Science.gov

Sample records for 27al 2h mas

  1. Factor analysis of 27Al MAS NMR spectra for identifying nanocrystalline phases in amorphous geopolymers.

    PubMed

    Urbanova, Martina; Kobera, Libor; Brus, Jiri

    2013-11-01

    Nanostructured materials offer enhanced physicochemical properties because of the large interfacial area. Typically, geopolymers with specifically synthesized nanosized zeolites are a promising material for the sorption of pollutants. The structural characterization of these aluminosilicates, however, continues to be a challenge. To circumvent complications resulting from the amorphous character of the aluminosilicate matrix and from the low concentrations of nanosized crystallites, we have proposed a procedure based on factor analysis of (27)Al MAS NMR spectra. The capability of the proposed method was tested on geopolymers that exhibited various tendencies to crystallize (i) completely amorphous systems, (ii) X-ray amorphous systems with nanocrystalline phases, and (iii) highly crystalline systems. Although the recorded (27)Al MAS NMR spectra did not show visible differences between the amorphous systems (i) and the geopolymers with the nanocrystalline phase (ii), the applied factor analysis unambiguously distinguished these materials. The samples were separated into the well-defined clusters, and the systems with the evolving crystalline phase were identified even before any crystalline fraction was detected by X-ray powder diffraction. Reliability of the proposed procedure was verified by comparing it with (29)Si MAS NMR spectra. Factor analysis of (27)Al MAS NMR spectra thus has the ability to reveal spectroscopic features corresponding to the nanocrystalline phases. Because the measurement time of (27)Al MAS NMR spectra is significantly shorter than that of (29)Si MAS NMR data, the proposed procedure is particularly suitable for the analysis of large sets of specifically synthesized geopolymers in which the formation of the limited fractions of nanocrystalline phases is desired.

  2. 2H and 27Al solid-state NMR study of the local environments in Al-doped 2-line ferrihydrite, goethite, and lepidocrocite

    DOE PAGES

    Kim, Jongsik; Ilott, Andrew J.; Middlemiss, Derek S.; ...

    2015-05-13

    Although substitution of aluminum into iron oxides and oxyhydroxides has been extensively studied, it is difficult to obtain accurate incorporation levels. Assessing the distribution of dopants within these materials has proven especially challenging because bulk analytical techniques cannot typically determine whether dopants are substituted directly into the bulk iron oxide or oxyhydroxide phase or if they form separate, minor phase impurities. These differences have important implications for the chemistry of these iron-containing materials, which are ubiquitous in the environment. In this work, 27Al and 2H NMR experiments are performed on series of Al-substituted goethite, lepidocrocite, and 2-line ferrihydrite in ordermore » to develop an NMR method to track Al substitution. The extent of Al substitution into the structural frameworks of each compound is quantified by comparing quantitative 27Al MAS NMR results with those from elemental analysis. Magnetic measurements are performed for the goethite series to compare with NMR measurements. Static 27Al spin–echo mapping experiments are used to probe the local environments around the Al substituents, providing clear evidence that they are incorporated into the bulk iron phases. As a result, predictions of the 2H and 27Al NMR hyperfine contact shifts in Al-doped goethite and lepidocrocite, obtained from a combined first-principles and empirical magnetic scaling approach, give further insight into the distribution of the dopants within these phases.« less

  3. {sup 27}Al and {sup 29}Si MAS spectroscopy of layer silicates in Argonne premium coals.

    SciTech Connect

    Thompson, A. R.; Botto, R. E.; Chemistry; DOA

    2001-01-01

    High-resolution {sup 27}Al and {sup 29}Si NMR were employed to characterize layered silicates in the suite of eight Argonne Premium coals. Analyses were performed on native coals directly, or fractions isolated by sink-float techniques. Mineral phases of kaolinite, quartz, and illite-montmorillinite clays could readily be distinguished nonquantitatively by {sup 29}Si NMR techniques using direct detection or cross polarization. {sup 27}Al NMR was used to determine quantitatively the amounts of tetrahedral and octahedral aluminum forms present. The {sup 27}Al NMR results were consistent with mineralogical analyses by XRD, showing that increases in tetrahedral content paralleled illitization of the clay minerals. A remarkably good relationship also was found between the total amount of tetrahedral aluminum associated with the mineral matter and degree of maturation of the organic matter in the coal. The data suggest that illitization of the clays can be used as a mineralogical thermal maturity indicator for Type II kerogens, as demonstrated for the Argonne Premium coals, provided that contributions from organo-chelated aluminum species and detrital mineral matter are taken into account.

  4. Friedel's salt formation in sulfoaluminate cements: A combined XRD and {sup 27}Al MAS NMR study

    SciTech Connect

    Paul, G.; Boccaleri, E.; Buzzi, L.; Canonico, F.; Gastaldi, D.

    2015-01-15

    Four different binders based on calcium sulfoaluminate cements have been submitted to accelerated chlorination through ionic exchange on hydrated pastes, in order to investigate their ability to chemically bind chloride ions that might reduce chloride penetration. The composition of hydrated cements before and after the treatment was evaluated by means of an X-Ray Diffraction–{sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy combined study, allowing to take into account even partially amorphous phases and to make quantitative assumption on the relative abundance of the different aluminium-containing phases. It was found that low SO{sub 3} Sulfoaluminate–Portland ternary systems are the most effective in binding chloride ions and the active role played by different members of the AFm family in chloride uptake was confirmed. Moreover, a peculiar behavior related to the formation of Friedel's salt in different pH conditions was also established for the different cements.

  5. High-field 19.6 T 27Al solid-state MAS NMR of in vitro aluminated brain tissue

    NASA Astrophysics Data System (ADS)

    Bryant, Pamela L.; Lukiw, Walter J.; Gan, Zhehong; Hall, Randall W.; Butler, Leslie G.

    2004-10-01

    The combination of 27Al high-field solid-state NMR (19.6 T) with rapid spinning speeds (17.8 kHz) is used to acquire 27Al NMR spectra of total RNA human brain temporal lobe tissues exposed to 0.10 mM Al 3+ (as AlCl 3) and of human retinal pigment epithelial cells (ARPE-19), grown in 0.10 mM AlCl 3. The spectra of these model systems show multiple Al 3+ binding sites, good signal/noise ratios and apparent chemical shift dispersions. A single broad peak (-3 to 11 ppm) is seen for the aluminated ARPE-19 cells, consistent with reported solution-state NMR chemical shifts of Al-transferrin. The aluminated brain tissue has a considerably different 27Al MAS NMR spectrum. In addition to the transferrin-type resonance, additional peaks are seen. Tentative assignments include: -9 to -3 ppm, octahedral AlO 6 (phosphate and water); 9 ppm, condensed AlO 6 units (Al-O-Al bridges); 24 ppm, tetrahedral AlO 3N and/or octahedral Al-carbonate; and 35 ppm, more N-substituted aluminum and /or tetrahedral AlO 4. Thus, brain tissue is susceptible to a broad range of coordination by aluminum. Furthermore, the moderate 27Al C Q values (all less than 10 MHz) suggest future NMR studies may be performed at 9.4 T and a spin rate of 20 kHz.

  6. High field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts

    SciTech Connect

    Hu, Jian Zhi; Xu, Suochang; Kwak, Ja Hun; Hu, Mary Y.; Wan, Chuan; Zhao, Zhenchao; Szanyi, Janos; Bao, Xinhe; Han, Xiuwen; Wang, Yong; Peden, Charles H. F.

    2016-04-01

    Gamma-, sigma- and theta-Al2O3 are well known metastable “transitional” alumina structural polymorphs. Upon heating, Al2O3 transitions to the so-called and Al2O3 polymorphs and finally forms the thermally stable Al2O3. The poorly developed crystallinity and co-existence of the , , and Al2O3 prior to forming all Al2O3, making it difficult to characterize the structures as well as to quantify the various phases of the transition alumina. As a result, there are significant controversies in the literatures. In this work, a detailed NMR analysis was carried out at high magnetic field on three special aluminum oxide samples where the, , , Al2O3 phases are made dominant, respectively, by controlling the synthesis conditions. The goal is to simplify, including making unambiguous, spectral assignments in 27Al MAS NMR spectra of transition alumina that have not yet been commonly agreed previously. Specifically, quantitative 1D 27Al MAS NMR was used to quantify the ratios of the different alumina structural units, 2D MQMAS 27Al MAS was used for obtaining the highest spectral resolution to guide the analysis of the 1D spectrum, and a saturation pulse sequence was integrated into the 1D NMR to select the amorphous structures, including obtain spectra where the penta-coordinate sites are observed with enhanced relative intensity. Collectively, this study uniquely assigns Al-peaks (both octahedral and tetrahedral) to the Al2O3 and the Al2O3 phases and offers a new way of understanding, including quantifying, the different structural units and sites in transition alumina samples.

  7. Line shapes and widths of MAS sidebands for 27Al satellite transitions. multinuclear MAS NMR of tugtupite Na8Al2Be2Si8O24Cl2.

    PubMed

    Skibsted, J; Norby, P; Bildsøe, H; Jakobsen, H J

    1995-12-01

    A multinuclear 9Be, 23Na, 27Al, and 29Si magic-angle spinning (MAS) NMR study has been performed for the mineral tugtupite (Na8Al2Be2Si8O24Cl2). The extremely well-resolved spectra allow observation of separate spinning sidebands (ssb's) from the inner (+/- 1/2, +/- 3/2) and outer (+/- 3/2, +/- 5/2) 27Al satellite transitions, and are utilized in a detailed analysis of the line shapes and widths of the individual ssb's from simulations. The line widths of the ssb's from the inner and outer 27Al satellite transitions are found to decrease systematically with increasing order of the ssb's across the spectrum. Accurate values for the 9Be, 23Na, and 27Al quadrupole coupling parameters and isotropic chemical shifts are obtained from simulations of the manifolds of ssb's from the satellite transitions. MAS NMR of the 9Be satellite transitions for tugtupite, BeO, and beryl(Al2Be3Si6O18) shows that these transitions are particularly useful for determination of 9Be quadrupole couplings because of the small 9Be quadrupole moment. The 29Si shielding anisotropy of delta sigma = 48 ppm in tugtupite is the largest determined so far for a framework SiO4 tetrahedron. Finally, the crystal structure of the tugtupite sample has been refined by single-crystal X-ray diffraction, and correlations between the multinuclear NMR parameters and structural data are reported.

  8. High field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts

    SciTech Connect

    Hu, Jian Zhi; Xu, Suochang; Kwak, Ja Hun; Hu, Mary Y.; Wan, Chuan; Zhao, Zhenchao; Szanyi, Janos; Bao, Xinhe; Han, Xiuwen; Wang, Yong; Peden, Charles H. F.

    2016-04-01

    High field quantitative 27Al MAS NMR and temperature programmed desorption (TPD) of ethanol are used to study the surface and phase transformation of gamma-Al2O3 during calcination in the temperature range of 500 to 1300 degrees C. Following ethanol adsorption, ethylene is generated during TPD with a desorption temperature > 200 degrees C. With increasing calcination temperature prior to TPD, the amount of ethylene produced decreases monotonically. Significantly, 27Al MAS NMR reveals that the amount of penta-coordinate Al3+ ions (Lewis acid sites) also decreases with increasing calcination temperature. In fact, a strong correlation between the amount of penta-coordinate Al3+ ions and the amount of strongly adsorbed ethanol molecules (i.e., the ones that convert to ethylene during TPD) is obtained. This result indicates that the penta-coordinate aluminum sites are the catalytic active sites on alumina surfaces during ethanol dehydration reaction across the entire course of gamma- to alpha-Al2O3 phase transformations.

  9. Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing investigations of connectivity in sodium aluminophosphate glasses

    SciTech Connect

    LANG,DAVID P.; ALAM,TODD M.; BENCOE,DENISE N.

    2000-05-01

    Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing experiments have been used to investigate the spatial distribution of aluminum and sodium cations with respect to the phosphate backbone for a series of sodium aluminophosphate glasses, xAl{sub 2}O{sub 3}{center_dot}50Na{sub 2}O{center_dot}(50{minus}x)P{sub 2}O{sub 5} (0{le} x {le} 17.5). From the {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na connectivity data gathered, information about the medium range order in these glasses is obtained. The expanded connectivity data allows for better identification and interpretation of the new resonances observed in the {sup 31}P MAS NMR spectra with the addition of alumina. The results of the dipolar dephasing experiments show that the sodium-phosphate distribution remains relatively unchanged for the glass series, and that the addition of aluminum occurs primarily through the depolymerization of the phosphate tetrahedral backbone.

  10. Al speciation in tropical podzols of the upper Amazon Basin: A solid-state 27Al MAS and MQMAS NMR study

    NASA Astrophysics Data System (ADS)

    Bardy, Marion; Bonhomme, Christian; Fritsch, Emmanuel; Maquet, Jocelyne; Hajjar, Redouane; Allard, Thierry; Derenne, Sylvie; Calas, Georges

    2007-07-01

    In the upper Amazon Basin, aluminum previously accumulated in lateritic formations is massively remobilised in soils by podzolization and exported in waters. We have investigated the speciation of aluminum in the clay-size fractions of eight horizons of waterlogged podzols lying in a depression of a plateau. The horizons illustrate the main steps involved in the podzolization of laterites. They belong to eluviated topsoil A horizons and illuviated subsoil Bhs, Bh and 2BCs horizons of weakly and better-expressed podzols located at the margin and centre of the depression. For the first time, aluminum speciation is quantitatively assessed in soils by spectroscopic methods, namely FTIR, 27Al magic angle spinning (MAS) and multiple-quantum magic angle spinning (MQMAS), nuclear magnetic resonance (NMR). The results thus obtained are compared to chemical extraction data. Solid-state 27Al MAS NMR spectra enable to distinguish Al bound to organic compounds from that incorporated in secondary mineral phases detected by FTIR. MQMAS experiments additionally show that both chemical shifts and quadrupolar constants are distributed for Al nuclei linked with organic compounds. Similar amounts of chelated Al are obtained from NMR spectra and chemical extractions. The study enables to highlight three major steps in the fate of aluminum. (i) Aluminum is first released by mineral weathering, feeds complexing sites of organic matter and accumulates in subsurface Bhs horizons of weakly expressed podzols (acidocomplexolysis). (ii) Complexes of aluminum with organic matter (Al-OM) then migrate downwards in sandy horizons of better-expressed podzols and accumulate at depth in less permeable 2BCs horizons. (iii) The minor amounts of aluminum present in the 2BCs horizon of the downslope podzol show that aluminum is eventually exported towards the river network, either complexed with organic matter or as Al 3+ ions after desorption from organic compounds, due to decreasing pH or

  11. Study of the A(e,e'$\\pi^+$) Reaction on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au

    SciTech Connect

    Qian, X; Clasie, B; Arrington, J; Asaturyan, R; Benmokhtar, F; Boeglin, W; Bosted, P; Bruell, A; Christy, M E; Chudakov, E; Dalton, M M; Daniel, A; Day, D; Dutta, D; El Fassi, L; Ent, R; Fenker, H C; Ferrer, J; Fomin, N; Gao, H; Garrow, K; Gaskell, D; Gray, C; Huber, G M; Jones, M K; Kalantarians, N; Keppel, C E; Kramer, K; Li, Y; Liang, Y; Lung, A F; Malace, S; Markowitz, P; Matsumura, A; Meekins, D G; Mertens, T; Miyoshi, T; Mkrtchyan, H; Monson, R; Navasardyan, T; Niculescu, G; Niculescu, I; Okayasu, Y; Opper, A K; Perdrisat, C; Punjabi, V; Rauf, A W; Rodriquez, V M; Rohe, D; Seely, J; Segbefia, E; Smith, G R; Sumihama, M; Tadevosyan, V; Tang, L; Villano, A; Vulcan, W F; Wesselmann, F R; Wood, S A; Yuan, L; Zheng, X

    2010-05-01

    Cross sections for the p($e,e'\\pi^{+}$)n process on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au targets were measured at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in order to extract the nuclear transparencies. Data were taken for four-momentum transfers ranging from $Q^2$=1.1 to 4.8 GeV$^2$ for a fixed center of mass energy of $W$=2.14 GeV. The ratio of $\\sigma_L$ and $\\sigma_T$ was extracted from the measured cross sections for $^1$H, $^2$H, $^{12}$C and $^{63}$Cu targets at $Q^2$ = 2.15 and 4.0 GeV$^2$ allowing for additional studies of the reaction mechanism. The experimental setup and the analysis of the data are described in detail including systematic studies needed to obtain the results. The results for the nuclear transparency and the differential cross sections as a function of the pion momentum at the different values of $Q^2$ are presented. Global features of the data are discussed and the data are compared with the results of model calculations for the p($e,e'\\pi^{+}$)n reaction from nuclear targets.

  12. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  13. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    SciTech Connect

    Sevelsted, Tine F.; Skibsted, Jørgen

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  14. The Local Structural State of Aluminosilicate Garnet Solid Solutions: An Investigation of Grospydite Garnet from the Roberts Victor Kimberlite Using Paramagnetically Shifted 27Al and 29Si MAS NMR Resonances

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Palke, A. C.; Stebbins, J. F.

    2014-12-01

    Most rock-forming silicates are substitutional solid solutions. Over the years extensive research has been done to determine their structural and crystal chemical properties. Here, the distribution of cations, or order-disorder behavior, is of central importance. In the case of aluminosilicate garnet solid solutions (X3Al2Si3O12 with X = Mg, Fe2+, Mn2+ and Ca) it has been shown that both synthetic and natural crystals have random long-range X-cation disorder in space group Ia-3d, as given by X-ray single-crystal diffraction measurements. However, the structural state of natural garnets at the local scale is not known. Garnet from a grospydite xenolith from the Roberts Victor kimberlite, South Africa, was studied by 27Al and 29Si MAS NMR spectroscopy. The research thrust was placed on measuring and analyzing paramagnetically shifted resonances to determine the local (short range) structural state of the X-cations in a grossular-rich ternary aluminosilicate garnet solid solution. The garnet crystals are compositionally homogeneous based on microprobe analysis, showing no measurable zoning, and have the formula Grs46.7Prp30.0Alm23.3. The garnet is cubic with the standard garnet space group Ia-3d. The 27Al MAS NMR spectrum shows a very broad asymmetric resonance located between about 100 and -50 ppm. It consists of a number of individual overlapping paramagnetically shifted resonances, which are difficult to analyze quantitatively. The 29Si MAS NMR spectrum, showing better resolution, has two observable resonances termed S0 and S4. S0 is located between about -60 ppm and -160 ppm and S4 is centered at roughly 95 ppm. Both S0 and S4 are composite resonances in nature containing many overlapping individual peaks. S0 contains information on local cation configurations whereby an isolated SiO4 group in the garnet structure does not have an edge-shared Fe2+-containing dodecahedron. S4 involves local configurations where there is one edge-shared dodecahedron containing Fe2

  15. Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    SciTech Connect

    Andersen, Morten Daugaard; Jakobsen, Hans J.; Skibsted, Joergen

    2004-05-01

    The effects of hydrating a white Portland cement (wPc) in 0.30 and 0.50 M solutions of sodium aluminate (NaAlO{sub 2}) at 5 and 20 deg. C are investigated by {sup 27}Al and {sup 29}Si magic-angle spinning (MAS) NMR spectroscopy. It is demonstrated that NaAlO{sub 2} accelerates the hydration of alite and belite and results in calcium-silicate-hydrate (C-S-H) phases with longer average chain lengths of SiO{sub 4}/AlO{sub 4} tetrahedra. The C-S-H phases are investigated in detail and it is shown that the Al/Si ratio for the chains of tetrahedra is quite constant during the time studied for the hydration (6 h to 2 years) but increases for higher concentration of the NaAlO{sub 2} solution. The average chain lengths of 'pure' silicate and SiO{sub 4}/AlO{sub 4} tetrahedra demonstrate that Al acts as a linker for the silicate chains, thereby producing aluminosilicate chains with longer average chain lengths. Finally, it is shown that NaAlO{sub 2} reduces the quantity of ettringite and results in larger quantities of monosulfate and a calcium aluminate hydrate phase.

  16. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  17. Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens

    2012-06-20

    The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two.

  18. Determination of distributions of the quadrupole interaction in amorphous solids by 27Al satellite transition spectroscopy.

    PubMed

    Jäger, C; Kunath, G; Losso, P; Scheler, G

    1993-04-01

    27Al Satellite transition spectroscopy (SATRAS) has been used to extract both the quadrupole interaction and its distribution width from MAS spectra of glasses. Using this method a measurement at a single magnetic field strength allows one to obtain the true chemical shifts and the quadrupole interaction (and its distributions) with high accuracy, including quantification of the results. In contrast to earlier investigations the central transition MAS lineshapes can be described without assumptions and give correct relative proportions of differently coordinated Al species in glasses. The distribution model for the quadrupole interaction and the resulting MAS lineshapes are discussed in detail including a description of the experimental requirements. Experimental results of 27Al SATRAS spectra of a ternary Al2O3-B2O3-P2O5 glass exhibiting 4-, 5-, and 6-coordinated aluminum species clearly prove different mean values and distribution widths for the quadrupole interaction in the various AlOx polyhedra.

  19. 27Al, 47,49Ti, 31P, and 13C MAS NMR Study of VX, GD, and HD Reactions with Nanosize Al2O3, Conventional Al2O3 and TiO2, and Aluminum and Titanium Metal

    DTIC Science & Technology

    2007-01-01

    reactions involved and peak assignments for titanophosphonate 3, Ti(m) and anatase (see text). 17568 J. Phys. Chem. C , Vol. 111, No. 47, 2007 Wagner et al...postulated to be Ti(O)[O2P(CH3)OPin]2, in agreement with elemental analysis. High-field 47,49Ti MAS NMR of anatase shows marked narrowing of its signals...Metal 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Reactions of VX, GD, and HD with Al2O3, TiO2 ( anatase and rutile), aluminum, and titanium metal

  20. Studies of 27Al NMR in SrAl4

    NASA Astrophysics Data System (ADS)

    Niki, Haruo; Higa, Nonoka; Kuroshima, Hiroko; Toji, Tatsuki; Morishima, Mach; Minei, Motofumi; Yogi, Mamoru; Nakamura, Ai; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika; Harima, Hisatomo

    A charge density wave (CDW) transition at TCDW = 243 K and a structural phase (SP) transition at approximately 100 K occur in SrAl4 with the BaAl4-type body center tetragonal structure, which is the divalent and non-4f electron reference compound of EuAl4. To understand the behaviors of the CDW and SP transitions, the 27Al NMR measurements using a single crystal and a powder sample of SrAl4 have been carried out. The line width below TCDW is modulated by an electrical quadruple interaction between 27Al nucleus and CDW charge modulation. The incommensurate CDW state below TCDW changes into a different structure below TSP. The temperature dependences of Knight shifts of 27Al(I) and 27Al(II) show the different behaviors. The temperature variation of 27Al(I) Knight shift shows anomalies at the CDW and SP transition temperatures, revealing the shift to negative side below TCDW, which is attributable to the core polarization of the d-electrons. However, 27Al(II) Knight shift keeps almost constant except for the small shift due to the SP transition. The 1/T1T of 27Al(I) indicates the obvious changes due to the CDW and SP transitions, while that of 27Al(II) takes a constant value. The density of state at the Fermi level at Al(I) site below 60 K would be about 0.9 times less than that above TCDW.

  1. Barrier distributions for the 7Li+27Al reaction

    NASA Astrophysics Data System (ADS)

    Cárdenas, W. H. Z.

    2010-08-01

    Barrier distributions can be obtained from the first derivative of the elastic and quasielastic (QEL) backward angle excitation functions [1]. In this work we present a study of the barrier distribution for the 7Li+27Al reaction from a Coupled-Channels Born Approximation (CCBA) calculations using the code FRESCO [2].

  2. Experimental Progress on the NIST ^27Al^+ Optical Clock

    NASA Astrophysics Data System (ADS)

    Chou, Chin-Wen; Hume, David B.; Koelemeij, Jeroen C. J.; Rosenband, Till; Bergquist, James C.; Wineland, Dave J.

    2009-05-01

    A recent measurement of the frequency ratio between single-ion optical clocks based on ^27Al^+ and ^199Hg^+ at NIST showed a combined statistical and systematic uncertainty of 5.2 x 10-17[1]. Here we report progress on improving both the accuracy and stability of the ^27Al^+ optical clock. We have developed a new trap and laser systems that enable the use of ^25Mg^+ for sympathetic cooling and clock-state detection of ^27Al^+. These developments should reduce time-dilation shifts caused by harmonic motion of the ions and thus lower the dominant systematic uncertainty below 10-17. In the new clock apparatus we have demonstrated spectroscopy of the ^27Al^+ ^1S0 to ^3P0 transition with a quality factor of Q = 3.5 x 10^14 and simultaneously a contrast approaching unity. In addition, we have developed techniques for the sympathetic laser cooling and quantum logic spectroscopy of multiple aluminum ions with the goal of further improving measurement stability [2]. *supported by ONR and NIST [1] T. Rosenband et al., Science 319, 1808 (2008) [2] D. B. Hume et al., Phys. Rev. Lett. 99, 120502 (2007)

  3. 27Al scattering at low energies

    NASA Astrophysics Data System (ADS)

    Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Pires, K. C. C.; Lubian, J.; Mendes Junior, D. R.; de Faria, P. N.; Kolata, J. J.; Becchetti, F. D.; Jiang, H.; Aguilera, E. F.; Lizcano, D.; Martinez-Quiroz, E.; Garcia, H.

    2017-01-01

    We present 8B 27Al elastic scattering angular distributions for the proton-halo nucleus 8B at two energies above the Coulomb barrier, namely Elab=15.3 and 21.7 MeV. The experiments were performed in the Radioactive Ion Beams in Brasil facility (RIBRAS) in São Paulo, and in the TwinSol facility at the University of Notre Dame, USA. The angular distributions were measured in the angular range of 15-80 degrees. Optical model and continuum discretized coupled channels calculations were performed, and the total reaction cross sections were derived. A comparison of the 8B+27Al total reaction cross sections with similar systems including exotic, weakly bound, and tightly bound projectiles impinging on the same target is presented.

  4. Al coordination and water speciation in hydrous aluminosilicate glasses: direct evidence from high-resolution heteronuclear 1H-27Al correlation NMR.

    PubMed

    Xue, Xianyu; Kanzaki, Masami

    2007-02-01

    In order to shed light on the dissolution mechanisms of water in depolymerized aluminosilicate melts/glasses, a comprehensive one- (1D) and two-dimensional (2D) NMR study has been carried out on hydrous Ca- and Mg-aluminosilicate glasses of a haplobasaltic composition. The applied techniques include 1D 1H MAS NMR and 27Al-->1H cross-polarization (CP) MAS NMR, and 2D 1H NOESY and double-quantum (DQ) MAS NMR, 27Al triple-quantum (3Q) MAS NMR and 27Al-->1H heteronuclear correlation (HETCOR) and 3QMAS/HETCOR NMR. Ab initio calculations were also performed to place additional constraints on the 1H NMR characteristics of AlOH and Si(OH)Al groups. This study has revealed, for the first time, the presence of free OH (i.e. (Ca, Mg)OH), SiOH and AlOH species, in addition to molecular H2O, in hydrous glasses of a depolymerized aluminosilicate composition. The AlOH groups are mostly associated with four-coordinate Al, but some are associated with five- and six-coordinate Al.

  5. Combining (27)Al Solid-State NMR and First-Principles Simulations To Explore Crystal Structure in Disordered Aluminum Oxynitride.

    PubMed

    Tu, Bingtian; Liu, Xin; Wang, Hao; Wang, Weimin; Zhai, Pengcheng; Fu, Zhengyi

    2016-12-19

    The nuclear magnetic resonance (NMR) technique gives insight into the local information in a crystal structure, while Rietveld refinement of powder X-ray diffraction (PXRD) sketches out the framework of a crystal lattice. In this work, first-principles calculations were combined with the solid-state NMR technique and Rietveld refinement to explore the crystal structure of a disordered aluminum oxynitride (γ-alon). The theoretical NMR parameters (chemical shift, δiso, quadrupolar coupling constants, CQ, and asymmetry parameter, η) of Al22.5O28.5N3.5, predicted by the gauge-including projector augmented wave (GIPAW) algorithm, were used to facilitate the analytical investigation of the (27)Al magic-angle spinning (MAS) NMR spectra of the as-prepared sample, whose formula was confirmed to be Al2.811O3.565N0.435 by quantitative analysis. The experimental δiso, CQ, and η of (27)Al showed a small discrepancy compared with theoretical models. The ratio of aluminum located at the 8a to 16d sites was calculated to be 0.531 from the relative integration of peaks in the (27)Al NMR spectra. The occupancies of aluminum at the 8a and 16d positions were determined through NMR investigations to be 0.9755 and 0.9178, respectively, and were used in the Rietveld refinement to obtain the lattice parameter and anion parameter of Al2.811O3.565N0.435. The results from (27)Al NMR investigations and PXRD structural refinement complemented each other. This work provides a powerful and accessible strategy to precisely understand the crystal structure of novel oxynitride materials with multiple disorder.

  6. Decay of negative muons bound in {sup 27}Al

    SciTech Connect

    Grossheim, A.; Bayes, R.; Faszer, W.; Fujiwara, M. C.; Gill, D. R.; Gumplinger, P.; Henderson, R. S.; Hillairet, A.; Hu, J.; Marshall, G. M.; Mischke, R. E.; Olchanski, K.; Olin, A.; Openshaw, R.; Poutissou, J.-M.; Poutissou, R.; Sheffer, G.; Shin, B.; Bueno, J. F.; Hasinoff, M. D.

    2009-09-01

    We present the first measurement of the energy spectrum up to 70 MeV of electrons from the decay of negative muons after they become bound in {sup 27}Al atoms. The data were taken with the TWIST apparatus at TRIUMF. We find a muon lifetime of (864.6{+-}1.2) ns, in agreement with earlier measurements. The asymmetry of the decay spectrum is consistent with zero, indicating that the atomic capture has completely depolarized the muons. The measured momentum spectrum is in reasonable agreement with theoretical predictions at the higher energies, but differences around the peak of the spectrum indicate the need for O({alpha}) radiative corrections to the calculations. The present measurement is the most precise measurement of the decay spectrum of muons bound to any nucleus.

  7. The NIST 27 Al+ quantum-logic clock

    NASA Astrophysics Data System (ADS)

    Leibrandt, David; Brewer, Samuel; Chen, Jwo-Sy; Hume, David; Hankin, Aaron; Huang, Yao; Chou, Chin-Wen; Rosenband, Till; Wineland, David

    2016-05-01

    Optical atomic clocks based on quantum-logic spectroscopy of the 1 S0 <--> 3 P0 transition in 27 Al+ have reached a systematic fractional frequency uncertainty of 8 . 0 ×10-18 , enabling table-top tests of fundamental physics as well as measurements of gravitational potential differences. Currently, the largest limitations to the accuracy are second order time dilation shifts due to the driven motion (i.e., micromotion) and thermal motion of the trapped ions. In order to suppress these shifts, we have designed and built new ion traps based on gold-plated, laser-machined diamond wafers with differential RF drive, and we have operated one of our clocks with the ions laser cooled to near the six mode motional ground state. We present a characterization of the time dilation shifts in the new traps with uncertainties near 1 ×10-18 . Furthermore, we describe a new protocol for clock comparison measurements based on synchronous probing of the two clocks using phase-locked local oscillators, which allows for probe times longer than the laser coherence time and avoids the Dick effect. This work is supported by ARO, DARPA, and ONR.

  8. Practical comparison of sensitivity and resolution between STMAS and MQMAS for 27Al

    NASA Astrophysics Data System (ADS)

    Takahashi, Takafumi; Kanehashi, Koji; Shimoikeda, Yuichi; Nemoto, Takahiro; Saito, Koji

    2009-06-01

    An experimental comparison of sensitivity and resolution of satellite transition (ST) MAS and multiple quantum (MQ) MAS was performed for 27Al ( I = 5/2) using several pulse sequences with a z-filter and SPAM, and two inorganic samples of kaolin (Al 2Si 2O 5(OH) 4) and glass (43.1CaO-12.5Al 2O 3-44.4SiO 2). Six pulse sequences of STMAS (double-quantum filter-soft pulse added mixing = DQF-SPAM, double-quantum filter = DQF, double-quantum = DQ) and MQMAS (3QMAS- z-filter = 3Qz, 3QMAS-SPAM = 3Q-SPAM, 5QMAS- z-filter = 5Qz) are employed. All experiments have been conducted utilizing a static field of 16.4 T (700 MHz for 1H) and a rotor spinning frequency of 20 kHz. Dependence of S/N ratios as a function of radio frequency (r.f.) field strengths indicates that strong r.f. fields are essential to obtain a better S/N ratio in all experiments. High sensitivity is obtained in the following order: DQF-SPAM, DQF, DQ, 3QSPAM, and 3Qz, although the degree of sensitivity enhancement given by STMAS for glass is slightly smaller than that for kaolin. This might be due to the different excitation and conversion efficiencies of ST and MQ coherences as a function Cq values because quadrupolar interaction of the glass are widely distributed, or to motional broadening caused by framework flexibility in the structure of glass. With respect to resolution, the full widths at half maximum (FWHM) of F1 projections of DQF-STMAS and 3QMAS spectra for kaolin are found to be comparable, which agrees with a simulated result reported in a literature. For glass, the STMAS possess slightly wider line widths than 3QMAS. However, because such a difference in line widths of STMAS and 3QMAS spectra is substantially small, we have concluded that STMAS and 3QMAS have comparable resolution for crystalline and non-crystalline materials.

  9. Practical comparison of sensitivity and resolution between STMAS and MQMAS for 27Al.

    PubMed

    Takahashi, Takafumi; Kanehashi, Koji; Shimoikeda, Yuichi; Nemoto, Takahiro; Saito, Koji

    2009-06-01

    An experimental comparison of sensitivity and resolution of satellite transition (ST) MAS and multiple quantum (MQ) MAS was performed for (27)Al (I=5/2) using several pulse sequences with a z-filter and SPAM, and two inorganic samples of kaolin (Al(2)Si(2)O(5)(OH)(4)) and glass (43.1CaO-12.5Al(2)O(3)-44.4SiO(2)). Six pulse sequences of STMAS (double-quantum filter-soft pulse added mixing=DQF-SPAM, double-quantum filter=DQF, double-quantum=DQ) and MQMAS (3QMAS-z-filter=3Qz, 3QMAS-SPAM=3Q-SPAM, 5QMAS-z-filter=5Qz) are employed. All experiments have been conducted utilizing a static field of 16.4T (700MHz for (1)H) and a rotor spinning frequency of 20kHz. Dependence of S/N ratios as a function of radio frequency (r.f.) field strengths indicates that strong r.f. fields are essential to obtain a better S/N ratio in all experiments. High sensitivity is obtained in the following order: DQF-SPAM, DQF, DQ, 3QSPAM, and 3Qz, although the degree of sensitivity enhancement given by STMAS for glass is slightly smaller than that for kaolin. This might be due to the different excitation and conversion efficiencies of ST and MQ coherences as a function C(q) values because quadrupolar interaction of the glass are widely distributed, or to motional broadening caused by framework flexibility in the structure of glass. With respect to resolution, the full widths at half maximum (FWHM) of F(1) projections of DQF-STMAS and 3QMAS spectra for kaolin are found to be comparable, which agrees with a simulated result reported in a literature. For glass, the STMAS possess slightly wider line widths than 3QMAS. However, because such a difference in line widths of STMAS and 3QMAS spectra is substantially small, we have concluded that STMAS and 3QMAS have comparable resolution for crystalline and non-crystalline materials.

  10. Differential cross section measurements of 27Al(p,p/γ)27Al and 27Al(p,αγ)24Mg reactions in the energy range of 1.6-3.0 MeV

    NASA Astrophysics Data System (ADS)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.; Sharifzadeh, N.; Fathollahi, V.

    2015-11-01

    In this work measurement of differential cross sections of 27Al(p,p/γ)27Al (Eγ = 844, 1014 keV) and 27Al(p,αγ)24Mg (Eγ = 1369 keV) nuclear reactions in the proton energy range of 1.6-3.0 MeV are described and the measured values are presented. Thin Al target was prepared by evaporating a 26 μg/cm2 Al onto a 129 μg/cm2 self-supporting Ag film. The gamma-rays and backscattered protons were detected simultaneously. The gamma-rays and protons were collected by an HPGe detector placed at an angle of 90° with respect to beam direction and an ion implanted Si detector placed at a scattering angle of 165°, respectively. In this experimental setup the great advantage is that differential cross sections could be independent on absolute values of the collected beam charge. The overall systematic uncertainty of cross sections was estimated to be ±9% while statistical errors were less than ±5%.

  11. Recent advances in application of (27)Al NMR spectroscopy to materials science.

    PubMed

    Haouas, Mohamed; Taulelle, Francis; Martineau, Charlotte

    2016-05-01

    Valuable information about the local environment of the aluminum nucleus can be obtained through (27)Al Nuclear Magnetic Resonance (NMR) parameters like the isotropic chemical shift, scalar and quadrupolar coupling constants, and relaxation rate. With nearly 250 scientific articles per year dealing with (27)Al NMR spectroscopy, this analytical tool has become popular because of the recent progress that has made the acquisition and interpretation of the NMR data much easier. The application of (27)Al NMR techniques to various classes of compounds, either in solution or solid-state, has been shown to be extremely informative concerning local structure and chemistry of aluminum in its various environments. The development of experimental methodologies combined with theoretical approaches and modeling has contributed to major advances in spectroscopic characterization especially in materials sciences where long-range periodicity and classical local NMR probes are lacking. In this review we will present an overview of results obtained by (27)Al NMR as well as the most relevant methodological developments over the last 25years, concerning particularly on progress in the application of liquid- and solid-state (27)Al NMR to the study of aluminum-based materials such as aluminum polyoxoanions, zeolites, aluminophosphates, and metal-organic-frameworks.

  12. Multiple-quantum cross-polarization in MAS NMR of quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Ashbrook, Sharon E.; Brown, Steven P.; Wimperis, Stephen

    1998-05-01

    Using 27Al ( I=5/2) NMR of aluminium acetylacetonate, we show that it is possible to cross-polarize from a spin I=1/2 nucleus ( 1H) directly to the central triple-quantum transition of a half-integer quadrupolar nucleus ( 27Al) in a powdered sample under MAS conditions. The optimum conditions for this multiple-quantum cross-polarization (MQCP) are investigated experimentally and compared with existing theoretical results. The new technique is applied to the recently introduced two-dimensional MQMAS experiment for recording high-resolution NMR spectra of half-integer quadrupolar nuclei.

  13. Low and medium energy deuteron-induced reactions on {sup 27}Al

    SciTech Connect

    Bem, P.; Simeckova, E.; Honusek, M.; Fischer, U.; Simakov, S. P.; Forrest, R. A.; Avrigeanu, M.; Obreja, A. C.; Roman, F. L.; Avrigeanu, V.

    2009-04-15

    The activation cross sections of (d,p), (d,2p), and (d,p{alpha}) reactions on {sup 27}Al were measured in the energy range from 4 to 20 MeV using the stacked-foils technique. Following a previous extended analysis of elastic scattering, breakup, and direct reaction of deuterons on {sup 27}Al, for energies from 3 to 60 MeV, the preequilibrium and statistical emissions are considered in the same energy range. Finally, all deuteron-induced reactions on {sup 27}Al including the present data measured up to 20 MeV deuteron energy are properly described due to a simultaneous analysis of the elastic scattering and reaction data.

  14. Sympathetic Ground State Cooling and Time-Dilation Shifts in an 27Al+ Optical Clock

    NASA Astrophysics Data System (ADS)

    Chen, J.-S.; Brewer, S. M.; Chou, C. W.; Wineland, D. J.; Leibrandt, D. R.; Hume, D. B.

    2017-02-01

    We report on Raman sideband cooling of 25Mg+ to sympathetically cool the secular modes of motion in a 25Mg+-27Al+ two-ion pair to near the three-dimensional (3D) ground state. The evolution of the Fock-state distribution during the cooling process is studied using a rate-equation simulation, and various heating sources that limit the efficiency of 3D sideband cooling in our system are discussed. We characterize the residual energy and heating rates of all of the secular modes of motion and estimate a secular motion time-dilation shift of -(1.9 ±0.1 )×10-18 for an 27Al+ clock at a typical clock probe duration of 150 ms. This is a 50-fold reduction in the secular motion time-dilation shift uncertainty in comparison with previous 27Al+ clocks.

  15. Sympathetic Ground State Cooling and Time-Dilation Shifts in an ^{27}Al^{+} Optical Clock.

    PubMed

    Chen, J-S; Brewer, S M; Chou, C W; Wineland, D J; Leibrandt, D R; Hume, D B

    2017-02-03

    We report on Raman sideband cooling of ^{25}Mg^{+} to sympathetically cool the secular modes of motion in a ^{25}Mg^{+}-^{27}Al^{+} two-ion pair to near the three-dimensional (3D) ground state. The evolution of the Fock-state distribution during the cooling process is studied using a rate-equation simulation, and various heating sources that limit the efficiency of 3D sideband cooling in our system are discussed. We characterize the residual energy and heating rates of all of the secular modes of motion and estimate a secular motion time-dilation shift of -(1.9±0.1)×10^{-18} for an ^{27}Al^{+} clock at a typical clock probe duration of 150 ms. This is a 50-fold reduction in the secular motion time-dilation shift uncertainty in comparison with previous ^{27}Al^{+} clocks.

  16. Ferromagnetic ordering in NpAl2: Magnetic susceptibility and 27Al nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Martel, L.; Griveau, J.-C.; Eloirdi, R.; Selfslag, C.; Colineau, E.; Caciuffo, R.

    2015-08-01

    We report on the magnetic properties of the neptunium based ferromagnetic compound NpAl2. We used magnetization measurements and 27Al NMR spectroscopy to access magnetic features related to the paramagnetic and ordered states (TC=56 K). While very precise DC SQUID magnetization measurements confirm ferromagnetic ordering, they show a relatively small hysteresis loop at 5 K reduced with a coercive field HCo~3000 Oe. The variable offset cumulative spectra (VOCS) acquired in the paramagnetic state show a high sensitivity of the 27Al nuclei spectral parameters (Knight shifts and line broadening) to the ferromagnetic ordering, even at room temperature.

  17. Solid-state {sup 27}Al and {sup 29}Si NMR characterization of hydrates formed in calcium aluminate-silica fume mixtures

    SciTech Connect

    Pena, P.; Rivas Mercury, J.M.

    2008-08-15

    Partially deuterated Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub y}(OH){sub 12-4y}-Al(OH){sub 3} mixtures, prepared by hydration of Ca{sub 3}Al{sub 2}O{sub 6} (C{sub 3}A), Ca{sub 12}Al{sub 14}O{sub 33} (C{sub 12}A{sub 7}) and CaAl{sub 2}O{sub 4} (CA) phases in the presence of silica fume, have been characterized by {sup 29}Si and {sup 27}Al magic-angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies. NMR spectroscopy was used to characterize anhydrous and fully hydrated samples. In hydrated compounds, Ca{sub 3}Al{sub 2}(OH){sub 12} and Al(OH){sub 3} phases were detected. From the quantitative analysis of {sup 27}Al NMR signals, the Al(OH){sub 3}/Ca{sub 3}Al{sub 2}(OH){sub 12} ratio was deduced. The incorporation of Si into the katoite structure, Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-x}(OH){sub 4x}, was followed by {sup 27}Al and {sup 29}Si NMR spectroscopies. Si/OH ratios were determined from the quantitative analysis of {sup 27}Al MAS-NMR components associated with Al(OH){sub 6} and Al(OSi)(OH){sub 5} environments. The {sup 29}Si NMR spectroscopy was also used to quantify the unreacted silica and amorphous calcium aluminosilicate hydrates formed, C-S-H and C-A-S-H for short. From {sup 29}Si NMR spectra, the amount of Si incorporated into different phases was estimated. Si and Al concentrations, deduced by NMR, transmission electron microscopy, energy dispersive spectrometry, and Rietveld analysis of both X-ray and neutron data, indicate that only a part of available Si is incorporated in katoite structures. - Graphical abstract: Transmission electron micrograph of CaAl{sub 2}O{sub 4}-microsilica mixture hydrated at 90 deg. C for 31 days showing a cubic Ca{sub 3}Al{sub 2.0{+-}}{sub 0.2}(SiO{sub 4}){sub 0.9{+-}}{sub 0.2}(OH){sub 1.8} crystal surrounded by unreacted amorphous silica spheres.

  18. Heterogeneity of Mg Isotopes and Variable ^26Al/^27Al Ratio in FUN CAIs

    NASA Astrophysics Data System (ADS)

    Park, C.; Nagashima, K.; Hutcheon, I. D.; Wasserburg, G. J.; Papanastassiou, D. A.; Davis, A. M.; Huss, G. R.; Krot, A. N.

    2013-09-01

    We report high-precision Mg-isotope data of individual minerals from the Axtell 2271, BG82DH8, EK1-4-1, C1, TE, and CG14 FUN CAIs, which shows variations in both Mg-isotope ratio and ^26Al/^27Al ratio.

  19. Barrier distributions for the {sup 7}Li+{sup 27}Al reaction

    SciTech Connect

    Cardenas, W. H. Z.

    2010-08-04

    Barrier distributions can be obtained from the first derivative of the elastic and quasielastic (QEL) backward angle excitation functions [1]. In this work we present a study of the barrier distribution for the {sup 7}Li+{sup 27}Al reaction from a Coupled-Channels Born Approximation (CCBA) calculations using the code FRESCO [2].

  20. Temperature effects on the 27Al NMR spectra of polymeric aluminum hydrolysis species

    NASA Astrophysics Data System (ADS)

    Fitzgerald, John J.; Johnson, Loren E.; Frye, James S.

    27Al NMR studies at 39.10 MHz of highly hydrolyzed, concentrated aluminum chlorohydrate (ACH) solutions ( overlinen = [ OH]/[ Al] = 2.50 , "Al 2 (OH) 5Cl") from 2.5 to 0.2 M Al in various supporting electrolytes at room temperature (RT) and 82°C are reported. The complex 27Al NMR resonance features for ACH solutions, attributed to two unique polymeric species of unknown structure, are dependent upon concentration, temperature, and the nature and concentration of the supporting electrolyte anion. Major differences are observed in the 27Al NMR of fresh and "aged" 1.0 M ACH solutions obtained at RT, at 82°C, and at RT following temperature elevation to 82°C. These latter NMR spectra exhibit dramatic and irreversible resonance changes in comparison with RT NMR data obtained for fresh ACH solutions prior to elevation to 82°C. These 27Al NMR results, together with gel filtration chromatography data, provide evidence for the irreversible depolymerization of large molecular weight polycationic species to intermediate sized molecular weight polymeric species following dilution, aging, or temperature elevation. This depolymerization reaction is concentration, temperature, and anion dependent and provides a clearer understanding of the kinetic processes occurring for the polymeric aluminum species in ACH solutions.

  1. Elastic scattering measurements for {sup 7}Be+{sup 27}Al system at RIBRAS facility

    SciTech Connect

    Morcelle, V.; Lichtenthaeler, R.; Morais, M. C.; Lepine-Szily, A.; Guimaraes, V.; Faria, P. N. de; Gasques, L.; Pires, K. C. C.; Condori, R. P.; Gomes, P. R. S.; Lubian, J.; Mendes, D. R. Jr.; Barioni, A.; Shorto, J. M. B.; Zamora, J. C.

    2013-05-06

    Elastic scattering angular distribution measurements of {sup 7}Be+{sup 27}Al system were performed at the laboratory energy of 15.6 MeV. The {sup 7}Be secondary beam was produced by the proton transfer reaction {sup 3}He({sup 6}Li,{sup 7}Be) and impinged on {sup 27}Al and {sup 197}Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS. The elastic angular distribution was obtained within the angular range of 15{sup 0} - 80{sup 0} at the center of mass frame. Optical model calculations have been performed using the Woods- Saxon form factors and the Sao Paulo potential to fit the experimental data. The total reaction cross section was derived.

  2. Projectile and Target Fragmentation in the Interaction of 12C and 27Al

    SciTech Connect

    Foertsch, S.V.; Steyn, G.F.; Lawrie, J.J.; Smit, F.D.; Cerutti, F.; Colleoni, P.; Gadioli, E.; Mairani, A.; Connell, S.H.; Fearick, R.W.; Thovhogi, T.; Machner, H.; Goldenbaum, F.; Pysz, K.

    2005-05-24

    The emission of intermediate mass fragments (IMFs) produced in the inclusive 12C+27Al and 27Al+12C reactions at incident energies corresponding to a c.m. excitation energy of 107.5 MeV were studied at lab. angles of 12 deg. to 25 deg. Double differential cross sections of the IMF spectra are compared to model calculations, which include direct breakup of both the projectile and target, nucleon coalescence, as well as partial and complete fusion. This study indicates the importance of the complementary nature of a reaction together with its inverse process in fully understanding the driving reaction mechanisms in the interaction of two light-mass nuclei.

  3. Correlation of Mechanical Properties in Bulk Metallic Glasses with 27Al NMR Characteristics

    DTIC Science & Technology

    2011-12-01

    properties Magdalena T SANDOR , Laszlo J KECSKES , Qiang HE , Jian XU , Yue WU University of North Carolina - Chapel Hill Office of Sponsored...doi: 10.1007/s11434-011-4834-z Correlation of mechanical properties in bulk metallic glasses with 27Al NMR characteristics SANDOR Magdalena T1...bulk metallic glass, nuclear magnetic resonance, knight shift, magnetic susceptibility, mechanical properties Citation: Sandor M T, Kecskes L J

  4. Pulsed field gradient multiple-quantum MAS NMR spectroscopy of half-integer spin quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Fyfe, C. A.; Skibsted, J.; Grondey, H.; Meyer zu Altenschildesche, H.

    1997-12-01

    Pulsed field gradients (PFGs) have been applied to select coherence transfer pathways in multiple-quantum (MQ) MAS NMR spectra of half-integer spin quadrupolar nuclei in rigid solids. 27Al triple-quantum (3Q) MAS NMR spectra of the aluminophosphate molecular sieves VPI-5 and AlPO 4-18 have been used to demonstrate the selection of the (0)→(3)→(-1) coherence transfer pathway using PFGs and no phase cycling. Compared to MQMAS experiments that employ phase cycling schemes, the main advantage of the PFG-MQMAS technique is its simplicity, which should facilitate the combination of MQMAS with other pulse sequences.

  5. 14N + 13C fusion cross sections and compound nucleus limitation in 27Al

    NASA Astrophysics Data System (ADS)

    Digregorio, D. E.; Gomez del Campo, J.; Chan, Y. D.; Ford, J. L. C., Jr.; Shapira, D.; Ortiz, M. E.

    1982-10-01

    Fusion cross sections for the 14N + 13C system have been measured by detecting the evaporation residues at five bombarding energies which correspond to high excitation energies in the compound nucleus: E*(27Al)=64-110 MeV. The 27Al nucleus can be populated by four different heavy-ion entrance channels-15N + 12C, 16O + 11B, 14N + 13C, and 17O + 10B-which are accessible to experimental measurements. Comparing the present data with those already existing for the above channels, it is found that for E*>60 MeV the curves E* vs Jcr for each system converge, which may be indicative of a limitation imposed by the compound nucleus. The data are discussed in terms of existing models for entrance channel and statistical yrast line limitations. The highest energy point also suggests the existence of a maximum absolute angular momentum limit of ~28ℏ. NUCLEAR REACTIONS 14N + 13C E(14N)=86.0, 103.8, 149.0, 161.3, and 180.0 MeV; measured d2σdΩdE for reaction products from Z=5 to 12. Extracted σfus, σD, σR.

  6. Errors in the Calculation of 27Al Nuclear Magnetic Resonance Chemical Shifts

    PubMed Central

    Wang, Xianlong; Wang, Chengfei; Zhao, Hui

    2012-01-01

    Computational chemistry is an important tool for signal assignment of 27Al nuclear magnetic resonance spectra in order to elucidate the species of aluminum(III) in aqueous solutions. The accuracy of the popular theoretical models for computing the 27Al chemical shifts was evaluated by comparing the calculated and experimental chemical shifts in more than one hundred aluminum(III) complexes. In order to differentiate the error due to the chemical shielding tensor calculation from that due to the inadequacy of the molecular geometry prediction, single-crystal X-ray diffraction determined structures were used to build the isolated molecule models for calculating the chemical shifts. The results were compared with those obtained using the calculated geometries at the B3LYP/6-31G(d) level. The isotropic chemical shielding constants computed at different levels have strong linear correlations even though the absolute values differ in tens of ppm. The root-mean-square difference between the experimental chemical shifts and the calculated values is approximately 5 ppm for the calculations based on the X-ray structures, but more than 10 ppm for the calculations based on the computed geometries. The result indicates that the popular theoretical models are adequate in calculating the chemical shifts while an accurate molecular geometry is more critical. PMID:23203134

  7. Lead exchange into zeolite and clay minerals: A [sup 29]Si, [sub 27]Al, [sup 23]Na solid-state NMR study

    SciTech Connect

    Liang, J.J.; Sherriff, B.L. )

    1993-08-01

    Chabazite, vermiculite, montmorillonite, hectorite, and kaolinite were used to remove Pb, through ion exchange, from 0.01 M aqueous Pb(NO[sub 3])[sub 2] solutions. These minerals contained 27 (Na-chabazite), 16, 9, 9, and 0.5 wt % of Pb, respectively, after equilibration with the solutions. Ion exchange reached equilibrium within 24 h for Na-chabazite and vermiculite, but in less than 5 min for montmorillonite and hectorite. Na-chabazite took up more Pb than natural (Ca, Na)-chabazite (7 wt % Pb), whereas no such difference was observed in different cation forms of the clay minerals. Calcite impurities, associated with the clay minerals, effectively removed Pb from the aqueous solutions by the precipitation of cerussite (PbCO[sub 3]). [sup 29]Si, [sup 27]Al, and [sup 23]Na magic angle spinning (MAS) nuclear magnetic resonance (NMR), [sup 23]Na double rotation (DOR) NMR, and [sup 23]Na variable-temperature MAS NMR were used to study the ion exchange mechanisms. In Na-chabazite, cations in all three possible sites take part in the fast chemical exchange. The chemical exchange passes from the fast exchange regime to the slow regime at [minus]80 to [minus]100[degrees]C. One site contains a relatively low population of exchangeable cations. The other two more shielded sites contain most of the exchangeable cation. The exchangeable cations in chabazite and vermiculite were found to be close to the SiO[sub 4] and AlO[sub 4] tetrahedra, while those in the other clay minerals were more distant. Two sites (or groups of sites) for exchangeable cations were observed in hectorite. Lead tended to occupy the one which corresponds to the [minus]8 ppM peak on the [sup 23]Na MAS NMR spectrum. The behavior of the exchangeable cations in the interlayer sites was similar in all the clay minerals studied. 27 refs., 7 figs., 4 tabs.

  8. Bonding characters of Al-containing bulk metallic glasses studied by 27Al NMR.

    PubMed

    Xi, X K; Sandor, M T; Wang, H J; Wang, J Q; Wang, W H; Wu, Y

    2011-03-23

    We report very small (27)Al metallic shifts in a series of Cu-Zr-Al bulk metallic glasses. This observation and the Korringa type of spin-lattice relaxation behavior suggest that s-character wavefunctions weakly participate in bonding and opens the possibility of enhanced covalency (pd hybridization) with increasing Al concentration, in good agreement with elastic constants and hardness measurements. Moreover, ab initio calculations show that this bonding character originates from the strong Al 3p band and Zr 4d band hybridization since their atomic energy levels are closer to each other while the Al 3s band is localized far below the Fermi level. This study might provide a chemical view for understanding flow and fracture mechanisms of these bulk glass-forming alloys.

  9. Fine structure of the isoscalar giant quadrupole resonance in 28Si and 27Al

    NASA Astrophysics Data System (ADS)

    Usman, I. T.; Buthelezi, Z.; Carter, J.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Fujita, H.; Fujita, Y.; von Neumann-Cosel, P.; Neveling, R.; Papakonstantinou, P.; Pysmenetska, I.; Richter, A.; Roth, R.; Sideras-Haddad, E.; Smit, F. D.

    2016-08-01

    The isoscalar giant quadrupole resonance in 28Si and 27Al has been investigated with high-energy-resolution proton inelastic scattering at Ep=200 MeV and at scattering angles close to the maximum of Δ L =2 angular distributions with the K600 magnetic spectrometer of iThemba LABS, South Africa. Characteristic scales are extracted from the observed fine structure with a wavelet analysis and compared for 28Si with random-phase approximation and second random phase approximation calculations with an interaction derived from the Argonne V18 potential by a unitary transformation. A recent extension of the method to deformed nuclei provides the best description of the data, suggesting the significance of Landau damping.

  10. Thick target neutron yield from 145 MeV 19F+27Al system

    NASA Astrophysics Data System (ADS)

    Sunil, C.; Bandyopadhyay, T.; Nandy, M.; Suman, Vitisha; Paul, S.; Nanal, V.; Pillay, R. G.; Sarkar, P. K.

    2013-09-01

    The double differential neutron energy distribution has been measured for the 19F+27Al system at 145 MeV projectile energy. The time of flight technique was used to measure the energy while pulse shape discrimination has been used to separate the neutrons from photons. The results are compared with the statistical nuclear reaction model codes PACE and EMPIRE. The PACE code appears to predict the slope and the end point energy of the experimental spectra fairly well but over predicts the values. The slope obtained from the EMPIRE calculations appears to be harder while the values being closer to the experimental results. The yield from the Hauser-Feshbach based compound nucleus model calculations agree reasonably well with the experimental results at the backward angles but not in the forward directions. The energy integrated angular distribution from 145 MeV projectiles show an enhanced emission in the forward angles compared to the similar results from 110 MeV projectiles. This analysis suggests some contribution from the pre-equilibrium emissions from the system at the higher projectile energy.

  11. Neutron Capture and Neutron Total Cross Sections Measurements for {sup 27}Al at the Oak Ridge Electron Linear Accelerator

    SciTech Connect

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.; Wright, R.Q.

    1999-08-30

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and capture cross sections of {sup 27}Al in the energy range from 100 eV to {approximately}400 keV. We report the resonance parameters as well as the Maxwellian average capture cross sections.

  12. Hydrolysis Studies and Quantitative Determination of Aluminum Ions Using [superscript 27]Al NMR: An Undergraduate Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Curtin, Maria A.; Ingalls, Laura R.; Campbell, Andrew; James-Pederson, Magdalena

    2008-01-01

    This article describes a novel experiment focused on metal ion hydrolysis and the equilibria related to metal ions in aqueous systems. Using [superscript 27]Al NMR, the students become familiar with NMR spectroscopy as a quantitative analytical tool for the determination of aluminum by preparing a standard calibration curve using standard aluminum…

  13. Inferred Initial 26Al/27Al Ratios in Presolar Stardust Grains from Supernovae are Higher than Previously Estimated

    NASA Astrophysics Data System (ADS)

    Groopman, Evan; Zinner, Ernst; Amari, Sachiko; Gyngard, Frank; Hoppe, Peter; Jadhav, Manavi; Lin, Yangting; Xu, Yuchen; Marhas, Kuljeet; Nittler, Larry R.

    2015-08-01

    We performed an in-depth exploration of the Al-Mg system for presolar graphite, SiC, and Si3N4 grains found to contain large excesses of 26Mg, indicative of the initial presence of live 26Al. Ninety of the more than 450 presolar grains processed in this study contain well-correlated {δ }26{Mg}{/}24{Mg} and 27Al/24Mg ratios, derived from Nano-scale Secondary Ion Mass Spectrometer depth profiles, whose isochron-like regression lines yield inferred initial {}26{Al}{/}27{Al} ratios that, on average, are ˜1.5-2 times larger than the ratios previously reported for the grains. The majority of presolar graphite and SiC grains are heavily affected by Al contamination, resulting in large negative {δ }26{Mg}{/}24{Mg} intercepts of the isochron lines. Al contamination is potentially due to etching of the grains’ surfaces and subsequent capture of dissolved Al during the acid dissolution of their meteorite host rocks. From the isochron fits, the magnitude of Al contamination was quantified for each grain. The amount of Al contamination on each grain was found to be random and independent of grain size, following a uniform distribution with an upper bound at 59% contamination. The Al contamination causes conventional whole-grain estimates to underpredict the initial {}26{Al}{/}27{Al} ratios. The presolar grains with the highest {}26{Al}{/}27{Al} ratios are from Type II supernovae whose isochron-derived initial {}26{Al}{/}27{Al} ratios greatly exceed those predicted in the He/C and He/N zones of SN models.

  14. Interplay of the elastic and inelastic channels in the 16O+27Al scattering at Elab = 280 MeV

    NASA Astrophysics Data System (ADS)

    Cappuzzello, F.; Nicolosi, D.; Linares, R.; Oliveira, J. R. B.; Lubian, J.; Agodi, C.; Carbone, D.; Cavallaro, M.; de Faria, P. N.; Foti, A.; Rodrigues, M. R. D.

    2016-06-01

    Recent data indicated a nuclear rainbow-like pattern in the elastic scattering of 16O + 27Al at E_{lab}=100 MeV that arises from couplings of the ground to the low-lying states of the 27Al nucleus. Similar effect was identified in the elastic angular distribution of 16O + 12C at E_{lab}=281 and 330 MeV. These experiments show a crucial role of microscopic details of nuclear structure in the elastic scattering of heavy ions at energies well above the Coulomb barrier. In this work we investigate the 16O + 27Al system at E_{lab}=280 MeV for which a coupled channel calculation predicts a pronounced nuclear rainbow-like structure. Obtained experimental data show evidences of an important coupling of the elastic channel to the inelastic. Coupled channel calculations reproduce the experimental angular distributions when a re-normalization factor on the real part of the optical potential is introduced. A proper theoretical approach still requires a high degree of accuracy for the nuclear structure models and new tools to deal with collective excitations.

  15. EARLY SOLAR NEBULA CONDENSATES WITH CANONICAL, NOT SUPRACANONICAL, INITIAL {sup 26}Al/{sup 27}Al RATIOS

    SciTech Connect

    MacPherson, G. J.; Bullock, E. S.; Janney, P. E.; Wadhwa, M.; Kita, N. T.; Ushikubo, T.; Davis, A. M.; Krot, A. N.

    2010-03-10

    The short-lived radionuclide {sup 26}Al existed throughout the solar nebula 4.57 Ga ago, and the initial abundance ratio ({sup 26}Al/{sup 27}Al){sub 0}, as inferred from magnesium isotopic compositions of calcium-aluminum-rich inclusions (CAIs) in chondritic meteorites, has become a benchmark for understanding early solar system chronology. Internal mineral isochrons in most CAIs measured by secondary ion mass spectrometry (SIMS) give ({sup 26}Al/{sup 27}Al){sub 0} {approx} (4-5) x 10{sup -5}, called 'canonical'. Some recent high-precision analyses of (1) bulk CAIs measured by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS), (2) individual CAI minerals and their mixtures measured by laser-ablation MC-ICPMS, and (3) internal isochrons measured by multicollector (MC)-SIMS indicated a somewhat higher 'supracanonical' ({sup 26}Al/{sup 27}Al){sub 0} ranging from (5.85 {+-} 0.05) x 10{sup -5} to >7 x 10{sup -5}. These measurements were done on coarse-grained Type B and Type A CAIs that probably formed by recrystallization and/or melting of fine-grained condensate precursors. Thus the supracanonical ratios might record an earlier event, the actual nebular condensation of the CAI precursors. We tested this idea by performing in situ high-precision magnesium isotope measurements of individual minerals in a fine-grained CAI whose structures and volatility-fractionated trace element abundances mark it as a primary solar nebula condensate. Such CAIs are ideal candidates for the fine-grained precursors to the coarse-grained CAIs, and thus should best preserve a supracanonical ratio. Yet, our measured internal isochron yields ({sup 26}Al/{sup 27}Al){sub 0} = (5.27 {+-} 0.17) x 10{sup -5}. Thus our data do not support the existence of supracanonical ({sup 26}Al/{sup 27}Al){sub 0} = (5.85-7) x 10{sup -5}. There may not have been a significant time interval between condensation of the CAI precursors and their subsequent melting into coarse-grained CAIs.

  16. Martensitic transformation in a Cu-Zn-Al alloy studied by 63Cu and 27Al NMR

    NASA Astrophysics Data System (ADS)

    Rubini, S.; Dimitropoulos, C.; Gotthardt, R.; Borsa, F.

    1991-08-01

    27Al and 63Cu line shape, Knight shift, and relaxation rates over a wide range of temperature and external magnetic field are reported for a Cu-Zn-Al alloy displaying a martensitic phase transformation (MPT) at MS=152 K. Changes in line shape, linewidth, and T-12 at the MPT are detected for both nuclei, and are found to be consistent with the local atomic rearrangement occurring at the transformation. A double structure for the 27Al NMR line is observed in a small range of temperature below MS, and interpreted as the superposition of the signals arising from the two coexisting phases. It is shown that the growth of the martensitic phase during the cooling can be monitored by means of the deconvolution of the 27Al spectrum into the two components. From the analysis, it is inferred that a sudden formation of extensive regions in the martensitic phase occurs at the transition. The Knight shift and the Korringa term (T1T)-1 are slightly different in the two phases, indicating a small increase of the density of s electrons at the Fermi surface at the nuclear sites. The enhancement factors of the susceptibility and of the spin-lattice relaxation rate do not seem to be affected by the MPT but are different when measured at the Al or Cu site, indicating a local nonuniform charge-density distribution in the unit cell. A small enhancement of T-11 is observed for both nuclei in the temperature interval in which the growth of the martensite within the austenite is detected. The anomalous contribution to the relaxation is interpreted as due to strong local charge-density fluctuations caused by atomic motion at the interfaces between the two phases. No precursor effects were detected on the NMR parameters above MS, indicating the absence of a static or long-lived microstructure of the product phase and of a static short-wavelength modulation of the lattice.

  17. Fission, total and neutron capture cross section measurements at ORELA for {sup 233}U, {sup 27}Al and natural chlorine

    SciTech Connect

    Guber, K.H.; Spencer, R.R.; Leal, L.C.; Larson, D.C.; Santos, G. Dos; Harvey, J.A.; Hill, N.W.

    1998-08-01

    The authors have made use of the Oak Ridge Electron Linear Accelerator (ORELA) to measure the fission cross section of {sup 233}U in the neutron energy range of 0.36 eV to {approximately} 700 keV. This paper reports integral data and average cross sections. In addition they measured the total neutron cross section of {sup 27}Al and natural chlorine, as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  18. Cross sections and differential spectra for reactions of 2-20 MeV neutrons of /sup 27/Al

    SciTech Connect

    Blann, M.; Komoto, T.T.

    1988-01-01

    This report summarizes product yields, secondary n,p and ..cap alpha.. spectra, and ..gamma..-ray spectra calculated for incident neutrons of 2-20 MeV on /sup 27/Al targets. Results are all from the code ALICE, using the version ALISO which does weighting of results for targets which are a mix of isotopes. Where natural isotopic targets are involved, yields and n,p,..cap alpha.. spectra will be reported weighted over isotopic yields. Gamma-ray spectra, however, will be reported for the most abundant isotope.

  19. Neutral pion production in the [sup 16]O+[sup 27]Al reaction at 94 MeV/nucleon

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S.; Riggi, F.; Russo, A.C.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Maiolino, C.; Migneco, E.; Piattelli, P.; Russo, G.; Sapienza, P.; Peghaire, A. Dipartimento di Fisica, Universita di Catania, Corso Italia 57, I95129 Catania Istituto Nazionale di Fisica Nucleare, Laboratorio Nazionale del Sud, Catania Grand Accelerateur National d'Ions Lourds, Caen )

    1993-01-01

    The production of neutral pions in the reaction [sup 16]O+[sup 27]Al at 94 MeV/nucleon was studied with a multidetector, which includes 180 BaF[sub 2] modules. Kinetic energy spectra for several laboratory angles were measured. The total cross section for neutral pion production was deduced. Results were compared with previous findings on charged pions from the same reaction at the same energy and with the prediction of a dynamical model based on the numerical solution of the Boltzmann-Nordheim-Vlasov equation.

  20. Photon-photon correlation in the {sup 36}Ar+{sup 27}Al reaction at 95 MeV/nucleon

    SciTech Connect

    Badala, A.; Palmeri, A.; Pappalardo, G.S.; Russo, A.C.; Barbera, R.; Riggi, F.; Russo, G. |; Russo, G.

    1995-06-12

    The technique of intensity interferometry has been applied to the pairs of high-energy photons coming from the {sup 36}Ar+{sup 27}Al reaction at 95 MeV/nucleon. For the first time, the experimental correlation distributions {ital C}({ital q}{sub rel}) and {ital C}({ital q}{sub 0}), as functions of the relative momentum and energy of the two detected photons, have been analyzed in order to extract both the spatial size and lifetime of the emitting source. The found values are in agreement with dynamical approaches based on the {ital bremsstrahlung} radiation picture from first-chance proton-neutron collisions.

  1. 27Al fourier-transform electron-spin-echo modulation of Cu 2+-doped zeolites A and X

    NASA Astrophysics Data System (ADS)

    Goldfarb, Daniella; Kevan, Larry

    Cu 2+-doped NaA, CaA, and NaX zeolites were studied using the electron-spin-echo modulation (ESEM) method. In both hydrated and dehydrated samples 27Al modulation has been observed. The time-domain ESEM traces were Fourier transformed and analyzed in the frequency domain. All FT-ESEM spectra of the hydrated samples showed a single peak at the Larmor frequency of 27Ai, indicating that the zeeman interaction is dominant and that the 27Al quadrupole and hyperfine interactions are relatively small. Considerable changes in the spectrum appear upon dehydration. Several frequencies significantly different from the Larmor frequency appear and the spectrum depends on the major cocation present. The major features of the spectra of the dehydrated zeolites could be theoretically reproduced, using exact diagonalization of the nuclear Hamiltonian, with relatively large isotropic hyperfine and quadrupole coupling constants. For example, in CuCaA and CuNaA zeolites the isotropic hyperfine constant is in the range of 0.2-0.5 and 0.8-1.0 MHz, respectively, with the quadrupole coupling constant in the range of 6-10 MHz for both.

  2. Nucleon momentum distributions and elastic electron scattering from 19F, 25Mg, 27Al, and 29Si nuclei

    NASA Astrophysics Data System (ADS)

    Al-Rahmani, A.

    2016-04-01

    The nucleon momentum distributions and elastic electron scattering form factors of the ground state for some odd 2 s-1 d shell nuclei, such as 19F, 25Mg, 27Al, and 29Si, have been investigated using the coherent density fluctuation model and expressed in terms of the fluctuation function (weight function) | f( x)|2. The fluctuation function has been related to the nucleon density distribution of the nuclei and determined from the theory. The property of the long-tail manner at high-momentum region of the nucleon momentum distribution has been obtained by theoretical fluctuation function. The calculated form factors F( q) of all nuclei under study are in very good agreement with those of experimental data throughout all values of momentum transfer q. It is concluded that the contributions of the quadrupole form factor F C2( q) in 25Mg and 27Al nuclei, which are characterized by the undeformed 2 s-1 d shell model, are necessary for getting a remarkable agreement between the theoretical and experimental form factors.

  3. Natural-abundance solid-state 2H NMR spectroscopy at high magnetic field.

    PubMed

    Aliev, Abil E; Mann, Sam E; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-06-09

    High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.

  4. Formation of Po isotopes in the reactions {sup 27}Al + {sup 175}Lu and {sup 31}P + {sup 169}Tm

    SciTech Connect

    Andreev, A.N.; Bogdanov, D.D.; Eremin, A.V.

    1995-05-01

    The excitation functions and the cross sections for the formation of {sup 192-198}Po isotopes in the reactions {sup 27}Al + {sup 175}Lu and {sup 31}P + {sup 169}Tm are measured. A comparison of the results obtained for these reactions with the data on the cross sections for the formation of Po isotopes in the reaction {sup 100}Mo + {sup 92-100}Mo leads to the conclusion that the characteristics of the evaporation channel do not depend on the mass of the bombarding ion up to the complete symmetry in the input channel. It is shown that the experimental data can be adequately described using the statistical approach to the deexcitation of a compound nucleus only under the assumption that the liquid-drop fission barrier is reduced significantly for neutron-deficient Po isotopes. 21 refs., 5 figs., 2 tabs.

  5. Structural study of synthetic mica montmorillonite by means of 2D MAS NMR experiments

    NASA Astrophysics Data System (ADS)

    Alba, M. D.; Castro, M. A.; Chain, P.; Naranjo, M.; Perdigón, A. C.

    2005-07-01

    Syn-1, is a synthetic mica montmorillonite interstratified mineral that forms one of the standard clay samples in the Clay Minerals Society Source Clays Project. However, there are still controversies regarding some structural aspects such as the interlayer composition or the location of the extra-aluminium determined by chemical analysis. The main objective of this paper is to shed light on those structural aspects that affect the reactivity of the interstratified minerals. For this purpose, we have used 1 H 29 Si and 1 H 27Al HETCOR MAS NMR to show that it is likely that the interlayer space of the beidellite part is composed of ammonium ions whereas ammonium and aluminium ions are responsible for the charge balance in the mica type layer.

  6. Phase evolution of Na2O-Al2O3-SiO2-H2O gels in synthetic aluminosilicate binders.

    PubMed

    Walkley, Brant; San Nicolas, Rackel; Sani, Marc-Antoine; Gehman, John D; van Deventer, Jannie S J; Provis, John L

    2016-04-07

    This study demonstrates the production of stoichiometrically controlled alkali-aluminosilicate gels ('geopolymers') via alkali-activation of high-purity synthetic amorphous aluminosilicate powders. This method provides for the first time a process by which the chemistry of aluminosilicate-based cementitious materials may be accurately simulated by pure synthetic systems, allowing elucidation of physicochemical phenomena controlling alkali-aluminosilicate gel formation which has until now been impeded by the inability to isolate and control key variables. Phase evolution and nanostructural development of these materials are examined using advanced characterisation techniques, including solid state MAS NMR spectroscopy probing (29)Si, (27)Al and (23)Na nuclei. Gel stoichiometry and the reaction kinetics which control phase evolution are shown to be strongly dependent on the chemical composition of the reaction mix, while the main reaction product is a Na2O-Al2O3-SiO2-H2O type gel comprised of aluminium and silicon tetrahedra linked via oxygen bridges, with sodium taking on a charge balancing function. The alkali-aluminosilicate gels produced in this study constitute a chemically simplified model system which provides a novel research tool for the study of phase evolution and microstructural development in these systems. Novel insight of physicochemical phenomena governing geopolymer gel formation suggests that intricate control over time-dependent geopolymer physical properties can be attained through a careful precursor mix design. Chemical composition of the main N-A-S-H type gel reaction product as well as the reaction kinetics governing its formation are closely related to the Si/Al ratio of the precursor, with increased Al content leading to an increased rate of reaction and a decreased Si/Al ratio in the N-A-S-H type gel. This has significant implications for geopolymer mix design for industrial applications.

  7. NMR crystallography to probe the breathing effect of the MIL-53(Al) metal-organic framework using solid-state NMR measurements of (13)C-(27)Al distances.

    PubMed

    Giovine, Raynald; Volkringer, Christophe; Trébosc, Julien; Amoureux, Jean Paul; Loiseau, Thierry; Lafon, Olivier; Pourpoint, Frédérique

    2017-03-01

    The metal-organic framework MIL-53(Al) (aluminium terephthalate) exhibits a structural transition between two porous structures with large pore (lp) or narrow pore (np) configurations. This transition, called the breathing effect, is observed upon changes in temperature or external pressure, as well as with the adsorption of guest molecules, such as H2O, within the pores. We show here how these different pore openings can be detected by observing the dephasing of (13)C magnetization under (13)C-(27)Al dipolar couplings using Rotational-Echo Saturation-Pulse Double-Resonance (RESPDOR) solid-state NMR experiments with Simultaneous Frequency and Amplitude Modulation (SFAM) recoupling. These double-resonance NMR experiments between (13)C and (27)Al nuclei, which have close Larmor frequencies, are feasible thanks to the use of a frequency splitter. The experimental SFAM-RESPDOR signal fractions agree well with those simulated from the MIL-53(Al)-lp and -np crystal structures obtained from powder X-ray diffraction analysis. Hence, these (13)C-(27)Al solid-state NMR experiments validate these structures and confirm their rigidity. A similar agreement is reported for the framework ligands in the as-synthesized (as) MIL-53(Al), in which the pores contain free ligands. Furthermore, in this case, (13)C-{(27)Al} SFAM-RESPDOR experiments allow an estimation of the average distance between the free ligands and the (27)Al nuclei of the framework.

  8. Fluid flow dynamics in MAS systems.

    PubMed

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  9. Fluid flow dynamics in MAS systems

    NASA Astrophysics Data System (ADS)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  10. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  11. 1H-2H cross-polarization NMR in fast spinning solids by adiabatic sweeps

    NASA Astrophysics Data System (ADS)

    Wi, Sungsool; Schurko, Robert; Frydman, Lucio

    2017-03-01

    Cross-polarization (CP) experiments employing frequency-swept radiofrequency (rf) pulses have been successfully used in static spin systems for obtaining broadband signal enhancements. These experiments have been recently extended to heteronuclear I, S = spin-1/2 nuclides under magic-angle spinning (MAS), by applying adiabatic inversion pulses along the S (low-γ) channel while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). This study explores an extension of this adiabatic frequency sweep concept to quadrupolar nuclei, focusing on CP from 1H (I = 1/2) to 2H spins (S = 1) undergoing fast MAS (νr = 60 kHz). A number of new features emerge, including zero- and double-quantum polarization transfer phenomena that depend on the frequency offsets of the swept pulses, the rf pulse powers, and the MAS spinning rate. An additional mechanism found operational in the 1H-2H CP case that was absent in the spin-1/2 counterpart, concerns the onset of a pseudo-static zero-quantum CP mode, driven by a quadrupole-modulated rf/dipolar recoupling term arising under the action of MAS. The best CP conditions found at these fast spinning rates correspond to double-quantum transfers, involving weak 2H rf field strengths. At these easily attainable (ca. 10 kHz) rf field conditions, adiabatic level-crossings among the {|1 ⟩ ,|0 ⟩ ,|-1 ⟩ } mS energy levels, which are known to complicate the CP MAS of quadrupolar nuclei, are avoided. Moreover, the CP line shapes generated in this manner are very close to the ideal 2H MAS spectral line shapes, facilitating the extraction of quadrupolar coupling parameters. All these features were corroborated with experiments on model compounds and justified using numerical simulations and average Hamiltonian theory models. Potential applications of these new phenomena, as well as extensions to higher spins S, are briefly discussed.

  12. Energy loss measurements of 63Cu, 28Si and 27Al heavy ions crossing thin Polyvinylchloride (PVC) foil

    NASA Astrophysics Data System (ADS)

    Dib, A.; Ammi, H.; Guesmia, A.; Msimanga, M.; Mammeri, S.; Hedibel, M.; Guedioura, B.; Pineda-Vargas, C. A.

    2015-11-01

    Experimental stopping data of, 63Cu, 28Si and 27Al heavy ions in thin Polyvinylchloride (H3C2Cl1) foil have been obtained over the 0.045-0.50 MeV/nucleon energy range. The measured energy losses were carried out by Heavy Ion Elastic Recoil Detection Analysis (HI-ERDA) technique coupled with time of flight (ToF) spectrometer. A continuous stopping power data obtained in this work are well fitted by our proposed semi-empirical formula and the results are compared to those calculated by LSS formula or generated by SRIM-2013 and MSTAR predictions. Calculations using our formula agree well with the obtained experimental stopping powers, while the LSS formula underestimates the experimental data in the whole investigated energy range. In this work a simple expression for electronic stopping power of heavy ions at low energy in solid targets is introduced. This formula is based on the Firsov and Lindhard-Sharff stopping power models with a small modification made to the original expression, by incorporating the effective charge of moving ions concept and with exponential fit function.

  13. MAS-NMR investigations of the crystallization behaviour of lithium aluminum silicate (LAS) glasses containing P 2O 5 and TiO 2 nucleants

    NASA Astrophysics Data System (ADS)

    Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.

    2010-06-01

    Lithium aluminum silicate (LAS) glass of composition (mol%) 20.4Li 2O-4.0Al 2O 3-68.6SiO 2-3.0K 2O-2.6B 2O 3-0.5P 2O 5-0.9TiO 2 was prepared by melt quenching. The glass was then nucleated and crystallized based on differential thermal analysis (DTA) data and was characterized by 29Si, 31P, 11B and 27Al MAS-NMR. XRD and 29Si NMR showed that lithium metasilicate (Li 2SiO 3) is the first phase to c form followed by cristobalite (SiO 2) and lithium disilicate (Li 2Si 2O 5). 29Si MAS-NMR revealed a change in the network structure already for the glasses nucleated at 550 °C. Since crystalline Li 3PO 4, as observed by 31P MAS-NMR, forms concurrently with the silicate phases, we conclude that crystalline Li 3PO 4 does not act as a nucleating agent for lithium silicate phases. Moreover, 31P NMR indicates the formation of M-PO 4 ( M=B, Al or Ti) complexes. The presence of BO 3 and BO 4 structural units in all the glass/glass-ceramic samples is revealed through 11B MAS-NMR. B remains in the residual glass and the crystallization of silicate phases causes a reduction in the number of alkali ions available for charge compensation. As a result, the number of trigonally coordinated B (BO 3) increases at the expense of tetrahedrally coordinated B (BO 4). The 27Al MAS-NMR spectra indicate the presence of tetrahedrally coordinated Al species, which are only slightly perturbed by the crystallization.

  14. Observation of Distinct Surface AlIV Sites and Phosphonate Binding Modes in Gamma-Alumina and Concrete by High-Field 27Al and 31P MAS NMR

    DTIC Science & Technology

    2009-01-01

    indeed the case for concrete, especially for species such as 6 and 7 which can typically only be dissolved (extracted) by protic media at acidic pH .3...Munavalli, S.; Carnes , C. L.; Kapoor, P. N.; Klabunde, K. J. J. Am. Chem. Soc. 2001, 123, 1636–1644. (4) Wagner, G. W.; Procell, L. R.; Munavalli, S. J

  15. Mas' Making and Pedagogy: Imagined Possibilities

    ERIC Educational Resources Information Center

    Fournillier, Janice B.

    2009-01-01

    In this article I draw on an ethnographic case study that examined mas' makers' perceptions of the learning/teaching practices at work in the production of costumes for Trinidad and Tobago's annual Carnival celebrations. During the 2005 Carnival season I spent four months in the field, my country of birth, and collected data through participant…

  16. Semi empirical formula for electronic stopping power determination of 24Mg, 27Al and 28Si ions crossing Formvar foil in the ion energy domain of LSS theory

    NASA Astrophysics Data System (ADS)

    Guesmia, A.; Ammi, H.; Mammeri, S.; Dib, A.; Pineda-Vargas, C. A.; Msimanga, M.; Hedibel, M.

    2014-03-01

    We have determined continuous stopping power of heavy ions in thin Formvar foil for 28Si, 27Al and 24Mg ions over an energy range of (0.1-0.5) MeV/nucleon. Heavy Ions Elastic Recoil Detection Analysis (HI-ERDA) technique coupled with time of flight (ToF) spectrometer has been used to measure energy loss of charged particles in this thin absorber. Lindhard, Scharff and Schiott (LSS) theory compared with the corresponding determined stopping values in Formvar, shows significantly large deviations. However, a novel semi empirical expression has been proposed here and tested for better stopping power calculations at low velocity in the ion energy domain of LSS theory for 28Si, 27Al and 24Mg ions crossing thin Formvar foil. The results were compared to the obtained experimental stopping power data, predictions of LSS theory and also to those generated by SRIM-2010 computer code. The obtained results exhibit good agreement with experimental data.

  17. 11B and 27Al NMR spin-lattice relaxation and Knight shift of Mg1-xAlxB2: Evidence for an anisotropic Fermi surface

    NASA Astrophysics Data System (ADS)

    Papavassiliou, G.; Pissas, M.; Karayanni, M.; Fardis, M.; Koutandos, S.; Prassides, K.

    2002-10-01

    We report a detailed study of the 11B and 27Al NMR spin-lattice relaxation rates (1/T1) and the 27Al Knight shift (K) in Mg1-xAlxB2, 0<=x<=1. The evolution of (1/T1T) and K with x is in excellent agreement with the prediction of ab initio calculations of a highly anisotropic Fermi surface, consisting mainly of hole-type two-dimensional (2D) cylindrical sheets from bonding 2px,y boron orbitals. The density of states at the Fermi level also decreases sharply on Al doping and the 2D sheets collapse at x~0.55, where the superconducting phase disappears.

  18. Study of the 27Al(n,2n)26Al reaction and its potential for ion-temperature measurements (abstract)

    NASA Astrophysics Data System (ADS)

    Wallner, A.; Chuvaev, S. V.; Filatenkov, A. A.; Ikeda, Y.; Kutschera, W.; Vonach, H.

    2001-01-01

    A detailed measurement of the 27Al(n,2n)26Al reaction cross sections was performed in the near-threshold region (Eth=13.54 MeV), and its possible applicability for ion temperature measurements was investigated. The production of the long-lived radionuclide 26Al (t1/2=7.2×105 a) is of considerable interest to the fusion reactor program. Particularly long-lived radionuclides may lead to a significant long-term waste-disposal. Al-containing materials and Si carbide are candidate materials for fusion-reactor systems. The Al(n,2n) reaction and the two step process 28Si(n,np+d)27Al(n,2n) are the dominating processes for the formation of 26Al in a fusion reactor.1 The 27Al(n,2n)26Al reaction is expected to vary strongly with neutron energy above threshold. An accurate description of the excitation function is necessary to estimate the production of 26Al in a typical D-T fusion environment. From the existing data on cross sections it was not possible to produce an unambiguous excitation function. We started therefore a project to determine this excitation function more accurately. It has been pointed out by Smither and Greenwood2 that the 27Al(n,2n)26Al reaction can be used as a monitor to determine the ion temperature in a D-T fusion plasma. This method makes use of the neutron energy distribution as a sensitive function of the plasma ion temperature. The temperature sensitivity is most pronounced if the excitation function is strongly nonlinear and if the threshold falls within the energy region of the emitted neutrons: For the 27Al(n,2n)26Al reaction the threshold lies at 13.54 MeV and the (n,2n) reaction is expected to a strongly varying function of the neutron energy near threshold. Al samples were irradiated with 14 MeV neutrons generated via the T(d,n)4He reaction at three different laboratories under different conditions. The produced 26Al was measured using the extremely sensitive method of accelerator mass spectrometry (AMS). 26Al/27Al isotope ratios as low as

  19. Angiotensin (1-7) induces MAS receptor internalization.

    PubMed

    Gironacci, Mariela M; Adamo, Hugo P; Corradi, Gerardo; Santos, Robson A; Ortiz, Pablo; Carretero, Oscar A

    2011-08-01

    Angiotensin (Ang) (1-7) is the endogenous ligand for the G protein-coupled receptor Mas, a receptor associated with cardiac, renal, and cerebral protective responses. Physiological evidence suggests that Mas receptor (MasR) undergoes agonist-dependent desensitization, but the underlying molecular mechanism regulating receptor activity is unknown. We investigated the hypothesis that MasR desensitizes and internalizes on stimulation with Ang-(1-7). For this purpose, we generated a chimera between the MasR and the yellow fluorescent protein (YFP; MasR-YFP). MasR-YFP-transfected HEK 293T cells were incubated with Ang-(1-7), and the relative cellular distribution of MasR-YFP was observed by confocal microscopy. In resting cells, MasR-YFP was mostly localized to the cell membrane. Ang-(1-7) induced a redistribution of MasR-YFP to intracellular vesicles of various sizes after 5 minutes. Following the time course of [(125)I]Ang-(1-7) endocytosis, we observed that half of MasR-YFP underwent endocytosis after 10 minutes, and this was blocked by a MasR antagonist. MasR-YFP colocalized with Rab5, the early endosome antigen 1, and the adaptor protein complex 2, indicating that the R is internalized through a clathrin-mediated pathway and targeted to early endosomes after Ang-(1-7) stimulation. A fraction of MasR-YFP also colocalized with caveolin 1, suggesting that at some point MasR-YFP traverses caveolin 1-positive compartments. In conclusion, MasR undergoes endocytosis on stimulation with Ang-(1-7), and this event may explain the desensitization of MasR responsiveness. In this way, MasR activity and density may be tightly controlled by the cell.

  20. Optical and scintillation properties of ce-doped (Gd2Y1)Ga2.7Al2.3O12 single crystal grown by Czochralski method

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wu, Yuntao; Ding, Dongzhou; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Ren, Guohao

    2016-06-01

    Multicomponent garnets, due to their excellent light yield and energy resolution, become one of the most promising scintillators used for homeland security and nuclear non-proliferation applications. This work focuses on the optimization of Ce-doped (Gd,Y)3(Ga,Al)5O12 scintillators using a combination strategy of pre-screening and scale-up. Ce-doped GdxY1-xGayAl5-yO12 (x=1, 2 and y=2, 2.2, 2.5, 2.7, 3) polycrystalline powders were prepared by high-temperature solid state reaction method. The desired garnet phase in all the samples was confirmed using X-ray diffraction measurement. By comparing the radioluminescence intensity, the highest scintillation efficiency was achieved at a component of Gd2Y1Ga2.7Al2.3O12:Ce powders. A (Gd2Y1)Ga2.7Al2.3O12 doped with 1% Ce single crystal with dimensions of Ø35×40 mm was grown by Czochralski method using a <111> oriented seed. Luminescence and scintillation properties were measured. An optical transmittance of 84% was achieved in the concerned wavelength from 500 to 800 nm. Its 5d-4f emission of Ce3+ is at 530 nm. The light yield of a Ce1%: Gd2Y1Ga2.7Al2.3O12 single crystal slab at a size of 5×5×1 mm3 can reach about 65,000±3000 Ph/MeV along with two decay components of 94 and 615 ns under 137Cs source irradiation.

  1. Impact-parameter dependence of neutral pion production in the [sup 36]Ar on [sup 27]Al collision at 95 MeV/nucleon

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S.; Riggi, F.; Russo, A.C.; Russo, G.; Turrisi, R.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Peghaire, A. Dipartimento di Fisica, Universita di Catania, Corso Italia, 57-95129 Catania Istituto Nazionale di Fisica Nucleare, Laboratorio Nazionale del Sud, Rome Grand Accelerateur National d'Ions Lourds, Caen )

    1993-11-01

    Neutral pion production has been studied in the [sup 36]Ar+[sup 27]Al reaction at 95 MeV/nucleon with the aim to get a quantitative estimate of its impact-parameter dependence. A near 4[pi] multidetector has been used to detect both the gamma rays originating from the [pi][sup 0] decay and the associated charged particles. The charged particle multiplicity has been used in the present analysis as a global variable to extract the impact parameter scale. A comparison with a Boltzmann-Nordheim-Vlasov calculation, whcih takes into account the effect of pion reabsorption in the nuclear medium, has been performed.

  2. Fusion near and below the barrier for the systems 32,34S+24,25,26Mg and 32S+27Al

    NASA Astrophysics Data System (ADS)

    Berkowitz, G. M.; Braun-Munzinger, P.; Karp, J. S.; Freifelder, R. H.; Renner, T. R.; Wilschut, H. W.

    1983-08-01

    Excitation functions are reported for total fusion near and below the Coulomb barrier of the systems 32,34S+24,25,26Mg and 27Al. The data cannot be reproduced by one-dimensional barrier penetration calculations. The enhancement of the cross sections at low energies is compared to predictions of models taking into acount the static deformation or zero point vibration of the reaction partners. Calculations including zero point motion do not reproduce the observed variations of the measured cross sections with respect to the neutron number of target and projectile. Reasonable agreement is obtained when calculating fusion between statically deformed nuclei. Finally, the fusion process is described in a quantum mechanical coupled channels model, indicating the importance of dynamical effect on sub-barrier fusion. NUCLEAR REACTIONS 24,25,26Mg, 27Al(32,34S, Fusion) 0.9

  3. Deuterium MAS NMR studies of dynamics on multiple timescales: histidine and oxalic acid.

    PubMed

    Chan-Huot, Monique; Wimperis, Stephen; Gervais, Christel; Bodenhausen, Geoffrey; Duma, Luminita

    2015-01-12

    Deuterium ((2) H) magic-angle spinning (MAS) nuclear magnetic resonance is applied to monitor the dynamics of the exchanging labile deuterons of polycrystalline L-histidine hydrochloride monohydrate-d7 and α-oxalic acid dihydrate-d6 . Direct experimental evidence of fast dynamics is obtained from T1Z and T1Q measurements. Further motional information is extracted from two-dimensional single-quantum (SQ) and double-quantum (DQ) MAS spectra. Differences between the SQ and DQ linewidths clearly indicate the presence of motions on intermediate timescales for the carboxylic moiety and the D2 O in α-oxalic acid dihydrate, and for the amine group and the D2 O in L-histidine hydrochloride monohydrate. Comparison of the relaxation rate constants of Zeeman and quadrupolar order with the relaxation rate constants of the DQ coherences suggests the co-existence of fast and slow motional processes.

  4. THz spectroscopy of D2H+

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pearson, J. C.; Amano, T.; Matsushima, F.

    2017-01-01

    We extended the measurements of the rotational transitions of D2H+ up to 3 THz by using the JPL frequency multiplier chains and a TuFIR system at Toyama. D2H+ was generated in an extended negative glow discharge cell cooled to liquid nitrogen temperature. We observed five new THz lines. All the available rotational transition frequencies together with the combination differences derived from the three fundamental bands were subject to least square analysis to determine the molecular constants. New THz measurements are definitely useful for better characterization of spectroscopic properties. The improved molecular constants provide better predictions of other unobserved rotational transitions.

  5. Constraining 17O and 27Al NMR spectra of high-pressure crystals and glasses: New data for jadeite, pyrope, grossular, and mullite

    USGS Publications Warehouse

    Kelsey, K.E.; Stebbins, J.F.; Du, L.-S.; Hankins, B.

    2007-01-01

    The 17O NMR spectra of glasses quenched from melts at high pressure are often difficult to interpret due to overlapping peaks and lack of crystalline model compounds. High-pressure aluminosilicate glasses often contain significant amounts of [5]Al and [6]Al, thus these high-pressure glasses must contain oxygen bonded to high-coordinated aluminum. The 17O NMR parameters for the minerals jadeite, pyrope, grossular, and mullite are presented to assist interpretation of glass spectra and to help test quantum chemical calculations. The 17O NMR parameters for jadeite and grossular support previous peak assignments of oxygen bonded to Si and high-coordinated Al in high-pressure glasses as well as quantum chemical calculations. The oxygen tricluster in mullite is very similar to the previously observed tricluster in grossite (CaAl4 O7) and suspected triclusters in glasses. We also present 27Al NMR spectra for pyrope, grossular, and mullite.

  6. Commissioning of the NPDGamma Detector Array: Counting Statistics in Current Mode Operation and Parity Violation in the Capture of Cold Neutrons on B 4 C and (27) Al.

    PubMed

    Gericke, M T; Bowman, J D; Carlini, R D; Chupp, T E; Coulter, K P; Dabaghyan, M; Desai, D; Freedman, S J; Gentile, T R; Gillis, R C; Greene, G L; Hersman, F W; Ino, T; Ishimoto, S; Jones, G L; Lauss, B; Leuschner, M B; Losowski, B; Mahurin, R; Masuda, Y; Mitchell, G S; Muto, S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Santra, S; Seo, P-N; Sharapov, E I; Smith, T B; Snow, W M; Wilburn, W S; Yuan, V; Zhu, H

    2005-01-01

    The NPDGamma γ-ray detector has been built to measure, with high accuracy, the size of the small parity-violating asymmetry in the angular distribution of gamma rays from the capture of polarized cold neutrons by protons. The high cold neutron flux at the Los Alamos Neutron Scattering Center (LANSCE) spallation neutron source and control of systematic errors require the use of current mode detection with vacuum photodiodes and low-noise solid-state preamplifiers. We show that the detector array operates at counting statistics and that the asymmetries due to B4C and (27)Al are zero to with- in 2 × 10(-6) and 7 × 10(-7), respectively. Boron and aluminum are used throughout the experiment. The results presented here are preliminary.

  7. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  8. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  9. Atomic scale structure of amorphous aluminum oxyhydroxide, oxide and oxycarbide films probed by very high field (27)Al nuclear magnetic resonance.

    PubMed

    Baggetto, L; Sarou-Kanian, V; Florian, P; Gleizes, A N; Massiot, D; Vahlas, C

    2017-03-15

    The atomic scale structure of aluminum in amorphous alumina films processed by direct liquid injection chemical vapor deposition from aluminum tri-isopropoxide (ATI) and dimethyl isopropoxide (DMAI) is investigated by solid-state (27)Al nuclear magnetic resonance (SSNMR) using a very high magnetic field of 20.0 T. This study is performed as a function of the deposition temperature in the range 300-560 °C, 150-450 °C, and 500-700 °C, for the films processed from ATI, DMAI (+H2O), and DMAI (+O2), respectively. While the majority of the films are composed of stoichiometric aluminum oxide, other samples are partially or fully hydroxylated at low temperature, or contain carbidic carbon when processed from DMAI above 500 °C. The quantitative analysis of the SSNMR experiments reveals that the local structure of these films is built from AlO4, AlO5, AlO6 and Al(O,C)4 units with minor proportions of the 6-fold aluminum coordination and significant amounts of oxycarbides in the films processed from DMAI (+O2). The aluminum coordination distribution as well as the chemical shift distribution indicate that the films processed from DMAI present a higher degree of structural disorder compared to the films processed from ATI. Hydroxylation leads to an increase of the 6-fold coordination resulting from the trend of OH groups to integrate into AlO6 units. The evidence of an additional environment in films processed from DMAI (+O2) by (27)Al SSNMR and first-principle NMR calculations on Al4C3 and Al4O4C crystal structures supports that carbon is located in Al(O,C)4 units. The concentration of this coordination environment strongly increases with increasing process temperature from 600 to 700 °C favoring a highly disordered structure and preventing from crystallizing into γ-alumina. The obtained results are a valuable guide to the selection of process conditions for the CVD of amorphous alumina films with regard to targeted applications.

  10. Investigating the Surface Structure of γ-Al 2 O 3 Supported WO X Catalysts by High Field 27 Al MAS NMR and Electronic Structure Calculations

    SciTech Connect

    Wan, Chuan; Hu, Mary Y.; Jaegers, Nicholas R.; Shi, Dachuan; Wang, Huamin; Gao, Feng; Qin, Zhaohai; Wang, Yong; Hu, Jian Zhi

    2016-10-13

    The metal-support interaction in γ-Al2O3 supported WOX catalysts is investigated by a combination of high field quantitative single pulse (SP) 27Al MAS NMR spectroscopy, 2D MQMAS, 1H-27Al CP/MAS, and electronic structure calculations. NMR allows the observation of at least seven different Al sites, including a pentahedral Al site, three different tetrahedral Al sites, and three octahedral Al sites. It is found that the penta-coordinated Al (AlP) site density decreases monotonically with an increased WOX loading while the octahedral Al (AlO) site density increases concurrently. This suggests that the Alp sites are the preferred surface anchoring positions for the WOX species. Importantly, the AlP site isotropic chemical shift observed for the unsupported γ-Al2O3 at about 38 ppm migrates into the octahedral region with a new isotropic chemical shift value appearing near 7 ppm when the Alp site is anchored by WOX species. Density functional theory (DFT) computational modeling of the NMR parameters on proposed cluster models is carried out to accurately interpret the dramatic chemical shift changes from which the detailed anchoring mechanisms are obtained. It is found that tungsten dimers and monomers are the preferred supported surface species on γ-Al2O3, wherein one monomeric and several dimeric structures are identified as the most likely surface anchoring structures.

  11. Influence of heat treatment on the microstructure and wear behavior of end-chill cast Zn-27Al alloys with different copper content

    NASA Astrophysics Data System (ADS)

    Jeshvaghani, R. Arabi; Ghahvechian, H.; Pirnajmeddin, H.; Shahverdi, H. R.

    2016-04-01

    The aim of this paper was to study the effect of heat treatment on the microstructure and wear behavior of Zn-27Al alloys with different copper content. In order to study the relationship between microstructure features and wear behavior, the alloys prepared by an end-chill cast apparatus and then heat treated. Heat treatment procedure involved solutionizing at temperature of 350 °C for 72 h followed by cooling within the furnace to room temperature. Microstructural characteristics of as-cast and heat-treated alloys at different distances from the chill were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction. Wear tests were performed using a pin-on-disk test machine. To determine the wear mechanisms, the worn surfaces of the samples were also examined by SEM and EDS. Results showed that heat treatment led to the complete dissolution of as-cast dendritic microstructure and formation of a fine lamellar structure with well-distributed microconstituents. Moreover, addition of copper up to 1 wt% had no significant change in the microstructure, while addition of 2 and 4 wt% copper resulted in formation of ɛ (CuZn4) particle in the interdendritic regions. The influence of copper content on the wear behavior of the alloys was explained in terms of microstructural characteristics. Delamination was proposed as the dominant wear mechanism.

  12. MAS NMR, DRIFT, and FT-Raman Characterization of SiO(2)-AlPO(4)-B(2)O(3) Ternary Catalytic Systems.

    PubMed

    Aramendía; Boráu; Jiménez; Marinas; Ruiz; Urbano

    1999-09-01

    This work deals with the preparation of SiO(2)-AlPO(4)-B(2)O(3) ternary systems from impregation of a SiO(2)-AlPO(4) solid previously synthesized with B(OH)(3) (0-10% B(OH)(3), by weight). Characterization of the resulting solids has been carried out from adsorption-desorption isotherms of nitrogen, DRIFT, FT-Raman, pyridine adsorption, and (1)H, (11)B, (27)Al, and (31)P MAS NMR. The textural properties are scarcely changed by the impregnation and calcination steps. Moreover, the MAS NMR experiments indicated that the components of the solids do not interact among them. The solids were tested in the dehydration-dehydrogenation of propan-2-ol, widely used to correlate catalytic activity with the surface acid-base properties of the solids. The catalytic results indicate that the effect of boron dopping is an increase in the overall acidity of the solids. Copyright 1999 Academic Press.

  13. Association reactions at low pressure. III. The C2H2+/C2H2 system.

    PubMed

    Anicich, V G; Sen, A D; Huntress, W T; McEwan, M J

    1990-11-15

    The association reactions, C4H2(+) + C2H2 and C4H3(+) + C2H2 have been examined at pressures between 8 x 10(-8) and 1 x 10(-4) Torr at 298 K in an ion cyclotron resonance mass spectrometer. Association occurred via two different mechanisms. At pressures below approximately 2 x 10(-6) Torr, the association was bimolecular having rate coefficients k2 = 2.7 x 10(-10) cm3 s-1 and 2.0 x 10(-10) cm3 s-1 for C4H2+ and C4H3+, respectively. At pressures above approximately 2 x 10(-6) Torr, termolecular association was observed with rate coefficients, k3 = 5.7 x 10(-23) cm6 s-1 and 1.3 x 10(-23) cm6 s-1 for C4H2+ and C4H3+, respectively, when M = C2H2. The termolecular rate constants with N2, Ar, Ne, and He as the third body, M, are also reported. We propose that the low pressure bimolecular association process was the result of radiative stabilization of the complex and the termolecular association process was the result of collisional stabilization. Elementary rate coefficients were obtained and the lifetime of the collision complex was > or = 57 microseconds for (C6H4+)* and > or = 18 microseconds for (C6H5+)*. At pressures below 1 x 10(-6) Torr, approximately 11% of the (C6H4+)* were stabilized by photon emission and the remaining approximately 89% reverted back to reactants, while approximately 24% of the (C6H5+)* were stabilized by photon emission and the remaining approximately 76% reverted back to reactants. The ionic products of the C2H2(+) + C2H2 reaction, C4H2+ and C4H3+, were found to be formed with enough internal energy that they did not react by the radiative association channel until relaxed by several nonreactive collisions with the bath gas.

  14. MAS2-8 radar and digital control unit

    NASA Technical Reports Server (NTRS)

    Oberg, J. M.; Ulaby, F. T.

    1974-01-01

    The design of the MAS 2-8 (2 to 8 GHz microwave-active spectrometer), a ground-based sensor system, is presented. A major modification in 1974 to the MAS 2-8, that of a control subsystem to automate the data-taking operation, is the prime focus. The digital control unit automatically changes all system parameters except FM rate and records the return signal on paper tape. The overall system operation and a detailed discussion of the design and operation of the digital control unit are presented.

  15. Structural biology applications of solid state MAS DNP NMR.

    PubMed

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  16. Structural biology applications of solid state MAS DNP NMR

    NASA Astrophysics Data System (ADS)

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  17. Reactions of Fe+ and FeO+ with C2H2, C2H4, and C2H6: temperature-dependent kinetics.

    PubMed

    Ard, Shaun G; Melko, Joshua J; Fournier, Joseph A; Shuman, Nicholas S; Viggiano, Albert A

    2013-10-10

    We present the first temperature-dependent rate constants and branching ratios for the reactions of Fe(+) and FeO(+) with C2H2, C2H4, and C2H6 from 170 to 700 K. Fe(+) is observed to react only by association with the three hydrocarbons, with temperature dependencies of T(-2) to T(-3). FeO(+) reacts with C2H2 and C2H4 at the collision rate over the temperature range, and their respective product branchings show similar temperature dependences. In contrast, the reaction with ethane is collisional at 170 K but varies as T(-0.5), while the product branching remains essentially flat with temperature. These variations in reactivity are discussed in terms of the published reactive potential surfaces. The effectiveness of Fe(+) as an oxygen-transfer catalyst toward the three hydrocarbons is also discussed.

  18. Rate constant for the reaction C2H5 + HBr → C2H6 + Br.

    PubMed

    Golden, David M; Peng, Jingping; Goumri, A; Yuan, J; Marshall, Paul

    2012-06-21

    RRKM theory has been employed to analyze the kinetics of the title reaction, in particular, the once-controversial negative activation energy. Stationary points along the reaction coordinate were characterized with coupled cluster theory combined with basis set extrapolation to the complete basis set limit. A shallow minimum, bound by 9.7 kJ mol(-1) relative to C(2)H(5) + HBr, was located, with a very small energy barrier to dissociation to Br + C(2)H(6). The transition state is tight compared to the adduct. The influence of vibrational anharmonicity on the kinetics and thermochemistry of the title reaction were explored quantitatively. With adjustment of the adduct binding energy by ∼4 kJ mol(-1), the computed rate constants may be brought into agreement with most experimental data in the literature, including new room-temperature results described here. There are indications that at temperatures above those studied experimentally, the activation energy may switch from negative to positive.

  19. Resolution and polarization distribution in cryogenic DNP/MAS experiments

    PubMed Central

    Barnes, Alexander B.; Corzilius, Björn; Mak-Jurkauskas, Melody L.; Andreas, Loren B.; Bajaj, Vikram S.; Matsuki, Yoh; Belenky, Marina L.; Lugtenburg, Johan; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Herzfeld, Judith; Griffin, Robert G.

    2014-01-01

    This contribution addresses four potential misconceptions associated with high-resolution dynamic nuclear polarization/magic angle spinning (DNP/MAS) experiments. First, spectral resolution is not generally compromised at the cryogenic temperatures at which DNP experiments are performed. As we demonstrate at a modest field of 9 T (380 MHz 1H), 1 ppm linewidths are observed in DNP/MAS spectra of a membrane protein in its native lipid bilayer, and <0.4 ppm linewidths are reported in a crystalline peptide at 85 K. Second, we address the concerns about paramagnetic broadening in DNP/MAS spectra of proteins by demonstrating that the exogenous radical polarizing agents utilized for DNP are distributed in the sample in such a manner as to avoid paramagnetic broadening and thus maintain full spectral resolution. Third, the enhanced polarization is not localized around the polarizing agent, but rather is effectively and uniformly dispersed throughout the sample, even in the case of membrane proteins. Fourth, the distribution of polarization from the electron spins mediated via spin diffusion between 1H–1H strongly dipolar coupled spins is so rapid that shorter magnetization recovery periods between signal averaging transients can be utilized in DNP/MAS experiments than in typical experiments performed at ambient temperature. PMID:20454732

  20. ADP-MAS: A Math and Science Curriculum.

    ERIC Educational Resources Information Center

    National Council of La Raza, Washington, DC.

    This curriculum, Academia del Pueblo-Math and Science (ADP-MAS), is an outgrowth of the National Council of La Raza's Project EXCEL, a supplemental educational enrichment model for at-risk Latino students to be operated by Latino community-based organizations or public institutions, including schools with substantial Latino populations. ADP-MAS…

  1. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  2. [Hepatic manifestation of a macrophage activation syndrome (MAS)].

    PubMed

    Nagel, Michael; Schwarting, Andreas; Straub, Beate K; Galle, Peter R; Zimmermann, Tim

    2017-04-04

    Background Elevated liver values are the most common pathological laboratory result in Germany. Frequent findings, especially in younger patients, are nutritive- or medicamentous- toxic reasons, viral or autoimmune hepatitis. A macrophage activation syndrome (MAS) may manifest like a viral infectious disease with fever, hepatosplenomegaly and pancytopenia and is associated with a high mortality. It is based on an enhanced activation of macrophages with increased cytokine release, leading to organ damage and multi-organ failure. In addition to genetic causes, MAS is commonly associated with infections and rheumatic diseases. We report the case of a 26-year-old female patient suffering from MAS as a rare cause of elevated liver enzymes. Methods Patient characteristics, laboratory values, liver histology, bone marrow and radiological imaging were documented and analyzed. Case Report After an ordinary upper airway infection with bronchitis, a rheumatic arthritis appeared and was treated with leflunomide und methotrexate. In the further course of the disease, the patient developed an acute hepatitis with fever, pancytopenia and massive hyperferritinemia. Immunohistochemistry of the liver biopsy revealed hemophagocytosis and activation of CD68-positive macrophages. In the radiological and histological diagnostics of the liver and bone marrow, an MAS was diagnosed as underlying disease of the acute hepatitis. Under therapy with prednisolone, the fever disappeared and transaminases and ferritin rapidly normalized. Conclusion Aside from the frequent causes of elevated liver values in younger patients, such as nutritive toxic, drug induced liver injury, viral or autoimmune hepatitis, especially in case of massive hyperferritinemia, a MAS should be considered as a rare cause of acute liver disease.

  3. Synthesis of 2-Alkenyl-2H-indazoles from 2-(2-Carbonylmethyl)-2H-indazoles.

    PubMed

    Lin, Mei-Huey; Liang, Kung-Yu; Tsai, Chang-Hsien; Chen, Yu-Chun; Hsiao, Hung-Chang; Li, Yi-Syuan; Chen, Chung-Hao; Wu, Hau-Chun

    2016-02-19

    A procedure has been developed for synthesis of 2-alkenyl-2H-indazoles starting from 2-(2-carbonylmethyl)-2H-indazoles, which are prepared by gallium/aluminium- and aluminium-mediated, direct, regioselective alkylation of indazoles with α-bromocarbonyl compounds. The structure of 3-(2H-indazol-2-yl)-2H-chromen-2-one was proven by X-ray crystallography. The styrene- and coumarin-2H-indazoles produced by using the new method were found to have interesting fluorescence properties.

  4. Quantitation of methadone enantiomers in humans using stable isotope-labeled (2H3)-, (2H5)-, and (2H8)Methadone

    SciTech Connect

    Nakamura, K.; Hachey, D.L.; Kreek, M.J.; Irving, C.S.; Klein, P.D.

    1982-01-01

    A new technique for simultaneous stereoselective kinetic studies of methadone enantiomers was developed using three deuterium-labeled forms of methadone and GLC-chemical-ionization mass spectrometry. A racemic mixture (1:1) of (R)-(-)-(2H5)methadone (l-form) and (S)-(R)-(2H3)methadone (d-form) was administered orally in place of a single daily dose of unlabeled (+/-)-(2H0)methadone in long-term maintenance patients. Racemic (+/-)-(2H8)methadone was used as an internal standard for the simultaneous quantitation of (2H0)-, (2H3)-, and (2H5)methadone in plasma and urine. A newly developed extraction procedure, using a short, disposable C18 reversed-phase cartridge and improved chemical-ionization procedures employing ammonia gas, resulted in significant reduction of the background impurities contributing to the ions used for isotopic abundance measurements. These improvements enabled the measurement of labeled plasma methadone levels for 120 hr following a single dose. This methodology was applied to the study of methadone kinetics in two patients; in both patients, the analgesically active l-enantiomer of the drug had a longer plasma elimination half-life and a smaller area under the plasma disappearance curve than did the inactive d-form.

  5. Formation of Al2H7- anions--indirect evidence of volatile AlH3 on sodium alanate using solid-state NMR spectroscopy.

    PubMed

    Felderhoff, Michael; Zibrowius, Bodo

    2011-10-14

    After more than a decade of intense research on NaAlH(4) doped with transition metals as hydrogen storage material, the actual mechanism of the decomposition and rehydrogenation reaction is still unclear. Early on, monomeric AlH(3) was named as a possible transport shuttle for aluminium, but never observed experimentally. Here we report for the first time the trapping of volatile AlH(3) produced during the decomposition of undoped NaAlH(4) by an adduct of sodium alanate and crown ether. The resulting Al(2)H(7)(-) anion was identified by solid-state (27)Al NMR spectroscopy. Based on this indirect evidence of volatile alane, we present a simple description of the processes occurring during the reversible dehydrogenation of NaAlH(4).

  6. Quantitation of crystalline material within a liquid vehicle using 1H/19F CP/MAS NMR.

    PubMed

    Farrer, Brian T; Peresypkin, Andrey; Wenslow, Robert M

    2007-02-01

    A method to detect and quantify a small amount crystalline material within a liquid solution of solubilized material is described. 19F CP-MAS ssNMR was investigated as a technique to detect low levels (0.2 mg/g) of crystalline sodium (2R)-7-{3-[2-chloro-4-(2,2,2-trifluoroethoxy)phenoxy]propoxy}-2-methyl-3,4-dihydro-2H-chromane-2-carboxylate (I) within a solid mixture (with microcrystalline cellulose) and a slurry with a liquid vehicle (capric and caprylic acid triglycerides). The results demonstrate that the area of the 19F CP/MAS signal obtained in 25 min at 25 degrees C is linearly dependent (R2=0.997) on the mass of I within the ssNMR rotor. Slopes of CP-MAS peak area versus mass of I in the rotor were nearly identical for the solid mixture and slurry suspension. Signal-to-noise ratio for the low potency slurry suggest detection and quantitation of 0.1 mg of crystalline I in the rotor, corresponding to 2 mg/g of crystalline material within the slurry suspension.

  7. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  8. Nuclear magnetic resonance study of the ferroelastic phase transition of order-disorder type in [N(C2H5)4]2CdCl4

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Kim, Min Soo; Lim, Kye-Young

    2016-08-01

    This study uses nuclear magnetic resonance (NMR) techniques to examine the detailed changes in [N(C2H5)4]2CdCl4 around its phase transition at the temperature TC = 284 K. The chemical shifts and spin-lattice relaxation times in the rotating frame (T1ρ) were determined from 1H magic angle spinning (MAS) NMR and 13C cross-polarization (CP)/MAS NMR spectra. The two sets of inequivalent 1H and 13C nuclei in CH3 and CH2 were distinguished. A ferroelastic phase transition was observed at TC, without structural symmetry change. The phase transition is mainly attributed to the orientational ordering of the [N(C2H5)4]+ cations, and the spectral splitting at low temperature is associated with different ferroelastic domains.

  9. Spatially resolved solid-state MAS-NMR-spectroscopy.

    PubMed

    Scheler, U; Schauss, G; Blümich, B; Spiess, H W

    1996-07-01

    A comprehensive account of spatially resolved solid-state MAS NMR of 13C is given. A device generating field gradients rotating synchronously with the magic angle spinner is described. Spatial resolution and sensitivity are compared for phase and frequency encoding of spatial information. The suppression of spinning sidebands is demonstrated for both cases. Prior knowledge about the involved materials can be used for the reduction of data from spatially resolved spectra to map chemical structure. Indirect detection via 13C NMR gives access to the information about mobility from proton-wideline spectra. Two-dimensional solid-state spectroscopy with spatial resolution is demonstrated for a rotor synchronized MAS experiment which resolves molecular order as a function of space. By comparison of different experiments the factors affecting the spatial resolution are investigated.

  10. Commercial facility site selection simulating based on MAS

    NASA Astrophysics Data System (ADS)

    Chao, Yi; Li, Qingquan; Zheng, Guizhou

    2008-10-01

    The location of commercial facility decides the benefit of the operator to a large degree. Existing location methods can express the static relationships between site selection result and location factors, but there still are some limites when express the dynamic and uncertain relationship between them. Hence, a dynamic, stochastic and forecastable location model should be built which can introduce the customer's behavior into the model and combine the macro pattern and micro spatial interaction. So the authors proposes Geosim-LM based on MAS. Geosim-LM has 3 kinds of agents, CustAgent, SiteAgent and GovAgent. They represent the customers, commercial fercilities and government. The land type, land price and traffic are the model environment. Then Geosim-LM is applied in the bank branches site evaluation and selection in Liwan district, Guangzhou. In existing bank branches site evaluation, there are 70% consistent in score grade between result of Geosim-LM after 200 round runing and actual rebust location. It proves the model is reliable and feasible. The conclusions can be get from the paper. MAS have advantages in location choice than existed methods. The result of Geosim-LM running can powerfully proves that building location model based on MAS is feasible.

  11. Synthesis and properties of 3-nitro-2H-chromenes

    NASA Astrophysics Data System (ADS)

    Korotaev, V. Yu; Sosnovskikh, V. Ya; Barkov, A. Yu

    2013-12-01

    Methods of synthesis and chemical properties of 3-nitro-2H-chromenes, including reactions with nucleophiles, cycloaddition, oxidation and reduction, have been reviewed. Enantioselective reactions involving 3-nitro-2H-chromenes, as well as the stereochemistry of the products, are discussed. The ways of practical use of these compounds are shown. The bibliography includes 115 references.

  12. Variations of δ2H in an idealised extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Wernli, Heini

    2016-04-01

    Numerical model simulations of stable water isotopes help to improve our understanding of the complex processes driving isotopic variability in atmospheric waters. We use the isotope-enabled COSMO model to study the governing mechanisms of δ2H variations in an idealised extratropical cyclone. A set of experiments with differing initial conditions of δ2H in vapour and partially deactivated isotopic fractionation allows us to quantify the relative roles of cloud fractionation and vertical and horizontal advection for the simulated δ2H signals associated with the cyclone and fronts. Horizontal transport determines the large-scale pattern of δ2H in both vapour and precipitation, while fractionation and vertical transport are more important on a smaller scale, near the fronts. During the passage of the cold front fractionation leads to a V-shaped trend of δ2H in precipitation and vapour, which is, for vapour, superimposed on a gradual decrease caused by horizontal advection.

  13. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    PubMed

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-02

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance.

  14. A General Protocol for Temperature Calibration of MAS NMR Probes at Arbitrary Spinning Speeds

    PubMed Central

    Guan, Xudong; Stark, Ruth E.

    2010-01-01

    A protocol using 207Pb NMR of solid lead nitrate was developed to determine the temperature of magic-angle spinning (MAS) NMR probes over a range of nominal set temperatures and spinning speeds. Using BioMAS and fastMAS probes with typical sample spinning rates of 8 and 35 kHz, respectively, empirical equations were devised to predict the respective sample temperatures. These procedures provide a straightforward recipe for temperature calibration of any MAS probe. PMID:21036557

  15. Theoretical study of the bonding of Nb(2+) to CH2, C2H2, and C2H4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1991-01-01

    The bonding of Nb(2+) with CH2, C2H2, and C2H4 is studied by using electronic structure calculations that include high levels of electron correlation. The binding energy for NbCH2(2+) is in good agreement with the lower bound determined from the reaction with CH4 but is significantly smaller than the value determined from the binding energy and ionization potential of NbCH2(+). The calculations and a new interpretation of the experiment indicate that the larger value is in error primarily because the ionization potential of NbCH2(+) determined from bracketing charge-exchange reactions is too small. The computed binding energy of NbC2H2(2+) is in good agreement with experiment. The calculations show that the bonding is predominantly covalent in character for both NbCH2(2+) and NbC2H2(2+), whereas for NbC2H4(2+) the electronic states that are predominantly ionic and covalent are nearly degenerate. The trend in binding energies, CH2 greater than C2H2 greater than C2H4, is consistent with the energy required to prepare the ligands for bonding.

  16. Efficient C2 functionalisation of 2H-2-imidazolines.

    PubMed

    Bon, Robin S; Sprenkels, Nanda E; Koningstein, Manoe M; Schmitz, Rob F; de Kanter, Frans J J; Dömling, Alexander; Groen, Marinus B; Orru, Romano V A

    2008-01-07

    Alkylation and oxidation of 2H-2-imidazolines, followed by regioselective deprotection, thionation and microwave-assisted Liebeskind-Srogl reaction, efficiently led to 2-aryl-2-imidazolines as new analogues of p53-hdm2 interaction inhibitors (Nutlins).

  17. Milli-Arcsecond (MAS) Imaging of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Davila, Joseph M.; Oktem, Figen S.; Kamalabadi, Farzad; O'Neill, John; Novo-Gradac, Anne-Marie; Daw, Adrian N.; Rabin, Douglas M.

    2016-05-01

    Dissipation in the solar corona is believed to occur in extremely thin current sheets of order 1-100 km. Emission from these hot but thin current sheets should be visible in coronal EUV emission lines. However, this spatial scale is far below the resolution of existing imaging instruments, so these dissipation sites have never been observed individually. Conventional optics cannot be manufactured with sufficient surface figure accuracy to obtain the required spatial resolution in the extreme-ultraviolet where these hot plasmas radiate. A photon sieve, a diffractive imaging element similar to a Fresnel zone plate, can be manufactured to provide a few milli-arcsec (MAS) resolution, with much more readily achievable tolerances than with conventional imaging technology. Prototype photon sieve elements have been fabricated and tested in the laboratory. A full-scale ultra-high resolution instrument will require formation flying and computational image deconvolution. Significant progress has been made in overcoming these challenges, and some recent results in these areas are discussed. A simple design for a sounding rocket concept demonstration payload is presented that obtains 80 MAS (0.080 arcsec) imaging with a 100 mm diameter photon sieve to image Fe XIV 334 and Fe XVI 335. These images will show the structure of the corona at a resolution never before obtained, and they will also allow a study of the temperature structure in the dissipation region.

  18. C2H observations toward the Orion Bar

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Ossenkopf, V.; Van der Tak, F. F. S.; Faure, A.; Makai, Z.; Bergin, E. A.

    2015-06-01

    Context. The ethynyl radical (C2H) is one of the first radicals to be detected in the interstellar medium. Its higher rotational transitions have recently become available with the Herschel Space Observatory. Aims: We aim to constrain the physical parameters of the C2H emitting gas toward the Orion Bar. Methods: We analyze the C2H line intensities measured toward the Orion Bar CO+ Peak and Herschel/HIFI maps of C2H, CH, and HCO+ and a NANTEN map of [Ci]. We interpret the observed C2H emission using the combination of Herschel/HIFI and NANTEN data with radiative transfer and PDR models. Results: Five rotational transitions of C2H (from N = 6-5 up to N = 10-9) have been detected in the HIFI frequency range toward the CO+ peak of the Orion Bar. Based on the five detected C2H transitions, a single component rotational diagram analysis gives a rotation temperature of ~64 K and a beam-averaged C2H column density of 4 × 1013 cm-2. The rotational diagram is also consistent with a two-component fit, resulting in rotation temperatures of 43 ± 0.2 K and 123 ± 21 K and in beam-averaged column densities of ~8.3 × 1013 cm-2 and ~2.3 × 1013 cm-2 for the three lower-N and for the three higher-N transitions, respectively. The measured five rotational transitions cannot be explained by any single parameter model. According to a non-LTE model, most of the C2H column density produces the lower-N C2H transitions and traces a warm (Tkin ~ 100-150 K) and dense (n(H2) ~ 105-106 cm-3) gas. A small fraction of the C2H column density is required to reproduce the intensity of the highest-N transitions (N = 9-8 and N = 10-9) originating in a high-density (n(H2) ~5 × 106 cm-3) hot (Tkin ~ 400 K) gas. The total beam-averaged C2H column density in the model is 1014 cm-2. A comparison of the spatial distribution of C2H to those of CH, HCO+, and [Ci] shows the best correlation with CH. Conclusions: Both the non-LTE radiative transfer model and a simple PDR model representing the Orion Bar

  19. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  20. MAS C-Terminal Tail Interacting Proteins Identified by Mass Spectrometry- Based Proteomic Approach

    PubMed Central

    Tirupula, Kalyan C.; Zhang, Dongmei; Osbourne, Appledene; Chatterjee, Arunachal; Desnoyer, Russ; Willard, Belinda; Karnik, Sadashiva S.

    2015-01-01

    Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A ‘cardiac-specific finger print’ of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a ‘MAS-signalosome’ model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of ‘signalosome’ components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor. PMID

  1. MODIS Airborne simulator (MAS) Final Report for CLASIC

    SciTech Connect

    Thomas Arnold; Steven Platnick

    2010-11-24

    The MAS was flown aboard the NASA ER-2 for the CLASIC field experiment, and for all data collected, provided calibrated and geolocated (Level-1B) radiance data for it’s 50 spectral bands (ranging in wavelength for 0.47 to 14.3 µm). From the Level-1B data, as directed in the Statement of Work, higher order (Level-2) data products were derived. The Level-2 products include: a) cloud optical thickness, b) cloud effective radius, c) cloud top height (temperature), d) cloud fraction, e) cloud phase products. Preliminary Level-1B and Level-2 products were provided during the field experiment (typically within one or two days of data collection). Final version data products were made available in December 2008 following considerable calibration analysis. Data collection, data processing (to Level-2), and discussion of the calibration work are summarized below.

  2. Food Waste Composting Study from Makanan Ringan Mas

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Ismail, S. N. M.; Jamaludin, S. N.

    2016-07-01

    The poor management of municipal solid waste in Malaysia has worsened over the years especially on food waste. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Composting is one of low cost alternative method to dispose the food waste. This study is conducted to compost the food waste generation in Makanan Ringan Mas, which is a medium scale industry in Parit Kuari Darat due to the lack knowledge and exposure of food waste recycling practice. The aim of this study is to identify the physical and chemical parameters of composting food waste from Makanan Ringan Mas. The physical parameters were tested for temperature and pH value and the chemical parameter are Nitrogen, Phosphorus and Potassium. In this study, backyard composting was conducted with 6 reactors. Tapioca peel was used as fermentation liquid and soil and coconut grated were used as the fermentation bed. Backyard composting was conducted with six reactors. The overall results from the study showed that the temperature of the reactors were within the range which are from 30° to 50°C. The result of this study revealed that all the reactors which contain processed food waste tend to produce pH value within the range of 5 to 6 which can be categorized as slightly acidic. Meanwhile, the reactors which contained raw food waste tend to produce pH value within the range of 7 to 8 which can be categorized as neutral. The highest NPK obtained is from Reactor B that process only raw food waste. The average value of Nitrogen is 48540 mg/L, Phosphorus is 410 mg/L and Potassium is 1550 mg/L. From the comparison with common chemical fertilizer, it shows that NPK value from the composting are much lower than NPK of the common chemical fertilizer. However, comparison with NPK of organic fertilizer shown only slightly difference value in NPK.

  3. Infrared spectroscopy of V2+(H2O) complexes

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, B.; Duncan, M. A.

    2012-03-01

    Doubly charged vanadium-water complexes are produced by laser vaporization in a pulsed supersonic expansion. Size-selected ions are studied with infrared photodissociation spectroscopy in the O-H stretch region using argon complex predissociation. Density functional theory calculations provide structures and vibrational spectra of these ions. The O-H stretches of V2+(H2O) appear at lower frequencies than those of the free water molecule or V+(H2O). The symmetric stretch is more intense than the asymmetric stretch in both V+(H2O) and V2+(H2O) complexes. Spectra of V2+(H2O)Arn (n = 2-7) show that the coordination of the V2+ is filled with six ligands, i.e. one water and five argon atoms.

  4. Absolute shielding scales for Al, Ga, and In and revised nuclear magnetic dipole moments of {sup 27}Al, {sup 69}Ga, {sup 71}Ga, {sup 113}In, and {sup 115}In nuclei

    SciTech Connect

    Antušek, A. Holka, F.

    2015-08-21

    We present coupled cluster calculations of NMR shielding constants of aluminum, gallium, and indium in water-ion clusters. In addition, relativistic and dynamical corrections and the influence of the second solvation shell are evaluated. The final NMR shielding constants define new absolute shielding scales, 600.0 ± 4.1 ppm, 2044.4 ± 31.4 ppm, and 4507.7 ± 63.7 ppm for aluminum, gallium, and indium, respectively. The nuclear magnetic dipole moments for {sup 27}Al, {sup 69}Ga, {sup 71}Ga, {sup 113}In, and {sup 115}In isotopes are corrected by combining the computed shielding constants with experimental NMR frequencies. The absolute magnitude of the correction increases along the series and for indium isotopes it reaches approximately −8.0 × 10{sup −3} of the nuclear magneton.

  5. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice.

    PubMed

    Lazaroni, Thiago Luiz do Nascimento; Bastos, Cristiane Perácio; Moraes, Márcio Flávio Dutra; Santos, Robson Souza; Pereira, Grace Schenatto

    2016-01-01

    Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD).

  6. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  7. The distribution and abundance of interstellar C2H

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Carlson, W. J.; Kinney, A. L.

    1984-01-01

    C2H(N = 1-0) emission has been extensively observed in a variety of molecular clouds, including: 12 hot, dense, cloud cores, 3 bright-rimmed clouds (in NGC 1977, IC 1396, and IC 1848), and across the extended OMC - 1 cloud. It has also been observed in the circumstellar envelopes IRC + 10216 and AFGL 2688. Abundance analyses of the molecular clouds yield C2H/(C-13)O abundance ratios of about 0.01, with little variation (less than about a factor of 4) either between clouds or across individual clouds. In the Orion plateau source, the C2H abundance is enhanced by less than a factor of 4, relative to the extended cloud. The generally high levels of C2H found in the molecular clouds are not readily accounted for by simple, steady-state chemical models, and suggest, as do earlier observations of atomic carbon, that the carbon chemistry in dense clouds is more active than is commonly assumed.

  8. Evaluation of an electrochemical N2/H2 gas separator

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Wynveen, R. A.; Carlson, J. N.

    1973-01-01

    A program was successfully completed to evaluate an electrochemical nitrogen/hydrogen (N2/H2) separator for use in a spacecraft nitrogen (N2) generator. Based on the technical data obtained a N2/H2 separator subsystem consisting of an organic polymer gas permeator first stage and an electrochemical second and third stage was estimated to have the lowest total spared equivalent weight, 257 kg (566 lb), for a 15 lb/day N2 generation rate. A pre-design analysis of the electrochemical N2/H2 separator revealed that its use as a first stage resulted in too high a power requirement to be competitive with the organic polymer membrane and the palladium-silver membrane separation methods. As a result, program emphasis was placed on evaluating the electrochemical. A parametric test program characterized cell performance and established second- and third-stage electrochemical N2/H2 separator operating conditions. A design verification test was completed on the second and third stages. The second stage was then successfully endurance tested for 200 hours.

  9. The Antithrombotic Effect of Angiotensin-(1–7) Involves Mas-Mediated NO Release from Platelets

    PubMed Central

    Fraga-Silva, Rodrigo Araújo; Pinheiro, Sergio Veloso Brant; Gonçalves, Andrey Christian Costa; Alenina, Nathalia; Bader, Michael; Santos, Robson Augusto Souza

    2008-01-01

    The antithrombotic effect of angiotensin(Ang)-(1–7) has been reported, but the mechanism of this effect is not known. We investigated the participation of platelets and receptor Mas-related mechanisms in this action. We used Western blotting to test for the presence of Mas protein in rat platelets and used fluorescent-labeled FAM-Ang-(1–7) to determine the specific binding for Ang-(1–7) and its displacement by the receptor Mas antagonist A-779 in rat platelets and in Mas−/ − and Mas+/+ mice platelets. To test whether Ang-(1–7) induces NO release from platelets, we used the NO indicator DAF-FM. In addition we examined the role of Mas in the Ang-(1–7) antithrombotic effect on induced thrombi in the vena cava of male Mas−/ − and Mas+/+ mice. The functional relevance of Mas in hemostasis was evaluated by determining bleeding time in Mas+/+ and Mas−/ − mice. We observed the presence of Mas protein in platelets, as indicated by Western Blot, and displacement of the binding of fluorescent Ang-(1–7) to rat platelets by A-779. Furthermore, in Mas+/+ mouse platelets we found specific binding for Ang-(1–7), which was absent in Mas−/ − mouse platelets. Ang-(1–7) released NO from rat and Mas+/+ mouse platelets, and A-779 blocked this effect. The NO release stimulated by Ang-(1–7) was abolished in Mas−/ − mouse platelets. Ang-(1–7) inhibited thrombus formation in Mas+/+ mice. Strikingly, this effect was abolished in Mas−/ −mice. Moreover, Mas deficiency resulted in a significant decrease in bleeding time (8.50 ± 1.47 vs. 4.28 ± 0.66 min). This study is the first to show the presence of Mas protein and specific binding for Ang-(1–7) in rat and mouse platelets. Our data also suggest that the Ang-(1–7) antithrombotic effect involves Mas-mediated NO release from platelets. More importantly, we showed that the antithrombotic effect of Ang-(1–7) in vivo is Mas dependent and that Mas is functionally important in hemostasis. PMID

  10. Search for the isomers of C2H3NO and C2H3NS in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    With about 40% of all the known interstellar and circumstellar molecules having their isomeric analogues as known astromolecules, isomerism remains one of the leading themes in interstellar chemistry. In this regard, the recent detection of methyl isocyanate (with a number of isomeric analogues) in the Sgr B2(N) giant molecular cloud opens a new window for the possible astronomical detection of other C_2H_3NO isomers. The present work looks at the possibility of detecting other isomers of methyl isocyanate by considering different factors such as thermodynamic stability of the different isomers with respect to the Energy, Stability and Abundance (ESA) relationship, effect of interstellar hydrogen bonding with respect to the formation these isomers on the surface of the interstellar dust grains, possible formation routes for these isomers, spectroscopic parameters for potential astromolecules among these isomers, chemical modeling among other studies. The same studies are repeated for the C_2H_3NS isomers which are the isoelectroninc analogues of the C_2H_3NO isomers taking into account the unique chemistry of S and O-containing interstellar molecular species. Among the C_2H_3NS isomers, methyl isothiocyanate remains the most potential candidate for astronomical observation.

  11. Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter.

    PubMed

    Sada, P V; Bjoraker, G L; Jennings, D E; McCabe, G H; Romani, P N

    1998-12-01

    We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties.

  12. Distributed Cooperation Solution Method of Complex System Based on MAS

    NASA Astrophysics Data System (ADS)

    Weijin, Jiang; Yuhui, Xu

    To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.

  13. CN and C2H in IRC +10216

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Glassgold, A. E.; Morris, M.

    1984-01-01

    The effects of the production of the radicals CN and C2H from the dissociation of HCN and C2H2 by ambient UV photons in the outer envelope of IRC +10216 are investigated. The spatial distribution of the radicals and their observable millimeter emission-line characteristics are calculated from the inferred abundances of the progenitor species in the envelope of IRC +10216 using photochemical and radiative transfer models. These are compared with available observations to examine whether photoproduction is a possible explanation of the observed emission from these species. The results suggest that the variable abundances induced by photodestruction of their progenitors do affect the observed emission from the radicals.

  14. Mechanisms of CO2/H+ Sensitivity of Astrocytes

    PubMed Central

    Turovsky, Egor; Theparambil, Shefeeq M.; Kasymov, Vitaliy; Deitmer, Joachim W.; del Arroyo, Ana Gutierrez; Ackland, Gareth L.; Corneveaux, Jason J.; Allen, April N.; Huentelman, Matthew J.; Kasparov, Sergey; Marina, Nephtali

    2016-01-01

    Ventral regions of the medulla oblongata of the brainstem are populated by astrocytes sensitive to physiological changes in PCO2/[H+]. These astrocytes respond to decreases in pH with elevations in intracellular Ca2+ and facilitated exocytosis of ATP-containing vesicles. Released ATP propagates Ca2+ excitation among neighboring astrocytes and activates neurons of the brainstem respiratory network triggering adaptive increases in breathing. The mechanisms linking increases in extracellular and/or intracellular PCO2/[H+] with Ca2+ responses in chemosensitive astrocytes remain unknown. Fluorescent imaging of changes in [Na+]i and/or [Ca2+]i in individual astrocytes was performed in organotypic brainstem slice cultures and acute brainstem slices of adult rats. It was found that astroglial [Ca2+]i responses triggered by decreases in pH are preceded by Na+ entry, markedly reduced by inhibition of Na+/HCO3− cotransport (NBC) or Na+/Ca2+ exchange (NCX), and abolished in Na+-free medium or by combined NBC/NCX blockade. Acidification-induced [Ca2+]i responses were also dramatically reduced in brainstem astrocytes of mice deficient in the electrogenic Na+/HCO3− cotransporter NBCe1. Sensitivity of astrocytes to changes in pH was not affected by inhibition of Na+/H+ exchange or blockade of phospholipase C. These results suggest that in pH-sensitive astrocytes, acidification activates NBCe1, which brings Na+ inside the cell. Raising [Na+]i activates NCX to operate in a reverse mode, leading to Ca2+ entry followed by activation of downstream signaling pathways. Coupled NBC and NCX activities are, therefore, suggested to be responsible for functional CO2/H+ sensitivity of astrocytes that contribute to homeostatic regulation of brain parenchymal pH and control of breathing. SIGNIFICANCE STATEMENT Brainstem astrocytes detect physiological changes in pH, activate neurons of the neighboring respiratory network, and contribute to the development of adaptive respiratory responses to

  15. Differential effects of Mas receptor deficiency on cardiac function and blood pressure in obese male and female mice.

    PubMed

    Wang, Yu; Shoemaker, Robin; Powell, David; Su, Wen; Thatcher, Sean; Cassis, Lisa

    2017-03-01

    Angiotensin-(1-7) [ANG-(1-7)] acts at Mas receptors (MasR) to oppose effects of angiotensin II (ANG II). Previous studies demonstrated that protection of female mice from obesity-induced hypertension was associated with increased systemic ANG-(1-7), whereas male obese hypertensive mice exhibited increased systemic ANG II. We hypothesized that MasR deficiency (MasR(-/-) ) augments obesity-induced hypertension in males and abolishes protection of females. Male and female wild-type (MasR(+/+) ) and MasR(-/-) mice were fed a low-fat (LF) or high-fat (HF) diet for 16 wk. MasR deficiency had no effect on obesity. At baseline, male and female MasR(-/-) mice had reduced ejection fraction (EF) and fractional shortening than MasR(+/+) mice. Male, but not female, HF-fed MasR(+/+) mice had increased systolic and diastolic (DBP) blood pressures compared with LF-fed controls. In HF-fed females, MasR deficiency increased DBP compared with LF-fed controls. In contrast, male HF-fed MasR(-/-) mice had lower DBP than MasR(+/+) mice. We quantified cardiac function after 1 mo of HF feeding in males of each genotype. HF-fed MasR(-/-) mice had higher left ventricular (LV) wall thickness than MasR(+/+) mice. Moreover, MasR(+/+) , but not MasR(-/-) , mice displayed reductions in EF from HF feeding that were reversed by ANG-(1-7) infusion. LV fibrosis was reduced in HF-fed MasR(+/+) but not MasR(-/-) ANG-(1-7)-infused mice. These results demonstrate that MasR deficiency promotes obesity-induced hypertension in females. In males, HF feeding reduced cardiac function, which was restored by ANG-(1-7) in MasR(+/+) but not MasR(-/-) mice. MasR agonists may be effective therapies for obesity-associated cardiovascular conditions.NEW & NOTEWORTHY MasR deficiency abolishes protection of female mice from obesity-induced hypertension. Male MasR-deficient obese mice have reduced blood pressure and declines in cardiac function. ANG-(1-7) infusion restores obesity-induced cardiac dysfunction of wild

  16. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging

    SciTech Connect

    Detre, J.A.; Subramanian, V.H.; Mitchell, M.D.; Smith, D.S.; Kobayashi, A.; Zaman, A.; Leigh, J.S. Jr. )

    1990-05-01

    Cerebral blood flow (CBF) was measured in cat brain in vivo at 2.7 T using 2H NMR to monitor the washout of deuterated saline injected into both carotid arteries via the lingual arteries. In anesthetized cats, global CBF varied directly with PaCO{sub 2} over a range of 20-50 mm Hg, and the corresponding global CBF values ranged from 25 to 125 ml.100 g-1.min-1. Regional CBF was measured in a 1-cm axial section of cat brain using intracarotid deuterated saline and gradient-echo 2H NMR imaging. Blood flow images with a maximum pixel resolution of 0.3 x 0.3 x 1.0 cm were generated from the deuterium signal washout at each pixel. Image derived values for CBF agreed well with other determinations, and decreased significantly with hypocapnia.

  17. Hydrogenation and Deuteration of C2H2 and C2H4 on Cold Grains: A Clue to the Formation Mechanism of C2H6 with Astronomical Interest

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hitomi; Hidaka, Hiroshi; Lamberts, Thanja; Hama, Tetsuya; Kawakita, Hideyo; Kästner, Johannes; Watanabe, Naoki

    2017-03-01

    We quantitatively investigated the hydrogen addition reactions of acetylene (C2H2) and ethylene (C2H4) on amorphous solid water (ASW) at 10 and 20 K relevant to the formation of ethane (C2H6) on interstellar icy grains. We found that the ASW surface enhances the reaction rates for C2H2 and C2H4 by approximately a factor of 2 compared to those on the pure-solid C2H2 and C2H4 at 10 K, probably due to an increase in the sticking coefficient and adsorption energy of the H atoms on ASW. In contrast to the previous proposal that the hydrogenation rate of C2H4 is orders of magnitude larger than that of C2H2, the present results show that the difference in hydrogenation rates of C2H2 and C2H4 is only within a factor of 3 on both the surfaces of pure solids and ASW. In addition, we found the small kinetic isotope effect for hydrogenation/deuteration of C2H2 and C2H4 at 10 K, despite the requirement of quantum tunneling. At 20 K, the reaction rate of deuteration becomes even larger than that of hydrogenation. These unusual isotope effects might originate from a slightly larger number density of D atoms than H atoms on ASW at 20 K. The hydrogenation of C2H2 is four times faster than CO hydrogenation and can produce C2H6 efficiently through C2H4 even in the environment of a dark molecular cloud.

  18. Theoretical study on the rate constants for the C2H5 + HBr --> C2H6 + Br reaction.

    PubMed

    Sheng, Li; Li, Ze-Sheng; Liu, Jing-Yao; Xiao, Jing-Fa; Sun, Chia-Chung

    2004-02-01

    The reaction C(2)H(5) + HBr --> C(2)H(6) + Br has been theoretically studied over the temperature range from 200 to 1400 K. The electronic structure information is calculated at the BHLYP/6-311+G(d,p) and QCISD/6-31+G(d) levels. With the aid of intrinsic reaction coordinate theory, the minimum energy paths (MEPs) are obtained at the both levels, and the energies along the MEP are further refined by performing the single-point calculations at the PMP4(SDTQ)/6-311+G(3df,2p)//BHLYP and QCISD(T)/6-311++G(2df,2pd)//QCISD levels. The calculated ICVT/SCT rate constants are in good agreement with available experimental values, and the calculate results further indicate that the C(2)H(5) + HBr reaction has negative temperature dependence at T < 850 K, but clearly shows positive temperature dependence at T > 850 K. The current work predicts that the kinetic isotope effect for the title reaction is inverse in the temperature range from 200 to 482 K, i.e., k(HBr)/k(DBr) < 1.

  19. 47 CFR 101.1317 - Competitive bidding procedures for mutually exclusive MAS EA applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Competitive bidding procedures for mutually exclusive MAS EA applications. 101.1317 Section 101.1317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... License Requirements § 101.1317 Competitive bidding procedures for mutually exclusive MAS EA...

  20. Theoretical kinetics of O + C2H4

    DOE PAGES

    Li, Xiaohu; Jasper, Ahren W.; Zádor, Judit; ...

    2016-06-01

    The reaction of atomic oxygen with ethylene is a fundamental oxidation step in combustion and is prototypical of reactions in which oxygen adds to double bonds. For 3O+C2H4 and for this class of reactions generally, decomposition of the initial adduct via spin-allowed reaction channels on the triplet surface competes with intersystem crossing (ISC) and a set of spin-forbidden reaction channels on the ground-state singlet surface. The two surfaces share some bimolecular products but feature different intermediates, pathways, and transition states. In addition, the overall product branching is therefore a sensitive function of the ISC rate. The 3O+C2H4 reaction has beenmore » extensively studied, but previous experimental work has not provided detailed branching information at elevated temperatures, while previous theoretical studies have employed empirical treatments of ISC. Here we predict the kinetics of 3O+C2H4 using an ab initio transition state theory based master equation (AITSTME) approach that includes an a priori description of ISC. Specifically, the ISC rate is calculated using Landau–Zener statistical theory, consideration of the four lowest-energy electronic states, and a direct classical trajectory study of the product branching immediately after ISC. The present theoretical results are largely in good agreement with existing low-temperature experimental kinetics and molecular beam studies. Good agreement is also found with past theoretical work, with the notable exception of the predicted product branching at elevated temperatures. Above ~1000 K, we predict CH2CHO+H and CH2+CH2O as the major products, which differs from the room temperature preference for CH3+HCO (which is assumed to remain at higher temperatures in some models) and from the prediction of a previous detailed master equation study.« less

  1. Mechanisms of CO2/H+ Sensitivity of Astrocytes.

    PubMed

    Turovsky, Egor; Theparambil, Shefeeq M; Kasymov, Vitaliy; Deitmer, Joachim W; Del Arroyo, Ana Gutierrez; Ackland, Gareth L; Corneveaux, Jason J; Allen, April N; Huentelman, Matthew J; Kasparov, Sergey; Marina, Nephtali; Gourine, Alexander V

    2016-10-19

    Ventral regions of the medulla oblongata of the brainstem are populated by astrocytes sensitive to physiological changes in PCO2/[H(+)]. These astrocytes respond to decreases in pH with elevations in intracellular Ca(2+) and facilitated exocytosis of ATP-containing vesicles. Released ATP propagates Ca(2+) excitation among neighboring astrocytes and activates neurons of the brainstem respiratory network triggering adaptive increases in breathing. The mechanisms linking increases in extracellular and/or intracellular PCO2/[H(+)] with Ca(2+) responses in chemosensitive astrocytes remain unknown. Fluorescent imaging of changes in [Na(+)]i and/or [Ca(2+)]i in individual astrocytes was performed in organotypic brainstem slice cultures and acute brainstem slices of adult rats. It was found that astroglial [Ca(2+)]i responses triggered by decreases in pH are preceded by Na(+) entry, markedly reduced by inhibition of Na(+)/HCO3(-) cotransport (NBC) or Na(+)/Ca(2+) exchange (NCX), and abolished in Na(+)-free medium or by combined NBC/NCX blockade. Acidification-induced [Ca(2+)]i responses were also dramatically reduced in brainstem astrocytes of mice deficient in the electrogenic Na(+)/HCO3(-) cotransporter NBCe1. Sensitivity of astrocytes to changes in pH was not affected by inhibition of Na(+)/H(+) exchange or blockade of phospholipase C. These results suggest that in pH-sensitive astrocytes, acidification activates NBCe1, which brings Na(+) inside the cell. Raising [Na(+)]i activates NCX to operate in a reverse mode, leading to Ca(2+) entry followed by activation of downstream signaling pathways. Coupled NBC and NCX activities are, therefore, suggested to be responsible for functional CO2/H(+) sensitivity of astrocytes that contribute to homeostatic regulation of brain parenchymal pH and control of breathing.

  2. A generic, computerized nuclear materials accountability system (NucMAS) and its layered products

    SciTech Connect

    Davis, Jr, J M

    1989-01-01

    NucMAS provides a material balance area with a computerized data management system for nuclear materials accountability. NucMAS is a generic application. It handles the data management and reporting functions for different processing facilities by storing all process-specific information as data rather than procedure. A NucMAS application is configured for each facility it supports. NucMAS and its layered products are compatible with three types of data clients. Core NucMAS has a screen-oriented user interface to support the accountability clerk as a client. Accountability clerks enter data from operating logs and laboratory analyses one to three days after actual processing. Layered products support process operators and automated systems as near-real-time and real-time data clients. The core and layered products use a data-driven approach which results in software that is configurable and maintainable. 3 refs., 5 figs.

  3. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  4. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  5. Exclusive studies of 130-270 MeV {sup 3}He- and 200-MeV proton-induced reactions on {sup 27}Al, {sup nat}Ag, and {sup 197}Au

    SciTech Connect

    Ginger, D. S.; Kwiatkowski, K.; Wang, G.; Hsi, W.-C.; Hudan, S.; Cornell, E.; Souza, R. T. de; Viola, V. E.; Korteling, R. G.

    2008-09-15

    Exclusive light-charged-particle and IMF spectra have been measured with the ISiS detector array for bombardments of {sup 27}Al, {sup nat}Ag, and {sup 197}Au nuclei with 130-270-MeV {sup 3}He and 200-MeV protons. The results are consistent with previous interpretations based on inclusive data that describe the global yield of complex fragments in terms of a time-dependent process. The emission mechanism for energetic nonequilibrium fragments observed at forward angles with momenta up to twice the beam momentum is also investigated. This poorly understood mechanism, for which the angular distributions indicate formation on a time scale comparable to the nuclear transit time, are accompanied primarily by thermal-like emissions. The data are most consistent with a schematic picture in which nonequilibrium fragments are formed in a localized region of the target nucleus at an early stage in the energy-dissipation process, where the combined effects of high energy density and Fermi motion produce the observed suprathermal spectra.

  6. Breakup of the projectile in [sup 16]O-induced reactions on [sup 27]Al, [sup 58]Ni, and [sup 197]Au targets around 100 MeV/nucleon

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S. ); Riggi, F. Dipartimento di Fisica dell'Universita di Catania, Corso Italia 57, 95129 Catania )

    1993-08-01

    The spatial correlation among the four He ions coming from the disassembly of the [sup 16]O projectile on [sup 27]Al, [sup 58]Ni, and [sup 197]Au targets has been studied at 94 MeV/nucleon. Charged particles have been detected by a multielement array of plastic scintillators covering the angular domain between 3[degree] and 150[degree]. Standard relativistic kinematics has been used to reconstruct the excitation energy of the primary projectilelike nucleus ([ital E][sub PLN][sup *]). Mean values of this quantity are found independent of the target mass and the comparison with existing similar data taken at lower bombarding energies shows a saturation of [ital E][sub PLN][sup *] around 3 MeV/nucleon. An event-by-event analysis has been performed in order to study the distributions of some global variables such as coplanarity, sphericity, and relative angle, helpful in the understanding of the topological characteristics of the process and in the evaluation of its time scale. Experimental data have also been compared with the results of Monte Carlo simulations based on different reaction mechanisms and it is possible to conclude that sequential emission of the fragments is preferred.

  7. Photodissociation spectroscopy of Ca+(C2H4)

    NASA Astrophysics Data System (ADS)

    Holmes, J. H.; Kleiber, P. D.; Olsgaard, D. A.; Yang, K.-H.

    2000-04-01

    We have studied Ca+(C2H4) by photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer over the spectral range 440-790 nm. Ca+ is the only photofragment observed. We find four absorption bands of the complex and assign them to metal-centered transitions correlating with excitation of Ca+(3d and 4p). Spectral assignment is supported by ab initio electronic structure calculations of the complex and isotope substitution experiments. Calculations find a weakly bound ground state equilibrium structure with C2V π-bonding geometry and a dissociation energy of De″=0.506 eV. Theoretical and experimental results show the 4pπ(2 2B2 & 2 2B1) excited states to be relatively weakly bound at long range. Spectral analysis gives vibrational constants for the Ca+--C2H4 intermolecular a1-stretch in the 1 2A1, 2 2B1, and 2 2B2 states, and for the CH2-CH2 a1-wag and the HCH a1-bend in 2 2B2. The results offer an interesting comparison with previous studies of similar weakly bound bimolecular complexes of light metal ions with alkene or alkane hydrocarbons.

  8. Sealed rotors for in situ high temperature high pressure MAS NMR

    DOE PAGES

    Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao; ...

    2015-07-06

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization,more » a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.« less

  9. Sealed rotors for in situ high temperature high pressure MAS NMR

    SciTech Connect

    Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao; Xu, Souchang; Vjunov, Aleksei; Shi, Hui; Camaioni, Donald M.; Peden, Charles H. F.; Lercher, Johannes A.

    2015-07-06

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization, a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.

  10. Kinetics of the hydrogen abstraction C2H3* + alkane --> C2H4 + alkyl radical reaction class.

    PubMed

    Muszyńska, Marta; Ratkiewicz, Artur; Huynh, Lam K; Truong, Thanh N

    2009-07-23

    This paper presents an application of the reaction class transition state theory (RC-TST) to predict thermal rate constants for hydrogen abstraction reactions of the type C(2)H(3) + alkane --> C(2)H(4) + alkyl radical. The linear energy relationship (LER) was proven to hold for both noncyclic and cyclic hydrocarbons. We have derived all parameters for the RC-TST method from rate constants of 19 representative reactions, coupling with LER and the barrier height grouping (BHG) approach. Both the RC-TST/LER, where only reaction energy is needed, and the RC-TST/BHG, where no other information is needed, can predict rate constants for any reaction in this reaction class with satisfactory accuracy for combustion modeling. Our analysis indicates that less than 90% systematic errors on the average exist in the predicted rate constants using the RC-TST/LER or RC-TST/BHG method, while in comparison to explicit rate calculations, the differences are within a factor of 2 on the average.

  11. Physical and spectroscopic properties of pure C2H4 and CH4:C2H4 ices

    NASA Astrophysics Data System (ADS)

    Molpeceres, Germán; Satorre, Miguel Angel; Ortigoso, Juan; Zanchet, Alexandre; Luna, Ramón; Millán, Carlos; Escribano, Rafael; Tanarro, Isabel; Herrero, Víctor J.; Maté, Belén

    2017-04-01

    Physical and spectroscopic properties of ices of C2H4 and CH4:C2H4 mixtures with 3:1, 1:1 and 1:3 ratios have been investigated at 30 K. Two laboratories are involved in this work. In one of them, the density and refractive index of the samples have been measured by using a cryogenic quartz microbalance and laser interferometric techniques. In the other one, IR spectra have been recorded in the near- and mid-infrared regions, and band shifts with respect to the pure species, band strengths of the main bands, and the optical constants in both regions have been determined. Previous data on ethylene and the mixtures studied here were scarce. For methane, both the wavenumbers and band strengths have been found to follow a regular pattern of decrease with increasing dilution, but no pattern has been detected for ethylene vibrations. The method employed for the preparation of the samples, by vapour deposition under vacuum, is thought to be adequate to mimic the structure of astrophysical ices. Possible astrophysical implications, especially by means of the optical constants reported here, have been discussed.

  12. Increased aortic intimal proliferation due to MasR deletion in vitro

    PubMed Central

    Alsaadon, Hiba; Kruzliak, Peter; Smardencas, Arthur; Hayes, Alan; Bader, Michael; Angus, Peter; Herath, Chandana; Zulli, Anthony

    2015-01-01

    A growing body of evidence suggests that the vascular actions of Ang-(1-7) appear to involve increased production of nitric oxide (NO), an important vasodilator, through the activation of MasR, thus indicating the involvement of the MasR in preventing endothelial dysfunction. However, it is unknown whether the MasR could be involved in the progression of the next step in atherosclerosis, neo-intimal formation. To determine whether the deletion of the MasR is involved in the development of intimal thickening in an in vitro model. Mice [three background controls (C57Bl/6) and 3 MasR (−/−)] were killed and the aortas excised and cleaned of connective tissue and cut into 3 mm rings. Rings were placed in an organ culture medium for 5 weeks, embedded in paraffin, cut at 5 μm and stained with haematoxylin and eosin and Masson’s trichrome. In addition, aortic reactivity was measured in organ baths. After 5 weeks of culture, the intima:media ratio increased in the aortas from MasR (−/−) mice compared to the control group by 4.5-fold (P < 0.01). However, no significant difference in nuclei area count (cell proliferation) between the MasR (−/−) mice and control group was observed (0.87 ± 0.29% vs. 0.94 ± 0.18%, respectively, P = ns). Functional studies showed only a minor vasoconstrictive and full vasodilative response. This study shows that the deletion of the MasR causes marked increase in the aortic intima:media ratio, which is not due to generalized cellular proliferation. These results provide a functional role for the MasR in atherogenesis. PMID:25676544

  13. Increased aortic intimal proliferation due to MasR deletion in vitro.

    PubMed

    Alsaadon, Hiba; Kruzliak, Peter; Smardencas, Arthur; Hayes, Alan; Bader, Michael; Angus, Peter; Herath, Chandana; Zulli, Anthony

    2015-06-01

    A growing body of evidence suggests that the vascular actions of Ang-(1-7) appear to involve increased production of nitric oxide (NO), an important vasodilator, through the activation of MasR, thus indicating the involvement of the MasR in preventing endothelial dysfunction. However, it is unknown whether the MasR could be involved in the progression of the next step in atherosclerosis, neo-intimal formation. To determine whether the deletion of the MasR is involved in the development of intimal thickening in an in vitro model. Mice [three background controls (C57Bl/6) and 3 MasR (-/-)] were killed and the aortas excised and cleaned of connective tissue and cut into 3 mm rings. Rings were placed in an organ culture medium for 5 weeks, embedded in paraffin, cut at 5 μm and stained with haematoxylin and eosin and Masson's trichrome. In addition, aortic reactivity was measured in organ baths. After 5 weeks of culture, the intima:media ratio increased in the aortas from MasR (-/-) mice compared to the control group by 4.5-fold (P < 0.01). However, no significant difference in nuclei area count (cell proliferation) between the MasR (-/-) mice and control group was observed (0.87 ± 0.29% vs. 0.94 ± 0.18%, respectively, P = ns). Functional studies showed only a minor vasoconstrictive and full vasodilative response. This study shows that the deletion of the MasR causes marked increase in the aortic intima:media ratio, which is not due to generalized cellular proliferation. These results provide a functional role for the MasR in atherogenesis.

  14. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  15. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  16. Vibrational and Rotational Spectroscopy of CD_2H^+

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Jusko, Pavol; Brünken, Sandra; Schlemmer, Stephan

    2016-06-01

    The lowest rotational levels (J=0-5) of the CD_2H^+ ground state have been probed by high-resolution rovibrational and pure rotational spectroscopy in a cryogenic 22-pole ion trap. For this, the ν_1 rovibrational band has been revisited, detecting 107 transitions, among which 35 are new. The use of a frequency comb system allowed to measure the rovibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing combination differences in the ground and vibrationally excited state. For the ground state, this allowed for equally precise predictions of pure rotational transitions, 24 of which have been measured directly by a novel IR - mm-wave double resonance method. M.-F. Jagod et al, J. Molec. Spectrosc. 153, 666, 1992 S. Gartner et al, J. Phys. Chem. A 117, 9975, 2013

  17. 2H and 18O Freshwater Isoscapes of Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  18. Ab initio study of {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 4}He reactions and the tensor force

    SciTech Connect

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D.

    2012-11-12

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions at low energies are studied with realistic nucleon-nucleon interactions in an ab initio approach. The obtained astrophysical S-factors are all in very good agreement with experiment. The most important channels for both transfer and radiative capture are all found to dominate thanks to the tensor force.

  19. Human organic cation transporter 2 (hOCT2): Inhibitor studies using S2-hOCT2 cells.

    PubMed

    Chiba, Shoetsu; Ikawa, Toru; Takeshita, Hiroshi; Kanno, Sanae; Nagai, Tomonori; Takada, Meri; Mukai, Toshiji; Wempe, Michael F

    2013-08-09

    Highly expressed in kidney and located on the basolateral membrane, human organic cation transporter 2 (hOCT2) can transport various compounds (i.e. drugs and toxins) into the proximal tubular cell. Using cultured proximal tubule cells stably expressing hOCT2 (i.e. S2-hOCT2 cells), we sought to probe different compound classes (e.g. analgesics, anti-depressants, anti-psychotics, disinfectant, herbicides, insecticides, local anesthetic, muscarinic acetylcholine receptor antagonist, sedatives, steroid hormone, stimulants and toxins) for their ability to inhibit (14)C-TEA uptake, a prototypical OCT2 substrate. Aconitine, amitriptyline, atropine, chlorpyrifos, diazepam, fenitrothion, haloperidol, lidocaine, malathion, mianserin, nicotine and triazolam significantly inhibited (14)C-TEA uptake; IC50 values were 59.2, 2.4, 2.0, 20.7, 32.3, 13.2, 32.5, 104.6, 71.1, 17.7, 52.8 and 65.5μM, respectively. In addition, aconitine, amitriptyline, atropine, chlorpyrifos, fenitrothion, haloperidol, lidocaine, and nicotine displayed competitive inhibition with Ki values of 145.6, 2.5, 2.4, 24.8, 16.9, 51.6, 86.8 and 57.7μM, respectively. These in vitro data support the notion that compounds pertaining to a wide variety of different drug classes have the potential to decrease renal clearance of drugs transported via hOCT2. Consequently, these data warrant additional studies to probe hOCT2 and its role to influence drug pharmacokinetics.

  20. BOREAS Level-2 MAS Surface Reflectance and Temperature Images in BSQ Format

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey (Editor); Lobitz, Brad; Spanner, Michael; Strub, Richard; Lobitz, Brad

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study (BOREAS) Staff Science Aircraft Data Acquisition Program focused on providing the research teams with the remotely sensed aircraft data products they needed to compare and spatially extend point results. The MODIS Airborne Simulator (MAS) images, along with other remotely sensed data, were collected to provide spatially extensive information over the primary study areas. This information includes biophysical parameter maps such as surface reflectance and temperature. Collection of the MAS images occurred over the study areas during the 1994 field campaigns. The level-2 MAS data cover the dates of 21-Jul-1994, 24-Jul-1994, 04-Aug-1994, and 08-Aug-1994. The data are not geographically/geometrically corrected; however, files of relative X and Y coordinates for each image pixel were derived by using the C130 navigation data in a MAS scan model. The data are provided in binary image format files.

  1. BOREAS Level-1B MAS Imagery At-sensor Radiance, Relative X and Y Coordinates

    NASA Technical Reports Server (NTRS)

    Strub, Richard; Strub, Richard; Newcomer, Jeffrey A.; Ungar, Stephen

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the MODIS Airborne Simulator (MAS) images, along with the other remotely sensed data, were collected to provide spatially extensive information over the primary study areas. This information includes detailed land cover and biophysical parameter maps such as fraction of Photosynthetically Active Radiation (fPAR) and Leaf Area Index (LAI). Collection of the MAS images occurred over the study areas during the 1994 field campaigns. The level-1b MAS data cover the dates of 21-Jul-1994, 24-Jul-1994, 04-Aug-1994, and 08-Aug-1994. The data are not geographically/geometrically corrected; however, files of relative X and Y coordinates for each image pixel were derived by using the C-130 INS data in a MAS scan model. The data are provided in binary image format files.

  2. 77 FR 58996 - Multiple Award Schedule (MAS) Program Continuous Open Season-Operational Change; Extension of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... From the Federal Register Online via the Government Publishing Office GENERAL SERVICES ADMINISTRATION Multiple Award Schedule (MAS) Program Continuous Open Season-- Operational Change; Extension of Comment Period AGENCY: Federal Acquisition Service (FAS), General Services Administration (GSA)....

  3. Cassini's Maneuver Automation Software (MAS) Process: How to Successfully Command 200 Navigation Maneuvers

    NASA Technical Reports Server (NTRS)

    Yang, Genevie Velarde; Mohr, David; Kirby, Charles E.

    2008-01-01

    To keep Cassini on its complex trajectory, more than 200 orbit trim maneuvers (OTMs) have been planned from July 2004 to July 2010. With only a few days between many of these OTMs, the operations process of planning and executing the necessary commands had to be automated. The resulting Maneuver Automation Software (MAS) process minimizes the workforce required for, and maximizes the efficiency of, the maneuver design and uplink activities. The MAS process is a well-organized and logically constructed interface between Cassini's Navigation (NAV), Spacecraft Operations (SCO), and Ground Software teams. Upon delivery of an orbit determination (OD) from NAV, the MAS process can generate a maneuver design and all related uplink and verification products within 30 minutes. To date, all 112 OTMs executed by the Cassini spacecraft have been successful. MAS was even used to successfully design and execute a maneuver while the spacecraft was in safe mode.

  4. U.S. Geological Survey mineral databases; MRDS and MAS/MILS

    USGS Publications Warehouse

    McFaul, E.J.; Mason, G.T.; Ferguson, W.B.; Lipin, B.R.

    2000-01-01

    These two CD-ROM's contain the latest version of the Mineral Resources Data System (MRDS) database and the Minerals Availability System/Minerals Industry Location System (MAS/MILS) database for coverage of North America and the world outside North America. The records in the MRDS database each contain almost 200 data fields describing metallic and nonmetallic mineral resources, deposits, and commodities. The records in the MAS/MILS database each contain almost 100 data fields describing mines and mineral processing plans.

  5. Angiotensin-(1-7)/Mas receptor as an antinociceptive agent in cancer-induced bone pain.

    PubMed

    Forte, Brittany L; Slosky, Lauren M; Zhang, Hong; Arnold, Moriah R; Staatz, William D; Hay, Meredith; Largent-Milnes, Tally M; Vanderah, Todd W

    2016-12-01

    Many cancerous solid tumors metastasize to the bone and induce pain (cancer-induced bone pain [CIBP]). Cancer-induced bone pain is often severe because of enhanced inflammation, rapid bone degradation, and disease progression. Opioids are prescribed to manage this pain, but they may enhance bone loss and increase tumor proliferation, further compromising patient quality of life. Angiotensin-(1-7) (Ang-(1-7)) binds and activates the Mas receptor (MasR). Angiotensin-(1-7)/MasR activation modulates inflammatory signaling after acute tissue insult, yet no studies have investigated whether Ang-(1-7)/MasR play a role in CIBP. We hypothesized that Ang-(1-7) inhibits CIBP by targeting MasR in a murine model of breast CIBP. 66.1 breast cancer cells were implanted into the femur of BALB/cAnNHsd mice as a model of CIBP. Spontaneous and evoked pain behaviors were assessed before and after acute and chronic administration of Ang-(1-7). Tissues were collected from animals for ex vivo analyses of MasR expression, tumor burden, and bone integrity. Cancer inoculation increased spontaneous pain behaviors by day 7 that were significantly reduced after a single injection of Ang-(1-7) and after sustained administration. Preadministration of A-779 a selective MasR antagonist prevented this reduction, whereas pretreatment with the AT2 antagonist had no effect; an AT1 antagonist enhanced the antinociceptive activity of Ang-(1-7) in CIBP. Repeated Ang-(1-7) administration did not significantly change tumor burden or bone remodeling. Data here suggest that Ang-(1-7)/MasR activation significantly attenuates CIBP, while lacking many side effects seen with opioids. Thus, Ang-(1-7) may be an alternative therapeutic strategy for the nearly 90% of patients with advanced-stage cancer who experience excruciating pain.

  6. Angiotensin-(1-7)/Mas receptor as an antinociceptive agent in cancer-induced bone pain

    PubMed Central

    Forte, Brittany L.; Slosky, Lauren M.; Zhang, Hong; Arnold, Moriah R.; Staatz, William D.; Hay, Meredith; Largent-Milnes, Tally M.; Vanderah, Todd W.

    2016-01-01

    Abstract Many cancerous solid tumors metastasize to the bone and induce pain (cancer-induced bone pain [CIBP]). Cancer-induced bone pain is often severe because of enhanced inflammation, rapid bone degradation, and disease progression. Opioids are prescribed to manage this pain, but they may enhance bone loss and increase tumor proliferation, further compromising patient quality of life. Angiotensin-(1-7) (Ang-(1-7)) binds and activates the Mas receptor (MasR). Angiotensin-(1-7)/MasR activation modulates inflammatory signaling after acute tissue insult, yet no studies have investigated whether Ang-(1-7)/MasR play a role in CIBP. We hypothesized that Ang-(1-7) inhibits CIBP by targeting MasR in a murine model of breast CIBP. 66.1 breast cancer cells were implanted into the femur of BALB/cAnNHsd mice as a model of CIBP. Spontaneous and evoked pain behaviors were assessed before and after acute and chronic administration of Ang-(1-7). Tissues were collected from animals for ex vivo analyses of MasR expression, tumor burden, and bone integrity. Cancer inoculation increased spontaneous pain behaviors by day 7 that were significantly reduced after a single injection of Ang-(1-7) and after sustained administration. Preadministration of A-779 a selective MasR antagonist prevented this reduction, whereas pretreatment with the AT2 antagonist had no effect; an AT1 antagonist enhanced the antinociceptive activity of Ang-(1-7) in CIBP. Repeated Ang-(1-7) administration did not significantly change tumor burden or bone remodeling. Data here suggest that Ang-(1-7)/MasR activation significantly attenuates CIBP, while lacking many side effects seen with opioids. Thus, Ang-(1-7) may be an alternative therapeutic strategy for the nearly 90% of patients with advanced-stage cancer who experience excruciating pain. PMID:27541850

  7. Ammonia Vapor Removal by Cu3(BTC)2 and Its Characterization by MAS NMR

    DTIC Science & Technology

    2009-01-01

    further confirmation of these assignments, Soxhlet - extracted (MeOH) Cu3(BTC)2 is totally devoid of both DMF peaks, leaving only the pristine methine...samples, 1H and 13C MAS NMR spectra for solvent extracted Cu3(BTC)2 and (NH4)3BTC, Figure 15. 1H MAS NMR spectra obtained for Cu3(BTC)2 exposed to NH3

  8. AVE 0991, a non-peptide Mas-receptor agonist, facilitates penile erection.

    PubMed

    da Costa Gonçalves, Andrey C; Fraga-Silva, Rodrigo A; Leite, Romulo; Santos, Robson A S

    2013-03-01

    The renin-angiotensin system plays a crucial role in erectile function. It has been shown that elevated levels of angiotensin II contribute to the development of erectile dysfunction both in humans and in aminals. On the contrary, the heptapeptide angiotensin-(1-7) appears to mediate penile erection by activation of the Mas receptor. Recently, we have shown that the erectile function of Mas gene-deleted mice was substantially reduced, which was associated with a marked increase in fibrous tissue in the corpus cavernosum. We have hypothesized that the synthetic non-peptide Mas agonist, AVE 0991, would potentiate penile erectile function. We showed that intracavernosal injection of AVE 0991 potentiated the erectile response of anaesthetized Wistar rats, measured as the ratio between corpus cavernosum pressure and mean arterial pressure, upon electrical stimulation of the major pelvic ganglion. The facilitatory effect of AVE 0991 on erectile function was dose dependent and completely blunted by the nitric oxide synthesis inhibitor, l-NAME. Importantly, concomitant intracavernosal infusion of the specific Mas receptor blocker, A-779, abolished the effect of AVE 0991. We demonstrated that AVE 0991 potentiates the penile erectile response through Mas in an NO-dependent manner. Importantly, these results suggest that Mas agonists, such as AVE 0991, might have significant therapeutic benefits for the treatment of erectile dysfunction.

  9. A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato.

    PubMed

    Liu, Degao; Wang, Lianjun; Zhai, Hong; Song, Xuejin; He, Shaozhen; Liu, Qingchang

    2014-01-01

    Salt stress is one of the major environmental stresses in agriculture worldwide and affects crop productivity and quality. The development of crops with elevated levels of salt tolerance is therefore highly desirable. In the present study, a novel maspardin gene, named IbMas, was isolated from salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line ND98. IbMas contains maspardin domain and belongs to α/β-hydrolase superfamily. Expression of IbMas was up-regulated in sweetpotato under salt stress and ABA treatment. The IbMas-overexpressing sweetpotato (cv. Shangshu 19) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content was significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbMas up-regulated the salt stress responsive genes, including pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductase, SOD, psbA and phosphoribulokinase genes, under salt stress. These findings suggest that overexpression of IbMas enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and increasing reactive oxygen species scavenging capacity.

  10. A Novel α/β-Hydrolase Gene IbMas Enhances Salt Tolerance in Transgenic Sweetpotato

    PubMed Central

    Song, Xuejin; He, Shaozhen; Liu, Qingchang

    2014-01-01

    Salt stress is one of the major environmental stresses in agriculture worldwide and affects crop productivity and quality. The development of crops with elevated levels of salt tolerance is therefore highly desirable. In the present study, a novel maspardin gene, named IbMas, was isolated from salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line ND98. IbMas contains maspardin domain and belongs to α/β-hydrolase superfamily. Expression of IbMas was up-regulated in sweetpotato under salt stress and ABA treatment. The IbMas-overexpressing sweetpotato (cv. Shangshu 19) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content was significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbMas up-regulated the salt stress responsive genes, including pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductase, SOD, psbA and phosphoribulokinase genes, under salt stress. These findings suggest that overexpression of IbMas enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and increasing reactive oxygen species scavenging capacity. PMID:25501819

  11. Thermal decomposition of (UO2)O2(H2O)2·2H2O: Influence on structure, microstructure and hydrofluorination

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Rivenet, M.; Berrier, E.; de Waele, I.; Arab, M.; Amaraggi, D.; Morel, B.; Abraham, F.

    2017-01-01

    The thermal decomposition of uranyl peroxide tetrahydrate, (UO2)O2(H2O)2.2H2O, was studied by combining high temperature powder X-ray diffraction, scanning electron microscopy, thermal analyses and spectroscopic techniques (Raman, IR and 1H NMR). In situ analyses reveal that intermediates and final uranium oxides obtained upon heating are different from that obtained after cooling at room temperature and that the uranyl precursor used to synthesize (UO2)O2(H2O)2·2H2O, sulfate or nitrate, has a strong influence on the peroxide thermal behavior and morphology. The decomposition of (UO2)O2(H2O)2·2H2O ex sulfate is pseudomorphic and leads to needle-like shaped particles of metastudtite, (UO2)O2(H2O)2, and UO3-x(OH)2x·zH2O, an amorphous phase found in air in the following of (UO2)O2(H2O)2 dehydration. (UO2)O2(H2O)2·2H2O and the compounds resulting from its thermal decomposition are very reactive towards hydrofluorination as long as their needle-like morphology is kept.

  12. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei.

    PubMed Central

    Vercesi, A E; Moreno, S N; Docampo, R

    1994-01-01

    The use of digitonin to permeabilize the plasma membrane of Trypanosoma brucei procyclic and bloodstream trypomastigotes allowed the identification of a non-mitochondrial nigericin-sensitive Ca2+ compartment. The proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was able to cause Ca2+ release from this compartment, which was also sensitive to sodium orthovanadate. Preincubation of the cells with the vacuolar H(+)-ATPase inhibitor bafilomycin A1 greatly reduced the nigericin-sensitive Ca2+ compartment. Bafilomycin A1 inhibited the initial rate of ATP-dependent non-mitochondrial Ca2+ uptake and stimulated the initial rate of nigericin-induced Ca2+ release by permeabilized procyclic trypomastigotes. ATP-dependent and bafilomycin A1- and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl)-sensitive Acridine Orange uptake was demonstrated in permeabilized cells. Under these conditions Acridine Orange was concentrated in abundant cytoplasmic round vacuoles by a process inhibited by bafilomycin A1, NBD-Cl, nigericin, and Ca2+. Vanadate or EGTA significantly increased Acridine Orange uptake, while Ca2+ released Acridine Orange from these preparations, thus suggesting that the dye and Ca2+ were being accumulated in the same acidic vacuole. Acridine Orange uptake was reversed by nigericin, bafilomycin A1 and NH4Cl. The results are consistent with the presence of a Ca2+/H(+)-ATPase system pumping Ca2+ into an acidic vacuole, that we tentatively named the acidocalcisome. Images Figure 5 PMID:7998937

  13. High/variable mixture ratio O2/H2 engine

    NASA Technical Reports Server (NTRS)

    Adams, A.; Parsley, R. C.

    1988-01-01

    Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.

  14. 2H NMR studies of glycerol dynamics in protein matrices.

    PubMed

    Herbers, C R; Sauer, D; Vogel, M

    2012-03-28

    We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  15. 2H NMR studies of glycerol dynamics in protein matrices

    NASA Astrophysics Data System (ADS)

    Herbers, C. R.; Sauer, D.; Vogel, M.

    2012-03-01

    We use 2H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  16. Ion-neutral reaction of the C2H2N+ cation with C2H2: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Fathi, P.; Geppert, W. D.; Kaiser, A.; Ascenzi, D.

    2016-03-01

    The ion-neutral reactions of the C2H2N+ cation with C2H2 have been investigated using a Guided Ion Beam Mass Spectrometer (GIB-MS). The following ionic products were observed: CH3+, C2H2+, C2H3+, HNC+ /HCN+ , HCNH+, C3H+ , C2N+ , C3H3+, HCCN+ and C4H2N+ . Theoretical calculations have been carried out to propose reaction pathways leading to the observed products. These processes are of relevance for the generation of long chain nitrogen-containing species and they may be of interest for the chemistry of Titan's ionosphere or circumstellar envelopes.

  17. Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation.

    PubMed

    Sobrino, Agua; Vallejo, Susana; Novella, Susana; Lázaro-Franco, Macarena; Mompeón, Ana; Bueno-Betí, Carlos; Walther, Thomas; Sánchez-Ferrer, Carlos; Peiró, Concepción; Hermenegildo, Carlos

    2017-04-01

    The Mas receptor is involved in the angiotensin (Ang)-(1-7) vasodilatory actions by increasing nitric oxide production (NO). We have previously demonstrated an increased production of Ang-(1-7) in human umbilical vein endothelial cells (HUVEC) exposed to estradiol (E2), suggesting a potential cross-talk between E2 and the Ang-(1-7)/Mas receptor axis. Here, we explored whether the vasoactive response and NO-related signalling exerted by E2 are influenced by Mas. HUVEC were exposed to 10nM E2 for 24h in the presence or absence of the selective Mas receptor antagonist A779, and the estrogen receptor (ER) antagonist ICI182780 (ICI). E2 increased Akt and endothelial nitric oxide synthase (eNOS) mRNA and protein expression, measured by RT-PCR and Western blot, respectively. Furthermore, E2 increased Akt activity (determined by the levels of phospho-Ser(473)) and eNOS activity (by the enhanced phosphorylation of Ser(1177), the activated form), resulting in increased NO production, which was measured by the fluorescence probe DAF-2-FM. These signalling events were dependent on ER and Mas receptor activation, since they were abolished in the presence of ICI or A779. In ex-vivo functional experiments performed with a small-vessel myograph in isolated mesenteric vessels from wild-type mice pre-contracted with noradrenaline, the relaxant response to physiological concentrations of E2 was blocked by ICI and A779, to the same extent to that obtained in the vessels isolated from Mas-deficient. In conclusion, E2 induces NO production and vasodilation through mechanisms that require Mas receptor activation.

  18. Evidence for a Systematic Offset of -0.25 mas in the Gaia DR1 Parallaxes

    NASA Astrophysics Data System (ADS)

    Stassun, Keivan G.; Torres, Guillermo

    2016-11-01

    We test the parallaxes reported in the Gaia first data release using the sample of eclipsing binaries with accurate, empirical distances from Stassun & Torres. We find an average offset of -0.25 ± 0.05 mas in the sense of the Gaia parallaxes being too small (i.e., the distances too long). The offset does not depend strongly on obvious parameters such as color or brightness. However, we find with high confidence that the offset may depend on ecliptic latitude: the mean offset is -0.38 ± 0.06 mas in the ecliptic north and -0.05 ± 0.09 mas in the ecliptic south. The ecliptic latitude dependence may also be represented by the linear relation, {{Δ }}π ≈ -0.22(+/- 0.05)-0.003(+/- 0.001)× β mas (β in degrees). Finally, there is a possible dependence of the parallax offset on distance, with the offset becoming negligible for π ≲ 1 mas; we discuss whether this could be caused by a systematic error in the eclipsing binary distance scale, and reject this interpretation as unlikely.

  19. Time-Dependent Coupling of Lfm-Helio and MAS Models for CME Propagation

    NASA Astrophysics Data System (ADS)

    Lyon, J.; Merkin, V. G.; Lionello, R.; Linker, J.; Raouafi, N. E.

    2014-12-01

    We present initial results of coupling of the heliospheric adaptation of the Lyon-Fedder-Mobarry (LFM) magnetohydrodynamic (MHD) model — LFM-helio — with the MAS model of the solar corona. Up to now, LFM-helio has been limited to steady-state solutions dominated by corotating structures. We have developed a generalized interface for specification of time-dependent coronal boundary conditions and ingestion of MAS simulation data into the LFM model. The coupling is done by overlapping the LFM inner boundary buffer region with the outer portion of the MAS coronal grid. LFM-helio operates in the inertial rest frame, but our coupling code is sufficiently flexible that MAS solutions performed in either rotating or inertial frames can be ingested. We present results of a number of idealized coupled MAS/LFM-helio simulations — ranging from simply symmetric solar wind background to realistic including high and slow speed streams — intended to test the interface for seamless propagation of transients from the corona into the inner heliosphere domain. The transients are then tracked to larger heliocentric distances — to Earth and beyond. We specifically investigate the magnetic structure of the CMEs as they propagate through the interplanetary medium including rotation and erosion, and consider how the simulation resolution affects the results. We also developed codes for creation of synthetic white-light heliographic images which are used to help track CMEs kinematics through J-maps and put the simulations into a realistic observational context.

  20. Remarkably efficient synthesis of 2H-indazole 1-oxides and 2H-indazoles via tandem carbon-carbon followed by nitrogen-nitrogen bond formation.

    PubMed

    Bouillon, Isabelle; Zajícek, Jaroslav; Pudelová, Nadĕzda; Krchnák, Viktor

    2008-11-21

    Base-catalyzed tandem carbon-carbon followed by nitrogen-nitrogen bond formations quantitatively converted N-alkyl-2-nitro-N-(2-oxo-2-aryl-ethyl)-benzenesulfonamides to 2H-indazoles 1-oxides under mild conditions. Triphenylphosphine or mesyl chloride/triethylamine-mediated deoxygenation afforded 2H-indazoles.

  1. Technology Enhanced Learning for People with Intellectual Disabilities and Cerebral Paralysis: The MAS Platform

    NASA Astrophysics Data System (ADS)

    Colomo-Palacios, Ricardo; Paniagua-Martín, Fernando; García-Crespo, Ángel; Ruiz-Mezcua, Belén

    Education for students with disabilities now takes place in a wide range of settings, thus, including a wider range of assistive tools. As a result of this, one of the most interesting application domains of technology enhanced learning is related to the adoption of learning technologies and designs for people with disabilities. Following this unstoppable trend, this paper presents MAS, a software platform aimed to help people with severe intellectual disabilities and cerebral paralysis in their learning processes. MAS, as a technology enhanced learning platform, provides several tools that supports learning and monitoring for people with special needs, including adaptative games, data processing and monitoring tools. Installed in a special needs education institution in Madrid, Spain, MAS provides special educators with a tool that improved students education processes.

  2. Investigation of domain size in polymer membranes using double quantum filtered spin diffusion MAS NMR.

    SciTech Connect

    Fujimoto, Cy H.; Alam, Todd Michael; Cherry, Brian Ray; Cornelius, Christopher James

    2005-02-01

    Solid-state {sup 1}H magic angle spinning (MAS) NMR was used to investigate sulfonated Diels-Alder poly(phenlylene) polymer membranes. Under high spinning speed {sup 1}H MAS conditions, the proton environments of the sulfonic acid and phenylene polymer backbone are resolved. A double-quantum (DQ) filter using the rotor-synchronized back-to-back (BABA) NMR multiple-pulse sequence allowed the selective suppression of the sulfonic proton environment in the {sup 1}H MAS NMR spectra. This DQ filter in conjunction with a spin diffusion NMR experiment was then used to measure the domain size of the sulfonic acid component within the membrane. In addition, the temperature dependence of the sulfonic acid spin-spin relaxation time (T{sub 2}) was determined, providing an estimate of the activation energy for the proton dynamics of the dehydrated membrane.

  3. Use of SPAM and FAM pulses in high-resolution MAS NMR spectroscopy of quadrupolar nuclei.

    PubMed

    Ball, Thomas J; Wimperis, Stephen

    2007-08-01

    The merits of SPAM and FAM pulses for enhancing the conversion of triple- to single-quantum coherences in the two-dimensional MQMAS experiment are compared using (87)Rb (spin I=3/2) and (27)Al (I=5/2) NMR of crystalline and amorphous materials. Although SPAM pulses are more easily optimized, our experiments and simulations suggest that FAM pulses yield greater signal intensity in all cases. In conclusion, we argue that, as originally suggested, SPAM and FAM pulses are best implemented in phase-modulated whole-echo MQMAS experiments and that the use of SPAM pulses to record separate echo and antiecho data sets, which are then combined, generally yields lower signal-to-noise ratios.

  4. Use of SPAM and FAM pulses in high-resolution MAS NMR spectroscopy of quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Ball, Thomas J.; Wimperis, Stephen

    2007-08-01

    The merits of SPAM and FAM pulses for enhancing the conversion of triple- to single-quantum coherences in the two-dimensional MQMAS experiment are compared using 87Rb (spin I = 3/2) and 27Al ( I = 5/2) NMR of crystalline and amorphous materials. Although SPAM pulses are more easily optimized, our experiments and simulations suggest that FAM pulses yield greater signal intensity in all cases. In conclusion, we argue that, as originally suggested, SPAM and FAM pulses are best implemented in phase-modulated whole-echo MQMAS experiments and that the use of SPAM pulses to record separate echo and antiecho data sets, which are then combined, generally yields lower signal-to-noise ratios.

  5. Production of C2H4Cl+ by dissociative photoionization of weak molecular complexes in C2H4 + HCl mixtures

    NASA Astrophysics Data System (ADS)

    Walters, E. A.; Grover, J. R.; Arneberg, D. L.; Santandrea, C. J.; White, M. G.

    1990-12-01

    The photoionization efficiency (PIE) spectrum from 600 to 1200 Å for the production of the ion C2H4Cl+ by dissociative photoionization of the products of room-temperature jet expansions of a 1:4 mixture of C2H4 and HCl was measured at several nozzle pressures. The results were resolved into the PIE yield curve for the heterodimer process C2H4·HCl+ hv→C2H4Cl++H+ e. This reaction is necessarily characterized by a large change in geometry between neutral complex and ionic product. The observed spectrum exhibits an unusual and conspicuous peak at 15.2 eV that is characterized by a sharp cutoff to the high energy side. This feature points to the onset of strongly nonstatistical channels for the production of C2H4Cl+ at this energy such that product formation proceeds through very few states. The observed onset of C2H4Cl+ at 11.92±0.24 eV is 17±6 kcal mol-1 above the true threshold. An important conclusion is that at all energies above the onset the yield of dissociative ionization of the heterodimer to the cation C2H4Cl+ is determined by dynamical factors.

  6. Synthesis of (R)-[2-2H]isopentenyl diphosphate and determination of its enantiopurity by 2H NMR spectroscopy in a lyotropic medium.

    PubMed

    Leyes, A E; Poulter, C D

    1999-10-07

    [formula: see text] The synthesis of (R)-[2-2H]isopentenyl diphosphate from D-mannitol 1,2:5,6-bis-acetonide in 10 steps is reported. Stereospecific incorporation of the label is achieved by a BF3-catalyzed NaCNBD3 reduction of the enantiomerically pure (S)-isopropylidene oxirane intermediate. The enantiomeric excess of the penultimate precursor [2-2H]isopentenyl tosylate (> 95% ee) was determined by 2H NMR spectroscopy in a poly-gamma-benzyl-L-glutamate/CH2Cl2 liquid crystal at -50 degrees C.

  7. Environmental, trophic, and ecological factors influencing bone collagen δ2H

    NASA Astrophysics Data System (ADS)

    Topalov, Katarina; Schimmelmann, Arndt; David Polly, P.; Sauer, Peter E.; Lowry, Mark

    2013-06-01

    Organic deuterium/hydrogen stable isotope ratios (i.e., 2H/1H, expressed as δ2H value in ‰) in animal tissues are related to the 2H/1H in diet and ingested water. Bone collagen preserves the biochemical 2H/1H isotopic signal in the δ2H value of collagen's non-exchangeable hydrogen. Therefore, δ2H preserved in bone collagen has the potential to constrain environmental and trophic conditions, which is of interest to researchers studying of both living and fossil vertebrates. Our data examine the relationship of δ2H values of collagen with geographic variation in δ2H of meteoric waters, with local variations in the ecology and trophic level of species, and with the transition from mother's milk to adult diet. Based on 97 individuals from 22 marine and terrestrial vertebrates (predominately mammals), we found the relationships of collagen δ2H to both geographic variation in meteoric water δ2H (R2 = 0.55) and to δ15N in bone collagen (R2 = 0.17) statistically significant but weaker than previously reported. The second strongest control on collagen δ2H in our data is dietary, with nearly 50 percent of the variance in δ2H explained by trophic level (R2 = 0.47). Trophic level effects potentially confound the local meteoric signal if not held constant: herbivores tend to have the lowest δ2H values, omnivores have intermediate ones, and carnivores have the highest values. Body size (most likely related to mass-specific metabolic rates) has a strong influence on collagen δ2H (R2 = 0.30), by causing greater sensitivity in smaller animals to seasonal climate variations and/or high evapotranspiration leading to 2H-enrichment in tissues. In marine mammals weaning produces a dramatic effect on collagen δ2H with adult values being universally higher than pup values (R2 = 0.79). Interestingly, the shift in δ15N at weaning is downward, even though normally hydrogen and nitrogen isotope ratios are positively correlated with one another in respect to trophic level. Our

  8. Dehydrocoupling of dimethylamine borane catalyzed by Rh(PCy3)2H2Cl.

    PubMed

    Sewell, Laura J; Huertos, Miguel A; Dickinson, Molly E; Weller, Andrew S; Lloyd-Jones, Guy C

    2013-04-15

    The Rh(III) species Rh(PCy3)2H2Cl is an effective catalyst (2 mol %, 298 K) for the dehydrogenation of H3B·NMe2H (0.072 M in 1,2-F2C6H4 solvent) to ultimately afford the dimeric aminoborane [H2BNMe2]2. Mechanistic studies on the early stages in the consumption of H3B·NMe2H, using initial rate and H/D exchange experiments, indicate possible dehydrogenation mechanisms that invoke turnover-limiting N-H activation, which either precedes or follows B-H activation, to form H2B═NMe2, which then dimerizes to give [H2BNMe2]2. An additional detail is that the active catalyst Rh(PCy3)2H2Cl is in rapid equilibrium with an inactive dimeric species, [Rh(PCy3)H2Cl]2. The reaction of Rh(PCy3)2H2Cl with [Rh(PCy3)H2(H2)2][BAr(F)4] forms the halide-bridged adduct [Rh(PCy3)2H2(μ-Cl)H2(PCy3)2Rh][BAr(F)4] (Ar(F) = 3,5-(CF3)2C6H3), which has been crystallographically characterized. This dinuclear cation dissociates on addition of H3B·NMe2H to re-form Rh(PCy3)2H2Cl and generate [Rh(PCy3)2H2(η(2)-H3B·NMe2H)][BAr(F)4]. The fate of the catalyst at low catalyst loadings (0.5 mol %) is also addressed, with the formation of an inactive borohydride species, Rh(PCy3)2H2(η(2)-H2BH2), observed. On addition of H3B·NMe2H to Ir(PCy3)2H2Cl, the Ir congener Ir(PCy3)2H2(η(2)-H2BH2) is formed, with concomitant generation of the salt [H2B(NMe2H)2]Cl.

  9. Probing the aromaticity of the [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6],+, and [(HtPa)3(μ2-H)6] clusters

    NASA Astrophysics Data System (ADS)

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-01

    In this study we report about the aromaticity of the prototypical [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6]+, and [(HtPa)3(μ2-H)6] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(HtAc)3(μ2-H)6] and [(HtTh)3(μ2-H)6]+ are non-aromatic whereas [(HtPa)3(μ2-H)6] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(HtPa)3(μ2-H)6] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index.

  10. Probing the aromaticity of the [(H(t)Ac)3(μ2-H)6], [(H(t)Th)3(μ2-H)6],(+), and [(H(t)Pa)3(μ2-H)6] clusters.

    PubMed

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-14

    In this study we report about the aromaticity of the prototypical [(H(t)Ac)(3)(μ(2)-H)(6)], [(H(t)Th)(3)(μ(2)-H)(6)](+), and [(H(t)Pa)(3)(μ(2)-H)(6)] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(H(t)Ac)(3)(μ(2)-H)(6)] and [(H(t)Th)(3)(μ(2)-H)(6)](+) are non-aromatic whereas [(H(t)Pa)(3)(μ(2)-H)(6)] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(H(t)Pa)(3)(μ(2)-H)(6)] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index.

  11. 47 CFR 101.1317 - Competitive bidding procedures for mutually exclusive MAS EA applications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Competitive bidding procedures for mutually exclusive MAS EA applications. 101.1317 Section 101.1317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Multiple Address Systems...

  12. Advanced instrumentation for DNP-enhanced MAS NMR for higher magnetic fields and lower temperatures.

    PubMed

    Matsuki, Yoh; Idehara, Toshitaka; Fukazawa, Jun; Fujiwara, Toshimichi

    2016-03-01

    Sensitivity enhancement of MAS NMR using dynamic nuclear polarization (DNP) is gaining importance at moderate fields (B0<9T) and temperatures (T>90K) with potential applications in chemistry and material sciences. However, considering the ever-increasing size and complexity of the systems to be studied, it is crucial to establish DNP under higher field conditions, where the spectral resolution and the basic NMR sensitivity tend to improve. In this perspective, we overview our recent efforts on hardware developments, specifically targeted on improving DNP MAS NMR at high fields. It includes the development of gyrotrons that enable continuous frequency tuning and rapid frequency modulation for our 395 GHz-600 MHz and 460 GHz-700 MHz DNP NMR spectrometers. The latter 700 MHz system involves two gyrotrons and a quasi-optical transmission system that combines two independent sub-millimeter waves into a single dichromic wave. We also describe two cryogenic MAS NMR probe systems operating, respectively, at T ∼ 100K and ∼ 30K. The latter system utilizes a novel closed-loop helium recirculation mechanism, achieving cryogenic MAS without consuming any cryogen. These instruments altogether should promote high-field DNP toward more efficient, reliable and affordable technology. Some experimental DNP results obtained with these instruments are presented.

  13. Moderate MAS enhances local (1)H spin exchange and spin diffusion.

    PubMed

    Roos, Matthias; Micke, Peter; Saalwächter, Kay; Hempel, Günter

    2015-11-01

    Proton NMR spin-diffusion experiments are often combined with magic-angle spinning (MAS) to achieve higher spectral resolution of solid samples. Here we show that local proton spin diffusion can indeed become faster at low (<10 kHz) spinning rates as compared to static conditions. Spin diffusion under static conditions can thus be slower than the often referred value of 0.8 nm(2)/ms, which was determined using slow MAS (Clauss et al., 1993). The enhancement of spin diffusion by slow MAS relies on the modulation of the orientation-dependent dipolar couplings during sample rotation and goes along with transient level crossings in combination with dipolar truncation. The experimental finding and its explanation is supported by density matrix simulations, and also emphasizes the sensitivity of spin diffusion to the local coupling topology. The amplification of spin diffusion by slow MAS cannot be explained by any model based on independent spin pairs; at least three spins have to be considered.

  14. Considerations for Consortia as States Transition Away from AA-MAS. NCEO Brief. Number 7

    ERIC Educational Resources Information Center

    National Center on Educational Outcomes, 2014

    2014-01-01

    States with an alternate assessment based on modified achievement standards (AA-MAS) that received a flexibility waiver from some of the requirements of No Child Left Behind are required to phase out their use of this assessment. And, on August 23, 2013, the U.S. Department of Education published a proposed rollback of regulation that allowed the…

  15. Successfully Transitioning from the AA-MAS to the General Assessment. NCEO Policy Directions. Number 22

    ERIC Educational Resources Information Center

    Lazarus, Sheryl; Thurlow, Martha; Christensen, Laurene; Shyyan, Vitaliy

    2014-01-01

    Federal policy initiatives such as the flexibility waivers for accountability are requiring that states transition away from the use of an alternate assessment based on modified achievement standards (AA-MAS). It is expected that those students who had participated in that assessment will instead participate in the state's general assessment (or a…

  16. An Analysis of the Rise and Fall of the AA-MAS Policy

    ERIC Educational Resources Information Center

    Lazarus, Sheryl S.; Thurlow, Martha L.; Ysseldyke, James E.; Edwards, Lynn M.

    2015-01-01

    In 2005, to address concerns about students who might fall in the "gap" between the regular assessment and the alternate assessment based on alternate achievement standards (AA-AAS), the U.S. Department of Education announced that states could develop alternate assessments based on modified achievement standards (AA-MAS). This article…

  17. 48 CFR 538.270 - Evaluation of multiple award schedule (MAS) offers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Evaluation of multiple... and Administering Federal Supply Schedules 538.270 Evaluation of multiple award schedule (MAS) offers... determining the Government's price negotiation objectives, consider the following factors: (1)...

  18. Performance of RINEPT is amplified by dipolar couplings under ultrafast MAS conditions.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2014-06-01

    The refocused insensitive nuclei enhanced by polarization transfer (RINEPT) technique is commonly used for heteronuclear polarization transfer in solution and solid-state NMR spectroscopy. Suppression of dipolar couplings, either by fast molecular motions in solution or by a combination of MAS and multiple pulse sequences in solids, enables the polarization transfer via scalar couplings. However, the presence of unsuppressed dipolar couplings could alter the functioning of RINEPT, particularly under fast/ultrafast MAS conditions. In this study, we demonstrate, through experiments on rigid solids complemented by numerical simulations, that the polarization transfer efficiency of RINEPT is dependent on the MAS frequency. In addition, we show that heteronuclear dipolar coupling is the dominant factor in the polarization transfer, which is strengthened by the presence of (1)H-(1)H dipolar couplings. In fact, the simultaneous presence of homonuclear and heteronuclear dipolar couplings is the premise for the polarization transfer by RINEPT, whereas the scalar coupling plays an insignificant role under ultrafast MAS conditions on rigid solids. Our results additionally reveal that the polarization transfer efficiency decreases with the increasing duration of RF pulses used in the RINEPT sequence.

  19. The Multidimensional Attitudes Scale toward Persons with Disabilities (MAS): Construction and Validation

    ERIC Educational Resources Information Center

    Findler, Liora; Vilchinsky, Noa; Werner, Shirli

    2007-01-01

    This study presents the development of a new instrument, the "Multidimensional Attitudes Scale Toward Persons With Disabilities" (MAS). Based on the multidimensional approach, it posits that attitudes are composed of three dimensions: affect, cognition, and behavior. The scale was distributed to a sample of 132 people along with a…

  20. First Observation of the nu(17)-nu(4) Difference Bands of Diborane (10)B(2)H(6) and (11)B(2)H(6).

    PubMed

    Flaud; Lafferty; Bürger; Pawelke; Domenech; Bermejo

    2000-10-01

    An analysis of the nu(17)-nu(4) difference bands near 800 cm(-1) of two isotopic species, (10)B(2)H(6) and (11)B(2)H(6), of diborane has been carried out using infrared spectra recorded with a resolution of ca. 0.003 cm(-1). In addition, the nu(17) band of (10)B(2)H(6) has been recorded and assigned. Since this band in (11)B(2)H(6) had already been studied (R. L. Sams, T. A. Blake, S. W. Sharpe, J.-M. Flaud, and W. J. Lafferty, J. Mol. Spectrosc. 191, 331-342 (1998)), it was possible to derive precise energy levels and Hamiltonian constants for the 4(1) vibrational states of both isotopic species. Copyright 2000 Academic Press.

  1. First-principles studies of complex hydride YMn2H6 and its synthesis from metal hydride YMn2H4.5

    NASA Astrophysics Data System (ADS)

    Matsuo, Motoaki; Miwa, Kazutoshi; Semboshi, Satoshi; Li, Hai-Wen; Kano, Mika; Orimo, Shin-ichi

    2011-05-01

    First-principles calculations were performed for a complex hydride YMn2H6 to investigate its electronic structure and thermodynamic stability. The results indicated that an Y atom and one of two Mn atoms were ionized as Y3+ and Mn2+, respectively, and another Mn atom bound covalently to H atoms to form a [MnH6]5- complex anion. Based on the enthalpy change of -65 kJ/mol estimated from the calculation, we experimentally verified a possible low-pressure synthesis of YMn2H6 from a metal hydride YMn2H4.5. X-ray diffractometry confirmed the formation of YMn2H6 after hydrogenation below 5 MPa, much lower than the previously reported value of 170 MPa.

  2. Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2 H -TaS2 and 2 H -TaSe2

    NASA Astrophysics Data System (ADS)

    Freitas, D. C.; Rodière, P.; Osorio, M. R.; Navarro-Moratalla, E.; Nemes, N. M.; Tissen, V. G.; Cario, L.; Coronado, E.; García-Hernández, M.; Vieira, S.; Núñez-Regueiro, M.; Suderow, H.

    2016-05-01

    We present measurements of the superconducting and charge-density-wave (CDW) critical temperatures (Tc and TCDW) as a function of pressure in the transition metal dichalchogenides 2 H -TaSe2 and 2 H -TaS2 . Resistance and susceptibility measurements show that Tc increases from temperatures below 1 K up to 8.5 K at 9.5 GPa in 2 H -TaS2 and 8.2 K at 23 GPa in 2 H -TaSe2 . We observe a kink in the pressure dependence of TCDW at about 4 GPa that we attribute to the lock-in transition from incommensurate CDW to commensurate CDW. Above this pressure, the commensurate TCDW slowly decreases, coexisting with superconductivity within our full pressure range.

  3. Ultra High Angular Resolution and sub-mas Astrometry with HST's FGS1r

    NASA Astrophysics Data System (ADS)

    Lallo, M.; Makidon, R. B.; Jong, D.; Nelan, E.

    2001-05-01

    The 3 Fine Guidance Sensors (FGS) - white-light shearing interferometers - are critical to the mission of the Hubble Space Telescope (HST) by providing highly accurate guiding for the observatory. Moreover, FGS1r in particular is a capable science instrument. Its two observing modes - Position Mode and Transfer Mode - support wide angle and narrow angle astrometry respectively. In Position Mode, a star's interferometric fringes are tracked to determine its angular position relative to other stars in the detector's field of view. Using this method, a star's parallax, proper motion, and reflex motion can be measured with a precision of about 1 mas per observation, while multi-epoch observing programs have yielded astrometry with accuracies approaching 0.2 mas for objects as bright as V=3 or as faint as V=16.5. Transfer Mode observations repeatedly scan an object's interferometric fringes to achieve sub-mas sampling of the fringe morphology with high signal-to-noise (conceptually analogous to imaging with a 1 mas pixel array). Post-observation analysis allows the measurement of angular separation, position angle and relative brightness of binary components, or a determination of the angular size of an extended object. Close binary systems with V < 12 can be detected down to 7 mas, while systems as faint as V=15 can be characterized to 12 mas, provided the magnitude difference between the components is less than about 2. (Wider systems with magnitude differences as large as 3.5 can be resolved.) Both FGS observing modes can be utilized to derive the total and fractional masses of binary systems, and thus the mass-luminosity relationship of the binary components. The FGS have also been used to observe and characterize non-point source objects, including Mira variables, asteroids, and active galactic nuclei, yielding information on the structure of these objects on scales as small as 8 mas. The FGS also function as 40 Hz photometers, offering milli-magnitude precision

  4. Bis(ethylenediammonium) decaaquadisodium decavanadate, (C2H10N2)2[Na2(H2O)10][V10O28].

    PubMed

    Li, Guo Bao; Yang, Si Hai; Xiong, Ming; Lin, Jian Hua

    2004-12-01

    In the title compound, the decavanadate anion, [V(10)O(28)](6-), and the bridged [Na(2)(H(2)O)(10)](2+) dication lie across inversion centers. The charge balance is achieved by ethylenediammonium cations, H(3)NCH(2)CH(2)NH(3)(2+), which are disordered. The decavanadate anions are surrounded by the [Na(2)(H(2)O)(10)](2+) dications, thus forming layers, and the ethylenediammonium cations are located between these layers.

  5. Effect of a Selective Mas Receptor Agonist in Cerebral Ischemia In Vitro and In Vivo.

    PubMed

    Lee, Seyoung; Evans, Megan A; Chu, Hannah X; Kim, Hyun Ah; Widdop, Robert E; Drummond, Grant R; Sobey, Christopher G

    2015-01-01

    Functional modulation of the non-AT1R arm of the renin-angiotensin system, such as via AT2R activation, is known to improve stroke outcome. However, the relevance of the Mas receptor, which along with the AT2R forms the protective arm of the renin-angiotensin system, as a target in stroke is unclear. Here we tested the efficacy of a selective MasR agonist, AVE0991, in in vitro and in vivo models of ischemic stroke. Primary cortical neurons were cultured from E15-17 mouse embryos for 7-9 d, subjected to glucose deprivation for 24 h alone or with test drugs, and percentage cell death was determined using trypan blue exclusion assay. Additionally, adult male mice were subjected to 1 h middle cerebral artery occlusion and were administered either vehicle or AVE0991 (20 mg/kg i.p.) at the commencement of 23 h reperfusion. Some animals were also treated with the MasR antagonist, A779 (80 mg/kg i.p.) 1 h prior to surgery. Twenty-four h after MCAo, neurological deficits, locomotor activity and motor coordination were assessed in vivo, and infarct and edema volumes estimated from brain sections. Following glucose deprivation, application of AVE0991 (10-8 M to 10-6 M) reduced neuronal cell death by ~60% (P<0.05), an effect prevented by the MasR antagonist. By contrast, AVE0991 administration in vivo had no effect on functional or histological outcomes at 24 h following stroke. These findings indicate that the classical MasR agonist, AVE0991, can directly protect neurons from injury following glucose-deprivation. However, this effect does not translate into an improved outcome in vivo when administered systemically following stroke.

  6. Effect of a Selective Mas Receptor Agonist in Cerebral Ischemia In Vitro and In Vivo

    PubMed Central

    Lee, Seyoung; Evans, Megan A.; Chu, Hannah X.; Kim, Hyun Ah; Widdop, Robert E.; Drummond, Grant R.; Sobey, Christopher G.

    2015-01-01

    Functional modulation of the non-AT1R arm of the renin-angiotensin system, such as via AT2R activation, is known to improve stroke outcome. However, the relevance of the Mas receptor, which along with the AT2R forms the protective arm of the renin-angiotensin system, as a target in stroke is unclear. Here we tested the efficacy of a selective MasR agonist, AVE0991, in in vitro and in vivo models of ischemic stroke. Primary cortical neurons were cultured from E15-17 mouse embryos for 7–9 d, subjected to glucose deprivation for 24 h alone or with test drugs, and percentage cell death was determined using trypan blue exclusion assay. Additionally, adult male mice were subjected to 1 h middle cerebral artery occlusion and were administered either vehicle or AVE0991 (20 mg/kg i.p.) at the commencement of 23 h reperfusion. Some animals were also treated with the MasR antagonist, A779 (80 mg/kg i.p.) 1 h prior to surgery. Twenty-four h after MCAo, neurological deficits, locomotor activity and motor coordination were assessed in vivo, and infarct and edema volumes estimated from brain sections. Following glucose deprivation, application of AVE0991 (10−8 M to 10−6 M) reduced neuronal cell death by ~60% (P<0.05), an effect prevented by the MasR antagonist. By contrast, AVE0991 administration in vivo had no effect on functional or histological outcomes at 24 h following stroke. These findings indicate that the classical MasR agonist, AVE0991, can directly protect neurons from injury following glucose-deprivation. However, this effect does not translate into an improved outcome in vivo when administered systemically following stroke. PMID:26540167

  7. C2H2 adsorption in three isostructural metal-organic frameworks: boosting C2H2 uptake by rational arrangement of nitrogen sites.

    PubMed

    Song, Chengling; Jiao, Jingjing; Lin, Qiyi; Liu, Huimin; He, Yabing

    2016-03-21

    Replacing the benzene spacer in the organic linker 5,5'-(benzene-1,4-diyl)diisophthalate with the nitrogen containing heterocyclic rings, namely, pyrazine, pyridazine, and pyrimidine results in three organic linkers, which were reacted with copper ions under solvothermal conditions to form three isostructural metal-organic frameworks (ZJNU-46, ZJNU-47 and ZJNU-48) exhibiting exceptionally high sorption capacities with regard to acetylene due to the simultaneous immobilization of open metal sites and Lewis basic nitrogen sites in the frameworks. At 1 atm and 295 K, the gravimetric C2H2 adsorption uptakes reach 187, 213 and 193 cm(3) (STP) g(-1) for these three compounds. The gravimetric C2H2 adsorption amount of ZJNU-47a is the second highest reported for MOF materials. Notably, despite their same porosities, and densities of open metal sites and uncoordinated nitrogen sites, distinctly different C2H2 adsorption capacities were observed for these three compounds, which we think are mainly associated with the difference in the relative position of nitrogen atoms leading to different binding affinities of the frameworks towards C2H2 guest molecules, and thus different C2H2 adsorptions. This work demonstrates that the rational arrangement of open nitrogen sites will favorably improve the C2H2 uptake and thus provides useful information for future design of porous MOFs with high acetylene storage capacities.

  8. Microwave Spectra and Geometries of C2H2\\cdots AuI and C2H4\\cdots AuI

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna Louise; Mullaney, John Connor; Sprawling, Matt John; Tew, David Peter; Walker, Nick; Legon, Anthony

    2014-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H2\\cdots AuI and C2H4\\cdots AuI. These complexes are generated via laser ablation at 532 nm of a gold surface in the presence of CF3I and either C2H2 or C2H4 and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ, ΔJK and δJ) of each molecule have been determined as well the nuclear electric quadrupole coupling constants of gold and iodine atoms (χaa(Au}, χbb-χcc(Au), χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H2 or C2H4 subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule.

  9. Tensor Force Manifestations in Ab Initio Study of the {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 3}He Reactions

    SciTech Connect

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D.

    2011-09-23

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions are studied at low energies in a multichannel ab initio model that takes into account the distortions of the nuclei. The internal wave functions of these nuclei are given by the stochastic variational method with the AV8{sup '} realistic interaction and a phenomenological three-body force included to reproduce the two-body thresholds. The obtained astrophysical S factors are all in very good agreement with the experiment. The most important channels for both transfer and radiative capture are identified by comparing to calculations with an effective central force. They are all found to dominate thanks to the tensor force.

  10. Hyperspectral Microwave Atmospheric Sounder (HyMAS) Architecture and Design Accommodations

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence; Racette, Paul; Blackwell, William; Galbraith, Christopher; Thompson, Erik

    2013-01-01

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term "hyperspectral microwave" is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth s atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4-9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the scan head computer

  11. Hyperspectral Microwave Atmospheric Sounder (HyMAS) architecture and design accommodations

    NASA Astrophysics Data System (ADS)

    Hilliard, L.; Racette, P.; Blackwell, W.; Galbraith, C.; Thompson, E.

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term “ hyperspectral microwave” is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth's atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4 - 9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the s- an head

  12. Observation of the pi...H hydrogen-bonded ternary complex, (C(2)H(4))(2)H(2)O, using matrix isolation infrared spectroscopy.

    PubMed

    Thompson, Matthew G K; Lewars, Errol G; Parnis, J Mark

    2005-10-27

    FTIR absorption spectra of water-containing ethene:Ar matrices, with compositions of ethene up to 1:10 ethene:Ar, have been recorded. Systematically increasing the concentration of ethene reveals features in the spectra consistent with the known 1:1 ethene:water complex, which subsequently disappear on further increase in ethene concentration. At high concentrations of ethene, new features are observed at 3669 and 3585 cm(-1), which are red-shifted with respect to matrix-isolated nu(3) and nu(1) O-H stretching modes of water and the 1:1 ethene:water complex. These shifts are consistent with a pi...H interaction of a 2:1 ethene:water complex of the form (C(2)H(4)...H-O-H...C(2)H(4)). The analogous (C(2)D(4))(2)H(2)O complex shows little shifting from positions associated with (C(2)H(4))(2)H(2)O, while the (C(2)H(4))(2)D(2)O isotopomer shows large shifts to 2722.3 and 2617.2 cm(-1), having identical nu(3)(H(2)O)/nu(3)(D(2)O) and nu(1)(H(2)O)/nu(1)(D(2)O) values when compared with monomeric water isotopomers. Features at 3626.1 and 2666.2 cm(-1) are also observed and are attributed to (C(2)H(4))(2)HDO. DFT calculations at the B3LYP/6-311+G(d,p) level for each isotopomer are presented, and the predicted vibrational frequencies are directly compared with experimental values. The interaction energy for the formation of the 2:1 ethene:water complex from the 1:1 ethene:water complex is also presented.

  13. Measured Total Cross Sections of Slow Neutrons Scattered by Gaseous and Liquid 2H2

    NASA Astrophysics Data System (ADS)

    Atchison, F.; van den Brandt, B.; Bryś, T.; Daum, M.; Fierlinger, P.; Hautle, P.; Henneck, R.; Kirch, K.; Kohlbrecher, J.; Kühne, G.; Konter, J. A.; Pichlmaier, A.; Wokaun, A.; Bodek, K.; Kasprzak, M.; Kuźniak, M.; Geltenbort, P.; Giersch, M.; Zmeskal, J.; Hino, M.; Utsuro, M.

    2005-06-01

    The total scattering cross sections for slow neutrons with energies E in the range 300 neV to 3 meV for gaseous and liquid ortho-2H2 have been measured. The cross sections for 2H2 gas are found to be in excellent agreement with both the Hamermesh and Schwinger and the Young and Koppel models. For liquid 2H2, we confirm the existing experimental data in the cold neutron range and the discrepancy with the gas models. We find a clear 1/√(E') dependence at low energies for both states. A simple explanation for the liquid 2H2 cross section is offered.

  14. SNF2H promotes hepatocellular carcinoma proliferation by activating the Wnt/β-catenin signaling pathway

    PubMed Central

    Wang, Yanan; Qin, Juanxiu; Liu, Qian; Hong, Xufen; Li, Tianming; Zhu, Yuanjun; He, Lei; Zheng, Bing; Li, Min

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has an extremely poor prognosis. Surgical resection is always inapplicable to HCC patients diagnosed at an advanced tumor stage. The mechanisms underlying HCC cell proliferation remain obscure. In the present study, SWItch/sucrose nonfermentable catalytic subunit SNF2 (SNF2H) expression was tested in HCC tissues and Wnt/β-catenin pathway activation upon overexpression of SNF2H or knockdown of SNF2H expression was investigated in cultured HCC cells. It was demonstrated that SNF2H is a vital factor for HCC growth. The SNF2H expression level is increased in HCC tissues compared with paratumoral liver tissues. SNF2H promotes HCC cell proliferation and colony formation ability in vitro. SNF2H may increase the protein level of β-catenin and enhance its nuclear accumulation in HCC cells, thereby leading to the activation of the Wnt/β-catenin signaling pathway. In conclusion, the present results indicate that SNF2H plays a vital role in HCC cell growth, suggesting that SNF2H may be a promising therapeutic target for HCC treatment. PMID:27446433

  15. How do kV and mAs affect CT lesion detection performance?

    NASA Astrophysics Data System (ADS)

    Huda, W.; Ogden, K. M.; Shah, K.; Jadoo, C.; Scalzetti, E. M.; Lavallee, R. L.; Roskopf, M. L.

    2007-03-01

    The purpose of this study was to investigate how output (mAs) and x-ray tube voltage (kV) affect lesion detection in CT imaging. An adult Rando phantom was scanned on a GE LightSpeed CT scanner at x-ray tube voltages from 80 to 140 kV, and outputs from 90 to 360 mAs. Axial images of the abdomen were reconstructed and viewed on a high quality monitor at a soft tissue display setting. We measured detection of 2.5 to 12.5 mm sized lesions using a 2 Alternate Forced Choice (2-AFC) experimental paradigm that determined lesion contrast (I) corresponding to a 92% accuracy (I 92%) of lesion detection. Plots of log(I 92%) versus log(lesion size) were all approximately linear. The slope of the contrast detail curve was ~ -1.0 at 90 mAs, close to the value predicted by the Rose model, but monotonically decreased with increasing mAs to a value of ~ -0.7 at 360 mAs. Increasing the x-ray tube output by a factor of four improved lesion detection by a factor of 1.9 for the smallest lesion (2.5 mm), close to the value predicted by the Rose model, but only by a factor of 1.2 for largest lesion (12.5 mm). Increasing the kV monotonically decreased the contrast detail slopes from -1.02 at 80 kV to -0.71 at 140 kV. Increasing the x-ray tube voltage from 80 to 140 kV improved lesion detection by a factor of 2.8 for the smallest lesion (2.5 mm), but only by a factor of 1.7 for largest lesion (12.5 mm). We conclude that: (i) quantum mottle is an important factor for low contrast lesion detection in images of anthropomorphic phantoms; (ii) x-ray tube voltage has a much greater influence on lesion detection performance than x-ray tube output; (iii) the Rose model only predicts CT lesion detection performance at low x-ray tube outputs (90 mAs) and for small lesions (2.5 mm).

  16. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas

    PubMed Central

    Morales, María Gabriela; Abrigo, Johanna; Acuña, María José; Santos, Robson A.; Bader, Michael; Brandan, Enrique; Simon, Felipe; Olguin, Hugo; Cabrera, Daniel; Cabello-Verrugio, Claudio

    2016-01-01

    ABSTRACT Immobilization is a form of disuse characterized by a loss of strength and muscle mass. Among the main features are decreased IGF-1/Akt signalling and increased ubiquitin-proteasome pathway signalling, which induce greater myosin heavy chain degradation. Activation of the classical renin-angiotensin system (RAS) causes deleterious effects in skeletal muscle, including muscle wasting. In contrast, angiotensin-(1-7) [Ang-(1-7)], a peptide of the non-classical RAS, produces beneficial effects in skeletal muscle. However, the role of Ang-(1-7) in skeletal muscle disuse atrophy and independent of classical RAS activation has not been evaluated. Therefore, we assessed the functions of Ang-(1-7) and the Mas receptor in disuse muscle atrophy in vivo using unilateral cast immobilization of the hind limb in male, 12-week-old wild-type (WT) and Mas-knockout (Mas KO) mice for 1 and 14 days. Additionally, we evaluated the participation of IGF-1/IGFR-1/Akt signalling and ubiquitin-proteasome pathway expression on the effects of Ang-(1-7) immobilization-induced muscle atrophy. Our results found that Ang-(1-7) prevented decreased muscle strength and reduced myofiber diameter, myosin heavy chain levels, and the induction of atrogin-1 and MuRF-1 expressions, all of which normally occur during immobilization. Analyses indicated that Ang-(1-7) increases IGF-1/IGFR-1/Akt pathway signalling through IGFR-1 and Akt phosphorylation, and the concomitant activation of two downstream targets of Akt, p70S6K and FoxO3. These anti-atrophic effects of Ang-(1-7) were not observed in Mas KO mice, indicating crucial participation of the Mas receptor. This report is the first to propose anti-atrophic effects of Ang-(1-7) via the Mas receptor and the participation of the IGF-1/IGFR-1/Akt/p70S6K/FoxO3 mechanism in disuse skeletal muscle atrophy. PMID:26851244

  17. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas.

    PubMed

    Morales, María Gabriela; Abrigo, Johanna; Acuña, María José; Santos, Robson A; Bader, Michael; Brandan, Enrique; Simon, Felipe; Olguin, Hugo; Cabrera, Daniel; Cabello-Verrugio, Claudio

    2016-04-01

    Immobilization is a form of disuse characterized by a loss of strength and muscle mass. Among the main features are decreased IGF-1/Akt signalling and increased ubiquitin-proteasome pathway signalling, which induce greater myosin heavy chain degradation. Activation of the classical renin-angiotensin system (RAS) causes deleterious effects in skeletal muscle, including muscle wasting. In contrast, angiotensin-(1-7) [Ang-(1-7)], a peptide of the non-classical RAS, produces beneficial effects in skeletal muscle. However, the role of Ang-(1-7) in skeletal muscle disuse atrophy and independent of classical RAS activation has not been evaluated. Therefore, we assessed the functions of Ang-(1-7) and the Mas receptor in disuse muscle atrophyin vivousing unilateral cast immobilization of the hind limb in male, 12-week-old wild-type (WT) and Mas-knockout (Mas KO) mice for 1 and 14 days. Additionally, we evaluated the participation of IGF-1/IGFR-1/Akt signalling and ubiquitin-proteasome pathway expression on the effects of Ang-(1-7) immobilization-induced muscle atrophy. Our results found that Ang-(1-7) prevented decreased muscle strength and reduced myofiber diameter, myosin heavy chain levels, and the induction of atrogin-1 and MuRF-1 expressions, all of which normally occur during immobilization. Analyses indicated that Ang-(1-7) increases IGF-1/IGFR-1/Akt pathway signalling through IGFR-1 and Akt phosphorylation, and the concomitant activation of two downstream targets of Akt, p70S6K and FoxO3. These anti-atrophic effects of Ang-(1-7) were not observed in Mas KO mice, indicating crucial participation of the Mas receptor. This report is the first to propose anti-atrophic effects of Ang-(1-7) via the Mas receptor and the participation of the IGF-1/IGFR-1/Akt/p70S6K/FoxO3 mechanism in disuse skeletal muscle atrophy.

  18. Participation and Performance Reporting for the Alternate Assessment Based on Modified Achievement Standards (AA-MAS). Technical Report 58

    ERIC Educational Resources Information Center

    Albus, Deb; Thurlow, Martha L.; Lazarus, Sheryl S.

    2011-01-01

    This report examines publicly reported participation and performance data for the alternate assessment based on modified achievement standards (AA-MAS). The authors' analysis of these data included all states publicly reporting AA-MAS data, regardless of whether they had received approval to use the results for Title I accountability calculations.…

  19. States' Participation Guidelines for Alternate Assessments Based on Modified Academic Achievement Standards (AA-MAS) in 2009. Synthesis Report 75

    ERIC Educational Resources Information Center

    Lazarus, Sheryl S.; Hodgson, Jennifer; Thurlow, Martha L.

    2010-01-01

    All students, including students with disabilities, must be included in state accountability systems as required by law. In April 2007, federal regulations provided states the flexibility to offer another assessment option--an Alternate Assessment based on Modified Achievement Standards (AA-MAS) for some students with disabilities. The AA-MAS is…

  20. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  1. Hyperfine excitation of N2H+ by H2: towards a revision of N2H+ abundance in cold molecular clouds

    NASA Astrophysics Data System (ADS)

    Lique, François; Daniel, Fabien; Pagani, Laurent; Feautrier, Nicole

    2015-01-01

    The modelling of emission spectra of molecules seen in interstellar clouds requires the knowledge of collisional rate coefficients. Among the commonly observed species, N2H+ is of particular interest since it was shown to be a good probe of the physical conditions of cold molecular clouds. Thus, we have calculated hyperfine-structure-resolved excitation rate coefficients of N2H+(X1Σ+) by H2(j = 0), the most abundant collisional partner in the cold interstellar medium. The calculations are based on a new potential energy surface, obtained from highly correlated ab initio calculations. State-to-state rate coefficients between the first hyperfine levels were calculated, for temperatures ranging from 5 to 70 K. By comparison with previously published N2H+-He rate coefficients, we found significant differences which cannot be reproduced by a simple scaling relationship. As a first application, we also performed radiative transfer calculations, for physical conditions typical of cold molecular clouds. We found that the simulated line intensities significantly increase when using the new H2 rate coefficients, by comparison with the predictions based on the He rate coefficients. In particular, we revisited the modelling of the N2H+ emission in the LDN 183 core, using the new collisional data, and found that all three of the density, gas kinetic temperature and N2H+ abundance had to be revised.

  2. Heteromerization Between the Bradykinin B2 Receptor and the Angiotensin-(1-7) Mas Receptor: Functional Consequences.

    PubMed

    Cerrato, Bruno D; Carretero, Oscar A; Janic, Brana; Grecco, Hernán E; Gironacci, Mariela M

    2016-10-01

    Bradykinin B2 receptor (B2R) and angiotensin-(1-7) Mas receptor (MasR)-mediated effects are physiologically interconnected. The molecular basis for such cross talk is unknown. It is hypothesized that the cross talk occurs at the receptor level. We investigated B2R-MasR heteromerization and the functional consequences of such interaction. B2R fused to the cyan fluorescent protein and MasR fused to the yellow fluorescent protein were transiently coexpressed in human embryonic kidney293T cells. Fluorescence resonance energy transfer analysis showed that B2R and MasR formed a constitutive heteromer, which was not modified by their agonists. B2R or MasR antagonists decreased fluorescence resonance energy transfer efficiency, suggesting that the antagonist promoted heteromer dissociation. B2R-MasR heteromerization induced an 8-fold increase in the MasR ligand-binding affinity. On agonist stimulation, the heteromer was internalized into early endosomes with a slower sequestration rate from the plasma membrane, compared with single receptors. B2R-MasR heteromerization induced a greater increase in arachidonic acid release and extracellular signal-regulated kinase phosphorylation after angiotensin-(1-7) stimulation, and this effect was blocked by the B2R antagonist. Concerning serine/threonine kinase Akt activity, a significant bradykinin-promoted activation was detected in B2R-MasR but not in B2R-expressing cells. Angiotensin-(1-7) and bradykinin elicited antiproliferative effects only in cells expressing B2R-MasR heteromers, but not in cells expressing each receptor alone. Proximity ligation assay confirmed B2R-MasR interaction in human glomerular endothelial cells supporting the interaction between both receptors in vivo. Our findings provide an explanation for the cross talk between bradykinin B2R and angiotensin-(1-7) MasR-mediated effects. B2R-MasR heteromerization induces functional changes in the receptor that may lead to long-lasting protective properties.

  3. El Proyecto Sismico "LARSE" - Trabajando Hacia un Futuro con Mas Seguridad para Los Angeles

    USGS Publications Warehouse

    Henyey, Thomas L.; Fuis, Gary S.; Benthien, Mark L.; Burdette, Thomas R.; Christofferson, Shari A.; Clayton, Robert W.; Criley, Edward E.; Davis, Paul M.; Hendley, James W.; Kohler, Monica D.; Lutter, William J.; McRaney, John K.; Murphy, Janice M.; Okaya, David A.; Ryberg, Trond; Simila, Gerald W.; Stauffer, Peter H.

    1999-01-01

    La region de Los Angeles contiene una red de fallas activas, incluyendo muchas fallas por empuje que son profundas y no rompen la superficie de la tierra. Estas fallas ocultas incluyen la falla anteriormente desconocida que fue responsable por la devastacion que ocurrio durante el terremoto de Northridge en enero de 1994, el terremoto mas costoso en la historia de los Estados Unidos. El Experimento Sismico en la Region de Los Angeles (Los Angeles Region Seismic Experiment, LARSE), esta localizando los peligros ocultos de los terremotos debajo de la region de Los Angeles para mejorar la construccion de las estructuras que pueden apoyar terremotos que son inevitables en el futuro, y que ayudaran a los cientificos determinar donde occurira el sacudimento mas fuerte y poderoso.

  4. MAS NMR of the Drug Resistant S31N M2 Proton Transporter from Influenza A

    PubMed Central

    Andreas, Loren B.; Eddy, Matthew T.; Chou, James J.; Griffin, Robert G.

    2012-01-01

    We report chemical shift assignments of the drug-resistant S31N mutant of M218-60 determined with magic angle spinning (MAS) 3D spectra acquired with a 15N-13C ZF-TEDOR transfer followed by 13C-13C mixing by RFDR. The MAS spectra reveal two sets of resonances, indicating that the tetramer assembles as a dimer of dimers, similar to the wild type channel. The two sets of chemical shifts are shown to be in close proximity at residue H37, and assignments reveal a difference in the helix torsion angles, as predicted by TALOS+, for the key resistance residue N31. In contrast to wild type M218-60, chemical shift changes are minimal with addition of the inhibitor rimantadine, suggesting that the drug does not bind to S31N. PMID:22480220

  5. Technology Development for a Hyperspectral Microwave Atmospheric Sounder (HyMAS)

    NASA Technical Reports Server (NTRS)

    Blackwell, W.; Galbraith, C.; Hilliard, L.; Racette, P.; Thompson, E.

    2014-01-01

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term hyperspectral microwave is used to indicate an all-weather sounding instrument that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earths atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions.

  6. Decomposition of adsorbed VX on activated carbons studied by 31P MAS NMR.

    PubMed

    Columbus, Ishay; Waysbort, Daniel; Shmueli, Liora; Nir, Ido; Kaplan, Doron

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) {(DES)2}. Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed.

  7. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    NASA Technical Reports Server (NTRS)

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.

    1991-01-01

    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  8. A density functional theory study of phenyl formation initiated by ethynyl radical (C2H*) and ethyne (C2H2).

    PubMed

    Santiago, Romero M; Indarto, Antonius

    2008-12-01

    An ab initio computational density functional theory (DFT) was used to study the formation of the first cyclic molecule (phenyl) initiated by the ethynyl radical (C(2)H*). The study covers a competition reaction between the addition reactions of C(2)H* with ethyne (C(2)H(2)) and some molecular re-arrangement schemes. The minimum energy paths of the preferred cyclic formation route were characterized. A thorough thermochemical analysis was performed by evaluating the differences in the energy of activation (DeltaE), enthalpy (DeltaH), and Gibb's free energy (DeltaG) of the optimized stable and transition state (TS) molecules. The reaction temperatures were set to normal (T = 298 K) and combustion (T = 1,200 K) conditions.

  9. Hydricities of BzNADH, CH5Mo(PMe3)(CO)2H, and C5Me5Mo(PMe3)(CO)2H in acetonitrile.

    PubMed

    Ellis, William W; Raebiger, James W; Curtis, Calvin J; Bruno, Joseph W; DuBois, Daniel L

    2004-03-10

    The thermodynamic hydride donor abilities of 1-benzyl-1,4-dihydronicotinamide (BzNADH, 59 +/- 2 kcal/mol), C(5)H(5)Mo(PMe(3))(CO)(2)H (55 +/- 3 kcal/mol), and C(5)Me(5)Mo(PMe(3))(CO)(2)H (58 +/- 2 kcal/mol) have been measured in acetonitrile by calorimetric and/or equilibrium methods. The hydride donor abilities of BzNADH and C(5)H(5)Mo(PMe(3))(CO)(2)H differ by 13 and 24 kcal/mol, respectively, from those reported previously for these compounds in acetonitrile. These results require significant revisions of the hydricities reported for related NADH analogues and metal hydrides. These compounds are moderate hydride donors as compared to previously determined compounds.

  10. Modelling Lyman α forest cross-correlations with LyMAS

    NASA Astrophysics Data System (ADS)

    Lochhaas, Cassandra; Weinberg, David H.; Peirani, Sébastien; Dubois, Yohan; Colombi, Stéphane; Blaizot, Jérémy; Font-Ribera, Andreu; Pichon, Christophe; Devriendt, Julien

    2016-10-01

    We use the Lyα Mass Association Scheme (LyMAS) to predict cross-correlations at z = 2.5 between dark matter haloes and transmitted flux in the Lyα forest, and compare to cross-correlations measured for quasars and damped Lyα systems (DLAs) from the Baryon Oscillation Spectroscopic Survey (BOSS) by Font-Ribera et al. We calibrate LyMAS using Horizon-AGN hydrodynamical cosmological simulations of a (100 h- 1 Mpc)3 comoving volume. We apply this calibration to a (1 h- 1 Gpc)3 simulation realized with 20483 dark matter particles. In the 100 h- 1 Mpc box, LyMAS reproduces the halo-flux correlations computed from the full hydrodynamic gas distribution very well. In the 1 h- 1 Gpc box, the amplitude of the large-scale cross-correlation tracks the halo bias bh as expected. We provide empirical fitting functions that describe our numerical results. In the transverse separation bins used for the BOSS analyses, LyMAS cross-correlation predictions follow linear theory accurately down to small scales. Fitting the BOSS measurements requires inclusion of random velocity errors; we find best-fitting rms velocity errors of 399 and 252 {km} {s}^{-1} for quasars and DLAs, respectively. We infer bias-weighted mean halo masses of M_h/10^{12} h^{-1} M_{⊙}=2.19^{+0.16}_{-0.15} and 0.69^{+0.16}_{-0.14} for the host haloes of quasars and DLAs, with ˜0.2 dex systematic uncertainty associated with redshift evolution, intergalactic medium parameters, and selection of data fitting range.

  11. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis

    PubMed Central

    Simões e Silva, AC; Silveira, KD; Ferreira, AJ; Teixeira, MM

    2013-01-01

    Recent advances have improved our understanding of the renin-angiotensin system (RAS). These have included the recognition that angiotensin (Ang)-(1-7) is a biologically active product of the RAS cascade. The identification of the ACE homologue ACE2, which forms Ang-(1-7) from Ang II, and the GPCR Mas as an Ang-(1-7) receptor have provided the necessary biochemical and molecular background and tools to study the biological significance of Ang-(1-7). Most available evidence supports a counter-regulatory role for Ang-(1-7) by opposing many actions of Ang II on AT1 receptors, especially vasoconstriction and proliferation. Many studies have now shown that Ang-(1-7) by acting via Mas receptor exerts inhibitory effects on inflammation and on vascular and cellular growth mechanisms. Ang-(1-7) has also been shown to reduce key signalling pathways and molecules thought to be relevant for fibrogenesis. Here, we review recent findings related to the function of the ACE2/Ang-(1-7)/Mas axis and focus on the role of this axis in modifying processes associated with acute and chronic inflammation, including leukocyte influx, fibrogenesis and proliferation of certain cell types. More attention will be given to the involvement of the ACE2/Ang-(1-7)/Mas axis in the context of renal disease because of the known relevance of the RAS for the function of this organ and for the regulation of kidney inflammation and fibrosis. Taken together, this knowledge may help in paving the way for the development of novel treatments for chronic inflammatory and renal diseases. PMID:23488800

  12. MICROWAVE SPECTRA AND GEOMETRIES OF C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna L.; Tew, David Peter; Walker, Nick; Legon, Anthony

    2015-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}. These complexes are generated via laser ablation at 532 nm of a silver surface in the presence of CF3I and either C2H_{2} or C2H_{4} and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ and ΔJK) of each molecule have been determined as well the nuclear electric quadrupole coupling constants the iodine atom (χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H_{2} or C2H_{4} subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule. These to complexes are put in the context of the recently studied H2S\\cdots AgI, OC\\cdotsAgI, H3N\\cdots AgI and (CH3)_{3N\\cdots AgI}. S.Z. Riaz, S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, Chem. Phys. Let., 531, 1-12 (2012) S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, J. Chem. Phys., 136(6), 064306 (2012) D.M. Bittner, D.P. Zaleski, S.L. Stephens, N.R. Walker, A.C. Legon, Study in progress.

  13. Water vapor d2H dynamics over China derived from SCIAMACHY satellite measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigates water vapor isotopic patterns and controls over China using high-quality water vapor delta2H data retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) observations. The results show that water vapor delta2H values on both annual and...

  14. Synthesis of 2H-indazoles by the [3 + 2] dipolar cycloaddition of sydnones with arynes.

    PubMed

    Fang, Yuesi; Wu, Chunrui; Larock, Richard C; Shi, Feng

    2011-11-04

    A rapid and efficient synthesis of 2H-indazoles has been developed using a [3 + 2] dipolar cycloaddition of sydnones and arynes. A series of 2H-indazoles have been prepared in good to excellent yields using this protocol, and subsequent Pd-catalyzed coupling reactions can be applied to the halogenated products to generate a structurally diverse library of indazoles.

  15. Indirect detection of infinite-speed MAS solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Perras, Frédéric A.; Venkatesh, Amrit; Hanrahan, Michael P.; Goh, Tian Wei; Huang, Wenyu; Rossini, Aaron J.; Pruski, Marek

    2017-03-01

    Heavy spin-1/2 nuclides are known to possess very large chemical shift anisotropies that can challenge even the most advanced magic-angle-spinning (MAS) techniques. Wide manifolds of overlapping spinning sidebands and insufficient excitation bandwidths often obfuscate meaningful spectral information and force the use of static, low-resolution solid-state (SS)NMR methods for the characterization of materials. To address these issues, we have merged fast-magic-angle-turning (MAT) and dipolar heteronuclear multiple-quantum coherence (D-HMQC) experiments to obtain D-HMQC-MAT pulse sequences which enable the rapid acquisition of 2D SSNMR spectra that correlate isotropic 1H chemical shifts to the indirectly detected isotropic ;infinite-MAS; spectra of heavy spin-1/2 nuclides. For these nuclides, the combination of fast MAS and 1H detection provides a high sensitivity, which rivals the DNP-enhanced ultra-wideline SSNMR. The new pulse sequences were used to determine the Pt coordination environments in a complex mixture of decomposition products of transplatin and in a metal-organic framework with Pt ions coordinated to the linker ligands.

  16. High-resolution proton-detected NMR of proteins at very fast MAS

    NASA Astrophysics Data System (ADS)

    Andreas, Loren B.; Le Marchand, Tanguy; Jaudzems, Kristaps; Pintacuda, Guido

    2015-04-01

    When combined with high-frequency (currently ∼60 kHz) magic-angle spinning (MAS), proton detection boosts sensitivity and increases coherence lifetimes, resulting in narrow 1H lines. Herein, we review methods for efficient proton detected techniques and applications in highly deuterated proteins, with an emphasis on 100% selected 1H site concentration for the purpose of sensitivity. We discuss the factors affecting resolution and sensitivity that have resulted in higher and higher frequency MAS. Next we describe the various methods that have been used for backbone and side-chain assignment with proton detection, highlighting the efficient use of scalar-based 13C-13C transfers. Additionally, we show new spectra making use of these schemes for side-chain assignment of methyl 13C-1H resonances. The rapid acquisition of resolved 2D spectra with proton detection allows efficient measurement of relaxation parameters used as a measure of dynamic processes. Under rapid MAS, relaxation times can be measured in a site-specific manner in medium-sized proteins, enabling the investigation of molecular motions at high resolution. Additionally, we discuss methods for measurement of structural parameters, including measurement of internuclear 1H-1H contacts and the use of paramagnetic effects in the determination of global structure.

  17. High-resolution proton-detected NMR of proteins at very fast MAS.

    PubMed

    Andreas, Loren B; Le Marchand, Tanguy; Jaudzems, Kristaps; Pintacuda, Guido

    2015-04-01

    When combined with high-frequency (currently ∼60 kHz) magic-angle spinning (MAS), proton detection boosts sensitivity and increases coherence lifetimes, resulting in narrow ((1))H lines. Herein, we review methods for efficient proton detected techniques and applications in highly deuterated proteins, with an emphasis on 100% selected ((1))H site concentration for the purpose of sensitivity. We discuss the factors affecting resolution and sensitivity that have resulted in higher and higher frequency MAS. Next we describe the various methods that have been used for backbone and side-chain assignment with proton detection, highlighting the efficient use of scalar-based ((13))C-((13))C transfers. Additionally, we show new spectra making use of these schemes for side-chain assignment of methyl ((13))C-((1))H resonances. The rapid acquisition of resolved 2D spectra with proton detection allows efficient measurement of relaxation parameters used as a measure of dynamic processes. Under rapid MAS, relaxation times can be measured in a site-specific manner in medium-sized proteins, enabling the investigation of molecular motions at high resolution. Additionally, we discuss methods for measurement of structural parameters, including measurement of internuclear ((1))H-((1))H contacts and the use of paramagnetic effects in the determination of global structure.

  18. MAS/MILS Arc/Info point coverage for the western U.S. (excluding Hawaii)

    USGS Publications Warehouse

    Causey, J. Douglas

    1998-01-01

    The U.S. Geological Survey has two international and one regional digital database that contains information on mineral properties. This report describes the conversion of selected data from one of the international databases - MAS/MILS (Mineral Availability System/Mineral Industry Location System) - into a spatial data product. The MAS/MILS database, obtained from the U.S. Bureau of Mines (USBM) upon its closure, contains over 221,000 records of mineral properties and processing facilities throughout the world. However, the majority of the records in the database are of sites located in the western U.S. This is due to the extensive mineral activity that has occurred in the West, and the work done by mineral professionals in the Western, Alaska, and Intermountain Field Operations Centers of the USBM. The purpose of this project was to create a spatial coverage of the western U.S. containing mineral resource information. This coverage includes information for the states of Alaska, Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. For this report, locations from MAS/MILS were converted to a point coverage using a geographic information system (GIS). All work was done using Arc/Info v. 7.0.4. There are 128,441 points in the coverage.

  19. Fast and accurate MAS-DNP simulations of large spin ensembles.

    PubMed

    Mentink-Vigier, Frédéric; Vega, Shimon; De Paëpe, Gaël

    2017-02-01

    A deeper understanding of parameters affecting Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP), an emerging nuclear magnetic resonance hyperpolarization method, is crucial for the development of new polarizing agents and the successful implementation of the technique at higher magnetic fields (>10 T). Such progress is currently impeded by computational limitation which prevents the simulation of large spin ensembles (electron as well as nuclear spins) and to accurately describe the interplay between all the multiple key parameters at play. In this work, we present an alternative approach to existing cross-effect and solid-effect MAS-DNP codes that yields fast and accurate simulations. More specifically we describe the model, the associated Liouville-based formalism (Bloch-type derivation and/or Landau-Zener approximations) and the linear time algorithm that allows computing MAS-DNP mechanisms with unprecedented time savings. As a result, one can easily scan through multiple parameters and disentangle their mutual influences. In addition, the simulation code is able to handle multiple electrons and protons, which allows probing the effect of (hyper)polarizing agents concentration, as well as fully revealing the interplay between the polarizing agent structure and the hyperfine couplings, nuclear dipolar couplings, nuclear relaxation times, both in terms of depolarization effect, but also of polarization gain and buildup times.

  20. Robustness of N2H+ as tracer of the CO snowline

    NASA Astrophysics Data System (ADS)

    van't Hoff, M. L. R.; Walsh, C.; Kama, M.; Facchini, S.; van Dishoeck, E. F.

    2017-03-01

    Context. Snowlines in protoplanetary disks play an important role in planet formation and composition. Since the CO snowline is difficult to observe directly with CO emission, its location has been inferred in several disks from spatially resolved ALMA observations of DCO+ and N2H+. Aims: N2H+ is considered to be a good tracer of the CO snowline based on astrochemical considerations predicting an anti-correlation between N2H+ and gas-phase CO. In this work, the robustness of N2H+ as a tracer of the CO snowline is investigated. Methods: A simple chemical network was used in combination with the radiative transfer code LIME to model the N2H+ distribution and corresponding emission in the disk around TW Hya. The assumed CO and N2 abundances, corresponding binding energies, cosmic ray ionization rate, and degree of large-grain settling were varied to determine the effects on the N2H+ emission and its relation to the CO snowline. Results: For the adopted physical structure of the TW Hya disk and molecular binding energies for pure ices, the balance between freeze-out and thermal desorption predicts a CO snowline at 19 AU, corresponding to a CO midplane freeze-out temperature of 20 K. The N2H+ column density, however, peaks 5-30 AU outside the snowline for all conditions tested. In addition to the expected N2H+ layer just below the CO snow surface, models with an N2/CO ratio ≳0.2 predict an N2H+ layer higher up in the disk due to a slightly lower photodissociation rate for N2 as compared to CO. The influence of this N2H+ surface layer on the position of the emission peak depends on the total CO and N2 abundances and the disk physical structure, but the emission peak generally does not trace the column density peak. A model with a total (gas plus ice) CO abundance of 3 × 10-6 with respect to H2 fits the position of the emission peak previously observed for the TW Hya disk. Conclusions: The relationship between N2H+ and the CO snowline is more complicated than generally

  1. The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus.

    PubMed

    Pelkmans, Jordi F; Vos, Aurin M; Scholtmeijer, Karin; Hendrix, Ed; Baars, Johan J P; Gehrmann, Thies; Reinders, Marcel J T; Lugones, Luis G; Wösten, Han A B

    2016-08-01

    The Cys2His2 zinc finger protein gene c2h2 of Schizophyllum commune is involved in mushroom formation. Its inactivation results in a strain that is arrested at the stage of aggregate formation. In this study, the c2h2 orthologue of Agaricus bisporus was over-expressed in this white button mushroom forming basidiomycete using Agrobacterium-mediated transformation. Morphology, cap expansion rate, and total number and biomass of mushrooms were not affected by over-expression of c2h2. However, yield per day of the c2h2 over-expression strains peaked 1 day earlier. These data and expression analysis indicate that C2H2 impacts timing of mushroom formation at an early stage of development, making its encoding gene a target for breeding of commercial mushroom strains.

  2. Phase Cycling Schemes for finite-pulse-RFDR MAS Solid State NMR Experiments

    PubMed Central

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-01-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY414, for the fp-RFDR pulse sequence employed in 2D 1H/1H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY412, XY413, XY414, and XY814 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T10T2,±2, T1,±1T2,±1, etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field in homogeneity effects revealed that XY414 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp-RFDR are also analyzed

  3. Phase cycling schemes for finite-pulse-RFDR MAS solid state NMR experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-03-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY414, for the fp-RFDR pulse sequence employed in 2D 1H/1H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY412, XY413, XY414, and XY814 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T10T2,±2, T1,±1T2,±1, etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field inhomogeneity effects revealed that XY414 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp-RFDR are also analyzed

  4. Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminata cv. Mas (AA) via a liquid co-cultivation system.

    PubMed

    Huang, Xia; Huang, Xue-Lin; Xiao, Wang; Zhao, Jie-Tang; Dai, Xue-Mei; Chen, Yun-Feng; Li, Xiao-Ju

    2007-10-01

    A high efficient protocol of Agrobacterium-mediated transformation of Musa acuminata cv. Mas (AA), a major banana variety of the South East Asia region, was developed in this study. Male-flower-derived embryogenic cell suspensions (ECS) were co-cultivated in liquid medium with Agrobacterium strain EHA105 harboring a binary vector pCAMBIA2301 carrying nptII and gusA gene in the T-DNA. Depending upon conditions and duration of co-cultivation in liquid medium, 0-490 transgenic plants per 0.5 ml packed cell volume (PCV) of ECS were obtained. The optimum duration of inoculation was 2 h, and the highest transformation frequency was achieved when infected ECS were co-cultivated in liquid medium first for 12 h at 40 rpm and then for 156 h at 100 rpm on a rotary shaker. Co-cultivation for a shorter duration (72 h) or shaking constantly at 100 rpm at the same duration gave 1.6 and 1.8 folds lower transformation efficiency, respectively. No transgenic plants were obtained in parallel experiments carried on semi-solid media. Histochemical GUS assay and molecular analysis in several tissues of the transgenic plants demonstrated that foreign genes were stably integrated into the banana genome. Compared to semi-solid co-cultivation transformation in other banana species, it is remarkable that liquid co-cultivation was much more efficient for transformation of the Mas cultivar, and was at least 1 month faster for regenerating transgenic plants.

  5. Structural characterization of (C2H2)1-6+ cluster ions by vibrational predissociation spectroscopy

    NASA Astrophysics Data System (ADS)

    Relph, Rachael A.; Bopp, Joseph C.; Roscioli, Joseph R.; Johnson, Mark A.

    2009-09-01

    Vibrational predissociation spectra are reported for the cationic acetylene clusters, (C2H2)n+, n =1-6, in the region of the C-H stretching fundamentals. For n =1 and 2, predissociation could only be observed for the Ar-tagged clusters. These were prepared by charge-transfer collisions of Ark+ with C2H2 to create C2H2+ṡArm clusters, which were then converted into larger members of the (C2H2)n+ṡAr series by sequential addition of acetylene molecules. The (C2H2)2+ṡAr spectrum indicates that this species is predominantly present as the cyclobutadiene cation. Although mobility measurements on the electron-impact-generated (C2H2)3+ ion indicated that it primarily occurs as the benzene cation, [P. O. Momoh, J. Am. Chem. Soc. 128, 12408 (2006)] photofragmentation of (C2H2)3+ṡAr in the C-H stretching region is dominated by the loss of C2H2 in addition to the weakly bound Ar atom. This suggests that the dominant n =3 species formed by sequential addition of C2H2 is based on a covalently bound C4H4+ core ion. Interestingly, the spectrum of this core C4H4+ species is different from that found for the cyclobutadiene cation, displaying instead a new band pattern that is retained in the higher (C2H2)3-6+ clusters. Multiple isomers are clearly involved, as yet another pattern of bands is recovered when the (C2H2)3+ṡAr action spectrum is recorded in the (minor) Ar loss fragmentation channel. One of these features does appear in the location of the single band characteristic of the Ar-tagged benzene cation reported earlier [Phys. Chem. Chem. Phys. 4, 24 (2002)], supporting a scenario where the benzene cation is one of the isomers present. We then compare the Ar predissociation results with (C2H2)n+ spectra obtained when the ions are prepared by electron impact ionization of neutral acetylene clusters. The photofragmentation behavior and vibrational spectra indicate that the dominant species formed in this way also occur with a covalently bound C4H4+ core. There are

  6. The determination of deep temperatures by means of the CO-CO2-H2-H2O geothermometer: an example using fumaroles in the Campi Flegrei, Italy

    NASA Astrophysics Data System (ADS)

    Tedesco, D.; Sabroux, J. C.

    1987-02-01

    Chromatographic analyses of fumarolic gases, collected in sampling bottles containing an alkaline solution, have been carried out using a thermal conductivity detector and a flame ionization detector, after catalytic conversion of CO and CH4. The latter method enables the concentration of carbon monoxide to be measured with sufficient accuracy for use in a CO-CO2-H2-H2O geothermometer. Application of this geothermometer to fumaroles in the crater of Solfatara in the Campi Flegrei, Italy, indicates that they are fed from a steam reservoir at 250±15 °C and at 10-36±2atm of oxygen. On the other hand, the CH4-CO2-H2-H2O geothermobarometer seems to re-equilibrate at superficial temperatures and cannot be used for infering thermodynamic conditions at depth. Regular sampling of these fumaroles together with a geothermometric interpretation of the gas analyses provides a means of monitoring, with comparative accuracy, the chemical and thermal evolution of the hydrothermal reservoir below the Solfatara crater. Such monitoring would probably detect an increase in temperature at depth and the injection of magmatic gas into the reservoir.

  7. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  8. Trends and variations in CO, C2H6, and HCN in the Southern Hemisphere point to the declining anthropogenic emissions of CO and C2H6

    NASA Astrophysics Data System (ADS)

    Zeng, G.; Wood, S. W.; Morgenstern, O.; Jones, N. B.; Robinson, J.; Smale, D.

    2012-08-01

    We analyse the carbon monoxide (CO), ethane (C2H6) and hydrogen cyanide (HCN) partial columns (from the ground to 12 km) derived from measurements by ground-based solar Fourier Transform Spectroscopy at Lauder, New Zealand (45° S, 170° E), and at Arrival Heights, Antarctica (78° S, 167° E), from 1997 to 2009. Significant negative trends are calculated for all species at both locations, based on the daily-mean observed time series, namely CO (-0.94 ± 0.47% yr-1), C2H6 (-2.37 ± 1.18% yr-1) and HCN (-0.93 ± 0.47% yr-1) at Lauder and CO (-0.92 ± 0.46% yr-1), C2H6 (-2.82 ± 1.37% yr-1) and HCN (-1.41 ± 0.71% yr-1) at Arrival Heights. The uncertainties reflect the 95% confidence limits. However, the magnitudes of the trends are influenced by the anomaly associated with the 1997-1998 El Niño Southern Oscillation event at the beginning of the time series reported. We calculate trends for each month from 1997 to 2009 and find negative trends for all months. The largest monthly trends of CO and C2H6 at Lauder, and to a lesser degree at Arrival Heights, occur during austral spring during the Southern Hemisphere tropical and subtropical biomass burning period. For HCN, the largest monthly trends occur in July and August at Lauder and around November at Arrival Heights. The correlations between CO and C2H6 and between CO and HCN at Lauder in September to November, when the biomass burning maximizes, are significantly larger that those in other seasons. A tropospheric chemistry-climate model is used to simulate CO, C2H6, and HCN partial columns for the period of 1997-2009, using interannually varying biomass burning emissions from GFED3 and annually periodic but seasonally varying emissions from both biogenic and anthropogenic sources. The model-simulated partial columns of these species compare well with the measured partial columns and the model accurately reproduces seasonal cycles of all three species at both locations. However, while the model satisfactorily

  9. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.

    1996-01-01

    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  10. Identification of acetylene /C2H2/ in infrared atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Gillis, J. R.; Bonomo, F. S.; Murcray, F. H.; Murcray, D. G.; Cicerone, R. J.

    1981-01-01

    Infrared atmospheric absorption spectra at 0.02/cm resolution were obtained during a balloon flight on March 23, 1981 from the Holloman AFB, New Mexico. The absorption features, attributed to C2H2, were used to derive a preliminary mixing ratio of about 25 pptv near 9 km, accurate to + or - 40%. This mixing ratio falls into the range of values calculated for the upper troposphere C2H2 in a photochemical/transport model. However, previous measurements from aircraft grab sampling (Cronn and Robinson, 1979) show four to twelve times this C2H2 concentration 1.5 km below the tropopause.

  11. Determination of the delta(2H/1H)of Water: RSIL Lab Code 1574

    USGS Publications Warehouse

    Revesz, Kinga; Coplen, Tyler B.

    2008-01-01

    Reston Stable Isotope Laboratory (RSIL) lab code 1574 describes a method used to determine the relative hydrogen isotope-ratio delta(2H,1H), abbreviated hereafter as d2H of water. The d2H measurement of water also is a component of the National Water Quality Laboratory (NWQL) schedules 1142 and 1172. The water is collected unfiltered in a 60-mL glass bottle and capped with a Polyseal cap. In the laboratory, the water sample is equilibrated with gaseous hydrogen using a platinum catalyst (Horita, 1988; Horita and others, 1989; Coplen and others, 1991). The reaction for the exchange of one hydrogen atom is shown in equation 1.

  12. High-resolution spectroscopy of Saturn at 3 microns: CH 4, CH 3D, C 2H 2, C 2H 6, PH 3, clouds, and haze

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon; Kim, Sang J.; Geballe, Thomas R.; Kim, Sungsoo S.; Brown, Linda R.

    2006-12-01

    We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν+ν band of CH 3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν band of C 2H 2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C 2H 2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν+ν+ν band of C 2H 6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C 2H 6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH 4 to the ν band of C 2H 6, and derive a mixing ratio of 9±4×10 for this species. Most of the C 2H 6 3.3 μm line emission arises in the altitude range 460-620 km (at ˜μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH 3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (˜30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH 3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (˜12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that

  13. Alcohol Chemistry: Tentative Detections of Two New Interstellar Big Molecules CH_3OC_2H_5 and (C_2H_5)_2O

    NASA Astrophysics Data System (ADS)

    Kuan, Y.-J.; Charnley, S. B.; Wilson, T. L.; Ohishi, M.; Huang, H.-C.; Snyder, L. E.

    1999-05-01

    Recent modeling of gas-grain chemistry demonstrated that many of the organic species are not the products of grain-surface reactions but are in fact synthesized in the warm gas from simpler species produced on grains. To test gas-grain chemistry, in particular alcohol chemistry, we have thus searched for (C_2H_5)_2O (diethyl ether) and CH_3OC_2H_5 (methyl ethyl ether), using the NRAO 12-m, in the giant molecular cloud cores Sgr B2(N), W51 e1/e2 and Orion-KL, where alcohols have been evaporated from ice mantles. In addition, we have also used the BIMA array to observe the 3-mm transitions of the two molecules toward Sgr B2. The preliminary 12-m results indicate clean detections of various line transitions of the two molecular species in the 1-mm, 2-mm and 3-mm regimes in all 3 molecular cloud cores. Furthermore our BIMA maps show a clear concentration of CH_3OH toward Sgr B2(N), the Large Molecule Heimat; sole detections of CH_3OC_2H_5 and (C_2H_5)_2O toward Sgr B2(N), instead of the more evolved Sgr B2(M), are also observed unambiguously as predicted by alcohol chemistry. Our detections of the two complex molecules not only further confirm the gas-grain chemistry but also require specifically that methanol (CH_3OH) and ethanol (C_2H_5OH) to be formed in grain mantles. In addition, the detections of diethyl ether and methyl ethyl ether lead to the discovery of two new molecules, including the largest ever, (C_2H_5)_2O. This work was partially supported by: NSC grants 87-2112-M-003-007 and 88-2112-M-003-013 of Taiwan, National Taiwan Normal University, Academia Sinica Institute of Astronomy and Astrophysics, NSF AST 96-13999, the University of Illinois, and NASA's Exobiology Program.

  14. SLOW-MAS NMR METHODS TO STUDY METABOLIC PROCESSES IN VIVO AND IN VITRO

    SciTech Connect

    Wind, Robert A.; Bertram, Hanne Christine; Hu, Jian Zhi

    2005-09-25

    In vitro and in vivo 1H NMR spectroscopy is widely used to measure metabolic profiles in cells, tissues, animals, and humans and to use them, e.g., for diagnosis and therapy response evaluations. However, the spectra often suffer from poor resolution due to variations in the isotropic bulk magnetic susceptibility present in biological objects, resulting in a broadening of the NMR lines. In principle this broadening can be averaged to zero by the technique of magic angle spinning (MAS), where the sample is rotated about an axis making an angle of 54o44’ relative to the external magnetic field. However, a problem is that in a standard MAS experiment spinning speeds of a kHz or more are required in order to avoid the occurrence of spinning sidebands (SSBs) in the spectra, which renders analysis of the spectra difficult again. At these spinning speeds the large centrifugal forces cause severe structural damage in larger biological objects, so that this method cannot be used to study metabolic processes in intact samples. In solid state NMR several methods have been developed where slow MAS is combined with special radio frequency pulse sequences to eliminate spinning side bands or separate them from the isotropic spectrum so that a SSB-free high-resolution isotropic spectrum is obtained. It has been shown recently that two methods, phase-adjusted spinning sidebands (PASS) and phase-corrected magic angle turning (PHORMAT), can successfully be modified for applications in biological materials (1, 2). With PASS MAS speeds as low as 40 Hz can be employed, allowing non or minimally invasive in vitro studies of excised tissues and organs. This method was used, amongst other things, to study post mortem changes in the proton metabolite spectra in excised rabbit muscle tissue (3). With PHORMAT the NMR sensitivity is reduced and longer measuring times are required, but with this methodology the MAS speed can be reduced to ~1 Hz. This makes PHORMAT amenable for in vivo

  15. A 29Si MAS-NMR study of transition metal site occupancy in forsterite

    NASA Astrophysics Data System (ADS)

    Mccarty, R. J.; Palke, A.; Stebbins, J. F.; Hartman, S.

    2012-12-01

    In this study, we address the problem of transition metal site occupancy in Mg-rich olivine using solid-state magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy. Transition metal substitution in olivine can occur in either of the two crystallographically unique octahedral sites: the smaller, more symmetric M1 site or the larger, more distorted M2 site. Site occupancy of the transition metal is expected to correlate with ionic radius and d-orbital structure. In NMR spectroscopy the presence of paramagnetic ions, such as transition metal ions, can produce accessory peaks referred to as "contact shifts," due to the interaction between unpaired electrons on the paramagnetic ion locally associated with the resonating nucleus. The position and intensity of the contact shifts are dependent on the geometrical association such as bond distances and bond angles between the paramagnetic ion and the resonating nucleus. 29Si MAS-NMR spectra collected on synthetic forsterite (Mg2SiO4) doped with minor amounts (0.2-5%) of individual, divalent, paramagnetic, transition metal cations (Mn, Co, Ni, or Cu) substituting for Mg in the octahedral sites, reveals multiple contact shifts. An interpretation of the number of such contact shifts and their relative intensities correlated with structural information of possible 29Si-M1 and 29Si-M2 configurations, potentially allows for the assignment of specific transition metals to individual M1 or M2 sites. An analysis of the MAS-NMR data will potentially bring a new level of confidence to transition metal site occupancy in forsterite.

  16. The Novel 10-Item Asthma Prediction Tool: External Validation in the German MAS Birth Cohort

    PubMed Central

    Grabenhenrich, Linus B.; Reich, Andreas; Fischer, Felix; Zepp, Fred; Forster, Johannes; Schuster, Antje; Bauer, Carl-Peter; Bergmann, Renate L.; Bergmann, Karl E.; Wahn, Ulrich; Keil, Thomas; Lau, Susanne

    2014-01-01

    Background A novel non-invasive asthma prediction tool from the Leicester Cohort, UK, forecasts asthma at age 8 years based on 10 predictors assessed in early childhood, including current respiratory symptoms, eczema, and parental history of asthma. Objective We aimed to externally validate the proposed asthma prediction method in a German birth cohort. Methods The MAS-90 study (Multicentre Allergy Study) recorded details on allergic diseases prospectively in about yearly follow-up assessments up to age 20 years in a cohort of 1,314 children born 1990. We replicated the scoring method from the Leicester cohort and assessed prediction, performance and discrimination. The primary outcome was defined as the combination of parent-reported wheeze and asthma drugs (both in last 12 months) at age 8. Sensitivity analyses assessed model performance for outcomes related to asthma up to age 20 years. Results For 140 children parents reported current wheeze or cough at age 3 years. Score distribution and frequencies of later asthma resembled the Leicester cohort: 9% vs. 16% (MAS-90 vs. Leicester) of children at low risk at 3 years had asthma at 8 years, at medium risk 45% vs. 48%. Performance of the asthma prediction tool in the MAS-90 cohort was similar (Brier score 0.22 vs. 0.23) and discrimination slightly better than in the original cohort (area under the curve, AUC 0.83 vs. 0.78). Prediction and discrimination were robust against changes of inclusion criteria, scoring and outcome definitions. The secondary outcome ‘physicians’ diagnosed asthma at 20 years' showed the highest discrimination (AUC 0.89). Conclusion The novel asthma prediction tool from the Leicester cohort, UK, performed well in another population, a German birth cohort, supporting its use and further development as a simple aid to predict asthma risk in clinical settings. PMID:25536057

  17. (11)B MAS NMR and First-Principles Study of the [OBO3] Pyramids in Borates.

    PubMed

    Zhou, Bing; Sun, Wei; Zhao, Biao-Chun; Mi, Jin-Xiao; Laskowski, Robert; Terskikh, Victor; Zhang, Xi; Yang, Lingyun; Botis, Sanda M; Sherriff, Barbara L; Pan, Yuanming

    2016-03-07

    Borates are built from the [Bϕ3] planar triangles and the [Bϕ4] tetrahedral groups, where ϕ denotes O or OH. However, the [Bϕ4] groups in some borates are highly distorted to include three normal B-O bonds and one anomalously long B-O bond and, therefore, are best described as the [OBO3] pyramids. Four synthetic borates of the boracite-type structures (Mg3B7O13Br, Cu3B7O13Br, Zn3B7O13Cl, and Mg3B7O13Cl) containing a range of [OBO3] pyramids were investigated by multifield (7.05, 14.1, and 21.1 T) (11)B magic-angle spinning nuclear magnetic resonance (MAS NMR), triple quantum (3Q) MAS NMR experiments, as well as density functional theory calculations. The high-resolution (11)B MAS NMR spectra supported by theoretical predictions show that the [OBO3] pyramids are characterized by isotropic chemical shifts δiso((11)B) from 1.4(1) to 4.9(1) ppm and nuclear quadrupole parameters CQ((11)B) up to 1.3(1) MHz, both significantly different from those of the [BO4] and [BO3] groups in borates. These δiso((11)B) and CQ((11)B) values indicate that the [OBO3] pyramids represent an intermediate state between the [BO4] tetrahedra and [BO3] triangles and demonstrate that the (11)B NMR parameters of four-coordinate boron oxyanions are sensitive to local structural environments. The orientation of the calculated unique electronic field gradient tensor element Vzz of the [OBO3] pyramids is aligned approximately along the direction of the anomalously long B-O bond, corresponding to B-2pz with the lowest electron density.

  18. Infrared and Ultraviolet Spectra of Diborane(6): B2H6 and B2D6.

    PubMed

    Peng, Yu-Chain; Chou, Sheng-Lung; Lo, Jen-Iu; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming; Ogilvie, J F

    2016-07-21

    We recorded absorption spectra of diborane(6), B2H6 and B2D6, dispersed in solid neon near 4 K in both mid-infrared and ultraviolet regions. For gaseous B2H6 from 105 to 300 nm, we report quantitative absolute cross sections; for solid B2H6 and for B2H6 dispersed in solid neon, we measured ultraviolet absorbance with relative intensities over a wide range. To assign the mid-infrared spectra to specific isotopic variants, we applied the abundance of (11)B and (10)B in natural proportions; we undertook quantum-chemical calculations of wavenumbers associated with anharmonic vibrational modes and the intensities of the harmonic vibrational modes. To aid an interpretation of the ultraviolet spectra, we calculated the energies of electronically excited singlet and triplet states and oscillator strengths for electronic transitions from the electronic ground state.

  19. Oxydifluoromethylation of Alkenes by Photoredox Catalysis: Simple Synthesis of CF2H-Containing Alcohols.

    PubMed

    Arai, Yusuke; Tomita, Ren; Ando, Gaku; Koike, Takashi; Akita, Munetaka

    2016-01-22

    We have developed a novel and simple protocol for the direct incorporation of a difluoromethyl (CF2 H) group into alkenes by visible-light-driven photoredox catalysis. The use of fac-[Ir(ppy)3] (ppy=2-pyridylphenyl) photocatalyst and shelf-stable Hu's reagent, N-tosyl-S-difluoromethyl-S-phenylsulfoximine, as a CF2 H source is the key to success. The well-designed photoredox system achieves synthesis of not only β-CF2 H-substituted alcohols but also ethers and an ester from alkenes through solvolytic processes. The present method allows a single-step and regioselective formation of C(sp(3))-CF2 H and C(sp(3))-O bonds from C=C moiety in alkenes, such as hydroxydifluoromethylation, regardless of terminal or internal alkenes. Moreover, this methodology tolerates a variety of functional groups.

  20. The growth of phenanthrene from naphthalene by C2H2 additions

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W., Jr.

    2015-07-01

    Two paths are investigated for the growth of phenanthrene from naphthalene by the addition of C2H2 groups. The first series of steps leads to acenaphthylene (ACN), which is consistent with the path found previously. The addition of C2H2 to ACN can yield a product with two adjacent five-membered rings. Opening one five-membered ring produces a five-membered ring with CH2 side group. This can be converted to a six-membered ring in a manner analogous to the hydrogen atom catalysed fulvene to benzene conversion. A second path, with a somewhat higher barrier, can also lead to the phenanthrene product. The transition state for the second path is essentially isoenergetic with the stating material of ACN + C2H2 + H.

  1. Ecocatalysis for 2H-chromenes synthesis: an integrated approach for phytomanagement of polluted ecosystems.

    PubMed

    Escande, Vincent; Velati, Alicia; Grison, Claude

    2015-04-01

    A direct, general and efficient method to synthesize 2H-chromenes (2H-benzo[b]pyrans), identified as environmentally friendly pesticides, has been developed. This approach lays on the new concept of ecocatalysis, which involves the use of biomass from phytoextraction processes, as a valuable source of metallic elements for chemical synthesis. This methodology is similar or superior to known methods, affording 2H-chromenes with good to excellent yields (60-98%), including the preparation of precocene I, a natural insect growth regulator, with 91% yield. The approach is ideal for poor reactive substrates such as phenol or naphthol, classically transformed into 2H-chromenes by methodologies associated with environmental issues. These results illustrate the interest of combining phytoextraction and green synthesis of natural insecticides.

  2. Epitaxial growth and electronic structure of oxyhydride SrVO2H thin films

    NASA Astrophysics Data System (ADS)

    Katayama, Tsukasa; Chikamatsu, Akira; Yamada, Keisuke; Shigematsu, Kei; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2016-08-01

    Oxyhydride SrVO2H epitaxial thin films were fabricated on SrTiO3 substrates via topotactic hydridation of oxide SrVO3 films using CaH2. Structural and composition analyses suggested that the SrVO2H film possessed one-dimensionally ordered V-H--V bonds along the out-of-plane direction. The synthesis temperature could be lowered by reducing the film thickness, and the SrVO2H film was reversible to SrVO3 by oxidation through annealing in air. Photoemission and X-ray absorption spectroscopy measurements revealed the V3+ valence state in the SrVO2H film, indicating that the hydrogen existed as hydride. Furthermore, the electronic density of states was highly suppressed at the Fermi energy, consistent with the prediction that tetragonal distortion induces metal to insulation transition.

  3. Synthesis of 2H-indazoles by the [3 + 2] cycloaddition of arynes and sydnones.

    PubMed

    Wu, Chunrui; Fang, Yuesi; Larock, Richard C; Shi, Feng

    2010-05-21

    A rapid and efficient synthesis of 2H-indazoles has been developed, which involves the [3 + 2] dipolar cycloaddition of arynes and sydnones. The process proceeds under mild reaction conditions in good to excellent yields.

  4. Large-scale Spectroscopic Mapping of the ρ Ophiuchi Molecular Cloud Complex. I. The C2H-to-N2H+ Ratio as a Signpost of Cloud Characteristics

    NASA Astrophysics Data System (ADS)

    Pan, Zhichen; Li, Di; Chang, Qiang; Qian, Lei; Bergin, Edwin A.; Wang, Junzhi

    2017-02-01

    We present 2.5-square-degree C2H N = 1–0 and N2H+ J = 1–0 maps of the ρ Ophiuchi molecular cloud complex. These are the first large-scale maps of the ρ Ophiuchi molecular cloud complex with these two tracers. The C2H emission is spatially more extended than the N2H+ emission. One faint N2H+ clump, Oph-M, and one C2H ring, Oph-RingSW, are identified for the first time. The observed C2H-to-N2H+ abundance ratio ([C2H]/[N2H+]) varies between 5 and 110. We modeled the C2H and N2H+ abundances with 1D chemical models, which show a clear decline of [C2H]/[N2H+] with chemical age. Such an evolutionary trend is little affected by temperatures when they are below 40 K. At high density (n H > 105 cm‑3), however, the time it takes for the abundance ratio to drop at least one order of magnitude becomes less than the dynamical time (e.g., turbulence crossing time of ∼105 yr). The observed [C2H]/[N2H+] difference between L1688 and L1689 can be explained by L1688 having chemically younger gas in relatively less dense regions. The observed [C2H]/[N2H+] values are the results of time evolution, accelerated at higher densities. For the relatively low density regions in L1688 where only C2H emission was detected, the gas should be chemically younger.

  5. Using heat to control the sample spinning speed in MAS NMR.

    PubMed

    Mihaliuk, Eugene; Gullion, Terry

    2011-10-01

    A new approach using temperature to control the spinning speed of a sample rotor in magic-angle spinning NMR is presented. Instead of an electro-mechanical valve that regulates the flow of drive gas to control the spinning speed in traditional MAS NMR systems, we use a small heater wire located directly in the stator. The sample spinning speed is controlled very accurately with a surprisingly low heating power of 1 W. Results on a benchtop unit demonstrate the capability of the system.

  6. Spinning sidebands from chemical shift anisotropy in 13C MAS imaging.

    PubMed

    Scheler, U; Blümich, B; Spiess, H W

    1993-07-01

    Solid state imaging by 13C MAS imaging is described. The spinning sidebands occurring at moderate spinning speeds, which disturb the images, can be suppressed by TOSS. For rigid solids the spatial resolution that can be achieved in this way is better than that of 1H images at the same spinning speed. Spatially resolved spectra with or without spinning sidebands can likewise be recorded providing information about the isotropic and the anisotropic chemical shifts which can be exploited for the study of structure, order and dynamics. The techniques are demonstrated on a phantom made with 13C-labelled glycine.

  7. Recent Results from the MicroMAS Global Environmental MonitoringNanosatellite Mission

    NASA Astrophysics Data System (ADS)

    Blackwell, W. J.; Cahoy, K.

    2014-12-01

    The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a dual-spinning 3U CubeSat equipped with apassive microwave radiometer that observes in nine channels near the 118.75-GHz oxygen absorption line.MicroMAS is designed to observe convective thunderstorms, tropical cyclones, and hurricanes from a midinclinationorbit. The MicroMAS flight unit was developed by MIT Lincoln Laboratory and the MIT Space SystemsLaboratory and was launched to the International Space Station on July 13, 2014, and scheduled for an earlySeptember deployment for a ~90-day mission. The payload is housed in the "lower" 1U of the dual-spinning 3UCubeSat and mechanically rotated approximately once per second as the spacecraft orbits the Earth, resulting in across-track scanned beam with a full-width half-max (FWHM) beamwidth of 2.4 degrees and an approximately 17-km diameter footprint at nadir incidence from a nominal altitude of 400 km. The relatively low cost of MicroMASenables the deployment of a constellation of sensors, spaced equally around several orbit planes. A small fleet ofMicroMAS systems could yield high-resolution global temperature and water vapor profiles, as well as cloudmicrophysical and precipitation parameters.Significant advancements were made in the Assembly, Integration, and Test phase of the project developmentlifecycle. The flight software and communications architecture was refined and tested in relevant lab facilities. Thepower subsystem was modified to include additional required inhibits for the ISS launch. Hardware in the loop testsas well as simulations of the attitude determination and control system (ADCS) were performed to validate theunique dual-spinning, local vertical, local horizontal (LVLH) stabilized flight design. ADCS algorithms were testedon a 3-axis air bearing and custom rig inside a 3-axis programmable Helmholtz cage. Finally, the integratedspacecraft underwent a series of environmental tests in order to verify the results of thermal modeling

  8. Synthesis of 2H-Indazoles by the [3 + 2] Dipolar Cycloaddition of Sydnones with Arynes

    PubMed Central

    Fang, Yuesi; Wu, Chunrui; Larock, Richard C.; Shi, Feng

    2011-01-01

    A rapid and efficient synthesis of 2H-indazoles has been developed using a [3 + 2] dipolar cycloaddition of sydnones and arynes. A series of 2H-indazoles have been prepared in good to excellent yields using this protocol, and subsequent Pd-catalyzed coupling reactions can be applied to the halogenated products to generate a structurally diverse library of indazoles. PMID:21970468

  9. Analysis of dissolved C2H2 in transformer oils using laser Raman spectroscopy.

    PubMed

    Somekawa, Toshihiro; Kasaoka, Makoto; Kawachi, Fumio; Nagano, Yoshitomo; Fujita, Masayuki; Izawa, Yasukazu

    2013-04-01

    We have developed a laser Raman spectroscopy technique for assessing the working conditions of transformers by measuring dissolved C2H2 gas concentrations present in transformer oils. A frequency doubled Q-switched Nd:YAG laser (532 nm) was used as a laser source, and Raman signals at ~1972 cm(-1) originating from C2H2 gas dissolved in oil were detected. The results show that laser Raman spectroscopy is a useful alternative method for detecting transformer faults.

  10. Structural aspects of nucleotide ligand binding by a bacterial 2H phosphoesterase

    PubMed Central

    Myllykoski, Matti; Kursula, Petri

    2017-01-01

    The 2H phosphoesterase family contains enzymes with two His-X-Ser/Thr motifs in the active site. 2H enzymes are found in all kingdoms of life, sharing little sequence identity despite the conserved overall fold and active site. For many 2H enzymes, the physiological function is unknown. Here, we studied the structure of the 2H family member LigT from Escherichia coli both in the apo form and complexed with different active-site ligands, including ATP, 2′-AMP, 3′-AMP, phosphate, and NADP+. Comparisons to the well-characterized vertebrate myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) highlight specific features of the catalytic cycle and substrate recognition in both enzymes. The role played by the helix α7, unique to CNPases within the 2H family, is apparently taken over by Arg130 in the bacterial enzyme. Other residues and loops lining the active site groove are likely to be important for RNA substrate binding. We visualized conformational changes related to ligand binding, as well as the position of the nucleophilic water molecule. We also present a low-resolution model of E. coli LigT bound to tRNA in solution, and provide a model for RNA binding by LigT, involving flexible loops lining the active site cavity. Taken together, our results both aid in understanding the common features of 2H family enzymes and help highlight the distinct features in the 2H family members, which must result in different reaction mechanisms. Unique aspects in different 2H family members can be observed in ligand recognition and binding, and in the coordination of the nucleophilic water molecule and the reactive phosphate moiety. PMID:28141848

  11. A Classical Trajectory Study of the Dissociation and Isomerization of C2H5

    DTIC Science & Technology

    2013-01-01

    C2H5) plays an important role in combustion chemistry. Because the reverse reactions constitute the addition of a hydrogen atom to a stable molecule...primary reaction zones of premixed flames. The hydrogen atom thus produced acts to promote chain branching through the H + O2 ⇌ OH + O reaction . Thus...calculations of reaction paths on the electronically excited-state potential energy surfaces (PESs) of C2H5 14 predict that the nonclassical bridge structure is

  12. Determination of Transformation Coefficients of the C2H4 Molecule

    NASA Astrophysics Data System (ADS)

    Fomchenko, A. L.; Belova, A. S.; Berezkin, K. B.; Ziatkova, A. G.

    2016-11-01

    The object of theoretical research is the C 2 H 4 molecule, as it is important to know its properties to address numerous problems of molecular physics. The "expanded" local mode approach developed earlier was used for a X2Y4 molecule. This approach makes it possible to obtain simple expressions for the transformation coefficients of the investigated molecule, which subsequently allows one to determine various spectroscopic parameters of the C 2 H 4 molecule in a simple form.

  13. Synthesis of a library of 2-alkyl-3-alkyloxy-2H-indazole-6-carboxamides.

    PubMed

    Mills, Aaron D; Maloney, Patrick; Hassanein, Elsayed; Haddadin, Makhluf J; Kurth, Mark J

    2007-01-01

    A library of 200 2-alkyl-3-alkyloxy-2H-indazole-6-carboxamides was synthesized using parallel solution-phase methods. The indazole cyclization reaction was optimized for library production with the best yields resulting from controlled alcohol/water solvent ratios. The key step, a heterocyclization reaction, proceeds by N,N-bond formation and delivers the 2H-indazole scaffold. Automated preparative HPLC was utilized to provide pure compounds on a 10+ mg scale.

  14. Estimation of the specific surface area of apatites in human mineralized tissues using 31P MAS NMR.

    PubMed

    Kolmas, Joanna; Slósarczyk, Anna; Wojtowicz, Andrzej; Kolodziejski, Waclaw

    2007-10-01

    Specific surface areas of apatites in whole human mineralized tissues were estimated from (31)P MAS NMR linewidths: 77 m(2)g(-1) for enamel and 94 m(2)g(-1) for dentin, dental cementum and cortical bone.

  15. Calculation of the solubility diagrams in the system Ca(OH) 2-H 3PO 4-KOH-HNO 3-CO 2-H 2O

    NASA Astrophysics Data System (ADS)

    Vereecke, Guy; Lemaître, Jacques

    1990-09-01

    A computer program has been developed for calculating the solubility isotherms of sparingly soluble calcium phosphates (including octacalcium phosphate and β-tricalcium phosphate) and calcite in the system Ca(OH) 2-H 3PO 4-KOH-HNO 3-CO 2-H 2O. It allows the influence of such parameters as temperature, pH, partial CO 2 pressure and ionic strength to be investigated. The calculation process takes into account the effects of ion-pair formation and ionic strength. Selected solubility isotherms are presented and compared to literature data. The influence of temperature, Ca/P ratio, ionic strength and CO 2 pressure on the stability isotherms of hydroxyapatite and dicalcium phosphate are discussed in detail.

  16. A copper–polyol complex: [Na2(C2H6O2)6][Cu(C2H4O2)2

    PubMed Central

    Rivers, Joseph H.; Carroll, Kyler J.; Jones, Richard A.; Carpenter, Everett E.

    2010-01-01

    The ionic title complex, bis(μ-ethyl­ene glycol)-κ3 O,O′:O′;κ3 O:O,O′-bis[(ethyl­ene glycol-κ2 O,O′)(ethyl­ene glycol-κO)sodium] bis(ethyl­ene glycolato-κ2 O,O′)copper(II), [Na2(C2H6O2)6][Cu(C2H4O2)2], was obtained from a basic solution of CuCl2 in ethyl­ene glycol and consists of discrete ions inter­connected by O—H⋯O hydrogen bonds. This is the first example of a disodium–ethyl­ene glycol complex cation cluster. The cation lies about an inversion center and the CuII atom of the anion lies on another independent inversion center. PMID:20203401

  17. Direct ab initio study of the C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 reactions

    NASA Astrophysics Data System (ADS)

    Mai, Tam V.-T.; Ratkiewicz, Artur; Duong, Minh v.; Huynh, Lam K.

    2016-02-01

    A kinetic study of the reactions C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 was carried out in the temperature range of 300-2500 K using high levels of electronic structure theory, namely, CCSD(T)/CBS//BH&HLYP/cc-pVDZ, and canonical variational transition state theory (CVT) with corrections for small curvature tunneling (SCT) and hindered internal rotation (HIR) treatments. It is found that variational effect is not important and both SCT and HIR corrections noticeably affect the rate constants. Being in good agreement with literature data, the calculated results provide solid basis information for the investigation of the polyaromatic hydrocarbon (PAH) + alkyl radical reaction, an important class in combustion and soot formation.

  18. Multiparameter functional diversity of human C2H2 zinc finger proteins

    PubMed Central

    Schmitges, Frank W.; Radovani, Ernest; Najafabadi, Hamed S.; Barazandeh, Marjan; Campitelli, Laura F.; Yin, Yimeng; Jolma, Arttu; Zhong, Guoqing; Guo, Hongbo; Kanagalingam, Tharsan; Dai, Wei F.; Taipale, Jussi; Emili, Andrew; Greenblatt, Jack F.; Hughes, Timothy R.

    2016-01-01

    C2H2 zinc finger proteins represent the largest and most enigmatic class of human transcription factors. Their C2H2-ZF arrays are highly variable, indicating that most will have unique DNA binding motifs. However, most of the binding motifs have not been directly determined. In addition, little is known about whether or how these proteins regulate transcription. Most of the ∼700 human C2H2-ZF proteins also contain at least one KRAB, SCAN, BTB, or SET domain, suggesting that they may have common interacting partners and/or effector functions. Here, we report a multifaceted functional analysis of 131 human C2H2-ZF proteins, encompassing DNA binding sites, interacting proteins, and transcriptional response to genetic perturbation. We confirm the expected diversity in DNA binding motifs and genomic binding sites, and provide motif models for 78 previously uncharacterized C2H2-ZF proteins, most of which are unique. Surprisingly, the diversity in protein–protein interactions is nearly as high as diversity in DNA binding motifs: Most C2H2-ZF proteins interact with a unique spectrum of co-activators and co-repressors. Thus, multiparameter diversification likely underlies the evolutionary success of this large class of human proteins. PMID:27852650

  19. C2H4 adsorption on Cu(210), revisited: bonding nature and coverage effects.

    PubMed

    Amino, Shuichi; Arguelles, Elvis; Agerico Diño, Wilson; Okada, Michio; Kasai, Hideaki

    2016-08-24

    With the aid of density functional theory (DFT)-based calculations, we investigate the adsorption of C2H4 on Cu(210). We found two C2H4 adsorption sites, viz., the top of the step-edge atom (S) and the long bridge between two step-edge atoms (SS) of Cu(210). The step-edge atoms on Cu(210) block the otherwise active terrace sites found on copper surfaces with longer step sizes. This results in the preference for π-bonded over di-σ-bonded C2H4. We also found two stable C2H4 adsorption orientations on the S- and SS-sites, viz., with the C2H4 C[double bond, length as m-dash]C bond parallel (fit) and perpendicular (cross) to [001]. Furthermore, we found that the three peaks observed in previous temperature programmed desorption (TPD) experiment [Surf. Sci., 2011, 605, 934-940] could be attributed to C2H4 in the S-fit or S-cross, S-fit and S-cross-fit (S-cross and S-fit configurations that both exist in the same unit cell) configurations on Cu(210).

  20. DISSOCIATION OF B2H6 AND ADSORPTION OF THE FRAGMENTS OF B2H6 ON THE STEPPED Ge(100) SURFACE

    NASA Astrophysics Data System (ADS)

    Türkmenoğlu, Mustafa; Katircioğlu, Şenay

    2012-06-01

    In this work, the p-type doping of the SA type stepped Ge(100) surface by a diborane (B2H6) gas flow has been simulated by the possible dissociation and adsorption models. The most probable dissociation model of B2H6 and adsorption models of the fragments of B2H6 on the stepped Ge(100) surface have been determined by the local minimum total energy and/or binding energy calculations based on the Density functional (B3LYP/6-3g) and Hartree-Fock (HF/STO-3g) theories, respectively. The present calculations have shown that, the step region (for both up and down terraces) of the stepped Ge(100) surface has the most attractive sites for BH3 molecules determined to be the first dissociation fragments of B2H6 by an external energy of 1.3 eV. It has been found that, at the first step of the adsorption, BH3 can dissociate to BH2 and BH fragments on the stepped Ge(100) surface. While BH3 and BH2 products prefer to be attached to a single surface Ge atom, BH is bridged between two adjacent surface Ge atoms. According to the present optimization calculations, the p-type doping process of the stepped Ge(100) surface has started with the adsorption of BH3 on the electron deficient site (buckled down) of the Ge dimer bond close to the step edge and ended with the substitutional occupation of the Ge site in the layers of the surface by B atom. The beginning of the p-type doping of the stepped Ge(100) surface has been illustrated by the electronic states of B appeared in the optical energy gap of Ge very close to the edge of the HOMO.

  1. Role of Mas receptor antagonist (A779) in renal hemodynamics in condition of blocked angiotensin II receptors in rats.

    PubMed

    Mansoori, A; Oryan, S; Nematbakhsh, M

    2016-03-01

    The vasodilatory effect of angiotensin 1-7 (Ang 1-7) is exerted in the vascular bed via Mas receptor (MasR) gender dependently. However, the crosstalk between MasR and angiotensin II (Ang II) types 1 and 2 receptors (AT1R and AT2R) may change some actions of Ang 1-7 in renal circulation. In this study by blocking AT1R and AT2R, the role of MasR in kidney hemodynamics was described. In anaesthetized male and female Wistar rats, the effects of saline as vehicle and MasR blockade (A779) were tested on mean arterial pressure (MAP), renal perfusion pressure (RPP), renal blood flow (RBF), and renal vascular resistance (RVR) when both AT1R and AT2R were blocked by losartan and PD123319, respectively. In male rats, when AT1R and AT2R were blocked, there was a tendency for the increase in RBF/wet kidney tissue weight (RBF/KW) to be elevated by A779 as compared with the vehicle (P=0.08), and this was not the case in female rats. The impact of MasR on renal hemodynamics appears not to be sexual dimorphism either when Ang II receptors were blocked. It seems that co-blockade of all AT1R, AT2R, and MasR may alter RBF/ KW in male more than in female rats. These findings support a crosstalk between MasR and Ang II receptors in renal circulation.

  2. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    SciTech Connect

    Oji, L.

    2014-09-23

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10

  3. Immobilized MAS1 lipase showed high esterification activity in the production of triacylglycerols with n-3 polyunsaturated fatty acids.

    PubMed

    Wang, Xiumei; Li, Daoming; Qu, Man; Durrani, Rabia; Yang, Bo; Wang, Yonghua

    2017-02-01

    Immobilization of lipase MAS1 from marine Streptomyces sp. strain W007 and its application in catalyzing esterification of n-3 polyunsaturated fatty acids (PUFA) with glycerol were investigated. The resin XAD1180 was selected as a suitable support for the immobilization of lipase MAS1, and its absorption ability was 75mg/g (lipase/resin ratio) with initial buffer pH value of 8.0. The thermal stability of immobilized MAS1 was improved significantly compared with that of the free lipase. Immobilized MAS1 had no regiospecificity in the hydrolysis of triolein. The highest esterification degree (99.31%) and TAG content (92.26%) by immobilized MAS1-catalyzed esterification were achieved under the optimized conditions, which were significantly better than those (82.16% and 47.26%, respectively) by Novozym 435. More than 92% n-3 PUFA was incorporated into TAG that had similar fatty acids composition to the substrate (n-3 PUFA). The immobilized MAS1 exhibited 50% of its initial activity after being used for five cycles.

  4. Structural analysis of molybdo-zinc-phosphate glasses: Neutron scattering, FTIR, Raman scattering, MAS NMR studies

    NASA Astrophysics Data System (ADS)

    Renuka, C.; Shinde, A. B.; Krishna, P. S. R.; Reddy, C. Narayana

    2016-08-01

    Vitreous samples were prepared in the xMoO3-17ZnO-(83-x) NaPO3 with 35 ≥ x ≥ 55 glass forming system by energy efficient microwave heating method. Structural evolution of the vitreous network was monitored as a function of composition by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Raman scattering, Magic Angle Spin Nuclear magnetic resonance (MAS NMR) and Neutron scattering. Addition of MoO3 to the ZnO-NaPO3 glass leads to a pronounced increase in glass transition temperature (Tg) suggesting a significant increase in network connectivity and strength. In order to analyze FTIR and Raman scattering, a simple structural model is presented to rationalize the experimental observations. A number of structural units are formed due to network modification, and the resulting glass may be characterized by a network polyhedral with different numbers of unshared corners. 31P MAS NMR confirms a clear distinction between structural species having 3, 2, 1, 0 bridging oxygens (BOs). Further, Neutron scattering studies were used to probe the structure of these glasses. The result suggests that all the investigated glasses have structures based on chains of four coordinated phosphate and six coordinated molybdate units, besides, two different lengths of P-O bonds in tetrahedral phosphate units that are assigned to bonds of the P-atom with terminal and bridging oxygen atoms.

  5. Protective effects of Cornus mas fruit extract on carbon tetrachloride induced nephrotoxicity in rats.

    PubMed

    Es Haghi, M; Dehghan, G; Banihabib, N; Zare, S; Mikaili, P; Panahi, F

    2014-09-01

    Oxidative damage is implicated in the pathogenesis of kidney injury. Cornus mas is used for in renal aliments traditionally in Iran. The present study was aimed to investigate the antioxidant activity of C. mas fruit extract (CMFE) on carbon tetrachloride (CCl4) treated oxidative stress in Wistar albino rats. Forty two male albino rats were divided into seven groups. Group I served as a sham; Group II served as a normal control; Group III served as a toxic control, with CCl4 (1 ml/kg body weight; 80% in olive oil); Groups IV and V received CMFE at doses of 300 and 700 mg/kg before CCl4 injection; Groups VI and VII received extract at same doses orally at 2, 6, 12, 24 and 48 h after CCl4 intoxication. CCl4 injection produced a significant rise in serum markers of oxidative stress and lipid peroxidation product malondialdehyde along with the reduction of antioxidant enzymes such as superoxide dismuta, catalase and glutathion peroxidase. Serum creatinine, urea and uric acid concentrations were increased whereas level of protein and albumin were reduced. Treatment of rats with different doses of fruit extract (300 and 700 mg/kg) significantly (P < 0.05) ameliorated the alterations induced with CCl4 in lipid peroxidation, antioxidant defenses, biochemical and renal lesions. Based on these results, we conclude that CMFE protects kidney from oxidative stress induced by CCl4.

  6. Protective effects of Cornus mas fruit extract on carbon tetrachloride induced nephrotoxicity in rats

    PubMed Central

    Es.Haghi, M.; Dehghan, G.; Banihabib, N.; Zare, S.; Mikaili, P.; Panahi, F.

    2014-01-01

    Oxidative damage is implicated in the pathogenesis of kidney injury. Cornus mas is used for in renal aliments traditionally in Iran. The present study was aimed to investigate the antioxidant activity of C. mas fruit extract (CMFE) on carbon tetrachloride (CCl4) treated oxidative stress in Wistar albino rats. Forty two male albino rats were divided into seven groups. Group I served as a sham; Group II served as a normal control; Group III served as a toxic control, with CCl4 (1 ml/kg body weight; 80% in olive oil); Groups IV and V received CMFE at doses of 300 and 700 mg/kg before CCl4 injection; Groups VI and VII received extract at same doses orally at 2, 6, 12, 24 and 48 h after CCl4 intoxication. CCl4 injection produced a significant rise in serum markers of oxidative stress and lipid peroxidation product malondialdehyde along with the reduction of antioxidant enzymes such as superoxide dismuta, catalase and glutathion peroxidase. Serum creatinine, urea and uric acid concentrations were increased whereas level of protein and albumin were reduced. Treatment of rats with different doses of fruit extract (300 and 700 mg/kg) significantly (P < 0.05) ameliorated the alterations induced with CCl4 in lipid peroxidation, antioxidant defenses, biochemical and renal lesions. Based on these results, we conclude that CMFE protects kidney from oxidative stress induced by CCl4. PMID:25249718

  7. Accumulation of 2H2O in plasma and eccrine sweat during exercise-heat stress.

    PubMed

    Armstrong, Lawrence E; Klau, Jennifer F; Ganio, Matthew S; McDermott, Brendon P; Yeargin, Susan W; Lee, Elaine C; Maresh, Carl M

    2010-02-01

    The purpose of this research was to characterize the movement of ingested water through body fluids, during exercise-heat stress. Deuterium oxide ((2)H(2)O) accumulation in plasma and eccrine sweat was measured at two sites (back and forehead). The exercise of 14 males was controlled via cycle ergometry in a warm environment (60 min; 28.7 degrees C, 51%rh). Subjects consumed (2)H(2)O (0.15 mg kg(-1), 99.9% purity) mixed in flavored, non-caloric, colored water before exercise, then consumed 3.0 ml kg(-1) containing no (2)H(2)O every 15 min during exercise. We hypothesized that water transit from mouth to skin would occur before 15 min. (2)H(2)O appeared rapidly in both plasma and sweat (P < 0.05), within 10 min of water consumption. The ratio (2)H(2)O/H(2)O (D:H) was 47.3-55.0 times greater in plasma than in back sweat at minutes 10, 20, and 30 (DeltaD:H relative to baseline). At elapsed minute 20, the mean rate of deuterium accumulation (DeltaD:H min(-1)) in plasma was 14.9 and 23.7 times greater than in forehead and back sweat samples, respectively. Mean (+/-SE) whole-body sweat rate was 1.04 +/- 0.05 L h(-1) and subjects with the greatest whole-body sweat rate exhibited the greatest peak deuterium enrichment in sweat (r(2) = 0.87, exponential function); the peak (2)H(2)O enrichment in sweat was not proportional (P > 0.05) to body mass, volume of the deuterium dose, or total volume of fluid consumed. These findings clarify the time course of fluid movement from mouth to eccrine sweat glands, and demonstrate considerable differences of (2)H(2)O enrichment in plasma versus sweat.

  8. Potential energy surface for C2H4I2+ dissociation including spin-orbit effects

    SciTech Connect

    Siebert, Matthew R.; Aquino, Adelia J.; De Jong, Wibe A.; Granucci, Giovanni; Hase, William L.

    2012-10-24

    Previous experiments [Baer, et al. J. Phys. Chem. A 116, 2833 (2012)] have studied the dissociation of 1,2-diiodoethane radical cation (C2H4I2+•) and found a one-dimensional distribution of translational energy; an odd finding considering most product relative translational energy distributions are two-dimensional. The goal of this study is to obtain an accurate understanding of the potential energy surface (PES) topology for the unimolecular decomposition reaction C2H4I2+• - C2H4I+ + I•. This is done through comparison of many single-reference electronic structure methods, coupled-cluster single point (energy) calculations, and multi-reference calculations used to quantify spin-orbit (SO) coupling effects. We find that the structure of the C2H4I2+• reactant has a substantial effect on the role of SO coupling on the reaction energy. Both the BHandH and MP2 theories with an ECP/6-31++G** basis set, and without SO coupling corrections, provide accurate models for the reaction energetics. MP2 theory gives an unsymmetric structure with different C-I bond lengths, resulting in a SO energy for C2H4I2+• similar to that for the product I-atom and a negligible SO correction to the reaction energy. In contrast, DFT gives a symmetric structure for C2H4I2+•, similar to that of the neutral C2H4I2 parent, resulting in a substantial SO correction and increasing the reaction energy by 6.0-6.5 kcal/mol. Also, we find that for this system single point energy calculations are inaccurate, since a small change in geometry can lead to a large change in energy.

  9. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors.

    PubMed

    Wang, Lei; de Kloet, Annette D; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A; Pioquinto, David J; Ludin, Jacob A; Oh, S Paul; Katovich, Michael J; Frazier, Charles J; Raizada, Mohan K; Krause, Eric G

    2016-06-01

    Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the

  10. Angiotensin-(1-7) receptor Mas is an essential modulator of extracellular matrix protein expression in the heart.

    PubMed

    Gava, Elisandra; de Castro, Carlos Henrique; Ferreira, Anderson J; Colleta, Heloísa; Melo, Marcos B; Alenina, Natalia; Bader, Michael; Oliveira, Laser A; Santos, Robson A S; Kitten, Gregory T

    2012-04-10

    In this study we investigated the effects of genetic deletion of the Angiotensin-(1-7) receptor Mas or the Angiotensin II receptor AT(2) on the expression of specific extracellular matrix (ECM) proteins in atria, right ventricles and atrioventricular (AV) valves of neonatal and adult mice. Quantification of collagen types I, III and VI and fibronectin was performed using immunofluorescence-labeling and confocal microscopy. Picrosirius red staining was used for the histological assessment of the overall collagen distribution pattern. ECM proteins, metalloproteinases (MMP), ERK1/2 and p38 levels were quantified by western blot analysis. Gelatin zymography was used to evaluate the activity of MMP-2 and MMP-9. We observed that the relative levels of collagen types I and III and fibronectin are significantly higher in both the right ventricle and AV valves of neonatal Mas(-/-) mouse hearts (e.g., collagen type I: 85.28±6.66 vs 43.50±4.41 arbitrary units in the right ventricles of Mas(+/+) mice). Conversely, the level of collagen type VI was lower in the right ventricle and AV valves of Mas(-/-) mice. Adult Mas(-/-) mouse hearts presented similar patterns as observed in neonates. No significant differences in ECM protein level were detected in atria. Likewise, no changes in ECM levels were observed in AT(2) knockout mouse hearts. Although deletion of Mas induced a significant reduction in the level of the active form of MMP-2 in neonate hearts and a reduction of both MMP-2 and MMP-9 in adult Mas(-/-) mice, no significant differences were observed in MMP enzymatic activities when compared to controls. The levels of the active, phosphorylated forms of ERK1/2 and p38 were higher in hearts of both neonatal and adult Mas(-/-) mice. These observations suggest that Mas is involved in the selective expression of specific ECM proteins within both the ventricular myocardium and AV valves. The changes in the ECM profile may alter the connective tissue framework and contribute to

  11. Synthesis, spectral characterization and larvicidal activity of acridin-1(2H)-one analogues.

    PubMed

    Subashini, R; Bharathi, A; Roopan, Selvaraj Mohana; Rajakumar, G; Abdul Rahuman, A; Gullanki, Pavan Kumar

    2012-09-01

    Acridin-1(2H)-one analogue of 7-chloro-3,4-dihydro-9-phenyl-2-[(pyridine-2yl) methylene] acridin-1(2H)-one, 5 was prepared by using 7-chloro-3,4-dihydro-9-phenylacridin-1(2H)-one, 3 and picolinaldehyde, 4 in the presence of KOH at room temperature. These compounds were characterized by analytical and spectral analyses. The purpose of the present study was to assess the efficacy of larvicidal and repellent activity of synthesized 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues such as compounds 3 and 5 against the early fourth instar larvae of filariasis vector, Culex quinquefasciatus and Japanese encephalitis vector, Culex gelidus (Diptera: Culicidae). The compound exhibited high larvicidal effects at 50mg/L against both the mosquitoes with LC(50) values of 25.02 mg/L (r(2)=0.998) and 26.40 mg/L (r(2)=0.988) against C. quinquefasciatus and C. gelidus, respectively. The 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues that are reported for the first time to our best of knowledge can be better explored for the control of mosquito population. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. quinquefasciatus and C. gelidus.

  12. Drivers of δ2H variations in an idealized extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Wernli, Heini

    2016-05-01

    Numerical model simulations of stable water isotopes help to improve our understanding of the complex processes driving isotopic variability in atmospheric moisture. We use the isotope-enabled Consortium for Small-Scale Modelling (COSMO) model to study the governing mechanisms of δ2H variations in an idealized extratropical cyclone. A set of experiments with differing initial conditions of δ2H in vapor and partly deactivated isotopic fractionation allows us to quantify the relative roles of cloud fractionation and vertical and horizontal advection for the simulated δ2H signals associated with the cyclone and fronts. Horizontal transport determines the large-scale pattern of δ2H in both vapor and precipitation, while fractionation and vertical transport are more important on a smaller scale, near the fronts. During the passage of the cold front fractionation leads to a V-shaped trend of δ2H in precipitation and vapor, which is, for vapor, superimposed on a gradual decrease caused by the arrival of colder air masses.

  13. Detection and quantification of 2H and 3R phases in commercial graphene-based materials

    PubMed Central

    Seehra, Mohindar S.; Geddam, Usha K.; Schwegler-Berry, Diane; Stefaniak, Aleksandr B.

    2017-01-01

    Graphene-based material (GBM) samples acquired from commercial sources are investigated using X-ray diffraction (XRD). Of the 18 GBM samples investigated here, seven samples show XRD patterns with features characteristic of the graphite structure. The XRD patterns of the seven samples are analyzed showing the presence of both the ABA (2H) structure and the ABCA (3R) structure. After de-convoluting the (101) lines of the 2H and 3R structures, the areas under the peaks are used to determine the relative concentrations of the 2H and 3R phases present, typically yielding the ratio 60/40 for 2H/3R. The presence of the 3R structure is important since the 3R structure is a semiconductor with tunable band gap and it is less stable than the 2H structure. The number of layers determined from the analysis of the XRD data varies between 65 and 109 for different samples yielding thickness of the graphite sheets varying between 22 nm and 37 nm. Scanning electron microscopy and transmission electron microscopy of three representative samples confirms the sheet-like morphology and stacking of the graphene layers in the samples. Relevance of these results in connection with their potential applications and toxicology is briefly discussed.

  14. Synthesis, spectral characterization and larvicidal activity of acridin-1(2H)-one analogues

    NASA Astrophysics Data System (ADS)

    Subashini, R.; Bharathi, A.; Roopan, Selvaraj Mohana; Rajakumar, G.; Abdul Rahuman, A.; Gullanki, Pavan Kumar

    Acridin-1(2H)-one analogue of 7-chloro-3,4-dihydro-9-phenyl-2-[(pyridine-2yl) methylene] acridin-1(2H)-one, 5 was prepared by using 7-chloro-3,4-dihydro-9-phenylacridin-1(2H)-one, 3 and picolinaldehyde, 4 in the presence of KOH at room temperature. These compounds were characterized by analytical and spectral analyses. The purpose of the present study was to assess the efficacy of larvicidal and repellent activity of synthesized 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues such as compounds 3 and 5 against the early fourth instar larvae of filariasis vector, Culex quinquefasciatus and Japanese encephalitis vector, Culex gelidus (Diptera: Culicidae). The compound exhibited high larvicidal effects at 50 mg/L against both the mosquitoes with LC50 values of 25.02 mg/L (r2 = 0.998) and 26.40 mg/L (r2 = 0.988) against C. quinquefasciatus and C. gelidus, respectively. The 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues that are reported for the first time to our best of knowledge can be better explored for the control of mosquito population. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. quinquefasciatus and C. gelidus.

  15. Dissociative Recombination of N2H+: Evidence for Fracture of the NN Bond

    NASA Astrophysics Data System (ADS)

    Geppert, W. D.; Thomas, R.; Semaniak, J.; Ehlerding, A.; Millar, T. J.; Österdahl, F.; af Ugglas, M.; Djurić, N.; Paál, A.; Larsson, M.

    2004-07-01

    Branching ratios and absolute cross sections have been measured for the dissociative recombination of N2H+ using the CRYRING ion storage ring. It has been found that the channel N2H++e--->N2+H accounts for only 36% of the total reaction and that the branching into the other exoergic pathway, N2H++e--->NH+N, consequently amounts to 64%. The cross section of the reaction could be fitted by the expression σ=(2.4+/-0.4)×10-16E-1.04+/-0.02 cm2, which leads to a thermal reaction rate of k(T)=(1.0+/-0.2)×10-7(T/300)-0.51+/-0.02 cm3 s-1, in favorable agreement with previous flowing afterglow Langmuir probe measurements at room temperature, although our temperature dependence is very different. The implications of these measurements for the chemistry of interstellar clouds are discussed. A standard model calculation for a dark cloud predicts a slight increase of N2H+ in the dark clouds but a five- to sevenfold increase of the NH concentration as steady state is reached.

  16. Imidacloprid inhibits IgE-mediated RBL-2H3 cell degranulation and passive cutaneous anaphylaxis

    PubMed Central

    Shi, Linbo; Zou, Li; Gao, Jinyan; Xu, Huaing; Shi, Xiaoyun

    2016-01-01

    Background Imidacloprid has been commonly used as a pesticide for crop protection and acts as nicotinic acetylcholine receptor agonists. Little information about the relationship between imidacloprid and allergy is available. Objective This study aims to examine the effects of imidacoprid on IgE-mediated mast cell activation. Methods The rat basophilic leukemia cell line RBL-2H3 (RBL-2H3 cells) were treated with 10-3 – 10-12 mol/L imidacloprid, followed by measuring the mediator production, influx of Ca2+ in IgE-activated RBL-2H3 cells, and the possible effects of imidacoprid on anti-dinitrophenyl IgE-induced passive cutaneous anaphylaxis (PCA). Results It was shown that imidacoprid suppressed the production of histamine, β-hexosaminidase, leukotriene C4, interleukin-6, tumor necrosis factor-α, and Ca2+ mobilization in IgE-activated RBL-2H3 cells and decreased vascular extravasation in IgE-induced PCA. Conclusion It is the first time to show that imidacloprid suppressed the activation of RBL-2H3 cells. PMID:27803884

  17. Titan's ionic species: theoretical treatment of N2H+ and related ions.

    PubMed

    Brites, V; Hochlaf, M

    2009-10-22

    We use different ab initio methods to compute the three-dimensional potential energy surface (3D-PES) of the ground state of N(2)H(+). This includes the standard coupled cluster, the complete active space self-consistent field, the internally contacted multi reference configuration interaction, and the newly developed CCSD(T)-F12 methods. For the description of H and N atoms, several basis sets are tested. Then, we incorporate the 3D-PES analytical representations into variational calculations of the rovibrational spectrum of N(2)H(+)(X(1)Sigma(+)) up to 7200 cm(-1) above the zero point vibrational energy. Our data show that the CCSD(T)-F12/aug-cc-pVTZ approach represents a compromise for good description of the PES and computation cost. This technique is recommended for full dimensional PES generation of atmospheric and astrophysical relevant polyatomic systems. We applied this method to derive the rovibrational spectra of N(2)H(+)(X(1)Sigma(+)) and of N(2)H(++)(X(2)Sigma(+)). Finally, we discuss the existence of the N(2)H(++)(X(2)Sigma(+)) in Titan's atmosphere.

  18. Tunable electronic behavior in 3d transition metal doped 2H-WSe2

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Huang, Songlei; Li, Hongping; Zhang, Quan; Li, Changsheng; Liu, Xiaojuan; Meng, Jian; Tian, Yi

    2017-03-01

    Structural and electronic properties of 3d transition metal Sc, Ti, Cr and Mn incorporated 2H-WSe2 have been systematically investigated by first-principles calculations based on density functional theory. The calculated formation energies reveal that all the doped systems are thermodynamically more favorable under Se-rich condition than W-rich condition. The geometry structures almost hold that of the pristine 2H-WSe2 albeit with slight lattice distortion. More importantly, the electronic properties have been significantly tuned by the dopants, i.e., metal and semimetal behavior has been found in Sc, Ti and Mn-doped 2H-WSe2, respectively, semiconducting nature with narrowed band gap is expected in Cr-doped case, just as that of the pristine 2H-WSe2. In particular, magnetic character is realized by incorporation of Mn impurity with a total magnetic moment of 0.96 μB. Our results suggest chemical doping is an effective way to precisely tailor the electronic structure of layered transition metal dichalcogenide 2H-WSe2 for target technological applications.

  19. Mas receptor deficiency is associated with worsening of lipid profile and severe hepatic steatosis in ApoE-knockout mice.

    PubMed

    Silva, Analina R; Aguilar, Edenil C; Alvarez-Leite, Jacqueline I; da Silva, Rafaela F; Arantes, Rosa M E; Bader, Michael; Alenina, Natalia; Pelli, Graziano; Lenglet, Sébastien; Galan, Katia; Montecucco, Fabrizio; Mach, François; Santos, Sérgio H S; Santos, Robson A S

    2013-12-01

    The classical renin-angiotensin system pathway has been recently updated with the identification of additional molecules [such as angiotensin converting enzyme 2, ANG-(1-7), and Mas receptor] that might improve some pathophysiological processes in chronic inflammatory diseases. In the present study, we focused on the potential protective role of Mas receptor activation on mouse lipid profile, liver steatosis, and atherogenesis. Mas/apolipoprotein E (ApoE)-double-knockout (DKO) mice (based on C57BL/6 strain of 20 wk of age) were fed under normal diet and compared with aged-matched Mas and ApoE-single-knockout (KO), as well as wild-type mice. Mas/ApoE double deficiency was associated with increased serum levels of atherogenic fractions of cholesterol, triglycerides, and fasting glucose compared with wild-type or single KO. Serum levels of HDL or leptin in DKO were lower than in other groups. Hepatic lipid content as well as alanine aminotransferase serum levels were increased in DKO compared with wild-type or single-KO animals. Accordingly, the hepatic protein content of mediators related to atherosclerotic inflammation, such as peroxisome proliferator-activated receptor-α and liver X receptor, was altered in an adverse way in DKO compared with ApoE-KO. On the other hand, DKO mice did not display increased atherogenesis and intraplaque inflammation compared with ApoE-KO group. In conclusion, Mas deletion in ApoE-KO mice was associated with development of severe liver steatosis and dyslipidemia without affecting concomitant atherosclerosis. Mas receptor activation might represent promising strategies for future treatments targeting both hepatic and metabolic alterations in chronic conditions clustering these disorders.

  20. Solid-State NMR Study of Paramagnetic Bis(alaninato-κ(2)N,O)copper(II) and Bis(1-amino(cyclo)alkane-1-carboxylato-κ(2)N,O)copper(II) Complexes: Reflection of Stereoisomerism and Molecular Mobility in (13)C and (2)H Fast Magic Angle Spinning Spectra.

    PubMed

    Szalontai, Gábor; Csonka, Róbert; Speier, Gábor; Kaizer, József; Sabolović, Jasmina

    2015-05-18

    Solid-state stereochemistry and mobility of paramagnetic copper(II) complexes formed by aliphatic amino acids (l-alanine, d,l-alanine, 1-amino-2-methyl-alanine) and 1-amino(cyclo)alkane-1-carboxylic acids (alkane = propane, butane, pentane, hexane) as bidentate ligands has been studied by (13)C and (2)H solid-state fast magic angle spinning (MAS) NMR spectroscopy. We examined the prospective method to characterize solid-state paramagnetic compounds in a routine way. Both (13)C and (2)H MAS spectra can distinguish d,l and l,l diastereomers of natural and polydeuterated bis([Dn]alaninato)copper(II) (n = 0, 2, 8) complexes with axial and/or equatorial methyl positions (conformations) primarily due to different Fermi-contact (FC) contributions. The three-bond hyperfine couplings clearly show Karplus-like dependence on the torsional angles which turned out to be a useful assignment aid. Density functional theory calculations of the FC term and crystal structures were also used to aid the final assignments. The correlations obtained for bis(alaninato-κ(2)N,O)copper(II) complexes were successfully used to characterize other complexes. The usefulness of the (2)H MAS spectra of the deuterated complexes was underlined. Even the spectra of the easily exchangeable amine protons contained essential stereochemical information. In the case of a dimer structure of bis(1-aminohexane-1-carboxylato-κ(2)N,O)copper(II) both the (13)C and (2)H resolutions were good enough to confirm the presence of the cis and trans forms in the asymmetric unit. With regard to the internal solid-state motions in the crystal lattice, the obtained quadrupolar tensor parameters were similar for the d,l- and l,l-alaninato isomers and also for the cis-trans forms suggesting similar crystal packing effects, static amine deuterons involved in hydrogen bonding, and fast rotating methyl groups.

  1. Direct dynamics study on the hydrogen abstraction reactions N2H4+R→N2H3+RH (R=NH2,CH3)

    NASA Astrophysics Data System (ADS)

    Li, Qian Shu; Zhang, Xin

    2006-08-01

    We present a direct ab initio dynamics study on the hydrogen abstraction reactions N2H4+R→N2H3+RH (R=NH2,CH3), which are predicted to have six possible reaction channels for NH2 abstraction and four for CH3 abstraction caused by the different N2H4 isomers and various attacking orientations of foreign radical to N2H4. The structures and frequencies at the stationary points and the points along the minimum energy paths (MEPs) of all reaction channels are obtained at the UMP2(full)/6-31+G(d,p) level of theory. Energetic information of stationary points and the points along the MEPs is further refined by means of MC-QCISD method. The rate constants of these channels are calculated using the improved canonical variational transition-state theory with the small-curvature tunneling correction (ICVT/SCT) method. The calculated results show that the favorable reaction channels are channels (n1) and (n4) as well as (c1) and (c3) (refer to Scheme 1) in the whole temperature range. The total ICVT/SCT rate constants of all channels for the two reactions at the MC-QCISD //UMP2(full)/6-31+G(d,p) level are both in good agreement with the available experimental data, and corresponding three-parameter expressions of kICVT /SCT in 220-3000K are fitted as 6.46×10-15(T/298)3.60exp(-386/T)cm3mol-1s-1 for NH2 abstraction and 1.04×10-14 (T/298)4.00exp(-2037/T)cm3mol-1s-1 for CH3 abstraction. Additionally, the long range interaction between the H atom of X -H bond in foreign radicals and the lone pair on the nonreactive N atom of the transition states is further discussed to explain the various transition-state numbers of the two similar hydrogen abstraction reactions.

  2. Lipid Bilayer-Bound Conformation of an Integral Membrane Beta Barrel Protein by Multidimensional MAS NMR

    PubMed Central

    Eddy, Matthew T.; Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay; Wagner, Gerhard; Pintacuda, Guido; Emsley, Lyndon; Griffin, Robert G.

    2015-01-01

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms 2-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for 13C line width and less than 0.5 ppm 15N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported

  3. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR.

    PubMed

    Eddy, Matthew T; Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay; Wagner, Gerhard; Pintacuda, Guido; Emsley, Lyndon; Griffin, Robert G

    2015-04-01

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5-0.3 ppm for (13)C line widths and <0.5 ppm (15)N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported

  4. Abstraction and addition kinetics of C2H radicals with CH4, C2H6, C3H8, C2H4, and C3H6: CVT/SCT/ISPE and hybrid meta-DFT methods.

    PubMed

    Dash, Manas Ranjan; Rajakumar, B

    2015-02-07

    Rate coefficients for the reactions of C2H radicals with methane (k1), ethane (k2), propane (k3), ethylene (k4), and propylene (k5) were computed using canonical variational transition state theory (CVT) coupled with hybrid-meta density functional theory (DFT) over a wide range of temperatures from 150 to 5000 K. The quantum chemical tunneling effect was corrected by the small curvature tunneling (SCT) method. The dynamic calculations are performed using the variational transition state theory (VTST) with the interpolated single-point energies (ISPE) method at the CCSD(T)/cc-pVTZ//M06-2X/6-31+G(d,p) level of theory. Intrinsic reaction coordinate (IRC) calculations were performed to verify that the transition states are connected to the reactants and products. The rate coefficients obtained over the studied temperature range yield the following Arrhenius expressions (cm(3) molecule(-1) s(-1)): k1 = 4.69 × 10(-19)T(2.44) exp[331/T], k2 = 4.29 × 10(-17)T(2.11) exp[432/T], k3 = 4.81 × 10(-17)T(1.98) exp[697/T], k4 = 7.54 × 10(-21)T(2.96) exp[1942/T], and k5 = 8.04 × 10(-23)T(3.44) exp[3011/T] cm(3) molecule(-1) s(-1). Branching ratio calculation for the reactions of C2H radicals with ethylene and propylene shows that the abstraction reactions are not important at lower temperatures. However, as the temperature increases, abstraction reactions become more important.

  5. A pulse sequence for singlet to heteronuclear magnetization transfer: S2hM

    NASA Astrophysics Data System (ADS)

    Stevanato, Gabriele; Eills, James; Bengs, Christian; Pileio, Giuseppe

    2017-04-01

    We have recently demonstrated, in the context of para-hydrogen induced polarization (PHIP), the conversion of hyperpolarized proton singlet order into heteronuclear magnetisation can be efficiently achieved via a new sequence named S2hM (Singlet to heteronuclear Magnetisation). In this paper we give a detailed theoretical description, supported by an experimental illustration, of S2hM. Theory and experiments on thermally polarized samples demonstrate the proposed method is robust to frequency offset mismatches and radiofrequency field inhomogeneities. The simple implementation, optimisation and the high conversion efficiency, under various regimes of magnetic equivalence, makes S2hM an excellent candidate for a widespread use, particularly within the PHIP arena.

  6. Photodetectors and birefringence in ZnP2-С2h5 crystals

    NASA Astrophysics Data System (ADS)

    Stamov, I. G.; Syrbu, N. N.; Dorogan, A. V.

    2013-03-01

    The spectral dependences of refractive indexes no(n⊥), ne(n||) and Δn=no(n⊥)-ne(n||) were studied in ZnP2-C2h5 crystals. The intersection of no(n⊥) and ne(n||) was found for λ0=0.906 μm. The crystal possesses positive dispersion Δn=no(n⊥)-ne(n||) in the region where λ>λ0, and a negative dispersion is observed in the region where λ<λ0. The electrical, spectral and azimuth characteristics of monolith n-р- and Ме-n-р-ZnP2C2h5 and discrete ZnP2-C2h5-ZnP2-D48 structures were studied, and a prognosis was made on the usage perspective of these devices.

  7. Analysis Of 2H-Evaporator Scale Pot Bottom Sample [HTF-13-11-28H

    SciTech Connect

    Oji, L. N.

    2013-07-15

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material from the 2H evaporator has been performed so that the evaporator can be chemically cleaned beginning July of 2013. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot. The sample holder from the 2H-evaporator wall was virtually empty and was not included in the analysis. It is worth noting that after the delivery of these 2H-evaporator scale samples to SRNL for the analyses, the plant customer determined that the 2H evaporator could be operated for additional period prior to requiring cleaning. Therefore, there was no need for expedited sample analysis as was presented in the Technical Task Request. However, a second set of 2H evaporator scale samples were expected in May of 2013, which would need expedited sample analysis. X-ray diffraction analysis (XRD) confirmed the bottom cone section sample from the 2H-evaporator pot consisted of nitrated cancrinite, (a crystalline sodium aluminosilicate solid), clarkeite and uranium oxide. There were also mercury compound XRD peaks which could not be matched and further X-ray fluorescence (XRF) analysis of the sample confirmed the existence of elemental mercury or mercuric oxide. On ''as received'' basis, the scale contained an average of 7.09E+00 wt % total uranium (n = 3; st.dev. = 8.31E-01 wt %) with a U-235 enrichment of 5.80E-01 % (n = 3; st.dev. = 3.96E-02 %). The measured U-238 concentration was 7.05E+00 wt % (n=3, st

  8. Theoretical study of the C-H bond dissociation energy of C2H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    A theoretical study of the convergence of the C-H bond dissociation energy D(0) in C2H with respect to both the one- and n-particle spaces is presented. The calculated C-H bond energies of C2H2 and C2H4, which are in excellent agreement with experiment, are used for calibration. The best estimate for D(0) of 112.4 + or - 2.0 kcal/mol is slightly below the recent experimental value of 116.3 + or - 2.6 kcal/mol, but substantially above a previous theoretical estimate of 102 kcal/mol. The remaining discrepancy with experiment may reflect primarily the uncertainty in the experimental D(0) value of C2 required in the analysis.

  9. Detection of C2H4 Neptune from ISO/PHT-S Observations

    NASA Technical Reports Server (NTRS)

    Schulz, B.; Encrenaz, Th.; Bezard, B.; Romani, P. N.; Lellouch, E.; Atreya, S. K.

    1999-01-01

    The 6-12 micrometer spectrum of Neptune has been recorded with the PHT-S instrument of the Infrared Space Observatory (ISO) at a resolution of 0.095 micrometer. In addition to the emissions of CH4, CH3D and C2H6 previously identified, the spectrum shows the first firm identification of ethylene C2H4. The inferred column density above the 0.2-mbar level is in the range (1.1 - 3) x 10(exp 14) molecules/cm. To produce this low amount, previous photochemical models invoked rapid mixing between the source and sink regions of C2H4. We show that this requirement can be relaxed if recent laboratory measurements of CH4 photolysis branching ratios at Lyman alpha are used.

  10. Anharmonic suppression of charge density waves in 2H-NbS2

    NASA Astrophysics Data System (ADS)

    Leroux, M.; Le Tacon, M.; Calandra, M.; Cario, L.; Méasson, M.-A.; Diener, P.; Borrissenko, E.; Bosak, A.; Rodière, P.

    2012-10-01

    The temperature dependence of the phonon spectrum in the superconducting transition-metal dichalcogenide 2H-NbS2 is measured by diffuse and inelastic x-ray scattering. A deep, wide, and strongly temperature-dependent softening of the two lowest-energy longitudinal phonon bands appears along the ΓM symmetry line in reciprocal space. In sharp contrast to the isoelectronic compound 2H-NbSe2, the soft phonons energies are finite, even at very low temperature, and no charge density wave instability occurs, in disagreement with harmonic ab initio calculations. We show that 2H-NbS2 is at the verge of the charge density wave transition and its occurrence is only suppressed by the large anharmonic effects. Moreover, the anharmonicity and the electron phonon coupling both show a strong in-plane anisotropy.

  11. N2H(+) in the Orion ambient ridge - Cloud clumping versus rotation

    NASA Technical Reports Server (NTRS)

    Womack, Maria; Ziurys, L. M.; Sage, L. J.

    1993-01-01

    The IRAM 30-m telescope is used to obtain spectra of the J = 1 yields 0 transition of N2H(+) over a 2 x 2 arcsec area toward the Orion-KL/IRc2 star-forming region with 26-arcsec angular resolution. The N2H(+) emission, which exclusively traces the ridge gas, exhibits multiple radial velocities which appear to arise from the presence of at least four clouds of quiescent material. It is argued that the velocity structure of N2H(+) does not uniformly change across OMC-1 and, consequently, is inconsistent with the presence of large-scale differential rotation of the extended ridge along the SW-NE axis about IRc2. The coincidence of the two larger clouds with star-forming activity in Orion-KL suggests that either the quiescent gas is being pushed apart or that the star formation may have been triggered by a cloud-cloud interaction.

  12. A one-pot-three-step route to triazolotriazepinoindazolones from oxazolino-2H-indazoles.

    PubMed

    Conrad, Wayne E; Rodriguez, Kevin X; Nguyen, Huy H; Fettinger, James C; Haddadin, Makhluf J; Kurth, Mark J

    2012-08-03

    A one-pot-three-step method has been developed for the conversion of oxazolino-2H-indazoles into triazolotriazepinoindazolones with three points of diversity. Step one of this process involves a propargyl bromide-initiated ring opening of the oxazolino-2H-indazole (available by the Davis-Beirut reaction) to give an N(1)-(propargyl)-N(2)-(2-bromoethyl)-disubstituted indazolone, which then undergoes -CH(2)Br → -CH(2)N(3) displacement (step two) followed by an uncatalyzed intramolecular azide-alkyne 1,3-dipolar cycloaddition (step three) to form the target heterocycle. Employing 7-bromooxazolino-2H-indazole allows for further diversification through, for example, palladium-catalyzed coupling chemistry, as reported here.

  13. 2H and 13C NMR studies on the temperature-dependent water and protein dynamics in hydrated elastin, myoglobin and collagen.

    PubMed

    Lusceac, Sorin A; Vogel, Michael R; Herbers, Claudia R

    2010-01-01

    (2)H NMR spin-lattice relaxation and line-shape analyses are performed to study the temperature-dependent dynamics of water in the hydration shells of myoglobin, elastin, and collagen. The results show that the dynamical behaviors of the hydration waters are similar for these proteins when using comparable hydration levels of h=0.25-0.43. Since water dynamics is characterized by strongly nonexponential correlation functions, we use a Cole-Cole spectral density for spin-lattice relaxation analysis, leading to correlation times, which are in nice agreement with results for the main dielectric relaxation process observed for various proteins in the literature. The temperature dependence can roughly be described by an Arrhenius law, with the possibility of a weak crossover in the vicinity of 220 K. Near ambient temperatures, the results substantially depend on the exact shape of the spectral density so that deviations from an Arrhenius behavior cannot be excluded in the high-temperature regime. However, for the studied proteins, the data give no evidence for the existence of a sharp fragile-to-strong transition reported for lysozyme at about 220 K. Line-shape analysis reveals that the mechanism for the rotational motion of hydration waters changes in the vicinity of 220 K. For myoglobin, we observe an isotropic motion at high temperatures and an anisotropic large-amplitude motion at low temperatures. Both mechanisms coexist in the vicinity of 220 K. (13)C CP MAS spectra show that hydration results in enhanced elastin dynamics at ambient temperatures, where the enhancement varies among different amino acids. Upon cooling, the enhanced mobility decreases. Comparison of (2)H and (13)C NMR data reveals that the observed protein dynamics is slower than the water dynamics.

  14. Collisions of slow polyatomic ions with surfaces: dissociation and chemical reactions of C2H2+*, C2H3+, C2H4+*, C2H5+, and their deuterated variants C2D2+* and C2D4+* on room-temperature and heated carbon surfaces.

    PubMed

    Jasík, Juraj; Zabka, Jan; Feketeova, Linda; Ipolyi, Imre; Märk, Tilmann D; Herman, Zdenek

    2005-11-17

    Interaction of C2Hn+ (n = 2-5) hydrocarbon ions and some of their isotopic variants with room-temperature and heated (600 degrees C) highly oriented pyrolytic graphite (HOPG) surfaces was investigated over the range of incident energies 11-46 eV and an incident angle of 60 degrees with respect to the surface normal. The work is an extension of our earlier research on surface interactions of CHn+ (n = 3-5) ions. Mass spectra, translational energy distributions, and angular distributions of product ions were measured. Collisions with the HOPG surface heated to 600 degrees C showed only partial or substantial dissociation of the projectile ions; translational energy distributions of the product ions peaked at about 50% of the incident energy. Interactions with the HOPG surface at room temperature showed both surface-induced dissociation of the projectiles and, in the case of radical cation projectiles C2H2+* and C2H4+*, chemical reactions with the hydrocarbons on the surface. These reactions were (i) H-atom transfer to the projectile, formation of protonated projectiles, and their subsequent fragmentation and (ii) formation of a carbon chain build-up product in reactions of the projectile ion with a terminal CH3-group of the surface hydrocarbons and subsequent fragmentation of the product ion to C3H3+. The product ions were formed in inelastic collisions in which the translational energy of the surface-excited projectile peaked at about 32% of the incident energy. Angular distributions of reaction products showed peaking at subspecular angles close to 68 degrees (heated surfaces) and 72 degrees (room-temperature surfaces). The absolute survival probability at the incident angle of 60 degrees was about 0.1% for C2H2+*, close to 1% for C2H4+* and C2H5+, and about 3-6% for C2H3+.

  15. Filamentary Structure of Serpens Main and Serpens South Seen in N2H+, HCO+, and HCN

    NASA Astrophysics Data System (ADS)

    Cox, Erin Guilfoil; Fernandez-Lopez, Manuel; Looney, Leslie; Arce, Héctor; Mundy, Lee; Storm, Shaye; Harris, Robert J.; Teuben, Peter J.

    2016-06-01

    We present the N2H+ (J = 1 → 0) map of the Serpens Main and Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey (CLASSy). The observations cover 150 arcmin2 and 250 arcmin2, respectively, and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km s-1. They can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N2H+ emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N2H+ filaments comprise a single observed dust continuum filament. Our results suggest that single filaments seen in Serpens South by Herschel may in fact be comprised of multiple narrower filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence. Finally we compare the morphologies of these N2H+ filaments with those detected in HCO+ and HCN. In Serpens South we find that the N2H+ and dust maps are well correlated, whereas HCO+ and HCN do not have regularly have N2H+ counterparts. We postulate that this difference is due to large-scale shocks creating the HCO+ and HCN emission.

  16. Low-energy elastic electron scattering form chloroethane, C2H5Cl

    NASA Astrophysics Data System (ADS)

    Sakaamini, A.; Navarro, C.; Cross, J.; Hargreaves, L. R.; Khakoo, M. A.; Fedus, Kamil; Winstead, C.; McKoy, V.

    2015-10-01

    We report theoretical as well as (normalized) experimental differential and integral cross sections for vibrationally elastic scattering of low-energy electrons from chloroethane, C2H5Cl, also known as ethyl chloride. The theoretical cross sections were computed using the Schwinger multichannel variational method in the single-channel approximation, with polarization effects included via virtual excitations. Cross section measurements were made at incident energies ranging from 1 to 30 eV and at scattering angles from {10}\\circ to {125}\\circ . We compare our data to previous results for C2H5Cl and for the related molecule chloromethane.

  17. Calculation of the Aluminosilicate Half-Life Formation Time in the 2H Evaporator

    SciTech Connect

    Fondeur, F.F.

    2000-09-21

    The 2H Evaporator contains large quantities of aluminosilicate solids deposited on internal fixtures. The proposed cleaning operations will dissolve the solids in nitric acid. Operations will then neutralize the waste prior to transfer to a waste tank. Combining recent calculations of heat transfer for the 2H Evaporator cleaning operations and laboratory experiments for dissolution of solid samples from the pot, the authors estimated the re-formation rate for aluminosilicates during cooling. The results indicate a half-life formation of 17 hours when evaporator solution cools from 60 degrees C and 9 hours when cooled from 90 degrees C.

  18. Low-temperature solid-state phase transformations in 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Will, H. A.; Powell, J. A.

    1972-01-01

    Single crystals of 2H SiC were observed to undergo phase transformations at temperatures as low as 400 C. Some 2H crystals transformed to a structure with one-dimensional disorder along the crystal c axis. Others transformed to a faulted cubic/6H structure. The transformation is time and temperature dependent and is greatly enhanced by dislocations. Observations indicate that the transformation takes place by means of a slip process perpendicular to the c axis. Cubic SiC crystals were observed to undergo a solid state transformation above 1400 C.

  19. First-principles characterization of potassium intercalation in the hexagonal 2H-MoS2

    SciTech Connect

    Andersen, Amity; Kathmann, Shawn M.; Lilga, Michael A.; Albrecht, Karl O.; Hallen, Richard T.; Mei, Donghai

    2012-01-12

    Periodic density functional theory calculations were performed to study the structural and electronic properties of potassium intercalated into hexagonal MoS{sub 2} (2H-MoS{sub 2}). Metallic potassium (K) atoms are incrementally loaded in the hexagonal sites of the interstitial spaces between MoS2 sheets of the 2H-MoS{sub 2} bulk structure generating 2H-KxMoS2 (0.125 {<=} x {<=} 1.0) structures. To accommodate the potassium atoms, the interstitial spacing c parameter in the 2H-MoS{sub 2} bulk expands from 12.816 {angstrom} in 2H-MoS{sub 2} to 16.086 {angstrom} in 2H-K{sub 0.125}MoS{sub 2}. The second lowest potassium loading concentration (K{sub 0.25}MoS{sub 2}) results in the largest interstitial spacing expansion (to c = 16.726 {angstrom}). Our calculations show that there is a small gradual contraction of the interstitial spacing as the potassium loading increases with c = 14.839 {angstrom} for KMoS{sub 2}. This interstitial contraction is correlated with an in-plane expansion of the MoS{sub 2} sheets, which is in good agreement with experimental X-ray diffraction (XRD) measurements. The electronic analysis shows that potassium readily donates its 4s electron to the conduction band of the 2H-K{sub x}MoS{sub 2}, and is largely ionic in character. As a result of the electron donation, the 2H-K{sub x}MoS{sub 2} system changes from a semiconductor to a more metallic system with increasing potassium intercalation. For loadings 0.25 {<=} x {<=} 0.625, triangular Mo-Mo-Mo moieties are prominent and tend to form rhombitrihexagonal motifs. Intercalation of H{sub 2}O molecules that solvate the K atoms is likely to occur in catalytic conditions. The inclusion of two H{sub 2}O molecules per K atom in the K{sub 0.25}MoS{sub 2} structure shows good agreement with XRD measurements.

  20. Identification of acetylene (C2H2) in infrared atmospheric absorption spectra

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Gillis, J. R.; Bonomo, F. S.; Murcray, F. H.; Murcray, D. G.; Cicerone, R. J.

    1981-12-01

    Infrared atmospheric absorption spectra at ˜0.02 cm-1 resolution obtained during a balloon flight made on March 23, 1981, show absorption features attributable to C2H2. These features are used to derive a preliminary mixing ratio of ˜25 pptv near 9 km. This mixing ratio falls into the range of values we calculate for upper tropospheric C2H2 in a photochemical/transport model but well below values measured previously in samples collected by other researchers.

  1. Implications of C2H photochemistry on the modeling of C2 distributions in comets

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Bao, Yihan; Urdahl, Randall S.

    1991-01-01

    Laboratory studies of the secondary photolysis of the C2H radical are summarized and used to explain some discrepancies between models of C2 emission in comets. These studies show that several states of the C2 radicals produced in the photolysis of C2H2 at 193 nm have bimodal rotational distributions when plotted as a Boltzmann diagram. They also establish that the C2 radicals are formed with varying degrees of vibrational excitation, so that if they are formed in a similar manner in comets, the C2 radicals must start out with this initial vibrational excitation.

  2. Effects of deuterium oxide on cell growth and vesicle speed in RBL-2H3 cells

    PubMed Central

    Triplett, Ashley R.

    2014-01-01

    For the first time we show the effects of deuterium oxide on cell growth and vesicle transport in rat basophilic leukemia (RBL-2H3) cells. RBL-2H3 cells cultured with 15 moles/L deuterium showed decreased cell growth which was attributed to cells not doubling their DNA content. Experimental observations also showed an increase in vesicle speed for cells cultured in deuterium oxide. This increase in vesicle speed was not observed in deuterium oxide cultures treated with a microtubule-destabilizing drug, suggesting that deuterium oxide affects microtubule-dependent vesicle transport. PMID:25237603

  3. Multicomponent synthesis of 3,6-dihydro-2H-1,3-thiazine-2-thiones.

    PubMed

    Kruithof, Art; Ploeger, Marten L; Janssen, Elwin; Helliwell, Madeleine; de Kanter, Frans J J; Ruijter, Eelco; Orru, Romano V A

    2012-02-08

    Non-fused 3,6-dihydro-2H-1,3-thiazine-2-thiones constitute a so far rather unexplored class of compounds, with the latest report dating back more than two decades. Thiazine-2-thiones contain an endocyclic dithiocarbamate group, which is often found in pesticides, in substrates for radical chemistry and in synthetic intermediates towards thioureas and amidines. We now report the multicomponent reaction (MCR) of in situ-generated 1-azadienes with carbon disulfide. With this reaction, a one-step protocol towards the potentially interesting 3,6-dihydro-2H-1,3-thiazine-2-thiones was established and a small library was synthesized.

  4. Electron-Impact Total Ionization Cross Sections of CH and C2H2

    PubMed Central

    Kim, Yong-Ki; Ali, M. Asgar; Rudd, M. Eugene

    1997-01-01

    Electron-impact total ionization cross sections for the CH radical and C2H2 (acetylene) have been calculated using the Binary-Encounter-Bethe (BEB) model. The BEB model combines the Mott cross section and the asymptotic form of the Bethe theory, and has been shown to generate reliable ionization cross sections for a large variety of molecules. The BEB cross sections for CH and C2H2 are in good agreement with the available experimental data from ionization thresholds to hundreds of eV in incident energies. PMID:27805116

  5. Davis-Beirut reaction: route to thiazolo-, thiazino-, and thiazepino-2H-indazoles.

    PubMed

    Farber, Kelli M; Haddadin, Makhluf J; Kurth, Mark J

    2014-08-01

    Methods for the construction of thiazolo-, thiazino-, and thiazepino-2H-indazoles from o-nitrobenzaldehydes or o-nitrobenzyl bromides and S-trityl-protected 1°-aminothioalkanes are reported. The process consists of formation of the requisite N-(2-nitrobenzyl)(tritylthio)alkylamine, subsequent deprotection of the trityl moiety with TFA, and immediate treatment with aq. KOH in methanol under Davis-Beirut reaction conditions to deliver the target thiazolo-, thiazino-, or thiazepino-2H-indazole in good overall yield. Subsequent S-oxidation gives the corresponding sulfone.

  6. N 2- and O 2-broadening coefficients of C 2H 2 IR lines

    NASA Astrophysics Data System (ADS)

    Bouanich, J. P.; Lambot, D.; Blanquet, G.; Walrand, J.

    1990-04-01

    Pressure-broadening parameters of six lines belonging to the ν5 band of C 2H 2 in collision with N 2 have been measured with a tunable diode-laser spectrometer in order to complete up to J = 33 our earlier measurements (D. Lambot, G. Blanquet, and J. P. Bouanich, J. Mol. Spectrosc.136, 86-92 (1989)) on the broadening of C 2H 2 by N 2 and O 2 at 297 K. These N 2- and O 2-broadening coefficients have been first calculated on the basis of the Anderson-Tsao-Curnutte theory; in this approach, we show that the short-range interactions which contribute significantly to the linewidths are not correctly treated. Next, we consider the improved semiclassical model proposed by Robert and Bonamy. The intermolecular potential consists in the addition of the atom-atom interaction model to the quadrupolar interactions. The limited radial spherical harmonics expansion of the atom-atom potential, from which expressions for the differential cross section were derived, appears to be quite insufficient at short intermolecular distances. Therefore, we use a more accurate representation of this potential, avoiding an inadequate truncation and keeping the analytic expressions obtained by Bonamy and Robert. In the calculations we take into account the contributions derived from the radial functions U000( r), U200( r), and U220( r), as well as from U400( r). A theoretical expression is obtained for the U400 contribution to the differential cross section. The results of the calculations arising from the exact radial expansion of the atom-atom potential appear to be significantly larger for high J lines than those arising from the truncated expansion. The latter results, which do not include adjustable atom-atom parameters, are in good agreement with experimental broadening coefficients for C 2H 2O 2 and in reasonable agreement (except at large J values) for C 2H 2N 2. It is also shown that the contributions to the linewidths derived from U400 are rather small for C 2H 2N 2 and more

  7. Assessing Heterogeneity of Osteolytic Lesions in Multiple Myeloma by 1H HR-MAS NMR Metabolomics

    PubMed Central

    Tavel, Laurette; Fontana, Francesca; Garcia Manteiga, Josè Manuel; Mari, Silvia; Mariani, Elisabetta; Caneva, Enrico; Sitia, Roberto; Camnasio, Francesco; Marcatti, Magda; Cenci, Simone; Musco, Giovanna

    2016-01-01

    Multiple myeloma (MM) is a malignancy of plasma cells characterized by multifocal osteolytic bone lesions. Macroscopic and genetic heterogeneity has been documented within MM lesions. Understanding the bases of such heterogeneity may unveil relevant features of MM pathobiology. To this aim, we deployed unbiased 1H high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) metabolomics to analyze multiple biopsy specimens of osteolytic lesions from one case of pathological fracture caused by MM. Multivariate analyses on normalized metabolite peak integrals allowed clusterization of samples in accordance with a posteriori histological findings. We investigated the relationship between morphological and NMR features by merging morphological data and metabolite profiling into a single correlation matrix. Data-merging addressed tissue heterogeneity, and greatly facilitated the mapping of lesions and nearby healthy tissues. Our proof-of-principle study reveals integrated metabolomics and histomorphology as a promising approach for the targeted study of osteolytic lesions. PMID:27809247

  8. Infrared and 13C MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton

    NASA Astrophysics Data System (ADS)

    Adebajo, Moses O.; Frost, Ray L.

    2004-01-01

    The acetylation of commercial cotton samples with acetic anhydride without solvents in the presence of about 5% 4-dimethylaminopyridine (DMAP) catalyst was followed using Fourier transform infrared (FTIR) and 13C MAS NMR spectroscopy. This preliminary investigation was conducted in an effort to develop hydrophobic, biodegradable, cellulosic materials for subsequent application in oil spill cleanup. The FTIR results provide clear evidence for successful acetylation though the NMR results indicate that the level of acetylation is low. Nevertheless, the overall results indicate that cotton fibres are potential candidates suitable for further development via acetylation into hydrophobic sorbent materials for subsequent oil spill cleanup application. The results also indicate that de-acetylation, the reverse of the equilibrium acetylation reaction, occurred when the acetylation reaction was prolonged beyond 3 h.

  9. The MasPar MP-1 As a Computer Arithmetic Laboratory.

    PubMed

    Anuta, Michael A; Lozier, Daniel W; Turner, Peter R

    1996-01-01

    This paper is a blueprint for the use of a massively parallel SIMD computer architecture for the simulation of various forms of computer arithmetic. The particular system used is a DEC/MasPar MP-1 with 4096 processors in a square array. This architecture has many advantages for such simulations due largely to the simplicity of the individual processors. Arithmetic operations can be spread across the processor array to simulate a hardware chip. Alternatively they may be performed on individual processors to allow simulation of a massively parallel implementation of the arithmetic. Compromises between these extremes permit speed-area tradeoffs to be examined. The paper includes a description of the architecture and its features. It then summarizes some of the arithmetic systems which have been, or are to be, implemented. The implementation of the level-index and symmetric level-index, LI and SLI, systems is described in some detail. An extensive bibliography is included.

  10. Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy

    PubMed Central

    Corsaro, Carmelo; Mallamace, Domenico; Łojewska, Joanna; Mallamace, Francesco; Pietronero, Luciano; Missori, Mauro

    2013-01-01

    For centuries mankind has stored its knowledge on paper, a remarkable biomaterial made of natural cellulose fibers. However, spontaneous cellulose degradation phenomena weaken and discolorate paper over time. The detailed knowledge of products arising from cellulose degradation is essential in understanding deterioration pathways and in improving durability of cultural heritage. In this study, for the first time, products of cellulose degradation were individually detected in solid paper samples by means of an extremely powerful proton HR-MAS NMR set-up, in combination to a wise use of both ancient and, as reference, artificially aged paper samples. Carboxylic acids, in addition to more complex dicarboxylic and hydroxy-carboxylic acids, were found in all samples studied. Since these products can catalyze further degradation, their knowledge is fundamental to improve conservation strategies of historical documents. Furthermore, the identification of compounds used in ancient production techniques, also suggests for artifacts dating, authentication and provenance. PMID:24104201

  11. Unfolding the Quantum Nature of Proton Bound Symmetric Dimers of (MeOH)2H+ and (Me2O)2H+: a Theoretical Study

    NASA Astrophysics Data System (ADS)

    Tan, Jake Acedera; Kuo, Jer-Lai

    2014-06-01

    A proton under a tug of war between two competing Lewis bases is a common motif in biological systems and proton transfer processes. Over the past decades, model compounds for such motifs can be prepared by delicate stoichiometric control of salt solutions. Unfortunately, condensed phase studies, which aims to identify the key vibrational signatures are complicated to analyze. As a result, gas-phase studies do provide promising insights on the behavior of the shared proton. This study attempts to understand the quantum nature of the shared proton under theoretical paradigms. Proton bound symmetric dimers of (MeOH)2H+ and (Me2O)2H+ are chosen as the model compounds. The simulation is performed using Density Functional Theory (DFT) at the B3LYP level with 6-311+G(d,p) as the basis set. It was found out that stretching mode of shared proton couples with several other normal modes and its corresponding oscillator strength do distribute to other normal modes. J.R. Roscioli, L.R. McCunn and M.A. Johnson. Science 2007, 316, 249 T.E. DeCoursey. Physiol. Rev., 2003, 83, 475 E.S. Stoyanov. Psys. Chem. Phys., 2000,2,1137

  12. The conformational dynamics of H2-H3n and S2-H6 in gating ligand entry into the buried binding cavity of vitamin D receptor

    PubMed Central

    Tee, Wei-Ven; Ripen, Adiratna Mat; Mohamad, Saharuddin Bin

    2016-01-01

    Crystal structures of holo vitamin D receptor (VDR) revealed a canonical conformation in which the ligand is entrapped in a hydrophobic cavity buried in the ligand-binding domain (LBD). The mousetrap model postulates that helix 12 is positioned away from the domain to expose the interior cavity. However, the extended form of helix 12 is likely due to artifacts during crystallization. In this study, we set out to investigate conformational dynamics of apo VDR using molecular dynamics simulation on microsecond timescale. Here we show the neighboring backbones of helix 2-helix 3n and beta strand 2-helix 6 of LBD, instead of the helix 12, undergo large-scale motion, possibly gating the entrance of ligand to the ligand binding domain. Docking analysis to the simulated open structure of VDR with the estimated free energy of −37.0 kJ/mol, would emphasise the role of H2-H3n and S2-H6 in facilitating the entrance of calcitriol to the LBD of VDR. PMID:27786277

  13. Laser-induced fluorescence studies of excited Sr reactions: II. Sr(3P1)+CH3F, C2H5F, C2H4F2

    NASA Astrophysics Data System (ADS)

    Teule, J. M.; Janssen, M. H. M.; Bulthuis, J.; Stolte, S.

    1999-06-01

    The vibrational and rotational energy distributions of ground state SrF(X 2Σ) formed in the reactions of electronically excited Sr(3P1) with methylfluoride, ethylfluoride, and 1,1-difluoroethane have been studied by laser-induced fluorescence. Although the reactions of ground state Sr with these reactants are exothermic, no SrF products are observed for those reactions in this study. The fraction of available energy disposed into the sum of rotational and vibrational energy of the SrF(X 2Σ) product is approximately the same for all three reactions, i.e., 40%. The reaction of Sr(3P1) with CH3F results in very low vibrational excitation in the SrF reaction product. The product vibration increases in going to C2H5F and C2H4F2. It is concluded that the alkyl group influences the energy disposal mechanism in these reactions, and some suggestions are given for a partial explanation of the observations.

  14. Chemistry of TMC-1 with multiply deuterated species and spin chemistry of H2, H2+, H3+ and their isotopologues

    NASA Astrophysics Data System (ADS)

    Majumdar, L.; Gratier, P.; Ruaud, M.; Wakelam, V.; Vastel, C.; Sipilä, O.; Hersant, F.; Dutrey, A.; Guilloteau, S.

    2016-12-01

    Deuterated species are unique and powerful tools in astronomy since they can probe the physical conditions, chemistry, and ionization level of various astrophysical media. Recent observations of several deuterated species along with some of their spin isomeric forms have rekindled the interest for more accurate studies on deuterium fractionation. This paper presents the first publicly available chemical network of multiply deuterated species along with spin chemistry implemented on the latest state-of-the-art gas-grain chemical code `NAUTILUS'. D/H ratios for all deuterated species observed at different positions of TMC-1 are compared with the results of our model, which considers multiply deuterated species along with the spin chemistry of light hydrogen bearing species H2, H2+, H3+ and their isotopologues. We also show the differences in the modeled abundances of non-deuterated species after the inclusion of deuteration and spin chemistry in the model. Finally, we present a list of potentially observable deuterated species in TMC-1 awaiting detection.

  15. Paramagnet induced signal quenching in MAS-DNP experiments in frozen homogeneous solutions

    NASA Astrophysics Data System (ADS)

    Corzilius, Björn; Andreas, Loren B.; Smith, Albert A.; Ni, Qing Zhe; Griffin, Robert G.

    2014-03-01

    The effects of nuclear signal quenching induced by the presence of a paramagnetic polarizing agent are documented for conditions used in magic angle spinning (MAS)-dynamic nuclear polarization (DNP) experiments on homogeneous solutions. In particular, we present a detailed analysis of three time constants: (1) the longitudinal build-up time constant TB for 1H; (2) the rotating frame relaxation time constant T1ρ for 1H and 13C and (3) T2 of 13C, the transverse relaxation time constant in the laboratory frame. These relaxation times were measured during microwave irradiation at a magnetic field of 5 T (140 GHz) as a function of the concentration of four polarizing agents: TOTAPOL, 4-amino-TEMPO, trityl (OX063), and Gd-DOTA and are compared to those obtained for a sample lacking paramagnetic doping. We also report the EPR relaxation time constants T1S and T2S, the DNP enhancements, ε, and the parameter E, defined below, which measures the sensitivity enhancement for the four polarizing agents as a function of the electron concentration. We observe substantial intensity losses (paramagnetic quenching) with all of the polarizing agents due to broadening mechanisms and cross relaxation during MAS. In particular, the monoradical trityl and biradical TOTAPOL induce ∼40% and 50% loss of signal intensity. In contrast there is little suppression of signal intensity in static samples containing these paramagnetic species. Despite the losses due to quenching, we find that all of the polarizing agents provide substantial gains in signal intensity with DNP, and in particular that the net enhancement is optimal for biradicals that operate with the cross effect. We discuss the possibility that much of this polarization loss can be regained with the development of instrumentation and methods to perform electron decoupling.

  16. Induced Signal Quenching in MAS-DNP Experiments in Homogeneous Solutions

    PubMed Central

    Corzilius, Björn; Andreas, Loren B.; Smith, Albert A.; Ni, Qing Zhe; Griffin, Robert G.

    2014-01-01

    The effects of nuclear signal quenching induced by the presence of a paramagnetic polarizing agent are documented for conditions used in magic angle spinning (MAS)-dynamic nuclear polarization (DNP) experiments on homogeneous solutions. In particular, we present a detailed analysis of three time constants: (1) the longitudinal build-up time constant TB for 1H; (2) the rotating frame relaxation time constant T1ρ for 1H and 13C and (3) T2 of 13C, the transverse relaxation time constant in the laboratory frame. These relaxation times were measured during microwave irradiation at a magnetic field of 5 T (140 GHz) as a function of the concentration of four polarizing agents: TOTAPOL, 4-amino-TEMPO, trityl (OX063), and Gd-DOTA and are compared to those obtained for a sample lacking paramagnetic doping. We also report the EPR relaxation time constants T1S and T2S, the DNP enhancements, ε, and the parameter E, defined below, which measures the sensitivity enhancement for the four polarizing agents as a function of the electron concentration. We observe substantial intensity losses (paramagnetic quenching) with all of the polarizing agents due to broadening mechanisms and cross relaxation during MAS. In particular, the monoradical trityl and biradical TOTAPOL induce ~40 and 50% loss of signal intensity. In contrast there is little suppression of signal intensity in static samples containing these paramagnetic species. Despite the losses due to quenching, we find that all of the polarizing agents provide substantial gains in signal intensity, and in particular that the net enhancement is optimal for biradicals that operate with the cross effect. We discuss the possibility that much of this polarization loss can be regained with the development of instrumentation and methods to perform electron decoupling. PMID:24394190

  17. Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy

    PubMed Central

    Debelouchina, Galia T.; Bayro, Marvin J.; Fitzpatrick, Anthony W.; Ladizhansky, Vladimir; Colvin, Michael T.; Caporini, Marc A.; Jaroniec, Christopher P.; Bajaj, Vikram S.; Rosay, Melanie; MacPhee, Cait E.; Vendruscolo, Michele; Maas, Werner E.; Dobson, Christopher M.; Griffin, Robert G.

    2014-01-01

    Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide β-strands into β-sheets but also the β-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The β-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the side-chains buried within the interior of the fibrils. PMID:24304221

  18. Not all M&As are alike--and that matters.

    PubMed

    Bower, J L

    2001-03-01

    Despite all that's been written about mergers and acquisitions, even the experts know surprisingly little about them. The author recently headed up a year-long study sponsored by Harvard Business School on the subject of M&A activity. In-depth findings will emerge over the next few years, but the research has already revealed some interesting results. Most intriguing is the notion that, although academics, consultants, and businesspeople lump M&As together, they represent very different strategic activities. Acquisitions occur for the following reasons: to deal with overcapacity through consolidation in mature industries; to roll up competitors in geographically fragmented industries; to extend into new products and markets; as a substitute for R&D; and to exploit eroding industry boundaries by inventing an industry. The different strategic intents present distinct integration challenges. For instance, if you acquire a company because your industry has excess capacity, you have to determine which plants to shut down and which people to let go. If, on the other hand, you buy a company because it has developed an important technology, your challenge is to keep the acquisition's best engineers from jumping ship. These scenarios require the acquiring company to engage in nearly opposite managerial behaviors. The author explores each type of M&A--its strategic intent and the integration challenges created by that intent. He underscores the importance of the acquiring company's assessment of the acquired group's culture. Depending on the type of M&A, approaches to the culture in place must vary, as will the level to which culture interferes with integration. He draws from the experiences of such companies as Cisco, Viacom, and BancOne to exemplify the different kinds of M&As.

  19. Dynamic Nuclear Polarization Enhanced MAS NMR for Structural Analysis of HIV-1 Protein Assemblies

    PubMed Central

    Gupta, Rupal; Lu, Manman; Hou, Guangjin; Caporini, Marc A.; Rosay, Melanie; Maas, Werner; Struppe, Jochem; Suiter, Christopher; Ahn, Jinwoo; Byeon, In-Ja L.; Franks, W. Trent; Orwick-Rydmark, Marcella; Bertarello, Andrea; Oschkinat, Hartmut; Lesage, Anne; Pintacuda, Guido; Gronenborn, Angela M.; Polenova, Tatyana

    2016-01-01

    Mature infectious HIV-1 virions contain conical capsids comprised of CA protein, generated by the proteolytic cleavage cascade of the Gag polyprotein, termed maturation. The mechanism of capsid core formation through the maturation process remains poorly understood. We present DNP-enhanced MAS NMR studies of tubular assemblies of CA and Gag CA-SP1 maturation intermediate and report 20 – 64 fold sensitivity enhancements due to DNP at 14.1 T. These sensitivity enhancements enabled direct observation of spacer peptide 1 (SP1) resonances in CA-SP1 by dipolar based correlation experiments, unequivocally indicating that the SP1 peptide is unstructured in assembled CA-SP1 at cryogenic temperatures, corroborating our earlier results. Furthermore, the dependence of DNP enhancements and spectral resolution on magnetic field strength (9.4 – 18.8 T) and temperature (109 – 180 K) was investigated. Our results suggest that DNP-based measurements could potentially provide residue-specific dynamics information by allowing for the extraction of temperature dependence of the anisotropic tensorial or relaxation parameters. With DNP, we were able to detect multiple well-resolved isoleucine sidechain conformers, unique intermolecular correlations across two CA molecules, and functionally relevant conformationally disordered states such as the 14-residue SP1 peptide, none of which are visible at ambient temperatures. The detection of isolated conformers and intermolecular correlations can provide crucial constraints for structure determination of these assemblies. Overall, our results establish DNP-based MAS NMR as an excellent tool for characterization of HIV-1 assemblies. PMID:26709853

  20. Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies.

    PubMed

    Gupta, Rupal; Lu, Manman; Hou, Guangjin; Caporini, Marc A; Rosay, Melanie; Maas, Werner; Struppe, Jochem; Suiter, Christopher; Ahn, Jinwoo; Byeon, In-Ja L; Franks, W Trent; Orwick-Rydmark, Marcella; Bertarello, Andrea; Oschkinat, Hartmut; Lesage, Anne; Pintacuda, Guido; Gronenborn, Angela M; Polenova, Tatyana

    2016-01-21

    Mature infectious HIV-1 virions contain conical capsids composed of CA protein, generated by the proteolytic cleavage cascade of the Gag polyprotein, termed maturation. The mechanism of capsid core formation through the maturation process remains poorly understood. We present DNP-enhanced MAS NMR studies of tubular assemblies of CA and Gag CA-SP1 maturation intermediate and report 20-64-fold sensitivity enhancements due to DNP at 14.1 T. These sensitivity enhancements enabled direct observation of spacer peptide 1 (SP1) resonances in CA-SP1 by dipolar-based correlation experiments, unequivocally indicating that the SP1 peptide is unstructured in assembled CA-SP1 at cryogenic temperatures, corroborating our earlier results. Furthermore, the dependence of DNP enhancements and spectral resolution on magnetic field strength (9.4-18.8 T) and temperature (109-180 K) was investigated. Our results suggest that DNP-based measurements could potentially provide residue-specific dynamics information by allowing for the extraction of the temperature dependence of the anisotropic tensorial or relaxation parameters. With DNP, we were able to detect multiple well-resolved isoleucine side-chain conformers; unique intermolecular correlations across two CA molecules; and functionally relevant conformationally disordered states such as the 14-residue SP1 peptide, none of which are visible at ambient temperatures. The detection of isolated conformers and intermolecular correlations can provide crucial constraints for structure determination of these assemblies. Overall, our results establish DNP-based MAS NMR spectroscopy as an excellent tool for the characterization of HIV-1 assemblies.

  1. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    SciTech Connect

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimension without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.

  2. Role of Mas receptor in renal blood flow response to angiotensin-(1-7) in ovariectomized estradiol treated rats.

    PubMed

    Saberi, Shadan; Dehghani, Aghdas; Nematbakhsh, Mehdi

    2016-01-01

    The angiotensin 1-7 (Ang 1-7), is abundantly produced in kidneys and antagonizes the function of angiotensin II through Mas receptor (MasR) or other unknown mechanisms. In the current study, the role of MasR and steroid hormone estrogen on renal blood flow response to Ang 1-7 administration was investigated in ovariectomized (OV) female rats. OV female Wistar-rats received estradiol (500 μg/kg/week) or vehicle for two weeks. In the day of the experiment, the animals were anesthetized, cannulated, and the responses including mean arterial pressure, renal blood flow (RBF), and renal vascular resistance at the constant level of renal perfusion pressure to graded infusion of Ang 1-7 at 0, 100 and 300 ng/kg/min were determined in OV and OV estradiol-treated (OVE) rats, treated with vehicle or MasR antagonist; A779. RBF response to Ang 1-7 infusion increased dose-dependently in vehicle (Pdose <0.001) and A779-treated (Pdose <0.01) animals. However, when MasR was blocked, the RBF response to Ang 1-7 significantly increased in OV animals compared with OVE rats (P<0.05). When estradiol was limited by ovariectomy, A779 increased RBF response to Ang 1-7 administration, while this response was attenuated in OVE animals.

  3. Role of Mas receptor in renal blood flow response to angiotensin-(1-7) in ovariectomized estradiol treated rats

    PubMed Central

    Saberi, Shadan; Dehghani, Aghdas; Nematbakhsh, Mehdi

    2016-01-01

    The angiotensin 1-7 (Ang 1-7), is abundantly produced in kidneys and antagonizes the function of angiotensin II through Mas receptor (MasR) or other unknown mechanisms. In the current study, the role of MasR and steroid hormone estrogen on renal blood flow response to Ang 1-7 administration was investigated in ovariectomized (OV) female rats. OV female Wistar-rats received estradiol (500 μg/kg/week) or vehicle for two weeks. In the day of the experiment, the animals were anesthetized, cannulated, and the responses including mean arterial pressure, renal blood flow (RBF), and renal vascular resistance at the constant level of renal perfusion pressure to graded infusion of Ang 1-7 at 0, 100 and 300 ng/kg/min were determined in OV and OV estradiol-treated (OVE) rats, treated with vehicle or MasR antagonist; A779. RBF response to Ang 1-7 infusion increased dose-dependently in vehicle (Pdose<0.001) and A779-treated (Pdose<0.01) animals. However, when MasR was blocked, the RBF response to Ang 1-7 significantly increased in OV animals compared with OVE rats (P<0.05). When estradiol was limited by ovariectomy, A779 increased RBF response to Ang 1-7 administration, while this response was attenuated in OVE animals. PMID:27051434

  4. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    DOE PAGES

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; ...

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimensionmore » without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.« less

  5. Synthesis of (11,11,12,12-2H4)progesterone for mass spectral investigations of peripheral metabolism

    SciTech Connect

    Kirk, D.N.; Smith, C.Z.; Honour, J.W. )

    1990-05-01

    Hecogenin has been transformed into (11,11,12,12-2H4)progesterone via base-catalyzed isotope exchange with D2O (at C-11), carbenic decomposition of the 12-tosylhydrazone formed by the use of (N,N,N'-2H3)toluene-p-sulfonylhydrazine, and reduction with (2H2)diimide to give (11,11,12,12-2H4)tigogenin, followed by standard degradation of the spiroketal side chain and dehydrogenation in ring A.

  6. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL)

    Atmospheric Science Data Center

    2016-10-25

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access: OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  7. The C-H Dissociation Energy of C2H6

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The C-H bond energy in C2H6 is computed to be 99.76 +/- 0.35 kcal/mol, which is in excellent agreement with the most recent experimental values. The calculation of the C-H bond energy by direct dissociation and by an isodesmic reaction is discussed.

  8. Photo-induced reactions in the ion-molecule complex Mg+-OCNC2H5

    NASA Astrophysics Data System (ADS)

    Sun, Ju-Long; Liu, Haichuan; Han, Ke-Li; Yang, Shihe

    2003-06-01

    Ion-molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser-ablation supersonic expansion nozzle source. Photo-induced reactions in the 1:1 complexes have been studied in the spectral range of 230-410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 32P←32S atomic transition. The ground state geometry of Mg+-OCNC2H5 was fully optimized at B3LYP/6-31+G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3Px,y,z excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo-induced reactions of Mg+(OCNC2H5).

  9. An improved technique for the 2H/1H analysis of urines from diabetic volunteers

    USGS Publications Warehouse

    Coplen, T.B.; Harper, I.T.

    1994-01-01

    The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, ~ 1-2???, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, approximately 1-2%, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.

  10. Fluorescence from photoexcitation of C2H5OH by vacuum ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Suto, Masako; Lee, L. C.

    1989-01-01

    The photoabsorption and fluorescence cross sections of C2H5OH have been measured in the 46-200 nm region. Fluorescence is dispersed to identify the emission systems, which are mainly OH(A-X), CH(A,B-X), and the H Balmer series. The photodissociation processes that produce the observed emissions are discussed.

  11. 77 FR 44441 - Swap Transaction Compliance and Implementation Schedule: Clearing Requirement Under Section 2(h...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... From the Federal Register Online via the Government Publishing Office COMMODITY FUTURES TRADING... Requirement Under Section 2(h) of the CEA AGENCY: Commodity Futures Trading Commission. ACTION: Final rule. SUMMARY: The Commodity Futures Trading Commission (Commission or CFTC) is adopting regulations...

  12. Growth mode of carbide from C 2H 4 or CO on Ni( 1 1 1 )

    NASA Astrophysics Data System (ADS)

    Nakano, H.; Ogawa, J.; Nakamura, J.

    2002-08-01

    The growth of carbide on a Ni(1 1 1) surface by the decomposition of C 2H 4 and the Boudouard reaction (2CO g→C a+CO 2,g) was studied using scanning tunneling microscopy (STM), Auger electron spectroscopy and low energy electron diffraction. STM results showed that the carbide growth by the Boudouard reaction started at step edges on Ni(1 1 1), while for the C 2H 4 decomposition the carbide was formed preferentially at terrace sites with very low concentration of carbide at the step edge. The different behavior for the carbide growth was ascribed to the difference in the dissociation sites of CO and C 2H 4. As for the Boudouard reaction, CO was dissociated at the step edge and then carbon migrated into the bulk at a reaction temperature of 500 K. The carbon was then segregated at room temperature to the surface from the bulk to form a single domain of the ( 39× 39) R16.1° structure at the step edge. On the other hand, the C 2H 4 decomposition took place on the terrace leading to an isolated carbide unit or carbide short strings on the terrace.

  13. Improved watermelon quality using bottle gourd rootstock expressing a Ca(2+)/H(+) antiporter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bottle gourd ("Lagenaria siceraria" Standl.) has been commonly used as a source of rootstock for watermelon. To improve its performance as a rootstock without adverse effects on the scion, the bottle gourd was genetically engineered using a modified "Arabidopsis" Ca(2+)/H(+) exchanger sCAX2B. This t...

  14. Slow recrystallization of tripalmitoylglycerol from MCT oil observed by 2H NMR.

    PubMed

    Smith, Kevin W; Smith, Paul R; Furó, István; Pettersson, Erik Thyboll; Cain, Fred W; Favre, Loek; Talbot, Geoff

    2007-10-17

    The crystallization and recrystallization of fats have a significant impact on the properties and quality of many food products. While crystallization has been the subject of a number of studies using pure triacylglycerols (TAG), recrystallization in similarly pure systems is rarely studied. In this work, perdeuterated tripalmitoylglycerol ( (2)H-PPP) was dissolved in medium chain triacylglycerol oil (MCT) to yield a saturated solution. The solution was heated to cause partial melting of the solid and dissolution of the molten fraction of (2)H-PPP in MCT and was then cooled to the original temperature to induce recrystallization from the supersaturated solution. (2)H NMR was used to monitor the disappearance of (2)H-PPP from the solution and showed that recrystallization occurred in two steps. The first step was rapid, taking place over a few minutes, and accounted for more than two-thirds of the total recrystallization. The second step was much slower, taking place over a remarkably long timescale of hours to days. It is proposed that dissolution occurs from all parts of the crystals, leaving an etched and pitted surface. The first step of crystallization is the infilling of these pits, while the second step is the continued growth on the smoothed crystal faces.

  15. SO2:H2O surface complex found at the vapor/water interface.

    PubMed

    Tarbuck, Teresa L; Richmond, Geraldine L

    2005-12-07

    A weakly bonded SO2:H2O surface complex is found at the vapor/water interface prior to the reaction and dissolution of SO2 into the aqueous phase. The results have important implications for understanding the formation of atmospheric aerosols and understanding the atmospheric sulfur cycle.

  16. "In planta" regulation of the "Arabidopsis" Ca(2+)/H(+) antiporter CAX1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vacuolar localized Ca(2+)/H(+) exchangers such as "Arabidopsis thaliana" cation exchanger 1 (CAX1) play important roles in Ca(2+) homeostasis. When expressed in yeast, CAX1 is regulated via an N-terminal autoinhibitory domain. In yeast expression assays, a 36 amino acid N-terminal truncation of CAX1...

  17. Identification of microdomains involved in association of "Arabidopsis" Ca(2+)/H(+) exchangers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In planta, high capacity tonoplast Ca2+/H+ antiport is mediated in part by a family of CAtion Exchangers (CAX). Each CAX can be divided into two weakly homologous halves (N- and C-) at the negatively charged loop between transmembrane (TM) 6 and TM7. Some CAX halves (N+C) co-expressed in yeast cells...

  18. Characterization of Radionuclides for 2H Evaporator Cleaning Transfers to Tank 42

    SciTech Connect

    O'Bryant, R.F.

    2001-06-04

    This document contains the characterization methodology for sludge-contaminated waste generated from the 2H Evaporator cleaning transfers to Tank 42, based on process knowledge and available analytical data. The scaling factors developed for Tank 42 in this document supercede those presented in Reference 6, and any other previously developed radionuclide characterizations for Tank 42 sludge-contaminated waste.

  19. Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Okong'o, Nora

    2003-01-01

    This report presents a study of numerical simulations of mixing layers developing between opposing flows of paired fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence. The simulations were performed for two different fluid pairs O2/H2 and C7H16/N2 at similar reduced initial pressures (reduced pressure is defined as pressure divided by critical pressure). Thermodynamically, O2/H2 behaves more nearly like an ideal mixture and has greater solubility, relative to C7H16/N2, which departs strongly from ideality. Because of a specified smaller initial density stratification, the C7H16/N2 layers exhibited greater levels of growth, global molecular mixing, and turbulence. However, smaller density gradients at the transitional state for the O2/H2 system were interpreted as indicating that locally, this system exhibits enhanced mixing as a consequence of its greater solubility and closer approach to ideality. These thermodynamic features were shown to affect entropy dissipation, which was found to be larger for O2/H2 and concentrated in high-density-gradient-magnitude regions that are distortions of the initial density-stratification boundary. In C7H16/N2, the regions of largest dissipation were found to lie in high-density-gradient-magnitude regions that result from mixing of the two fluids.

  20. N,N-bond-forming heterocyclization: synthesis of 3-alkoxy-2H-indazoles.

    PubMed

    Mills, Aaron D; Nazer, Musa Z; Haddadin, Makhluf J; Kurth, Mark J

    2006-03-31

    A one-step heterocyclization of o-nitrobenzylamines to 3-alkoxy-2H-indazoles is reported. The electronic nature of the nitrophenyl group, the steric and electronic nature of the R1-functionalized benzylic amine, and the nature of the alcoholic solvent affect the efficiency of this heterocyclization reaction (approximately 40-90%).

  1. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    NASA Technical Reports Server (NTRS)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  2. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    SciTech Connect

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  3. Microbial H2 cycling does not affect δ2H values of ground water

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Bradley, P.M.

    2000-01-01

    Stable hydrogen-isotope values of ground water (δ2H) and dissolved hydrogen concentrations (H(2(aq)) were quantified in a petroleum-hydrocarbon contaminated aquifer to determine whether the production/consumption of H2 by subsurface microorganisms affects ground water &delta2H values. The range of &delta2H observed in monitoring wells sampled (-27.8 ‰c to -15.5 ‰c) was best explained, however, by seasonal differences in recharge temperature as indicated using ground water δ18O values, rather than isotopic exchange reactions involving the microbial cycling of H2 during anaerobic petroleum-hydrocarbon biodegradation. The absence of a measurable hydrogen-isotope exchange between microbially cycled H2 and ground water reflects the fact that the amount of H2 available from the anaerobic decomposition of petroleum hydrocarbons is small relative to the amount of hydrogen present in water, even though milligram per liter concentrations of readily biodegradable contaminants are present at the study site. Additionally, isotopic fractionation calculations indicate that in order for H2 cycling processes to affect δ2H values of ground water, relatively high concentrations of H2 (>0.080 M) would have to be maintained, considerably higher than the 0.2 to 26 nM present at this site and characteristic of anaerobic conditions in general. These observations suggest that the conventional approach of using δ2H and δ18O values to determine recharge history is appropriate even for those ground water systems characterized by anaerobic conditions and extensive microbial H2 cycling.

  4. Role of Mas receptor in renal blood flow response to angiotensin (1-7) in male and female rats.

    PubMed

    Nematbakhsh, Mehdi; Safari, Tahereh

    2014-01-01

    Epidemiologic and clinical studies have shown that progression of renal disease in male is faster than that in female. However, the exact mechanisms are not well recognized. Angiotensin (1-7) (Ang 1-7) receptor, called "Mas", is an element in the depressor arm of renin angiotensin system (RAS), and its expression is enhanced in females. We test the hypothesis that Mas receptor (MasR) blockade (A779) attenuates renal blood flow (RBF) in response to infusion of graded doses of Ang 1-7 in female rats. Male and female Wistar rats were anesthetized and catheterized. Then, the mean arterial pressure (MAP), RBF, and controlled renal perfusion pressure (RPP) responses to infusion of graded doses of Ang 1-7 (100-1000 ng/kg/min i.v.) with and without A779 were measured in the animals. Basal MAP, RPP, RBF, and renal vascular resistance (RVR) were not significantly different between the two groups. After Ang 1-7 administration, RPP was controlled at a constant level. However, RBF increased in a dose-related manner in response to Ang 1-7 infusion in both male and female rats (Pdose<0.0001), but masR blockade significantly attenuated this response only in female (Pgroup=0.04) and not male (Pgroup=0.23). In addition, A779 increased the RBF response to Ang 1-7 to a greater extent. This is while the increase in male was not significant when compared with that in female (Pgender=0.08). RVR response to Ang 1-7 was insignificantly attenuated by A779 in both genders. The masR differently regulated RBF response to Ang 1-7 in the two genders, and the effect was greater in female rats. The masR may be a target for improvement of kidney circulation in renal diseases.

  5. Effects of leaf water evaporative (2) H-enrichment and biosynthetic fractionation on leaf wax n-alkane δ(2) H values in C3 and C4 grasses.

    PubMed

    Gamarra, B; Sachse, D; Kahmen, A

    2016-11-01

    Leaf wax n-alkane δ(2) H values carry important information about environmental and ecophysiological processes in plants. However, the physiological and biochemical drivers that shape leaf wax n-alkane δ(2) H values are not completely understood. It is particularly unclear why n-alkanes in grasses are typically (2) H-depleted compared with plants from other taxonomic groups such as dicotyledonous plants and why C3 grasses are (2) H-depleted compared with C4 grasses. To resolve these uncertainties, we quantified the effects of leaf water evaporative (2) H-enrichment and biosynthetic hydrogen isotope fractionation on n-alkane δ(2) H values for a range of C3 and C4 grasses grown in climate-controlled chambers. We found that only a fraction of leaf water evaporative (2) H-enrichment is imprinted on the leaf wax n-alkane δ(2) H values in grasses. This is interesting, as previous studies have shown in dicotyledonous plants a nearly complete transfer of this (2) H-enrichment to the n-alkane δ(2) H values. We thus infer that the typically observed (2) H-depletion of n-alkanes in grasses (as opposed to dicots) is because only a fraction of the leaf water evaporative (2) H-enrichment is imprinted on the δ(2) H values. Our experiments also show that differences in n-alkane δ(2) H values between C3 and C4 grasses are largely the result of systematic differences in biosynthetic fractionation between these two plant groups, which was on average -198‰ and-159‰ for C3 and C4 grasses, respectively.

  6. Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kelleher, Brian P.; Simpson, Myrna J.; Simpson, Andre J.

    2006-08-01

    Plant litter decomposition plays a fundamental role in carbon and nitrogen cycles, provides key nutrients to the soil environment and represents a potentially large positive feedback to atmospheric CO 2. However, the full details of decomposition pathways and products are unknown. Here we present the first application of HR-MAS NMR spectroscopy on 13C and 15N labeled plant materials, and apply this approach in a preliminary study to monitor the environmental degradation of the pine and wheatgrass residues over time. In HR-MAS, is it possible to acquire very high resolution NMR data of plant biomass, and apply the vast array of multidimensional experiments available in conventional solution-state NMR. High levels of isotopic enrichment combined with HR-MAS significantly enhance the detection limits, and provide a wealth of information that is unattainable by any other method. Diffusion edited HR-MAS NMR data reveal the rapid loss of carbohydrate structures, while two-dimensional (2-D) HR-MAS NMR spectra demonstrate the relatively fast loss of both hydrolysable and condensed tannin structures from all plant tissues studied. Aromatic (partially lignin) and aliphatic components (waxes, cuticles) tend to persist, along with a small fraction of carbohydrate, and become highly functionalized over time. While one-dimensional (1-D) 13C HR-MAS NMR spectra of fresh plant tissue reflect compositional differences between pine and grass, these differences become negligible after decomposition suggesting that recalcitrant carbon may be similar despite the plant source. Two-dimensional 1H- 15N HR-MAS NMR analysis of the pine residue suggests that nitrogen from specific peptides is either selectively preserved or used for the synthesis of what appears to be novel structures. The amount of relevant data generated from plant components in situ using HR-MAS NMR is highly encouraging, and demonstrates that complete assignment will yield unprecedented structural knowledge of plant cell

  7. Technetium-99 MAS NMR spectroscopy of a cationic framework material that traps TcO4- ions

    SciTech Connect

    Yu, P.; Wang, Shuao; Alekseev, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.; Phillips, Brian L.; Casey, William H.

    2010-07-15

    99Tc magic-angle spinning (MAS) NMR spectra show that TcO4- ions, which are generated by nuclear fission and can contaminate the environment, can be trapped within the channels and cavities of a cationic framework material (see picture). These spectra are among the first 99Tc MAS NMR spectra reported to date, and show that the TcO4- ions can be efficiently removed from simulated nuclear waste solutions.

  8. Thermal maturity of type II kerogen from the New Albany Shale assessed by 13C CP/MAS NMR.

    PubMed

    Werner-Zwanziger, Ulrike; Lis, Grzegorz; Mastalerz, Maria; Schimmelmann, Arndt

    2005-01-01

    Thermal maturity of oil and gas source rocks is typically quantified in terms of vitrinite reflectance, which is based on optical properties of terrestrial woody remains. This study evaluates 13C CP/MAS NMR parameters in kerogen (i.e., the insoluble fraction of organic matter in sediments and sedimentary rocks) as proxies for thermal maturity in marine-derived source rocks where terrestrially derived vitrinite is often absent or sparse. In a suite of samples from the New Albany Shale (Middle Devonian to the Early Mississippian, Illinois Basin) the abundance of aromatic carbon in kerogen determined by 13C CP/MAS NMR correlates linearly well with vitrinite reflectance.

  9. Fundamental Science Tools for Geologic Carbon Sequestration and Mineral Carbonation Chemistry: In Situ Magic Angle Spinning (MAS) Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Hoyt, D. W.; Turcu, R. V.; Sears, J. A.; Rosso, K. M.; Burton, S. D.; Kwak, J.; Felmy, A. R.; Hu, J.

    2010-12-01

    GCS is one of the most promising ways of mitigating atmospheric greenhouse gases. Mineral carbonation reactions are potentially important to the long-term sealing effectiveness of caprock but remain poorly predictable, particularly reactions occurring in low-water supercritical CO2(scCO2)-dominated environments where the chemistry has not been adequately explored. In situ probes that provide molecular-level information is desirable for investigating mechanisms and rates of GCS mineral carbonation reactions. MAS-NMR is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, or a supercritical state, or a mixture thereof. However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS rotor. In this work, we report development of a unique high pressure MAS NMR capability, and its application to mineral carbonation chemistry in scCO2 under geologically relevant temperatures and pressures. Our high pressure MAS rotor has successfully maintained scCO2 conditions with minimal leakage over a period of 72 hours. Mineral carbonation reactions of a model magnesium silicate (forsterite) reacted with 96 bars scCO2 containing varying amounts of H2O (both below and above saturation of the scCO2) were investigated at 50○C. Figure 1 shows typical in situ 13C MAS NMR spectra demonstrating that the peaks corresponding to the reactants, intermediates, and the magnesium carbonation products are all observed in a single spectrum. For example, the scCO2 peak is located at 126.1 ppm. Reaction intermediates include the aqueous species HCO3-(160 ppm), partially hydrated/hydroxylated magnesium carbonates(166-168 ppm), and can easily be distinguished from final product magnesite(170 ppm). The new capability and this model mineral carbonation process will be overviewed in

  10. Glucagon-producing cells are increased in Mas-deficient mice

    PubMed Central

    Felix Braga, Janaína; Ravizzoni Dartora, Daniela; Alenina, Natalia; Bader, Michael

    2017-01-01

    It has been shown that angiotensin(1–7) (Ang(1–7)) produces several effects related to glucose homeostasis. In this study, we aimed to investigate the effects of genetic deletion of Ang(1–7), the GPCR Mas, on the glucagon-producing cells. C57BL6/N Mas−/− mice presented a significant and marked increase in pancreatic α-cells (number of cells: 146 ± 21 vs 67 ± 8 in WT; P < 0.001) and the percentage per islet (17.9 ± 0.91 vs 12.3 ± 0.9% in WT; P < 0.0001) with subsequent reduction of β-cells percentage (82.1 ± 0.91 vs 87.7 ± 0.9% in WT; P < 0.0001). Accordingly, glucagon plasma levels were increased (516.7 ± 36.35 vs 390.8 ± 56.45 pg/mL in WT; P < 0.05) and insulin plasma levels were decreased in C57BL6/N Mas−/− mice (0.25 ± 0.01 vs 0.31 ± 56.45 pg/mL in WT; P = 0.02). In order to eliminate the possibility of a background-related phenotype, we determined the number of glucagon-producing cells in FVB/N Mas−/− mice. In keeping with the observations in C57BL6/N Mas−/− mice, the number and percentage of pancreatic α-cells were also significantly increased in these mice (number of α-cells: 260 ± 22 vs 156 ± 12 in WT, P < 0.001; percentage per islet: 16 ± 0.8 vs 10 ± 0.5% in WT, P < 0.0001). These results suggest that Mas has a previously unexpected role on the pancreatic glucagon production. PMID:27998954

  11. Magnetization-recovery experiments for static and MAS-NMR of I = 3/2 nuclei

    NASA Astrophysics Data System (ADS)

    Yesinowski, James P.

    2006-05-01

    Multifrequency pulsed NMR experiments on quadrupole-perturbed I = 3/2 spins in single crystals are shown to be useful for measuring spin-lattice relaxation parameters even for a mixture of quadrupolar plus magnetic relaxation mechanisms. Such measurements can then be related to other MAS-NMR experiments on powders. This strategy is demonstrated by studies of 71Ga and 69Ga (both I = 3/2) spin-lattice relaxation behavior in a single-crystal (film) sample of gallium nitride, GaN, at various orientations of the axially symmetric nuclear quadrupole coupling tensor. Observation of apparent single-exponential relaxation behavior in I = 3/2 saturation-recovery experiments can be misleading when individual contributing rate processes are neglected in the interpretation. The quadrupolar mechanism (dominant in this study) has both a single-quantum process ( T1Q1) and a double-quantum process ( T1Q2), whose time constants are not necessarily equal. Magnetic relaxation (in this study most likely arising from hyperfine couplings to unpaired delocalized electron spins in the conduction band) also contributes to a single-quantum process ( T1M). A strategy of multifrequency irradiation with observation of satellite and/or central transitions, incorporating different initial conditions for the level populations, provides a means of obtaining these three relaxation time constants from single-crystal 71Ga data alone. The 69Ga results provide a further check of internal consistency, since magnetic and quadrupolar contributions to its relaxation scale in opposite directions compared to 71Ga. For both perpendicular and parallel quadrupole coupling tensor symmetry axis orientations small but significant differences between T1Q1 and T1Q2 were measured, whereas for a tensor symmetry axis oriented at the magic-angle (54.74°) the values were essentially equal. Magic-angle spinning introduces a number of complications into the measurement and interpretation of the spin-lattice relaxation

  12. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  13. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), (1)H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong (1)H-(1)H homonuclear dipolar couplings and narrow (1)H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) (1)H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about (1)H-(1)H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical

  14. The Dissociation Energies of CH4 and C2H2 Revisited

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The bond dissociation energies of CH4 and C2H2 and their fragments are investigated using basis set extrapolations and high levels of correlation. The computed bond dissociation energies (D(sub e)) are accurate to within 0.2 kcal/mol. The agreement with the experimental (D(sub 0)) values is excellent if we assume that the zero-point energy of C2H is 9.18 kcal/mol. The effect of core (1s) correlation on the bond dissociation energies of C-H bonds is shown to vary from 0.2 to 0.7 kcal/mol and that for C-C bonds varies from 0.4 to 2.2 kcal/mol.

  15. Near infrared second overtone cw-cavity ringdown spectroscopy of D2H+ ions

    NASA Astrophysics Data System (ADS)

    Hlavenka, P.; Plasil, R.; Bano, G.; Korolov, I.; Gerlich, D.; Ramanlal, J.; Tennyson, J.; Glosik, J.

    2006-09-01

    A study of D2H+ ions in their lowest rotational states is presented. The ions are generated in pulsed discharge in liquid N2 cooled He/Ar/H2/D2 gas mixture. Near infrared (NIR) second overtone transitions in the 6534-6536 cm-1 (1.529-1.530 [mu]m) region are used to identify the ions and determine their degree of rotational excitation. The data were obtained using NIR cavity ringdown absorption spectroscopy (NIR-CRDS). The sensitivity obtained was typically 5 x 10-9 cm-1. The measured second overtone transition frequencies are in very good agreement (better than 0.02 cm-1) with ab initio predictions. From the Doppler broadening the kinetic temperature of ions is estimated to be (220 +/- 50) K. The absolute number density of D2H+ as a function of H2/D2 mixing ratio and time is measured.

  16. Mixed H(2)/H(sub infinity): Control with output feedback compensators using parameter optimization

    NASA Technical Reports Server (NTRS)

    Schoemig, Ewald; Ly, Uy-Loi

    1992-01-01

    Among the many possible norm-based optimization methods, the concept of H-infinity optimal control has gained enormous attention in the past few years. Here the H-infinity framework, based on the Small Gain Theorem and the Youla Parameterization, effectively treats system uncertainties in the control law synthesis. A design approach involving a mixed H(sub 2)/H-infinity norm strives to combine the advantages of both methods. This advantage motivates researchers toward finding solutions to the mixed H(sub 2)/H-infinity control problem. The approach developed in this research is based on a finite time cost functional that depicts an H-infinity bound control problem in a H(sub 2)-optimization setting. The goal is to define a time-domain cost function that optimizes the H(sub 2)-norm of a system with an H-infinity-constraint function.

  17. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  18. Optically pumped CHClF2 and C2H5I submillimeter wave lasers

    NASA Astrophysics Data System (ADS)

    Tobin, M. S.; Daley, T. W.

    1980-06-01

    Submillimeter wave laser action is reported for optically pumped chlorodifluoromethane gas and ethyl iodide vapor. The compounds were pumped by an electrically chopped CO2 laser at 10 Hz coupled to a metallic waveguide unoptimized 3.5 mm output-hole-coupled resonator with plunger mirrors. Coincidences between CO2 pump lines and molecular absorption lines were detected at three lines in the 9-micron R region in CHClF2 and two lines in the 10-micron R and P regions in C2H5I for chopped and not CW laser regimes. Comparison of the molecular structures of the two species with the CW FIR laser material selection criteria of Danielewicz and Weiss (1978) reveals that CHClF2 satisfies these criteria (although CHClF2 absorption does not overlap with many CO2 pump lines), while C2H5I does not, in agreement with experimental results.

  19. Identification of ancient Olea europaea L. and Cornus mas L. seeds by DNA barcoding.

    PubMed

    Gismondi, Angelo; Rolfo, Mario Federico; Leonardi, Donatella; Rickards, Olga; Canini, Antonella

    2012-07-01

    The analysis of ancient DNA (aDNA) provides archaeologists and anthropologists with innovative, scientific and accurate data to study and understand the past. In this work, ancient seeds, found in the "Mora Cavorso" archaeological site (Latium, Central Italy), were analyzed to increase information about Italian Neolithic populations (plant use, agriculture, diet, trades, customs and ecology). We performed morphological and genetic techniques to identify fossil botanical species. In particular, this study also suggests and emphasizes the use of DNA barcode method for ancient plant sample analysis. Scanning electron microscope (SEM) observations showed seed compact structure and irregular surface but they did not permit a precise nor empirical classification: so, a molecular approach was necessary. DNA was extracted from ancient seeds and then it was used, as template, for PCR amplifications of standardized barcode genes. Although aDNA could be highly degraded by the time, successful PCR products were obtained, sequenced and compared to nucleotide sequence databases. Positive outcomes (supported by morphological comparison with modern seeds, geographical distribution and historical data) indicated that seeds could be identified as belonging to two plant species: Olea europaea L. and Cornus mas L.

  20. 13C CP/MAS NMR studies of vitamin E model compounds.

    PubMed

    Witkowski, Stanislaw; Paradowska, Katarzyna; Wawer, Iwona

    2004-10-01

    13C cross-polarization magic angle spinning (CP/MAS) NMR data for 2,2,5,7,8-pentamethylchroman-6-ol (2), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox c) (3) and its acetate (4), 2-methoxy-2,2,5,7,8-pentamethylchroman-6-ol (5), 2-hydroxy-2,2,5,7,8-pentamethylchroman-6-ol (6) and 2,2,5,7,8-pentamethylchroman (7) are reported. A deshielding of 7.7 ppm for the carboxylic carbon was observed in solid Trolox due to formation of intermolecular hydrogen bonds within cyclic dimers. Such crystal packing permits effective cross-polarization and fast relaxation (short T1rho(H)). The impact of the proton concentration on the CP dynamics is reflected by the longer T(CP) and T1rhoH for Trolox-d2 (deuterated at mobile proton sites). The calculated GIAO RHF shielding constants are sensitive to intramolecular effects: rotation around the C-6-O bond (changes of sigma up to 8 ppm) and conformation at C-2.

  1. 1H HR-MAS NMR of carotenoids in aqueous samples and raw vegetables.

    PubMed

    Miglietta, M L; Lamanna, R

    2006-07-01

    Carotenoids are linear C40 tetraterpenoid hydrocarbons and represent a wide category of natural pigments. They are components of the pigment system of chloroplasts and are involved in the primary light absorption and the photon canalization of photosynthesis. Moreover, they also behave as quenchers of singlet oxygen, protecting cells and organisms against lipid peroxidation. Carotenoids have a strong lipophilic character and are usually analyzed in organic solvents. However, because of their biological activity, the characterization of these compounds in an aqueous environment or in the natural matrix is very important. One of the most important dietary carotenoids is beta-carotene, which has been extensively studied both in vivo and in model systems, but because of the low concentration and strong interaction with the biological matrix, beta-carotene has never been observed by NMR in solid aqueous samples.In the present work, a model system has been developed for the detection and identification of beta-carotene in solid aqueous samples by 1H HR-MAS NMR. The efficiency of the model has led to the identification of beta-carotene in a raw vegetable matrix.

  2. Healthcare benefits linked with Below Poverty Line registration in India: Observations from Maharashtra Anaemia Study (MAS)

    PubMed Central

    Ahankari, Anand; Fogarty, Andrew; Tata, Laila; Myles, Puja

    2017-01-01

    A 2015 Lancet paper by Patel et al. on healthcare access in India comprehensively discussed national health programmes where some benefits are linked with the country’s Below Poverty Line (BPL) registration scheme. BPL registration aims to support poor families by providing free/subsidised healthcare. Technical issues in obtaining BPL registration by poor families have been previously reported in the Indian literature; however there are no data on family assets of BPL registrants. Here, we provide evidence of family-level assets among BPL registration holders (and non-BPL households) using original research data from the Maharashtra Anaemia Study (MAS). Social and health data from 287 pregnant women and 891 adolescent girls (representing 1178 family households) across 34 villages in Maharashtra state, India, were analysed. Several assets were shown to be similarly distributed between BPL and non-BPL households; a large proportion of families who would probably be eligible were not registered, whereas BPL-registered families often had significant assets that should not make them eligible. This is likely to be the first published evidence where asset distribution such as agricultural land, housing structures and livestock are compared between BPL and non-BPL households in a rural population. These findings may help planning BPL administration to allocate health benefits equitably, which is an integral part of national health programmes. PMID:28232866

  3. Healthcare benefits linked with Below Poverty Line registration in India: Observations from Maharashtra Anaemia Study (MAS).

    PubMed

    Ahankari, Anand; Fogarty, Andrew; Tata, Laila; Myles, Puja

    2017-01-01

    A 2015 Lancet paper by Patel et al. on healthcare access in India comprehensively discussed national health programmes where some benefits are linked with the country's Below Poverty Line (BPL) registration scheme. BPL registration aims to support poor families by providing free/subsidised healthcare. Technical issues in obtaining BPL registration by poor families have been previously reported in the Indian literature; however there are no data on family assets of BPL registrants. Here, we provide evidence of family-level assets among BPL registration holders (and non-BPL households) using original research data from the Maharashtra Anaemia Study (MAS). Social and health data from 287 pregnant women and 891 adolescent girls (representing 1178 family households) across 34 villages in Maharashtra state, India, were analysed. Several assets were shown to be similarly distributed between BPL and non-BPL households; a large proportion of families who would probably be eligible were not registered, whereas BPL-registered families often had significant assets that should not make them eligible. This is likely to be the first published evidence where asset distribution such as agricultural land, housing structures and livestock are compared between BPL and non-BPL households in a rural population. These findings may help planning BPL administration to allocate health benefits equitably, which is an integral part of national health programmes.

  4. Structural investigations of borosilicate glasses containing MoO 3 by MAS NMR and Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Caurant, D.; Majérus, O.; Fadel, E.; Quintas, A.; Gervais, C.; Charpentier, T.; Neuville, D.

    2010-01-01

    High molybdenum concentration in glass compositions may lead to alkali and alkaline-earth molybdates crystallization during melt cooling that must be controlled particularly during the preparation of highly radioactive nuclear glassy waste forms. To understand the effect of molybdenum addition on the structure of a simplified nuclear glass and to know how composition changes can affect molybdates crystallization tendency, the structure of two glass series belonging to the SiO 2-B 2O 3-Na 2O-CaO-MoO 3 system was studied by 29Si, 11B, 23Na MAS NMR and Raman spectroscopies by increasing MoO 3 or B 2O 3 concentrations. Increasing MoO 3 amount induced an increase of the silicate network reticulation but no significant effect was observed on the proportion of BO4- units and on the distribution of Na + cations in glass structure. By increasing B 2O 3 concentration, a strong evolution of the distribution of Na + cations was observed that could explain the evolution of the nature of molybdate crystals (CaMoO 4 or Na 2MoO 4) formed during melt cooling.

  5. Dual action of neurokinin-1 antagonists on Mas-related GPCRs

    PubMed Central

    Azimi, Ehsan; Reddy, Vemuri B.; Shade, Kai-Ting C.; Anthony, Robert M.; Pereira, Paula Juliana Seadi; Lerner, Ethan A.

    2016-01-01

    The challenge of translating findings from animal models to the clinic is well known. An example of this challenge is the striking effectiveness of neurokinin-1 receptor (NK-1R) antagonists in mouse models of inflammation coupled with their equally striking failure in clinical investigations in humans. Here, we provide an explanation for this dichotomy: Mas-related GPCRs (Mrgprs) mediate some aspects of inflammation that had been considered mediated by NK-1R. In support of this explanation, we show that conventional NK-1R antagonists have off-target activity on the mouse receptor MrgprB2 but not on the homologous human receptor MRGPRX2. An unrelated tripeptide NK-1R antagonist has dual activity on MRGPRX2. This tripeptide both suppresses itch in mice and inhibits degranulation from the LAD-2 human mast cell line elicited by basic secretagogue activation of MRGPRX2. Antagonists of Mrgprs may fill the void left by the failure of NK-1R antagonists. PMID:27734033

  6. Immobilization of soluble protein complexes in MAS solid-state NMR: Sedimentation versus viscosity.

    PubMed

    Sarkar, Riddhiman; Mainz, Andi; Busi, Baptiste; Barbet-Massin, Emeline; Kranz, Maximilian; Hofmann, Thomas; Reif, Bernd

    2016-01-01

    In recent years, MAS solid-state NMR has emerged as a technique for the investigation of soluble protein complexes. It was found that high molecular weight complexes do not need to be crystallized in order to obtain an immobilized sample for solid-state NMR investigations. Sedimentation induced by sample rotation impairs rotational diffusion of proteins and enables efficient dipolar coupling based cross polarization transfers. In addition, viscosity contributes to the immobilization of the molecules in the sample. Natural Deep Eutectic Solvents (NADES) have very high viscosities, and can replace water in living organisms. We observe a considerable amount of cross polarization transfers for NADES solvents, even though their molecular weight is too low to yield significant sedimentation. We discuss how viscosity and sedimentation both affect the quality of the obtained experimental spectra. The FROSTY/sedNMR approach holds the potential to study large protein complexes, which are otherwise not amenable for a structural characterization using NMR. We show that using this method, backbone assignments of the symmetric proteasome activator complex (1.1MDa), and high quality correlation spectra of non-symmetric protein complexes such as the prokaryotic ribosome 50S large subunit binding to trigger factor (1.4MDa) are obtained.

  7. Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy.

    PubMed

    Deshmukh, Ashish P; Simpson, André J; Hatcher, Patrick G

    2003-11-01

    Cutin is a polyester biopolymer component of plant leaf and fruit cuticles, most often associated with waxes and cuticular polysaccharides, and sometimes with another aliphatic biopolymer called cutan. Insolubility of these cuticular biopolymers has made it difficult to apply traditional analytical techniques for structure determination, because most techniques providing molecular level details require solubility. By using the relatively new technique of one and two-dimensional high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, with added information from solid-state 13C NMR spectroscopy, detailed through-bond connectivities and assignments are made for cutin from Lycopersicon esculentum (tomato) fruit. Based on the data obtained, tomato cutin is found to be predominantly an aliphatic polyester with some olefinic and aromatic moieties, consistent with previous studies that employed various degradative approaches. Aside from esters, there are free primary and secondary alcohol groups, as well as free fatty acids. A significant finding is the presence of alpha-branched fatty acids/esters. Mid-chain hydroxyls appear to be generally unesterified, but esters of mid-chain hydroxyls have been identified. The alpha-branched fatty acids/esters and esters of mid-chain hydroxyls could point towards cross-linking.

  8. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS)

    Atmospheric Science Data Center

    2016-10-25

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access:  OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  9. Electron Impact Ionization and Dissociative Ionization of C2H2

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.

    1995-01-01

    By utilizing a crossed electron beam collision geometry, a combination of time-of-flight (TOF) and quadrupole mass spectrometers, and the relative flow technique1 normalized values of cross sections and appearance energies (AP) were obtained for the formation of singly and multiply ionized species resulting from the ionization and dissociation of C2H2. Details ont he apparatus and technique have been published previously.2,3.

  10. DYNC2H1 mutation causes Jeune syndrome and recurrent lung infections associated with ciliopathy.

    PubMed

    Emiralioglu, Nagehan; Wallmeier, Julia; Olbrich, Heike; Omran, Heymut; Ozcelik, Ugur

    2017-03-03

    Asphyxiating thoracic dystrophy, also known as Jeune syndrome, is included in a group of syndromic skeletal ciliopathies associated with mutations in genes encoding proteins involved in the formation or function of motile cilia. Herein, we report a 6-mo-old male admitted to hospital with recurrent lung infections, thoracic dystrophy, and respiratory distress that was diagnosed as Jeune syndrome; DYNC2H1 mutation was detected via genetic analysis and ciliary dysfunction was noted via high-speed video microscopy.

  11. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216

    PubMed Central

    Fonfría, J. P.; Hinkle, K. H.; Cernicharo, J.; Richter, M. J.; Agúndez, M.

    2017-01-01

    High spectral resolution mid-IR observations of ethylene (C2H4) towards the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). Eighty ro-vibrational lines from the 10.5 µm vibrational mode ν7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ −14 km s−1 with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20R⋆. The hot lines are centered at −10 km s−1 indicating that they come from a shell between 10 and 20R⋆. 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveal that the C2H4 abundance relative to H2 in the range 5 − 20R⋆ is 6.9 × 10−8 in average and it could be as high as 1.1 × 10−7. Beyond 20R⋆, it is 8.2 × 10−8. The total column density is (6.5 ± 3.0) × 1015 cm−2. C2H4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the C2H4 molecules at 20R⋆ could condense onto dust grains. This possible depletion would not influence significantly the gas acceleration although it could play a role in the surface chemistry on the dust grains. PMID:28184097

  12. Characterization Results for the March 2016 H-Tank Farm 2H Evaporator Overhead Samples

    SciTech Connect

    Nicholson, J. C.

    2016-05-09

    This report contains the radioanalytical results of the 2H evaporator overhead sample received at SRNL on March 16, 2016. Specifically, concentrations of 137Cs, 90Sr, and 129I are reported and compared to the corresponding Waste Acceptance Criteria (WAC) limits of the Effluent Treatment Project (ETP) Waste Water Collection Tank (WWCT) (rev. 6). All of the radionuclide concentrations in the sample were found to be in compliance with the ETP WAC limits.

  13. Establishment of the C(2)H(5)+O(2) reaction mechanism: a combustion archetype.

    PubMed

    Wilke, Jeremiah J; Allen, Wesley D; Schaefer, Henry F

    2008-02-21

    The celebrated C(2)H(5)+O(2) reaction is an archetype for hydrocarbon combustion, and the critical step in the process is the concerted elimination of HO(2) from the ethylperoxy intermediate (C(2)H(5)O(2)). Master equation kinetic models fitted to measured reaction rates place the concerted elimination barrier 3.0 kcal mol(-1) below the C(2)H(5)+O(2) reactants, whereas the best previous electronic structure computations yield a barrier more than 2.0 kcal mol(-1) higher. We resolve this discrepancy here by means of the most rigorous computations to date, using focal point methods to converge on the ab initio limit. Explicit computations were executed with basis sets as large as cc-pV5Z and correlation treatments as extensive as coupled cluster through full triples with a perturbative inclusion of quadruple excitations [CCSDT(Q)]. The final predicted barrier is -3.0 kcal mol(-1), bringing the concerted elimination mechanism into precise agreement with experiment. This work demonstrates that higher correlation treatments such as CCSDT(Q) are not only feasible on systems of chemical interest but are necessary to supply accuracy beyond 0.5 kcal mol(-1), which is not obtained with the "gold standard" CCSD(T) method. Finally, we compute the enthalpy of formation of C(2)H(5)O(2) to be Delta(f)H degrees (298 K)=-5.3+/-0.5 kcal mol(-1) and Delta(f)H degrees (0 K)=-1.5+/-0.5 kcal mol(-1).

  14. OVRO N2H+ Observations of Class 0 Protostars: Constraints on the Formation of Binary Stars

    NASA Astrophysics Data System (ADS)

    Chen, Xuepeng; Launhardt, Ralf; Henning, Thomas

    2007-11-01

    We present the results of an interferometric study of the N2H+ (1-0) emission from nine nearby, isolated, low-mass protostellar cores, using the Owens Valley Radio Observatory (OVRO) millimeter array. The main goal of this study is the kinematic characterization of the cores in terms of rotation, turbulence, and fragmentation. Eight of the nine objects have compact N2H+ cores with FWHM radii of 1200-3500 AU, spatially coinciding with the thermal dust continuum emission. The one more evolved (Class I) object in the sample (CB 188) shows only faint and extended N2H+ emission. The mean N2H+ line width was found to be 0.37 km s-1. Estimated virial masses range from 0.3 to 1.2 Msolar. We find that thermal and turbulent energy support are about equally important in these cores, while rotational support is negligible. The measured velocity gradients across the cores range from 6 to 24 km s-1 pc-1. Assuming these gradients are produced by bulk rotation, we find that the specific angular momenta of the observed Class 0 protostellar cores are intermediate between those of dense (prestellar) molecular cloud cores and the orbital angular momenta of wide pre-main-sequence (PMS) binary systems. There appears to be no evolution (decrease) of angular momentum from the smallest prestellar cores via protostellar cores to wide PMS binary systems. In the context that most protostellar cores are assumed to fragment and form binary stars, this means that most of the angular momentum contained in the collapse region is transformed into orbital angular momentum of the resulting stellar binary systems.

  15. Temporal and spatial distributions of δ18O and δ2H in precipitation in Romania

    NASA Astrophysics Data System (ADS)

    Nagavciuc, Viorica; Bădăluță, Carmen-Andreea; Perșoiu, Aurel

    2015-04-01

    Stable isotope ratios of meteoric water have an important role in climatic, paleoclimatic, hydrological and meteorological studies. While such data are available from most of Europe, so far, in Romania (East Central Europe), no systematic study of the stable isotopic composition of precipitation exists. In this context, the aim of this study is to analyze the isotopic composition of rainwater, its temporal and spatial distribution, the identification of the main factors influencing these variations and the creation of the first map of spatial distribution of stable isotopes in precipitation in Romania. Between March 2012 and March 2014 we have collected monthly samples from 22 stations in Romania, which were subsequently analyzed for their δ18O and δ2H at the Stable Isotopes Laboratory, Stefan cel Mare University, Suceava, Romania. Precipitation in W and NW Romania plot along the GMWL, while those in the East are slightly below it, on an evaporative trend. The LMWL for Romania is defined as δ2H=7,27*δ18O + 6,92. The W-E gradient in the distribution of δ18O and δ2H are less marked than the N-S ones, with local influences dominating in areas of strong evaporation (intramountain basins, rain-shadow areas etc). In SW, and especially in autumn and winter, Meditteranean cyclones carry moisture from the Eastern Mediterranean, the δ18O and δ2H values in precipitation in the area plotting between the GMWL and the Eastern Mediterranean Meteoric Water Line. The isotopic composition of rainwater in Romania correlates well with air temperature, and is influenced to a lesser extent by other factors such as the amount of precipitation, topography configuration, the effect of continentalism and season of the year.

  16. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216.

    PubMed

    Fonfría, J P; Hinkle, K H; Cernicharo, J; Richter, M J; Agúndez, M; Wallace, L

    2017-02-01

    High spectral resolution mid-IR observations of ethylene (C2H4) towards the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). Eighty ro-vibrational lines from the 10.5 µm vibrational mode ν7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ -14 km s(-1) with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20R⋆. The hot lines are centered at -10 km s(-1) indicating that they come from a shell between 10 and 20R⋆. 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveal that the C2H4 abundance relative to H2 in the range 5 - 20R⋆ is 6.9 × 10(-8) in average and it could be as high as 1.1 × 10(-7). Beyond 20R⋆, it is 8.2 × 10(-8). The total column density is (6.5 ± 3.0) × 10(15) cm(-2). C2H4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the C2H4 molecules at 20R⋆ could condense onto dust grains. This possible depletion would not influence significantly the gas acceleration although it could play a role in the surface chemistry on the dust grains.

  17. Ionized state of hydroperoxy radical-water hydrogen-bonded complex: (HO2-H2O)+.

    PubMed

    Joshi, Ravi; Ghanty, Tapan K; Naumov, Sergej; Mukherjee, Tulsi

    2007-12-27

    Ab initio molecular orbital calculations have been employed to characterize the structure and bonding of the (HO2-H2O)+ radical cation system. Geometry optimization of this system was carried out using unrestricted density functional theory in conjunction with the BHHLYP functional and 6-311++G(2df,2p) as well as 6-311++G(3df,3p) basis sets, the second-order Møller-Plesset perturbation (MP2) method with the 6-311++G(3df,3p) basis set, and the couple cluster (CCSD) method with the aug-cc-pVTZ basis set. The effect of spin multiplicity on the stability of the (HO2-H2O)+ system has been studied and also compared with that of oxygen. The calculated results suggest a proton-transferred hydrogen bond between HO2 and H2O in H3O3+ wherein a proton is partially transferred to H2O producing the O2...H3O+ structure. The basis set superposition error and zero-point energy corrected results indicate that the H3O3+ system is energetically more stable in the triplet state; however, the singlet state of H3O3+ is more stable with respect to its dissociation into H3O+ and singlet O2. Since the resulting proton-transferred hydrogen-bonded complex (O2...H3O+) consists of weakly bound molecular oxygen, it might have important implications in various chemical processes and aquatic life systems.

  18. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216

    NASA Astrophysics Data System (ADS)

    Fonfría, J. P.; Hinkle, K. H.; Cernicharo, J.; Richter, M. J.; Agúndez, M.; Wallace, L.

    2017-02-01

    High spectral resolution mid-IR observations of ethylene ({{{C}}}2{{{H}}}4) toward the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). 80 ro-vibrational lines from the 10.5 μm vibrational mode {ν }7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ ‑14 km s‑1 with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20{R}\\star . The hot lines are centered at ‑10 km s‑1 indicating that they come from a shell between 10 and 20{\\text{}}{R}\\star . 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveals that the {{{C}}}2{{{H}}}4 abundance relative to H2 in the range 5‑20R⋆ is 6.9× {10}-8 on average and it could be as high as 1.1 × 10‑7. Beyond 20{\\text{}}{R}\\star , it is 8.2 × 10‑8. The total column density is (6.5 ± 3.0) × 1015 cm‑2. {{{C}}}2{{{H}}}4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the {{{C}}}2{{{H}}}4 molecules at 20{\\text{}}{R}\\star could condense onto dust grains. This possible depletion would not significantly influence the gas acceleration although it could play a role in the surface chemistry on the dust grains.

  19. Establishment of the C2H5+O2 reaction mechanism: A combustion archetype

    NASA Astrophysics Data System (ADS)

    Wilke, Jeremiah J.; Allen, Wesley D.; Schaefer, Henry F.

    2008-02-01

    The celebrated C2H5+O2 reaction is an archetype for hydrocarbon combustion, and the critical step in the process is the concerted elimination of HO2 from the ethylperoxy intermediate (C2H5O2). Master equation kinetic models fitted to measured reaction rates place the concerted elimination barrier 3.0kcalmol-1 below the C2H5+O2 reactants, whereas the best previous electronic structure computations yield a barrier more than 2.0kcalmol-1 higher. We resolve this discrepancy here by means of the most rigorous computations to date, using focal point methods to converge on the ab initio limit. Explicit computations were executed with basis sets as large as cc-pV5Z and correlation treatments as extensive as coupled cluster through full triples with a perturbative inclusion of quadruple excitations [CCSDT(Q)]. The final predicted barrier is -3.0kcalmol-1, bringing the concerted elimination mechanism into precise agreement with experiment. This work demonstrates that higher correlation treatments such as CCSDT(Q) are not only feasible on systems of chemical interest but are necessary to supply accuracy beyond 0.5kcalmol-1, which is not obtained with the "gold standard" CCSD(T) method. Finally, we compute the enthalpy of formation of C2H5O2 to be ΔfH °(298K)=-5.3±0.5kcalmol-1 and ΔfH°(0K)=-1.5±0.5kcalmol-1.

  20. Kinetics Studies of Radical-Radical Reactions: The NO2 + N2H3 System

    DTIC Science & Technology

    2013-10-01

    investigating the kinetics of this elementary reaction . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...Viewgraph 3. DATES COVERED (From - To) September 2013- October 2013 4. TITLE AND SUBTITLE Kinetics Studies of Radical-Radical Reactions (I): The NO2...characteristics in relevant operating environments. Here we report theoretical results obtained on the prototypical radical- radical reaction : NO2 + N2H3

  1. Kinetics Studies of Radical-Radical Reactions (I): The NO2 + N2H3 System

    DTIC Science & Technology

    2013-08-01

    the potential energy surface for the NO2 + N2H3 system and have established the most likely reaction mechanism. The technique of laser photolysis...configuration interactions and coupled-cluster theories with single and double excitations, and correction for triple excitations. Specifically, the...differentially pumped chamber containing an electron impact ionization quadrupole mass spectrometer. 4. Results and Discussion To our knowledge

  2. Sensitivity of 2H NMR spectroscopy to motional models: Proteins and highly viscous liquids as examples

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Mielczarek, A.; Korpala, A.; Kozlowski, A.; Earle, K. A.; Moscicki, J.

    2012-06-01

    In order to study to what extent mechanisms of molecular motion can be unambiguously revealed by 2H NMR spectroscopy, 2H spectra for proteins (chicken villin protein headpiece HP36, selectively methyl-deuterated at leucine-69, Cδ D3) and binary systems of high viscosity (benzene-d6 in tricresyl phosphate) have been carefully analyzed as illustrative examples (the spectra are taken from the literature). In the first case, a model of restricted diffusion mediated by jumps between rotameric orientations has been tested against jump- and free diffusion models which describe rotational motion combined with jump dynamics. It has been found that the set of 2H spectra of methyl-deuterated at leucine-69 chicken villin protein headpiece HP36 can be consistently explained by different motional models as well as by a Gaussian distribution of correlation times assuming isotropic rotation (simple Brownian diffusion model). The last finding shows that when the possible distribution of correlation times is not very broad one might not be able to distinguish between heterogeneous and homogenous (but more complex) dynamics by analyzing 2H lineshapes. For benzene-d6 in tricresyl phosphate, the dynamics is heterogeneous and it has been demonstrated that a Gaussian distribution of correlation times reproduces well the experimental lineshapes, while for a Cole-Davidson distribution the agreement is somewhat worse. For inquires into the sensitivity of quadrupolar NMR spectral analysis (by "quadrupolar NMR spectroscopy we understand NMR spectroscopy of nuclei possessing quadrupole moment), the recently presented theoretical approach [Kruk et al., J. Chem. Phys. 135, 224511 (2011)], 10.1063/1.3664783 has been used as it allows simulating quadrupolar spectra for arbitrary motional conditions by employing the stochastic Liouville equation.

  3. Helicity in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2004-01-01

    This report describes a study of databases produced by direct numerical simulation of mixing layers developing between opposing flows of two fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence, with emphasis on helicity. The simulations were performed for two different fluid pairs -- O2/H2 and C7H16/N2 -- at similar values of reduced pressure.

  4. Efficient and convenient synthesis of indazol-3(2H)-ones and 2-aminobenzonitriles.

    PubMed

    Dou, Guolan; Shi, Daqing

    2009-01-01

    A mild, efficient, one-pot protocol for the synthesis of indazole-3(2H)-ones via cyclization of nitro-aryl substrates through low-valent titanium reagent has been described. The method used Triethylamine (TEA) to control pH. Particularly, 2-aminobenzonitriles were synthesized by one step easily. The mechanistic course of the reaction suggests the involvement of an anion leading to an intramolecular cyclization via N-N bond formation.

  5. MAS (1)H NMR Probes Freezing Point Depression of Water and Liquid-Gel Phase Transitions in Liposomes.

    PubMed

    Mandal, Abhishek; van der Wel, Patrick C A

    2016-11-01

    The lipid bilayer typical of hydrated biological membranes is characterized by a liquid-crystalline, highly dynamic state. Upon cooling or dehydration, these membranes undergo a cooperative transition to a rigidified, more-ordered, gel phase. This characteristic phase transition is of significant biological and biophysical interest, for instance in studies of freezing-tolerant organisms. Magic-angle-spinning (MAS) solid-state NMR (ssNMR) spectroscopy allows for the detection and characterization of the phase transitions over a wide temperature range. In this study we employ MAS (1)H NMR to probe the phase transitions of both solvent molecules and different hydrated phospholipids, including tetraoleoyl cardiolipin (TOCL) and several phosphatidylcholine lipid species. The employed MAS NMR sample conditions cause a previously noted substantial reduction in the freezing point of the solvent phase. The effect on the solvent is caused by confinement of the aqueous solvent in the small and densely packed MAS NMR samples. In this study we report and examine how the freezing point depression also impacts the lipid phase transition, causing a ssNMR-observed reduction in the lipids' melting temperature (Tm). The molecular underpinnings of this phenomenon are discussed and compared with previous studies of membrane-associated water phases and the impact of membrane-protective cryoprotectants.

  6. Fermi resonance of C 1 chlorine compounds in the adsorbed phase of zeolites. An FTIR and MAS NMR spectroscopic study

    NASA Astrophysics Data System (ADS)

    Hannus, I.; Kónya, Z.; Nagy, J. B.; Kiricsi, I.

    1997-06-01

    Fermi resonance was investigated for CH 3Cl, COCl 2, CO + Cl 2, CCl 4 and CCl 2F 2 adsorbed in NaYFAU zeolite. The extent of the resonance was measured by IR spectroscopy, while the mechanism of surface reaction was evidenced by MAS NMR spectroscopy.

  7. Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport.

    PubMed

    Fiskum, G; Lehninger, A L

    1979-07-25

    Simultaneous measurements of oxygen consumption and transmembrane transport of Ca2+, H+, and phosphate show that the efflux of Ca2+ from respiring tightly coupled rat liver mitochondria takes place by an electroneutral Ca2+/2H+ antiport process that is ruthenium red-insensitive and that is regulated by the oxidation-reduction state of the mitochondrial pyridine nucleotides. When mitochondrial pyridine nucleotides are kept in a reduced steady state, the efflux of Ca2+ is inhibited; when they are in an oxidized state, Ca2+ efflux is activated. These processes were demonstrated by allowing phosphate-depleted mitochondria respiring on succinate in the presence of rotenone to take up Ca2+ from the medium. Upon subsequent addition of ruthenium red to block Ca2+ transport via the electrophoretic influx pathway, and acetoacetate, to bring mitochondrial pyridine nucleotides into the oxidized state, Ca2+ efflux and H+ influx ensued. The observed H+ influx/Ca2+ efflux ratio was close to the value 2.0 predicted for the operation of an electrically neutral Ca2+/2H+ antiport process.

  8. Electronic structure and charge-density-wave mechanism in 2H-TaSe_2

    NASA Astrophysics Data System (ADS)

    Rossnagel, Kai; Rotenberg, Eli; Smith, Neville V.; Seifarth, Olaf; Kipp, Lutz

    2004-03-01

    The simple layered charge-density-wave system 2H-TaSe2 has received renewed interest recently because it may share important physical properties with the high-temperature superconducting cuprates, such as quasi-two-dimensionality, qualitatively similar resisitivity curves and optical responses, saddle bands close to the chemical potential, and a possible correlation between the opening of a gap on parts of the Fermi surface and the occurence of a strong energy renormalization on ungapped parts. We present here a detailed angle-resolved photoelectron spectroscopy study of the near-EF electronic structure of 2H-TaSe_2, focusing on Fermi surface topology, energy gaps, and band renormalization effects. Our results provide important clues as to the origin of the still-debated charge-density-wave mechanism in 2H-TaSe2 and possible similarities to the electronic structure of cuprates. The experiments were carried out at the Electronic Structure Factory at beamline 7 of the Advanced Light Source in Berkeley. K.R. gratefully acknowledges support by the Alexander von Humboldt Foundation. Work at the University of Kiel is supported by DFG Forschergruppe FOR 353.

  9. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  10. Exotic SiO2H2 Isomers: Theory and Experiment Working in Harmony.

    PubMed

    McCarthy, Michael C; Gauss, Jürgen

    2016-05-19

    Replacing carbon with silicon can result in dramatic and unanticipated changes in isomeric stability, as the well-studied CO2H2 and the essentially unknown SiO2H2 systems illustrate. Guided by coupled-cluster calculations, three SiO2H2 isomers have been detected and spectroscopically characterized in a molecular beam discharge source using rotational spectroscopy. The cis,trans conformer of dihydroxysilylene HOSiOH, the ground-state isomer, and the high-energy, metastable dioxasilirane c-H2SiO2 are abundantly produced in a dilute SiH4/O2 electrical discharge, enabling precise structural determinations of both by a combination of isotopic measurements and calculated vibrational corrections. The isotopic studies also provide insight into their formation route, suggesting that c-H2SiO2 is formed promptly in the expansion but that cis,trans-HOSiOH is likely formed by secondary reactions following formation of the most stable dissociation pair, SiO + H2O. Although less abundant, the rotational spectrum of trans-silanoic acid, the silicon analogue of formic acid, HSi(O)OH, has also been observed.

  11. 2Q NMR of 2H2O ordering at solid interfaces

    NASA Astrophysics Data System (ADS)

    Krivokhizhina, Tatiana V.; Wittebort, R. J.

    2014-06-01

    Solvent ordering at an interface can be studied by multiple-quantum NMR. Quantitative studies of 2H2O ordering require clean double-quantum (2Q) filtration and an analysis of 2Q buildup curves that accounts for relaxation and, if randomly oriented samples are used, the distribution of residual couplings. A pulse sequence with absorption mode detection is extended for separating coherences by order and measuring relaxation times such as the 2Q filtered T2. Coherence separation is used to verify 2Q filtration and the 2Q filtered T2 is required to extract the coupling from the 2Q buildup curve when it is unresolved. With our analysis, the coupling extracted from the buildup curve in 2H2O hydrated collagen was equivalent to the resolved coupling measured in the usual 1D experiment and the 2Q to 1Q signal ratio was in accord with theory. Application to buildup curves from 2H2O hydrated elastin, which has an unresolved coupling, revealed a large increase in the 2Q signal upon mechanical stretch that is due to an increase in the ordered water fraction while changes in the residual coupling and T2 are small.

  12. A 2H and 14N NMR study of molecular motion in polycrystalline choline salts

    NASA Astrophysics Data System (ADS)

    Pratum, T. K.; Klein, M. P.

    2H and 14N solid-state NMR spectra of polycrystalline choline chloride, bromide, and iodide indicate that 180° cation flipping motion occurs in all three salts. From the temperature dependence of these spectra, the activation energy for this motion is determined to be 5.8 ± I kcal/mol in the iodide salt and 11 ± 1.5 kcal/mol in the chloride salt. In the bromide salt the reorientation rate is too rapid to be determined from the NMR lineshape, but the temperature dependence of the 2H quadrupole coupling parameters is indicative of a second-order phase transition at approximately 273 K. The spectral distortions in the 14N NMR spectra of the chloride and iodide salts are adequately explained using the motional model derived from the 2H NMR results, while the 14N spectra of the bromide salt show no motional effects. The axis of reorientation which is inferred from these data appears to be consistent with that indicated in a previous X-ray crystallographic study.

  13. Angular momentum of the N2H+ cores in the Orion A cloud

    NASA Astrophysics Data System (ADS)

    Tatematsu, Ken'ichi; Ohashi, Satoshi; Sanhueza, Patricio; Nguyen Luong, Quang; Umemoto, Tomofumi; Mizuno, Norikazu

    2016-04-01

    We have analyzed the angular momentum of the molecular cloud cores in the Orion A giant molecular cloud observed in the N2H+ J = 1-0 line with the Nobeyama 45 m radio telescope. We have measured the velocity gradient using position-velocity diagrams passing through core centers, and made sinusoidal fits against the position angle. Twenty-seven out of 34 N2H+ cores allowed us to measure the velocity gradient without serious confusion. The derived velocity gradient ranges from 0.5 to 7.8 km s-1 pc-1. We marginally found that the specific angular momentum J/M (against the core radius R) of the Orion N2H+ cores tends to be systematically larger than that of molecular cloud cores in cold dark clouds obtained by Goodman et al., in the J/M-R relation. The ratio β of rotational to gravitational energy is derived to be β = 10-2.3±0.7, and is similar to that obtained for cold dark cloud cores in a consistent definition. The large-scale rotation of the ∫-shaped filament of the Orion A giant molecular cloud does not likely govern the core rotation at smaller scales.

  14. Laboratory IR Studies and Astrophysical Implications of C2H2-Containing Binary Ices

    NASA Technical Reports Server (NTRS)

    Knez, C.; Moore, M.; Ferrante, R.; Hudson, R.

    2012-01-01

    Studies of molecular hot cores and protostellar environments have shown that the observed abundance of gas-phase acetylene (C2H2) cannot be matched by chemical models without the inclusion of C2H2 molecules subliming from icy grain mantles. Searches for infrared (IR) spectral features of solid-phase acetylene are under way, but few laboratory reference spectra of C2H2 in icy mixtures, which are needed for spectral fits to observational data, have been published. Here, we report a systematic study of the IR spectra of condensed-phase pure acetylene and acetylene in ices dominated by carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and water (H2O). We present new spectral data for these ices, including band positions and intrinsic band strengths. For each ice mixture and concentration, we also explore the dependence of acetylene's nu5-band position (743 cm-1, 13.46 micrometers) and FWHM on temperature. Our results show that the nu5 feature is much more cleanly resolved in ices dominated by non-polar and low-polarity molecules, specifically CO, CO2, and CH4, than in mixtures dominated by H2O-ice. We compare our laboratory ice spectra with observations of a quiescent region in Serpens.

  15. Preparation of bis-(1(2)H-tetrazol-5-yl)-amine monohydrate

    DOEpatents

    Naud, Darren L.; Hiskey, Michael A.

    2003-05-27

    A process of preparing bis-(1(2)H-tetrazol-5-yl)-amine monohydrate is provided including combining a dicyanamide salt, an azide salt and water to form a first reaction mixture, adding a solution of a first strong acid characterized as having a pKa of less than about 1 to said first reaction mixture over a period of time characterized as providing a controlled reaction rate so as to gradually form hydrazoic acid without loss of significant quantities of hydrazoic acid from the solution while heating the first reaction mixture at temperatures greater than about 65.degree. C., heating the resultant reaction mixture at temperatures greater than about 65.degree. C. for a period of time sufficient to substantially completely form a reaction product, treating the reaction product with a solution of a second strong acid to form a product of bis-(1(2)H-tetrazol-5-yl)-amine monohydrate, and, recovering the bis-(1(2)H-tetrazol-5-yl)-amine monohydrate product.

  16. Mechanism and kinetics of the reaction NO3 + C2H4.

    PubMed

    Nguyen, Thanh Lam; Park, Jaehee; Lee, Kyungjun; Song, Kihyung; Barker, John R

    2011-05-19

    The reaction of NO(3) radical with C(2)H(4) was characterized using the B3LYP, MP2, B97-1, CCSD(T), and CBS-QB3 methods in combination with various basis sets, followed by statistical kinetic analyses and direct dynamics trajectory calculations to predict product distributions and thermal rate constants. The results show that the first step of the reaction is electrophilic addition of an O atom from NO(3) to an olefinic C atom from C(2)H(4) to form an open-chain adduct. A concerted addition reaction mechanism forming a five-membered ring intermediate was investigated, but is not supported by the highly accurate CCSD(T) level of theory. Master-equation calculations for tropospheric conditions predict that the collisionally stabilized NO(3)-C(2)H(4) free-radical adduct constitutes 80-90% of the reaction yield and the remaining products consist mostly of NO(2) and oxirane; the other products are produced in very minor yields. By empirically reducing the barrier height for the initial addition step by 1 kcal mol(-1) from that predicted at the CBS-QB3 level of theory and treating the torsional modes explicitly as one-dimensional hindered internal rotations (instead of harmonic oscillators), the computed thermal rate constants (including quantum tunneling) can be brought into very good agreement with the experimental data for the overall reaction rate constant.

  17. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively.

  18. Frequency Comb Assisted IR Measurements of H_3^+, H_2D^+ and D_2H^+ Transitions

    NASA Astrophysics Data System (ADS)

    Jusko, Pavol; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    We present recent measurements of the fundamental transitions of H_3^+, H_2D^+ and D_2H^+ in a 4 K 22-pole trap by action spectroscopic techniques. Either Laser Induced Inhibition of Cluster Growth (He attachment at T≈4 K), endothermic reaction of H_3^+ with O_2, or deuterium exchange has been used as measurement scheme. We used a 3 μm optical parametric oscillator coupled to a frequency comb in order to achieve accuracy generally below 1 MHz. Five transitions of H_3^+, eleven of H_2D^+ and ten of D_2H^+ were recorder in our spectral range. We compare our H_3^+ results with two previous frequency comb assisted works. Moreover, accurate determination of the frequency allows us to predict pure rotational transitions for H_2D^+ and D_2H^+ in the THz range. P. Jusko, C. Konietzko, S. Schlemmer, O. Asvany, J. Mol. Spec. 319 (2016) 55 O. Asvany, S. Brünken, L. Kluge, S. Schlemmer, Appl. Phys. B 114 (2014) 203 O. Asvany, J. Krieg, S. Schlemmer, Rev. Sci. Instr. 83 (2012) 093110 J.N. Hodges, A.J. Perry, P.A. Jenkins, B.M. Siller, B.J. McCall, J. Chem. Phys. 139 (2013) 164201 H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, J.-T. Shy, Phys. Rev. Lett. 109 (2012) 263002

  19. Heating and temperature gradients of lipid bilayer samples induced by RF irradiation in MAS solid-state NMR experiments.

    PubMed

    Wang, Jing; Zhang, Zhengfeng; Zhao, Weijing; Wang, Liying; Yang, Jun

    2016-05-09

    The MAS solid-state NMR has been a powerful technique for studying membrane proteins within the native-like lipid bilayer environment. In general, RF irradiation in MAS NMR experiments can heat and potentially destroy expensive membrane protein samples. However, under practical MAS NMR experimental conditions, detailed characterization of RF heating effect of lipid bilayer samples is still lacking. Herein, using (1) H chemical shift of water for temperature calibration, we systematically study the dependence of RF heating on hydration levels and salt concentrations of three lipids in MAS NMR experiments. Under practical (1) H decoupling conditions used in biological MAS NMR experiments, three lipids show different dependence of RF heating on hydration levels as well as salt concentrations, which are closely associated with the properties of lipids. The maximum temperature elevation of about 10 °C is similar for the three lipids containing 200% hydration, which is much lower than that in static solid-state NMR experiments. The RF heating due to salt is observed to be less than that due to hydration, with a maximum temperature elevation of less than 4 °C in the hydrated samples containing 120 mmol l(-1) of salt. Upon RF irradiation, the temperature gradient across the sample is observed to be greatly increased up to 20 °C, as demonstrated by the remarkable broadening of (1) H signal of water. Based on detailed characterization of RF heating effect, we demonstrate that RF heating and temperature gradient can be significantly reduced by decreasing the hydration levels of lipid bilayer samples from 200% to 30%. Copyright © 2016 John Wiley & Sons, Ltd.

  20. 2H Stable Isotope Analysis of Tooth Enamel: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Holobinko, Anastasia; Kemp, Helen; Meier-Augenstein, Wolfram; Prowse, Tracy; Ford, Susan

    2010-05-01

    Stable isotope analysis of biogenic tissues such as tooth enamel and bone mineral has become a well recognized and increasingly important method for determining provenance of human remains, and has been used successfully in bioarchaeological studies as well as forensic investigations (Lee-Thorp, 2008; Meier-Augenstein and Fraser, 2008). Particularly, 18O and 2H stable isotopes are well established proxies as environmental indicators of climate (temperature) and source water and are therefore considered as indicators of geographic life trajectories of animals and humans (Hobson et al., 2004; Schwarcz and Walker, 2006). While methodology for 2H analysis of human hair, fingernails, and bone collagen is currently used to determine geographic origin and identify possible migration patterns, studies involving the analysis of 2H in tooth enamel appear to be nonexistent in the scientific literature. The apparent lack of research in this area is believed to have two main reasons. (1) Compared to the mineral calcium hydroxylapatite Ca10(PO4)6(OH)2, in tooth enamel forming bio-apatite carbonate ions replace some of the hydroxyl ions at a rate of one CO32 replacing two OH, yet published figures for the degree of substitution vary (Wopenka and Pasteris, 2005). (2) Most probably due to the aforementioned no published protocols exist for sample preparation and analytical method to obtain δ2H-values from the hydroxyl fraction of tooth enamel. This dilemma has been addressed through a pilot study to establish feasibility of 2H stable isotope analysis of ground tooth enamel by continuous-flow isotope ratio mass spectrometry (IRMS) coupled on-line to a high-temperature conversion elemental analyzer (TC/EA). An array of archaeological and modern teeth has been analyzed under different experimental conditions, and results from this pilot study are being presented. References: Lee-Thorp, J.A. (2008) Archaeometry, 50, 925-950 Meier-Augenstein, W. and Fraser, I. (2008) Science & Justice

  1. Probing Perturbation of Bovine Lung Surfactant Extracts by Albumin using DSC and 2H-NMR

    PubMed Central

    Nag, Kaushik; Keough, Kevin M. W.; Morrow, Michael R.

    2006-01-01

    Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d62) had been added, were studied using deuterium-NMR spectroscopy (2H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10–35°C, with a temperature of maximum heat flow (Tmax) around 27°C. Incorporation of the DPPC-d62 into BLES-reconstituted vesicles did not alter the Tmax or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and 2H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. 2H-NMR spectra of the DPPC-d62 probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d62 environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the 2H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of 2H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5–35°C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in surfactant at NMR timescales (10−5 s

  2. High-frequency observations of δ2H and δ18O in storm rainfall

    NASA Astrophysics Data System (ADS)

    Stoecker, F.; Klaus, J.; Pangle, L. A.; Garland, C.; McDonnell, J. J.

    2012-12-01

    Stable isotopes ratios of hydrogen (2H/1H) and oxygen (18O/16O) are indispensable tools for investigation of the hydrologic cycle. Recent technological advances with laser spectroscopy now enable high-frequency measurement of key water cycle components. While the controls on rainfall isotope composition have been known generally for some time, our understanding of the effect of inter- and intra-storm processes on fine scale rainfall isotope composition is poorly understood. Here we present a new approach to observe inter- and intra-storm isotope variability in precipitation in high-frequency. We investigate the temporal development of δ2H and δ18O within and between discrete rainstorm. δ2H and δ18O in precipitation was measured from November 2011 to February 2012 in Corvallis, OR using a flow-cell combined with a Liquid Water Isotope Analyzer (LWIA-24d, Los Gatos Research, Inc.). The average sample frequency was 15 samples per hour, resulting in more than 3100 samples during the observation period. 27 separate rainstorms were identified in the dataset based on minimum inter-event time, minimum precipitation depth, and minimum number of isotope measurements. Event meteoric water lines were developed for each event. We observed short-term isotopic patterns (e.g., V-shaped trends), high-rate changes (5.3‰/h) and large absolute changes in isotopic composition (20‰) on intra-event scale. V-shaped trends appeared to be related to individual storm fronts detected by air temperature, cloud heights (NEXRAD radar echo tops) and cloud trajectories (Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT)). Despite this, we could detect no linear correlation between event-based isotopic variables (slope, δ2H-intercept, δ2H, δ18O) and the event meteoric water line. Furthermore, the composite event meteoric water line (i.e. the local meteoric water line) showed a wider spread for heavy isotopes than for light isotopes, caused presumably by different

  3. Investigation of organic condensed phoshates: Synthesis and structural characterization by 31P MAS NMR and X-ray diffraction of the 3-phenylpropylamonium cyclohexaphosphate dihydrate

    NASA Astrophysics Data System (ADS)

    Hlel, F.; Thouvenot, R.; Smiri, L.

    2005-05-01

    Preparation, crystal structure and infra-red absorption spectra are reported for a new organic salt of the cyclohexaphosphate, [C6H5(CH2)3NH3]6P6O18 . 2 H2O. The new compound crystallizes in the triclinic system (P space group) with Z = 2 and the following unit cell dimensions: a = 10.528(3), b = 19.183(2), c = 9.839(3) Å, = 74.92(5), = 117.48(6) and = 99.90(5)°. The structure was solved by using 6709 independent reflections down to R value of 0.039. The ring anion exhibits internal symmetry. Its main geometrical features are those commonly observed in the atomic arrangements of cyclohexaphosphates. The three dimensional cohesion of this atomic arrangement is maintained through H-bonds between organic cations, water molecules and the external oxygen atoms of the P6O18-6 ring. The H-bond interactions induce local distortions of the ring leading to the existence of three different types of phosphate tetrahedra.Solid-state 31P magic-angle-spinning nuclear magnetic resonance (MAS NMR), performed at 162 MHz shows three isotropic resonances at -19.8, -22.6 and -24.5 ppm, confirming the non-equivalence of the three PO4 groups. They are characterized by different chemical shift tensor parameters, which are in agreement with the local geometrical features of the tetrahedra.

  4. A highly selective fluorescent probe based on coumarin for the imaging of N2H4 in living cells

    NASA Astrophysics Data System (ADS)

    Chen, Song; Hou, Peng; Wang, Jing; Liu, Lei; Zhang, Qi

    2017-02-01

    A turn-on fluorescence probe for highly sensitive and selective detection of N2H4 was developed based on hydrazine-triggered a substitution- cyclization-elimination cascade. Upon the treatment with N2H4, probe 1, 4-methyl-coumarin-7-yl bromobutanoate, displayed a remarkable fluorescence enhancement (25-fold) with a maximum at 450 nm. This probe can quantitatively detect N2H4 with a extremely low detection limit as 7 × 10- 8 M. Moreover, cell imaging experiments have indicated that probe 1 has potential ability to detect and image N2H4 in biological systems.

  5. Cometary implications of recent laboratory experiments on the photochemistry of the C2H and C3H2 radicals

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Bao, Yihan; Urdahl, Randall S.; Song, Xueyu; Gosine, Jai; Lu, Chi

    1992-01-01

    Recent laboratory results on the photodissociation of the C2H and C3H2 radicals are described. These studies show that the C2 and C3 radicals are produced by the 193 nm photolysis of the C2H and C3H2 radicals, respectively. The quantum state distributions that were determined for the C2 radicals put certain constraints on the initial conditions for any models of the observed C2 cometary spectra. Experimental observations of C2 formed by the 212.8 nm photolysis of C2H are used to calculate a range of photochemical lifetimes for the C2H radical.

  6. Characterization of cation environments in polycrystalline forsterite by Mg-25 MAS, MQMAS, and QCPMG NMR

    SciTech Connect

    Davis, Michael C.; Brouwer, William J.; Lipton, Andrew S.; Gan, Zhehong; Mueller, Karl T.

    2010-11-01

    Forsterite (Mg2SiO4) is a silicate mineral frequently studied in the Earth sciences as it has a simple crystal structure and fast dissolution kinetics (elemental release rates under typical conditions on the order of 10-7 mol/m2/s1). During the dissolution process, spectroscopic techniques are often utilized to augment solution chemical analysis and to provide data for determining reaction mechanisms. Nuclear magnetic resonance (NMR) is able to interrogate the local bonding arrangement and coordination of a particular nuclide to obtain in structural information. Although previous NMR studies have focused on the silicon and oxygen environments in forsterite, studies focusing on the two nonequivalent magnesium environments in forsterite are limited to a few single-crystal studies. In this study, we present the results of 25Mg MAS, MQMAS, and static QCMG experiments performed on a powdered sample of pure synthetic forsterite. We also present spectral fits obtained from simulation software packages, which directly provide quadrupolar parameters for 25Mg nuclei occupying each of the two nonequivalent magnesium sites in the forsterite structure. These results are compared to calculations of the electric field gradient tenor conducted in previous ab initio studies to make definitive assignments correlating each peak to their respective magnesium site in the forsterite structure. Although previous NMR investigations of forsterite have focused on single-crystal samples, we have focused on powdered forsterite as the increased surface area of powdered samples makes them more amenable to laboratory-scale dissolution studies and, ultimately, the products from chemical weathering may be monitored an quantified.

  7. Experimental investigation of drying characteristics of cornelian cherry fruits ( Cornus mas L.)

    NASA Astrophysics Data System (ADS)

    Ozgen, Filiz

    2015-03-01

    Major target of present paper is to investigate the drying kinetics of cornelian cherry fruits ( Cornus mas L.) in a convective dryer, by varying the temperature and the velocity of drying air. Freshly harvested fruits are dried at drying air temperature of 35, 45 and 55 °C. The considered drying air velocities are V air = 1 and 1.5 m/s for each temperature. The required drying time is determined by taking into consideration the moisture ratio measurements. When the moisture ratio reaches up to 10 % at the selected drying air temperature, then the time is determined ( t = 40-67 h). The moisture ratio, fruit temperature and energy requirement are presented as the functions of drying time. The lowest drying time (40 h) is obtained when the air temperature is 55 °C and air velocity is 1.5 m/s. The highest drying time (67 h) is found under the conditions of 35 °C temperature and 1 m/s velocity. Both the drying air temperature and the air velocity significantly affect the required energy for drying system. The minimum amount of required energy is found as 51.12 kWh, at 55 °C and 1 m/s, whilst the maximum energy requirement is 106.7 kWh, at 35 °C and 1.5 m/s. It is also found that, air temperature significantly influences the total drying time. Moreover, the energy consumption is decreasing with increasing air temperature. The effects of three parameters (air temperature, air velocity and drying time) on drying characteristics have also been analysed by means of analysis of variance method to show the effecting levels. The experimental results have a good agreement with the predicted ones.

  8. Hydrogen dynamics in soil organic matter as determined by 13C and 2H labeling experiments

    NASA Astrophysics Data System (ADS)

    Paul, Alexia; Hatté, Christine; Pastor, Lucie; Thiry, Yves; Siclet, Françoise; Balesdent, Jérôme

    2016-12-01

    Understanding hydrogen dynamics in soil organic matter is important to predict the fate of 3H in terrestrial environments. One way to determine hydrogen fate and to point out processes is to examine the isotopic signature of the element in soil. However, the non-exchangeable hydrogen isotopic signal in soil is complex and depends on the fate of organic compounds and microbial biosyntheses that incorporate water-derived hydrogen. To decipher this complex system and to understand the close link between hydrogen and carbon cycles, we followed labeled hydrogen and labeled carbon throughout near-natural soil incubations. We performed incubation experiments with three labeling conditions: 1 - 13C2H double-labeled molecules in the presence of 1H2O; 2 - 13C-labeled molecules in the presence of 2H2O; 3 - no molecule addition in the presence of 2H2O. The preservation of substrate-derived hydrogen after 1 year of incubation (ca. 5 % in most cases) was lower than the preservation of substrate-derived carbon (30 % in average). We highlighted that 70 % of the C-H bonds are broken during the degradation of the molecule, which permits the exchange with water hydrogen. Added molecules are used more for trophic resources. The isotopic composition of the non-exchangeable hydrogen was mainly driven by the incorporation of water hydrogen during microbial biosynthesis. It is linearly correlated with the amount of carbon that is degraded in the soil. The quantitative incorporation of water hydrogen in bulk material and lipids demonstrates that non-exchangeable hydrogen exists in both organic and mineral-bound forms. The proportion of the latter depends on soil type and minerals. This experiment quantified the processes affecting the isotopic composition of non-exchangeable hydrogen, and the results can be used to predict the fate of tritium in the ecosystem or the water deuterium signature in organic matter.

  9. Volume-discharge formed in SF6 and C2H6 mixtures without preionization

    NASA Astrophysics Data System (ADS)

    Zhang, Ge; Ke, Changjun; Zhang, Shujuan

    2014-11-01

    A new approach to obtain glow discharge in working mixtures of non-chain HF laser has been brought forward. The most advantage of the approach is without pre-ionization, so the contamination of pre-ionization will not happen and the laser equipment is compact and simple. It is found, if the cathode surface is equally rough, we can obtain uniform volume-discharge in SF6 mixtures without any pre-ionization, and dispense with uniform electric field electrode profile. The form of Self-Sustained Volume Discharge (SSVD) is a Self-Initiated Volume Discharge (SIVD). We show here the possibility of obtaining SIVD with a uniform energy deposition in a system of electrodes with non-uniform electric field. Experiments show that, with rough cathode and even anode, a volume discharge is forming in non-uniform electric-field without pre-ionization in SF6 and C2H6 mixtures. At the beginning of the discharge, many diffuse channels attached to bright circular cathode spots, then, diverge towards the anode, with the channels overlapping, form a spatially uniform glow discharge. SIVD has been performed at a total mixture pressure up to 8kPa and energy deposition up to 200J/l. We also report measurements of the V-I characteristics of SIVD with SF6 and C2H6 mixtures at pressure up to about 8kPa. The experimental results indicate that SSVD in SF6 and C2H6 mixtures develops in the form of SIVD is promising for creation of high energy and pulse-periodic HF laser.

  10. Obstruction of dengue virus maturation by Fab fragments of the 2H2 antibody.

    PubMed

    Wang, Zhiqing; Li, Long; Pennington, Janice G; Sheng, Ju; Yap, Moh Lan; Plevka, Pavel; Meng, Geng; Sun, Lei; Jiang, Wen; Rossmann, Michael G

    2013-08-01

    The 2H2 monoclonal antibody recognizes the precursor peptide on immature dengue virus and might therefore be a useful tool for investigating the conformational change that occurs when the immature virus enters an acidic environment. During dengue virus maturation, spiky, immature, noninfectious virions change their structure to form smooth-surfaced particles in the slightly acidic environment of the trans-Golgi network, thereby allowing cellular furin to cleave the precursor-membrane proteins. The dengue virions become fully infectious when they release the cleaved precursor peptide upon reaching the neutral-pH environment of the extracellular space. Here we report on the cryo-electron microscopy structures of the immature virus complexed with the 2H2 antigen binding fragments (Fab) at different concentrations and under various pH conditions. At neutral pH and a high concentration of Fab molecules, three Fab molecules bind to three precursor-membrane proteins on each spike of the immature virus. However, at a low concentration of Fab molecules and pH 7.0, only two Fab molecules bind to each spike. Changing to a slightly acidic pH caused no detectable change of structure for the sample with a high Fab concentration but caused severe structural damage to the low-concentration sample. Therefore, the 2H2 Fab inhibits the maturation process of immature dengue virus when Fab molecules are present at a high concentration, because the three Fab molecules on each spike hold the precursor-membrane molecules together, thereby inhibiting the normal conformational change that occurs during maturation.

  11. Validation of SCALE (SAS2H) isotopic predictions for BWR spent fuel

    SciTech Connect

    Hermann, O.W.; DeHart, M.D.

    1998-09-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  12. Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel

    SciTech Connect

    Hermann, O.W.

    1998-01-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  13. Spectroscopic Line Parameters in the Infrared Bands of CH3CN and C2H6

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy

    2010-10-01

    In this paper, measurements of critical spectroscopic line parameters such as positions, absolute intensities and pressure broadened (self- and N2) half-width coefficients for transitions in the ν4 band of CH3CN (acetonitile, ethanenitrile, methyl cyanide) and the ν9 band of C2H6 (ethane) are presented. CH3CN has been measured by remote sensing in the earth's atmosphere, in comets and in interstellar molecular clouds. It is also a constituent in the atmospheres of Titan, Saturn's largest moon. Likewise, C2H6 is also an important constituent in the atmosphere of earth, the giant planets and comets. The 12- μm(˜720-850 cm-1) emission features of this molecule have been observed in spectra from outer solar system bodies of Jupiter, Saturn, Neptune and Titan. Because of their importance in remote sensing measurements, we recently recorded and analyzed a large number of laboratory infrared absorption spectra of pure and N2-broadened spectra of both these molecular bands. Spectra used in these analyses were recorded using either the Bruker IFS 125HR or the Bruker IFS 120HR FTS located at the Pacific Northwest National Laboratory (PNNL), in Richland Washington. To retrieve the various spectral line parameters, a multispectrum nonlinear least squares fitting algorithm was employed and all spectra belonging to each band were fitted simultaneously. Using this fitting technique, the same spectral regions from multiple spectra were fit all at once to maximize the accuracy of the retrieved parameters. The results obtained from present analyses are briefly discussed. In the case of C2H6 both room- and low temperature (˜210-296 K) spectra were recorded, but results from analyzing only room-temperature spectra will be discussed in this work.

  14. LyMAS: Predicting large-scale Lyα forest statistics from the dark matter density field

    SciTech Connect

    Peirani, Sébastien; Colombi, Stéphane; Dubois, Yohan; Pichon, Christophe; Weinberg, David H.; Blaizot, Jérémy

    2014-03-20

    We describe Lyα Mass Association Scheme (LyMAS), a method of predicting clustering statistics in the Lyα forest on large scales from moderate-resolution simulations of the dark matter (DM) distribution, with calibration from high-resolution hydrodynamic simulations of smaller volumes. We use the 'Horizon-MareNostrum' simulation, a 50 h {sup –1} Mpc comoving volume evolved with the adaptive mesh hydrodynamic code RAMSES, to compute the conditional probability distribution P(F{sub s} |δ {sub s}) of the transmitted flux F{sub s} , smoothed (one-dimensionally, 1D) over the spectral resolution scale, on the DM density contrast δ {sub s}, smoothed (three-dimensionally, 3D) over a similar scale. In this study we adopt the spectral resolution of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) at z = 2.5, and we find optimal results for a DM smoothing length σ = 0.3 h {sup –1} Mpc (comoving). In its simplest form, LyMAS draws randomly from the hydro-calibrated P(F{sub s} |δ {sub s}) to convert DM skewers into Lyα forest pseudo-spectra, which are then used to compute cross-sightline flux statistics. In extended form, LyMAS exactly reproduces both the 1D power spectrum and one-point flux distribution of the hydro simulation spectra. Applied to the MareNostrum DM field, LyMAS accurately predicts the two-point conditional flux distribution and flux correlation function of the full hydro simulation for transverse sightline separations as small as 1 h {sup –1} Mpc, including redshift-space distortion effects. It is substantially more accurate than a deterministic density-flux mapping ({sup F}luctuating Gunn-Peterson Approximation{sup )}, often used for large-volume simulations of the forest. With the MareNostrum calibration, we apply LyMAS to 1024{sup 3} N-body simulations of a 300 h {sup –1} Mpc and 1.0 h {sup –1} Gpc cube to produce large, publicly available catalogs of mock BOSS spectra that probe a large comoving volume. LyMAS will be a powerful

  15. The leptonic CP phase from T2(H)K and μ+ decay at rest

    DOE PAGES

    Evslin, Jarah; Ge, Shao-Feng; Hagiwara, Kaoru

    2016-02-22

    Combining v oscillations at T2K or T2HK withmore » $$\\bar{v}$$ oscillations from μ+ decay at rest (DAR) allows a determination of the leptonic CP-violating phase . The degeneracies of this phase with θ13 and θ23 are broken and δ can be reliably distinguished from 180° - δ. In this study, we present the sensitivity to δ of T2(H)K together with a μ+ DAR experiment using Super-K as a near detector and Hyper-K at the Tochibora site as a far detector.« less

  16. Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance.

    PubMed Central

    Lafleur, M; Fine, B; Sternin, E; Cullis, P R; Bloom, M

    1989-01-01

    A new method has been developed to determine the complete orientational order profile of lipid bilayers using 2H-NMR. The profile is obtained from a single powder spectrum of a lipid which has a saturated chain fully deuteriated. The smoothed order profile is determined directly from the normalized dePaked spectrum assuming a monotonic decrease of the order along the acyl chain. The oscillatory variations of the order at the beginning of the chain are not described by this method. However the smoothed order profile reveals in a straightforward way the crucial features of the anisotropic order of the bilayer. PMID:2605294

  17. Characterization of Post-Cleaning Solids Samples from the 2H Evaporator Pot

    SciTech Connect

    WILMARTH, WILLIAM

    2004-03-15

    Samples retrieved from the 2H Evaporator Pot in October of 2003 were of a similar nature as previous materials. The bulk of the sample was comprised of a sodium aluminosilicate phase, cancrinite. The concentration of uranium in the evaporator solids,however, was very low:less than 0.1 percentage weight. The uranium enrichment was depleted as expected and measured 0.6 percent. These data agree with uranium contents generated during experimental testing. Additionally, the overall specific radionuclide content is lower for this sample than previous measured on samples from the Gravity Drain Line in 1997 and the cone and wall in 2000.

  18. Fermi surface, charge-density-wave gap, and kinks in 2H- TaSe2

    NASA Astrophysics Data System (ADS)

    Rossnagel, K.; Rotenberg, Eli; Koh, H.; Smith, N. V.; Kipp, L.

    2005-09-01

    The Fermi surface of the layered charge-density-wave compound 2H-TaSe2 is measured by angle-resolved photoemission as a function of temperature. A surprising Fermi-surface topology and a Fermi-surface branch-dependent charge-density-wave gap are found. In the charge-density-wave state band hybridization effects are strong and responsible for kinks in the band dispersions at relatively high binding energy. The implications of the results on the charge-density-wave mechanism are discussed.

  19. Characterization Results for the 2014 HTF 3H & 2H Evaporator Overhead Samples

    SciTech Connect

    Washington, A.

    2015-05-11

    This report tabulates the radiochemical analysis of the 3H and 2H evaporator overhead samples for 137Cs, 90Sr, and 129I to meet the requirements in the Effluent Treatment Project (ETP) Waste Acceptance Criteria (WAC) (rev. 6). This report identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. All data was found to be within the ETP WAC (rev. 6) specification for the Waste Water Collection Tanks (WWCT).

  20. 5-[(tert-Butyl-diphenyl-sil-yloxy)meth-yl]pyridazin-3(2H)-one.

    PubMed

    Costas-Lago, María Carmen; Costas, Tamara; Vila, Noemí; Terán, Carmen

    2013-11-27

    In the title compound, C21H24N2O2Si, a new pyridazin-3(2H)-one derivative, the carbonyl group of the heterocyclic ring and the O atom of the silyl ether are located on the same side of the pyridazinone ring and the C-C-O-Si torsion angle is -140.69 (17)°. In the crystal, mol-ecules are linked by pairs of strong N-H⋯O hydrogen bonds into centrosymmetric dimers with graph-set notation R 2 (2)(8). Weak C-H⋯π inter-actions are also observed.

  1. Early Gravitropic Events in Roots of Arabidopsis: Ca(2+)H(+) Fluxes in the Columella Cells

    NASA Technical Reports Server (NTRS)

    Feldman, Lewis

    2003-01-01

    Despite the wealth of information derived from physiological approaches, molecular mechanisms for sensing and responding to gravity in plants remain largely uncharacterized. Roots of higher plants offer many advantages for studying the sensing and responding phases. In roots, gravisensing occurs in specialized cells, the columella cells in which earlier studies have indicated an involvement of the cytoskeleton, Ca(2+), H(+) and auxin in processing the gravity signal. The overall goal of this project was to characterize gravity-stimulated Ca(2+) and H(+) fluxes in the columella cells of a model plant Arabidopsis thaliana and to define their regulation. For this work we used intact Arabidopsis roots.

  2. Development of homotopy algorithms for fixed-order mixed H2/H(infinity) controller synthesis

    NASA Technical Reports Server (NTRS)

    Whorton, M.; Buschek, H.; Calise, A. J.

    1994-01-01

    A major difficulty associated with H-infinity and mu-synthesis methods is the order of the resulting compensator. Whereas model and/or controller reduction techniques are sometimes applied, performance and robustness properties are not preserved. By directly constraining compensator order during the optimization process, these properties are better preserved, albeit at the expense of computational complexity. This paper presents a novel homotopy algorithm to synthesize fixed-order mixed H2/H-infinity compensators. Numerical results are presented for a four-disk flexible structure to evaluate the efficiency of the algorithm.

  3. Laboratory Spectra of Mixtures of CH4, C2H6, and CH3OH

    NASA Technical Reports Server (NTRS)

    Mastrapa, Rachel; Berry, Matthew T.; Sandford, Scott

    2011-01-01

    Infrared spectroscopy is commonly used as a tool for identifying the composition of objects in the Solar System and beyond. Using laboratory spectra, optical constants can be calculated and used to create model spectra for comparison to spectra obtained from infrared telescopes. In this study, the optical constants of mixtures of simple organics, including CH4, C2H6, and CH3OH were calculated from 15 to 70 K, in the frequency range of 9000-500 cm(sup -1) (1.1-20 micrometers), at a spectral resolution of 1 cm(sup -1).

  4. Mixed H2/H Infinity Optimization with Multiple H Infinity Constraints

    DTIC Science & Technology

    1994-06-01

    DMD -),X p(QM): 2-7 2.3.1 Structured Singular Value in Control Systems The structured singular value is a framework based on the small gain theorem, in...sensitivity problem, and the mixed H2/H. controller. In this section, the value of the upper bound on t(a( DMD -’)) will simply be called IL for convenience. A...Casa 283 Ciudadela Kennedy Quito-Ecuador r1 I’ Form Approved REPORT DOCUMENTATION PAGE OM No. 0704-0188 putb4C reporting tburdtn for this collectiont

  5. Total lattice potential energy of sodium bromide dihydrate NaBr · 2H 2O

    NASA Astrophysics Data System (ADS)

    Herzig, P.; Jenkins, H. D. B.; Pritchett, M. S. F.

    1984-08-01

    In addition to presenting comparative calculations by two approaches for the total lattice potential energy of sodium bromide dihydrate, NaBr · 2H 2O, found to take the value 803.9 kJ mol -1, we investigate the influence of the size and nature of the basis set used to generate multipole moments in a Hartee-Fock calculation which are in turn used to calculate the Madelung constant. The requirement is one of critical size of the basis set and once this is reached the electrostatic energy will be reliable.

  6. Nanocrystallite Mg ferrite LPG, Cl2 and C2H5OH sensor

    NASA Astrophysics Data System (ADS)

    Gadkari, Ashok B.; Shinde, Tukaram J.; Vasambekar, Pramod N.

    2012-06-01

    The magnesium ferrite was synthesized by oxalate co-precipitation method. The crystal structure and surface morphology were examined by X-ray diffraction and SEM respectively. The nanocrystallite MgFe2O4 sensor was tested for gases like LPG, Cl2 and C2H5OH. Sensitivity was measured at various operating temperatures between 100-400°C. The sensor shows highest sensitivity to LPG at 225°C. The response and recovery time was measured at operating temperature of 225°C. The sensor exhibits a good response and recovery for LPG at operating temperature.

  7. Who Are the Students Who May Qualify for an Alternate Assessment Based on Modified Academic Achievement Standards (AA-MAS)?: Focus Group Results. Synthesis Report 79

    ERIC Educational Resources Information Center

    Berndt, Sandra; Ebben, Barbara; Kubinski, Eva; Sim, Grant; Liu, Kristin; Lazarus, Sheryl; Thurlow, Martha; Christian, Elizabeth

    2011-01-01

    Beginning in 2007, federal regulations to two major education laws gave state departments of education the option to develop an alternate assessment based on modified achievement standards (AA-MAS) for some students with disabilities. The regulations stated that the AA-MAS was intended for students who were being instructed in the grade-level…

  8. Development of microsatellites from Cornus mas L. (Cornaceae) and characterization of genetic diversity of cornelian cherries from China, central Europe, and the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cornelian cherry (Cornus mas L.) is indigenous to central and southeastern Europe and is an ecologically and economically important shrub or small tree. The aim of this study was to develop molecular tools for assessing genetic diversity and provide unique molecular identification of C. mas cultivar...

  9. Stable (2)H isotope analysis of modern-day human hair and nails can aid forensic human identification.

    PubMed

    Fraser, Isla; Meier-Augenstein, Wolfram

    2007-01-01

    Continuous-flow isotope ratio mass spectrometry (CF-IRMS) was used to compare (2)H isotopic composition at natural abundance level of human scalp hair and fingernail samples collected from subjects worldwide with interpolated delta(2)H precipitation values at corresponding locations. The results showed a strong correlation between delta(2)H values of meteoric water and hair (r(2) = 0.86), while the corresponding correlation for nails was not as strong (r(2) = 0.6). Offsets of -180 per thousand and -127 per thousand were observed when calculating solutions of the linear regression analyses for delta(2)H vs. delta(18)O correlation plots of hair and nail samples, respectively. Compared with the +10 per thousand offset of the global meteoric water line equation these findings suggested that delta(18)O data from hair and nail would be of limited diagnostic value. The results of this pilot study provide for the first time tentative correlations of (2)H isotopic composition of human hair and nails with local water. Linear regression analyses for measured delta(2)H values of human hair and nails vs. water yielded delta(2)H(hair) = 0.49 x delta(2)H(water) - 35 and delta(2)H(nails) = 0.38 x delta(2)H(water) - 49, respectively. The results suggest that (2)H isotopic analysis of hair and nail samples can be used to provide information regarding an individual's recent geographical life history and, hence, location. The benefit of this technique is to aid identification of victims of violent crime and mass disasters in circumstances where traditional methods such as DNA and fingerprinting cannot be brought to bear (or at least not immediately).

  10. Synthesis, crystal structure and vibrational spectroscopic analysis of tetrakis(5-amino-1-H-1,2,4-triazol-4-ium) decachlorodibismuthate(III):[C2H5N4]4Bi2Cl10

    NASA Astrophysics Data System (ADS)

    Aloui, Z.; Ferretti, V.; Abid, S.; Lefebvre, F.; Rzaigui, M.; Nasr, C. Ben

    2015-10-01

    Physico-chemical properties of a new organic bismuthate(III), [C2H5N4]4Bi2Cl10 are discussed on the basis of X-ray crystal structure investigation. This compound crystallizes in the monoclinic space group C2/c, with a = 16.3622(3), b = 12.7941(2), c = 14.8178(2) Å, β = 98.5660(10)°, V = 3067.35(8) Å3 and Z = 4. The crystal structure consists of discrete binuclear [Bi2Cl10]4- anions and 3-amino-1-H-1,2,4-triazolium cations. The crystal packing is governed by strong Nsbnd H⋯N and weak Nsbnd H⋯Cl hydrogen bonds and Π-Π stacking interactions to form three-dimensional network. The 13C CP-MAS NMR spectrum is in agreement with the X-ray structure. The infrared study confirms the presence of the organic cation [C2H5N4]+. The vibrational absorption bands were identified by infrared spectroscopy and DFT calculations allowed their attribution.

  11. Probing anisotropic interaction potentials of unsaturated hydrocarbons with He*(2 3S) metastable atom: Attractive-site preference of σ-direction in C2H2 and π-direction in C2H4

    NASA Astrophysics Data System (ADS)

    Horio, Takuya; Hatamoto, Takuro; Maeda, Satoshi; Kishimoto, Naoki; Ohno, Koichi

    2006-03-01

    State-resolved collision energy dependence of Penning ionization cross sections of acetylene (C2H2) and ethylene (C2H4) with He*(2S3) metastable atoms was observed in a wide collision energy range from 20to350meV. A recently developed discharge nozzle source with a liquid N2 circulator was employed for the measurements in the low-energy range from 20to80meV. Based on classical trajectory calculations for the energy dependence of the partial ionization cross sections, anisotropic potential energy surfaces for the present systems were obtained by optimizing ab initio model potentials for the chemically related systems Li +C2H2 and C2H4. In the case of C2H2, the global minimum was found to be located around the H atom along the molecular axis with a well depth of 48meV (ca. 1.1kcal/mol). On the other hand, a dominant attractive well with a depth of 62meV (ca. 1.4kcal/mol) was found in the πCC electron region of C2H4. These findings were discussed in connection with orbital interactions between molecular orbitals of the target molecules and atomic orbitals of the metastable atom. It is concluded that σ-type unoccupied molecular orbitals of C2H2 and a πCC-type highest occupied molecular orbital of C2H4 play a significant role for the attractive-site preference of σ direction in C2H2 and π direction in C2H4, respectively.

  12. Crystal structure, NMR study, dielectric relaxation and AC conductivity of a new compound [Cd3(SCN)2Br6(C2H9N2)2]n

    NASA Astrophysics Data System (ADS)

    Saidi, K.; Kamoun, S.; Ayedi, H. Ferid; Arous, M.

    2013-11-01

    The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin-spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325-376 K and the frequency range from 10-2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.

  13. Advanced Low-Cost O2/H2 Engines for the SSTO Application

    NASA Technical Reports Server (NTRS)

    Goracke, B. David; Levack, Daniel J. H.; Nixon, Robert F.

    1994-01-01

    The recent NASA Access to Space study examined future Earth to orbit (ETO) transportation needs and fleets out to 2030. The baseline in the option 3 assessment was a single stage to orbit (SSTO) vehicle. A study was conducted to assess the use of new advanced low cost O2/H2 engines for this SSTO application. The study defined baseline configurations and ground rules and defined six engine cycles to explore engine performance. The cycles included an open cycle, and a series of closed cycles with varying abilities to extract energy from the propellants to power he turbomachinery. The cycles thus varied in the maximum chamber pressure they could reach and in their weights at any given chamber pressure. The weight of each cycle was calculated for two technology levels versus chamber pressure up to the power limit of the cycle. The performance in the SSTO mission was then modeled using the resulting engine weights and specific impulse performance using the Access to Space option 3 vehicle. The results showed that new O2/H2 engines are viable and competitive candidates for the SSTO application using chamber pressures of 4,000 psi.

  14. Interlayer electron-phonon coupling in WSe2/hBN heterostructures

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Kim, Jonghwan; Suh, Joonki; Shi, Zhiwen; Chen, Bin; Fan, Xi; Kam, Matthew; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wu, Junqiao; Wang, Feng

    2016-10-01

    Engineering layer-layer interactions provides a powerful way to realize novel and designable quantum phenomena in van der Waals heterostructures. Interlayer electron-electron interactions, for example, have enabled fascinating physics that is difficult to achieve in a single material, such as the Hofstadter's butterfly in graphene/boron nitride (hBN) heterostructures. In addition to electron-electron interactions, interlayer electron-phonon interactions allow for further control of the physical properties of van der Waals heterostructures. Here we report an interlayer electron-phonon interaction in WSe2/hBN heterostructures, where optically silent hBN phonons emerge in Raman spectra with strong intensities through resonant coupling to WSe2 electronic transitions. Excitation spectroscopy reveals the double-resonance nature of such enhancement, and identifies the two resonant states to be the A exciton transition of monolayer WSe2 and a new hybrid state present only in WSe2/hBN heterostructures. The observation of an interlayer electron-phonon interaction could open up new ways to engineer electrons and phonons for device applications.

  15. P-selectin targeting to secretory lysosomes of Rbl-2H3 cells.

    PubMed

    Kaur, Jasber; Cutler, Daniel F

    2002-03-22

    The biogenesis of secretory lysosomes, which combine characteristics of both lysosomes and secretory granules, is currently of high interest. In particular, it is not clear whether delivery of membrane proteins to the secretory lysosome requires lysosomal, secretory granule, or some novel targeting determinants. Heterologous expression of P-selectin has established that this membrane protein contains targeting signals for both secretory granules and lysosomes. P-selectin is therefore an ideal probe with which to determine the signals required for targeting to secretory lysosomes. We have exploited subcellular fractionation and immunofluorescence microscopy to monitor targeting of transiently expressed wild-type and mutant horseradish peroxidase (HRP)-P-selectin chimeras to secretory lysosomes of Rbl-2H3 cells. The exposure of the HRP chimeras to intracellular proteolysis was also determined as a third monitor of secretory lysosome targeting. Our data show that HRP-P-selectin accumulates in secretory lysosomes of Rbl-2H3 cells using those cytoplasmic sequences previously found to be sufficient for targeting to conventional lysosomes. This work highlights the similar sorting signals used for targeting of membrane proteins to conventional lysosomes and secretory lysosomes.

  16. CCQE, 2p2h excitations and ν—energy reconstruction

    SciTech Connect

    Nieves, J.; Simo, I. Ruiz; Sánchez, F.; Vacas, M. J. Vicente

    2015-05-15

    We analyze the MiniBooNE muon neutrino CCQE-like dσ/dT{sub μ} d cos θ{sub μ} data using a theoretical model that, among other nuclear effects, includes RPA correlations and 2p2h (multinucleon) mechanisms. These corrections turn out to be essential for the description of the data. We find that MiniBooNE CCQE-like data are fully compatible with former determinations of the nucleon axial mass M{sub A} ∼ 1.05 GeV. This is in sharp contrast with several previous analysis where anomalously large values of M{sub A} ∼ 1.4 GeV have been suggested. We also show that because of the the multinucleon mechanism effects, the algorithm used to reconstruct the neutrino energy is not adequate when dealing with quasielastic-like events. Finally, we analyze the MiniBooNE unfolded cross section, and show that it exhibits an excess (deficit) of low (high) energy neutrinos, which is an artifact of the unfolding process that ignores 2p2h mechanisms.

  17. Low Temperature Flux Growth of 2H-SiC and Beta-Gallium Oxide

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Choa, Fow-Sen; Su, Ching-Hua; Arnold, Bradley; Kelly, Lisa

    2016-01-01

    We present brief overview of our study on the low temperature flux growth of two very important novel wide bandgap materials 2H-SiC and Beta-gallium oxide (Beta-Ga2O3). We have synthesized and grown 5 millimeter to 1 centimeter size single crystals of Beta-gallium oxide (Beta-Ga2O3). We used a flux and semi wet method to grow transparent good quality crystals. In the semi-wet method Ga2O3 was synthesized with starting gallium nitrate solution and urea as a nucleation agent. In the flux method we used tin and other metallic flux. This crystal was placed in an alumina crucible and temperature was raised above 1050 degrees Centigrade. After a time period of thirty hours, we observed prismatic and needle shaped crystals of gallium oxide. Scanning electron microscopic studies showed step growth morphology. Crystal was polished to measure the properties. Bandgap was measured 4.7electronvolts using the optical absorption curve. Another wide bandgap hexagonal 2H-SiC was grown by using Si-Al eutectic flux in the graphite crucible. We used slight AlN also as the impurity in the flux. The temperature was raised up to 1050 degrees Centigrade and slowly cooled to 850 degrees Centigrade. Preliminary characterization results of this material are also reported.

  18. NO Removal in High Pressure Plasmas of N_2/H_2O/NO Mixtures

    NASA Astrophysics Data System (ADS)

    Fresnet, F.; Baravian, G.; Magne, L.; Pasquiers, S.; Postel, C.; Puech, V.; Rousseau, A.

    2001-10-01

    Influence of H_2O on NO removal has been studied using a homogeneous photo-triggered discharge with a time resolved LIF measurement of the NO density, in N_2/H_2O/NO mixtures at 460 mbar. The H_2O maximum concentration was 2.5 was between 70 and 160 J/l. Measurement of NO density has been performed up to 180 µs after the current pulse excitation of short duration, 50 ns. Kinetic analysis has been made using a self-consistent 0D-discharge model. NO is in great part dissociated, in N_2/NO, through collisions with the excited singlet states of N_2. We have previously shown that addition of ethene induces de-excitation of these states, leading to a decrease of the NO removal ( F. Fresnet, G. Baravian, L. Magne, S. Pasquiers, C. Postel, V. Puech, A. Rousseau, Appl. Phys. Lett., 77 (2000) 4118.). Similar processes take place when C_2H4 is replaced by H_2O. The value of the rate constant for collision of singlet states with water, 3.10-10 cm^3 s-1, is obtained from our study.

  19. Volumetric Properties and Fluid Phase Equilibria of CO2 + H2O

    SciTech Connect

    Capobianco, Ryan; Gruszkiewicz, Miroslaw {Mirek} S; Wesolowski, David J; Cole, David R; Bodnar, Robert

    2013-01-01

    The need for accurate modeling of fluid-mineral processes over wide ranges of temperature, pressure and composition highlighted considerable uncertainties of available property data and equations of state, even for the CO2 + H2O binary system. In particular, the solubility, activity, and ionic dissociation equilibrium data for the CO2-rich phase, which are essential for understanding dissolution/precipitation, fluid-matrix reactions, and solute transport, are uncertain or missing. In this paper we report the results of a new experimental study of volumetric and phase equilibrium properties of CO2 + H2O, to be followed by measurements for bulk and confined multicomponent fluid mixtures. Mixture densities were measured by vibrating tube densimetry (VTD) over the entire composition range at T = 200 and 250 C and P = 20, 40, 60, and 80 MPa. Initial analysis of the mutual solubilities, determined from volumetric data, shows good agreement with earlier results for the aqueous phase, but finds that the data of Takenouchi and Kennedy (1964) significantly overestimated the solubility of water in supercritical CO2 (by a factor of more than two at 200 C). Resolving this well-known discrepancy will have a direct impact on the accuracy of predictive modeling of CO2 injection in geothermal reservoirs and geological carbon sequestration through improved equations of state, needed for calibration of predictive molecular-scale models and large-scale reactive transport simulations.

  20. Quantifying unfrozen water in frozen soil by high-field 2H NMR.

    PubMed

    Sparrman, Tobias; Oquist, Mats; Klemedtsson, Leif; Schleucher, Jürgen; Nilsson, Mats

    2004-10-15

    To understand wintertime controls of biogeochemical processes in high latitude soils it is essential to distinguish between direct temperature effects and the effects of changes in water availability mediated by freezing. Efforts to separate these controls are hampered by a lack of adequate methods to determine the proportion of unfrozen water. In this study we present a high-field 2H2O NMR method for quantifying unfrozen water content in frozen soil. The experimental material consisted of the humic layer of a boreal spruce forest soil mixed with varying proportions of quartz sand and humidified with deuterium-enriched water. The relative standard deviation of unfrozen water content (measured as NMR signal integral) was less than 2% for repeated measurements on a given sample and 3.5% among all samples, based on a total of 16 measurements. As compared to 1H NMR, this 2H NMR method was found to be superior for several reasons: it is less sensitive to field inhomogeneity and paramagnetic impurities, it gives a bigger line shape difference between the ice and liquid signal, it shows a sharper response to water fusion, and it excludes the possibility of hydrogen in the organic material interfering with the measurement.

  1. Induced DNA demethylation can reshape chromatin topology at the IGF2-H19 locus

    PubMed Central

    Ito, Yoko; Nativio, Raffaella; Murrell, Adele

    2013-01-01

    Choriocarcinomas are embryonal tumours with loss of imprinting and hypermethylation at the insulin-like growth factor 2 (IGF2)-H19 locus. The DNA methyltransferase inhibitor, 5-Aza-2′deoxycytidine (5-AzaCdR) is an approved epigenetic cancer therapy. However, it is not known to what extent 5-AzaCdR influences other epigenetic marks. In this study, we set out to determine whether 5-AzaCdR treatment can reprogram the epigenomic organization of the IGF2-H19 locus in a choriocarcinoma cancer cell line (JEG3). We found that localized DNA demethylation at the H19 imprinting control region (ICR) induced by 5-AzaCdR, reduced IGF2, increased H19 expression, increased CTCF and cohesin recruitment and changed histone modifications. Furthermore chromatin accessibility was increased locus-wide and chromatin looping topography was altered such that a CTCF site downstream of the H19 enhancers switched its association with the CTCF site upstream of the IGF2 promoters to associate with the ICR. We identified a stable chromatin looping domain, which forms independently of DNA methylation. This domain contains the IGF2 gene and is marked by a histone H3 lysine 27 trimethylation block between CTCF site upstream of the IGF2 promoters and the Centrally Conserved Domain upstream of the ICR. Together, these data provide new insights into the responsiveness of chromatin topography to DNA methylation changes. PMID:23585276

  2. Study of C2H2 optic-fiber monitoring system on spectrum absorption

    NASA Astrophysics Data System (ADS)

    Wang, Yutian; Li, Xiao-Xin; Wang, Zhong-Dong

    2005-02-01

    We report our research on the development of optical fiber trace gas sensors for environmental applications. A novel optical fiber sensor for monitoring acetylene (C2H2) gases is described. Through studying the measure theory, we use the Beer-Lambert law to monitor the gas. And after analyzing the C2H2 spectrum, we select Distributed Feedback Laser Diode (DFB LD) as light source. Comparing many kinds" sensor detection head, the gas absorbing cell with tail fiber can have good coupling with optical fiber and improve the coupling stability. In the data processing system, signals are distilled by lock-in amplifiers and then harmonic measure technology processes that distilled faint signals. After the all, the electronic signals are transmitted into computer to process, alarm and display. We design the instrument who can remote and on-line measuring acetylene. Through theory analysis and system experiment, the design of the system is practicable, and has a better precision and some apply foreground.

  3. Free radical scavenging potency of quercetin catecholic colonic metabolites: Thermodynamics of 2H(+)/2e(-) processes.

    PubMed

    Amić, Ana; Lučić, Bono; Stepanić, Višnja; Marković, Zoran; Marković, Svetlana; Dimitrić Marković, Jasmina M; Amić, Dragan

    2017-03-01

    Reaction energetics of the double (2H(+)/2e(-)), i.e., the first 1H(+)/1e(-) (catechol→ phenoxyl radical) and the second 1H(+)/1e(-) (phenoxyl radical→ quinone) free radical scavenging mechanisms of quercetin and its six colonic catecholic metabolites (caffeic acid, hydrocaffeic acid, homoprotocatechuic acid, protocatechuic acid, 4-methylcatechol, and catechol) were computationally studied using density functional theory, with the aim to estimate the antiradical potency of these molecules. We found that second hydrogen atom transfer (HAT) and second sequential proton loss electron transfer (SPLET) mechanisms are less energy demanding than the first ones indicating 2H(+)/2e(-) processes as inherent to catechol moiety. The Gibbs free energy change for reactions of inactivation of selected free radicals indicate that catecholic colonic metabolites constitute an efficient group of more potent scavengers than quercetin itself, able to deactivate various free radicals, under different biological conditions. They could be responsible for the health benefits associated with regular intake of flavonoid-rich diet.

  4. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  5. Mobility of Core Water in Bacillus subtilis Spores by 2H NMR

    PubMed Central

    Kaieda, Shuji; Setlow, Barbara; Setlow, Peter; Halle, Bertil

    2013-01-01

    Bacterial spores in a metabolically dormant state can survive long periods without nutrients under extreme environmental conditions. The molecular basis of spore dormancy is not well understood, but the distribution and physical state of water within the spore is thought to play an important role. Two scenarios have been proposed for the spore’s core region, containing the DNA and most enzymes. In the gel scenario, the core is a structured macromolecular framework permeated by mobile water. In the glass scenario, the entire core, including the water, is an amorphous solid and the quenched molecular diffusion accounts for the spore’s dormancy and thermal stability. Here, we use 2H magnetic relaxation dispersion to selectively monitor water mobility in the core of Bacillus subtilis spores in the presence and absence of core Mn2+ ions. We also report and analyze the solid-state 2H NMR spectrum from these spores. Our NMR data clearly support the gel scenario with highly mobile core water (∼25 ps average rotational correlation time). Furthermore, we find that the large depot of manganese in the core is nearly anhydrous, with merely 1.7% on average of the maximum sixfold water coordination. PMID:24209846

  6. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  7. Partitioning of aluminum atoms in crystallographically non-equivalent tetrahedral sites of the zeolite offretite by 29Si MAS NMR

    NASA Astrophysics Data System (ADS)

    Chen, T. H.; Wang, K. X.; Luo, W. L.; Yuan, Z. Y.; Wang, J. Z.; Ding, D. T.; Li, H. X.; Hu, C.

    1996-04-01

    For the zeolite offretite, a formula is proposed which includes the framework Si/Al ratio ( R), the partitioning ratio of Al over two crystallographically non-equivalent tetrahedral sites ( r) and intensities of the observed peaks in the 29Si MAS NMR spectrum. By this formula, the framework Si/Al ratio of offretite can be estimated from the 29Si MAS NMR spectrum. Combined with chemical analysis of the Si/Al ratio, Al partitioning in two kinds of T sites can also be deduced. It is concluded that the T B sites are favored by Al atoms in parent offretites and Al atoms at T B sites can more easily be substituted isomorphously by Si when treated with (NH 4) 2SiF 6. The formula proposed here is based only on experiments and may be used to testify some statistical models of Al distributions in offretites.

  8. Proton-detected heteronuclear single quantum correlation NMR spectroscopy in rigid solids with ultra-fast MAS

    PubMed Central

    Holland, Gregory P.; Cherry, Brian R.; Jenkins, Janelle E.; Yarger, Jeffery L.

    2009-01-01

    In this article, we show the potential for utilizing proton-detected heteronuclear single quantum correlation (HSQC) NMR in rigid solids under ultra-fast magic angle spinning (MAS) conditions. The indirect detection of carbon-13 from coupled neighboring hydrogen nuclei provides a sensitivity enhancement of 3 - 4 fold in crystalline amino acids over direct-detected versions. Furthermore, the sensitivity enhancement is shown to be significantly larger for disordered solids that display inhomogeneously broadened carbon-13 spectra. Latrodectus hesperus (Black Widow) dragline silk is given as an example where the sample is mass-limited and the sensitivity enhancement for the proton-detected experiment is 8 - 13 fold. The ultra-fast MAS proton-detected HSQC solid-state NMR technique has the added advantage that no proton homonuclear decoupling is applied during the experiment. Further, well-resolved, indirectly observed carbon-13 spectra can be obtained in some cases without heteronuclear proton decoupling. PMID:19857977

  9. Thermal maturity of type II kerogen from the New Albany Shale assessed by13C CP/MAS NMR

    USGS Publications Warehouse

    Werner-Zwanziger, U.; Lis, G.; Mastalerz, Maria; Schimmelmann, A.

    2005-01-01

    Thermal maturity of oil and gas source rocks is typically quantified in terms of vitrinite reflectance, which is based on optical properties of terrestrial woody remains. This study evaluates 13C CP/MAS NMR parameters in kerogen (i.e., the insoluble fraction of organic matter in sediments and sedimentary rocks) as proxies for thermal maturity in marine-derived source rocks where terrestrially derived vitrinite is often absent or sparse. In a suite of samples from the New Albany Shale (Middle Devonian to the Early Mississippian, Illinois Basin) the abundance of aromatic carbon in kerogen determined by 13C CP/MAS NMR correlates linearly well with vitrinite reflectance. ?? 2004 Elsevier Inc. All rights reserved.

  10. DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers

    NASA Astrophysics Data System (ADS)

    Ferrari, Erika; Francioso, Ornella; Nardi, Serenella; Saladini, Monica; Ferro, Nicola Dal; Morari, Francesco

    2011-07-01

    In this study, using DRIFT and HR MAS NMR, we analyzed the humic substances isolated from a soil treated, over 40 years, with different organic, mineral and organic plus mineral treatments and cultivated with maize as the main crop. As expected, the structure of humic substances was very complex but by combining both techniques (DRIFT and HR MAS NMR) additional information was obtained on aromatic and aliphatic components, the most recalcitrant parts of these macromolecules. In so doing we wanted to investigate the relationship between HS structure and long-term management practices. An elevated content of lignin, aminoacids, peptides and proteins was observed mainly for farmyard manure treatments with respect to mineral or liquid manure amendments; this supports how the different management practices have greatly influenced the humification process of cultivated soils.

  11. Proton-detected heteronuclear single quantum correlation NMR spectroscopy in rigid solids with ultra-fast MAS.

    PubMed

    Holland, Gregory P; Cherry, Brian R; Jenkins, Janelle E; Yarger, Jeffery L

    2010-01-01

    In this article, we show the potential for utilizing proton-detected heteronuclear single quantum correlation (HSQC) NMR in rigid solids under ultra-fast magic angle spinning (MAS) conditions. The indirect detection of carbon-13 from coupled neighboring hydrogen nuclei provides a sensitivity enhancement of 3- to 4-fold in crystalline amino acids over direct-detected versions. Furthermore, the sensitivity enhancement is shown to be significantly larger for disordered solids that display inhomogeneously broadened carbon-13 spectra. Latrodectus hesperus (Black Widow) dragline silk is given as an example where the sample is mass-limited and the sensitivity enhancement for the proton-detected experiment is 8- to 13-fold. The ultra-fast MAS proton-detected HSQC solid-state NMR technique has the added advantage that no proton homonuclear decoupling is applied during the experiment. Further, well-resolved, indirectly observed carbon-13 spectra can be obtained in some cases without heteronuclear proton decoupling.

  12. A Comparison of Ozone Measurements Made by the ATMOS, MAS, and SSBUV Instruments During ATLAS 1,2, and 3

    NASA Technical Reports Server (NTRS)

    Kriebel, D. L.; Bevilacqua, R. M.; Hilsenrath, E.; Gunson, M.; Hartmann, G. K.; Abrams, M.; Daehler, M.; Pauls, T. A.; Newchurch, M.; Aellig, C. P.; Bories, M. C.

    1996-01-01

    Ozone profile measurements were made by three instruments, ATMOS, MAS, and SSBUV, using distinctly different observing techniques, as part of the ATLAS Space Shuttle missions in March 1992, April 1993, and November 1994. ATMOS makes solar-occultation observations of infrared spectra using a Fourier transform interferometer. MAS uses a limb-scanning antenna to measure emission spectra at millimeter wavelengths. SSBUV is a nadir-viewing instrument measuring the transmission of scattered solar ultraviolet radiation modified by ozone absorption. A sample of zonal-mean mixing ratio profiles indicates that these three ATLAS instruments generally agree to within 10%, although a few potential biases have been noted. There are significant differences in the character of the agreement between ATLAS 1 and ATLAS 2 which will require further study.

  13. A method for direct in vivo measurement of drug concentrations from a single 2H NMR spectrum.

    PubMed

    Evelhoch, J L; McCoy, C L; Giri, B P

    1989-03-01

    The use of 2H-labeled drugs provides a measure of drug concentration in situ directly from a single 2H NMR spectrum obtained with any antenna by correcting only for differential saturation effects. The limit of detection for a drug labeled with three equivalent deuterons is roughly 0.5 mM.

  14. Mining the Brassica oleracea genome for Q-type C2H2 zinc finger transcription factor proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Q-type zinc finger proteins have been studied in several plant species and have been associated with response to stress. A whole genome analysis of Arabidopsis identified 176 putative C2H2 transcription factors (TF). Q-type C2H2 TFs containing the QALGGH motif and are a subset of these. In Arabidops...

  15. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution.

    PubMed

    Toh, Rou Jun; Sofer, Zdeněk; Luxa, Jan; Sedmidubský, David; Pumera, Martin

    2017-03-09

    Herein, we compare the bulk, 2H and 3R phases of two most prevalent TMD materials: MoS2 and WS2. The 3R phase outperforms its 2H phase counterpart in hydrogen evolution reaction catalysis and is even comparable with the exfoliated, 1T phase in the case of MoS2.

  16. The Davis-Beirut Reaction: a novel entry into 2H-indazoles and indazolones. Recent biological activity of indazoles.

    PubMed

    Haddadin, Makhluf J; Conrad, Wayne E; Kurth, Mark J

    2012-10-01

    A novel, easy method for the syntheses of richly diversified 2H-indazoles and indazolones, called the Davis-Beirut reaction, and other recent 2H-indazole synthetic routes are briefly reviewed. An update on the biological activity of indazoles is also surveyed.

  17. MAS promoter regulation: a role for Sry and tyrosine nitration of the KRAB domain of ZNF274 as a feedback mechanism.

    PubMed

    Prokop, Jeremy W; Rauscher, Frank J; Peng, Hongzhuang; Liu, Yuanjie; Araujo, Fabiano C; Watanabe, Ingrid; Reis, Fernando M; Milsted, Amy

    2014-05-01

    The ACE2 (angiotensin-converting enzyme 2)/Ang-(1-7) [angiotensin-(1-7)]/MAS axis of the RAS (renin-angiotensin system) has emerged as a pathway of interest in treating both cardiovascular disorders and cancer. The MAS protein is known to bind to and be activated by Ang-(1-7); however, the mechanisms of this activation are just starting to be understood. Although there are strong biochemical data regarding the regulation and activation of the AT1R (angiotensin II type 1 receptor) and the AT2R (angiotensin II type 2 receptor), with models of how AngII (angiotensin II) binds each receptor, fewer studies have characterized MAS. In the present study, we characterize the MAS promoter and provide a potential feedback mechanism that could compensate for MAS degradation following activation by Ang-(1-7). Analysis of ENCODE data for the MAS promoter revealed potential epigenetic control by KRAB (Krüppel-associated box)/KAP-1 (KRAB-associated protein-1). A proximal promoter construct for the MAS gene was repressed by the SOX [SRY (sex-determining region on the Y chromosome) box] proteins SRY, SOX2, SOX3 and SOX14, of which SRY is known to interact with the KRAB domain. The KRAB-KAP-1 complex can be tyrosine-nitrated, causing the dissociation of the KAP-1 protein and thus a potential loss of epigenetic control. Activation of MAS can lead to an increase in nitric oxide, suggesting a feedback mechanism for MAS on its own promoter. The results of the present study provide a more complete view of MAS regulation and, for the first time, suggest biochemical outcomes for nitration of the KRAB domain.

  18. Effects of the angiotensin-(1-7) receptor Mas on cell proliferation and on the population of doublecortin positive cells within the dentate gyrus and the piriform cortex.

    PubMed

    Freund, M; Walther, T; von Bohlen Und Halbach, O

    2014-02-01

    Aside from the well-known biologically active angiotensin II, other biologically active angiotensins have been discovered, including angiotensin IV and angiotensin-(1-7). Some years ago, we and others discovered that the Mas proto-oncogene encodes a G protein-coupled receptor being essential for angiotensin-(1-7) signaling. Mas is not only expressed in the periphery but also within the brain, e.g. in the dentate gyrus (DG) and the piriform cortex (PC). Since the DG is capable of adult neurogenesis, we examined the impact of a deletion of Mas upon adult neurogenesis. Deletion of Mas did not alter cell proliferation in the adult DG (as monitored with phosphohistone H3) and did not alter cell death (as monitored with activated Caspase 3). However, Mas deficiency resulted in an increase in the number of doublecortin (DCX) positive cells, indicating that lack of Mas increases the number of this cell population. Concerning the PC, it is discussed whether adult neurogenesis occurs under physiological conditions in this area. We could demonstrate that Mas deficiency has an impact on cell division and on the population of DCX-positive cells within the PC. Since Mas is not expressed before birth within the brain, our data may suggest that adult hippocampal neurogenesis and neurogenesis occurring during prenatal development share several common mechanisms, but are, at least in part, differentially regulated. Moreover, since deficiency for Mas increases the numbers of DCX-positive young neurons, blockage of Mas might be beneficial in stimulating neurogenesis in adults.

  19. MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content

    NASA Astrophysics Data System (ADS)

    Goswami, Madhumita; Kothiyal, Govind P.; Montagne, Lionel; Delevoye, Laurent

    2008-02-01

    Lithium zinc silicate glasses of composition (mol%): 17.5Li 2O-(72- x)SiO 2- xZnO-5.1Na 2O-1.3P 2O 5-4.1B 2O 3, 5.5⩽ x⩽17.7, were prepared by conventional melt-quenched technique and converted to glass-ceramic by controlled crystallization process. 29Si and 31P MAS-NMR was used to characterize the structure of both glass and glass-ceramic samples. Despite the complex glass composition, Q2, Q3 and Q4 sites are identified from 29Si MAS-NMR, which relative intensities are found to vary with the ZnO content, indicating a network depolymerization by ZnO. Moreover, well separated Q3 and Q4 resonances for low ZnO content indicates the occurrence of phase separation. From 31P MAS-NMR, it is seen that phosphorus is mainly present in the form of ortho-( Q0) and pyro-phosphate ( Q1) structural units and variation of ZnO content did not have much effect on these resonances, which provides an additional evidence for phase separation in the glass. On conversion to glass-ceramics, lithium disilicate (Li 2Si 2O 5), lithium zinc ortho-silicate (Li 3Zn 0.5SiO 4), tridymite (SiO 2) and cristobalite (SiO 2) were identified as major silicate crystalline phases. Using 29Si MAS-NMR, quantification of these silicate crystalline phases is carried out and correlated with the ZnO content in the glass-ceramics samples. In addition, 31P spectra unambiguously revealed the presence of crystalline Li 3PO 4 and (Na,Li) 3PO 4 in the glass-ceramics.

  20. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    PubMed Central

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio

    2015-01-01

    Summary The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  1. Polydisperse methyl β-cyclodextrin-epichlorohydrin polymers: variable contact time (13)C CP-MAS solid-state NMR characterization.

    PubMed

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio; Mele, Andrea

    2015-01-01

    The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state (13)C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices.

  2. Angiotensin-(1-7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism.

    PubMed

    Cisternas, Franco; Morales, María Gabriela; Meneses, Carla; Simon, Felipe; Brandan, Enrique; Abrigo, Johanna; Vazquez, Yaneisi; Cabello-Verrugio, Claudio

    2015-03-01

    Skeletal muscle atrophy is a pathological condition characterized by the loss of strength and muscle mass, an increase in myosin heavy chain (MHC) degradation and increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. Angiotensin II (AngII) induces muscle atrophy. Angiotensin-(1-7) [Ang-(1-7)], through its receptor Mas, produces the opposite effects than AngII. We assessed the effects of Ang-(1-7) on the skeletal muscle atrophy induced by AngII. Our results show that Ang-(1-7), through Mas, prevents the effects induced by AngII in muscle gastrocnemius: the decrease in the fibre diameter, muscle strength and MHC levels and the increase in atrogin-1 and MuRF-1. Ang-(1-7) also induces AKT phosphorylation. In addition, our analysis in vitro using C2C12 myotubes shows that Ang-(1-7), through a mechanism dependent on Mas, prevents the decrease in the levels of MHC and the increase in the expression of the atrogin-1 and MuRF-1, both induced by AngII. Ang-(1-7) induces AKT phosphorylation in myotubes; additionally, we demonstrated that the inhibition of AKT with MK-2206 decreases the anti-atrophic effects of Ang-(1-7). Thus, we demonstrate for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by AngII through a mechanism dependent on the Mas receptor, which involves AKT activity. Our study indicates that Ang-(1-7) is novel molecule with a potential therapeutical use to improve muscle wasting associated, at least, with pathologies that present high levels of AngII.

  3. Effects of felodipine combined with puerarin on ACE2-Ang (1-7)-Mas axis in renovascular hypertensive rat.

    PubMed

    Bai, Song; Huang, Zheng-Gui; Chen, Li; Wang, Jiang-Tao; Ding, Bo-Ping

    2013-06-10

    This study aimed to investigate the effect of combination of felodipine+puerarin on ACE2-Ang (1-7)-Mas axis, and to explore the protective effect of the combination against kidney in renovascular hypertensive rats. Goldblatt rats were randomly divided into 5 groups as follows: 4 groups which were treated with felodipine (Felo), puerarin (Pue), Felo+Pue, and Felo+captopril (Cap), respectively, and a control group of animals that were administrated with distilled water. Contents of Ang II and Ang (1-7) in renal tissues were determined by ELISA kit. The mRNA expression of ACE2/Mas and ACE/AT1 in kidneys was analyzed by RT-PCR. After 8weeks of treatment, compared with Goldblatt group, Felo+Pue reduced SBP, DBP and HR (p<0.01 or p<0.05), ameliorated renal interstitial fibrosis, decreased the level of Ang II and increased that of Ang (1-7), upregulated mRNA expression of ACE2 and Mas, decreased that of ACE and AT1, and downregulated protein expression of TGF-β1 in kidneys (p<0.01). Compared with Felo group, Felo+Pue decreased DBP and HR more markedly, attenuated fibrosis, decreased Ang II levels and increased those of Ang (1-7), upregulated mRNA expression of ACE2 in bilateral kidneys and that of Mas in ischemic kidney, downregulated that of ACE in bilateral kidneys and that of AT1 in ischemic kidney, and decreased expression of TGF-β1 protein significantly. In a word, a combination of Felo+Pue has a more efficient therapeutic effect on DBP and HR, and contributes to a better protection against renal interstitial fibrosis.

  4. High-resolution (19)F MAS NMR spectroscopy: structural disorder and unusual J couplings in a fluorinated hydroxy-silicate.

    PubMed

    Griffin, John M; Yates, Jonathan R; Berry, Andrew J; Wimperis, Stephen; Ashbrook, Sharon E

    2010-11-10

    High-resolution (19)F magic angle spinning (MAS) NMR spectroscopy is used to study disorder and bonding in a crystalline solid. (19)F MAS NMR reveals four distinct F sites in a 50% fluorine-substituted deuterated hydrous magnesium silicate (clinohumite, 4Mg(2)SiO(4)·Mg(OD(1-x)F(x))(2) with x = 0.5), indicating extensive structural disorder. The four (19)F peaks can be assigned using density functional theory (DFT) calculations of NMR parameters for a number of structural models with a range of possible local F environments generated by F(-)/OH(-) substitution. These assignments are supported by two-dimensional (19)F double-quantum MAS NMR experiments that correlate F sites based on either spatial proximity (via dipolar couplings) or through-bond connectivity (via scalar, or J, couplings). The observation of (19)F-(19)F J couplings is unexpected as the fluorines coordinate Mg atoms and the Mg-F interaction is normally considered to be ionic in character (i.e., there is no formal F-Mg-F covalent bonding arrangement). However, DFT calculations predict significant (19)F-(19)F J couplings, and these are in good agreement with the splittings observed in a (19)F J-resolved MAS NMR experiment. The existence of these J couplings is discussed in relation to both the nature of bonding in the solid state and the occurrence of so-called "through-space" (19)F-(19)F J couplings in solution. Finally, we note that we have found similar structural disorder and spin-spin interactions in both synthetic and naturally occurring clinohumite samples.

  5. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats.

    PubMed

    Klimas, Jan; Olvedy, Michael; Ochodnicka-Mackovicova, Katarina; Kruzliak, Peter; Cacanyiova, Sona; Kristek, Frantisek; Krenek, Peter; Ochodnicky, Peter

    2015-08-01

    Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang-(1-7)/Mas receptor axis, renin-angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT-PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up-regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang-(1-7) in organ response to the developing hypertension in SHRs.

  6. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis.

    PubMed

    Urbanova, Martina; Brus, Jiri; Sedenkova, Ivana; Policianova, Olivia; Kobera, Libor

    2013-01-01

    In this contribution the ability of (19)F MAS NMR spectroscopy to probe structural variability of poorly water-soluble drugs formulated as solid dispersions in polymer matrices is discussed. The application potentiality of the proposed approach is demonstrated on a moderately sized active pharmaceutical ingredient (API, Atorvastatin) exhibiting extensive polymorphism. In this respect, a range of model systems with the API incorporated in the matrix of polvinylpyrrolidone (PVP) was prepared. The extent of mixing of both components was determined by T(1)((1)H) and T(1ρ)((1)H) relaxation experiments, and it was found that the API forms nanosized domains. Subsequently it was found out that the polymer matrix induces two kinds of changes in (19)F MAS NMR spectra. At first, this is a high-frequency shift reaching 2-3 ppm which is independent on molecular structure of the API and which results from the long-range polarization of the electron cloud around (19)F nucleus induced by electrostatic fields of the polymer matrix. At second, this is broadening of the signals and formation of shoulders reflecting changes in molecular arrangement of the API. To avoid misleading in the interpretation of the recorded (19)F MAS NMR spectra, because both the contributions act simultaneously, we applied chemometric approach based on multivariate analysis. It is demonstrated that factor analysis of the recorded spectra can separate both these spectral contributions, and the subtle structural differences in the molecular arrangement of the API in the nanosized domains can be traced. In this way (19)F MAS NMR spectra of both pure APIs and APIs in solid dispersions can be directly compared. The proposed strategy thus provides a powerful tool for the analysis of new formulations of fluorinated pharmaceutical substances in polymer matrices.

  7. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    NASA Astrophysics Data System (ADS)

    Urbanova, Martina; Brus, Jiri; Sedenkova, Ivana; Policianova, Olivia; Kobera, Libor

    In this contribution the ability of 19F MAS NMR spectroscopy to probe structural variability of poorly water-soluble drugs formulated as solid dispersions in polymer matrices is discussed. The application potentiality of the proposed approach is demonstrated on a moderately sized active pharmaceutical ingredient (API, Atorvastatin) exhibiting extensive polymorphism. In this respect, a range of model systems with the API incorporated in the matrix of polvinylpyrrolidone (PVP) was prepared. The extent of mixing of both components was determined by T1(1H) and T1ρ(1H) relaxation experiments, and it was found that the API forms nanosized domains. Subsequently it was found out that the polymer matrix induces two kinds of changes in 19F MAS NMR spectra. At first, this is a high-frequency shift reaching 2-3 ppm which is independent on molecular structure of the API and which results from the long-range polarization of the electron cloud around 19F nucleus induced by electrostatic fields of the polymer matrix. At second, this is broadening of the signals and formation of shoulders reflecting changes in molecular arrangement of the API. To avoid misleading in the interpretation of the recorded 19F MAS NMR spectra, because both the contributions act simultaneously, we applied chemometric approach based on multivariate analysis. It is demonstrated that factor analysis of the recorded spectra can separate both these spectral contributions, and the subtle structural differences in the molecular arrangement of the API in the nanosized domains can be traced. In this way 19F MAS NMR spectra of both pure APIs and APIs in solid dispersions can be directly compared. The proposed strategy thus provides a powerful tool for the analysis of new formulations of fluorinated pharmaceutical substances in polymer matrices.

  8. QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents.

    PubMed

    Medina Marrero, R; Marrero-Ponce, Y; Barigye, S J; Echeverría Díaz, Y; Acevedo-Barrios, R; Casañola-Martín, G M; García Bernal, M; Torrens, F; Pérez-Giménez, F

    2015-01-01

    The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections.

  9. Effects of fluoride on in vitro enamel demineralization analyzed by ¹⁹F MAS-NMR.

    PubMed

    Mohammed, N R; Kent, N W; Lynch, R J M; Karpukhina, N; Hill, R; Anderson, P

    2013-01-01

    The mechanistic action of fluoride on inhibition of enamel demineralization was investigated using (19)F magic angle spinning nuclear magnetic resonance (MAS-NMR). The aim of this study was to monitor the fluoride-mineral phase formed on the enamel as a function of the concentration of fluoride ions [F(-)] in the demineralizing medium. The secondary aim was to investigate fluorapatite formation on enamel in the mechanism of fluoride anti-caries efficacy. Enamel blocks were immersed into demineralization solutions of 0.1 M acetic acid (pH 4) with increasing concentrations of fluoride up to 2,262 ppm. At and below 45 ppm [F(-)] in the solution, (19)F MAS-NMR showed fluoride-substituted apatite formation, and above 45 ppm, calcium fluoride (CaF2) formed in increasing proportions. Further increases in [F(-)] caused no further reduction in demineralization, but increased the proportion of CaF2 formed. Additionally, the combined effect of strontium and fluoride on enamel demineralization was also investigated using (19)F MAS-NMR. The presence of 43 ppm [Sr(2+)] in addition to 45 ppm [F(-)] increases the fraction of fluoride-substituted apatite, but delays formation of CaF2 when compared to the demineralization of enamel in fluoride-only solution.

  10. Slow-down of 13C spin diffusion in organic solids by fast MAS: a CODEX NMR Study.

    PubMed

    Reichert, D; Bonagamba, T J; Schmidt-Rohr, K

    2001-07-01

    One- and two-dimensional 13C exchange nuclear magnetic resonance experiments under magic-angle spinning (MAS) can provide detailed information on slow segmental reorientations and chemical exchange in organic solids, including polymers and proteins. However, observations of dynamics on the time scale of seconds or longer are hampered by the competing process of dipolar 13C spin exchange (spin diffusion). In this Communication, we show that fast MAS can significantly slow down the dipolar spin exchange effect for unprotonated carbon sites. The exchange is measured quantitatively using the centerband-only detection of exchange technique, which enables the detection of exchange at any spinning speed, even in the absence of changes of isotropic chemical shifts. For chemically equivalent unprotonated 13C sites, the dipolar spin exchange rate is found to decrease slightly less than proportionally with the sample-rotation frequency, between 8 and 28 kHz. In the same range, the dipolar spin exchange rate for a glassy polymer with an inhomogeneously broadened MAS line decreases by a factor of 10. For methylene groups, no or only a minor slow-down of the exchange rate is found.

  11. Low-Temperature Rate Coefficients of C2H with CH4 and CD4 from 154 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reaction C2H + CH4 yields C2H2 + CH3 and C2H + CD4 yields C2HD + CD3 are measured over the temperature range 154-359 K using transient infrared laser absorption spectroscopy. Ethynyl radicals are produced by pulsed laser photolysis of C2H2 in a variable temperature flow cell, and a tunable color center laser probes the transient removal of C2H (Chi(exp 2) Sigma(+) (0,0,0)) in absorption. The rate coefficients for the reactions of C2H with CH4 and CD4 both show a positive temperature dependence over the range 154-359 K, which can be expressed as k(sub CH4) = (1.2 +/- 0.1) x 10(exp -11) exp((-491 +/- 12)/T) and k(sub CD4) = (8.7 +/- 1.8) x 10(exp -12) exp((-650 +/- 61)/T) cm(exp 3) molecule(exp -1) s(exp -1), respectively. The reaction of C2H + CH4 exhibits a significant kinetic isotope effect at 300 K of k(sub CH4)/k(sub CD4) = 2.5 +/- 0.2. Temperature dependent rate constants for C2H + C2H2 were also remeasured over an increased temperature range from 143 to 359 K and found to show a slight negative temperature dependence, which can be expressed as k(sub C2H2) = 8.6 x 10(exp -16) T(exp 1.8) exp((474 +/- 90)/T) cm(exp 3) molecule(exp -1) s(exp -1).

  12. Accelerating proton spin diffusion in perdeuterated proteins at 100 kHz MAS.

    PubMed

    Wittmann, Johannes J; Agarwal, Vipin; Hellwagner, Johannes; Lends, Alons; Cadalbert, Riccardo; Meier, Beat H; Ernst, Matthias

    2016-12-01

    Fast magic-angle spinning (>60 kHz) has many advantages but makes spin-diffusion-type proton-proton long-range polarization transfer inefficient and highly dependent on chemical-shift offset. Using 100%-HN-[(2)H,(13)C,(15)N]-ubiquitin as a model substance, we quantify the influence of the chemical-shift difference on the spin diffusion between proton spins and compare two experiments which lead to an improved chemical-shift compensation of the transfer: rotating-frame spin diffusion and a new experiment, reverse amplitude-modulated MIRROR. Both approaches enable broadband spin diffusion, but the application of the first variant is limited due to fast spin relaxation in the rotating frame. The reverse MIRROR experiment, in contrast, is a promising candidate for the determination of structurally relevant distance restraints. The applied tailored rf-irradiation schemes allow full control over the range of recoupled chemical shifts and efficiently drive spin diffusion. Here, the relevant relaxation time is the larger longitudinal relaxation time, which leads to a higher signal-to-noise ratio in the spectra.

  13. Modeling Ice Giant Interiors Using Constraints on the H2-H2O Critical Curve

    NASA Astrophysics Data System (ADS)

    Bailey, E.; Stevenson, D. J.

    2015-12-01

    We present a range of models of Uranus and Neptune, taking into account recent experimental data (Bali, 2013) implying the location of the critical curve of the H2-H2O system at pressures up to 2.6 GPa. The models presented satisfy the observed total mass of each planet and the radius at the observed 1-bar pressure level. We assume the existence of three regions at different depths: an outer adiabatic envelope composed predominately of H2 and He, with a helium mass fraction 0.26, a water-rich layer including varied amounts of rock and hydrogen, and a chemically homogeneous rock core. Using measured rotation rates of Uranus and Neptune, and a density profile obtained for each model using constituent equations of state and the assumption of hydrostatic equilibrium, we calculate the gravitational harmonics J2 and J4 for comparison with observed values as an additional constraint. The H2-H2O critical curve provides information about the nature of the boundary between the outer, hydrogen-rich envelope and underlying water-rich layer. The extrapolated critical curve for hydrogen-water mixtures crosses the adiabat of the outer atmospheric shell in these models at two depths, implying a shallow outer region of limited miscibility, an intermediate region between ~90 and 98 percent of the total planet radius within which hydrogen and water can mix in all proportions, and another, deeper region of limited miscibility at less than ~90 percent of the total planet radius. The pressure and temperature of the gaseous adiabatic shell at the depth of the shallowest extent of the water-rich layer determines whether a gradual compositional transition or an ocean surface boundary may exist at depth in these planets. To satisfy the observed J2, the outer extent of the water-rich layer in these models must be located between approximately 80 and 85 percent of the total planet radius, within the deep region of limited H2-H2O miscibility, implying an ocean surface is possible within the

  14. An ignored but most favorable channel for NCO +C2H2 reaction

    NASA Astrophysics Data System (ADS)

    Xie, Hong-bin; Wang, Jian; Zhang, Shao-wen; Ding, Yi-hong; Sun, Chia-chung

    2006-09-01

    The NCO +C2H2 reaction has been considered as a prototype for understanding the chemical reactivity of the isocyanate radical towards unsaturated hydrocarbons in fuel-rich combustion. It has also been proposed to provide an effective route for formation of oxazole-containing compounds in organic synthesis, and might have potential applications in interstellar processes. Unfortunately, this reaction has met mechanistic controversy both between experiments and between experiments and theoretical calculations. In this paper, detailed theoretical investigations at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-31G(d), B3LYP /6-311++G(d,p), quadratic configuration interaction with single and double excitations QCISD /6-31G(d), and Gaussian-3 levels are performed for the NCO +C2H2 reaction, covering various entrance, isomerization, and decomposition channels. Also, the highly cost-expensive coupled-cluster theory including single and double excitations and perturbative inclusion of triple excitations CCSD(T)/aug-cc-pVTZ single-point energy calculation is performed for the geometries obtained at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-311++G(d,p) level. A previously ignored yet most favorable channel via a four-membered ring intermediate with allyl radical character is found. However, formation of P3 H +HCCNCO and the five-membered ring channel predicted by previous experimental and theoretical studies is kinetically much less competitive. With the new channel, master equation rate constant calculations over a wide range of temperatures (298-1500K) and pressures (10-560Torr) show that the predicted total rate constants exhibit a positive-temperature dependence and no distinct pressure dependence effect. This is in qualitative agreement with available experimental results. Under the experimental conditions, the predicted values are about 50% lower than the latest experimental results. Also, the branching ratio variations of the fragments P2 HCN +HCCO and P5

  15. Pseudomorphic 2A--> 2M--> 2H phase transitions in lanthanum strontium germanate electrolyte apatites.

    PubMed

    Pramana, Stevin S; White, T J; Schreyer, Martin K; Ferraris, Cristiano; Slater, Peter R; Orera, Alodia; Bastow, T J; Mangold, Stefan; Doyle, Stephen; Liu, Tao; Fajar, Andika; Srinivasan, Madhavi; Baikie, Tom

    2009-10-21

    Apatite-like materials are of considerable interest as potential solid oxide fuel cell electrolytes, although their structural vagaries continue to attract significant discussion. Understanding these features is crucial both to explain the oxide ion conduction process and to optimise it. As the composition of putative P6(3)/m apatites with ideal formula [A(I)(4)][A(II)(6)][(BO(4))(6)][X](2) is varied the [A(I)(4)(BO(4))(6)] framework will flex to better accommodate the [A(II)(6)X(2)] tunnel component through adjustment of the A(I)O(6) metaprism twist angle (varphi). The space group theory prescribes that framework adaptation during phase changes must lead to one of the maximal non-isomorphic subgroups of P6(3)/m (P2(1), P2(1)/m, P1[combining macron]). These adaptations correlate with oxygen ion conduction, and become crucial especially when the tunnels are filled by relatively small ions and/or partially occupied, and if interstitial oxygens are located in the framework. Detecting and completely describing these lower symmetry structures can be challenging, as it is difficult to precisely control apatite stoichiometry and small departures from the hexagonal metric may be near the limits of detection. Using a combination of diffraction and spectroscopic techniques it is shown that lanthanum strontium germanate oxide electrolytes crystallise as triclinic (A), monoclinic (M) and hexagonal (H) bi-layer pseudomorphs with the composition ranges: [La(10-x)Sr(x)][(GeO(4))(5+x/2)(GeO(5))(1-x/2)][O(2)] (0 2)][H(delta)] (2 2)][H(delta)] (2.96 2H, with the latter showing the highest conduction. The results show that small twist angles and high symmetry

  16. 242-16H 2H EVAPORATOR POT SAMPLING FINAL REPORT

    SciTech Connect

    Krementz, D; William Cheng, W

    2008-06-11

    Due to the materials that are processed through 2H Evaporator, scale is constantly being deposited on the surfaces of the evaporator pot. In order to meet the requirements of the Nuclear Criticality Safety Analysis/Evaluation (NCSA/NCSE) for 2H Evaporator, inspections of the pot are performed to determine the extent of scaling. Once the volume of scale reaches a certain threshold, the pot must be chemically cleaned to remove the scale. Prior to cleaning the pot, samples of the scale are obtained to determine the concentration of uranium and plutonium and also to provide information to assist with pot cleaning. Savannah River National Laboratory (SRNL) was requested by Liquid Waste Organization (LWO) Engineering to obtain these samples from two locations within the evaporator. Past experience has proven the difficulty of successfully obtaining solids samples from the 2H Evaporator pot. To mitigate this risk, a total of four samplers were designed and fabricated to ensure that two samples could be obtained. Samples had previously been obtained from the cone surface directly below the vertical access riser using a custom scraping tool. This tool was fabricated and deployed successfully. A second scraper was designed to obtain sample from the nearby vertical thermowell and a third scraper was designed to obtain sample from the vertical pot wall. The newly developed scrapers both employed a pneumatically actuated elbow. The scrapers were designed to be easily attached/removed from the elbow assembly. These tools were fabricated and deployed successfully. A fourth tool was designed to obtain sample from the opposite side of the pot under the tube bundle. This tool was fabricated and tested, but the additional modifications required to make the tool field-ready could not be complete in time to meet the aggressive deployment schedule. Two samples were obtained near the pot entry location, one from the pot wall and the other from the evaporator feed pipe. Since a third

  17. Raftlike Mixtures of Sphingomyelin and Cholesterol Investigated by Solid-State 2H NMR Spectroscopy

    PubMed Central

    Bartels, Tim; Lankalapalli, Ravi S.; Bittman, Robert; Beyer, Klaus; Brown, Michael F.

    2009-01-01

    Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance (2H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state 2H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed 2H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures

  18. 2H 2O quadrupolar splitting used to measure water exchange in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Naumann, Christoph

    2008-05-01

    The 2H NMR resonance from HDO (D = 2H) in human red blood cells (RBCs) suspended in gelatin that was held stretched in a special apparatus was distinct from the two signals that were symmetrically arranged on either side of it, which were assigned to extracellular HDO. The large extracellular splitting is due to the interaction of the electric quadrupole moment of the 2H nuclei with the electric field gradient tensor of the stretched, partially aligned gelatin. Lack of resolved splitting of the intracellular resonance indicated greatly diminished or absent ordering of the HDO inside RBCs. The separate resonances enabled the application of a saturation transfer method to estimate the rate constants of transmembrane exchange of water in RBCs. However both the theory and the practical applications needed modifications because even in the absence of RBCs the HDO resonances were maximally suppressed when the saturating radio-frequency radiation was applied exactly at the central frequency between the two resonances of the quadrupolar HDO doublet. More statistically robust estimates of the exchange rate constants were obtained by applying two-dimensional exchange spectroscopy (2D EXSY), with back-transformation analysis. A monotonic dependence of the estimates of the efflux rate constants on the mixing time, tmix, used in the 2D EXSY experiment were seen. Extrapolation to tmix = 0, gave an estimate of the efflux rate constant at 15 °C of 31.5 ± 2.2 s -1 while at 25 °C it was ˜50 s -1. These values are close to, but less than, those estimated by an NMR relaxation-enhancement method that uses Mn 2+ doping of the extracellular medium. The basis for this difference is thought to include the high viscosity of the extracellular gel. At the abstract level of quantum mechanics we have used the quadrupolar Hamiltonian to provide chemical shift separation between signals from spin populations across cell membranes; this is the first time, to our knowledge, that this has been

  19. Kinetics of the WF 6 and Si 2H 6 surface reactions during tungsten atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Elam, J. W.; Nelson, C. E.; Grubbs, R. K.; George, S. M.

    2001-05-01

    The atomic layer deposition (ALD) of tungsten (W) films has been demonstrated using alternating exposures to tungsten hexafluoride (WF 6) and disilane (Si 2H 6). The present investigation explored the kinetics of the WF 6 and Si 2H 6 surface reactions during W ALD at 303-623 K using Auger electron spectroscopy techniques. The reaction of WF 6 with the Si 2H 6-saturated W surface proceeded to completion at 373-573 K. The WF 6 reaction displayed a reactive sticking coefficient of S=0.4 and required an exposure of 30 L (1 L=1×10 -6 Torr s) to achieve saturation at 573 K. The WF 6 exposures necessary to reach saturation increased with decreasing temperature. At surface temperatures <373 K, the WF 6 reaction did not consume all the silicon (Si) surface species remaining from the previous Si 2H 6 exposure. The reaction of Si 2H 6 with the WF 6-saturated W surface displayed three kinetic regimes. In the first region at low Si 2H 6 exposures⩽50 L, the Si 2H 6 reaction was independent of temperature and had a reactive sticking coefficient