Science.gov

Sample records for 27al magic-angle spinning

  1. Structural characterization of AlON by {sup 27}Al MAS NMR and quantum chemistry method[Magic-Angle Spinning Nuclear Magnetic Resonance

    SciTech Connect

    Dai, Y.; Min, X.M.; Nan, C.W.; Pei, X.M.; Ren, H.L.

    1999-07-01

    Aluminum oxynitride (AlON) is a nitrogen-stabilized defective spinel phase of alumina ({gamma}-Al{sub 2}{sub 3}). Its structure has not been well understood so far. Solid-state {sup 27}Al magic-angle spinning nuclear magnetic resonance and quantum chemistry calculation are used to characterize {gamma}-Al{sub 2}O{sub 3} and AlON ceramics in the present study. The resonance spectra clearly show different units (e.g., [AlN{sub 4}], [AlO{sub 4}] and [AlO{sub 6}]) and vary with composition. The calculation shows that the vacancy located at octahedral site is more stable than that located at the tetrahedral site, and nitrogen atoms preferentially replace oxygen atoms in the tetrahedral site, which is in agreement with the experimental analysis by nuclear magnetic resonance.

  2. 27Al magic-angle spinning nuclear magnetic resonance satellite transition spectroscopy of glasses in the system K2O-Al2O3-SiO2.

    PubMed

    Mundus, C; Müller-Warmuth, W

    1995-10-01

    27Al magic-angle spinning nuclear magnetic resonance satellite transition spectroscopy at 78 MHz has been applied to determine (true) chemical shift and quadrupole coupling parameters of glasses in the system K2O-Al2O3-SiO2 with 60-80 mol% SiO2 and K2O concentrations between 0 and 24 mol%. The powdered crystalline aluminosilicates andalusite and sillimanite have also been examined. In the glasses, all Al appears to be tetrahedrally bound in the aluminosilicate network unless x = mol% K2O:mol% Al2O3 becomes extremely small. Upon decreasing x the distortion of the tetrahedral Al(OSi)4 units increases in steps, and possible explanations are discussed. Six-coordinated aluminum observed for x < 0.2 is connected with the occurrence of interstitial Al3+ ions which charge-compensate the AlO4 units in addition to K+. PMID:8748646

  3. Magic angle spinning NMR of viruses.

    PubMed

    Quinn, Caitlin M; Lu, Manman; Suiter, Christopher L; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  4. Magic Angle Spinning NMR of Viruses

    PubMed Central

    Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-01-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  5. Broadband "Infinite-Speed" Magic-Angle Spinning NMR Spectroscopy

    SciTech Connect

    Hu, Yan-Yan; Levin, E.M; Schmidt-Rohr, Klaus

    2009-06-02

    High-resolution magic-angle spinning NMR of high-Z spin- 1/2 nuclei such as {sup 125}Te, {sup 207}Pb, {sup 119}Sn, {sup 113}Cd, and {sup 195}Pt is often hampered by large (>1000 ppm) chemical-shift anisotropies, which result in strong spinning sidebands that can obscure the centerbands of interest. In various tellurides with applications as thermoelectrics and as phase-change materials for data storage, even 22-kHz magic-angle spinning cannot resolve the center- and sidebands broadened by chemical-shift dispersion, which precludes peak identification or quantification. For sideband suppression over the necessary wide spectral range (up to 200 kHz), radio frequency pulse sequences with few, short pulses are required. We have identified Gan's two-dimensional magic-angle-turning (MAT) experiment with five 90{sup o} pulses as a promising broadband technique for obtaining spectra without sidebands. We have adapted it to broad spectra and fast magic-angle spinning by accounting for long pulses (comparable to the dwell time in t{sub 1}) and short rotation periods. Spectral distortions are small and residual sidebands negligible even for spectra with signals covering a range of 1.5 {gamma}B{sub 1}, due to a favorable disposition of the narrow ranges containing the signals of interest in the spectral plane. The method is demonstrated on various technologically interesting tellurides with spectra spanning up to 170 kHz, at 22 kHz MAS.

  6. NMR in rotating magnetic fields: Magic angle field spinning

    SciTech Connect

    Sakellariou, D.; Meriles, C.; Martin, R.; Pines, A.

    2004-09-10

    Magic angle sample spinning has been one of the cornerstones in high-resolution solid state NMR. Spinning frequencies nowadays have increased by at least one order of magnitude over the ones used in the first experiments and the technique has gained tremendous popularity. It is currently a routine procedure in solid-state NMR, high-resolution liquid-state NMR and solid-state MRI. The technique enhances the spectral resolution by averaging away rank 2 anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. Andrew proposed that it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS) and this has been recently demonstrated using electromagnetic field rotation. Here we discuss on the possibilities to perform field rotation using alternative hardware, together with spectroscopic methods to recover isotropic resolution even in cases where the field is not rotating at the magic angle. Extension to higher magnetic fields would be beneficial in situations where the physical manipulation of the sample is inconvenient or impossible. Such situations occur often in materials or biomedical samples where ''ex-situ'' NMR spectroscopy and imaging analysis is needed.

  7. HYDROGEN AND DEUTERIUM NMR OF SOLIDS BY MAGIC ANGLE SPINNING

    SciTech Connect

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large spectral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. For example, the homonuclear dipolar broadening, HD, for hydrogen is usually several tens of kilohertz. For deuterium, HD is relatively small; however, the quadrupole interaction causes a broadening which can be hundreds of kilohertz in polycrystalline or amorphous solids. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, {beta}{sub m} = Arccos(3{sup -1/2}), with respect to the direction of the external magnetic field. Two approaches have been developed for each nucleus. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of {beta}. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H{sub D} was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal

  8. Magic-angle spinning NMR of cold samples.

    PubMed

    Concistrè, Maria; Johannessen, Ole G; Carignani, Elisa; Geppi, Marco; Levitt, Malcolm H

    2013-09-17

    Magic-angle-spinning solid-state NMR provides site-resolved structural and chemical information about molecules that complements many other physical techniques. Recent technical advances have made it possible to perform magic-angle-spinning NMR experiments at low temperatures, allowing researchers to trap reaction intermediates and to perform site-resolved studies of low-temperature physical phenomena such as quantum rotations, quantum tunneling, ortho-para conversion between spin isomers, and superconductivity. In examining biological molecules, the improved sensitivity provided by cryogenic NMR facilitates the study of protein assembly or membrane proteins. The combination of low-temperatures with dynamic nuclear polarization has the potential to boost sensitivity even further. Many research groups, including ours, have addressed the technical challenges and developed hardware for magic-angle-spinning of samples cooled down to a few tens of degrees Kelvin. In this Account, we briefly describe these hardware developments and review several recent activities of our group which involve low-temperature magic-angle-spinning NMR. Low-temperature operation allows us to trap intermediates that cannot be studied under ambient conditions by NMR because of their short lifetime. We have used low-temperature NMR to study the electronic structure of bathorhodopsin, the primary photoproduct of the light-sensitive membrane protein, rhodopsin. This project used a custom-built NMR probe that allows low-temperature NMR in the presence of illumination (the image shows the illuminated spinner module). We have also used this technique to study the behavior of molecules within a restricted environment. Small-molecule endofullerenes are interesting molecular systems in which molecular rotors are confined to a well-insulated, well-defined, and highly symmetric environment. We discuss how cryogenic solid state NMR can give information on the dynamics of ortho-water confined in a fullerene

  9. Magic-angle-spinning NMR studies of acid sites in zeolite H-ZSM-5

    SciTech Connect

    Brunner, E.; Ernst, H.; Freude, D.; Froehlich, T.; Hunger, M.; Pfeifer, H. )

    1991-01-01

    {sup 1}H, {sup 13}C, {sup 27}Al, and {sup 29}Si magic-angle-spinning (MAS) NMR was used to elucidate the nature of the catalytic activity of zeolite H-ZSM-5. {sup 1}H MAS NMR of sealed samples after mild hydrothermal dealumination shows that the enhanced activity for n-hexane cracking is not due to an enhanced Bronstead acidity. The concentrations of the various OH groups and aluminous species suggest that the reason for the enhanced catalytic activity is the interaction of the n-hexane molecule with a bridging hydroxyl group and with extra-framework aluminium species, which give rise to the enhanced activity, cannot be easily removed from their positions, and are therefore immobilized by the zeolitic framework.

  10. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.

    PubMed

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This

  11. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.

    PubMed

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This

  12. High-pressure magic angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg 2SiO 4) reacted with supercritical CO 2 and H 2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  13. High-pressure magic angle spinning nuclear magnetic resonance.

    PubMed

    Hoyt, David W; Turcu, Romulus V F; Sears, Jesse A; Rosso, Kevin M; Burton, Sarah D; Felmy, Andrew R; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ(13)C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg(2)SiO(4)) reacted with supercritical CO(2) and H(2)O at 150 bar and 50°C are reported, with relevance to geological sequestration of carbon dioxide. PMID:21862372

  14. High-pressure magic angle spinning nuclear magnetic resonance

    SciTech Connect

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. Finally, as an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  15. Solid effect in magic angle spinning dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2012-08-01

    For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.

  16. Nuclear Magnetic Resonance Spectroscopy Applications: Proton NMR In Biological Objects Subjected To Magic Angle Spinning

    SciTech Connect

    Wind, Robert A.; Hu, Jian Zhi

    2005-01-01

    Proton NMR in Biological Objects Submitted to Magic Angle Spinning, In Encyclopedia of Analytical Science, Second Edition (Paul J. Worsfold, Alan Townshend and Colin F. Poole, eds.), Elsevier, Oxford 6:333-342. Published January 1, 2005. Proposal Number 10896.

  17. High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning

    SciTech Connect

    Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

    2005-01-27

    High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

  18. Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids.

    PubMed

    Hung, Ivan; Gan, Zhehong

    2015-07-01

    Spin-locking and cross-polarization under magic-angle spinning are investigated for uniformly (13)C and (15)N labeled solids. In particular, the interferences from chemical shift anisotropy, and (1)H heteronuclear and (13)C homonuclear dipolar couplings are identified. The physical origin of these interferences provides guidelines for selecting the best (13)C and (15)N polarization transfer rf fields. Optimal settings for both the zero- and double-quantum cross-polarization transfer mechanisms are recommended.

  19. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    DOEpatents

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  20. 1020MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy.

    PubMed

    Pandey, Manoj Kumar; Zhang, Rongchun; Hashi, Kenjiro; Ohki, Shinobu; Nishijima, Gen; Matsumoto, Shinji; Noguchi, Takashi; Deguchi, Kenzo; Goto, Atsushi; Shimizu, Tadashi; Maeda, Hideaki; Takahashi, Masato; Yanagisawa, Yoshinori; Yamazaki, Toshio; Iguchi, Seiya; Tanaka, Ryoji; Nemoto, Takahiro; Miyamoto, Tetsuo; Suematsu, Hiroto; Saito, Kazuyoshi; Miki, Takashi; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-12-01

    This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.

  1. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    DOEpatents

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  2. Restoring Resolution in Biological Solid-State NMR under Conditions of Off-Magic-Angle Spinning.

    PubMed

    Sarkar, Riddhiman; Rodriguez Camargo, Diana C; Pintacuda, Guido; Reif, Bernd

    2015-12-17

    Spin-state-selective excitation (S3E) experiments allow the selection of individual transitions in a coupled two spin system. We show that in the solid state, the dipole-dipole interaction (DD) between (15)N and (1)H in a (1)H-(15)N bond and the chemical shift anisotropy (CSA) of (15)N in an amide moiety mutually cancel each other for a particular multiplet component at high field, when the sample is spun off the magic angle (Arctan [√2] = 54.74°). The accuracy of the adjustment of the spinning angle is crucial in conventional experiments. We demonstrate that for S3E experiments, the requirement to spin the sample exactly at the magic angle is not mandatory. Applications of solid state NMR in narrow bore magnets will be facilitated where the adjustment of the magic angle is often difficult. The method opens new perspectives for the development of schemes to determine distances and to quantify dynamics in the solid state.

  3. NMR high-resolution magic angle spinning rotor design for quantification of metabolic concentrations

    NASA Astrophysics Data System (ADS)

    Holly, R.; Damyanovich, A.; Peemoeller, H.

    2006-05-01

    A new high-resolution magic angle spinning nuclear magnetic resonance technique is presented to obtain absolute metabolite concentrations of solutions. The magnetic resonance spectrum of the sample under investigation and an internal reference are acquired simultaneously, ensuring both spectra are obtained under the same experimental conditions. The robustness of the technique is demonstrated using a solution of creatine, and it is shown that the technique can obtain solution concentrations to within 7% or better.

  4. Localized in Vivo Isotropic-Anisotropic Correlation 1H NMR Spectroscopy Using Ultraslow Magic Angle Spinning

    SciTech Connect

    Wind, Robert A.; Hu, Jian Zhi; Majors, Paul D.

    2006-01-01

    Previous work has shown that it is possible to separate the susceptibility broadening in the 1H NMR metabolite spectrum obtained in a live mouse from the isotropic information, thus significantly increasing the spectral resolution. This was achieved using ultra-slow magic angle spinning of the animal combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. However, PHORMAT cannot be used for spatially selective spectroscopy. In this article a modified sequence called LOCMAT (localized magic angle turning) is introduced that makes this possible. Proton LOCMAT spectra are shown for the liver and heart of a live mouse, while spinning the animal at a speed of 4 Hz in a 2 Tesla field. It was found that even in this relatively low field LOCMAT provided isotropic line widths that are a factor 4-10 times smaller than the ones obtained in a stationary animal, and that the susceptibility broadening of the heart metabolites shows unusual features not observed for a dead animal. Finally, the limitations of LOCMAT and possible ways to improve the technique are discussed. It is concluded that in vivo LOCMAT can significantly enhance the utility of NMR spectroscopy for biomedical research.

  5. Magic-Angle-Spinning NMR Magnet Development: Field Analysis and Prototypes

    PubMed Central

    Voccio, John; Hahn, Seungyong; Park, Dong Keun; Ling, Jiayin; Kim, Youngjae; Bascuñán, Juan; Iwasa, Yukikazu

    2013-01-01

    We are currently working on a program to complete a 1.5 T/75 mm RT bore magic-angle-spinning nuclear magnetic resonance magnet. The magic-angle-spinning magnet comprises a z-axis 0.866-T solenoid and an x-axis 1.225-T dipole, each to be wound with NbTi wire and operated at 4.2 K in persistent mode. A combination of the fields creates a 1.5-T field pointed at 54.74 degrees (magic angle) from the rotation (z) axis. In the first year of this 3-year program, we have completed magnetic analysis and design of both coils. Also, using a winding machine of our own design and fabrication, we have wound several prototype dipole coils with NbTi wire. As part of this development, we have repeatedly made successful persistent NbTi-NbTi joints with this multifilamentary NbTi wire. PMID:24058275

  6. C-REDOR: rotational echo double resonance under very fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Chan, Jerry C. C.

    2001-02-01

    We propose a heteronuclear dipolar interaction recoupling scheme based on the pulse symmetry POST-C Nnν. Numerical simulations showed that POST-C3 31 and POST-C7 71 are suitable for the characterization of heteronuclear dipolar couplings for multiple-spin systems under very fast magic-angle spinning condition. These new pulse symmetries are superior to the rotational echo double resonance method and other recoupling schemes as far as the interference of homonuclear dipolar interaction is concerned. The experiment was carried out for fluorapatite at a spinning frequency of 25 kHz and the results were in good agreement with X-ray data.

  7. Tethered or adsorbed supported lipid bilayers in nanotubes characterized by deuterium magic angle spinning NMR spectroscopy.

    PubMed

    Wattraint, Olivier; Warschawski, Dror E; Sarazin, Catherine

    2005-04-12

    2H solid-state NMR experiments were performed under magic angle spinning on lipid bilayers oriented into nanotubes arrays, as a new method to assess the geometrical arrangement of the lipids. Orientational information is obtained from the intensities of the spinning sidebands. The lipid bilayers are formed by fusion of small unilamellar vesicles of DMPC-d54 inside a nanoporous anodic aluminum oxide, either by direct adsorption on the support or by tethering through a streptavidin/biotin linker. The results support that the quality of the lipid bilayers alignment is clearly in favor of the tethering rather than an adsorbed strategy. PMID:15807556

  8. Microfabricated Inserts for Magic Angle Coil Spinning (MACS) Wireless NMR Spectroscopy

    PubMed Central

    Badilita, Vlad; Fassbender, Birgit; Kratt, Kai; Wong, Alan; Bonhomme, Christian; Sakellariou, Dimitris; Korvink, Jan G.; Wallrabe, Ulrike

    2012-01-01

    This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS) NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and volume-limited samples. The combination of microfabrication technology and MACS addresses several well-known NMR issues in a concerted manner for the first time: (i) reproducible wafer-scale fabrication of the first-in-kind on-chip LC microresonator for inductive coupling of the NMR signal and reliable exploitation of MACS capabilities; (ii) improving the sensitivity and the spectral resolution by simultaneous spinning the detection microcoil together with the sample at the “magic angle” of 54.74° with respect to the direction of the magnetic field (magic angle spinning – MAS), accompanied by the wireless signal transmission between the microcoil and the primary circuit of the NMR spectrometer; (iii) given the high spinning rates (tens of kHz) involved in the MAS methodology, the microfabricated inserts exhibit a clear kinematic advantage over their previously demonstrated counterparts due to the inherent capability to produce small radius cylindrical geometries, thus tremendously reducing the mechanical stress and tearing forces on the sample. In order to demonstrate the versatility of the microfabrication technology, we have designed MACS probes for various Larmor frequencies (194, 500 and 700 MHz) testing several samples such as water, Drosophila pupae, adamantane solid and LiCl at different magic angle spinning speeds. PMID:22936994

  9. Application of amplitude-modulated radiofrequency fields to the magic-angle spinning NMR of spin- {7}/{2} nuclei

    NASA Astrophysics Data System (ADS)

    Madhu, P. K.; Johannessen, Ole G.; Pike, Kevin J.; Dupree, Ray; Smith, Mark E.; Levitt, Malcolm H.

    2003-08-01

    We report pulse sequences for the sensitivity enhancement of magic-angle spinning and multiple-quantum magic-angle spinning spectra of spin- {7}/{2} systems. Sensitivity enhancement is obtained with the use of fast amplitude-modulated (FAM) radiofrequency pulses. In one-dimensional magic-angle spinning experiments, signal enhancement of 3 is obtained by a FAM pulse followed by a soft 90° pulse. In two-dimensional multiple-quantum magic-angle spinning experiments, FAM pulses are used for both the excitation of multiple-quantum coherences and for their conversion into observable single-quantum coherences. The observed signal enhancements are 2.2 in 3Q experiments, 3.1 in 5Q experiments, and 4.1 in 7Q experiments, compared to the conventional two-pulse scheme. The pulse schemes are demonstrated on the 45Sc NMR of Sc 2(SO 4) 3 · 5H 2O and the 139La NMR of LaAlO 3. We also demonstrate the generation of FAM pulses by double-frequency irradiation.

  10. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR.

    PubMed

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered. PMID:26920834

  11. Full quadrupolar tensor determination by NMR using a micro-crystal spinning at the magic angle.

    PubMed

    Vasa, Suresh Kumar; van Eck, Ernst R H; Janssen, J W G; Kentgens, Arno P M

    2010-05-14

    An implementation of rotor-synchronised Magic Angle Spinning (MAS) NMR is presented to determine the quadrupolar coupling tensor values from a single crystal study for half-integer quadrupolar nuclei. Using a microcoil based probehead for studying micro crystals with superior sensitivity, we successfully determine the full quadrupolar tensor of (23)Na using a micro crystal of dimensions 210 x 210 x 700 mum of NaNO(3) as a model system. A two step simulation procedure is used to obtain the orientation of the quadrupolar tensor information from the experimental spectra and is verified by XRD analysis.

  12. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    SciTech Connect

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  13. The use of variable temperature and magic-angle sample spinning in studies of fulvic acids

    USGS Publications Warehouse

    Earl, W.L.; Wershaw, R. L.; Thorn, K.A.

    1987-01-01

    Intensity distortions and poor signal to noise in the cross-polarization magic-angle sample spinning NMR of fulvic acids were investigated and attributed to molecular mobility in these ostensibly "solid" materials. We have shown that inefficiencies in cross polarization can be overcome by lowering the sample temperature to about -60??C. These difficulties can be generalized to many other synthetic and natural products. The use of variable temperature and cross-polarization intensity as a function of contact time can yield valuable qualitative information which can aid in the characterization of many materials. ?? 1987.

  14. Advanced slow-magic angle spinning probe for magnetic resonance imaging and spectroscopy

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi; Minard, Kevin R.; Rommereim, Donald N.

    2006-01-24

    The present invention relates to a probe and processes useful for magnetic resonance imaging and spectroscopy instruments. More particularly, the invention relates to a MR probe and processes for obtaining resolution enhancements of fluid objects, including live specimens, using an ultra-slow (magic angle) spinning (MAS) of the specimen combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in a 2T field, while spinning the animal at a speed of 1.5 Hz. Results show that even in this relatively low field with PHORMAT, an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. Resolution of 1H NMR metabolite spectra are thus significantly enhanced. Results indicate that PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for in vivo biochemical, biomedical and/or medical applications involving large-sized biological objects such as mice, rats and even humans within a hospital setting. For small-sized objects, including biological objects, such as excised tissues, organs, live bacterial cells, and biofilms, use of PASS at a spinning rate of 30 Hz and above is preferred.

  15. Spinning-sideband patterns in multiple-quantum magic-angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Friedrich, Ulli

    1998-12-01

    Recent interest has focused on solid-state NMR experiments which excite multiple-quantum (MQ) coherences in the presence of magic-angle spinning (MAS). Such experiments have been applied to both dipolar-coupled spin Ι = 1/2 and half-integer quadrupolar systems. A feature common to both cases is the observation of interesting spinning sideband patterns in the indirect (MQ) dimension. In this paper, the origin of these patterns is reviewed in terms of two distinct mechanisms: first, rotor encoding of the dipolar or quadrupolar interaction caused by the change in the Hamiltonian active during the MQ reconversion period relative to the excitation period (reconversion rotor encoding, RRE); and, second, rotor modulation of the interaction during the evolution of the MQ coherences in the t1 dimension (evolution rotor modulation, ERM). Only the first mechanism is present for total spin coherences, while for lower-order MQ coherences both mechanisms contribute to the pattern. For dipolar and quadrupolar model systems, i.e., the three protons of a methyl group and quadrupolar nuclei with spin Ι = 3/2 and Ι = 5/2 and axially symmetric first-order quadrupolar interactions, analytical expressions are derived for all orders of MQ MAS signals. Simulations based on these analytical expressions and numerical density matrix simulations are compared with experimental spectra. Additional perturbing influences, such as the heteronuclear dipolar coupling between a quadrupolar and a spin Ι = 1/2 nucleus, are taken into account. The effect of dipolar couplings on a quadrupolar MQ spectrum is found to be enhanced by the order of the observed MQ coherence.

  16. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning

    SciTech Connect

    Mance, Deni; Baldus, Marc; Gast, Peter; Huber, Martina; Ivanov, Konstantin L.

    2015-06-21

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.

  17. Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle.

    PubMed

    Perras, Frédéric A; Kobayashi, Takeshi; Pruski, Marek

    2016-03-01

    Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI-MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP-MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that the largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. The STRAFI-MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP-MAS NMR. PMID:26920838

  18. Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle.

    PubMed

    Perras, Frédéric A; Kobayashi, Takeshi; Pruski, Marek

    2016-03-01

    Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI-MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP-MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that the largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. The STRAFI-MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP-MAS NMR.

  19. Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle

    DOE PAGES

    Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek

    2016-02-23

    Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI–MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP–MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that themore » largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. Furthermore, the STRAFI–MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP–MAS NMR.« less

  20. 15N-15N Proton Assisted Recoupling in Magic Angle Spinning NMR

    PubMed Central

    Lewandowski, Józef R.; De Paëpe, Gaël; Eddy, Matthew T.; Griffin, Robert G.

    2009-01-01

    We describe a new magic angle spinning (MAS) NMR experiment for obtaining 15N-15N correlation spectra. The approach yields direct information about the secondary and tertiary structure of proteins, including identification of α-helical stretches and inter-strand connectivity in antiparallel β-sheets, which are of major interest for structural studies of membrane proteins and amyloid fibrils. The method, 15N-15N proton assisted recoupling (PAR), relies on a second order mechanism, third spin assisted recoupling (TSAR), used previously in the context of 15N-13C and 13C-13C polarization transfer schemes. In comparison to 15N-15N proton driven spin diffusion experiments, the PAR technique accelerates polarization transfer between 15N’s by a factor of ~102−103, and is furthermore applicable over the entire range of currently available MAS frequencies (10–70 kHz). PMID:19334788

  1. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.

    PubMed

    Barbet-Massin, Emeline; Pell, Andrew J; Retel, Joren S; Andreas, Loren B; Jaudzems, Kristaps; Franks, W Trent; Nieuwkoop, Andrew J; Hiller, Matthias; Higman, Victoria; Guerry, Paul; Bertarello, Andrea; Knight, Michael J; Felletti, Michele; Le Marchand, Tanguy; Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars; Stoppini, Monica; Bellotti, Vittorio; Bolognesi, Martino; Ricagno, Stefano; Chou, James J; Griffin, Robert G; Oschkinat, Hartmut; Lesage, Anne; Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido

    2014-09-01

    Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.

  2. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    PubMed

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately.

  3. Efficient dipolar double quantum filtering under magic angle spinning without a 1H decoupling field

    NASA Astrophysics Data System (ADS)

    Courtney, Joseph M.; Rienstra, Chad M.

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in 13C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n ⩾ 7, provided that the 13C nutation frequency is on the order of 100 kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between 13C and 1H fields. For 13C nutation frequencies greater than 75 kHz, optimal performance is observed without an applied 1H field. At spinning rates exceeding 20 kHz, symmetry conditions as low as n = 3 were found to perform adequately.

  4. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    PubMed

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately. PMID:27314744

  5. Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface

    NASA Astrophysics Data System (ADS)

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  6. Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone.

    PubMed

    Singh, Chandan; Rai, Ratan Kumar; Kayastha, Arvind M; Sinha, Neeraj

    2016-02-01

    Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line broadening in solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It has given a new direction to ssNMR spectroscopy with its different applications. We present here the first and foremost application of ultra fast MAS (~60 kHz) for ssNMR spectroscopy of intact bone. This methodology helps to comprehend and elucidate the organic content in the intact bone matrix with resolution and sensitivity enhancement. At this MAS speed, amino protons from organic part of intact bone start to appear in (1) H NMR spectra. The experimental protocol of ultra-high speed MAS for intact bone has been entailed with an additional insight achieved at 60 kHz.

  7. Magic-angle spinning NMR of intact bacteriophages: insights into the capsid, DNA and their interface.

    PubMed

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  8. Forensic examination of electrical tapes using high resolution magic angle spinning ¹H NMR spectroscopy.

    PubMed

    Schoenberger, Torsten; Simmross, Ulrich; Poppe, Christian

    2016-01-01

    The application of high resolution magic angle spinning (HR-MAS) (1)H NMR spectroscopy is ideally suited for the differentiation of plastics. In addition to the actual material composition, the different types of polymer architectures and tacticity provide characteristic signals in the fingerprint of the (1)H NMR spectra. The method facilitates forensic comparison, as even small amounts of insoluble but swellable plastic particles are utilized. The performance of HR-MAS NMR can be verified against other methods that were recently addressed in various articles about forensic tape comparison. In this study samples of the 90 electrical tapes already referenced by the FBI laboratory were used. The discrimination power of HR-MAS is demonstrated by the fact that more tape groups can be distinguished by NMR spectroscopy than by using the combined evaluation of several commonly used analytical techniques. An additional advantage of this robust and quick method is the very simple sample preparation. PMID:26558760

  9. Magic Angle Spinning NMR Spectroscopy: A Versatile Technique for Structural and Dynamic Analysis of Solid-Phase Systems

    PubMed Central

    Polenova, Tatyana; Gupta, Rupal; Goldbourt, Amir

    2016-01-01

    Magic Angle Spinning (MAS) NMR spectroscopy is a powerful method for analysis of a broad range of systems, including inorganic materials, pharmaceuticals, and biomacromolecules. The recent developments in MAS NMR instrumentation and methodologies opened new vistas to atomic-level characterization of a plethora of chemical environments previously inaccessible to analysis, with unprecedented sensitivity and resolution. PMID:25794311

  10. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Shmyreva, Anna A.; Safdari, Majid; Furó, István; Dvinskikh, Sergey V.

    2016-06-01

    Orders of magnitude decrease of 207Pb and 199Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  11. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning.

    PubMed

    Shmyreva, Anna A; Safdari, Majid; Furó, István; Dvinskikh, Sergey V

    2016-06-14

    Orders of magnitude decrease of (207)Pb and (199)Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  12. Dynamic nuclear polarization at 40 kHz magic angle spinning.

    PubMed

    Chaudhari, Sachin R; Berruyer, Pierrick; Gajan, David; Reiter, Christian; Engelke, Frank; Silverio, Daniel L; Copéret, Christophe; Lelli, Moreno; Lesage, Anne; Emsley, Lyndon

    2016-04-21

    DNP-enhanced solid-state NMR spectroscopy under magic angle spinning (MAS) is rapidly developing into a powerful analytical tool to investigate the structure of a wide range of solid materials, because it provides unsurpassed sensitivity gains. Most developments and applications of DNP MAS NMR were so far reported at moderate spinning frequencies (up to 14 kHz using 3.2 mm rotors). Here, using a 1.3 mm MAS DNP probe operating at 18.8 T and ∼100 K, we show that signal amplification factors can be increased by up to a factor two when using smaller volume rotors as compared to 3.2 mm rotors, and report enhancements of around 60 over a range of sample spinning rates from 10 to 40 kHz. Spinning at 40 kHz is also shown to increase (29)Si coherence lifetimes by a factor three as compared to 10 kHz, substantially increasing sensitivity in CPMG type experiments. The contribution of quenching effects to the overall sensitivity gain at very fast MAS is evaluated, and applications are reported on a functionalised mesostructured organic-inorganic material.

  13. Biomolecular solid state NMR with magic-angle spinning at 25 K

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2009-01-01

    A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25 K using roughly 3 liters/hour of liquid helium, while the 4 mm diameter rotor spins at 6.7 kHz with good stability (±5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature 13C NMR data for two biomolecular samples, namely the peptide Aβ14–23 in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and 13C MAS NMR linewidths are discussed. PMID:18922715

  14. Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy

    PubMed Central

    Hou, Guangjin; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2012-01-01

    13C and 15N chemical shift (CS) interaction is a sensitive probe of structure and dynamics in a wide variety of biological and inorganic systems, and in the recent years several magic angle spinning NMR approaches have emerged for residue-specific measurements of chemical shift anisotropy (CSA) tensors in uniformly and sparsely enriched proteins. All of the currently existing methods are applicable to slow and moderate magic angle spinning (MAS) regime, i.e., MAS frequencies below 20 kHz. With the advent of fast and ultrafast MAS probes capable of spinning frequencies of 40–100 kHz, and with the superior resolution and sensitivity attained at such high frequencies, development of CSA recoupling techniques working under such conditions is necessary. In this work, we present a family of R-symmetry based pulse sequences for recoupling of 13C/15N CSA interactions that work well in both natural abundance and isotopically enriched systems. We demonstrate that efficient recoupling of either first-rank (σ1) or second-rank (σ2) spatial components of CSA interaction is attained with appropriately chosen γ-encoded RNnv symmetry sequences. The advantage of these γ-encoded RNnv-symmetry based CSA (RNCSA) recoupling schemes is that they are suitable for CSA recoupling under a wide range of MAS frequencies, including fast MAS regime. Comprehensive analysis of the recoupling properties of these RNnv symmetry sequences reveals that the σ1-CSA recoupling symmetry sequences exhibit large scaling factors; however, the partial homonuclear dipolar Hamiltonian components are symmetry allowed, which makes this family of sequences suitable for CSA measurements in systems with weak homonuclear dipolar interactions. On the other hand, the γ-encoded symmetry sequences for σ2-CSA recoupling have smaller scaling factors but they efficiently suppress the homonuclear dipole-dipole interactions. Therefore, the latter family of sequences is applicable for measurements of CSA parameters in

  15. Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2012-10-01

    13C and 15N chemical shift (CS) interaction is a sensitive probe of structure and dynamics in a wide variety of biological and inorganic systems, and in the recent years several magic angle spinning NMR approaches have emerged for residue-specific measurements of chemical shift anisotropy (CSA) tensors in uniformly and sparsely enriched proteins. All of the currently existing methods are applicable to slow and moderate magic angle spinning (MAS) regime, i.e., MAS frequencies below 20 kHz. With the advent of fast and ultrafast MAS probes capable of spinning frequencies of 40-100 kHz, and with the superior resolution and sensitivity attained at such high frequencies, development of CSA recoupling techniques working under such conditions is necessary. In this work, we present a family of R-symmetry based pulse sequences for recoupling of 13C/15N CSA interactions that work well in both natural abundance and isotopically enriched systems. We demonstrate that efficient recoupling of either first-rank (σ1) or second-rank (σ2) spatial components of CSA interaction is attained with appropriately chosen γ-encoded RNnv symmetry sequences. The advantage of these γ-encoded RNnv-symmetry based CSA (RNCSA) recoupling schemes is that they are suitable for CSA recoupling under a wide range of MAS frequencies, including fast MAS regime. Comprehensive analysis of the recoupling properties of these RNnv symmetry sequences reveals that the σ1-CSA recoupling symmetry sequences exhibit large scaling factors; however, the partial homonuclear dipolar Hamiltonian components are symmetry allowed, which makes this family of sequences suitable for CSA measurements in systems with weak homonuclear dipolar interactions. On the other hand, the γ-encoded symmetry sequences for σ2-CSA recoupling have smaller scaling factors but they efficiently suppress the homonuclear dipole-dipole interactions. Therefore, the latter family of sequences is applicable for measurements of CSA parameters in

  16. Tailored low-power cross-polarization under fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Demers, Jean-Philippe; Vijayan, Vinesh; Becker, Stefan; Lange, Adam

    2010-08-01

    High static magnetic fields and very fast magic-angle spinning (MAS) promise to improve resolution and sensitivity of solid-state NMR experiments. The fast MAS regime has permitted the development of low-power cross-polarization schemes, such as second-order cross-polarization (SOCP), which prevent heat deposition in the sample. Those schemes are however limited in bandwidth, as weak radio-frequency (RF) fields only cover a small chemical shift range for rare nuclei (e.g. 13C). Another consideration is that the efficiency of cross-polarization is very sensitive to magnetization decay that occurs during the spin-lock pulse on the abundant nuclei (e.g. 1H). Having characterized this decay in glutamine at 60 kHz MAS, we propose two complementary strategies to tailor cross-polarization to desired spectral regions at low RF power. In the case of multiple sites with small chemical shift dispersion, a larger bandwidth for SOCP is obtained by slightly increasing the RF power while avoiding recoupling conditions that lead to fast spin-lock decay. In the case of two spectral regions with large chemical shift offset, an extension of the existing low-power schemes, called MOD-CP, is introduced. It consists of a spin-lock on 1H and an amplitude-modulated spin-lock on the rare nucleus. The range of excited chemical shifts is assessed by experimental excitation profiles and numerical simulation of an I 2S spin system. All SOCP-based schemes exhibit higher sensitivity than high-power CP schemes, as demonstrated on solid (glutamine) and semi-solid (hydrated, micro-crystalline ubiquitin) samples.

  17. Rotor Design for High Pressure Magic Angle Spinning Nuclear Magnetic Resonance

    SciTech Connect

    Turcu, Romulus V.F.; Hoyt, David W.; Rosso, Kevin M.; Sears, Jesse A.; Loring, John S.; Felmy, Andrew R.; Hu, Jian Z.

    2013-01-01

    High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low 1H and 13C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe2+)3Si2O5(OH)4), in contact with liquid water in water-saturated supercritical CO2 (scCO2) at 150 bar and 50 deg C. This mineral is relevant to the deep geologic disposal of CO2, but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.

  18. Structure of fully protonated proteins by proton-detected magic-angle spinning NMR.

    PubMed

    Andreas, Loren B; Jaudzems, Kristaps; Stanek, Jan; Lalli, Daniela; Bertarello, Andrea; Le Marchand, Tanguy; Cala-De Paepe, Diane; Kotelovica, Svetlana; Akopjana, Inara; Knott, Benno; Wegner, Sebastian; Engelke, Frank; Lesage, Anne; Emsley, Lyndon; Tars, Kaspars; Herrmann, Torsten; Pintacuda, Guido

    2016-08-16

    Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins. PMID:27489348

  19. High resolution triple resonance micro magic angle spinning NMR spectroscopy of nanoliter sample volumes.

    PubMed

    Brauckmann, J Ole; Janssen, J W G Hans; Kentgens, Arno P M

    2016-02-14

    To be able to study mass-limited samples and small single crystals, a triple resonance micro-magic angle spinning (μMAS) probehead for the application of high-resolution solid-state NMR of nanoliter samples was developed. Due to its excellent rf performance this allows us to explore the limits of proton NMR resolution in strongly coupled solids. Using homonuclear decoupling we obtain unprecedented (1)H linewidths for a single crystal of glycine (Δν(CH2) = 0.14 ppm) at high field (20 T) in a directly detected spectrum. The triple channel design allowed the recording of high-resolution μMAS (13)C-(15)N correlations of [U-(13)C-(15)N] arginine HCl and shows that the superior (1)H resolution opens the way for high-sensitivity inverse detection of heteronuclei even at moderate spinning speeds and rf-fields. Efficient decoupling leads to long coherence times which can be exploited in many correlation experiments.

  20. Structure of fully protonated proteins by proton-detected magic-angle spinning NMR.

    PubMed

    Andreas, Loren B; Jaudzems, Kristaps; Stanek, Jan; Lalli, Daniela; Bertarello, Andrea; Le Marchand, Tanguy; Cala-De Paepe, Diane; Kotelovica, Svetlana; Akopjana, Inara; Knott, Benno; Wegner, Sebastian; Engelke, Frank; Lesage, Anne; Emsley, Lyndon; Tars, Kaspars; Herrmann, Torsten; Pintacuda, Guido

    2016-08-16

    Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.

  1. Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.

    1994-08-01

    We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.

  2. Nuclear depolarization and absolute sensitivity in magic-angle spinning cross effect dynamic nuclear polarization.

    PubMed

    Mentink-Vigier, Frédéric; Paul, Subhradip; Lee, Daniel; Feintuch, Akiva; Hediger, Sabine; Vega, Shimon; De Paëpe, Gaël

    2015-09-14

    Over the last two decades solid state Nuclear Magnetic Resonance has witnessed a breakthrough in increasing the nuclear polarization, and thus experimental sensitivity, with the advent of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP). To enhance the nuclear polarization of protons, exogenous nitroxide biradicals such as TOTAPOL or AMUPOL are routinely used. Their efficiency is usually assessed as the ratio between the NMR signal intensity in the presence and the absence of microwave irradiation εon/off. While TOTAPOL delivers an enhancement εon/off of about 60 on a model sample, the more recent AMUPOL is more efficient: >200 at 100 K. Such a comparison is valid as long as the signal measured in the absence of microwaves is merely the Boltzmann polarization and is not affected by the spinning of the sample. However, recent MAS-DNP studies at 25 K by Thurber and Tycko (2014) have demonstrated that the presence of nitroxide biradicals combined with sample spinning can lead to a depolarized nuclear state, below the Boltzmann polarization. In this work we demonstrate that TOTAPOL and AMUPOL both lead to observable depolarization at ≈110 K, and that the magnitude of this depolarization is radical dependent. Compared to the static sample, TOTAPOL and AMUPOL lead, respectively, to nuclear polarization losses of up to 20% and 60% at a 10 kHz MAS frequency, while Trityl OX63 does not depolarize at all. This experimental work is analyzed using a theoretical model that explains how the depolarization process works under MAS and gives new insights into the DNP mechanism and into the spin parameters, which are relevant for the efficiency of a biradical. In light of these results, the outstanding performance of AMUPOL must be revised and we propose a new method to assess the polarization gain for future radicals.

  3. Accurate Determination of Interstrand Distances and Alignment in Amyloid Fibrils by Magic Angle Spinning NMR

    PubMed Central

    Caporini, Marc A.; Bajaj, Vikram S.; Veshtort, Mikhail; Fitzpatrick, Anthony; MacPhee, Cait E; Vendruscolo, Michele; Dobson, Christopher M.; Griffin, Robert G.

    2010-01-01

    Amyloid fibrils are structurally ordered aggregates of proteins whose formation is associated with many neurodegenerative and other diseases. For that reason, their high resolution structures are of considerable interest and have been studied using a wide range of techniques, notably electron microscopy, x-ray diffraction, and magic angle spinning (MAS) NMR. Because of the excellent resolution in the spectra, MAS NMR is uniquely capable of delivering site-specific, atomic resolution information about all levels of amyloid structure: (1) the monomer, which packs into several (2) protofilaments that in turn associate to form a (3) fibril. Building upon our high resolution structure of the monomer of an amyloid-forming peptide from transthyretin (TTR105-115), we introduce single 1-13C labeled amino acids at seven different sites in the peptide and measure intermolecular carbonyl-carbonyl distances with an accuracy of ~0.11 A. Our results conclusively establish a parallel, in register, topology for the packing of this peptide into a β-sheet and provide constraints essential for the determination of an atomic resolution structure of the fibril. Furthermore, the approach we employ, based on a combination of a double-quantum filtered variant of the DRAWS recoupling sequence and multispin numerical simulations in SPINEVOLUTION, is general and should be applicable to a wide range of systems. PMID:20925357

  4. Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR. †

    PubMed Central

    van der Wel, Patrick C.A.; Lewandowski, Józef R.; Griffin, Robert G.

    2010-01-01

    Several human diseases are associated with the formation of amyloid aggregates, but experimental characterization of these amyloid fibrils and their oligomeric precursors has remained challenging. Experimental and computational analysis of simpler model systems has therefore been necessary, for instance on the peptide fragment GNNQQNY7-13 of yeast prion protein Sup35p. Expanding on a previous publication, we report here a detailed structural characterization of GNNQQNY fibrils using magic angle spinning (MAS) NMR. Based on additional chemical shift assignments we confirm the coexistence of three distinct peptide conformations within the fibrillar samples, as reflected in substantial chemical shift differences. Backbone torsion angle measurements indicate that the basic structure of these co-existing conformers is an extended β-sheet. We structurally characterize a previously identified localized distortion of the β-strand backbone specific to one of the conformers. Intermolecular contacts are consistent with each of the conformers being present in its own parallel and in-register sheet. Overall the MAS NMR data indicate a substantial difference between the structure of the fibrillar and crystalline forms of these peptides, with a clear increased complexity in the GNNQQNY fibril structure. These experimental data can provide guidance for future work, both experimental and theoretical, and provide insights into the distinction between fibril growth and crystal formation. PMID:20695483

  5. Magic angle spinning NMR structure determination of proteins from pseudocontact shifts.

    PubMed

    Li, Jianping; Pilla, Kala Bharath; Li, Qingfeng; Zhang, Zhengfeng; Su, Xuncheng; Huber, Thomas; Yang, Jun

    2013-06-01

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure.

  6. Magic-angle spinning NMR of a class I filamentous bacteriophage virus.

    PubMed

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2011-08-11

    The fd bacteriophage is a filamentous virus that is widely used for bio- and nanotechnology applications ranging from phage display to battery materials. The possibility of obtaining a detailed description of its structural properties regardless of its state is therefore essential not only for understanding its physical arrangement and its bacterial infection process but also for many other applications. Here we present a study of the fd phage by magic-angle spinning solid-state NMR. While current structures rely on a Y21M mutant, experiments performed on a strain bearing a wild-type capsid report on high symmetry of the phage and lack of explicit subunit polymorphism. Chemical shift analysis confirmed that the coat protein mostly consists of a rigid right-handed curved α-helix (residues 6-47 of 50), preceded by a flexible loop-structured N-terminus. We were able to qualitatively assign the resonances belonging to the DNA, including the deoxyribose sugars and the thymine bases. These chemical shifts are consistent with base stacking and a C2'-endo/C3'-exo sugar pucker.

  7. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization

    PubMed Central

    Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.

    2009-01-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957

  8. Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning.

    PubMed

    Nomura, Kaoru; Harada, Erisa; Sugase, Kenji; Shimamoto, Keiko

    2014-03-01

    Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR measurements of lipid-anchored proteins have not been accomplished due to the difficulty in supplying sufficient amount of stable isotope labeled samples in the overexpression of lipid-anchored proteins requiring complex posttranslational modification. We designed a pseudo lipid-anchored protein in which the protein component was expressed in E. coli and attached to a chemically synthesized lipid-anchor mimic. Using two types of membranes, liposomes and bicelles, we demonstrated different types of insertion procedures for lipid-anchored protein into membranes. In the liposome sample, we were able to observe the cross-polarization and the (13)C-(13)C chemical shift correlation spectra under MAS, indicating that the liposome sample can be used to analyze molecular interactions using dipolar-based NMR experiments. In contrast, the bicelle sample showed sufficient quality of spectra through scalar-based experiments. The relaxation times and protein-membrane interaction were capable of being analyzed in the bicelle sample. These results demonstrated the applicability of two types of sample system to elucidate the roles of lipid-anchors in regulating diverse biological phenomena.

  9. Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy

    PubMed Central

    Cheng, L. L.; Ma, M. J.; Becerra, L.; Ptak, T.; Tracey, I.; Lackner, A.; González, R. G.

    1997-01-01

    We describe a method that directly relates tissue neuropathological analysis to medical imaging. Presently, only indirect and often tenuous relationships are made between imaging (such as MRI or x-ray computed tomography) and neuropathology. We present a biochemistry-based, quantitative neuropathological method that can help to precisely quantify information provided by in vivo proton magnetic resonance spectroscopy (1HMRS), an emerging medical imaging technique. This method, high resolution magic angle spinning (HRMAS) 1HMRS, is rapid and requires only small amounts of unprocessed samples. Unlike chemical extraction or other forms of tissue processing, this method analyzes tissue directly, thus minimizing artifacts. We demonstrate the utility of this method by assessing neuronal damage using multiple tissue samples from differently affected brain regions in a case of Pick disease, a human neurodegenerative disorder. Among different regions, we found an excellent correlation between neuronal loss shown by traditional neurohistopathology and decrease of the neuronal marker N-acetylaspartate measured by HRMAS 1HMRS. This result demonstrates for the first time, to our knowledge, a direct, quantitative link between a decrease in N-acetylaspartate and neuronal loss in a human neurodegenerative disease. As a quantitative method, HRMAS 1HMRS has potential applications in experimental and clinical neuropathologic investigations. It should also provide a rational basis for the interpretation of in vivo 1HMRS studies of human neurological disorders. PMID:9177231

  10. A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy

    SciTech Connect

    Equbal, Asif; Bjerring, Morten; Nielsen, Niels Chr. E-mail: ncn@inano.au.dk; Madhu, P. K. E-mail: ncn@inano.au.dk

    2015-05-14

    A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCW{sup A}) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCW{sup A} decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions is delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids.

  11. Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Yan, Si; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2013-01-01

    CONSPECTUS In living organisms, biological molecules often organize into multi-component complexes. Such assemblies consist of various proteins and carry out essential functions, ranging from cell division, transport, and energy transduction to catalysis, signaling, and viral infectivity. To understand the biological functions of these assemblies, in both healthy and disease states, researchers need to study their three-dimensional architecture and molecular dynamics. To date, the large size, the lack of inherent long-range order, and insolubility have made atomic-resolution studies of many protein assemblies challenging or impractical using traditional structural biology methods such as X-ray diffraction and solution NMR spectroscopy. In the past ten years, we have focused our work on the development and application of magic angle spinning solid-state NMR (MAS NMR) methods to characterize large protein assemblies at atomic-level resolution. In this Account, we discuss the rapid progress in the field of MAS NMR spectroscopy, citing work from our laboratory and others on methodological developments that have facilitated the in-depth analysis of biologically important protein assemblies. We emphasize techniques that yield enhanced sensitivity and resolution, such as fast MAS (spinning frequencies of 40 kHz and above) and non-uniform sampling protocols for data acquisition and processing. We also discuss the experiments for gaining distance restraints and for recoupling anisotropic tensorial interactions under fast MAS conditions. We give an overview of sample preparation approaches when working with protein assemblies. Following the overview of contemporary MAS NMR methods, we present case studies into the structure and dynamics of two classes of biological systems under investigation in our laboratory. We will first turn our attention to cytoskeletal microtubule motor proteins including mammalian dynactin and dynein light chain 8. We will then discuss protein

  12. Microwave Field Distribution in a Magic Angle Spinning Dynamic Nuclear Polarization NMR Probe

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Matsuki, Yoh; Woskov, Paul P.; Corzilius, Björn; Griffin, Robert G.; Temkin, Richard J.

    2011-01-01

    We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B1S) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4 mm diameter sapphire rotor containing the sample. The predicted average B1S field is 13µT/W1/2, where S denotes the electron spin. For a routinely achievable input power of 5 W the corresponding value is γ SB1S = 0.84 MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement (ε) vs. ω1S/(2π) for a sample of 13C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment. PMID:21382733

  13. Floquet-Magnus expansion for general N-coupled spins systems in magic-angle spinning nuclear magnetic resonance spectra

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene Stephane; Charpentier, Thibault

    2015-04-01

    In this paper we present a theoretical perturbative approach for describing the NMR spectrum of strongly dipolar-coupled spin systems under fast magic-angle spinning. Our treatment is based on two approaches: the Floquet approach and the Floquet-Magnus expansion. The Floquet approach is well known in the NMR community as a perturbative approach to get analytical approximations. Numerical procedures are based on step-by-step numerical integration of the corresponding differential equations. The Floquet-Magnus expansion is a perturbative approach of the Floquet theory. Furthermore, we address the " γ -encoding" effect using the Floquet-Magnus expansion approach. We show that the average over " γ " angle can be performed for any Hamiltonian with γ symmetry.

  14. Characterization of lithium coordination sites with magic-angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Haimovich, A.; Goldbourt, A.

    2015-05-01

    Lithium, in the form of lithium carbonate, is one of the most common drugs for bipolar disorder. Lithium is also considered to have an effect on many other cellular processes hence it possesses additional therapeutic as well as side effects. In order to quantitatively characterize the binding mode of lithium, it is required to identify the interacting species and measure their distances from the metal center. Here we use magic-angle spinning (MAS) solid-state NMR to study the binding site of lithium in complex with glycine and water (LiGlyW). Such a compound is a good enzyme mimetic since lithium is four-coordinated to one water molecule and three carboxylic groups. Distance measurements to carbons are performed using a 2D transferred echo double resonance (TEDOR) MAS solid-state NMR experiment, and water binding is probed by heteronuclear high-resolution proton-lithium and proton-carbon correlation (wPMLG-HETCOR) experiments. Both HETCOR experiments separate the main complex from impurities and non-specifically bound lithium species, demonstrating the sensitivity of the method to probe the species in the binding site. Optimizations of the TEDOR pulse scheme in the case of a quadrupolar nucleus with a small quadrupole coupling constant show that it is most efficient when pulses are positioned on the spin-1/2 (carbon-13) nucleus. Since the intensity of the TEDOR signal is not normalized, careful data analysis that considers both intensity and dipolar oscillations has to be performed. Nevertheless we show that accurate distances can be extracted for both carbons of the bound glycine and that these distances are consistent with the X-ray data and with lithium in a tetrahedral environment. The lithium environment in the complex is very similar to the binding site in inositol monophosphatase, an enzyme associated with bipolar disorder and the putative target for lithium therapy. A 2D TEDOR experiment applied to the bacterial SuhB gene product of this enzyme was designed

  15. Characterization of lithium coordination sites with magic-angle spinning NMR.

    PubMed

    Haimovich, A; Goldbourt, A

    2015-05-01

    Lithium, in the form of lithium carbonate, is one of the most common drugs for bipolar disorder. Lithium is also considered to have an effect on many other cellular processes hence it possesses additional therapeutic as well as side effects. In order to quantitatively characterize the binding mode of lithium, it is required to identify the interacting species and measure their distances from the metal center. Here we use magic-angle spinning (MAS) solid-state NMR to study the binding site of lithium in complex with glycine and water (LiGlyW). Such a compound is a good enzyme mimetic since lithium is four-coordinated to one water molecule and three carboxylic groups. Distance measurements to carbons are performed using a 2D transferred echo double resonance (TEDOR) MAS solid-state NMR experiment, and water binding is probed by heteronuclear high-resolution proton-lithium and proton-carbon correlation (wPMLG-HETCOR) experiments. Both HETCOR experiments separate the main complex from impurities and non-specifically bound lithium species, demonstrating the sensitivity of the method to probe the species in the binding site. Optimizations of the TEDOR pulse scheme in the case of a quadrupolar nucleus with a small quadrupole coupling constant show that it is most efficient when pulses are positioned on the spin-1/2 (carbon-13) nucleus. Since the intensity of the TEDOR signal is not normalized, careful data analysis that considers both intensity and dipolar oscillations has to be performed. Nevertheless we show that accurate distances can be extracted for both carbons of the bound glycine and that these distances are consistent with the X-ray data and with lithium in a tetrahedral environment. The lithium environment in the complex is very similar to the binding site in inositol monophosphatase, an enzyme associated with bipolar disorder and the putative target for lithium therapy. A 2D TEDOR experiment applied to the bacterial SuhB gene product of this enzyme was designed

  16. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    SciTech Connect

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  17. High Resolution Magic Angle Spinning 1H-NMR Metabolic Profiling of Nanoliter Biological Tissues at High Magnetic Field

    SciTech Connect

    Feng, Ju; Hu, Jian Z.; Burton, Sarah D.; Hoyt, David W.

    2013-03-05

    It is demonstrated that a high resolution magic angle spinning 1H-NMR spectrum of biological tissue samples with volumes as small as 150 nanoliters, or 0.15 mg in weight, can be acquired in a few minutes at 21.1 T magnetic field using a commercial 1.6 mm fast-MAS probe with minor modification of the MAS rotor. The strategies of sealing the samples inside the MAS rotor to avoid fluid leakage as well as the ways of optimizing the signal to noise are discussed.

  18. In Vivo Detection of the Cyclic Osmoregulated Periplasmic Glucan of Ralstonia solanacearum by High-Resolution Magic Angle Spinning NMR

    NASA Astrophysics Data System (ADS)

    Wieruszeski, J.-M.; Bohin, A.; Bohin, J.-P.; Lippens, G.

    2001-07-01

    We investigate the mobility of the osmoregulated periplasmic glucans of Ralstonia solanacearum in the bacterial periplasm through the use of high-resolution (HR) NMR spectroscopy under static and magic angle spinning (MAS) conditions. Because the nature of periplasm is far from an isotropic aqueous solution, the molecules could be freely diffusing or rather associated to a periplasmic protein, a membrane protein, a lipid, or the peptidoglycan. HR MAS NMR spectroscopy leads to more reproducible results and allows the in vivo detection and characterization of the complex molecule.

  19. Technical aspects of fast magic-angle turning NMR for dilute spin-1/2 nuclei with broad spectra.

    PubMed

    Hu, Y-Y; Schmidt-Rohr, K

    2011-09-01

    For obtaining sideband-free spectra of high-Z spin-1/2 nuclei with large (>1000 ppm) chemical-shift anisotropies and broad isotropic-shift dispersion, we recently identified Gan's modified five-pulse magic-angle turning (MAT) experiment as the best available broadband pulse sequence, and adapted it to fast magic-angle spinning. Here, we discuss technical aspects such as pulse timings that compensate for off-resonance effects and are suitable for large CSAs over a range of 1.8γB(1); methods to minimize the duration of z-periods by cyclic decrementation; shearing without digitization artifacts, by sharing between channels (points); and maximizing the sensitivity by echo-matched full-Gaussian filtering. The method is demonstrated on a model sample of mixed amino acids and its large bandwidth is highlighted by comparison with the multiple-π-pulse PASS technique. Applications to various tellurides are shown; these include GeTe, Sb(2)Te(3) and Ag(0.53)Pb(18)Sb(1.2)Te(20), with spectra spanning up to 190 kHz, at 22 kHz MAS. We have also determined the (125)Te chemical shift anisotropies from the intensities of the spinning sidebands resolved by isotropic-shift separation. PMID:21782396

  20. Proton Dipolar Recoupling in Resin-Bound Peptides under High-Resolution Magic Angle Spinning

    NASA Astrophysics Data System (ADS)

    Raya, Jésus; Bianco, Alberto; Furrer, Julien; Briand, Jean-Paul; Piotto, Martial; Elbayed, Karim

    2002-07-01

    Rotational resonance and radiofrequency-driven dipolar recoupling (RFDR) experiments have been used to recover the weak proton dipolar interaction present in peptides bound to swollen resins spun at the magic angle. The intensity of the correlation peaks obtained using these sequences is shown to be significantly stronger than the one obtained using the classical NOESY experiment. In addition, it is found that during the relatively long mixing times required to transfer magnetization in such soft materials, the RFDR sequence also achieves magnetization transfer via the scalar J-coupling.

  1. Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples

    PubMed Central

    Das, Nabanita; Murray, Dylan T; Cross, Timothy A

    2014-01-01

    Solid-state NMR spectroscopy has been used successfully for characterizing the structure and dynamics of membrane proteins as well as their interactions with other proteins in lipid bilayers. such an environment is often necessary for achieving native-like structures. sample preparation is the key to this success. Here we present a detailed description of a robust protocol that results in high-quality membrane protein samples for both magic-angle spinning and oriented-sample solid-state NMR. the procedure is demonstrated using two proteins: CrgA (two transmembrane helices) and rv1861 (three transmembrane helices), both from Mycobacterium tuberculosis. the success of this procedure relies on two points. First, for samples for both types of NMR experiment, the reconstitution of the protein from a detergent environment to an environment in which it is incorporated into liposomes results in ‘complete’ removal of detergent. second, for the oriented samples, proper dehydration followed by rehydration of the proteoliposomes is essential. By using this protocol, proteoliposome samples for magic-angle spinning NMR and uniformly aligned samples (orientational mosaicity of <1°) for oriented-sample NMR can be obtained within 10 d. PMID:24157546

  2. Complete protocol for slow-spinning high-resolution magic-angle spinning NMR analysis of fragile tissues.

    PubMed

    André, Marion; Dumez, Jean-Nicolas; Rezig, Lamya; Shintu, Laetitia; Piotto, Martial; Caldarelli, Stefano

    2014-11-01

    High-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) is an essential tool to characterize a variety of semisolid systems, including biological tissues, with virtually no sample preparation. The "non-destructive" nature of NMR is typically compromised, however, by the extreme centrifugal forces experienced under conventional HR-MAS frequencies of several kilohertz. These features limit the usefulness of current HR-MAS approaches for fragile samples. Here, we introduce a full protocol for acquiring high-quality HR-MAS NMR spectra of biological tissues at low spinning rates (down to a few hundred hertz). The protocol first consists of a carefully designed sample preparation, which yields spectra without significant spinning sidebands at low spinning frequency for several types of sample holders, including the standard disposable inserts classically used in HR-MAS NMR-based metabolomics. Suppression of broad spectral features is then achieved using a modified version of the recently introduced PROJECT experiment with added water suppression and rotor synchronization, which deposits limited power in the sample and which can be suitably rotor-synchronized at low spinning rates. The performance of the slow HR-MAS NMR procedure is demonstrated on conventional (liver tissue) and very delicate (fish eggs) samples, for which the slow-spinning conditions are shown to preserve the structural integrity and to minimize intercompartmental leaks of metabolites. Taken together, these results expand the applicability and reliability of HR-MAS NMR spectroscopy. These results have been obtained at 400 and 600 MHz and suggest that high-quality slow HR-MAS spectra can be expected at higher magnetic fields using the described protocol.

  3. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    SciTech Connect

    Mao, Kanmi

    2011-01-01

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H-1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H-1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace}13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5m$\\bar{x}$, PMLG5mm$\\bar{x}$x and SAM3) were analyzed to maximize the performance of through-bond transfer based

  4. Experimental study of resolution of proton chemical shifts in solids: Combined multiple pulse NMR and magic-angle spinning

    SciTech Connect

    Ryan, L.M.; Taylor, R.E.; Paff, A.J.; Gerstein, B.C.

    1980-01-01

    High-resolution nuclear magnetic resonance spectra of protons in rigid, randomly oriented solids have been measured using combined homonuclear dipolar decoupling (via multiple pulse techniques) and attenuation of chemical shift anisotropies (via magic-angle sample spinning). Under those conditions, isotropic proton chemical shifts were recorded for a variety of chemical species, with individual linewidths varying from about 55 to 110 Hz (1--2 ppm). Residual line broadening was due predominately to (i) magnetic-field instability and inhomogeneity, (ii) unresolved proton--proton spin couplings, (iii) chemical shift dispersion, (iv) residual dipolar broadening, and (v) lifetime broadening under the multiple pulse sequences used. The magnitudes of those effects and the current limits of resolution for this experiment in our spectrometer have been investigated. The compounds studied included organic solids (4, 4'-dimethylbenzophenone, 2, 6-dimethylbenzoic acid, and aspirin), polymers (polystyrene and polymethylmethacrylate), and the vitrain portion of a bituminous coal.

  5. 'Magic Angle Precession'

    SciTech Connect

    Binder, Bernd

    2008-01-21

    An advanced and exact geometric description of nonlinear precession dynamics modeling very accurately natural and artificial couplings showing Lorentz symmetry is derived. In the linear description it is usually ignored that the geometric phase of relativistic motion couples back to the orbital motion providing for a non-linear recursive precession dynamics. The high coupling strength in the nonlinear case is found to be a gravitomagnetic charge proportional to the precession angle and angular velocity generated by geometric phases, which are induced by high-speed relativistic rotations and are relevant to propulsion technologies but also to basic interactions. In the quantum range some magic precession angles indicating strong coupling in a phase-locked chaotic system are identified, emerging from a discrete time dynamical system known as the cosine map showing bifurcations at special precession angles relevant to heavy nuclei stability. The 'Magic Angle Precession' (MAP) dynamics can be simulated and visualized by cones rolling in or on each other, where the apex and precession angles are indexed by spin, charge or precession quantum numbers, and corresponding magic angles. The most extreme relativistic warping and twisting effect is given by the Dirac spinor half spin constellation with 'Hyperdiamond' MAP, which resembles quark confinement.

  6. (1)H and (13)C magic-angle spinning nuclear magnetic resonance studies of the chicken eggshell.

    PubMed

    Pisklak, Dariusz Maciej; Szeleszczuk, Lukasz; Wawer, Iwona

    2012-12-19

    The chicken eggshell, a product of biomineralization, contains inorganic and organic substances whose content changes during the incubation process. Bloch-decay (BD) (1)H, (13)C, and cross-polarization (CP) (13)C nuclear magnetic resonance (NMR) spectra of chicken eggshells were acquired under magic-angle spinning (MAS). Variable contact time (13)C CP MAS NMR experiments revealed the signals of carbonyl groups from organic and inorganic compounds. In the (13)C BD NMR spectra, a single peak at 168.1 ppm was detected, whereas in the (1)H BD spectra, the signals from water and the bicarbonate ion were assigned. A simultaneous decrease of the water signal in the (1)H MAS NMR spectra and an increase of the carbonate ion signal in the (13)C CP MAS NMR spectra of eggshells collected during the incubation period indicate the substitution of calcium ions by hydrogen ions in the calcium carbonate crystalline phase during the incubation of an egg.

  7. Hexameric Capsules Studied by Magic Angle Spinning Solid-State NMR Spectroscopy: Identifying Solvent Molecules in Pyrogallol[4]arene Capsules.

    PubMed

    Avram, Liat; Goldbourt, Amir; Cohen, Yoram

    2016-01-18

    Powders of pyrogallol[4]arene hexamers were produced by evaporation from organic solvents and were studied, for the first time, by magic angle spinning solid-state NMR (MAS ssNMR). Evaporation selectively removed non-encapsulated solvent molecules leaving stable hexameric capsules encapsulating solvent molecules. After exposure of the powder to solvent vapors, (1)H/(13)C heteronuclear correlation MAS ssNMR experiments were used to assign the signals of the external and encapsulated solvent molecules. The formed capsules were stable for months and the process of solvent encapsulation was reversible. According to the ssNMR experiments, the encapsulated solvent molecules occupy different sites and those sites differ in their mobility. The presented approach paves the way for studying guest exchange, guest affinity, and gas storage in hexamers of this type in the solid state.

  8. Measurement of lateral diffusion rates in membranes by pulsed magnetic field gradient, magic angle spinning-proton nuclear magnetic resonance.

    PubMed

    Gawrisch, Klaus; Gaede, Holly C

    2007-01-01

    Membrane organization, including the presence of domains, can be characterized by measuring lateral diffusion rates of lipids and membrane-bound substances. Magic angle spinning (MAS) yields well-resolved proton nuclear magnetic resonance (NMR) of lipids in biomembranes. When combined with pulsed-field gradient NMR (rendering what is called "pulsed magnetic field gradients-MAS-NMR"), it permits precise diffusion measurements on the micrometer lengths scale for any substance with reasonably well-resolved proton MAS-NMR resonances, without the need of preparing oriented samples. Sample preparation procedures, the technical requirements for the NMR equipment, and spectrometer settings are described. Additionally, equations for analysis of diffusion data obtained from unoriented samples, and a method for correcting the data for liposome curvature are provided.

  9. Magic-angle-spinning NMR of the drug resistant S31N M2 proton transporter from influenza A.

    PubMed

    Andreas, Loren B; Eddy, Matthew T; Chou, James J; Griffin, Robert G

    2012-05-01

    We report chemical shift assignments of the drug-resistant S31N mutant of M2(18-60) determined using 3D magic-angle-spinning (MAS) NMR spectra acquired with a (15)N-(13)C ZF-TEDOR transfer followed by (13)C-(13)C mixing by RFDR. The MAS spectra reveal two sets of resonances, indicating that the tetramer assembles as a dimer of dimers, similar to the wild-type channel. Helicies from the two sets of chemical shifts are shown to be in close proximity at residue H37, and the assignments reveal a difference in the helix torsion angles, as predicted by TALOS+, for the key resistance residue N31. In contrast to wild-type M2(18-60), chemical shift changes are minimal upon addition of the inhibitor rimantadine, suggesting that the drug does not bind to S31N M2.

  10. Magic angle spinning NMR investigation of influenza A M2(18-60): support for an allosteric mechanism of inhibition.

    PubMed

    Andreas, Loren B; Eddy, Matthew T; Pielak, Rafal M; Chou, James; Griffin, Robert G

    2010-08-18

    The tetrameric M2 proton channel from influenza A virus conducts protons at low pH and is inhibited by aminoadamantyl drugs such as amantadine and rimantadine (Rmt). We report magic angle spinning NMR spectra of POPC and DPhPC membrane-embedded M2(18-60), both apo and in the presence of Rmt. Similar line widths in the spectra of apo and bound M2 indicate that Rmt does not have a significant impact on the dynamics or conformational heterogeneity of this construct. Substantial chemical shift changes for many residues in the transmembrane region support an allosteric mechanism of inhibition. An Rmt titration supports a binding stoichiometry of >1 Rmt molecule per channel and shows that nonspecific binding or changes in membrane composition are unlikely sources of the chemical shift changes. In addition, doubling of spectral lines in all of the observed samples provides evidence that the channel assembles with twofold symmetry.

  11. The interaction of small molecules with phospholipid membranes studied by 1H NOESY NMR under magic-angle spinning.

    PubMed

    Scheidt, Holger A; Huster, Daniel

    2008-01-01

    The interaction of small molecules with lipid membranes and the exact knowledge of their binding site and bilayer distribution is of great pharmacological importance and represents an active field of current biophysical research. Over the last decade, a highly resolved 1H solid-state NMR method has been developed that allows measuring localization and distribution of small molecules in membranes. The classical solution 1H NMR NOESY technique is applied to lipid membrane samples under magic-angle spinning (MAS) and NOESY cross-relaxation rates are determined quantitatively. These rates are proportional to the contact probability between molecular segments and therefore an ideal tool to study intermolecular interactions in membranes. Here, we review recent 1H MAS NOESY applications that were carried out to study lateral lipid organization in mixed membranes and the interaction of membranes with water, ethanol, small aromatic compounds, peptides, fluorescence labels, and lipophilic nucleosides.

  12. Spin dynamics in the modulation frame: application to homonuclear recoupling in magic angle spinning solid-state NMR.

    PubMed

    De Paëpe, Gaël; Lewandowski, Józef R; Griffin, Robert G

    2008-03-28

    We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5spinning frequencies is possible using low power (1)H irradiation (<0.25 omega(r)/2pi). This phenomenon is explained through higher order cross terms including a homonuclear third spin assisted recoupling mechanism among protons. CMpRR mitigates the heating effects of simultaneous high power (13)C recoupling and (1)H decoupling. The second technique, COMICS, involves low power (13)C irradiation that induces simultaneous recoupling of the (13)C DQ dipolar and isotropic chemical shift terms. In contrast to CMpRR, where the DQ bandwidth (approximately 30 kHz at omega(0,H)/2pi=750 MHz) covers the entire (13)C spectral width, COMICS recoupling, through the reintroduction of the isotropic chemical shift, is selective with respect to the carrier frequency, having a typical bandwidth of approximately 100 Hz. This approach is intended as a general frequency selective method circumventing dipolar truncation (supplementary to R(2) experiments). These new gamma-encoded sequences with attenuated rf requirements extend the applicability of homonuclear recoupling techniques to new regimes--high spinning and Larmor frequencies--and therefore should be of major

  13. High-resolution magic angle spinning (1) H NMR measurement of ligand concentration in solvent-saturated chromatographic beads.

    PubMed

    Elwinger, Fredrik; Furó, István

    2016-04-01

    A method based on (1) H high-resolution magic angle spinning NMR has been developed for measuring concentration accurately in heterogeneous materials like that of ligands in chromatography media. Ligand concentration is obtained by relating the peak integrals for a butyl ligand in the spectrum of a water-saturated chromatography medium to the integral of the added internal reference. The method is fast, with capacity of 10 min total sample preparation and analysis time per sample; precise, with a reproducibility expressed as 1.7% relative standard deviation; and accurate, as indicated by the excellent agreement of derived concentration with that obtained previously by (13) C single-pulse excitation MAS NMR. The effects of radiofrequency field inhomogeneity, spin rate, temperature increase due to spinning, and distribution and re-distribution of medium and reference solvent both inside the rotor during spinning and between bulk solvent and pore space are discussed in detail. © 2016 The Authors Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  14. A Comparison of NMR Spectra Obtained for Solid-Phase-Synthesis Resins Using Conventional High-Resolution, Magic-Angle-Spinning, and High-Resolution Magic-Angle-Spinning Probes

    NASA Astrophysics Data System (ADS)

    Keifer, Paul A.; Baltusis, Laima; Rice, David M.; Tymiak, Adrienne A.; Shoolery, James N.

    It has recently been shown that high-resolution 1H NMR spectra can be obtained for samples covalently bound to polystyrene-based (Tentagel) solid-phase-synthesis resins by the use of magic-angle spinning (MAS) combined with high-resolution-probe technology. The attainable spectral resolution in the 1H and 13C NMR spectra of these resins is affected by molecular mobility and magnetic-susceptibility mismatches, both within the sample and in the probe itself. Using new high-resolution MAS probes called Nano·nmr probes, the importance of magnetic-susceptibility matching in the construction of these probes is demonstrated, and the limitations of using MAS alone to generate line narrowing in both 1H and 13C NMR are explored using a solvent-swollen functionalized Wang resin. The effects of presaturation, temperature, spin rate, and different solvents upon spectral quality have also been investigated, and advanced 1D- and 2D-experimental capability is demonstrated. This ability to generate high-resolution NMR spectra of samples still bound to the resins is expected to be of extreme interest in not only solid-phase synthesis, but also in the rapidly growing field of combinatorial chemistry.

  15. Ultrafast Magic-Angle Spinning: Benefits for the Acquisition of Ultrawide-Line NMR Spectra of Heavy Spin-1/2 Nuclei.

    PubMed

    Pöppler, Ann-Christin; Demers, Jean-Philippe; Malon, Michal; Singh, Amit Pratap; Roesky, Herbert W; Nishiyama, Yusuke; Lange, Adam

    2016-03-16

    The benefits of the ultrafast magic-angle spinning (MAS) approach for the acquisition of ultrawide-line NMR spectra-spectral simplification, increased mass sensitivity allowing the fast study of small amounts of material, efficient excitation, and application to multiple heavy nuclei-are demonstrated for tin(II) oxide (SnO) and the tin complex [(LB)Sn(II) Cl](+) [Sn(II) Cl3 ](-) [LB=2,6-diacetylpyridinebis(2,6-diisopropylanil)] containing two distinct tin environments. The ultrafast MAS experiments provide optimal conditions for the extraction of the chemical-shift anisotropy tensor parameters, anisotropy, and asymmetry for heavy spin-1/2 nuclei.

  16. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning.

    PubMed

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states.

  17. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning.

    PubMed

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states. PMID:26920835

  18. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized 13C NMR signals in the 100-200 range are demonstrated with DNP at 25 K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30 K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states.

  19. Deuterium Magic Angle Spinning NMR Used to Study the Dynamics of Peptides Adsorbed onto Polystyrene and Functionalized Polystyrene Surfaces

    PubMed Central

    Breen, Nicholas F.; Li, Kun; Olsen, Gregory L.; Drobny, Gary P.

    2011-01-01

    LKα14 is a 14 amino acid peptide with a periodic sequence of leucine and lysine residues consistent with an amphipathic α-helix. This “hydrophobic periodicity” has been found to result in an α-helical secondary structure at air-water interfaces and on both polar and non-polar solid polymer surfaces. In this paper the dynamics of LKα14 peptides, selectively deuterated at a single leucine and adsorbed onto polystyrene and carboxylated polystyrene beads, are studied using 2H Magic Angle Spinning (MAS) solid state NMR over a 100 degree temperature range. We first demonstrate the sensitivity enhancement possible with 2H MAS techniques, which in turn enables us to obtain high quality 2H NMR spectra for selectively deuterated peptides adsorbed onto solid polymer surfaces. An extensive literature shows that the dynamics of leucine side chains are sensitive to the local structural environment of the protein. Therefore the degree to which the dynamics of leucine side chains and the backbone of the peptide LKα14 are influenced by surface proximity and surface chemistry is studied as a function of temperature with 2H MAS NMR. It is found that the dynamics of the leucine side chains in LKα14 depend strongly upon the orientation of the polymer on the surface, which in turn depends on whether the LKα14 peptide adsorbs onto a polar or non-polar surface. 2H MAS line shapes therefore permit probes of surface orientation over a wide temperature range. PMID:21650191

  20. Closed-cycle cold helium magic-angle spinning for sensitivity-enhanced multi-dimensional solid-state NMR.

    PubMed

    Matsuki, Yoh; Nakamura, Shinji; Fukui, Shigeo; Suematsu, Hiroto; Fujiwara, Toshimichi

    2015-10-01

    Magic-angle spinning (MAS) NMR is a powerful tool for studying molecular structure and dynamics, but suffers from its low sensitivity. Here, we developed a novel helium-cooling MAS NMR probe system adopting a closed-loop gas recirculation mechanism. In addition to the sensitivity gain due to low temperature, the present system has enabled highly stable MAS (vR=4-12 kHz) at cryogenic temperatures (T=35-120 K) for over a week without consuming helium at a cost for electricity of 16 kW/h. High-resolution 1D and 2D data were recorded for a crystalline tri-peptide sample at T=40 K and B0=16.4 T, where an order of magnitude of sensitivity gain was demonstrated versus room temperature measurement. The low-cost and long-term stable MAS strongly promotes broader application of the brute-force sensitivity-enhanced multi-dimensional MAS NMR, as well as dynamic nuclear polarization (DNP)-enhanced NMR in a temperature range lower than 100 K.

  1. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy

    PubMed Central

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  2. Processing of high resolution magic angle spinning spectra of breast cancer cells by the filter diagonalization method.

    PubMed

    Maria, Roberta Manzano; Moraes, Tiago Bueno; Magon, Claudio José; Venâncio, Tiago; Altei, Wanessa Fernanda; Andricopulo, Adriano Defini; Colnago, Luiz Alberto

    2012-10-01

    Proton nuclear magnetic resonance ((1)H NMR) spectroscopy for detection of biochemical changes in biological samples is a successful technique. However, the achieved NMR resolution is not sufficiently high when the analysis is performed with intact cells. To improve spectral resolution, high resolution magic angle spinning (HR-MAS) is used and the broad signals are separated by a T(2) filter based on the CPMG pulse sequence. Additionally, HR-MAS experiments with a T(2) filter are preceded by a water suppression procedure. The goal of this work is to demonstrate that the experimental procedures of water suppression and T(2) or diffusing filters are unnecessary steps when the filter diagonalization method (FDM) is used to process the time domain HR-MAS signals. Manipulation of the FDM results, represented as a tabular list of peak positions, widths, amplitudes and phases, allows the removal of water signals without the disturbing overlapping or nearby signals. Additionally, the FDM can also be used for phase correction and noise suppression, and to discriminate between sharp and broad lines. Results demonstrate the applicability of the FDM post-acquisition processing to obtain high quality HR-MAS spectra of heterogeneous biological materials.

  3. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy.

    PubMed

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS (1)H NMR spectroscopy. HR-MAS (1)H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS (1)H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  4. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K.

    PubMed

    Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. PMID:23238592

  5. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    NASA Astrophysics Data System (ADS)

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids.

  6. Resonance Assignments and Secondary Structure Analysis of Dynein Light Chain 8 by Magic-angle Spinning NMR Spectroscopy

    SciTech Connect

    Sun, Shangjin; Butterworth, Andrew H.; Paramasivam, Sivakumar; Yan, Si; Lightcap, Christine M.; Williams, John C.; Polenova, Tatyana E.

    2011-08-04

    Dynein light chain LC8 is the smallest subunit of the dynein motor complex and has been shown to play important roles in both dynein-dependent and dynein-independent physiological functions via its interaction with a number of its binding partners. It has also been linked to pathogenesis including roles in viral infections and tumorigenesis. Structural information for LC8-target proteins is critical to understanding the underlying function of LC8 in these complexes. However, some LC8-target interactions are not amenable to structural characterization by conventional structural biology techniques owing to their large size, low solubility, and crystallization difficulties. Here, we report magic-angle spinning (MAS) NMR studies of the homodimeric apo-LC8 protein as a first effort in addressing more complex, multi-partner, LC8-based protein assemblies. We have established site-specific backbone and side-chain resonance assignments for the majority of the residues of LC8, and show TALOS+-predicted torsion angles ø and ψ in close agreement with most residues in the published LC8 crystal structure. Data obtained through these studies will provide the first step toward using MAS NMR to examine the LC8 structure, which will eventually be used to investigate protein–protein interactions in larger systems that cannot be determined by conventional structural studies.

  7. Direct determination of phosphate sugars in biological material by (1)H high-resolution magic-angle-spinning NMR spectroscopy.

    PubMed

    Diserens, Gaëlle; Vermathen, Martina; Gjuroski, Ilche; Eggimann, Sandra; Precht, Christina; Boesch, Chris; Vermathen, Peter

    2016-08-01

    The study aim was to unambiguously assign nucleotide sugars, mainly UDP-X that are known to be important in glycosylation processes as sugar donors, and glucose-phosphates that are important intermediate metabolites for storage and transfer of energy directly in spectra of intact cells, as well as in skeletal muscle biopsies by (1)H high-resolution magic-angle-spinning (HR-MAS) NMR. The results demonstrate that sugar phosphates can be determined quickly and non-destructively in cells and biopsies by HR-MAS, which may prove valuable considering the importance of phosphate sugars in cell metabolism for nucleic acid synthesis. As proof of principle, an example of phosphate-sugar reaction and degradation kinetics after unfreezing the sample is shown for a cardiac muscle, suggesting the possibility to follow by HR-MAS NMR some metabolic pathways. Graphical abstract Glucose-phosphate sugars (Glc-1P and Glc-6P) detected in muscle by 1H HR-MAS NMR.

  8. Biochemical correlates of thiazolidinedione-induced adipocyte differentiation by high-resolution magic angle spinning NMR spectroscopy.

    PubMed

    Chen, Jin-Hong; Enloe, Brian M; Weybright, Patrick; Campbell, Natalee; Dorfman, David; Fletcher, Christopher D; Cory, D G; Singer, Samuel

    2002-10-01

    Thiazolidinediones, a class of synthetic ligands to the peroxisome proliferator-activated receptor-gamma, induce terminal adipocyte differentiation of 3T3 F442A cells, and have already been used as alternative therapeutic agents for the treatment of liposarcoma in clinical trials. The biochemical changes occurring in the 3T3 F442A cell line and well-differentiated liposarcoma following induction of adipocyte differentiation with the thiazolidinedione troglitazone were measured using high-resolution magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. 3T3 F442A cell differentiation was characterized by a large accumulation of intracellular triglyceride and withdrawal from the cell cycle. Phosphatidylcholine (PTC), phosphocholine (PC), myo-inositol, and glycerol were found to be possible biochemical markers for adipocyte differentiation induced by thiazolidenediones. The molar ratio of PTC to PC increased fourfold in differentiated 3T3 F442A cells compared to undifferentiated cells, suggesting a substantial increase in CTP:phosphocholine cytidylyltransferase activity with differentiation. A 2.8-fold increase in the PTC:PC ratio was observed in the lipoma-like well-differentiated liposarcoma of three patients who were treated with troglitazone when compared to liposarcoma from patients not treated with this drug. Thus, this ratio may be an NMR-detectable marker of troglitazone efficacy and response to differentiation therapy for liposarcoma.

  9. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    PubMed Central

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592

  10. The local physical structure of amorphous hydrogenated boron carbide: insights from magic angle spinning solid-state NMR spectroscopy.

    PubMed

    Paquette, Michelle M; Li, Wenjing; Sky Driver, M; Karki, Sudarshan; Caruso, A N; Oyler, Nathan A

    2011-11-01

    Magic angle spinning solid-state nuclear magnetic resonance spectroscopy techniques are applied to the elucidation of the local physical structure of an intermediate product in the plasma-enhanced chemical vapour deposition of thin-film amorphous hydrogenated boron carbide (B(x)C:H(y)) from an orthocarborane precursor. Experimental chemical shifts are compared with theoretical shift predictions from ab initio calculations of model molecular compounds to assign atomic chemical environments, while Lee-Goldburg cross-polarization and heteronuclear recoupling experiments are used to confirm atomic connectivities. A model for the B(x)C:H(y) intermediate is proposed wherein the solid is dominated by predominantly hydrogenated carborane icosahedra that are lightly cross-linked via nonhydrogenated intraicosahedral B atoms, either directly through B-B bonds or through extraicosahedral hydrocarbon chains. While there is no clear evidence for extraicosahedral B aside from boron oxides, ∼40% of the C is found to exist as extraicosahedral hydrocarbon species that are intimately bound within the icosahedral network rather than in segregated phases.

  11. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS).

    PubMed

    Fuss, Taylor L; Cheng, Leo L

    2016-03-22

    According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics.

  12. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS)

    PubMed Central

    Fuss, Taylor L.; Cheng, Leo L.

    2016-01-01

    According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics. PMID:27011205

  13. Resonance Assignments and Secondary Structure Analysis of Dynein Light Chain 8 by Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Sun, Shangjin; Butterworth, Andrew H.; Paramasivam, Sivakumar; Yan, Si; Lightcap, Christine M.; Williams, John C.; Polenova, Tatyana

    2012-01-01

    Dynein light chain LC8 is the smallest subunit of the dynein motor complex and has been shown to play important roles in both dynein dependent and dynein independent physiological functions via its interaction with a number of its binding partners. It has also been linked to pathogenesis including roles in viral infections and tumorigenesis. Structural information for LC8-target proteins is critical to understanding the underlying function of LC8 in these complexes. However, some LC8-target interactions are not amenable for structural characterization by conventional structural biology techniques due to their large size, low solubility and crystallization difficulties. Here, we report magic angle spinning (MAS) NMR studies of the homodimeric apo-LC8 protein as a first effort in addressing more complex, multi-partner LC8-based protein assemblies. We have established site-specific backbone and side chain resonance assignments for the majority of the residues of LC8, and show TALOS+ predicted torsion angles ϕ and ψ in close agreement with most residues in the published LC8 crystal structure. Data obtained through these studies will provide the first step toward using MAS NMR to examine the LC8 structure, which will eventually be used to investigate protein-protein interactions in larger systems, which cannot be determined by conventional structural studies. PMID:23243318

  14. Investigation of the membrane localization and distribution of flavonoids by high-resolution magic angle spinning NMR spectroscopy.

    PubMed

    Scheidt, Holger A; Pampel, André; Nissler, Ludwig; Gebhardt, Rolf; Huster, Daniel

    2004-05-27

    To investigate the structural basis for the antioxidative effects of plant flavonoids on the lipid molecules of cellular membranes, we have studied the location and distribution of five different flavonoid molecules (flavone, chrysin, luteolin, myricetin, and luteolin-7-glucoside) with varying polarity in monounsaturated model membranes. The investigated molecules differed in the number of hydroxyl groups attached to the polyphenolic benzo-gamma-pyrone compounds. To investigate the relation between hydrophobicity and membrane localization/orientation, we have applied (1)H magic angle spinning NMR techniques measuring ring current induced chemical shift changes, nuclear Overhauser enhancement cross-relaxation rates, and lateral diffusion coefficients. All investigated flavonoids show a broad distribution along the membrane normal with a maximum in the lipid/water interface. With increasing number of hydroxyl groups, the maximum of this distribution is biased towards the lipid headgroups. These results are confirmed by pulsed field gradient NMR measurements of the lateral diffusion coefficients of phospholipids and flavonoids, respectively. From the localization of different flavonoid protons in the membrane, a model for the orientation of the molecules in a lipid bilayer can be deduced. This orientation depends on the position of the polar center of the flavonoid molecule. PMID:15157612

  15. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    PubMed

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied.

  16. Magic-angle-spinning NMR on solid biological systems. Analysis Of the origin of the spectral linewidths

    NASA Astrophysics Data System (ADS)

    Hemminga, M. A.; de Jager, P. A.; Krüse, J.; Lamerichs, R. M. J. N.

    Magic-angle-spinning (MAS) high-power 1H-decoupled 13C and 31P NMR has been applied to solid biological materials to obtain information about the mechanisms that determine the spectral linewidths. The line broadening in MAS 31P NMR spectra of solid tobacco mosaic virus (TMV) has been investigated by selective saturation and T2 measurements. About 90 Hz stems from homogeneous effects, whereas the inhomogeneous contribution is approximately 100 Hz. The inhomogeneous line broadening is assigned to macroscopic inhomogeneities in the sample and not to variations in the nucleotide bases along the RNA strand in TMV. It is concluded that sample preparation is of vital importance for obtaining well-resolved spectra. Under optimal preparation techniques the isotropic values of the chemical shift of the different 31P sites have been determined to obtain information about the secondary structure of the viral RNA. The chemical shift anisotropy has been determined from the relative intensities of the spinning side bands in the spectra. The chemical shift information is used to make a tentative assignment of the resonance in terms of the three structurally distinguishable phosphate groups in TMV. The origin of the linewidths in MAS NMR has been examined further by 13C NMR of approximately 10% 13C-enriched coat protein of cowpea chlorotic mottle virus, using selective excitation and saturation techniques, as well as measurements of the relaxation times T1 γ and T2. The CO resonance in the spectrum is composed of an inhomogeneous and homogeneous part with a total linewidth of 700 Hz. The homogeneous linewidth, contributing with 200 Hz, is found to arise from slow molecular motions in the solid on a millisecond timescale.

  17. Metabolic Profiling of Intact Arabidopsis thaliana Leaves during Circadian Cycle Using 1H High Resolution Magic Angle Spinning NMR

    PubMed Central

    van Schadewijk, R.; de Groot, H. J. M.; Alia, A.

    2016-01-01

    Arabidopsis thaliana is the most widely used model organism for research in plant biology. While significant advances in understanding plant growth and development have been made by focusing on the molecular genetics of Arabidopsis, extracting and understanding the functional framework of metabolism is challenging, both from a technical perspective due to losses and modification during extraction of metabolites from the leaves, and from the biological perspective, due to random variation obscuring how well the function is performed. The purpose of this work is to establish the in vivo metabolic profile directly from the Arabidopsis thaliana leaves without metabolite extraction, to reduce the complexity of the results by multivariate analysis, and to unravel the mitigation of cellular complexity by predominant functional periodicity. To achieve this, we use the circadian cycle that strongly influences metabolic and physiological processes and exerts control over the photosynthetic machinery. High resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to obtain the metabolic profile directly from intact Arabidopsis leaves. Combining one- and two-dimensional 1H HR-MAS NMR allowed the identification of several metabolites including sugars and amino acids in intact leaves. Multivariate analysis on HR-MAS NMR spectra of leaves throughout the circadian cycle revealed modules of primary metabolites with significant and consistent variations of their molecular components at different time points of the circadian cycle. Since robust photosynthetic performance in plants relies on the functional periodicity of the circadian rhythm, our results show that HR-MAS NMR promises to be an important non-invasive method that can be used for metabolomics of the Arabidopsis thaliana mutants with altered physiology and photosynthetic efficiency. PMID:27662620

  18. High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Jaroniec, Christopher P.; Macphee, Cait E.; Bajaj, Vikram S.; McMahon, Michael T.; Dobson, Christopher M.; Griffin, Robert G.

    2004-01-01

    Amyloid fibrils are self-assembled filamentous structures associated with protein deposition conditions including Alzheimer's disease and the transmissible spongiform encephalopathies. Despite the immense medical importance of amyloid fibrils, no atomic-resolution structures are available for these materials, because the intact fibrils are insoluble and do not form diffraction-quality 3D crystals. Here we report the high-resolution structure of a peptide fragment of the amyloidogenic protein transthyretin, TTR(105-115), in its fibrillar form, determined by magic angle spinning NMR spectroscopy. The structure resolves not only the backbone fold but also the precise conformation of the side chains. Nearly complete 13C and 15N resonance assignments for TTR(105-115) formed the basis for the extraction of a set of distance and dihedral angle restraints. A total of 76 self-consistent experimental measurements, including 41 restraints on 19 backbone dihedral angles and 35 13C-15N distances between 3 and 6 Å were obtained from 2D and 3D NMR spectra recorded on three fibril samples uniformly 13C, 15N-labeled in consecutive stretches of four amino acids and used to calculate an ensemble of peptide structures. Our results indicate that TTR(105-115) adopts an extended -strand conformation in the amyloid fibrils such that both the main- and side-chain torsion angles are close to their optimal values. Moreover, the structure of this peptide in the fibrillar form has a degree of long-range order that is generally associated only with crystalline materials. These findings provide an explanation of the unusual stability and characteristic properties of this form of polypeptide assembly.

  19. The mobility of chondroitin sulfate in articular and artificial cartilage characterized by 13C magic-angle spinning NMR spectroscopy.

    PubMed

    Scheidt, Holger A; Schibur, Stephanie; Magalhães, Alvicler; de Azevedo, Eduardo R; Bonagamba, Tito J; Pascui, Ovidiu; Schulz, Ronny; Reichert, Detlef; Huster, Daniel

    2010-06-01

    We have studied the molecular dynamics of one of the major macromolecules in articular cartilage, chondroitin sulfate. Applying (13)C high-resolution magic-angle spinning NMR techniques, the NMR signals of all rigid macromolecules in cartilage can be suppressed, allowing the exclusive detection of the highly mobile chondroitin sulfate. The technique is also used to detect the chondroitin sulfate in artificial tissue-engineered cartilage. The tissue-engineered material that is based on matrix producing chondrocytes cultured in a collagen gel should provide properties as close as possible to those of the natural cartilage. Nuclear relaxation times of the chondroitin sulfate were determined for both tissues. Although T(1) relaxation times are rather similar, the T(2) relaxation in tissue-engineered cartilage is significantly shorter. This suggests that the motions of chondroitin sulfate in natural and artificial cartilage are different. The nuclear relaxation times of chondroitin sulfate in natural and tissue-engineered cartilage were modeled using a broad distribution function for the motional correlation times. Although the description of the microscopic molecular dynamics of the chondroitin sulfate in natural and artificial cartilage required the identical broad distribution functions for the correlation times of motion, significant differences in the correlation times of motion that are extracted from the model indicate that the artificial tissue does not fully meet the standards of the natural ideal. This could also be confirmed by macroscopic biomechanical elasticity measurements. Nevertheless, these results suggest that NMR is a useful tool for the investigation of the quality of artificially engineered tissue. PMID:20091673

  20. Alterations in creatine metabolism observed in experimental autoimmune myocarditis using ex vivo proton magic angle spinning MRS.

    PubMed

    Muench, Frédéric; Retel, Joren; Jeuthe, Sarah; O h-Ici, Darach; van Rossum, Barth; Wassilew, Katharina; Schmerler, Patrick; Kuehne, Titus; Berger, Felix; Oschkinat, Hartmut; Messroghli, Daniel R

    2015-12-01

    Experimental autoimmune myocarditis (EAM) in rodents is an accepted model of myocarditis and dilated cardiomyopathy (DCM). Altered metabolism is thought to play an important role in the pathogenesis of DCM and heart failure (HF). Study of the metabolism may provide new diagnostic information and insights into the mechanisms of myocarditis and HF. Proton MRS ((1)H-MRS) has not yet been used to study the changes occurring in myocarditis and subsequent HF. We aimed to explore the changes in creatine metabolism using this model and compare them with the findings in healthy animals. Myocardial function of male young Lewis rats with EAM was quantified by performing left ventricular ejection fraction (LVEF) analysis in short-axis cine images throughout the whole heart. Inflammatory cellular infiltrate was assessed by immunohistochemistry. Myocardial tissue was analyzed using ex vivo proton magic angle spinning MRS ((1)H-MAS-MRS). Myocarditis was confirmed histologically by the presence of an inflammatory cellular infiltrate and CD68 positive staining. A significant increase in the metabolic ratio of Tau/tCr (taurine/total creatine) obtained by (1)H-MAS-MRS was observed in myocarditis compared with healthy controls (21 d acute EAM, 4.38 (±0.23); 21 d control, 2.84 (±0.08); 35 d chronic EAM, 4.47 (±0.83); 35 d control, 2.59 (±0.38); P < 0.001). LVEF was reduced in diseased animals (EAM, 55.2% (±11.3%); control, 72.6% (±3.8%); P < 0.01) and correlated with Tau/tCr ratio (R = 0.937, P < 0.001). Metabolic alterations occur acutely with the development of myocarditis. Myocardial Tau/tCr ratio as detected by (1)H-MRS correlates with LVEF and is able to differentiate between healthy myocardium and myocardium from rats with EAM.

  1. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  2. Evolution of CPMAS under fast magic-angle-spinning at 100 kHz and beyond.

    PubMed

    Wickramasinghe, Ayesha; Wang, Songlin; Matsuda, Isamu; Nishiyama, Yusuke; Nemoto, Takahiro; Endo, Yuki; Ishii, Yoshitaka

    2015-11-01

    This article describes recent trends of high-field solid-state NMR (SSNMR) experiments for small organic molecules and biomolecules using (13)C and (15)N CPMAS under ultra-fast MAS at a spinning speed (νR) of 80-100kHz. First, we illustrate major differences between a modern low-power RF scheme using UFMAS in an ultra-high field and a traditional CPMAS scheme using a moderate sample spinning in a lower field. Features and sensitivity advantage of a low-power RF scheme using UFMAS and a small sample coil are summarized for CPMAS-based experiments. Our 1D (13)C CPMAS experiments for uniformly (13)C- and (15)N-labeled alanine demonstrated that the sensitivity per given sample amount obtained at νR of 100kHz and a (1)H NMR frequency (νH) of 750.1MHz is ~10 fold higher than that of a traditional CPMAS experiment obtained at νR of 20kHz and νH of 400.2MHz. A comparison of different (1)H-decoupling schemes in CPMAS at νR of 100kHz for the same sample demonstrated that low-power WALTZ-16 decoupling unexpectedly displayed superior performance over traditional low-power schemes designed for SSNMR such as TPPM and XiX in a range of decoupling field strengths of 5-20kHz. Excellent (1)H decoupling performance of WALTZ-16 was confirmed on a protein microcrystal sample of GB1 at νR of 80kHz. We also discuss the feasibility of a SSNMR microanalysis of a GB1 protein sample in a scale of 1nmol to 80nmol by (1)H-detected 2D (15)N/(1)H SSNMR by a synergetic use of a high field, a low-power RF scheme, a paramagnetic-assisted condensed data collection (PACC), and UFMAS.

  3. IN SITU MAGIC ANGLE SPINNING NMR FOR STUDYING GEOLOGICAL CO(2) SEQUESTRATION

    SciTech Connect

    Hoyt, David W.; Turcu, Romulus VF; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Kwak, Ja Hun; Felmy, Andrew R.; Hu, Jian Z.

    2011-03-27

    Geological carbon sequestration (GCS) is one of the most promising ways of mitigating atmospheric greenhouse gases (1-3). Mineral carbonation reactions are potentially important to the long-term sealing effectiveness of caprock but remain poorly predictable, particularly in low-water supercritical CO2 (scCO2)-dominated environments where the chemistry has not been adequately explored. In situ probes that provide molecular-level information is desirable for investigating mechanisms and rates of GCS mineral carbonation reactions. MAS-NMR is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, or a supercritical state, or a mixture thereof (4,5). However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS rotor (6,7), where non-metal materials must be used. In this work, we report development of a unique high pressure MAS NMR capability, and its application to mineral carbonation chemistry in scCO2 under geologically relevant temperatures and pressures.

  4. Electrical and ionic conductivity effects on magic-angle spinning nuclear magnetic resonance parameters of CuI.

    PubMed

    Yesinowski, James P; Ladouceur, Harold D; Purdy, Andrew P; Miller, Joel B

    2010-12-21

    We investigate experimentally and theoretically the effects of two different types of conductivity, electrical and ionic, upon magic-angle spinning NMR spectra. The experimental demonstration of these effects involves (63)Cu, (65)Cu, and (127)I variable temperature MAS-NMR experiments on samples of γ-CuI, a Cu(+)-ion conductor at elevated temperatures as well as a wide bandgap semiconductor. We extend previous observations that the chemical shifts depend very strongly upon the square of the spinning-speed as well as the particular sample studied and the magnetic field strength. By using the (207)Pb resonance of lead nitrate mixed with the γ-CuI as an internal chemical shift thermometer we show that frictional heating effects of the rotor do not account for the observations. Instead, we find that spinning bulk CuI, a p-type semiconductor due to Cu(+) vacancies in nonstoichiometric samples, in a magnetic field generates induced AC electric currents from the Lorentz force that can resistively heat the sample by over 200 °C. These induced currents oscillate along the rotor spinning axis at the spinning speed. Their associated heating effects are disrupted in samples containing inert filler material, indicating the existence of macroscopic current pathways between micron-sized crystallites. Accurate measurements of the temperature-dependence of the (63)Cu and (127)I chemical shifts in such diluted samples reveal that they are of similar magnitude (ca. 0.27 ppm/K) but opposite sign (being negative for (63)Cu), and appear to depend slightly upon the particular sample. This relationship is identical to the corresponding slopes of the chemical shifts versus square of the spinning speed, again consistent with sample heating as the source of the observed large shift changes. Higher drive-gas pressures are required to spin samples that have higher effective electrical conductivities, indicating the presence of a braking effect arising from the induced currents produced by

  5. Electrical and ionic conductivity effects on magic-angle spinning nuclear magnetic resonance parameters of CuI

    NASA Astrophysics Data System (ADS)

    Yesinowski, James P.; Ladouceur, Harold D.; Purdy, Andrew P.; Miller, Joel B.

    2010-12-01

    We investigate experimentally and theoretically the effects of two different types of conductivity, electrical and ionic, upon magic-angle spinning NMR spectra. The experimental demonstration of these effects involves 63Cu, 65Cu, and 127I variable temperature MAS-NMR experiments on samples of γ-CuI, a Cu+-ion conductor at elevated temperatures as well as a wide bandgap semiconductor. We extend previous observations that the chemical shifts depend very strongly upon the square of the spinning-speed as well as the particular sample studied and the magnetic field strength. By using the 207Pb resonance of lead nitrate mixed with the γ-CuI as an internal chemical shift thermometer we show that frictional heating effects of the rotor do not account for the observations. Instead, we find that spinning bulk CuI, a p-type semiconductor due to Cu+ vacancies in nonstoichiometric samples, in a magnetic field generates induced AC electric currents from the Lorentz force that can resistively heat the sample by over 200 °C. These induced currents oscillate along the rotor spinning axis at the spinning speed. Their associated heating effects are disrupted in samples containing inert filler material, indicating the existence of macroscopic current pathways between micron-sized crystallites. Accurate measurements of the temperature-dependence of the 63Cu and 127I chemical shifts in such diluted samples reveal that they are of similar magnitude (ca. 0.27 ppm/K) but opposite sign (being negative for 63Cu), and appear to depend slightly upon the particular sample. This relationship is identical to the corresponding slopes of the chemical shifts versus square of the spinning speed, again consistent with sample heating as the source of the observed large shift changes. Higher drive-gas pressures are required to spin samples that have higher effective electrical conductivities, indicating the presence of a braking effect arising from the induced currents produced by rotating a

  6. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations. PMID:24832263

  7. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations. PMID:24832263

  8. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    NASA Astrophysics Data System (ADS)

    Thurber, Kent R.; Tycko, Robert

    2014-05-01

    We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  9. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  10. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    SciTech Connect

    Thurber, Kent R. Tycko, Robert

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  11. Slow magic angle sample spinning: a non- or minimally invasive method for high-resolution 1H nuclear magnetic resonance (NMR) metabolic profiling.

    PubMed

    Hu, Jian Zhi

    2011-01-01

    High-resolution (1)H magic angle spinning nuclear magnetic resonance (NMR), using a sample spinning rate of several kilohertz or more (i.e., high-resolution magic angle spinning (hr-MAS)), is a well-established method for metabolic profiling in intact tissues without the need for sample extraction. The only shortcoming with hr-MAS is that it is invasive and is thus unusable for non-destructive detections. Recently, a method called slow MAS, using the concept of two-dimensional NMR spectroscopy, has emerged as an alternative method for non- or minimally invasive metabolomics in intact tissues, including live animals, due to the slow or ultra-slow sample spinning used. Although slow MAS is a powerful method, its applications are hindered by experimental challenges. Correctly designing the experiment and choosing the appropriate slow MAS method both require a fundamental understanding of the operation principles, in particular the details of line narrowing due to the presence of molecular diffusion. However, these fundamental principles have not yet been fully disclosed in previous publications. The goal of this chapter is to provide an in-depth evaluation of the principles associated with slow MAS techniques by emphasizing the challenges associated with a phantom sample consisting of glass beads and H(2)O, where an unusually large magnetic susceptibility field gradient is obtained.

  12. Slow Magic Angle Sample Spinning: A Non- or Minimally Invasive Method for High- Resolution 1H Nuclear Magnetic Resonance (NMR) Metabolic Profiling

    SciTech Connect

    Hu, Jian Z.

    2011-05-01

    High resolution 1H magic angle spinning nuclear magnetic resonance (NMR), using a sample spinning rate of several kHz or more (i.e., high resolution-magic angle spinning (hr-MAS)), is a well established method for metabolic profiling in intact tissues without the need for sample extraction. The only shortcoming with hr-MAS is that it is invasive and is thus unusable for non-destructive detections. Recently, a method called slow-MAS, using the concept of two dimensional NMR spectroscopy, has emerged as an alternative method for non- or minimal invasive metabolomics in intact tissues, including live animals, due to the slow or ultra-slow-sample spinning used. Although slow-MAS is a powerful method, its applications are hindered by experimental challenges. Correctly designing the experiment and choosing the appropriate slow-MAS method both require a fundamental understanding of the operation principles, in particular the details of line narrowing due to the presence of molecular diffusion. However, these fundamental principles have not yet been fully disclosed in previous publications. The goal of this chapter is to provide an in depth evaluation of the principles associated with slow-MAS techniques by emphasizing the challenges associated with a phantom sample consisting of glass beads and H2O, where an unusually large magnetic susceptibility field gradient is obtained.

  13. (13)C-(13)c homonuclear recoupling in solid-state nuclear magnetic resonance at a moderately high magic-angle-spinning frequency.

    PubMed

    Mithu, Venus Singh; Bakthavatsalam, Subha; Madhu, Perunthiruthy K

    2013-01-01

    Two-dimensional (13)C-(13)C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13)C-(13)C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on (1)H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.

  14. Site-resolved multiple-quantum filtered correlations and distance measurements by magic-angle spinning NMR: Theory and applications to spins with weak to vanishing quadrupolar couplings.

    PubMed

    Eliav, U; Haimovich, A; Goldbourt, A

    2016-01-14

    We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling of the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental (7)Li-(13)C distances in a complex of lithium, glycine, and water. Discussion

  15. Fast magic-angle sample spinning solid-state NMR at 60-100kHz for natural abundance samples.

    PubMed

    Nishiyama, Yusuke

    2016-09-01

    In spite of tremendous progress made in pulse sequence designs and sophisticated hardware developments, methods to improve sensitivity and resolution in solid-state NMR (ssNMR) are still emerging. The rate at which sample is spun at magic angle determines the extent to which sensitivity and resolution of NMR spectra are improved. To this end, the prime objective of this article is to give a comprehensive theoretical and experimental framework of fast magic angle spinning (MAS) technique. The engineering design of fast MAS rotors based on spinning rate, sample volume, and sensitivity is presented in detail. Besides, the benefits of fast MAS citing the recent progress in methodology, especially for natural abundance samples are also highlighted. The effect of the MAS rate on (1)H resolution, which is a key to the success of the (1)H inverse detection methods, is described by a simple mathematical factor named as the homogeneity factor k. A comparison between various (1)H inverse detection methods is also presented. Moreover, methods to reduce the number of spinning sidebands (SSBs) for the systems with huge anisotropies in combination with (1)H inverse detection at fast MAS are discussed.

  16. Orientation of functional groups of soil organic matter on the surface of water repellent soils determined by pulse saturation magic angle spinning (PSTMAS) nuclear magnetic resonance (NMR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Hiradate, Syuntaro; Kawamoto, Ken; Senani Wijewardana, Nadeeka; Müller, Karin; Møldrup, Per; Clothier, Brent; Komatsu, Toshiko

    2014-05-01

    Orientation of functional groups of soil organic matter on soil particles plays a crucial role in the occurrence of soil water repellency. In addition to a general method to characterize soil organic matter using cross polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) technique, we determined the surface orientation of functional groups in water repellent soils by using pulse saturation magic angle spinning (PSTMAS) NMR technique. A preliminary experiment confirmed that the PSTMAS NMR spectrum successfully determined the high mobility of methyl group of octadecylsilylated silica gels when a comparison was made with that of CPMAS NMR. This means that the methyl group oriented towards the outside of the silica gel particle. Similarly, for an experimental system consisting of mixtures of octadecylsilylated silica gel and dimethyl sulfoxide (DMSO), the extremely high mobility of methyl group derived from DMSO was detected using the same methodology. For water repellent soils from Japan and New Zealand, it was found that the methyl and methylene groups were highly mobile. In contrast, the NMR signals of aromatic moiety, another hydrophobic moiety of soil organic matter, were not as intense in PSTMAS compared with CPMAS. From these results, we conclude that alkyl moiety (methyl and methylene groups) would be oriented towards the outside of the soil particle and would play an important role in the appearance of water repellency of soils.

  17. A suite of pulse sequences based on multiple sequential acquisitions at one and two radiofrequency channels for solid-state magic-angle spinning NMR studies of proteins.

    PubMed

    Sharma, Kshama; Madhu, Perunthiruthy K; Mote, Kaustubh R

    2016-08-01

    One of the fundamental challenges in the application of solid-state NMR is its limited sensitivity, yet a majority of experiments do not make efficient use of the limited polarization available. The loss in polarization in a single acquisition experiment is mandated by the need to select out a single coherence pathway. In contrast, sequential acquisition strategies can encode more than one pathway in the same experiment or recover unused polarization to supplement a standard experiment. In this article, we present pulse sequences that implement sequential acquisition strategies on one and two radiofrequency channels with a combination of proton and carbon detection to record multiple experiments under magic-angle spinning. We show that complementary 2D experiments such as [Formula: see text] and [Formula: see text] or DARR and [Formula: see text], and 3D experiments such as [Formula: see text] and [Formula: see text], or [Formula: see text] and [Formula: see text]  can be combined in a single experiment to ensure time savings of at least 40 %. These experiments can be done under fast or slow-moderate magic-angle spinning frequencies aided by windowed [Formula: see text] acquisition and homonulcear decoupling. The pulse sequence suite is further expanded by including pathways that allow the recovery of residual polarization, the so-called 'afterglow' pathways, to encode a number of pulse sequences to aid in assignments and chemical-shift mapping. PMID:27364976

  18. A suite of pulse sequences based on multiple sequential acquisitions at one and two radiofrequency channels for solid-state magic-angle spinning NMR studies of proteins.

    PubMed

    Sharma, Kshama; Madhu, Perunthiruthy K; Mote, Kaustubh R

    2016-08-01

    One of the fundamental challenges in the application of solid-state NMR is its limited sensitivity, yet a majority of experiments do not make efficient use of the limited polarization available. The loss in polarization in a single acquisition experiment is mandated by the need to select out a single coherence pathway. In contrast, sequential acquisition strategies can encode more than one pathway in the same experiment or recover unused polarization to supplement a standard experiment. In this article, we present pulse sequences that implement sequential acquisition strategies on one and two radiofrequency channels with a combination of proton and carbon detection to record multiple experiments under magic-angle spinning. We show that complementary 2D experiments such as [Formula: see text] and [Formula: see text] or DARR and [Formula: see text], and 3D experiments such as [Formula: see text] and [Formula: see text], or [Formula: see text] and [Formula: see text]  can be combined in a single experiment to ensure time savings of at least 40 %. These experiments can be done under fast or slow-moderate magic-angle spinning frequencies aided by windowed [Formula: see text] acquisition and homonulcear decoupling. The pulse sequence suite is further expanded by including pathways that allow the recovery of residual polarization, the so-called 'afterglow' pathways, to encode a number of pulse sequences to aid in assignments and chemical-shift mapping.

  19. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2009-01-01

    Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of 79Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the 79Br NMR frequency to that of 13C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions. PMID:18930418

  20. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Sharma, Kshama; Madhu, P. K.; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1 = n · νr). Recently, two schemes, namely, PISSARRO and rCWApA, have been shown to be less affected by the problem of MAS and RF interference, specifically at the n = 2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n = 1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40 kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power 1H irradiation of ca.195 kHz.

  1. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning.

    PubMed

    Sharma, Kshama; Madhu, P K; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz. PMID:27472380

  2. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning.

    PubMed

    Sharma, Kshama; Madhu, P K; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz.

  3. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2012-08-28

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.

  4. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: The importance of level crossings

    NASA Astrophysics Data System (ADS)

    Thurber, Kent R.; Tycko, Robert

    2012-08-01

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T1e is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.

  5. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2012-08-28

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants. PMID:22938251

  6. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: The importance of level crossings

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2012-01-01

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T1e is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants. PMID:22938251

  7. Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR

    PubMed Central

    Traaseth, Nathaniel J.; Veglia, Gianluigi

    2011-01-01

    We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR spectra of membrane proteins in fluid lipid membranes with broad lines and high redundancy in the primary sequence. We implemented this approach in both heteronuclear 15N-13Cα and homonuclear 13C-13C dipolar assisted rotational resonance (DARR) correlation experiments. We demonstrate its efficacy for the membrane protein phospholamban reconstituted in fluid PC/PE/PA lipid bilayers. The main advantage of this method is to discriminate overlapped 13Cα resonances by strategically labeling the preceding residue. This method is highly complementary to 13C′i-1-15Ni-13Cαi and 13Cαi-1-15Ni-1-13C′i experiments to discriminate inter-residue spin systems at a minimal cost to signal-to-noise. PMID:21482162

  8. Scaling and labeling the high-resolution isotropic axis of two-dimensional multiple-quantum magic-angle-spinning spectra of half-integer quadrupole spins

    NASA Astrophysics Data System (ADS)

    Man, Pascal P.

    1998-08-01

    The dynamics of half-integer quadrupole spins (I=32, 52, 72, and 92) during the multiple-quantum (MQ) magic-angle spinning experiment with the two-pulse sequence, a recent NMR method, is analyzed in order to scale in frequency unit and label in ppm (the chemical shift unit) the high-resolution isotropic axis of a two-dimensional (2D) spectrum. Knowledge of the two observed chemical shifts (δ(obs)G1 and δ(obs)G2) of the center of gravity of an MQ-filtered central-transition peak in the two dimensions allows us to determine the true isotropic chemical shift of an absorption line, which is related to the mean bond angle in a compound. Only the isotropic chemical shift and the second-order quadrupole interaction for a sample rotating at the magic angle at a high spinning rate are considered during the free precession of the spin system. On the other hand, only the first-order quadrupole interaction for a static sample is considered during the pulses. The hypercomplex detection method is used to obtain a pure 2D absorption spectrum. The pulse program and the successive stages of data processing are described. For simplicity, only the density matrix for a spin I=32 at the end of the first pulse of phase φ is calculated in detail, which allows us to deduce the phase cycling of the pulse sequence that selectively detects the +/-3-quantum coherences generated by the first pulse. The positions of the echo and antiecho relative to the second pulse, and that of the MQ-filtered central-transition peak relative to the carrier frequency (ω0) along the F1 dimension are derived for the four half-integer quadrupole spins. The frequency offset of ω0 relative to an external aqueous solution in the F1 dimension is linearly related to that in the F2 dimension. The shearing transformation, whose main interest is to shift the beginning of the acquisition period from the end of the second pulse to the echo position and to yield a high-resolution spectrum along the F1 dimension, is

  9. High resolution magic angle spinning NMR as a tool for unveiling the molecular enantiorecognition of omeprazole by amylose-based chiral phase.

    PubMed

    Barreiro, Juliana Cristina; de Campos Lourenço, Tiago; Silva, Lorena Mara A; Venâncio, Tiago; Cass, Quezia Bezerra

    2014-03-21

    Polysaccharide-based chiral stationary phases (CSP) demonstrate great versatility and higher chiral selectivity for a variety of chiral compounds in multimodal elution modes (normal, reverse and polar organic). The main role of CSP phenyl carbamate based derivatives as chiral selectors is the formation of diastereoisomeric complexes by means of π-π interaction, dipole-dipole, hydrogen bonding and/or inclusion complex mechanisms. Nevertheless, the mechanism behind their enantioselectivity requires clarification. High resolution magic angle spinning nuclear magnetic resonance spectroscopy ((1)H HR/MAS NMR) has provided key information on the recognition process at the binding sites of the CSP surface. Herein we report the results obtained using omeprazole as a probe for these investigations.

  10. A Cross-Polarization, Magic-Angle-Spinning, 13C-Nuclear-Magnetic-Resonance Study of Polysaccharides in Sugar Beet Cell Walls1

    PubMed Central

    Renard, Catherine M.G.C.; Jarvis, Michael C.

    1999-01-01

    Solid-state nuclear magnetic resonance relaxation experiments were used to study the rigidity and spatial proximity of polymers in sugar beet (Beta vulgaris) cell walls. Proton T1ρ decay and cross-polarization patterns were consistent with the presence of rigid, crystalline cellulose microfibrils with a diameter of approximately 3 nm, mobile pectic galacturonans, and highly mobile arabinans. A direct-polarization, magic-angle-spinning spectrum recorded under conditions adapted to mobile polymers showed only the arabinans, which had a conformation similar to that of beet arabinans in solution. These cell walls contained very small amounts of hemicellulosic polymers such as xyloglucan, xylan, and mannan, and no arabinan or galacturonan fraction closely associated with cellulose microfibrils, as would be expected of hemicelluloses. Cellulose microfibrils in the beet cell walls were stable in the absence of any polysaccharide coating. PMID:10198090

  11. High resolution magic angle spinning NMR spectroscopy reveals that pectoralis muscle dystrophy in chicken is associated with reduced muscle content of anserine and carnosine.

    PubMed

    Sundekilde, Ulrik K; Rasmussen, Martin K; Young, Jette F; Bertram, Hanne Christine

    2017-02-15

    Increased incidences of pectoralis muscle dystrophy are observed in commercial chicken products, but the muscle physiological causes for the condition remain to be identified. In the present study a high-resolution magic angle spinning (HR-MAS) proton ((1)H) NMR spectroscopic examination of intact pectoralis muscle samples (n=77) were conducted to explore metabolite perturbations associated with the muscle dystrophy condition for the very first time. Both in chicken with an age of 21 and 31days, respectively, pectoralis muscle dystrophy was associated with a significantly lower content of anserine (p=0.034), carnosine (p=0.019) and creatine (p=0.049). These findings must be considered intriguing as they corroborate that characteristic muscle di-peptides composed of β-alanine and histidine derivatives such as anserine are extremely important in homeostasis of contractile muscles as a results of their role as buffering, anti-oxidative, and anti-glycation capacities. PMID:27664620

  12. A High-Resolution Magic Angle Spinning NMR Study of the Enantiodiscrimination of 3,4-Methylenedioxymethamphetamine (MDMA) by an Immobilized Polysaccharide-Based Chiral Phase

    PubMed Central

    Paixão, Márcio W.; Lourenço, Tiago C.

    2016-01-01

    This paper reports the investigation of the chiral interaction between 3,4-methylenedioxy-methamphetamine (MDMA) enantiomers and an immobilized polysaccharide-based chiral phase. For that, suspended-state high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (1H HR-MAS NMR) was used. 1H HR-MAS longitudinal relaxation time and Saturation Transfer Difference (STD NMR) titration experiments were carried out yielding information at the molecular level of the transient diastereoisomeric complexes of MDMA enantiomers and the chiral stationary phase. The interaction of the enantiomers takes place through the aromatic moiety of MDMA and the aromatic group of the chiral selector by π-π stacking for both enantiomers; however, a stronger interaction was observed for the (R)-enantiomer, which is the second one to elute at the chromatographic conditions. PMID:27668862

  13. Crocus sativus Petals: Waste or Valuable Resource? The Answer of High-Resolution and High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance.

    PubMed

    Righi, Valeria; Parenti, Francesca; Tugnoli, Vitaliano; Schenetti, Luisa; Mucci, Adele

    2015-09-30

    Intact Crocus sativus petals were studied for the first time by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, revealing the presence of kinsenoside (2) and goodyeroside A (3), together with 3-hydroxy-γ-butyrolactone (4). These findings were confirmed by HR-NMR analysis of the ethanol extract of fresh petals and showed that, even though carried out rapidly, partial hydrolysis of glucopyranosyloxybutanolides occurs during extraction. On the other hand, kaempferol 3-O-sophoroside (1), which is "NMR-silent" in intact petals, is present in extracts. These results suggest to evaluate the utilization of saffron petals for phytopharmaceutical and nutraceutical purposes to exploit a waste product of massive production of commercial saffron and point to the application of HR-MAS NMR for monitoring bioactive compounds directly on intact petals, avoiding the extraction procedure and the consequent hydrolysis reaction.

  14. High resolution magic angle spinning NMR spectroscopy reveals that pectoralis muscle dystrophy in chicken is associated with reduced muscle content of anserine and carnosine.

    PubMed

    Sundekilde, Ulrik K; Rasmussen, Martin K; Young, Jette F; Bertram, Hanne Christine

    2017-02-15

    Increased incidences of pectoralis muscle dystrophy are observed in commercial chicken products, but the muscle physiological causes for the condition remain to be identified. In the present study a high-resolution magic angle spinning (HR-MAS) proton ((1)H) NMR spectroscopic examination of intact pectoralis muscle samples (n=77) were conducted to explore metabolite perturbations associated with the muscle dystrophy condition for the very first time. Both in chicken with an age of 21 and 31days, respectively, pectoralis muscle dystrophy was associated with a significantly lower content of anserine (p=0.034), carnosine (p=0.019) and creatine (p=0.049). These findings must be considered intriguing as they corroborate that characteristic muscle di-peptides composed of β-alanine and histidine derivatives such as anserine are extremely important in homeostasis of contractile muscles as a results of their role as buffering, anti-oxidative, and anti-glycation capacities.

  15. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS) - NMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    NASA Astrophysics Data System (ADS)

    Wong, Alan; Boutin, Celine; Aguiar, Pedro

    2014-06-01

    The low sensitivity of Nuclear Magnetic Resonance (NMR) is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30-50 µl for HR-MAS) for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl) whole bacterial cells, Saccharomyces cervisiae, using an emerging micro-NMR technology: high-resolution magic-angle coil spinning (HR-MACS). As a demonstrative study for whole cells, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.

  16. 1H high resolution magic-angle coil spinning (HR-MACS) μNMR metabolic profiling of whole Saccharomyces cervisiae cells: a demonstrative study

    PubMed Central

    Wong, Alan; Boutin, Céline; Aguiar, Pedro M.

    2014-01-01

    The low sensitivity and thus need for large sample volume is one of the major drawbacks of Nuclear Magnetic Resonance (NMR) spectroscopy. This is especially problematic for performing rich metabolic profiling of scarce samples such as whole cells or living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volumes (250 nl) of whole cells. We have applied an emerging micro-NMR technology, high-resolution magic-angle coil spinning (HR-MACS), to study whole Saccharomyces cervisiae cells. We find that high-resolution high-sensitivity spectra can be obtained with only 19 million cells and, as a demonstration of the metabolic profiling potential, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging. PMID:24971307

  17. (1)H high resolution magic-angle coil spinning (HR-MACS) μNMR metabolic profiling of whole Saccharomyces cervisiae cells: a demonstrative study.

    PubMed

    Wong, Alan; Boutin, Céline; Aguiar, Pedro M

    2014-01-01

    The low sensitivity and thus need for large sample volume is one of the major drawbacks of Nuclear Magnetic Resonance (NMR) spectroscopy. This is especially problematic for performing rich metabolic profiling of scarce samples such as whole cells or living organisms. This study evaluates a (1)H HR-MAS approach for metabolic profiling of small volumes (250 nl) of whole cells. We have applied an emerging micro-NMR technology, high-resolution magic-angle coil spinning (HR-MACS), to study whole Saccharomyces cervisiae cells. We find that high-resolution high-sensitivity spectra can be obtained with only 19 million cells and, as a demonstration of the metabolic profiling potential, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging. PMID:24971307

  18. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    PubMed Central

    2012-01-01

    Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9) originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample). Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater. PMID:22257563

  19. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1ρ NMR Measurements: Application to Protein Backbone Dynamics Measurements.

    PubMed

    Kurauskas, Vilius; Weber, Emmanuelle; Hessel, Audrey; Ayala, Isabel; Marion, Dominique; Schanda, Paul

    2016-09-01

    Transverse relaxation rate measurements in magic-angle spinning solid-state nuclear magnetic resonance provide information about molecular motions occurring on nanosecond-to-millisecond (ns-ms) time scales. The measurement of heteronuclear ((13)C, (15)N) relaxation rate constants in the presence of a spin-lock radiofrequency field (R1ρ relaxation) provides access to such motions, and an increasing number of studies involving R1ρ relaxation in proteins have been reported. However, two factors that influence the observed relaxation rate constants have so far been neglected, namely, (1) the role of CSA/dipolar cross-correlated relaxation (CCR) and (2) the impact of fast proton spin flips (i.e., proton spin diffusion and relaxation). We show that CSA/D CCR in R1ρ experiments is measurable and that the CCR rate constant depends on ns-ms motions; it can thus provide insight into dynamics. We find that proton spin diffusion attenuates this CCR due to its decoupling effect on the doublet components. For measurements of dynamics, the use of R1ρ rate constants has practical advantages over the use of CCR rates, and this article reveals factors that have so far been disregarded and which are important for accurate measurements and interpretation. PMID:27500976

  20. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1ρ NMR Measurements: Application to Protein Backbone Dynamics Measurements.

    PubMed

    Kurauskas, Vilius; Weber, Emmanuelle; Hessel, Audrey; Ayala, Isabel; Marion, Dominique; Schanda, Paul

    2016-09-01

    Transverse relaxation rate measurements in magic-angle spinning solid-state nuclear magnetic resonance provide information about molecular motions occurring on nanosecond-to-millisecond (ns-ms) time scales. The measurement of heteronuclear ((13)C, (15)N) relaxation rate constants in the presence of a spin-lock radiofrequency field (R1ρ relaxation) provides access to such motions, and an increasing number of studies involving R1ρ relaxation in proteins have been reported. However, two factors that influence the observed relaxation rate constants have so far been neglected, namely, (1) the role of CSA/dipolar cross-correlated relaxation (CCR) and (2) the impact of fast proton spin flips (i.e., proton spin diffusion and relaxation). We show that CSA/D CCR in R1ρ experiments is measurable and that the CCR rate constant depends on ns-ms motions; it can thus provide insight into dynamics. We find that proton spin diffusion attenuates this CCR due to its decoupling effect on the doublet components. For measurements of dynamics, the use of R1ρ rate constants has practical advantages over the use of CCR rates, and this article reveals factors that have so far been disregarded and which are important for accurate measurements and interpretation.

  1. A nuclear magnetic resonance spectrometer concept for hermetically sealed magic angle spinning investigations on highly toxic, radiotoxic, or air sensitive materials

    NASA Astrophysics Data System (ADS)

    Martel, L.; Somers, J.; Berkmann, C.; Koepp, F.; Rothermel, A.; Pauvert, O.; Selfslag, C.; Farnan, I.

    2013-05-01

    A concept to integrate a commercial high-resolution, magic angle spinning nuclear magnetic resonance (MAS-NMR) probe capable of very rapid rotation rates (70 kHz) in a hermetically sealed enclosure for the study of highly radiotoxic materials has been developed and successfully demonstrated. The concept centres on a conventional wide bore (89 mm) solid-state NMR magnet operating with industry standard 54 mm diameter probes designed for narrow bore magnets. Rotor insertion and probe tuning take place within a hermetically enclosed glovebox, which extends into the bore of the magnet, in the space between the probe and the magnet shim system. Oxygen-17 MAS-NMR measurements demonstrate the possibility of obtaining high quality spectra from small sample masses (˜10 mg) of highly radiotoxic material and the need for high spinning speeds to improve the spectral resolution when working with actinides. The large paramagnetic susceptibility arising from actinide paramagnetism in (Th1-xUx)O2 solid solutions gives rise to extensive spinning sidebands and poor resolution at 15 kHz, which is dramatically improved at 55 kHz. The first 17O MAS-NMR measurements on NpO2+x samples spinning at 55 kHz are also reported. The glovebox approach developed here for radiotoxic materials can be easily adapted to work with other hazardous or even air sensitive materials.

  2. A Novel High-Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment Under Ultrafast Magic Angle Spinning Conditions.

    PubMed

    Zhang, Rongchun; Pandey, Manoj Kumar; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-01-01

    Although magic angle spinning (MAS) solid-state NMR is a powerful technique to obtain atomic-resolution insights into the structure and dynamics of a variety of chemical and biological solids, poor sensitivity has severely limited its applications. In this study, we demonstrate an approach that suitably combines proton-detection, ultrafast-MAS and multiple frequency dimensions to overcome this limitation. With the utilization of proton-proton dipolar recoupling and double quantum (DQ) coherence excitation/reconversion radio-frequency pulses, very high-resolution proton-based 3D NMR spectra that correlate single-quantum (SQ), DQ and SQ coherences of biological solids have been obtained successfully for the first time. The proposed technique requires a very small amount of sample and does not need multiple radio-frequency (RF) channels. It also reveals information about the proximity between a spin and a certain other dipolar-coupled pair of spins in addition to regular SQ/DQ and SQ/SQ correlations. Although (1)H spectral resolution is still limited for densely proton-coupled systems, the 3D technique is valuable to study dilute proton systems, such as zeolites, small molecules, or deuterated samples. We also believe that this new methodology will aid in the design of a plethora of multidimensional NMR techniques and enable high-throughput investigation of an exciting class of solids at atomic-level resolution. PMID:26138791

  3. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies

    NASA Astrophysics Data System (ADS)

    Mote, Kaustubh R.; Madhu, Perunthiruthy K.

    2015-12-01

    1H -detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong 1H -1H dipolar coupled network that would otherwise severely broaden resonances, high MAS frequencies (>40 kHz) are often employed. Here, we have explored the alternative of stroboscopic 1H -detection at moderate MAS frequencies of 5-30 kHz using windowed version of supercycled-phase-modulated Lee-Goldburg homonuclear decoupling. We show that improved resolution in the 1H dimension, comparable to that obtainable at high spinning frequencies of 40-60 kHz without homonuclear decoupling, can be obtained in these experiments for fully protonated proteins. Along with detailed analysis of the performance of the method on the standard tri-peptide f-MLF, experiments on micro-crystalline GB1 and amyloid- β aggregates are used to demonstrate the applicability of these pulse-sequences to challenging biomolecular systems. With only two parameters to optimize, broadbanded performance of the homonuclear decoupling sequence, linear dependence of the chemical-shift scaling factor on resonance offset and a straightforward implementation under experimental conditions currently used for many biomolecular studies (viz. spinning frequencies and radio-frequency amplitudes), we expect these experiments to complement the current 13C -detection based methods in assignments and characterization through chemical-shift mapping.

  4. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.

    PubMed

    Mote, Kaustubh R; Madhu, Perunthiruthy K

    2015-12-01

    (1)H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong (1)H-(1)H dipolar coupled network that would otherwise severely broaden resonances, high MAS frequencies (>40kHz) are often employed. Here, we have explored the alternative of stroboscopic (1)H-detection at moderate MAS frequencies of 5-30kHz using windowed version of supercycled-phase-modulated Lee-Goldburg homonuclear decoupling. We show that improved resolution in the (1)H dimension, comparable to that obtainable at high spinning frequencies of 40-60kHz without homonuclear decoupling, can be obtained in these experiments for fully protonated proteins. Along with detailed analysis of the performance of the method on the standard tri-peptide f-MLF, experiments on micro-crystalline GB1 and amyloid-β aggregates are used to demonstrate the applicability of these pulse-sequences to challenging biomolecular systems. With only two parameters to optimize, broadbanded performance of the homonuclear decoupling sequence, linear dependence of the chemical-shift scaling factor on resonance offset and a straightforward implementation under experimental conditions currently used for many biomolecular studies (viz. spinning frequencies and radio-frequency amplitudes), we expect these experiments to complement the current (13)C-detection based methods in assignments and characterization through chemical-shift mapping.

  5. The use of a selective saturation pulse to suppress t1 noise in two-dimensional (1)H fast magic angle spinning solid-state NMR spectroscopy.

    PubMed

    Robertson, Aiden J; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P

    2015-11-01

    A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+kHz) suppresses t1 noise in the indirect dimension of two-dimensional (1)H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl (1)H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion--this is quantified by comparing two-dimensional (1)H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear (1)H-(1)H double quantum (DQ)/single quantum (SQ) MAS and (14)N-(1)H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments.

  6. Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins.

    PubMed

    Williams, Jonathan K; Schmidt-Rohr, Klaus; Hong, Mei

    2015-11-01

    The four aromatic amino acids in proteins, namely histidine, phenylalanine, tyrosine, and tryptophan, have strongly overlapping (13)C chemical shift ranges between 100 and 160ppm, and have so far been largely neglected in solid-state NMR determination of protein structures. Yet aromatic residues play important roles in biology through π-π and cation-π interactions. To better resolve and assign aromatic residues' (13)C signals in magic-angle-spinning (MAS) solid-state NMR spectra, we introduce two spectral editing techniques. The first method uses gated (1)H decoupling in a proton-driven spin-diffusion (PDSD) experiment to remove all protonated (13)C signals and retain only non-protonated carbon signals in the aromatic region of the (13)C spectra. The second technique uses chemical shift filters and (1)H-(13)C dipolar dephasing to selectively detect the Cα, Cβ and CO cross peaks of aromatic residues while suppressing the signals of all aliphatic residues. We demonstrate these two techniques on amino acids, a model peptide, and the microcrystalline protein GB1, and show that they significantly simplify the 2D NMR spectra and both reveal and permit the ready assignment of the aromatic residues' signals.

  7. Determination of the lithium binding site in inositol monophosphatase, the putative target for lithium therapy, by magic-angle-spinning solid-state NMR.

    PubMed

    Haimovich, Anat; Eliav, Uzi; Goldbourt, Amir

    2012-03-28

    Inositol monophosphatase (IMPase) catalyzes the hydrolysis of inositol monophosphate to inorganic phosphate and inositol. For this catalytic process to occur, Mg(2+) cations must exist in the active site. According to the inositol depletion hypothesis, IMPase activity is assumed to be higher than normal in patients suffering from bipolar disorder. Treatment with Li(+), an inhibitor of IMPase, reduces its activity, but the mechanism by which lithium exerts its therapeutic effects is still at a stage of conjecture. The Escherichia coli SuhB gene product possesses IMPase activity, which is also strongly inhibited by Li(+). It has significant sequence similarity to human IMPase and has most of its key active-site residues. Here we show that by using (7)Li magic-angle-spinning solid-state NMR spectroscopy, including {(13)C}(7)Li dipolar recoupling experiments, the bound form of lithium in the active site of wild-type E. coli SuhB can be unambiguously detected, and on the basis of our data and other biochemical data, lithium binds to site II, coupled to aspartate residues 84, 87, and 212.

  8. Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector

    NASA Astrophysics Data System (ADS)

    Lasič, Samo; Szczepankiewicz, Filip; Eriksson, Stefanie; Nilsson, Markus; Topgaard, Daniel

    2014-02-01

    Diffusion tensor imaging (DTI) is the method of choice for non-invasive investigations of the structure of human brain white matter. The results are conventionally reported as maps of the fractional anisotropy (FA), which is a parameter related to microstructural features such as axon density, diameter, and myelination. The interpretation of FA in terms of microstructure becomes ambiguous when there is a distribution of axon orientations within the image voxel. In this paper, we propose a procedure for resolving this ambiguity by determining a new parameter, the microscopic fractional anisotropy (µFA), which corresponds to the FA without the confounding influence of orientation dispersion. In addition, we suggest a method for measuring the orientational order parameter (OP) for the anisotropic objects. The experimental protocol is capitalizing on a recently developed diffusion NMR pulse sequence based on magic-angle spinning of the q-vector. Proof-of-principle experiments are carried out on microimaging and clinical MRI equipment using lyotropic liquid crystals and plant tissues as model materials with high µFA and low FA on account of orientation dispersion. We expect the presented method to be especially fruitful in combination with DTI and high angular resolution acquisition protocols for neuroimaging studies of grey and white matter.

  9. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of (13)C-labeled Plant Metabolites and Lignocellulose.

    PubMed

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our (13)C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the (13)C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the (13)C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in (13)C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  10. Characterization of metabolic profile of intact non-tumor and tumor breast cells by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy.

    PubMed

    Maria, Roberta M; Altei, Wanessa F; Andricopulo, Adriano D; Becceneri, Amanda B; Cominetti, Márcia R; Venâncio, Tiago; Colnago, Luiz A

    2015-11-01

    (1)H high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 (1)H HR-MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR-MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells. PMID:26247715

  11. A Monte Carlo/Simulated Annealing Algorithm for Sequential Resonance Assignment in Solid State NMR of Uniformly Labeled Proteins with Magic-Angle Spinning

    PubMed Central

    Tycko, Robert; Hu, Kan-Nian

    2010-01-01

    We describe a computational approach to sequential resonance assignment in solid state NMR studies of uniformly 15N,13C-labeled proteins with magic-angle spinning. As input, the algorithm uses only the protein sequence and lists of 15N/13Cα crosspeaks from 2D NCACX and NCOCX spectra that include possible residue-type assignments of each crosspeak. Assignment of crosspeaks to specific residues is carried out by a Monte Carlo/simulated annealing algorithm, implemented in the program MC_ASSIGN1. The algorithm tolerates substantial ambiguity in residue-type assignments and coexistence of visible and invisible segments in the protein sequence. We use MC_ASSIGN1 and our own 2D spectra to replicate and extend the sequential assignments for uniformly labeled HET-s(218-289) fibrils previously determined manually by Siemer et al. (J. Biomolec. NMR, vol. 34, pp. 75-87, 2006) from a more extensive set of 2D and 3D spectra. Accurate assignments by MC_ASSIGN1 do not require data that are of exceptionally high quality. Use of MC_ASSIGN1 (and its extensions to other types of 2D and 3D data) is likely to alleviate many of the difficulties and uncertainties associated with manual resonance assignments in solid state NMR studies of uniformly labeled proteins, where spectral resolution and signal-to-noise are often sub-optimal. PMID:20547467

  12. Characterization of metabolic profile of intact non-tumor and tumor breast cells by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy.

    PubMed

    Maria, Roberta M; Altei, Wanessa F; Andricopulo, Adriano D; Becceneri, Amanda B; Cominetti, Márcia R; Venâncio, Tiago; Colnago, Luiz A

    2015-11-01

    (1)H high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 (1)H HR-MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR-MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells.

  13. Vibrational 13C-cross-polarization/magic angle spinning NMR spectroscopic and thermal characterization of poly(alanine-glycine) as model for silk I Bombyx mori fibroin.

    PubMed

    Monti, Patrizia; Taddei, Paola; Freddi, Giuliano; Ohgo, Kosuke; Asakura, Tetsuo

    2003-01-01

    This study focuses on the conformational characterization of poly(alanine-glycine) II (pAG II) as a model for a Bombyx mori fibroin silk I structure. Raman, IR, and 13C-cross-polarization/magic angle spinning NMR spectra of pAG II are discussed in comparison with those of the crystalline fraction of B. mori silk fibroin (chymotryptic precipitate, Cp) with a silk I (silk I-Cp) structure. The spectral data give evidence that silk I-Cp and the synthetic copolypeptide pAG II have similar conformations. Moreover, the spectral findings reveal that silk I-Cp is more crystalline than pAG II; consequently, the latter contains a larger amount of the random coil conformation. Differential scanning calorimetry measurements confirm this result. N-Deuteration experiments on pAG II allow us to attribute the Raman component at 1320 cm(-1) to the amide III mode of a beta-turn type II conformation, thus confirming the results of those who propose a repeated beta-turn type II structure for silk I. The analysis of the Raman spectra in the nuNH region confirms that the silk I structure is characterized by the presence of different types of H-bonding arrangements, in agreement with the above model.

  14. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    PubMed

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.

  15. Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from Trichoderma.

    PubMed

    Mazzei, Pierluigi; Vinale, Francesco; Woo, Sheridan Lois; Pascale, Alberto; Lorito, Matteo; Piccolo, Alessandro

    2016-05-11

    Trichoderma fungi release 6-pentyl-2H-pyran-2-one (1) and harzianic acid (2) secondary metabolites to improve plant growth and health protection. We isolated metabolites 1 and 2 from Trichoderma strains, whose different concentrations were used to treat seeds of Solanum lycopersicum. The metabolic profile in the resulting 15 day old tomato leaves was studied by high-resolution magic-angle-spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy directly on the whole samples without any preliminary extraction. Principal component analysis (PCA) of HRMAS NMR showed significantly enhanced acetylcholine and γ-aminobutyric acid (GABA) content accompanied by variable amount of amino acids in samples treated with both Trichoderma secondary metabolites. Seed germination rates, seedling fresh weight, and the metabolome of tomato leaves were also dependent upon doses of metabolites 1 and 2 treatments. HRMAS NMR spectroscopy was proven to represent a rapid and reliable technique for evaluating specific changes in the metabolome of plant leaves and calibrating the best concentration of bioactive compounds required to stimulate plant growth. PMID:27088924

  16. Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from Trichoderma.

    PubMed

    Mazzei, Pierluigi; Vinale, Francesco; Woo, Sheridan Lois; Pascale, Alberto; Lorito, Matteo; Piccolo, Alessandro

    2016-05-11

    Trichoderma fungi release 6-pentyl-2H-pyran-2-one (1) and harzianic acid (2) secondary metabolites to improve plant growth and health protection. We isolated metabolites 1 and 2 from Trichoderma strains, whose different concentrations were used to treat seeds of Solanum lycopersicum. The metabolic profile in the resulting 15 day old tomato leaves was studied by high-resolution magic-angle-spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy directly on the whole samples without any preliminary extraction. Principal component analysis (PCA) of HRMAS NMR showed significantly enhanced acetylcholine and γ-aminobutyric acid (GABA) content accompanied by variable amount of amino acids in samples treated with both Trichoderma secondary metabolites. Seed germination rates, seedling fresh weight, and the metabolome of tomato leaves were also dependent upon doses of metabolites 1 and 2 treatments. HRMAS NMR spectroscopy was proven to represent a rapid and reliable technique for evaluating specific changes in the metabolome of plant leaves and calibrating the best concentration of bioactive compounds required to stimulate plant growth.

  17. Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies

    SciTech Connect

    Han, Yun; Hou, Guangjin; Suiter, Christopher L.; Ahn, Jinwoo; Byeon, In-Ja L.; Lipton, Andrew S.; Burton, Sarah D.; Hung, Ivan; Gorkov, Peter L.; Gan, Zhehong; Brey, William W.; Rice, David M.; Gronenborn, Angela M.; Polenova, Tatyana E.

    2013-11-27

    Maturation of HIV-1 virus into an infectious virion requires cleavage of the Gag polyprotein into its constituent domains and formation of a conical capsid core that encloses viral RNA and a small complement of proteins for replication. The final step of this process is the cleavage of the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into a conical capsid. The mechanism of this step, including the conformation of the SP1 peptide in CA-SP1, is under intense debate. In this report, we examine the tubular assemblies of CA and the CA-SP1 maturation intermediate using Magic Angle Spinning NMR spectroscopy. At the magnetic fields of 19.9 T and above, tubular CA and CA-SP1 assemblies yield outstanding-quality 2D and 3D MAS NMR spectra, which are amenable to resonance assignments and detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two sequence variants reveals that remarkably, the conformation of SP1 tail, of the functionally important CypA loop, and of the loop preceding helix 8 are sequence dependent and modulated by the residue variations at distal sites. These findings challenge the role of SP1 as a conformational switch in the maturation process and establish sequence-dependent conformational plasticity in CA.

  18. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    PubMed

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors. PMID:26604305

  19. The application of 1H high-resolution magic-angle spinning NMR for the study of clay-organic associations in natural and synthetic complexes.

    PubMed

    Simpson, André J; Simpson, Myrna J; Kingery, William L; Lefebvre, Brent A; Moser, Arvin; Williams, Antony J; Kvasha, Mikhail; Kelleher, Brian P

    2006-05-01

    The preferential sorption of model compounds to calcium-exchanged montmorillonite surfaces was investigated using 1H high-resolution magic-angle spinning (HR-MAS) and liquid-state NMR. Synthetic mixtures, representing the major structural categories abundant in natural organic matter (NOM), and two soil extracts were sorbed to montmorillonite. The NMR spectra indicate that, of the organic components observable by 1H HR-MAS NMR, aliphatic components preferentially sorb to the clay surface, while carbohydrates and amino acids mainly remain in the supernatant. These results may help explain the highly aliphatic nature of organic matter associated with clay fractions in natural soils and sediments. Investigations using the synthetic mixtures demonstrate a specific interaction between the clay surface and the polar region in 1-palmitoyl-3-stearoyl-rac-glycerol. Similar observations were obtained with natural soil extracts. The results presented have important implications for understanding the role of organoclay complexes in natural processes, and provides preliminary evidence that HR-MAS NMR is a powerful analytical technique for the investigation of organoclay complex structure and conformation. PMID:16649755

  20. Quantification of microheterogeneity in glioblastoma multiforme with ex vivo high-resolution magic-angle spinning (HRMAS) proton magnetic resonance spectroscopy.

    PubMed Central

    Cheng, L. L.; Anthony, D. C.; Comite, A. R.; Black, P. M.; Tzika, A. A.; Gonzalez, R. G.

    2000-01-01

    Microheterogeneity is a routinely observed neuropathologic characteristic in brain tumor pathology. Although microheterogeneity is readily documented by routine histologic techniques, these techniques only measure tumor status at the time of biopsy or surgery and do not indicate likely tumor progression. A biochemical screening technique calibrated against pathologic standards would greatly assist in predicting tumor progression from its biological activity. Here we demonstrate for the first time that proton magnetic resonance spectroscopy (1H MRS) with high-resolution magic-angle spinning (HRMAS), a technique introduced in 1997, can preserve tissue histopathologic features while producing well-resolved spectra of cellular metabolites in the identical intact tissue specimens. Observed biochemical alterations and tumor histopathologic characteristics can thus be correlated for the same surgical specimen, obviating the problems caused by tumor microheterogeneity. We analyzed multiple specimens of a single human glioblastoma multiforme surgically removed from a 44-year-old patient. Each specimen was first measured with HRMAS 1H MRS to determine tumor metabolites, then evaluated by quantitative histopathology. The concentrations of lactate and mobile lipids measured with HRMAS linearly reflected the percentage of tumor necrosis. Moreover, metabolic ratios of phosphorylcholine to choline correlated linearly with the percentage of the highly cellular malignant glioma. The quantification of tumor metabolic changes with HRMAS 1H MRS, in conjunction with subsequent histopathology of the same tumor specimen, has the potential to further our knowledge of the biochemistry of tumor heterogeneity during development, and thus ultimately to improve our accuracy in diagnosing, characterizing, and evaluating tumor progression. PMID:11303625

  1. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose

    PubMed Central

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  2. The combined effect of quadrupolar and dipolar interactions on the excitation and evolution of triple quantum coherences in ⁷Li solid state magic angle spinning NMR.

    PubMed

    Eliav, Uzi; Goldbourt, Amir

    2013-05-01

    Magic-angle spinning triple-quantum NMR spectra of lithium-7 provide enhanced spectral dispersion for the inherent low chemical shift range of this nucleus, while maintaining linewidths, which are free of any quadrupolar broadening to first order. Since the quadrupolar interaction of (7)Li is very small, in the order of the radio frequency nutation frequencies and only moderately larger than the spinning rates, such spectra are also only marginally affected by the second order quadrupolar interaction under large magnetic fields. In the current study we demonstrate that the existence of two and more proximate (7)Li spins, as encountered in many materials, affects both excitation and evolution of triple-quantum coherences due to the combined effect of quadrupolar and homonuclear dipolar interactions. We show that the generation of (7)Li triple-quantum coherences using two π/2 pulses separated by one-half rotor period is superior in such cases to a single pulse excitation since the excitation time is shorter; thus the maximum signal is only marginally affected by the homonuclear dipolar couplings. When the quadrupolar-dipolar cross terms dominate the spectra, single- and triple-quantum lineshapes are very similar and therefore a true gain in dispersion is maintained in the latter spectrum. The effects of quadrupolar-dipolar cross terms are experimentally demonstrated by comparing a natural abundance and a (6)Li-diluted samples of lithium acetate, resulting in the possibility of efficient excitation of triple quantum coherences over longer periods of time, and in longer life times of triple-quantum coherences.

  3. High-Resolution Solid-State NMR of Anisotropically Mobile Molecules Under Very Low Power 1H Decoupling and Moderate Magic-Angle Spinning

    PubMed Central

    Doherty, Tim; Hong, Mei

    2011-01-01

    We show that for observing high-resolution heteronuclear NMR spectra of anisotropically mobile systems with order parameters less than 0.25, moderate magic-angle spinning (MAS) rates of ∼11 kHz combined with 1H decoupling at 1-2 kHz are sufficient. Broadband decoupling at this low 1H nutation frequency is achieved by composite pulse sequences such as WALTZ-16. We demonstrate this moderate MAS low-power decoupling technique on hydrated POPC lipid membranes, and show that 1 kHz 1H decoupling yields spectra with the same resolution and sensitivity as spectra measured under 50 kHz 1H decoupling when the same acquisition times (∼ 50 ms) are used, but the low-power decoupled spectra give higher resolution and sensitivity when longer acquisition times (> 150 ms) are used, which are not possible with high-power decoupling. The limits of validity of this approach are explored for a range of spinning rates and molecular mobilities using more rigid membrane systems such as POPC/cholesterol mixed bilayers. Finally, we show 15N and 13C spectra of a uniaxially diffusing membrane peptide assembly, the influenza A M2 transmembrane domain, under 11 kHz MAS and 2 kHz 1H decoupling. The peptide 15N and 13C intensities at low power decoupling are 70-80% of the high-power decoupled intensities. Therefore, it is possible to study anisotropically mobile lipids and membrane peptides using liquid-state NMR equipment, relatively large rotors, and moderate MAS frequencies. PMID:19501003

  4. Time displacement rotational echo double resonance: Heteronuclear dipolar recoupling with suppression of homonuclear interaction under fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Tsai, Tim W. T.; Mou, Yun; Chan, Jerry C. C.

    2012-01-01

    We have developed a novel variant of REDOR which is applicable to multiple-spin systems without proton decoupling. The pulse sequence is constructed based on a systematic time displacement of the pi pulses of the conventional REDOR sequence. This so-called time displacement REDOR (td-REDOR) is insensitive to the effect of homonuclear dipole-dipole interaction when the higher order effects are negligible. The validity of td-REDOR has been verified experimentally by the P-31{C-13} measurements on glyphosate at a spinning frequency of 25 kHz. The experimental dephasing curve is in favorable agreement with the simulation data without considering the homonuclear dipole-dipole interactions.

  5. Magic-angle spinning NMR studies of molecular organization in multibilayers formed by 1-octadecanoyl-2-decanoyl-sn-glycero-3-phosphocholine.

    PubMed Central

    Halladay, H N; Stark, R E; Ali, S; Bittman, R

    1990-01-01

    Magic-angle spinning 1H and 13C nuclear magnetic resonance (NMR) have been employed to study 50%-by-weight aqueous dispersions of 1-octadecanoyl-2-decanoyl-sn-glycero-3-phosphocholine (C[18]:C[10]PC) and 1-octadecanoyl-2-d19-decanoyl-PC (C[18]:C[10]PC-d19), mixed-chain phospholipids which can form interdigitated multibilayers. The 1H NMR linewidth for methyl protons of the choline headgroup has been used to monitor the liquid crystalline-to-gel (LC-to-G) phase transition and confirm variations between freezing and melting temperatures. Both 1H and 13C spin-lattice relaxation times indicate unusual restrictions on segmental reorientation at megahertz frequencies for C(18):C(10)PC as compared with symmetric-chain species in the LC state; nevertheless each chemical moiety of the mixed-chain phospholipid exhibits motional behavior that may be classified as liquidlike. Two-dimensional nuclear Overhauser spectroscopy (NOESY) on C(18):C(10)PC and C(18):C(10)PC-d19 reveals cross-peaks between the omega-methyl protons of the C18 chain and the N-methyl protons of the phosphocholine headgroup, and several experimental and theoretical considerations argue against an interpretation based on spin diffusion. Using NMR relaxation times and NOESY connectivities along with a computational formalism for four-spin systems (Keepers, J. W., and T. L. James. 1984. J. Magn. Reson. 57:404-426), an estimate of 3.5 A is obtained for the average distance between the omega-methyl protons of the C18 chain and the N-methyl protons of the phosphocholine headgroup. This finding is consistent with a degree of interdigitation similar to that proposed for organized assemblies of gel-state phosphatidylcholine molecules with widely disparate acyl-chain lengths (Hui, S. W., and C.-H. Huang. 1986. Biochemistry. 25:1330-1335); however, acyl-chain bendback or other intermolecular interactions may also contribute to the NOESY results. For multibilayers of C(18):C(10)PC in the gel phase, 13C chemical

  6. A Large Sample Volume Magic Angle Spinning Nuclear Magnetic Resonance Probe for In-Situ Investigations with Constant Flow of Reactants

    SciTech Connect

    Hu, Jian Z.; Sears, Jesse A.; Mehta, Hardeep S.; Ford, Joseph J.; Kwak, Ja Hun; Zhu, Kake; Wang, Yong; Liu, Jun; Hoyt, David W.; Peden, Charles HF

    2012-02-21

    A large-sample-volume constant-flow magic angle sample spinning (CF-MAS) NMR probe is reported for in-situ studies of the reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions. In our approach, the reactants are introduced into the catalyst bed using a fixed tube at one end of the MAS rotor while a second fixed tube, linked to a vacuum pump, is attached at the other end of the rotor. The pressure difference between both ends of the catalyst bed inside the sample cell space forces the reactants flowing through the catalyst bed, which improves the diffusion of the reactants and products. This design allows the use of a large sample volume for enhanced sensitivity and thus permitting in-situ 13C CF-MAS studies at natural abundance. As an example of application, we show that reactants, products and reaction transition states associated with the 2-butanol dehydration reaction over a mesoporous silicalite supported heteropoly acid catalyst (HPA/meso-silicalite-1) can all be detected in a single 13C CF-MAS NMR spectrum at natural abundance. Coke products can also be detected at natural 13C abundance and under the stopped flow condition. Furthermore, 1H CF-MAS NMR is used to identify the surface functional groups of HPA/meso-silicalite-1 under the condition of in-situ drying . We also show that the reaction dynamics of 2-butanol dehydration using HPA/meso-silicalite-1 as a catalyst can be explored using 1H CF-MAS NMR.

  7. Magic angle spinning NMR reveals sequence-dependent structural plasticity, dynamics, and the spacer peptide 1 conformation in HIV-1 capsid protein assemblies.

    PubMed

    Han, Yun; Hou, Guangjin; Suiter, Christopher L; Ahn, Jinwoo; Byeon, In-Ja L; Lipton, Andrew S; Burton, Sarah; Hung, Ivan; Gor'kov, Peter L; Gan, Zhehong; Brey, William; Rice, David; Gronenborn, Angela M; Polenova, Tatyana

    2013-11-27

    A key stage in HIV-1 maturation toward an infectious virion requires sequential proteolytic cleavage of the Gag polyprotein leading to the formation of a conical capsid core that encloses the viral RNA genome and a small complement of proteins. The final step of this process involves severing the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into the capsid shell. The details of the overall mechanism, including the conformation of the SP1 peptide in CA-SP1, are still under intense debate. In this report, we examine tubular assemblies of CA and the CA-SP1 maturation intermediate using magic angle spinning (MAS) NMR spectroscopy. At magnetic fields of 19.9 T and above, outstanding quality 2D and 3D MAS NMR spectra were obtained for tubular CA and CA-SP1 assemblies, permitting resonance assignments for subsequent detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two CA protein sequence variants reveals that, unexpectedly, the conformations of the SP1 tail, the functionally important CypA loop, and the loop preceding helix 8 are modulated by residue variations at distal sites. These findings provide support for the role of SP1 as a trigger of the disassembly of the immature CA capsid for its subsequent de novo reassembly into mature cores and establish the importance of sequence-dependent conformational plasticity in CA assembly.

  8. Assessment of a 1H high-resolution magic angle spinning NMR spectroscopy procedure for free sugars quantification in intact plant tissue.

    PubMed

    Delgado-Goñi, Teresa; Campo, Sonia; Martín-Sitjar, Juana; Cabañas, Miquel E; San Segundo, Blanca; Arús, Carles

    2013-08-01

    In most plants, sucrose is the primary product of photosynthesis, the transport form of assimilated carbon, and also one of the main factors determining sweetness in fresh fruits. Traditional methods for sugar quantification (mainly sucrose, glucose and fructose) require obtaining crude plant extracts, which sometimes involve substantial sample manipulation, making the process time-consuming and increasing the risk of sample degradation. Here, we describe and validate a fast method to determine sugar content in intact plant tissue by using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). The HR-MAS NMR method was used for quantifying sucrose, glucose and fructose in mesocarp tissues from melon fruits (Cucumis melo var. reticulatus and Cucumis melo var. cantalupensis). The resulting sugar content varied among individual melons, ranging from 1.4 to 7.3 g of sucrose, 0.4-2.5 g of glucose; and 0.73-2.83 g of fructose (values per 100 g fw). These values were in agreement with those described in the literature for melon fruit tissue, and no significant differences were found when comparing them with those obtained using the traditional, enzymatic procedure, on melon tissue extracts. The HR-MAS NMR method offers a fast (usually <30 min) and sensitive method for sugar quantification in intact plant tissues, it requires a small amount of tissue (typically 50 mg fw) and avoids the interferences and risks associated with obtaining plant extracts. Furthermore, this method might also allow the quantification of additional metabolites detectable in the plant tissue NMR spectrum.

  9. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids. PMID:26203019

  10. Characterization of high-tannin fractions from humus by carbon-13 cross-polarization and magic-angle spinning nuclear magnetic resonance.

    PubMed

    Lorenz, Klaus; Preston, Caroline M

    2002-01-01

    Condensed tannins can be found in various parts of many plants. Unlike lignin there has been little study of their fate as they enter the soil organic matter pool and their influence on nutrient cycling, especially through their protein-binding properties. We extracted and characterized tannin-rich fractions from humus collected in 1998 from a black spruce [Picea mariana (Mill.) Britton et al.] forest in Canada where a previous study (1995) showed high levels (3.8% by weight) of condensed tannins. A reference tannin purified from black spruce needles was characterized by solution 13C nuclear magnetic resonance (NMR) as a pure procyanidin with mainly cis stereochemistry and an average chain length of four to five units. The colorimetric proanthocyanidin (PA) assay, standardized against the black spruce tannin, showed that both extracted humus fractions had higher tannin contents than the original humus (2.84% and 11.17% vs. 0.08%), and accounted for 32% of humus tannin content. Consistent with the results from the chemical assay, the aqueous fraction showed higher tannin signals in the 13C cross-polarization and magic-angle spinning (CPMAS) NMR spectrum than the emulsified one. As both tannin-rich humus fractions were depleted in N and high in structures derived from lignin and cutin, they did not have properties consistent with recaldtrant tannin-protein complexes proposed as a mechanism for N sequestration in humus. Further studies are needed to establish if tannin-protein structures in humus can be detected or isolated, or if tannins contribute to forest management problems observed in these ecosystems by binding to and slowing down the activity of soil enzymes.

  11. Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy.

    PubMed

    Szymanski, Christine M; Michael, Frank St; Jarrell, Harold C; Li, Jianjun; Gilbert, Michel; Larocque, Suzon; Vinogradov, Evgeny; Brisson, Jean-Robert

    2003-07-01

    Glycomics, the study of microbial polysaccharides and genes responsible for their formation, requires the continuous development of rapid and sensitive methods for the identification of glycan structures. In this study, methods for the direct analysis of sugars from 108 to 1010 cells are outlined using the human gastrointestinal pathogen, Campylobacter jejuni. Using capillary-electrophoresis coupled with sensitive electrospray mass spectrometry, we demonstrate variability in the lipid A component of C. jejuni lipooligosaccharides (LOSs). In addition, these sensitive methods have permitted the detection of phase-variable LOS core structures that were not observed previously. High resolution magic angle spinning (HR-MAS) NMR was used to examine capsular polysaccharides directly from campylobacter cells and showed profiles similar to those observed for purified polysaccharides analyzed by solution NMR. This method also exhibited the feasibility of campylobacter serotyping, mutant verification, and preliminary sugar analysis. HR-MAS NMR examination of growth from individual colonies of C. jejuni NCTC11168 indicated that the capsular glycan modifications are also phase-variable. These variants show different staining patterns on deoxycholate-PAGE and reactivity with immune sera. One of the identified modifications was a novel -OP=O(NH2)OMe phosphoramide, not observed previously in nature. In addition, HR-MAS NMR detected the N-linked glycan, GalNAc-alpha1,4-GalNAc-alpha1,4-[Glc-beta1,3-]GalNAc-alpha1,4-GalNAc-alpha1,4-GalNAc-alpha1,3-Bac, where Bac is 2,4-diacetamido-2,4,6-trideoxy-d-glucopyranose, in C. jejuni and Campylobacter coli. The presence of this common heptasaccharide in multiple campylobacter isolates demonstrates the conservation of the N-linked protein glycosylation pathway in this organism and describes the first report of HR-MAS NMR detection of N-linked glycans on glycoproteins from intact bacterial cells.

  12. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  13. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  14. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  15. High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance of Intact Zebrafish Embryos Detects Metabolic Changes Following Exposure to Teratogenic Polymethoxyalkenes from Algae.

    PubMed

    Berry, John P; Roy, Upasana; Jaja-Chimedza, Asha; Sanchez, Kristel; Matysik, Joerg; Alia, A

    2016-10-01

    Techniques based on nuclear magnetic resonance (NMR) for imaging and chemical analyses of in vivo, or otherwise intact, biological systems are rapidly emerging and finding diverse applications within a wide range of fields. Very recently, several NMR-based techniques have been developed for the zebrafish as a model animal system. In the current study, the novel application of high-resolution magic angle spinning (HR-MAS) NMR is presented as a means of metabolic profiling of intact zebrafish embryos. Toward investigating the utility of HR-MAS NMR as a toxicological tool, these studies specifically examined metabolic changes of embryos exposed to polymethoxy-1-alkenes (PMAs)-a recently identified family of teratogenic compounds from freshwater algae-as emerging environmental contaminants. One-dimensional and two-dimensional HR-MAS NMR analyses were able to effectively identify and quantify diverse metabolites in early-stage (≤36 h postfertilization) embryos. Subsequent comparison of the metabolic profiles between PMA-exposed and control embryos identified several statistically significant metabolic changes associated with subacute exposure to the teratogen, including (1) elevated inositol as a recognized component of signaling pathways involved in embryo development; (2) increases in several metabolites, including inositol, phosphoryl choline, fatty acids, and cholesterol, which are associated with lipid composition of cell membranes; (3) concomitant increase in glucose and decrease in lactate; and (4) decreases in several biochemically related metabolites associated with central nervous system development and function, including γ-aminobutyric acid, glycine, glutamate, and glutamine. A potentially unifying model/hypothesis of PMA teratogenicity based on the data is presented. These findings, taken together, demonstrate that HR-MAS NMR is a promising tool for metabolic profiling in the zebrafish embryo, including toxicological applications.

  16. Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies

    PubMed Central

    Han, Yun; Hou, Guangjin; Suiter, Christopher L.; Ahn, Jinwoo; Byeon, In-Ja L.; Lipton, Andrew S.; Burton, Sarah; Hung, Ivan; Gor’kov, Peter L.; Gan, Zhehong; Brey, William; Rice, David; Gronenborn, Angela M.; Polenova, Tatyana

    2013-01-01

    A key stage in HIV-1 maturation towards an infectious virion requires sequential proteolytic cleavage of the Gag polyprotein leading to the formation of a conical capsid core that encloses the viral RNA genome and a small complement of proteins. The final step of this process involves severing the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into the capsid shell. The details of the overall mechanism, including the conformation of the SP1 peptide in CA-SP1, are still under intense debate. In this report, we examine tubular assemblies of CA and the CA-SP1 maturation intermediates using Magic Angle Spinning NMR spectroscopy. At magnetic fields of 19.9 T and above, outstanding-quality 2D and 3D MAS NMR spectra were obtained for tubular CA and CA-SP1 assemblies yield, permitting resonance assignments for subsequent detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two CA protein sequence variants reveals that, unexpectedly, the conformations of the SP1 tail, the functionally important CypA loop, and the loop preceding helix 8 are modulated by residue variations at distal sites. These findings provide support for the role of SP1 as a trigger of the disassembly of the immature CA capsid for its subsequent de novo reassembly into mature cores, and establish the importance of sequence-dependent conformational plasticity in CA assembly. PMID:24164646

  17. Substrate affinities for membrane transport proteins determined by 13C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy.

    PubMed

    Patching, Simon G; Brough, Adrian R; Herbert, Richard B; Rajakarier, J Anton; Henderson, Peter J F; Middleton, David A

    2004-03-17

    We have devised methods in which cross-polarization magic-angle spinning (CP-MAS) solid-state NMR is exploited to measure rigorous parameters for binding of (13)C-labeled substrates to membrane transport proteins. The methods were applied to two proteins from Escherichia coli: a nucleoside transporter, NupC, and a glucuronide transporter, GusB. A substantial signal for the binding of methyl [1-(13)C]-beta-d-glucuronide to GusB overexpressed in native membranes was achieved with a sample that contained as little as 20 nmol of GusB protein. The data were fitted to yield a K(D) value of 4.17 mM for the labeled ligand and 0.42 mM for an unlabeled ligand, p-nitrophenyl beta-d-glucuronide, which displaced the labeled compound. CP-MAS was also used to measure binding of [1'-(13)C]uridine to overexpressed NupC. The spectrum of NupC-enriched membranes containing [1'-(13)C]uridine exhibited a large peak from substrate bound to undefined sites other than the transport site, which obscured the signal from substrate bound to NupC. In a novel application of a cross-polarization/polarization-inversion (CPPI) NMR experiment, the signal from undefined binding was eliminated by use of appropriate inversion pulse lengths. By use of CPPI in a titration experiment, a K(D) value of 2.6 mM was determined for uridine bound to NupC. These approaches are broadly applicable to quantifying binding of substrates, inhibitors, drugs, and antibiotics to numerous membrane proteins. PMID:15012136

  18. Enhancement of the central-transition signal in static and magic-angle-spinning NMR of quadrupolar nuclei by frequency-swept fast amplitude-modulated pulses

    NASA Astrophysics Data System (ADS)

    Bräuniger, Thomas; Ramaswamy, Kannan; Madhu, P. K.

    2004-01-01

    We here report on using fast amplitude-modulated (FAM) pulse trains with constantly incremented pulse durations (SW-FAM) for signal enhancement in one-dimensional nuclear magnetic resonance spectra of quadrupolar nuclei with half-integer spin. In such systems, a FAM pulse train leads to a redistribution of populations across the spin levels, which results in a substantial gain for the central-transition signal. Compared to fixed-duration FAM pulse trains, SW-FAM delivers about the same signal enhancement for spinning samples, but gives much better performance in the static case. This is demonstrated for several compounds, observing the nuclei 23Na ( I=3/2), 27Al ( I=5/2), and 45Sc ( I=7/2).

  19. Dynamic High-Resolution H-1 and P-31 NMR Spectroscopy and H-1 T-2 Measurements in Postmortem Rabbit Muscles Using Slow Magic Angle Spinning

    SciTech Connect

    Bertram, Hanne Christine; Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Andersen, Henrik J.

    2004-05-05

    Postmortem changes in rabbit muscle tissue with different glycogen status (normal vs low) were followed continuously from 13 min postmortem until 8 h postmortem and again 20 h postmortem using simultaneous magic angle spinning 1H and 31P NMR spectroscopy together with measurement of the transverse relaxation time, T2, of the muscle water. The 1H metabolite spectra were measured using the phase-altered spinning sidebands (PASS) technique at a spinning rate of 40 Hz. pH values calculated from the 31P NMR spectra using the chemical shifts of the C-6 line of histidine in the 1H spectra and the chemical shifts of inorganic phosphate in the 31P spectra confirmed the different muscle glycogen status in the tissues. High-resolution 1H spectra obtained from the PASS technique revealed the presence of a new resonance line at 6.8 ppm during the postmortem period, which were absent in muscles with low muscle glycogen content. This new resonance line may originate from the aminoprotons in creatine, and its appearance may be a result of a pH effect on the exchange rate between the amino and the water protons and thereby the NMR visibility. Alternatively, the new resonance line may originate from the aromatic protons in tyrosine, and its appearance may be a result of a pH-induced protein unfolding exposing hydrophobic amino acid residues to the aqueous environment. Further studies are needed to evaluate these hypotheses. Finally, distributed analysis of the water T2 relaxation data revealed three relaxation populations and an increase in the population believed to reflect extramyofibrillar water through the postmortem period. This increase was significantly reduced (p < 0.0001) in samples from animals with low muscle glycogen content, indicating that the pH is controlling the extent of postmortem expulsion of water from myofibrillar structures. The significance of the postmortem increase in the amount extramyofibrillar water on the water-holding capacity was verified by

  20. Sensitivity enhanced (14)N/(14)N correlations to probe inter-beta-sheet interactions using fast magic angle spinning solid-state NMR in biological solids.

    PubMed

    Pandey, Manoj Kumar; Amoureux, Jean-Paul; Asakura, Tetsuo; Nishiyama, Yusuke

    2016-08-10

    (14)N/(14)N correlations are vital for structural studies of solid samples, especially those in which (15)N isotopic enrichment is challenging, time-consuming and expensive. Although (14)N nuclei have high isotopic abundance (99.6%), there are inherent difficulties in observing (14)N/(14)N correlations due to limited resolution and sensitivity related to: (i) low (14)N gyromagnetic ratio (γ), (ii) large (14)N quadrupolar couplings, (iii) integer (14)N spin quantum number (I = 1), and (iv) very weak (14)N-(14)N dipolar couplings. Previously, we demonstrated a proton-detected 3D (14)N/(14)N/(1)H correlation experiment at fast magic angle spinning (MAS) on l-histidine·HCl·H2O utilizing a through-bond (J) and residual dipolar-splitting (RDS) based heteronuclear multiple quantum correlation (J-HMQC) sequence mediated through (1)H/(1)H radio-frequency driven recoupling (RFDR). As an extension of our previous work, in this study we show the utility of dipolar-based HMQC (D-HMQC) in combination with (1)H/(1)H RFDR mixing to obtain sensitivity enhanced (14)N/(14)N correlations in more complex biological solids such as a glycyl-l-alanine (Gly-l-Ala) dipeptide, and parallel (P) and antiparallel (AP) β-strand alanine tripeptides (P-(Ala)3 and AP-(Ala)3, respectively). These systems highlight the mandatory necessity of 3D (14)N/(14)N/(1)H measurements to get (14)N/(14)N correlations when the amide proton resonances are overlapped. Moreover, the application of long selective (14)N pulses, instead of short hard ones, is shown to improve the sensitivity. Globally, we demonstrate that replacing J-scalar with dipolar interaction and hard- with selective-(14)N pulses allows gaining a factor of ca. 360 in experimental time. On the basis of intermolecular NH/NH distances and (14)N quadrupolar tensor orientations, (14)N/(14)N correlations are effectively utilized to make a clear distinction between the parallel and antiparallel arrangements of the β-strands in (Ala)3 through the

  1. Sensitivity enhanced (14)N/(14)N correlations to probe inter-beta-sheet interactions using fast magic angle spinning solid-state NMR in biological solids.

    PubMed

    Pandey, Manoj Kumar; Amoureux, Jean-Paul; Asakura, Tetsuo; Nishiyama, Yusuke

    2016-08-10

    (14)N/(14)N correlations are vital for structural studies of solid samples, especially those in which (15)N isotopic enrichment is challenging, time-consuming and expensive. Although (14)N nuclei have high isotopic abundance (99.6%), there are inherent difficulties in observing (14)N/(14)N correlations due to limited resolution and sensitivity related to: (i) low (14)N gyromagnetic ratio (γ), (ii) large (14)N quadrupolar couplings, (iii) integer (14)N spin quantum number (I = 1), and (iv) very weak (14)N-(14)N dipolar couplings. Previously, we demonstrated a proton-detected 3D (14)N/(14)N/(1)H correlation experiment at fast magic angle spinning (MAS) on l-histidine·HCl·H2O utilizing a through-bond (J) and residual dipolar-splitting (RDS) based heteronuclear multiple quantum correlation (J-HMQC) sequence mediated through (1)H/(1)H radio-frequency driven recoupling (RFDR). As an extension of our previous work, in this study we show the utility of dipolar-based HMQC (D-HMQC) in combination with (1)H/(1)H RFDR mixing to obtain sensitivity enhanced (14)N/(14)N correlations in more complex biological solids such as a glycyl-l-alanine (Gly-l-Ala) dipeptide, and parallel (P) and antiparallel (AP) β-strand alanine tripeptides (P-(Ala)3 and AP-(Ala)3, respectively). These systems highlight the mandatory necessity of 3D (14)N/(14)N/(1)H measurements to get (14)N/(14)N correlations when the amide proton resonances are overlapped. Moreover, the application of long selective (14)N pulses, instead of short hard ones, is shown to improve the sensitivity. Globally, we demonstrate that replacing J-scalar with dipolar interaction and hard- with selective-(14)N pulses allows gaining a factor of ca. 360 in experimental time. On the basis of intermolecular NH/NH distances and (14)N quadrupolar tensor orientations, (14)N/(14)N correlations are effectively utilized to make a clear distinction between the parallel and antiparallel arrangements of the β-strands in (Ala)3 through the

  2. Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach.

    PubMed

    Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka

    2016-02-01

    This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40-80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055-15058, 2015) combines the reverse (13)C, (15)N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of "highlighted" labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching (13)CO or (15)N signals for a pair of consecutively labeled residues by recoupling (13)CO-(15)N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ~15% loss of signals for the highlighted residues while quenching as much as ~90% of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D (15)N/(13)Cα correlation and 2D (13)Cα/(13)CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and (1)H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using (13)C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (~300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable means of signal assignments especially for larger proteins through reducing the

  3. Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach.

    PubMed

    Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka

    2016-02-01

    This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40-80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055-15058, 2015) combines the reverse (13)C, (15)N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of "highlighted" labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching (13)CO or (15)N signals for a pair of consecutively labeled residues by recoupling (13)CO-(15)N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ~15% loss of signals for the highlighted residues while quenching as much as ~90% of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D (15)N/(13)Cα correlation and 2D (13)Cα/(13)CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and (1)H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using (13)C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (~300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable means of signal assignments especially for larger proteins through reducing the

  4. Resolving the structure of ligands bound to the surface of superparamagnetic iron oxide nanoparticles by high-resolution magic-angle spinning NMR spectroscopy.

    PubMed

    Polito, Laura; Colombo, Miriam; Monti, Diego; Melato, Sergio; Caneva, Enrico; Prosperi, Davide

    2008-09-24

    A major challenge in magnetic nanoparticle synthesis and (bio)functionalization concerns the precise characterization of the nanoparticle surface ligands. We report the first analytical NMR investigation of organic ligands stably anchored on the surface of superparamagnetic nanoparticles (MNPs) through the development of a new experimental application of high-resolution magic-angle spinning (HRMAS). The conceptual advance here is that the HRMAS technique, already being used for MAS NMR analysis of gels and semisolid matrixes, enables the fine-structure-resolved characterization of even complex organic molecules bound to paramagnetic nanocrystals, such as nanosized iron oxides, by strongly decreasing the effects of paramagnetic disturbances. This method led to detail-rich, well-resolved (1)H NMR spectra, often with highly structured first-order couplings, essential in the interpretation of the data. This HRMAS application was first evaluated and optimized using simple ligands widely used as surfactants in MNP synthesis and conjugation. Next, the methodology was assessed through the structure determination of complex molecular architectures, such as those involved in MNP3 and MNP4. The comparison with conventional probes evidences that HRMAS makes it possible to work with considerably higher concentrations, thus avoiding the loss of structural information. Consistent 2D homonuclear (1)H- (1)H and (1)H- (13)C heteronuclear single-quantum coherence correlation spectra were also obtained, providing reliable elements on proton signal assignments and carbon characterization and opening the way to (13)C NMR determination. Notably, combining the experimental evidence from HRMAS (1)H NMR and diffusion-ordered spectroscopy performed on the hybrid nanoparticle dispersion confirmed that the ligands were tightly bound to the particle surface when they were dispersed in a ligand-free solvent, while they rapidly exchanged when an excess of free ligand was present in solution. In

  5. Exploring the conformational energy landscape of glassy disaccharides by cross polarization magic angle spinning 13C nuclear magnetic resonance and numerical simulations. II. Enhanced molecular flexibility in amorphous trehalose.

    PubMed

    Lefort, Ronan; Bordat, Patrice; Cesaro, Attilio; Descamps, Marc

    2007-01-01

    This paper uses chemical shift surfaces to simulate experimental (13)C cross polarization magic angle spinning spectra for amorphous solid state disaccharides, paying particular attention to the glycosidic linkage atoms in trehalose, sucrose, and lactose. The combination of molecular mechanics with density functional theory/gauge invariant atomic orbital ab initio methods provides reliable structural information on the conformational distribution in the glass. The results are interpreted in terms of an enhanced flexibility that trehalose possesses in the amorphous solid state, at least on the time scale of (13)C nuclear magnetic resonance measurements. Implications of these findings for the fragility of trehalose glass and bioprotectant action are discussed. PMID:17212504

  6. Exploring the conformational energy landscape of glassy disaccharides by cross polarization magic angle spinning 13C nuclear magnetic resonance and numerical simulations. II. Enhanced molecular flexibility in amorphous trehalose

    NASA Astrophysics Data System (ADS)

    Lefort, Ronan; Bordat, Patrice; Cesaro, Attilio; Descamps, Marc

    2007-01-01

    This paper uses chemical shift surfaces to simulate experimental C13 cross polarization magic angle spinning spectra for amorphous solid state disaccharides, paying particular attention to the glycosidic linkage atoms in trehalose, sucrose, and lactose. The combination of molecular mechanics with density functional theory/gauge invariant atomic orbital ab initio methods provides reliable structural information on the conformational distribution in the glass. The results are interpreted in terms of an enhanced flexibility that trehalose possesses in the amorphous solid state, at least on the time scale of C13 nuclear magnetic resonance measurements. Implications of these findings for the fragility of trehalose glass and bioprotectant action are discussed.

  7. 29Si and 27Al MAS NMR spectra of mullites from different kaolinites.

    PubMed

    He, Hongping; Guo, Jiugao; Zhu, Jianxi; Yuan, Peng; Hu, Cheng

    2004-04-01

    Mullites synthesized from four kaolinites with different random defect densities have been studied by 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) and X-ray diffraction (XRD). All these mullites show the same XRD pattern. However, 29Si and 27Al MAS NMR spectra reveal that the mullites derived from kaolinites with high defect densities, have a sillimanite-type Al/Si ordering scheme and are low in silica, whereas those mullites derived from kaolinites with low defect densities, consist of both sillimanite- and mullite-type Al/Si ordering schemes and are rich in silica. PMID:15084323

  8. Study of the ferroelastic phase transition in the tetraethylammonium compound [N(C2H5)4]2ZnBr4 by magic-angle spinning and static NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-03-01

    The ferroelastic phase transition of tetraethylammonium compound [N(C2H5)4]2ZnBr4 at the phase transition temperature (TC) = 283 K was characterized by magic-angle spinning (MAS) and static nuclear magnetic resonance (NMR), and confirmed by optical polarizing spectroscopy. The structural geometry near TC was studied in terms of the chemical shifts and the spin-lattice relaxation times T1ρ in the rotating frame for 1H MAS NMR and 13C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups were distinguishable in the 13C NMR spectrum, and the T1ρ results indicate that they undergo tumbling motion above TC in a coupled manner. From the 14N NMR results, the two nitrogen nuclei in the N(C2H5)4+ ions were distinguishable above TC, and the splitting in the spectra below TC was related to the ferroelastic domains with different orientations.

  9. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    PubMed Central

    Gopinath, T.; Veglia, Gianluigi

    2013-01-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils. PMID:23676036

  10. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  11. 23Na magic-angle spinning nuclear magnetic resonance of central and satellite transitions in the characterization of the anhydrous, dihydrate, and mixed phases of sodium molybdate and tungstate.

    PubMed

    Skibsted, J; Jakobsen, H J

    1994-02-01

    23Na Magic-angle spinning nuclear magnetic resonance (MAS NMR) spectra of pure phases for Na2MoO4, Na2MoO4 x 2H2O, Na2WO4, and Na2WO4 x 2H2O have led to the determination of accurate values for the quadrupole coupling parameters and isotropic chemical shifts for all Na sites. The analysis of the spectra involves a combination of simulations of the line shapes for the central transitions and the manifold of spinning sidebands for the satellite transitions. The spectral parameters for the pure phases represent a prerequisite for a correct assignment and quantitative evaluation of 23Na MAS spectra at different magnetic field strengths observed for mixtures of the anhydrous and dihydrate phases. Such phase mixtures are observed, for example, for some commercial samples of Na2MoO4 or may be generated by (i) exposure of the anhydrous phases to a humid atmosphere or (ii) gently heating the dihydrates. The quadrupole coupling parameters for the two Na sites in the dihydrates are tentatively assigned to the two crystallographically distinct Na atoms in the asymmetric unit by calculations of an approximate dependency of the electric field gradient tensor on the local geometry for the Na sites.

  12. {sup 13}C, {sup 1}H, {sup 6}Li magic-angle spinning nuclear magnetic resonance, electron paramagnetic resonance, and Fourier transform infrared study of intercalation electrodes based in ultrasoft carbons obtained below 3100 K

    SciTech Connect

    Alcantara, R.; Madrigal, F.J.F.; Lavela, P.; Tirado, J.L.; Mateos, J.M.J.; Stoyanova, R.; Zhecheva, E.

    1999-01-01

    The past decade has seen an important development of materials for high-performance energy storage systems. Particularly, the field of electrode materials for advanced lithium batteries has attracted the interest of numerous researchers. Petroleum coke samples of different origins and heat treated at different temperatures below 3100 K have been studied by spectroscopic and electrochemical procedures. According to {sup 13}C and {sup 1}H magic-angle spinning (MAS) nuclear magnetic resonance (NMR), infrared (IR), and electron paramagnetic resonance (EPR) data, aromatic compounds and surface OH groups are present in green coke samples. The preparation of CMB (combustible) sample from 1673 K leads to a low-temperature graphitization process, as shown by the occurrence of multiphase products containing both turbostatic and graphitized solid. This process is accompanied by the loss of aromatic compounds and surface hydroxyls. The optimization of the lithium intercalation electrodes based in the green coke materials was carried out by thermal treatment at 1023 K under dynamic vacuum conditions. Such pretreatment of the electrode material leads to marked enhancement of reversible capacities without the higher temperatures usually required for other soft carbon materials. Finally, the results of {sup 6}Li MAS NMR and EPR have been correlated with the experimental determination of lithium diffusion coefficients and surface properties. On the basis of these results, spin resonance spectroscopies are found to be a powerful tool to discern between the different petroleum coke samples to select the active electrode material with best performance.

  13. In vivo high-resolution magic angle spinning magnetic resonance spectroscopy of Drosophila melanogaster at 14.1 T shows trauma in aging and in innate immune-deficiency is linked to reduced insulin signaling

    PubMed Central

    RIGHI, VALERIA; APIDIANAKIS, YIORGOS; MINTZOPOULOS, DIONYSSIOS; ASTRAKAS, LOUKAS; RAHME, LAURENCE G.; TZIKA, A. ARIA

    2010-01-01

    In vivo magnetic resonance spectroscopy (MRS), a non-destructive biochemical tool for investigating live organisms, has yet to be used in the fruit fly Drosophila melanogaster, a useful model organism for investigating genetics and physiology. We developed and implemented a high-resolution magic-angle-spinning (HRMAS) MRS method to investigate live Drosophila at 14.1 T. We demonstrated, for the first time, the feasibility of using HRMAS MRS for molecular characterization of Drosophila with a conventional MR spectrometer equipped with an HRMAS probe. We showed that the metabolic HRMAS MRS profiles of injured, aged wild-type (wt) flies and of immune deficient (imd) flies were more similar to chico flies mutated at the chico gene in the insulin signaling pathway, which is analogous to insulin receptor substrate 1–4 (IRS1–4) in mammals and less to those of adipokinetic hormone receptor (akhr) mutant flies, which have an obese phenotype. We thus provide evidence for the hypothesis that trauma in aging and in innate immune-deficiency is linked to insulin signaling. This link may explain the mitochondrial dysfunction that accompanies insulin resistance and muscle wasting that occurs in trauma, aging and immune system deficiencies, leading to higher susceptibility to infection. Our approach advances the development of novel in vivo non-destructive research approaches in Drosophila, suggests biomarkers for investigation of biomedical paradigms, and thus may contribute to novel therapeutic development. PMID:20596596

  14. Cross-Polarized Magic-Angle Spinning (sup13)C Nuclear Magnetic Resonance Spectroscopic Characterization of Soil Organic Matter Relative to Culturable Bacterial Species Composition and Sustained Biological Control of Pythium Root Rot.

    PubMed

    Boehm, M J; Wu, T; Stone, A G; Kraakman, B; Iannotti, D A; Wilson, G E; Madden, L V; Hoitink, H

    1997-01-01

    We report the use of a model system that examines the dynamics of biological energy availability in organic matter in a sphagnum peat potting mix critical to sustenance of microorganism-mediated biological control of pythium root rot, a soilborne plant disease caused by Pythium ultimum. The concentration of readily degradable carbohydrate in the peat, mostly present as cellulose, was characterized by cross-polarized magic-angle spinning (sup13)C nuclear magnetic resonance spectroscopy. A decrease in the carbohydrate concentration in the mix was observed during the initial 10 weeks after potting as the rate of hydrolysis of fluorescein diacetate declined below a critical threshold level required for biological control of pythium root rot. Throughout this period, total microbial biomass and activity, based on rates of [(sup14)C]acetate incorporation into phospholipids, did not change but shifts in culturable bacterial species composition occurred. Species capable of inducing biocontrol were succeeded by pleomorphic gram-positive genera and putative oligotrophs not or less effective in control. We conclude that sustained efficacy of naturally occurring biocontrol agents was limited by energy availability to this microflora within the organic matter contained in the potting mix. We propose that this critical role of organic matter may be a key factor explaining the variability in efficacy typically encountered in the control of pythium root rot with biocontrol agents. PMID:16535481

  15. Stochastic molecular motions in the nematic, smectic-A, and solid phases of p,p'-di-n-heptyl-azoxybenzene as seen by quasielastic neutron scattering and 13C cross-polarization magic-angle-spinning NMR.

    PubMed

    Zajac, Wojciech; Urban, Stanisław; Domenici, Valentina; Geppi, Marco; Veracini, Carlo Alberto; Telling, Mark T F; Gabryś, Barbara J

    2006-05-01

    Molecular rotational dynamics in p,p'-di-n-heptyl-azoxybenzene was studied by means of quasielastic neutron scattering (QENS) and 13C cross-polarization magic-angle-spinning (CPMAS) NMR. Fast reorientation of the hydrogen nuclei was observed by QENS in the two liquid crystalline (LC) phases nematic and smectic A, as well as in the crystalline phase. The latter could not be restricted to the -CH3 rotations alone, and a clear indication was found of some other reorientation motions persisting in the crystal. Two Lorentz-type components convoluted with the resolution function gave an excellent fit to the QENS spectra in both LC phases. The narrow (slow) component was attributed to the reorientation of the whole molecule around the long axis. The corresponding characteristic time of approximately 130 ps agreed well with the values obtained in recent dielectric relaxation and 2H NMR studies. The full width at half maximum of the broader (fast) component shows a quadratic Q dependence (Q is the momentum transfer). Hence the corresponding motions could be described by a stretched exponential correlation function and were interpreted as various "crankshaft-type" motions within the alkyl tails. The 13C CPMAS experiments fully corroborated the QENS results, sometimes considered ambiguous in complex systems. PMID:16802951

  16. Stochastic molecular motions in the nematic, smectic-A, and solid phases of p,p{sup '}-di-n-heptyl-azoxybenzene as seen by quasielastic neutron scattering and {sup 13}C cross-polarization magic-angle-spinning NMR

    SciTech Connect

    ZajaPc, Wojciech; Urban, Stanislaw; Domenici, Valentina; Geppi, Marco; Veracini, Carlo Alberto; Telling, Mark T. F.; Gabrys, Barbara J.

    2006-05-15

    Molecular rotational dynamics in p,p{sup '}-di-n-heptyl-azoxybenzene was studied by means of quasielastic neutron scattering (QENS) and {sup 13}C cross-polarization magic-angle-spinning (CPMAS) NMR. Fast reorientation of the hydrogen nuclei was observed by QENS in the two liquid crystalline (LC) phases nematic and smectic A, as well as in the crystalline phase. The latter could not be restricted to the -CH{sub 3} rotations alone, and a clear indication was found of some other reorientation motions persisting in the crystal. Two Lorentz-type components convoluted with the resolution function gave an excellent fit to the QENS spectra in both LC phases. The narrow (slow) component was attributed to the reorientation of the whole molecule around the long axis. The corresponding characteristic time of {approx}130 ps agreed well with the values obtained in recent dielectric relaxation and {sup 2}H NMR studies. The full width at half maximum of the broader (fast) component shows a quadratic Q dependence (Q is the momentum transfer). Hence the corresponding motions could be described by a stretched exponential correlation function and were interpreted as various ''crankshaft-type'' motions within the alkyl tails. The {sup 13}C CPMAS experiments fully corroborated the QENS results, sometimes considered ambiguous in complex systems.

  17. Cross-Polarized Magic-Angle Spinning (sup13)C Nuclear Magnetic Resonance Spectroscopic Characterization of Soil Organic Matter Relative to Culturable Bacterial Species Composition and Sustained Biological Control of Pythium Root Rot

    PubMed Central

    Boehm, M. J.; Wu, T.; Stone, A. G.; Kraakman, B.; Iannotti, D. A.; Wilson, G. E.; Madden, L. V.; Hoitink, H.

    1997-01-01

    We report the use of a model system that examines the dynamics of biological energy availability in organic matter in a sphagnum peat potting mix critical to sustenance of microorganism-mediated biological control of pythium root rot, a soilborne plant disease caused by Pythium ultimum. The concentration of readily degradable carbohydrate in the peat, mostly present as cellulose, was characterized by cross-polarized magic-angle spinning (sup13)C nuclear magnetic resonance spectroscopy. A decrease in the carbohydrate concentration in the mix was observed during the initial 10 weeks after potting as the rate of hydrolysis of fluorescein diacetate declined below a critical threshold level required for biological control of pythium root rot. Throughout this period, total microbial biomass and activity, based on rates of [(sup14)C]acetate incorporation into phospholipids, did not change but shifts in culturable bacterial species composition occurred. Species capable of inducing biocontrol were succeeded by pleomorphic gram-positive genera and putative oligotrophs not or less effective in control. We conclude that sustained efficacy of naturally occurring biocontrol agents was limited by energy availability to this microflora within the organic matter contained in the potting mix. We propose that this critical role of organic matter may be a key factor explaining the variability in efficacy typically encountered in the control of pythium root rot with biocontrol agents. PMID:16535481

  18. Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    SciTech Connect

    Lafon, Olivier; Thankamony, Aany S. Lilly; Kokayashi, Takeshi; Carnevale, Diego; Vitzthum, Veronika; Slowing, Igor I.; Kandel, Kapil; Vezin, Herve; Amoureux, Jean-Paul; Bodenhausen, Geoffrey; Pruski, Marek

    2012-12-21

    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of 13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements εon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to εon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated.

  19. Broadband homonuclear correlation spectroscopy driven by combined R2nv sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Yan, Si; Trébosc, Julien; Amoureux, Jean-Paul; Polenova, Tatyana

    2013-07-01

    We recently described a family of experiments for R2nv Driven Spin Diffusion (RDSD) spectroscopy suitable for homonuclear correlation experiments under fast MAS conditions [G. Hou, S. Yan, S.J. Sun, Y. Han, I.J. Byeon, J. Ahn, J. Concel, A. Samoson, A.M. Gronenborn, T. Polenova, Spin diffusion drive by R-symmetry sequencs: applications to homonuclear correlation spectroscopy in MAS NMR of biological and organic solids, J. Am. Chem. Soc. 133 (2011) 3943-3953]. In these RDSD experiments, since the broadened second-order rotational resonance conditions are dominated by the radio frequency field strength and the phase shifts, as well as the size of reintroduced dipolar couplings, the different R2nv sequences display unique polarization transfer behaviors and different recoupling frequency bandwidths. Herein, we present a series of modified R2nv sequences, dubbed COmbined R2nv-Driven (CORD), that yield broadband homonuclear dipolar recoupling and give rise to uniform distribution of cross peak intensities across the entire correlation spectrum. We report NMR experiments and numerical simulations demonstrating that these CORD spin diffusion sequences are suitable for broadband recoupling at a wide range of magnetic fields and MAS frequencies, including fast-MAS conditions (νr = 40 kHz and above). Since these CORD sequences are largely insensitive to dipolar truncation, they are well suited for the determination of long-range distance constraints, which are indispensable for the structural characterization of a broad range of systems. Using U-13C,15N-alanine and U-13C,15N-histidine, we show that under fast-MAS conditions, the CORD sequences display polarization transfer efficiencies within broadband frequency regions that are generally higher than those offered by other existing spin diffusion pulse schemes. A 89-residue U-13C,15N-dynein light chain (LC8) protein has also been used to demonstrate that the CORD sequences exhibit uniformly high cross peak intensities

  20. Photo-CIDNP 13C magic angle spinning NMR on bacterial reaction centres: exploring the electronic structure of the special pair and its surroundings.

    PubMed

    Matysik, J; Schulten, E; Alia; Gast, P; Raap, J; Lugtenburg, J; Hoff, A J; de Groot, H J

    2001-08-01

    Photochemically induced dynamic nuclear polarisation (photo-CIDNP) in intact bacterial reaction centres has been observed by 13C-solid state NMR under continuous illumination with white light. Strong intensity enhancement of 13C NMR signals of the aromatic rings allows probing the electronic ground state of the two BChl cofactors of the special pair at the molecular scale with atomic selectivity. Differences between the two BChl cofactors are discussed. Several aliphatic 13C atoms of cofactors, as well as 13C atoms of the imidazole ring of histidine residue(s), show nuclear-spin polarisation to the same extent as the aromatic nuclei of the cofactors. Mechanisms and applications of polarisation transfer are discussed. PMID:11592409

  1. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    SciTech Connect

    Hou, Guangjin E-mail: tpolenov@udel.edu; Lu, Xingyu E-mail: lexvega@comcast.net; Vega, Alexander J. E-mail: lexvega@comcast.net; Polenova, Tatyana E-mail: tpolenov@udel.edu

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear {sup 1}H-X (X = {sup 13}C, {sup 15}N, {sup 31}P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the {sup 1}H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the {sup 1}H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from {sup 1}H chemical shift anisotropy, while keeping the {sup 1}H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [{sup 15}N]-N-acetyl-valine and [U-{sup 13}C,{sup 15}N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate {sup 1}H-{sup 15}N dipolar couplings in the context of 3D experiments is presented on U-{sup 13}C,{sup 15}N-enriched dynein light chain protein LC8.

  2. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Lu, Xingyu; Vega, Alexander J.; Polenova, Tatyana

    2014-09-01

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear 1H-X (X = 13C, 15N, 31P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the 1H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the 1H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from 1H chemical shift anisotropy, while keeping the 1H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [15N]-N-acetyl-valine and [U-13C,15N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate 1H-15N dipolar couplings in the context of 3D experiments is presented on U-13C,15N-enriched dynein light chain protein LC8.

  3. A 23Na magic angle spinning nuclear magnetic resonance, XANES, and high-temperature X-ray diffraction study of NaUO3, Na4UO5, and Na2U2O7.

    PubMed

    Smith, A L; Raison, P E; Martel, L; Charpentier, T; Farnan, I; Prieur, D; Hennig, C; Scheinost, A C; Konings, R J M; Cheetham, A K

    2014-01-01

    The valence state of uranium has been confirmed for the three sodium uranates NaU(V)O3/[Rn](5f(1)), Na4U(VI)O5/[Rn](5f(0)), and Na2U(VI)2O7/[Rn](5f(0)), using X-ray absorption near-edge structure (XANES) spectroscopy. Solid-state (23)Na magic angle spinning nuclear magnetic resonance (MAS NMR) measurements have been performed for the first time, yielding chemical shifts at -29.1 (NaUO3), 15.1 (Na4UO5), and -14.1 and -19 ppm (Na1 8-fold coordinated and Na2 7-fold coordinated in Na2U2O7), respectively. The [Rn]5f(1) electronic structure of uranium in NaUO3 causes a paramagnetic shift in comparison to Na4UO5 and Na2U2O7, where the electronic structure is [Rn]5f(0). A (23)Na multi quantum magic angle spinning (MQMAS) study on Na2U2O7 has confirmed a monoclinic rather than rhombohedral structure with evidence for two distinct Na sites. DFT calculations of the NMR parameters on the nonmagnetic compounds Na4UO5 and Na2U2O7 have permitted the differentiation between the two Na sites of the Na2U2O7 structure. The linear thermal expansion coefficients of all three compounds have been determined using high-temperature X-ray diffraction: αa = 22.7 × 10(-6) K(-1), αb = 12.9 × 10(-6) K(-1), αc = 16.2 × 10(-6) K(-1), and αvol = 52.8 × 10(-6) K(-1) for NaUO3 in the range 298-1273 K; αa = 37.1 × 10(-6) K(-1), αc = 6.2 × 10(-6) K(-1), and αvol = 81.8 × 10(-6) K(-1) for Na4UO5 in the range 298-1073 K; αa = 6.7 × 10(-6) K(-1), αb = 14.4 × 10(-6) K(-1), αc = 26.8 × 10(-6) K(-1), αβ = -7.8 × 10(-6) K(-1), and αvol = -217.6 × 10(-6) K(-1) for Na2U2O7 in the range 298-573 K. The α to β phase transition reported for the last compound above about 600 K was not observed in the present studies, either by high-temperature X-ray diffraction or by differential scanning calorimetry. PMID:24350659

  4. Structural characterization and physical properties of P2O5-CaO-Na2O-TiO2 glasses by Fourier transform infrared, Raman and solid-state magic angle spinning nuclear magnetic resonance spectroscopies.

    PubMed

    Kiani, Azadeh; Hanna, John V; King, Scott P; Rees, Gregory J; Smith, Mark E; Roohpour, Nima; Salih, Vehid; Knowles, Jonathan C

    2012-01-01

    Phosphate-based glasses have been investigated for tissue engineering applications. This study details the properties and structural characterization of titanium ultra-phosphate glasses in the 55(P(2)O(5))-30(CaO)-(25-x)(Na(2)O)-x(TiO(2)) (0≤x≤5) system, which have been prepared via melt-quenching techniques. Structural characterization was achieved by a combination of X-ray diffraction (XRD), and solid-state nuclear magnetic resonance, Raman and Fourier transform infrared spectroscopies. Physical properties were also investigated using density, degradation and ion release studies; additionally, differential thermal analysis was used for thermal analysis of these glasses. The results show that with the addition of TiO(2) the density and glass transition temperature increased whereas the degradation and ion release properties are decreased. From XRD data, TiP(2)O(7) and CaP(2)O(6) were detected in 3 and 5 mol.% TiO(2)-containing glasses. Magic angle spinning nuclear magnetic resonance results confirmed that as TiO(2) is incorporated into the glass; the amount of Q(3) increases as the amount of Q(2) consequently decreases, indicating increasing polymerization of the phosphate network. Spectroscopy results also showed that the local structure of glasses changes with increasing TiO(2) content. As TiO(2) is incorporated into the glass, the phosphate connectivity increases, indicating that the addition of TiO(2) content correlates unequivocally with an increase in glass stability.

  5. 13C Magic angle spinning NMR analysis and quantum chemical modeling of the bathochromic shift of astaxanthin in alpha-crustacyanin, the blue carotenoprotein complex in the carapace of the lobster Homarus gammarus.

    PubMed

    Weesie, R J; Jansen, F J; Merlin, J C; Lugtenburg, J; Britton, G; de Groot, H J

    1997-06-17

    Selective isotope enrichment, 13C magic angle spinning (MAS) NMR, and semiempirical quantum chemical modeling, have been used to analyze ligand-protein interactions associated with the bathochromic shift of astaxanthin in alpha-crustacyanin, the blue carotenoprotein complex from the carapace of the lobster Homarus gammarus. Spectra of alpha-crustacyanin were obtained after reconstitution with astaxanthins labeled with 13C at positions 4,4', 12,12', 13,13', or 20,20'. The data reveal substantial downfield shifts of 4.9 and 7.0 ppm at positions 12 and 12' in the complex, respectively. In contrast, at the 13 and 13' positions, small upfield shifts of 1.9 ppm were observed upon binding to the protein. These data are in line with previously obtained results for positions 14,14' (3.9 and 6.8 ppm downfield) and 15,15' (0.6 ppm upfield) and confirm the unequal perturbation of both halves after binding of the chromophore. However, these results also show that the main perturbation is of symmetrical origin, since the chemical shift differences exhibit a similar pattern in both halves of the astaxanthin molecule. A small downfield shift of 2.4 ppm was detected for the 4 and 4' positions. Finally, the 20,20' methyl groups are shifted 0.4 ppm upfield by the protein. The full data set provides convincing evidence that charge polarization is of importance for the bathochromic shift. The NMR shifts are compared with calculated charge densities for astaxanthin subjected to variations in protonation states of the ring-functional groups, as models of ligand-protein interactions. Taking into account the color shift and other available optical data, the current model for the mechanisms of interaction with the protein was refined. The results point toward a mechanism in which the astaxanthin is charged and subject to strong electrostatic polarizations originating from both keto groups, most likely a double protonation. PMID:9200677

  6. The Role of High-Resolution Magic Angle Spinning 1H Nuclear Magnetic Resonance Spectroscopy for Predicting the Invasive Component in Patients with Ductal Carcinoma In Situ Diagnosed on Preoperative Biopsy.

    PubMed

    Chae, Eun Young; Shin, Hee Jung; Kim, Suhkmann; Baek, Hyeon-Man; Yoon, Dahye; Kim, Siwon; Shim, Ye Eun; Kim, Hak Hee; Cha, Joo Hee; Choi, Woo Jung; Lee, Jeong Hyun; Shin, Ji Hoon; Lee, Hee Jin; Gong, Gyungyub

    2016-01-01

    The purpose of this study was to evaluate the role of high-resolution magic angle spinning (HR-MAS) 1H nuclear magnetic resonance (NMR) spectroscopy in patients with ductal carcinoma in situ (DCIS) diagnosed on preoperative biopsy. We investigated whether the metabolic profiling of tissue samples using HR-MAS 1H NMR spectroscopy could be used to distinguish between DCIS lesions with or without an invasive component. Our institutional review board approved this combined retrospective and prospective study. Tissue samples were collected from 30 patients with pure DCIS and from 30 with DCIS accompanying invasive carcinoma. All patients were diagnosed with DCIS by preoperative core-needle biopsy and underwent surgical resection. The metabolic profiling of tissue samples was performed by HR-MAS 1H NMR spectroscopy. All observable metabolite signals were identified and quantified in all tissue samples. Metabolite intensity normalized by total spectral intensities was compared according to the tumor type using the Mann-Whitney test. Multivariate analysis was performed with orthogonal projections to latent structure-discriminant analysis (OPLS-DA). By univariate analysis, the metabolite concentrations of choline-containing compounds obtained with HR-MAS 1H NMR spectroscopy did not differ significantly between the pure DCIS and DCIS accompanying invasive carcinoma groups. However, the GPC/PC ratio was higher in the pure DCIS group than in the DCIS accompanying invasive carcinoma group (p = 0.004, Bonferroni-corrected p = 0.064), as well as the concentration of myo-inositol and succinate. By multivariate analysis, the OPLS-DA models built with HR-MAS MR metabolic profiles could clearly discriminate between pure DCIS and DCIS accompanying invasive carcinoma. Our preliminary results suggest that HR-MAS MR metabolomics on breast tissue may be able to distinguish between DCIS lesions with or without an invasive component. PMID:27560937

  7. The Role of High-Resolution Magic Angle Spinning 1H Nuclear Magnetic Resonance Spectroscopy for Predicting the Invasive Component in Patients with Ductal Carcinoma In Situ Diagnosed on Preoperative Biopsy

    PubMed Central

    Chae, Eun Young; Kim, Suhkmann; Baek, Hyeon-Man; Yoon, Dahye; Kim, Siwon; Shim, Ye Eun; Kim, Hak Hee; Cha, Joo Hee; Choi, Woo Jung; Lee, Jeong Hyun; Shin, Ji Hoon; Lee, Hee Jin; Gong, Gyungyub

    2016-01-01

    The purpose of this study was to evaluate the role of high-resolution magic angle spinning (HR-MAS) 1H nuclear magnetic resonance (NMR) spectroscopy in patients with ductal carcinoma in situ (DCIS) diagnosed on preoperative biopsy. We investigated whether the metabolic profiling of tissue samples using HR-MAS 1H NMR spectroscopy could be used to distinguish between DCIS lesions with or without an invasive component. Our institutional review board approved this combined retrospective and prospective study. Tissue samples were collected from 30 patients with pure DCIS and from 30 with DCIS accompanying invasive carcinoma. All patients were diagnosed with DCIS by preoperative core-needle biopsy and underwent surgical resection. The metabolic profiling of tissue samples was performed by HR-MAS 1H NMR spectroscopy. All observable metabolite signals were identified and quantified in all tissue samples. Metabolite intensity normalized by total spectral intensities was compared according to the tumor type using the Mann-Whitney test. Multivariate analysis was performed with orthogonal projections to latent structure-discriminant analysis (OPLS-DA). By univariate analysis, the metabolite concentrations of choline-containing compounds obtained with HR-MAS 1H NMR spectroscopy did not differ significantly between the pure DCIS and DCIS accompanying invasive carcinoma groups. However, the GPC/PC ratio was higher in the pure DCIS group than in the DCIS accompanying invasive carcinoma group (p = 0.004, Bonferroni-corrected p = 0.064), as well as the concentration of myo-inositol and succinate. By multivariate analysis, the OPLS-DA models built with HR-MAS MR metabolic profiles could clearly discriminate between pure DCIS and DCIS accompanying invasive carcinoma. Our preliminary results suggest that HR-MAS MR metabolomics on breast tissue may be able to distinguish between DCIS lesions with or without an invasive component. PMID:27560937

  8. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes.

  9. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Helmus, Jonathan J.; Nadaud, Philippe S.; Höfer, Nicole; Jaroniec, Christopher P.

    2008-02-01

    We describe three- and four-dimensional semiconstant-time transferred echo double resonance (SCT-TEDOR) magic-angle spinning solid-state nuclear magnetic resonance (NMR) experiments for the simultaneous measurement of multiple long-range N15-Cmethyl13 dipolar couplings in uniformly C13, N15-enriched peptides and proteins with high resolution and sensitivity. The methods take advantage of C13 spin topologies characteristic of the side-chain methyl groups in amino acids alanine, isoleucine, leucine, methionine, threonine, and valine to encode up to three distinct frequencies (N15-Cmethyl13 dipolar coupling, N15 chemical shift, and Cmethyl13 chemical shift) within a single SCT evolution period of initial duration ˜1/JCC1 (where JCC1≈35Hz, is the one-bond Cmethyl13-C13 J-coupling) while concurrently suppressing the modulation of NMR coherences due to C13-C13 and N15-C13 J-couplings and transverse relaxation. The SCT-TEDOR schemes offer several important advantages over previous methods of this type. First, significant (approximately twofold to threefold) gains in experimental sensitivity can be realized for weak N15-Cmethyl13 dipolar couplings (corresponding to structurally interesting, ˜3.5Å or longer, distances) and typical Cmethyl13 transverse relaxation rates. Second, the entire SCT evolution period can be used for Cmethyl13 and/or N15 frequency encoding, leading to increased spectral resolution with minimal additional coherence decay. Third, the experiments are inherently "methyl selective," which results in simplified NMR spectra and obviates the use of frequency-selective pulses or other spectral filtering techniques. Finally, the N15-C13 cross-peak buildup trajectories are purely dipolar in nature (i.e., not influenced by J-couplings or relaxation), which enables the straightforward extraction of N15-Cmethyl13 distances using an analytical model. The SCT-TEDOR experiments are demonstrated on a uniformly C13, N15-labeled peptide, N-acetyl-valine, and a 56

  10. 1H-13C/1H-15N Heteronuclear Dipolar Recoupling by R-Symmetry Sequences Under Fast Magic Angle Spinning for Dynamics Analysis of Biological and Organic Solids

    PubMed Central

    Hou, Guangjin; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2011-01-01

    Fast magic angle spinning (MAS) NMR spectroscopy is becoming increasingly important in structural and dynamics studies of biological systems and inorganic materials. Superior spectral resolution due to the efficient averaging of the dipolar couplings can be attained at MAS frequencies of 40 kHz and higher with appropriate decoupling techniques, while proton detection gives rise to significant sensitivity gains, therefore making fast MAS conditions advantageous across the board compared with the conventional slow- and moderate-MAS approaches. At the same time, many of the dipolar recoupling approaches that currently constitute the basis for structural and dynamics studies of solid materials and that are designed for MAS frequencies of 20 kHz and below, fail above 30 kHz. In this report, we present an approach for 1H-13C/1H-15N heteronuclear dipolar recoupling under fast MAS conditions using R-type symmetry sequences, which is suitable even for fully protonated systems. A series of rotor-synchronized R-type symmetry pulse schemes are explored for the determination of structure and dynamics in biological and organic systems. The investigations of the performance of the various RNnv-symmetry sequences at the MAS frequency of 40 kHz experimentally and by numerical simulations on [U-13C,15N]-alanine and [U-13C,15N]-N-acetyl-valine, revealed excellent performance for sequences with high symmetry number ratio (N/2n > 2.5). Further applications of this approach are presented for two proteins, sparsely 13C/uniformly 15N enriched CAP-Gly domain of dynactin and U-13C,15N-Tyr enriched C-terminal domain of HIV-1 CA protein. 2D and 3D R1632-based DIPSHIFT experiments carried out at the MAS frequency of 40 kHz, yielded site-specific 1H-13C/1H-15N heteronuclear dipolar coupling constants for CAP-Gly and CTD CA, reporting on the dynamic behavior of these proteins on time scales of nano- to microseconds. The R-symmetry based dipolar recoupling under fast MAS is expected to find

  11. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI

    PubMed Central

    Yoon, Haesung; Yoon, Dahye; Yun, Mijin; Choi, Ji Soo; Park, Vivian Youngjean; Kim, Eun-Kyung; Jeong, Joon; Koo, Ja Seung; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Purpose Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters. Materials and methods Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32–75 years) with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1) were suspicious for malignancy on mammography or ultrasound (US), 2) were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB) 3) underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) and positron emission tomography-computed tomography (PET-CT), and 4) had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER), maximum standardized FDG uptake value (SUV max), apparent diffusion coefficient (ADC), and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA) to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters. Results In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in

  12. 27Al fourier-transform electron-spin-echo modulation of Cu 2+-doped zeolites A and X

    NASA Astrophysics Data System (ADS)

    Goldfarb, Daniella; Kevan, Larry

    Cu 2+-doped NaA, CaA, and NaX zeolites were studied using the electron-spin-echo modulation (ESEM) method. In both hydrated and dehydrated samples 27Al modulation has been observed. The time-domain ESEM traces were Fourier transformed and analyzed in the frequency domain. All FT-ESEM spectra of the hydrated samples showed a single peak at the Larmor frequency of 27Ai, indicating that the zeeman interaction is dominant and that the 27Al quadrupole and hyperfine interactions are relatively small. Considerable changes in the spectrum appear upon dehydration. Several frequencies significantly different from the Larmor frequency appear and the spectrum depends on the major cocation present. The major features of the spectra of the dehydrated zeolites could be theoretically reproduced, using exact diagonalization of the nuclear Hamiltonian, with relatively large isotropic hyperfine and quadrupole coupling constants. For example, in CuCaA and CuNaA zeolites the isotropic hyperfine constant is in the range of 0.2-0.5 and 0.8-1.0 MHz, respectively, with the quadrupole coupling constant in the range of 6-10 MHz for both.

  13. SCAM-STMAS: satellite-transition MAS NMR of quadrupolar nuclei with self-compensation for magic-angle misset.

    PubMed

    Ashbrook, Sharon E; Wimperis, Stephen

    2003-06-01

    Several methods are available for the acquisition of high-resolution solid-state NMR spectra of quadrupolar nuclei with half-integer spin quantum number. Satellite-transition MAS (STMAS) offers an approach that employs only conventional MAS hardware and can yield substantial signal enhancements over the widely used multiple-quantum MAS (MQMAS) experiment. However, the presence of the first-order quadrupolar interaction in the satellite transitions imposes the requirement of a high degree of accuracy in the setting of the magic angle on the NMR probehead. The first-order quadrupolar interaction is only fully removed if the sample spinning angle, chi, equals cos(-1)(1/3) exactly and rotor synchronization is performed. The required level of accuracy is difficult to achieve experimentally, particularly when the quadrupolar interaction is large. If the magic angle is not set correctly, the first-order splitting is reintroduced and the spectral resolution is severely compromised. Recently, we have demonstrated a novel STMAS method (SCAM-STMAS) that is self-compensated for angle missets of up to +/-1 degrees via coherence transfer between the two different satellite transitions ST(+)(m(I)=+3/2<-->+1/2) and ST(-)(m(I)=-1/2<-->-3/2) midway through the t(1) period. In this work we describe in more detail the implementation of SCAM-STMAS and demonstrate its wider utility through 23Na (I=3/2), 87 Rb (I=3/2), 27 Al (I=5/2), and 59 Co (I=7/2) NMR. We discuss linewidths in SCAM-STMAS and the limits over which angle-misset compensation is achieved and we demonstrate that SCAM-STMAS is more tolerant of temporary spinning rate fluctuations than STMAS, resulting in less "t(1) noise" in the two-dimensional spectrum. In addition, alternative correlation experiments, for example involving the use of double-quantum coherences, that similarly display self-compensation for angle misset are investigated. The use of SCAM-STMAS is also considered in systems where other high-order interactions

  14. Friedel's salt formation in sulfoaluminate cements: A combined XRD and {sup 27}Al MAS NMR study

    SciTech Connect

    Paul, G.; Boccaleri, E.; Buzzi, L.; Canonico, F.; Gastaldi, D.

    2015-01-15

    Four different binders based on calcium sulfoaluminate cements have been submitted to accelerated chlorination through ionic exchange on hydrated pastes, in order to investigate their ability to chemically bind chloride ions that might reduce chloride penetration. The composition of hydrated cements before and after the treatment was evaluated by means of an X-Ray Diffraction–{sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy combined study, allowing to take into account even partially amorphous phases and to make quantitative assumption on the relative abundance of the different aluminium-containing phases. It was found that low SO{sub 3} Sulfoaluminate–Portland ternary systems are the most effective in binding chloride ions and the active role played by different members of the AFm family in chloride uptake was confirmed. Moreover, a peculiar behavior related to the formation of Friedel's salt in different pH conditions was also established for the different cements.

  15. A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values

    NASA Astrophysics Data System (ADS)

    Alderman, D. W.

    1998-12-01

    A sensitive, high-resolution 'FIREMAT' two-dimensional (2D) magic-angle-turning experiment is described that measures chemical shift tensor principal values in powdered solids. The spectra display spinning-sideband patterns separated by their isotropic shifts. The new method's sensitivity and high resolution in the isotropic-shift dimension result from combining the 5pi magic-angle-turning pulse sequence, an extension of the pseudo-2D sideband-suppression data rearrangement, and the TIGER protocol for processing 2D data. TPPM decoupling is used to enhance resolution. The method requires precise synchronization of the pulses and sampling to the rotor position. It is shown that the technique obtains 35 natural-abundance 13C tensors from erythromycin in 19 hours, and high quality naturalabundance 15N tensors from eight sites in potassium penicillin V in three days on a 400MHz spectrometer.

  16. The aluminum ordering in aluminosilicates: a dipolar 27Al NMR spectroscopy study.

    PubMed

    Gee, Becky A

    2004-01-01

    The spatial ordering of aluminum atoms in CsAl(SiO3)2 and 3Al2O3.2SiO2 was probed by 27Al dipolar solid-state NMR spectroscopy. The 27Al response to a Hahn spin-echo pulse sequence in a series of aluminum-containing model crystalline compounds demonstrates that quantitative 27Al homonuclear dipolar second moments can be obtained to within +/-20% of the theoretical values, if evaluation of the spin-echo response curve is limited to short evolution periods (2t1 < or = 0.10 ms). Additionally, selective excitation of the central transition m = 1/2 --> -1/2 is necessary in order to ensure quantitative results. Restriction of spin exchange affecting the dephasing of the magnetization may decelerate the spin-echo decay at longer evolution periods. Considering these restraints, the method was used to probe the spatial distribution of aluminum atoms among the tetrahedral sites in two aluminosilicate materials. Experimental 27Al spin-echo response data for the aluminosilicates CsAl(SiO3)2 (synthetic pollucite) and 3Al2O3.2SiO2 (mullite) are compared with theoretical data based on (I) various degrees of aluminum-oxygen-aluminum bond formation among tetrahedrally coordinated aluminum atoms (Al(T(d) )-O-Al(T(d) )) and (II) the maximum avoidance of Al(T(d) )-O-Al(T(d) ) bonding. Analysis of the second moment values and resulting echo decay responses suggests that partial suppression of spin exchange among aluminum atoms in crystallographically distinct sites may contribute to the 27Al spin echo decay in 3Al2O3.2SiO2, thus complicating quantitative analysis of the data. Silicon-29 and aluminum-27 magic angle spinning (MAS) NMR spectra of 3Al2O3.2SiO2 are consistent with those previously reported. The experimental 27Al spin-echo response behavior of CsAl(SiO3)2 differs from the theoretical response behavior based on the maximum avoidance of Al-O-Al bonding between tetrahedral aluminum sites in CsAl(SiO3)2. A single unresolved resonance is observed in both the silicon-29 and

  17. 11B and 27Al NMR spin-lattice relaxation and Knight shift of Mg1-xAlxB2: Evidence for an anisotropic Fermi surface

    NASA Astrophysics Data System (ADS)

    Papavassiliou, G.; Pissas, M.; Karayanni, M.; Fardis, M.; Koutandos, S.; Prassides, K.

    2002-10-01

    We report a detailed study of the 11B and 27Al NMR spin-lattice relaxation rates (1/T1) and the 27Al Knight shift (K) in Mg1-xAlxB2, 0<=x<=1. The evolution of (1/T1T) and K with x is in excellent agreement with the prediction of ab initio calculations of a highly anisotropic Fermi surface, consisting mainly of hole-type two-dimensional (2D) cylindrical sheets from bonding 2px,y boron orbitals. The density of states at the Fermi level also decreases sharply on Al doping and the 2D sheets collapse at x~0.55, where the superconducting phase disappears.

  18. Principal component analysis for the comparison of metabolic profiles from human rectal cancer biopsies and colorectal xenografts using high-resolution magic angle spinning 1H magnetic resonance spectroscopy

    PubMed Central

    Seierstad, Therese; Røe, Kathrine; Sitter, Beathe; Halgunset, Jostein; Flatmark, Kjersti; Ree, Anne H; Olsen, Dag Rune; Gribbestad, Ingrid S; Bathen, Tone F

    2008-01-01

    Background This study was conducted in order to elucidate metabolic differences between human rectal cancer biopsies and colorectal HT29, HCT116 and SW620 xenografts by using high-resolution magnetic angle spinning (MAS) magnetic resonance spectroscopy (MRS) and for determination of the most appropriate human rectal xenograft model for preclinical MR spectroscopy studies. A further aim was to investigate metabolic changes following irradiation of HT29 xenografts. Methods HR MAS MRS of tissue samples from xenografts and rectal biopsies were obtained with a Bruker Avance DRX600 spectrometer and analyzed using principal component analysis (PCA) and partial least square (PLS) regression analysis. Results and conclusion HR MAS MRS enabled assignment of 27 metabolites. Score plots from PCA of spin-echo and single-pulse spectra revealed separate clusters of the different xenografts and rectal biopsies, reflecting underlying differences in metabolite composition. The loading profile indicated that clustering was mainly based on differences in relative amounts of lipids, lactate and choline-containing compounds, with HT29 exhibiting the metabolic profile most similar to human rectal cancers tissue. Due to high necrotic fractions in the HT29 xenografts, radiation-induced changes were not detected when comparing spectra from untreated and irradiated HT29 xenografts. However, PLS calibration relating spectral data to the necrotic fraction revealed a significant correlation, indicating that necrotic fraction can be assessed from the MR spectra. PMID:18439252

  19. Solid-State NMR Study of Paramagnetic Bis(alaninato-κ(2)N,O)copper(II) and Bis(1-amino(cyclo)alkane-1-carboxylato-κ(2)N,O)copper(II) Complexes: Reflection of Stereoisomerism and Molecular Mobility in (13)C and (2)H Fast Magic Angle Spinning Spectra.

    PubMed

    Szalontai, Gábor; Csonka, Róbert; Speier, Gábor; Kaizer, József; Sabolović, Jasmina

    2015-05-18

    Solid-state stereochemistry and mobility of paramagnetic copper(II) complexes formed by aliphatic amino acids (l-alanine, d,l-alanine, 1-amino-2-methyl-alanine) and 1-amino(cyclo)alkane-1-carboxylic acids (alkane = propane, butane, pentane, hexane) as bidentate ligands has been studied by (13)C and (2)H solid-state fast magic angle spinning (MAS) NMR spectroscopy. We examined the prospective method to characterize solid-state paramagnetic compounds in a routine way. Both (13)C and (2)H MAS spectra can distinguish d,l and l,l diastereomers of natural and polydeuterated bis([Dn]alaninato)copper(II) (n = 0, 2, 8) complexes with axial and/or equatorial methyl positions (conformations) primarily due to different Fermi-contact (FC) contributions. The three-bond hyperfine couplings clearly show Karplus-like dependence on the torsional angles which turned out to be a useful assignment aid. Density functional theory calculations of the FC term and crystal structures were also used to aid the final assignments. The correlations obtained for bis(alaninato-κ(2)N,O)copper(II) complexes were successfully used to characterize other complexes. The usefulness of the (2)H MAS spectra of the deuterated complexes was underlined. Even the spectra of the easily exchangeable amine protons contained essential stereochemical information. In the case of a dimer structure of bis(1-aminohexane-1-carboxylato-κ(2)N,O)copper(II) both the (13)C and (2)H resolutions were good enough to confirm the presence of the cis and trans forms in the asymmetric unit. With regard to the internal solid-state motions in the crystal lattice, the obtained quadrupolar tensor parameters were similar for the d,l- and l,l-alaninato isomers and also for the cis-trans forms suggesting similar crystal packing effects, static amine deuterons involved in hydrogen bonding, and fast rotating methyl groups.

  20. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-11-25

    A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.

  1. Methods for magnetic resonance analysis using magic angle technique

    DOEpatents

    Hu, Jian Zhi; Wind, Robert A.; Minard, Kevin R.; Majors, Paul D.

    2011-11-22

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  2. Obtaining aluminas from the thermal decomposition of their different precursors: An {sup 27}Al MAS NMR and X-ray powder diffraction studies

    SciTech Connect

    Chagas, L.H.; De Carvalho, G.S.G.; San Gil, R.A.S.; Chiaro, S.S.X.; Leitão, A.A.; Diniz, R.

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized three precursors of alumina from different methods. • The calcination of the precursors generated several alumina polymorphs. • XRD and NMR were used for structural investigation of the polymorphs. • The synthesis route determines the structural and textural properties of the solids. - Abstract: A commercial sample of Boehmite was used as precursor of alumina polymorphs. For comparison, three other precursors were synthesized from different methods. Particularly, the use of excess of urea promoted a very crystalline form of basic aluminum carbonate. The characteristics of the four precursors were investigated by thermal, vibrational and X-ray powder diffraction (XRD) analysis. Additionally, the nuclear magnetic resonance, with magic angle spinning ({sup 27}Al MAS NMR), was used to verify the coordination of aluminum cations. Each precursor was calcined at various temperatures generating alumina polymorphs, which were structurally analyzed by XRD and {sup 27}Al MAS NMR. Due to interest in catalysis supports, special attention was given to the γ-Al{sub 2}O{sub 3} phase, which in addition to structural investigation was subjected to textural analysis. The results showed that, from different synthesis procedures and common route of calcination, one can obtain materials with the same composition but with different structural and textural properties, which in turn can significantly influence the performance of a supported catalyst.

  3. Resolving the aluminum ordering in aluminosilicates by a combined experimental/theoretical study of 27Al electric field gradients.

    PubMed

    Rocquefelte, Xavier; Clabau, Frédéric; Paris, Michael; Deniard, Philippe; Le Mercier, Thierry; Jobic, Stéphane; Whangbo, Myung-Hwan

    2007-07-01

    The discrimination between atomic species in light-element materials is a challenging question. An archetypal example is the resolution of the Al/Si ordering in aluminosilicates. Only an average long-range order can be deduced from powder X-ray or neutron diffraction, while magic-angle-spinning NMR provides an accurate picture of the short-range order. The long- and short-range orders thus obtained usually differ, hence raising the question of whether the difference between local and extended orders is intrinsic or caused by the difficulty of obtaining an accurate picture of the long-range order from diffraction techniques. In this communication we resolve this question for the monoclinic phases of BaAl2Si2O8 and SrAl2Si2O8 on the basis of 27Al NMR measurements and ab initio simulation of electric field gradient. Although the long- and short-range orders deduced from our XRD and NMR experiments differ, they become similar when the XRD atomic positions are optimized by ab initio electronic structure calculations.

  4. Al speciation in tropical podzols of the upper Amazon Basin: A solid-state 27Al MAS and MQMAS NMR study

    NASA Astrophysics Data System (ADS)

    Bardy, Marion; Bonhomme, Christian; Fritsch, Emmanuel; Maquet, Jocelyne; Hajjar, Redouane; Allard, Thierry; Derenne, Sylvie; Calas, Georges

    2007-07-01

    In the upper Amazon Basin, aluminum previously accumulated in lateritic formations is massively remobilised in soils by podzolization and exported in waters. We have investigated the speciation of aluminum in the clay-size fractions of eight horizons of waterlogged podzols lying in a depression of a plateau. The horizons illustrate the main steps involved in the podzolization of laterites. They belong to eluviated topsoil A horizons and illuviated subsoil Bhs, Bh and 2BCs horizons of weakly and better-expressed podzols located at the margin and centre of the depression. For the first time, aluminum speciation is quantitatively assessed in soils by spectroscopic methods, namely FTIR, 27Al magic angle spinning (MAS) and multiple-quantum magic angle spinning (MQMAS), nuclear magnetic resonance (NMR). The results thus obtained are compared to chemical extraction data. Solid-state 27Al MAS NMR spectra enable to distinguish Al bound to organic compounds from that incorporated in secondary mineral phases detected by FTIR. MQMAS experiments additionally show that both chemical shifts and quadrupolar constants are distributed for Al nuclei linked with organic compounds. Similar amounts of chelated Al are obtained from NMR spectra and chemical extractions. The study enables to highlight three major steps in the fate of aluminum. (i) Aluminum is first released by mineral weathering, feeds complexing sites of organic matter and accumulates in subsurface Bhs horizons of weakly expressed podzols (acidocomplexolysis). (ii) Complexes of aluminum with organic matter (Al-OM) then migrate downwards in sandy horizons of better-expressed podzols and accumulate at depth in less permeable 2BCs horizons. (iii) The minor amounts of aluminum present in the 2BCs horizon of the downslope podzol show that aluminum is eventually exported towards the river network, either complexed with organic matter or as Al 3+ ions after desorption from organic compounds, due to decreasing pH or

  5. True Pathologic Abnormality versus Artifact Foot Position and Magic Angle Artifact in the Peroneal Tendons with 3T Imaging.

    PubMed

    Horn, Deena B; Meyers, Steven; Astor, William

    2015-09-01

    Magnetic resonance imaging is a commonly ordered examination by many foot and ankle surgeons for ankle pain and suspected peroneal tendon pathologic abnormalities. Magic angle artifact is one of the complexities associated with this imaging modality. Magic angle refers to the increased signal on magnetic resonance images associated with the highly organized collagen fibers in tendons and ligaments when they are orientated at a 55° angle to the main magnetic field. We present several examples from a clinical practice setting using 3T imaging illustrating a substantial reduction in magic angle artifact of the peroneal tendon in the prone plantarflexed position compared with the standard neutral (right angle) position.

  6. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2004-12-28

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  7. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-12-30

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  8. Computational prediction and analysis of the (27)Al solid-state NMR spectrum of methylaluminoxane (MAO) at variable temperatures and field strengths.

    PubMed

    Falls, Zackary; Zurek, Eva; Autschbach, Jochen

    2016-09-14

    Calculations of NMR shielding tensors and nuclear quadrupole coupling (NQC) tensors at the Kohn-Sham density functional level are used to simulate (27)Al magic-angle spinning (MAS) NMR spectra of the important olefin polymerization co-catalyst methylaluminoxane (MAO) at 77, 298, 398, and 498 K and spectrometer magnetic field inductions B ranging from 14.1 to 23.5 T. The calculations utilize the temperature (T) dependent distribution of species present in MAO determined recently by Zurek and coworkers from first-principles theory [Macromolecules, 2014, 47, 8556]. The NMR calculations suggest that variable-T and variable-B NMR measurements are able to quantify the ratio of free versus bound trimethyl-aluminum (TMA) in MAO via characteristic spectral features assigned to 3-coordinate and 4-coordinate Al sites in MAO as well as spectral features arising from free TMA or its dimer. The T-dependent distribution of species causes other characteristic features in the NMR spectra to appear/disappear that can be associated with different aluminum environments such as square vs. hexagonal faces in cage and tubular structures. The simulated spectra at 298 K and 19.6 T are in reasonably good agreement with the experimental solid-state NMR (SSNMR) spectra obtained previously for MAO gel. The promise and limitations of solid-state NMR to unravel the enigma surrounding the structure(s) of MAO are discussed. PMID:27526292

  9. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    DOEpatents

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Wind, Robert A.

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  10. Solid-state {sup 27}Al and {sup 29}Si NMR characterization of hydrates formed in calcium aluminate-silica fume mixtures

    SciTech Connect

    Pena, P.; Rivas Mercury, J.M.

    2008-08-15

    Partially deuterated Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub y}(OH){sub 12-4y}-Al(OH){sub 3} mixtures, prepared by hydration of Ca{sub 3}Al{sub 2}O{sub 6} (C{sub 3}A), Ca{sub 12}Al{sub 14}O{sub 33} (C{sub 12}A{sub 7}) and CaAl{sub 2}O{sub 4} (CA) phases in the presence of silica fume, have been characterized by {sup 29}Si and {sup 27}Al magic-angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies. NMR spectroscopy was used to characterize anhydrous and fully hydrated samples. In hydrated compounds, Ca{sub 3}Al{sub 2}(OH){sub 12} and Al(OH){sub 3} phases were detected. From the quantitative analysis of {sup 27}Al NMR signals, the Al(OH){sub 3}/Ca{sub 3}Al{sub 2}(OH){sub 12} ratio was deduced. The incorporation of Si into the katoite structure, Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-x}(OH){sub 4x}, was followed by {sup 27}Al and {sup 29}Si NMR spectroscopies. Si/OH ratios were determined from the quantitative analysis of {sup 27}Al MAS-NMR components associated with Al(OH){sub 6} and Al(OSi)(OH){sub 5} environments. The {sup 29}Si NMR spectroscopy was also used to quantify the unreacted silica and amorphous calcium aluminosilicate hydrates formed, C-S-H and C-A-S-H for short. From {sup 29}Si NMR spectra, the amount of Si incorporated into different phases was estimated. Si and Al concentrations, deduced by NMR, transmission electron microscopy, energy dispersive spectrometry, and Rietveld analysis of both X-ray and neutron data, indicate that only a part of available Si is incorporated in katoite structures. - Graphical abstract: Transmission electron micrograph of CaAl{sub 2}O{sub 4}-microsilica mixture hydrated at 90 deg. C for 31 days showing a cubic Ca{sub 3}Al{sub 2.0{+-}}{sub 0.2}(SiO{sub 4}){sub 0.9{+-}}{sub 0.2}(OH){sub 1.8} crystal surrounded by unreacted amorphous silica spheres.

  11. Non-Fermi-liquid magic angle effects in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Lebed, A. G.

    2016-07-01

    We investigate a theoretical problem of electron-electron interactions in an inclined magnetic field in a quasi-one-dimensional (Q1D) conductor. We show that they result in strong non-Fermi-liquid corrections to a specific heat, provided that the direction of the magnetic field is far from the so-called Lebed's magic angles (LMAs). If magnetic field is directed close to one of the LMAs, the specific heat corrections become small and the Fermi-liquid picture restores. As a result, we predict Fermi-liquid-non-Fermi-liquid angular crossovers in the vicinities of the LMA directions of the field. We suggest to perform the corresponding experiment in the Q1D conductor (Per) 2Au (mnt) 2 under pressure in magnetic fields of the order of H ≃25 T .

  12. Measurement of 13C chemical shift tensor principal values with a magic-angle turning experiment.

    PubMed

    Hu, J Z; Orendt, A M; Alderman, D W; Pugmire, R J; Ye, C; Grant, D M

    1994-08-01

    The magic-angle turning (MAT) experiment introduced by Gan is developed into a powerful and routine method for measuring the principal values of 13C chemical shift tensors in powdered solids. A large-volume MAT probe with stable rotation frequencies down to 22 Hz is described. A triple-echo MAT pulse sequence is introduced to improve the quality of the two-dimensional baseplane. It is shown that measurements of the principal values of chemical shift tensors in complex compounds can be enhanced by using either short contact times or dipolar dephasing pulse sequences to isolate the powder patterns from protonated or non-protonated carbons, respectively. A model compound, 1,2,3-trimethoxybenzene, is used to demonstrate these techniques, and the 13C principal values in 2,3-dimethylnaphthalene and Pocahontas coal are reported as typical examples.

  13. Direct Observation of Lattice Aluminum Environments in Li Ion Cathodes LiNi1-y-zCoyAlzO2 and Al-Doped LiNixMnyCozO2 via (27)Al MAS NMR Spectroscopy.

    PubMed

    Dogan, Fulya; Vaughey, John T; Iddir, Hakim; Key, Baris

    2016-07-01

    Direct observations of local lattice aluminum environments have been a major challenge for aluminum-bearing Li ion battery materials, such as LiNi1-y-zCoyAlzO2 (NCA) and aluminum-doped LiNixMnyCozO2 (NMC). (27)Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can qualitatively and quantitatively characterize lattice and nonlattice (i.e., surface, coatings, segregation, secondary phase etc.) aluminum coordination and provide information that helps discern its effect in the lattice. In the present study, we use NMR to gain new insights into transition metal (TM)-O-Al coordination and evolution of lattice aluminum sites upon cycling. With the aid of first-principles DFT calculations, we show direct evidence of lattice Al sites, nonpreferential Ni/Co-O-Al ordering in NCA, and the lack of bulk lattice aluminum in aluminum-"doped" NMC. Aluminum coordination of the paramagnetic (lattice) and diamagnetic (nonlattice) nature is investigated for Al-doped NMC and NCA. For the latter, the evolution of the lattice site(s) upon cycling is also studied. A clear reordering of lattice aluminum environments due to nickel migration is observed in NCA upon extended cycling.

  14. Metabolite localization in living drosophila using High Resolution Magic Angle Spinning NMR.

    PubMed

    Sarou-Kanian, Vincent; Joudiou, Nicolas; Louat, Fanny; Yon, Maxime; Szeremeta, Frédéric; Même, Sandra; Massiot, Dominique; Decoville, Martine; Fayon, Franck; Beloeil, Jean-Claude

    2015-01-01

    We have developed new methods enabling in vivo localization and identification of metabolites through their (1)H NMR signatures, in a drosophila. Metabolic profiles in localized regions were obtained using HR-MAS Slice Localized Spectroscopy and Chemical Shift Imaging at high magnetic fields. These methods enabled measurement of metabolite contents in anatomic regions of the fly, demonstrated by a decrease in β-alanine signals in the thorax of flies showing muscle degeneration. PMID:25892587

  15. Metabolite localization in living drosophila using High Resolution Magic Angle Spinning NMR

    PubMed Central

    Sarou-Kanian, Vincent; Joudiou, Nicolas; Louat, Fanny; Yon, Maxime; Szeremeta, Frédéric; Même, Sandra; Massiot, Dominique; Decoville, Martine; Fayon, Franck; Beloeil, Jean-Claude

    2015-01-01

    We have developed new methods enabling in vivo localization and identification of metabolites through their 1H NMR signatures, in a drosophila. Metabolic profiles in localized regions were obtained using HR-MAS Slice Localized Spectroscopy and Chemical Shift Imaging at high magnetic fields. These methods enabled measurement of metabolite contents in anatomic regions of the fly, demonstrated by a decrease in β-alanine signals in the thorax of flies showing muscle degeneration. PMID:25892587

  16. Pf1 bacteriophage hydration by magic angle spinning solid-state NMR

    NASA Astrophysics Data System (ADS)

    Sergeyev, Ivan V.; Bahri, Salima; Day, Loren A.; McDermott, Ann E.

    2014-12-01

    High resolution two- and three-dimensional heteronuclear correlation spectroscopy (1H-13C, 1H-15N, and 1H-13C-13C HETCOR) has provided a detailed characterization of the internal and external hydration water of the Pf1 virion. This long and slender virion (2000 nm × 7 nm) contains highly stretched DNA within a capsid of small protein subunits, each only 46 amino acid residues. HETCOR cross-peaks have been unambiguously assigned to 25 amino acids, including most external residues 1-21 as well as residues 39-40 and 43-46 deep inside the virion. In addition, the deoxyribose rings of the DNA near the virion axis are in contact with water. The sets of cross-peaks to the DNA and to all 25 amino acid residues were from the same hydration water 1H resonance; some of the assigned residues do not have exchangeable side-chain protons. A mapping of the contacts onto structural models indicates the presence of water "tunnels" through a highly hydrophobic region of the capsid. The present results significantly extend and modify results from a lower resolution study, and yield a comprehensive hydration surface map of Pf1. In addition, the internal water could be distinguished from external hydration water by means of paramagnetic relaxation enhancement. The internal water population may serve as a conveniently localized magnetization reservoir for structural studies.

  17. Pf1 bacteriophage hydration by magic angle spinning solid-state NMR

    SciTech Connect

    Sergeyev, Ivan V.; Bahri, Salima; McDermott, Ann E.; Day, Loren A.

    2014-12-14

    High resolution two- and three-dimensional heteronuclear correlation spectroscopy ({sup 1}H–{sup 13}C, {sup 1}H–{sup 15}N, and {sup 1}H–{sup 13}C–{sup 13}C HETCOR) has provided a detailed characterization of the internal and external hydration water of the Pf1 virion. This long and slender virion (2000 nm × 7 nm) contains highly stretched DNA within a capsid of small protein subunits, each only 46 amino acid residues. HETCOR cross-peaks have been unambiguously assigned to 25 amino acids, including most external residues 1–21 as well as residues 39–40 and 43–46 deep inside the virion. In addition, the deoxyribose rings of the DNA near the virion axis are in contact with water. The sets of cross-peaks to the DNA and to all 25 amino acid residues were from the same hydration water {sup 1}H resonance; some of the assigned residues do not have exchangeable side-chain protons. A mapping of the contacts onto structural models indicates the presence of water “tunnels” through a highly hydrophobic region of the capsid. The present results significantly extend and modify results from a lower resolution study, and yield a comprehensive hydration surface map of Pf1. In addition, the internal water could be distinguished from external hydration water by means of paramagnetic relaxation enhancement. The internal water population may serve as a conveniently localized magnetization reservoir for structural studies.

  18. A permanent MRI magnet for magic angle imaging having its field parallel to the poles.

    PubMed

    McGinley, John V M; Ristic, Mihailo; Young, Ian R

    2016-10-01

    A novel design of open permanent magnet is presented, in which the magnetic field is oriented parallel to the planes of its poles. The paper describes the methods whereby such a magnet can be designed with a field homogeneity suitable for Magnetic Resonance Imaging (MRI). Its primary purpose is to take advantage of the Magic Angle effect in MRI of human extremities, particularly the knee joint, by being capable of rotating the direction of the main magnetic field B0 about two orthogonal axes around a stationary subject and achieve all possible angulations. The magnet comprises a parallel pair of identical profiled arrays of permanent magnets backed by a flat steel yoke such that access in lateral directions is practical. The paper describes the detailed optimization procedure from a target 150mm DSV to the achievement of a measured uniform field over a 130mm DSV. Actual performance data of the manufactured magnet, including shimming and a sample image, is presented. The overall magnet system mounting mechanism is presented, including two orthogonal axes of rotation of the magnet about its isocentre. PMID:27552556

  19. A permanent MRI magnet for magic angle imaging having its field parallel to the poles

    NASA Astrophysics Data System (ADS)

    McGinley, John V. M.; Ristic, Mihailo; Young, Ian R.

    2016-10-01

    A novel design of open permanent magnet is presented, in which the magnetic field is oriented parallel to the planes of its poles. The paper describes the methods whereby such a magnet can be designed with a field homogeneity suitable for Magnetic Resonance Imaging (MRI). Its primary purpose is to take advantage of the Magic Angle effect in MRI of human extremities, particularly the knee joint, by being capable of rotating the direction of the main magnetic field B0 about two orthogonal axes around a stationary subject and achieve all possible angulations. The magnet comprises a parallel pair of identical profiled arrays of permanent magnets backed by a flat steel yoke such that access in lateral directions is practical. The paper describes the detailed optimization procedure from a target 150 mm DSV to the achievement of a measured uniform field over a 130 mm DSV. Actual performance data of the manufactured magnet, including shimming and a sample image, is presented. The overall magnet system mounting mechanism is presented, including two orthogonal axes of rotation of the magnet about its isocentre.

  20. A permanent MRI magnet for magic angle imaging having its field parallel to the poles.

    PubMed

    McGinley, John V M; Ristic, Mihailo; Young, Ian R

    2016-10-01

    A novel design of open permanent magnet is presented, in which the magnetic field is oriented parallel to the planes of its poles. The paper describes the methods whereby such a magnet can be designed with a field homogeneity suitable for Magnetic Resonance Imaging (MRI). Its primary purpose is to take advantage of the Magic Angle effect in MRI of human extremities, particularly the knee joint, by being capable of rotating the direction of the main magnetic field B0 about two orthogonal axes around a stationary subject and achieve all possible angulations. The magnet comprises a parallel pair of identical profiled arrays of permanent magnets backed by a flat steel yoke such that access in lateral directions is practical. The paper describes the detailed optimization procedure from a target 150mm DSV to the achievement of a measured uniform field over a 130mm DSV. Actual performance data of the manufactured magnet, including shimming and a sample image, is presented. The overall magnet system mounting mechanism is presented, including two orthogonal axes of rotation of the magnet about its isocentre.

  1. Investigations on the Crystal-Chemical Behavior of Transition-Metal-Bearing Aluminosilicate Garnet Solid Solutions Using 27Al and 29Si NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palke, A. C.; Geiger, C. A.; Stebbins, J. F.

    2015-12-01

    The petrological importance of silicate garnet is derived from the presence of three distinct cation sites of varying size and coordination number. This allows for a wide range of trace, minor, and major element substitutions. However, a full and precise crystal-chemical understanding of the nature of transition metals in garnet is not at hand. Possible mechanisms of various charge-balanced substitutions (e.g. octahedral Ti4+ or tetrahedral Al3+) and the structural state of solid solutions (i.e. short- to long-range ordering) need study. We report on ongoing efforts in these directions using 27Al and 29Si Magic-Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) spectroscopy. Early work on synthetic and natural Fe- and Mn-bearing pyrope- and grossular-rich garnets focused on the effect these paramagnetic transition metals have in measuring and interpreting NMR spectra. These results have been expanded with NMR measurements on synthetic pyrope-rich garnets containing other paramagnetic transition metals including Cr3+, V3+, Co2+, and Ni2+ as well as diamagnetic Ti4+. NMR peaks are severely broadened in the presence of even small concentrations of Cr3+, Mn2+, and Fe3+ leading to a loss of spectral resolution. On the other hand, the spectra of garnet containing V3+, Fe2+, Co2+, and Ni2+ have better resolution and show separate paramagnetically shifted NMR peaks. In some cases, crystal-chemical information can be obtained because of the large frequency separations between the NMR peaks that can be assigned to various local atomic configurations around Al and Si. Furthermore, the 27Al NMR spectrum of a synthetic pyrope garnet with about 2% diamagnetic Ti4+ on the octahedral site showed the absence of any tetrahedral Al3+, which rules out the substitution mechanism VITi + IVAl = VIAl + IVSi in the solid solution. Our NMR investigations on garnet are now being made at the exploratory level. We think that NMR spectra of diamagnetic garnet can provide information on a

  2. Magic angle Lee-Goldburg frequency offset irradiation improves the efficiency and selectivity of SPECIFIC-CP in triple-resonance MAS solid-state NMR.

    PubMed

    Wu, Chin H; De Angelis, Anna A; Opella, Stanley J

    2014-09-01

    The efficiency and selectivity of SPECIFIC-CP, a widely used method for selective double cross-polarization in triple-resonance magic angle spinning solid-state NMR, is improved by performing the tangential-shaped (13)C irradiation at an offset frequency that meets the Lee-Goldburg condition (LG-SPECIFIC-CP). This is demonstrated on polycrystalline samples of uniformly (13)C, (15)N labeled N-acetyl-leucine and N-formyl-Met-Leu-Phe-OH (MLF) at 700MHz and 900MHz (1)H resonance frequencies, respectively. For the single (13)Cα of N-acetyl-leucine, relative to conventional broad band cross-polarization, the SPECIFIC-CP signal has 47% of the intensity. Notably, the LG-SPECIFIC-CP signal has 72% of the intensity, essentially the theoretical maximum. There were no other changes in the experimental parameters. The three (13)Cα signals in MLF show some variation in intensities, reflecting the relatively narrow bandwidth of a frequency-offset procedure, and pointing to future developments for this class of experiment.

  3. Spinning angle optical calibration apparatus

    DOEpatents

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  4. Spinning angle optical calibration apparatus

    SciTech Connect

    Beer, S.K.; Pratt, H.R. II.

    1989-09-12

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting and accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning magic angle of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position. 2 figs.

  5. Dynamic-angle spinning without sidebands

    NASA Astrophysics Data System (ADS)

    Gann, S. L.; Baltisberger, J. H.; Pines, A.

    1993-07-01

    By means of rotor-synchronized π-pulses, it is possible to eliminate the spinning sidebands (while retaining their full intensity in the isotropic centerband) that usually arise in dynamic-angle spinning (DAS) NMR. The theory of this approach, dynamic-angle hopping (DAH-180), is described and illustrated with experimental results on quadrupolar nuclei. A magic-angle hopping (MAH-180) version of magic-angle spinning is also possible and can be used in a two-dimensional NMR experiment to produce sideband-free isotropic—anisotropic correlation spectra for spin- 1/2 nuclei.

  6. Probing Ground and Excited States of Phospholamban in Model and Native Lipid Membranes by Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Gustavsson, Martin; Traaseth, Nathaniel J.; Veglia, Gianluigi

    2013-01-01

    In this paper, we analyzed the ground and excited states of phospholamban (PLN), a membrane protein that regulates sarcoplasmic reticulum calcium ATPase (SERCA), in different membrane mimetic environments. Previously, we proposed that the conformational equilibria of PLN are central to SERCA regulation. Here, we show that these equilibria detected in micelles and bicelles are also present in native sarcoplasmic reticulum lipid membranes as probed by MAS solid-state NMR. Importantly, we found that the kinetics of conformational exchange and the extent of ground and excited states in detergent micelles and lipid bilayers are different, revealing a possible regulatory role of the membrane composition on the allosteric regulation of SERCA. Since the extent of excited states is directly correlated to SERCA inhibition, these findings open up the exciting possibility that calcium transport in the heart can be controlled by the lipid bilayer composition. PMID:21839724

  7. Varied magnetic field, multiple-pulse, and magic-angle spinning proton nuclear magnetic resonance study of muscle water

    SciTech Connect

    Fung, B.M.; Ryan, L.M.; Gerstein, B.C.

    1980-02-01

    The nuclear magnetic resonance linewidth of /sup 1/H in water of frog muscle was studied as a function of magnetic field strength and angle of orientation. The results suggest that the observed spectra are dominated by demagnetization field anisotropy and dispersion, but a small static dipolar interaction of the order of a few hertz may be present. Data from line-narrowing, multiple-pulse experiments also indicate the presence of a small dipolar broadening.

  8. Fast amplitude-modulated pulse trains with frequency sweep (SW-FAM) in static NMR of half-integer spin quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Bräuniger, Thomas; Hempel, Günter; Madhu, P. K.

    2006-07-01

    In solid-state NMR of quadrupolar nuclei with half-integer spin I, fast amplitude-modulated (FAM) pulse trains have been utilised to enhance the intensity of the central-transition signal, by transferring spin population from the satellite transitions. In this paper, the signal-enhancement performance of the recently introduced SW-FAM pulse train with swept modulation frequency [T. Bräuniger, K. Ramaswamy, P.K. Madhu, Enhancement of the central-transition signal in static and magic-angle-spinning NMR of quadrupolar nuclei by frequency-swept fast amplitude-modulated pulses, Chem. Phys. Lett. 383 (2004) 403-410] is explored in more detail for static spectra. It is shown that by sweeping the modulation frequencies linearly over the pulse pairs (SW (1/τ)-FAM), the shape of the frequency distribution is improved in comparison to the original pulse scheme (SW (τ)-FAM). For static spectra of 27Al (I = 5/2), better signal-enhancement performance is found for the SW (1/τ)-FAM sequence, as demonstrated both by experiments and numerical simulations.

  9. Spinning angle optical calibration apparatus

    SciTech Connect

    Beer, S.K.; Pratt, H.R.

    1991-02-26

    This patent describes an optical calibration apparatus provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted.

  10. Barrier distributions for the 7Li+27Al reaction

    NASA Astrophysics Data System (ADS)

    Cárdenas, W. H. Z.

    2010-08-01

    Barrier distributions can be obtained from the first derivative of the elastic and quasielastic (QEL) backward angle excitation functions [1]. In this work we present a study of the barrier distribution for the 7Li+27Al reaction from a Coupled-Channels Born Approximation (CCBA) calculations using the code FRESCO [2].

  11. 27Al-->1H cross-polarization in aluminosilicates.

    PubMed

    Kolodziejski, W; Corma, A

    1994-06-01

    Solid-state nuclear magnetic resonance (NMR) cross-polarization (CP) from 27Al to 1H was set on kaolinite, verified by a variable-contact time experiment and applied to ultrastable zeolite Y. The technique is useful for the selective NMR observation of AlOH sites in aluminosilicates, especially those from extraframework species in zeolites.

  12. Relative merits of rCW(A) and XiX heteronuclear spin decoupling in solid-state magic-angle-spinning NMR spectroscopy: A bimodal Floquet analysis.

    PubMed

    Equbal, Asif; Leskes, Michal; Nielsen, Niels Chr; Madhu, P K; Vega, Shimon

    2016-02-01

    We present a bimodal Floquet analysis of the recently introduced refocused continuous wave (rCW) solid-state NMR heteronuclear dipolar decoupling method and compare it with the similar looking X-inverse X (XiX) scheme. The description is formulated in the rf interaction frame and is valid for both finite and ideal π pulse rCW irradiation that forms the refocusing element in the rCW scheme. The effective heteronuclear dipolar coupling Hamiltonian up to first order is described. The analysis delineates the difference between the two sequences to different orders of their Hamiltonians for both diagonal and off-diagonal parts. All the resonance conditions observed in experiments and simulations have been characterised and their influence on residual line broadening is highlighted. The theoretical comparison substantiates the numerical simulations and experimental results to a large extent.

  13. Dynamic nuclear polarization at 40 kHz magic angle spinning† †Electronic supplementary information (ESI) available: Experimental details, with supplementary tables and figures. See DOI: 10.1039/c6cp00839a Click here for additional data file.

    PubMed Central

    Chaudhari, Sachin R.; Berruyer, Pierrick; Gajan, David; Reiter, Christian; Engelke, Frank; Silverio, Daniel L.; Copéret, Christophe; Lelli, Moreno

    2016-01-01

    DNP-enhanced solid-state NMR spectroscopy under magic angle spinning (MAS) is rapidly developing into a powerful analytical tool to investigate the structure of a wide range of solid materials, because it provides unsurpassed sensitivity gains. Most developments and applications of DNP MAS NMR were so far reported at moderate spinning frequencies (up to 14 kHz using 3.2 mm rotors). Here, using a 1.3 mm MAS DNP probe operating at 18.8 T and ∼100 K, we show that signal amplification factors can be increased by up to a factor two when using smaller volume rotors as compared to 3.2 mm rotors, and report enhancements of around 60 over a range of sample spinning rates from 10 to 40 kHz. Spinning at 40 kHz is also shown to increase 29Si coherence lifetimes by a factor three as compared to 10 kHz, substantially increasing sensitivity in CPMG type experiments. The contribution of quenching effects to the overall sensitivity gain at very fast MAS is evaluated, and applications are reported on a functionalised mesostructured organic–inorganic material. PMID:27035630

  14. Bonding characters of Al-containing bulk metallic glasses studied by 27Al NMR.

    PubMed

    Xi, X K; Sandor, M T; Wang, H J; Wang, J Q; Wang, W H; Wu, Y

    2011-03-23

    We report very small (27)Al metallic shifts in a series of Cu-Zr-Al bulk metallic glasses. This observation and the Korringa type of spin-lattice relaxation behavior suggest that s-character wavefunctions weakly participate in bonding and opens the possibility of enhanced covalency (pd hybridization) with increasing Al concentration, in good agreement with elastic constants and hardness measurements. Moreover, ab initio calculations show that this bonding character originates from the strong Al 3p band and Zr 4d band hybridization since their atomic energy levels are closer to each other while the Al 3s band is localized far below the Fermi level. This study might provide a chemical view for understanding flow and fracture mechanisms of these bulk glass-forming alloys.

  15. A general protocol for temperature calibration of MAS NMR probes at arbitrary spinning speeds.

    PubMed

    Guan, Xudong; Stark, Ruth E

    2010-01-01

    A protocol using (207)Pb NMR of solid lead nitrate was developed to determine the temperature of magic-angle spinning (MAS) NMR probes over a range of nominal set temperatures and spinning speeds. Using BioMAS and FastMAS probes with typical sample spinning rates of 8 and 35 kHz, respectively, empirical equations were devised to predict the respective sample temperatures. These procedures provide a straightforward recipe for temperature calibration of any MAS probe. PMID:21036557

  16. A General Protocol for Temperature Calibration of MAS NMR Probes at Arbitrary Spinning Speeds

    PubMed Central

    Guan, Xudong; Stark, Ruth E.

    2010-01-01

    A protocol using 207Pb NMR of solid lead nitrate was developed to determine the temperature of magic-angle spinning (MAS) NMR probes over a range of nominal set temperatures and spinning speeds. Using BioMAS and fastMAS probes with typical sample spinning rates of 8 and 35 kHz, respectively, empirical equations were devised to predict the respective sample temperatures. These procedures provide a straightforward recipe for temperature calibration of any MAS probe. PMID:21036557

  17. The NIST 27 Al+ quantum-logic clock

    NASA Astrophysics Data System (ADS)

    Leibrandt, David; Brewer, Samuel; Chen, Jwo-Sy; Hume, David; Hankin, Aaron; Huang, Yao; Chou, Chin-Wen; Rosenband, Till; Wineland, David

    2016-05-01

    Optical atomic clocks based on quantum-logic spectroscopy of the 1 S0 <--> 3 P0 transition in 27 Al+ have reached a systematic fractional frequency uncertainty of 8 . 0 ×10-18 , enabling table-top tests of fundamental physics as well as measurements of gravitational potential differences. Currently, the largest limitations to the accuracy are second order time dilation shifts due to the driven motion (i.e., micromotion) and thermal motion of the trapped ions. In order to suppress these shifts, we have designed and built new ion traps based on gold-plated, laser-machined diamond wafers with differential RF drive, and we have operated one of our clocks with the ions laser cooled to near the six mode motional ground state. We present a characterization of the time dilation shifts in the new traps with uncertainties near 1 ×10-18 . Furthermore, we describe a new protocol for clock comparison measurements based on synchronous probing of the two clocks using phase-locked local oscillators, which allows for probe times longer than the laser coherence time and avoids the Dick effect. This work is supported by ARO, DARPA, and ONR.

  18. The molecular origin of a loading-induced black layer in the deep region of articular cartilage at the magic angle

    PubMed Central

    Wang, Nian; Kahn, David; Badar, Farid; Xia, Yang

    2014-01-01

    Purpose To investigate the molecular origin of an unusual low-intensity layer in the deep region of articular cartilage as seen in MRI when the tissue is imaged under compression and oriented at the magic angle. Materials and Methods Microscopic MRI (μMRI) T2 and T1ρ experiments were carried out for both native and degraded (treated with trypsin) 18 specimens. The glycosaminoglycan (GAG) concentrations in the specimens were quantified by both sodium ICP-OES and μMRI Gd(DTPA)2--contrast methods. The mechanical modulus of the specimens was also measured. Results Native tissue shows no load-induced layer, while the trypsin-degraded tissue shows clearly the low-intensity line at the deep part of tissue. The GAG reductions are confirmed by the sodium ICP-OES (from 81.7 ± 5.4 mg/ml to 9.2 ± 3.4 mg/ml), MRI GAG quantification (from 72.4 ± 6.7 mg/ml to 11.2 ± 2.9 mg/ml). The modulus reduction is confirmed by biomechanics (from 4.3 ± 0.7 MPa to 0.3 ± 0.1 MPa). Conclusion Both T2 and T1ρ profiles in native and degraded cartilage show strongly strain-, depth-, and angle-dependent using high resolution MRI. The GAG reduction is responsible for the visualization of a low-intensity layer in deep cartilage when it is loaded and orientated at 55°. PMID:24833266

  19. Probing the interaction of lipids with the non-annular binding sites of the potassium channel KcsA by magic-angle spinning NMR

    PubMed Central

    Marius, Phedra; de Planque, Maurits R.R.; Williamson, Philip T.F.

    2012-01-01

    The activity of the potassium channel KcsA is tightly regulated through the interactions of anionic lipids with high-affinity non-annular lipid binding sites located at the interface between the channel's subunits. Here we present solid-state phosphorous NMR studies that resolve the negatively charged lipid phosphatidylglycerol within the non-annular lipid-binding site. Perturbations in chemical shift observed upon the binding of phosphatidylglycerol are indicative of the interaction of positively charged sidechains within the non-annular binding site and the negatively charged lipid headgroup. Site directed mutagenesis studies have attributed these charge interactions to R64 and R89. Functionally the removal of the positive charges from R64 and R89 appears to act synergistically to reduce the probability of channel opening. PMID:21963409

  20. High-resolution magic angle spinning description of the interaction states and their kinetics among basic solutes and functionalized silica materials.

    PubMed

    Lopez, Claire; Carrara, Caroline; Tchapla, Alain; Caldarelli, Stefano

    2013-12-20

    Modeling of the interaction is crucial to understanding and predicting chromatography. However, the complexity and variety of the grafted motifs render the creation of an accurate model overwhelmingly challenging, so that most often the classification of column separation properties is described by monitoring the retention times of carefully selected control molecules. We analyzed here the characteristics of the interplay of compounds of basic nature by (1)H HRMAS NMR, which provide relevant descriptors for products with pharmaceutical properties, with chromatographic phases for Reversed Phase Liquid Chromatography. Eight grafted silica phases were selected, differing to enhance specific structural properties (monomeric and polymeric grafts, endcapping or not, carbon content, alkyl with polar embedded group or alkyl bonded chain, chemical nature of end capping, native silica). These materials were put in interaction with five basic molecules, previously chosen as probes for the evaluation of efficient base deactivated liquid stationary phases using five theoretical molecular descriptors to cover a large scale of molecular volume, polar surface area, LogP, hydrogen-bond donor capacity and finally hydrogen-bond acceptor capacity. (1)H HRMAS NMR was capable of describing qualitatively a wealth of interaction states, characterized both thermodynamically and kinetically. In one case (penbutolol) up to five interaction states could be differentiated. Variable temperature experiments revealed the complexity of the retention process on grafted silica as in some cases the kinetics of the interaction is shown to slow down on increasing the temperature.

  1. In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of Supercritical CO2 Incorporation in Smectite-Natural Organic Matter Composites

    SciTech Connect

    Bowers, Geoffrey M.; Hoyt, David W.; Burton, Sarah D.; Ferguson, Brennan O.; Varga, Tamas; Kirkpatrick, Robert J.

    2014-01-29

    This paper presents an in situ NMR study of clay-natural organic polymer systems (a hectoritehumic acid [HA] composite) under CO2 storage reservoir conditions (90 bars CO2 pressure, 50°C). The 13C and 23Na NMR data show that supercritical CO2 interacts more strongly with the composite than with the base clay and does not react to form other C-containing species over several days at elevated CO2. With and without organic matter, the data suggest that CO2 enters the interlayer space of Na-hectorite equilibrated at 43% relative humidity. The presence of supercritical CO2 also leads to increased 23Na signal intensity, reduced line width at half height, increased basal width, more rapid 23Na T1 relaxation rates, and a shift to more positive resonance frequencies. Larger changes are observed for the hectorite-HA composite than for the base clay. In light of recently reported MD simulations of other polymer-Na-smectite composites, we interpret the observed changes as an increase in the rate of Na+ site hopping in the presence of supercritical CO2, the presence of potential new Na+ sorption sites when the humic acid is present, and perhaps an accompanying increase in the number of Na+ ions actively involved in site hopping. The results suggest that the presence of organic material either in clay interlayers or on external particle surfaces can significantly affect the behavior of supercritical CO2 and the mobility of metal ions in reservoir rocks.

  2. Investigation of Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Field

    SciTech Connect

    Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; Osborn, William; Markmaitree, Tippawan; Shaw, Leonard D.

    2008-07-15

    Abstract The significantly enhanced spectral resolution in the 6Li MAS NMR spectra of Li-N-H systems at ultra-high field of 21.1 tesla is exploited, for the first time, to study the detailed electronic and chemical environmental changes associated with mechanical activation of Li-N-H system using high energy balling milling. Complementary to ultra-high field studies, the hydrogen discharge dynamics are investigated using variable temperature in situ 1H MAS NMR at 7.05 tesla field. The significantly enhanced spectral resolution using ultra-high filed of 21.1 tesla was demonstrated along with several major findings related to mechanical activation, including the upfield shift of the resonances in 6Li MAS spectra induced by ball milling, more efficient mechanical activation with ball milling at liquid nitrogen temperature than with ball milling at room temperature, and greatly enhanced hydrogen discharge exhibited by the liquid nitrogen ball milled samples.

  3. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    SciTech Connect

    Kobayashi, Takeshi; Gupta, Shalabh; Caporini, Marc A; Pecharsky, Vitalij K; Pruski, Marek

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  4. Application of 1H and 23Na magic angle spinning NMR spectroscopy to define the HRBC up-taking of MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Paleari, Lino; Biondi, Luca; Linati, Laura; De Miranda, Mario; Ghelli, Stefano

    2003-09-01

    The up-take of Gd(III) complexes of BOPTA, DTPA, DOTA, EDTP, HPDO3A, and DOTP in HRBC has been evaluated by measuring the lanthanide induced shift (LIS) produced by the corresponding dysprosium complexes (DC) on the MAS-NMR resonances of water protons and free sodium ions. These complexes are important in their use as MRI contrast agents (MRI-CA) in diagnostics. 1H and 23Na MAS-NMR spectra of HRBC suspension, collected at 9.395 T, show only one signal due to extra- and intra-cellular water (or sodium). In MAS spectra, the presence of DC in a cellular compartment produces the LIS of only the nuclei (water proton or sodium) in that cellular compartment and this LIS can be related to the DC concentrations (by the experimental curves of LIS vs. DC concentrations) collected in the physiological solution. To obtain correct results about LIS, the use of MAS technique is mandatory, because it guarantees the only the nuclei staying in the same cellular compartment where the LC is present show the LIS. In all the cases considered, the addition of the DC to HRBC (100% hematocrit) produced a shift of only the extra-cellular water (or sodium) signal and the gradient of concentration ( GC) between extra- and intra-cellular compartments resulted greater than 100:1, when calculated by means of sodium signals. These high values of GC are direct proofs that none of the tested dysprosium complexes crosses the HRBC membrane. Since the DC are iso-structural to the gadolinium complexes the corresponding gadolinium ones (MRI-CA) do not cross the HRBC membrane and, consequently, they are not up-taken in HRBC. The GC values calculated by means of water proton signals resulted much lower than those obtained by sodium signals. This proves that the choice of the isotope is a crucial step in order to use this method in the best way. In fact, GC value depends on the lowest detectable LIS which, in turn, depends on the nature of the LC (lanthanide complex) and the observed isotopes.

  5. Studying the Conformation of a Silaffin-Derived Pentalysine Peptide Embedded in Bioinspired Silica using Solution and Dynamic Nuclear Polarization Magic-Angle Spinning NMR.

    PubMed

    Geiger, Yasmin; Gottlieb, Hugo E; Akbey, Ümit; Oschkinat, Hartmut; Goobes, Gil

    2016-05-01

    Smart materials are created in nature at interfaces between biomolecules and solid materials. The ability to probe the structure of functional peptides that engineer biogenic materials at this heterogeneous setting can be facilitated tremendously by use of DNP-enhanced solid-state NMR spectroscopy. This sensitive NMR technique allows simple and quick measurements, often without the need for isotope enrichment. Here, it is used to characterize a pentalysine peptide, derived from a diatom's silaffin protein. The peptide accelerates the formation of bioinspired silica and gets embedded inside the material as it is formed. Two-dimensional DNP MAS NMR of the silica-bound peptide and solution NMR of the free peptide are used to derive its secondary structure in the two states and to pinpoint some subtle conformational changes that the peptide undergoes in order to adapt to the silica environment. In addition, interactions between abundant lysine residues and silica surface are identified, and proximity of other side chains to silica and to neighboring peptide molecules is discussed. PMID:26451953

  6. In vivo and ex vivo high-resolution ¹H NMR in biological systems using low-speed magic angle spinning

    SciTech Connect

    Wind, Robert A.; Hu, Jian Zhi

    2006-11-30

    Metabolism refers to the network of interacting chemical processes that constitute (and define) cell life and provide the chemical energy and materials required for all work at the cellular and whole-organism levels. These processes take the form of metabolic pathways, an interdependent network of chemical reactions that is regulated by catalytic enzymes. Metabolites are chemical compounds that participate as reactants (substrates), intermediate compounds, or byproducts in a cellular metabolic pathway, and include carbon compounds with a molecular weight typically in the range 100-1000, which are usually present as solutes in the cytoplasm. Four broad classes of such metabolites can be distinguished [Alberts et al 1989]: sugars, the food molecules of the cell; fatty acids, present as droplets of triglyceride molecules in the cells and serving as energy resources, and as phospholipids present in the cell membranes; amino acids, the subunits of proteins; and nucleotides, the subunits of RNA and DNA, that can also act as carriers of chemical energy (adenosine triphosphate, i.e. ATP). Metabolomics involves characterizing the metabolic composition of a single cell type measured under defined physiological conditions and can be considered as analogous to genomics or proteomics [Lindon et al 2003]. Metabonomics involves quantitative studies of the changes in the metabolic profiles of living systems in response to patho-physiological stimuli or genetic modification [Nicholson et al 1999, Lindon 2003]. Metabolic changes are the earliest cellular response to environmental or physiological changes such as toxin exposure or disease state, so a snapshot of the various metabolite concentrations within cells, tissues, or biofluids, and how these concentrations change under different physiological, pharmacological and toxicological conditions provides valuable information that is complementary to gene expression and proteomic studies. Hence metabol(n)omics may be capable of, e.g., detecting and diagnosing a disease or evaluating the efficacy of therapy in an early stage, and provide powerful new tools for gaining insight into functional biology.

  7. Conformational transitions of the phosphodiester backbone in native DNA: two-dimensional magic-angle-spinning 31P-NMR of DNA fibers.

    PubMed Central

    Song, Z; Antzutkin, O N; Lee, Y K; Shekar, S C; Rupprecht, A; Levitt, M H

    1997-01-01

    Solid-state 31P-NMR is used to investigate the orientation of the phosphodiester backbone in NaDNA-, LiDNA-, MgDNA-, and NaDNA-netropsin fibers. The results for A- and B-DNA agree with previous interpretations. We verify that the binding of netropsin to NaDNA stabilizes the B form, and find that in NaDNA, most of the phosphate groups adopt a conformation typical of the A form, although there are minor components with phosphate orientations close to the B form. For LiDNA and MgDNA samples, on the other hand, we find phosphate conformations that are in variance with previous models. These samples display x-ray diffraction patterns that correspond to C-DNA. However, we find two distinct phosphate orientations in these samples, one resembling that in B-DNA, and one displaying a twist of the PO4 groups about the O3-P-O4 bisectors. The latter conformation is not in accordance with previous models of C-DNA structure. Images FIGURE 2 FIGURE 3 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 14 PMID:9284321

  8. Advances in structural analysis of fluoroaluminates using DFT calculations of 27Al electric field gradients.

    PubMed

    Body, M; Legein, C; Buzaré, J-Y; Silly, G; Blaha, P; Martineau, C; Calvayrac, F

    2007-11-22

    Based on the analysis of 23 aluminum sites from 16 fluoroaluminates, the present work demonstrates the strong potential of combining accurate NMR quadrupolar parameter measurements, density functional theory (DFT)-based calculations of electric field gradients (EFG), and structure optimizations as implemented in the WIEN2k package for the structural and electronic characterizations of crystalline inorganic materials. Structure optimizations are essential for compounds whose structure was refined from usually less accurate powder diffraction data and provide a reliable assignment of the 27Al quadrupolar parameters to the aluminum sites in the studied compounds. The correlation between experimental and calculated EFG tensor elements leads to the proposition of a new value of the 27Al nuclear quadrupole moment Q(27Al) = 1.616 (+/-0.024) x 10(-29) m2. The DFT calculations provide the orientation of the 27Al EFG tensors in the crystal frame. Electron density maps support that the magnitude and orientation of the 27Al EFG tensors in fluoroaluminates mainly result from the asymmetric distribution of the Al 3p orbital valence electrons. In most cases, the definition of relevant radial and angular distortion indices, relying on EFG orientation, allows correlations between these distortions and magnitude and sign of the Vii. PMID:17973463

  9. Low and medium energy deuteron-induced reactions on {sup 27}Al

    SciTech Connect

    Bem, P.; Simeckova, E.; Honusek, M.; Fischer, U.; Simakov, S. P.; Forrest, R. A.; Avrigeanu, M.; Obreja, A. C.; Roman, F. L.; Avrigeanu, V.

    2009-04-15

    The activation cross sections of (d,p), (d,2p), and (d,p{alpha}) reactions on {sup 27}Al were measured in the energy range from 4 to 20 MeV using the stacked-foils technique. Following a previous extended analysis of elastic scattering, breakup, and direct reaction of deuterons on {sup 27}Al, for energies from 3 to 60 MeV, the preequilibrium and statistical emissions are considered in the same energy range. Finally, all deuteron-induced reactions on {sup 27}Al including the present data measured up to 20 MeV deuteron energy are properly described due to a simultaneous analysis of the elastic scattering and reaction data.

  10. Ferromagnetic ordering in NpAl2: Magnetic susceptibility and 27Al nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Martel, L.; Griveau, J.-C.; Eloirdi, R.; Selfslag, C.; Colineau, E.; Caciuffo, R.

    2015-08-01

    We report on the magnetic properties of the neptunium based ferromagnetic compound NpAl2. We used magnetization measurements and 27Al NMR spectroscopy to access magnetic features related to the paramagnetic and ordered states (TC=56 K). While very precise DC SQUID magnetization measurements confirm ferromagnetic ordering, they show a relatively small hysteresis loop at 5 K reduced with a coercive field HCo~3000 Oe. The variable offset cumulative spectra (VOCS) acquired in the paramagnetic state show a high sensitivity of the 27Al nuclei spectral parameters (Knight shifts and line broadening) to the ferromagnetic ordering, even at room temperature.

  11. Effects of T2-relaxation in MAS NMR spectra of the satellite transitions for quadrupolar nuclei: a 27Al MAS and single-crystal NMR study of alum KAl(SO 4) 2 · 12H 2O

    NASA Astrophysics Data System (ADS)

    Andersen, Morten Daugaard; Jakobsen, Hans J.; Skibsted, Jørgen

    2005-04-01

    Asymmetries in the manifold of spinning sidebands (ssbs) from the satellite transitions have been observed in variable-temperature 27Al MAS NMR spectra of alum (KAl(SO 4) 2 · 12H 2O), recorded in the temperature range from -76 to 92 °C. The asymmetries decrease with increasing temperature and reflect the fact that the ssbs exhibit systematically different linewidths for different spectral regions of the manifold. From spin-echo 27Al NMR experiments on a single-crystal of alum, it is demonstrated that these variations in linewidth originate from differences in transverse ( T2) relaxation times for the two inner ( m = 1/2 ↔ m = 3/2 and m = -1/2 ↔ m = -3/2) and correspondingly for the two outer ( m = 3/2 ↔ m = 5/2 and m = -3/2 ↔ m = -5/2) satellite transitions. T2 relaxation times in the range 0.5-3.5 ms are observed for the individual satellite transitions at -50 °C and 7.05 T, whereas the corresponding T1 relaxation times, determined from similar saturation-recovery 27Al NMR experiments, are almost constant ( T1 = 0.07-0.10 s) for the individual satellite transitions. The variation in T2 values for the individual 27Al satellite transitions for alum is justified by a simple theoretical approach which considers the cross-correlation of the local fluctuating fields from the quadrupolar coupling and the heteronuclear ( 27Al- 1H) dipolar interaction on the T2 relaxation times for the individual transitions. This approach and the observed differences in T2 values indicate that a single random motional process modulates both the quadrupolar and heteronuclear dipolar interactions for 27Al in alum at low temperatures.

  12. Practical comparison of sensitivity and resolution between STMAS and MQMAS for 27Al

    NASA Astrophysics Data System (ADS)

    Takahashi, Takafumi; Kanehashi, Koji; Shimoikeda, Yuichi; Nemoto, Takahiro; Saito, Koji

    2009-06-01

    An experimental comparison of sensitivity and resolution of satellite transition (ST) MAS and multiple quantum (MQ) MAS was performed for 27Al ( I = 5/2) using several pulse sequences with a z-filter and SPAM, and two inorganic samples of kaolin (Al 2Si 2O 5(OH) 4) and glass (43.1CaO-12.5Al 2O 3-44.4SiO 2). Six pulse sequences of STMAS (double-quantum filter-soft pulse added mixing = DQF-SPAM, double-quantum filter = DQF, double-quantum = DQ) and MQMAS (3QMAS- z-filter = 3Qz, 3QMAS-SPAM = 3Q-SPAM, 5QMAS- z-filter = 5Qz) are employed. All experiments have been conducted utilizing a static field of 16.4 T (700 MHz for 1H) and a rotor spinning frequency of 20 kHz. Dependence of S/N ratios as a function of radio frequency (r.f.) field strengths indicates that strong r.f. fields are essential to obtain a better S/N ratio in all experiments. High sensitivity is obtained in the following order: DQF-SPAM, DQF, DQ, 3QSPAM, and 3Qz, although the degree of sensitivity enhancement given by STMAS for glass is slightly smaller than that for kaolin. This might be due to the different excitation and conversion efficiencies of ST and MQ coherences as a function Cq values because quadrupolar interaction of the glass are widely distributed, or to motional broadening caused by framework flexibility in the structure of glass. With respect to resolution, the full widths at half maximum (FWHM) of F1 projections of DQF-STMAS and 3QMAS spectra for kaolin are found to be comparable, which agrees with a simulated result reported in a literature. For glass, the STMAS possess slightly wider line widths than 3QMAS. However, because such a difference in line widths of STMAS and 3QMAS spectra is substantially small, we have concluded that STMAS and 3QMAS have comparable resolution for crystalline and non-crystalline materials.

  13. Practical comparison of sensitivity and resolution between STMAS and MQMAS for 27Al.

    PubMed

    Takahashi, Takafumi; Kanehashi, Koji; Shimoikeda, Yuichi; Nemoto, Takahiro; Saito, Koji

    2009-06-01

    An experimental comparison of sensitivity and resolution of satellite transition (ST) MAS and multiple quantum (MQ) MAS was performed for (27)Al (I=5/2) using several pulse sequences with a z-filter and SPAM, and two inorganic samples of kaolin (Al(2)Si(2)O(5)(OH)(4)) and glass (43.1CaO-12.5Al(2)O(3)-44.4SiO(2)). Six pulse sequences of STMAS (double-quantum filter-soft pulse added mixing=DQF-SPAM, double-quantum filter=DQF, double-quantum=DQ) and MQMAS (3QMAS-z-filter=3Qz, 3QMAS-SPAM=3Q-SPAM, 5QMAS-z-filter=5Qz) are employed. All experiments have been conducted utilizing a static field of 16.4T (700MHz for (1)H) and a rotor spinning frequency of 20kHz. Dependence of S/N ratios as a function of radio frequency (r.f.) field strengths indicates that strong r.f. fields are essential to obtain a better S/N ratio in all experiments. High sensitivity is obtained in the following order: DQF-SPAM, DQF, DQ, 3QSPAM, and 3Qz, although the degree of sensitivity enhancement given by STMAS for glass is slightly smaller than that for kaolin. This might be due to the different excitation and conversion efficiencies of ST and MQ coherences as a function C(q) values because quadrupolar interaction of the glass are widely distributed, or to motional broadening caused by framework flexibility in the structure of glass. With respect to resolution, the full widths at half maximum (FWHM) of F(1) projections of DQF-STMAS and 3QMAS spectra for kaolin are found to be comparable, which agrees with a simulated result reported in a literature. For glass, the STMAS possess slightly wider line widths than 3QMAS. However, because such a difference in line widths of STMAS and 3QMAS spectra is substantially small, we have concluded that STMAS and 3QMAS have comparable resolution for crystalline and non-crystalline materials. PMID:19342257

  14. Barrier distributions for the {sup 7}Li+{sup 27}Al reaction

    SciTech Connect

    Cardenas, W. H. Z.

    2010-08-04

    Barrier distributions can be obtained from the first derivative of the elastic and quasielastic (QEL) backward angle excitation functions [1]. In this work we present a study of the barrier distribution for the {sup 7}Li+{sup 27}Al reaction from a Coupled-Channels Born Approximation (CCBA) calculations using the code FRESCO [2].

  15. Projectile and Target Fragmentation in the Interaction of 12C and 27Al

    SciTech Connect

    Foertsch, S.V.; Steyn, G.F.; Lawrie, J.J.; Smit, F.D.; Cerutti, F.; Colleoni, P.; Gadioli, E.; Mairani, A.; Connell, S.H.; Fearick, R.W.; Thovhogi, T.; Machner, H.; Goldenbaum, F.; Pysz, K.

    2005-05-24

    The emission of intermediate mass fragments (IMFs) produced in the inclusive 12C+27Al and 27Al+12C reactions at incident energies corresponding to a c.m. excitation energy of 107.5 MeV were studied at lab. angles of 12 deg. to 25 deg. Double differential cross sections of the IMF spectra are compared to model calculations, which include direct breakup of both the projectile and target, nucleon coalescence, as well as partial and complete fusion. This study indicates the importance of the complementary nature of a reaction together with its inverse process in fully understanding the driving reaction mechanisms in the interaction of two light-mass nuclei.

  16. Elastic scattering measurements for {sup 7}Be+{sup 27}Al system at RIBRAS facility

    SciTech Connect

    Morcelle, V.; Lichtenthaeler, R.; Morais, M. C.; Lepine-Szily, A.; Guimaraes, V.; Faria, P. N. de; Gasques, L.; Pires, K. C. C.; Condori, R. P.; Gomes, P. R. S.; Lubian, J.; Mendes, D. R. Jr.; Barioni, A.; Shorto, J. M. B.; Zamora, J. C.

    2013-05-06

    Elastic scattering angular distribution measurements of {sup 7}Be+{sup 27}Al system were performed at the laboratory energy of 15.6 MeV. The {sup 7}Be secondary beam was produced by the proton transfer reaction {sup 3}He({sup 6}Li,{sup 7}Be) and impinged on {sup 27}Al and {sup 197}Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS. The elastic angular distribution was obtained within the angular range of 15{sup 0} - 80{sup 0} at the center of mass frame. Optical model calculations have been performed using the Woods- Saxon form factors and the Sao Paulo potential to fit the experimental data. The total reaction cross section was derived.

  17. Carbon-13 chemical shift tensor correlation via spin diffusion in solid tropolone using switched-angle spinning spectroscopy

    SciTech Connect

    Larsen, R.G.; Lee, Y.K.; He, B.; Yang, J.O.; Luz, Z.; Zimmermann, H.; Pines, A.

    1995-12-08

    In switched-angle spinning spectroscopy (SAS) a sample is spun about different angles, {beta}, relative to the magnetic field, during various periods of the experiment. In the present work, SAS is combined with two-dimensional exchange spectroscopy in order to correlate carbon-13 chemical shift tensors of the carbonyl (1) and hydroxyl (2) carbons of tropolone. Experiments were performed on a sample enriched to 25 at. % in each of these sites (at different molecules). At this level of enrichment the dominant exchange mechanism between the two sites involves spin diffusion. The experiment consists of a preparation period during which the sample spins at the magic angle and the magnetization of one of the sites is quenched by means of a selective pulse sequence. During the rest of the experiment the sample spins with its axis away from the magic angle except for a short period just before the detection where the axis is switched to the magic angle in order to select the magnetization to be detected. Experiments were performed for all four possible combinations of the initial and final magnetizations, thus providing chemical shift correlations between carbons 1,1{prime}, 2, and 2{prime} in the two magnetically inequivalent (but symmetry related) molecules in the unit cell. Combining these results with the known crystal structure of tropolone (neglecting a small tilt between the perpendicular to the molecular plane and the crystallographic {bold c}-axis) provides information on the orientation and magnitude of the chemical shift tensors of the two types of carbons. The principal values (in ppm) are {sigma}{sup 1}{sub {ital xx}}=65, {sigma}{sup 1}{sub {ital yy}}=33, {sigma}{sup 1}{sub {ital zz}}={minus}98, {sigma}{sup 2}{sub {ital xx}}=77, {sigma}{sup 2}{sub {ital yy}}=17, and {sigma}{sup 2}{sub {ital zz}}={minus}94. (Abstract Truncated)

  18. Errors in the Calculation of 27Al Nuclear Magnetic Resonance Chemical Shifts

    PubMed Central

    Wang, Xianlong; Wang, Chengfei; Zhao, Hui

    2012-01-01

    Computational chemistry is an important tool for signal assignment of 27Al nuclear magnetic resonance spectra in order to elucidate the species of aluminum(III) in aqueous solutions. The accuracy of the popular theoretical models for computing the 27Al chemical shifts was evaluated by comparing the calculated and experimental chemical shifts in more than one hundred aluminum(III) complexes. In order to differentiate the error due to the chemical shielding tensor calculation from that due to the inadequacy of the molecular geometry prediction, single-crystal X-ray diffraction determined structures were used to build the isolated molecule models for calculating the chemical shifts. The results were compared with those obtained using the calculated geometries at the B3LYP/6-31G(d) level. The isotropic chemical shielding constants computed at different levels have strong linear correlations even though the absolute values differ in tens of ppm. The root-mean-square difference between the experimental chemical shifts and the calculated values is approximately 5 ppm for the calculations based on the X-ray structures, but more than 10 ppm for the calculations based on the computed geometries. The result indicates that the popular theoretical models are adequate in calculating the chemical shifts while an accurate molecular geometry is more critical. PMID:23203134

  19. Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR?

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2016-06-01

    Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both 13C and 15N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.

  20. Fine structure of the isoscalar giant quadrupole resonance in 28Si and 27Al

    NASA Astrophysics Data System (ADS)

    Usman, I. T.; Buthelezi, Z.; Carter, J.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Fujita, H.; Fujita, Y.; von Neumann-Cosel, P.; Neveling, R.; Papakonstantinou, P.; Pysmenetska, I.; Richter, A.; Roth, R.; Sideras-Haddad, E.; Smit, F. D.

    2016-08-01

    The isoscalar giant quadrupole resonance in 28Si and 27Al has been investigated with high-energy-resolution proton inelastic scattering at Ep=200 MeV and at scattering angles close to the maximum of Δ L =2 angular distributions with the K600 magnetic spectrometer of iThemba LABS, South Africa. Characteristic scales are extracted from the observed fine structure with a wavelet analysis and compared for 28Si with random-phase approximation and second random phase approximation calculations with an interaction derived from the Argonne V18 potential by a unitary transformation. A recent extension of the method to deformed nuclei provides the best description of the data, suggesting the significance of Landau damping.

  1. Cross-polarization phenomena in the NMR of fast spinning solids subject to adiabatic sweeps.

    PubMed

    Wi, Sungsool; Gan, Zhehong; Schurko, Robert; Frydman, Lucio

    2015-02-14

    Cross-polarization magic-angle spinning (CPMAS) experiments employing frequency-swept pulses are explored within the context of obtaining broadband signal enhancements for rare spin S = 1/2 nuclei at very high magnetic fields. These experiments employ adiabatic inversion pulses on the S-channel ((13)C) to cover a wide frequency offset range, while simultaneously applying conventional spin-locking pulse on the I-channel ((1)H). Conditions are explored where the adiabatic frequency sweep width, Δν, is changed from selectively irradiating a single magic-angle-spinning (MAS) spinning centerband or sideband, to sweeping over multiple sidebands. A number of new physical features emerge upon assessing the swept-CP method under these conditions, including multiple zero- and double-quantum CP transfers happening in unison with MAS-driven rotary resonance phenomena. These were examined using an average Hamiltonian theory specifically designed to tackle these experiments, with extensive numerical simulations, and with experiments on model compounds. Ultrawide CP profiles spanning frequency ranges of nearly 6⋅γB1 (s) were predicted and observed utilizing this new approach. Potential extensions and applications of this extremely broadband transfer conditions are briefly discussed.

  2. Cross-polarization phenomena in the NMR of fast spinning solids subject to adiabatic sweeps.

    PubMed

    Wi, Sungsool; Gan, Zhehong; Schurko, Robert; Frydman, Lucio

    2015-02-14

    Cross-polarization magic-angle spinning (CPMAS) experiments employing frequency-swept pulses are explored within the context of obtaining broadband signal enhancements for rare spin S = 1/2 nuclei at very high magnetic fields. These experiments employ adiabatic inversion pulses on the S-channel ((13)C) to cover a wide frequency offset range, while simultaneously applying conventional spin-locking pulse on the I-channel ((1)H). Conditions are explored where the adiabatic frequency sweep width, Δν, is changed from selectively irradiating a single magic-angle-spinning (MAS) spinning centerband or sideband, to sweeping over multiple sidebands. A number of new physical features emerge upon assessing the swept-CP method under these conditions, including multiple zero- and double-quantum CP transfers happening in unison with MAS-driven rotary resonance phenomena. These were examined using an average Hamiltonian theory specifically designed to tackle these experiments, with extensive numerical simulations, and with experiments on model compounds. Ultrawide CP profiles spanning frequency ranges of nearly 6⋅γB1 (s) were predicted and observed utilizing this new approach. Potential extensions and applications of this extremely broadband transfer conditions are briefly discussed. PMID:25681899

  3. Cross-polarization phenomena in the NMR of fast spinning solids subject to adiabatic sweeps

    SciTech Connect

    Wi, Sungsool E-mail: lucio.frydman@weizmann.ac.il; Gan, Zhehong; Schurko, Robert; Frydman, Lucio E-mail: lucio.frydman@weizmann.ac.il

    2015-02-14

    Cross-polarization magic-angle spinning (CPMAS) experiments employing frequency-swept pulses are explored within the context of obtaining broadband signal enhancements for rare spin S = 1/2 nuclei at very high magnetic fields. These experiments employ adiabatic inversion pulses on the S-channel ({sup 13}C) to cover a wide frequency offset range, while simultaneously applying conventional spin-locking pulse on the I-channel ({sup 1}H). Conditions are explored where the adiabatic frequency sweep width, Δν, is changed from selectively irradiating a single magic-angle-spinning (MAS) spinning centerband or sideband, to sweeping over multiple sidebands. A number of new physical features emerge upon assessing the swept-CP method under these conditions, including multiple zero- and double-quantum CP transfers happening in unison with MAS-driven rotary resonance phenomena. These were examined using an average Hamiltonian theory specifically designed to tackle these experiments, with extensive numerical simulations, and with experiments on model compounds. Ultrawide CP profiles spanning frequency ranges of nearly 6⋅γB{sub 1}{sup s} were predicted and observed utilizing this new approach. Potential extensions and applications of this extremely broadband transfer conditions are briefly discussed.

  4. Heteronuclear decoupling in MAS NMR in the intermediate to fast sample spinning regime

    NASA Astrophysics Data System (ADS)

    Equbal, Asif; Bjerring, Morten; Sharma, Kshama; Madhu, P. K.; Nielsen, Niels Chr.

    2016-01-01

    Heteronuclear spin decoupling in solid-state magic-angle spinning NMR is investigated to present methods overcoming interferences between rf irradiation and sample spinning in the intermediate to fast spinning regime. We demonstrate that a recent phase-alternated variant of refocused CW irradiation (rCWApA) provides efficient and robust decoupling in this regime. An extensive experimental and numerical comparison is presented for rCWApA and PISSARRO (phase-inverted supercycled sequence for attenuation of rotary resonance), previously introduced to quench rotary-resonance recoupling effects, under conditions with spinning frequencies between 30 and 60 kHz. Simulations are used to identify the effect of decoupling for various nuclear spin interactions.

  5. A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques

    NASA Astrophysics Data System (ADS)

    Verel, René; Baldus, Marc; Ernst, Matthias; Meier, Beat H.

    1998-05-01

    A filtering scheme for the selection of spin pairs (and larger spin clusters) under fast magic-angle spinning is proposed. The scheme exploits the avoided level crossing in spin pairs during an adiabatic amplitude sweep through the so-called HORROR recoupling condition. The advantages over presently used double-quantum filters are twofold. (i) The maximum theoretical filter efficiency is, due to the adiabatic variation, 100% instead of 73% as for transient methods. (ii) Since the filter does not rely on the phase-cycling properties of the double-quantum coherence, there is no need to obtain the full double-quantum intensity for all spins in the sample at one single point in time. The only important requirement is that all coupled spins pass through a two-spin state during the amplitude sweep. This makes the pulse scheme robust with respect to rf-amplitude missetting, rf-field inhomogeneity and chemical-shift offset.

  6. Hydrolysis Studies and Quantitative Determination of Aluminum Ions Using [superscript 27]Al NMR: An Undergraduate Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Curtin, Maria A.; Ingalls, Laura R.; Campbell, Andrew; James-Pederson, Magdalena

    2008-01-01

    This article describes a novel experiment focused on metal ion hydrolysis and the equilibria related to metal ions in aqueous systems. Using [superscript 27]Al NMR, the students become familiar with NMR spectroscopy as a quantitative analytical tool for the determination of aluminum by preparing a standard calibration curve using standard aluminum…

  7. Investigation of domain size in polymer membranes using double quantum filtered spin diffusion MAS NMR.

    SciTech Connect

    Fujimoto, Cy H.; Alam, Todd Michael; Cherry, Brian Ray; Cornelius, Christopher James

    2005-02-01

    Solid-state {sup 1}H magic angle spinning (MAS) NMR was used to investigate sulfonated Diels-Alder poly(phenlylene) polymer membranes. Under high spinning speed {sup 1}H MAS conditions, the proton environments of the sulfonic acid and phenylene polymer backbone are resolved. A double-quantum (DQ) filter using the rotor-synchronized back-to-back (BABA) NMR multiple-pulse sequence allowed the selective suppression of the sulfonic proton environment in the {sup 1}H MAS NMR spectra. This DQ filter in conjunction with a spin diffusion NMR experiment was then used to measure the domain size of the sulfonic acid component within the membrane. In addition, the temperature dependence of the sulfonic acid spin-spin relaxation time (T{sub 2}) was determined, providing an estimate of the activation energy for the proton dynamics of the dehydrated membrane.

  8. Characterization of Al30 in commercial poly-aluminum chlorohydrate by solid-state (27)Al NMR spectroscopy.

    PubMed

    Phillips, Brian L; Vaughn, John S; Smart, Scott; Pan, Long

    2016-08-15

    Investigation of commercially produced hydrolysis salts of aluminum by solid-state (27)Al NMR spectroscopy and size-exclusion chromatography (SEC) reveals well-defined and distinct Al environments that can be related to physicochemical properties. (27)Al MAS and MQ-MAS NMR spectroscopic data show that the local structure of the solids is dominated by moieties that closely resemble the Al30 polyoxocation (Al30O8(OH)56(H2O)26(18+)), accounting for 72-85% of the total Al. These Al30-like clusters elute as several size fractions by SEC. Comparison of the SEC and NMR results indicates that the Al30-like clusters includes intact isolated clusters, moieties of larger polymers or aggregates, and possibly fragments resembling δ-Al13 Keggin clusters. The coagulation efficacy of the solids appears to correlate best with the abundance of intact Al30-like clusters and of smaller species available to promote condensation reactions. PMID:27232539

  9. Interplay of the elastic and inelastic channels in the 16O+27Al scattering at Elab = 280 MeV

    NASA Astrophysics Data System (ADS)

    Cappuzzello, F.; Nicolosi, D.; Linares, R.; Oliveira, J. R. B.; Lubian, J.; Agodi, C.; Carbone, D.; Cavallaro, M.; de Faria, P. N.; Foti, A.; Rodrigues, M. R. D.

    2016-06-01

    Recent data indicated a nuclear rainbow-like pattern in the elastic scattering of 16O + 27Al at E_{lab}=100 MeV that arises from couplings of the ground to the low-lying states of the 27Al nucleus. Similar effect was identified in the elastic angular distribution of 16O + 12C at E_{lab}=281 and 330 MeV. These experiments show a crucial role of microscopic details of nuclear structure in the elastic scattering of heavy ions at energies well above the Coulomb barrier. In this work we investigate the 16O + 27Al system at E_{lab}=280 MeV for which a coupled channel calculation predicts a pronounced nuclear rainbow-like structure. Obtained experimental data show evidences of an important coupling of the elastic channel to the inelastic. Coupled channel calculations reproduce the experimental angular distributions when a re-normalization factor on the real part of the optical potential is introduced. A proper theoretical approach still requires a high degree of accuracy for the nuclear structure models and new tools to deal with collective excitations.

  10. Biaxial Q-shearing of 27Al 3QMAS NMR spectra: insight into the structural disorder of framework aluminosilicates.

    PubMed

    Kobera, Libor; Brus, Jiri; Klein, Petr; Dedecek, Jiri; Urbanova, Martina

    2014-01-01

    In this contribution, we present the application potentiality of biaxial Q-shearing of (27)Al 3QMAS NMR spectra in the analysis of structural defects of aluminium units in aluminosilicates. This study demonstrates that the combination of various shearing transformations of the recorded (27)Al 3QMAS NMR spectra enables an understanding of the broadening processes of the correlation signals of disordered framework aluminosilicates, for which a wide distribution of (27)Al MAS NMR chemical shifts and quadrupolar parameters (i.e., second-order quadrupolar splitting and quadrupole-induced chemical shifts) can be expected. By combining the suitably selected shearing transformation procedures, the mechanisms of the formation of local defects in aluminosilicate frameworks, including Al/Si substitution effects in the next-nearest neighbouring T-sites, variations in bond angles, and/or variations in the physicochemical nature of charge-balancing counter-ions, can be identified. The proposed procedure has been extensively tested on a range of model aluminosilicate materials (kyanite, γ-alumina, metakaolin, analcime, chabazite, natrolite, phillipsite, mordenite, zeolite A, and zeolite Y).

  11. Nuclear rainbow in the 16O + 27AL system: The role of couplings at energies far above the barrier

    NASA Astrophysics Data System (ADS)

    Pereira, D.; Linares, R.; Oliveira, J. R. B.; Lubian, J.; Chamon, L. C.; Gomes, P. R. S.; Cunsolo, A.; Cappuzzello, F.; Cavallaro, M.; Carbone, D.; Foti, A.

    2012-04-01

    High precision elastic and inelastic angular distributions have been measured for the 16O + 27Al system at a beam energy of 100 MeV. The data analysis confirms a rainbow formation as already predicted by parameter-free Coupled Channel calculations. It also helps to reveal the crucial role of inelastic couplings in the rainbow formation for heavier systems even at energies far above the Coulomb barrier. This feature, well known in atomic/molecular scattering, is experimentally studied for the first time in Nuclear Physics.

  12. Simulating spin dynamics in organic solids under heteronuclear decoupling.

    PubMed

    Frantsuzov, Ilya; Ernst, Matthias; Brown, Steven P; Hodgkinson, Paul

    2015-09-01

    Although considerable progress has been made in simulating the dynamics of multiple coupled nuclear spins, predicting the evolution of nuclear magnetisation in the presence of radio-frequency decoupling remains challenging. We use exact numerical simulations of the spin dynamics under simultaneous magic-angle spinning and RF decoupling to determine the extent to which numerical simulations can be used to predict the experimental performance of heteronuclear decoupling for the CW, TPPM and XiX sequences, using the methylene group of glycine as a model system. The signal decay times are shown to be strongly dependent on the largest spin order simulated. Unexpectedly large differences are observed between the dynamics with and without spin echoes. Qualitative trends are well reproduced by modestly sized spin system simulations, and the effects of finite spin-system size can, in favourable cases, be mitigated by extrapolation. Quantitative prediction of the behaviour in complex parameter spaces is found, however, to be very challenging, suggesting that there are significant limits to the role of numerical simulations in RF decoupling problems, even when specialist techniques, such as state-space restriction, are used.

  13. Formation of Po isotopes in the reactions {sup 27}Al + {sup 175}Lu and {sup 31}P + {sup 169}Tm

    SciTech Connect

    Andreev, A.N.; Bogdanov, D.D.; Eremin, A.V.

    1995-05-01

    The excitation functions and the cross sections for the formation of {sup 192-198}Po isotopes in the reactions {sup 27}Al + {sup 175}Lu and {sup 31}P + {sup 169}Tm are measured. A comparison of the results obtained for these reactions with the data on the cross sections for the formation of Po isotopes in the reaction {sup 100}Mo + {sup 92-100}Mo leads to the conclusion that the characteristics of the evaporation channel do not depend on the mass of the bombarding ion up to the complete symmetry in the input channel. It is shown that the experimental data can be adequately described using the statistical approach to the deexcitation of a compound nucleus only under the assumption that the liquid-drop fission barrier is reduced significantly for neutron-deficient Po isotopes. 21 refs., 5 figs., 2 tabs.

  14. Thick target double differential neutron energy distribution from 12C+ 27Al at 115 MeV

    NASA Astrophysics Data System (ADS)

    Suman, V.; Sunil, C.; Nair, Soumya; Paul, S.; Biju, K.; Sahoo, G. S.; Sarkar, P. K.

    2015-11-01

    Neutron yield from 115 MeV 12C projectiles bombarding a thick 27Al target has been measured using the time of flight technique. Nuclear reaction model code PACE and the FLUKA Monte Carlo code are used to calculate the yield and the results are compared with the experimental data. The energy for maximum neutron emission in experimental measurement and reaction code output has a slight disagreement in the extreme forward emission angle but in all other angles it has a close match. The slope of the distribution in general shows good match between the experimental and the reaction code results as well as FLUKA calculations. The maximum energy of the emitted neutrons is observed to decrease with the increasing emission angles.

  15. Directed collective flow and azimuthal distributions in 36Ar + 27Al collisions from 55 to 95 MeV/u

    NASA Astrophysics Data System (ADS)

    Angélique, J. C.; Buta, A.; Bizard, G.; Cussol, D.; Péghaire, A.; Péter, J.; Popescu, R.; Auger, G.; Brou, R.; Cabot, C.; Crema, E.; El Masri, Y.; Eudes, P.; He, Z. Y.; Kerambrun, A.; Lebrun, C.; Regimbart, R.; Rosato, E.; Saint-Laurent, F.; Steckmeyer, J. C.; Tamain, B.; Vient, E.

    1997-02-01

    A 4π charged particle detector array with a low velocity threshold has been used to detect the products from reactions induced by 36Ar on 27Al at energies ranging from 55 to 95 MeV/u. Well characterized events were selected and sorted as a function of the impact parameter. Two methods were used for sorting these events with respect to their impact parameters and three methods were compared to determine the reaction plane. The transverse momentum analysis has been found to be the best method to extract the direction of the reaction plane for this system and for the experimental set-up used here. The energy of vanishing flow for central collisions has been found to be around 90-95 MeV/u. The azimuthal distributions of mid-rapidity particles exhibit a preferential in-plane emission and no squeeze-out effect.

  16. Elastic and inelastic neutron scattering from /sup 27/Al at 11, 14, and 17 MeV

    SciTech Connect

    Whisnant, C.S.; Dave, J.H.; Gould, C.R.

    1984-11-01

    Fast neutron scattering cross sections have been measured for /sup 27/Al using a neutron time-of-flight facility. Angular distributions were measured at angles from 20/sup 0/ to 160/sup 0/ in 5/sup 0/ increments, at incident neutron energies of 11, 14, and 17 MeV. Data are presented for elastic scattering and for inelastic scattering to the sum of the 0.84 and 1.01 MeV states, the 2.21 MeV state, and the sum of the 2.73, 2.98, and 3.00 MeV states. After correcting for compound nucleus effects, the elastic scattering cross sections are well reproduced by the spherical optical model using a linear energy dependence in the real well depth. The inelastic data are interpreted with a coupled channels calculation and the excited core model.

  17. Fast amplitude-modulated pulse trains with frequency sweep (SW-FAM) in solid-state NMR of spin-7/2 nuclei

    NASA Astrophysics Data System (ADS)

    Bräuniger, Thomas; Madhu, P. K.

    2008-07-01

    We here investigate the sensitivity enhancement of central-transition NMR spectra of quadrupolar nuclei with spin-7/2 in the solid state, generated by fast amplitude-modulated RF pulse trains with constant (FAM-I) and incremented pulse durations (SW-FAM). Considerable intensity is gained for the central-transition resonance of single-quantum spectra by means of spin population transfer from the satellite transitions, both under static and magic-angle-spinning (MAS) conditions. It is also shown that incorporation of a SW-FAM train into the excitation part of a 7QMAS sequence improves the efficiency of 7Q coherence generation, resulting in improved signal-to-noise ratio. The application of FAM-type pulse trains may thus facilitate faster spectra acquisition of spin-7/2 systems.

  18. Elastic Scattering of {sup 7}Li+{sup 27}Al at Backward Angles in the 7-11 MeV Energy Range for Application in RBS

    SciTech Connect

    Carnelli, P. F. F.; Arazi, A.; Cardona, M. A.; Figueira, J. M.; Hojman, D.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.; Abriola, D.; Capurro, O. A.; Fimiani, L.; Grinberg, P.; Marti, G. V.; Fernandez Niello, J. O.

    2010-08-04

    We have measured elastic excitation functions for the {sup 7}Li+{sup 27}Al system, in an energy range close to its Coulomb barrier (E{sub lab} = 8.4 MeV) in steps of 0.25 MeV. For this purpose, an array of eight surface-barrier detectors was used. To get an insight on the background composition (mainly {alpha} particles), a telescope-detector was used for atomic-number identification. Identical measurements for the {sup 6}Li+{sup 27}Al system are planned for the near future.

  19. Energy loss measurements of 63Cu, 28Si and 27Al heavy ions crossing thin Polyvinylchloride (PVC) foil

    NASA Astrophysics Data System (ADS)

    Dib, A.; Ammi, H.; Guesmia, A.; Msimanga, M.; Mammeri, S.; Hedibel, M.; Guedioura, B.; Pineda-Vargas, C. A.

    2015-11-01

    Experimental stopping data of, 63Cu, 28Si and 27Al heavy ions in thin Polyvinylchloride (H3C2Cl1) foil have been obtained over the 0.045-0.50 MeV/nucleon energy range. The measured energy losses were carried out by Heavy Ion Elastic Recoil Detection Analysis (HI-ERDA) technique coupled with time of flight (ToF) spectrometer. A continuous stopping power data obtained in this work are well fitted by our proposed semi-empirical formula and the results are compared to those calculated by LSS formula or generated by SRIM-2013 and MSTAR predictions. Calculations using our formula agree well with the obtained experimental stopping powers, while the LSS formula underestimates the experimental data in the whole investigated energy range. In this work a simple expression for electronic stopping power of heavy ions at low energy in solid targets is introduced. This formula is based on the Firsov and Lindhard-Sharff stopping power models with a small modification made to the original expression, by incorporating the effective charge of moving ions concept and with exponential fit function.

  20. Al environment in tectosilicate and peraluminous glasses: A 27Al MQ-MAS NMR, Raman, and XANES investigation

    NASA Astrophysics Data System (ADS)

    Neuville, Daniel R.; Cormier, Laurent; Massiot, Dominique

    2004-12-01

    Tecto-aluminosilicate and peraluminous glasses have been prepared by conventional and laser heating techniques, respectively, in the CaO-Al 2O 3-SiO 2 system. The structure of these glasses were studied using Raman spectroscopy, X-ray absorption at the Al K-edge and 27Al NMR spectroscopy with two different high fields (400 and 750 MHz). Raman spectroscopy and X-ray absorption are techniques sensitive to the network polymerization and, in particular, show different signal as a function of silica content. However, these two techniques are less sensitive than NMR to describe the local aluminium environment. For tectosilicate glasses, aluminium in five-fold coordination, [5]Al, was found and a careful quantification allows the determination of a significant amount of [5]Al (7% in the anorthite glass). The proportion of [5]Al increases for the peraluminous glasses with small amounts (<2%) of six-fold coordination, [6]Al. The presence of [5]Al agrees with previous observations of the existence of nonbridging oxygens (NBOs) in tectosilicate compositions. However, the proportion of [5]Al in the present study indicates that no major proportion of triclusters (oxygen coordinated to three (Si,Al)O 4 tetrahedra) is required to explain these NBOS.

  1. Mechanism of dilute-spin-exchange in solid-state NMR

    SciTech Connect

    Lu, George J.; Opella, Stanley J.

    2014-03-28

    In the stationary, aligned samples used in oriented sample (OS) solid-state NMR, {sup 1}H-{sup 1}H homonuclear dipolar couplings are not attenuated as they are in magic angle spinning solid-state NMR; consequently, they are available for participation in dipolar coupling-based spin-exchange processes. Here we describe analytically the pathways of {sup 15}N-{sup 15}N spin-exchange mediated by {sup 1}H-{sup 1}H homonuclear dipolar couplings. The mixed-order proton-relay mechanism can be differentiated from the third spin assisted recoupling mechanism by setting the {sup 1}H to an off-resonance frequency so that it is at the “magic angle” during the spin-exchange interval in the experiment, since the “magic angle” irradiation nearly quenches the former but only slightly attenuates the latter. Experimental spectra from a single crystal of N-acetyl leucine confirm that this proton-relay mechanism plays the dominant role in {sup 15}N-{sup 15}N dilute-spin-exchange in OS solid-state NMR in crystalline samples. Remarkably, the “forbidden” spin-exchange condition under “magic angle” irradiation results in {sup 15}N-{sup 15}N cross-peaks intensities that are comparable to those observed with on-resonance irradiation in applications to proteins. The mechanism of the proton relay in dilute-spin-exchange is crucial for the design of polarization transfer experiments.

  2. Solid-state proton NMR of paramagnetic metal complexes: DANTE spin echoes for selective excitation in inhomogeneously broadened lines

    NASA Astrophysics Data System (ADS)

    Carnevale, Diego; Perez Linde, A. J.; Bauer, Gerald; Bodenhausen, Geoffrey

    2013-08-01

    The paramagnetic complex bis(oxazolinylphenyl)amine-Fe(III)Cl2 is investigated by means of solid-state proton NMR at 18.8 T (800 MHz) using magic-angle spinning at 65 kHz. Spin echoes that are excited and refocused by combs of rotor-synchronized pulses in the manner of 'Delays Alternating with Nutation for Tailored Excitation' (DANTE) allow one to characterize different chemical environments that severely overlap in conventional MAS spectra. Such sequences combine two apparently contradictory features: an overall bandwidth exceeding several MHz, and very selective irradiation of a few kHz within inhomogeneously broadened sidebands. The experimental hyperfine interactions correlate well with DFT calculations.

  3. 26Al- 26Mg and 207Pb- 206Pb systematics of Allende CAIs: Canonical solar initial 26Al/ 27Al ratio reinstated

    NASA Astrophysics Data System (ADS)

    Jacobsen, Benjamin; Yin, Qing-zhu; Moynier, Frederic; Amelin, Yuri; Krot, Alexander N.; Nagashima, Kazuhide; Hutcheon, Ian D.; Palme, Herbert

    2008-07-01

    The precise knowledge of the initial 26Al/ 27Al ratio [( 26Al/ 27Al) 0] is crucial if we are to use the very first solid objects formed in our Solar System, calcium-aluminum-rich inclusions (CAIs) as the "time zero" age-anchor and guide future work with other short-lived radio-chronometers in the early Solar System, as well as determining the inventory of heat budgets from radioactivities for early planetary differentiation. New high-precision multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) measurements of 27Al/ 24Mg ratios and Mg-isotopic compositions of nine whole-rock CAIs (six mineralogically characterized fragments and three micro-drilled inclusions) from the CV carbonaceous chondrite, Allende yield a well-defined 26Al- 26Mg fossil isochron with an ( 26Al/ 27Al) 0 of (5.23 ± 0.13) × 10 - 5 . Internal mineral isochrons obtained for three of these CAIs ( A44A, AJEF, and A43) are consistent with the whole-rock CAI isochron. The mineral isochron of AJEF with ( 26Al/ 27Al) 0 = (4.96 ± 0.25) × 10 - 5 , anchored to our precisely determined absolute 207Pb- 206Pb age of 4567.60 ± 0.36 Ma for the same mineral separates, reinstate the "canonical" ( 26Al/ 27Al) 0 of 5 × 10 - 5 for the early Solar System. The uncertainty in ( 26Al/ 27Al) 0 corresponds to a maximum time span of ± 20 Ka (thousand years), suggesting that the Allende CAI formation events were culminated within this time span. Although all Allende CAIs studied experienced multistage formation history, including melting and evaporation in the solar nebula and post-crystallization alteration likely on the asteroidal parent body, the 26Al- 26Mg and U-Pb-isotopic systematics of the mineral separates and bulk CAIs behaved largely as closed-system since their formation. Our data do not support the "supra-canonical" 26Al/ 27Al ratio of individual minerals or their mixtures in CV CAIs, suggesting that the supra-canonical 26Al/ 27Al ratio in the CV CAIs may have resulted from post

  4. Semi empirical formula for electronic stopping power determination of 24Mg, 27Al and 28Si ions crossing Formvar foil in the ion energy domain of LSS theory

    NASA Astrophysics Data System (ADS)

    Guesmia, A.; Ammi, H.; Mammeri, S.; Dib, A.; Pineda-Vargas, C. A.; Msimanga, M.; Hedibel, M.

    2014-03-01

    We have determined continuous stopping power of heavy ions in thin Formvar foil for 28Si, 27Al and 24Mg ions over an energy range of (0.1-0.5) MeV/nucleon. Heavy Ions Elastic Recoil Detection Analysis (HI-ERDA) technique coupled with time of flight (ToF) spectrometer has been used to measure energy loss of charged particles in this thin absorber. Lindhard, Scharff and Schiott (LSS) theory compared with the corresponding determined stopping values in Formvar, shows significantly large deviations. However, a novel semi empirical expression has been proposed here and tested for better stopping power calculations at low velocity in the ion energy domain of LSS theory for 28Si, 27Al and 24Mg ions crossing thin Formvar foil. The results were compared to the obtained experimental stopping power data, predictions of LSS theory and also to those generated by SRIM-2010 computer code. The obtained results exhibit good agreement with experimental data.

  5. Asymmetric simultaneous phase-inversion cross-polarization in solid-state MAS NMR: Relaxing selective polarization transfer condition between two dilute spins

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengfeng; Fu, Riqiang; Li, Jianping; Yang, Jun

    2014-05-01

    Double cross polarization (DCP) has been widely used for heteronuclear polarization transfer between 13C and 15N in solid-state magic-angle spinning (MAS) NMR. However, DCP is such sensitive to experimental settings that small variations or deviations in RF fields would deteriorate its efficiency. Here, we report on asymmetric simultaneous phase-inversion cross polarization (referred as aSPICP) for selective polarization transfer between low-γ 13C and 15N spins. We have demonstrated through simulations and experiments using biological solids that the asymmetric duration in the simultaneous phase-inversion cross polarization scheme leads to efficient polarization transfer between 13C and 15N even with large chemical shift anisotropies in the presence of B1 field variations or mismatch of the Hartmann-Hahn conditions. This could be very useful in the aspect of long-duration experiments for membrane protein studies at high fields.

  6. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    SciTech Connect

    Mueller, K.T. California Univ., Berkeley, CA . Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  7. Optical and scintillation properties of ce-doped (Gd2Y1)Ga2.7Al2.3O12 single crystal grown by Czochralski method

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wu, Yuntao; Ding, Dongzhou; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Ren, Guohao

    2016-06-01

    Multicomponent garnets, due to their excellent light yield and energy resolution, become one of the most promising scintillators used for homeland security and nuclear non-proliferation applications. This work focuses on the optimization of Ce-doped (Gd,Y)3(Ga,Al)5O12 scintillators using a combination strategy of pre-screening and scale-up. Ce-doped GdxY1-xGayAl5-yO12 (x=1, 2 and y=2, 2.2, 2.5, 2.7, 3) polycrystalline powders were prepared by high-temperature solid state reaction method. The desired garnet phase in all the samples was confirmed using X-ray diffraction measurement. By comparing the radioluminescence intensity, the highest scintillation efficiency was achieved at a component of Gd2Y1Ga2.7Al2.3O12:Ce powders. A (Gd2Y1)Ga2.7Al2.3O12 doped with 1% Ce single crystal with dimensions of Ø35×40 mm was grown by Czochralski method using a <111> oriented seed. Luminescence and scintillation properties were measured. An optical transmittance of 84% was achieved in the concerned wavelength from 500 to 800 nm. Its 5d-4f emission of Ce3+ is at 530 nm. The light yield of a Ce1%: Gd2Y1Ga2.7Al2.3O12 single crystal slab at a size of 5×5×1 mm3 can reach about 65,000±3000 Ph/MeV along with two decay components of 94 and 615 ns under 137Cs source irradiation.

  8. Structure of hydrous aluminosilicate glasses along the diopside anorthite join: A comprehensive one- and two-dimensional 1H and 27Al NMR study

    NASA Astrophysics Data System (ADS)

    Xue, Xianyu; Kanzaki, Masami

    2008-05-01

    We have taken a systematic approach utilizing advanced solid-state NMR techniques to gain new insights into the controversial issue concerning the dissolution mechanisms of water in aluminosilicate melts (glasses). A series of quenched anhydrous and hydrous (˜2 wt% H 2O) glass samples along the diopside (Di, CaMgSi 2O 6)—anorthite (An, CaAl 2Si 2O 8) join with varying An components (0, 20, 38, 60, 80, and 100 mol %) have been studied. A variety of NMR techniques, including one-dimensional (1D) 1H and 27Al MAS NMR, and 27Al → 1H cross-polarization (CP) MAS NMR, as well as two-dimensional (2D) 1H double-quantum (DQ) MAS NMR, 27Al triple-quantum (3Q) MAS NMR, and 27Al → 1H heteronuclear correlation NMR (HETCOR) and 3QMAS/HETCOR NMR, have been applied. These data revealed the presence of SiOH, free OH ((Ca,Mg)OH) and AlOH species in the hydrous glasses, with the last mostly interconnected with Si and residing in the more polymerized parts of the structure. Thus, there are no fundamental differences in water dissolution mechanisms for Al-free and Al-bearing silicate melts (glasses), both involving two competing processes: the formation of SiOH/AlOH that is accompanied by the depolymerization of the network structure, and the formation of free OH that has an opposite effect. The latter is more important for depolymerized compositions corresponding to mafic and ultramafic magmas. Aluminum is dominantly present in four coordination (Al IV), but a small amount of five-coordinate Al (Al V) is also observed in all the anhydrous and hydrous glasses. Furthermore, six-coordinate Al (Al VI) is also present in most of the hydrous glasses. As Al of higher coordinations are favored by high pressure, Al VIOH and Al VOH may become major water species at higher pressures corresponding to those of the Earth's mantle.

  9. The evaluation of different MAS techniques at low spinning rates in aqueous samples and in the presence of magnetic susceptibility gradients

    NASA Astrophysics Data System (ADS)

    Zhi Hu, Jian; Wind, Robert A.

    2002-11-01

    It was recently demonstrated that the nuclear magnetic resonance (NMR) linewidths for stationary biological samples are dictated mainly by magnetic susceptibility gradients, and that phase-altered spinning sideband (PASS) and phase-corrected magic angle turning (PHORMAT) solid-state NMR techniques employing slow and ultra-slow magic angle spinning (MAS) frequencies can be used to overcome the static susceptibility broadening to yield high-resolution, spinning sideband (SSB)-free 1H NMR spectra [Magn. Reson. Med. 46 (2001) 213; 47 (2002) 829]. An additional concern is that molecular diffusion in the presence of the susceptibility gradients may limit the minimum useful MAS frequency by broadening the lines and reducing SSB suppression at low spinning frequencies. In this article the performance of PASS, PHORMAT, total sideband suppression (TOSS), and standard MAS techniques were evaluated as a function of spinning frequency. To this end, 300 MHz (7.05 T) 1H NMR spectra were acquired via PASS, TOSS, PHORMAT, and standard MAS NMR techniques for a 230-μm-diameter spherical glass bead pack saturated with water. The resulting strong magnetic susceptibility gradients result in a static linewidth of about 3.7 kHz that is larger than observed for a natural biological sample, constituting a worst-case scenario for examination of susceptibility broadening effects. Results: (I) TOSS produces a distorted centerband and fails in suppressing the SSBs at a spinning rate below ˜1 kHz. (II) Standard MAS requires spinning speeds above a few hundred Hz to separate the centerband from the SSBs. (III) PASS produces nearly SSB-free spectra at spinning speeds as low as 30 Hz, and is only limited by T2-induced signal losses. (IV) With PHORMAT, a SSB-free isotropic projection is obtained at any spinning rate, even at an ultra-slow spinning rate as slow as 1 Hz. (V) It is found empirically that the width of the isotropic peak is proportional to F- x, where F is the spinning frequency, and x

  10. Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing investigations of connectivity in sodium aluminophosphate glasses

    SciTech Connect

    LANG,DAVID P.; ALAM,TODD M.; BENCOE,DENISE N.

    2000-05-01

    Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing experiments have been used to investigate the spatial distribution of aluminum and sodium cations with respect to the phosphate backbone for a series of sodium aluminophosphate glasses, xAl{sub 2}O{sub 3}{center_dot}50Na{sub 2}O{center_dot}(50{minus}x)P{sub 2}O{sub 5} (0{le} x {le} 17.5). From the {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na connectivity data gathered, information about the medium range order in these glasses is obtained. The expanded connectivity data allows for better identification and interpretation of the new resonances observed in the {sup 31}P MAS NMR spectra with the addition of alumina. The results of the dipolar dephasing experiments show that the sodium-phosphate distribution remains relatively unchanged for the glass series, and that the addition of aluminum occurs primarily through the depolymerization of the phosphate tetrahedral backbone.

  11. Action of hydrochloric acid on aluminum hydroxide-magnesium hydroxide gels and magaldrate: 27Al NMR and pH-stat studies.

    PubMed

    Wilson, G E; Falzone, C J; Johnson, R; Lee, H K

    1985-10-01

    Neutralization of mixtures of aluminum hydroxide-magnesium hydroxide gels and of magaldrate by hydrochloric acid were studied by 27Al NMR under conditions of both equilibrium and kinetic control. Under conditions where equilibrium has been attained, an aluminum NMR signal is detectable for suspensions of the mixed gels and magaldrate only after enough acid has been added to exhaust the acid-neutralizing capacity of the magnesium hydroxide. Mixed gels seem to form several soluble aluminum-containing species as neutralization proceeds. Under the conditions of the modified Beekman neutralization procedure, in which the species concentrations reflect neutralization kinetics, mixed gels show a sharp burst of the hexaaquoaluminum cation as acid is added followed by a slow loss of that cation from solution and an accompanying slow rise in pH. Magaldrate shows a steady increase in the hexaaquoaluminum cation with added acid. Differences between magaldrate and mixed gels are also apparent in pH-stat titrations in which magaldrate displays a biphasic response, contrasting to the two burst phases with an intervening lag phase observed for mixed gels. The results of the 27Al NMR and pH-stat titrations are consistent with the hypotheses that magaldrate is a homogeneous substance with a hydrotalcite-like structure and that mixed gels consist of a magnesium hydroxide core surrounded by aluminum hydroxide.

  12. Structure of shock compressed model basaltic glass: Insights from O K-edge X-ray Raman scattering and high-resolution 27Al NMR spectroscopy

    SciTech Connect

    Lee, Sung Keun; Park, Sun Young; Kim, Hyo-Im; Tschauner, Oliver; Asimow, Paul; Bai, Ligang; Xiao, Yuming; Chow, Paul

    2012-05-29

    The detailed atomic structures of shock compressed basaltic glasses are not well understood. Here, we explore the structures of shock compressed silicate glass with a diopside-anorthite eutectic composition (Di{sub 64}An{sub 36}), a common Fe-free model basaltic composition, using oxygen K-edge X-ray Raman scattering and high-resolution {sup 27}Al solid-state NMR spectroscopy and report previously unknown details of shock-induced changes in the atomic configurations. A topologically driven densification of the Di{sub 64}An{sub 36} glass is indicated by the increase in oxygen K-edge energy for the glass upon shock compression. The first experimental evidence of the increase in the fraction of highly coordinated Al in shock compressed glass is found in the {sup 27}Al NMR spectra. This unambiguous evidence of shock-induced changes in Al coordination environments provides atomistic insights into shock compression in basaltic glasses and allows us to microscopically constrain the magnitude of impact events or relevant processes involving natural basalts on Earth and planetary surfaces.

  13. Reaction mechanism in the {sup 16}O+{sup 27}Al system: Measurements and analysis of excitation functions and angular distributions

    SciTech Connect

    Sharma, Manoj Kumar; Unnati,; Singh, Devendra P.; Singh, Pushpendra P.; Singh, B. P.; Prasad, R.; Bhardwaj, H. D.

    2007-06-15

    To study the dynamics of heavy ion fusion reactions in the lower mass region, experiments were carried out to measure the cross sections of radioactive residues produced in the interaction of the {sup 16}O ion with {sup 27}Al target nucleus at 19 different energies in very close intervals covering the energy range from {approx_equal}58 to 94 MeV, using the well-known recoil catcher off-line {gamma}-ray spectroscopy technique. The simulation of experimental data was performed using statistical-model-based computer codes, viz., CASCADE, PACE2, and ALICE-91. The analysis of measured excitation functions indicates that these residues are likely to be produced by complete fusion, incomplete fusion, and direct reaction processes. Furthermore, to confirm the contribution of different reaction channels, a complementary experiment was performed that measured the angular distributions of the residues produced in the {sup 16}O+{sup 27}Al system at 85 MeV beam energy. The analysis of the results of both experiments indicates that at these energies, the direct reactions compete with complete fusion and incomplete fusion reaction processes.

  14. A spinning thermometer to monitor microwave heating and glass transitions in dynamic nuclear polarization.

    PubMed

    Miéville, Pascal; Vitzthum, Veronika; Caporini, Marc A; Jannin, Sami; Gerber-Lemaire, Sandrine; Bodenhausen, Geoffrey

    2011-11-01

    As previously demonstrated by Thurber and Tycko, the peak position of (79)Br in potassium bromide (KBr) allows one to determine the temperature of a spinning sample. We propose to adapt the original design by using a compact KBr tablet placed at the bottom of the magic angle spinning rotor, separated from the sample under investigation by a thin disk made of polytetrafluoroethylene (or 'Teflon'®). This design allows spinning the sample up to at least 16 kHz. The KBr tablet can remain in the rotor when changing the sample under investigation. Calibration in the range of 98 < T < 320 K has been carried out in a static rotor by inserting a platinum thermometer. The accuracy is better than ± 0.9 K, even in the presence of microwave irradiation. Irradiation with 5 W microwaves at 263 GHz leads to a small temperature increase of 3.6 ± 1.4 K in either static or spinning samples. The dynamic nuclear polarization enhancement decreases with increasing temperature, in particular when a frozen glassy sample undergoes a glass transition.

  15. Sensitizing solid state nuclear magnetic resonance of dilute nuclei by spin-diffusion assisted polarization transfers.

    PubMed

    Lupulescu, Adonis; Frydman, Lucio

    2011-10-01

    Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice.

  16. Solid-State Selective 13C Excitation and Spin Diffusion NMR to Resolve Spatial Dimensions in Plant Cell Walls

    SciTech Connect

    Foston, M.; Katahira, R.; Gjersing, E.; Davis, M. F.; Ragauskas, A. J.

    2012-02-15

    The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a {sup 13}C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. {sup 13}C spin diffusion time constants (T{sub SD}) were extracted using a two-site spin diffusion theory developed for {sup 13}C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated {sup 13}C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances {approx}0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.

  17. Nonlinear effects in spin relaxation of cavity polaritons

    SciTech Connect

    Solnyshkov, D. D.; Shelykh, I. A. Glazov, M. M.; Malpuech, G.; Amand, T.; Renucci, P.; Marie, X.; Kavokin, A. V.

    2007-09-15

    We present the general kinetic formalism for the description of spin and energy relaxation of the cavity polaritons in the framework of the Born-Markov approximation. All essential mechanisms of polariton redistribution in reciprocal space together with the final state bosonic stimulation are taken into account from our point of view. The developed theory is applied to describe our experimental results on the polarization dynamics obtained in the polariton parametric amplifier geometry (pumping at the so-called magic angle). Under circular pumping, we show that the spin relaxation time is strongly dependent on the detuning between the exciton and cavity mode energies mainly because of the influence of the detuning on the coupling strength between the photon-like part of the exciton-polariton lower dispersion branch and the reservoir of uncoupled exciton states. In the negative detuning case we find a very long spin relaxation time of about 300 ps. In the case of excitation by a linearly polarized light, we have experimentally confirmed that the anisotropy of the polariton-polariton interaction is responsible for the build-up of the cross-linear polarization of the signal. In the spontaneous regime the polarization degree of the signal is -8% but it can reach -65% in the stimulated regime. The long-living linear polarization observed at zero detuning indicates that the reservoir is formed by excitons localized at the anisotropic islands oriented along the crystallographic axes. Finally, under elliptical pumping, we have directly measured in the time domain and modeled the effect of self-induced Larmor precession, i.e., the rotation of the linear polarization of a state about an effective magnetic field proportional to the projection of the total spin of exciton-polaritons in the cavity on its growth axis.

  18. Constraining 17O and 27Al NMR spectra of high-pressure crystals and glasses: New data for jadeite, pyrope, grossular, and mullite

    USGS Publications Warehouse

    Kelsey, K.E.; Stebbins, J.F.; Du, L.-S.; Hankins, B.

    2007-01-01

    The 17O NMR spectra of glasses quenched from melts at high pressure are often difficult to interpret due to overlapping peaks and lack of crystalline model compounds. High-pressure aluminosilicate glasses often contain significant amounts of [5]Al and [6]Al, thus these high-pressure glasses must contain oxygen bonded to high-coordinated aluminum. The 17O NMR parameters for the minerals jadeite, pyrope, grossular, and mullite are presented to assist interpretation of glass spectra and to help test quantum chemical calculations. The 17O NMR parameters for jadeite and grossular support previous peak assignments of oxygen bonded to Si and high-coordinated Al in high-pressure glasses as well as quantum chemical calculations. The oxygen tricluster in mullite is very similar to the previously observed tricluster in grossite (CaAl4 O7) and suspected triclusters in glasses. We also present 27Al NMR spectra for pyrope, grossular, and mullite.

  19. Observation of satellite signals due to scalar coupling to spin-1/2 isotopes in solid-state nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Iuga, Adriana; Iuga, Dinu; Cross, Albert R.; Gerken, Michael; Hazendonk, Paul

    2007-02-01

    A method is introduced to select the signal from a spin-1/2 nucleus I specifically bound to another spin-1/2 nucleus S for solid-state magic angle spinning nuclear magnetic resonance (NMR) spectroscopy via correlation through the heteronuclear J coupling. This experiment is analogous to the bilinear rotation decoupling (BIRD) sequence in liquid-state NMR spectroscopy which selects for signals from H1 directly bound to C13. The spin dynamics of this modified BIRD experiment is described using the product-operator formalism, where experimental considerations such as rotor synchronization and the effect of large chemical shielding anisotropies on I and S are discussed. Two experiments are proposed that accommodate large chemical shielding anisotropies on S: (1) by stepping the inversion pulse frequency through the entire S spectral range or (2) by adiabatically inverting the S spins. Both these experiments are shown to successfully select the signal of F19 bound to Xe129 in XeF+ salts, removing the contributions from isotopomers containing non-spin-1/2 Xe isotopes. The feasibility in obtaining isotope-selective F19 spectra of inorganic fluoride compounds is discussed, and further modifications are proposed to expand the application to other chemical systems.

  20. Centerband-only analysis of rotor-unsynchronized spin echo for measurement of lipid (31) P chemical shift anisotropy.

    PubMed

    Umegawa, Yuichi; Yamaguchi, Toshiyuki; Murata, Michio; Matsuoka, Shigeru

    2015-07-01

    Structural diversity and molecular flexibility of phospholipids are essential for biological membranes to play key roles in numerous cellular processes. Uncovering the behavior of individual lipids in membrane dynamics is crucial for understanding the molecular mechanisms underlying biological functions of cell membranes. In this paper, we introduce a simple method to investigate dynamics of lipid molecules in multi-component systems by measuring the (31) P chemical shift anisotropy (CSA) under magic angle spinning (MAS) conditions. For achieving both signal separation and CSA determination, we utilized a centerband-only analysis of rotor-unsynchronized spin echo (COARSE). This analysis is based on the curve fitting of periodic modulation of centerband intensity along the interpulse delay time in rotor-unsynchronized spin-echo experiments. The utility of COARSE was examined by using phospholipid vesicles, a three-component lipid raft model system, and archaeal purple membranes. We found that the apparent advantages of this method are high resolution and high sensitivity given by the moderate MAS speed and the one-dimensional acquisition with short spin-echo delays. COARSE provides an alternative method for CSA measurement that is effective in the investigation of lipid polymorphologies.

  1. High spin states in {sup 139}Pm

    SciTech Connect

    Dhal, A.; Sinha, R. K.; Chaturvedi, L.; Agarwal, P.; Kumar, S.; Jain, A. K.; Kumar, R.; Govil, I. M.; Mukhopadhyay, S.; Chakraborty, A.; Krishichayan; Ray, S.; Ghugre, S. S.; Sinha, A. K.; Kumar, R.; Singh, R. P.; Muralithar, S.; Bhowmik, R. K.; Pancholi, S. C.; Gupta, J. B.

    2009-07-15

    The odd mass nucleus {sup 139}Pm has been studied to high spins through the {sup 116}Cd({sup 27}Al,4n){sup 139}Pm reaction at an incident beam energy of 120 MeV. The de-exciting {gamma}-rays were detected using an array of 12 Compton suppressed Ge detectors. A total of 46 new levels have been proposed in the present work as a result of the observation of 60 new {gamma}-rays. Four new bands including a {delta}J=1 sequence have been identified and all the earlier reported bands, other than the yrast band, have been extended to higher spins and excitation energy. The spin assignments for most of the newly reported levels have been made using the observed coincidence angular anisotropy. Tilted axis cranking calculations support the interpretation of two of the observed magnetic dipole sequences as examples of magnetic rotational bands.

  2. Cross Section and Analyzing Power Measurements for Neutron Scattering from Aluminum and Cobalt and Spin - Cross Section Calculations

    NASA Astrophysics Data System (ADS)

    Nagadi, Mahmoud Mohamud

    Differential cross sections and analyzing power data have been measured for ^{27} Al and ^{59}Co at 15.5 MeV. Cross section data was also measured for ^{59}Co at 10, 12, 14, 17, and 19 MeV using standard time-of-flight techniques at the Triangle Universities Nuclear Laboratory (TUNL). Absolute normalization of the sigma(theta) data was performed using n-p scattering measurements. Both sigma(theta) and rm A_{y}(theta) were corrected for finite geometry, attenuation, relative efficiency, and multiple scattering effects using Monte Carlo techniques. A large data base was formed from our data and the existing data on ^{27}Al and ^{59}Co. This data base was used to develop a Dispersive Optical Model (DOM) and a Coupled Channels Model (CCM). The DOM model describes the data quite well above 8 MeV for ^{27 }Al and ^{59}Co. However, for data below 8 MeV the model is not as satisfactory, perhaps because of angular momentum l-dependencies in the absorptive potential. The CCM improved the description of the data over the DOM, but still does not describe the data well at low energies. The DOM and CCM for ^{27} Al and ^{59}Co were used to describe the spin-spin cross section data for ^{27}Al and ^{59}Co. We obtained a good fit for the spin-spin cross section with both the DOM and CCM with the spin-spin real surface parameters of V _{rm ss} = 0.80 MeV, r _{rm ss} = 1.00 fm and a _{rm ss} = 0.654 for both ^{27}Al and ^{59}Co. A surprising relation between the spin-spin cross section and the derivative of the total cross section with respect to energy, was discovered: sigma_{ss } = c {dsigma_{T} over dE} where c is a constant related to the slope of the real central potential and spin-spin potential strength. This observation is not yet understood.

  3. High-resolution solid-state NMR in liquids. 2. sup 27 Al NMR study of AlF sub 3 ultrafine particles

    SciTech Connect

    Satoh, Naoki ); Kimura, Keisaku )

    1990-06-06

    High-resolution {sup 27}Al nuclear magnetic resonance spectra of AlF{sub 3} ultrafine particles (UFPs) were obtained by means of motional narrowing caused by Brownian motion of UFPs in a liquid phase. The NMR observed spectra can be resolved in five signals at 10, {minus}5, {minus}8, {minus}12, and {minus}16 ppm with respect to an Al{sup 3+}(H{sub 2}O){sub 6} standard. The UFPs were fractionated according to their sizes by using an ultrafiltration technique. From the NMR measurements of fractionated colloidal solutions, the five peaks were classified into three groups by their origins, viz. the peak at {minus}16 ppm is from larger UFPs (diameter D; 9 nm), those at {minus}5, {minus}8, and {minus}12 ppm from smaller UFPs (1 < D < 3 nm), while that at 10 ppm from free ions. Line widths of the larger and smaller UFPs were about 10 and 4 ppm (i.e., 1 and 0.4 kHz), respectively.

  4. Study of the A(e,e'$\\pi^+$) Reaction on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au

    SciTech Connect

    Qian, X; Clasie, B; Arrington, J; Asaturyan, R; Benmokhtar, F; Boeglin, W; Bosted, P; Bruell, A; Christy, M E; Chudakov, E; Dalton, M M; Daniel, A; Day, D; Dutta, D; El Fassi, L; Ent, R; Fenker, H C; Ferrer, J; Fomin, N; Gao, H; Garrow, K; Gaskell, D; Gray, C; Huber, G M; Jones, M K; Kalantarians, N; Keppel, C E; Kramer, K; Li, Y; Liang, Y; Lung, A F; Malace, S; Markowitz, P; Matsumura, A; Meekins, D G; Mertens, T; Miyoshi, T; Mkrtchyan, H; Monson, R; Navasardyan, T; Niculescu, G; Niculescu, I; Okayasu, Y; Opper, A K; Perdrisat, C; Punjabi, V; Rauf, A W; Rodriquez, V M; Rohe, D; Seely, J; Segbefia, E; Smith, G R; Sumihama, M; Tadevosyan, V; Tang, L; Villano, A; Vulcan, W F; Wesselmann, F R; Wood, S A; Yuan, L; Zheng, X

    2010-05-01

    Cross sections for the p($e,e'\\pi^{+}$)n process on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au targets were measured at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in order to extract the nuclear transparencies. Data were taken for four-momentum transfers ranging from $Q^2$=1.1 to 4.8 GeV$^2$ for a fixed center of mass energy of $W$=2.14 GeV. The ratio of $\\sigma_L$ and $\\sigma_T$ was extracted from the measured cross sections for $^1$H, $^2$H, $^{12}$C and $^{63}$Cu targets at $Q^2$ = 2.15 and 4.0 GeV$^2$ allowing for additional studies of the reaction mechanism. The experimental setup and the analysis of the data are described in detail including systematic studies needed to obtain the results. The results for the nuclear transparency and the differential cross sections as a function of the pion momentum at the different values of $Q^2$ are presented. Global features of the data are discussed and the data are compared with the results of model calculations for the p($e,e'\\pi^{+}$)n reaction from nuclear targets.

  5. Influence of heat treatment on the microstructure and wear behavior of end-chill cast Zn-27Al alloys with different copper content

    NASA Astrophysics Data System (ADS)

    Jeshvaghani, R. Arabi; Ghahvechian, H.; Pirnajmeddin, H.; Shahverdi, H. R.

    2016-04-01

    The aim of this paper was to study the effect of heat treatment on the microstructure and wear behavior of Zn-27Al alloys with different copper content. In order to study the relationship between microstructure features and wear behavior, the alloys prepared by an end-chill cast apparatus and then heat treated. Heat treatment procedure involved solutionizing at temperature of 350 °C for 72 h followed by cooling within the furnace to room temperature. Microstructural characteristics of as-cast and heat-treated alloys at different distances from the chill were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction. Wear tests were performed using a pin-on-disk test machine. To determine the wear mechanisms, the worn surfaces of the samples were also examined by SEM and EDS. Results showed that heat treatment led to the complete dissolution of as-cast dendritic microstructure and formation of a fine lamellar structure with well-distributed microconstituents. Moreover, addition of copper up to 1 wt% had no significant change in the microstructure, while addition of 2 and 4 wt% copper resulted in formation of ɛ (CuZn4) particle in the interdendritic regions. The influence of copper content on the wear behavior of the alloys was explained in terms of microstructural characteristics. Delamination was proposed as the dominant wear mechanism.

  6. Spin foams without spins

    NASA Astrophysics Data System (ADS)

    Hnybida, Jeff

    2016-10-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  7. Efficient route to high-bandwidth nanoscale magnetometry using single spins in diamond

    PubMed Central

    Puentes, Graciana; Waldherr, Gerald; Neumann, Philipp; Balasubramanian, Gopalakrishnan; Wrachtrup, Jörg

    2014-01-01

    Nitrogen-vacancy (NV) center in diamond is a promising quantum metrology tool finding applications across disciplines. The spin sensor measures magnetic fields, electric fields and temperature with nano-scale precision and is fully operable under ambient conditions. Moreover, it achieves precision scaling inversely with total measurement time σB ∝ 1/T (Heisenberg scaling) rather than as the inverse of the square root of T, with the Shot-Noise limit. This scaling can be achieved by means of phase estimation algorithms (PEAs), in combination with single-shot read-out. Despite their accuracy, the range of applicability of PEAs is limited to sensing single frequencies with negligible temporal fluctuations. Nuclear Magnetic Resonance (NMR) signals from molecules often contain multifrequency components and sensing them using PEA is ruled out. Here we propose an alternative method for precision magnetometry in frequency multiplexed signals via compressive sensing (CS) techniques focusing on nanoscale NMR. We show that CS can provide for precision scaling approximately as σB ≈ 1/T, as well as for a 5-fold increase in sensitivity over dynamic-range gain, in addition to reducing the total number of resources required. We illustrate our method by taking model solid-state spectra of Glycine acquired under Magic Angle Spinning conditions. PMID:24728454

  8. Efficient route to high-bandwidth nanoscale magnetometry using single spins in diamond.

    PubMed

    Puentes, Graciana; Waldherr, Gerald; Neumann, Philipp; Balasubramanian, Gopalakrishnan; Wrachtrup, Jörg

    2014-04-14

    Nitrogen-vacancy (NV) center in diamond is a promising quantum metrology tool finding applications across disciplines. The spin sensor measures magnetic fields, electric fields and temperature with nano-scale precision and is fully operable under ambient conditions. Moreover, it achieves precision scaling inversely with total measurement time σB ∝ 1/T (Heisenberg scaling) rather than as the inverse of the square root of T, with σB = √T the Shot-Noise limit. This scaling can be achieved by means of phase estimation algorithms (PEAs), in combination with single-shot read-out. Despite their accuracy, the range of applicability of PEAs is limited to sensing single frequencies with negligible temporal fluctuations. Nuclear Magnetic Resonance (NMR) signals from molecules often contain multifrequency components and sensing them using PEA is ruled out. Here we propose an alternative method for precision magnetometry in frequency multiplexed signals via compressive sensing (CS) techniques focusing on nanoscale NMR. We show that CS can provide for precision scaling approximately as σB ≈ 1/T, as well as for a 5-fold increase in sensitivity over dynamic-range gain, in addition to reducing the total number of resources required. We illustrate our method by taking model solid-state spectra of Glycine acquired under Magic Angle Spinning conditions.

  9. Selective observation of a spinning-sideband manifold of paramagnetic solids by rotation-synchronized DANTE

    NASA Astrophysics Data System (ADS)

    Murakami, Miwa; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi

    2013-06-01

    We examine applicability of rotation-synchronized Delays Alternating with Nutation for Tailored Excitation (rs-DANTE) to a crowded sideband spectrum spreading over a few 100 kHz by the paramagnetic interaction. It is shown that rs-DANTE can be used to excite 6Li spinning sideband manifolds of the three crystallographic Li sites (2b, 4h, and 2c) in a magic-angle spinning (MAS) spectrum of 6Li-enriched Li2MnO3. The observed lineshape is insensitive to rf inhomogeneiety, thus indicating practical applicability of rs-DANTE to a paramagnetic system. Each sideband pattern can be described by the paramagnetic anisotropies evaluated by taking the electron-6Li dipolar interactions into account. The isotropic chemical shift for each site can thus be obtained by comparing the experimental sideband pattern to the calculated one. It is therefore possible by this approach to obtain both isotropic and anisotropic shift information. Further effects of structural disorder in Li2MnO3 on the isotropic shift and the sideband pattern are discussed.

  10. Efficient route to high-bandwidth nanoscale magnetometry using single spins in diamond.

    PubMed

    Puentes, Graciana; Waldherr, Gerald; Neumann, Philipp; Balasubramanian, Gopalakrishnan; Wrachtrup, Jörg

    2014-01-01

    Nitrogen-vacancy (NV) center in diamond is a promising quantum metrology tool finding applications across disciplines. The spin sensor measures magnetic fields, electric fields and temperature with nano-scale precision and is fully operable under ambient conditions. Moreover, it achieves precision scaling inversely with total measurement time σB ∝ 1/T (Heisenberg scaling) rather than as the inverse of the square root of T, with σB = √T the Shot-Noise limit. This scaling can be achieved by means of phase estimation algorithms (PEAs), in combination with single-shot read-out. Despite their accuracy, the range of applicability of PEAs is limited to sensing single frequencies with negligible temporal fluctuations. Nuclear Magnetic Resonance (NMR) signals from molecules often contain multifrequency components and sensing them using PEA is ruled out. Here we propose an alternative method for precision magnetometry in frequency multiplexed signals via compressive sensing (CS) techniques focusing on nanoscale NMR. We show that CS can provide for precision scaling approximately as σB ≈ 1/T, as well as for a 5-fold increase in sensitivity over dynamic-range gain, in addition to reducing the total number of resources required. We illustrate our method by taking model solid-state spectra of Glycine acquired under Magic Angle Spinning conditions. PMID:24728454

  11. Selective observation of a spinning-sideband manifold of paramagnetic solids by rotation-synchronized DANTE.

    PubMed

    Murakami, Miwa; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi

    2013-06-01

    We examine applicability of rotation-synchronized Delays Alternating with Nutation for Tailored Excitation (rs-DANTE) to a crowded sideband spectrum spreading over a few 100 kHz by the paramagnetic interaction. It is shown that rs-DANTE can be used to excite (6)Li spinning sideband manifolds of the three crystallographic Li sites (2b, 4h, and 2c) in a magic-angle spinning (MAS) spectrum of (6)Li-enriched Li2MnO3. The observed lineshape is insensitive to rf inhomogeneiety, thus indicating practical applicability of rs-DANTE to a paramagnetic system. Each sideband pattern can be described by the paramagnetic anisotropies evaluated by taking the electron-(6)Li dipolar interactions into account. The isotropic chemical shift for each site can thus be obtained by comparing the experimental sideband pattern to the calculated one. It is therefore possible by this approach to obtain both isotropic and anisotropic shift information. Further effects of structural disorder in Li2MnO3 on the isotropic shift and the sideband pattern are discussed.

  12. Efficient route to high-bandwidth nanoscale magnetometry using single spins in diamond

    NASA Astrophysics Data System (ADS)

    Puentes, Graciana; Waldherr, Gerald; Neumann, Philipp; Balasubramanian, Gopalakrishnan; Wrachtrup, Jörg

    2014-04-01

    Nitrogen-vacancy (NV) center in diamond is a promising quantum metrology tool finding applications across disciplines. The spin sensor measures magnetic fields, electric fields and temperature with nano-scale precision and is fully operable under ambient conditions. Moreover, it achieves precision scaling inversely with total measurement time σB ~ 1/T (Heisenberg scaling) rather than as the inverse of the square root of T, with the Shot-Noise limit. This scaling can be achieved by means of phase estimation algorithms (PEAs), in combination with single-shot read-out. Despite their accuracy, the range of applicability of PEAs is limited to sensing single frequencies with negligible temporal fluctuations. Nuclear Magnetic Resonance (NMR) signals from molecules often contain multifrequency components and sensing them using PEA is ruled out. Here we propose an alternative method for precision magnetometry in frequency multiplexed signals via compressive sensing (CS) techniques focusing on nanoscale NMR. We show that CS can provide for precision scaling approximately as σB ~ 1/T, as well as for a 5-fold increase in sensitivity over dynamic-range gain, in addition to reducing the total number of resources required. We illustrate our method by taking model solid-state spectra of Glycine acquired under Magic Angle Spinning conditions.

  13. Sensitivity enhancement of the central-transition signal of half-integer spin quadrupolar nuclei in solid-state NMR: Features of multiple fast amplitude-modulated pulse transfer

    NASA Astrophysics Data System (ADS)

    Goswami, Mithun; Madhu, P. K.

    2008-06-01

    Sensitivity enhancement of solid-state NMR spectrum of half-integer spin quadrupolar nuclei under both magic-angle spinning (MAS) and static cases has been demonstrated by transferring polarisation associated with satellite transitions to the central m = -1/2 → 1/2 transition with suitably modulated radio-frequency pulse schemes. It has been shown that after the application of such enhancement schemes, there still remains polarisation in the satellite transitions that can be transferred to the central transition. This polarisation is available without having to wait for the spin system to return to thermal equilibrium. We demonstrate here the additional sensitivity enhancement obtained by making use of this remaining polarisation with fast amplitude-modulated (FAM) pulse schemes under both MAS and static conditions on a spin-3/2 and a spin-5/2 system. Considerable signal enhancement is obtained with the application of the multiple FAM sequence, denoted as m-FAM. We also report here some of the salient features of these multiple FAM sequences with respect to the nutation frequency of the pulses and the spinning frequency.

  14. Efficient symmetry-based homonuclear dipolar recoupling of quadrupolar spins: double-quantum NMR correlations in amorphous solids.

    PubMed

    Lo, Andy Y H; Edén, Mattias

    2008-11-28

    We report novel symmetry-based pulse sequences for exciting double-quantum (2Q) coherences between the central transitions of half-integer spin quadrupolar nuclei in the NMR of rotating solids. Compared to previous 2Q-recoupling techniques, numerical simulations and 23Na and 27Al NMR experiments on Na2SO4 and the open-framework aluminophosphate AlPO-CJ19 verify that the new dipolar recoupling schemes display higher robustness to both radio-frequency field inhomogeneity and to spreads in resonance frequencies. These advances allowed for the first demonstration of 2Q-recoupling in an amorphous solid for revealing its intermediate-range structural features, in the context of mapping 27Al-27Al connectivities between the aluminium polyhedra (AlO4, AlO5 and AlO6) of a lanthanum aluminate glass (La0.18Al0.82O1.5).

  15. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    SciTech Connect

    Sevelsted, Tine F.; Skibsted, Jørgen

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  16. Basic principles of static proton low-resolution spin diffusion NMR in nanophase-separated materials with mobility contrast.

    PubMed

    Schäler, Kerstin; Roos, Matthias; Micke, Peter; Golitsyn, Yury; Seidlitz, Anne; Thurn-Albrecht, Thomas; Schneider, Horst; Hempel, Günter; Saalwächter, Kay

    2015-11-01

    We review basic principles of low-resolution proton NMR spin diffusion experiments, relying on mobility differences in nm-sized phases of inhomogeneous organic materials such as block-co- or semicrystalline polymers. They are of use for estimates of domain sizes and insights into nanometric dynamic inhomogeneities. Experimental procedures and limitations of mobility-based signal decomposition/filtering prior to spin diffusion are addressed on the example of as yet unpublished data on semicrystalline poly(ϵ-caprolactone), PCL. Specifically, we discuss technical aspects of the quantitative, dead-time free detection of rigid-domain signals by aid of the magic-sandwich echo (MSE), and magic-and-polarization-echo (MAPE) and double-quantum (DQ) magnetization filters to select rigid and mobile components, respectively. Such filters are of general use in reliable fitting approaches for phase composition determinations. Spin diffusion studies at low field using benchtop instruments are challenged by rather short (1)H T1 relaxation times, which calls for simulation-based analyses. Applying these, in combination with domain sizes as determined by small-angle X-ray scattering, we have determined spin diffusion coefficients D for PCL (0.34, 0.19 and 0.032nm(2)/ms for crystalline, interphase and amorphous parts, respectively). We further address thermal-history effects related to secondary crystallization. Finally, the state of knowledge concerning the connection between D values determined locally at the atomic level, using (13)C detection and CP- or REDOR-based "(1)H hole burning" procedures, and those obtained by calibration experiments, is summarized. Specifically, the non-trivial dependence of D on the magic-angle spinning (MAS) frequency, with a minimum under static and a local maximum under moderate-MAS conditions, is highlighted.

  17. Geometrical spin symmetry and spin

    SciTech Connect

    Pestov, I. B.

    2011-07-15

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  18. NMR system and method having a permanent magnet providing a rotating magnetic field

    DOEpatents

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  19. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    PubMed

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-01

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  20. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance

    NASA Astrophysics Data System (ADS)

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H.; Ernst, Matthias

    2016-09-01

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ˜100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  1. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    PubMed

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-01

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation. PMID:27608994

  2. Application of (13)C ramp CPMAS NMR with phase-adjusted spinning sidebands (PASS) for the quantitative estimation of carbon functional groups in natural organic matter.

    PubMed

    Ikeya, Kosuke; Watanabe, Akira

    2016-01-01

    The composition of carbon (C) functional groups in natural organic matter (NOM), such as dissolved organic matter, soil organic matter, and humic substances, is frequently estimated using solid-state (13)C NMR techniques. A problem associated with quantitative analysis using general cross polarization/magic angle spinning (CPMAS) spectra is the appearance of spinning side bands (SSBs) split from the original center peaks of sp (2) hybridized C species (i.e., aromatic and carbonyl C). Ramp CP/phase-adjusted side band suppressing (PASS) is a pulse sequence that integrates SSBs separately and quantitatively recovers them into their inherent center peaks. In the present study, the applicability of ramp CP/PASS to NOM analysis was compared with direct polarization (DPMAS), another quantitative method but one that requires a long operation time, and/or a ramp CP/total suppression side band (ramp CP/TOSS) technique, a popular but non-quantitative method for deleting SSBs. The test materials were six soil humic acid samples with various known degrees of aromaticity and two fulvic acids. There were no significant differences in the relative abundance of alkyl C, O-alkyl C, and aromatic C between the ramp CP/PASS and DPMAS methods, while the signal intensities corresponding to aromatic C in the ramp CP/TOSS spectra were consistently less than the values obtained in the ramp CP/PASS spectra. These results indicate that ramp CP/PASS can be used to accurately estimate the C composition of NOM samples.

  3. Probing silicon and aluminium chemical environments in silicate and aluminosilicate glasses by solid state NMR spectroscopy and accurate first-principles calculations

    NASA Astrophysics Data System (ADS)

    Gambuzzi, Elisa; Pedone, Alfonso; Menziani, Maria Cristina; Angeli, Frédéric; Caurant, Daniel; Charpentier, Thibault

    2014-01-01

    Silicon and aluminium chemical environments in silicate and aluminosilicate glasses with compositions 60SiO2·20Na2O·20CaO (CSN), 60SiO2·20Al2O3·20CaO (CAS), 78SiO2·11Al2O3·11Na2O (NAS) and 60SiO2·10Al2O3·10Na2O·20CaO (CASN) have been investigated by 27Al and 29Si solid state magic angle spinning (MAS) and multiple quantum MAS (MQMAS) nuclear magnetic resonance (NMR) experiments. To interpret the NMR data, first-principles calculations using density functional theory were performed on structural models of these glasses. These models were generated by Shell-model molecular dynamics (MD) simulations. The theoretical NMR parameters and spectra were computed using the gauge including projected augmented wave (GIPAW) method and spin-effective Hamiltonians, respectively. This synergetic computational-experimental approach offers a clear structural characterization of these glasses, particularly in terms of network polymerization, chemical disorder (i.e. Si and Al distribution in second coordination sphere) and modifier cation distributions. The relationships between the local structural environments and the 29Si and 27Al NMR parameters are highlighted, and show that: (i) the isotropic chemical shift of both 29Si and 27Al increases of about +5 ppm for each Al added in the second sphere and (ii) both the 27Al and 29Si isotropic chemical shifts linearly decrease with the reduction of the average Si/Al-O-T bond angle. Conversely, 27Al and 29Si NMR parameters are much less sensitive to the connectivity with triple bridging oxygen atoms, precluding their indirect detection from 27Al and 29Si NMR.

  4. Large structure rearrangement of colicin ia channel domain after membrane binding from 2D 13C spin diffusion NMR.

    PubMed

    Luo, Wenbin; Yao, Xiaolan; Hong, Mei

    2005-05-01

    One of the main mechanisms of membrane protein folding is by spontaneous insertion into the lipid bilayer from the aqueous environment. The bacterial toxin, colicin Ia, is one such protein. To shed light on the conformational changes involved in this dramatic transfer from the polar to the hydrophobic milieu, we carried out 2D magic-angle spinning (13)C NMR experiments on the water-soluble and membrane-bound states of the channel-forming domain of colicin Ia. Proton-driven (13)C spin diffusion spectra of selectively (13)C-labeled protein show unequivocal attenuation of cross-peaks after membrane binding. This attenuation can be assigned to distance increases but not reduction of the diffusion coefficient. Analysis of the statistics of the interhelical and intrahelical (13)C-(13)C distances in the soluble protein structure indicates that the observed cross-peak reduction is well correlated with a high percentage of short interhelical contacts in the soluble protein. This suggests that colicin Ia channel domain becomes open and extended upon membrane binding, thus lengthening interhelical distances. In comparison, cross-peaks with similar intensities between the two states are dominated by intrahelical contacts in the soluble state. This suggests that the membrane-bound structure of colicin Ia channel domain may be described as a "molten globule", in which the helical secondary structure is retained while the tertiary structure is unfolded. This study demonstrates that (13)C spin diffusion NMR is a valuable tool for obtaining qualitative long-range distance constraints on membrane protein folding. PMID:15853348

  5. Absolute shielding scales for Al, Ga, and In and revised nuclear magnetic dipole moments of {sup 27}Al, {sup 69}Ga, {sup 71}Ga, {sup 113}In, and {sup 115}In nuclei

    SciTech Connect

    Antušek, A. Holka, F.

    2015-08-21

    We present coupled cluster calculations of NMR shielding constants of aluminum, gallium, and indium in water-ion clusters. In addition, relativistic and dynamical corrections and the influence of the second solvation shell are evaluated. The final NMR shielding constants define new absolute shielding scales, 600.0 ± 4.1 ppm, 2044.4 ± 31.4 ppm, and 4507.7 ± 63.7 ppm for aluminum, gallium, and indium, respectively. The nuclear magnetic dipole moments for {sup 27}Al, {sup 69}Ga, {sup 71}Ga, {sup 113}In, and {sup 115}In isotopes are corrected by combining the computed shielding constants with experimental NMR frequencies. The absolute magnitude of the correction increases along the series and for indium isotopes it reaches approximately −8.0 × 10{sup −3} of the nuclear magneton.

  6. Magic angle and height quantization in nanofacets on SiC(0001) surfaces

    SciTech Connect

    Sawada, Keisuke; Iwata, Jun-Ichi; Oshiyama, Atsushi

    2014-02-03

    We report on the density-functional calculations that provide microscopic mechanism of the facet formation on the SiC (0001) surface. We first identify atom-scale structures of single-, double-, and quad-bilayer steps and find that the single-bilayer (SB) step has the lowest formation energy. We then find that the SB steps are bunched to form a nanofacet with a particular angle relative to the (0001) plane (magic facet angle) and with a discretized height along the (0001) direction (height quantization). We also clarify a microscopic reason for the self-organization of the nanofacet observed experimentally.

  7. First solid-state NMR analysis of uniformly ¹³C-enriched major light-harvesting complexes from Chlamydomonas reinhardtii and identification of protein and cofactor spin clusters.

    PubMed

    Pandit, Anjali; Morosinotto, Tomas; Reus, Michael; Holzwarth, Alfred R; Bassi, Roberto; de Groot, Huub J M

    2011-04-01

    The light-harvesting complex II (LHCII) is the main component of the antenna system of plants and green algae and plays a major role in the capture of sun light for photosynthesis. The LHCII complexes have also been proposed to play a key role in the optimization of photosynthetic efficiency through the process of state 1-state 2 transitions and are involved in down-regulation of photosynthesis under excess light by energy dissipation through non-photochemical quenching (NPQ). We present here the first solid-state magic-angle spinning (MAS) NMR data of the major light-harvesting complex (LHCII) of Chlamydomonas reinhardtii, a eukaryotic green alga. We are able to identify nuclear spin clusters of the protein and of its associated chlorophyll pigments in ¹³C-¹³C dipolar homonuclear correlation spectra on a uniformly ¹³C-labeled sample. In particular, we were able to resolve several chlorophyll 13¹ carbon resonances that are sensitive to hydrogen bonding to the 13¹-keto carbonyl group. The data show that ¹³C NMR signals of the pigments and protein sites are well resolved, thus paving the way to study possible structural reorganization processes involved in light-harvesting regulation through MAS solid-state NMR. PMID:21276419

  8. Modeling Lewis acidity of transition aluminas by numerical simulations

    SciTech Connect

    Alvarez, L.J.; Blumenfeld, A.L.; Fripiat, J.J.

    1998-01-01

    The bulk and surface features of an alumina particle obtained by molecular-dynamics simulation are used to support the experimental distribution of aluminums with respect to their coordination number obtained by NMR (nuclear magnetic resonance). This information was obtained by using results of various editing procedures of the {sup 27}Al nuclear magnetic resonance, such as the classical one-pulse (1P) magic angle spinning, the cross polarization (CP) from the protons of chemisorbed ammonia and the 1P or CP rotational echo double resonance (REDOR). Because the REDOR technique revealed that the acid Lewis sites are constituted by pairs of four or fivefold coordinated aluminum atoms about 3 {Angstrom} apart, these pairs were counted in the simulated particle. The agreement with experimental surface density of Lewis sites is satisfactory. {copyright} {ital 1998 American Institute of Physics.}

  9. Multinuclear MAS NMR studies of sodalitic framework materials

    SciTech Connect

    Johnson, G.M.; Mead, P.J.; Dann, S.E.; Weller, M.T.

    2000-02-24

    A wide range of sodalite framework materials, M{sub 8}[TT{prime}O{sub 4}]{sub 6}X{sub 2} where T = Al, Ga, Si, T{prime} = Be, Al, Si, Ge, have been characterized using {sup 27}Al, {sup 29}Si, and {sup 71}Ga magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. Structural parameters, such as functions of the framework T{single{underscore}bond}O{single{underscore}bond}T{prime} angle, correlate linearly with the determined chemical shift values and provide relationships, as a function of T{prime}, which will facilitate characterization of more complex zeolitic compounds containing such species. The effects of changing a particular neighboring framework cation on the resonance position is controlled by variations in both framework bond angles/distances and electrostatic effects; these contributions are resolved.

  10. Spin Diffusion Driven by R-Symmetry Sequences: Applications to Homonuclear Correlation Spectroscopy in MAS NMR of Biological and Organic Solids

    PubMed Central

    Hou, Guangjin; Yan, Si; Sun, Shangjin; Han, Yun; Byeon, In-Ja L.; Ahn, Jinwoo; Concel, Jason; Samoson, Ago; Gronenborn, Angela M.; Polenova, Tatyana

    2011-01-01

    We present a family of homonuclear 13C-13C magic angle spinning spin diffusion experiments, based on R2nv (n = 1 and 2, v = 1 and 2) symmetry sequences. These experiments are well suited for 13C-13C correlation spectroscopy in biological and organic systems, and are especially advantageous at very fast MAS conditions, where conventional PDSD and DARR experiments fail. At very fast MAS frequencies the R211, R221, and R222 sequences result in excellent quality correlation spectra both in model compounds and in proteins. Under these conditions, individual R2nv display different polarization transfer efficiency-dependencies on isotropic chemical shift differences: R221 recouples efficiently both small and large chemical shift differences (in proteins these correspond to aliphatic-to-aliphatic and carbonyl-to-aliphatic correlations, respectively), while R211 and R222 exhibit the maximum recoupling efficiency for the aliphatic-to-aliphatic or carbonyl-to-aliphatic correlations, respectively. At moderate MAS frequencies (10–20 kHz), all R2nv sequences introduced in this work display similar transfer efficiencies, and their performance is very similar to that of PDSD and DARR. Polarization transfer dynamics and chemical shift dependencies of these R2-driven spin diffusion (RDSD) schemes are experimentally evaluated and investigated by numerical simulations for [U-13C,15N]-alanine and the [U-13C,15N] N-formyl-Met-Leu-Phe (MLF) tripeptide. Further applications of this approach are illustrated for several proteins: spherical assemblies of HIV-1 U-13C,15N CA protein, U-13C,15N enriched dynein light chain DLC8, and sparsely 13C/uniformly 15N enriched CAP-Gly domain of dynactin. Due to the excellent performance and ease of implementation, the presented R2nv symmetry sequences are expected to be of wide applicability in studies of proteins and protein assemblies as well as other organic solids by MAS NMR spectroscopy. PMID:21361320

  11. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs.

    PubMed

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations. PMID:20202872

  12. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs

    NASA Astrophysics Data System (ADS)

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t2 domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t1) dimension. We employ experimental 23Na and 27Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl2O5), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.

  13. Exclusive studies of 130-270 MeV {sup 3}He- and 200-MeV proton-induced reactions on {sup 27}Al, {sup nat}Ag, and {sup 197}Au

    SciTech Connect

    Ginger, D. S.; Kwiatkowski, K.; Wang, G.; Hsi, W.-C.; Hudan, S.; Cornell, E.; Souza, R. T. de; Viola, V. E.; Korteling, R. G.

    2008-09-15

    Exclusive light-charged-particle and IMF spectra have been measured with the ISiS detector array for bombardments of {sup 27}Al, {sup nat}Ag, and {sup 197}Au nuclei with 130-270-MeV {sup 3}He and 200-MeV protons. The results are consistent with previous interpretations based on inclusive data that describe the global yield of complex fragments in terms of a time-dependent process. The emission mechanism for energetic nonequilibrium fragments observed at forward angles with momenta up to twice the beam momentum is also investigated. This poorly understood mechanism, for which the angular distributions indicate formation on a time scale comparable to the nuclear transit time, are accompanied primarily by thermal-like emissions. The data are most consistent with a schematic picture in which nonequilibrium fragments are formed in a localized region of the target nucleus at an early stage in the energy-dissipation process, where the combined effects of high energy density and Fermi motion produce the observed suprathermal spectra.

  14. Study of the peripheral projectile-like fragments from the reaction {sup 129}Xe on {sup 27}Al, {sup nat}Cu, {sup 139}La and {sup 165}Ho, at E/A = 50 MeV

    SciTech Connect

    Garcia-Solis, E.J.; Russ, D.E.; Madani, H.

    1996-02-01

    There are several reaction mechanisms identified for peripheral heavy-ion collisions. For low bombarding energies (E/A {approx} 10 MeV) the predominant reaction channel is the deep-inelastic reaction mechanism. In this process, the projectile and target form a rotating binary system, interchanging nucleons and angular momentum until they separate. At higher bombarding energies (E/A {approx} 50 to 100 MeV) incomplete fusion is thought to be the prevailing reaction channel. In this type of interaction part of the projectile merges with the target during the collision. Finally, for energies greater than 100 MeV/A, the main reaction channel is characterized by the formation of a highly-excited separate fragment (fireball) produced during the overlap between the projectile and the target. The data set studied was from an experiment designed to characterize the projectile-like products of the {sup 27}Al, {sup nat}Cu, {sup 139}La, and {sup 165}Ho reactions at E/A = 50 MeV, which was performed at the Michigan State University Super Cyclotron Laboratory (MSU-NSCL). The Maryland Forward Array (MFA), was used to measure projectile-like fragments in coincidence with target-like fragments and light-charge particles in the MSU 4{pi} detector.

  15. Spin ejector

    DOEpatents

    Andersen, John A.; Flanigan, John J.; Kindley, Robert J.

    1978-01-01

    The disclosure relates to an apparatus for spin ejecting a body having a flat plate base containing bosses. The apparatus has a base plate and a main ejection shaft extending perpendicularly from the base plate. A compressible cylindrical spring is disposed about the shaft. Bearings are located between the shaft and the spring. A housing containing a helical aperture releasably engages the base plate and surrounds the shaft bearings and the spring. A piston having an aperture follower disposed in the housing aperture is seated on the spring and is guided by the shaft and the aperture. The spring is compressed and when released causes the piston to spin eject the body.

  16. Phosphatation of zeolite H-ZSM-5: a combined microscopy and spectroscopy study.

    PubMed

    van der Bij, Hendrik E; Aramburo, Luis R; Arstad, Bjørnar; Dynes, James J; Wang, Jian; Weckhuysen, Bert M

    2014-02-01

    A variety of phosphated zeolite H-ZSM-5 samples are investigated by using a combination of Fourier transfer infrared (FTIR) spectroscopy, single pulse (27)Al, (29)Si, (31)P, (1)H-(31)P cross polarization (CP), (27)Al-(31)P CP, and (27)Al 3Q magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, scanning transmission X-ray microscopy (STXM) and N2 physisorption. This approach leads to insights into the physicochemical processes that take place during phosphatation. Direct phosphatation of H-ZSM-5 promotes zeolite aggregation, as phosphorus does not penetrate deep into the zeolite material and is mostly found on and close to the outer surface of the zeolite, acting as a glue. Phosphatation of pre-steamed H-ZSM-5 gives rise to the formation of a crystalline tridymite AlPO4 phase, which is found in the mesopores of dealuminated H-ZSM-5. Framework aluminum species interacting with phosphorus are not affected by hydrothermal treatment. Dealuminated H-ZSM-5, containing AlPO4 , retains relatively more framework Al atoms and acid sites during hydrothermal treatment than directly phosphated H-ZSM-5.

  17. Synthesis of mesoporous zeolite single crystals with cheap porogens

    NASA Astrophysics Data System (ADS)

    Tao, Haixiang; Li, Changlin; Ren, Jiawen; Wang, Yanqin; Lu, Guanzhong

    2011-07-01

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, 27Al magic angle spinning nuclear magnetic resonance ( 27Al MAS NMR), temperature-programmed desorption of ammonia (NH 3-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. 27Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites.

  18. Selective inversion of 1H resonances in solid-state nuclear magnetic resonance: Use of double-DANTE pulse sequence

    NASA Astrophysics Data System (ADS)

    Mithu, Venus Singh; Tan, Kong Ooi; Madhu, P. K.

    2013-12-01

    We here present a method based on DANTE pulses and homonuclear dipolar decoupling scheme to invert selectively any desired resonance in a proton spin system under magic-angle spinning. Experimental results are reported on a sample of L-histidine·HCl·H2O at magic-angle spinning frequencies of 15 and 60 kHz. The results are also substantiated numerically.

  19. Helium-cooling and -spinning dynamic nuclear polarization for sensitivity-enhanced solid-state NMR at 14 T and 30 K

    NASA Astrophysics Data System (ADS)

    Matsuki, Yoh; Ueda, Keisuke; Idehara, Toshitaka; Ikeda, Ryosuke; Ogawa, Isamu; Nakamura, Shinji; Toda, Mitsuru; Anai, Takahiro; Fujiwara, Toshimichi

    2012-12-01

    We describe a 1H polarization enhancement via dynamic nuclear polarization (DNP) at very low sample temperature T ≈ 30 K under magic-angle spinning (MAS) conditions for sensitivity-enhanced solid-state NMR measurement. Experiments were conducted at a high external field strength of 14.1 T. For MAS DNP experiments at T ≪ 90 K, a new probe system using cold helium gas for both sample-cooling and -spinning was developed. The novel system can sustain a low sample temperature between 30 and 90 K for a period of time >10 h under MAS at νR ≈ 3 kHz with liquid He consumption of ≈6 L/h. As a microwave source, we employed a high-power, continuously frequency-tunable gyrotron. At T ≈ 34 K, 1H DNP enhancement factors of 47 and 23 were observed with and without MAS, respectively. On the basis of these observations, a discussion on the total NMR sensitivity that takes into account the effect of sample temperature and external field strength used in DNP experiments is presented. It was determined that the use of low sample temperature and high external field is generally rewarding for the total sensitivity, in spite of the slower polarization buildup at lower temperature and lower DNP efficiency at higher field. These findings highlight the potential of the current continuous-wave DNP technique also at very high field conditions suitable to analyze large and complex systems, such as biological macromolecules.

  20. spin pumping occurred under nonlinear spin precession

    NASA Astrophysics Data System (ADS)

    Zhou, Hengan; Fan, Xiaolong; Ma, Li; Zhou, Shiming; Xue, Desheng

    Spin pumping occurs when a pure-spin current is injected into a normal metal thin layer by an adjacent ferromagnetic metal layer undergoing ferromagnetic resonance, which can be understood as the inverse effect of spin torque, and gives access to the physics of magnetization dynamics and damping. An interesting question is that whether spin pumping occurring under nonlinear spin dynamics would differ from linear case. It is known that nonlinear spin dynamics differ distinctly from linear response, a variety of amplitude dependent nonlinear effect would present. It has been found that for spin precession angle above a few degrees, nonlinear damping term would present and dominated the dynamic energy/spin-moment dissipation. Since spin pumping are closely related to the damping process, it is interesting to ask whether the nonlinear damping term could be involved in spin pumping process. We studied the spin pumping effect occurring under nonlinear spin precession. A device which is a Pt/YIG microstrip coupled with coplanar waveguide was used. High power excitation resulted in spin precession entering in a nonlinear regime. Foldover resonance lineshape and nonlinear damping have been observed. Based on those nonlinear effects, we determined the values of the precession cone angles, and the maximum cone angle can reach a values as high as 21.5 degrees. We found that even in nonlinear regime, spin pumping is still linear, which means the nonlinear damping and foldover would not affect spin pumping process.

  1. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  2. Advanced NMR characterization of zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Welsh, L. B.

    1985-04-01

    The program discussed in this report is a two-year two-phase joint UOP-University of Illinois study of the application of improved high resolution solid state nuclear magnetic resonance (NMR) techniques to the characterization of zeolite catalysts. During the first phase of this program very pure, and in some cases isotopically enriched faujasites will be prepared and studied by magic angle sample spinning NMR (MASS NMR) and variable engine sample spinning NMR (VASS NMR) on 500 and 360 MHz (proton frequency) NMR spectrometers. The NMR techniques that will be emphasized are the measurement and analysis of the (17)O NMR properties, (27)Al NMR intensity quantitation, and (27)Al and (29)Si NMR relaxation rates. During the second phase of this program these NMR techniques will be used to study the effects of impurity concentration, dealumination treatments and cation exchange on the NMR properties of faujasites. The initial emphasis of this program during Phase I is on the preparation and measurement of the NMR properties of (17)O enriched Na-Y faujasties.

  3. Pulse FT NMR of non-equilibrium states of half-integer spin quadrupolar nuclei in single crystals.

    PubMed

    Nakashima, Thomas T; Harris, Kristopher J; Wasylishen, Roderick E

    2010-02-01

    For quadrupolar nuclei with spin quantum numbers equal to 3/2, 5/2 and 7/2, the intensities of the NMR transitions in a single crystal are examined as a function of the rf excitation flip angle. Single-quantum NMR intensities are calculated using density matrix theory beginning under various non-equilibrium conditions and are compared with those determined experimentally. As a representative spin-3/2 system, the flip-angle dependence of the (23)Na NMR intensities of a single crystal of NaNO(3) was investigated beginning with the inversion of the populations associated with one of the satellite transitions. Subsequently, the populations of both satellite transitions were inverted using highly frequency-selective hyperbolic secant pulses. Calculated and experimental intensities are in good agreement. As an example of a spin-5/2 system, the flip-angle dependence of the (27)Al NMR transition intensities was determined using a single crystal of sapphire, Al(2)O(3), starting under different nuclear spin population conditions. The experimental trends mimicked those predicted by the density matrix calculations but the agreement was not as good as for the spin-3/2 case. Some SIMPSON simulations were also carried out to confirm the results generated by our density matrix calculations. The theoretical flip-angle behavior of the NMR transition intensities obtained from a spin-7/2 spin system is also discussed.

  4. Spin Relaxation and Spin Transport in Graphene

    NASA Astrophysics Data System (ADS)

    Wu, M. W.

    2012-02-01

    In this talk we are going to present our theoretical investigations on spin dynamics of graphene under various conditions based on a fully microscopic kinetic-spin-Bloch-equation approach [1]. We manage to nail down the solo spin relaxation mechanism of graphene in measurements from two leading groups, one in US and one in the Netherland. Many novel effects of the electron-electron Coulomb interaction on spin relaxation in graphene are addressed. Our theory can have nice agreement with experimental data.[4pt] [1] M. W. Wu, J. H. Jiang, and M. Q. Weng, ``Spin dynamics in semiconductors,'' Phys. Rep. 493, 61 (2010).

  5. Spin Liquid Condensate of Spinful Bosons

    NASA Astrophysics Data System (ADS)

    Lian, Biao; Zhang, Shoucheng

    2015-03-01

    We introduce the concept of a bosonic spin liquid condensate (SLC), where spinful bosons in a lattice form a zero-temperature spin disordered charge condensate that preserves the spin rotation symmetry, but breaks the U(1) symmetry due to a spinless order parameter with charge one. It has an energy gap to all the spin excitations. We show that such SLC states can be realized in a system of spin S >= 2 bosons. In particular, we analyze the SLC phase diagram in the spin 2 case using a mean-field variational wave function method. We show there is a direct analogy between the SLC and the resonating-valence-bond (RVB) state. The existence of SLC reveals the possible existence of a more general new class of superfluid phases in a lattice.

  6. Spin-Liquid Condensate of Spinful Bosons

    NASA Astrophysics Data System (ADS)

    Lian, Biao; Zhang, Shoucheng

    2014-08-01

    We introduce the concept of a bosonic spin liquid condensate (SLC), where spinful bosons in a lattice form a zero-temperature spin disordered charge condensate that preserves the spin rotation symmetry, but breaks the U(1) symmetry due to a spinless order parameter with charge one. It has an energy gap to all the spin excitations. We show that such SLC states can be realized in a system of spin S ≥2 bosons. In particular, we analyze the SLC phase diagram in the spin 2 case using a mean-field variational wave function method. We show there is a direct analogy between the SLC and the resonating-valence-bond state.

  7. Ballistic spin resonance.

    PubMed

    Frolov, S M; Lüscher, S; Yu, W; Ren, Y; Folk, J A; Wegscheider, W

    2009-04-16

    The phenomenon of spin resonance has had far-reaching influence since its discovery 70 years ago. Electron spin resonance driven by high-frequency magnetic fields has enhanced our understanding of quantum mechanics, and finds application in fields as diverse as medicine and quantum information. Spin resonance can also be induced by high-frequency electric fields in materials with a spin-orbit interaction; the oscillation of the electrons creates a momentum-dependent effective magnetic field acting on the electron spin. Here we report electron spin resonance due to a spin-orbit interaction that does not require external driving fields. The effect, which we term ballistic spin resonance, is driven by the free motion of electrons that bounce at frequencies of tens of gigahertz in micrometre-scale channels of a two-dimensional electron gas. This is a frequency range that is experimentally challenging to access in spin resonance, and especially difficult on a chip. The resonance is manifest in electrical measurements of pure spin currents-we see a strong suppression of spin relaxation length when the oscillating spin-orbit field is in resonance with spin precession in a static magnetic field. These findings illustrate how the spin-orbit interaction can be harnessed for spin manipulation in a spintronic circuit, and point the way to gate-tunable coherent spin rotations in ballistic nanostructures without external alternating current fields. PMID:19370029

  8. RHIC SPIN FLIPPER

    SciTech Connect

    BAI,M.; ROSER, T.

    2007-06-25

    This paper proposes a new design of spin flipper for RHIC to obtain full spin flip with the spin tune staying at half integer. The traditional technique of using an rf dipole or solenoid as spin flipper to achieve full spin flip in the presence of full Siberian snake requires one to change the snake configuration to move the spin tune away from half integer. This is not practical for an operational high energy polarized proton collider like RHIC where beam lifetime is sensitive to small betatron tune change. The design of the new spin flipper as well as numerical simulations are presented.

  9. Magnons, Spin Current and Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  10. Population and coherence transfer induced by double frequency sweeps in half-integer quadrupolar spin systems.

    PubMed

    Iuga, D; Schäfer, H; Verhagen, R; Kentgens, A P

    2000-12-01

    We have recently shown that the sensitivity of single- and multiple-quantum NMR experiments of half-integer (N/2) quadrupolar nuclei can be increased significantly by introducing so-called double frequency sweeps (DFS) in various pulse schemes. These sweeps consist of two sidebands generated by an amplitude modulation of the RF carrier. Using a time-dependent amplitude modulation the sidebands can be swept through a certain frequency range. Inspired by the work of Vega and Naor (J. Chem. Phys. 75, 75 (1981)), this is used to manipulate +/-(m - 1) <--> +/-m (3/2 < or = m < or = N/2) satellite transitions in half-integer spin systems simultaneously. For (23)Na (I = 3/2) and (27)Al (I = 5/2) spins in single crystals it proved possible to transfer the populations of the outer +/-m spin levels to the inner +/-1/2 spin levels. A detailed analysis shows that the efficiency of this process is a function of the adiabaticity with which the various spin transitions are passed during the sweep. In powders these sweep parameters have to be optimized to satisfy the appropriate conditions for a maximum of spins in the powder distribution. The effects of sweep rate, sweep range, and RF field strength are investigated both numerically and experimentally. Using a DFS as a preparation period leads to significantly enhanced central transition powder spectra under both static and MAS conditions, compared to single pulse excitation. DFSs prove to be very efficient tools not only for population transfer, but also for coherence transfer. This can be exploited for the multiple- to single-quantum transfer in MQMAS experiments. It is demonstrated, theoretically and experimentally, that DFSs are capable of transferring both quintuple-quantum and triple-quantum coherence into single-quantum coherence in I = 5/2 spin systems. This leads to a significant enhancement in signal-to-noise ratio and strongly reduces the RF power requirement compared to pulsed MQMAS experiments, thus extending their

  11. Spin Hall effect devices.

    PubMed

    Jungwirth, Tomas; Wunderlich, Jörg; Olejník, Kamil

    2012-05-01

    The spin Hall effect is a relativistic spin-orbit coupling phenomenon that can be used to electrically generate or detect spin currents in non-magnetic systems. Here we review the experimental results that, since the first experimental observation of the spin Hall effect less than 10 years ago, have established the basic physical understanding of the phenomenon, and the role that several of the spin Hall devices have had in the demonstration of spintronic functionalities and physical phenomena. We have attempted to organize the experiments in a chronological order, while simultaneously dividing the Review into sections on semiconductor or metal spin Hall devices, and on optical or electrical spin Hall experiments. The spin Hall device studies are placed in a broader context of the field of spin injection, manipulation, and detection in non-magnetic conductors.

  12. Spin Rotation of Formalism for Spin Tracking

    SciTech Connect

    Luccio,A.

    2008-02-01

    The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.

  13. Multinuclear high-resolution NMR study of compounds from the ternary system NaF-CaF2-AlF3: from determination to modeling of NMR parameters.

    PubMed

    Martineau, C; Body, M; Legein, C; Silly, G; Buzaré, J-Y; Fayon, F

    2006-12-11

    27Al and 23Na NMR satellite transition spectroscopy and 3Q magic-angle-spinning spectra are recorded for three compounds from the ternary NaF-CaF2-AlF3 system. The quadrupolar frequency nuQ, asymmetry parameter etaQ, and isotropic chemical shift deltaiso are extracted from the spectrum reconstructions for five aluminum and four sodium sites. The quadrupolar parameters are calculated using the LAPW-based ab initio code WIEN2k. It is necessary to perform a structure optimization of all compounds to ensure a fine agreement between experimental and calculated parameters. By a comparison of experimental and calculated values, an attribution of all of the 27Al and 23Na NMR lines to the crystallographic sites is achieved. High-speed 19F NMR MAS spectra are recorded and reconstructed for the same compounds, leading to the determination of 18 isotropic chemical shifts. The superposition model developed by Bureau et al. is used, allowing a bijective assignment of the 19F NMR lines to the crystallographic sites. PMID:17140229

  14. Linking high-pressure structure and density of albite liquid near the glass transition

    NASA Astrophysics Data System (ADS)

    Gaudio, Sarah J.; Lesher, Charles E.; Maekawa, Hideki; Sen, Sabyasachi

    2015-05-01

    The pressure-induced densification of NaAlSi3O8 liquid is determined following annealing immediately above the glass transition and upon quenching from superliquidus temperatures. High-field 27Al magic-angle-spinning NMR spectroscopy is used to investigate the corresponding changes in Al coordination environment that accompany the densification. We show that samples synthesized by quenching from superliquidus temperatures record lower fictive pressures (Pf) than annealed samples at the same nominal load and have lower recovered densities and average Al coordination number. Accounting for differences in Pf brings melt-quench and annealed samples into excellent agreement. The proportion of [5]Al increases from ∼3% to 29% and [6]Al from 0% to 8% between 1.8 and 7.2 GPa. The production of high-coordinated Al ([5]Al + [6]Al) with pressure is most dramatic above 3 GPa. Changes in network topology and structural disorder as revealed by the high-field 27Al NMR spectra provide new insights into the structural mechanisms of densification of the albite liquid. We posit that it is an overall weakening of the network structure on compression that is largely responsible for the anomalous pressure dependence of the transport properties observed for this liquid below ∼5 GPa.

  15. The Stoichiometry of Synthetic Alunite as a Function of Hydrothermal Aging Investigated by Solid-State NMR Spectroscopy, Powder X-ray Diffraction and Infrared Spectroscopy

    SciTech Connect

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-05-01

    The stoichiometry of a series of synthetic alunite [nominally KAl3(SO4)2(OH)6] samples prepared by hydrothermal methods as a function of reaction time (1–31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time. The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7–10 % impurities in the samples.

  16. Structural Investigation of Zn(II) Insertion in Bayerite, an Aluminum Hydroxide.

    PubMed

    Pushparaj, Suraj Shiv Charan; Jensen, Nicholai Daugaard; Forano, Claude; Rees, Gregory J; Prevot, Vanessa; Hanna, John V; Ravnsbæk, Dorthe B; Bjerring, Morten; Nielsen, Ulla Gro

    2016-09-19

    Bayerite was treated under hydrothermal conditions (120, 130, 140, and 150 °C) to prepare a series of layered double hydroxides (LDHs) with an ideal composition of ZnAl4(OH)12(SO4)0.5·nH2O (ZnAl4-LDHs). These products were investigated by both bulk techniques (powder X-ray diffraction (PXRD), transmission electron microscopy, and elemental analysis) and atomic-level techniques ((1)H and (27)Al solid-state NMR, IR, and Raman spectroscopy) to gain a detailed insight into the structure of ZnAl4-LDHs and sample composition. Four structural models (one stoichiometric and three different defect models) were investigated by Rietveld refinement of the PXRD data. These were assessed using the information obtained from other characterization techniques, which favored the ideal (nondefect) structural model for ZnAl4-LDH, as, for example, (27)Al magic-angle spinning NMR showed that excess Al was present as amorphous bayerite (Al(OH)3) and pseudoboehmite (AlOOH). Moreover, no evidence of cation mixing, that is, partial substitution of Zn(II) onto any of four Al sites, was observed. Altogether this study highlights the challenges involved to synthesize pure ZnAl4-LDHs and the necessity to use complementary techniques such as PXRD, elemental analysis, and solid-state NMR for the characterization of the local and extended structure of ZnAl4-LDHs. PMID:27598036

  17. Structural Investigation of Zn(II) Insertion in Bayerite, an Aluminum Hydroxide.

    PubMed

    Pushparaj, Suraj Shiv Charan; Jensen, Nicholai Daugaard; Forano, Claude; Rees, Gregory J; Prevot, Vanessa; Hanna, John V; Ravnsbæk, Dorthe B; Bjerring, Morten; Nielsen, Ulla Gro

    2016-09-19

    Bayerite was treated under hydrothermal conditions (120, 130, 140, and 150 °C) to prepare a series of layered double hydroxides (LDHs) with an ideal composition of ZnAl4(OH)12(SO4)0.5·nH2O (ZnAl4-LDHs). These products were investigated by both bulk techniques (powder X-ray diffraction (PXRD), transmission electron microscopy, and elemental analysis) and atomic-level techniques ((1)H and (27)Al solid-state NMR, IR, and Raman spectroscopy) to gain a detailed insight into the structure of ZnAl4-LDHs and sample composition. Four structural models (one stoichiometric and three different defect models) were investigated by Rietveld refinement of the PXRD data. These were assessed using the information obtained from other characterization techniques, which favored the ideal (nondefect) structural model for ZnAl4-LDH, as, for example, (27)Al magic-angle spinning NMR showed that excess Al was present as amorphous bayerite (Al(OH)3) and pseudoboehmite (AlOOH). Moreover, no evidence of cation mixing, that is, partial substitution of Zn(II) onto any of four Al sites, was observed. Altogether this study highlights the challenges involved to synthesize pure ZnAl4-LDHs and the necessity to use complementary techniques such as PXRD, elemental analysis, and solid-state NMR for the characterization of the local and extended structure of ZnAl4-LDHs.

  18. Spin Transport by Collective Spin Excitations

    NASA Astrophysics Data System (ADS)

    Hammel, P. Chris

    We report studies of angular momentum transport in insulating materials. Our measurements reveal efficient spin pumping from high wavevector k spin waves in thin film Y3Fe5O12 (YIG): spin pumping is independent of wavevector up to k ~ 20 μm-1. Optical detection of YIG FMR by NV centers in diamond reveals a role for spin waves in this insulator-to-insulator spin transfer process. Spin transport is typically suppressed by insulating barriers, but we find that fluctuating antiferromagnetic correlations enable efficient spin transport at nm-scale thicknesses in insulating antiferromagnets, even in the absence of long-range order, and that the spin decay length increases with the strength of the antiferromagnetic correlations. This research is supported by the U.S. DOE through Grants DE-FG02-03ER46054 and DE-SC0001304, by the NSF MRSEC program through Grant No. 1420451 and by the Army Research Office through Grant W911NF0910147.

  19. Spin structure functions

    SciTech Connect

    Jian-ping Chen, Alexandre Deur, Sebastian Kuhn, Zein-eddine Meziani

    2011-06-01

    Spin-dependent observables have been a powerful tool to probe the internal structure of the nucleon and to understand the dynamics of the strong interaction. Experiments involving spin degrees of freedom have often brought out surprises and puzzles. The so-called "spin crisis" in the 1980s revealed the limitation of naive quark-parton models and led to intensive worldwide efforts, both experimental and theoretical, to understand the nucleon spin structure. With high intensity and high polarization of both the electron beam and targets, Jefferson Lab has the world's highest polarized luminosity and the best figure-of-merit for precision spin structure measurements. It has made a strong impact in this subfield of research. This chapter will highlight Jefferson Lab's unique contributions in the measurements of valence quark spin distributions, in the moments of spin structure functions at low to intermediate Q2, and in the transverse spin structure.

  20. Spinning Eggs and Ballerinas

    ERIC Educational Resources Information Center

    Cross, Rod

    2013-01-01

    Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…

  1. The Steady Spin

    NASA Technical Reports Server (NTRS)

    Fuchs, Richard; Schmidt, Wilhelm

    1931-01-01

    With the object of further clarifying the problem of spinning, the equilibrium of the forces and moments acting on an airplane is discussed in light of the most recent test data. Convinced that in a spin the flight attitude by only small angles of yaw is more or less completely steady, the study is primarily devoted to an investigation of steady spin with no side slip. At small angles, wholly arbitrary and perfectly steady spins may be forced, depending on the type of control displacements. But at large angles only very steep and only "approaching steady" spins are possible, no matter what the control displacements.

  2. Inverse spin Hall effect by spin injection

    NASA Astrophysics Data System (ADS)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  3. Kagome spin ice

    NASA Astrophysics Data System (ADS)

    Mellado, Paula

    Spin ice in magnetic pyrochlore oxides is a peculiar magnetic state. Like ordinary water ice, these materials are in apparent violation with the third law of thermodynamics, which dictates that the entropy of a system in thermal equilibrium vanishes as its temperature approaches absolute zero. In ice, a "zero-point" entropy is retained down to low temperatures thanks to a high number of low-energy positions of hydrogen ions associated with the Bernal-Fowler ice-rules. Spins in pyrochlore oxides Ho2Ti 2O7 and Dy2Ti2O7 exhibit a similar degeneracy of ground states and thus also have a sizable zero-point entropy. A recent discovery of excitations carrying magnetic charges in pyrochlore spin ice adds another interesting dimension to these magnets. This thesis is devoted to a theoretical study of a two-dimensional version of spin ice whose spins reside on kagome, a lattice of corner-sharing triangles. It covers two aspects of this frustrated classical spin system: the dynamics of artificial spin ice in a network of magnetic nanowires and the thermodynamics of crystalline spin ice. Magnetization dynamics in artificial spin ice is mediated by the emission, propagation and absorption of domain walls in magnetic nanowires. The dynamics shows signs of self-organized behavior such as avalanches. The theoretical model compares favorably to recent experiments. The thermodynamics of the microscopic version of spin ice on kagome is examined through analytical calculations and numerical simulations. The results show that, in addition to the high-temperature paramagnetic phase and the low-temperature phase with magnetic order, spin ice on kagome may have an intermediate phase with fluctuating spins and ordered magnetic charges. This work is concluded with a calculation of the entropy of kagome spin ice at zero temperature when one of the sublattices is pinned by an applied magnetic field and the system breaks up into independent spin chains, a case of dimensional reduction.

  4. Spin accumulation in the extrinsic spin Hall effect

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Fabian, J.; Žutić, I.; Das Sarma, S.

    2005-12-01

    The drift-diffusion formalism for spin-polarized carrier transport in semiconductors is generalized to include spin-orbit coupling. The theory is applied to treat the extrinsic spin Hall effect using realistic boundary conditions. It is shown that carrier and spin-diffusion lengths are modified by the presence of spin-orbit coupling and that spin accumulation due to the extrinsic spin Hall effect is strongly and qualitatively influenced by boundary conditions. Analytical formulas for the spin-dependent carrier recombination rates and inhomogeneous spin densities and currents are presented.

  5. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  6. Spin caloritronics in graphene

    SciTech Connect

    Ghosh, Angsula; Frota, H. O.

    2015-06-14

    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  7. Spin caloritronics in graphene

    NASA Astrophysics Data System (ADS)

    Frota, H. O.; Ghosh, Angsula

    2014-08-01

    Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.

  8. Picosecond Spin Caloritronics

    NASA Astrophysics Data System (ADS)

    Cahill, David G.

    The coupling of spin and heat, i.e., spin caloritronics, gives rise to new physical phenomena in nanoscale spin devices and new ways to manipulate local magnetization. Our work in this field takes advantage of recent advances in the measurement and understanding of heat transport at the nanoscale using ultrafast lasers. We use a picosecond duration pump laser pulses as a source of heat and picosecond duration probe laser pulses to detect changes in temperature, spin accumulation, and spin transfer torque using a combination of time-domain thermoreflectance and time-resolved magneto-optic Kerr effect Our pump-probe optical methods enable us to change the temperature of ferromagnetic layers on a picosecond time-scale and generate enormous heat fluxes on the order of 100 GW m-2 that persist for ~ 30 ps. Thermally-driven ultrafast demagnetization of a perpendicular ferromagnet leads to spin accumulation in a normal metal and spin transfer torque in an in-plane ferromagnet. The data are well described by models of spin generation and transport based on differences and gradients of thermodynamic parameters. The spin-dependent Seebeck effect of a perpendicular ferromagnetic layer converts a heat current into spin current, which in turn can be used to exert a spin transfer torque (STT) on a second ferromagnetic layer with in-plane magnetization. Using a [Co,Ni] multilayer as the source of spin, an energy fluence of ~ 4 J m-2 creates thermal STT sufficient to induce ~ 1 % tilting of the magnetization of a 2 nm-thick CoFeB layer.

  9. Spin coating apparatus

    DOEpatents

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  10. Rockets for spin recovery

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.

    1980-01-01

    The potential effectiveness of rockets as an auxiliary means for an aircraft to effect recovery from spins was investigated. The advances in rocket technology produced by the space effort suggested that currently available systems might obviate many of the problems encountered in earlier rocket systems. A modern fighter configuration known to exhibit a flat spin mode was selected. An analytical study was made of the thrust requirements for a rocket spin recovery system for the subject configuration. These results were then applied to a preliminary systems study of rocket components appropriate to the problem. Subsequent spin tunnel tests were run to evaluate the analytical results.

  11. Solid-State NMR Identification and Quantification of Newly Formed Aluminosilicate Phases in Weathered Kaolinite Systems

    SciTech Connect

    Crosson, Garry S.; Choi, Sunkyung; Chorover, Jon; Amistadi, Mary K.; O'Day, Peggy A.; Mueller, Karl T.

    2006-01-19

    The weathering of a specimen kaolinite clay was studied over the course of 369 d via solid-state 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and high-field 27Al MAS NMR. The chosen baseline solution conditions (0.05 mol kg-1 of Al, 2 mol kg-1 of Na+, 1 mol kg-1 of NO3 -, 1 mol kg-1 of OH-, and pH ~13.8) approximate those of solutions leaking from waste tanks at the Hanford Site in Richland, WA. Nonradioactive Cs and Sr cations were added to this synthetic tank waste leachate (STWL) solution at concentrations of 10-3, 10-4, and 10-5 molal (m) to represent their radionuclide counterparts. The transformations of silicon- and aluminum-containing solid phase species were monitored quantitatively by using NMR spectroscopy, with the resulting spectra directly reporting the influence of the initial Cs and Sr on formation and transformation of the neo-formed solids. At the lowest concentration of Cs and Sr employed (10-5 m in each cation) peaks consistent with the formation of zeolite-like minerals were detected via 29Si and 27Al MAS NMR as early as 33 d. At concentrations of 10-3 m in each cation, new silicon species are not detected until 93 d, although neophases containing four-coordinate aluminum were detectable at earlier reaction times via 27Al MAS NMR. At the highest magnetic field strengths employed in this NMR study, deconvolutions of resonances detected in the tetrahedral region of the 27Al MAS spectra yielded multiple components, indicating the existence of at least four new aluminum-containing phases. Two of these phases are identified as sodalite and cancrinite through comparison with diffuse-reflectance infrared (DRIFT) spectra and powder X-ray diffraction (XRD) results, while a third phase may correlate with a previously detected aluminum-rich chabazite phase. All measurable solid reaction products have been quantified via their 27Al MAS resonances acquired at high magnetic field strengths (17.6 T), and the quantitative

  12. Effect of spin rotation coupling on spin transport

    SciTech Connect

    Chowdhury, Debashree Basu, B.

    2013-12-15

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.

  13. Synthesis of mesoporous zeolite single crystals with cheap porogens

    SciTech Connect

    Tao Haixiang; Li Changlin; Ren Jiawen; Wang Yanqin; Lu Guanzhong

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.

  14. Electron spin susceptibility of superconductors

    SciTech Connect

    Levitov, L.S.; Nazarov, Y.V.; Eliashberg, G.M.

    1985-03-10

    The effect of spin polarization due to the Meissner currents on the electron spin susceptibility of a superconductor is studied. This effect accounts for a susceptibility considerably stronger than that of a normal metal. The spin distribution is discussed.

  15. Spin Waves in Quasiequilibrium Spin Systems

    SciTech Connect

    Bedell, Kevin S.; Dahal, Hari P.

    2006-07-28

    Using the Landau Fermi liquid theory we discovered a new propagating transverse spin wave in a paramagnetic system which is driven slightly out of equilibrium without applying an external magnetic field. We find a gapless mode which describes the uniform precession of the magnetization in the absence of a magnetic field. We also find a gapped mode associated with the precession of the spin current around the internal field. The gapless mode has a quadratic dispersion leading to a T{sup 3/2} contribution to the specific heat. These modes significantly contribute to the dynamic structure function.

  16. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  17. Spin coating of electrolytes

    DOEpatents

    Stetter, Joseph R.; Maclay, G. Jordan

    1989-01-01

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  18. Coherent spin-networks

    SciTech Connect

    Bianchi, Eugenio; Magliaro, Elena; Perini, Claudio

    2010-07-15

    In this paper we discuss a proposal of coherent states for loop quantum gravity. These states are labeled by a point in the phase space of general relativity as captured by a spin-network graph. They are defined as the gauge-invariant projection of a product over links of Hall's heat kernels for the cotangent bundle of SU(2). The labels of the state are written in terms of two unit vectors, a spin and an angle for each link of the graph. The heat-kernel time is chosen to be a function of the spin. These labels are the ones used in the spin-foam setting and admit a clear geometric interpretation. Moreover, the set of labels per link can be written as an element of SL(2,C). These states coincide with Thiemann's coherent states with the area operator as complexifier. We study the properties of semiclassicality of these states and show that, for large spins, they reproduce a superposition over spins of spin-networks with nodes labeled by Livine-Speziale coherent intertwiners. Moreover, the weight associated to spins on links turns out to be given by a Gaussian times a phase as originally proposed by Rovelli.

  19. Sparkling and Spinning Words.

    ERIC Educational Resources Information Center

    Carlson, Ruth Kearney

    1964-01-01

    Teachers should foster in children's writing the use of words with "sparkle" and "spin"--"sparkle" implying brightness and vitality, "spin" connoting industry, patience, and painstaking work. By providing creative listening experiences with good children's or adult literature, the teacher can encourage students to broaden their imaginations and…

  20. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  1. Spin-orbit photonics

    NASA Astrophysics Data System (ADS)

    Cardano, Filippo; Marrucci, Lorenzo

    2015-12-01

    Spin-orbit optical phenomena involve the interaction of the photon spin with the light wave propagation and spatial distribution, mediated by suitable optical media. Here we present a short overview of the emerging photonic applications that rely on such effects.

  2. Single-spin CCD

    NASA Astrophysics Data System (ADS)

    Baart, T. A.; Shafiei, M.; Fujita, T.; Reichl, C.; Wegscheider, W.; Vandersypen, L. M. K.

    2016-04-01

    Spin-based electronics or spintronics relies on the ability to store, transport and manipulate electron spin polarization with great precision. In its ultimate limit, information is stored in the spin state of a single electron, at which point quantum information processing also becomes a possibility. Here, we demonstrate the manipulation, transport and readout of individual electron spins in a linear array of three semiconductor quantum dots. First, we demonstrate single-shot readout of three spins with fidelities of 97% on average, using an approach analogous to the operation of a charge-coupled device (CCD). Next, we perform site-selective control of the three spins, thereby writing the content of each pixel of this ‘single-spin charge-coupled device’. Finally, we show that shuttling an electron back and forth in the array hundreds of times, covering a cumulative distance of 80 μm, has negligible influence on its spin projection. Extrapolating these results to the case of much larger arrays points at a diverse range of potential applications, from quantum information to imaging and sensing.

  3. Spin-labeled polyribonucleotides.

    PubMed Central

    Petrov, A I; Sukhorukov, B I

    1980-01-01

    Poly (U), poly (C) and poly (A) were spin labeled with N-(2,2,5,5-tetramethyl-3-carbonylpyrroline-1-oxyl)-imidazole. This spin label interacts selectively with 2' OH ribose groups of polynucleotides and does not modify the nucleic acid bases. The extent of spin labeling is not dependent upon the nature of the base and is entirely determined by rigidity of the secondary structure of the polynucleotide. The extent of modification for poly (U), poly (C) and poly (A) was 4.2, 1.7 and 1.5 per cent, respectively, the secondary structure of the polynucleotides being practically unchanged. Some physico-chemical properties of the spin-labeled polynucleotides were investigated by ESR spectroscopy. Rotational correlation times of the spin label and activation energy of its motion were calculated. PMID:6253911

  4. Spin-Wave Diode

    NASA Astrophysics Data System (ADS)

    Lan, Jin; Yu, Weichao; Wu, Ruqian; Xiao, Jiang

    2015-10-01

    A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.

  5. Fractionalized spin-wave continuum in kagome spin liquids

    NASA Astrophysics Data System (ADS)

    Mei, Jia-Wei; Wen, Xiao-Gang

    Motivated by spin-wave continuum (SWC) observed in recent neutron scattering experiments in Herbertsmithite, we use Gutzwiller-projected wave functions to study dynamic spin structure factor S (q , ω) of spin liquid states on the kagome lattice. Spin-1 excited states in spin liquids are represented by Gutzwiller-projected two-spinon excited wave functions. We investigate three different spin liquid candidates, spinon Fermi-surface spin liquid (FSL), Dirac spin liquid (DSL) and random-flux spin liquid (RSL). FSL and RSL have low energy peaks in S (q , ω) at K points in the extended magnetic Brillouin zone, in contrast to experiments where low energy peaks are found at M points. There is no obviuos contradiction between DSL and neutron scattering measurements. Besides a fractionalized spin (i.e. spin-1/2), spinons in DSL carry a fractionalized crystal momentum which is potentially detectable in SWC in the neutron scattering measurements.

  6. Synchronization of spin-transfer torque oscillators by spin pumping, inverse spin Hall, and spin Hall effects

    SciTech Connect

    Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo

    2015-02-14

    We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.

  7. Anisotropic spin relaxation in graphene.

    PubMed

    Tombros, N; Tanabe, S; Veligura, A; Jozsa, C; Popinciuc, M; Jonkman, H T; van Wees, B J

    2008-07-25

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin signals at B=0 and B=2 T shows a 20% decrease in spin relaxation time for spins perpendicular to the graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different strengths of the spin-orbit effective fields in the in-plane and out-of-plane directions and discuss the role of the Elliott-Yafet and Dyakonov-Perel mechanisms for spin relaxation. PMID:18764351

  8. Spin-orbit coupling and quantum spin Hall effect for neutral atoms without spin flips.

    PubMed

    Kennedy, Colin J; Siviloglou, Georgios A; Miyake, Hirokazu; Burton, William Cody; Ketterle, Wolfgang

    2013-11-27

    We propose a scheme which realizes spin-orbit coupling and the quantum spin Hall effect for neutral atoms in optical lattices without relying on near resonant laser light to couple different spin states. The spin-orbit coupling is created by modifying the motion of atoms in a spin-dependent way by laser recoil. The spin selectivity is provided by Zeeman shifts created with a magnetic field gradient. Alternatively, a quantum spin Hall Hamiltonian can be created by all-optical means using a period-tripling, spin-dependent superlattice. PMID:24329453

  9. Towards a Compositional SPIN

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Giannakopoulou, Dimitra

    2006-01-01

    This paper discusses our initial experience with introducing automated assume-guarantee verification based on learning in the SPIN tool. We believe that compositional verification techniques such as assume-guarantee reasoning could complement the state-reduction techniques that SPIN already supports, thus increasing the size of systems that SPIN can handle. We present a "light-weight" approach to evaluating the benefits of learning-based assume-guarantee reasoning in the context of SPIN: we turn our previous implementation of learning for the LTSA tool into a main program that externally invokes SPIN to provide the model checking-related answers. Despite its performance overheads (which mandate a future implementation within SPIN itself), this approach provides accurate information about the savings in memory. We have experimented with several versions of learning-based assume guarantee reasoning, including a novel heuristic introduced here for generating component assumptions when their environment is unavailable. We illustrate the benefits of learning-based assume-guarantee reasoning in SPIN through the example of a resource arbiter for a spacecraft. Keywords: assume-guarantee reasoning, model checking, learning.

  10. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  11. Higher spins and holography

    NASA Astrophysics Data System (ADS)

    Kraus, Per; Ross, Simon F.

    2013-05-01

    The principles of quantum mechanics and relativity impose rigid constraints on theories of massless particles with nonzero spin. Indeed, Yang-Mills theory and General Relativity are the unique solution in the case of spin-1 and spin-2. In asymptotically flat spacetime, there are fundamental obstacles to formulating fully consistent interacting theories of particles of spin greater than 2. However, indications are that such theories are just barely possible in asymptotically anti-de Sitter or de Sitter spacetimes, where the non-existence of an S-matrix provides an escape from the theorems restricting theories in Minkowski spacetime. These higher spin gravity theories are therefore of great intrinsic interest, since they, along with supergravity, provide the only known field theories generalizing the local invariance principles of Yang-Mills theory and General Relativity. While work on higher spin gravity goes back several decades, the subject has gained broader appeal in recent years due to its appearance in the AdS/CFT correspondence. In three and four spacetime dimensions, there exist duality proposals linking higher spin gravity theories to specific conformal field theories living in two and three dimensions respectively. The enlarged symmetry algebra of the conformal field theories renders them exactly soluble, which makes them excellent laboratories for understanding in detail the holographic mechanism behind AdS/CFT duality. Steady progress is also being made on better understanding the space of possible higher spin gravity theories and their physical content. This work includes classifying the possible field multiplets and their interactions, constructing exact solutions of the nonlinear field equations, and relating higher spin theories to string theory. A full understanding of these theories will involve coming to grips with the novel symmetry principles that enlarge those of General Relativity and Yang-Mills theory, and one can hope that this will provide

  12. SPINning parallel systems software.

    SciTech Connect

    Matlin, O.S.; Lusk, E.; McCune, W.

    2002-03-15

    We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin.

  13. Quantum spin Hall effect.

    PubMed

    Bernevig, B Andrei; Zhang, Shou-Cheng

    2006-03-17

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. The existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2(e/4pi). The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  14. Quantum Spin Hall Effect

    SciTech Connect

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  15. Spin tracking in RHIC

    SciTech Connect

    Luccio, A.U.; Katayama, T.; Wu, H.

    1997-07-01

    In the acceleration of polarized protons in RHIC many spin depolarizing resonances are encountered. Helical Siberian snakes will be used to overcome depolarizing effects. The behavior of polarization can be studied by numerical tracking in a model accelerator. That allows one to check the strength of the resonances, to study the effect of snakes, to find safe lattice tune regions, and finally to study the operation of special devices like spin flippers. In this paper the authors describe numerical spin tracking. Results show that, for the design corrected distorted orbit and the design beam emittance, the polarization of the beam will be preserved in the whole range of proton energies in RHIC.

  16. Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited)

    SciTech Connect

    Zhang, Wei Jungfleisch, Matthias B.; Jiang, Wanjun; Fradin, Frank Y.; Pearson, John E.; Hoffmann, Axel; Sklenar, Joseph; Ketterson, John B.

    2015-05-07

    Quantification of spin-charge interconversion has become increasingly important in the fast-developing field of spin-orbitronics. Pure spin current generated by spin pumping acts as a sensitive probe for many bulk and interface spin-orbit effects, which has been indispensable for the discovery of many promising new spin-orbit materials. We apply spin pumping and inverse spin Hall effect experiments, as a useful metrology, and study spin-orbit effects in a variety of metals and metal interfaces. We quantify the spin Hall effects in Ir and W using the conventional bilayer structures and discuss the self-induced voltage in a single layer of ferromagnetic permalloy. Finally, we extend our discussions to multilayer structures and quantitatively reveal the spin current flow in two consecutive normal metal layers.

  17. Spin waves in a persistent spin-current Fermi liquid

    SciTech Connect

    Feldmann, J. D.; Bedell, K. S.

    2010-06-15

    We report two theoretical results for transverse spin waves, which arise in a system with a persistent spin current. Using Fermi liquid theory, we introduce a spin current in the ground state of a polarized or unpolarized Fermi liquid, and we derive the resultant spin waves using the Landau kinetic equation. The resulting spin waves have a q{sup 1} and q{sup 1/2} dispersion to leading order for the polarized and unpolarized systems, respectively.

  18. Spin transfer torques in the nonlocal lateral spin valve.

    PubMed

    Xu, Yuan; Xia, Ke; Ma, Zhongshui

    2008-06-11

    We report a theoretical study on the spin and electron transport in the nonlocal lateral spin valve with a non-collinear magnetic configuration. The nonlocal magnetoresistance, defined as the voltage difference on the detection lead over the injected current, is derived analytically. The spin transfer torques on the detection lead are calculated. It is found that spin transfer torques are symmetrical for parallel and antiparallel magnetic configurations, in contrast to that in a conventional sandwiched spin valve. PMID:21825793

  19. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    SciTech Connect

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  20. Pluto's Spinning Moons

    NASA Video Gallery

    Most inner moons in the solar system keep one face pointed toward their central planet; this animation shows that certainly isn’t the case with the small moons of Pluto, which behave like spinning ...

  1. MMS Spin Test

    NASA Video Gallery

    The four Magnetospheric Multiscale observatories all undergo what's called a spin test, to learn how well the spacecraft are balanced. It also provides information on how well the mass properties o...

  2. The spin deep within

    SciTech Connect

    Stackhouse, S.

    2008-10-08

    The electronic configuration of iron impurities in lower-mantle minerals influences their physical properties, but it is not well constrained. New studies suggest that ferrous iron in silicate phases exists mainly in an intermediate spin state.

  3. Itinerant spin ice

    NASA Astrophysics Data System (ADS)

    Udagawa, Masafumi

    2014-03-01

    Spin ice is a prototypical frustrated magnet defined on a pyrochlore lattice. The ground state of spin ice is described by a simple rule called ``ice rule'': out of four spins on a tetrahedron, two spins point inward, while the other two outward. This simple rule is not sufficient to determine the spin configuration uniquely, but it leaves macroscopic degeneracy in the ground state. Despite the macroscopic degeneracy, however, the ground state is not completely disordered, but it exhibits algebraic spatial correlation, which characterizes this state as ``Coulomb phase'' where various exotic properties, such as monopole excitations and unusual magnetic responses are observed. Given the peculiar spatial correlation, it is interesting to ask what happens if itinerant electrons coexist and interact with spin ice. Indeed, this setting is relevant to several metallic Ir pyrochlore oxides, such as Ln2Ir2O7 (Ln=Pr, Nd), where Ir 5d itinerant electrons interact with Ln 4f localized moments. In these compounds, anomalous transport phenomena have been reported, such as non-monotonic magnetic field dependence of Hall conductivity and low-temperature resistivity upturn. To address these issues, we adopt a spin-ice-type Ising Kondo lattice model on a pyrochlore lattice, and solve this model by applying the cluster dynamical mean-field theory and the perturbation expansion in terms of the spin-electron coupling. As a result, we found that (i) the resistivity shows a minimum at a characteristic temperature below which spin ice correlation sets in. Moreover, (ii) the Hall conductivity shows anisotropic and non-monotonic magnetic field dependence due to the scattering from the spatially extended spin scalar chirality incorporated in spin ice manifold. These results give unified understanding to the thermodynamic and transport properties of Ln2Ir2O7 (Ln=Pr, Nd), and give new insights into the role of geometrical frustration in itinerant systems. This work has been done in

  4. Spider Spinning for Dummies

    NASA Astrophysics Data System (ADS)

    Bird, Richard S.

    Spider spinning is a snappy name for the problem of listing the ideals of a totally acyclic poset in such a way that each ideal is computed from its predecessor in constant time. Such an algorithm is said to be loopless. Our aim in these lectures is to show how to calculate a loopless algorithm for spider spinning. The calculation makes use of the fundamental laws of functional programming and the real purpose of the exercise is to show these laws in action.

  5. Spin transport in nanoscale spin valves and magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Patibandla, Sridhar

    Spintronics or electronics that utilizes the spin degree of freedom of a single charge carrier (or an ensemble of charge carriers) to store, process, sense or communicate data and information is a rapidly burgeoning field in electronics. In spintronic devices, information is encoded in the spin polarization of a single carrier (or multiple carriers) and the spin(s) of these carrier(s) are manipulated for device operation. This strategy could lead to devices with low power consumption. This dissertation investigates spin transport in one dimensional and two dimensional semiconductors, with a view to applications in spintronic devices. This dissertation is arranged as follows: Chapter 1 gives a detailed introduction and necessary background to understand aspects of spin injection into a semiconductor from a spin polarized source such as a ferromagnet, and spin polarized electron transport in the semiconductor. Chapter 2 discusses the nanoporous alumina technique that is employed to fabricate nanowires and nanowire spin valves for the investigation of spin transport in 1D semiconductors. Chapter 3 investigates the spin transport in quasi one-dimensional spin valves with germanium spacer layer. These spin valves with 50nm in diameter and 1 mum length were fabricated using the porous alumina technique. Spin transport in nanoscale germanium spin valves was demonstrated and the spin relaxation lengths and the spin relaxation times were calculated. Chapter 4 discusses spin transport studies conducted in bulk high purity germanium with a view to comparing spin relaxation mechanisms in low mobility nanowires and high mobility bulk structures. Lateral spin valve with tunnel injectors were employed in this study and the spin transport measurements were conducted at various temperatures. The spin relaxation rates were measured as a function of temperature which allowed us to distinguish between two different mechanisms---D'yakonov-Perel' and Elliott-Yafet---that dominate spin

  6. Spin-current emission governed by nonlinear spin dynamics

    PubMed Central

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-01-01

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712

  7. Quantifying spin Hall angles from spin pumping: experiments and theory.

    PubMed

    Mosendz, O; Pearson, J E; Fradin, F Y; Bauer, G E W; Bader, S D; Hoffmann, A

    2010-01-29

    Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni{80}Fe{20}|normal metal (N) bilayers into a coplanar waveguide. A dc spin current in N can be generated by spin pumping in a controllable way by ferromagnetic resonance. The transverse dc voltage detected along the Ni{80}Fe{20}|N has contributions from both the anisotropic magnetoresistance and the spin Hall effect, which can be distinguished by their symmetries. We developed a theory that accounts for both. In this way, we determine the spin Hall angle quantitatively for Pt, Au, and Mo. This approach can readily be adapted to any conducting material with even very small spin Hall angles.

  8. Designing electron spin textures and spin interferometers by shape deformations

    NASA Astrophysics Data System (ADS)

    Ying, Zu-Jian; Gentile, Paola; Ortix, Carmine; Cuoco, Mario

    2016-08-01

    We demonstrate that the spin orientation of an electron propagating in a one-dimensional nanostructure with Rashba spin-orbit (SO) coupling can be manipulated on demand by changing the geometry of the nanosystem. Shape deformations that result in a nonuniform curvature give rise to complex three-dimensional spin textures in space. We employ the paradigmatic example of an elliptically deformed quantum ring to unveil the way to get an all-geometrical and all-electrical control of the spin orientation. The resulting spin textures exhibit a tunable topological character with windings around the radial and the out-of-plane directions. We show that these topologically nontrivial spin patterns affect the spin interference effect in the deformed ring, thereby resulting in different geometry-driven ballistic electronic transport behaviors. Our results establish a deep connection between electronic spin textures, spin transport, and the nanoscale shape of the system.

  9. Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling.

    PubMed

    Caetano, R A

    2016-01-01

    The use of organic materials in spintronic devices has been seriously considered after recent experimental works have shown unexpected spin-dependent electrical properties. The basis for the confection of any spintronic device is ability of selecting the appropriated spin polarization. In this direction, DNA has been pointed out as a potential candidate for spin selection due to the spin-orbit coupling originating from the electric field generated by accumulated electrical charges along the helix. Here, we demonstrate that spin-orbit coupling is the minimum ingredient necessary to promote a spatial spin separation and the generation of spin-current. We show that the up and down spin components have different velocities that give rise to a spin-current. By using a simple situation where spin-orbit coupling is present, we provide qualitative justifications to our results that clearly point to helicoidal molecules as serious candidates to integrate spintronic devices. PMID:27009836

  10. Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling

    PubMed Central

    Caetano, R. A.

    2016-01-01

    The use of organic materials in spintronic devices has been seriously considered after recent experimental works have shown unexpected spin-dependent electrical properties. The basis for the confection of any spintronic device is ability of selecting the appropriated spin polarization. In this direction, DNA has been pointed out as a potential candidate for spin selection due to the spin-orbit coupling originating from the electric field generated by accumulated electrical charges along the helix. Here, we demonstrate that spin-orbit coupling is the minimum ingredient necessary to promote a spatial spin separation and the generation of spin-current. We show that the up and down spin components have different velocities that give rise to a spin-current. By using a simple situation where spin-orbit coupling is present, we provide qualitative justifications to our results that clearly point to helicoidal molecules as serious candidates to integrate spintronic devices. PMID:27009836

  11. Recent progress on the 27Al+ ion optical clock

    NASA Astrophysics Data System (ADS)

    Xu, Z. T.; Yuan, W. H.; Zeng, X. Y.; Che, H.; Shi, X. H.; Deng, K.; Zhang, J.; Lu, Z. H.

    2016-06-01

    An aluminium ion optical clock is under development at Huazhong University of Science and Technology. The 25Mg+ ion is chosen as logic ion to sympathetically cool an Al+ ion and to detect its states. The 25Mg+ ion is cooled to the motional ground state through Raman sideband cooling as the first step for quantum logic spectroscopy. Ultra-stable lasers for the interrogation of the clock transition are developed. The instability of the laser beat frequency is 1.2 x 10-15 at 1 s, which is close to the thermal noise limit of the reference cavity.

  12. Measurements of nuclear spin dynamics by spin-noise spectroscopy

    SciTech Connect

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S.; Kavokin, K. V.; Glazov, M. M.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Lemaître, A.; Bloch, J.

    2015-06-15

    We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.

  13. Magnetization plateaux in Bethe ansatz solvable spin-S ladders

    NASA Astrophysics Data System (ADS)

    Maslen, M.; Batchelor, M.; de Gier, J.

    2003-07-01

    We examine the properties of the Bethe ansatz solvable two- and three-leg spin-S ladders. These models include Heisenberg rung interactions of arbitrary strength and thus capture the physics of the spin-S Heisenberg ladders for strong rung coupling. The discrete values derived for the magnetization plateaux are seen to fit with the general prediction based on the Lieb-Schultz-Mattis theorem. We examine the magnetic phase diagram of the spin-1 ladder in detail and find an extended magnetization plateau at the fractional value =1/2 in agreement with the experimental observation for the organic polyradical spin-1 ladder compound BIP-TENO.

  14. Energy loss straggling data of 28Si, 27Al, 24Mg, 19F, 16O, and 12C heavy ions in thin polymeric Formvar foil over a range of energies 0.1-0.6 MeV/u by time-of-flight spectrometry

    NASA Astrophysics Data System (ADS)

    Guesmia, A.; Ammi, H.; Msimanga, M.; Dib, A.; Mammeri, S.; Pineda-Vargas, C. A.; Hedibel, M.

    2015-02-01

    The energy-loss straggling of 28Si, 27Al, 24Mg, 19F, 16O and 12C partially stripped heavy ions has been determined in Formvar polymeric thin foil over a continuous range of energies 0.1-0.6 MeV/u, by using a powerful method based on the combination of Heavy Ion-Elastic Recoil Detection Analysis (HI-ERDA) technique and Time of Flight (ToF) spectrometer. The obtained energy loss straggling values have been analyzed and compared with the corresponding computed values adopting some widely used energy loss straggling formulations such as, Bohr, Bethe-Livingston and Yang formulas. The aim of such a comparison is to check the reliability and accuracy of the existing energy loss straggling formulations. The experimental results of energy loss straggling of all ions are found to be significantly greater than those predicted by the theories. These differences can be attributed to the charge exchange straggling. This effect has to be taken into account in order to explain the obtained results.

  15. Basic spin physics.

    PubMed

    Pipe, J G

    1999-11-01

    Magnetic resonance imaging is fundamentally a measurement of the magnetism inherent in some nuclear isotopes; of these the proton, or hydrogen atom, is of particular interest for clinical applications. The magnetism in each nucleus is often referred to as spin. A strong, static magnetic field B0 is used to align spins, forming a magnetic density within the patient. A second, rotating magnetic field B1 (RF pulse) is applied for a short duration, which rotates the spins away from B0 in a process called excitation. After the spins are rotated away from B0, the RF pulse is turned off, and the spins precess about B0. As long as the spins are all pointing in the same direction at any one time (have phase coherence), they act in concert to create rapidly oscillating magnetic fields. These fields in turn create a current in an appropriately placed receiver coil, in a manner similar to that of an electrical generator. The precessing magnetization decays rapidly in a duration roughly given by the T2 time constant. At the same time, but at a slower rate, magnetization forms again along the direction of B0; the duration of this process is roughly expressed by the T1 time constant. The precessional frequency of each spin is proportional to the magnetic field experienced at the nucleus. Small variations in this magnetic field can have dramatic effects on the MR image, caused in part by loss of phase coherence. These magnetic field variations can arise because of magnet design, the magnetic properties (susceptibility) of tissues and other materials, and the nuclear environment unique to various sites within any given molecule. The loss of phase coherence can be effectively eliminated by the use of RF refocusing pulses. Conventional MR imaging experiments can be characterized as either gradient echo or spin echo, the latter indicating the use of a RF refocusing pulse, and by the parameters TR, TE, and flip angle alpha. Tissues, in turn, are characterized by their individual spin

  16. Spin Hall and Spin Nernst effect from first principles

    NASA Astrophysics Data System (ADS)

    Mertig, Ingrid

    2013-03-01

    Spintronics without magnetic materials is an interesting alternative to the existing spintronics applications. The spin Hall effect creates spin currents in nonmagnetic materials and avoids the problem of spin injection. Future applications of the spin Hall effect require two properties of the materials, a large spin Hall angle and a long spin diffusion length. Ab intio calculations based on density functional theory are a powerful tool to design the desired materials and to get insight into the underlying microscopic processes. We investigated the spin Hall effect in dilute alloys, in particular the intrinsic effect based on the Berry curvature as well as side-jump and the skew-scattering contributions. The results demonstrate that a large extrinsic spin Hall effect is determined by the differences between host and impurity concerning the spin-orbit interaction. It can be caused by light p scatterers as C and N in Au. A comparable large effect is observed for heavy p scatterers as Bi in Cu. An alternative way is to deposit impurities in the adatom position. Furthermore, we predict a spin current perpendicular to a temperature gradient. The phenomenon is called spin Nernst effect. The predicted spin currents can be comparably large as in the case of the spin Hall effect.

  17. Spin pumping by magnetopolaritons

    NASA Astrophysics Data System (ADS)

    Cao, Yunshan; Yan, Peng; Huebl, Hans; Goennenwein, Sebastian; Bauer, Gerrit

    2015-03-01

    Recent experiments report the strong coupling of microwaves to the magnetic insulator yttrium iron garnet with weakly damped magnetization dynamics. We developed a scattering approach to study the coupled magnetization and microwave cavities beyond the paramagnetic/macrospin and rotating wave approximations that are implicit in the Tavis-Cummings model. To this end we solve the coupled Landau-Lifshitz-Gilbert and Maxwell's equations for a thin film magnet in a microwave cavity, leading to rich ferromagnetic spin wave resonance spectra of the transmitted or absorbed microwaves. Our method is valid for the full parameter range spanning the weak to strong coupling limits. We demonstrate strong coupling achievement not only for the FMR mode but also for standing spin waves, although the lowest excitation has a decisive leading role for coupling strength. Spin pumping in FI|N bilayers as detected by inverse spin Hall voltages provides additional access to study strong coupling electrically. Funding from the European Union Seventh Framework Programme [FP7-People-2012-ITN] under Grant Agreement 316657 (SpinIcur).

  18. Spin hydrodynamic generation

    NASA Astrophysics Data System (ADS)

    Takahashi, R.; Matsuo, M.; Ono, M.; Harii, K.; Chudo, H.; Okayasu, S.; Ieda, J.; Takahashi, S.; Maekawa, S.; Saitoh, E.

    2016-01-01

    Magnetohydrodynamic generation is the conversion of fluid kinetic energy into electricity. Such conversion, which has been applied to various types of electric power generation, is driven by the Lorentz force acting on charged particles and thus a magnetic field is necessary. On the other hand, recent studies of spintronics have revealed the similarity between the function of a magnetic field and that of spin-orbit interactions in condensed matter. This suggests the existence of an undiscovered route to realize the conversion of fluid dynamics into electricity without using magnetic fields. Here we show electric voltage generation from fluid dynamics free from magnetic fields; we excited liquid-metal flows in a narrow channel and observed longitudinal voltage generation in the liquid. This voltage has nothing to do with electrification or thermoelectric effects, but turned out to follow a universal scaling rule based on a spin-mediated scenario. The result shows that the observed voltage is caused by spin-current generation from a fluid motion: spin hydrodynamic generation. The observed phenomenon allows us to make mechanical spin-current and electric generators, opening a door to fluid spintronics.

  19. Geometrically representing spin correlations

    NASA Astrophysics Data System (ADS)

    White, Ian G.; Mirasola, Anthony; Hollingsworth, Jacob; Mukherjee, Rick; Hazzard, Kaden R. A.

    2016-05-01

    We develop a general method to visualize spin correlations, and we demonstrate its usefulness in ultracold matter from fermions in lattices to trapped ions and ultracold molecules. Correlations are of fundamental interest in many-body physics: they characterize phases in condensed matter and AMO, and are required for quantum sensing and computing. However, it is often difficult to understand even the simplest correlations - for example between two spin-1/2's - directly from the components Cab = - for { a , b } ∈ { x , y , z } . Not only are the nine independent Cab unwieldy, but considering the components also obscures the natural geometric structure. For example, simple spin rotations lead to complex transformations among the nine Cab. We provide a one-to-one map between the spin correlations and certain three-dimensional objects, analogous to the map between single spins and Bloch vectors. This object makes the geometric structure of the correlations manifest. Moreover, much as one can reason geometrically about dynamics using a Bloch vector - e.g. a magnetic field causes it to precess and dephasing causes it to shrink - we show that analogous reasoning holds for our visualization method.

  20. Harnessing spin precession with dissipation

    PubMed Central

    Crisan, A. D.; Datta, S.; Viennot, J. J.; Delbecq, M. R.; Cottet, A.; Kontos, T.

    2016-01-01

    Non-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors. PMID:26816050

  1. Harnessing spin precession with dissipation

    NASA Astrophysics Data System (ADS)

    Crisan, A. D.; Datta, S.; Viennot, J. J.; Delbecq, M. R.; Cottet, A.; Kontos, T.

    2016-01-01

    Non-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors.

  2. Spin rectification induced by spin Hall magnetoresistance at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, P.; Jiang, S. W.; Luan, Z. Z.; Zhou, L. F.; Ding, H. F.; Zhou, Y.; Tao, X. D.; Wu, D.

    2016-09-01

    We have experimentally and theoretically investigated the dc voltage generation in the heterostructure of Pt and yttrium iron garnet under the ferromagnetic resonance. Besides a symmetric Lorenz line shape dc voltage, an antisymmetric Lorenz line shape dc voltage is observed in field scan, which can solely originate from the spin rectification effect due to the spin Hall magnetoresistance. The angular dependence of the dc voltage is theoretically analyzed by taking into account both the spin pumping and the spin rectification effects. We find that the experimental results are in excellent agreement with the theoretical model, further identifying the spin Hall magnetoresistance origin of the spin rectification effect. Moreover, the spin pumping and the spin rectification effects are quantitatively separated by their different angular dependence at particular experimental geometry.

  3. Quantum spin transistor with a Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-10-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.

  4. Quantum spin transistor with a Heisenberg spin chain

    PubMed Central

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  5. Spin-orbit coupling and spin relaxation in phosphorene

    NASA Astrophysics Data System (ADS)

    Kurpas, Marcin; Gmitra, Martin; Fabian, Jaroslav

    We employ first principles density functional theory calculations to study intrinsic and extrinsic spin-orbit coupling in monolayer phosphorene. We also extract the spin-mixing amplitudes of the Bloch wave functions to give realistic estimates of the Elliott-Yafet spin relaxation rate. The most remarkable result is the striking anisotropy in both spin-orbit coupling and spin relaxation rates, which could be tested experimentally in spin injection experiments. We also identify spin hot spots in the electronic structure of phosphorene at accidental bands anticrossings. We compare the Elliott-Yafet with Dyakonov-Perel spin relaxation times, obtained from extrinsic couplings in an applied electric field. We also compare the results in phosphorene with those of black phosphorous. This work is supported by the DFG SPP 1538, SFB 689, and by the EU Seventh Framework Programme under Grant Agreement No. 604391 Graphene Flagship.

  6. Spin-Orbit Twisted Spin Waves: Group Velocity Control

    NASA Astrophysics Data System (ADS)

    Perez, F.; Baboux, F.; Ullrich, C. A.; D'Amico, I.; Vignale, G.; Karczewski, G.; Wojtowicz, T.

    2016-09-01

    We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves.

  7. Spin filter and spin valve in ferromagnetic graphene

    NASA Astrophysics Data System (ADS)

    Song, Yu; Dai, Gang

    2015-06-01

    We propose and demonstrate that a EuO-induced and top-gated graphene ferromagnetic junction can be simultaneously operated as a spin filter and a spin valve. We attribute such a remarkable result to a coexistence of a half-metal band and a common energy gap for opposite spins in ferromagnetic graphene. We show that both the spin filter and the spin valve can be effectively controlled by a back gate voltage, and they survive for practical metal contacts and finite temperature. Specifically, larger single spin currents and on-state currents can be reached with contacts with work functions similar to graphene, and the spin filter can operate at higher temperature than the spin valve.

  8. Solid-state 13C NMR study of banana liquid crystals - 3: Alkyl-tail-group packing environments of an acute-angle bent-core molecule in the hexagonal columnar and cubic phases

    NASA Astrophysics Data System (ADS)

    Kurosu, Hiromichi; Endo, Yumi; Kimura, Saori; Hashimoto, Tomoko; Harada, Motoi; Lee, Eun-Woo; Sone, Masato; Watanabe, Junji; Kang, Sungmin

    2016-02-01

    Solid-state 13C nuclear magnetic resonance (NMR) measurements were performed on the hexagonal columnar and cubic phases of an acute-angle banana-shaped molecule, N(1,7)-S30. In the hexagonal columnar phase, three peaks appear at the NMR chemical shifts assigned to the internal methylene carbons of alkyl tails, indicating that the two alkyl tails have different packing structures, and one of the tails has two different conformations within a single molecule. Combined cross-polarization/magic-angle spinning and pulse saturation transfer/magic-angle spinning measurements show that one of the alkyl chains is located inside and the other is located outside the columnar structure. In the cubic phase, pulse saturation transfer/magic-angle spinning measurement shows that only one peak appears at the NMR chemical shifts assigned to the internal methylene carbons of alkyl tails, indicating that both of the alkyl chains are located outside the cubic structure.

  9. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  10. Spinning electroweak sphalerons

    SciTech Connect

    Radu, Eugen; Volkov, Mikhail S.

    2009-03-15

    We present numerical evidence for the existence of stationary spinning generalizations for the static sphaleron in the Weinberg-Salam theory. Our results suggest that, for any value of the mixing angle {theta}{sub W} and for any Higgs mass, the spinning sphalerons comprise a family labeled by their angular momentum J. For {theta}{sub W}{ne}0 they possess an electric charge Q=eJ, where e is the electron charge. Inside they contain a monopole-antimonopole pair and a spinning loop of electric current, and for large J, a Regge-type behavior. It is likely that these sphalerons mediate the topological transitions in sectors with J{ne}0, thus enlarging the number of transition channels. Their action decreases with J, which may considerably affect the total transition rate.

  11. Zero-bias spin separation

    NASA Astrophysics Data System (ADS)

    Ganichev, Sergey D.; Bel'Kov, Vasily V.; Tarasenko, Sergey A.; Danilov, Sergey N.; Giglberger, Stephan; Hoffmann, Christoph; Ivchenko, Eougenious L.; Weiss, Dieter; Wegscheider, Werner; Gerl, Christian; Schuh, Dieter; Stahl, Joachim; de Boeck, Jo; Borghs, Gustaaf; Prettl, Wilhelm

    2006-09-01

    The generation, manipulation and detection of spin-polarized electrons in low-dimensional semiconductors are at the heart of spintronics. Pure spin currents, that is, fluxes of magnetization without charge current, are quite attractive in this respect. A paradigmatic example is the spin Hall effect, where an electrical current drives a transverse spin current and causes a non-equilibrium spin accumulation observed near the sample boundary. Here we provide evidence for an another effect causing spin currents which is fundamentally different from the spin Hall effect. In contrast to the spin Hall effect, it does not require an electric current to flow: without bias the spin separation is achieved by spin-dependent scattering of electrons in media with suitable symmetry. We show, by free-carrier absorption of terahertz (THz) radiation, that spin currents flow in a wide range of temperatures. Moreover, the experimental results provide evidence that simple electron gas heating by any means is already sufficient to yield spin separation due to spin-dependent energy-relaxation processes.

  12. Squeezed spin states: Squeezing the spin uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kitagawa, Masahiro; Ueda, Masahito

    1993-01-01

    The notion of squeezing in spin systems is clarified, and the principle for spin squeezing is shown. Two twisting schemes are proposed as building blocks for spin squeezing and are shown to reduce the standard quantum noise, s/2, of the coherent S-spin state down to the order of S(sup 1/3) and 1/2. Applications to partition noise suppression are briefly discussed.

  13. Spin Echo in Synchrotrons

    SciTech Connect

    Chao, Alexander W.; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an

  14. Measuring Black Hole Spin

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    1999-09-01

    WE PROPOSE TO CARRY OUT A SYSTEMATIC STUDY OF EMISSION AND ABSORPTION SPECTRAL FEATURES THAT ARE OFTEN SEEN IN X-RAY SPECTRA OF BLACK HOLE BINARIES. THE EXCELLENT SENSITIVITY AND ENERGY RESOLUTION OF THE ACIS/HETG COMBINATION WILL NOT ONLY HELP RESOLVE AMBIGUITIES IN INTERPRETING THESE FEATURES, BUT MAY ALLOW MODELLING OF THE EMISSION LINE PROFILES IN DETAIL. THE PROFILES MAY CONTAIN INFORMATION ON SUCH FUNDAMENTAL PROPERTIES AS THE SPIN OF BLACK HOLES. THEREFORE, THIS STUDY COULD LEAD TO A MEASUREMENT OF BLACK HOLE SPIN FOR SELECTED SOURCES. THE RESULT CAN THEN BE DIRECTLY COMPARED WITH THOSE FROM PREVIOUS STUDIES BASED ON INDEPENDENT METHODS.

  15. Spin Wave Genie

    SciTech Connect

    2015-02-16

    The four-dimensional scattering function S(Q,w) obtained by inelastic neutron scattering measurements provides unique "dynamical fingerprints" of the spin state and interactions present in complex magnetic materials. Extracting this information however is currently a slow and complex process that may take an expert -depending on the complexity of the system- up to several weeks of painstaking work to complete. Spin Wave Genie was created to abstract and automate this process. It strives to both reduce the time to complete this analysis and make these calculations more accessible to a broader group of scientists and engineers.

  16. Spin Wave Genie

    2015-02-16

    The four-dimensional scattering function S(Q,w) obtained by inelastic neutron scattering measurements provides unique "dynamical fingerprints" of the spin state and interactions present in complex magnetic materials. Extracting this information however is currently a slow and complex process that may take an expert -depending on the complexity of the system- up to several weeks of painstaking work to complete. Spin Wave Genie was created to abstract and automate this process. It strives to both reduce themore » time to complete this analysis and make these calculations more accessible to a broader group of scientists and engineers.« less

  17. Spin current swapping and spin hall effect in disordered metals

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed; Pauyac, Christian; Manchon, Aurelien

    2015-03-01

    The conversion of charge currents into spin currents via the spin Hall effect has attracted intense experimental and theoretical efforts lately, providing an efficient means to generate electric signals and manipulate the magnetization of single layers. More recently, it was proposed that spin-dependent scattering induced by spin-orbit coupled impurities also produces a so-called spin swapping, i.e. an exchange between the spin angular momentum and linear momentum of itinerant electrons. In this work, we investigate the nature of spin swapping and its interplay with extrinsic spin Hall effect and spin relaxation in finite size normal metals. We use two complementary methods based on non-equilibrium Green's function technique. The first method consists in rigorously deriving the drift-diffusion equation of the spin accumulation in the presence of spin-orbit coupled impurities from quantum kinetics using Wigner expansion. The second method is the real-space tight binding modeling of a finite system in the presence of spin-orbit coupled disorder.

  18. Spin guides and spin splitters: waveguide analogies in one-dimensional spin chains.

    PubMed

    Makin, Melissa I; Cole, Jared H; Hill, Charles D; Greentree, Andrew D

    2012-01-01

    Here we show a mapping between waveguide theory and spin-chain transport, opening an alternative approach to solid-state quantum information transport. By applying temporally varying control profiles to a spin chain, we design a virtual waveguide or "spin guide" to conduct spin excitations along defined space-time trajectories of the chain. We show that the concepts of confinement, adiabatic bend loss, and beam splitting can be mapped from optical waveguide theory to spin guides, and hence to "spin splitters." Importantly, the spatial scale of applied control pulses is required to be large compared to the interspin spacing, thereby allowing the design of scalable control architectures.

  19. Polariton condensates: Electrical spin switching

    NASA Astrophysics Data System (ADS)

    Liew, T. C. H.

    2016-10-01

    Ultra-low-power electronic switching of stable exciton-polariton spin states has now been achieved in a semiconductor microcavity. This opens a new route to the integration of spin-based photonics and electronics.

  20. Stochastic Evolution of Halo Spin

    NASA Astrophysics Data System (ADS)

    Kim, Juhan

    2015-08-01

    We will introduce an excursion set model for the evolution of halo spin from cosmological N-body simulations. A stochastic differential equation is derived from the definition of halo spin and the distribution of angular momentum changes are measured from simulations. The log-normal distribution of halo spin is found to be a natural consequence of the stochastic differential equation and the resulting spin distribution is found be a function of local environments, halo mass, and redshift.

  1. Nucleon spin structure

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Ruan, Jianhong

    2015-10-01

    This paper contains three parts relating to the nucleon spin structure in a simple picture of the nucleon: (i) The polarized gluon distribution in the proton is dynamically predicted starting from a low scale by using a nonlinear quantum chromodynamics (QCD) evolution equation — the Dokshitzer-Gribov-Lipatov-Altarelli-Paris (DGLAP) equation with the parton recombination corrections, where the nucleon is almost consisted only of valence quarks. We find that the contribution of the gluon polarization to the nucleon spin structure is much larger than the predictions of most other theories. This result suggests that a significant orbital angular momentum of the gluons is required to balance the gluon spin momentum. (ii) The spin structure function g1p of the proton is studied, where the perturbative evolution of parton distributions and nonperturbative vector meson dominance (VMD) model are used. We predict g1p asymptotic behavior at small x from lower Q2 to higher Q2. The results are compatible with the data including the early HERA estimations and COMPASS new results. (iii) The generalized Gerasimov-Drell-Hearn (GDH) sum rule is understood based on the polarized parton distributions of the proton with the higher twist contributions. A simple parameterized formula is proposed to clearly present the contributions of different components in the proton to Γ 1p(Q2). The results suggest a possible extended objects with size 0.2-0.3 fm inside the proton.

  2. Artificial frustrated spin systems

    NASA Astrophysics Data System (ADS)

    Perrin, Y.; Chioar, I. A.; Nguyen, V. D.; Lacour, D.; Hehn, M.; Montaigne, F.; Canals, B.; Rougemaille, N.

    2015-09-01

    Complex architectures of nanostructures are routinely elaborated using bottom-up or nanofabrication processes. This technological capability allows scientists to engineer materials with properties that do not exist in nature, but also to manufacture model systems to explore fundamental issues in condensed matter physics. Two-dimensional frustrated arrays of magnetic nanostructures are one class of systems for which theoretical predictions can be tested experimentally. These systems have been the subject of intense research in the last few years and allowed the investigation of a rich physics and fascinating phenomena, such as the exploration of the extensively degenerate ground-state manifolds of spin ice systems, the evidence of new magnetic phases in purely two-dimensional lattices, and the observation of pseudoexcitations involving classical analogues of magnetic monopoles. We show here, experimentally and theoretically, that simple magnetic geometries can lead to unconventional, non-collinear spin textures. For example, kagome arrays of inplane magnetized nano-islands do not show magnetic order. Instead, these systems are characterized by spin textures with intriguing properties, such as chirality, coexistence of magnetic order and disorder, and charge crystallization. Magnetic frustration effects in lithographically patterned kagome arrays of nanomagnets with out-of-plane magnetization also lead to an unusal, and still unknown, magnetic ground state manifold. Besides the influence of the lattice geometry, the micromagnetic nature of the elements constituting the arrays introduce the concept of chiral magnetic monopoles, bringing additional complexity into the physics of artificial frustrated spin systems.

  3. Stabilizing a spinning Skylab.

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.; Justice, D. W.; Schweitzer, G.; Patel, J. S.

    1972-01-01

    This paper presents the results of a study of the dynamics of a spinning Skylab space station. The stability of motion of several simplified models with flexible appendages was investigated. A digital simulation model that more accurately portrays the complex Skylab vehicle is described, and simulation results are compared with analytically derived results.

  4. Stabilizing a spinning Skylab

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.; Patel, J. S.; Justice, D. W.; Schweitzer, G. E.

    1972-01-01

    The results are presented of a study of the dynamics of a spinning Skylab space station. The stability of motion of several simplified models with flexible appendages was investigated. A digital simulation model that more accurately portrays the complex Skylab vehicle is described, and simulation results are compared with analytically derived results.

  5. Layered kagome spin ice

    NASA Astrophysics Data System (ADS)

    Hamp, James; Dutton, Sian; Mourigal, Martin; Mukherjee, Paromita; Paddison, Joseph; Ong, Harapan; Castelnovo, Claudio

    Spin ice materials provide a rare instance of emergent gauge symmetry and fractionalisation in three dimensions: the effective degrees of freedom of the system are emergent magnetic monopoles, and the extensively many `ice rule' ground states are those devoid of monopole excitations. Two-dimensional (kagome) analogues of spin ice have also been shown to display a similarly rich behaviour. In kagome ice however the ground-state `ice rule' condition implies the presence everywhere of magnetic charges. As temperature is lowered, an Ising transition occurs to a charge-ordered state, which can be mapped to a dimer covering of the dual honeycomb lattice. A second transition, of Kosterlitz-Thouless or three-state Potts type, occurs to a spin-ordered state at yet lower temperatures, due to small residual energy differences between charge-ordered states. Inspired by recent experimental capabilities in growing spin ice samples with selective (layered) substitution of non-magnetic ions, in this work we investigate the fate of the two ordering transitions when individual kagome layers are brought together to form a three-dimensional pyrochlore structure coupled by long range dipolar interactions. We also consider the response to substitutional disorder and applied magnetic fields.

  6. Does the Moon Spin?

    ERIC Educational Resources Information Center

    Collins, Robert; Simpson, Frances

    2007-01-01

    In this article, the authors explore the question, "Does the Moon spin?", and show how the question is investigated. They emphasise the importance of the process by which people work out what they know, by "learning from the inside out." They stress that those involved in science education have to challenge current conceptions and ideas, making…

  7. Supramolecular spin valves

    NASA Astrophysics Data System (ADS)

    Urdampilleta, M.; Klyatskaya, S.; Cleuziou, J.-P.; Ruben, M.; Wernsdorfer, W.

    2011-07-01

    Magnetic molecules are potential building blocks for the design of spintronic devices. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication. The development of solid-state spintronic devices based on the giant magnetoresistance, tunnel magnetoresistance and spin-valve effects has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc2 single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties.

  8. Supramolecular spin valves.

    PubMed

    Urdampilleta, M; Klyatskaya, S; Cleuziou, J-P; Ruben, M; Wernsdorfer, W

    2011-07-01

    Magnetic molecules are potential building blocks for the design of spintronic devices. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication. The development of solid-state spintronic devices based on the giant magnetoresistance, tunnel magnetoresistance and spin-valve effects has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc(2) single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties. PMID:21685902

  9. Transverse Spin at RHIC

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorong

    2016-03-01

    In recent years, there has been exciting development in both experimental and theoretical studies of transverse spin asymmetries in polarized p+p and and DIS collisions. As a unique polarized proton-proton collider, Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) provides a unique opportunity to investigate the novel physics mechanisms that cause the large single spin asymmetry at the forward rapidity. Both PHENIX and STAR experiments have been studying the transverse spin asymmetries with a variety of final state particles in different kinematic regimes since 2006. Especially, recent theoretical development on scattering a polarized probe on the saturated nuclear may provide a unique way to probe the gluon and quark TMDs. RHIC successfully ran polarized p+Au collisions in 2015. We will expect to have new results from polarized d+Au to compare with existing results from p+p collision to extend our understanding of QCD. Further more, In 2015, PHENIX installed MPC-ex calorimeter at very forward region to measure direct photon AN and STAR installed Roman Pots to study the diffractive events in polarized p+p and p+Au collisions. The recent results on transverse polarized p+p and p+Au collisions from both PHENIX and STAR experiments will be presented in this talk. I will also briefly discuss the possibility for the transverse Spin program at future experiments sPHENIX and forward sPHENIX at RHIC. Supported by US Department of Energy and RIKEN Brookhaven Research Center.

  10. An overview of spin physics

    SciTech Connect

    Prescott, C.Y.

    1991-07-01

    Spin physics is playing an increasingly important role in high energy experiments and theory. This review looks at selected topics in high energy spin physics that were discussed at the 9th International Symposium on High Energy Spin Physics at Bonn in September 1990.

  11. Spin Transport in Semiconductor heterostructures

    SciTech Connect

    Domnita Catalina Marinescu

    2011-02-22

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  12. Microwave generation by spin Hall nanooscillators with nanopatterned spin injector

    SciTech Connect

    Zholud, A. Urazhdin, S.

    2014-09-15

    We experimentally study spin Hall nano-oscillators based on Pt/ferromagnet bilayers with nanopatterned Pt spin injection layer. We demonstrate that both the spectral characteristics and the electrical current requirements can be simultaneously improved by reducing the spin injection area. Moreover, devices with nanopatterned Pt spin injector exhibit microwave generation over a wide temperature range that extends to room temperature. Studies of devices with additional Pt spacers under the device electrodes show that the oscillation characteristics are affected not only by the spin injection geometry but also by the effects of Pt/ferromagnet interface on the dynamical properties of the ferromagnet.

  13. Gluonic Spin Contribution to Proton Spin at NLO

    SciTech Connect

    Casey, Andrew

    2011-05-24

    In 1988, when the EMC results showed that the quarks had a much smaller contribution to the spin of the proton than previously thought, the 'Proton Spin Crisis' began. Since then, considerable effort has been directed into discovering the main contributors to proton spin and how much each contributes. One such contributor is the gluonic spin component. QCD NLO evolution equations are combined with boundary conditions obtained from heavy quark decoupling expressions to evolve the equations from infinity to the mass of the charm quark in order to determine the gluonic spin contribution.

  14. High Elastic Moduli of a 54Al2O3-46Ta2O5 Glass Fabricated via Containerless Processing

    NASA Astrophysics Data System (ADS)

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki; Yanaba, Yutaka; Mizoguchi, Teruyasu; Umada, Takumi; Okamura, Kohei; Kato, Katsuyoshi; Watanabe, Yasuhiro

    2015-10-01

    Glasses with high elastic moduli have been in demand for many years because the thickness of such glasses can be reduced while maintaining its strength. Moreover, thinner and lighter glasses are desired for the fabrication of windows in buildings and cars, cover glasses for smart-phones and substrates in Thin-Film Transistor (TFT) displays. In this work, we report a 54Al2O3-46Ta2O5 glass fabricated by aerodynamic levitation which possesses one of the highest elastic moduli and hardness for oxide glasses also displaying excellent optical properties. The glass was colorless and transparent in the visible region, and its refractive index nd was as high as 1.94. The measured Young’s modulus and Vickers hardness were 158.3 GPa and 9.1 GPa, respectively, which are comparable to the previously reported highest values for oxide glasses. Analysis made using 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy revealed the presence of a significantly large fraction of high-coordinated Al in addition to four-coordinated Al in the glass. The high elastic modulus and hardness are attributed to both the large cationic field strength of Ta5+ ions and the large dissociation energies per unit volume of Al2O3 and Ta2O5.

  15. Synthesis of kalsilite from microcline powder by an alkali-hydrothermal process

    NASA Astrophysics Data System (ADS)

    Su, Shuang-qing; Ma, Hong-wen; Yang, Jing; Zhang, Pan; Luo, Zheng

    2014-08-01

    The properties of aluminosilicate kalsilite have attracted the interest of researchers in chemical synthesis, ceramic industry, biofuels, etc. In this study, kalsilite was hydrothermally synthesized from microcline powder in a KOH solution. The microcline powder, rich in potassium, aluminum, and silicon, was collected from Mountain Changling in Northwestern China. The effects of temperature, time, and KOH concentration on the decomposition of microcline were investigated. The kalsilite and intermediate products were characterized by means of wet chemistry analysis, X-ray Diffraction (XRD), infrared spectrometry (IR), 29Si magic angle spinning nuclear magnetic resonance (29Si MAS NMR), 27Al MAS NMR, and scanning electron microscope (SEM). With increasing temperature, the microcline powder transforms into a metastable KAlSiO4 polymorph before transforming further into pure kalsilite. A mixture of both kalsilite and metastable KAlSiO4 polymorph is obtained when the hydrothermal reaction is carried out within 2 h; but after 2 h, kalsilite is the predominant product. The concentration of KOH, which needs to be larger than 4.3 M, is an important parameter influencing the synthesis of kalsilite.

  16. A simple method to directly synthesize Al-SBA-15 mesoporous materials with different Al contents

    NASA Astrophysics Data System (ADS)

    Wang, Jiacheng; Liu, Qian

    2008-12-01

    Aluminum-incorporated SBA-15 materials with well-ordered structure, high surface area and narrow pore-size distribution were directly prepared by an evaporation-induced self-assembly (EISA) method. Our synthesis method with two unique points of no mineral acid and hydrothermal treatment, is very simple, efficient and energy-saving by using the corresponding chloride precursors which can generate proper acidity in the synthesis solutions. The mesopores ordering degree of Al-SBA-15 materials decreased when the Al/Si atomic ratio was either larger than 0.08 or smaller than 0.05. The powder X-ray diffraction (XRD), N 2 sorption and transmission electron microscopy (TEM) characterizations show that the resultant materials have well ordered hexagonal mesostructures. The 27Al magic angle spinning (MAS) NMR characterizations show that most of the aluminum ions incorporate into the SBA-15 framework. The thermal analysis was used to probe the interaction between the silica species and copolymer templates.

  17. MCM-41 impregnated with A zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution

    PubMed Central

    Liu, Minmin; Hou, Li-an; Yu, Shuili; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-01-01

    In this paper, the MCM-41 has been modified by impregnation with zeolite A to prepare a kind of new adsorbent. The adsorption of TC from aqueous solutions onto modified MCM-41 has been studied. It was discovered that the adsorption capability of zeolite A modified MCM-41 (A-MCM-41) increased dramatically after modification. The modified MCM-41 was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier Transform Infrared (FTIR) analysis, Transmission electron microscopy (TEM) images, and 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectra. The modified MCM-41 structure was still retained after impregnated with zeolite A but the surface area and pore diameter decreased due to pore blockage. The adsorption of TC on modified MCM-41 was discussed regarding various parameters such as pH, initial TC concentration, and the reaction time. The pH effects on TC adsorption indicated that the adsorbents had better adsorption performances in acidic and neutral conditions. The adsorption isotherms were fitted well by the Langmuir model. The adsorption kinetics was well described by both pseudo-second order equation and the intra-particle diffusion model. The adsorption behavior in a fixed-bed column system followed Thomas model. The adsorption behavior of TC was the chemical adsorption with an ion exchange process and electrostatic adsorption. PMID:24976787

  18. Solid State NMR Studies of the Aluminum Hydride Phases

    NASA Technical Reports Server (NTRS)

    Hwang, Son-Jong; Bowman, R. C., Jr.; Graetz, Jason; Reilly, J. J.

    2006-01-01

    Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the (beta)- and (gamma)- phases as well as the most stable (alpha)-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the (beta)-AlH3 and (gamma)-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the (alpha)-phase materials do not exhibit these changes.

  19. Solvent Evaporation Assisted Preparation of Oriented Nanocrystalline Mesoporous MFI Zeolites

    SciTech Connect

    Zhu, Kake; Sun, Junming; Liu, Jun; Wang, Li Q.; Wan, Haiying; Hu, Jian Z.; Wang, Yong; Peden, Charles HF; Nie, Zimin

    2011-07-01

    A solvent evaporation route to produce hierarchically porous zeolites with an oriented MFI nanocrystalline structure has been developed, and the method is scalable and productive. In this method, hexadecyltrimethoxysilane is added to an ethanol solution containing zeolitic precursors. A hard gel is formed during the evaporation process. Subsequent hydrothermal treatments produce the hierarchically porous zeolite. High resolution transmission electron microscopy (HRTEM) studies suggest that misoriented zeolite nuclei are produced in the very early stages of the hydrothermal treatment, but further reactions lead to single crystal-like aggregates composed of intergrowth nanocrystals with a mean interparticle pore diameter of 12 nm. All Al atoms exist in tetrahedral sites, as confirmed by 27Al magic angle spinning nuclear magnetic resonance (MAS NMR). Variable temperature hyperpolarized (HP) 129Xe NMR spectroscopy suggest a fast molecular diffusion process from the interconnection between micro- and mesopores. Catalytic conversion of acetone to the isobutene reactions show comparable (with respect to conventional zeolites) selectivity to isobutene. However, hierarchically porous zeolites display enhanced activity and durability because of the more accessible acidic sites in the hierarchically porous structures.

  20. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    NASA Astrophysics Data System (ADS)

    Liu, Minmin; Hou, Li-an; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-01

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.