrrolizidine alkaloids are observed that have a straight-chain carbon skeleton and are likely derived from ant prey. The possible relationship of these collections made during the toad's brief breeding episodes to sequestration of dietary arthropods and individual alkaloid profiles is discussed.

  4. Histochemical Investigation and Kinds of Alkaloids in Leaves of Different Developmental Stages in Thymus quinquecostatus

    PubMed Central

    Jing, Haiting; Liu, Jing; Liu, Hanzhu; Xin, Hua

    2014-01-01

    Thymus quinquecostatus, with more medical value, is a kind of wild plants. In order to exploit and utilize this plant, we studied the species and locations of alkaloids in its leaves. In this paper, histochemical study of leaves at different developing stages was taken to localize the alkaloids. Meanwhile, the kinds and content of alkaloids in leaves were identified using GC-MS technique. It was found that there were two kinds of glandular trichomes, namely, peltate trichomes and capitate trichomes, on the surface of leaves, and their secretory cells could secrete alkaloids. Results showed that trichomes could secrete alkaloids as soon as the first pair of leaves formed, and there were altogether 18 kinds of alkaloids identified by GC-MS. Nearly all of these alkaloids of leaves at different developing stages were distinct from each other, except one, 3-methoxy-a-methyl-benzeneethanamine, persists at different developing stages with high concentration. PMID:25101324

  5. Histochemical investigation and kinds of alkaloids in leaves of different developmental stages in Thymus quinquecostatus.

    PubMed

    Jing, Haiting; Liu, Jing; Liu, Hanzhu; Xin, Hua

    2014-01-01

    Thymus quinquecostatus, with more medical value, is a kind of wild plants. In order to exploit and utilize this plant, we studied the species and locations of alkaloids in its leaves. In this paper, histochemical study of leaves at different developing stages was taken to localize the alkaloids. Meanwhile, the kinds and content of alkaloids in leaves were identified using GC-MS technique. It was found that there were two kinds of glandular trichomes, namely, peltate trichomes and capitate trichomes, on the surface of leaves, and their secretory cells could secrete alkaloids. Results showed that trichomes could secrete alkaloids as soon as the first pair of leaves formed, and there were altogether 18 kinds of alkaloids identified by GC-MS. Nearly all of these alkaloids of leaves at different developing stages were distinct from each other, except one, 3-methoxy-a-methyl-benzeneethanamine, persists at different developing stages with high concentration.

  6. The effect of body condition on serum concentrations of two teratogenic alkaloids (anagyrine and ammodendrine) from lupines (Lupinus species) that cause crooked calf disease.

    PubMed

    Lee, S T; Panter, K E; Pfister, J A; Gardner, D R; Welch, K D

    2008-10-01

    Several species of lupine (Lupinus spp.) are toxic to livestock, causing death losses in sheep and cattle but more commonly crooked calf disease in pregnant range cows. The major toxic alkaloids in lupine are of the quinolizidine alkaloid group and include the teratogen anagyrine, which is primarily responsible for crooked calf disease. Lupines also contain teratogenic piperidine alkaloids including ammodendrine. Previous work in sheep has shown that lupine alkaloid clearance may be influenced by the animal's physiological status. Therefore, the purpose of this study was to determine if differences in body condition of cattle would alter the absorption and elimination of anagyrine or ammodendrine given in a single oral dose as Lupinus leucophyllus or Lupinus sulphureus, respectively. Mature non-lactating cows in low body condition (LBC, n = 4) and high body condition (HBC, n = 4) received a single dose of dry ground lupine plant (2.0 g/kg of BW) via oral gavage. Lupinus leucophyllus (anagyrine) was dosed first; then after 21 d the same animals were dosed with L. sulphureus (ammodendrine). Blood samples were taken via jugular venipuncture 0 to 60 h after dosing. Serum anagyrine and ammodendrine concentrations were evaluated. The concentration of anagyrine was greater (P = 0.001) in the HBC group and peaked 2 h after dosing versus 12 h in LBC cows. Similarly for ammodendrine, the alkaloid concentration peaked at 3 h after dosing for the HBC group compared with 6 h for the LBC group (P = 0.001). Area under the curve tended to differ (P alkaloids in the HBC group compared with the LBC group. There were also differences in the maximum serum anagyrine (P = 0.02) and ammodendrine (P = 0.06) concentrations. Elimination half-life (E1/2) tended to differ (P = 0.12) between the HBC and LBC groups for ammodendrine. The kinetic profiles suggest that body condition influenced the disposition of these alkaloids. This study also suggests that body condition may

  7. Capillary electrophoresis of tropane alkaloids and glycoalkaloids occurring in Solanaceae plants.

    PubMed

    Cataldi, Tommaso R I; Bianco, Giuliana

    2008-01-01

    This chapter examines the role of capillary electrophoresis (CE) in the separation of tropane alkaloids, glycoalkaloids, and closely related compounds that have either pharmaceutical value or toxicological effects on humans. The latest significant developments in CE analysis have been selected and critically discussed. When the conventional CE mode was found unable to provide an acceptable selectivity towards the analytes, the addition of either an organic solvent, a chiral selector, or a surfactant to the running buffers was exploited. Likewise, nonaqueous CE (NACE) was also employed to increase solute solubilities and for a better compatibility of this media with mass spectrometry. It turns out that, upon selecting the most appropriate experimental conditions, the CE separation of tropane alkaloids and steroidal glycoalkaloids of Solanaceae plants was successfully accomplished. All major steps involved in the separation and detection of these secondary metabolites in complex samples are described and the relevant aspects of each application are examined with emphasis on the main aspects entailed a typical assay. More applications have yet to be developed in order to encourage more labs to exploit the tremendous potential of capillary electrophoresis.

  8. Cinchona Alkaloid Catalyzed Sulfa-Michael Addition Reactions Leading to Enantiopure β-Functionalized Cysteines.

    PubMed

    Breman, Arjen C; Telderman, Suze E M; van Santen, Roy P M; Scott, Jamie I; van Maarseveen, Jan H; Ingemann, Steen; Hiemstra, Henk

    2015-11-06

    Sulfa-Michael additions to α,β-unsaturated N-acylated oxazolidin-2-ones and related α,β-unsaturated α-amino acid derivatives have been enantioselectively catalyzed by Cinchona alkaloids functionalized with a hydrogen bond donating group at the C6' position. The series of Cinchona alkaloids includes known C6' (thio)urea and sulfonamide derivatives and several novel species with a benzimidazole, squaramide or a benzamide group at the C6' position. The sulfonamides were especially suited as bifunctional organocatalysts as they gave the products in very good diastereoselectivity and high enantioselectivity. In particular, the C6' sulfonamides catalyzed the reaction with the α,β-unsaturated α-amino acid derivatives to afford the products in a diastereomeric ratio as good as 93:7, with the major isomer being formed in an ee of up to 99%. The products of the organocatalytic sulfa-Michael addition to α,β-unsaturated α-amino acid derivatives were subsequently converted in high yields to enantiopure β-functionalized cysteines suitable for native chemical ligation.

  9. The last decade of antinociceptive alkaloids: structure, synthesis, mechanism of action and prospect.

    PubMed

    Radulovic, Niko S; Blagojevic, Polina D; Randjelovic, Pavle J; Stojanovic, Nikola M

    2013-01-01

    High molecular diversity of natural products (NPs) can provide a solution for many serious medicinal conditions. Frequently attributed with strong and useful biological/pharmacological properties, NPs may be directly applied in therapy, or could serve as templates for future drugs. As pain is a major symptom in many illnesses, and can significantly interfere with a person's quality of life and general functioning, pain-killing potential is certainly among the most highly valued features of any newly discovered, potentially pharmacologically useful molecule. Inspired by the fact that some of the most famous and powerful analgesic/antinociceptive agents are natural (plant) alkaloids (e.g. codeine, morphine), or are derived from them (oxycodone), herein we have tried to systematize recent findings (accumulated during the last decade) on molecular structure, mechanism of antinociceptive/analgesic action and synthesis of pain-killing alkaloids. In other words, this review tries to find out whether it is possible to give a general answer to the following questions: Which (new) structures are active? How can we obtain them? What do they do to the organism? How do they do that (structure-activity relationship)? And what can we do to them to make them better (i.e. could they be used as potential leads for new antinociceptive drugs)?

  10. The nuclear genome of Rhazya stricta and the evolution of alkaloid diversity in a medically relevant clade of Apocynaceae

    PubMed Central

    Sabir, Jamal S. M.; Jansen, Robert K.; Arasappan, Dhivya; Calderon, Virginie; Noutahi, Emmanuel; Zheng, Chunfang; Park, Seongjun; Sabir, Meshaal J.; Baeshen, Mohammed N.; Hajrah, Nahid H.; Khiyami, Mohammad A.; Baeshen, Nabih A.; Obaid, Abdullah Y.; Al-Malki, Abdulrahman L.; Sankoff, David; El-Mabrouk, Nadia; Ruhlman, Tracey A.

    2016-01-01

    Alkaloid accumulation in plants is activated in response to stress, is limited in distribution and specific alkaloid repertoires are variable across taxa. Rauvolfioideae (Apocynaceae, Gentianales) represents a major center of structural expansion in the monoterpenoid indole alkaloids (MIAs) yielding thousands of unique molecules including highly valuable chemotherapeutics. The paucity of genome-level data for Apocynaceae precludes a deeper understanding of MIA pathway evolution hindering the elucidation of remaining pathway enzymes and the improvement of MIA availability in planta or in vitro. We sequenced the nuclear genome of Rhazya stricta (Apocynaceae, Rauvolfioideae) and present this high quality assembly in comparison with that of coffee (Rubiaceae, Coffea canephora, Gentianales) and others to investigate the evolution of genome-scale features. The annotated Rhazya genome was used to develop the community resource, RhaCyc, a metabolic pathway database. Gene family trees were constructed to identify homologs of MIA pathway genes and to examine their evolutionary history. We found that, unlike Coffea, the Rhazya lineage has experienced many structural rearrangements. Gene tree analyses suggest recent, lineage-specific expansion and diversification among homologs encoding MIA pathway genes in Gentianales and provide candidate sequences with the potential to close gaps in characterized pathways and support prospecting for new MIA production avenues. PMID:27653669

  11. Profiles of phenolic compounds and purine alkaloids during the development of seeds of Theobroma cacao cv. Trinitario.

    PubMed

    Pereira-Caro, Gema; Borges, Gina; Nagai, Chifumi; Jackson, Mel C; Yokota, Takao; Crozier, Alan; Ashihara, Hiroshi

    2013-01-16

    Changes occurring in phenolic compounds and purine alkaloids, during the growth of seeds of cacao (Theobroma cacao) cv. Trinitario, were investigated using HPLC-MS/MS. Extracts of seeds with a fresh weight of 125, 700, 1550, and 2050 mg (stages 1-4, respectively) were analyzed. The phenolic compounds present in highest concentrations in developing and mature seeds (stages 3 and 4) were flavonols and flavan-3-ols. Flavan-3-ols existed as monomers of epicatechin and catechin and as procyanidins. Type B procyanidins were major components and varied from dimers to pentadecamer. Two anthocyanins, cyanidin-3-O-arabinoside and cyanidin-3-O-galactoside, along with the N-phenylpropernoyl-l-amino acids, N-caffeoyl-l-aspartate, N-coumaroyl-l-aspartate, N-coumaroyl-3-hydroxytyrosine (clovamide), and N-coumaroyltyrosine (deoxyclovamide), and the purine alkaloids theobromine and caffeine, were present in stage 3 and 4 seeds. Other purine alkaloids, such as theophylline and additional methylxanthines, did not occur in detectable quantities. Flavan-3-ols were the only components to accumulate in detectable quantities in young seeds at developmental stages 1 and 2.

  12. Genomic and metabolic characterisation of alkaloid biosynthesis by asexual Epichloë fungal endophytes of tall fescue pasture grasses.

    PubMed

    Ekanayake, Piyumi N; Kaur, Jatinder; Tian, Pei; Rochfort, Simone J; Guthridge, Kathryn M; Sawbridge, Timothy I; Spangenberg, German C; Forster, John W

    2017-01-04

    Symbiotic associations between tall fescue grasses and asexual Epichloë fungal endophytes exhibit biosynthesis of alkaloid compounds causing both beneficial and detrimental effects. Candidate novel endophytes with favourable chemotypic profiles have been identified in germplasm collections by screening for genetic diversity, followed by metabolite profile analysis in endogenous genetic backgrounds. A subset of candidates was subjected to genome survey sequencing to detect the presence or absence and structural status of known genes for biosynthesis of the major alkaloid classes. The capacity to produce specific metabolites was directly predictable from metabolic data. In addition, study of duplicated gene structure in heteroploid genomic constitutions provided further evidence for the origin of such endophytes. Selected strains were inoculated into meristem-derived callus cultures from specific tall fescue genotypes to perform isogenic comparisons of alkaloid profile in different host backgrounds, revealing evidence for host-specific quantitative control of metabolite production, consistent with previous studies. Certain strains were capable of both inoculation and formation of longer-term associations with a nonhost species, perennial ryegrass (Lolium perenne L.). Discovery and primary characterisation of novel endophytes by DNA analysis, followed by confirmatory metabolic studies, offers improvements of speed and efficiency and hence accelerated deployment in pasture grass improvement programs.

  13. Genetic and Phenotypic Analyses of a Papaver somniferum T-DNA Insertional Mutant with Altered Alkaloid Composition

    PubMed Central

    Kawano, Noriaki; Kiuchi, Fumiyuki; Kawahara, Nobuo; Yoshimatsu, Kayo

    2012-01-01

    The in vitro shoot culture of a T-DNA insertional mutant of Papaver somniferum L. established by the infection of Agrobacterium rhizogenes MAFF03-01724 accumulated thebaine instead of morphine as a major opium alkaloid. To develop a non-narcotic opium poppy and to gain insight into its genetic background, we have transplanted this mutant to soil, and analyzed its alkaloid content along with the manner of inheritance of T-DNA insertion loci among its selfed progenies. In the transplanted T0 primary mutant, the opium (latex) was found to be rich in thebaine (16.3% of dried opium) by HPLC analysis. The analyses on T-DNA insertion loci by inverse PCR, adaptor-ligation PCR, and quantitative real-time PCR revealed that as many as 18 copies of T-DNAs were integrated into a poppy genome in a highly complicated manner. The number of copies of T-DNAs was decreased to seven in the selected T3 progenies, in which the average thebaine content was 2.4-fold that of the wild type plant. This may indicate that the high thebaine phenotype was increasingly stabilized as the number of T-DNA copies was decreased. In addition, by reverse transcription PCR analysis on selected morphine biosynthetic genes, the expression of codeine 6-O-demethylase was clearly shown to be diminished in the T0 in vitro shoot culture, which can be considered as one of the key factors of altered alkaloid composition. PMID:24288085

  14. Genetic variation of piperidine alkaloids in Pinus ponderosa: a common garden study

    PubMed Central

    Gerson, Elizabeth A.; Kelsey, Rick G.; St Clair, J. Bradley

    2009-01-01

    Background and Aims Previous measurements of conifer alkaloids have revealed significant variation attributable to many sources, environmental and genetic. The present study takes a complementary and intensive, common garden approach to examine genetic variation in Pinus ponderosa var. ponderosa alkaloid production. Additionally, this study investigates the potential trade-off between seedling growth and alkaloid production, and associations between topographic/climatic variables and alkaloid production. Methods Piperidine alkaloids were quantified in foliage of 501 nursery seedlings grown from seed sources in west-central Washington, Oregon and California, roughly covering the western half of the native range of ponderosa pine. A nested mixed model was used to test differences among broad-scale regions and among families within regions. Alkaloid concentrations were regressed on seedling growth measurements to test metabolite allocation theory. Likewise, climate characteristics at the seed sources were also considered as explanatory variables. Key Results Quantitative variation from seedling to seedling was high, and regional variation exceeded variation among families. Regions along the western margin of the species range exhibited the highest alkaloid concentrations, while those further east had relatively low alkaloid levels. Qualitative variation in alkaloid profiles was low. All measures of seedling growth related negatively to alkaloid concentrations on a natural log scale; however, coefficients of determination were low. At best, annual height increment explained 19·4 % of the variation in ln(total alkaloids). Among the climate variables, temperature range showed a negative, linear association that explained 41·8 % of the variation. Conclusions Given the wide geographic scope of the seed sources and the uniformity of resources in the seedlings' environment, observed differences in alkaloid concentrations are evidence for genetic regulation of alkaloid

  15. Diversification of Ergot Alkaloids in Natural and Modified Fungi

    PubMed Central

    Robinson, Sarah L.; Panaccione, Daniel G.

    2015-01-01

    Several fungi in two different families––the Clavicipitaceae and the Trichocomaceae––produce different profiles of ergot alkaloids, many of which are important in agriculture and medicine. All ergot alkaloid producers share early steps before their pathways diverge to produce different end products. EasA, an oxidoreductase of the old yellow enzyme class, has alternate activities in different fungi resulting in branching of the pathway. Enzymes beyond the branch point differ among lineages. In the Clavicipitaceae, diversity is generated by the presence or absence and activities of lysergyl peptide synthetases, which interact to make lysergic acid amides and ergopeptines. The range of ergopeptines in a fungus may be controlled by the presence of multiple peptide synthetases as well as by the specificity of individual peptide synthetase domains. In the Trichocomaceae, diversity is generated by the presence or absence of the prenyl transferase encoded by easL (also called fgaPT1). Moreover, relaxed specificity of EasL appears to contribute to ergot alkaloid diversification. The profile of ergot alkaloids observed within a fungus also is affected by a delayed flux of intermediates through the pathway, which results in an accumulation of intermediates or early pathway byproducts to concentrations comparable to that of the pathway end product. PMID:25609183

  16. A new and weakly antispasmodic protoberberine alkaloid from Rhizoma Coptidis.

    PubMed

    Zhao, Ming; Xian, Yan-Fang; Ip, Siu-Po; Fong, Harry Hs; Che, Chun-Tao

    2010-09-01

    A new protoberberine alkaloid, 3-hydroxy-2-methoxy-9,10-methylenedioxy-8-oxo-protoberberine, along with three known compounds, was isolated from Rhizoma Coptidis. The new compound displayed weak antispasmodic activity against acetylcholine-induced contraction in isolated guinea-pig ileum with an IC50 of 83.7 microm. Copyright 2010 John Wiley & Sons, Ltd.

  17. Pyrrolizidine alkaloids in food: A spectrum of potential health consequences

    USDA-ARS?s Scientific Manuscript database

    Contamination of grain with 1,2-dehydropyrrolizidine ester alkaloids (dehydroPAs) and their N-oxides is responsible for large incidents of acute and subacute food poisoning, with high morbidity and mortality, in Africa and in central and south Asia. Herbal medicines and teas containing dehydroPAs ha...

  18. Dimeric pyrrole-imidazole alkaloids: Synthetic approaches and biosynthetic hypotheses

    PubMed Central

    Wang, Xiao; Ma, Zhiqiang; Wang, Xiaolei; De, Saptarshi; Ma, Yuyong

    2014-01-01

    The pyrrole-imidazole alkaloids are a group of structurally unique and biologically interesting marine sponge metabolites. Among them, the cyclic dimers have caught synthetic chemists’ attention particularly. Numerous synthetic strategies have been developed and various biosynthetic hypotheses have been proposed for these fascinating natural products. We discuss herein the synthetic approaches and the biosynthetic insights obtained from these studies. PMID:24828265

  19. Cytotoxic agents of the crinane series of amaryllidaceae alkaloids.

    PubMed

    Nair, Jerald J; Bastida, Jaume; Viladomat, Frances; van Staden, Johannes

    2012-12-01

    In the alkaloid galanthamine, the plant family Amaryllidaceae has endowed the pharmaceutical community with a potent and selective inhibitor of the enzyme acetylcholinestersae (AChE), of prominence in the chemotherapeutic approach towards motor neuron diseases. Following on the commercial success of this prescription drug in the treatment of Alzheimer's disease, it is anticipated that other drug candidates will in future emerge from the family. In this regard, the phenanthridones, exemplified by narciclasine and pancratistatin, of the lycorine series of Amaryllidaceae alkaloids have shown much promise as remarkably potent and selective anticancer agents, with a drug target of the series destined for the clinical market within the next decade. Given these interesting biological properties and their natural abundance, plants of the Amaryllidaceae have provided a diverse and accessible platform for phytochemical-based drug discovery. The crinane series of Amaryllidaceae alkaloids are also enriched with a significant array of biological properties. As a consequence of their close structural similarity to the anticancer agents of the lycorine series, the cytotoxic potential of crinane alkaloids has been realized through structure-activity relationship (SAR) studies involving targets of both semi-synthetic and natural origin, which has identified several members as leads with promising antiproliferative profiles. As the first of its kind, this review seeks to collate such information from the past few decades in advancing the crinane group as a viable platform for anticancer drug discovery.

  20. Two new indolopyridoquinazoline alkaloidal glycosides from Ranunculus ternatus.

    PubMed

    Zhang, Lin; Yang, Zhuang; Tian, Jing-Kui

    2007-08-01

    Two new indolopyridoquinazoline alkaloidal glycosides, 11-O-beta-D-glucopyranosyl rutaecarpine (ternatoside C) and 11-O-alpha-L-rhamnosyl-(1-->6)-beta-D-glucopyranosyl rutaecarpine (ternatoside D) were isolated from the roots of Ranunculus ternatus. Their structures were determined on the basis of spectroscopic and chemical methods.

  1. Ergovaline, an endophytic alkaloid. 1. Animal physiology and metabolism

    USDA-ARS?s Scientific Manuscript database

    Ergovaline is an ergot alkaloid found in some endophyte-infected ryegrasses and has been implicated in the expression of ergotism-like symptoms of grazing livestock, as well as in the protection of the plant against invertebrate predation and abiotic stresses. These selection pressures have resulted...

  2. Indole alkaloids from the seeds of Centaurea cyanus (Asteraceae).

    PubMed

    Sarker, S D; Laird, A; Nahar, L; Kumarasamy, Y; Jaspars, M

    2001-08-01

    Preparative RP-HPLC analysis of a methanol extract of the seeds of Centaurea cyanus afforded four indole alkaloids: moschamine, cis-moschamine, centcyamine and cis-centcyamine, the latter two being new natural products. Structures of these compounds were elucidated by comprehensive spectroscopic analyses. General toxicity of the isolates was determined by Brine Shrimp Lethality bioassay.

  3. Senecio grisebachii Baker: Pyrrolizidine alkaloids and experimental poisoning in calves

    USDA-ARS?s Scientific Manuscript database

    The main objectives of this study were to determine the 1,2-dehydropyrrolizidine alkaloid (DHPA) content in Senecio grisebachii Baker (Compositae), to experimentally demonstrate its toxicity in calves and to describe the main clinical and pathological findings of this toxicity. S. grisebachii plants...

  4. Dimeric pyrrole-imidazole alkaloids: synthetic approaches and biosynthetic hypotheses.

    PubMed

    Wang, Xiao; Ma, Zhiqiang; Wang, Xiaolei; De, Saptarshi; Ma, Yuyong; Chen, Chuo

    2014-08-14

    The pyrrole-imidazole alkaloids are a group of structurally unique and biologically interesting marine sponge metabolites. Among them, the cyclic dimers have caught synthetic chemists' attention particularly. Numerous synthetic strategies have been developed and various biosynthetic hypotheses have been proposed for these fascinating natural products. We discuss herein the synthetic approaches and the biosynthetic insights obtained from these studies.

  5. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    SciTech Connect

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D. )

    1989-03-07

    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the {alpha}-glucosidase amyloglucosidase (50% inhibition at 5.8 {mu}M), but it did not inhibit {beta}-glucosidase, {alpha}- or {beta}-mannosidase, or {alpha}- or {beta}-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc{sub 3}Man{sub 7-9}(GlcNAc){sub 2}-oligosaccharides.

  6. In vitro cytotoxicity of various dehydropyrrolizidine ester alkaloids

    USDA-ARS?s Scientific Manuscript database

    Dehydropyrrolizidine alkaloids (DHPAs) are plant-derived hepato-, pneumo- and geno-toxins that are carcinogenic in several species. Because of the difficulty in isolating sufficient DHPA for toxicological studies, there are few direct comparisons of toxicity. The objectives of this study was to de...

  7. The alkaloid profiles of Sophora nuttalliana and Sophora stenophylla

    USDA-ARS?s Scientific Manuscript database

    Sophora is a diverse genus in the family Fabaceae, comprised of herbs, shrubs, and trees that occurs throughout the world, primarily in the northern hemisphere. Species of Sophora are known to contain quinolizidine alkaloids that are toxic and potentially teratogenic. Two perennial herbaceous spec...

  8. Revised NMR data for incartine: an alkaloid from Galanthus elwesii.

    PubMed

    Berkov, Strahil; Reyes-Chilpa, Ricardo; Codina, Carles; Viladomat, Francesc; Bastida, Jaume

    2007-07-12

    Phytochemical studies on Galanthus elwesii resulted in the isolation of five alkaloids: incartine, hordenine, hippeastrine, 8-O-demethylhomolycorine and lycorine. The NMR data given previously for incartine were revised and completed by two-dimensional 1H-1H and 1H-13C chemical shift correlation experiments. In vitro studies on the bioactivity of incartine were carried out.

  9. Diversity-Oriented Approach to Pyrrole-Imidazole Alkaloid Frameworks

    PubMed Central

    Bhandari, Manojkumar R.; Yousufuddin, Muhammed; Lovely, Carl J.

    2011-01-01

    An exploration of imidazolylpropargyl amides as linchpin synthons for the construction of a diverse array of heterocyclic frameworks, many of which are related to those found in the oroidin derived alkaloids, is described. One such intermediate has been used in a formal total synthesis of cyclooroidin. PMID:21338082

  10. Isolation of a new carboline alkaloid from Trigonostemon lii.

    PubMed

    Yang, Hongmei; Luo, Yanping; Zhao, Hongmei; Wu, Jichun; Chen, Yegao

    2016-01-01

    A new carboline alkaloid, 1-(7-methoxy-quinolinyl-4'-yl)-3,4-dihydro-β-carboline (1), was isolated from the leaves and twigs of Trigonostemon lii Y.T. Chang, together with three known ones, trigonostemonines C and D (2 and 3), and trigonoliimine A (4). Their structures were elucidated by spectroscopic analyses, including 2D-NMR techniques.

  11. Biosynthesis of the defensive alkaloid cicindeloine in Stenus solutus beetles

    NASA Astrophysics Data System (ADS)

    Schierling, Andreas; Dettner, Konrad; Schmidt, Jürgen; Seifert, Karlheinz

    2012-08-01

    To protect themselves from predation and microorganismic infestation, rove beetles of the genus Stenus produce and store bioactive alkaloids like stenusine, 3-(2-methyl-1-butenyl)pyridine, and cicindeloine in their pygidial glands. The biosynthesis of stenusine and 3-(2-methyl-1-butenyl)pyridine was previously investigated in Stenus bimaculatus and Stenus similis, respectively. Both molecules follow the same biosynthetic pathway, where the N-heterocyclic ring is derived from l-lysine and the side chain from l-isoleucine. The different alkaloids are finally obtained by slight modifications of shared precursor molecules. The piperideine alkaloid cicindeloine occurs as a main compound additionally to ( E)-3-(2-methyl-1-butenyl)pyridine and traces of stenusine in the pygidial gland secretion of Stenus cicindeloides and Stenus solutus. Feeding of S. solutus beetles with [D,15N]-labeled amino acids followed by GC/MS analysis techniques showed that cicindeloine is synthesized via the identical pathway and precursor molecules as the other two defensive alkaloids.

  12. Monoterpenoid indole alkaloids from the bark of Alstonia scholaris.

    PubMed

    Feng, Tao; Cai, Xiang-Hai; Zhao, Pei-Ji; Du, Zhi-Zhi; Li, Wei-Qi; Luo, Xiao-Dong

    2009-11-01

    Six new monoterpenoid indole alkaloids, scholarisines B-G (1- 6), together with 15 known analogues (7- 21), were isolated from the bark of Alstonia scholaris. Their structures were determined by 1D and 2D NMR spectra and MS analyses. The structure of 1 was further supported by the single-crystal X-ray. Georg Thieme Verlag KG Stuttgart, New York.

  13. Tall Fescue Alkaloids Bind Serotonin Receptors in Cattle

    USDA-ARS?s Scientific Manuscript database

    The serotonin (5HT) receptor 5HT2A is involved in the tall fescue alkaloid-induced vascular contraction in the bovine periphery. This was determined by evaluating the contractile responses of lateral saphenous veins biopsied from cattle grazing different tall fescue/endophyte combinations. The contr...

  14. Ochrocephalamine A, a new quinolizidine alkaloid from Oxytropis ochrocephala Bunge.

    PubMed

    Liu, Li-Na; Ran, Jian-Qiang; Li, Li-Jun; Zhao, Yu; Goto, Masuo; Morris-Natschke, Susan L; Lee, Kuo-Hsiung; Zhao, Bao-Yu; Tan, Cheng-Jian

    2016-11-16

    One dimeric matrine-type alkaloid, ochrocephalamine A (1), was isolated from the poisonous plant Oxytropis ochrocephala Bunge. Its structure was elucidated by spectroscopic data and single-crystal X-ray diffraction. The insecticidal and cytotoxic activities of 1 were evaluated.

  15. Diterpenoid alkaloid toxicosis in cattle in the Swiss Alps.

    PubMed

    Puschner, Birgit; Booth, Marcia C; Tor, Elizabeth R; Odermatt, Arnold

    2002-02-01

    Between 1995 and 1999, several cattle of a group of 80 heifers died acutely on a pasture in the Swiss Alps. The animals were Found dead between July 9th and 15th eachyear. Only 1 animal was examined on post-mortem, and no significant lesions were found. Aconitum vulpera, A napellus, and Delphinium elatum were identified in the pasture. The presence of diterpenoid alkaloid-containing plants in the pasture, the rapid death of the animals, and the lack of pathologic lesions suggested diterpenoid alkaloid toxicosis as a cause of death. A multiresidue alkaloid screen using gas chromatography with a mass spectrometric detector was employed on rumen, abomasal, small intestine, and cecal contents from the I heifer. Deltaline, deltamine, and lycoctonine were identified. Aconitine was found in all gastrointestinal samples using a sensitive and highly specific liquid chromatography/mass spectrometry methodology for aconitine analysis. The findings ofditerpenoid alkaloids in the gastrointestinal contents confirmed exposure to Delphinium and Aconitum spp, possibly resulting in sudden death.

  16. The Raputindoles: Novel Cyclopentyl Bisindole Alkaloids from Raputia simulans

    USDA-ARS?s Scientific Manuscript database

    A novel class of bisindole alkaloids is established by the isolation and structural determination of Raputindoles A-D (1-4) from the Amazonian plant Raputia simulans Kallunki (Rutaceae). Complete spectroscopic characterization was accomplished by means of NMR spectroscopy and APCI (+) HRMS. Raputind...

  17. Alkaloid synthesis and accumulation in Leucojum aestivum in vitro cultures.

    PubMed

    Berkov, Strahil; Pavlov, Atanas; Georgiev, Vasil; Bastida, Jaume; Burrus, Monique; Ilieva, Mladenka; Codina, Carles

    2009-03-01

    The alkaloids of intact plants, calli and shoot-clump cultures of L. aestivum were analyzed by GC-MS. Twenty-four alkaloids were detected. Calli appeared to produce sparse alkaloid profiles in stark contrast to shoot-clumps that had similar profiles to those of the intact plant. Seven shoot-clump strains produced galanthamine predominantly whereas another three were dominated by lycorine. Shoot-clump strains cultivated under light accumulated about two-times more galanthamine (an average of 74 microg/g of dry weight) than those cultivated in darkness (an average of 39 microg/g of dry weight). In comparison to intact plants, the shoot-clumps accumulated 5-times less galanthamine. The high variability of both the galanthamine content (67% and 75% of coefficient of variation under light and darkness conditions, respectively) and alkaloid patterns indicates that the shoot-clump cultures initiated from callus could be used as a tool for improvement of the in vitro cultures.

  18. Effect of Ergot Alkaloids on Bovine Foregut Vasculature

    USDA-ARS?s Scientific Manuscript database

    Ergot alkaloids induce vasoconstriction of bovine foregut vasculature. Ergovaline induced the greatest response in ruminal artery while ergovaline and ergotamine induced the greatest response in ruminal vein. Lysergic acid did not stimulate a contractile response in either the ruminal artery or vein...

  19. The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppy.

    PubMed

    Samanani, Nailish; Alcantara, Joenel; Bourgault, Richard; Zulak, Katherine G; Facchini, Peter J

    2006-08-01

    The benzylisoquinoline alkaloids of opium poppy, including the narcotic analgesics morphine and codeine, accumulate in the multinucleate cytoplasm of specialized laticifers that accompany vascular tissues throughout the plant. In mature opium poppy plants, immunofluorescence labeling using specific antibodies showed that four alkaloid biosynthetic enzymes, (S)-norcoclaurine 6-O-methyltransferase (6OMT), (S)-coclaurine N-methyltransferase (CNMT), (S)-3'-hydroxy-N-methylcoclaurine-4'-O-methyltransferase (4'OMT) and salutaridinol-7-O-acetyltransferase (SAT) were restricted to sieve elements of the phloem adjacent or proximal to laticifers. The identity of sieve elements was confirmed by (i) the specific immunogold labeling of the characteristic cytoplasm of this cell type, (ii) the co-localization of a sieve element-specific H(+)-ATPase with all biosynthetic enzymes and (iii) the strict association of sieve plates with immunofluorescent cells. The localization of laticifers was demonstrated antibodies specific to major latex protein (MLP), which is characteristic of this cell type. In situ hybridization using antisense RNA probes for 6OMT, CNMT, 4'OMT and SAT showed that the corresponding gene transcripts were found in the companion cell paired with each sieve element. Seven benzylisoquinoline alkaloid biosynthetic enzymes, (S)-N-methylcoclaurine 3'-hydroxylase (CYP80B1), berberine bridge enzyme, codeinone reductase, 6OMT, CNMT, 4'OMT and SAT were localized by immunofluorescence labeling to the sieve elements in the root and hypocotyl of opium poppy seedlings. The abundance of these enzymes increased rapidly between 1 and 3 days after seed germination. The localization of seven biosynthetic enzymes to the sieve elements provides strong support for the unique, cell type-specific biosynthesis of benzylisoquinoline alkaloids in the opium poppy.

  20. Ibogan, tacaman, and cytotoxic bisindole alkaloids from tabernaemontana. Cononusine, an iboga alkaloid with unusual incorporation of a pyrrolidone moiety.

    PubMed

    Lim, Kuan-Hon; Raja, Vijay J; Bradshaw, Tracey D; Lim, Siew-Huah; Low, Yun-Yee; Kam, Toh-Seok

    2015-05-22

    Six new indole alkaloids, viz., cononusine (1, a rare example of an iboga-pyrrolidone conjugate), ervaluteine (2), vincamajicine (3), tacamonidine (4), 6-oxoibogaine (5), and N(4)-chloromethylnorfluorocurarine chloride (6), and two new vobasinyl-iboga bisindole alkaloids, ervatensines A (7) and B (8), in addition to other known alkaloids, were isolated from the stem-bark extract of the Malayan Tabernaemontana corymbosa. The structures of these alkaloids were established on the basis of NMR and MS analyses and, in one instance (7), confirmed by X-ray diffraction analysis. Vincamajicine (3) showed appreciable activity in reversing multidrug resistance in vincristine-resistant KB cells (IC50 2.62 μM), while ervatensines A (7) and B (8) and two other known bisindoles displayed pronounced in vitro growth inhibitory activity against human KB cells (IC50 < 2 μM). Compounds 7 and 8 also showed good growth inhibitory activity against A549, MCF-7, MDA-468, HCT-116, and HT-29 cells (IC50 0.70-4.19 μM). Cell cycle and annexin V-FITC apoptosis assays indicated that compounds 7 and 8 inhibited proliferation of HCT-116 and MDA-468 cells, evoking apoptotic and necrotic cell death.

  1. Optimisation of supercritical fluid extraction of indole alkaloids from Catharanthus roseus using experimental design methodology--comparison with other extraction techniques.

    PubMed

    Verma, Arvind; Hartonen, Kari; Riekkola, Marja-Liisa

    2008-01-01

    Response surface modelling, using MODDE 6 software for Design of Experiments and Optimisation, was applied to optimise supercritical fluid extraction (SFE) conditions for the extraction of indole alkaloids from the dried leaves of Catharanthus roseus. The effects of pressure (200-400 bar), temperature (40-80 degrees C), modifier concentration (2.2-6.6 vol%) and dynamic extraction time (20-60 min) on the yield of alkaloids were evaluated. The extracts were analysed by high-performance liquid chromatography and the analytes were identified using ion trap-electrospray ionisation-mass spectrometry. The method was linear for alkaloid concentration in the range 0.18-31 microg/mL. The limits of detection and quantification for catharanthine, vindoline, vinblastine and vincristine were 0.2, 0.15, 0.1 and 0.08 microg/mL and 2.7, 2.0, 1.3 and 1.1 microg/g, respectively. The dry weight content of major alkaloids in the plants were compared using different extraction methods, i.e. SFE, Soxhlet extraction, solid-liquid extraction with sonication and hot water extraction at various temperatures. The extraction techniques were also compared in terms of reproducibility, selectivity and analyte recoveries. Relative standard deviations for the major alkaloids varied from 4.1 to 17.5% in different extraction methods. The best recoveries (100%) for catharanthine were obtained by SFE at 250 bar and 80 degrees C using 6.6 vol% methanol as modifier for 40 min, for vindoline by Soxhlet extraction using dichloromethane in a reflux for 16 h, and for 3',4'-anhydrovinblastine by solid-liquid extraction using a solution of 0.5 m sulphuric acid and methanol (3:1 v/v) in an ultrasonic bath for 3 h.

  2. Molecular Cloning and Characterization of a Vacuolar Class III Peroxidase Involved in the Metabolism of Anticancer Alkaloids in Catharanthus roseus1[C

    PubMed Central

    Costa, Maria Manuela R.; Hilliou, Frederique; Duarte, Patrícia; Pereira, Luís Gustavo; Almeida, Iolanda; Leech, Mark; Memelink, Johan; Barceló, Alfonso Ros; Sottomayor, Mariana

    2008-01-01

    Catharanthus roseus produces low levels of two dimeric terpenoid indole alkaloids, vinblastine and vincristine, which are widely used in cancer chemotherapy. The dimerization reaction leading to α-3′,4′-anhydrovinblastine is a key regulatory step for the production of the anticancer alkaloids in planta and has potential application in the industrial production of two semisynthetic derivatives also used as anticancer drugs. In this work, we report the cloning, characterization, and subcellular localization of an enzyme with anhydrovinblastine synthase activity identified as the major class III peroxidase present in C. roseus leaves and named CrPrx1. The deduced amino acid sequence corresponds to a polypeptide of 363 amino acids including an N-terminal signal peptide showing the secretory nature of CrPrx1. CrPrx1 has a two-intron structure and is present as a single gene copy. Phylogenetic analysis indicates that CrPrx1 belongs to an evolutionary branch of vacuolar class III peroxidases whose members seem to have been recruited for different functions during evolution. Expression of a green fluorescent protein-CrPrx1 fusion confirmed the vacuolar localization of this peroxidase, the exact subcellular localization of the alkaloid monomeric precursors and dimeric products. Expression data further supports the role of CrPrx1 in α-3′,4′-anhydrovinblastine biosynthesis, indicating the potential of CrPrx1 as a target to increase alkaloid levels in the plant. PMID:18065566

  3. Antagonistic effect of alkaloids and saponins on bioactivity in the quinine tree (Rauvolfia caffra sond.): further evidence to support biotechnology in traditional medicinal plants

    PubMed Central

    2013-01-01

    Background The Quinine tree (Rauvolfia caffra) is used as a medicinal plant among traditional communities in many countries to manage tumors and other diseases associated with oxidative stress. To validate indigenous knowledge and possibly position this herb for technology uptake and utilization, we established the level of antioxidant activity in R. caffra, and probed for the presence of associated phytochemicals. Methods Antioxidant activity was determined on 1,1-diphenyl-2-picrylhydrazyl (DPPH) while major phytochemicals were identified by multiple tests on methanol fractions. Results R. caffra showed promise as a cure, with antioxidant activity comparable to the commercially used drug quercetin (R. caffra = 79.7% ±1.9; quercetin = 82.6% ± 2.0). However, we found two phytochemicals with possible antagonistic effect: co-occurrence of alkaloids and saponins significantly reduced antioxidant activity (alkaloids only = 63%; alkaloids plus saponins = 15%; steroids, terpenoids and cardiac glycosides = 82%), thus alkaloids and saponins should be exclusive to each other in drug formulations. Conclusions Antagonistic relationship among phytochemicals would affect the efficacy of crude extracts as used in traditional medicine. Unlike in herbal medicine, use of modern biotechnology in extraction, purification and design of optimal combinations will ensure efficient drug formulations with optimum bioactivity and minimum toxicity. Metabolic pathway engineering under a controlled environment may optimize availability of desired compounds. PMID:24160735

  4. Antagonistic effect of alkaloids and saponins on bioactivity in the quinine tree (Rauvolfia caffra sond.): further evidence to support biotechnology in traditional medicinal plants.

    PubMed

    Milugo, Trizah K; Omosa, Leonida K; Ochanda, James O; Owuor, Bethwell O; Wamunyokoli, Fred A; Oyugi, Julius O; Ochieng, Joel W

    2013-10-26

    The Quinine tree (Rauvolfia caffra) is used as a medicinal plant among traditional communities in many countries to manage tumors and other diseases associated with oxidative stress. To validate indigenous knowledge and possibly position this herb for technology uptake and utilization, we established the level of antioxidant activity in R. caffra, and probed for the presence of associated phytochemicals. Antioxidant activity was determined on 1,1-diphenyl-2-picrylhydrazyl (DPPH) while major phytochemicals were identified by multiple tests on methanol fractions. R. caffra showed promise as a cure, with antioxidant activity comparable to the commercially used drug quercetin (R. caffra = 79.7% ±1.9; quercetin = 82.6% ± 2.0). However, we found two phytochemicals with possible antagonistic effect: co-occurrence of alkaloids and saponins significantly reduced antioxidant activity (alkaloids only = 63%; alkaloids plus saponins = 15%; steroids, terpenoids and cardiac glycosides = 82%), thus alkaloids and saponins should be exclusive to each other in drug formulations. Antagonistic relationship among phytochemicals would affect the efficacy of crude extracts as used in traditional medicine. Unlike in herbal medicine, use of modern biotechnology in extraction, purification and design of optimal combinations will ensure efficient drug formulations with optimum bioactivity and minimum toxicity. Metabolic pathway engineering under a controlled environment may optimize availability of desired compounds.

  5. Ergot Alkaloids Produced by Endophytic Fungi of the Genus Epichloë

    PubMed Central

    Guerre, Philippe

    2015-01-01

    The development of fungal endophytes of the genus Epichloë in grasses results in the production of different groups of alkaloids, whose mechanism and biological spectrum of toxicity can differ considerably. Ergot alkaloids, when present in endophyte-infected tall fescue, are responsible for “fescue toxicosis” in livestock, whereas indole-diterpene alkaloids, when present in endophyte-infected ryegrass, are responsible for “ryegrass staggers”. In contrast, peramine and loline alkaloids are deterrent and/or toxic to insects. Other toxic effects in livestock associated with the consumption of endophyte-infected grass that contain ergot alkaloids include the “sleepy grass” and “drunken horse grass” diseases. Although ergovaline is the main ergopeptine alkaloid produced in endophyte-infected tall fescue and is recognized as responsible for fescue toxicosis, a number of questions still exist concerning the profile of alkaloid production in tall fescue and the worldwide distribution of tall fescue toxicosis. The purpose of this review is to present ergot alkaloids produced in endophyte-infected grass, the factors of variation of their level in plants, and the diseases observed in the mammalian species as relate to the profiles of alkaloid production. In the final section, interactions between ergot alkaloids and drug-metabolizing enzymes are presented as mechanisms that could contribute to toxicity. PMID:25756954

  6. Ergot alkaloids produced by endophytic fungi of the genus Epichloë.

    PubMed

    Guerre, Philippe

    2015-03-06

    The development of fungal endophytes of the genus Epichloë in grasses results in the production of different groups of alkaloids, whose mechanism and biological spectrum of toxicity can differ considerably. Ergot alkaloids, when present in endophyte-infected tall fescue, are responsible for "fescue toxicosis" in livestock, whereas indole-diterpene alkaloids, when present in endophyte-infected ryegrass, are responsible for "ryegrass staggers". In contrast, peramine and loline alkaloids are deterrent and/or toxic to insects. Other toxic effects in livestock associated with the consumption of endophyte-infected grass that contain ergot alkaloids include the "sleepy grass" and "drunken horse grass" diseases. Although ergovaline is the main ergopeptine alkaloid produced in endophyte-infected tall fescue and is recognized as responsible for fescue toxicosis, a number of questions still exist concerning the profile of alkaloid production in tall fescue and the worldwide distribution of tall fescue toxicosis. The purpose of this review is to present ergot alkaloids produced in endophyte-infected grass, the factors of variation of their level in plants, and the diseases observed in the mammalian species as relate to the profiles of alkaloid production. In the final section, interactions between ergot alkaloids and drug-metabolizing enzymes are presented as mechanisms that could contribute to toxicity.

  7. Does mowing height influence alkaloid production in endophytic tall fescue and perennial ryegrass?

    PubMed

    Salminen, Seppo O; Grewal, Parwinder S; Quigley, Martin F

    2003-06-01

    The mutualistic symbiosis following infection of tall fescue, Festuca arundinacea, and perennial ryegrass, Lolium perenne, by fungal endophyte (Neotyphodium spp.) results in the production of alkaloids that are feeding deterrents or toxic to insects and livestock. If the levels of the alkaloids can be manipulated by cultural practices in the grasses that are used for home lawns and golf courses, this could alleviate the need for pesticide applications in urban environments. We evaluated the influence of mowing height on the levels of some alkaloids in a greenhouse experiment for two consecutive months. In tall fescue, levels of four of the nine alkaloids, including one presumptive alkaloid, showed increased levels with increasing the mowing height from 2.5 to 7.5 cm. The alkaloids were ergonovine, ergocryptine, perloline methyl ether, and an unidentified alkaloid designated as unknown C. In perennial ryegrass, three out of six alkaloids, perloline methyl ether, chanoclavine, and unknown A, showed similar increases. The alkaloid levels in perennial ryegrass showed more variability than those in tall fescue between the two sampling dates. It was clear in both grasses that the relative levels of the alkaloids varied with mowing height, as well as over time.

  8. In-silico profiling of the biological activities of Amaryllidaceae alkaloids.

    PubMed

    Shawky, Eman

    2017-11-01

    The large number of publications about Amaryllidaceae alkaloids reflects the abundance and variety in biological activity of these alkaloids. An in-silico approach was implemented in this work to rationalize the individual alkaloids to molecular biological activity. A database was generated containing 313 Amaryllidaceae alkaloids which were then subjected to in-silico-validated structure-based virtual screening using extra precision (XP) approach of Glide docking program. Further pharmacophore detection of the high scorers resulted in a hybrid model considering the structural and spatial characteristics of the molecules. The focus was laid on representative targets against viral infections, acetylcholinesterase and cancer. BEDROC studies were used for validation of the accuracy of docking methods. As expected, galanthamine-type alkaloids were the most active against hACHE; yet, lycorenine- and tazettine-type alkaloids contributed significantly, while lycorine-type alkaloids dominated the hit list against HIV-1 PR target protein and were significantly active against HIV-1 RT and influenza NA. Surprisingly, belladine-type alkaloids showed the highest number of hits against HDAC2, while lycorine- and narciclasine-type alkaloids dominated the hit lists against Aurora kinase A and VEGFR2. This report provides useful information on Amaryllidaceae alkaloids and serves as a starting point to access their undiscovered biological activity. © 2017 Royal Pharmaceutical Society.

  9. Eating chemically defended prey: alkaloid metabolism in an invasive ladybird predator of other ladybirds (Coleoptera: Coccinellidae).

    PubMed

    Sloggett, J J; Davis, A J

    2010-01-15

    By comparison with studies of herbivore physiological adaptation to plant allelochemicals, work on predator physiological adaptation to potentially toxic prey has been very limited. Such studies are important in understanding how evolution could shape predator diets. An interesting question is the specificity of predator adaptation to prey allelochemicals, given that many predators consume diverse prey with different chemical defences. The ladybird Harmonia axyridis, an invasive species in America, Europe and Africa, is considered a significant predatory threat to native invertebrates, particularly other aphid-eating ladybirds of which it is a strong intraguild predator. Although ladybirds possess species-specific alkaloid defences, H. axyridis exhibits high tolerance for allospecific ladybird prey alkaloids. Nonetheless, it performs poorly on species with novel alkaloids not commonly occurring within its natural range. We examined alkaloid fate in H. axyridis larvae after consumption of two other ladybird species, one containing an alkaloid historically occurring within the predator's native range (isopropyleine) and one containing a novel alkaloid that does not (adaline). Our results indicate that H. axyridis rapidly chemically modifies the alkaloid to which it has been historically exposed to render it less harmful: this probably occurs outside of the gut. The novel, more toxic alkaloid persists in the body unchanged for longer. Our results suggest metabolic alkaloid specialisation, in spite of the diversity of chemically defended prey that the predator consumes. Physiological adaptations appear to have made H. axyridis a successful predator of other ladybirds; however, limitations are imposed by its physiology when it eats prey with novel alkaloids.

  10. Differential allocation of seed-borne ergot alkaloids during early ontogeny of morning glories (Convolvulaceae).

    PubMed

    Beaulieu, Wesley T; Panaccione, Daniel G; Hazekamp, Corey S; mckee, Michelle C; Ryan, Katy L; Clay, Keith

    2013-07-01

    Ergot alkaloids are mycotoxins that can increase host plant resistance to above- and below-ground herbivores. Some morning glories (Convolvulaceae) are infected by clavicipitaceous fungi (Periglandula spp.) that produce high concentrations of ergot alkaloids in seeds-up to 1000-fold greater than endophyte-infected grasses. Here, we evaluated the diversity and distribution of alkaloids in seeds and seedlings and variation in alkaloid distribution among species. We treated half the plants with fungicide to differentiate seed-borne alkaloids from alkaloids produced de novo post-germination and sampled seedling tissues at the cotyledon and first-leaf stages. Seed-borne alkaloids in Ipomoea amnicola, I. argillicola, and I. hildebrandtii remained primarily in the cotyledons, whereas I. tricolor allocated lysergic acid amides to the roots while retaining clavines in the cotyledons. In I. hildebrandtii, almost all festuclavine was found in the cotyledons. These observations suggest differential allocation of individual alkaloids. Intraspecific patterns of alkaloid distribution did not vary between fungicide-treated and control seedlings. Each species contained four to six unique ergot alkaloids and two species had the ergopeptine ergobalansine. De novo production of alkaloids did not begin immediately, as total alkaloids in fungicide-treated and control seedlings did not differ through the first-leaf stage, except in I. argillicola. In an extended time-course experiment with I. tricolor, de novo production was detected after the first-leaf stage. Our results demonstrate that allocation of seed-borne ergot alkaloids varies among species and tissues but is not altered by fungicide treatment. This variation may reflect a response to selection for defense against natural enemies.

  11. Analysis of Isoquinoline Alkaloid Composition and Wound-Induced Variation in Nelumbo Using HPLC-MS/MS.

    PubMed

    Deng, Xianbao; Zhu, Lingping; Fang, Ting; Vimolmangkang, Sornkanok; Yang, Dong; Ogutu, Collins; Liu, Yanling; Han, Yuepeng

    2016-02-10

    Alkaloids are the most relevant bioactive components in lotus, a traditional herb in Asia, but little is known about their qualitative and quantitative distributions. Here, we report on the alkaloid composition in various lotus organs. Lotus laminae and embryos are rich in isoquinoline alkaloids, whereas petioles and rhizomes contain trace amounts of alkaloids. Wide variation of alkaloid accumulation in lamina and embryo was observed among screened genotypes. In laminae, alkaloid accumulation increases during early developmental stages, reaches the highest level at full size stage, and then decreases slightly during senescence. Vegetative and embryogenic tissues accumulate mainly aporphine-type and bisbenzylisoquinoline-type alkaloids, respectively. Bisbenzylisoquinoline-type alkaloids may be synthesized mainly in lamina and then transported into embryo via latex through phloem translocation. In addition, mechanical wounding was shown to induce significant accumulation of specific alkaloids in lotus leaves.

  12. Pyrrolizidine alkaloid-derived DNA adducts are common toxicological biomarkers of pyrrolizidine alkaloid N-oxides.

    PubMed

    He, Xiaobo; Xia, Qingsu; Woodling, Kellie; Lin, Ge; Fu, Peter P

    2017-10-01

    There are 660 pyrrolizidine alkaloids (PAs) and PA N-oxides present in the plants, with approximately half being possible carcinogens. We previously reported that a set of four PA-derived DNA adducts is formed in the liver of rats administered a series of hepatocarcinogenic PAs and a PA N-oxide. Based on our findings, we hypothesized that this set of DNA adducts is a common biological biomarker of PA-induced liver tumor formation. In this study, we determined that rat liver microsomal metabolism of five hepatocarcinogenic PAs (lasiocarpine, retrorsine, riddelliine, monocrotaline, and heliotrine) and their corresponding PA N-oxides produced the same set of DNA adducts. Among these compounds, lasiocarpine N-oxide, retrorsine N-oxide, monocrotaline N-oxide, and heliotrine N-oxide are for first time shown to be able to produce these DNA adducts. These results further support the role of these DNA adducts as potential common biomarkers of PA-induced liver tumor initiation. Copyright © 2017. Published by Elsevier B.V.

  13. Epiberberine, a natural protoberberine alkaloid, inhibits urease of Helicobacter pylori and jack bean: Susceptibility and mechanism.

    PubMed

    Tan, Lihua; Li, Cailan; Chen, Hanbin; Mo, Zhizhun; Zhou, Jiangtao; Liu, Yuhong; Ma, Zhilin; Xu, Yuyao; Yang, Xiaobo; Xie, Jianhui; Su, Ziren

    2017-02-04

    In our previous study, Rhizoma Coptidis extract was found to exert more potent inhibitory effect than its major component berberine towards urease from Helicobacter pylori (HPU) and jack bean (JBU). In continuation of our work, the present study was designed to further comparatively investigate the urease inhibitory activities of five major protoberberine alkaloids in Rhizoma Coptidis, namely berberine, palmatine, coptisine, epiberberine, jateorhizine to identify the bioactive constituent, and illuminate the potential mechanism of action. Results indicated that the five protoberberine alkaloids acted as concentration-dependent inactivators of urease with IC50 values ranging between 3.0 and 5087μM for HPU and 2.3->10,000μM for JBU, respectively. Notably, epiberberine (EB) was found to be the most potent inhibitor against both ureases with IC50 values of 3.0±0.01μM for HPU and 2.3±0.01μM for JBU, which was more effective than the standard urease inhibitor, acetohydroxamic acid (83±0.01μM for HPU and 22±0.01μM for JBU, respectively). Further kinetic analysis revealed that the type of EB inhibition against HPU was slow-binding and uncompetitive, with Ki of 10.6±0.01μM, while slow-binding and competitive against JBU with Ki of 4.6±0.01μM. Addition of thiol reagents, such as l-cysteine, glutathione and dithiothreitol, significantly abolished the inhibition, while Ni(2+) competitive inhibitors, boric acid and sodium fluoride, synergetically inhibited urease with EB, indicating the obligatory role of the active site sulfhydryl group for the inhibition. In addition, binding of EB with the urease proved to be reversible, as about 65% and 90% enzymatic activity of HPU and JBU, respectively, could be restored by dithiothreitol application. These findings highlighted the potential role of Rhizoma Coptidis protoberberine alkaloids, especially EB, as a lead urease inhibitor in the treatment of diseases associated with ureolytic bacteria. Thus, EB had good potential

  14. Exploring Cancer Therapeutics with Natural Products from African Medicinal Plants, Part II: Alkaloids, Terpenoids and Flavonoids.

    PubMed

    Nwodo, Justina N; Ibezim, Akachukwu; Simoben, Conrad V; Ntie-Kang, Fidele

    2016-01-01

    Cancer stands as second most common cause of disease-related deaths in humans. Resistance of cancer to chemotherapy remains challenging to both scientists and physicians. Medicinal plants are known to contribute significantly to a large population of Africa, which is to a very large extent linked to folkloric claims which is part of their livelihood. In this review paper, the potential of naturally occurring anti-cancer agents from African flora has been explored, with suggested modes of action, where such data is available. Literature search revealed plant-derived compounds from African flora showing anti-cancer and/or cytotoxic activities, which have been tested in vitro and in vivo. This corresponds to 400 compounds (from mildly active to very active) covering various compound classes. However, in this part II, we only discussed the three major compound classes which are: flavonoids, alkaloids and terpenoids.

  15. The first report of pyrrolizidine alkaloid poisoning in a gazelle (Gazella Subgutturosa) – histopathologic diagnosis

    PubMed Central

    Khordadmehr, Monireh; Ashrafi-Helan, Javad; Hosseini-Ghomi, Mir Mohsen

    2016-01-01

    Pyrrolizidine alkaloids (PAs) are natural phytotoxins found in thousands of plant species around the world. They are probably the most common poisonous plants affecting livestock, wildlife and humans. The disease occurs almost entirely as a consequence of chronic poisoning and in general ends fatally. In the present study, PAs poisoning was investigated in a gazelle with hepatic encephalopathy associated with severe neurologic signs. The main clinical signs included head pressing, progressive depression and weakness, ataxia and reluctance to move, turn the head to the left and to paddle, hyperesthesia and decreased food intake. Histopathological examination revealed major lesions in the liver consisting of severe hepatocyte megalocytosis and hypertrophy with nuclei enlargement, mild bile duct hyperplasia, centriacinar fatty change and hepatocellular necrosis. Moreover, pulmonary congestion and edema with endothelium necrosis and alveolar septa thickening, severe congestion in vessels of the brain and meninges, and myocardial necrosis were observed. PMID:28652845

  16. Recent Applications of Imines as Key Intermediates in the Synthesis of Alkaloids and Novel Nitrogen Heterocycles

    PubMed Central

    Martin, Stephen F.

    2009-01-01

    One of the major challenges in contemporary synthetic organic chemistry is the design and development of new tactics and strategies and their application to concise and efficient syntheses of biologically active natural products. Strategies that utilize reactions that enable the rapid assembly of the skeletal framework of such targets are thus especially attractive. In this context, we have developed novel applications of imine chemistry in Mannich and related reactions, cascade processes, and multicomponent reactions to rapidly assemble structural subunits common to diverse families of alkaloids. The practical utility of these chemistries is evidenced by their use in the execution of facile total syntheses of (±)-epilupinine (1), (±)-tashiromine (2), (−)-epimyrtine (3), and (±)-roelactamine (4) as well as other nitrogen heterocycles of potential biological interest. PMID:20046937

  17. Alkaloid patterns in Leucojum aestivum shoot culture cultivated at temporary immersion conditions.

    PubMed

    Ivanov, Ivan; Georgiev, Vasil; Berkov, Strahil; Pavlov, Atanas

    2012-01-15

    The alkaloid patterns in Leucojum aestivum L. shoot culture cultivated at temporary immersion conditions were investigated using gas chromatography-mass spectrometry. 18 alkaloids were identified, and galanthamine, hamayne and lycorine were dominant. The L. aestivum 80 shoot culture, cultivated at temporary immersion conditions, is a prospective biological matrix for obtaining wide range Amaryllidaceae alkaloids, showing valuable biological and pharmacological activities. The temperature of cultivation influenced enzyme activities, catalyzing phenol oxidative coupling of 4'-O-methylnorbelladine and formation of the different groups Amaryllidaceae alkaloids. Decreasing the temperature of cultivation of L. aestivum 80 shoot culture led to activation of para-ortho' phenol oxidative coupling (formation of galanthamine type alkaloids) and inhibited ortho-para' and para-para' phenol oxidative coupling (formation of lycorine and haemanthamine types alkaloids). Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Analysis of bioactive Amaryllidaceae alkaloid profiles in Lycoris species by GC-MS.

    PubMed

    Guo, Ying; Pigni, Natalia B; Zheng, Yuhong; de Andrade, Jean Paulo; Torras-Claveria, Laura; Borges, Warley de Souza; Viladomat, Frances; Codina, Carles; Bastida, Jaume

    2014-08-01

    The genus Lycoris, a group of Amaryllidaceae plants distributed in temperate regions of Eastern Asia, is already known for containing representative alkaloids typical of this botanical family with a wide range of biological activities (for example, lycorine and galanthamine). In the present work, the alkaloid profiles of nine species, L. albiflora, L. aurea, L. chinensis, L. haywardii, L. incarnata, L. longituba, L. radiata, L. sprengeri, and L. squamigera, and one variety (L. radiata var. pumila) have been evaluated by GC-MS. Structures belonging to the lycorine-, homolycorine-, haemanthamine-, narciclasine-, tazettine-, montanine- and galanthamine-series were identified and quantified, with galanthamine- and lycorine-type alkaloids predominating and usually showing a high relative abundance in comparison with other alkaloids of the extracts. Interestingly, L. longituba revealed itself to be a potential commercial source of bioactive alkaloids. In general terms, our results are consistent with the alkaloid profiles reported in the literature for previously studied species.

  19. Photochemistry and Photocytotoxicity of Alkaloids from Goldenseal (Hydrastis canadensis L.) 3. Effect on Human Lens and Retinal Pigment Epithelial Cells

    PubMed Central

    Chignell, C.F.; Sik, R.H.; Watson, M.A.; Wielgus, A.R.

    2008-01-01

    The dried root or rhizome of Goldenseal (Hydrastis canadensis L.) contains several alkaloids including berberine, hydrastine, palmatine and lesser amounts of canadine and hydrastinine. Preparations derived from Goldenseal have been used to treat skin and eye ailments. Berberine, the major alkaloid in Goldenseal root powder, has been used in eye drops to treat trachoma, a disease characterized by keratoconjunctivitis. Berberine and palmatine are also present in extracts from Berberis amurensis Ruprecht (Berberidaceae) which are used to treat ocular disorders. We have previously shown that Goldenseal alkaloids are phototoxic to keratinocytes (Chem Res Toxicol. 14, 1529, 2001; ibid 19, 739, 2006) and now report their effect on human lens and retinal pigment epithelial cells. Human lens epithelial cells (HLE-B3) were severely damaged when incubated with berberine (25 μM) and exposed to UVA (5 J/cm2). Under the same conditions palmatine was less phototoxic and hydrastine, canadine and hydrastinine were inactive. Moderate protection against berberine phototoxicity was afforded by the antioxidants ascorbate (2 mM) and N-acetylcysteine (5 mM). When exposed to UVA (5 J/cm2) both berberine (10 μM) and palmatine (10 μM) caused mild DNA damage as determined by the alkaline Comet assay which measures single strand breaks. Berberine and palmatine are the only Goldenseal alkaloids with appreciable absorption above 400 nm. Because light at wavelengths below 400 nm is cut off by the anterior portion of the human eye only berberine and palmatine were tested for phototoxicity to human retinal pigment epithelial (hRPE) cells. Although berberine did damage hRPE cells when irradiated with visible light (λ>400 nm) approximately ten times higher concentrations were required to produce the same amount of damage as seen in lens cells. Palmatine was not phototoxic to hRPE cells. Neither berberine nor palmatine photodamaged RPE DNA. Infusions of Goldenseal are estimated to contain ∼1 m

  20. A Submarine Journey: The Pyrrole-Imidazole Alkaloids

    PubMed Central

    Forte, Barbara; Malgesini, Beatrice; Piutti, Claudia; Quartieri, Francesca; Scolaro, Alessandra; Papeo, Gianluca

    2009-01-01

    In his most celebrated tale “The Picture of Dorian Gray”, Oscar Wilde stated that “those who go beneath the surface do so at their peril”. This sentence could be a prophetical warning for the practitioner who voluntarily challenges himself with trying to synthesize marine sponge-deriving pyrrole-imidazole alkaloids. This now nearly triple-digit membered community has been growing exponentially in the last 20 years, both in terms of new representatives and topological complexity – from simple, achiral oroidin to the breathtaking 12-ring stylissadines A and B, each possessing 16 stereocenters. While the biosynthesis and the role in the sponge economy of most of these alkaloids still lies in the realm of speculations, significant biological activities for some of them have clearly emerged. This review will account for the progress in achieving the total synthesis of the more biologically enticing members of this class of natural products. PMID:20098608