Science.gov

Sample records for 28-d bioaccumulation tests

  1. Bioaccumulation tests applied in whole effluent assessment: A review

    SciTech Connect

    De Maagd, P.G.J.

    2000-01-01

    Until recently, the emphasis within whole effluent assessment has been on the application of bioassays for acute and chronic toxicity. Although the need for additional parameters to assess the ecotoxicological hazard and risk of effluents for receiving water systems has been repeatedly advocated, other parameters such as bioaccumulation, genotoxicity, sediment toxicity, and nutrient impacts are seldom addressed. This paper discusses the potential additional value of including bioaccumulation parameters in whole effluent assessment and methods that can be used for routine assessment. It is concluded that screening on the presence of potentially bioaccumulating compounds leads to a more comprehensive hazard assessment and should therefore be included in whole effluent assessment. A chemical method to assess potentially bioaccumulating substances (PBSs) is preferred above methods using organisms or classical group parameters such as extractable organic halogens (EOX). In situ studies with organisms are not feasible for routine assessment for a number of reasons, including cost efficiency and matrix problems. Classical group parameters such as EOX do not relate to bioaccumulation or toxicity. Chemical methods for assessing bioaccumulation are usually presented as integrated methods composed of different procedure steps such as pretreatment, extraction, separation, and detection. However, an optimal method may be constructed by combining procedure steps from different reported methods. Solid phase microextraction combined with high performance liquid chromatography or gas chromatography combined with mass spectrometry is regarded as the preferable method for the assessment of PBSs. Before implementation in whole effluent assessment, however, the method must be carefully validated. Hazard assessment based on bioaccumulation seems feasible. For risk assessment, however, additional information is a prerequisite. Quantitative causal relationships between test assay results

  2. Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  3. Sediment bioaccumulation test with Lumbriculus variegatus: Effects of feeding

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  4. Integrated testing strategy (ITS) for bioaccumulation assessment under REACH.

    PubMed

    Lombardo, Anna; Roncaglioni, Alessandra; Benfentati, Emilio; Nendza, Monika; Segner, Helmut; Fernández, Alberto; Kühne, Ralph; Franco, Antonio; Pauné, Eduard; Schüürmann, Gerrit

    2014-08-01

    REACH (registration, evaluation, authorisation and restriction of chemicals) regulation requires that all the chemicals produced or imported in Europe above 1 tonne/year are registered. To register a chemical, physicochemical, toxicological and ecotoxicological information needs to be reported in a dossier. REACH promotes the use of alternative methods to replace, refine and reduce the use of animal (eco)toxicity testing. Within the EU OSIRIS project, integrated testing strategies (ITSs) have been developed for the rational use of non-animal testing approaches in chemical hazard assessment. Here we present an ITS for evaluating the bioaccumulation potential of organic chemicals. The scheme includes the use of all available data (also the non-optimal ones), waiving schemes, analysis of physicochemical properties related to the end point and alternative methods (both in silico and in vitro). In vivo methods are used only as last resort. Using the ITS, in vivo testing could be waived for about 67% of the examined compounds, but bioaccumulation potential could be estimated on the basis of non-animal methods. The presented ITS is freely available through a web tool.

  5. Deriving bioconcentration factors and somatic biotransformation rates from dietary bioaccumulation and depuration tests.

    PubMed

    Gobas, Frank A P C; Lo, Justin C

    2016-12-01

    The present study develops, applies, and tests a method for deriving empirical bioconcentration factors and somatic biotransformation rate constants from dietary bioaccumulation tests and simplified bioaccumulation experiments that measure depuration rates. In this approach, measurement of the chemical concentration in the water is not required. The method aims to improve bioaccumulation assessment, reduce cost and animal use, and shorten experiments. Environ Toxicol Chem 2016;35:2968-2976. © 2016 SETAC.

  6. Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading.

    PubMed

    Burkhard, Lawrence P; Hubin-Barrows, Dylan; Billa, Nanditha; Highland, Terry L; Hockett, James R; Mount, David R; Norberg-King, Teresa J

    2016-07-01

    At contaminated sediment sites, the bioavailability of contaminants in sediments is assessed using sediment-bioaccumulation tests with Lumbriculus variegates (Lv). The testing protocols recommend that ratio of total organic carbon (TOC) in sediment to L. variegatus (dry weight) (TOC/Lv) should be no less than 50:1. Occasionally, this recommendation is not followed, especially with sediments having low TOC, e.g., <1 %. This study evaluated the impacts and resulting biases in the testing results when the recommendation of "no less than 50:1" is not followed. In the study, seven sediments were tested with a series of TOC/Lv ratios that spanned the recommendation. With increasing loading of organisms, growth of the organisms decreased in six of the seven sediments tested. Residues of polychlorinated biphenyls (PCBs) in the L. variegatus were measured in six of the seven sediments tested, and differences in PCB residues among loading ratios across all sediments were small, i.e., ±50 %, from those measured at the minimum recommended ratio of 50:1 TOC/Lv. In all sediment, PCB residues increased with increasing loading of the organisms for the mono-, di-, and tri-chloro-PCBs. For tetra-chloro and heavier PCBs, residues increased with increasing loading of organisms for only two of the six sediments. PCB residues were not significantly different between TOC/Lv loadings of 50:1 and mid-20:1 ratios indicating that equivalent results can be obtained with TOC/Lv ratios into the mid-20:1 ratios. Overall, the testing results suggest that when testing recommendation of 50:1 TOC/Lv is not followed, potential biases in the biota-sediment accumulations factors from the sediment-bioaccumulation test will be small.

  7. Sediment bioaccumulation test with Lumbriculus variegatus: effects of feeding.

    PubMed

    Burkhard, Lawrence P; Hubin-Barrows, Dylan; Billa, Nanditha; Highland, Terry L; Hockett, James R; Mount, David R; Norberg-King, Teresa J; Hawthorne, Steven; Miller, David J; Grabanski, Carol B

    2015-05-01

    Standard sediment-bioaccumulation test methods specify that Lumbriculus variegatus should not be fed during the 28-day exposure. This lack of feeding can lead to decreases in L. variegatus weight and lipid content during the 28-day exposure period. Differences in intrinsic nutritional content of sediments could lead to additional variability in organism performance and/or contaminant uptake. To evaluate the potential benefits of feeding, sediment-bioaccumulation tests were performed comparing treatments with and without supplemental feeding with tropical fish food and also comparing performance food introduced as blended slurry versus fine flakes. The ration of food provided had to be limited to 6 mg/300-mL beaker with 250 mg of L. variegatus (ww) receiving three feedings per week to maintain acceptable dissolved oxygen (DO) in the test chambers. Relative weight change during exposure varied across sediments in the absence of food from very little change to as much as a 40 % decrease from starting weight. Feeding slurry and flake foods increased the total weight of recovered organisms by 32 and 48 %, respectively, but they did not decrease variability in weight changes across sediments. Lipid contents of the organisms decreased similarly across all feeding treatments during the test. At test termination, lipid contents of L. variegatus across unfed, slurry-fed, and flake-fed treatments were not significantly different per Tukey's honest significant difference test with 95 % family-wise confidence. Feeding resulted in polychlorinated biphenyl residues in L. variegatus being generally slightly less (median 78 %) and slightly greater (median 135 %) than the unfed treatments with slurry and flake formulated foods, respectively.

  8. Development of a Bioaccumulation Test Method with the Amphipod Leptocheirus plumulosus

    DTIC Science & Technology

    2011-04-01

    Marine Environmental Research 64 (5): 541-555. Driscoll, S. K., and A . E. McElroy. 1996. Bioaccumulation and metabolism of benzo [ a ] pyrene in three... A ., A . M. B. Giessing, L. J. Rasmussen, and O. Andersen. 2005. Biotransformation of the polycyclic aromatic hydrocarbon pyrene in the marine...ERDC TN-DOER-R15 April 2011 Development of a Bioaccumulation Test Method with the Amphipod Leptocheirus plumulosus by J. Daniel Farrar

  9. Bioaccumulation and biotransformation of polycyclic aromatic hydrocarbons during sediment tests with oligochaetes (Lumbriculus variegatus).

    PubMed

    Lyytikäinen, Merja; Pehkonen, Sari; Akkanen, Jarkko; Leppänen, Matti; Kukkonen, Jussi V K

    2007-12-01

    In some kinetic studies with aquatic invertebrates, the bioaccumulation of polyaromatic hydrocarbons (PAHs) has been observed to peak at the beginning of the test. This has been explained by the depletion of PAHs from pore water due to limited desorption during the bioaccumulation test or, alternatively, by the activation of biotransformation mechanisms in the organisms. In the present study, we exposed the aquatic oligochaetes, Lumbriculus variegatus, to creosote oil-contaminated sediments to examine the bioaccumulation of PAHs and to clarify the importance of contaminant depletion and biotransformation for it. The contaminant depletion was studied by replanting test organisms into fresh, nondepleted test sediments at 3-d intervals over 12 d and by comparing the resulting body burdens to those of the organisms that were not replanted. The biotransformation capability of L. variegatus was assessed by following the concentration of 1-hydroxypyrene (1-HP), a phase I metabolite of pyrene, in oligochaete tissue during a 15-d test. We observed that the bioaccumulation of most PAHs indeed peaked at the beginning of the test. The concentrations in the replanted organisms were only 1.5 to 2 times higher than in nonreplanted organisms during the first 9 d of the test and, by day 12, no differences were detected. 1-Hydroxypyrene was detected in oligochaete tissue throughout the exposures, and concentrations decreased over time. However, the proportion of 1-HP to pyrene increased linearly during the test. These results indicated that the depletion of contaminants has only a minor effect on their bioaccumulation in oligochaetes and that the cause for the observed bioaccumulation curve shape is rapid elimination of the contaminants and, possibly to some degree, their metabolites.

  10. Sediment bioaccumulation test with Lumbriculus variegatus (EPA test method 100.3) effects of feeding and organism loading rate

    EPA Science Inventory

    Sediment bioaccumulation test methodology of USEPA and ASTM in 2000 specifies that the Lumbriculus variegatus should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry weight of no less than 50:1. It ...

  11. Effects of feeding and organism loading rate on PCB accumulation by Lumbriculus variegatus in sediment bioaccumulation testing

    EPA Science Inventory

    Sediment bioaccumulation test methods published by USEPA and ASTM in 2000 specify that the Lumbriculus variegatus, a freshwater oligochaete, should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry we...

  12. BIOACCUMULATION AND AQUATIC SYSTEM SIMULATOR (BASS) USER'S MANUAL BETA TEST VERSION 2.1

    EPA Science Inventory

    BASS (Bioaccumulation and Aquatic System Simulator) is a Fortran 95 simulation program that predicts the population and bioaccumulation dynamics of age-structured fish assemblages that are exposed to hydrophobic organic pollutants and class B and borderline metals that complex wi...

  13. Persistence of Triclocarban and Triclosan in Soils after Land Application of Biosolids and Bioaccumulation in Eisenia foetida

    PubMed Central

    Higgins, Christopher P.; Paesani, Zachary J.; Chalew, Talia E. Abbot; Halden, Rolf U.; Hundal, Lakhwinder S.

    2010-01-01

    The presence of antimicrobial chemicals triclocarban (TCC) and triclosan (TCS) in municipal biosolids has raised concerns about the potential impacts of these chemicals on soil ecosystems following land application of municipal biosolids. The relative persistence of TCC and TCS in agricultural fields receiving yearly applications of biosolids at six different loading rates over a three-year period was investigated. Soil and biosolids samples were collected, extracted, and analyzed for TCC and TCS using liquid chromatography tandem mass spectrometry. In addition, the potential for bioaccumulation of TCC and TCS from the biosolids-amended soils was assessed over 28 d in the earthworm Eisenia foetida. Standard 28-d bioaccumulation tests were conducted for three biosolids loading rates from two sites, representing agronomic and twice the agronomic rates of biosolids application plots as well as control plots receiving no applications of biosolids. Additional bioaccumulation kinetics data were collected for the soils receiving the high biosolids loadings to ensure attainment of quasi-steady state conditions. The results indicate that TCC is relatively more persistent in biosolids-amended soil than TCS. In addition, TCC bioaccumulated in E. foetida, reaching body burdens of 25 ± 4 and 133 ± 17 ng/gww in worms exposed for 28 d to the two soils amended with biosolids at agronomic rates. The 28-d organic carbon and lipid-normalized biota soil accumulation factors (BSAFs) were calculated for TCC and ranged from 0.22 ± 0.12 to 0.71 ± 0.13. These findings suggest that TCC bioaccumulation is somewhat consistent with the traditional hydrophobic organic contaminant (HOC) partitioning paradigm. However, these data also suggest substantially reduced bioavailability of TCC in biosolids-amended soils when compared to HOC partitioning theory. PMID:21128266

  14. Influence of compost addition on lead and arsenic bioavailability in reclaimed orchard soil assessed using Porcellio scaber bioaccumulation test.

    PubMed

    Udovic, M; McBride, M B

    2012-02-29

    Long-term application of lead arsenate in orchards has led to a significant accumulation of Pb and As in the topsoil. Reclamation of old orchards for agricultural purposes entails the exposure of humans to Pb and As, which can be reduced by adequate remediation actions. In this study, we assessed the remediation efficiency of compost addition, commonly used as a sustainable agricultural practice, in decreasing the human exposure Pb and As by direct ingestion. The remediation was evaluated based on Pb and As bioavailability, assessed by means of a selective non-exhaustive chemical extraction (modified Morgan extraction, MME), with a physiologically based extraction test (PBET) for the assessment of Pb and As bioavailability in ingested soils and with a novel in vivo bioaccumulation test with isopods (Porcellio scaber). All the tests showed that compost addition consistently reduced Pb, but increased As potential bioavailability. The bioaccumulation test with P. scaber was sensitive to changes in Pb and As bioavailability in test soils. However, the results indicate that the bioavailability of As could be under- or overestimated using solely chemical extraction tests. Indirect assessment of trace metal bioavailability with bioaccumulation in isopods can be used as complementary source of data to the existing in vitro chemical extraction test approach for the estimation of human exposure to trace elements in polluted and remediated soil. This is the first report on the use of As accumulation in P. scaber as a tool for the assessment of As bioavailability in contaminated orchard soil.

  15. Bioaccumulation and Aquatic System Simulator (BASS) User's Manual Beta Test Version 2.1. EPA/600/R-01/035

    EPA Pesticide Factsheets

    this report describes the theoretical development, parameterization, and application software of a generalized, community-based, bioaccumulation model called BASS (Bioaccumulation and Aquatic System Simulator).

  16. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates

    SciTech Connect

    Not Available

    1994-06-01

    The procedures are described for testing freshwater organisms in the laboratory to evaluate the toxicity or bioaccumulation of contaminants associated with whole sediments. Sediments may be collected from the field or spiked with compounds in the laboratory. Toxicity methods are outlined for two organisms, the amphipod Hyalella azteca and the midge Chironomus tentans. The toxicity tests are conducted for 10 d in 300 ml chambers containing 100 ml of sediment and 175 ml of overlying water. Overlying water is renewed daily and test organisms are fed during the toxicity tests. The endpoint in the toxicity test with H. azteca is survival and the endpoints in the toxicity test with C. tentans are survival and growth. Procedures are primarily described for testing freshwater sediments; however, estaurine sediments (up to 15%) can also be tested with H. azteca. Guidance for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus is provided in the manual.

  17. Sediment bioaccumulation test with upper Mississippi River sediments using the oligochaete Lumbriculus variegatus

    SciTech Connect

    Brunson, E.L.; Canfield, T.J.; Dwyer, F.J.; Ingersoll, C.G.; Kemble, N.E.

    1995-12-31

    The test is part of the U.S.G.S. investigation Flood Effects on Surficial Bed Sediments Stored in the Navigational Pools of the Upper Mississippi River. In the laboratory Lumbriculus variegatus were exposed 28 days to sediments collected from 13 upper Mississippi River stations. The laboratory exposure was conducted using guidelines published in USEPA Methods for Measuring the Toxicity and Bioaccumulation of Sediment associated Contaminants with Freshwater Invertebrates. For comparison to laboratory results, native oligochaetes were isolated in the field from subsamples of each of the 13 sediments. Both laboratory exposed and field collected oligochaetes were allowed to clear their gut contents for 24 hours after sampling. After elimination, the oligochaete samples were stored frozen until analyzed. Organic contaminants were measured in the both sets of oligochaetes and the concentrations were compared. In general the concentrations of contaminants in both laboratory an field-collected oligochaetes were low. For many of the compounds measured, there was good agreement between laboratory exposed and field collected oligochaetes.

  18. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates.

    PubMed

    Sidney, Livia Alvarenga; Diepens, Noël J; Guo, Xiaoying; Koelmans, Albert A

    2016-07-01

    Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We used a battery test procedure with multiple enclosures in one aquarium, which maximized uniformity of exposure for the different species, such that the remaining variability was due mostly to species traits. The relative importance of uptake from either pore water or sediment ingestion was manipulated by using 28 d aged standard OECD sediment with low (1%) and medium (5%) OM content and 13 months aged sediment with medium OM (5%) content. Survival was ≥76% and wet weight increased for all species. Reproduction of H. azteca and weight gain of H. azteca and S. corneum were significantly higher in the medium OM aged sediments than in other sediments, perhaps due to a more developed microbial community (i.e., increase in food resources). Biota-sediment accumulation factors (BSAF) ranged from 3 to 114, depending on species and PCB congener, with C. riparius (3-10)bioaccumulation model with species-specific bioaccumulation parameters fitted well to the experimental data and showed that bioaccumulation parameters were depended on species traits. Enclosure-based battery tests and mechanistic BSAF models are expected to improve the quality of the exposure assessment in whole sediment toxicity tests.

  19. Interlaboratory evaluation of the assessment of arsenic bioaccumulation from field collected sediments using Hexagenia spp.

    PubMed

    Watson-Leung, Trudy; Oke, Moustapha; McElroy, Mike; Stuart, Marilyne; Rendas, Martina; Raby, Melanie; Mahon, Kim

    2016-10-01

    Standardized bioaccumulation testing of aquatic organisms is essential to understanding the impact of historical contamination on the quality of water and sediment. A standardized 28-d laboratory bioaccumulation method with a freshwater burrowing mayfly, Hexagenia spp., has been developed and internally validated by the Ontario Ministry of the Environment and Climate Change (MOECC). An interlaboratory comparison was conducted to assess the precision of this method. Field-collected sediment contaminated with arsenic was chosen for the present study. Control and test sediments were subsampled and sent to 6 laboratories to perform the bioaccumulation test. One laboratory failed to meet the control survival criterion of ≥80%. When results of this laboratory are removed from the arsenic accumulation assessment, the mean interlaboratory variability (expressed as coefficient of variation) of the arsenic whole-body concentration is reduced from 44% to 24% in the test sediment-exposed Hexagenia spp. There was no significant interlaboratory difference between the Hexagenia spp. arsenic accumulations. While improved culturing and organism holding guidance may increase laboratory success, the MOECC Hexagenia spp. bioaccumulation test method has tight biological method precision when the control survival criterion is met. Environ Toxicol Chem 2016;35:2448-2455. © 2016 SETAC.

  20. Trophic transfer of polychlorinated biphenyls (PCB) in a boreal lake ecosystem: testing of bioaccumulation models.

    PubMed

    Figueiredo, Kaisa; Mäenpää, Kimmo; Leppänen, Matti T; Kiljunen, Mikko; Lyytikäinen, Merja; Kukkonen, Jussi V K; Koponen, Hannu; Biasi, Christina; Martikainen, Pertti J

    2014-01-01

    Understanding the fate of persistent organic chemicals in the environment is fundamental information for the successful protection of ecosystems and humans. A common dilemma in risk assessment is that monitoring data reveals contaminant concentrations in wildlife, while the source concentrations, route of uptake and acceptable source concentrations remain unsolved. To overcome this problem, different models have been developed in order to obtain more precise risk estimates for the food webs. However, there is still an urgent need for studies combining modelled and measured data in order to verify the functionality of the models. Studies utilising field-collected data covering entire food webs are particularly scarce. This study aims to contribute to tackling this problem by determining the validity of two bioaccumulation models, BIOv1.22 and AQUAWEBv1.2, for application to a multispecies aquatic food web. A small boreal lake, Lake Kernaalanjärvi, in Finland was investigated for its food web structure and concentrations of PCBs in all trophic levels. Trophic magnification factors (TMFs) were used to measure the bioaccumulation potential of PCBs, and the site-specific environmental parameters were used to compare predicted and observed concentrations. Site-specific concentrations in sediment pore water did not affect the modelling endpoints, but accurate site-specific measurements of freely dissolved concentrations in water turned out to be crucial for obtaining realistic model-predicted concentrations in biota. Numerous parameters and snapshot values affected the model performances, bringing uncertainty into the process and results, but overall, the models worked well for a small boreal lake ecosystem. We suggest that these models can be optimised for different ecosystems and can be useful tools for estimating the bioaccumulation and environmental fate of PCBs.

  1. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: A review of methods and applications

    SciTech Connect

    Ingersoll, C.G.; Ankley, G.T.; Benoit, D.A.

    1995-11-01

    This paper reviews recent developments in methods for evaluating the toxicity and bioaccumulation of contaminants associated with freshwater sediments and summarizes example case studies demonstrating the application of these methods. Over the past decade, research has emphasized development of more specific testing procedures for conducting 10-d toxicity tests with the amphipod Hyalella azteca and the midge Chironomus tentans. Toxicity endpoints measured in these tests are survival for H. azteca and survival and growth for C. tentans. Guidance has also been developed for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus, including determination of bioaccumulation kinetics for different compound classes. These methods have been applied to a variety of sediments to address issues ranging from site assessments to bioavailability of organic and inorganic contaminants using field-collected and laboratory-spiked samples. Survival and growth of controls routinely meet or exceed test acceptability criteria. Results of laboratory bioaccumulation studies with L. variegatus have been confirmed with comparisons to residues (PCBs, PAHs, DDT) present from synoptically collected field populations of oligochaetes. Additional method development is currently underway to develop chronic toxicity tests and to provide additional data-confirming responses observed in laboratory sediment tests with natural benthic populations.

  2. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: A review of methods and applications

    USGS Publications Warehouse

    Ingersoll, C.G.; Ankley, G.T.; Benoit, D.A.; Brunson, E.L.; Burton, G.A.; Dwyer, F.J.; Hoke, R.A.; Landrum, P.F.; Norberg-King, T. J.; Winger, P.V.

    1995-01-01

    This paper reviews recent developments in methods for evaluating the toxicity and bioaccumulation of contaminants associated with freshwater sediments and summarizes example case studies demonstrating the application of these methods. Over the past decade, research has emphasized development of more specific testing procedures for conducting 10-d toxicity tests with the amphipod Hyalella azteca and the midge Chironomus tentans. Toxicity endpoints measured in these tests are survival for H. azteca and survival and growth for C. tentans. Guidance has also been developed for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus, including determination of bioaccumulation kinetics for different compound classes. These methods have been applied to a variety of sediments to address issues ranging from site assessments to bioavailability of organic and inorganic contaminants using field-collected and laboratory-spiked samples. Survival and growth of controls routinely meet or exceed test acceptability criteria. Results of laboratory bioaccumulation studies with L. variegatus have been confirmed with comparisons to residues (PCBs, PAHs, DDT) present from synoptically collected field populations of oligochaetes. Additional method development is currently underway to develop chronic toxicity tests and to provide additional data-confirming responses observed in laboratory sediment tests with natural benthic populations.

  3. Bioaccumulation kinetics of polybrominated diphenyl ethers and decabromodiphenyl ethane from field-collected sediment in the oligochaete, Lumbriculus variegatus.

    PubMed

    Zhang, Baozhong; Li, Huizhen; Wei, Yanli; You, Jing

    2013-12-01

    The extensive use of polybrominated diphenyl ethers (PBDEs) and decabromodiphenyl ethane (DBDPE) has made them widespread contaminants in abiotic environments, but data regarding their bioavailability to benthic organisms are sparse. The bioaccumulation potential of PBDEs and DBDPE from field-collected sediment was evaluated in the oligochaete Lumbriculus variegatus using a 49-d exposure, including a 28-d uptake and a 21-d elimination phase. All PBDEs and DBDPE were bioavailable to the worms with biota-sediment accumulation factors (BSAFs) ranging from 0.0210 g organic carbon/g lipid to 4.09 g organic carbon/g lipid. However, the bioavailability of highly brominated compounds (BDE-209 and DBDPE) was poor compared with that of other PBDEs, and this was confirmed by their relatively low freely dissolved concentrations (C(free)) measured by solid-phase microextraction. The inverse correlation between BSAFs and hydrophobicity was explained by their uptake (k(s)) and elimination (k(e)) rate constants. While ke changed little for PBDEs, ks decreased significantly when chemical hydrophobicity increased. The difference in bioaccumulation kinetics of brominated flame retardants in fish and the worms was explained by their physiological difference and the presence of multiple elimination routes. The appropriateness of 28-d bioaccumulation testing for BSAF estimation was validated for PBDEs and DBDPE. In addition, C(free) was shown to be a good indicator of bioavailability.

  4. The effect of organism density on bioaccumulation of contaminants from sediment in three aquatic test species: a case for standardizing to sediment organic carbon.

    PubMed

    Van Geest, J L; Poirier, D G; Solomon, K R; Sibley, P K

    2011-05-01

    Laboratory methods for measuring bioaccumulation of organic contaminants from sediment into aquatic organisms continue to improve, but some aspects are still in need of standardization. From a review of published methods, we noted that the loading density of organisms was determined inconsistently and was primarily based on either sediment volume or total organic carbon (TOC). The rationale mainly expressed for standardizing to TOC was to minimize the depletion of sediment contaminants. However, even when density was standardized to TOC, the relative amount of TOC provided (i.e., ratio of TOC to organism dry weight [dw]) was highly variable. In this study, we examined the effect of organism density (standardized to sediment TOC or volume) on bioaccumulation in three freshwater organisms. The oligochaete Lumbriculus variegatus, mayfly nymph Hexagenia spp., and fathead minnow Pimephales promelas were exposed for 28 days to two field-contaminated sediments that varied in concentration of PCBs and TOC. Densities tested were 50:1 and 27:1 ratios of TOC to organism dw and 140 ml sediment/g wet weight (ww) biomass, yielding low to high organism densities. Bioaccumulation in Hexagenia spp. was significantly higher at the lowest organism density compared with the highest organism density when exposed to site 2 sediment (1.1% TOC) but only with tissue concentrations expressed on a ww basis. Otherwise, there was no significant effect of density on bioaccumulation in organisms exposed to sediments from site 1 (12% TOC) or site 2. Survival of Hexagenia spp. was adversely affected at the highest organism density when the relative amount of TOC was low. The results of this study support the recommendation of standardizing organism density relative to a particular amount of TOC for invertebrate species. A 27:1 ratio of TOC:organism dw was selected as a standard organism density for a new bioaccumulation method because survival, growth, and bioaccumulation were not impacted

  5. The influence of time on lead toxicity and bioaccumulation determined by the OECD earthworm toxicity test.

    PubMed

    Davies, Nicola A; Hodson, Mark E; Black, Stuart

    2003-01-01

    Internationally agreed standard protocols for assessing chemical toxicity of contaminants in soil to worms assume that the test soil does not need to equilibrate with the chemical to be tested prior to the addition of the test organisms and that the chemical will exert any toxic effect upon the test organism within 28 days. Three experiments were carried out to investigate these assumptions. The first experiment was a standard toxicity test where lead nitrate was added to a soil in solution to give a range of concentrations. The mortality of the worms and the concentration of lead in the survivors were determined. The LC50s for 14 and 28 days were 5311 and 5395 microgPb g(-1)soil respectively. The second experiment was a timed lead accumulation study with worms cultivated in soil containing either 3000 or 5000 microgPb g(-1)soil. The concentration of lead in the worms was determined at various sampling times. Uptake at both concentrations was linear with time. Worms in the 5000 microg g(-1) soil accumulated lead at a faster rate (3.16 microg Pb g(-1)tissue day(-1)) than those in the 3000 microg g(-1) soil (2.21 microg Pb g(-1)tissue day(-1)). The third experiment was a timed experiment with worms cultivated in soil containing 7000 microgPb g(-1)soil. Soil and lead nitrate solution were mixed and stored at 20 degrees C. Worms were added at various times over a 35-day period. The time to death increased from 23 h, when worms were added directly after the lead was added to the soil, to 67 h when worms were added after the soil had equilibrated with the lead for 35 days. In artificially Pb-amended soils the worms accumulate Pb over the duration of their exposure to the Pb. Thus time limited toxicity tests may be terminated before worm body load has reached a toxic level. This could result in under-estimates of the toxicity of Pb to worms. As the equilibration time of artificially amended Pb-bearing soils increases the bioavailability of Pb decreases. Thus addition of

  6. Proposed annex to the ASTM Standard Guide E1676-95, bioaccumulation testing utilizing Eisenia foetida

    SciTech Connect

    Roper, J.; Simmers, J.; Lee, C.; Tatem, H.

    1995-12-31

    A detailed description of the method developed at the Waterways Experiment Station (WES) to determine sediment toxicity utilizing the earthworm, Eisenia foetida. This method has been used successfully in evaluating the target contaminants; metals, PAHs, and PCBs. This procedure is currently a proposed annex to the ASTM Standard Guide E1676-95: Conducting a Laboratory Soil Toxicity Test With The Lumbricid Earthworm, Eisenia foetida.

  7. Use of the bioaccumulation factor to screen chemicals for bioaccumulation potential.

    PubMed

    Costanza, Jed; Lynch, David G; Boethling, Robert S; Arnot, Jon A

    2012-10-01

    The fish bioconcentration factor (BCF), as calculated from controlled laboratory tests, is commonly used in chemical management programs to screen chemicals for bioaccumulation potential. The bioaccumulation factor (BAF), as calculated from field-caught fish, is more ecologically relevant because it accounts for dietary, respiratory, and dermal exposures. The BCFBAF™ program in the U.S. Environmental Protection Agency's Estimation Programs Interface Suite (EPI Suite™ Ver 4.10) screening-level tool includes the Arnot-Gobas quantitative structure-activity relationship model to estimate BAFs for organic chemicals in fish. Bioaccumulation factors can be greater than BCFs, suggesting that using the BAF rather than the BCF for screening bioaccumulation potential could have regulatory and resource implications for chemical assessment programs. To evaluate these potential implications, BCFBAF was used to calculate BAFs and BCFs for 6,034 U.S. high- and medium-production volume chemicals. The results indicate no change in the bioaccumulation rating for 86% of these chemicals, with 3% receiving lower and 11% receiving higher bioaccumulation ratings when using the BAF rather than the BCF. All chemicals that received higher bioaccumulation ratings had log K(OW ) values greater than 4.02, in which a chemical's BAF was more representative of field-based bioaccumulation than its BCF. Similar results were obtained for 374 new chemicals. Screening based on BAFs provides ecologically relevant results without a substantial increase in resources needed for assessments or the number of chemicals screened as being of concern for bioaccumulation potential.

  8. Bioaccumulation of fullerene (C60) and corresponding catalase elevation in Lumbriculus variegatus.

    PubMed

    Wang, Jiafan; Wages, Mike; Yu, Shuangying; Maul, Jonathan D; Mayer, Greg; Hope-Weeks, Louisa; Cobb, George P

    2014-05-01

    Fullerene (C(60)), with its unique physical properties and nanometer size, has been mass-produced for many applications in recent decades. The increased likelihood of direct release into the environment has raised interest in understanding both the environmental fate and corresponding biological effects of fullerenes to living organisms. Because few studies have emphasized fullerene uptake and resulting biochemical responses by living organisms, a toxicity screening test and a 28-d bioaccumulation test for Lumbriculus variegatus were performed. No mortality was observed in the range of 0.05 mg C(60) /kg dry sediment to 11.33 mg C(60) /kg dry sediment. A biota-sediment accumulation factor of micron-sized fullerene agglomerates (µ-C(60)) was 0.032 ± 0.008 at day 28, which is relatively low compared with pyrene (1.62 ± 0.22). Catalase (CAT) activity, an oxidative stress indicator, was elevated significantly on day 14 for L. variegatus exposed to µ-C(60) (p = 0.034). This peak CAT activity corresponded to the highest body residues observed in the present study, 199 ± 80 µg C(60) /kg dry weight sediment. Additionally, smaller C(60) agglomerate size increased bioaccumulation potential in L. variegatus. The relationship between C(60) body residue and the increased CAT activity followed a linear regression. All results suggest that C(60) has a lower bioaccumulation potential than pyrene but a higher potential to induce oxidative stress in L. variegatus.

  9. RELATIONSHIP BETWEEN METABOLISM AND BIOACCUMULATION OF BENZO[A]PYRENE IN BENTHIC INVERTEBRATES

    EPA Science Inventory

    The potential influence of polycyclic aromatic hydrocarbon (PAH) metabolism on bioaccumulation is well accepted, but rarely has been examined in many species of benthic invertebrates that commonly are found in contaminated sediments, or used in bioaccumulation or toxicity tests. ...

  10. An effects addition model based on bioaccumulation of metals from exposure to mixtures of metals can predict chronic mortality in the aquatic invertebrate Hyalella azteca.

    PubMed

    Norwood, Warren P; Borgmann, Uwe; Dixon, D George

    2013-07-01

    Chronic toxicity tests of mixtures of 9 metals and 1 metalloid (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, and Zn) at equitoxic concentrations over an increasing concentration range were conducted with the epibenthic, freshwater amphipod Hyalella azteca. The authors conducted 28-d, water-only tests. The bioaccumulation trends changed for 8 of the elements in exposures to mixtures of the metals compared with individual metal exposures. The bioaccumulation of Co and Tl were affected the most. These changes may be due to interactions between all the metals as well as interactions with waterborne ligands. A metal effects addition model (MEAM) is proposed as a more accurate method to assess the impact of mixtures of metals and to predict chronic mortality. The MEAM uses background-corrected body concentration to predict toxicity. This is important because the chemical characteristics of different waters can greatly alter the bioavailability and bioaccumulation of metals, and interactions among metals for binding at the site of action within the organism can affect body concentration. The MEAM accurately predicted toxicity in exposures to mixtures of metals, and predicted results were within a factor of 1.1 of the observed data, using 24-h depurated body concentrations. The traditional concentration addition model overestimated toxicity by a factor of 2.7.

  11. Making regulatory sense of bioaccumulation data

    SciTech Connect

    Bridges, T.S.; Moore, D.W.; Word, J.Q.

    1995-12-31

    Evaluating the environmental consequences of contaminant bioaccumulation is a complex technical and regulatory problem. This problem is exacerbated by the high cost of bioaccumulation testing and the lack of explicit regulatory guidance on how bioaccumulation data should be interpreted and used within a regulatory program. The lack of explicit interpretive guidance has resulted in poorly focused attempts to use this data to make decisions about the management of contaminated sediments. Technical advances in the ability to detect very small quantities of toxicant within the tissues of organisms should reinforce the importance of understanding the relationship between toxicant dose and biological response. Not all detected toxicants will produce adverse effects. Absent specific information about toxicant dose and associated biological effects (e.g. reduced survival, growth, reproduction in animals, cancer risk in humans), it is difficult if not impossible from a regulatory standpoint to objectively determine what level of bioaccumulation constitutes an acceptable adverse effect. To facilitate objective interpretation of bioaccumulation test data they have developed a species-specific residue-effects database using published residue-effects information. Along with guidance on the proper use and limitations of such data, this database should result in more effective management of contaminated sediments.

  12. Dynamic bioaccumulation of organics in finned fish

    SciTech Connect

    Vohra, R.; Cohen, Y.

    1995-12-31

    A compartmental food-chain bioaccumulation model was developed to predict the degree of bioaccumulation of hydrophobic toxins in finned fish under dynamic conditions. The model was developed with the intent of minimizing the number of required user-input parameters while maintaining flexibility of describing a wide range of plausible scenarios. The model is shown to be in excellent agreement with more complex models and with available field data. The effect of various uptake mechanisms, morphometric parameters and species diet on toxin accumulation in finned fish will be illustrated via a number of test cases covering a wide set of species. The integration of the current bioaccumulation model with multimedia chemical transport and fate models such as the recent Integrated Spatial Multimedia Compartmental Model (Cohen and van de Water, in Computer Techniques in Environmental Studies, Vol. 1, Pollution Modeling, Zannetti (Ed.), 1994) will also be described and illustrated via selected test cases.

  13. Evaluation of a first-order model for the prediction of the bioaccumulation of PCBs and DDT from sediment into the marine deposit-feeding clam Macoma nasuta

    SciTech Connect

    Boese, B.L.; Lee, H. II; Echols, S.

    1997-07-01

    A first-order model for predicting contaminant bioaccumulation from sediments into benthic invertebrates was validated using a marine deposit-feeding clam, Macoma nasuta, exposed to polychlorobiphenyl (PCB)-spiked and dichlorodiphenyltrichloroethane (DDT)-contaminated sediments. Contaminant uptake and depuration were analyzed following short-term and long-term sediment exposures. Uptake and depuration rates were used to predict steady-state bioaccumulation factors (BAFs) and exposure times needed to attain steady state. These predictions were compared to observed steady-state BAFs. Estimating elimination and uptake rates from depuration and short-term uptake experiments was an accurate means of predicting BAFs for some PCBs but was not as accurate for predicting DDT BAFs. The exposure time need to attain steady state was poorly predicted by the model. The results demonstrated that a standard 28-d bioaccumulation test estimated steady-state tissue residues within two-fold and was a better predictor than the model for the BAFs of superlipophilic PCBs (log K{sub ow} > 7). Differences in contaminant bioavailability were noted between field-contaminated (DDT) and laboratory-spiked (PCB) sediments.

  14. Bioaccumulation processes in ecosystems.

    PubMed

    Streit, B

    1992-10-15

    The fate of environmental pollutants--the various isotopes of elements, and inorganic or organic compounds--is a fundamental aspect of ecology and ecotoxicology, and bioaccumulation is a phenomenon often discussed in this context. Human activities have drastically altered natural concentrations of many substances in the environment and added numerous new chemicals. An understanding of the processes of bioaccumulation is important for several reasons. 1) Bioaccumulation in organisms may enhance the persistence of industrial chemicals in the ecosystem as a whole, since they can be fixed in the tissues of organisms. 2) Stored chemicals are not exposed to direct physical, chemical, or biochemical degradation. 3) Stored chemicals can directly affect an individual's health. 4) Predators of those organisms that have bioaccumulated harmful substances may be endangered by food chain effects. While former theories on the processes of bioaccumulation focused on single aspects that affect the extent of accumulation (such as the trophic level within the food chain or the lipophilicity of the chemical), modern theories are based on compartmental kinetics and the integration of various environmental interactions. Concepts include results from quantitative structure-activity relationships (QSAR), pharmacokinetics, ecophysiology and general biology, molecular genetic aspects and selection, and finally the structure of communities and man-made alterations in them.

  15. Toxicity and bioaccumulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin in long-term tests with the freshwater benthic invertebrates Chironomus tentans and Lumbriculus variegatus

    SciTech Connect

    West, C.W.; Ankley, G.T.; Nichols, J.W.; Elonen, G.E.; Nessa, D.E.

    1997-06-01

    Two species of freshwater benthic invertebrates, Chronomus tentans and Lumbriculus variegatus, were exposed to three dietary concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and toxicity and bioaccumulation were determined. No toxic effects were observed in full life cycle tests with either species at tissue residue concentrations up to 9,533 ng TCDD/g lipid. The observed lack of sensitivity of the two species to TCDD was consistent with a presumed absence of the aryl hydrocarbon receptor in aquatic invertebrates. Predictions of lipid-normalized tissue concentrations were made based on lipid-normalized TCDD concentrations in the food and were within 15% of targeted concentrations in both species. Depuration studies indicated that TCDD elimination followed first-order kinetics, with elimination rate constants of 0.0014 to 0.0022 h{sup {minus}1} for L. variegatus and 0.0070 to 0.0099 h{sup {minus}1} for C. tentans. Half-lives ranged from 315 to 495 h in L. variegatus and from 70 to 99 h in C. tentans. The ability of invertebrates to accumulate relatively high concentrations of TCDD in the absence of toxic effects may be relevant to the transfer of contaminants through aquatic food webs to potentially sensitive vertebrate species.

  16. Bioaccumulation of Polybrominated Diphenyl Ethers by Tubifex Tubifex.

    PubMed

    Kolar, Boris; Arnuš, Lovro; Križanec, Boštjan; Peijnenburg, Willie; Kos Durjava, Mojca

    2016-01-01

    The selective uptake of polybrominated diphenyl ethers (PBDEs) by oligochaetes makes it possible to assess the bioaccumulation of individual congeners in commercial mixtures. Twenty-one congeners from three BDE commercial mixtures (TBDE-71, TBDE-79 and TBDE-83R) and as individual congeners (BDE-77, BDE-126, BDE-198 and BDE-204) were tested on Tubifex tubifex in accordance with the OECD TG 315 "Bioaccumulation in Sediment-Dwelling Benthic Oligochaetes". All the congeners that were spiked in the sediment were detected at the end of the uptake phase and at the end of the experiment. The bioaccumulation factor (BAF), the kinetic bioaccumulation factor (BAFK) and the biotasediment accumulation factor (BSAF) were calculated, and indicate a high bioaccumulation potential for tri- to hexa-BDEs and a lower bioaccumulation potential for hepta- to deca-BDEs. The penta-homologues BDE-99 and BDE-100 showed the highest BSAFs of 4.84 and 5.85 (BAFs of 7.34 and 9.01), while the nona- and deca-BDEs exhibit bioaccumulation in up to one-order-lower concentrations. The change in the bioaccumulation potential between the group of trito hexa-BDEs and hepta- to deca-BDEs correlated with the generally accepted molecular-mass threshold for the molecular transition through biological membranes (700 g/mol).

  17. Revisiting Bioaccumulation Criteria

    EPA Science Inventory

    The objective of workgroup 5 was to revisit the B(ioaccumulation) criteria that are currently being used to identify POPs under the Stockholm Convention and PBTs under CEPA, TSCA, REACh and other programs. Despite the lack of a recognized definition for a B substance, we defined ...

  18. Bioaccumulation of PCBs Across Concentration Gradients in Sediments

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus quantify the relationships between the chemical residues in sediments and benthic invertebrates, and these relationships are expressed as biota-sediment accumulation factors (BSAF). At some field sites, BSAFs decr...

  19. Review of existing terrestrial bioaccumulation models and terrestrial bioaccumulation modeling needs for organic chemicals.

    PubMed

    Gobas, Frank A P C; Burkhard, Lawrence P; Doucette, William J; Sappington, Keith G; Verbruggen, Eric M J; Hope, Bruce K; Bonnell, Mark A; Arnot, Jon A; Tarazona, Jose V

    2016-01-01

    Protocols for terrestrial bioaccumulation assessments are far less-developed than for aquatic systems. This article reviews modeling approaches that can be used to assess the terrestrial bioaccumulation potential of commercial organic chemicals. Models exist for plant, invertebrate, mammal, and avian species and for entire terrestrial food webs, including some that consider spatial factors. Limitations and gaps in terrestrial bioaccumulation modeling include the lack of QSARs for biotransformation and dietary assimilation efficiencies for terrestrial species; the lack of models and QSARs for important terrestrial species such as insects, amphibians and reptiles; the lack of standardized testing protocols for plants with limited development of plant models; and the limited chemical domain of existing bioaccumulation models and QSARs (e.g., primarily applicable to nonionic organic chemicals). There is an urgent need for high-quality field data sets for validating models and assessing their performance. There is a need to improve coordination among laboratory, field, and modeling efforts on bioaccumulative substances in order to improve the state of the science for challenging substances.

  20. Harmonization of standard toxicity test methods used in North America

    SciTech Connect

    Ingersoll, C.G.; Dwyer, F.J.; Ankley, G.T.

    1995-12-31

    Over the past two years, Environment Canada (EC) and the US Environmental Protection Agency (EPA) have developed standard methods for conducting toxicity and bioaccumulation tests with freshwater, estuarine, and marine sediments. Existing ASTM methods were used as a basis to harmonize these methods for conducting testing with either field-collected or laboratory-spiked sediments. For freshwater toxicity tests, methods are described by EC and EPA for the amphipod Hyalella azteca and the midges Chironomus tentans and C. riparius. Endpoints include 10- to 14-d survival of growth. Methods are also described by EPA for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus. For estuarine and marine toxicity tests, methods are described for several amphipods (i.e., Rhepoxynius abronius, Ampelisca abdita, Eohaustorius estuarius, Leptocheirus plumulosus). Endpoints include 10-d survival and reburial. EC is also developing methods for conducting toxicity tests with Atlantic, Pacific, and Arctic Canadian species of polychaetes. Methods are described by EPA for conducting 28-d bioaccumulation tests with a variety of mollusks (i.e., Macoma spp.) and polychaetes (i.e., Nereis spp.). Slight inconsistencies in methods between freshwater and estuarine/marine testing or between EC and EPA testing include: (1) static vs. flow-through conditions, (2) sieving of sediment, (3) types and quantity of food, (4) age of test organisms, or (4) duration of the test and required endpoints. Additional research is in progress to: (1) develop chronic toxicity tests with amphipods and midges measuring survival, growth, or reproduction, (2) develop whole-sediment toxicity identification evaluation (TIE) procedures, (3) refine sediment spiking procedures, and (4) field-validate laboratory tests.

  1. A tiered assessment strategy for more effective evaluation of bioaccumulation of chemicals in fish.

    PubMed

    Lillicrap, Adam; Springer, Tim; Tyler, Charles R

    2016-03-01

    There is currently limited guidance available for regulators and risk assessors on how to use data from non-guideline methods when assessing the bioaccumulation potential of a chemical. Furthermore, bioaccumulation assessments can be more subjective than they need to be due to the lack of a guidance framework on how to use/include the range of information that may be available for a substance. Under some circumstances, in silico, in vitro and/or in vivo non-test guideline data may be sufficient to classify whether a substance is bioaccumulative without the need for further animal testing. Classifying the bioaccumulative potential of a substance is especially difficult when the bioconcentration factor (BCF) is close to the threshold for defining it as bioaccumulative/very bioaccumulative (B/vB), and a more structured process is required to reduce uncertainty in the BCF estimates. In these situations, in silico and in vitro data can, and should, be used to provide greater confidence in classifying these substances. To aid future evaluations of bioaccumulation data, a proposed tiered assessment strategy is presented incorporating all available data on the bioaccumulative properties of a substance. In addition, a revised scheme is recommended for improving the classification of the bioaccumulative potential of a substance.

  2. A bioaccumulation bioassay for freshwater sediments

    USGS Publications Warehouse

    Mac, Michael J.; Noguchi, George E.; Hesselberg, Robert J.; Edsall, Carol C.; Shoesmith, John A.; Bowker, James D.

    1990-01-01

    A laboratory bioassay is described for determining the bioavailability of contaminants from freshwater sediments. The bioassay consists of 10-d exposures to whole sediments under flow-through conditions. After testing five species, the fathead minnow (Pimephales promelas) and the earthworm (Lubricus terrestris) were recommended for use in the test. When the availability of polychlorinated biphenyls (PCBs), Hg and Zn from Great Lakes sediments was examined in laboratory exposures, only the PCBs were accumulated. A field validation study demonstrated that the magnitude of accumulation in laboratory exposures was similar to that in organisms caged in the field. A protocol is recommended for using the test as a standardized bioaccumulation bioassay.

  3. Bioaccumulation of nickel by algae

    SciTech Connect

    Wang, H.K.; Wood, J.M.

    1984-02-01

    Six strains of algae and one Euglena sp. were tested for their ability to bioaccumulate nickel. Radioactive /sup 63/Ni was used together with a microplate technique to determine the conditions for nickel removal by axenic cultures of cyanobacteria, green algae, and one euglenoid. The cyanobacteria tested were found to be more sensitive to nickel toxicity than the green algae or the Euglena sp. The concentration factor (CF) for nickel was determined under a variety of conditions and found to be in the range from 0 to 3.0 x 10/sup 3/. The effect of environmental variables on nickel uptake was examined, and a striking pH effect for biaccumulation was observed, with most of the algal strains accumulating nickel optimally at approximately pH 8.0. Competition experiments for binding sites between nickel and other cations as well as with other complexing anions, showed that /sup 63/Ni uptake was affected only by cobalt and by humic acids.

  4. Exterior view of south wall of Oxidizer Conditioning Structure (T28D), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior view of south wall of Oxidizer Conditioning Structure (T-28D), looking north. The taller structure immediately to the rear in the upper left background is the Long-Term Oxidizer Silo (T-28B) - Air Force Plant PJKS, Systems Integration Laboratory, Oxidizer Conditioning Structure, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  5. Evaluation of bioaccumulation using in vivo laboratory and field studies.

    PubMed

    Weisbrod, Annie V; Woodburn, Kent B; Koelmans, Albert A; Parkerton, Thomas F; McElroy, Anne E; Borgå, Katrine

    2009-10-01

    A primary consideration in the evaluation of chemicals is the potential for substances to be absorbed and retained in an organism's tissues (i.e., bioaccumulated) at concentrations sufficient to pose health concerns. Substances that exhibit properties that enable biomagnification in the food chain (i.e., amplification of tissue concentrations at successive trophic levels) are of particular concern due to the elevated long-term exposures these substances pose to higher trophic organisms, including humans. Historically, biomarkers of in vivo chemical exposure (e.g., eggshell thinning, bill deformities) retrospectively led to the identification of such compounds, which were later categorized as persistent organic pollutants. Today, multiple bioaccumulation metrics are available to quantitatively assess the bioaccumulation potential of new and existing chemicals and identify substances that, upon or before environmental release, may be characterized as persistent organic pollutants. This paper reviews the various in vivo measurement approaches that can be used to assess the bioaccumulation of chemicals in aquatic or terrestrial species using laboratory-exposed, field-deployed, or collected organisms. Important issues associated with laboratory measurements of bioaccumulation include appropriate test species selection, test chemical dosing methods, exposure duration, and chemical and statistical analyses. Measuring bioaccumulation at a particular field site requires consideration of which test species to use and whether to examine natural populations or to use field-deployed populations. Both laboratory and field methods also require reliable determination of chemical concentrations in exposure media of interest (i.e., water, sediment, food or prey, etc.), accumulated body residues, or both. The advantages and disadvantages of various laboratory and field bioaccumulation metrics for assessing biomagnification potential in aquatic or terrestrial food chains are discussed

  6. Comparing Laboratory and Field Measured Bioaccumulation Endpoints

    EPA Science Inventory

    The report presents an approach that allows comparisons of all laboratory and field bioaccumulation endpoints measurements. The approach will enable the inclusion of large amounts of field data into evaluations of bioaccumulation potential for legacy chemicals. Currently, these...

  7. Modeling chronic dietary cadmium bioaccumulation and toxicity from periphyton to Hyalella azteca.

    PubMed

    Golding, Lisa A; Borgmann, Uwe; Dixon, D George

    2011-07-01

    A chronic (28-d) Cd saturation bioaccumulation model was developed to quantify the Cd contribution from a natural periphyton diet to Cd in the freshwater amphipod Hyalella azteca. Bioaccumulation was then linked to chronic toxic effects. Juvenile H. azteca were exposed to treatments of Cd in water (3.13-100 nmol/L nominal) and food (389-26,300 nmol/g ash-free dry mass). Cadmium bioaccumulation, survival, and growth were recorded. Dietary Cd was estimated to contribute 21 to 31, 59 to 94, and 40 to 55% to bioaccumulated Cd in H. azteca exposed to treatments of Cd primarily in water, food, and food + water, respectively. Survival as a function of Cd lethal body concentration (679 nmol/g; 95% confidence limits, 617-747) was the most robust endpoint. Body concentration integrated all exposure routes. Based on the lethal body concentration, dietary Cd was predicted to contribute markedly (26-90%) to Cd in H. azteca. Cadmium concentration and food nutritional quality (biomass, chlorophyll a, total lipid, fatty acids, total protein) had no effect on H. azteca nutritional quality (total lipid, fatty acids, total protein) but did influence H. azteca dry weight. This research highlighted the importance of including a dietary component when modeling chronic effects of Cd and when refining endpoints for use in ecological risk assessment and water quality guidelines.

  8. IN SITU BIOASSAY CHAMBER FOR ASSESSMENT OF SEDIMENT TOXICITY AND BIOACCUMULATION USING BENTHIC INVERTEBRATES

    EPA Science Inventory

    In this study, we describe the construction of a simple, inexpensive bioassay chamber for testing sediment toxicity (survival and growth) and bioaccumulation under field conditions using the midge Chironomus tentans and the oligochaete Lumbriculus variegatus. The test chamber is ...

  9. Effects of Feeding Rate and Loading Density on Bioaccumulation of PCBs in Oligochaete Lumbriculus variegatus

    EPA Science Inventory

    Sediment tests with aquatic organisms can provide valuable information about potential toxicity and the bioavailability of polychlorinated biphenyls (PCBs) to the organisms. The USEPA 28-day Lumbriculus variegatus bioaccumulation test for sediments when successfully perfor...

  10. Exterior view of LongTerm Oxidizer Silo (T28D) in left background ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior view of Long-Term Oxidizer Silo (T-28D) in left background (taller structure) and adjacent Oxidizer Conditioning Structure (T-28B) at extreme left background, looking south. At far right in foreground is a nitrogen tank in a concrete truck well - Air Force Plant PJKS, Systems Integration Laboratory, Long-Term Oxidizer Silo, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  11. Bioaccumulation Assessment using Predictive Approaches

    EPA Science Inventory

    Mandated efforts to assess chemicals for their potential to bioaccumulate within the environment are increasingly moving into the realm of data inadequacy. Consequently, there is an increasing reliance on predictive tools to complete regulatory requirements in a timely and cost-e...

  12. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms.

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) coated silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) in marine organisms via marine sediment exposure was investigated. Results from 7-d sediment toxicity tests indicate that Ag...

  13. Mathematical relationships between metrics of chemical bioaccumulation in fish.

    PubMed

    Mackay, Don; Arnot, Jon A; Gobas, Frank A P C; Powell, David E

    2013-07-01

    Five widely used metrics of bioaccumulation in fish are defined and discussed, namely the octanol-water partition coefficient (KOW ), bioconcentration factor (BCF), bioaccumulation factor (BAF), biomagnification factor (BMF), and trophic magnification factor (TMF). Algebraic relationships between these metrics are developed and discussed using conventional expressions for chemical uptake from water and food and first-order losses by respiration, egestion, biotransformation, and growth dilution. Two BCFs may be defined, namely as an equilibrium partition coefficient KFW or as a nonequilibrium BCFK in which egestion losses are included. Bioaccumulation factors are shown to be the product of the BCFK and a novel equilibrium multiplier M containing 2 ratios, namely, the diet-to-water concentration ratio and the ratio of uptake rate constants for respiration and dietary uptake. Biomagnification factors are shown to be proportional to the lipid-normalized ratio of the predator/prey values of BCFK and the ratio of the equilibrium multipliers. Relationships with TMFs are also discussed. The effects of chemical hydrophobicity, biotransformation, and growth are evaluated by applying the relationships to a range of illustrative chemicals of varying KOW in a linear 4-trophic-level food web with typical values for uptake and loss rate constants. The roles of respiratory and dietary intakes are demonstrated, and even slow rates of biotransformation and growth can significantly affect bioaccumulation. The BCFK s and the values of M can be regarded as the fundamental determinants of bioaccumulation and biomagnification in aquatic food webs. Analyzing data from food webs can be enhanced by plotting logarithmic lipid-normalized concentrations or fugacities as a linear function of trophic level to deduce TMFs. Implications for determining bioaccumulation by laboratory tests for regulatory purposes are discussed.

  14. Long-term effects of dredging operations program: Assessing bioaccumulation in aquatic organisms exposed to contaminated sediments. Final report

    SciTech Connect

    Clarke, J.U.; McFarland, V.A.

    1991-07-01

    This paper synthesizes previous work on bioaccumulation to provide a working document for the environmental impact on the aquatic environment due to bioaccumulation of sediment contaminants resulting from dredging operations and dredged material placement. Emphasis is placed on explanation of basic concepts concerning, and factors influencing, sediment contaminant bioaccumulation and bioavailability. The paper presents several numerical methods for assessing bioaccumulation, including a simple method for estimating theoretical bioaccumulation potential (TBP) from sediment chemistry for neutral organic chemicals. Methods are also given for projecting contaminant concentrations in organism tissues when steady state is achieved, based on laboratory or field exposures to contaminated sediments. These assessments are presented in the context of the US Environmental Protection Agency's tiered testing approach for dredged material evaluation. The various numerical methods for bioaccumulation assessment are illustrated and compared using step-by-step example calculations with hypothetical and actual data.

  15. Evaluation of PCB bioaccumulation by Lumbriculus variegatus in field-collected sediments

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on polychlorinated biphenyl (PCBs) contaminated sediment samples from the Hudson, Grasse, and Fox Rivers Superfund sites with concurrent measurement of PCB concentrations in sediment interstitial water. Th...

  16. Improving plant bioaccumulation science through consistent reporting of experimental data.

    PubMed

    Fantke, Peter; Arnot, Jon A; Doucette, William J

    2016-10-01

    Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments.

  17. Review of existing terrestrial bioaccumulation models and terrestrial bioaccumulation modeling needs for organic chemicals

    EPA Science Inventory

    Protocols for terrestrial bioaccumulation assessments are far less-developed than for aquatic systems. This manuscript reviews modeling approaches that can be used to assess the terrestrial bioaccumulation potential of commercial organic chemicals. Models exist for plant, inver...

  18. The Dessau workshop on bioaccumulation: state of the art, challenges and regulatory implications.

    PubMed

    Treu, Gabriele; Drost, Wiebke; Jöhncke, Ulrich; Rauert, Caren; Schlechtriem, Christian

    2015-01-01

    Bioaccumulation plays a vital role in understanding the fate of a substance in the environment and is key to the regulation of chemicals in several jurisdictions. The current assessment approaches commonly use the octanol-water partition coefficient (log KOW) as an indicator for bioaccumulation and the bioconcentration factor (BCF) as a standard criterion to identify bioaccumulative substances show limitations. The log KOW does not take into account active transport phenomena or special structural properties (e.g., amphiphilic substances or dissociating substances) and therefore additional screening criteria are required. Regulatory BCF studies are so far restricted to fish and uptake through the gills. Studies on (terrestrial) air-breathing organisms are missing. Though there are alternative tests such as the dietary exposure bioaccumulation fish test described in the recently revised OECD test guideline 305, it still remains unclear how to deal with results of alternative tests in regulatory decision-making processes. A substantial number of bioaccumulation fish tests are required in regulation. The development of improved test systems following the 3R principles, namely to replace, reduce and refine animal testing, is thus required. All these aspects stress the importance to further develop the assessment of bioaccumulation. The Dessau Workshop on Bioaccumulation which was held from June 26th to 27th 2014, in Dessau, Germany, provided a comprehensive overview of the state of the art of bioaccumulation assessment, provided insights into the problems and challenges addressed by the regulatory authorities and described new research concepts and their regulatory implications. The event was organised by UBA (Dessau, Germany) and Fraunhofer IME (Schmallenberg, Germany). About 50 participants from industry, regulatory bodies and academia listened to 14 lectures on selected topics and joined the plenary discussions.

  19. Use of In Vitro Absorption, Distribution, Metabolism, and Excretion (ADME) Data in Bioaccumulation Assessments for Fish

    SciTech Connect

    Nichols, John W.; Erhardt, Susan; Dyer, Scott; James, Margaret O.; Moore, Margo; Plotzke, Kathleen; Segner, Helmut; Schultz, Irvin R.; Thomas, Karluss; Vasiluk, Luba; Weisbrod, Anne V.

    2007-11-01

    A scientific workshop was held in 2006 to discuss the use of in vitro Absorption, Distribution, Metabolism, and Excretion (ADME) data in chemical bioaccumulation assessments for fish. Computer-based (in silico) modeling tools are widely used to estimate chemical bioaccumulation. These in silico methods have inherent limitations that result in inaccurate estimates for many compounds. Based on a review of the science workshop participants concluded that two factors, absorption and metabolism, represent the greatest sources of uncertainty in current bioaccumulation models. Both factors can be investigated experimentally using in vitro test systems.

  20. Effects of storage on sediment toxicity, bioaccumulation potential, and chemistry. Final report

    SciTech Connect

    Tatem, H.E.; Brandon, D.L.; Lee, C.R.; Jarvis, A.S.; Rhett, R.G.

    1991-01-01

    Current guidance on storage of sediments for bioassay/bioaccumulation tests requires that samples be held at 4 C and used within 2 weeks of collection. The objective of this study was to determine the effects of sediment storage for 40 weeks on sediment toxicity, bioaccumulation potential, and chemical analyses. Toxicity and bioaccumulation tests were conducted five times during 40 weeks of storage. Chemical analyses were performed three times during this period. The data indicate that sediments can be held for longer than 2 to 4 weeks, in many cases, without significant effect on test results. However, results of the study also show that tests performed at different times can produce different results. This study showed that a sediment that was toxic to mysids remained toxic during 16 weeks of sediment storage. Two sediments that were toxic initially continued to show significant toxicity after 8 and 16 weeks of sediment storage. One sediment, not toxic initially or at 4 weeks, changed during storage, becoming significantly toxic compared to the Atlantic Ocean (Ref) sediment. The bioaccumulation results showed that certain sediment contaminants (lead, mercury, polychlorinated biphenyls, and some polycyclic aromatic hydrocarbons, PAHs), generally do not reveal a statistical change in bioaccumulation, relative to Ref animals, during 16 weeks of sediment storage. Other PAHs, including phenanthrene, anthracene, benzo (a) anthracene, and chrysene, did change in bioaccumulation potential during storage.

  1. Classification of bioaccumulative and non-bioaccumulative chemicals using statistical learning approaches.

    PubMed

    Sun, Xiuli; Li, Yan; Liu, Xianjie; Ding, Jun; Wang, Yonghua; Shen, Hui; Chang, Yaqing

    2008-01-01

    The present work aimed at developing in silico models allowing for a reliable prediction of bioaccumulative compounds and non-bioaccumulative compounds based on the definition of Bioconcentration Factor (BCF) using a diverse data set of 238 organic molecules. The partial least squares analysis (PLS), C4.5, support vector machine (SVM), and random forest (RF) algorithms were applied, and their performance classifying these compounds in terms of their quantitative structure-activity relationships (QSAR) was evaluated and verified with 5-fold cross-validation and an independent evaluation data set. The obtained results show that the overall prediction accuracies (Q) of the optimal PLS, C4.5, SVM and RF models are 84.5-87.7% for the internal cross-validation, with prediction accuracy (CO) of 86.3-91.1% in the external test sets, and C4.5 is slightly better than the three other methods which presents a Q of 87.7%, and a CO of 91.1% for the test sets. All these results prove the reliabilities of the in silico models, which should be valuable for the environmental risk assessment of the substances.

  2. Bioaccumulation of hexachlorobenzene in the terrestrial isopod Porcellio scaber.

    PubMed

    Kampe, Sebastian; Schlechtriem, Christian

    2016-11-01

    A test system to investigate the biomagnification of organic chemicals in the terrestrial isopod Porcellio scaber was developed and validated. Adult isopods were fed on alder leaf powder (Alnus glutinosa) spiked with [(14) C]hexachlorobenzene (HCB). Test animals, sampled regularly during the uptake (16 d) and depuration phases (16 d), were analyzed, and the kinetics of tissue concentrations were determined. Uptake (k1 ) and depuration rates (k2 ) were calculated to estimate kinetic biomagnification factors (BMFs). In addition, the effect of coprophagy on the uptake and accumulation of HCB as well as the tissue distribution of HCB in P. scaber was investigated. The test system was shown to be suitable for investigations into the terrestrial bioaccumulation of chemicals. Coprophagy had no effect on the bioaccumulation of HCB in P. scaber. The hepatopancreas was identified as the main target tissue for HCB accumulation. The low BMF of 0.057 resulted from an assimilation efficiency (α) of 31.42%, a low uptake rate k1 (0.009 d(-1) ), and a high depuration rate k2 (0.164 d(-1) ). The results indicate that the terrestrial bioaccumulation of organic chemicals in P. scaber might not represent a worst-case scenario for biomagnification, limiting the value of the test system for the regulatory assessment of organic chemicals. Environ Toxicol Chem 2016;35:2867-2873. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  3. Iron bioaccumulation in mycelium of Pleurotus ostreatus

    PubMed Central

    Almeida, Sandra M.; Umeo, Suzana H.; Marcante, Rafael C.; Yokota, Meire E.; Valle, Juliana S.; Dragunski, Douglas C.; Colauto, Nelson B.; Linde, Giani A.

    2015-01-01

    Pleurotus ostreatus is able to bioaccumulate several metals in its cell structures; however, there are no reports on its capacity to bioaccumulate iron. The objective of this study was to evaluate cultivation variables to increase iron bioaccumulation in P. ostreatus mycelium. A full factorial design and a central composite design were utilized to evaluate the effect of the following variables: nitrogen and carbon sources, pH and iron concentration in the solid culture medium to produce iron bioaccumulated in mycelial biomass. The maximum production of P. ostreatus mycelial biomass was obtained with yeast extract at 2.96 g of nitrogen L −1 and glucose at 28.45 g L −1 . The most important variable to bioaccumulation was the iron concentration in the cultivation medium. Iron concentration at 175 mg L −1 or higher in the culture medium strongly inhibits the mycelial growth. The highest iron concentration in the mycelium was 3500 mg kg −1 produced with iron addition of 300 mg L −1 . The highest iron bioaccumulation in the mycelium was obtained in culture medium with 150 mg L −1 of iron. Iron bioaccumulation in P. ostreatus mycelium is a potential alternative to produce non-animal food sources of iron. PMID:26221108

  4. Bioaccumulation of PCBs by algae: Kinetics versus equilibrium

    SciTech Connect

    Swackhamer, D.L.; Skoglund, R.S. )

    1993-05-01

    The objectives of this study were to test the hypothesis that bioaccumulation of hydrophobic organic compounds (HOCs) by phytoplankton is correlated to the compound's octanol/water partition coefficient (K[sub ow]) in a predictive relationship in laboratory experiments, and to confirm these findings with field observations. In laboratory experiments the authors measured the uptake of 40 representative polychlorinated biphenyl (PCB) congeners over time under conditions that inhibited and allowed phytoplankton growth. Results indicated that the bioaccumulation process is consistent with partitioning from water into cell lipids but is slower than previously thought. The uptake of PCBs was slow relative to growth of phytoplankton, preventing the chemical from reaching thermodynamic equilibrium in algal cells under conditions promoting growth (nonwinter). Thus under non-winter field conditions, many PCB congeners never reach equilibrium concentrations. Food-chain models that assume equilibrium between HOCs and the primary trophic level could be inaccurate and may need to use a kinetic framework.

  5. Chiral xenobiotics bioaccumulations and environmental health prospectives.

    PubMed

    Hussain, Iqbal; ALOthman, Zeid A; Alwarthan, Abdulrahman A; Sanagi, Mohd Marsin; Ali, Imran

    2015-08-01

    The chiral xenobiotics are very dangerous for all of us due to the different enantioselective toxicities of the enantiomers. Besides, these have different enantioselective bioaccumulations and behaviors in our body and other organisms. It is of urgent need to understand the enantioselective bioaccumulations, toxicities, and the health hazards of the chiral xenobiotics. The present article describes the classification, sources of contamination, distribution, enantioselective bioaccumulation, and the toxicities of the chiral xenobiotics. Besides, the efforts are also made to discuss the prevention and remedial measures of the havoc of the chiral xenobiotics. The challenges of the chiral xenobiotics have also been highlighted. Finally, future prospectives are also discussed.

  6. Sediment bioaccumulation testing: Manistique Harbor sediments

    EPA Science Inventory

    Manistique Harbor AOC public meeting and availability session on August 28th in Manistique, MI. This meeting/session is organized by GLNPO; they are EPA's lead on AOC restoration efforts. The goal of the meeting is to engage with the community with all the work that has been d...

  7. Uptake and bioaccumulation of Cry toxins by an aphidophagous predator.

    PubMed

    Paula, Débora P; Andow, David A

    2016-02-01

    Uptake of Cry toxins by insect natural enemies has rarely been considered and bioaccumulation has not yet been demonstrated. Uptake can be demonstrated by the continued presence of Cry toxin after exposure has stopped and gut contents eliminated. Bioaccumulation can be demonstrated by showing uptake and that the concentration of Cry toxin in the natural enemy exceeds that in its food. We exposed larvae of the aphidophagous predator, Harmonia axyridis, to Cry1Ac and Cry1F through uniform and constant tritrophic exposure via an aphid, Myzus persicae, and looked for toxin presence in the pupae. We repeated the experiment using only Cry1F and tested newly emerged adults. Both Cry toxins were detected in pupae, and Cry1F was detected in recently emerged, unfed adults. Cry1Ac was present 2.05 times and Cry1F 3.09 times higher in predator pupae than in the aphid prey. Uptake and bioaccumulation in the third trophic level might increase the persistence of Cry toxins in the food web and mediate new exposure routes to natural enemies.

  8. How does predation affect the bioaccumulation of hydrophobic organic compounds in aquatic organisms?

    PubMed

    Xia, Xinghui; Li, Husheng; Yang, Zhifeng; Zhang, Xiaotian; Wang, Haotian

    2015-04-21

    It is well-known that the body burden of hydrophobic organic compounds (HOCs) increases with the trophic level of aquatic organisms. However, the mechanism of HOC biomagnification is not fully understood. To fill this gap, this study investigated the effect of predation on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs), one type of HOC, in low-to-high aquatic trophic levels under constant freely dissolved PAH concentrations (1, 5, or 10 μg L(-1)) maintained by passive dosing systems. The tested PAHs included phenanthrene, anthracene, fluoranthene, and pyrene. The test organisms included zebrafish, which prey on Daphnia magna, and cichlids, which prey on zebrafish. The results revealed that for both zebrafish and cichlids, predation elevated the uptake and elimination rates of PAHs. The increase of uptake rate constant ranged from 20.8% to 39.4% in zebrafish with the amount of predation of 5 daphnids per fish per day, and the PAH uptake rate constant increased with the amount of predation. However, predation did not change the final bioaccumulation equilibrium; the equilibrium concentrations of PAHs in fish only depended on the freely dissolved concentration in water. Furthermore, the lipid-normalized water-based bioaccumulation factor of each PAH was constant for fish at different trophic levels. These findings infer that the final bioaccumulation equilibrium of PAHs is related to a partition between water and lipids in aquatic organisms, and predation between trophic levels does not change bioaccumulation equilibrium but bioaccumulation kinetics at stable freely dissolved PAH concentrations. This study suggests that if HOCs have not reached bioaccumulation equilibrium, biomagnification occurs due to enhanced uptake rates caused by predation in addition to higher lipid contents in higher trophic organisms. Otherwise, it is only due to the higher lipid contents in higher trophic organisms.

  9. Decamethylcyclopentasiloxane (D5) spiked sediment: bioaccumulation and toxicity to the benthic invertebrate Hyalella azteca.

    PubMed

    Norwood, W P; Alaee, M; Sverko, E; Wang, D; Brown, M; Galicia, M

    2013-10-01

    Chronic toxicity and bioaccumulation of decamethylcyclopentasiloxane (D5) to Hyalella azteca was examined in a series of spiked sediment exposures. Juvenile H. azteca were exposed for 28d (chronic) to a concentration series of D5 in two natural sediments of differing organic carbon content (O.C.) and particle size composition. The chronic, LC50s were 191 and 857μgD5g(-1) dry weight for Lakes Erie (0.5% O.C.) and Restoule (11% O.C.) respectively. Inhibition of growth only occurred with the L. Restoule spiked sediment with a resultant EC25 of 821μgg(-1)dw. Lethality was a more sensitive endpoint than growth inhibition. Biota sediment accumulation factors (BSAFs, 28d) were <1 indicating that D5 did not bioconcentrate based on lipid normalized tissue concentrations and organic carbon normalized sediment concentrations. Organic carbon (OC) in the sediment appeared to be protective, however normalization to OC did not normalize the toxicity. Normalization of D5 concentrations in the sediments to sand content did normalize the toxicity and LC50 values of 3180 and 3570μg D5g(-1) sand dw were determined to be statistically the same.

  10. A comparison of the bioaccumulation potential of three freshwater organisms exposed to sediment-associated contaminants under laboratory conditions.

    PubMed

    Van Geest, Jordana L; Poirier, David G; Solomon, Keith R; Sibley, Paul K

    2011-04-01

    In the field of sediment quality assessment, increased support has been expressed for using multiple species that represent different taxa, trophic levels, and potential routes of exposure. However, few studies have compared the bioaccumulation potential of various test species over a range of sediment contaminants (hydrophobic organics and metals). As part of the development and standardization of a laboratory bioaccumulation method for the Ontario Ministry of the Environment, the oligochaete Lumbriculus variegatus, mayfly nymph Hexagenia spp., and juvenile fathead minnow Pimephales promelas were exposed to a variety of field-contaminated sediments (n = 10) to evaluate their relative effectiveness for accumulating different contaminants (e.g., dichlorodiphenyltrichloroethane [DDT] and metabolites, polychlorinated biphenyls [PCBs), polycyclic aromatic hydrocarbons [PAHs), polychlorinated dibenzo-p-dioxins and dibenzofurans [PCDD/Fs), and heavy metals). Bioaccumulation was usually highest in L. variegatus but also most variable within and (relative measures) between sediments. Bioaccumulation was similar between L. variegatus and Hexagenia spp. in most of the sediments tested. Significant differences in bioaccumulation between species were observed for DDT, dichlorodiphenyldichloroethane (DDD), PAHs, and PCDD/Fs. The present study indicates that species-specific differences in bioaccumulation may, but do not always, exist and can vary with contaminant and sediment type. The choice of test species or combination to use in a standard test method may depend on the objectives of the sediment quality assessment and data requirements of an ecological risk assessment. The results of the present study provide insight for selection of test species and validation of laboratory methods for assessing bioaccumulation with these species, as well as valuable information for interpreting results of bioaccumulation tests.

  11. Comparing laboratory and field measured bioaccumulation endpoints.

    PubMed

    Burkhard, Lawrence P; Arnot, Jon A; Embry, Michelle R; Farley, Kevin J; Hoke, Robert A; Kitano, Masaru; Leslie, Heather A; Lotufo, Guilherme R; Parkerton, Thomas F; Sappington, Keith G; Tomy, Gregg T; Woodburn, Kent B

    2012-01-01

    An approach for comparing laboratory and field measures of bioaccumulation is presented to facilitate the interpretation of different sources of bioaccumulation data. Differences in numerical scales and units are eliminated by converting the data to dimensionless fugacity (or concentration-normalized) ratios. The approach expresses bioaccumulation metrics in terms of the equilibrium status of the chemical, with respect to a reference phase. When the fugacity ratios of the bioaccumulation metrics are plotted, the degree of variability within and across metrics is easily visualized for a given chemical because their numerical scales are the same for all endpoints. Fugacity ratios greater than 1 indicate an increase in chemical thermodynamic activity in organisms with respect to a reference phase (e.g., biomagnification). Fugacity ratios less than 1 indicate a decrease in chemical thermodynamic activity in organisms with respect to a reference phase (e.g., biodilution). This method provides a holistic, weight-of-evidence approach for assessing the biomagnification potential of individual chemicals because bioconcentration factors, bioaccumulation factors, biota-sediment accumulation factors, biomagnification factors, biota-suspended solids accumulation factors, and trophic magnification factors can be included in the evaluation. The approach is illustrated using a total 2393 measured data points from 171 reports, for 15 nonionic organic chemicals that were selected based on data availability, a range of physicochemical partitioning properties, and biotransformation rates. Laboratory and field fugacity ratios derived from the various bioaccumulation metrics were generally consistent in categorizing substances with respect to either an increased or decreased thermodynamic status in biota, i.e., biomagnification or biodilution, respectively. The proposed comparative bioaccumulation endpoint assessment method could therefore be considered for decision making in a

  12. Arsenic bio-accessibility and bioaccumulation in aged pesticide contaminated soils: A multiline investigation to understand environmental risk.

    PubMed

    Rahman, M S; Reichelt-Brushet, A J; Clark, M W; Farzana, T; Yee, L H

    2017-03-01

    Bio-accessibility and bioavailability of arsenic (As) in historically As-contaminated soils (cattle tick pesticide), and pristine soils were assessed using 3 different approaches. These approaches included human bio-accessibility using an extraction test replicating gastric conditions (in vitro physiologically-based extraction test); an operationally defined bioaccessibility extraction test - 1.0M HCl extraction; and a live organism bioaccumulation test using earthworms. A sequential extraction procedure revealed the soil As-pool that controls bio-accessibility and bioaccumulation of As. Findings show that As is strongly bound to historically contaminated soil with a lower degree of As bio-accessibility (<15%) and bioaccumulation (<9%) compared with freshly contaminated soil. Key to these lower degrees of bio-accessibility and bioaccumulation is the greater fraction of As associated with crystalline Fe/Al oxy-hydroxide and residual phases. The high bio-accessibility and bioaccumulation of freshly sorbed As in pristine soils were from the exchangeable and specifically sorbed As fractions. Arsenic bioaccumulation in earthworms correlates strongly with both the human bio-accessible, and the operationally defined bioavailable fractions. Hence, results suggest that indirect As bioavailability measures, such as accumulation by earthworm, can be used as complementary lines of evidence to reinforce site-wide trends in the bio-accessibility using in vitro physiologically-based extractions and/or operationally defined extraction test. Such detailed knowledge is useful for successful reclamation and management of the As contaminated soils.

  13. Perfluorinated chemicals in surface waters and sediments from northwest Georgia, USA, and their bioaccumulation in Lumbriculus variegatus

    USGS Publications Warehouse

    Lasier, Peter J.; Washington, John W.; Hassan, Sayed M.; Jenkins, Thomas M.

    2011-01-01

    Concentrations of perfluorinated chemicals (PFCs) were measured in surface waters and sediments from the Coosa River watershed in northwest Georgia, USA, to examine their distribution downstream of a suspected source. Samples from eight sites were analyzed using liquid chromatography-tandem mass spectrometry. Sediments were also used in 28-d exposures with the aquatic oligochaete, Lumbriculus variegatus, to assess PFC bioaccumulation. Concentrations of PFCs in surface waters and sediments increased significantly below a land-application site (LAS) of municipal/industrial wastewater and were further elevated by unknown sources downstream. Perfluorinated carboxylic acids (PFCAs) with eight or fewer carbons were the most prominent in surface waters. Those with 10 or more carbons predominated sediment and tissue samples. Perfluorooctane sulfonate (PFOS) was the major homolog in contaminated sediments and tissues. This pattern among sediment PFC concentrations was consistent among sites and reflected homolog concentrations emanating from the LAS. Concentrations of PFCs in oligochaete tissues revealed patterns similar to those observed in the respective sediments. The tendency to bioaccumulate increased with PFCA chain length and the presence of the sulfonate moiety. Biota-sediment accumulation factors indicated that short-chain PFCAs with fewer than seven carbons may be environmentally benign alternatives in aquatic ecosystems; however, sulfonates with four to seven carbons may be as likely to bioaccumulate as PFOS.

  14. Perfluorinated chemicals in surface waters and sediments from northwest Georgia, USA, and their bioaccumulation in Lumbriculus variegatus.

    PubMed

    Lasier, Peter J; Washington, John W; Hassan, Sayed M; Jenkins, Thomas M

    2011-10-01

    Concentrations of perfluorinated chemicals (PFCs) were measured in surface waters and sediments from the Coosa River watershed in northwest Georgia, USA, to examine their distribution downstream of a suspected source. Samples from eight sites were analyzed using liquid chromatography-tandem mass spectrometry. Sediments were also used in 28-d exposures with the aquatic oligochaete, Lumbriculus variegatus, to assess PFC bioaccumulation. Concentrations of PFCs in surface waters and sediments increased significantly below a land-application site (LAS) of municipal/industrial wastewater and were further elevated by unknown sources downstream. Perfluorinated carboxylic acids (PFCAs) with eight or fewer carbons were the most prominent in surface waters. Those with 10 or more carbons predominated sediment and tissue samples. Perfluorooctane sulfonate (PFOS) was the major homolog in contaminated sediments and tissues. This pattern among sediment PFC concentrations was consistent among sites and reflected homolog concentrations emanating from the LAS. Concentrations of PFCs in oligochaete tissues revealed patterns similar to those observed in the respective sediments. The tendency to bioaccumulate increased with PFCA chain length and the presence of the sulfonate moiety. Biota-sediment accumulation factors indicated that short-chain PFCAs with fewer than seven carbons may be environmentally benign alternatives in aquatic ecosystems; however, sulfonates with four to seven carbons may be as likely to bioaccumulate as PFOS.

  15. Do pyrethroid-resistant Hyalella azteca have greater bioaccumulation potential compared to non-resistant populations? Implications for bioaccumulation in fish.

    PubMed

    Muggelberg, Leslie L; Huff Hartz, Kara E; Nutile, Samuel A; Harwood, Amanda D; Heim, Jennifer R; Derby, Andrew P; Weston, Donald P; Lydy, Michael J

    2017-01-01

    The recent discovery of pyrethroid-resistant Hyalella azteca populations in California, USA suggests there has been significant exposure of aquatic organisms to these terrestrially-applied insecticides. Since resistant organisms are able to survive in relatively contaminated habitats they may experience greater pyrethroid bioaccumulation, subsequently increasing the risk of those compounds transferring to predators. These issues were evaluated in the current study following toxicity tests in water with permethrin which showed the 96-h LC50 of resistant H. azteca (1670 ng L(-1)) was 53 times higher than that of non-resistant H. azteca (31.2 ng L(-1)). Bioaccumulation was compared between resistant and non-resistant H. azteca by exposing both populations to permethrin in water and then measuring the tissue concentrations attained. Our results indicate that resistant and non-resistant H. azteca have similar potential to bioaccumulate pyrethroids at the same exposure concentration. However, significantly greater bioaccumulation occurs in resistant H. azteca at exposure concentrations non-resistant organisms cannot survive. To assess the risk of pyrethroid trophic transfer, permethrin-dosed resistant H. azteca were fed to fathead minnows (Pimephales promelas) for four days, after which bioaccumulation of permethrin and its biotransformation products in fish tissues were measured. There were detectable concentrations of permethrin in fish tissues after they consumed dosed resistant H. azteca. These results show that bioaccumulation potential is greater in organisms with pyrethroid resistance and this increases the risk of trophic transfer when consumed by a predator. The implications of this study extend to individual fitness, populations and food webs.

  16. Effect of feeding in 30-day bioaccumulation assays using Hyalella azteca in fluoranthene-dosed sediment

    SciTech Connect

    Harkey, G.A.; Landrum, P.F.

    1995-12-31

    Current protocols for conducting freshwater sediment bioaccumulation tests require that food be added to exposures. To determine effects of adding food, 30-day bioaccumulation assays were conducted with H. azteca exposed to sediment dosed with four concentrations (0.05 to 1,267 nmol/g dry weight) of fluoranthene. Accumulation was significantly greater in fed versus non-fed animals at all dose levels after 96 and 240 hours of exposure and continued to be greater after 30 days in the low dose levels. At sediment concentrations above 634 nmol/g dw, survival of unfed animals dropped to 34% after 30 days, However, after 30 days, reproduction was observed in fed animals exposed to sediment concentrations > 16 times the expected LC50 calculated for fluoranthene in sediment. These data raise questions concerning the interpretation of standard toxicity and bioaccumulation tests when food is routinely added.

  17. A closer look at bioaccumulation of petroleum hydrocarbon mixtures in aquatic worms.

    PubMed

    Muijs, Barry; Jonker, Michiel T O

    2010-09-01

    Petroleum hydrocarbons (oils) are ubiquitous in the aquatic environment, and adequate risk assessment is thus essential. Bioaccumulation plays a key role in risk assessment, but the current knowledge on bioaccumulation of oils is limited. Therefore, this process was studied in detail, using the aquatic worm, Lumbriculus variegatus, and 14 field-contaminated sediments. The main focus during the present study was on uptake kinetics, the relationship between oil boiling point fraction and uptake, and effects of sediment characteristics. Uptake kinetics became slower with increasing boiling point fraction, but 70 to 90% of the equilibrium situation was reached within the standard exposure duration of 28 d. Worms accumulated sedimentary petroleum hydrocarbons in the range of C(10) to C(34), a range much wider than expected. Biota-to-sediment accumulation factors (BSAFs) for separate boiling point fractions were constant and around the proposed value of 1 to 2 up to C(22), but gradually decreased beyond this point. The decrease was probably caused by a combination of nonequilibrium conditions and enhanced sorption of higher boiling point fractions to sediments; the latter possibly due to the presence of strongly sorbing separate oil phases or black carbon. A negative relationship was observed between BSAF and oil concentration in sediment, which was explained by the presence of separate oil phases at high oil concentrations. These strongly sorbing phases may limit their own availability, particularly when being highly weathered; worms may also avoid them. The observed phenomena have obvious implications for bioaccumulation assessment of oils and suggest that the current risk assessment procedure for oils in sediments may lead to erroneous results.

  18. A REVIEW OF BIOACCUMULATION MODELING APPROACHES FOR PERSISTENT ORGANIC POLLUTANTS

    EPA Science Inventory

    Persistent organic pollutants and mercury are likely to bioaccumulate in biological components of the environment, including fish and wildlife. The complex and long-term dynamics involved with bioaccumulation are often represented with models. Current scientific developments in t...

  19. Revisiting Bioaccumulation Criteria for POPS and PBT Assessments

    EPA Science Inventory

    Scientists from academia, industry and government reviewed current international regulations for the screening of commercial chemicals for bioaccumulation in the context of the current state of the science in the area of bioaccumulation. Based on this review several recommendat...

  20. Bioaccumulation of copper by Trichoderma viride.

    PubMed

    Anand, Purnima; Isar, Jasmine; Saran, Saurabh; Saxena, Rajendra Kumar

    2006-05-01

    Studies were carried out on interaction of Trichoderma viride with copper and reports bioaccumulation as a mechanism of copper tolerance during growth. There was a marked increase in the lag phase of the growth, which was concentration dependent. At a concentration of 100 mg/L of CuCl2.2H2O, 81% of Cu(II) were removed by 3.4 g/L of the biomass in 72 h. The process was temperature and pH dependent. The maximum copper bioaccumulation occurred at 30 degrees C, pH 5.0. Metabolic inhibitors such as sodium azide (NaN3) and 2,4-dinitrophenol (2,4-DNP) drastically reduced the extent of Cu(II) bioaccumulation. Electron microscopy and cell fractionation studies revealed that 70-80% of copper was present as a layer on the cell wall surface.

  1. Validation of a chronic dietary cadmium bioaccumulation and toxicity model for Hyalella azteca exposed to field-contaminated periphyton and lake water.

    PubMed

    Golding, Lisa A; Borgmann, Uwe; Dixon, D George

    2011-11-01

    A model previously developed in the laboratory to predict chronic bioaccumulation and toxicity of cadmium to Hyalella azteca from a diet of periphyton was validated by comparing predictions with measurements of Cd in two exposure scenarios: laboratory-cultured H. azteca exposed for 28 d to field-contaminated water and periphyton, and Cd measured in field-collected H. azteca. In both exposure scenarios, model predictions of bioaccumulation were shown to be robust; however, effects on Cd bioaccumulation from complexation with dissolved organic carbon (DOC) and inhibition of Cd bioaccumulation by Ca²⁺ must be incorporated into the model to permit its wider application. The model predicted that 80 to 84% of Cd in H. azteca came from periphyton when H. azteca were chronically exposed to dissolved Cd in lake water at 2.63 to 3.01 nmol/L and periphyton at 1,880 to 2,630 nmol/g ash-free dry mass. Dietary Cd contributed markedly to the model-predicted decrease in 28-d survival to 74% at environmental Cd concentrations in food and water. In reality, survival decreased to 10%. The lower than predicted survival likely was due to the higher nutritional quality of periphyton used to develop the model in the laboratory compared with the field-collected periphyton. Overall, this research demonstrated that Cd in a periphyton diet at environmental concentrations can contribute to chronic toxicity in H. azteca.

  2. Metal toxicity, uptake and bioaccumulation in aquatic invertebrates--modelling zinc in crustaceans.

    PubMed

    Rainbow, P S; Luoma, S N

    2011-10-01

    We use published data on the different patterns of the bioaccumulation of zinc by three crustaceans, the caridean decapod Palaemon elegans, the amphipod Orchestia gammarellus and the barnacle Amphibalanus amphitrite, to construct comparative biodynamic models of the bioaccumulation of zinc into metabolically available and detoxified components of accumulated zinc in each crustacean under both field and laboratory toxicity test conditions. We then link these bioaccumulation models to the onset of toxic effects on exposure of the crustaceans to high dissolved zinc bioavailabilities, using the tenets that toxicity effects are related to the total uptake rate of the toxic metal, and that toxicity is not usually dependent on the total accumulated metal concentration but always on the concentration of accumulated metal that is metabolically available. We dismiss the general concept that there is a critical accumulated body concentration of a metal in an invertebrate at which toxicity ensues, except under specific circumstances involving a rare lack of storage detoxification of accumulated metal. We thus propose a theoretical framework that can be extended to other metals and other aquatic invertebrates (indeed other animals) to explain the variation in the relationship between bioaccumulated body concentrations and toxicity, and subsequently to predict this relationship in many other species for which we have bioaccumulation modelling data.

  3. Bioaccumulation of isocarbophos enantiomers from laboratory-contaminated aquatic environment by tubificid worms.

    PubMed

    Liu, Tiantian; Diao, Jinling; Di, Shanshan; Zhou, Zhiqiang

    2015-04-01

    The benthic fauna is of great importance to assess the environmental fate of contaminations in aquatic ecosystem. In this study, tubificids were exposed to both laboratory-contaminated aqueous phases and spiked sediment to study the bioaccumulation of isocarbophos (ICP). Two types of spiked sediments were used in the spiked sediment experiment. During the exposure period, an enantioselective bioaccumulation was found in spiked water treatment, with concentrations of the (-)-ICP higher than that of the (+)-ICP, but no enantioselectivity was detected in the spiked sediment treatments. However, different bioaccumulation patterns were observed in the two spiked sediment treatments. Results showed that for spiked forest field sediment (FF sediment) incubation, bioaccumulation was governed by the concentrations in soil. Whereas ICP was bioaccumulated dominantly from overlying water in spiked Chagan Lake sediment (CG sediment) test. The dissipation rates were proved different in the two sediments and ICP dissipated much faster in CG sediment than that in FF sediment. Significant difference in ICP's half-life was also observed between worm-present and worm-free treatments in FF sediment. The detections of concentrations in overlying water indicated that much more ICP diffused to aquatic phase with the present of tubificids.

  4. Sediment and Terrestrial Toxicity and Bioaccumulation of Nano Aluminum Oxide

    DTIC Science & Technology

    2011-05-01

    Aquatic systems Click to edit Master subtitle style BUILDING STRONG® Organisms Tested Tubifex tubifex Hyalella azteca Lumbriculus variegatus Corbicula...mortality at 2500 mg/kg in sediment Hyalella azteca 0 0.2 0.4 0.6 0.8 1 Control 10,000 25,000 50,000 100,000 mg/kg Al2O3 Pr op or tio n Su rv iv al...to concentration in environment at steady state Click to edit Master subtitle style BUILDING STRONG® Hyalella azteca 10-d - Bioaccumulation Al2O3

  5. The State of In Vitro Science for Use in Bioaccumulation Assessments for Fish

    SciTech Connect

    Weisbrod, Anne V.; Sahi, Jasminder; Segner, Helmut; James, Margaret O.; Nichols, John W.; Schultz, Irvin R.; Erhardt, Susan; Cowan-Ellsberry, Christina; Bonnell, Mark; Hoeger, Birgit

    2009-01-01

    Through the concerted evaluations of thousands of commercial substances for the qualities of persistence, bioaccumulation, and toxicity as a result of the United Nations Environment Program’s Stockholm Convention, it has become apparent that fewer empirical data are available on bioaccumulation than other endpoints and that bioaccumulation models were not designed to accommodate all chemical classes. Due to the number of chemicals that may require further assessment, in vivo testing is cost prohibitive and discouraged due to the large number of animals needed. Although in vitro systems are less developed and characterized for fish, multiple high-throughput in vitro assays have been used to explore the dietary uptake and elimination of pharmaceuticals and other xenobiotics by mammals. While similar processes determine bioaccumulation in mammalian species, a review of methods to measure chemical bioavailability in fish screening systems, such as chemical biotransformation or metabolism in tissue slices, perfused tissues, fish embryos, primary and immortalized cell lines, and subcellular fractions, suggest quantitative and qualitative differences between fish and mammals exist. Using in vitro data in assessments for whole organisms or populations requires certain considerations and assumptions to scale data from a test tube to a fish, and across fish species. Also, different models may incorporate the predominant site of metabolism, such as the liver, and significant presystemic metabolism by the gill or gastrointestinal system to help accurately convert in vitro data into representative whole-animal metabolism and subsequent bioaccumulation potential. The development of animal alternative tests for fish bioaccumulation assessment is framed in the context of in vitro data requirements for regulatory assessments in Europe and Canada.

  6. Inclusion of bioaccumulation in environmental risk assessment: An integrated approach

    SciTech Connect

    Kloepper-Sams, P.J.; Cowan, C.E.; Larson, R.J.; Versteeg, D.J.

    1995-12-31

    Historically, the potential to bioaccumulate has been ignored in risk assessments or assessed in isolation. Bioaccumulation can be included in an integrated approach by posing two questions. (1) Is the duration of acute aquatic testing sufficient to identify effects due to direct exposure? This can be addressed by comparing T95 (time to reach 95% of steady state) with test duration. (2) Do dietary sources contribute substantially to exposure; is so, will this affect organisms higher in the food web? This can be addressed in stages. (1) A suitable QSAR can be employed to estimate the Bioconcentration Factor (BCF). Because aquatic dietary exposure to non-ionic, poorly metabolized organics is not significant for compounds with log K{sub ow} below {approximately}4.5--5, only compounds with BCF > 1,000 (log K{sub ow} {approximately}4.3) are further evaluated. (2) Predicted BCFs may be refined by measuring the predictive parameter (e.g., K{sub ow}) or the BCF. (3) If the ``parent`` BCF remains > 1,000, a food chain model is employed to derive bioaccumulation factors (BAF) which may be achieved in the food web of interest. The BAF is then combined with Predicted Environmental Concentration (PEC) values to derive a PECoral or concentration available in prey. This is then compared with a Predicted No Effect Concentration (PNEC)oral for consumer organism(s). Mammalian toxicity databases on new and HVP existing chemicals may assist in deriving the PNECoral. (4) Further refinement of the PECoral or PNECoral may be needed. Mitigating circumstances such as metabolism and reduced bioavailability must also be considered. Such an approach may be necessary for a subset of chemicals and would be tailored dependent on chemical use, release, environmental fate -- especially persistence -- and distribution.

  7. Toxicity and bioaccumulation of a mixture of heavy metals in Chironomus tentans (Diptera: Chironomidae) in synthetic sediment

    SciTech Connect

    Harrahy, E.A.; Clements, W.H.

    1997-02-01

    This research investigated toxicity and bioaccumulation of a mixture of Cd, Cu, Pb, and Zn in Chironomus tentans in synthetic sediment, and compared predicted to measured steady-state bioaccumulation factors (BAFs). In a toxicity test, C. tentans were exposed to various dilutions of a base concentration (1.0 X) of a mixture of the four metals (5 {micro}g/g Cd. 10 {micro}g/g Cu. 70 {micro}g/g Pb, and 300 {micro}g/g Zn) in synthetic sediment. Mortality ranged from 17 to 100%. To measure bioaccumulation of the metals, C. tentans were exposed to 0.35 X the base concentration for a period of up to 14 d in two uptake tests. Bioaccumulation of all four metals increased over the 14-d uptake phases. Concentrations of metals in chironomids were significantly correlated with exposure time in the uptake phases. Only concentrations of copper approached background levels after 7 d depuration. Uptake rate coefficients and elimination rate constants were determined for each metal. Bioaccumulation factors were highest for Cd and lowest for Pb. With the exception of Pb, steady-state BAFs were within a factor of about two of those calculated using the first-order kinetic model. The high BAFs calculated may indicate greater bioavailability in synthetic sediment. Studies comparing toxicity and bioaccumulation of natural and synthetic sediments are necessary before the use of synthetic sediments is widely adopted.

  8. INVESTIGATING COMPLEXITY IN FOOD WEB BIOACCUMULATION MODELING USING THE BIOACCUMULATION AND AQUATIC SYSTEM SIMULATOR

    EPA Science Inventory

    Bioaccumulation of methylmercury in exposed fish communities is primarily mediated via dietary uptake rather than direct gill uptake from the ambient water. Consequently, accurate predication of fish methylmercury concentrations demands reasonably realistic presentations of a com...

  9. Metals bioaccumulation mechanism in neem bark

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this work was to define the bioaccumulation mechanism of metals onto the non-living biomaterial prepared from an extensively available plant bark biomass of neem (Azadirachta indica). Based on maximum ultimate fixation capacities (mmol/g) of the product, metals ions could be arranged as H...

  10. Food Pyramids and Bio-Accumulation.

    ERIC Educational Resources Information Center

    Baker, Valerie

    1998-01-01

    Students learn about marine food chains, bioaccumulation, the energy pyramid, and potential ocean pollutants and their effects on ocean ecosystems in this activity which involves having students pull drawings of marine organisms which include diatoms, copepods, anchovies, bonito, and killer whale out of a bag, then demonstrating the food chain by…

  11. Bioaccumulation of decamethylpentacyclosiloxane (D5): A review.

    PubMed

    Gobas, Frank A P C; Powell, David E; Woodburn, Kent B; Springer, Tim; Huggett, Duane B

    2015-12-01

    Decamethylpentacyclosiloxane (D5) is a widely used, high-production volume personal care product with an octanol-water partition coefficient (log K(OW)) of 8.09. Because of D5's high K(OW) and widespread use, it is subject to bioaccumulation assessments in many countries. The present study provides a compilation and an in-depth, independent review of bioaccumulation studies involving D5. The findings indicate that D5 exhibits depuration rates in fish and mammals that exceed those of extremely hydrophobic, nonbiotransformable substances; that D5 is subject to biotransformation in mammals and fish; that observed bioconcentration factors in fish range between 1040 L/kg and 4920 L/kg wet weight in laboratory studies using non-radiolabeled D5 and between 5900 L/kg and 13 700 L/kg wet weight in an experiment using C(14) radiolabeled D5; and that D5 was not observed to biomagnify in most laboratory experiments and field studies. Review of the available studies shows a high degree of internal consistency among findings from different studies and supports a broad comprehensive approach in bioaccumulation assessments that includes information from studies with a variety of designs and incorporates multiple bioaccumulation measures in addition to the K(OW) and bioconcentration factor.

  12. PERSISTENT, BIOACCUMULATIVE, AND TOXIC POLLUTANTS (PBTS)

    EPA Science Inventory

    Article describes the class of compounds known as persistent, bioaccumulative, and toxic pollutants (known as PBTs), including the mechanisms responsible for ability to build up the food chain and for causing adverse health effects and ecosystem damage. Exposure to numerous PBTs ...

  13. Bacterial metal leaching and bioaccumulation. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    1996-06-01

    The bibliography contains citations concerning bioleaching and bioaccumulation in metal recovery systems. References study bacterial oxidation, fungal metabolism, metal extraction, and metal recovery from deposits. Gold and uranium ore treatments are discussed. Toxicity characteristic leaching procedure (TCLP) tests and ultrasound pretreatment are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Summary of a workshop on interpreting bioaccumulation data collected during regulatory evaluations of dredged material. Final report

    SciTech Connect

    Bridges, T.S.; Moore, D.W.; Landrum, P.; Neff, J.; Cura, J.

    1996-07-01

    Evaluating the environmental consequences of contaminant bioaccumulation resulting from dredged material disposal is a complex technical and regulatory problem. This problem is exacerbated by the high cost of bioaccumulation testing and the lack of explicit guidance on how bioaccumulation data should be interpreted and used within a regulatory program. Bioaccumulation is a measurable phenomenon, rather than an effect. Without specific information about biological effects (e.g., reduced survival, growth, reproduction in animals, cancer risk in humans) resulting from bioaccumulation, it is difficult if not impossible from a regulatory standpoint to objectively determine what level of bioaccumulation constitutes an `unacceptable adverse effect.` Existing regulatory guidance attempts to overcome this with two approaches, both of which use low aquatic trophic level organisms and a reference-based comparison. In the first approach, the level of bioaccumulation of a specific contaminant is compared with a numerical effect limit, such as a Food and Drug Administration action level or a fish advisory. If the level of the contaminant in the organism exceeds the numerical limit, it is equated to an unacceptable adverse effect. If it does not, or there is no numerical limit, the second approach involves a comparison with animals exposed to a reference sediment. If bioaccumulation in the animals exposed to the dredged material exceeds that of animals exposed to the reference, a number of subjective factors are then evaluated to determine whether or not dredged material disposal will result in an `unacceptable adverse effect` (U.S. Environmental Protection Agency (USEPA)/U.S. Army Corps of Engineers (USACE) 1991, 1994).

  15. Medium-chain chlorinated paraffins (MCCPs): a review of bioaccumulation potential in the aquatic environment.

    PubMed

    Thompson, Roy; Vaughan, Martin

    2014-01-01

    , especially concerning field data where limited sampling points are available and the difficulty in assessing the bioaccumulative potential of MCCPs as mixtures of different congeners. In conclusion, although some laboratory bioaccumulation values have a potential for concern, the majority of field values are more favorable when assessing the bioaccumulative potential of MCCPs. Definitive conclusions on the PBT assessment of MCCPs can be eased with further testing in both areas of P and B in the laboratory in conjunction with further monitoring of biota in the field to derive more robust field data.

  16. Bioaccumulation and critical body burden of fluoranthene in estuarine amphipods

    SciTech Connect

    Driscoll, S.K.; Dickhut, R.; Schaffner, L.

    1995-12-31

    A standard estuarine sediment toxicity test organism, the amphipod Leptocheirus plumulosus, was exposed to {sup 14}C-fluoranthene, a polycyclic aromatic hydrocarbon that is ubiquitous in contaminated coastal sediments. In water-only toxicity tests, the 10-d LC50 was 187.2 nmol/L and the critical body burden associated with 50% mortality on day 8 was 0.694 {micro}mol fluoranthene-equivalents/gww tissue. These results suggest that L. plumulosus is more sensitive to fluoranthene than other species of amphipods that have been examined. Also, the critical body burden measured in water-only tests for this species is lower than the predicted value that is associated with death by accumulation of nonpolar organic compounds such as fluoranthene in other organisms. Sediment toxicity, bioaccumulation, ability to metabolize fluoranthene, elimination rate, and critical body burden of fluoranthene in L. plumulosus will be compared to results previously determined for the freshwater amphipods, Diporeia sp. and Hyalella azteca.

  17. Bioaccumulation and toxicity of phenanthrene applied to different freshwater algae

    SciTech Connect

    Hailing-Sorensen, B.; Nyholm, N.; Rucker, N.; Peterson, H.

    1994-12-31

    Phenanthrene, a polycyclic aromatic hydrocarbon of medium lipophilicity (log K{sub ow} = 4.46) was chosen as a model compound for investigating mechanisms of bioaccumulation of hydrophobic chemicals in microalgae and relations between expressed toxicity and bioaccumulation. {sup 14}C labelled phenanthrene was used for easy quantification of its phase distribution. Results obtained with the green algae Selenastrum capricornutum and Scenedesmus armatus will be presented together with additional results from planned experiments with diatoms and cyanobacteria and interpreted considering cell size and lipid content of the different algae, For the same species bioconcentration factors (BCFs) were influenced to some extent by nutritional status and were slightly higher for unwashed cells than for washed cells. Much surprisingly, however, BCFs increased strongly with decreasing cell concentration. With chemostat grown nutrient deficient and washed Selenastrum cells, for example, the following BCF figures (mg phenanthrene/mg dry weight) were found: 3.8{center_dot}10{sup 4} 1.7{center_dot}10{sup 5} and 1.6{center_dot}10{sup 6}. Sorption of phenanthrene onto algae was rapid. Similar results have been reported in the literature for other compounds. The toxicity of phenanthrene increased with decreasing algal cell concentration probably as a result of increasing BCF`S. Toxicity experiments comprised both short term {sup 14}C assimilation assays and growth tests, and the phase distribution of phenanthrene was accounted for.

  18. Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae.

    PubMed

    Li, Chunsheng; Jiang, Wei; Ma, Ning; Zhu, Yinglian; Dong, Xiaoyan; Wang, Dongfeng; Meng, Xianghong; Xu, Ying

    2014-03-01

    Bioaccumulation via growing cells is a potential technique for heavy metal removal from food materials. The cadmium bioaccumulation characteristics by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae were investigated. Z. rouxii displayed powerful cadmium removal ability at low cadmium concentrations, which mainly depended on the intracellular cadmium bioaccumulation. The percentage of intracellular cadmium bioaccumulation of both yeasts obviously decreased with the increase of initial biomass and cadmium concentrations. Low pH and elevated concentrations of zinc and copper significantly decreased the intracellular cadmium bioaccumulation of both yeasts but improved the cadmium tolerance and the cell-surface cadmium bioaccumulation of Z. rouxii. Cadmium removal of Z. rouxii was improved by zinc and copper conditionally. Z. rouxii that possessed more powerful cadmium tolerance and removal ability at low pH and high concentration of competing ions can be developed into a potential cadmium removal agent using in complex food environment in future.

  19. Bioaccumulation of radiocaesium in Arctic seals.

    PubMed

    Carroll, Jolynn; Wolkers, Hans; Andersen, Magnus; Rissanen, Kristina

    2002-12-01

    Seals are high trophic level feeders that bioaccumulate many contaminants to a greater degree than most lower trophic level organisms. Their trophic status in the marine food web and wide-spread distribution make seals useful sentinels of arctic environmental change. The purpose of this investigation is to document the levels and bioaccumulation potential of radiocaesium in high latitude seal species for which data have not previously been available. The study was carried out on harp, ringed, and bearded seals caught north of the island archipelago of Svalbard (82 degrees N) in 1999. The results are then compared with previous studies in order to elucidate factors responsible for bioaccumulation in Arctic seals. Concentrations of 137Cs were determined in muscle, liver and kidney samples from a total of 10 juvenile and one adult seal. The mean concentration in muscle samples for all animals was 0.23 +/- 0.045 Bq/kg f.w. 137Cs concentrations in both liver and kidney samples were near detection limits (approximately 0.2 Bq/kg f.w.). The results are consistent with previous studies indicating low levels of radiocaesium in Arctic seals in response to a long term trend of decreasing levels of 137Cs in the Barents Sea region. Bioconcentration factors (BCFs) estimated for seals from NE Svalbard are low, ranging from 34 to 130. Comparing these values with reported BCFs for Greenland seals from other sectors of the European Arctic, we suggest that the combination of physiological and ecological factors on radiocaesium bioaccumulation is comparable among different Arctic seal populations. The application of this work to Arctic monitoring and assessment programs is discussed.

  20. An investigation into ciguatoxin bioaccumulation in sharks.

    PubMed

    Meyer, Lauren; Capper, Angela; Carter, Steve; Simpfendorfer, Colin

    2016-09-01

    Ciguatoxins (CTXs) produced by benthic Gambierdiscus dinoflagellates, readily biotransform and bioaccumulate in food chains ultimately bioconcentrating in high-order, carnivorous marine species. Certain shark species, often feeding at, or near the top of the food-chain have the ability to bioaccumulate a suite of toxins, from both anthropogenic and algal sources. As such, these apex predators are likely sinks for CTXs. This assumption, in conjunction with anecdotal knowledge of poisoning incidents, several non-specific feeding trials whereby various terrestrial animals were fed suspect fish flesh, and a single incident in Madagascar in 1994, have resulted in the widespread acceptance that sharks may accumulate CTXs. This prompted a study to investigate original claims within the literature, as well as investigate CTX bioaccumulation in the muscle and liver of 22 individual sharks from nine species, across four locations along the east coast of Australia. Utilizing an updated ciguatoxin extraction method with HPLC-MS/MS, we were unable to detect P-CTX-1, P-CTX-2 or P-CTX-3, the three primary CTX congeners, in muscle or liver samples. We propose four theories to address this finding: (1) to date, methods have been optimized for teleost species and may not be appropriate for elasmobranchs, or the CTXs may be below the limit of detection; (2) CTX may be biotransformed into elasmobranch-specific congeners as a result of unique metabolic properties; (3) 22 individuals may be an inadequate sample size given the rare occurrence of high-order ciguatoxic organisms and potential for CTX depuration; and (4) the ephemeral nature and inconsistent toxin profiles of Gambierdiscus blooms may have undermined our classifications of certain areas as CTX hotspots. These results, in combination with the lack of clarity within the literature, suggest that ciguatoxin bioaccumulation in sharks remains elusive, and warrants further investigation to determine the dynamics of toxin production

  1. Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water.

    PubMed

    Xia, Xinghui; Dai, Zhineng; Rabearisoa, Andry Harinaina; Zhao, Pujun; Jiang, Xiaoman

    2015-01-01

    The influence of humic substances and protein compounds on the bioaccumulation of six types of perfluoroalkyl substances (PFASs) in Daphnia magna was compared. The humic substances included humic acid (HA) and fulvic acid (FA), the protein compounds included chicken egg albumin (albumin) and peptone, and the PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Four concentrations (0, 1, 10, and 20 mg L(-1)) of the four dissolved organic matter (DOM) types were investigated. At the 1 mg L(-1) level, HA and albumin enhanced all tested PFAS bioaccumulation, whereas FA and peptone only enhanced the bioaccumulation of shorter-chain PFASs (PFOS, PFOA, and PFNA). However, all four DOM types decreased all tested PFAS bioaccumulation at the 20 mg L(-1) level, and the decreasing ratios of bioaccumulation factors caused by FA, HA, albumin, and peptone were 1-49%, 23-77%, 17-58%, and 8-56%, respectively compared with those without DOM. This is because DOM not only reduced the bioavailable concentrations and uptake rates of PFASs but also lowered the elimination rates of PFASs in D. magna, and these opposite effects would change with different DOM types and concentrations. Although the partition coefficients (L kg(-1)) of PFASs between HA and water (10(4.21)-10(4.98)) were much lower than those between albumin and water (10(4.92)-10(5.86)), their effects on PFAS bioaccumulation were comparable. This study suggests that although PFASs are a type of proteinophilic compounds, humic substances also have important effects on their bioavailability and bioaccumulation in aquatic organisms.

  2. Review of laboratory-based terrestrial bioaccumulation assessment approaches for organic chemicals: Current status and future possibilities.

    PubMed

    Hoke, Robert; Huggett, Duane; Brasfield, Sandra; Brown, Becky; Embry, Michelle; Fairbrother, Anne; Kivi, Michelle; Paumen, Miriam Leon; Prosser, Ryan; Salvito, Dan; Scroggins, Rick

    2016-01-01

    In the last decade, interest has been renewed in approaches for the assessment of the bioaccumulation potential of chemicals, principally driven by the need to evaluate large numbers of chemicals as part of new chemical legislation, while reducing vertebrate test organism use called for in animal welfare legislation. This renewed interest has inspired research activities and advances in bioaccumulation science for neutral organic chemicals in aquatic environments. In January 2013, ILSI Health and Environmental Sciences Institute convened experts to identify the state of the science and existing shortcomings in terrestrial bioaccumulation assessment of neutral organic chemicals. Potential modifications to existing laboratory methods were identified, including areas in which new laboratory approaches or test methods could be developed to address terrestrial bioaccumulation. The utility of "non-ecotoxicity" data (e.g., mammalian laboratory data) was also discussed. The highlights of the workshop discussions are presented along with potential modifications in laboratory approaches and new test guidelines that could be used for assessing the bioaccumulation of chemicals in terrestrial organisms.

  3. Bioaccumulation of ionic titanium and titanium dioxide nanoparticles in zebrafish eleutheroembryos.

    PubMed

    López-Serrano Oliver, Ana; Muñoz-Olivas, Riansares; Sanz Landaluze, Jon; Rainieri, Sandra; Cámara, Carmen

    2015-01-01

    The production of titanium dioxide nanoparticles (TiO(2) NPs) for commercial applications has greatly increased over the last years and consequently the potential risk for human health. There is a growing awareness of the need to understand the behavior and influence these nanoparticles exert on the environment. Bioaccumulation serves as a good integrator to assess chemical exposure in aquatic systems and is dependent on factors, such as the exposure routes, diet and the aqueous medium. We analyzed the experimental bioaccumulation capability of ionic titanium and TiO(2) NPs by zebrafish (Danio rerio) eleutheroembryos through bioconcentration factors (BCFs), after 48 or 72 h of exposure. The stability of both chemical forms in an aquatic medium was fully characterized for further bioaccumulation studies. Several stabilizing agents (humic acids, soluble starch, polyethylene glycol, Na(4)P(2)O(7) and Na(2)HPO(4)) for anatase and rutile, the two allotrophs of TiO(2) NPs, were evaluated to check the evolution of the aggregation process. Around 60% of TiO(2) NPs remained disaggregated under simulated environmental conditions with the addition of 50 mg L(-1) of humic acids. However, the presence of eleutheroembryos in the exposure medium increased TiO(2) NPs aggregation in the experimental tests. The BCFs values obtained in all cases were <100, which classifies ionic titanium and TiO(2) NPs as non-bioaccumulative substances, under the REACH regulations.

  4. Spatially-explicit bioaccumulation modeling in aquatic environments: Results from two demonstration sites.

    PubMed

    von Stackelberg, Katherine; Williams, Marc A; Clough, Jonathan; Johnson, Mark S

    2017-03-11

    Bioaccumulation models quantify the relationship between sediment and water exposure concentrations and resulting tissue levels of chemicals in aquatic organisms, and represent a key link in the suite of tools used to support decision making at contaminated sediment sites. Predicted concentrations in the aquatic food web provide exposure estimates for human health and ecological risk assessments, which, in turn, provide risk-based frameworks for evaluating potential remedial activities and other management alternatives based on the fish consumption pathway. Despite the widespread use of bioaccumulation models to support remedial decision-making, concerns remain about the predictive power of these models. A review of the available literature finds the increased mathematical complexity of typical bioaccumulation model applications is not matched by the deterministic exposure concentrations used to drive the models. We tested a spatially explicit exposure model (FishRand) at two nominally contaminated sites and compared results to estimates of bioaccumulation based on conventional, non-spatial techniques and monitoring data. Differences in predicted fish tissue concentrations across applications were evident, although these demonstration sites were only mildly contaminated and would not warrant management actions on the basis of fish consumption. Nonetheless, predicted tissue concentrations based on the spatially-explicit exposure characterization consistently outperformed conventional, non-spatial techniques across a variety of model performance metrics. These results demonstrate the improved predictive power as well as greater flexibility in evaluating the impacts of food web exposure and fish foraging behavior in a heterogeneous exposure environment. This article is protected by copyright. All rights reserved.

  5. Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation.

    PubMed

    Dalai, Swayamprava; Iswarya, V; Bhuvaneshwari, M; Pakrashi, Sunandan; Chandrasekaran, N; Mukherjee, Amitava

    2014-07-01

    The extensive environmental exposure of engineered metal oxide nanoparticles (NPs) may result in their bioaccumulation in aquatic organisms leading to their biotransfer in a food chain through various routes in a freshwater ecosystem. The present study focuses on the possible modes of TiO2 NP trophic transfer to Ceriodaphnia dubia, in presence and/absence of its diet, Scenedesmus obliquus (primary producer). The acute exposure studies (48h) were designed to have daphnids exposed to (i) the free NPs, (ii) both the free and the algae-borne NPs; and (iii) only the algae-borne NPs in separate tests to understand the possible routes of NP transfer. The dietary uptake of TiO2 NPs (algae-borne) was found to be the primary route for NP biotransfer with ∼70% of total NP uptake. Interestingly, in a separate study it was noticed that the NPs coated with algal exudates were easily taken up by daphnids as compared to pristine NPs of same concentrations, leading to their higher bioaccumulation. A chronic toxicity study, where daphnids were exposed to both free and algae-borne NPs for 21 days was undertaken to comprehend the TiO2 NP effect on daphnia growth and reproduction upon chronic exposure and also the bioaccumulation potential. Both acute and chronic exposure studies suggested higher bioaccumulation of TiO2 in daphnids when the particles were less toxic to the diet (algae).

  6. Bioaccumulation dynamics and exposure routes of Cd and Cu among species of aquatic mayflies

    USGS Publications Warehouse

    Cain, D.; Croteau, M.-N.; Luoma, S.

    2011-01-01

    Consumption of periphyton is a potentially important route of metal exposure to benthic invertebrate grazers. The present study examined the bioaccumulation kinetics of dissolved and dietary Cd and Cu in five species of mayflies (class Insecta). Artificial stream water and benthic diatoms were separately labeled with enriched stable metal isotopes to determine physiological rate constants used by a biokinetic bioaccumulation model. The model was employed to simulate the effects of metal partitioning between water and food, expressed as the bioconcentration factor (BCF), as well as ingestion rate (IR) and metal assimilation efficiency of food (AE), on the relative importance of water and food to metal bioaccumulation. For all test species, the contribution of dietary uptake of Cd and Cu increased with BCF. For a given BCF, the contribution of food to the body burden increased with kuf, the metal uptake rate constant from food that combined variation in IR and AE. To explore the relative importance of water and diet exposure routes under field conditions, we used estimated site-specific aqueous free-ion concentrations to model Cd and Cu accumulation from aqueous exposure, exclusively. The predicted concentrations accounted for less than 5% of the observed concentrations, implying that most bioaccumulated metal was acquired from food. At least for the taxa considered in this study, we conclude that consumption of metal-contaminated periphyton can result in elevated metal body burdens and potentially increase the risk of metal toxicity. ?? 2011 SETAC.

  7. Effects of climate change on bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in the planktonic food web of a subtropical shallow eutrophic lake in China.

    PubMed

    Tao, Yuqiang; Xue, Bin; Lei, Guoliang; Liu, Fei; Wang, Zhen

    2017-04-01

    To date effects of climate change on bioaccumulation and biomagnification of chemical pollutants in planktonic food webs have rarely been studied. Recruitments of plankton have shifted earlier due to global warming. Global warming and precipitation patterns are projected to shift seasonally. Whether and how the shifts in plankton phenology induced by climate change will impact bioaccumulation and biomagnification of chemical pollutants, and how they will respond to climate change are largely unknown. Here, we combine data analysis of the past seven decades, high temporal resolution monitoring and model development to test this hypothesis with nine polycyclic aromatic hydrocarbons (PAHs) in the planktonic food web of a subtropical shallow eutrophic lake in China. We find biphasic correlations between both bioconcentration factors and bioaccumulation factors of the PAHs and the mean temperature, which depend on the recruitment temperatures of cyanobacteria, and copepods and cladocerans. The positive correlations between bioconcentration factors, bioaccumulation factors and the mean temperature will be observed less than approximately 13-18 days by 2050-2060 due to the shifts in plankton phenology. The PAHs and their bioaccumulation and biomagnification will respond seasonally and differently to climate change. Bioaccumulation of most of the PAHs will decrease with global warming, with higher decreasing rates appearing in winter and spring. Biomagnification of most of the PAHs from phytoplankton to zooplankton will increase with global warming, with higher increasing rates appearing in winter and spring. Our study provides novel insights into bioaccumulation and biomagnification of chemical pollutants in eutrophic waters under climate change scenarios.

  8. Bioaccumulation of polychlorinated dibenzo-p-dioxins in sediment by oligochaetes: Influence of exposure pathway and contact time

    SciTech Connect

    Loonen, H.; Parsons, J.R.; Govers, H.A.J.; Muir, D.C.G.

    1997-07-01

    Oligochaetes (Lumbriculus variegatus) were exposed simultaneously to radiolabeled [{sup 3}H]2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and [{sup 14}C]octachlorodibenzo-p-dioxin (OCDD) in sediment for 28 d, in order to study accumulation processes of hydrophobic substances. Elimination was studied for a further 20 d. The uptake and elimination rate constants and the bioaccumulation factors (BAFs) were determined for TCDD and OCDD in the presence and absence of sediment (overlying water). Steady-state concentrations in oligochaetes were achieved for TCDD but not for OCDD over the 28-d exposure. Biota-sediment accumulation factors (BSAFs) after a 28-d exposure were 1.6 {+-} 0.27 for TCDD and 0.07 {+-} 0.02 for OCDD. Steady-state log BAF values (lipid based) for TCDD and OCDD in oligochaetes in the overlying water were 5.9 and 5.5 L/kg, respectively. The effect of incubation time between sediment and contaminants was investigated by repeating the accumulation study after a contact period of 21 months. BSAFs of sediment-sorbed TCDD and OCDD were 1.5 to 2-fold lower for the long contact time sediment. Based on comparison of predicted accumulation from pore water and observed accumulation by sediment-exposed oligochaetes, it was concluded that 1.4-fold greater accumulation occurred due to assimilation of TCDD and OCDD from ingested sediment. This additional accumulation in the presence of sediment, not accounted for by uptake only from pore waters, was consistent with literature data for other hydrophobic organochlorines.

  9. Bioaccumulation of fossil fuel components during single-compound and complex-mixture exposures of Daphnia magna

    SciTech Connect

    Dauble, D.D.; Carlile, D.W.; Hanf, R.W. Jr.

    1986-07-01

    The authors conducted tests with the water flea (Daphnia magna) to compare the bioaccumulation of compounds presented alone with the bioaccumulation of these same compounds when they were presented within a complex coal liquid, water-soluble fraction. Phenol and aniline were used as representative compounds because they are highly soluble, moderately toxic, and common to many fossil fuel liquid products and corresponding wastes. The tests were primarily designed to aid in development of predictive models relating to the transport and fate of components from complex mixtures in aquatic biota.

  10. Fathead minnow (Pimephales promelas Rafinesque) exposure to three novel brominated flame retardants in outdoor mesocosms: bioaccumulation and biotransformation.

    PubMed

    de Jourdan, Benjamin P; Hanson, Mark L; Muir, Derek C G; Solomon, Keith R

    2014-05-01

    The phaseout of polybrominated diphenyl ethers (PBDEs) has prompted the search for appropriate substitutes. These substitutes, referred to as novel brominated flame retardants (NBFRs), are poorly characterized in terms of their persistence, bioaccumulation, and toxicity. The authors assessed the bioaccumulation potential of 3 non-PBDE brominated flame retardants: 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), tetrabromobisphenol A bis(2,3-dibromopropylether) (TBBPA-BDBPE), and BZ-54, a mixture of bis(2-ethylhexyl)tetrabromophthalate) (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB). Replicate outdoor aquatic mesocosms were treated individually at concentrations designed to give a maximum load of 500 ng/g of flame retardant in the upper 5 cm of the sediment. Caged fathead minnows (Pimephales promelas, 24 fish per replicate) were introduced to each mesocosm and acclimated for 10 d prior to exposure. The exposure period was 42 d, followed by 28 d of depuration after transfer to a control mesocosm, during which physical, reproductive, and biochemical end points were examined. Tissue samples were taken to measure the accumulation, depuration, and biotransformation of NBFRs. Fathead minnows were observed to accumulate, after growth adjustment, BTBPE (16-4203 ng/g lipid) and TBBPA-BDBPE (>1000 ng/g lipid) but with a lack of consistent accumulation observed for EH-TBB and BEH-TEBP. However, limited biologically meaningful or consistent responses were observed in the monitored physical, reproductive, and biochemical parameters. Fathead minnows from each treatment exhibited several brominated transformation products. The authors conclude that these NBFRs have the potential to be bioaccumulative and persistent in vivo and, therefore, warrant further study of physiological effects linked to chronic, sublethal responses.

  11. A comparison of PCB bioaccumulation factors between an arctic and a temperate marine food web.

    PubMed

    Sobek, Anna; McLachlan, Michael S; Borgå, Katrine; Asplund, Lillemor; Lundstedt-Enkel, Katrin; Polder, Anuschka; Gustafsson, Orjan

    2010-06-01

    To test how environmental conditions in the Arctic and the resulting ecological adaptations affect accumulation of persistent organic pollutants (POPs) in the marine food web, bioaccumulation of four polychlorinated biphenyls (PCBs) in an arctic (Barents Sea 77 degrees N-82 degrees N) and a temperate marine (Baltic Sea 54 degrees N-62 degrees N) food web were compared. Three different trophic levels were studied (zooplankton, fish, and seal), representing the span from first-level consumer to top predator. Previously published high-quality data on PCB water concentrations in the two areas were used for calculation of bioaccumulation factors (BAF). BAF was calculated as the ratio of the PCB concentration in the organism ([PCB](org); pg/kg lipid) to the dissolved water concentration (C(w); pg/L). The BAF(Arctic):BAF(Temperate) ratios were above 1 for all four PCB congeners in zooplankton (6.4-13.8) and planktivorous fish (2.9-5.0)), whereas the ratios were below 1 in seal. The mean ratio between arctic and temperate BAFs for all trophic levels and congeners (BAF(Arcti):BAF(Temperate)) was 4.8. When the data were corrected for the seawater temperature difference between the two ecosystems, the ratio was 2.0. We conclude that bioaccumulation differences caused by ecological or physiological adaptations of organisms between the two ecosystems were well within a water concentration variability of 50%. Further, our data support the hypothesis that lower seawater temperature lead to a thermodynamically favoured passive partitioning to organic matrices and thus elevated ambient BAFs in the Arctic compared to the Baltic Sea. This would imply that bioaccumulation in the Arctic may be described in the same way as bioaccumulation in temperate regions, e.g. by the use of mechanistic models parameterised for the Arctic.

  12. Development of an in vitro screen for compound bioaccumulation in Haemonchus contortus.

    PubMed

    Zhou, Xin; Deng, Jinxia Nancy; Hummel, Bernard D; Woods, Debra J; Collard, Wendy T; Hu, Steven X; Zaya, Matthew J; Knauer, Christopher S; Thompson, David P; Merritt, Dawn A; Lorenz, Julie K; Marchiondo, Alan A

    2014-12-01

    The objective of the current study was to establish an in vitro screen and a highly sensitive analytical assay to delineate key physicochemical properties that favor compound bioaccumulation in the L3 life stage of a Haemonchus contortus isolate. Time-dependent studies revealed that absorption and elimination kinetics during the first 6 hr of exposure were sufficient to achieve maximum bioaccumulation for the majority of compounds tested. In subsequent studies, the larvae were incubated for 6 hr in a medium containing 146 compounds (5 μM initial concentration), including both human and veterinary medicines, characterized by a broad range of physicochemical properties. Bioaccumulation of the compounds by the nematodes was determined, and multiple physicochemical descriptors were selected for correlation. Data analysis using Bayes classification model and partial least-square regression revealed that clogD7.4, rotatable bond, E-state, and hydrogen bond donor each correlated with compound bioaccumulation in H. contortus L3. The finding that lipophilicity was critical for transcuticle compound permeation was consistent with previous studies in other parasitic species and in adult H. contortus . The finding of additional physicochemical properties that contribute to compound conformational flexibility, polarity, and electrotopological state shed light on the mechanisms governing transcuticle permeation. The relatively poor correlation between transcuticle and transmembrane permeation indicated the distinct mechanisms of compound permeation, likely due to the different constituents, and their contributions to overall transport function, of the lipid membranes and the porous collagen barrier of the nematode cuticle. Our study, for the first time, establishes a high-throughput screen for compound bioaccumulation in a parasitic nematode and further elucidates physicochemical factors governing transcuticular permeation of compounds. Application of this methodology will help

  13. Bioaccumulation kinetics of organic xenobiotic pollutants in the freshwater invertebrate Gammarus pulex modeled with prediction intervals.

    PubMed

    Ashauer, Roman; Caravatti, Ivo; Hintermeister, Anita; Escher, Beate I

    2010-07-01

    Uptake and elimination rate constants, bioaccumulation factors, and elimination times in the freshwater arthropod Gammarus pulex were measured for 14 organic micropollutants covering a wide range of hydrophobicity (imidacloprid, aldicarb, ethylacrylate, 4,6-dinitro-o-cresol, carbofuran, malathion, 4-nitrobenzyl-chloride, 2,4-dichloroaniline, Sea-Nine, 2,4-dichlorophenol, diazinon, 2,4,5-trichlorophenol, 1,2,3-trichlorobenzene, and hexachlorobenzene; all 14C-labeled). The toxicokinetic parameters were determined by least-square fitting of a one-compartment first-order toxicokinetic model, followed by Markov Chain Monte Carlo parameter estimation. The parameter estimation methods used here account for decreasing aqueous concentrations during the exposure phase or increasing aqueous concentrations during the elimination phase of bioaccumulation experiments. It is not necessary to keep exposure concentrations constant or zero during uptake and elimination, respectively. Neither is it required to achieve steady state during the exposure phase; hence, tests can be shorter. Prediction intervals, which take the between-parameter correlation into account, were calculated for bioaccumulation factors and simulations of internal concentrations under variable exposure. The lipid content of Gammarus pulex was 1.3% of wet weight, consisting of 25% phospholipids and 75% triglycerides. Size-dependent bioaccumulation was observed for eight compounds, although the magnitudes of the relationships were too small to be of practical relevance. Elimination times ranged from 0.45 to 20 d, and bioaccumulation factors ranged from 1.7 to 4,449 L/kg. The identified compounds with unexpectedly long elimination times should be given priority in future studies investigating the biotransformation of these compounds.

  14. The effect of sediment on survival, growth, reproductive success and bioaccumulation in Neanthes: Summary report

    SciTech Connect

    Gerlinger, T.V.; Fanizzi, M.; Soong, K.; Armstrong, J.; Reish, D.J.

    1995-12-31

    Sediments taken from the vicinity of the County Sanitation Districts of Orange County ocean outfall were tested for survival, growth, reproduction and bioaccumulation of toxicants on the polychaete, Neanthes arenaceodentata. The end points were survival, growth (dry weight), reproductive success (as number of emerged larvae) and bioaccumulation (metals, DDT, PCBs). Ten experiments have been conducted over a 2 year period of which 2 measured reproductive success. The experiments for survival and growth utilized 2--3 week old post-emergence juvenile worms and subjected them to different test sediments including an inert sediment and plain sea water control. Worms were fed during the experiments. Experiments for reproductive success and bioaccumulation consisted of placing 100 juvenile worms each in 10 gallon aquaria together with test sediment for a 35--40 day period. After which, 10--15 pairs were made and each pair was placed in a separate 1 liter beaker together with sediment for the reproductive experiment. The remaining worms in each aquarium were used for chemical analysis. No toxic responses, as measured by survival, growth and reproductive success, were noted at any station during the 2 year study. Growth was generally lower in the inert sediment and sea water controls compared to test sediments indicating that worms were obtaining some nutrients from the sediment. No difference was noted in the number of emerged juveniles in any test container. While worms accumulated metals and organics in their tissue, there was neither a relationship to the station location nor to survival, growth or reproduction.

  15. Involuntary bioaccumulation of environmental pollutants in nonsmoking heterogeneous human population

    SciTech Connect

    Krotoszynski, B.K.; O'Neill, H.J.

    1982-01-01

    Chemical bioaccumulation in nonsmoking heterogeneous human population was determined by a noninvasive expired air technique. Ubiquitous and nonubiquitous environmental pollutants were isolated and identified and the respective distribution and inhalation hazards were evaluated. Attempts were made to isolate and identify the state of health related expired air constituents. The selected 291 environmental pollutants or the total estimated bioaccumulation, were distributed among the heterogenous and homogenous study populations as the constituents of the respective chemical bioaccumulation. The bioaccumulation of the environmental pollutants observed in the heterogenous population, including controls, prediabetics and diabetics, consisted of 176 compounds or 60.5% of the total estimated bioaccumulation. The constituents of this bioaccumulation are termed ubiquitous pollutants because they have accumulated in the heterogenous population as the result of the prolonged body exposures irrespectively of the residence, age, height, weight, sex, occupation, diet and the state of health of the exposed individuals. The major contribution to the bioaccumulation in the heterogenous population arose from 150 hydrocarbons (85.2% of total bioaccumulation) which presents serious exposure health hazards to this population. This is supported by the known toxicity and the possible mutagenic and carcinogenic activity of these hydrocarbons. Such health hazards will augment with the increasing utilization of petroleum products in industry and automobiles. (JMT)

  16. Sex differences noted in mercury bioaccumulation in Magicicada cassini.

    PubMed

    Heckel, Pamela F; Keener, Tim C

    2007-08-01

    This study focuses on quantitative differences in mercury bioaccumulation based on the sex of the specimen. The species of interest is an herbivorous, terrestrial insect. Male and female periodical cicadas (genus: Magicicada) analyzed using combustion atomic absorption spectrophotometry exhibit different levels of mercury bioaccumulation. The concentration of mercury in Magicicada cassini males was significantly higher than the concentration in females of the same species.

  17. Bioaccumulation of triclocarban in Lumbriculus variegatus.

    PubMed

    Higgins, Christopher P; Paesani, Zachary J; Chalew, Talia E Abbott; Halden, Rolf U

    2009-12-01

    The antimicrobial triclocarban (TCC) has been detected in streams and municipal biosolids throughout the United States. In addition, TCC and potential TCC transformation products have been detected at high levels (ppm range) in sediments near major cities in the United States. Previous work has suggested that TCC is relatively stable in these environments, thereby raising concerns about the potential for bioaccumulation in sediment-dwelling organisms. Bioaccumulation of TCC from sediments was assessed using the freshwater oligochaete Lumbriculus variegatus. Worms were exposed to TCC in sediment spiked to 22.4 ppm to simulate the upper bound of environmental concentrations. Uptake from laboratory-spiked sediment was examined over 56 d for TCC and 4,4'-dichlorocarbanilide (DCC), a chemical impurity in and potential transformation product of TCC. The clearance of TCC from worms placed in clean sediment was also examined over 21 d after an initial 35-d exposure to TCC in laboratory-spiked sediment. Concentrations of TCC and DCC were monitored in the worms, sediment, and the overlying water using liquid chromatography/tandem mass spectrometry. Experimental data were fitted using a standard biodynamic model to generate uptake and elimination rate constants for TCC in L. variegatus. These rate constants were used to estimate steady-state lipid (lip)- and organic carbon (OC)-normalized biota-sediment accumulation factors (BSAFs) for TCC and DCC of 2.2+/-0.2 and 0.3+/-0.1 g OC/g lip (goc/glip), respectively. Alternatively, directly measured BSAFs for TCC and DCC after 56 d of exposure were 1.6+/-0.6 and 0.5+/-0.2 goc/glip, respectively. Loss of TCC from pre-exposed worms followed first-order kinetics, and the fitted elimination rate constant was identical to that determined from the uptake portion of the present study. Overall, study observations indicate that TCC bioaccumulates from sediments in a manner that is consistent with the traditional hydrophobic organic

  18. A method for improving predictive modeling by taking into account lag time: Example of selenium bioaccumulation in a flowing system.

    PubMed

    Beckon, William N

    2016-07-01

    For bioaccumulative substances, efforts to predict concentrations in organisms at upper trophic levels, based on measurements of environmental exposure, have been confounded by the appreciable but hitherto unknown amount of time it may take for bioaccumulation to occur through various pathways and across several trophic transfers. The study summarized here demonstrates an objective method of estimating this lag time by testing a large array of potential lag times for selenium bioaccumulation, selecting the lag that provides the best regression between environmental exposure (concentration in ambient water) and concentration in the tissue of the target organism. Bioaccumulation lag is generally greater for organisms at higher trophic levels, reaching times of more than a year in piscivorous fish. Predictive modeling of bioaccumulation is improved appreciably by taking into account this lag. More generally, the method demonstrated here may improve the accuracy of predictive modeling in a wide variety of other cause-effect relationships in which lag time is substantial but inadequately known, in disciplines as diverse as climatology (e.g., the effect of greenhouse gases on sea levels) and economics (e.g., the effects of fiscal stimulus on employment).

  19. Comparative contribution of trophic transfer and biotransformation on arsenobetaine bioaccumulation in two marine fish.

    PubMed

    Zhang, Wei; Guo, Zhiqiang; Zhou, Yanyan; Chen, Lizhao; Zhang, Li

    2016-10-01

    Marine fish can accumulate high arsenic (As) concentrations, with arsenobetaine (AsB) as the major species in the body. However, whether the high AsB accumulation in fish occurs mainly through trophic transfer from diet or biotransformation in the fish body remains unclear. This study investigated the trophic transfer and biotransformation of As in two marine fish (seabream Acanthopagrus schlegeli and grunt Terapon jarbua) fed artificial and clam diets for 28 d. The different diets contained different proportions of inorganic [As(III) and As(V)] and organic [methylarsenate (MMA), dimethylarsenate (DMA), and AsB] As compounds. Positive correlations were observed between the accumulated As concentrations and AsB concentrations in both fish, suggesting that AsB contributed to the accumulation of total As in marine fish. Based on the calculated total input of AsB and detected AsB concentrations in the muscle of the seabream and grunt, the ingested amounts of AsB accounted for 0.1-0.3%, 8.1-14.4% of detected AsB concentrations, respectively, in the muscle of seabream and grunt fish species, suggesting that AsB was mainly biotransformed versus trophically transferred in these marine fish. In summary, this study demonstrates that marine fish prefer to biotransform inorganic As forms into AsB, resulting in high bioaccumulation of total As.

  20. Digestive determinants of benzo[a]pyrene and phenanthrene bioaccumulation by a deposit-feeding polychaete

    SciTech Connect

    Penry, D.L.; Weston, D.P.

    1998-11-01

    The uptake of hydrophobic contaminants from ingested sediment can contribute significantly to body burdens of deposit feeders, and feeding behavior and digestive physiology can play important roles in bioaccumulation. The authors examined the uptake of polycyclic aromatic hydrocarbons (PAHs) by the deposit-feeding polychaete Abarenicola pacifica in experiments in which worms were first acclimated to low or high organic carbon sediments with 0.08 or 0.45% total organic carbon, respectively and then transferred to low or high organic carbon test sediments contaminated with radiolabeled phenanthrene or benzo[a]pyrene. Ingestion rate was measurements are essential in many types of bioaccumulation studies because differences in ingestion rates between sediment types may confound some traditional measures of bioavailability. Physiological acclimation to the low or high organic carbon sediments did not appear to affect PAH uptake from the test sediments, but acclimation did affect biotransformation capabilities, particularly for phenanthrene.

  1. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

    PubMed Central

    Ferrão-Filho, Aloysio da S.; Kozlowsky-Suzuki, Betina

    2011-01-01

    Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis), chronic effects (e.g., reduction in growth and fecundity), biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases), and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research. PMID:22363248

  2. Bioaccumulation and toxicity of sediment associated herbicides (ioxynil, pendimethalin, and bentazone) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta).

    PubMed

    Mäenpää, Kimmo A; Sormunen, Arto J; Kukkonen, Jussi V K

    2003-11-01

    The benthic macroinvertebrates Lumbriculus variegatus and Chironomus riparius were used in toxicity and bioaccumulation tests to determine the toxic concentrations and accumulation potential of sediment associated herbicides. The tested chemicals were ioxynil, bentazone, and pendimethalin. The bioaccumulation tests with L. variegatus were performed in four different sediments, each having different characteristics. Water-only LC(50) tests were performed with both L. variegatus and C. riparius. A sublethal effect of model compounds in sediments was assessed by a C. riparius larvae growth-inhibition test. Of the model compounds, ioxynil appeared to be the most toxic, with LC(50) values 1.79 and 2.79 mgL(-1) for L. variegatus and C. riparius, respectively. The LC(50) water concentrations for bentazone were 79.11 and 62.31 mgL(-1) for L. variegatus and C. riparius, respectively. Similarly, ioxynil revealed the highest bioaccumulation potential in bioaccumulation tests. The most important characters affecting chemical fate in the sediment seemed to be the organic matter content and the particle size fraction. The sediments with low organic material and coarse particle size consistently showed high bioaccumulation potential and vice versa. In C. riparius growth tests bentazone had a statistically significant effect on larval growth at sediment concentrations of 1160 and 4650 mgkg(-1) (P<0.05). It is noteworthy that standard deviations tend to be greater at high chemical concentrations, which addresses the fact that part of the individuals started to suffer. Ioxynil had an effect on the larval growth in other test sediment at the highest concentration (15.46 mgkg(-1)dw), in which head capsule length correlated with larval weight, decreasing toward higher exposure concentrations. The current results show the importance of sediment organic matter as a binding site of xenobiotics.

  3. Modeling of Bioaccumulation in Marine Benthic Invertebrates Using a Multispecies Experimental Approach.

    PubMed

    Diepens, Noël J; Van den Heuvel-Greve, Martine J; Koelmans, Albert A

    2015-11-17

    The causal links between species traits and bioaccumulation by marine invertebrates are poorly understood. We assessed these links by measuring and modeling polychlorinated biphenyl bioaccumulation by four marine benthic species. Uniformity of exposure was achieved by testing each species in the same aquarium, separated by enclosures, to ensure that the observed variability in bioaccumulation was due to species traits. The relative importance of chemical uptake from pore water or food (organic matter, OM) ingestion was manipulated by using artificial sediment with different OM contents. Biota sediment accumulation factors (BSAFs) ranged from 5 to 318, in the order Nereis virens < Arenicola marina ≈ Macoma balthica < Corophium volutator. Calibration of a kinetic model provided species-specific parameters that represented the key species traits, thus illustrating how models provide an opportunity to read across benthic species with different feeding strategies. Key traits included species-specific differentiation between (1) ingestion rates, (2) ingestion of suspended and settled OM, and (3) elimination rates. The high BSAF values and their concomitant variability across the species challenges approaches for exposure assessment based on pore water concentration analysis and equilibrium partition theory. We propose that combining multienclosure testing and modeling will substantially improve exposure assessment in sediment toxicity tests.

  4. Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment.

    PubMed

    Schäfer, Sabine; Buchmeier, Georgia; Claus, Evelyn; Duester, Lars; Heininger, Peter; Körner, Andrea; Mayer, Philipp; Paschke, Albrecht; Rauert, Caren; Reifferscheid, Georg; Rüdel, Heinz; Schlechtriem, Christian; Schröter-Kermani, Christa; Schudoma, Dieter; Smedes, Foppe; Steffen, Dieter; Vietoris, Friederike

    2015-01-01

    Bioaccumulation, the accumulation of a chemical in an organism relative to its level in the ambient medium, is of major environmental concern. Thus, monitoring chemical concentrations in biota are widely and increasingly used for assessing the chemical status of aquatic ecosystems. In this paper, various scientific and regulatory aspects of bioaccumulation in aquatic systems and the relevant critical issues are discussed. Monitoring chemical concentrations in biota can be used for compliance checking with regulatory directives, for identification of chemical sources or event-related environmental risk assessment. Assessing bioaccumulation in the field is challenging since many factors have to be considered that can affect the accumulation of a chemical in an organism. Passive sampling can complement biota monitoring since samplers with standardised partition properties can be used over a wide temporal and geographical range. Bioaccumulation is also assessed for regulation of chemicals of environmental concern whereby mainly data from laboratory studies on fish bioaccumulation are used. Field data can, however, provide additional important information for regulators. Strategies for bioaccumulation assessment still need to be harmonised for different regulations and groups of chemicals. To create awareness for critical issues and to mutually benefit from technical expertise and scientific findings, communication between risk assessment and monitoring communities needs to be improved. Scientists can support the establishment of new monitoring programs for bioaccumulation, e.g. in the frame of the amended European Environmental Quality Standard Directive.

  5. Bioaccumulation of Triclocarban in Lumbriculus variegatus

    PubMed Central

    Higgins, Christopher P.; J.Paesani, Zachary; Abbot Chalew, Talia E.; Halden, Rolf U.

    2009-01-01

    The antimicrobial triclocarban (TCC) has been detected in streams and municipal biosolids throughout the United States. In addition, TCC and potential TCC transformation products have been detected at high levels (ppm range) in sediments near major United States cities. Previous work has suggested that TCC is relatively stable in these environments, thereby raising concerns about the potential for bioaccumulation in sediment-dwelling organisms. Bioaccumulation of TCC from sediments was assessed using the freshwater oligochaete, Lumbriculus variegatus. Worms were exposed to TCC in sediment spiked to 22.4 ppm to simulate the upper bound of environmental concentrations. Uptake from laboratory-spiked sediment was examined over 56 days for TCC and 4,4′dichlorocarbanilide (DCC), a chemical impurity in and potential transformation product of TCC. The clearance of TCC from worms placed in clean sediment was also examined over 21 d after an initial 35-d exposure to TCC in laboratory-spiked sediment. Concentrations of TCC and DCC were monitored in the worms, sediment, and the overlying water using liquid chromatography tandem mass spectrometry. Experimental data were fitted using a standard biodynamic model to generate uptake and elimination rate constants for TCC in L. variegatus. These rate constants were used to estimate steady-state lipid and organic-carbon normalized biota-sediment accumulation factors (BSAFs) for TCC and DCC of 2.2 ± 0.2 and 0.3 ± 0.1 goc/glip, respectively. Alternatively, directly-measured BSAFs for TCC and DCC after 56 days of exposure were 1.6 ± 0.6 and 0.5 ± 0.2 goc/glip, respectively. Loss of TCC from pre-exposed worms followed first-order kinetics, and the fitted elimination rate-constant was identical to that determined from the uptake portion of the present study. Overall, study observations indicate that TCC bioaccumulates from sediments in a manner that is consistent with the traditional hydrophobic organic contaminant paradigm. PMID

  6. Environmental effects of dredging. Use of daphnia magna to predict consequences of bioaccumulation

    SciTech Connect

    1987-03-01

    Results reported herein represent a portion of the laboratory research evaluating the relationship between mercury and cadmium tissue residues and biological effects in the freshwater crustacean, Daphnia magna (commonly known as the water flea). Procedures presented here for a 28-day Daphnia magna toxicity test could be used in screening for water-column toxicity resulting from open-water disposal of a specific dredged material. As a part of its regulatory and dredging programs, the U. S. Army Corps of Engineers often conducts, or requires to be conducted, an assessment of the potential for bioaccumulation of environmental contaminants from sediment scheduled for dredging and open-water disposal. There is, at present, no generally accepted guidance available to aid in the interpretation of the biological consequences of bioaccumulation. To provide an initial basis for such guidance, the Environmental Laboratory is conducting both literature database analyses and experimental laboratory studies as part of the Long-Term Effects of Dredging Operations (LEDO) Program.

  7. Saturation models of arsenic, cobalt, chromium and manganese bioaccumulation by Hyalella azteca.

    PubMed

    Norwood, W P; Borgmann, U; Dixon, D G

    2006-10-01

    Bioaccumulation of As, Co, Cr and Mn by the benthic amphipod Hyalella azteca in Burlington City tap (Lake Ontario) water was measured in 4-week tests. Bioaccumulation increased with exposure concentration and demonstrated an excellent fit to a saturation model (r(2): 0.819, 0.838, 0.895 and 0.964 for As, Co, Cr and Mn, respectively). The proportion of total body Mn eliminated during a 24-h depuration period decreased as Mn body concentration increased, apparently due to a saturation of the elimination rate. The high maximum body concentration of 116,000 nmol g(-1) appears to result from the saturation of the Mn excretion which is slightly greater than the maximum Mn uptake rate. Elimination rates for As, Co and Cr were not dependent on body concentration. The four elements were not physiologically regulated in Hyalella. Their body concentrations should be good indicators of bioavailability and useful for environmental assessment.

  8. Influence of feeding and earthworm density on compound bioaccumulation in earthworms Eisenia andrei.

    PubMed

    Šmídová, Klára; Šerá, Jana; Bielská, Lucie; Hofman, Jakub

    2015-12-01

    Earthworm density and feeding during exposure to contaminated soil have been used inconsistently in bioaccumulation studies, which may lead to possible errors in risk assessment and modeling. Hydrophobic organic pollutants with a wide range of environmental properties (phenanthrene, pyrene, lindane, p,p'-DDT, and PCB 153) were used to study the effect of different earthworm densities in combination with the presence or absence of feeding on bioaccumulation factors (BAFs). Similar BAFs were found at various soil-to-worm ratios, with the exception of phenanthrene. We recommend using at least 15 gsoil dw per earthworm. The absence of feeding doubled the BAFs and, thus, using no food ration can be considered as "the worst case scenario". Whenever food is to be applied (i.e. to ensure the validity of the test in earthworm mass loss), we suggest feeding depending on the organic carbon content of the studied soil.

  9. Bioaccumulation of toxic substances associated with dredging and dredged material disposal: a literature review

    USGS Publications Warehouse

    Seelye, James G.; Mac, Michael J.

    1984-01-01

    A literature review of sediment bioassessment was conducted as the first step in the development of a more standardized and ecologically sound test procedure for evaluating sediment quality. Based on the review, the authors concluded that 1) a standardized laboratory bioassessment test should consist of flowthrough exposure of at least 10 days duration using more than one aquatic organism including at least an infaunal benthic invertebrate and a fish species. 2) Before adoption of a laboratory sediment bioassessment procedure, the laboratory results should be evaluated by comparison with field conditions. 3) Most current sediment bioassessment regulatory tests measure acute toxicity or bioaccumulation. Development of tests to evaluate chronic, sublethal effects is needed.

  10. In vitro to in vivo extrapolation of biotransformation rates for assessing bioaccumulation of hydrophobic organic chemicals in mammals.

    PubMed

    Lee, Yung-Shan; Lo, Justin C; Otton, S Victoria; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C

    2016-12-21

    Incorporating biotransformation in bioaccumulation assessments of hydrophobic chemicals in both aquatic and terrestrial organisms in a simple, rapid, and cost-effective manner is urgently needed to improve bioaccumulation assessments of potentially bioaccumulative substances. One approach to estimate whole-animal biotransformation rate constants is to combine in vitro measurements of hepatic biotransformation kinetics with in vitro to in vivo extrapolation (IVIVE) and bioaccumulation modeling. An established IVIVE modeling approach exists for pharmaceuticals (referred to in the present study as IVIVE-Ph) and has recently been adapted for chemical bioaccumulation assessments in fish. The present study proposes and tests an alternative IVIVE-B technique to support bioaccumulation assessment of hydrophobic chemicals with a log octanol-water partition coefficient (KOW ) ≥ 4 in mammals. The IVIVE-B approach requires fewer physiological and physiochemical parameters than the IVIVE-Ph approach and does not involve interconversions between clearance and rate constants in the extrapolation. Using in vitro depletion rates, the results show that the IVIVE-B and IVIVE-Ph models yield similar estimates of rat whole-organism biotransformation rate constants for hypothetical chemicals with log KOW  ≥ 4. The IVIVE-B approach generated in vivo biotransformation rate constants and biomagnification factors (BMFs) for benzo[a]pyrene that are within the range of empirical observations. The proposed IVIVE-B technique may be a useful tool for assessing BMFs of hydrophobic organic chemicals in mammals. Environ Toxicol Chem 2016;9999:1-13. © 2016 SETAC.

  11. Comparative toxicity and bioaccumulation of fenvalerate and esfenvalerate to earthworm Eisenia fetida.

    PubMed

    Ye, Xiaoqing; Xiong, Kang; Liu, Jing

    2016-06-05

    More attention is being paid to the enantioselective toxicity of chiral pesticides. However, limited investigations have been done to assess the ecological risks of chiral pesticides to soil community. Fenvalerate (FV), an extensively used synthetic pyrethroid, is a typical chiral pesticide. The most insecticidally active enantiomer of FV, esfenvalerate (ESFV), also has been marketed and widely used. In this study, the toxicological sensitivity and bioaccumulation of FV and ESFV in earthworms were assessed. The results showed that FV was less toxic than ESFV, but more accumulated in earthworms. ESFV was at least 4 times more toxic to earthworms than FV according to the filter paper contact toxicity test and the artificial soil test. Enantiospecific induction in oxidative stress was observed in earthworms exposed to FV and ESFV. The bioaccumulation of FV and ESFV in earthworm tissues was also enantioselective, preferentially accumulating FV. The uptake of ESFV by earthworms was lower than that of FV, so that the biota to soil accumulation factor (BSAF) value of ESFV was lower than that of FV. Our findings suggest that the enantioselective toxicity and bioaccumulation of chiral pesticides should be considered for evaluating ecological risks of these compounds to non-target organisms.

  12. Enantioselective acute toxicity effects and bioaccumulation of furalaxyl in the earthworm (Eisenia foetida).

    PubMed

    Qin, Fang; Gao, Yongxin; Guo, Baoyuan; Xu, Peng; Li, Jianzhong; Wang, Huili

    2014-06-01

    The enantioselectivities of individual enantiomers of furalaxyl in acute toxicity and bioaccumulation in the earthworm (Eisenia foetida) were studied. The acute toxicity was tested by filter paper contact test. After 48 h of exposure, the calculated LC50 values of the R-form, rac-form, and S-form were 2.27, 2.08, and 1.22 µg cm(-2), respectively. After 72 h of exposure, the calculated LC50 values were 1.90, 1.54, and 1.00 µg cm(-2), respectively. Therefore, the acute toxicity of furalaxyl enantiomers was enantioselective. During the bioaccumulation experiment, the enantiomer fraction of furalaxyl in earthworm tissue was observed to deviate from 0.50 and maintained a range of 0.55-0.60; in other words, the bioaccumulation of furalaxyl was enantioselective in earthworm tissue with a preferential accumulation of S-furalaxyl. The uptake kinetic of furalaxyl enantiomers fitted the first-order kinetics well and the calculated kinetic parameters were consistent with the low accumulation efficiency.

  13. Predicting the bioaccumulation of polyaromatic hydrocarbons and polychlorinated biphenyls in benthic animals in sediments.

    PubMed

    Tuikka, A I; Leppänen, M T; Akkanen, J; Sormunen, A J; Leonards, P E G; van Hattum, B; van Vliet, L A; Brack, W; Smedes, F; Kukkonen, J V K

    2016-09-01

    There were two main objectives in this study. The first was to compare the accuracy of different prediction methods for the chemical concentrations of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the organism, based on the measured chemical concentrations existing in sediment dry matter or pore water. The predicted tissue concentrations were compared to the measured ones after 28-day laboratory test using oligochaeta worms (Lumbriculus variegatus). The second objective was to compare the bioaccumulation of PAHs and PCBs in the laboratory test with the in situ bioaccumulation of these compounds. Using the traditional organic carbon-water partitioning model, tissue concentrations were greatly overestimated, based on the concentrations in the sediment dry matter. Use of an additional correction factor for black carbon with a two-carbon model, significantly improved the bioaccumulation predictions, thus confirming that black carbon was important in binding the chemicals and reducing their accumulation. The predicted PAH tissue concentrations were, however, high compared to the observed values. The chemical concentrations were most accurately predicted from their freely dissolved pore water concentrations, determined using equilibrium passive sampling. The patterns of PCB and PAH accumulation in sediments for laboratory-exposed L. variegatus were similar to those in field-collected Lumbriculidae worms. Field-collected benthic invertebrates and L. variegatus accumulated less PAHs than PCBs with similar lipophilicity. The biota to sediment accumulation factors of PAHs tended to decrease with increasing sediment organic carbon normalized concentrations. The presented data yields bioconcentration factors (BCF) describing the chemical water-lipid partition, which were found to be higher than the octanol-water partition coefficients, but on a similar level with BCFs drawn from relevant literature. In conclusion, using the two-carbon model method

  14. Characterization of a strongly bioaccumulating hexachloronaphthalene

    SciTech Connect

    Asplund, L.; Jansson, B.; Sundstroem, G.; Brandt, I.; Brinkman, U.A.Th.

    1986-01-01

    Rats were given a technical mixture of polychlorinated naphthalenes (PCN). Adipose tissue and liver samples were analyzed after 1, and 10, 30 and 120 days. One of the minor components in the technical product was the dominant PCN compound in the tissues already after 10 days and the only one detectable after 120 days. The concentration of this compound was in all analyzed animals much higher (up to 140 times) in the liver than in the adipose tissue. In order to characterize this compound chromatographic and mass spectrometric data were recorded for all available chloronaphthalenes. These data indicate two possible structures, one of which was synthesized in minute amounts. This compound 1,2,3,5,6,7-hexachloronaphthalene, was shown to have the same chromatographic and mass spectrometric properties as the bioaccumulating compound.

  15. Effect of ambient conditions on simultaneous growth and bioaccumulation of mercuric ion by genetically engineered E. coli JM109.

    PubMed

    Deng, Xu; Zheng, Yangchun; Li, Qingbiao

    2006-08-21

    Genetically engineered E. coli JM109, namely M1, which expressed both Hg(2+) transport system and metallothionein, was tested for its capability of simultaneous growth and bioaccumulation of Hg(2+) under low nutritional circumstances. The influential factors of ambient conditions, e.g. initial concentrations of mercuric ion, ionic strength, the presence of metal chelators and other coexisting metal ions were investigated. Hg(2+) bioaccumulation behavior of M1 proved to be well coupled with its growth. NaCl was essential to the growth of M1. Of all tested NaCl concentrations, 0.04 mol/L was optimal. The presence of 0.1 mol/L CaCl(2) or MgCl(2) could promote the growth of M1 and keep the Hg(2+) removal ratio high, but the growth of M1 was inhibited seriously as the concentration of CaCl(2) or MgCl(2) reached 0.3 mol/L. Chelator EDTA had a significant influence on M1 growth and Hg(2+) bioaccumulation, while the effect of citration was little. The presence of other coexisting metal ions inhibited the growth of M1. The influential order was as follows: Cd(2+)>Zn(2+)> or =Cu(2+)>Pb(2+)>Ni(2+). However, only Cd(2+) and Cu(2+) posed obviously adverse effects on Hg(2+) bioaccumulation during the SG&B process.

  16. Bioaccumulation of Multiwall Carbon Nanotubes in Tetrahymena thermophila by Direct Feeding or Trophic Transfer.

    PubMed

    Mortimer, Monika; Petersen, Elijah J; Buchholz, Bruce A; Orias, Eduardo; Holden, Patricia A

    2016-08-16

    Consumer goods contain multiwall carbon nanotubes (MWCNTs) that could be released during product life cycles into the environment, where their effects are uncertain. Here, we assessed MWCNT bioaccumulation in the protozoan Tetrahymena thermophila via trophic transfer from bacterial prey (Pseudomonas aeruginosa) versus direct uptake from growth media. The experiments were conducted using (14)C-labeled MWCNT ((14)C-MWCNT) doses at or below 1 mg/L, which proved subtoxic since there were no adverse effects on the growth of the test organisms. A novel contribution of this study was the demonstration of the ability to quantify MWCNT bioaccumulation at low (sub μg/kg) concentrations accomplished by employing accelerator mass spectrometry (AMS). After the treatments with MWCNTs at nominal concentrations of 0.01 mg/L and 1 mg/L, P. aeruginosa adsorbed considerable amounts of MWCNTs: (0.18 ± 0.04) μg/mg and (21.9 ± 4.2) μg/mg bacterial dry mass, respectively. At the administered MWCNT dose of 0.3 mg/L, T. thermophila accumulated up to (0.86 ± 0.3) μg/mg and (3.4 ± 1.1) μg/mg dry mass by trophic transfer and direct uptake, respectively. Although MWCNTs did not biomagnify in the microbial food chain, MWCNTs bioaccumulated in the protozoan populations regardless of the feeding regime, which could make MWCNTs bioavailable for organisms at higher trophic levels.

  17. Removal and bioaccumulation of heavy metals from aqueous solutions using freshwater algae.

    PubMed

    Shamshad, Isha; Khan, Sardar; Waqas, Muhammad; Ahmad, Nadeem; Khushnood-Ur-Rehman; Khan, Kifayatullah

    2015-01-01

    Four freshwater algae, including Cladophora glomerata, Oedogonium westii, Vaucheria debaryana and Zygnema insigne, were tested for their bioaccumulation capacity for cadmium (Cd), chromium (Cr) and lead (Pb) in a controlled environment with an average temperature of 18 °C, and light/dark duration of 12:12 h. Experiments were performed in aqueous solutions containing selected heavy metals (HM) (ranging from 0.05 to 1.5 mg L(-1)) with 0.5 g of living algae at 18 °C and pH 6.8. The results indicated that C. glomerata was observed to be the most competent species for the removal of Cr, Cd and Pb from aqueous solutions. HM removal trends were in the order of Cd>Cr>Pb while the removal efficiency of selected algae species was in the order of C. glomerata, O. westii, V. debaryana and Z. insigne. The bioaccumulation capacity of C. glomerata, V. debaryana and Z. insigne was observed for different HM. Removal of HM was higher with low levels of HM in aqueous solutions. The results indicated that C. glomerata, O. westii, V. debaryana and Z. insigne had significant (P≤0.01) diverse bioaccumulation capacity for Cr, Cd and Pb.

  18. Massive Bioaccumulation and Self‐Assembly of Phenazine Compounds in Live Cells

    PubMed Central

    Min, Kyoung Ah; Rajeswaran, Walajapet G.; Oldenbourg, Rudolf; Harris, Grant; Keswani, Rahul K.; Chiang, Mason; Rzeczycki, Phillip; Talattof, Arjang; Hafeez, Mahwish; Horobin, Richard W.; Larsen, Scott D.; Stringer, Kathleen A.

    2015-01-01

    Clofazimine is an orally administered drug that massively bioaccumulates in macrophages, forming membrane‐bound intracellular structures possessing nanoscale supramolecular features. Here, a library of phenazine compounds derived from clofazimine is synthesized and tested for ability to accumulate and form ordered molecular aggregates inside cells. Regardless of chemical structure or physicochemical properties, bioaccumulation is consistently greater in macrophages than in epithelial cells. Microscopically, some self‐assembled structures exhibit a pronounced, diattenuation anisotropy signal, evident by the differential absorption of linearly polarized light, at the peak absorbance wavelength of the phenazine core. The measured anisotropy is well above the background anisotropy of endogenous cellular components, reflecting the self‐assembly of condensed, insoluble complexes of ordered phenazine molecules. Chemical variations introduced at the R‐imino position of the phenazine core lead to idiosyncratic effects on the compounds' bioaccumulation behavior as well as on the morphology and organization of the resulting intracellular structures. Beyond clofazimine, these results demonstrate how the self‐assembly of membrane permeant, orally bioavailable small molecule building blocks can endow cells with unnatural structural elements possessing chemical, physical, and functional characteristics unlike those of other natural cellular components. PMID:26380168

  19. Interactive effects of selected pharmaceutical mixtures on bioaccumulation and biochemical status in crucian carp (Carassius auratus).

    PubMed

    Ding, Jiannan; Lu, Guanghua; Li, Yi

    2016-04-01

    The aim of this study was to evaluate the interactive effects of fluoxetine (FLU), roxithromycin (ROX) and propranolol (PRP) on the bioaccumulation and biochemical responses in the crucian carp Carassius auratus. After 7 days of binary exposure (ROX + FLU and PRP + FLU), the addition of waterborne FLU at nominal concentrations of 4, 20 and 100 μg L(-1) significantly increased the accumulation of ROX and PRP in fish livers in most cases, although elevated ROX and PRP bioaccumulation levels were not observed in muscles or gills. The inductive response of 7-ethoxyresorufin O-deethylase (EROD) to PRP and that of 7-benzyloxy-4-trifluoromethyl-coumarin O-dibenzyloxylase (BFCOD) to ROX were inhibited by the co-administration of FLU at all tested concentrations. Correspondingly, marked inhibition of CYP1A and CYP3A mRNA expression levels was observed in the livers of fish co-treated with FLU + PRP and FLU + ROX relative to their PRP- and ROX-only counterparts, respectively. In addition, as reflected by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content, co-exposure to ROX + FLU and PRP + FLU seemed to induce stronger antioxidant responses than single pharmaceutical exposure in fish livers. This work indicated that the interactive effects of pharmaceutical mixtures could lead to perturbations in the bioaccumulation and biochemical responses in fish.

  20. Assessing bioaccumulation of polybrominated diphenyl ethers for aquatic species by QSAR modeling.

    PubMed

    Mansouri, Kamel; Consonni, Viviana; Durjava, Mojca Kos; Kolar, Boris; Öberg, Tomas; Todeschini, Roberto

    2012-10-01

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in textiles, foams and plastics. Highly bioaccumulative with toxic effects including developmental neurotoxicity estrogen and thyroid hormones disruption, they are considered as persistent organic pollutants (POPs) and have been found in human tissues, wildlife and biota worldwide. But only some of them are banned from EU market. For the environmental fate studies of these compounds the bioconcentration factor (BCF) is one of the most important endpoints to start with. We applied quantitative structure-activity relationships techniques to overcome the limited experimental data and avoid more animal testing. The aim of this work was to assess the bioaccumulation of PBDEs by means of QSAR. First, a BCF dataset of specifically conducted experiments was modeled. Then the study was extended by predicting the bioaccumulation and biomagnification factors using some experimental values from the literature. Molecular descriptors were calculated using DRAGON 6. The most relevant ones were selected and resulting models were compared paying attention to the applicability domain.

  1. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water.

    PubMed

    Ma, Yini; Huang, Anna; Cao, Siqi; Sun, Feifei; Wang, Lianhong; Guo, Hongyan; Ji, Rong

    2016-12-01

    Contamination of fine plastic particles (FPs), including micrometer to millimeter plastics (MPs) and nanometer plastics (NPs), in the environment has caught great concerns. FPs are strong adsorbents for hydrophobic toxic pollutants and may affect their fate and toxicity in the environment; however, such information is still rare. We studied joint toxicity of FPs with phenanthrene to Daphnia magna and effects of FPs on the environmental fate and bioaccumulation of (14)C-phenanthrene in fresh water. Within the five sizes particles we tested (from 50 nm to 10 μm), 50-nm NPs showed significant toxicity and physical damage to D. magna. The joint toxicity of 50-nm NPs and phenanthrene to D. magna showed an additive effect. During a 14-days incubation, the presence of NPs significantly enhanced bioaccumulation of phenanthrene-derived residues in daphnid body and inhibited the dissipation and transformation of phenanthrene in the medium, while 10-μm MPs did not show significant effects on the bioaccumulation, dissipation, and transformation of phenanthrene. The differences may be attributed to higher adsorption of phenanthrene on 50-nm NPs than 10-μm MPs. Our findings underlined the high potential ecological risks of FPs, and suggested that NPs should be given more concerns, in terms of their interaction with hydrophobic pollutants in the environment.

  2. Bioaccumulation of perfluorinated alkyl acids: observations and models.

    PubMed

    Ng, Carla A; Hungerbühler, Konrad

    2014-05-06

    In this review, we consider the two prevailing hypotheses for the mechanisms that control the bioaccumulation of perfluorinated alkyl acids (PFAAs). The first assumes that partitioning to membrane phospholipids, which have a higher affinity for charged species than neutral storage lipids, can explain the high bioaccumulation potential of these compounds. The second assumes that interactions with proteins--including serum albumin, liver fatty acid binding proteins (L-FABP), and organic anion transporters--determine the distribution, accumulation and half-lives of PFAAs. We consider three unique phenomena to evaluate the two models: (1) observed patterns of tissue distribution in the laboratory and field, (2) the relationship between perfluorinated chain length and bioaccumulation, and (3) species- and gender-specific variation in elimination half-lives. Through investigation of these three characteristics of PFAA bioaccumulation, we show the strengths and weaknesses of the two modeling approaches. We conclude that the models need not be mutually exclusive, but that protein interactions are needed to explain some important features of PFAA bioaccumulation. Although open questions remain, further research should include perfluorinated alkyl substances (PFASs) beyond the long-chain PFAAs, as these substances are being phased out and replaced by a wide variety of PFASs with largely unknown properties and bioaccumulation behavior.

  3. Ecological Implications of Steady State and Nonsteady State Bioaccumulation Models.

    PubMed

    McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas

    2016-10-18

    Accurate predictions on the bioaccumulation of persistent organic pollutants (POPs) are critical for hazard and ecosystem health assessments. Aquatic systems are influenced by multiple stressors including climate change and species invasions and it is important to be able to predict variability in POP concentrations in changing environments. Current steady state bioaccumulation models simplify POP bioaccumulation dynamics, assuming that pollutant uptake and elimination processes become balanced over an organism's lifespan. These models do not consider the complexity of dynamic variables such as temperature and growth rates which are known to have the potential to regulate bioaccumulation in aquatic organisms. We contrast a steady state (SS) bioaccumulation model with a dynamic nonsteady state (NSS) model and a no elimination (NE) model. We demonstrate that both the NSS and the NE models are superior at predicting both average concentrations as well as variation in POPs among individuals. This comparison demonstrates that temporal drivers, such as environmental fluctuations in temperature, growth dynamics, and modified food-web structure strongly determine contaminant concentrations and variability in a changing environment. These results support the recommendation of the future development of more dynamic, nonsteady state bioaccumulation models to predict hazard and risk assessments in the Anthropocene.

  4. Bioaccumulation of perfluorochemicals in Pacific oyster under different salinity gradients.

    PubMed

    Jeon, Junho; Kannan, Kurunthachalam; Lim, Han Kyu; Moon, Hyo Bang; Ra, Jin Sung; Kim, Sang Don

    2010-04-01

    Despite the reports of widespread occurrence of perfluorinated compounds (PFCs) in estuarine and coastal waters and open seas, little is known on the effect of salinity on bioaccumulation. In this study, effects of salinity on bioaccumulation of PFCs in Pacific oysters (Crassostrea gigas) were investigated. Furthermore, partitioning of PFCs between water and particles (oysters' food) was examined at different salinities. The distribution coefficients (K(d); partitioning between water and particles) for selected PFCs, that is, PFOS, PFOA, PFDA, and PFUnDA, increased by 2.1- to 2.7-fold with the increase in water salinity from 10 to 34 psu, suggesting "salting-out" effect, and the salting constant (delta) was estimated to range from 0.80 to 1.11. The nonlinear regression analysis of bioaccumulation suggested increase in aqueous and dietary uptake rates (K(w) and K(f)), with the increase in salinity, which resulted in elevated bioaccumulation, although the depuration rates (K(e)) also increased. The relative abundance of long carbon chain length PFCs (i.e., PFDA and PFUnDA) increased as salinity increased, while the proportion of PFOS and PFOA decreased, which is explained by the positive relationship between delta and carbon chain length. The contribution of diet to bioaccumulation in oysters ranged from 18 to 92%. Overall, salinity not only affected the chemistry of PFCs, but also the physiology of oysters, contributing to sorption and bioaccumulation of perfluorochemicals in oysters.

  5. Flow-through bioassay for measuring bioaccumulation of toxic substances from sediment

    USGS Publications Warehouse

    Mac, Michael J.; Edsall, Carol C.; Hesselberg, Robert J.; Sayers, Richard E.

    1984-01-01

    Over 10 million cubic meters of sediment are dredged annually from Great Lakes waterways. Because much of this material is taken from harbors, connecting channels, and other nearshore areas that often are contaminated with toxic substances, the sediments proposed for dredging need to be evaluated for the presence of bioavailable contaminants and the potential for toxicity to the biota. Sound decisions on the appropriate disposal of the dredged material can be made only after such an evaluation. Presently, no standardized procedure exists for evaluating dredged material in freshwater systems although current criteria for discharge of dredged material into marine water have been developed (USEPA/CE 1977). In the ocean discharge guideline, it is recommended that bioassays be conducted on liquid, solid, and suspended particulate phases of dredged material. because it appears that the solid phase has the greatest potential for environmental damage and because measurement of bioaccumulation must be made to evaluate sediments for disposal (USEPA/CE 1977, Seeyle and Mac 1983), we developed a bioassay for testing the solid phase of dredged material that measures the survival of organisms and, perhaps more important, the bioaccumulation of toxic substances by aquatic organisms from naturally contaminated sediments (Peddicord et al. 1980; Rubinstein et al. 1980, 1983; Seeyle st al. 1982), several have used testing methods that result in unacceptable mortality to control organisms (Bahnick et al. 1981, Prater et al. 1983). Our bioassay is intended to estimate the potential for bioaccumlation of contaminants from sediments that are not acutely toxic to test organisms, but are suspected of containing persistent contaminants. By using test organisms that are not highly susceptible to toxic compounds, the bioaccumulation test allows estimation of the potential food-chain accumulation of contaminants that may occur in local biota from surficial sediments. In practice

  6. Bioaccumulation surveillance in Milford Haven Waterway.

    PubMed

    Langston, W J; O'Hara, S; Pope, N D; Davey, M; Shortridge, E; Imamura, M; Harino, H; Kim, A; Vane, C H

    2012-01-01

    Biomonitoring of contaminants (metals, organotins, polyaromatic hydrocarbons (PAHs), PCBs) was undertaken in Milford Haven Waterway (MHW) and a reference site in the Tywi Estuary (St Ishmael/Ferryside) during 2007-2008. Bioindicator species encompassed various uptake routes-Fucus vesiculosus (dissolved contaminants); Littorina littorea (grazer); Mytilus edulis and Cerastoderma edule (suspension feeders); and Hediste (=Nereis) diversicolor (sediments). Differences in feeding and habitat preference have subtle implications for bioaccumulation trends though, with few exceptions, contaminant burdens in MHW were higher than the Tywi reference site, reflecting inputs. Elevated metal concentrations were observed at some MHW sites, whilst As and Se (molluscs and seaweed) were consistently at the higher end of the UK range. However, for most metals, distributions in MH biota were not exceptional. Several metal-species combinations indicated increases in bioavailability upstream, which may reflect the influence of geogenic/land-based sources-perhaps enhanced by lower salinity. TBT levels in MH mussels were below OSPAR toxicity thresholds and in the Tywi were close to zero. Phenyltins were not accumulated appreciably in M. edulis, whereas some H. diversicolor populations appear subjected to localized (historical) sources. PAHs in H. diversicolor were distributed evenly across most of MHW, although acenaphthene, fluoranthene, pyrene, benzo(a)anthracene and chrysene were highest at one site near the mouth; naphthalenes in H. diversicolor were enriched in the mid-upper Haven (a pattern seen in M. edulis for most PAHs). Whilst PAH (and PCB) concentrations in MH mussels were mostly above reference and OSPAR backgrounds, they are unlikely to exceed ecotoxicological thresholds. Bivalve Condition indices (CI) were highest at the Tywi reference site and at the seaward end of MH, decreasing upstream-giving rise to several significant (negative) relationships between CI and body burdens

  7. Capping in situ with activated carbon in Trondheim harbor (Norway) reduces bioaccumulation of PCBs and PAHs in marine sediment fauna.

    PubMed

    Samuelsson, Göran S; Hedman, Jenny E; Elmquist Kruså, Marie; Gunnarsson, Jonas S; Cornelissen, Gerard

    2015-08-01

    Three types of thin-layer caps with activated carbon (AC) were tested in situ in experimental plots (10 × 10 m) in Trondheim harbor, Norway, using AC + clay, AC-only or AC + sand. One year after capping, intact sediment cores were collected from the amended plots for ex situ surveys of the capping efficiency in reducing the PAH and PCB aqueous concentrations and bioaccumulation by the polychaete Hediste diversicolor and the clam Abra nitida. Reduced pore water concentrations were observed in all AC treatments. The capping efficiency was in general AC + clay > AC-only > AC + sand. AC + clay reduced bioaccumulation of PAH and PCB congeners between 40% and 87% in the worms and between 67% and 97% in the clams. Sediment capped with AC-only also led to reduced bioaccumulation of PCBs, while AC + sand showed no reduction in bioaccumulation. Thus the best thin-layer capping method in this study was AC mixed with clay.

  8. Bioaccumulation and trophodynamics of the antidepressants sertraline and fluoxetine in laboratory-constructed, three-level aquatic food chains.

    PubMed

    Boström, Marja L; Ugge, Gustaf; Jönsson, Jan Åke; Berglund, Olof

    2016-10-03

    Although reports of pharmaceutical bioconcentration in aquatic organisms are increasing, less is known about trophic transfer in aquatic food webs. In the present study, we tested the bioaccumulation and trophodynamics of sertraline and fluoxetine, two selective serotonin reuptake inhibitors (SSRIs) frequently detected in aquatic environments, by exposing constructed aquatic food chains under controlled laboratory conditions. Both of these ionizable, weak base pharmaceuticals, showed lower bioaccumulation factors (BAFs) with increasing trophic level, i.e. no biomagnification, in two three-level food chains (Acer platanoides, fed to Asellus aquaticus, in turn fed to Notonecta glauca or Pungitius pungitius). Mean sertraline BAFs (L/kg) in A. platanoides, A. aquaticus, N. glauca, and P. pungitus were: 2200, 360, 26, and 49, respectively, and mean fluoxetine BAFs: 1300, 110, 11, and 41, respectively. The weak influence of diet was further demonstrated by measured BAFs being equal to, or lower than measured bioconcentration factors (BCFs). Organism lipid content was not positively correlated with BAFs, suggesting other processes driving interspecific differences in SSRI bioaccumulation. The empirically derived parameter values were introduced into a proposed bioaccumulation model and a poor correlation was found between modelled and empirical BAFs (r(2) =-0.63). In conclusion, the apparent lack of biomagnification of these ionizable pharmaceuticals suggest that environmental concern should not necessarily focus on higher trophic levels only, but on species showing high bioconcentration factors at any trophic level. This article is protected by copyright. All rights reserved.

  9. Mercury Speciation and Bioaccumulation In Riparian and Upland Food Webs of the White Mountains Region, New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Rodenhouse, N.; Gebauer, R.; Lowe, W.; McFarland, K.; Bank, M. S.

    2015-12-01

    The soils and foods webs associated with mid to high elevation, forested, headwater streams are potential hotspots for mercury methylation and bioaccumulation but are not well studied. We tested the hypothesis that spatial variation in mercury bioaccumulation in upland taxa associated with headwater streams can be explained by variation in soil conditions promoting Hg methylation such as soil moisture, pH, and sulfur and organic matter content. We sampled at high (c. 700m) and mid elevation (c. 500m) in northern hardwood forest adjacent to and away from (75m) replicate headwater streams in the Hubbard Brook and Jeffers Brook watersheds of the White Mountains region, New Hampshire, USA. These forested watersheds differed primarily in soil calcium content and pH. We measured and assessed spatial variation in total Hg (THg) and methyl Hg (MeHg) concentrations in soils, insects, spiders, salamanders and birds. We also tested whether trophic position, as determined by nitrogen stable isotopes, was a major predictor of Hg bioaccumulation across these riparian and upland forest taxa. We found elevated levels of THg in all measured components of the food web, and conditions for methylation were better in the upland forest sites compared to the riparian sites located adjacent to headwater streams. Both THg and MeHg in biota were positively correlated with trophic position as indicated by 15N enrichment. In fact, trophic position was a better predictor of THg and MeHg content than spatial location, but the spatial patterning of bioaccumulation differed among taxa. Our data show that that significant Hg bioaccumulation and biomagnification can occur in soils and food webs of mid to high elevation temperate deciduous forests of the Northeast. They also suggest that mercury methylation in forested watersheds is a widespread phenomenon and not limited to areas with high soil moisture, such as lotic environments.

  10. Evaluation of toxicity to the amphipod, Hyalella azteca, and to the midge, Chironomus dilutus; and bioaccumulation by the oligochaete, Lumbriculus variegatus, with exposure to PCB-contaminated sediments from Anniston, Alabama

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.; Brumbaugh, William G.; Coady, Matthew R.; Farrar, J. Daniel; Lotufo, Guilherme R.; Kemble, Nile E.; Kunz, James L.; Stanley, Jacob K.; Sinclair, Jesse A.; Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.

    2014-01-01

    characterization of samples of whole sediment included analyses of grain size, TOC, and nutrients. Organic chemical characterization of samples of whole sediment included PCB homologs and select (13) PCB congeners, parent and alkylated polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, and polychlorinated dibenzo-p-dioxins; and dibenzofurans. The PCB aroclors analyzed included 1016, 1221, 1232, 1242, 1248, 1254, 1260, 1262 and 1268. Analyses of whole sediment also included total metals, simultaneously extracted metals, and acid volatile sulfide. Chemical characterization of samples of pore water isolated from samples of whole sediment at the start of the sediment toxicity exposures or at the start of the sediment bioaccumulation exposures included metals, major cations, major anions, dissolved organic carbon, and additional water-quality characteristics. Concentrations of metals or PCBs in pore water during the sediment toxicity exposures or during sediment bioaccumulation exposures also were determined using peeper samples (for metals) or solid-phase microextraction (SPME) samplers (for PCBs). The bioavailability and bioaccumulation of PCBs in 14 sediment samples were investigated using SPME passive samplers and the 28-d L. variegatus whole-sediment bioaccumulation exposures In general the accumulation of PCBs consistently was predicted through the use of organic carbon normalization and equilibrium partitioning. In these sediments, PCB homologs were accumulated differently based on bioavailability and potential to accumulate in oligochaetes. As part of this assessment homolog specific biota sediment accumulation factor values were developed that could be applied across the larger site to predict tissue levels of PCBs. The whole-sediment toxicity tests done with H. azteca and C. dilutus met the established ASTM and USEPA test acceptability criteria. The most responsive H. azteca endpoints were day 42 survival normalized young per female and day 28 biomass and

  11. Mercury bioaccumulation in Hayward Marsh, California

    SciTech Connect

    Ohlendorf, H.; Byron, E.; Taylor, L.; Cortes, R.

    1995-12-31

    Hayward Marsh was created in 1988 to provide wildlife habitat using treated wastewater from Union Sanitary District, which is located in the San Francisco Bay area. Mercury has been identified as one of the major contaminants of concern for San Francisco Bay sediment and biota. This study was conducted to determine whether mercury bioaccumulation in the Marsh occurred at ecologically significant levels. Sediment, benthic and free-swimming aquatic invertebrates, fish, bird eggs, and muskrat livers were analyzed. Mercury concentrations in the various media were compared to regional background levels and potential adverse effect levels. The findings indicated that mercury concentrations were generally similar to background levels and that there was a low probability of adverse effects to wildlife feeding in the Marsh. An important aspect of the study was inclusion of three bird species, along with their potential food organisms, in the sampling, one of the species had elevated mercury levels in its eggs but those birds probably were exposed outside the Marsh because the two other species and common food-chain organisms did not show elevated mercury levels.

  12. Cadmium Bioaccumulation in Aquatic Oligochaetes Using a Biodynamic Model: A Review of Values of Physiological Parameters and Model Validation Using Laboratory and Field Bioaccumulation Data.

    PubMed

    Méndez-Fernández, Leire; Rodriguez, Pilar; Martínez-Madrid, Maite

    2017-02-16

    This study reviews certain physiological digestive parameters in the literature that could be used to predict tissue residues in aquatic oligochaetes using the biodynamic model. Predictions were evaluated with independently measured Cd bioaccumulation data in sediment bioassays and field oligochaetes. The parameter review focused on three species commonly used in ecotoxicity testing and bioaccumulation studies: Tubifex tubifex (Tt), Limnodrilus hoffmeisteri (Lh) and Lumbriculus variegatus (Lv). Median Ingestion rates (g g(-1) d(-1), dw) at unpolluted conditions were 7.8 (Tt), 24.5 (Lh) and 11.5 (Lv), while results were lower (1.7-2.4) at polluted conditions. Assimilation efficiencies ranged from 3.4-19.6% (Tt), 2.7-16.1% (Lh), and 10.9-25.6% (Lv). The biodynamic model accurately predicted Cd tissue concentration in T. tubifex exposed to spiked sediments in laboratory bioassays. Comparisons of predicted vs. measured Cd tissue concentration in bioassays or field aquatic oligochaetes suggest that the biodynamic model can predict Cd tissue concentration within a factor of five in 81.3% of cases, across a range of measured tissue concentrations from 0.1 to 100 μg Cd g(-1) dw. Predictions can be refined by using physiological parameter values that have been measured under varying environmental conditions (e.g. temperature, dissolved oxygen). The model can underestimate tissue concentration by up to one order of magnitude when worms are exposed to highly contaminated sediments. Contrarily, predictions overestimate tissue concentration by up to two orders of magnitude when the measured Cd < 0.1 μg g(-1) dw, although in most cases these predictions do not fail bioaccumulation-based risk assessments, using a tissue threshold value of 1.5 μg Cd g(-1) dw.

  13. Usefulness of the lipid index for bioaccumulation studies with Daphnia magna

    SciTech Connect

    Dauble, D.D.; Klopfer, D.C.; Carlile, D.W.; Hanf, R.W. Jr.

    1985-01-01

    Bioaccumulation studies with Daphnia magna have become an important tool for hazard evaluation of potentially toxic materials released to aquatic environments. Despite widespread use of this test organism, little attention has been paid to the influence of stored lipids on uptake of xenobiotics. The authors drew upon principles of zooplankton population dynamics in the limnological literature to define experimental parameters for bioconcentration testing of organic compounds. Adult test populations were initially starved and monitored for lipid content and brood production. Mean lipid index values declined at 72 h to less than 50% of those observed at 24 h. The number of hatched young peaked at 48 h and was inversely related to lipid storage and ovary production. In a separate experiment, uptake kinetics of /sup 14/C-labelled quinoline were compared between two daphnid test groups with mean lipid scores of 5.4 and 2.8 respectively. Total radioactivity was significantly higher for the high lipid group at 8 h, and the coefficient of variation was lower. Estimated bioconcentration factors adjusted to dry weight were similar. Our studies indicated that lipid reserves of daphnid test populations can be routinely monitored as an indicator of stress in the laboratory. Bioaccumulation tests should be limited to less than 24 h to avoid depletion of lipid stores, which may cause increased variation in tissue concentration over time. 19 references, 2 figures, 2 tables.

  14. A field assessment of long-term laboratory sediment toxicity tests with the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Wang, Ning; Hayward, Jeannie M. R.; Jones, John R.; Jones, Susan B.; Ireland, D. Scott

    2005-01-01

    Response of the amphipod Hyalella azteca exposed to contaminated sediments for 10 to 42 d in laboratory toxicity tests was compared to responses observed in controlled three-month invertebrate colonization exposures conducted in a pond. Sediments evaluated included a sediment spiked with dichlorodiphenyldichloroethane (DDD) or dilutions of a field sediment collected from the Grand Calumet River (GCR) in Indiana (USA) (contaminated with organic compounds and metals). Consistent effects were observed at the highest exposure concentrations (400 ??g DDD/goc [DDD concentrations normalized to grams of organic carbon (goc) in sedimentl or 4% GCR sediment) on survival, length, and reproduction of amphipods in the laboratory and on abundance of invertebrates colonizing sediments in the field. Effect concentrations for DDD observed for 10-d length and 42-d reproduction of amphipods (e.g., chronic value [ChV] of 66 ??g DDD/goc and 25% inhibition concentration [IC25] of 68 ??g DDD/goc for reproduction) were similar to the lowest effect concentrations for DDD measured on invertebrates colonizing sediment the field. Effect concentrations for GCR sediment on 28-d survival and length and 42-d reproduction and length of amphipods (i.e., ChVs of 0.20-0.66% GCR sediment) provided more conservative effect concentrations compared to 10-d survival or length of amphipods in the laboratory or the response of invertebrates colonizing sediment in the field (e.g., ChVs of 2.2% GCR sediment). Results of this study indicate that use of chronic laboratory toxicity tests with H. azteca and benthic colonization studies should be used to provide conservative estimates of impacts on benthic communities exposed to contaminated sediments. Bioaccumulation of DDD by oligochaetes colonizing the DDD-spiked sediment was similar to results of laboratory sediment tests previously conducted with the oligochaete Lumbriculus variegates, confirming that laboratory exposures can be used to estimate

  15. Summary of Cefic-LRI sponsored workshop: Recent scientific developments in bioaccumulation research

    EPA Science Inventory

    Current bioaccumulation regulations in most jurisdictions include only the bioconcentration factor (BCF) and the octanol-water partition coefficient (KOW) for screening assessments. Methods for evaluating bioaccumulation continue to evolve and various other metrics have been prop...

  16. Derivation of proposed human health and wildlife bioaccumulation factors for the Great Lakes initiative. Draft report

    SciTech Connect

    Stephan, C.E.

    1993-03-01

    The publication is divided into two sections: Comparison of Proposed Human Health and Bioaccumulation Factors (HHBAFs) for the Great Lakes Initiative (GLI) and Derivation of Proposed Human Health and Wildlife Bioaccumulation Factors for the Great Lakes Initiative.

  17. THE RELATIONSHIP OF BIOACCUMULATIVE CHEMICALS IN WATER AND SEDIMENT TO RESIDUES IN FISH: A VISUALIZATION APPROACH

    EPA Science Inventory

    A visualization approach is developed and presented for depicting and interpreting bioaccumulation relationships and data, i.e., bioaccumulation factors (BAFs), biota-sediment accumulation factors (BSAFs) and chemical residues in fish, using water-sediment chemical concentration ...

  18. Dietary Uptake Models Used for Modeling the Bioaccumulation of Organic Contaminants in Fish

    EPA Science Inventory

    Numerous models have been developed to predict the bioaccumulation of organic chemicals in fish. Although chemical dietary uptake can be modeled using assimilation efficiencies, bioaccumulation models fall into two distinct groups. The first group implicitly assumes that assimila...

  19. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation..

    EPA Science Inventory

    This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-four studies were found where both passive sampler uptake and organism bioaccumulation wer...

  20. Bioaccumulation and toxicity of silver compounds: A review

    SciTech Connect

    Ratte, H.T.

    1999-01-01

    A review of the literature revealed that bioaccumulation of silver in soil is rather low, even if the soil is amended with silver-containing sewage sludge. Plants grown on tailings of silver mines were found to have silver primarily in the root systems. In marine and freshwater systems, the highest reported bioconcentration factors (BCFs) were observed in algae, probably because of adsorption of the dissolved silver to the cell surface. In herbivorous organisms, the BCF was lower by about two orders of magnitude. Low amounts of silver were assimilated from food with no substantial biomagnification. In carnivores (e.g., fish), the BCF was also lower by one order of magnitude with no indication of biomagnification. Toxicity of silver occurs mainly in the aqueous phase and depends on the concentration of active, free Ag{sup +} ions. Accordingly, many processes and water characteristics reduce silver toxicity by stopping the formation of free Ag{sup +}, binding Ag{sup +}, or preventing binding of Ag{sup +} to the reactive surfaces of organisms. The solubility of a silver compound, and the presence of complexing agents dissolved organic carbon, and competing ions are important. In soil, sewage sludge, and sediment, in which silver sulfide predominates, the toxicity of silver, even at high total concentrations, is very low. The highly soluble silver thiosulfate complex has low toxicity, which can be attributed to the silver complexed by thiosulfate. Silver nitrate is one of the most toxic silver compounds. The toxic potential of silver chloride complexes in seawater is and will be an important issue for investigation. Aquatic chronic tests, long-term tests, and tests including sensitive life stages show lower toxicity thresholds. The organisms viewed as most sensitive to silver are small aquatic invertebrates, particularly embryonic and larval stages.

  1. Mercury bioaccumulation in a stream network.

    PubMed

    Tsui, Martin Tsz Ki; Finlay, Jacques C; Nater, Edward A

    2009-09-15

    Mercury (Hg) contamination is common in stream and river ecosystems, but factors mediating Hg cycling in the flowing waters are much less understood than inthe lakes and wetlands. In this study, we examined the spatial patterns of methylmercury (MeHg) concentrations in the dominant groups of aquatic insect larvae across a network of streams (drainage area ranging from 0.5 to 150 km2) in northern California during summer baseflow conditions. We found that, with the exception of water striders, all invertebrate groups showed significant (p < 0.05) increases in MeHg concentrations with drainage area. The largest stream in our study watershed, the South Fork Eel River, had the highest aqueous MeHg concentration (unfiltered: 0.13-0.17 ng L(-1)) while most of the upstream tributaries had aqueous MeHg concentrations close to or below the established detection limits (0.02 ng L(-1)). A filamentous alga abundant in South Fork Eel River (Cladophora glomerata) had an exceptionally high fraction of total-Hg as MeHg (i.e., %MeHg from 50-100%). Since other potential hotspots of in-stream Hg methylation (e.g., surface sediment and deep pools) had %MeHg lower than or similar to surface water (approximately 14%), we hypothesize that Cladophora and possibly other autotrophs may serve as hotspots of in-stream MeHg production in this bedrock-dominated stream. Recent studies in other regions concluded that wetland abundance in the watershed is the predominant factor in governing Hg concentrations of stream biota. However, our results show that in the absence of wetlands, substantial spatial variation of Hg bioaccumulation can arise in stream networks due to the influence of in-stream processes.

  2. Bioaccumulation and glutathione-mediated detoxification of copper and cadmium in Sphagnum squarrosum Crome Samml.

    PubMed

    Saxena, Anuj; Saxena, Anjali

    2012-07-01

    Physiological and biochemical responses, metal bioaccumulation and tolerance potential of Sphagnum squarrosum Crome Samml. to Cu and Cd were studied to determine its bioindication and bioremediation potential. Results suggest that glutathione treatment increases the metal accumulation potential and plays a definite role in heavy metal scavenging. High abundance of Sphagnum in metal-rich sites strongly suggests its high metal tolerance capabilities. This experiment demonstrates that S. squarrosum is able to accumulate and tolerate a high amount of metals and feasibility of its application as bioindicator and remediator test species of metal-contaminated environment.

  3. Bioaccumulation and uptake routes of perfluoroalkyl acids in Daphnia magna.

    PubMed

    Dai, Zhineng; Xia, Xinghui; Guo, Jia; Jiang, Xiaoman

    2013-02-01

    Perfluoroalkyl acids (PFAs), one kind of emerging contaminants, have attracted great attentions in recent years. However, the study about their bioaccumulation mechanism remains scarce. In this research, the bioaccumulation of six kinds of PFAs in water flea Daphnia magna was studied. The uptake rates of PFAs in D. magna ranged from 178 to 1338 L kg(-1) d(-1), and they increased with increasing perfluoroalkyl chain length; the elimination rates ranged from 0.98 to 2.82 d(-1). The bioaccumulation factors (BAFs) of PFAs ranged from 91 to 380 L kg(-1) in wet weight after 25 d exposure; they increased with increasing perfluoroalkyl chain length and had a significant positive correlation with the n-octanol/water partition coefficients (logK(ow)) of PFAs (p<0.05). This indicated that the hydrophobicity of PFAs plays an important role in their bioaccumulation. The BAFs almost kept constant when the PFA concentrations in aqueous phase increased from 1 to 10 μg L(-1). Scenedesmus subspicatus, as the food of D. magna, did not significantly affect the bioaccumulation of PFAs by D. magna. Furthermore, the body burden of PFAs in the dead D. magna was 1.08-2.52 times higher than that in the living ones, inferring that the body surface sorption is a main uptake route of PFAs in D. magna. This study suggested that the bioaccumulation of PFAs in D. magna is mainly controlled by their partition between organisms and water; further research should be conducted to study the intrinsic mechanisms, especially the roles of protein and lipid in organisms.

  4. Bioaccumulation of metals by Hyalella azteca exposed to contaminated sediments from the upper Clark Fork River, Montana

    SciTech Connect

    Ingersoll, C.G.; Brumbaugh, W.G.; Dwyer, F.J.; Kemble, N.E. . Midwest Science Center)

    1994-12-01

    Macroinvertebrate contaminated with metals in the Clark Fork River of Montana have been demonstrated to be a potentially toxic component in the diet of trout. Because sediment was the suspected source of metals to these invertebrates, bioaccumulation of As, Cd, Cu, Pb, and Zn from sediment was evaluated by exposing the amphipod Hyalella azteca for 28 d in the laboratory to samples of sediment collected from depositional areas of the Clark Fork River. Benthic invertebrates collected from riffles adjacent to the depositional areas were also analyzed for metals. The pattern of metal accumulation between laboratory-exposed and field-collected animals was similar; however, the concentrations of metals in laboratory-exposed amphipods were often 50 to 75% less than were the concentrations of metals in the field-collected invertebrates. These findings indicate that sediment is a significant source of metals to invertebrates in the Clark Fork River. Additional studies should be conducted to determine threshold concentrations for effects of dietary metals on fish. Long-term monitoring of the river should include sampling benthic invertebrates for metal accumulation.

  5. Bioaccumulation of metals by Hyalella azteca exposed to contaminated sediments from the upper Clark Fork River, Montana

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Brumbaugh, William G.; Dwyer, F. James; Kemble, Nile E.

    1994-01-01

    Macroinvertebrates contaminated with metals in the Clark Fork River of Montana have been demonstrated to be a potentially toxic component in the diet of trout Because sediment was the suspected source of metals to these invertebrates, bioaccumulation of As, Cd, Cu, Pb, and Zn from sediment was evaluated by exposing the amphipod Hyalella azteca for 28 d in the laboratory to samples of sediment collected from depositional areas of the Clark Fork River Benthic invertebrates collected from riffles adjacent to the depositional areas were also analyzed for metals The pattern of metal accumulation between laboratory-exposed and field-collected animals was similar, however, the concentrations of metals in laboratory exposed amphipods were often 50 to 75% less than were the concentrations of metals in the field collected invertebrates These findings indicate that sediment is a significant source of metals to invertebrates in the Clark Fork River Additional studies should be conducted to determine threshold concentrations for effects of dietary metals on fish Long-term monitoring of the river should include sampling benthic invertebrates for metal accumulation.

  6. Joint use of laboratory bioassays and field-collected plants to evaluate toxicity and contaminant bioaccumulation

    SciTech Connect

    Long, S.P.; Byron, E.R.; Ohlendorf, H.M.

    1995-12-31

    Soil toxicity tests using lettuce (Latuca saliva) were conducted using soil samples collected as part of ecological risk assessments at two facilities in California. At some sites, terrestrial plants were collected in the field for chemical analysis. Ecological concerns focused on exposures to plants, phytophagous insects, and their secondary consumers, such as birds and small mammals. The toxicity tests were used to assess potential exposures to a variety of site-specific contaminants including organochlorine pesticides, PCBs, PAHs, petroleum hydrocarbons, heavy metals, and other inorganic substances. Site soils were combined with clean control soils to produce toxicity test soil dilutions containing 100%, 75%, 50%, 25%, and 0% site soils. Observations of seed germination and growth were made at day 0, 7, 14, 21 and 28. Toxicity test results were combined with soil chemical analytical results and physical characteristics to establish NOAELs and LOAELs. Bioaccumulation in the lettuce and field-collected plants was evaluated by comparing plant contaminant to soil contaminant concentrations. Allometric equations and sublethal toxicity data were used to predict potential effects on birds and small mammals. Whole-body contaminant concentrations in insects collected on some of the plants in the field were also considered in evaluating the potential for toxicity to insectivorous birds. The study indicated that contaminant uptake was occurring in the field-collected and bioassay plants but not the insects. Site factors in addition to soil contaminant concentration influenced the potential for plant toxicity and bioaccumulation.

  7. Toxicity and bioaccumulation of biosolids-borne triclocarban (TCC) in terrestrial organisms.

    PubMed

    Snyder, Elizabeth Hodges; O'Connor, George A; McAvoy, Drew C

    2011-01-01

    Triclocarban (TCC) toxicity and bioaccumulation data are primarily limited to direct human and animal dermal exposures, animal ingestion exposures to neat and feed-spiked TCC, and/or aquatic organism exposures. Three non-human, terrestrial organism groups anticipated to be the most highly exposed to land-applied, biosolids-borne TCC are soil microbes, earthworms, and plants. The three ecological receptors are expected to be at particular risk due to unique modes of exposure (e.g. constant, direct contact with soil; uptake of amended soil and pore water), inherently greater sensitivity to environmental contaminants (e.g. increased body burdens, permeable membranes), and susceptibility to minute changes in the soil environment. The toxicities of biosolids-borne TCC to Eisenia fetida earthworms and soil microbial communities were characterized using adaptations of the USEPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) Guidelines 850.6200 (Earthworm Subchronic Toxicity Test) and 850.5100 (Soil Microbial Community Toxicity Test), respectively. The resultant calculated TCC LC50 value for E. fetida was 40 mg TCC kg amended fine sand(-1). Biosolids-borne TCC in an amended fine sand had no significant effect on soil microbial community respiration, ammonification, or nitrification. Bioaccumulation of biosolids-borne TCC by E. fetida and Paspulum notatum was measured to characterize potential biosolids-borne TCC movement through the food chain. Dry-weight TCC bioaccumulation factor (BAF) values in E. fetida and P. notatum ranged from 5.2-18 and 0.00041-0.007 (gsoil gtissue(-1)), respectively.

  8. Sediment toxicity and bioaccumulation of nano and micron-sized aluminum oxide.

    PubMed

    Stanley, Jacob K; Coleman, Jessica G; Weiss, Charles A; Steevens, Jeffery A

    2010-02-01

    Nano-aluminum oxide (Al(2)O(3)) is used commercially in coatings and abrasives. Nano-Al(2)O(3) can also be generated through the oxidation of nano-aluminum in military propellants and energetics. The purpose of the present study was to assess toxicity and bioaccumulation of nano-Al(2)O(3) to a variety of sediment organisms (Tubifex tubifex, Hyalella azteca, Lumbriculus variegatus, and Corbicula fluminea). The bioaccumulation and toxicity of nano-Al(2)O(3) was compared with that of micron-sized Al(2)O(3) to investigate potential size-related effects. Results of the present study show species-specific differences in relative bioaccumulation of nano and micron-sized Al(2)O(3). Significant toxic effects (survival and growth) were observed in H. azteca testing, but only at high concentrations unlikely to be found in the environment. Nano-Al(2)O(3) was found to be more toxic than micron-sized Al(2)O(3) to H. azteca survival in a 14-d study in which organisms were in direct contact with a thin layer of 625 or 2,500 mg of Al(2)O(3) dispersed on the surface of either sediment or sand. A significant growth effect was also observed for nano but not micron-sized Al(2)O(3) at the highest treatment level tested (100 g/kg Al(2)O(3)) in a 10-d H. azteca bioassay in which Al(2)O(3) was homogenized with sediment. However, differences in measured sediment Al concentrations (micron-sized = 55.1 [+/-0.6] g/kg Al; nano-sized = 66.2 [+/-0.6] g/kg Al) in the nano and micron-sized Al(2)O(3) preclude direct comparison of the toxicity of these two treatments based on particle size.

  9. UO(2) 2+ speciation determines uranium toxicity and bioaccumulation in an environmental Pseudomonas sp. isolate.

    PubMed

    Vanengelen, Michael R; Field, Erin K; Gerlach, Robin; Lee, Brady D; Apel, William A; Peyton, Brent M

    2010-04-01

    In the present study, experiments were performed to investigate how representative cellulosic breakdown products, when serving as growth substrates under aerobic conditions, affect hexavalent uranyl cation (UO(2) (2+)) toxicity and bioaccumulation within a Pseudomonas sp. isolate (designated isolate A). Isolate A taken from the Cold Test Pit South (CTPS) region of the Idaho National Laboratory (INL), Idaho Falls, ID, USA. The INL houses low-level uranium-contaminated cellulosic material and understanding how this material, and specifically its breakdown products, affect U-bacterial interactions is important for understanding UO(2) (2+) fate and mobility. Toxicity was modeled using a generalized Monod expression. Butyrate, dextrose, ethanol, and lactate served as growth substrates. The potential contribution of bicarbonate species present in high concentrations was also investigated and compared with toxicity and bioaccumulation patterns seen in low-bicarbonate conditions. Isolate A was significantly more sensitive to UO(2) (2+) and accumulated significantly more UO(2) (2+) in low-bicarbonate concentrations. In addition, UO(2) (2+) growth inhibition and bioaccumulation varied depending on the growth substrate. In the presence of high bicarbonate concentrations, sensitivity to UO(2) (2+) inhibition was greatly mitigated, and did not vary between the four substrates tested. The extent of UO(2) (2+) accumulation was also diminished. The observed patterns were related to UO(2) (2+) aqueous complexation, as predicted by MINTEQ (ver. 2.52) (Easton, PA, USA). In the low- bicarbonate medium, the presence of positively charged and unstable UO(2) (2+)-hydroxide complexes explained both the greater sensitivity of isolate A to UO(2) (2+), and the ability of isolate A to accumulate significant amounts of UO(2) (2+). The exclusive presence of negatively charged and stable UO(2) (2+)-carbonate complexes in the high bi-carbonate medium explained the diminished sensitivity of

  10. Assessment of soil stabilization by chemical extraction and bioaccumulation using earthworm, Eisenia fetida

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Tae; Abd Aziz, Azilah; Han, Heop Jo; Kim, Kyoung-Woong

    2014-05-01

    Soil stabilization does not remove heavy metals from contaminated soil, but lowers their exposures to ecosystem. Thus, it should be evaluated by measuring the fractions of heavy metals which are mobile and/or bioavailable in soils. The study compared several chemical extractions which intended to quantify the mobile or bioaccessible fractions with uptake and bioaccumulation by earthworm, Eisenia fetida. Soil samples were taken from the abandoned mine area contaminated with As, Cd, Cu, Pb and/or Zn. To stabilize heavy metals, the soils were amended with limestone and steel slag at 5% and 2% (w/w), respectively. All chemical extractions and earthworm tests were applied to both the contaminated and the stabilized soils with triplicates. The chemical extractions consisted of six single extractions which were 0.01M CaCl2 (unbufferred), EDTA or DTPA (chelating), TCLP (acidic), Mehlich 3 (mixture), and aqua regia (peudo-total). Sequential extractions were also applied to fractionate heavy metals in soils. In earthworm tests, worms were exposed to the soils for uptake of heavy metals. After 28 days of exposure to soils, worms were transferred to clean soils for elimination. During the tests, three worms were randomly collected at proper sampling events. Worms were rinsed with DI water and placed on moist filter paper for 48 h for depuration. Filter paper was renewed at 24 h to prevent coprophagy. The worms were killed with liquid nitrogen, dried in the oven, and digested with aqua regia for ICP-MS analysis. In addition to the bioaccumulation, several toxicity endpoints were observed such as burrowing time, mortality, cocoon production, and body weight changes. Toxicokinetics was applied to determine the uptake and elimination heavy metals by the earthworms. Bioaccumulation factor (BAF) was estimated using total metal concentrations and body burdens. Pearson correlation and simple linear regression were applied to evaluate the relationship between metal fractions by single

  11. Effect of feeding in 30-day bioaccumulation assays using Hyalella azteca in fluoranthene-dosed sediment

    SciTech Connect

    Harkey, G.A.; Driscoll, S.K.; Landrum, P.F.

    1997-04-01

    Current protocols for conducting freshwater sediment bioaccumulation tests recommend that food not be added to exposures, whereas toxicity tests require food addition. To determine effects of adding food on exposure, 30-d sediment exposures were conducted with Hyalella azteca to sediment dosed with four fluoranthene concentrations. Accumulation was significantly greater in fed versus nonfed animals at all dose levels after 96 h of exposure and continued to be greater after 30 d in the low dose levels. At sediment concentrations above 478 nmol/g dry weight, survival of unfed animals dropped to 34% after 30 d. After 30 d of exposure, growth and reproduction were observed in fed animals exposed to sediment 10-d studies reported in the literature using sediment with comparable organic carbon concentrations. Samples of sediment in exposure breakers taken from the sediment-water interface (flocculant layer) and 1 to 2 cm below the interface had large differences in fluoranthene and organic carbon concentrations. The concentration of fluoranthene was 2 to 10 times greater in the flocculant layer, the area inhabited by H. azteca, compared to the deeper sediment. These data raise questions concerning the interpretation of standard toxicity and bioaccumulation tests when food is routinely added.

  12. Influence of soot carbon on the bioaccumulation of sediment-bound polycyclic aromatic hydrocarbons by marine benthic invertebrates: an interspecies comparison.

    PubMed

    Rust, Aaron J; Burgess, Robert M; McElroy, Anne E; Cantwell, Mark G; Brownawell, Bruce J

    2004-11-01

    The sorption of polycyclic aromatic hydrocarbons (PAHs) to soot carbon in marine sediments has been hypothesized to reduce PAH bioavailability. This hypothesis was tested for eight species of marine benthic invertebrates (four polychaete worms, Clymenella torquata, Nereis virens, Cirriformia grandis, and Pectinaria gouldii, and four bivalve mollusks, Macoma balthica, Mulinia lateralis, Yoldia limatula, and Mya arenaria) that span a wide range of feeding behavior, ability to metabolize PAHs, and gut chemistry. Organisms were exposed for 20 d to two PAH-spiked sediments, one with soot and one without soot. The soot treatment generally resulted in lower bioaccumulation than the no soot treatment, though the differences between treatments were not significant for all species. All but one species accumulated significant PAH concentrations in their tissues from the soot treatment, indicating that soot-bound PAH cannot be dismissed as unavailable to infaunal benthic biota. Bioaccumulation factors were correlated negatively to both the organisms' ability to metabolize PAHs and the gut fluid contact angle, supporting the hypotheses that high PAH metabolism results in lower bioaccumulation factors and bioavailability of PAHs may be limited partially by PAH solubilization in the gut lumen. The variability in bioaccumulation due to the soot treatment was much less than the variability between species and between PAH analytes. Comparatively low bioaccumulation was observed in Nereis virens, a species commonly used in bioaccumulation tests. These results suggest that more effort is needed in understanding the salient characteristics of species present in a threatened environment, rather than focusing solely on the sediment geochemistry (e.g., soot and organic carbon content) and contaminant characteristics when predicting ecological risk of PAH-contaminated sediments.

  13. COMMUNICATING RISKS OF PERSISTANT BIOACCUMULATING TOXICS IN FOODS

    EPA Science Inventory

    The primary route of exposure to many persistant bioaccumulating toxins (PBT) such as methyl mercury, PCDs or Dioxins is though foods. Many people, but particularly subsistence fishermen, pregnant women and children, are at high risk for methyl mercury toxicity because of their c...

  14. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) capped silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) and titanium dioxide (TiO2) NPs in marine organisms via marine sediment exposure were investigated. Results from 7-d sedimen...

  15. Bioaccumulation Data from Laboratory and Field Studies: Are They Comparable?

    EPA Science Inventory

    Once released into the environment, there are a number of chemicals that are known to bioaccumulate in organisms, sometimes to concentrations that may threaten their health or the health of their predators. However, it remains challenging to use physical or chemical properties o...

  16. EVALUATION OF TWO METHODS FOR PREDICTION OF BIOACCUMULATION FACTORS

    EPA Science Inventory

    Two methods for deriving bioaccumulation factors (BAFs) used by the U.S. Environmental Protection Agency (EPA) in development of water quality criteria were evaluated using polychlorinated biphenyls (PCB) data from the Hudson River and Green Bay ecosystems. Greater than 90% of th...

  17. Bivalve mollusks in metal pollution studies: from bioaccumulation to biomonitoring.

    PubMed

    Zuykov, Michael; Pelletier, Emilien; Harper, David A T

    2013-09-01

    Contemporary environmental challenges have emphasized the need to critically assess the use of bivalve mollusks in chemical monitoring (identification and quantification of pollutants) and biomonitoring (estimation of environmental quality). Many authors, however, have considered these approaches within a single context, i.e., as a means of chemical (e.g. metal) monitoring. Bivalves are able to accumulate substantial amounts of metals from ambient water, but evidence for the drastic effects of accumulated metals (e.g. as a TBT-induced shell deformation and imposex) on the health of bivalves has not been documented. Metal bioaccumulation is a key tool in biomonitoring; bioavailability, bioaccumulation, and toxicity of various metals in relation to bivalves are described in some detail including the development of biodynamic metal bioaccumulation model. Measuring metal in the whole-body or the tissue of bivalves themselves does not accurately represent true contamination levels in the environment; these data are critical for our understanding of contaminant trends at sampling sites. Only rarely has metal bioaccumulation been considered in combination with data on metal concentrations in parts of the ecosystem, observation of biomarkers and environmental parameters. Sclerochemistry is in its infancy and cannot be reliably used to provide insights into the pollution history recorded in shells. Alteration processes and mineral crystallization on the inner shell surface are presented here as a perspective tool for environmental studies.

  18. Uptake and bioaccumulation of three PCBs by Chlorella fusca

    SciTech Connect

    Wang, K.; Rott, B.; Korte, F.

    1982-01-01

    This paper reports the bioaccumulation of three PCBs (2,4'-dichlorobiphenyl, 2,4,6,2'-tetrachlorobiphenyl and 2,4,6,2',4'-pentachlorobiphenyl) by the green alga Chlorella fusca under various conditions. A probable pattern of the bioconcentration mechanism is suggested. No metabolites were extracted from algae or water 6 days after incubation with PCBs.

  19. Optimizing fish sampling for fish–mercury bioaccumulation factors

    EPA Science Inventory

    Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop total maximum daily load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to s...

  20. Comparison and Evaluation of Laboratory and Field Measured Bioaccumulation Endpoints

    EPA Science Inventory

    Evaluation of bioaccumulation endpoints on a fugacity basis allows provides a framework to assess the biomagnification potential of a chemical and assess data deficiencies, i.e., uncertainties and lack of data. In addition, it is suggested that additional guidance is needed in o...

  1. Fluoride bioaccumulation and toxic effects on the survival and behavior of the endangered white-clawed crayfish Austropotamobius pallipes (Lereboullet).

    PubMed

    Aguirre-Sierra, Arantxa; Alonso, Alvaro; Camargo, Julio A

    2013-08-01

    Laboratory experiments were performed to examine the toxic effects of fluoride (F(-)) on the survival and behavior of white-clawed crayfish (Austropotamobius pallipes). Body fluoride contents (bioaccumulation) of test crayfish were also examined. No significant differences between male and female crayfish regarding mortality, escape (tail-flip) response, and fluoride bioaccumulation were detected. For mortality, 48-, 72-, 96-, 120-, 144-, 168-, and 192-h median lethal concentrations (LC50) were estimated to be 93.0, 55.3, 42.7, 36.5, 32.9, 30.6, and 28.9 mg F(-)/l, respectively. For the escape response, 48-, 72-, 96-, 120-, 144-, 168- and 192-h median effective concentrations (EC50) were estimated to be 18.4, 11.1, 8.6, 7.4, 6.7, 6.2 and 5.9 mg F(-)/l, respectively. Average food consumption in test crayfish tended to decrease with increasing water fluoride concentration with a 192-h lowest-observed effect concentration of 10.7 mg F(-)/l. These results indicate that the escape response was the most sensitive end point to fluoride toxicity followed by food consumption and mortality. Fluoride bioaccumulation in test crayfish increased with increasing water fluoride concentration and exposure time. The exoskeleton accumulated more fluoride than muscle. A comparison of the obtained results with previous data for other freshwater invertebrates shows that white-clawed crayfish are relatively tolerant to fluoride toxicity. We conclude that fluoride pollution in freshwater ecosystems should not be viewed as an important risk factor contributing to the catastrophic decrease of A. pallipes in many European countries. Our results indicate that fluoride bioaccumulation in A. pallipes might be used as a bioindicator of fluoride pollution in freshwater ecosystems where it is present.

  2. Thermal Inactivation of Enteric Viruses and Bioaccumulation of Enteric Foodborne Viruses in Live Oysters (Crassostrea virginica)

    PubMed Central

    Araud, Elbashir; DiCaprio, Erin; Ma, Yuanmei; Lou, Fangfei; Gao, Yu; Kingsley, David; Hughes, John H.

    2016-01-01

    Human enteric viruses are among the main causative agents of shellfish-associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stabilities of the predominant enteric viruses were determined both in tissue culture and in oyster tissues. A human norovirus (HuNoV) GII.4 strain, HuNoV surrogates (murine norovirus [MNV-1], Tulane virus [TV]), hepatitis A virus (HAV), and human rotavirus (RV) bioaccumulated to high titers within oyster tissues, with different patterns of bioaccumulation for the different viruses. We tested the thermal stability of each virus at 62, 72, and 80°C in culture medium. The viruses can be ranked from the most heat resistant to the least stable as follows: HAV, RV, TV, MNV-1. In addition, we found that oyster tissues provided protection to the viruses during heat treatment. To decipher the mechanism underlying viral inactivation by heat, purified TV was treated at 80°C for increasing time intervals. It was found that the integrity of the viral capsid was disrupted, whereas viral genomic RNA remained intact. Interestingly, heat treatment leading to complete loss of TV infectivity was not sufficient to completely disrupt the receptor binding activity of TV, as determined by the porcine gastric mucin–magnetic bead binding assay. Similarly, HuNoV virus-like particles (VLPs) and a HuNoV GII.4 strain retained some receptor binding ability following heat treatment. Although foodborne viruses have variable heat stability, 80°C for >6 min was sufficient to completely inactivate enteric viruses in oysters, with the exception of HAV. PMID:26826225

  3. Bioaccumulation of Multiwall Carbon Nanotubes in Tetrahymena thermophila by Direct Feeding or Trophic Transfer

    DOE PAGES

    Mortimer, Monika; Petersen, Elijah J.; Buchholz, Bruce A.; ...

    2016-07-11

    We report that consumer goods contain multiwall carbon nanotubes (MWCNTs) that could be released during product life cycles into the environment, where their effects are uncertain. Here, we assessed MWCNT bioaccumulation in the protozoan Tetrahymena thermophila via trophic transfer from bacterial prey (Pseudomonas aeruginosa) versus direct uptake from growth media. The experiments were conducted using 14C-labeled MWCNT (14C-MWCNT) doses at or below 1 mg/L, which proved subtoxic since there were no adverse effects on the growth of the test organisms. A novel contribution of this study was the demonstration of the ability to quantify MWCNT bioaccumulation at low (sub μg/kg)more » concentrations accomplished by employing accelerator mass spectrometry (AMS). After the treatments with MWCNTs at nominal concentrations of 0.01 mg/L and 1 mg/L, P. aeruginosa adsorbed considerable amounts of MWCNTs: (0.18 ± 0.04) μg/mg and (21.9 ± 4.2) μg/mg bacterial dry mass, respectively. At the administered MWCNT dose of 0.3 mg/L, T. thermophila accumulated up to (0.86 ± 0.3) μg/mg and (3.4 ± 1.1) μg/mg dry mass by trophic transfer and direct uptake, respectively.Finally, aAlthough MWCNTs did not biomagnify in the microbial food chain, MWCNTs bioaccumulated in the protozoan populations regardless of the feeding regime, which could make MWCNTs bioavailable for organisms at higher trophic levels.« less

  4. Bioaccumulation of decamethylcyclopentasiloxane in perch in Swedish lakes.

    PubMed

    Kierkegaard, Amelie; Bignert, Anders; McLachlan, Michael S

    2013-10-01

    Decamethylcyclopentasiloxane (D5), a high production volume chemical used in personal care products, enters the environment both via air and sewage treatment plant (STP) recipients. It has been found in fish, and there is concern that it may be a bioaccumulative substance. In this work D5 was analyzed in perch from six Swedish lakes that did not receive STP effluent, and in perch and sediment from six lakes that received STP effluent. In the lakes receiving the STP effluent, the D5 concentrations in sediment varied over three orders of magnitude and were correlated with the number of persons connected to the STP normalized to the surface area of the receiving body. In the lakes not receiving effluent, the D5 levels in perch were all below the LOQ, while D5 was above the LOQ in almost all perch from lakes that received effluent. The D5 concentrations in perch and sediment from the lakes receiving STP effluent were correlated. This shows that STP effluent is a much more important source of D5 to aquatic ecosystems than atmospheric deposition, and that the risk of adverse effects of D5 on aquatic life will be greatest in small recipients receiving large amounts of STP effluent. The bioaccumulation of D5 was compared to that of PCB 180 on the basis of multimedia bioaccumulation factors (mmBAFs), which describe the fraction of the contaminant present in the whole aquatic environment (i.e. water and surface sediment) that is transferred to the fish. In four of the six lakes the mmBAF of D5 was >0.3 of the mmBAF of PCB 180. Given that PCB 180 is a known highly bioaccumulative chemical, this indicates that the bioaccumulation of D5 in perch is considerable.

  5. Bioaccumulation and Elimination of the Herbicide Clomazone in the Earthworms Eisenia fetida.

    PubMed

    Cao, Jia; Li, Ping; Li, Qing X; Zheng, Pengfei; Diao, Xiaoping

    2015-11-01

    Acute toxicity, bioaccumulation, and elimination of herbicide clomazone in the earthworm Eisenia fetida were investigated in the different exposure systems. The LC50 values of clomazone on earthworms were 5.6 μg cm(-2) in the contact filter paper test (48 h), 174.9 mg kg(-1) (7 days) and 123.4 mg kg(-1) (14 days) in artificial soil test, respectively. Clomazone could rapidly bioaccumulate in earthworms and reached the highest concentration after 3 days exposure, with the maximum concentrations of 9.0, 35.3 and 142.3 mg kg(-1) at 10.0, 40.0 and 160.0 mg kg(-1) of clomazone, respectively. Clomazone uptake showed a good correlation with exposure concentration. After the 14th day, clomazone declined to minimum value. About 74%-80% of accumulated clomazone was eliminated within 1 day after exposed to clomazone-free soil. However, a trace amount of clomazone persisted for a relatively long time in earthworms.

  6. Uncertainty analysis for an equilibrium partitioning-based estimator of polynuclear aromatic hydrocarbon bioaccumulation potential in sediments

    SciTech Connect

    Clarke, J.U.; McFarland, V.A.

    2000-02-01

    In regulatory evaluations of contaminated sediments, an equilibrium partitioning-based screening test called theoretical bioaccumulation potential (TBP) is often performed to estimate the probable concentrations of neutral organic contaminants that would eventually accumulate in aquatic organisms from continuous exposure to a sediment. The TBP is calculated from contaminant concentration and organic carbon content of the sediment, lipid content of target organisms, and a partition coefficient, usually the biota-sediment accumulation factor (BSAF). However, routine applications of TBP have not included analysis of uncertainty. This paper demonstrates two methods for uncertainty analysis of TBP: a computational method that incorporates random and systematic error and a simulation method using bootstrap resampling of replicated model input parameters to calculate statistical uncertainty measures. For prediction of polynuclear aromatic hydrocarbon (PAH) bioaccumulation in bivalves exposed to contaminated sediments, uncertainty as a factor of TBP ranged from 1.2 to 4.8 using the computational method and 0.5 to 1.9 based on bootstrap 95% confidence intervals. Sensitivity analysis indicated that BSAF parameters, especially tissue contaminant concentration and lipid content, contributed most to TBP uncertainty. In bootstrap tests of significance, TBP significantly over- or underestimated actual PAH bioaccumulation in bivalves in 41% and 10% of comparisons, respectively.

  7. A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 2: Integrated application to a shallow estuary.

    PubMed

    Rosen, Gunther; Chadwick, D Bart; Burton, G Allen; Taulbee, W Keith; Greenberg, Marc S; Lotufo, Guilherme R; Reible, Danny D

    2012-03-01

    A comprehensive, weight-of-evidence based ecological risk assessment approach integrating laboratory and in situ bioaccumulation and toxicity testing, passive sampler devices, hydrological characterization tools, continuous water quality sensing, and multi-phase chemical analyses was evaluated. The test site used to demonstrate the approach was a shallow estuarine wetland where groundwater seepage and elevated organic and inorganic contaminants were of potential concern. Although groundwater was discharging into the surficial sediments, little to no chemical contamination was associated with the infiltrating groundwater. Results from bulk chemistry analysis, toxicity testing, and bioaccumulation, however, suggested possible PAH toxicity at one station, which might have been enhanced by UV photoactivation, explaining the differences between in situ and laboratory amphipod survival. Concurrently deployed PAH bioaccumulation on solid-phase micro-extraction fibers positively correlated (r(2) ≥ 0.977) with in situ PAH bioaccumulation in amphipods, attesting to their utility as biomimetics, and contributing to the overall improved linkage between exposure and effects demonstrated by this approach.

  8. Comparison of iron status 28 d after provision of antimalarial treatment with iron therapy compared with antimalarial treatment alone in Ugandan children with severe malaria12

    PubMed Central

    Opoka, Robert O; Ssemata, Andrew S; Georgieff, Michael K

    2016-01-01

    Background: The provision of iron with antimalarial treatment is the standard of care for concurrent iron deficiency and malaria. However, iron that is given during a malaria episode may not be well absorbed or used, particularly in children with severe malaria and profound inflammation. Objectives: We aimed to 1) determine baseline values of iron and inflammatory markers in children with severe malarial anemia (SMA), children with cerebral malaria (CM), and community children (CC) and 2) compare markers in iron-deficient children in each group who received 28 d of iron supplementation during antimalarial treatment with those in children who did not receive iron during treatment.. Design: Seventy-nine children with CM, 77 children with SMA, and 83 CC who presented to Mulago Hospital, Kampala, Uganda, were enrolled in a 28-d iron-therapy study. Children with malaria received antimalarial treatment. All children with CM or SMA, as well as 35 CC, had zinc protoporphyrin (ZPP) concentrations ≥80 μmol/mol heme and were randomly assigned to receive a 28-d course of iron or no iron. We compared iron markers at day 0 among study groups (CM, SMA, and CC groups) and at day 28 between children in each group who were randomly assigned to receive iron or to not receive iron. Results: At day 0, children with CM and SMA had greater values of C-reactive protein, ferritin, and hepcidin than those of CC. At day 28, interactions between study and treatment group were NS. Children in the no-iron compared with iron groups had similar mean values for hemoglobin (115 compared with 113 g/L, respectively; P = 0.73) and ZPP (124 compared with 124 μmol/mol heme, respectively; P = 0.96) but had lower median ferritin [101.0 μg/L (95% CI: 84.2, 121.0 μg/L) compared with 152.9 μg/L (128.8, 181.6 μg/L), respectively; P ≤ 0.001] and hepcidin [45.8 ng/mL (36.8, 56.9 ng/mL) compared with 83.1 ng/mL (67.6, 102.2 ng/mL), respectively; P < 0.011]. Conclusions: Severe inflammation is a

  9. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.

    PubMed

    Katagi, Toshiyuki

    2010-01-01

    information on aquatic species, other than fish, that pertains to bioconcentration factors, metabolism, and elimination is rather limited in the literature. The kinds of basic information that is unavailable but is needed on important aquatic species includes biochemistry, physiology, position in food web, habitat, life cycle, etc. such information is very important to obtaining improved ecotoxicology risk assessments for many pesticides and other chemicals. More research attention on the behavior of pesticides in, and affect on many standard aquatic test species (e.g., daphnids, chironomids, oligochaetes and some bivalves) would particularly be welcome. In addition to improving ecotoxicology risk assessments on target species, such information would also assist in better delineating affects on species at higher trophic levels that are predaceous on the target species. There is also need for designing and employing more realistic approaches to measure bioconcentration and bioaccumulation, and ecotoxicology effects of pesticides in natural environment. The currently employed steady-state laboratory exposure studies are insufficient to deal with the complexity of parameters that control the contrasts to the abiotic processes of pesticide investigated under the strictly controlled conditions, each process is significantly affected in the natural environment not only by the site-specific chemistry of water and sediment but also by climate. From this viewpoint, ecotoxicological assessment should be conducted, together with the detailed analyses of abiotic processes, when higher-tier mesocosm studies are performed. Moreover, in-depth investigation is needed to better understand the relationship between pesticide residues in organisms and associated ecotoxicological endpoints. The usual exposure assessment is based on apparent (nominal) concentrations fo pesticides, and the residues of pesticides or their metabolites in the organisms are not considered in to the context of

  10. Comparative mathematical modelling of a green approach for bioaccumulation of cobalt from wastewater.

    PubMed

    Mateos, L M; Villadangos, A F; Santana, L K; Pereira, F J; de la Rubia, A G; Gil, J A; Aller, A J

    2016-12-01

    Cobalt is an essential element, but its wide use in industry generates important environmental and biological problems. The present study explores theoretical and empirical models of a green process for cobalt {Co(2+)} bioaccumulation from aqueous solutions. Two Gram-positive Bacillus subtilis species, strains CECT 4522 and LMM (the latter a former laboratory isolate from wastewater samples, which was phylogenetically characterized for the present work), were selected among others as the best Co(2+) accumulation systems. Mathematical models representing kinetic and steady-state conditions for discrete and large amounts of bacterial biomass were expanded. In this way, it was possible to theoretically calculate the amount of Co(2+) retained on the outer cell wall layer and incorporated inside the cell at any time. Theoretical and empirical hyperbolic-type models were suitable to fit the experimental bioaccumulation data for discrete amounts of bacteria biomass. In addition, kinetic relationships between the amount of Co(2+) accumulated and the time before (or after) reaching steady state were established for large amounts of bacterial biomass. Other kinetic approaches were also satisfactorily tested. The two Gram-positive bacteria assayed are promising agents for developing heavy metal removal systems from industrial waste.

  11. Bioaccumulation, subcellular distribution, and acute effects of chromium in Japanese medaka (Oryzias latipes).

    PubMed

    Li, Lixia; Chen, Hongxing; Bi, Ran; Xie, Lingtian

    2015-11-01

    Chromium (Cr) is an essential element but is toxic to aquatic organisms at elevated concentrations. In the present study, adult Japanese medaka (Oryzias latipes) were exposed to a sublethal hexavalent chromium (Cr(VI)) concentration via dissolved and dietary exposures for 6 d. Various measurements of Cr were made: bioaccumulation in different tissues, subcellular distribution in the liver, effects on antioxidants and acetylcholinesterase (AChE), and Cr-induced lipid peroxidation. The results showed that bioaccumulation increased dramatically in all tested tissues from dissolved exposure but only significantly in the intestine from dietary treatment, implying that dissolved exposure may be predominant for Cr accumulation in medaka. Subcellular distribution revealed that Cr accumulated in the liver was mainly (46%) associated with the heat-stable protein fraction. Among the antioxidants examined, catalase (CAT) responded to dissolved Cr exposure in most tissues whereas superoxide dismutase (SOD) was less responsive. Malondialdehyde concentrations were significantly elevated in most tissues examined in the dissolved Cr-exposed fish, but were only elevated in the liver and intestine in the dietary Cr-exposed fish. The AChE activity in the brain was stimulated by 49% in the dissolved Cr-exposed fish. Reductions in condition factor and gonadosomatic index were also observed. These data help in an understanding of Cr tissue distribution and the acute effects of Cr in Japanese medaka.

  12. Chronic sublethal effects of San Francisco Bay sediments on nereis (neanthes) arenaceodentata; bioaccumulation from bedded sediments. Final report

    SciTech Connect

    Moore, D.; Dillon, T.M.

    1993-09-01

    In previous studies with San Francisco Bay sediments, minimal chronic sublethal effects were detected (Miscellaneous Paper D-93-1 and another Miscellaneous Paper in preparation by Moore and Dillon). To ensure that the lack of effects was not due to a lack of contaminant uptake, a bioaccumulation experiment was conducted. Bioaccumulation from bedded sediments was evaluated following a 9-week exposure with the marine polychaete worm Nereis (Neanthes) arenaceodentata. Two sediments were evaluated, a contaminated San Francisco Bay test sediment and a clean control sediment from Sequim, WA. Animals were exposed as early juveniles through adulthood. Tissues were analyzed for metals, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pesticides. Worms exposed to the contaminated San Francisco Bay sediment had significantly higher tissue residues of silver (0.30 mg/kg dry weight) and tributyltin (0.298 mg/kg dry weight). Conversely, tissue residues of control animals were significantly higher in cadmium (0.67 mg/kg dry weight) and lead (1.89 mg/kg dry weight). Small Amounts (0.02 mg/kg dry weight) of aldrin and dieldrin were measured in worms exposed to the contaminated sediment, while dieldrin and 8-BHC were found in Bioaccumulation, Neanthes, Chronic sublethal, San Francisco Bay, Dredged, Material, Sediment.

  13. Impacts of loach bioturbation on the selective bioaccumulation of HBCDD diastereoisomers and enantiomers by mirror carp in a microcosm.

    PubMed

    Zhang, Yanwei; Wang, Lei; Sun, Hongwen; Yao, Tianqi; Zhu, Hongkai; Xu, Jiayao; Liu, Xiaowei

    2016-11-01

    To assess the impacts of bioturbation at the water-sediment interface on the bioaccumulation of hexabromocyclododecane diastereoisomers (HBCDDs) by pelagic organisms and the bioisomerization and enantioselectivity therein, we built microcosms containing water, mirror carp (Cyprinus carpio), and sediment. The microcosms were sorted into two groups, with or without loach (Misgurnus anguillicaudatus) living at the water-sediment interface. A 50-d accumulation test was conducted by spiking the microcosms with the three main HBCDD diastereoisomers (α-, β-, and γ-HBCDDs) separately. The HBCDDs were mainly associated with the sediment. The dissolved organic matter and suspended particulate matter content increased due to loach bioturbation, which promoted the release of sediment-associated HBCDDs and led to enhanced HBCDD bioaccumulation in the carp. Isomerization from β- and γ-HBCDD to α-HBCDD occurred in the carp, and the amounts of isomerization did not increase proportionally with increasing bioaccumulation. Moreover, the enantioselectivity of the HBCDD diastereoisomers showed species-specific differences between mirror carp and loach, and no significant change in the enantioselectivity in the carp was observed in the presence of loach.

  14. Evaluation of metal/acid-volatile sulfide relationships in the prediction of metal bioaccumulation by benthic macroinvertebrates

    SciTech Connect

    Ankley, G.T.

    1996-12-01

    Recent studies have demonstrated that the toxicity of divalent cationic metals (cadmium, copper, lead, nickel, and zinc) in sediments can be controlled through binding to acid-volatile sulfide (AVS). When the molar concentration of AVS exceeds that of the metals (i.e., the metal/AVS ratio is less than unity), they exist predominantly as insoluble metal sulfides, which presumably are not biologically available. Thus, at metal/AVS ratios less than 1, toxicity of sediment-associated metals to benthic macro-invertebrates has not been observed. However, bioaccumulation may provide a more direct assessment of contaminant bioavailability than the presence or absence of toxicity. The purpose of this report is to comprehensively review available literature on metal bioaccumulation versus sediment metal/AVS relationships to further examine the tenet that AVS controls metal bioavailability. In all, 12 studies were evaluated; these ranged from short-term (10-d) laboratory experiments with metal-spiked or field-collected sediments containing cadmium, copper, lead, nickel, and/or zinc to long-term (> 1-year) field studies with sediments spiked with cadmium or zinc. Test organisms included mollusks, oligochaetes, polychaetes, amphipods, and midges. The preponderance of studies indicated reduced accumulation of metals at sediment metal/AVS ratios of less than 1. However, there were exceptions to this general observation, two of which occurred in short-term laboratory experiments with cadmium- or nickel-spiked sediments. In these studies there appeared to be a linear accumulation of metals with increasing sediment metal concentrations irrespective of the metal/AVS ratio. Although there is experimental evidence suggesting that significant bioaccumulation of metals does not occur when there is sufficient AVS available to bind them, the existence of data to the contrary indicates the need for further research into factors controlling the bioaccumulation of metals from sediments.

  15. Free and glycosylated sterol bioaccumulation in developing Cycas micronesica seeds.

    PubMed

    Marler, Thomas E; Shaw, Christopher A

    2009-07-15

    The bioaccumulation of free and glycosylated forms of stigmasterol and β-sitosterol were determined from Cycas micronesica K.D. Hill seeds throughout seed ontogeny. Per-seed pool of the four compounds increased linearly from 2 to 24 months, indicating no developmental period elicited a major shift in the rate of bioaccumulation. The slopes were not homogeneous, signifying a change in relative sterol profile concomitant with seed maturation. This shift was in favour of the glucosides, as their rate of accumulation exceeded that of the free sterols. Stigmasterol content exceeded that of β-sitosterol, but ontogeny did not influence the ratio of these dominant sterols. The quantity and quality of sterol exposure during consumption of foods prepared from gametophytes by humans is strongly influenced by age of harvested seeds. Results are critical for a further understanding of the link between human neurodegenerative diseases and historical consumption of foods derived from the seed gametophyte tissue.

  16. Polychlorinated biphenyl partitioning and bioaccumulation in Green Bay, Lake Michigan

    SciTech Connect

    Endicott, D.; Griesmer, D.; Kreis, R.; Mackelburg, L.

    1994-12-31

    The 1989--1990 Green Bay Mass Balance Study generated an extensive data set for polychlorinated biphenyl (PCB) congeners in water, sediment and biological matrices. The analytes included several mono-ortho substituted PCB congeners. From these data, ratios between dissolved, particulate, and biotic concentrations in the water column and sediment have been calculated. These ratios provide a basis for evaluating the distribution of hydrophobic organic chemicals in the aquatic ecosystem. The Mass Balance Study also supported development of mathematical models of PCB transport, fate, and food chain bioaccumulation in Green Bay. The models provide significant additional insight as to processes affecting the observed PCB distribution, including spatial-temporal variability, organic carbon sorbent dynamics, sediment-water column disequilibria, and kinetics of bioaccumulation.

  17. Appropriateness of Aufwuchs as a monitor of bioaccumulation.

    PubMed

    Newman, M C; McIntosh, A W

    1989-01-01

    Aufwuchs, procedurally defined as material accumulating on submerged surfaces, is being used increasingly to monitor trace element bioaccumulation in aquatic biota. Procedurally-defined aufwuchs is a complex mixture of biotic and abiotic components. Both biotic and abiotic components can be avid concentrators of trace elements. Consequently, bioaccumulation data generated from poorly-characterized, procedurally-defined aufwuchs may not accurately reflect accumulation by biota. Further, total concentrations of trace elements in procedurally-defined aufwuchs may not be indicative fo the amount of contaminant available for trophic transfer. Methods of minimizing abiotic component contribution to trace element accumulation and means of assessing the bioavailability of associated trace elements are discussed in this review.

  18. Bioaccumulation factor portions of the proposed water quality guidance for the Great Lakes system

    SciTech Connect

    Not Available

    1993-08-01

    Bioaccumulation factors are being proposed to be used in the derivation of human health and wildlife criteria specific for the Great Lakes Water Quality Initiative (GLWQI). Adopting the use of bioaccumulation factors instead of bioconcentration factors presents a significant change from current Agency guidance. Because there is not an established procedure for determining bioaccumulation factors, national guidance may be eventually modeled on the proposed GLWQI Guidance. The document was produced to facilitate review of and comment on the proposed procedure for determining bioaccumulation factors by persons who may not keep abreast of Federal Register notices, including the larger scientific community. The document is composed of two chapters and one appendix. Chapter 1 describes the development of the proposed procedure for determining bioaccumulation factors; Chapter 2 presents the proposed methodology for development of bioaccumulation factors.

  19. Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation.

    PubMed

    Ward, Darren M; Nislow, Keith H; Folt, Carol L

    2010-05-01

    Mercury is a ubiquitous contaminant in aquatic ecosystems, posing a significant health risk to humans and wildlife that eat fish. Mercury accumulates in aquatic food webs as methylmercury (MeHg), a particularly toxic and persistent organic mercury compound. While mercury in the environment originates largely from anthropogenic activities, MeHg accumulation in freshwater aquatic food webs is not a simple function of local or regional mercury pollution inputs. Studies show that even sites with similar mercury inputs can produce fish with mercury concentrations ranging over an order of magnitude. While much of the foundational work to identify the drivers of variation in mercury accumulation has focused on freshwater lakes, mercury contamination in stream ecosystems is emerging as an important research area. Here, we review recent research on mercury accumulation in stream-dwelling organisms. Taking a hierarchical approach, we identify a suite of characteristics of individual consumers, food webs, streams, watersheds, and regions that are consistently associated with elevated MeHg concentrations in stream fish. We delineate a conceptual, mechanistic basis for explaining the ecological processes that underlie this vulnerability to MeHg. Key factors, including suppressed individual growth of consumers, low rates of primary and secondary production, hydrologic connection to methylation sites (e.g., wetlands), heavily forested catchments, and acidification are frequently associated with increased MeHg concentrations in fish across both streams and lakes. Hence, we propose that these interacting factors define a syndrome of characteristics that drive high MeHg production and bioaccumulation rates across these freshwater aquatic ecosystems. Finally, based on an understanding of the ecological drivers of MeHg accumulation, we identify situations when anthropogenic effects and management practices could significantly exacerbate or ameliorate MeHg accumulation in stream fish.

  20. Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation

    PubMed Central

    Ward, Darren M.; Nislow, Keith H.; Folt, Carol L.

    2010-01-01

    Mercury is a ubiquitous contaminant in aquatic ecosystems, posing a significant health risk to humans and wildlife that eat fish. Mercury accumulates in aquatic food webs as methylmercury (MeHg), a particularly toxic and persistent organic mercury compound. While mercury in the environment originates largely from anthropogenic activities, MeHg accumulation in freshwater aquatic food webs is not a simple function of local or regional mercury pollution inputs. Studies show that even sites with similar mercury inputs can produce fish with mercury concentrations ranging over an order of magnitude. While much of the foundational work to identify the drivers of variation in mercury accumulation has focused on freshwater lakes, mercury contamination in stream ecosystems is emerging as an important research area. Here, we review recent research on mercury accumulation in stream-dwelling organisms. Taking a hierarchical approach, we identify a suite of characteristics of individual consumers, food webs, streams, watersheds, and regions that are consistently associated with elevated MeHg concentrations in stream fish. We delineate a conceptual, mechanistic basis for explaining the ecological processes that underlie this vulnerability to MeHg. Key factors, including suppressed individual growth of consumers, low rates of primary and secondary production, hydrologic connection to methylation sites (e.g. wetlands), heavily forested catchments, and acidification are frequently associated with increased MeHg concentrations in fish across both streams and lakes. Hence, we propose that these interacting factors define a syndrome of characteristics that drive high MeHg production and bioaccumulation rates across these freshwater aquatic ecosystems. Finally, based on an understanding of the ecological drivers of MeHg accumulation, we identify situations when anthropogenic effects and management practices could significantly exacerbate or ameliorate MeHg accumulation in stream fish

  1. Toxicity and bioaccumulation of ethofumesate enantiomers in earthworm Eisenia fetida.

    PubMed

    Xu, Peng; Wang, Yinghuan; Zhang, Yanfeng; Li, Jianzhong; Wang, Huili

    2014-10-01

    Earthworms represent an important food source for many vertebrates and as a result, predators may encounter toxic effects via the food chain from consumption of contaminated worms. Therefore, including an assessment of xenobiotic to worms in risk assessment procedures is advisable. Here we studied the acute toxicity, bioaccumulation and elimination of ethofumesate enantiomers in earthworm, Eisenia fetida, in a soil. A slight difference in toxicity to earthworm between two enantiomers was found, and the calculated LC50 values for (+)-, rac- and (-)-ethofumesate were 4.51, 5.93 and 7.98 μg/cm(2), respectively, indicating that the acute toxicity of ethofumesate enantiomers was enantioselective. Earthworm can uptake ethofumesate but the bioaccumulation curve did not reach the steady state. In the elimination experiment, the concentrations of ethofumesate in earthworm declined following a first-order decay model with a short half life of 1.8d. The bioaccumulation and elimination of ethofumesate in earthworm were both nonenantioselective. In combination with other studies, a linear relationship between Log BSAFs and Log Kow was observed, and the Log BSAFs increased with increasing Log Kow. But the elimination rate did not show any correlation with the Kow value.

  2. Metal/metalloid (As, Cd and Zn) bioaccumulation in the earthworm Eisenia andrei under different scenarios of climate change.

    PubMed

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-08-01

    This study aimed at assessing the effects of global warming (increasing air temperature and decreasing soil moisture content) on the bioaccumulation kinetics of As, Cd and Zn in the earthworm Eisenia andrei in two polluted soils (mine tailing and watercourse soil). Earthworms were exposed for up to 21 d under four climate conditions: 20 °C + 50% soil water holding capacity (WHC) (standard conditions), 20 °C + 30% WHC, 25 °C + 50% WHC and 25 °C + 30% WHC. Porewater metal/metalloid availability did not change in the mine tailing soil after the incubation period under the different climate conditions tested. However, in the watercourse soil, porewater Cd concentrations decreased from ∼63 to ∼32-41 μg L(-1) after 21 d and Zn concentrations from ∼3761 to ∼1613-2170 μg L(-1), especially at 20 °C and 50% WHC. In both soils, As and Zn showed similar bioaccumulation patterns in the earthworms, without major differences among climate conditions. Earthworm concentrations peaked after 1-3 d of exposure (in μg g(-1) dry weight: As∼32.5-108, Zn∼704-1172) and then remained constant (typical pattern of essential elements even for As). For Cd the bioaccumulation pattern changed when changing the climate conditions. Under standard conditions, earthworm Cd concentrations increased to ∼12.6-18.5 μg g(-1) dry weight without reaching equilibrium (typical pattern of non-essential elements). However when increasing temperature and/or decreasing soil moisture content the bioaccumulation pattern changed towards that more typical of essential elements due to increased Cd elimination rates (from ∼0.11 to ∼0.24-1.27 d(-1) in the mine tailing soil, from ∼0.07 to ∼0.11-0.35 d(-1) in the watercourse soil) and faster achievement of a steady state. This study shows that metal/metalloid bioaccumulation pattern in earthworms may change dependent on climate conditions.

  3. Effects of soil type, prepercolation, and ageing on bioaccumulation and toxicity of zinc for the springtail Folsomia candida

    SciTech Connect

    Smit, C.E.; Van Gestel, C.A.M.

    1998-06-01

    Soil properties are a major influence on the bioavailability and toxicity of metals and represent one of the important factors that complicate the extrapolation of results from laboratory tests to field situations. The influence of soil characteristics and way of contamination on the bioaccumulation and toxicity of zinc was investigated for the springtail Folsomia candida, and the applicability of chemical extraction techniques for the prediction of zinc uptake and toxicity was evaluated. Bioaccumulation of zinc in F. candida was related to water-soluble zinc concentrations, and uptake was dependent on the test soil used. Effects of zinc for F. candida could not be fully explained by bioaccumulation. This indicates that the existence of a fixed internal threshold concentration of zinc above which physiological functions are impaired is not likely for F. candida. In freshly contaminated soils, zinc toxicity was related to organic matter and clay content of the soil; however, the use of these soils overestimated the effects of zinc for F. candida by a factor of 5 to 8 compared to a test soil that was subjected to ageing under field conditions for 1.5 years. Equilibration of the zinc contamination by percolating the soils with water before use in the toxicity experiment strongly reduced the difference in zinc toxicity between laboratory-treated and aged soils. Water-soluble concentrations are most appropriate to predict effects of zinc on reproduction of F. candida in soils with unknown contamination histories. For laboratory toxicity tests, it is recommended to percolate soils with water after contamination and to include an equilibration period prior to use to achieve a more realistic exposure situation.

  4. Bioaccumulation of potentially toxic trace elements in benthic organisms of Admiralty Bay (King George Island, Antarctica).

    PubMed

    Majer, Alessandra Pereira; Petti, Mônica Angélica Varella; Corbisier, Thais Navajas; Ribeiro, Andreza Portella; Theophilo, Carolina Yume Sawamura; Ferreira, Paulo Alves de Lima; Figueira, Rubens Cesar Lopes

    2014-02-15

    Data about the concentration, accumulation and transfer of potentially toxic elements in Antarctic marine food webs are essential for understanding the impacts of these elements, and for monitoring the pollution contribution of scientific stations, mainly in Admiralty Bay due to the 2012 fire in the Brazilian scientific station. Accordingly, the concentration of As, Cd, Cu, Ni, Pb and Zn was measured in eight benthic species collected in the 2005/2006 austral summer and the relationship between concentration and trophic position (indicated by δ(15)N values) was tested. A wide variation in metal content was observed depending on the species and the element. In the studied trophic positions, it was observed bioaccumulation for As, Cd and Pb, which are toxic elements with no biological function. In addition, Cd showed a positive relationship between concentration and trophic level suggesting the possible biomagnification of this element.

  5. Inter-laboratory comparison of xenobiotic clearance rates determined using cryopreserved trout hepatocytes for improving bioaccumulation predictions

    EPA Science Inventory

    Hepatic biotransformation is an important determinant of chemical bioaccumulation in fish. Consequently, bioaccumulation models can be improved using estimates of chemical biotransformation rates. Cryopreserved trout hepatocytes have been used to measure the clearance rates of so...

  6. Inter-laboratory comparison of clearance rates of xenobiotics by cryopreserved trout hepatocytes for the prediction of bioaccumulation potential

    EPA Science Inventory

    Hepatic biotransformation is an important determinant of chemical bioaccumulation in fish. Consequently, improvements to bioaccumulation models can be made using estimates of chemical biotransformation rates. Cryopreserved trout hepatocytes have previously been used to measure ...

  7. Use of the aquatic oligochaete lumbriculus variegatus for assessing the toxicity and bioaccumulation of sediment-associated contaminants

    SciTech Connect

    Phipps, G.L.; Ankley, G.T.; Benoit, D.A.; Mattson, V.R. )

    1993-02-01

    In this paper the authors describe test methods utilizing the aquatic oligochaete Lumbriculus variegatus to assess the acute and chronic toxicity and the presence of bioaccumulatable compounds in contaminated sediments. Lumbriculus variegatus was chosen as a test species because (a) it represents an ecologically relevant component of freshwater ecosystems; (b) it is suitable for long-term testing and evaluation of chronic toxicity end points (e.g., growth, reproduction); (c) it is exposed via all important routes of concern, including ingesting of contaminated particles; and (d) it has sufficient biomass to assess bioaccumulation of contaminants. Also, Lumbriculus variegatus is easily cultured and handled. Described herein are culturing procedures and test protocols for Lumbriculus variegatus, as well as two examples of the types of experimental data generated when using the oligochaete in test with contaminated sediments. Two case studies are presented in which L. variegatus was used to assess the bioaccumulation of metals (cadmium, nickel) from contaminated sediments and assess the toxicity of sediment samples collected from the copper-contaminated Keweenaw Waterway system in Michigan.

  8. Pesticide-contaminated feeds in integrated grass carp aquaculture: toxicology and bioaccumulation.

    PubMed

    Pucher, J; Gut, T; Mayrhofer, R; El-Matbouli, M; Viet, P H; Ngoc, N T; Lamers, M; Streck, T; Focken, U

    2014-02-19

    Effects of dissolved pesticides on fish are widely described, but little is known about effects of pesticide-contaminated feeds taken up orally by fish. In integrated farms, pesticides used on crops may affect grass carp that feed on plants from these fields. In northern Vietnam, grass carp suffer seasonal mass mortalities which may be caused by pesticide-contaminated plants. To test effects of pesticide-contaminated feeds on health and bioaccumulation in grass carp, a net-cage trial was conducted with 5 differently contaminated grasses. Grass was spiked with 2 levels of trichlorfon/fenitrothion and fenobucarb. Unspiked grass was used as a control. Fish were fed at a daily rate of 20% of body mass for 10 d. The concentrations of fenitrothion and fenobucarb in pond water increased over time. Effects on fish mortality were not found. Fenobucarb in feed showed the strongest effects on fish by lowering feed uptake, deforming the liver, increasing blood glucose and reducing cholinesterase activity in blood serum, depending on feed uptake. Fenobucarb showed increased levels in flesh in all treatments, suggesting bio-concentration. Trichlorfon and fenitrothion did not significantly affect feed uptake but showed concentration-dependent reduction of cholinesterase activity and liver changes. Fenitrothion showed bioaccumulation in flesh which was dependant on feed uptake, whereas trichlorfon was only detected in very low concentrations in all treatments. Pesticide levels were all detected below the maximum residue levels in food. The pesticide-contaminated feeds tested did not cause mortality in grass carp but were associated with negative physiological responses and may increase susceptibility to diseases.

  9. Bioaccumulation of Legacy and Emerging Organochlorine Contaminants in Lumbriculus variegatus.

    PubMed

    Dang, Viet D; Kroll, Kevin J; Supowit, Samuel D; Halden, Rolf U; Denslow, Nancy D

    2016-07-01

    Freshwater sediment-dwelling Lumbriculus variegatus is known to serve as a vector for the transfer of contaminants from sediments to higher trophic level organisms, but limited data exist on the bioaccumulation of chemicals associated with sediments containing high total organic carbon (TOC). In the current study, sediments from the north shore area of Lake Apopka (Florida, USA), containing very high TOC [39 % (w/w)], were spiked with four chemicals-p,p'-dichlorordiphenyldichloroethylene (p,p'-DDE), dieldrin, fipronil, and triclosan-individually or in a mixture of the four and then used for bioaccumulation studies. Tissue concentrations of chemicals in L. variegatus were measured at 2, 7, 14, 21, and 28 days of exposure, and the bioaccumulation potential was evaluated using biosediment accumulation factors [BSAF (goc/glipid)]. Increase in total body burdens of all four chemicals in L. variegatus was rapid at day 2 and reached a steady-state level after 7 days in both single and mixture experiments. Tissue concentrations of fipronil peaked after 2 days and then decreased by 70 % in sediment experiments suggesting that in addition to the degradation of fipronil that occurred in the sediment, L. variegatus may also be able to metabolize fipronil. The calculated 28-day BSAF values varied among the chemicals and increased in the order fipronil (1.1) < triclosan (1.4) < dieldrin (21.8) < p,p'-DDE (49.8) in correspondence with the increasing degree of their hydrophobicity. The relatively high BSAF values for p,p'-DDE and dieldrin probably resulted from lower-than-expected sorption of chemicals to sediment organic matter either due to the nature of the plant-derived organic matter, as a result of the relatively short equilibration time among the various compartments, or due to ingestion of sediment particles by the worms.

  10. Bioaccumulation of total mercury in the earthworm Eisenia andrei.

    PubMed

    Le Roux, Shirley; Baker, Priscilla; Crouch, Andrew

    2016-01-01

    Earthworms are a major part of the total biomass of soil fauna and play a vital role in soil maintenance. They process large amounts of plant and soil material and can accumulate many pollutants that may be present in the soil. Earthworms have been explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but limited information is available for mercury uptake and bioaccumulation in earthworms and very few report on the factors that influence the kinetics of Hg uptake by earthworms. It is known however that the uptake of Hg is strongly influenced by the presence of organic matter, hence the influence of ligands are a major factor contributing to the kinetics of mercury uptake in biosystems. In this work we have focused on the uptake of mercury by earthworms (Eisenia andrei) in the presence of humic acid (HA) under varying physical conditions of pH and temperature, done to assess the role of humic acid in the bioaccumulation of mercury by earthworms from soils. The study was conducted over a 5-day uptake period and all earthworm samples were analysed by direct mercury analysis. Mercury distribution profiles as a function of time, bioaccumulation factors (BAFs), first order rate constants and body burden constants for mercury uptake under selected conditions of temperature, pH as well as via the dermal and gut route were evaluated in one comprehensive approach. The results showed that the uptake of Hg was influenced by pH, temperature and the presence of HA. Uptake of Hg(2+) was improved at low pH and temperature when the earthworms in soil were in contact with a saturating aqueous phase. The total amount of Hg(2+) uptake decreased from 75 to 48 % as a function of pH. For earthworms in dry soil, the uptake was strongly influenced by the presence of the ligand. Calculated BAF values ranged from 0.1 to 0.8. Mercury uptake typically followed first order kinetics with rate constants determined as 0.2 to 1 h(-1).

  11. The uptake and bioaccumulation of PCBs by phytoplankton

    SciTech Connect

    Swackhamer, D.L.; Skoglund, R.S.; Stange, K. )

    1990-01-01

    Phytoplankton play a major role in the fate and transport of hydrophobic organic compounds such as polychlorinated biphenyls (PCBs) due to their large biomass, their high lipid content, and their place as the primary step in the aquatic food web. Phytoplankton accumulate PCBs in the water column most likely as a result of water-lipid partitioning, and can pass the contaminants up through the food web by consumers or transport them to bottom waters by sedimentation. The process of PCB uptake and bioaccumulation by phytoplankton has been the focus of our study.

  12. Dietary taurine supplementation ameliorates the lethal effect of phenanthrene but not the bioaccumulation in a marine teleost, red sea bream, Pagrus major.

    PubMed

    Hano, Takeshi; Ito, Mana; Ito, Katsutoshi; Kono, Kumiko; Ohkubo, Nobuyuki

    2017-03-01

    The present study was performed to evaluate the effect of dietary taurine on the hepatic metabolic profiles of red sea bream (Pagrus major) and on phenanthrene (a polyaromatic hydrocarbon) toxicity and bioaccumulation. The fish were fed a diet supplemented with 0% (TAU0%), 0.5% (TAU0.5%), or 5% (TAU5%) taurine for 40-55d and subjected to phenanthrene acute toxicity and bioaccumulation tests. Taurine deficiency in feed severely affected the hepatic metabolic profiles of fish, which indicated a complementary physiological response to taurine deficiency. For the acute toxicity test, fish were fed the test diets for 55d and were then exposed to 0-893µg/L phenanthrene for 96h. Tolerance to phenanthrene was significantly improved by 0.5% of taurine inclusion in feed relative to TAU0%, but not by 5.0% inclusion. Reduced glutathione in the liver, which acts as an oxygen-free radical scavenger, was associated with a reduction in the toxicity of phenanthrene. For the bioaccumulation test, fish were fed the test diets for 40d and were thereafter chronically exposed to 20µg/L phenanthrene for 13d followed by depuration for 3d. The activity of hepatic biomarker, ethoxyresorufin-O-deethylase, was increased by phenanthrene exposure in the taurine inclusion groups. However, phenanthrene concentrations in the liver and muscle of fish fed TAU5.0% tended to be higher than those of fish fed TAU0% and TAU0.5% during the exposure period. These results indicate that 0.5% of taurine inclusion in feed plays an important role in the alleviation of phenanthrene toxicity but not bioaccumulation. Furthermore, larger amount of taurine inclusion (TAU5%) did not show marked beneficial effects against phenanthrene exposure. This study provides insight about a major concern of environmental contaminants into aquatic environment and can be effectively used for improvement of aquaculture.

  13. Bioaccumulation and ecotoxicity of carbon nanotubes

    PubMed Central

    2013-01-01

    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships. PMID:24034413

  14. Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web.

    PubMed

    Ruhí, Albert; Acuña, Vicenç; Barceló, Damià; Huerta, Belinda; Mor, Jordi-Rene; Rodríguez-Mozaz, Sara; Sabater, Sergi

    2016-01-01

    Increasing evidence exists that emerging pollutants such as pharmaceuticals (PhACs) and endocrine-disrupting compounds (EDCs) can be bioaccumulated by aquatic organisms. However, the relative role of trophic transfers in the acquisition of emerging pollutants by aquatic organisms remains largely unexplored. In freshwater ecosystems, wastewater treatment plants are a major source of PhACs and EDCs. Here we studied the entrance of emerging pollutants and their flow through riverine food webs in an effluent-influenced river. To this end we assembled a data set on the composition and concentrations of a broad spectrum of PhACs (25 compounds) and EDCs (12 compounds) in water, biofilm, and three aquatic macroinvertebrate taxa with different trophic positions and feeding strategies (Ancylus fluviatilis, Hydropsyche sp., Phagocata vitta). We tested for similarities in pollutant levels among these compartments, and we compared observed bioaccumulation factors (BAFs) to those predicted by a previously-developed empirical model based on octanol-water distribution coefficients (Dow). Despite a high variation in composition and levels of emerging pollutants across food web compartments, observed BAFs in Hydropsyche and Phagocata matched, on average, those already predicted. Three compounds (the anti-inflammatory drug diclofenac, the lipid regulator gemfibrozil, and the flame retardant TBEP) were detected in water, biofilm and (at least) one macroinvertebrate taxa. TBEP was the only compound present in all taxa and showed magnification across trophic levels. This suggests that prey consumption may be, in some cases, a significant exposure route. This study advances the notion that both waterborne exposure and trophic interactions need to be taken into account when assessing the potential ecological risks of emerging pollutants in aquatic ecosystems.

  15. Dietary bioaccumulation of perfluorophosphonates and perfluorophosphinates in juvenile rainbow trout: evidence of metabolism of perfluorophosphinates.

    PubMed

    Lee, Holly; De Silva, Amila O; Mabury, Scott A

    2012-03-20

    The perfluorophosphonates (PFPAs) and perfluorophosphinates (PFPiAs) are high production volume chemicals that have been observed in Canadian surface waters and wastewater environments. To examine whether their occurrence would result in contamination of organisms in aquatic ecosystems, juvenile rainbow trout (Oncorhynchus mykiss) were separately exposed to a mixture of C6, C8, and C10 monoalkylated PFPAs and a mixture of C6/C6, C6/C8, and C8/C8 dialkylated PFPiAs in the diet for 31 days, followed by 32 days of depuration. Tissue distribution indicated preferential partitioning to blood and liver. Depuration half-lives ranged from 3 to 43 days and increased with the number of perfluorinated carbons present in the chemical. The assimilation efficiencies (α, 7-34%) and biomagnification factors (BMFs, 0.007-0.189) calculated here for PFPAs and PFPiAs were lower than those previously observed for the perfluorocarboxylates (PFCAs) and perfluorosulfonates (PFSAs) in the same test organism. Bioaccumulation was observed to decreased in the order of PFSAs > PFCAs > PFPAs of equal perfluorocarbon chain length and was dependent on the charge of the polar headgroup. Bioaccumulation of the PFPiAs was observed to be low due to their rapid elimination via metabolism to the corresponding PFPAs. Here, we report the first observation of an in vivo cleavage of the carbon-phosphorus bond in fish, as well as, the first in vivo biotransformation of a perfluoroalkyl acid (PFAA). As was previously observed for PFCAs and PFSAs, none of the BMFs determined here for the PFPAs and PFPiAs were greater than one, which suggests PFAAs do not biomagnify from dietary exposure in juvenile rainbow trout.

  16. Bioaccumulation of decabromodiphenyl ether (BDE209) in earthworms in the presence of lead (Pb).

    PubMed

    Zhang, Wei; Chen, Lin; Liu, Kou; Chen, Lei; Lin, Kuangfei; Chen, Yongsheng; Yan, Zenguang

    2014-07-01

    BDE209 (decabromodiphenyl ether) and lead (Pb) are the main contaminants at e-waste recycling sites, and their potential toxicological effects on terrestrial organisms have received extensive attention. However, the impact on earthworms of exposure to the two chemicals remains almost unknown. Therefore, indoor incubation tests were performed on control and contaminated soil samples to determine the uptake and transformation of BDE209 in the presence of Pb for the first time. The results have demonstrated that Pb addition can affect BDE209 bioaccumulation efficiency compared with exposure to BDE209 alone. For a low BDE209 concentration (1mgkg(-1)), Pb addition barely affected the uptake of BDE209, whereas for a high BDE209 concentration (100mgkg(-1)), Pb addition elicited a complex response. Scanning electron microscope (SEM) observation indicated that a higher level of Pb (250 and 500mgkg(-1)) facilitated the uptake of BDE209 through the skin. Gas chromatography/mass spectrometry (GC/MS) analysis showed that the peak of BDE209 accumulation usually appeared in the joint exposure groups involving 10 or 100mgkg(-1) BDE209 and 250mgkg(-1) Pb, and the average bioaccumulation factor (BAF) was 0.53, which is more than 1.2 times that of single exposure to BDE209 (average=0.44). Also, the earthworms eliminated more BDE209 after 21d, and the biodegradation products were mainly BDE206 and BDE208. Furthermore, Pb addition can affect the transformation efficiency of BDE209 in earthworms, and several lower bromodiphenyl ethers can be detected. The results of these observations have provided a basic understanding of the potential ecotoxicological effects of joint PBDE and heavy metal exposure on terrestrial invertebrates.

  17. Bioaccumulation and retention kinetics of cadmium in the freshwater decapod Macrobrachium australiense.

    PubMed

    Cresswell, Tom; Simpson, Stuart L; Smith, Ross E W; Nugegoda, Dayanthi; Mazumder, Debashish; Twining, John

    2014-03-01

    The potential sources and mechanisms of cadmium bioaccumulation by the native freshwater decapods Macrobrachium species in the waters of the highly turbid Strickland River in Papua New Guinea were examined using (109)Cd-labelled water and food sources and the Australian species Macrobrachium australiense as a surrogate. Synthetic river water was spiked with environmentally relevant concentrations of cadmium and animals were exposed for 7 days with daily renewal of test solutions. Dietary assimilation of cadmium was assessed through pulse-chase experiments where prawns were fed separately (109)Cd-labelled fine sediment, filamentous algae and carrion (represented by cephalothorax tissue of water-exposed prawns). M. australiense readily accumulated cadmium from the dissolved phase and the uptake rate increased linearly with increasing exposure concentration. A cadmium uptake rate constant of 0.10 ± 0.05 L/g/d was determined in synthetic river water. During depuration following exposure to dissolved cadmium, efflux rates were low (0.9 ± 5%/d) and were not dependent on exposure concentration. Assimilation efficiencies of dietary sources were comparable for sediment and algae (48-51%), but lower for carrion (28 ± 5%) and efflux rates were low (0.2-2.6%/d) demonstrating that cadmium was well retained by M. australiense. A biokinetic model of cadmium accumulation by M. australiense predicted that for exposures to environmentally relevant cadmium concentrations in the Strickland River, uptake from ingestion of fine sediment and carrion would be the predominant sources of cadmium to the organism. The model predicted the total dietary route would represent 70-80% of bioaccumulated cadmium.

  18. Reduction of Toxicity and PAH Bioaccumulation Potential During Bioremediation of Petroleum Contaminated Soils

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    2004-03-01

    A set of model soils (e.g., quartz sands, loams, clays, peat, silica gels) was spiked with crude oil, aged for 27 months in the laboratory, and subjected to bench-scale slurry bioremediation treatment for 90 weeks. At various times, slurry samples were removed from the bioreactors, analyzed for polynuclear aromatic hydrocarbons (PAHs), and assayed for toxicity using the solid-phase MicrotoxTM test. In addition, the PAH bioaccumulation potential in tissues of soil dwelling organisms was estimated by exposing semi-permeable membrane devices (SPMDs) for 14 days to initial (t=0) and final (t=90 wks) slurry samples. In most cases, soil toxicity (EC50) was reduced 5- to 10 fold during the first 20 weeks of bioremediation treatment but it rarely reached the EC50 value of the respective clean reference soils, indicating that some residual toxicity still remained after 20 weeks of bioremediation. The reduction of soil toxicity most closely correlated with the biodegradation of the sum of 4, 5, and 6 ring PAHs. A comparison of PAH concentrations in SPMDs exposed to initial and final slurry samples revealed that the potential of PAH accumulation in exposed animal tissues was reduced 50 to 300 fold as a result of slurry biotreatment. While in most soils the bioavailable PAH fraction was preferentially removed by the microorganisms, several high molecular weight PAHs that had reached an apparent concentration asymptote after 90 weeks of treatment were still bioavailable to a significant extent in several soils since they were readily taken up by the SPMDs. In summary, it can be concluded that bioremediation significantly reduces both toxicity and PAH bioaccumulation potential. However, the remaining undegraded contaminants are likely to pose some residual risk to environmental receptors since they still exhibit toxicity relative to uncontaminated background soils and are bioavailable to animal tissues.

  19. Computerized Risk and Bioaccumulation System (Version 1. 0)

    SciTech Connect

    Lee, H.; Winsor, M.; Pelletier, J.; Randall, R.; Bertling, J.

    1991-11-01

    The Computerized Risk And Bioaccumulation System (CRABS, Version 1.0) is an expert system that predicts tissue residues of fifteen neutral organic pollutants in sediment-dwelling organisms and the human cancer risk from consumption of the contaminated shellfish. Bioaccumulation from bedded sediment can be predicted from the thermodynamic partitioning, first-order kinetic, or toxicokinetic model. All the models can predict steady-state tissue residues while the two kinetic models can predict non-steady-state uptake or elimination. CRABS then predicts the lifetime human cancer risk from consumption of clams and other non-mobile sediment-dwelling organisms containing the predicted (or measured) tissue residue. The linearized multistage model is used to predict cancer risk for a single pollutant from a single species diet. The program guides the user in estimating shellfish consumption rates if no site-specific rates are available. CRABS is designed to promote thorough documentation of the assumptions and data as well as to error check the entered values.

  20. Metals bioaccumulation in two edible bivalves and health risk assessment.

    PubMed

    El-Shenawy, Nahla S; Loutfy, Naglaa; Soliman, Maha F M; Tadros, Menerva M; Abd El-Azeez, Ahmed A

    2016-03-01

    Our aim was to quantify the bioaccumulation of 13 metals in two edible bivalves (Ruditapes decussatus and Paphia undulata) in Lake Timsah, Egypt. A potential human health risk assessment was conducted to evaluate the hazards from bivalve consumption. Fe, Al, Zn, and Sr had the highest concentrations in the bivalve samples. The levels of Cd were much lower than the maximum permissible level, while Pb concentrations in the two bivalves were nearly two times the permissible level. The extent of bioaccumulation factor was site- and species-specific. For low and high bivalve-consuming groups, the estimated daily intake of Pb and Cd ranged from 0.01 to 0.76 μg/kg/day. For low and high bivalve-consuming groups, hazard quotients (HQs) for metals were found to be less than 1 for both bivalve species, except for Co in the high-consuming group. In conclusion, even though there was no apparent risk to bivalve consumers from being exposed to single metals, there is a risk from being exposed to the 13 studied metals together, especially for high bivalve-consuming groups such as fishermen.

  1. Bioaccumulation and distribution of selenium in Enterococcus durans.

    PubMed

    Pieniz, Simone; Andreazza, Robson; Mann, Michele Bertoni; Camargo, Flávio; Brandelli, Adriano

    2017-03-01

    Selenium is an essential nutrient for all living organisms. Under appropriate conditions lactic acid bacteria (LAB) are capable for accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. In this study, the capacity of selenium bioaccumulation by Enterococcus durans LAB18s was evaluated. The distribution of organic selenium in selenium-enriched E. durans LAB18s biomass was analyzed, and the highest percentage of organic selenium was found in the fraction of total protein, followed by the fractions of polysaccharides and nucleic acids. When the protein fraction was obtained by different extractions (water, NaCl, ethanol and NaOH) it was demonstrated that alkali-soluble protein showed the higher Selenium content. Analysis of protein fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that selenium was present in the proteins ranging from 23 to 100kDa. The cells were analyzed by scanning electron microscopy (SEM); scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM). SEM, TEM and SEM/EDS showed the morphology, the selenium particles bioaccumulated into and on the cells and the amounts of selenium present into the cells, respectively. Thus, the isolate E. durans LAB18s can be a promising probiotic to be used as selenium-enriched biomass in feed trials.

  2. Bioaccumulation of animal adenoviruses in the pink shrimp.

    PubMed

    Luz, Roger B; Staggemeier, Rodrigo; Fabres, Rafael B; Soliman, Mayra C; Souza, Fernanda G; Gonçalves, Raoni; Fausto, Ivone V; Rigotto, Caroline; Heinzelmann, Larissa S; Henzel, Andréia; Fleck, Juliane D; Spilki, Fernando R

    2015-01-01

    Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100) Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR) in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems.

  3. Arsenic and mercury bioaccumulation in the aquatic plant, Vallisneria neotropicalis.

    PubMed

    Lafabrie, C; Major, K M; Major, C S; Cebrián, J

    2011-03-01

    Arsenic (As) and mercury (Hg) are among the most toxic metals/metalloids. The overall goal of this study was to investigate the bioaccumulation of these trace elements in Vallisneria neotropicalis, a key trophic species in aquatic environments. For this purpose, As and Hg concentrations were determined in sediments and natural populations of V. neotropicalis in sub-estuaries of Mobile Bay (Alabama, USA), differing with respect to past and present anthropogenic impact. Analyses indicate that the Fish River is the most contaminated among the sub-estuaries investigated; levels of As found in Fish River sediments fall within a range that could potentially cause adverse effects in biota. Sediment As concentrations were only moderately correlated with those in V. neotropicalis; no correlation was found between sediment and plant Hg levels. However, several parameters could have masked such potential relationships (e.g., differences in sediment characteristics and "biological dilution" phenomena). Results presented herein highlight the numerous parameters that can influence metal/metalloids accumulation in aquatic plants as well as species-specific responses to trace element contamination. Finally, this study underscores the need for further investigation into contaminant bioaccumulation in ecologically and economically important coastal environments.

  4. A method for partitioning cadmium bioaccumulated in small aquatic organisms

    SciTech Connect

    Siriwardena, S.N.; Rana, K.J.; Baird, D.J.

    1995-09-01

    A series of laboratory experiments was conducted to evaluate bioaccumulation and surface adsorption of aqueous cadmium (Cd) by sac-fry of the African tilapia Oreochromis niloticus. In the first experiment, the design consisted of two cadmium treatments: 15 {micro}g Cd{center_dot}L{sup {minus}1} in dilution water and a Cd-ethylenediaminetetraacetic acid (Cd-EDTA) complex at 15 {micro}m{center_dot}L{sup {minus}1}, and a water-only control. There were five replicates per treatment and 40 fish per replicate. It was found that EDTA significantly reduced the bioaccumulation of cadmium by tilapia sac-fry by 34%. Based on the results, a second experiment was conducted to evaluate four procedures: a no-rinse control; rinsing in EDTA; rinsing in distilled water; and rinsing in 5% nitric acid, for removing surface-bound Cd from exposed sac-fry. In this experiment, 30 fish in each of five replicates were exposed to 15 {micro}g Cd{center_dot}L{sup {minus}1} for 72 h, processed through the rinse procedures, and analyzed for total Cd. The EDTA rinse treatment significantly reduced (p<0.05) Cd concentrations of the exposed fish relative to those receiving no rinse. It was concluded that the EDTA rinse technique may be useful in studies evaluating the partitioning of surface-bound and accumulated cadmium in small aquatic organisms.

  5. Mercury and methylmercury in individual zooplankton: Implications for bioaccumulation

    SciTech Connect

    Not Available

    1992-09-01

    Using trace-metal-clean sampling and handling techniques along with ultrasensitive analytical procedures, it is possible to measure both total Hg and monomethylmercury (methyl-Hg) in natural planktonic communities with the same level of taxonomic, ontogenic, and trophic resolution that is currently possible in fish communities. In an experimentally manipulated lake, both acidification and trophic position enhanced the bioaccumulation of methyl-Hg in the plankton. A consistant pattern of methyl-Hg enrichment (2-4 x) in water, bulk phytoplankton, and individual zooplankton was associated with a 1.5 unit pH decrease in Little Rock Lake. Regardless of pH, bioconcentration factors [Bf = log(Cb/Cw), where Cb and Cw are Hg concentrations in biota and water] were substantially higher for methyl-Hg than those for total Hg or nonmethyl-Hg at three pelagic trophic levels ([approximately]10-100x). Between each trophic level, the Bf(methyl-Hg) increased by [approximately]-0.5 log units, clearly indicating biomagnification. Although somewhat higher in the acidified basin, Bf(methyl-Hg) was more strongly influenced by trophic position than by pH. This suggests that methyl-Hg was bioaccumulated largely in proportion to supply and that acidification may have directly increased supply to the base of the food chain. 24 refs., 3 figs., 2 tabs.

  6. Influences on Mercury Bioaccumulation Factors for the Savannah River

    SciTech Connect

    Paller, M.H.

    2003-05-06

    Mercury TMDLs (Total Maximum Daily Loads) are a regulatory instrument designed to reduce the amount of mercury entering a water body and ultimately to control the bioaccumulation of mercury in fish. TMDLs are based on a BAF (bioaccumulation factor), which is the ratio of methyl mercury in fish to dissolved methyl mercury in water. Analysis of fish tissue and aqueous methyl mercury samples collected at a number of locations and over several seasons in a 118 km reach of the Savannah River demonstrated that species specific BAFs varied by factors of three to eight. Factors contributing to BAF variability were location, habitat and season related differences in fish muscle tissue mercury levels and seasonal differences in dissolved methyl mercury levels. Overall (all locations, habitats, and seasons) average BAFs were 3.7 x 106 for largemouth bass, 1.4 x 106 for sunfishes, and 2.5 x 106 for white catfish. Inaccurate and imprecise BAFs can result in unnecessary economic impact or insufficient protection of human health. Determination of representative and precise BAFs for mercury in fish from large rivers necessitates collecting large and approximately equal numbers of fish and aqueous methyl mercury samples over a seasonal cycle from the entire area and all habitats to be represented by the TMDL.

  7. Bioaccumulation and catabolism of prometryne in green algae.

    PubMed

    Jin, Zhen Peng; Luo, Kai; Zhang, Shuang; Zheng, Qi; Yang, Hong

    2012-04-01

    Investigation on organic xenobiotics bioaccumulation/biodegradation in green algae is of great importance from environmental point of view because widespread distribution of these compounds in agricultural areas has become one of the major problems in aquatic ecosystem. Also, new technology needs to be developed for environmental detection and re-usage of the compounds as bioresources. Prometryne as a herbicide is widely used for killing annual grasses in China and other developing countries. However, overuse of the pesticide results in high risks to contamination to aquatic environments. In this study, we focused on analysis of bioaccumulation and degradation of prometryne in Chlamydomonas reinhardtii, a green alga, along with its adaptive response to prometryne toxicity. C. reinhardtii treated with prometryne at 2.5-12.5 μg L(-1) for 4 d or 7.5 μg L(-1) for 1-6 d accumulated a large quantity of prometryne, with more than 2 mg kg(-1) fresh weight in cells exposed to 10 μg L(-1) prometryne. Moreover, it showed a great ability to degrade simultaneously the cell-accumulated prometryne. Such uptake and catabolism of prometryne led to the rapid removal of prometryne from media. Physiological and molecular analysis revealed that toxicology was associated with accumulation of prometryne in the cells. The biological processes of degradation can be interpreted as an internal tolerance mechanism. These results suggest that the green alga is useful in bioremediation of prometryne-contaminated aquatic ecosystems.

  8. Influences on mercury bioaccumulation factors for the Savannah River.

    PubMed

    Paller, M H; Bowers, J A; Littrell, J W; Guanlao, A V

    2004-02-01

    Mercury TMDLs (Total Maximum Daily Loads) are a regulatory instrument designed to reduce the amount of mercury entering a water body and ultimately to control the bioaccumulation of mercury in fish. TMDLs are based on a BAF (bioaccumulation factor), which is the ratio of methyl mercury in fish to dissolved methyl mercury in water. Analysis of fish tissue and aqueous methyl mercury samples collected at a number of locations and over several seasons in a 118-km reach of the Savannah River demonstrated that species-specific BAFs varied by factors of three to eight. Factors contributing to BAF variability were location, habitat, and season-related differences in fish muscle tissue mercury levels and seasonal differences in dissolved methyl mercury levels. Overall (all locations, habitats, and seasons) average BAFs were 3.7 x 10(6) for largemouth bass, 1.4 x 10(6) for sunfishes, and 2.5 X 10(6) for white catfish. Determination of representative BAFs for mercury in fish from large rivers necessitates collecting large and approximately equal numbers of fish and aqueous methyl mercury samples over a seasonal cycle from the entire area and all habitats to be represented by the TMDL.

  9. Species-specific mercury bioaccumulation in a diverse fish community.

    PubMed

    Donald, David B; Wissel, Björn; Anas, M U Mohamed

    2015-12-01

    Mercury bioaccumulation models developed for fish provide insight into the sources and transfer of Hg within ecosystems. Mercury concentrations were assessed for 16 fish species of the western reach of Lake Diefenbaker, Saskatchewan, Canada. For top predators (northern pike, Esox Lucius; walleye, Sander vitreum), Hg concentrations were positively correlated to δ(15)N, and δ(15)N to fish age, suggesting that throughout life these fish fed on organisms with increasingly higher trophic values and Hg concentrations. However, fish mass and/or age were the principal parameters related to Hg concentrations for most species. For 9 common species combined, individual variation in Hg concentration was explained in declining order of importance by fish mass, trophic position (δ(15)N), and fish age. Delta (15)N value was not the leading variable related to Hg concentration for the assemblage, probably because of the longevity of lower--trophic-level species (3 species ≥ 20 yr), substantial overlap in Hg concentration and δ(15)N values for large-bodied fish up to 3000 g, and complex relationships between Hg concentration and δ(15)N among species. These results suggest that the quantity of food (and Hg) consumed each year and converted to fish mass, the quantity of Hg bioaccumulated over years and decades, and trophic position were significant determinants of Hg concentration in Lake Diefenbaker fish.

  10. Metal bioaccumulation and detoxification processes in cephalopods: A review.

    PubMed

    Penicaud, Virginie; Lacoue-Labarthe, Thomas; Bustamante, Paco

    2017-05-01

    In recent decades, cephalopods have been shown to have very high capacities to accumulate most trace elements, regardless of whether they are essential (e.g., Cu and Zn) or non-essential (e.g., Ag and Cd). Among the different pathways of exposure to trace elements, the trophic pathway appears to be the major route of assimilation for numerous metals, including Cd, Co, Hg and Zn. Once assimilated, trace elements are distributed in the organism, accumulating in storage organs. The digestive gland is the main organ in which many trace elements accumulate, whichever of the exposure pathway. For example, this organ can present Cd concentrations reaching hundreds to thousands of ppm for some species, even though the digestive gland represents only a small proportion of the total mass of the animal. Such a specific organotropism towards the digestive gland of both essential and non-essential elements, regardless of the exposure pathway, poses the question of the detoxification processes evolved by cephalopods in order to sustain these high concentrations. This paper reviews the current knowledge on the bioaccumulation of trace elements in cephalopods, the differences in pharmaco-dynamics between organs and tissues, and the detoxification processes they use to counteract trace element toxicity. A peculiar focus has been done on the bioaccumulation within the digestive gland by investigating the subcellular locations of trace elements and their protein ligands.

  11. Comparative bioaccumulation kinetics of trace elements in Mediterranean marine sponges.

    PubMed

    Genta-Jouve, Grégory; Cachet, Nadja; Oberhänsli, François; Noyer, Charlotte; Teyssié, Jean-Louis; Thomas, Olivier P; Lacoue-Labarthe, Thomas

    2012-09-01

    While marine organisms such as bivalves, seagrasses and macroalgae are commonly used as biomonitors for the environment pollution assessment, widely distributed sponges received little attention as potential helpful species for monitoring programmes. In this study, the trace element and radionuclide bioaccumulation and retention capacities of some marine sponges were estimated in a species-comparative study using radiotracers technique. Six Mediterranean species were exposed to background dissolved concentrations of (110m)Ag, (241)Am, (109)Cd, (60)Co, (134)Cs, (54)Mn, (75)Se and (65)Zn allowing the assessment of the uptake and depuration kinetics for selected elements. Globally, massive demosponges Agelas oroides, Chondrosia reniformis and Ircinia variabilis displayed higher concentration factor (CF) than the erectile ones (Acanthella acuta, Cymbaxinella damicornis, Cymbaxinella verrucosa) at the end of exposure, suggesting that the morphology is a key factor in the metal bioaccumulation efficiency. Considering this observation, two exceptions were noted: (1) A. acuta reached the highest CF for (110m)Ag and strongly retained the accumulated metal without significant Ag loss when placed in depuration conditions and (2) C. reniformis did not accumulate Se as much as A. oroides and I. variabilis. These results suggest that peculiar metal uptake properties in sponges could be driven by specific metabolites or contrasting biosilification processes between species, respectively. This study demonstrated that sponges could be considered as valuable candidate for biomonitoring metal contamination but also that there is a need to experimentally highlight metal-dependant characteristic among species.

  12. Bioaccumulation of animal adenoviruses in the pink shrimp

    PubMed Central

    Luz, Roger B.; Staggemeier, Rodrigo; Fabres, Rafael B.; Soliman, Mayra C.; Souza, Fernanda G.; Gonçalves, Raoni; Fausto, Ivone V.; Rigotto, Caroline; Heinzelmann, Larissa S.; Henzel, Andréia; Fleck, Juliane D.; Spilki, Fernando R.

    2015-01-01

    Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100) Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR) in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems. PMID:26413052

  13. Chiral bioaccumulation behavior of tebuconazole in the zebrafish (Danio rerio).

    PubMed

    Liu, Na; Dong, Fengshou; Xu, Jun; Liu, Xingang; Zheng, Yongquan

    2016-04-01

    Tebuconazole is an effective chiral fungicide, and previous studies have demonstrated that tebuconazole enantiomers exhibit enantioselective toxicity to non-target aquatic organisms. Thus, the aim of the present study was to investigate the chiral bioaccumulation behavior of tebuconazole in zebrafish (Danio rerio). Two exposure concentrations (0.107 and 1.07 mg/L) of tebuconazole were used. The uptake experiments lasted for 8 days, and subsequently, the zebrafish were transferred to another clean tank containing water without tebuconazole for depuration experiments (up to 14 days). A significant trend in enantioselective bioaccumulation was observed in these zebrafish with the preferential accumulation of (-)-R-tebuconazole at two dose levels. The results of the depuration experiments indicated that the degradation of (-)-R-tebuconazole in zebrafish was slower than that of (+)-S-tebuconazole. The BCFk values for (+)-S-tebuconazole and (-)-R-tebuconazole in a low dose of this chemical were 11.22 and 16.25, respectively, while at a high dose, these values were 9.79 and 10.31, respectively. The enantiomer fraction of tebuconazole in zebrafish and water ranged from 0.31-0.49. Hence, future research should focus on the fate of tebuconazole in the aquatic environment at the enantiomer levels.

  14. Joint use of laboratory bioassays and field-collected invertebrates to evaluate toxicity and contaminant bioaccumulation

    SciTech Connect

    Long, S.P.; Byron, E.R.; Ohlendorf, H.M.

    1995-12-31

    Soil toxicity tests using earthworms (Eisenia andrei) were conducted using soil samples collected as part of ecological risk assessments for several sites at two facilities in California. At some sites, earthworms or other terrestrial invertebrates were collected in the field for chemical analysis. Ecological concerns focused on exposures to soil invertebrates and their secondary consumers, such as birds and small mammals. The toxicity tests were used to assess potential exposures to a variety of site-specific contaminants including organochlorine pesticides, PCBs, PAHs, petroleum hydrocarbons, heavy metals, and other inorganic substances. Site soils were combined with clean control soils to produce toxicity test soil dilutions containing 100%, 75%, 50%, 25%, and 0% site soils. Earthworm mortality and other observations were made at day 0, 7, 14, 21 and 28. Toxicity test results were combined with soil chemical analytical results and physical characteristics to establish NOAELs and LOAELs. Bioaccumulation in the laboratory earthworms and field-collected invertebrates was evaluated by comparing whole-body contaminant to soil contaminant concentrations. Allometric equations and sublethal toxicity data were used to predict potential effects on birds and small mammals. Earthworm toxicity tests indicated a wide range of sensitivity to on-site contaminants and showed the importance of considering potential confounding influences due to soil parameters other than contaminant concentration.

  15. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals.

    PubMed

    van den Brink, Nico W; Arblaster, Jennifer A; Bowman, Sarah R; Conder, Jason M; Elliott, John E; Johnson, Mark S; Muir, Derek C G; Natal-da-Luz, Tiago; Rattner, Barnett A; Sample, Bradley E; Shore, Richard F

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.

  16. Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna.

    PubMed

    Kim, Injeong; Lee, Byung-Tae; Kim, Hyun-A; Kim, Kyoung-Woong; Kim, Sang Don; Hwang, Yu-Sik

    2016-01-01

    Citrate-coated AgNPs (c-AgNPs) have negatively charged surfaces and their surface interactions with heavy metals can affect metal toxicity in aquatic environments. This study used Daphnia magna to compare the acute toxicities and bioaccumulation of As(V), Cd, and Cu when they interact with c-AgNPs. The 24-h acute toxicities of As(V) and Cu were not affected by the addition of c-AgNPs, while bioaccumulation significantly decreased in the presence of c-AgNPs. In contrast, both the 24-h acute toxicity and bioaccumulation of Cd increased in the presence of c-AgNPs. These toxicity and bioaccumulation trends can be attributed to the interactions between the AgNP surface and the heavy metals. As(V) and c-AgNPs compete by negative charge, decreasing As(V) toxicity. Copper adheres readily to c-AgNP citrate, decreasing Cu bioavailability, and thus reducing Cu toxicity and bioaccumulation. Citrate complexes with divalent cations such as Ca and Mg reduce the competition between divalent cations and Cd on biotic ligand, increasing toxicity and bioaccumulation of Cd. This study shows that surface properties determine the effect of c-AgNPs on heavy metal toxicities and bioaccumulations; hence, further studies on the effect of nanoparticle by it surface properties are warranted.

  17. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals

    USGS Publications Warehouse

    van den Brink, Nico W.; Arblaster, Jennifer A.; Bowman, Sarah R.; Conder, Jason M.; Elliott, John E.; Johnson, Mark S.; Muir, Derek C.G.; Natal-da-Luz, Tiago; Rattner, Barnett A.; Sample, Bradley E.; Shore, Richard F.

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.

  18. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation.

    PubMed

    Joyce, Abigail S; Portis, Lisa M; Parks, Ashley N; Burgess, Robert M

    2016-11-01

    This Critcal Review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-seven studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low-density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Passive sampling based concentrations resulted in log-log predictive relationships, most of which were within one to 2 orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r(2)) for LDPE, PDMS, and POM were 0.68, 0.76, and 0.58, respectively. For the available raw, untransformed data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). Using passive sampling as a surrogate for organism bioaccumulation is viable when biomonitoring organisms are not available. Passive sampling based estimates of bioaccumulation provide useful information for making informed decisions about the bioavailability of HOCs.

  19. Bioaccumulation of Multiwall Carbon Nanotubes in Tetrahymena thermophila by Direct Feeding or Trophic Transfer

    SciTech Connect

    Mortimer, Monika; Petersen, Elijah J.; Buchholz, Bruce A.; Orias, Eduardo; Holden, Patricia A.

    2016-07-11

    We report that consumer goods contain multiwall carbon nanotubes (MWCNTs) that could be released during product life cycles into the environment, where their effects are uncertain. Here, we assessed MWCNT bioaccumulation in the protozoan Tetrahymena thermophila via trophic transfer from bacterial prey (Pseudomonas aeruginosa) versus direct uptake from growth media. The experiments were conducted using 14C-labeled MWCNT (14C-MWCNT) doses at or below 1 mg/L, which proved subtoxic since there were no adverse effects on the growth of the test organisms. A novel contribution of this study was the demonstration of the ability to quantify MWCNT bioaccumulation at low (sub μg/kg) concentrations accomplished by employing accelerator mass spectrometry (AMS). After the treatments with MWCNTs at nominal concentrations of 0.01 mg/L and 1 mg/L, P. aeruginosa adsorbed considerable amounts of MWCNTs: (0.18 ± 0.04) μg/mg and (21.9 ± 4.2) μg/mg bacterial dry mass, respectively. At the administered MWCNT dose of 0.3 mg/L, T. thermophila accumulated up to (0.86 ± 0.3) μg/mg and (3.4 ± 1.1) μg/mg dry mass by trophic transfer and direct uptake, respectively.Finally, aAlthough MWCNTs did not biomagnify in the microbial food chain, MWCNTs bioaccumulated in the protozoan populations regardless of the feeding regime, which could make MWCNTs bioavailable for organisms at higher trophic levels.

  20. Bioaccumulation of toxaphene congeners in the lake superior food web

    USGS Publications Warehouse

    Muir, D.C.G.; Whittle, D.M.; De Vault, D. S.; Bronte, C.R.; Karlsson, H.; Backus, S.; Teixeira, C.

    2004-01-01

    The bioaccumulation and biotransformation of toxaphene was examined in the food webs of Lake Superior and Siskiwit Lake (Isle Royale) using congener specific analysis as well as stable isotope ratios of carbon and nitrogen to characterize food webs. Toxaphene concentrations (calculated using technical toxaphene) in lake trout (Salvelinus namaycush) from the western basin of Lake Superior (N = 95) averaged (±SD) 889 ± 896 ng/g wet wt and 60 ± 34 ng/g wet wt in Siskiwit Lake. Major congeners in lake trout were B8-789 (P38), B8-2226 (P44), B9-1679 (P50), and B9-1025 (P62). Toxaphene concentrations were found to vary seasonally, especially in lower food web organisms in Lake Superior and to a lesser extent in Siskiwit Lake. Toxaphene concentrations declined significantly in lake herring (Coregonus artedii), rainbow smelt (Omerus mordax), and slimy sculpin (Cottus cognatus) as well as in zooplankton (> 102 &mn;m) and Mysis (Mysis relicta) between May and October. The seasonal variation may reflect seasonal shifts in the species abundance within the zooplankton community. Trophic magnification factors (TMF) derived from regressions of toxaphene congener concentrations versus δ15N were > 1 for most octa- and nonachlorobornanes in Lake Superior except B8-1413 (P26) and B9-715. Log bioaccumulation factors (BAFs) for toxaphene congeners in lake trout (ng/g lipid/ng/L dissolved) ranged from 4.54 to 9.7 and were significantly correlated with log octanol-water partition coefficients. TMFs observed for total toxaphene and congener B9-1679 in Lake Superior were similar to those in Arctic lakes, as well as to previous studies in the Great Lakes, which suggests that the bioaccumulation behavior of toxaphene is similar in pelagic food webs of large, cold water systems. However, toxaphene concentrations were lower in lake trout from Siskiwit Lake and lakes in northwestern Ontario than in Lake Superior possibly because of shorter food chains and greater reliance on zooplankton or

  1. Influence of relative trophic position and carbon source on selenium bioaccumulation in turtles from a coal fly-ash spill site.

    PubMed

    Van Dyke, James U; Hopkins, William A; Jackson, Brian P

    2013-11-01

    Selenium (Se) is a bioaccumulative constituent of coal fly-ash that can disrupt reproduction of oviparous wildlife. In food webs, the greatest enrichment of Se occurs at the lowest trophic levels, making it readily bioavailable to higher consumers. However, subsequent enrichment at higher trophic levels is less pronounced, leading to mixed tendencies for Se to biomagnify. We used stable isotopes ((1)(5)N and (13)C) in claws to infer relative trophic positions and relative carbon sources, respectively, of seven turtle species near the site of a recently-remediated coal fly-ash spill. We then tested whether Se concentrations differed with relative trophic position or relative carbon source. We did not observe a strong relationship between δ(15)N and Se concentration. Instead, selenium concentrations decreased with increasing δ(13)C among species. Therefore, in an assemblage of closely-related aquatic vertebrates, relative carbon source was a better predictor of Se bioaccumulation than was relative trophic position.

  2. Bioaccumulation of organic contaminants by benthic invertebrates of the Chesapeake Bay

    SciTech Connect

    Kimbrough, K.; Dickhut, R.

    1995-12-31

    In situ partitioning of PCBs and PAHs between benthic invertebrates and the environment has been compared to previously obtained laboratory bioaccumulation results. Previous laboratory studies show a characteristic nonlinear plot when bioaccumulation factors (BAF) are plotted against octanol-water partition coefficients (K{sub ow}), on a log-log scale. This phenomena can be explained by desorption and elimination kinetics. However preliminary in situ studies show a different relationship between field BAFs and K{sub ow} which may be explained by other biogeochemical factors. In situ and laboratory PAH and PCB partitioning measurements will be used to determine major mechanisms affecting contaminant bioaccumulation.

  3. Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.

    PubMed

    Hlodák, Michal; Urík, Martin; Matúš, Peter; Kořenková, Lucia

    2016-01-01

    Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.

  4. Assessment of bioaccumulation of biphenyls in the trophic chain of a coastal area of Parana, Brazil.

    PubMed

    Froehner, Sandro; Maceno, Marcell

    2010-05-01

    The presence of biphenyl was investigated in sediments and water in Paranagua Bay. Chemicals compounds like biphenyl can cause several effects on the ecosystems such as bioaccumulation. Biphenyl and similar compounds are subject to bioaccumulation, which in turn may harm the local ecosystem. The bioaccumulation in the local trophic chain was evaluated using a mathematical model based on toxicokinetic properties of the compound in the organisms. The results showed that even in water, the concentration of biphenyl was high, 0.82 ng/L. Also, in the fishes, the concentrations calculated by the model were higher than the maximum than the maximum allowed for human consumption.

  5. Passive samplers provide a better prediction of PAH bioaccumulation in earthworms and plant roots than exhaustive, mild solvent, and cyclodextrin extractions.

    PubMed

    Gomez-Eyles, Jose L; Jonker, Michiel T O; Hodson, Mark E; Collins, Chris D

    2012-01-17

    A number of extraction methods have been developed to assess polycyclic aromatic hydrocarbon (PAH) bioavailability in soils. As these methods are rarely tested in a comparative manner, against different test organisms, and using field-contaminated soils, it is unclear which method gives the most accurate measure of the actual soil ecosystem exposure. In this study, PAH bioavailability was assessed in ten field-contaminated soils by using exhaustive acetone/hexane extractions, mild solvent (butanol) extractions, cyclodextrin extractions, and two passive sampling methods; solid phase micro extraction (SPME) and polyoxymethylene solid phase extraction (POM-SPE). Results were compared to actual PAH bioaccumulation in earthworms (Eisenia fetida) and rye grass (Lolium multiflorum) roots. Exhaustive, mild solvent and cyclodextrin extractions consistently overpredicted biotic concentrations by a factor of 10-10 000 and therefore seem inappropriate for predicting PAH bioaccumulation in field contaminated soils. In contrast, passive samplers generally predicted PAH concentrations in earthworms within a factor of 10, although correlations between predicted and measured concentrations were considerably scattered. The same applied to the plant data, where passive samplers also tended to underpredict root concentrations. These results indicate the potential of passive samplers to predict PAH bioaccumulation, yet call for comparative studies between passive samplers and further research on plant bioavailability.

  6. Identifying new persistent and bioaccumulative organics among chemicals in commerce.

    PubMed

    Howard, Philip H; Muir, Derek C G

    2010-04-01

    The goal of this study was to identify commercial chemicals that might be persistent and bioaccumulative (P&B) and that were not being considered in current Great Lakes, North American, and Arctic contaminant measurement programs. We combined the Canadian Domestic Substance List (DSL), a list of 3059 substances of "unknown or variable composition complex reaction products and biological materials" (UVCBs), and the U.S. Environmental Protection Agency (U.S. EPA) Toxic Substances Control Act (TSCA) Inventory Update Rule (IUR) database for years 1986, 1990, 1994, 1998, 2002, and 2006 yielding a database of 22263 commercial chemicals. From that list, 610 chemicals were identified by estimates from U.S EPA EPISuite software and using expert judgment. This study has yielded some interesting and probable P&B chemicals that should be considered for further study. Recent studies, following up our initial reports and presentations on this work, have confirmed the presence of many of these chemicals in the environment.

  7. POP bioaccumulation in macroinvertebrates of alpine freshwater systems.

    PubMed

    Bizzotto, E C; Villa, S; Vighi, M

    2009-12-01

    This study serves to investigate the uptake of POPs in the different trophic levels (scrapers, collectors, predators, shredders) of macroinvertebrate communities sampled from a glacial and a non-glacial stream in the Italian Alps. The presented results show that the contaminant concentrations in glacial communities are generally higher compared to those from non-glacial catchments, highlighting the importance of glaciers as temporary sinks of atmospherically transported pollutants. Moreover, the data also suggests that in mountain systems snow plays an important role in influencing macroinvertebrate contamination. The main chemical uptake process to the macroinvertebrates is considered to be bioconcentration from water, as similar contaminant profiles were observed between the different trophic levels. The role of biomagnification/bioaccumulation is thought to be absent or negligible. The enrichment of chemicals observed in the predators is likely to be related to their greater lipid content compared to that of other feeding groups.

  8. Metal bioaccumulation in consumed marine bivalves in Southeast Brazilian coast.

    PubMed

    Lino, A S; Galvão, P M A; Longo, R T L; Azevedo-Silva, C E; Dorneles, P R; Torres, J P M; Malm, O

    2016-03-01

    This work aimed to investigate metal bioaccumulation by mussels (Perna perna) and Lion's Scallop (Nodipecten nodosus) farmed in tropical bays, in order to estimate spatial and temporal variation in the exposure to these elements, as well as human health risk. The concentration of each measured element was considered for this evaluation, using maximum residue level (MRL) in foods established by the Brazilian (ANVISA), American (USFDA) and European Communities (EC) legislations. Values for estimated daily ingestion (EDI) were determined for metals intake through mussel and scallop consumption. These estimates were compared with the reference value of (PTDI) proposed by World Health Organization (WHO). Trace elements concentration was measured on ninety mussels P. perna (tissue) and ninety Lion's Scallop N. nodosus (muscle and gonad) reared in four different tropical areas of the Southeast Brazilian coast, between 2009 and 2010. Zinc (Zn), Iron (Fe), Copper (Cu), Manganese (Mn), Chrome (Cr), Nickel (Ni), Cadmium (Cd) and Lead (Pb) concentrations were measured by flame atomic absorption spectrometry after acid mineralization. Cd and Mn were more efficiently bioaccumulated by scallops than mussels and the opposite was found for Fe, Cu and Ni. Guanabara Bay and Sepetiba Bay were considered the most impacted between ecosystems studied. Higher Cd values in Arraial do Cabo in the other sites studied were associated with upwelling that occurs in the region. Consumption of both species cannot be considered safe, because the Cu and Cr concentrations, in accordance with the limits established by the Brazilian Agency (ANVISA). On the other hand, any EDI value exceeded the corresponding value of the PTDI, proposed by World Health Organization (WHO).

  9. Heavy metal bioaccumulation in two passerines with differing migration strategies.

    PubMed

    Cooper, Zoë; Bringolf, Robert; Cooper, Robert; Loftis, Kathy; Bryan, Albert L; Martin, James A

    2017-03-11

    Various anthropogenic activities have resulted in concentration of heavy metals and contamination of surrounding environments. Historically, heavy metal contamination at the Savannah River Site (SRS) in South Carolina has resulted from accidental releases of stored waste generated from nuclear weapon production in the early 1950s. Songbirds inhabiting and using resources from these areas have the potential to bioaccumulate metals but there is limited information on metal concentration levels in areas suspected of contamination as well as uncontaminated sites. Nonlethal tissues samples from avian blood and feathers provide a reliable approach for determining the bioavailability of these pollutants (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The objectives of this study were to survey terrestrial heavy metal contamination at the SRS on potentially bioavailable contaminated (PBC) sites through blood and feather samples from resident Northern Cardinals (Cardinalis cardinalis) and migratory Great Crested Flycatchers (Myiarchus crinitus) and quantify sex-specific concentrations within species. Samples were collected in April to June of 2016. Cardinals had lower blood concentrations of Hg (β=-0.17, 85% CL=-0.26, -0.09) and Se (β=-0.33, 85% CL=-0.50, -0.16) than flycatchers. Cr feather concentrations were less in cardinals (β=-1.46, 85% CL=-2.44, -0.49) and all feathers of both species from reference locations had significantly less Zn (β=-67.92, 85% CL=-128.71, -7.14). Results indicate flycatchers were exposed to differing heavy metal levels during feather formation on their wintering grounds as compared to their recent exposure (through bloods samples) on their breeding grounds. Sex of individuals did not have a significant impact on bioaccumulation in either species. Overall, metal concentration levels in both species indicate minimal risk for acute toxicity; however, there is limited research on wild passerine populations with similar concentration levels. Therefore

  10. Optimizing the use of rainbow trout hepatocytes for bioaccumulation assessments with fish

    EPA Science Inventory

    Measured rates of biotransformation by cryopreserved trout hepatocytes can be extrapolated to the whole animal as a means of predicting metabolism impacts on chemical bioaccumulation. Future use of these methods within a regulatory context requires, however, that they be standar...

  11. FACTORS INFLUENCING THE DESIGN OF BIOACCUMULATION FACTOR AND BIOTA-SEDIMENT ACCUMULATION FACTOR FIELD STUDIES

    EPA Science Inventory

    General guidance for designing field studies to measure bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs) is not available. To develop such guidance, a series of modeling simulations were performed to evaluate the underlying factors and principles th...

  12. FACTORS INFLUENCING THE DESIGN OF BIOACCUMULATION FACTOR AND BIOTA-SEDIMENT ACCUMULATION FACTOR FIELD STUDIES

    EPA Science Inventory

    A series of modeling simulations were performed to develop an understanding of the underlying factors and principles involved in developing field sampling designs for measuring bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs. These simulations reveal...

  13. Selected Issues Associated with the Risk Assessment Process for Pesticides with Persistent, Bioaccumulative, and Toxic Characteristics

    EPA Science Inventory

    This Scientific Advisory Panel meeting will address selected scientific issues associated with assessing the potential ecological risks resulting from use of a pesticide active ingredient which has persistent, bioaccumulative, and toxic (PBT) characteristics. EPA will pose speci...

  14. LINKING EFFECTS OF PERSISTENT BIOACCUMULATIVE TOXICANTS TO CHEMICAL EXPOSURES IN AQUATIC ECOSYSTEMS

    EPA Science Inventory

    The critical step in characterization of ecological risks associated with exposures of fish and wildlife to persistent bioaccumulative toxicants (PBTs) is linking chemical residue based toxicological data to concentrations of PBTs in sediments, water, and biota. This is necessary...

  15. Methylmercury in Marine Ecosystems: Spatial Patterns and Processes of Production, Bioaccumulation, and Biomagnification

    PubMed Central

    Chen, Celia; Amirbahman, Aria; Fisher, Nicholas; Harding, Gareth; Lamborg, Carl; Nacci, Diane; Taylor, David

    2008-01-01

    The spatial variation of MeHg production, bioaccumulation and biomagnification in marine food webs is poorly characterized but critical to understanding the links between sources and higher trophic levels such as fish that are ultimately vectors of human and wildlife exposure. This paper discusses both large and local scale processes controlling Hg supply, methylation, bioaccumulation and transfer in marine ecosystems. While global estimates of Hg supply suggest important open ocean reservoirs of MeHg, only coastal processes and food webs are known sources of MeHg production, bioaccumulation, and bioadvection. The patterns observed to date suggest that not all sources and biotic receptors are spatially linked and that physical and ecological processes are important in transferring MeHg from source regions to bioaccumulation in marine food webs and from lower to higher trophic levels. PMID:19015919

  16. [Bioaccumulation of heavy metals in macrofungi and its application in ecological remediation].

    PubMed

    An, Xin-Long; Zhou, Qi-Xing

    2007-08-01

    As an important type of environmental biological resources, macrofungi are vitally useful in our life. Compared with green plants, macrofungi can accumulate high concentrations of heavy metals such as Cd, Pb and Hg. In this paper, the bioaccumulation of heavy metals in macrofungi and the advantages of using macrofungi in ecological remediation of heavy metals pollution were discussed. The main factors affecting the bioaccumulation of heavy metals in macrofungi, include the species, ecological types, bioaccumulation characteristics and genetic potentials of macrofungi, the morphologic traits, parts and lifetime of mycelium and fruiting bodies, the intervals between fructifications, and the ecological environments. It was suggested that to screen out the macrofungi with effective bioaccumulation of heavy metals, be prone to artificially cultured, better adjustable to environments and easily post-disposed would be the important domain to be explored in the future.

  17. Using cryopreserved trout hepatocytes to obtain clearance rates for improving bioaccumulation predictions

    EPA Science Inventory

    An introduction and detailed description of how to use cryopreserved trout hepatocytes for improving bioaccumulation assessments is covered in this presentation along with recent results from an inter-laboratory validation of the method.

  18. DISTRIBUTION OF TOTAL AND METHYLMERCURY IN DIFFERENT ECOSYSTEM COMPARTMENTS IN THE EVERGLADES: IMPLICATIONS FOR MERCURY BIOACCUMULATION

    EPA Science Inventory

    Mercury (Hg) species distribution patterns among ecosystem compartments in the Everglades were analyzed at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation, and to investigate major biogeochemical processes that are pertinent to t...

  19. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation

    EPA Science Inventory

    This Critcal Review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-seven studies were found where both passive sampler uptake and organism bioaccumulat...

  20. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation,

    EPA Science Inventory

    Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake...

  1. Bioaccumulation of atrazine and chlorpyrifos to Lumbriculus variegatus from lake sediments.

    PubMed

    Jantunen, A P K; Tuikka, A; Akkanen, J; Kukkonen, J V K

    2008-11-01

    The bioaccumulation of the pesticides chlorpyrifos and atrazine to the benthic oligochaeta Lumbriculus variegatus from four diverse artificially contaminated lake sediments (OC 0.13-21.5%) was studied in the laboratory. The steady state of bioaccumulation was not reached within 10d. Chlorpyrifos showed stronger bioaccumulation than the less lipophilic atrazine, the biota-sediment accumulation factors (BSAFs) being 6.2-99 for the former and 1.9-5.3 for the latter. While bioaccumulation factors (BAFs) dropped with increasing organic content of the sediments, the high level and considerable range of the obtained BSAFs indicate other sediment qualities, such as the age and characteristics of the organic material, having a strong effect on the bioavailability of these compounds. The slow and incomplete desorption of chlorpyrifos from the most inorganic sediment indicates also that this compound may be strongly bound to some type of inorganic material. Any specific influential sediment fraction or characteristic could not be identified.

  2. Optimizing Stream Water Mercury Sampling for Calculation of Fish Bioaccumulation Factors

    EPA Science Inventory

    Mercury (Hg) bioaccumulation factors (BAFs) for game fishes are widely employed for monitoring, assessment, and regulatory purposes. Mercury BAFs are calculated as the fish Hg concentration (Hgfish) divided by the water Hg concentration (Hgwater) and, consequently, are sensitive ...

  3. Intestinal nematodes affect selenium bioaccumulation, oxidative stress biomarkers, and health parameters in juvenile rainbow trout (Oncorhynchus mykiss).

    PubMed

    Hursky, Olesya; Pietrock, Michael

    2015-02-17

    In environmental studies, parasites are often seen as a product of enhanced host susceptibility due to exposure to one or several stressors, whereas potential consequences of infections on host responses are often overlooked. Therefore, the present study focused on effects of parasitism on bioaccumulation of selenium (Se) in rainbow trout (Oncorhynchus mykiss). Joint effects of biological (parasite) and chemical (Se) stressors on biomarkers of oxidative stress (glutathione-S-transferase (GST), superoxide dismutase (SOD)), and fish health (condition factor (K), hepatosomatic index (HSI), gross energy) were also examined. Fish of the control group received uncontaminated food, while test fish, either experimentally infected with the nematode Raphidascaris acus or not, were exposed to dietary selenomethionine (Se-Met) at an environmentally relevant dose over 7 weeks. Selenium bioaccumulation by the parasite was low relative to its host, and parasitized trout showed slowed Se accumulation in the muscle as compared to uninfected fish. Furthermore, GST and SOD activities of trout exposed to both Se-Met and parasites were generally significantly lower than in fish exposed to Se-Met alone. Gross energy concentrations, but not K or HSI, were reduced in fish exposed to both Se-Met and R. acus. Together the experiment strongly calls for consideration of parasites when interpreting effects of pollutants on aquatic organisms in field investigations.

  4. Distribution, bioaccumulation, trophic transfer, and influences of CeO2 nanoparticles in a constructed aquatic food web.

    PubMed

    Zhao, Xingchen; Yu, Miao; Xu, Dan; Liu, Aifeng; Hou, Xingwang; Hao, Fang; Long, Yanmin; Zhou, Qunfang; Jiang, Guibin

    2017-04-06

    In view of the final destination of nanomaterials, the water system would be the important sink. However, the environmental behavior of nanomaterials is rather confusing due to the complexity of the real environment. In this study, a fresh water ecosystem, including water, sediment, water lettuce, water silk, Asian clam, snail, water flea, the Japanese Medaka, and the Yamato shrimp, was constructed to study the distribution, bioaccumulation and potential impacts of CeO2 nanoparticles (CeO2 NPs) via long-term exposure. The results demonstrated most of the CeO2 NPs deposited in the sediment (88.7%) when the partition approached constantly 30 days later. The bioaccumulated Ce in 6 tested biota species was negatively correlated with its trophic level, showing no biomagnification of CeO2 NPs through this food web. CeO2 NP exposure induced visual abnormalities in hydrophytes including chlorophyll loss in water silk and water lettuce, ultrastructural changes in pyrenoids of water silk and root elongation in water lettuce. The generation of hydroxyl radical (OH) and cell wall loosening induced by CeO2 NP exposure might mediate the increased root growth in water lettuce. The findings on the environmental behavior of CeO2 NPs in water system have provided useful information on the risk assessment of nanomaterials.

  5. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept

    USGS Publications Warehouse

    Luoma, Samuel N.; Rainbow, Philip S.

    2005-01-01

    Ecological risks from metal contaminants are difficult to document because responses differ among species, threats differ among metals, and environmental influences are complex. Unifying concepts are needed to better tie together such complexities. Here we suggest that a biologically based conceptualization, the biodynamic model, provides the necessary unification for a key aspect in risk:  metal bioaccumulation (internal exposure). The model is mechanistically based, but empirically considers geochemical influences, biological differences, and differences among metals. Forecasts from the model agree closely with observations from nature, validating its basic assumptions. The biodynamic metal bioaccumulation model combines targeted, high-quality geochemical analyses from a site of interest with parametrization of key physiological constants for a species from that site. The physiological parameters include metal influx rates from water, influx rates from food, rate constants of loss, and growth rates (when high). We compiled results from 15 publications that forecast species-specific bioaccumulation, and compare the forecasts to bioaccumulation data from the field. These data consider concentrations that cover 7 orders of magnitude. They include 7 metals and 14 species of animals from 3 phyla and 11 marine, estuarine, and freshwater environments. The coefficient of determination (R2) between forecasts and independently observed bioaccumulation from the field was 0.98. Most forecasts agreed with observations within 2-fold. The agreement suggests that the basic assumptions of the biodynamic model are tenable. A unified explanation of metal bioaccumulation sets the stage for a realistic understanding of toxicity and ecological effects of metals in nature.

  6. Partitioning and bioaccumulation of metals from oil sands process affected water in indigenous Parachlorella kessleri.

    PubMed

    Mahdavi, Hamed; Liu, Yang; Ulrich, Ania C

    2013-02-01

    This paper studies the partitioning and bioaccumulation of ten target metals ((53)Cr, Mn, Co, (60)Ni, (65)Cu, (66)Zn, As, (88)Sr, (95)Mo and Ba) from oil sands tailings pond water (TPW) by indigenous Parachlorella kessleri. To determine the role of extracellular and intracellular bioaccumulation in metal removal by P. kessleri, TPW samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.) were enriched with nutrient supplements. Results indicate that intracellular bioaccumulation played the main role in metal removal from TPW; whereas extracellular bioaccumulation was only observed to some extent for Mn, Co, (60)Ni, (65)Cu, (88)Sr, (95)Mo and Ba. The FTIR scan and titration of functional groups on the cell surface indicated low metal binding capacity by indigenous P. kessleri. However, it is believed that the dissolved cations and organic ligand content in TPW (such as naphthenic acids) may interfere with metal binding on the cell surface and lower extracellular bioaccumulation. In addition, the total bioaccumulation and bioconcentration factor (BCF) varied during the cultivation period in different growth regimes.

  7. Sensitivity of risk estimates to wildlife bioaccumulation factors in ecological risk assessment

    SciTech Connect

    Karustis, C.G.; Brewer, R.A.

    1995-12-31

    The concept of conservatism in risk assessment is well established. However, overly conservative assumptions may result in risk estimates that incorrectly predict remediation goals. Therefore, realistic assumptions should be applied in risk assessment whenever possible. A sensitivity analysis was performed on conservative (i.e. bioaccumulation factor = 1) and scientifically-derived wildlife bioaccumulation factors (BAFs) utilized to calculate risks during a terrestrial ecological risk assessment (ERA). In the first approach, 100% bioaccumulation of contaminants was assumed to estimate the transfer of contaminants through the terrestrial food chain. In the second approach, scientifically-derived BAFs were selected from the literature. For one of the measurement species selected, total risks calculated during the first approach were higher than those calculated during the second approach by two orders of magnitude. However, potential risks due to individual contaminants were not necessarily higher using the conservative approach. Potential risk due to contaminants with low actual bioaccumulation were exaggerated while potential risks due to contaminants with greater than 100% bioaccumulation were underestimated. Therefore, the use of a default of 100% bioaccumulation (BAF = 1) for all contaminants encountered during an ERA could result in cases where contaminants are incorrectly identified as risk drivers, and the calculation of incorrect ecological risk-based cleanup goals. The authors suggest using site-specific or literature-derived BAFs whenever possible and realistic BAF estimates, based upon factors such as log K{sub ow}, when BAFs are unavailable.

  8. Mortality, bioaccumulation and physiological responses in juvenile freshwater mussels (Lampsilis siliquoidea) chronically exposed to copper.

    PubMed

    Jorge, Marianna B; Loro, Vania L; Bianchini, Adalto; Wood, Chris M; Gillis, Patricia L

    2013-01-15

    Several studies have indicated that the early life stages of freshwater mussels are among the most sensitive aquatic organisms to inorganic chemicals, including copper. However, little is known about the toxic mode of action and sub-lethal effects of copper exposure in this group of imperiled animals. In this study, the physiological effects of long-term copper exposure (survival, growth, copper bioaccumulation, whole-body ion content, oxygen consumption, filtration rate, ATPase activities, and biomarkers of oxidative stress) were evaluated in juvenile (6 month old) mussels (Lampsilis siliquoidea). The mussels' recovery capacity and their ability to withstand further acute copper challenge were also evaluated in secondary experiments following the 28 day exposure by assessing survival, copper bioaccumulation and whole-body ion content. Mussels chronically exposed to 2 and 12 μg Cu/L showed significantly higher mortality than those held under control conditions (mortality 20.9, 69.9 and 12.5%, respectively), indicating that juvenile L. siliquoidea is underprotected by the U.S. Environmental Protection Agency (USEPA) biotic ligand model (BLM)-derived chronic water quality criteria (WQC) (2.18 μg Cu/L) and the hardness-derived USEPA WQC (12.16 μg Cu/L). Soft tissue copper burden increased equally for both copper exposures, suggesting that chronic toxicity is not associated with copper bioaccumulation. Several physiological disturbances were also observed during chronic copper exposure. Most relevant was a decrease in whole-body sodium content paralleled by an inhibition of Na(+) K(+)-ATPase activity, indicating a metal-induced ionoregulatory disturbance. Filtration and oxygen consumption rates were also affected. Redox parameters (reactive oxygen production, antioxidant capacity against peroxyl radicals, glutathione-S-transferase (GST) activity, and glutathione (GSH) concentration) did not show clear responses, but membrane damage as lipid peroxidation (LPO) was

  9. Great Lakes water quality initiative technical support document for the procedure to determine bioaccumulation factors. Draft report

    SciTech Connect

    Not Available

    1993-03-01

    The purpose of the document is to provide the technical information and rationale in support of the proposed procedures to determine bioaccumulation factors. Bioaccumulation factors, together with the quantity of aquatic organisms eaten, determine the extent to which people and wildlife are exposed to chemicals through the consumption of aquatic organisms. The more bioaccumulative a pollutant is, the more important the consumption of aquatic organisms becomes as a potential source of contaminants to humans and wildlife. Bioaccumulation factors are needed to determine both human health and wildlife tier I water quality criteria and tier II values. Also, they are used to define Bioaccumulative Chemicals of Concern among the Great Lakes Initiative universe of pollutants. Bioaccumulation factors range from less than one to several million.

  10. Metallothionein and bioaccumulation of cadmium in juvenile bluegills exposed to aqueous and sediment-associated cadmium

    SciTech Connect

    Cope, W.G.

    1991-01-01

    The author evaluated metallothionein (MT), free (unbound) hepatic cadmium and whole body cadmium as indicators of cadmium exposure in juvenile bluegills Lepomis macrochirus in laboratory tests. Two types of cadmium exposure were tested; aqueous and sediment-associated. In the aqueous tests, fish were exposed to cadmium (0.0 to 32.3 [mu]g/L) in an intermittent-flow diluter. In the sediment-associated cadmium test, fish were exposed to resuspended river sidment containing 1.3 to 21.4 [mu]g Cd/g (dry weight) at a nominal total suspended solids concentration of 1,000 mg/L in revolving, circular glass exposure chambers. Total cadmium concentrations were measured in various bluegill liver fractions, whole bluegill, water, and resuspended sediment to assess the partitioning and bioaccumulation of cadmium after the tests. Mean concentrations of MT and free cadmium in bluegill livers and concentrations of cadmium in whole bluegills were positively correlated with aqueous cadmium concentration and were equally suitable as indicators of aqueous cadmium exposure. Sediment-associated cadmium was biologically available, but to a lesser extent than aqueous cadmium. Cadmium concentrations in whole bluegills exposed to resuspended river sediment were 1.5- to 3.5-fold the concentrations in bluegills in sediment-free controls. Free cadmium and MT concentrations in bluegill liver and whole-body cadmium concentrations in bluegills were positively correlated with the cadmium concentrations in filtered water, resuspended sediment, and bulk river sediment; however, whole-body cadmim concentrations were a more sensitive indicator of exposure to sediment-associated cadmium than either free cadmium or MT concentratons in liver.

  11. Effect of taurine supplementation on hepatic metabolism and alleviation of cadmium toxicity and bioaccumulation in a marine teleost, red sea bream, Pagrus major.

    PubMed

    Hano, Takeshi; Ito, Katsutoshi; Kono, Kumiko; Ito, Mana; Ohkubo, Nobuyuki; Mochida, Kazuhiko

    2017-02-01

    This study was performed to unravel the mechanism of the beneficial action of taurine on marine teleost fish, red sea bream (Pagrus major), by analyzing the hepatic metabolism. Moreover, the ameliorative effects of the nutrient against cadmium toxicity and bioaccumulation were further evaluated. The fish were fed a diet containing 0 % (TAU0 %), 0.5 % (TAU0.5 %), or 5.0 % (TAU5.0 %) taurine for 40-55 days (d) and subjected to cadmium acute toxicity and bioaccumulation tests. Taurine deficiency in feed severely affected growth and the hepatic metabolic profiles of the fish, including a remarkable increase in myo-inositol, aspartate, and ß-alanine in the TAU0 % group, which indicates a complementary physiological response to taurine deficiency. For the acute toxicity test, fish were fed the test diets for 55 d and were then exposed to different dose of cadmium ranging from 0 to 5.6 mg/L for 96 h. Fish fed taurine had a higher tolerance to cadmium than those not fed taurine. For the bioaccumulation test, fish were fed the test diets for 40 d and then were chronically exposed to 0.2 mg/L of cadmium for 28 d followed by depuration for 21 d. Cadmium concentrations in the liver and muscle of fish fed TAU5.0 % were significantly lower than those of fish fed TAU0 % for the first 7 d of exposure and the first 7 d of elimination. Our findings suggest a possible mechanism for the beneficial role played by taurine and that the inclusion of taurine in fish aquaculture feed may reduce cadmium contamination of fish intended for human consumption.

  12. Bioaccumulation of perfluoroalkyl substances by Daphnia magna in water with different types and concentrations of protein.

    PubMed

    Xia, Xinghui; Rabearisoa, Andry H; Jiang, Xiaoman; Dai, Zhineng

    2013-10-01

    Perfluoroalkyl substances (PFASs) are sometimes regarded as proteinophilic compounds, however, there is no research report about the effect of environmental protein on the bioaccumulation of PFASs in waters. In the present study we investigated influences of protein on the bioaccumulation of six kinds of PFASs by Daphnia magna in water; it included perfluorooctane sulfonate, perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Two types of protein including bovine albumin from animal and soy peptone from plant were compared and the effects of protein concentration were investigated. Both types of protein at high concentrations (10 and 20 mg L(-1)) suppressed the bioaccumulation of PFASs. When protein concentration increased from 0 to 20 mg L(-1), the decreasing ratios of the PFAS body burden (35.3-52.9%) in Daphnia magna induced by bovine albumin were significantly higher than those (22.0-36.6%) by soy peptone. The dialysis bag experiment results showed that the binding of PFASs to protein followed the Freundlich isotherm, suggesting it is not a linear partitioning process but an adsorption-like process. The partition coefficients of PFASs between bovine albumin and water were higher compared to soy peptone; this resulted in higher reducing rates of freely dissolved concentrations of PFASs with increasing bovine albumin concentration, leading to a stronger suppression of PFAS bioaccumulation. However, the presence of both types of protein with a low concentration (1 mg L(-1)) enhanced the bioaccumulation of PFASs. Furthermore, the water-based bioaccumulation factor based on the freely dissolved concentrations of PFASs even increased with and the depuration rate constants of PFASs from Daphnia magna decreased with protein concentration, suggesting that protein would not only reduce the bioavailable concentrations and uptake rates of PFASs but also lower the elimination rates of PFASs in

  13. Mercury bioaccumulation in wood frogs developing in seasonal pools

    USGS Publications Warehouse

    Loftin, Cynthia S.; Calhoun, Aram J. K.; Nelson, Sarah J.; Elskus, Adria; Simon, Kevin S.

    2012-01-01

    Seasonal woodland pools contribute significant biomass to terrestrial ecosystems through production of pool-breeding amphibians. The movement of amphibian metamorphs potentially transports toxins bioaccumulated during larval development in the natal pool into the surrounding terrestrial environment. We documented total mercury (THg) in seasonal woodland pool water, sediment, litter, and Lithobates sylvaticus LeConte (Wood Frog) in Acadia National Park, ME. THg concentrations in pool water varied over the study season, increasing during April—June and remaining high in 2 of 4 pools upon October refill. Water in pools surrounded by softwoods had lower pH, greater dissolved organic carbon, and greater THg concentrations than pools surrounded by hardwoods, with seasonal patterns in sediment THg but not litter THg. THg increased rapidly from near or below detection in 1–2 week old embryos (<0.2 ng; 0–0.49 ppb wet weight) to 17.1–54.2 ppb in tadpoles within 6 weeks; 7.2–42.0% of THg was methyl Hg in tadpoles near metamorphosis. Metamorphs emigrating from seasonal pools may transfer mercury into terrestrial food webs.

  14. Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential

    PubMed Central

    Dhillon, Gurpreet Singh; Kaur, Surinder; Pulicharla, Rama; Brar, Satinder Kaur; Cledón, Maximiliano; Verma, Mausam; Surampalli, Rao Y.

    2015-01-01

    Triclosan (TCS) is a multi-purpose antimicrobial agent used as a common ingredient in everyday household personal care and consumer products. The expanded use of TCS provides a number of pathways for the compound to enter the environment and it has been detected in sewage treatment plant effluents; surface; ground and drinking water. The physico-chemical properties indicate the bioaccumulation and persistence potential of TCS in the environment. Hence, there is an increasing concern about the presence of TCS in the environment and its potential negative effects on human and animal health. Nevertheless, scarce monitoring data could be one reason for not prioritizing TCS as emerging contaminant. Conventional water and wastewater treatment processes are unable to completely remove the TCS and even form toxic intermediates. Considering the worldwide application of personal care products containing TCS and inefficient removal and its toxic effects on aquatic organisms, the compound should be considered on the priority list of emerging contaminants and its utilization in all products should be regulated. PMID:26006133

  15. Temporal trends in organic contaminant bioaccumulation in Boston Harbor

    SciTech Connect

    Hall, M.P.; Connor, M.S.; Downey, P.C.

    1995-12-31

    Since 1987 the MWRA has used in situ caged mussels (Mytilus edulis) to assess organic contaminant (PAHs, PCBs, organochlorine pesticides) bioaccumulation resulting from the primary treatment discharge of its Deer Island POTW. Results indicate a substantial reduction in many contaminants, most notably the Low Molecular Weight (petrogenic) PAHs which are clearly associated with the Deer Island discharge. NOAA `Mussel Watch` and other fish tissue contaminant data are used to support the observation of these decreases. Effluent water quality data and concurrent mussel body burden data from dirty and clean control sites are used to interpret the trends and elucidate the contamination sources. During the same time frame histopathological analyses of winter flounder collected in proximity to the Deer Island discharge have shown a marked reduction in liver lesions and other contaminant related diseases. More recently (since 1992) slight elevations in chlordane, dieldrin, and total DDTs have been noted in mussel, flounder, and lobster tissue collected from Boston Harbor and Massachusetts Bay. The authors discuss the possibility that remobilization of contaminants from the sediments may be a source of this apparent increase.

  16. Bioaccumulation of metals and PCBs in Raja clavata.

    PubMed

    Torres, Paulo; Tristão da Cunha, Regina; Micaelo, Cristina; Rodrigues, Armindo Dos Santos

    2016-12-15

    The goal of this study was to assess stable isotopes profiles, metals concentration and PCBs in Raja clavata muscle and liver, according to sex and size, and to elucidate its suitability as a Mid-Atlantic biomonitor. The results reflected bioaccumulation and suggested biomagnification processes for As and Hg in muscle tissue. Cd, Cu and Zn were detected in high amounts in liver, Cr, Mn and Rb were relatively stable and low, Pb was not detected and Sr was present in muscle at high levels, decreasing with length. Hg and Se were strongly correlated, suggesting a mitigation role. Both tissues presented low concentrations of PCBs, especially the dioxin-like congeners, although always higher in liver and not correlated with size. None of these contaminants exceed EU legislated limits. However, they need to be monitored given study area's location, volcanic nature and the expected increase of anthropogenic activity related to future prospective mining activities and the establishment of the Transatlantic Trade and Investment Partnership (TTIP) between Europe and the USA.

  17. Bioaccumulation of Hg in the mushroom Pleurotus ostreatus

    SciTech Connect

    Bressa, G.; Cima, L.; Costa, P.

    1988-10-01

    The possibility of utilizing industrial, urban, and other wastes for the growth of a product which is directly edible by humans is fascinating. However, it is possible that many wastes containing toxic substances, for example, heavy metals, could reach the food chain and produce adverse effects on human health. To this end, we studied the possibility of bioaccumulation of Hg by a mushroom, Pleurotus ostreatus, grown on an artificial compost containing this element. Concentrations of 0.05, 0.1, and 0.2 mg/kg of Hg as Hg(NO/sub 3/)/sub 2/.H/sub 2/O were added to three groups of the same compost, successively inoculated with the mycelia of the mushroom. Higher concentrations strongly reduced the growth of the mycelia and therefore were not utilized. The concentrations of Hg in the substrate and in the mushroom were evaluated by AAS. The range of the accumulation factor was found to be 65-140, i.e., very marked. This finding suggests that the cultivation of P. ostreatus on substrates containing Hg from industrial and urban wastes could involve possible risks to human health.

  18. Copper bioaccumulation by the actinobacterium Amycolatopsis sp. AB0.

    PubMed

    Albarracín, Virginia Helena; Winik, Beatriz; Kothe, Erika; Amoroso, María Julia; Abate, Carlos Mauricio

    2008-10-01

    Amycolatopsis sp. AB0, a copper resistant actinobacterium isolated from polluted sediments, has shown high copper specific biopsortion ability (25 mg g(-1)). Two approaches were used to confirm metal accumulation in growing cells of Amycolatopsis sp. AB0; we performed subcellular fractioning assays which showed that the retained copper was associated with the extra-cellular fraction (exopolymer, 40%), but mainly within the cells. Intracellular distribution of copper was: 86% in the cytosolic fraction, 11% at the cell wall and 3% associated with the ribosome/membrane fraction. Its copper bioaccumulation ability was corroborated by using silver enhanced staining of copper with the Timm's reagent technique, which has not been used to detect metal deposits in bacteria before. In addition, we constructed specific oligonucleotides for targeting genes coding for copper P-Type ATPases that could be involved in the copper uptake ability of this strain. A 607 bp DNA fragment was amplified and sequenced from Amycolatopsis sp AB0. BLAST search analysis showed 71% protein homology of the deduced sequence with a putative cation-transporting ATPase of Nocardia farcinica and 65% with a copper translocating ATPase of Mycobacterium flavescens. To our knowledge this is the first report of the presence of copper P-type ATPase genes in the Amycolotopsis genus.

  19. Bioaccumulation and toxicity of the flame retardant TBPH or ...

    EPA Pesticide Factsheets

    The use of polybrominated diphenyl ethers as flame retardants in consumer products has been scrutinized increasingly due to their environmental persistence and potential toxicity; however, alternative replacement flame retardants may have similar drawbacks. The alternative brominated flame retardant bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) is a component of several commercial flame retardants, including Firemaster® 550, Firemaster® BZ-54 and DP-45. Here we investigate the bioaccumulation, bioenergetics and other adverse outcomes pathways (AOPs) predicted for dietary exposure to a carrier control, two levels of TBPH, or 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153, a well-studied compound acting as a positive control for some aspects of the study). The TBPH concentrations chosen were at or well above the environmental concentrations documented in the literature, but similar to those causing toxicity in a previous study. Our experimental model is a small estuarine fish, the mummichog (Fundulus heteroclitus), exposed as individually tagged fish held in small groups (2 male, 2 female) in replicate tanks and fed contaminated food from day 0-28, followed by uncontaminated food from day 29-42. Throughout the experiment, individual growth was measured weekly, and at various time points, fish from replicate tanks were sacrificed, measured and dissected. To support putative AOPs, samples were obtained for analysis of hormone levels and transcriptomic responses

  20. Optimizing fish sampling for fish - mercury bioaccumulation factors

    USGS Publications Warehouse

    Scudder Eikenberry, Barbara C.; Riva-Murray, Karen; Knightes, Christopher D.; Journey, Celeste; Chasar, Lia C.; Brigham, Mark E.; Bradley, Paul M.

    2015-01-01

    Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop Total Maximum Daily Load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to sampling and data-treatment methods. Data collected by fixed protocol from 11 streams in 5 states distributed across the US were used to assess the effects of Hgfish normalization/standardization methods and fish sample numbers on BAF estimates. Fish length, followed by weight, was most correlated to adult top-predator Hgfish. Site-specific BAFs based on length-normalized and standardized Hgfish estimates demonstrated up to 50% less variability than those based on non-normalized Hgfish. Permutation analysis indicated that length-normalized and standardized Hgfish estimates based on at least 8 trout or 5 bass resulted in mean Hgfish coefficients of variation less than 20%. These results are intended to support regulatory mercury monitoring and load-reduction program improvements.

  1. Heavy metal bioaccumulation and toxicity with special reference to microalgae

    NASA Astrophysics Data System (ADS)

    Arunakumara, K. K. I. U.; Zhang, Xuecheng

    2008-02-01

    The bioaccumulation and toxicity of heavy metals were reviewed with special reference to microalgae, the key component of the food web in aquatic ecosystems. Heavy metals enter algal cells either by means of active transport or by endocytosis through chelating proteins and affect various physiological and biochemical processes of the algae. The toxicity primarily results from their binding to the sulphydryl groups in proteins or disrupting protein structure or displacing essential elements. Metals can break the oxidative balance of the algae, inducing antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and ascorbate peroxidase (APX). The amount of oxidized proteins and lipids in the algal cells thus indicates the severity of the stress. Algal tolerance to heavy metal is highly dependent upon the defense response against the probable oxidative damages. Production of binding factors and proteins, exclusion of metals from cells by ion-selective transporters and excretion or compartmentalization have been suggested with regard to reducing heavy metal toxicity. However, a comprehensive description on the mechanisms underlining metal toxicity of microalgae and gaining tolerance is yet to be elaborated.

  2. Cadmium tolerance and bioaccumulation of 18 hemp accessions.

    PubMed

    Shi, Gangrong; Liu, Caifeng; Cui, Meicheng; Ma, Yuhua; Cai, Qingsheng

    2012-09-01

    Hemp (Cannabis sativa L.) is a fast-growing and high biomass producing plant species, which has been traditionally grown as multiple-use crop and recently considered as an energy crop. In order to screen accessions that can be cultivated in cadmium (Cd)-contaminated soils for biodiesel production, the ability of Cd tolerance and bioaccumulation of 18 hemp cultivars or ecotypes were evaluated in pot experiment under 25 mg Cd kg(-1) (dry weight, DW) soil condition, in terms of plant growth, pigment contents, chlorophyll fluorescence, and Cd accumulation at 45 days after seedling emergence. Results showed that seedlings of all cultivars, except USO-31, Shenyang and Shengmu, could grow quite well under 25 mg Cd kg(-1) (DW) soil condition. Among them, Yunma 1, Yunma 2, Yunma 3, Yunma 4, Qujing, Longxi, Lu'an, Xingtai, and Shuyang showed great biomass (>0.5 g plant(-1)), high tolerance factors (68.6-92.3%), and little reduction of pigment content and chlorophyll fluorescence under 25 mg Cd kg(-1) (DW) soil stress, indicating these cultivars had a strong tolerance to Cd stress and could be cultivated in Cd-contaminated soils. Cultivars Longxi, Lu'an, Xingtai, Yunma 2, Yunma 3, Yunma 4, and Qujing exhibited higher Cd concentrations and total Cd in shoots. These cultivars, therefore, are good candidates for the implementation of the new strategy of cultivating biodiesel crops for phytoremediation of Cd-contaminated soils.

  3. Triclosan: current status, occurrence, environmental risks and bioaccumulation potential.

    PubMed

    Dhillon, Gurpreet Singh; Kaur, Surinder; Pulicharla, Rama; Brar, Satinder Kaur; Cledón, Maximiliano; Verma, Mausam; Surampalli, Rao Y

    2015-05-22

    Triclosan (TCS) is a multi-purpose antimicrobial agent used as a common ingredient in everyday household personal care and consumer products. The expanded use of TCS provides a number of pathways for the compound to enter the environment and it has been detected in sewage treatment plant effluents; surface; ground and drinking water. The physico-chemical properties indicate the bioaccumulation and persistence potential of TCS in the environment. Hence, there is an increasing concern about the presence of TCS in the environment and its potential negative effects on human and animal health. Nevertheless, scarce monitoring data could be one reason for not prioritizing TCS as emerging contaminant. Conventional water and wastewater treatment processes are unable to completely remove the TCS and even form toxic intermediates. Considering the worldwide application of personal care products containing TCS and inefficient removal and its toxic effects on aquatic organisms, the compound should be considered on the priority list of emerging contaminants and its utilization in all products should be regulated.

  4. Bioaccumulation of human waterborne protozoa by zebra mussel (Dreissena polymorpha): interest for water biomonitoring.

    PubMed

    Palos Ladeiro, M; Aubert, D; Villena, I; Geffard, A; Bigot, A

    2014-01-01

    Cryptosporidium parvum, Giardia duodenalis and Toxoplasma gondii are ubiquitous pathogens, which waterborne transmission has been largely demonstrated. Since they can be found in various watercourses, interactions with aquatic organisms are possible. Protozoan detection for watercourses biomonitoring is currently based on large water filtration. The zebra mussel, Dreissena polymorpha, is a choice biological model in ecotoxicological studies which are already in use to detect chemical contaminations in watercourses. In the present study, the zebra mussel was tested as a new tool for detecting water contamination by protozoa. In vivo exposures were conducted in laboratory experiments. Zebra mussel was exposed to various protozoan concentrations for one week. Detection of protozoa was realized by Taqman real time qPCR. Our experiments evidenced C. parvum, G. duodenalis and T. gondii oocyst bioaccumulation by mussels proportionally to ambient contamination, and significant T. gondii prevalence was observed in muscle tissue. To our knowledge, this is the first study that demonstrates T. gondii oocyst accumulation by zebra mussel. The results from this study highlight the capacity of zebra mussels to reveal ambient biological contamination, and thus to be used as a new effective tool in sanitary biomonitoring of water bodies.

  5. Determination of potentially bioaccumulating complex mixtures of organochlorine compounds in wastewater: a review.

    PubMed

    Contreras López, M Concepción

    2003-03-01

    Organic chlorine compounds can be persistent environmental contaminants and may be accumulated through the food chain to the aquatic organisms, to fish and humans, depending basically on their hydrophobic properties. Consequently, there is an interest to measure these organic compounds from both the scientific and regulatory communities. The analytical essays have been improved for measuring specific organic chlorine compounds that present the most toxicological potential (polychlorinated biphenyls [PCBs], certain pesticides and dioxins), although they are tedious and time-consuming procedures. The existing tests to measure adsorbable organic halogens (AOX) or extractable organic halogens (EOX) do not distinguish the more hydrophobic organic chlorine matter. The intention of this paper is to make a review of the existing methods to measure the potentially bioaccumulating organochlorine compounds (OCs) from wastewater and propose a methodology to a standardisation procedure for complex mixtures of OCs in wastewater, such as pulp mill effluents. A new method has been proposed for determining the most hydrophobic part of the extractable organic halogens (EOX(fob)), the lowest reported value is 0.6 microg/l, expressed as chloride, and the relative standard deviation at 20 microg/l is 7% on laboratory samples and 30% on real effluents. This new procedure could be a valuable tool to complement environmental risk assessment studies of wastewater discharges.

  6. Toxicity and bioaccumulation of soil PCBs in crickets: Comparison of laboratory and field studies

    SciTech Connect

    Paine, J.M.; McKee, M.J.; Ryan, M.E. . Cooperative Wildlife Research Lab. and Dept. of Zoology)

    1993-11-01

    Laboratory and field studies were used to investigate toxicity and bioaccumulation of PCBs in crickets exposed to contaminated soil. A 14-d laboratory soil bioassay with the house cricket (Acheta domesticus) yielded an LC50 of 1,200 ppm Aroclor 1254. Mean whole-body concentrations of Aroclor 1254 in exposed crickets were 11, 48, 92, 149, and 144 ppm for soil test concentrations of 100, 250, 500, 1,000, and 2,000 ppm, respectively. A whole-body concentration of about 150 ppm appears to be a threshold concentration above which acute mortality will be observed. House crickets placed in cages on a PCB-contaminated landfill accumulated 1.6 and 0.9 ppm of PCBs after 3 and 7 d of exposure, respectively. Although this represents a rapid uptake of PCBs, whole-body concentrations remained considerably below levels expected to cause acute mortality. Abundance of another species, the field cricket (Gryllus pennsylvanicus), was investigated using pitfall traps placed at the PCB-contaminated landfill and a reference site. No adverse effect on abundance was observed at the contaminated site, nor was pitfall trap success correlated to soil PCB concentration. These data indicate that PCBs in soil can rapidly move into epigeic fauna but that the likelihood of acquiring sufficient body burdens to cause acute mortality is low.

  7. Bioaccumulation of thallium in an agricultural soil as affected by solid-phase association

    NASA Astrophysics Data System (ADS)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin

    2016-04-01

    The work focused on the biogeochemical behavior of synthetic Tl modified phases, namely birnessite, ferrihydrite, and calcite, in a neutral soil Leptosol. The data presented here clearly demonstrate a strong relationship between the mineralogical position of Tl in the soil and its uptake by the studied plant (Sinapis alba L.). All tested Tl phases behaved as potential Tl sources in the rhizosphere, with a maximum for ferrihydrite and minimum for birnessite. Therefore, it can be concluded that Mn(III,IV) oxides, if present in the soil system, may reduce biological uptake of Tl to a substantial degree, including the case of Tl-accumulating species (i.e., Brassicaceae). It was proven that even Tl-enriched calcite present in the carbonate-rich soil is an important precursor for further contaminant mobilization, despite its relative resistance to degradation. Our data indicate that the fate of secondary Tl phases in the rhizosphere might be significantly influenced by the pH of the soil matrix, i.e., soils with lower pHs reduce their stability, making them more susceptible to further degradation by root exudates. Bulk soil mineralogy and the content and quality of SOM are thus suggested to be critical parameters controlling the bioaccumulation potential for Tl. This research was supported by the Czech Science Foundation (grant no. 14-01866S).

  8. Methylmercury cycling, bioaccumulation, and export from agricultural and non-agricultural wetlands in the Yolo Bypass

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Fleck, Jacob; Alpers, Charles N.; Ackerman, Josh; Eagles-Smith, Collin; Stricker, Craig; Stephenson, Mark; Feliz, David; Gill, Gary; Bachand, Philip; Brice, Ann; Kulakow, Robin

    2010-01-01

    d) Identification and testing of potential management approaches for reducing MeHg contamination. In addition, the quantitative results reported here assess the effect of current land use practices in the Yolo Bypass MeHg production, bioaccumulation and export, and provide process-based advice towards achieving current goals of the RWQCB-CVR's Sacramento -- San Joaquin Delta Estuary TMDL for Methyl & Total Mercury (Wood et al., 2010b). Further work is necessary to evaluate biotic exposure in the Yolo Bypass Wildlife Area at higher trophic levels (e.g. birds), to quantify winter hydrologic flux of MeHg to the larger Delta ecosystem, and to evaluate rice straw management options to limit labile carbon supplies to surface sediment during winter months. In summary, agricultural management of rice fields -- specifically the periodic flooding and production of easily degraded organic matter -- promotes the production of MeHg beyond rates seen in naturally vegetated wetlands, whether seasonally or permanently flooded., The exported load from MeHg from these agricultural wetlands may be controlled by limiting hydrologic export from fields to enhance on-site MeHg removal processes, but the tradeoff is that this impoundement increases Me Hg exposure to resident organisms.

  9. Evaluation of PCB bioaccumulation by Lumbriculus variegatus in field-collected sediments.

    PubMed

    Burkhard, Lawrence P; Mount, David R; Highland, Terry L; Hockett, J Russell; Norberg-King, Teresa; Billa, Nanditha; Hawthorne, Steven B; Miller, David J; Grabanski, Carol B

    2013-07-01

    Review of data from several contaminated sediment sites suggested that biota-sediment accumulation factors (BSAFs) declined with increasing contaminant concentrations in the sediment. To evaluate the consistency and possible causes of this behavior, polychlorinated biphenyl (PCB)-contaminated sediment samples from the Hudson, Grasse, and Fox River Superfund sites were used in sediment bioaccumulation tests with the freshwater oligochaete, Lumbriculus variegatus, with PCB concentrations in interstitial water (IW) quantified using polyoxymethylene passive samplers. Measured BSAFs tended to decrease with increasing PCB concentration in sediment, especially for the more highly chlorinated congeners. Measures of partitioning between sediment, IW, and oligochaetes showed that measured sediment-IW partition coefficients (KTOC ) tended to increase slightly with increasing sediment contamination, whereas the ratio of tissue PCB to IW PCB tended to decrease with increasing concentration in IW. Variation in accumulation among sediments was clearly influenced by bioavailability, as reflected by IW measurements, although the specific cause of varying KTOC was not clear. Calculated partitioning between IW and organism lipid (Klipid ) indicated that accumulation was generally 5 to 10-fold higher than would be predicted if Klipid was approximately equal to the n-octanol-water partition coefficient (KOW ). While affirming previous observations of decreasing BSAFs with increasing PCB contamination, the relatively shallow slope of the observed relationship in the current data may suggest that this concentration dependence is not a major uncertainty in sediment risk assessment, particularly if measurements of PCBs in IW are incorporated.

  10. Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms.

    PubMed

    Petersen, Elijah J; Pinto, Roger A; Landrum, Peter F; Weber, Walter J

    2009-06-01

    Increasing production of and application potentials for carbon nanotubes (CNTs) suggest these materials will enter soil and sediment ecosystems in significant masses in upcoming years. This may result in ecological risks, either from the presence of the CNTs themselves or, given their exceptional sorption capacities, from their effects on the fate and accumulation of concurrently present hydrophobic organic chemicals (HOCs). Here we test the influence of additions of single-walled CNTs (SWNTs) and multi-walled CNTs (MWNTs) to two different pyrene-contaminated soils on uptake of this HOC by earthworms (Eisenia foetida). The effects of nanotube additions to the soils were observed to be CNT concentration dependent, with 0.3 mg nanotubes per gram of soil having no impact, while 3.0 mg/g of SWNTs or MWNTs substantially decreased pyrene bioaccumulation from both contaminated soils. The presence of CNTs also affected pyrene elimination rates. After a 14-day exposure to pyrene-spiked soils, earthworms showed enhanced elimination rates in soils amended with 3.0 mg CNT/g but not 0.3 mg CNT/g. These results suggest that the presence of SWNTs or MWNTs in terrestrial ecosystems will have concentration-dependent effects on decreasing HOC accumulation by earthworms in a manner similar to that expected of most "hard" carbons.

  11. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in south china: Bioaccumulation factors, tissue distribution, and trophic transfer.

    PubMed

    Sun, Runxia; Luo, Xiaojun; Tang, Bin; Chen, Laiguo; Liu, Yu; Mai, Bixian

    2017-03-01

    Short chain chlorinated paraffins (SCCPs) are under review for inclusion into the Stockholm Convention on Persistent Organic Pollutants. However, limited information is available on their bioaccumulation and biomagnification in ecosystems, which is hindering evaluation of their ecological and health risks. In the present study, wild aquatic organisms (fish and invertebrates), water, and sediment collected from an enclosed freshwater pond contaminated by electronic waste (e-waste) were analyzed to investigate the bioaccumulation, distribution, and trophic transfer of SCCPs in the aquatic ecosystem. SCCPs were detected in all of the investigated aquatic species at concentrations of 1700-95,000 ng/g lipid weight. The calculated bioaccumulation factors (BAFs) varied from 2.46 to 3.49. The relationship between log BAF and the octanol/water partition coefficient (log KOW) for benthopelagic omnivorous fish species followed the empirical model of bioconcentration, indicating that bioconcentration plays an important role in accumulation of SCCPs. In contrast, the relationship for the benthic carnivorous fish and invertebrates was not consistent with the empirical model of bioconcentration, implying that the bioaccumulation of SCCPs in these species could be more influenced by other complex factors (e.g., habitat and feeding habit). Preferential distribution in the liver rather than in other tissues (e.g., muscle, gills, skin, and kidneys) was noted for the SCCP congeners with higher log KOW, and bioaccumulation pathway (i.e. water or sediment) can affect the tissue distribution of SCCP congeners. SCCPs underwent trophic dilution in the aquatic food web, and the trophic magnification factor (TMF) values of SCCP congener groups significantly correlated with their corresponding log KOW values (p < 0.0001). The present study results improved our understanding on the environmental behavior and fate of SCCPs in aquatic ecosystem.

  12. Critical body residues, Michaelis-Menten analysis of bioaccumulation, lethality and behaviour as endpoints of waterborne Ni toxicity in two teleosts.

    PubMed

    Leonard, Erin M; Marentette, Julie R; Balshine, Sigal; Wood, Chris M

    2014-03-01

    Traditionally, water quality guidelines/criteria are based on lethality tests where results are expressed as a function of waterborne concentrations (e.g. LC50). However, there is growing interest in the use of uptake and binding relationships, such as biotic ligand models (BLM), and in bioaccumulation parameters, such as critical body residue values (e.g. CBR50), to predict metal toxicity in aquatic organisms. Nevertheless, all these approaches only protect species against physiological death (e.g. mortality, failed recruitment), and do not consider ecological death which can occur at much lower concentrations when the animal cannot perform normal behaviours essential for survival. Therefore, we investigated acute (96 h) Ni toxicity in two freshwater fish species, the round goby (Neogobius melanostomus) and rainbow trout (Oncorhynchus mykiss) and compared LC, BLM, and CBR parameters for various organs, as well as behavioural responses (spontaneous activity). In general, round goby were more sensitive. Ni bioaccumulation displayed Michaelis-Menten kinetics in most tissues, and round goby gills had lower Kd (higher binding affinity) but similar Bmax (binding site density) values relative to rainbow trout gills. Round goby also accumulated more Ni than did trout in most tissues at a given exposure concentration. Organ-specific 96 h acute CBR values tended to be higher in round goby but 96 h acute CBR50 and CBR10 values in the gills were very similar in the two species. In contrast, LC50 and LC10 values were significantly higher in rainbow trout. With respect to BLM parameters, gill log KNiBL values for bioaccumulation were higher by 0.4-0.8 log units than the log KNiBL values for toxicity in both species, and both values were higher in goby (more sensitive). Round goby were also more sensitive with respect to the behavioural response, exhibiting a significant decline of 63-75 % in movements per minute at Ni concentrations at and above only 8 % of the LC50 value

  13. Use of trophic magnification factors and related measures to characterize bioaccumulation potential of chemicals.

    PubMed

    Conder, Jason M; Gobas, Frank A P C; Borgå, Katrine; Muir, Derek C G; Powell, David E

    2012-01-01

    Recent technical workgroups have concluded that trophic magnification factors (TMFs) are useful in characterizing the bioaccumulation potential of a chemical, because TMFs provide a holistic measure of biomagnification in food webs. The objectives of this article are to provide a critical analysis of the application of TMFs for regulatory screening for bioaccumulation potential, and to discuss alternative methods for supplementing TMFs and assessing biomagnification in cases where insufficient data are available to determine TMFs. The general scientific consensus is that chemicals are considered bioaccumulative if they exhibit a TMF > 1. However, comparison of study-derived TMF estimates to this threshold value should be based on statistical analyses such that variability is quantified and false positive and false negative errors in classification of bioaccumulation potential are minimized. An example regulatory decision-making framework is presented to illustrate the use of statistical power analyses to minimize assessment errors. Suggestions for considering TMF study designs and TMFs obtained from multiple studies are also provided. Alternative bioaccumulation metrics are reviewed for augmenting TMFs and for substituting in situations in which field data for deriving TMFs are unavailable. Field-derived, trophic level-normalized biomagnification factors (BMF(TL) s), biota-sediment accumulation factors (BSAF(TL) s), and bioaccumulation factors (BAF(TL) s) are recommended if data are available, because these measures are most closely related to the biomagnification processes characterized by TMFs. Field- and laboratory-derived BAFs and bioconcentration factors are generally less accurate in predicting biomagnification. However, bioconcentration factors and BAFs remain useful for characterizing bioaccumulation as a result of the transfer of chemicals from abiotic environmental compartments to lower trophic levels. Modeling that incorporates available laboratory

  14. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae

    PubMed Central

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-01-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag+, C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag+, and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs. PMID:27615743

  15. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae

    NASA Astrophysics Data System (ADS)

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-09-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag+, C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag+, and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs.

  16. A study of bioaccumulation occurring in a spatial and temporal aquatic environment

    SciTech Connect

    Feng, Y.; Bartell, S.M.; Miller, L.F.

    1995-12-31

    The impacts of spatial, temporal, and hydrodynamics on the bioaccumulation in the Chernobyl cooling lake were evaluated using a two-dimensional aquatic exposure assessment model. The model framework integrated spatial and temporal heterogeneity effects of radioactive environments, changes in abundance and distribution of aquatic populations, spatial and temporal dependent (or density-dependent) radionuclide ingestion rates, and population biomass changes. Plankton population growth was integrated into the hydrodynamic-transport model to determine the plankton biomass density change and distributions. The exposure estimation was conducted in a two-dimensional finite element mesh which was used in the hydrodynamic-transport model. Results indicated that bioaccumulation factors with the assumption of steady-state and homogeneous conditions significantly over-estimated the radionuclide concentration accumulated in fish. The impacts of changes of biomass distributions and variable ingestion rates on the bioaccumulation varied spatially and temporally. Results also revealed that a higher radiobiological turn-over rate could be a dominate factor in determining the radionuclide fate in biota when the ecological processes, such as population growth, were relatively slow. Two different predator-prey relationships were applied. Their impacts on the bioaccumulation of fish varied spatially and temporally. Overall, the results suggest that a more realistic physical description of contaminated environments and ecosystems is necessary in studying bioaccumulation occurring in nature.

  17. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae.

    PubMed

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-09-12

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag(+), C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag(+), and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs.

  18. The role of lipids in the bioaccumulation of hydrophobic chemicals in phytoplankton

    SciTech Connect

    Swackhamer, D.L.; Pfaff, J.

    1995-12-31

    Theory and empirical evidence suggest that bioaccumulation of hydrophobic organic compounds such as PCBs in aquatic foodwebs is largely controlled by partitioning of the chemical from water to the organism`s lipids. Thus bioaccumulation is modeled as a function of the octanol-water partition coefficient, Kow. However, data from this laboratory have shown that the bioaccumulation of PCBs in phytoplankton is not a simple function of Kow. Specifically, less hydrophobic compounds have bioaccumulation factors greater than predicted by Kow, and very hydrophobic chemicals have bioaccumulation factors independent of Kow. A series of experiments were conducted to determine the types of lipids found in phytoplankton, whether certain compounds had preferences for different types of lipids, and whether Kow is a good surrogate for phytoplankton lipid-water partition coefficients. The results indicate that phytoplankton lipids vary significantly in composition compared to fish lipids; compounds with different hydrophobicities have different affinities for different lipid compounds; and that lipid-water partition coefficients for polar lipids are less than Kow and may plateau at a maximum value.

  19. Role of benthic communities in organic contaminant transport and fate. 2: Bioaccumulation and biotransformation

    SciTech Connect

    Dickhut, R.M.; Schaffner, L.C.; Lay, P.W.; Mitra, S. |

    1994-12-31

    Numerous macrobenthic organisms from lower Chesapeake Bay have been observed to rapidly accumulate and transform a series of organic contaminants (OCs). Bioaccumulation and biotransformation vary both within and among major taxa, and with the OC physical-chemical properties. Bioaccumulation of OCs is rapid for various organisms regardless of feeding behavior indicating that uptake of contaminants from the dissolved phase may be important. Comparison of OC and metabolite body burdens to those in the corresponding sediment indicate three types of behavior for OC fluxes through the organisms over 56 days of exposure to contaminated sediments: steady state between contaminant uptake and elimination, faster uptake than elimination corresponding to bioaccumulation, and rapid loss relative to uptake, with decreasing bioaccumulation factors with time. OC loss mechanisms from operationally defined detectable pools in benthic biota may include: elimination of parent compound or metabolites, and binding of reactive metabolites to cellular structures. OC metabolite production and loss rates in benthic macrofauna from Chesapeake Bay are currently under investigation. Bioaccumulation and transformation of OCs by benthic organisms are of importance in determining their effects, including trophic transfer of organic pollutants, on aquatic ecosystems.

  20. Organochlorine bioaccumulation and trophic transfer model for the pilot whale in the northwest Atlantic

    SciTech Connect

    Weisbrod, A.V.; Shea, D.; Moore, M.J.; Stegeman, J.J.

    1995-12-31

    The goals of this project were: (1) to determine the level of organochlorine exposure to pilot whales; (2) to identify tissue and individual bioaccumulation patterns, and (3) to develop a predictive model to approximate contaminant bioaccumulation into blubber. Samples from eighteen pilot whales beached in 1990--91 on Cape Cod, MA were analyzed by GC/ECD and GC/MS for polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAHs). Individual congeners and total PCBs were identified and found to be high (ppm range) in several individuals. Blubber and liver differences in metabolizable PCB congeners correlate with differences in CYP 1A abundance and activity in mature vs. immature animals. ANOVA and cluster analyses were performed to identify specific bioaccumulation patterns. Pod or exposure conditions appear to be the most important factor in bioaccumulation in these whales. Maturity level, gender, and metabolizability also seem to influence bioaccumulation in various tissues. These patterns were applied in the development of a steady state mass balance model, which focuses on exposure differences rather than metabolic and gender influences. Using a range of environmental contaminant concentrations for seawater, plankton, squid and fish, the model`s low range of output values best approximated blubber residues.

  1. Bioaccumulation characteristics of perfluoroalkyl acids (PFAAs) in coastal organisms from the west coast of South Korea.

    PubMed

    Hong, Seongjin; Khim, Jong Seong; Wang, Tieyu; Naile, Jonathan E; Park, Jinsoon; Kwon, Bong-Oh; Song, Sung Joon; Ryu, Jongseong; Codling, Garry; Jones, Paul D; Lu, Yonglong; Giesy, John P

    2015-06-01

    Year-round monitoring for perfluoroalkyl acids (PFAAs) along the west coast of South Korea targeting long-term changes in water and coastal organisms has been conducted since 2008. In this study, we present the most recent 5-years of accumulated data and scrutinize the relationship between concentrations in water and biota highlighting bioaccumulation characteristics. Twelve individual PFAAs in samples of water (n=43) and biota (n=59) were quantified by use of HPLC-MS/MS after solid phase extraction. In recent years, concentrations of PFAAs in water have been generally decreasing, but profiles of relative concentrations of individual PFAAs vary among location and year. Bioaccumulation of PFAAs in various organisms including fishes, bivalves, crabs, gastropods, shrimps, starfish, and polychaetes varied among species. However, overall bioaccumulation of PFAAs was dependent on corresponding concentrations of PFAAs in water within an area. In organ-specific distributions of PFAAs, greater concentrations of PFAAs were found in intestine of fish (green eel goby). This result suggests that PFAAs are mainly accumulated via dietary exposure, while greater concentrations were found in gill and intestine of bivalve (oyster) which suggests both waterborne and dietary exposures to these organisms. Concentrations of PFAAs in biota did not decrease over time (2008-2010), indicating that continuing bioaccumulation followed by slow degradation or excretion of PFAAs accumulated in biota. Overall, spatio-temporal distributions of PFAAs in water and bioaccumulation characteristics seemed to be associated with recent restrictions of PFOS-based products and uses of PFBS-based substitutes.

  2. Bioaccumulation factor of {sup 137}Cs in some marine biotas from West Bangka Indonesia

    SciTech Connect

    Suseno, Heny

    2014-03-24

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34.

  3. Incorporating ecological data and associated uncertainty in bioaccumulation modeling: methodology development and case study.

    PubMed

    De Laender, Frederik; Van Oevelen, Dick; Middelburg, Jack J; Soetaert, Karline

    2009-04-01

    Bioaccumulation models predict internal concentrations of hydrophobic chemicals by incorporating key gain/loss processes reflecting the ecology of the exposed species and the characteristics of the chemical. Here, we propose a new methodology that uses ecological data and the principle of mass balance in food webs to estimate bioaccumulation in food webs. To this end, we combine linear inverse models (LIMs) that estimate food web flows based on mass balance with a mechanistic bioaccumulation model (OMEGA). In a case study we show that uncertainty ranges on bioaccumulation predictions were on average estimated a factor of 4 lower by LIM-OMEGA than by an OMEGA application that does not consider mass balance within food webs, most notably for chemicals with log Kow > 5, reflecting an increasing importance of uptake through food ingestion for those chemicals. Ranges of internal concentrations predicted by LIM-OMEGA were smaller in enclosures with fish, as strong predation pressure from the latter on mesozooplankton constrains food web flows and thus bioaccumulation.

  4. Significance of xenobiotic metabolism for bioaccumulation kinetics of organic chemicals in Gammarus pulex.

    PubMed

    Ashauer, Roman; Hintermeister, Anita; O'Connor, Isabel; Elumelu, Maline; Hollender, Juliane; Escher, Beate I

    2012-03-20

    Bioaccumulation and biotransformation are key toxicokinetic processes that modify toxicity of chemicals and sensitivity of organisms. Bioaccumulation kinetics vary greatly among organisms and chemicals; thus, we investigated the influence of biotransformation kinetics on bioaccumulation in a model aquatic invertebrate using fifteen (14)C-labeled organic xenobiotics from diverse chemical classes and physicochemical properties (1,2,3-trichlorobenzene, imidacloprid, 4,6-dinitro-o-cresol, ethylacrylate, malathion, chlorpyrifos, aldicarb, carbofuran, carbaryl, 2,4-dichlorophenol, 2,4,5-trichlorophenol, pentachlorophenol, 4-nitrobenzyl-chloride, 2,4-dichloroaniline, and sea-nine (4,5-dichloro-2-octyl-3-isothiazolone)). We detected and identified metabolites using HPLC with UV and radio-detection as well as high resolution mass spectrometry (LTQ-Orbitrap). Kinetics of uptake, biotransformation, and elimination of parent compounds and metabolites were modeled with a first-order one-compartment model. Bioaccumulation factors were calculated for parent compounds and metabolite enrichment factors for metabolites. Out of 19 detected metabolites, we identified seven by standards or accurate mass measurements and two via pathway analysis and analogies to other compounds. 1,2,3-Trichlorobenzene, imidacloprid, and 4,6-dinitro-o-cresol were not biotransformed. Dietary uptake contributed little to overall uptake. Differentiation between parent and metabolites increased accuracy of bioaccumulation parameters compared to total (14)C measurements. Biotransformation dominated toxicokinetics and strongly affected internal concentrations of parent compounds and metabolites. Many metabolites reached higher internal concentrations than their parents, characterized by large metabolite enrichment factors.

  5. Bioaccumulation factor of 137Cs in some marine biotas from West Bangka Indonesia

    NASA Astrophysics Data System (ADS)

    Suseno, Heny

    2014-03-01

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34.

  6. Cyclic volatile methylsiloxane bioaccumulation in flounder and ragworm in the Humber Estuary.

    PubMed

    Kierkegaard, Amelie; van Egmond, Roger; McLachlan, Michael S

    2011-07-15

    Cyclic volatile methylsiloxanes are being subjected to regulatory scrutiny as possible PBT chemicals. The investigation of bioaccumulation has yielded apparently contradictory results, with high laboratory fish bioconcentration factors on the one hand and low field trophic magnification factors on the other. In this study, octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were studied along with polychlorinated biphenyls (PCBs) in sediments, ragworm, and flounder from six sites in the Humber Estuary. Bioaccumulation was evaluated using multimedia bioaccumulation factors (mmBAFs) which quantified the fraction of the contaminant present in the aquatic environment that is transferred to the biota. PCB 180, a known strongly bioaccumulative chemical, was used as a benchmark. The mean mmBAF of D5 was about twice that of PCB 180 in both polycheates and flounder, while for D4 it was 6 and 14 times higher, respectively. The mmBAF of D6 was a factor 5-10 lower than that of PCB180. The comparatively strong multimedia bioaccumulation of D4 and D5, even in the absence of biomagnification, was explained by both compounds having a >100 times stronger tendency to partition into lipid rather than into organic carbon, while PCB 180 partitions to a similar extent into both matrices.

  7. Investigating arsenic bioavailability and bioaccumulation by the freshwater oligochaete Lumbriculus variegatus.

    PubMed

    Nasi, Marcelo; Piol, María N; Di Risio, Cecilia; Guerrero, Noemí R Verrengia

    2011-10-01

    The complex and variable composition of natural sediments makes it difficult to predict the bioavailability and bioaccumulation of sediment-bound contaminants. Several approaches, including an experimental model using artificial particles as analogues for natural sediments, have been proposed to overcome this problem. For this work, we applied this experimental device to investigate the uptake and bioaccumulation of As(III) by the freshwater oligochaete Lumbriculus variegatus. Five different particle systems were selected, and particle-water partition coefficients for As(III) were calculated. The influence of different concentrations of commercial humic acids was also investigated, but this material had no effect on bioaccumulation. In the presence of particulate matter, the bioaccumulation of As(III) by the oligochaetes did not depend solely on the levels of chemical dissolved but also on the amount sorbed onto the particles and the strength of that binding. This study confirms that the use of artificial particles may be a suitable experimental model for understanding the possible interactions that may occur between contaminants and particulate matter. In addition, it was found that the most hydrophobic resin induced an increase in arsenic bioavailability, leading to the highest bioaccumulation to L. variegatus compared with animals that were exposed to water only.

  8. Microfungi in highly copper-contaminated soils from an abandoned Fe-Cu sulphide mine: growth responses, tolerance and bioaccumulation.

    PubMed

    Zotti, Mirca; Di Piazza, Simone; Roccotiello, Enrica; Lucchetti, Gabriella; Mariotti, Mauro Giorgio; Marescotti, Pietro

    2014-12-01

    Copper is one of the most dangerous soil contaminants. Soils affected by high copper concentrations show low biodiversity and, above all, inadequate environmental quality. Microorganisms such as fungi can play a key role in metal-polluted ecosystems via colonization and decontamination. The study is devoted to characterize the microfungal community in highly Cu-contaminated bare soil from derelict Fe-Cu sulphide mines and to isolate microfungal strains able to tolerate and accumulate Cu. 11 Different taxa to be isolated has been isolated during two sampling campaigns (in Autumn and in Spring). Among these, Clonostachys rosea, Trichoderma harzianum, and Aspergillus alliaceus were tested at increasing Cu(II) concentrations and showed a Cu(II)-tolerance capability ranging from 100 to 400 mg L(-1). Moreover, the strains of T. harzianum and C. rosea presented a high Cu(II)-bioaccumulation capability, 19628 and 22,222 mg kg(-1), respectively. These microfungi may be fruitfully exploited in mycoremediation protocols.

  9. Prediction of ecotoxicological behavior of chemicals: relationship between n-octanol/water partition coefficient and bioaccumulation of organic chemicals by alga Chlorella

    SciTech Connect

    Geyer, H.; Politzki, G.; Freitag, D.

    1984-01-01

    The bioaccumulation potential of organic chemicals by the green alga Chlorella fusca was determined. A quantitative relationship was found to exist between the lipophilicity (n-octanol/water partition coefficient) of the chemicals and the bioaccumulation factor.

  10. Bioaccumulation of metals in fish of Salmonidae family and the impact on fish meat quality.

    PubMed

    Alibabić, Vildana; Vahcić, Nada; Bajramović, Melisa

    2007-08-01

    The study was aimed at determining the levels of metals in water samples and muscles of the fish caught in the Una River basin, located in the northwestern part of Bosnia and Herzegovina. For that purpose, three fish species: Brown Trout (Salmo trutta m. fario), Grayling (Thymallus thymallus) and Californian Trout (Salmo gairdneri), together with stem water samples, were analyzed for metal concentrations (Pb, Hg, Cd, As, Mn, Ni, Cu, Cr, Se, Co, Sn, Zn, Fe, Ca, P) during a 2-year period. The fish was captured using electric fishing, nets or fishing equipment. The capture was undertaken on three sites (the river source, the middle flow and the river mouth) of each of the five biggest rivers belonging to the Una River basin (Unac, Krusnica, Sana, Klokot, and Una). The concentrations of metals in each sample were determined via atomic absorption spectrophotometry. In the tested waters, the presence of Mn in concentrations higher than permitted (0.07 mg/l) had been detected. In the tested meat, the following average concentrations of metals (mg/kg) had been found: Pb (0.67), Cd (0.06), Mn (0.65), Ni (0.15), Cu (0.79), Cr (1.05), Se (0.03), Zn (8.92), Fe (5.40), Ca (14.68), and P (10.85). The correlation between Mn concentrations identified in the tested waters and those identified in the meat of Brown Trout was revealed to be statistically significant, which confirms that, over time, bioaccumulation of metals took place. Even though the results were not indicative of contamination, they strongly suggest that constant monitoring of the ecosystems in reference should be implemented.

  11. Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil.

    PubMed

    Lachance, Bernard; Renoux, Agnès Y; Sarrazin, Manon; Hawari, Jalal; Sunahara, Geoffrey I

    2004-06-01

    Soils contaminated with 2,4,6-trinitrotoluene (TNT) and TNT primary reduction products have been found to be toxic to certain soil invertebrates, such as earthworms. The mechanism of toxicity of TNT and of its by-products is still not known. To ascertain if one of the TNT reduction products underlies TNT toxicity, we tested the toxicity and bioaccumulation of TNT reduction products. 2-Amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), 2,4-diamino-6-nitrotoluene (2,4-DANT) and 2,6-diamino-4-nitrotoluene (2,6-DANT) were tested separately in adult earthworms (Eisenia andrei) following a 14-d exposure to amended sandy loam forest soil. TNT, 4-ADNT, and 2-ADNT were lethal to earthworms (14-d LC(50) were: 580, 531 and 1088 micromol kg(-1), or 132, 105 and 215 mgkg(-1) dry soil, respectively) and gave the following order of toxicity: 4-ADNT>TNT>2-ADNT. Exposure to 2,4-DANT and to 2,6-DANT caused no mortality at 600 micromol kg(-1) or 100 mgkg(-1) dry soil. We found that all four TNT reduction products accumulated in earthworm tissues and 2-ADNT reached the highest levels at 3.0+/-0.3 micromol g(-1) tissue. The 14-d bioaccumulation factors were 5.1, 6.4, 5.1 and 3.2 for 2-ADNT, 4-ADNT, 2,4-DANT and 2,6-DANT, respectively. Results also suggest that some TNT metabolites are at least as toxic as TNT and should be considered when evaluating the overall toxicity of TNT-contaminated soil to earthworms.

  12. Evaluation of field-generated accumulation factors for predicting the bioaccumulation potential of sediment-associated PAH compounds. Final report

    SciTech Connect

    McFarland, V.A.

    1995-07-01

    Equilibrium partitioning of neutral organic chemicals between the organic carbon fraction of bedded sediments and the lipids of resident organisms provides the theoretical basis for one of the most popular approaches to the development of sediment quality criteria (SQC) by the U.S. Environmental Protection Agency (EPA). The proposed equilibrium partitioning-based SQC seek to relate estimated doses of sediment-associated chemicals to toxicity in exposed biota. Criteria documents for several polynuclear aromatic hydrocarbon (PAH) compounds, endrin, and dieldrin have been released by the EPA for public review, and may soon be promulgated. A procedure recommended in the Implementation Manual (the Green Book) for public law regulating ocean disposal of dredged sediments (Section 103, Public Law 92-532, Marine Protection, Research, and Sanctuaries Act, the Ocean Dumping Act) has used equilibrium partitioning-based estimations to screen sediments for bioaccumulation potential for several years. The screening test, termed theoretical bioaccumulation potential, TBP, is also included in the draft manual for inland waters to implement dredged material testing requirements of the Clean Water Act. TBP employs an accumulation factor (AF), defined as the ratio at equilibrium of the organic carbon-normalized concentration of a neutral organic chemical in a sediment and the lipid-normalized concentration of the chemical in an exposed organism. The Green Book currently recommends using a universal AF =4 for all neutral chemicals, the rationale being that this value is suitably protective of all neutral chemicals, provided certain caveats are recognized. This study compared the predictive capability of PAH AFs derived from field data with that of the universal AF=4 in making TBP estimations.

  13. Bioaccumulation Potential of Contaminants from Bedded and Suspended Oakland Harbor Deepening Project Sediments to San Francisco Bay Flatfish and Bivalve Mollusks

    DTIC Science & Technology

    1994-08-01

    4,4’DDT. b. Aroclor 1254 ................ B6 Figure B 11. Contaminant concentrations in sediments. a. Dibutyltin . b. Tributyltin...bioaccumulation in organisms. a. Inner. b. Hot. c. Reference ............... B11 Figure B17. Dibutyltin bioaccumulation in organisms. a. Inner. b. Hot. c... Dibutyltin bioaccumulation from BS and S50. a. Inner. b. Hot. c. Reference ............ E17 Figure B23. Bioaccumulation of metals from Outer BS and S50

  14. Selenium speciation influences bioaccumulation in Limnodynastes peronii tadpoles.

    PubMed

    Lanctôt, C M; Melvin, S D; Cresswell, T

    2017-03-12

    Despite being essential for animal health and fitness, Se has a relatively narrow range between deficiency and toxicity, and excess Se can cause a variety of adverse effects in aquatic organisms. Amphibians are particularly vulnerable to contaminants during larval aquatic life stage, because they can accumulate toxic ions through various routes including skin, gills, lungs and digestive tract. Few attempts have been made to understand the tissue-specific accumulation of trace elements, including the impacts of chemical speciation in developing amphibian larvae. We used radiolabelled (75)Se to explore the biokinetics and tissue distributions of the two dominant forms occurring in surface waters, selenite (SeIV) and selenate (SeVI). Tadpoles of the native Australian frog Limnodynastes peronii were exposed to Se in both forms, and live-animal gamma spectroscopy was used to track accumulation and retention over time. Tissue biodistributions were also quantified at the end of the uptake and depuration phases. Results showed the bioconcentration of SeIV to be 3 times greater compared to SeVI, but rates of elimination were similar for both forms. This suggests a change of Se speciation within the organism prior to excretion. Depuration kinetics were best described by a one-phase exponential decay model, and tadpoles retained approximately 19% of the accumulated Se after 12 days of depuration in clean water. Selenium bioaccumulation was greatest in digestive and excretory organs, as well as the eye, which may directly relate to previously reported Se-induced impairments. Results demonstrate how the use of radiotracing techniques can significantly improve our understanding of trace element toxicokinetics and tissue distributions in developing amphibians. From an environmental monitoring perspective, the findings highlight the importance of considering chemical speciation as this could influence the accuracy of risk assessment.

  15. Bioaccumulation of heavy metals in macroinvertebrates living in stormwater wetlands

    SciTech Connect

    Karouna, N.K.; Sparling, D.W.

    1995-12-31

    The design of stormwater wetlands and ponds as wildlife habitats has prompted concern over the potential uptake of runoff contaminants by aquatic fauna. Stormwater wetlands provide a diverse array of habitat for aquatic macroinvertebrates. The importance of macroinvertebrates in aquatic communities has been well documented. Aquatic macroinvertebrates also serve as a major food source of many aquatic vertebrates, including fish and birds. The objectives of the study were to: (1) examine the responses of the macroinvertebrate community to water and sediment concentrations of heavy metals, and other water quality parameters; (2) determine whether macroinvertebrates living in stormwater wetlands bioaccumulate significant concentrations of heavy metals; (3) relate the concentrations of heavy metals in sediment, water and macroinvertebrates to land use in the surrounding watershed; (4) determine sediment and water toxicity to macroinvertebrates. Twenty stormwater wetlands, representing four land uses commercial, residential, highway and control, were monitored in this study. Water quality parameters, including pH, DO, turbidity, conductivity, hardness and metal concentrations were monitored bi-weekly for six months. Sediment samples were collected three times during the same period. Macroinvertebrate communities were sampled during alternate weeks after water collections. Ten-day sediment bioassays were conducted using the amphipod Hyalella azteca. Preliminary data analyses have indicated no significant difference in sediment and water metal concentrations between land uses. However, Zn concentrations in macroinvertebrates were significantly higher (p < 0.05) in wetlands serving commercial watersheds than in those serving the remaining three land uses. No differences have been detected in composition of invertebrate communities due to land use category.

  16. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms.

    PubMed

    Širić, Ivan; Humar, Miha; Kasap, Ante; Kos, Ivica; Mioč, Boro; Pohleven, Franc

    2016-09-01

    Heavy metals cause serious problems in the environment, and they can be accumulated in organisms, especially in the higher fungi. The concentration of Ni, Cr, Pb, Cd, and Hg in 10 species of edible mushrooms in Medvednica Nature Park, Croatia was therefore determined. In addition, the similarity between the studied species was determined by cluster analysis based on concentrations of the aforementioned metals in the fruiting bodies. The contents of nickel, chromium, lead, cadmium, and mercury in the fruiting bodies of mushrooms were obtained by X-ray fluorescence spectrometry. The highest concentrations of Ni (3.62 mg kg(-1)), Cr (3.01 mg kg(-1)), and Cd (2.67 mg kg(-1)) were determined in Agaricus campestris. The highest concentration of Pb (1.67 mg kg(-1)) was determined in Macrolepiota procera, and the highest concentration of Hg (2.39 mg kg(-1)) was determined in Boletus edulis. The concentration of all heavy metals significantly differed (p < 0.001) between examined saprophytic and ectomycorrhizal mushrooms. Considering anatomical part of the fruiting body (cap-stipe), a considerably higher concentration of the analyzed elements was found in the cap for all mushroom species. According to calculated bioconcentration factors, all the examined species were found to be bioexclusors of Ni, Cr, and Pb and bioaccumulators of Cd and Hg. Cluster analysis performed on the basis of the accumulation of the studied metals revealed great phenotypic similarity of mushroom species belonging to the same genus and partial similarity of species of the same ecological affiliation.

  17. Bioaccumulation of radionuclides in fertilized Canadian Shield lake basins.

    PubMed

    Bird, G A; Hesslein, R H; Mills, K H; Schwartz, W J; Turner, M A

    1998-07-11

    Radionuclide tracers of heavy metals (59Fe, 60Co, 65Zn, 75Se, 85Sr, 134Cs and 203Hg) representing potential contamination from nuclear power plants, industry and agriculture were added to separate basins of Lake 226, Experimental Lakes Area, northwestern Ontario. The two basins were part of a eutrophication experiment and differed in their trophic status; the north basin (L226N) was eutrophic whereas the south basin (L226S) was mesotrophic. Our objective was to determine the uptake of the radionuclides by biota and the effect of lake trophic status on their bioaccumulation. The trophic status of the lakes did not appear to have a marked effect on the accumulation of radionuclides by the biota. This may have been because of a mid-summer leakage of nutrients between the basins which enhanced primary production in L226S, because there is a time lag between primary production and the availability of the radionuclides to the fishes or because trophic status does not affect the uptake of at least some of these radionuclides. However, there was a tendency for faster uptake of the radionuclides in L226N by fish than L226S, but the differences were not significant. Concentrations in the biota generally decreased in the order: fathead minnow > pearl dace > tadpoles > slimy sculpin > leeches. Concentrations in biota generally decreased in the order. 65Zn > 203Hg > 75Se > 134Cs > 60Co > 85Sr = 59Fe. Cobalt-60 concentrations in tadpoles were greater than in the other biota. Radionuclide concentrations in the tissues of lake whitefish indicated that uptake was predominantly from food. Radionuclide concentrations were usually higher in the posterior gut, liver and kidney than in other tissues, whereas body burdens were generally high in the muscle for 75Se, 134Cs and 203Hg; kidney and gut for 60Co; and bone for 65Zn and 75Se. Mercury-203 burdens were also high in the bone and gut.

  18. UV filters bioaccumulation in fish from Iberian river basins.

    PubMed

    Gago-Ferrero, Pablo; Díaz-Cruz, M Silvia; Barceló, Damià

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/gd.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/gd.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04-0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web.

  19. Bioaccumulation and maternal transfer of mercury and selenium in amphibians.

    PubMed

    Bergeron, Christine M; Bodinof, Catherine M; Unrine, Jason M; Hopkins, William A

    2010-04-01

    Amphibian population declines have been documented worldwide and environmental contaminants are believed to contribute to some declines. Maternal transfer of bioaccumulated contaminants to offspring may be an important and overlooked mechanism of impaired reproductive success that affects amphibian populations. Mercury (Hg) is of particular concern due to its ubiquity in the environment, known toxicity to other wildlife, and complex relationships with other elements, such as selenium (Se). The objectives of the present study were to describe the relationships between total Hg (THg), methlymercury (MMHg), and Se in three amphibian species (Plethodon cinereus, Eurycea bislineata cirrigera, and Bufo americanus) along a Hg-polluted river and floodplain, and to determine if B. americanus maternally transfers Hg and Se to its eggs in a tissue residue-dependent manner. Total Hg and MMHg concentrations in all species spanned two orders of magnitude between the reference and contaminated areas, while Se concentrations were generally low in all species at both sites. Strong positive relationships between THg and MMHg in tissues of all species were observed throughout. Both Hg and Se were maternally transferred from females to eggs in B. americanus, but the percentage of the females' Hg body burden transferred to eggs was low compared with Se. In addition, Hg concentrations appeared to positively influence the amount of Se transferred from female to eggs. The present study is the first to confirm a correlation between Hg concentrations in female carcass and eggs in amphibians and among the first to describe co-transference of Se and Hg in an anamniotic vertebrate. The results suggest future work is needed to determine whether maternal transfer of Hg has transgenerational implications for amphibian progeny.

  20. Bioaccumulation and degradation of pentachloronitrobenzene in Medicago sativa.

    PubMed

    Li, Ying Ying; Yang, Hong

    2013-04-15

    Pentachloronitrobenzene (PCNB) is a fungicide belonging to the organochlorine family and used extensively in agriculture for crop production. Many studies have implied that PCNB has become an environmental concern due to its widespread contamination in eco-systems. However, whether PCNB is bioaccumulated, degraded and phytotoxic in plants is poorly understood. In this study, several alfalfa (Medicago sativa) cultivars were grown in soil with PCNB to investigate their absorption and catabolism, including PCNB residues in the soil and PCNB-induced toxic responses in plants. Alfalfa plants varied widely in their ability to accumulate and degrade PCNB. The degradation rate of PCNB was 66.26-77.68% after alfalfa growth in the soils for 20 d, while the rates in the control (soil without alfalfa) were only 48.42%. Moreover, concentrations of PCNB residues in the rhizosphere soil were significantly higher than those in the non-rhizosphere soils. Alfalfa exposed to 10 mg kg(-1) PCNB showed inhibited growth and oxidative damage, but the effects of PCNB on the cultivars differed significantly, indicating that the alfalfa cultivars have different tolerance to PCNB. Activities of invertase (INV), urease (URE), polyphenol oxidase (PPO), alkaline phosphatase (ALP) and acid phosphatase (ACP) were assayed in the treated soils and showed that the enzyme activities were altered after PCNB exposure. The URE, PPO, ALP and ACP activities were increased in soil following the planting of alfalfa. The objective of the study was to analyze the potential of different cultivars of alfalfa to accumulate and degrade PCNB from the contaminated soil.

  1. How Do High School Science Textbooks in Korea, Japan, and the U.S. Explain Bioaccumulation-Related Concepts?

    ERIC Educational Resources Information Center

    Kim, Heung-Tae; Kim, Jae Geun

    2013-01-01

    Although bioaccumulation-related concepts are important scientific knowledge, a study on whether high school textbooks include appropriate explanations has not been conducted. The present study investigated science and biology textbooks from Korea, Japan, and the U.S., focusing on how bioaccumulation-related concepts were defined, what types of…

  2. Spatial and temporal variation in mercury bioaccumulation by zooplankton in Lake Champlain (North America).

    PubMed

    Chen, Celia; Kamman, Neil; Williams, Jason; Bugge, Deenie; Taylor, Vivien; Jackson, Brian; Miller, Eric

    2012-02-01

    Trophic transfer of Hg across lakes within a region has been related to multiple environmental factors, but the nature of these relationships across distinct basins within individual large lakes is unknown. We investigated Hg bioaccumulation in zooplankton in basins of differing trophic status in Lake Champlain (Vermont, USA) to determine the strongest predictors of Hg bioaccumulation. Zooplankton were sampled in Malletts Bay (oligotrophic) and Missisquoi Bay (eutrophic) in 2005-2008. Zooplankton in the eutrophic basin had lower concentrations of total Hg and MeHg than those in the oligotrophic basin in all years but 2007, when no bloom occurred in Missisquoi. In addition, Hg concentrations in seston and small zooplankton, sampled during 2009 at 12 sites spanning the lake, decreased with increasing phytoplankton and zooplankton biomass. Thus, Hg bioaccumulation in zooplankton across basins in Lake Champlain is related to trophic status, as observed previously in multiple lake studies.

  3. Bioaccumulation of heavy metals in Liza saliens from the Esmoriz-Paramos coastal lagoon, Portugal.

    PubMed

    Fernandes, C; Fontaínhas-Fernandes, A; Peixoto, F; Salgado, M A

    2007-03-01

    Heavy metal (Cu and Zn) concentrations in liver, gills, and muscle of leaping grey mullet, Liza saliens, from the Portuguese Esmoriz-Paramos coastal lagoon were measured to evaluate their bioaccumulation as a function of sediment contamination. The highest metal concentrations were observed in the liver (254 mg Cu kg(-1)) and gills (114 mg Zn kg(-1)). Bioaccumulation factors (BAFs) were found to follow the order: Cu-liver>Cu-gills>Cu-muscle and Zn-gills>Zn-liver>Zn-muscle. The highest BAFs were observed in the organs mainly implicated in metal metabolism and a significant positive relationship was found between BAFs and fish age. These results suggest the loss of homeostatic capacity of L. saliens under chronic metal exposure leading to bioaccumulation. Furthermore, Cu-liver and Zn-gills accumulation can be good environmental indicators of metal stress in L. saliens.

  4. Relationship between the lability of sediment-bound Cd and its bioaccumulation in edible oyster.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita; Chennuri, Kartheek; Bardhan, Pratirupa

    2015-11-15

    A linkage between Cd speciation in sediments and its bioaccumulation in edible oyster (Crassostrea sp.) from a tropical estuarine system was established. Bioaccumulation of Cd in edible oyster increased with the increasing lability and dissociation rate constants of Cd-sediment complexes in the bottom sediments. Total Cd concentration in sediment was not a good indicator of Cd-bioavailability. Increasing trace metal competition in sediments increased lability and bioavailability of Cd in the tropical estuarine sediment. Low thermodynamic stability and high bioavailability of Cd in the estuarine sediment were responsible for high bioaccumulation of Cd in edible oysters (3.2-12.2mgkg(-1)) even though the total concentration of Cd in the bottom sediment was low (0.17-0.49mgkg(-1)).

  5. Effect of incorporation of uncertainty in PCB bioaccumulation factors on modeled receptor doses

    SciTech Connect

    Welsh, C.; Duncan, J.; Purucker, S.; Richardson, N.; Redfearn, A.

    1995-12-31

    Bioaccumulation factors (BAFs) are regularly employed in ecological risk assessments to model contaminant transfer through ecological food chains. The authors compiled data on bioaccumulation of PCBs in plants, invertebrates, birds, and mammals from published literature and used these data to develop regression equations relating soil or food concentrations to bioaccumulation. They then used Latin Hypercube simulation techniques and simple food chain models to incorporate uncertainty in the BAF regressions into the derivation of exposure dose estimates for selected wildlife receptors. The authors present their preliminary results in this paper. Dose estimates ranged over several orders of magnitude for herbivorous, insectivorous, and carnivorous receptors. These results suggest incorporating the uncertainty in BAF values into food chain exposure models could provide risk assessors and risk managers with information on the probability of a given outcome that can be used in interpreting the potential risks at hazardous waste sites.

  6. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    SciTech Connect

    Young, J.S.

    1986-07-01

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing /sup 60/Co and /sup 63/Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated.

  7. Factors controlling the bioaccumulation of mercury and methylmercury by the estuarine amphipod Leptocheirus plumulosus.

    PubMed

    Lawrence, A L; Mason, R P

    2001-01-01

    The bioaccumulation of inorganic mercury (HgI) and monomethylmercury (MMHg) by benthic organisms and subsequent trophic transfer couples the benthic and pelagic realms of aquatic systems and provides a mechanism for transfer of sedimentary contaminants to aquatic food chains. Experiments were performed to investigate the bioavailability and bioaccumulation of particle-associated HgI and MMHg by the estuarine amphipod Leptocheirus plumulosus to further understand the controls on bioaccumulation by benthic organisms. HgI and MMHg are particle reactive and have a strong affinity for organic matter, a potential food source for amphipods. Microcosm laboratory experiments were performed to determine the effects of organic matter on Hg bioaccumulation and to determine the major route of Hg uptake (i.e. sediment ingestion, uptake from water/porewater, or uptake from 'food'). Amphipods living in organic-rich sediment spiked with Hg accumulated less Hg than those living in sediments with a lower organic matter content. Feeding had a significant impact on the amount of HgI and MMHg accumulated. Similarly, amphipods living in water with little organic matter accumulated more Hg than those living in water with a greater percentage of organic matter. MMHg was more readily available for uptake than HgI. Experimental results, coupled with results from a bioaccumulation model, suggest that accumulation of HgI and MMHg from sediment cannot be accurately predicted based solely on the total Hg, or even the MMHg, concentration of the sediment, and sediment-based bioaccumulation factors. All routes of exposure need to be considered in determining the accumulation of HgI and MMHg from sediment to benthic invertebrates.

  8. Applicability of passive sampling to bioanalytical screening of bioaccumulative chemicals in marine wildlife.

    PubMed

    Jin, Ling; Gaus, Caroline; van Mourik, Louise; Escher, Beate I

    2013-07-16

    Quantification of bioaccumulative contaminants in biota is time and cost-intensive and the required extensive cleanup steps make it selective toward targeted chemical groups. Therefore tissue extracts prepared for chemical analysis are not amenable to assess the combined effects of unresolved complex mixtures. Passive equilibrium sampling with polydimethylsiloxane (PDMS) has the potential for unbiased sampling of mixtures, and the PDMS extracts can be directly dosed into cell-based bioassays. The passive sampling approach was tested by exposing PDMS to lipid-rich tissue (dugong blubber; 85% lipid) spiked with a known mixture of hydrophobic contaminants (five congeners of tetra- to octachloro-dibenzo-p-dioxins). The equilibrium was attained within 24 h. Lipid-PDMS partition coefficients (Klip-PDMS) ranged from 20 to 38, were independent of hydrophobicity, and within the range of those previously measured for organochlorine compounds. To test if passive sampling can be combined with bioanalysis without the need for chemical cleanup, spiked blubber-PDMS extracts were dosed into the CAFLUX bioassay, which specifically targets dioxin-like chemicals. Small quantities of lipids coextracted by the PDMS were found to affect the kinetics in the regularly applied 24-h bioassay; however, this effect was eliminated by a longer exposure period (72 h). The validated method was applied to 11 unspiked dugong blubber samples with known (native) dioxin concentrations. These results provide the first proof of concept for linking passive sampling of lipid-rich tissue with cell-based bioassays, and could be further extended to other lipid rich species and a wider range of bioanalytical end points.

  9. Bioaccumulation and toxicity of 4-nonylphenol (4-NP) and 4-(2-dodecyl)-benzene sulfonate (LAS) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta).

    PubMed

    Mäenpää, K; Kukkonen, J V K

    2006-05-10

    The discharge of surfactants, such as 4-nonylphenol (4-NP) and linear alkylbenzene sulfonates (LAS), into water bodies leads to accumulation of the chemicals in the sediments and may thus pose a problem to benthic organisms. To study the bioaccumulation of surfactants, Oligochaeta worm Lumbriculus variegatus was exposed to sediment-spiked, [14C]-labeled 4-NP and 4-(2-dodecyl)-benzene sulfonate (C12-LAS) in three different sediments (S1-S3). The sediments were characterized for organic carbon (OC) content and particle size distribution. The acute toxicity was examined by exposing L. variegatus and three to four instar Chironomus riparius (Insecta) larvae in water-only exposure to 4-NP and LAS at different concentrations. After 48-h exposure, lethal water concentrations (LC50) and lethal body residues (LBR50) were estimated using liquid scintillation counting. Chronic toxicity was evaluated in two different sediments by exposing first instar C. riparius larvae to sediment-spiked chemicals at different concentrations. After 10 days, the sublethal effects of surfactants were observed by measuring wet weight and head capsule length. Finally, another 10-day test was set up in order to measure the LAS body residues associated with sublethal effects in C. riparius in S2 sediment. The bioaccumulation test revealed that the bioaccumulation of both 4-NP and LAS increased as the sediment organic matter content decreased. It is assumed that the chemical binding to organic material decreased chemical bioavailability. The acute toxicity tests showed that L. variegatus was more tolerant of 4-NP, and C. riparius was more tolerant of LAS when based on water exposure concentration. The LBR-estimates revealed, however, that L. variegatus tolerated clearly higher tissue residues of both chemicals compared with C. riparius. Both chemicals had sublethal effects on C. riparius growth in sediment exposure, reducing larvae wet weight and head capsule size. 4-NP, however, showed an irregular

  10. Bioaccumulation Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010

    SciTech Connect

    Adams, Marshall; Brandt, Craig C; Fortner, Allison M

    2012-05-01

    In December 2008, an ash dike at the Tennessee Valley Authority (TVA) Kingston Fossil Plant ruptured, releasing over one billion gallons of coal fly ash into the Emory and Clinch Rivers. Coal fly ash may contain several contaminants of concern, but of these selenium (Se) and arsenic (As) have been highlighted because of their toxicity and tendency to bioaccumulate in aquatic food chains. To assess the potential impact of the spilled fly ash on humans and the environment, a comprehensive biological and environmental monitoring program was established, for which resident aquatic organisms (among other sample media) are collected to determine contaminant exposure and evaluate the risk to humans and wildlife. Studies on bioaccumulation and fish health are major components of the TVA Biological Monitoring Program for the Kingston fly ash project. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish species in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure (to metals) and effects on fish, (4) evaluating, along with information regarding other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology transfer or model study focused on how to best evaluate the environmental effects of fly ash, not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report summarizes the bioaccumulation results from the first two years of study after the fly ash spill, including

  11. Thermal inactivation of enteric viruses and bioaccumulation of enteric foodborne viruses in live oysters (Crassostrea virginica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human enteric viruses are one of the main causative agents of shellfish associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stability of the most predominant enteric viruses were determined in both tissue culture and in oyster tissues. A human nor...

  12. SOME BIOACCUMULATION FACTORS AND BIOTA-SEDIMENT ACCUMULATION FACTORS FOR POLYCYCLIC AROMATIC HYDROCARBONS IN LAKE TROUT

    EPA Science Inventory

    Bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs) for phenanthrene, fluoranthene, pyrene, benz[a]anthracene, and chrysene/triphenylene were calculated using the tissue data of Zabik et al. for Salvelinus namaycush siscovet with 20.5% lipid content, th...

  13. Sediment contamination and associates laboratory-measured bioaccumulation in New York/New Jersey waterways

    SciTech Connect

    Rosman, L.B.; Barrows, E.S.

    1995-12-31

    Sediments from 10 New York/New Jersey waterways within the Hudson-Raritan Estuary and Long Island Sound were collected to depths representative of dredging activity. Composited core sediments representing each waterway were analyzed for metals, PAHs, PCBs, and pesticides. To assess bioaccumulation, sand worms (Nereis virens) and blunt-nose clams (Macoma nasuta) were exposed for 28 days to sediment composites and to New York Bight sediment. Tissues were analyzed for the same constituents as the sediment samples. The results highlight the range and magnitude of sediment contamination in NY/NJ waterways. Concentrations of some metals in sediments, compared with NY Bight sediment, were at least 10 times higher. Total PAHs reached 30,000 {micro}g/kg (dry weight). The sum of DDT, DDD, and DDE, the dominant pesticides, exceeded 3,000{micro}g/kg (dry weight). Total PCBs approached 3,000 {micro}g/kg (dry weight). Tissues exposed to sediments from several waterways bioaccumulated organic compounds at concentrations 10 times greater than those exposed to New York Bight sediments. Metals were bioaccumulated to a lesser degree. The presence and extent of bioaccumulated contaminants, along with sediment chemistry and benthic toxicity, create a profile characterizing each waterway.

  14. INFLUENCES OF SEDIMENTARY ORGANIC MATTER QUALITY ON THE BIOACCUMULATION OF 4-NONYLPHENOL BY ESTUARINE AMPHIPODS

    EPA Science Inventory

    Nonylphenol (NP) is a moderately persistent, hydrophobic chemical (Log Kow 4.5) with endocrine disrupting and acute narcotic effects in aquatic biota. There is concern about the ultimate fate of NP in aquatic ecosystems and potential for bioaccumulation by benthic biota from the ...

  15. Organophosphorus and Organochlorine Pesticides Bioaccumulation by Eichhornia crassipes in Irrigation Canals in an Urban Agricultural System.

    PubMed

    Mercado-Borrayo, B M; Cram Heydrich, Silke; Pérez, Irma Rosas; Hernández Quiroz, Manuel; De León Hill, Claudia Ponce

    2015-01-01

    A natural wetland in Mexico City Metropolitan Area is one of the main suppliers of crops and flowers, and in consequence its canals hold a high concentration of organochlorine (OC) and organophosphorus (OP) pesticides. There is also an extensive population of water hyacinth (Eichhornia crassipes), which is considered a plague; but literature suggests water hyacinth may be used as a phytoremediator. This study demonstrates bioaccumulation difference for the OC in vivo suggesting their bioaccumulation is ruled by their log K(ow), while all the OP showed bioaccumulation regardless of their log K(ow). The higher bioaccumulation factors (BAF) of the accumulated OC pesticides cannot be explained by their log K(ow), suggesting that the OC pesticides may also be transported passively into the plant. Translocation ratios showed that water hyacinth is an accumulating plant with phytoremediation potential for all organophosphorus pesticides studied and some organochlorine pesticides. An equation for free water surface wetlands with floating macrophytes, commonly used for the construction of water-cleaning wetlands, showed removal of the pesticides by the wetland with room for improvement with appropriate management.

  16. BIOACCUMULATION AND BIOTRANSFORMATION OF CHIRAL TRIAZOLE FUNGICIDES IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    EPA Science Inventory

    There are very little data on the bioaccumulation and biotransformation of current-use pesticides (CUPs) despite the fact that such data are critical in assessing their fate and potential toxic effects in aquatic organisms. To help address this issue, juvenile rainbow trout (Onco...

  17. Biochemical basis of mercury remediation and bioaccumulation by Enterobacter sp. EMB21.

    PubMed

    Sinha, Arvind; Kumar, Sumit; Khare, Sunil Kumar

    2013-01-01

    The aims of this study were to isolate metal bioaccumulating bacterial strains and to study their applications in removal of environmental problematic heavy metals like mercury. Five bacterial strains belonging to genera Enterobacter, Bacillus, and Pseudomonas were isolated from oil-spilled soil. Among these, one of the strains Enterobacter sp. EMB21 showed mercury bioaccumulation inside the cells simultaneous to its bioremediation. The bioaccumulation of remediated mercury was confirmed by transmission electron microscopy and energy dispersive X-ray. The mercury-resistant loci in the Enterobacter sp. EMB21 cells were plasmid-mediated as confirmed by transformation of mercury-sensitive Escherichia coli DH5α by Enterobacter sp. EMB21 plasmid. Effect of different culture parameters viz-a-viz inoculum size, pH, carbon, and nitrogen source revealed that alkaline pH and presence of dextrose and yeast extract favored better remediation. The results indicated the usefulness of Enterobacter sp. EMB21 for the effective remediation of mercury in bioaccumulated form. The Enterobacter sp. EMB21 seems promising for heavy metal remediation wherein the remediated metal can be trapped inside the cells. The process can further be developed for the synthesis of valuable high-end functional alloy, nanoparticles, or metal conjugates from the metal being remediated.

  18. Modeling bioaccumulation and biotransformation of PAHs and PCBs by benthic macrofauna from lower Chesapeake Bay

    SciTech Connect

    Dickhut, R.M.; Schaffner, L.C.; Lay, P.; Mitra, S.

    1995-12-31

    The bioaccumulation and biotransformation of selected PAHs and PCBs from sediments spiked with radiolabeled compounds were examined in benthic communities from lower chesapeake Bay during summer and winter. Kinetic models were then used to determine the steady-state bioaccumulation factors (BAFs) for the parent compounds in various benthic macrofaunal organisms, as well as the BAFs of aqueous soluble metabolites that tended to accumulate in the animals. BAFs for the parent compounds increased with the octanol-water partition coefficient (K{sub ow}) of the compound up to a log K{sub ow} of approximately 6. However, in contrast to previous studies, the elimination rate constant was the dominant factor controlling the observed nonequilibrium with respect to bioaccumulation of the organic contaminants. Consequently, BAFs for the parent contaminants were related to the physical-chemical factors regulating passive elimination, as well as metabolic transformation of the parent compound. Aqueous soluble metabolite BAFs were directly related to the physical-chemical factors dictating the rate of formation of the conjugated complexes. Overall, body burdens of organic contaminants were higher in the summer relative to winter, as were the aqueous soluble metabolite fractions of contaminants in the animals, possibly indicating that organism activities as well as lipid pools are higher in summer compared to winter. The results indicate that a variety of physical, chemical, and biological factors interact in the ecosystem to dictate bioaccumulation and biotransformation of organic contaminants.

  19. Stereoselectivity in bioaccumulation and excretion of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae.

    PubMed

    Lv, Xiaotian; Liu, Chen; Li, Yaobin; Gao, Yongxin; Wang, Huili; Li, Jianzhong; Guo, Baoyuan

    2014-09-01

    Stereoselectivity in bioaccumulation and excretion of stereoisomers of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae through dietary exposure was investigated. Liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method that use a ChiralcelOD-3R[cellulosetris-Tris-(3, 5-dichlorophenyl-carbamate)] chromatography column was applied to carry out chiral separation of the stereoisomers. Wheat bran was spiked with racemic epoxiconazole at two dose levels of 20mg/kg and 2mg/kg (dry weight) to feed T. molitor larvae. The results showed that both the doses of epoxiconazole were taken up by Tenebrio molitor larvae rapidly at the initial stages. There was a significant trend of stereoselective bioaccumulation in the larvae with a preferential accumulation of (-)-epoxiconazole in the 20mg/kg dose. The stereoselectivity in bioaccumulation in the 2mg/kg dosage was not obvious compared to the 20mg/kg group. Results of excretion indicated an active excretion is an important pathway for the larvae to eliminate epoxiconazole which was a passive transport process with non stereoselectivity. The faster elimination might be the reason for the low accumulation of epoxiconazole, as measured by bioaccumulation factor (BAF).

  20. Differences in copper bioaccumulation and biological responses in three Mytilus species.

    PubMed

    Brooks, Steven J; Farmen, Eivind; Heier, Lene Sørlie; Blanco-Rayón, Esther; Izagirre, Urtzi

    2015-03-01

    Mytilus species are important organisms in marine systems being highly abundant and widely distributed along the coast of Europe and worldwide. They are typically used in biological effects studies and have a suite of biological effects endpoints that are frequently measured and evaluated for stress effects in laboratory experiments and field monitoring programmes. Differences in bioaccumulation and biological responses of the three Mytilus species following exposure to copper (Cu) were investigated. A laboratory controlled exposure study was performed with three genetically confirmed Mytilus species; M. galloprovincialis, M. edulis and M. trossulus. Chemical bioaccumulation and biomarkers were assessed in all three Mytilus species following a 4 day and a 21 day exposure to waterborne copper concentrations (0, 10, 100 and 500μg/L). Differences in copper bioaccumulation were measured after both 4 and 21 days, which suggests some physiological differences between the species. Furthermore, differences in response for some of the biological effects endpoints were also found to occur following exposure. These differences were discussed in relation to either real physiological differences between the species or merely confounding factors relating to the species natural habitat and seasonal cycles. Overall the study demonstrated that differences in chemical bioaccumulation and biomarker responses between the Mytilus spp. occur with potential consequences for mussel exposure studies and biological effects monitoring programmes. Consequently, the study highlights the importance of identifying the correct species when using Mytilus in biological effects studies.

  1. BIOACCUMULATION, BIOTRANSFORMATION, AND METABOLITE FORMATION OF FIPRONIL AND CHIRAL LEGACY PESTICIDES IN RAINBOW TROUT

    EPA Science Inventory

    To assess the fate of current-use pesticides it is important to understand their bioaccumulation and biotransformation by aquatic biota. We examined the dietary accumulation and enantioselective biotransformation of the chiral current-use pesticide fipronil, along with a mixture ...

  2. Experts Workshop on the Ecotoxicological Risk Assessment of Ionizable Organic Chemicals: Bioaccumulation/ADME

    EPA Science Inventory

    The bioaccumulation potential of neutral organic chemicals (e.g., PCBs, DDT, brominated flame retardants) has received a great deal of attention from scientists in the field of environment toxicology and chemistry over the past four decades. Regulations based on our understanding...

  3. Influence of environmental variables on bioaccumulation of mercury. Environmental effects of dredging. Technical note

    SciTech Connect

    Clarkks, J.; Lutz, C.; McFarland, V.

    1988-12-01

    The purpose of this note examines the effects of environmental factors on the bioavailability of mercury from sediment and describes results of a laboratory experiment to assess the influence of temperature, salinity, and suspended sediment on bioaccumulation of mercury in estuarine clams and killifish.

  4. Bioaccumulation and oxidative stress in Daphnia magna exposed to arsenite and arsenate.

    PubMed

    Fan, Wenhong; Ren, Jinqian; Li, Xiaomin; Wei, Chaoyang; Xue, Feng; Zhang, Nan

    2015-11-01

    Arsenic pollution and its toxicity to aquatic organisms have attracted worldwide attention. The bioavailability and toxicity of arsenic are highly related to its speciation. The present study investigated the differences in bioaccumulation and oxidative stress responses in an aquatic organism, Daphnia magna, induced by 2 inorganic arsenic species (As(III) and As(V)). The bioaccumulation of arsenic, Na(+) /K(+) -adenosine triphosphatase (ATPase) activity, reactive oxygen species (ROS) content, total superoxide dismutase (SOD) activity, total antioxidative capability, and malondialdehyde content in D. magna were determined after exposure to 500 µg/L of arsenite and arsenate for 48 h. The results showed that the oxidative stress and antioxidative process in D. magna exposed to arsenite and arsenate could be divided into 3 phases, which were antioxidative response, oxidation inhibition, and antioxidative recovery. In addition, differences in bioaccumulation, Na(+) /K(+) -ATPase activity, and total SOD activity were also found in D. magna exposed to As(III) and As(V). These differences might have been the result of the high affinity of As(III) with sulfhydryl groups in enzymes and the structural similarity of As(V) to phosphate. Therefore, arsenate could be taken up by organisms through phosphate transporters, could substitute for phosphate in biochemical reactions, and could lead to a change in the bioaccumulation of arsenic and activity of enzymes. These characteristics were the possible reasons for the different toxicity mechanisms in the oxidative stress process of arsenite and arsenate.

  5. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.).

    PubMed

    Besseling, Ellen; Wegner, Anna; Foekema, Edwin M; van den Heuvel-Greve, Martine J; Koelmans, Albert A

    2013-01-02

    It has been speculated that marine microplastics may cause negative effects on benthic marine organisms and increase bioaccumulation of persistent organic pollutants (POPs). Here, we provide the first controlled study of plastic effects on benthic organisms including transfer of POPs. The effects of polystyrene (PS) microplastic on survival, activity, and bodyweight, as well as the transfer of 19 polychlorinated biphenyls (PCBs), were assessed in bioassays with Arenicola marina (L.). PS was pre-equilibrated in natively contaminated sediment. A positive relation was observed between microplastic concentration in the sediment and both uptake of plastic particles and weight loss by A. marina. Furthermore, a reduction in feeding activity was observed at a PS dose of 7.4% dry weight. A low PS dose of 0.074% increased bioaccumulation of PCBs by a factor of 1.1-3.6, an effect that was significant for ΣPCBs and several individual congeners. At higher doses, bioaccumulation decreased compared to the low dose, which however, was only significant for PCB105. PS had statistically significant effects on the organisms' fitness and bioaccumulation, but the magnitude of the effects was not high. This may be different for sites with different plastic concentrations, or plastics with a higher affinity for POPs.

  6. Equilibrium sampling to determine the thermodynamic potential for bioaccumulation of persistent organic pollutants from sediment.

    PubMed

    Jahnke, Annika; MacLeod, Matthew; Wickström, Håkan; Mayer, Philipp

    2014-10-07

    Equilibrium partitioning (EqP) theory is currently the most widely used approach for linking sediment pollution by persistent hydrophobic organic chemicals to bioaccumulation. Most applications of the EqP approach assume (I) a generic relationship between organic carbon-normalized chemical concentrations in sediments and lipid-normalized concentrations in biota and (II) that bioaccumulation does not induce levels exceeding those expected from equilibrium partitioning. Here, we demonstrate that assumption I can be obviated by equilibrating a silicone sampler with chemicals in sediment, measuring chemical concentrations in the silicone, and applying lipid/silicone partition ratios to yield concentrations in lipid at thermodynamic equilibrium with the sediment (CLip⇌Sed). Furthermore, we evaluated the validity of assumption II by comparing CLip⇌Sed of selected persistent, bioaccumulative and toxic pollutants (polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB)) to lipid-normalized concentrations for a range of biota from a Swedish background lake. PCBs in duck mussels, roach, eel, pikeperch, perch and pike were mostly below the equilibrium partitioning level relative to the sediment, i.e., lipid-normalized concentrations were ≤CLip⇌Sed, whereas HCB was near equilibrium between biota and sediment. Equilibrium sampling allows straightforward, sensitive and precise measurement of CLip⇌Sed. We propose CLip⇌Sed as a metric of the thermodynamic potential for bioaccumulation of persistent organic chemicals from sediment useful to prioritize management actions to remediate contaminated sites.

  7. Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil

    SciTech Connect

    van Gestel, C.A.; Ma, W.C.

    1988-06-01

    The acute toxicity of five chlorophenols for two earthworm species was determined in two sandy soils differing in organic matter content and the results were compared with adsorption data. Adsorption increased with increasing organic matter content of the soils, but for tetra- and pentachlorophenol was also influenced by soil pH. Earthworm toxicity was significantly higher in the soil with a low level of organic matter. This difference disappeared when LC50 values were recalculated to concentrations in soil solution using adsorption data. Eisenia fetida andrei showed LC50 values lower than those of Lumbricus rubellus although bioaccumulation was generally higher in the latter species. Toxicity and bioaccumulation based on soil solution concentrations increased with increasing lipophilicity of the chlorophenols. The present results indicate that the toxicity and bioaccumulation and therefore the bioavailability of chlorophenols in soil to earthworms are dependent on the concentration in soil solution and can be predicted on the basis of adsorption data. Both the toxicity of and bioaccumulation data on chlorophenols in earthworms demonstrated surprisingly good agreement with those on chlorophenols in fish.

  8. Modulation of cadmium bioaccumulation and enhancing cadmium tolerance in Pichia kudriavzevii by sodium chloride preincubation.

    PubMed

    Ma, Ning; Li, Chunsheng; Zhang, Dandan; Yu, Jinzhi; Xu, Ying

    2016-07-01

    Application of growing microorganisms for cadmium removal is limited by the sensitivity of living cells to cadmium. The effects of sodium chloride (NaCl) preincubation on the cadmium bioaccumulation and tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae were investigated in this study. NaCl preincubation significantly reduced the intracellular and cell-surface cadmium bioaccumulation of P. kudriavzevii at both 6 and 20 mg L(-1) cadmium, while no obvious effect was observed in S. cerevisiae except that the intracellular cadmium bioaccumulation at 20 mg L(-1) cadmium was reduced obviously by 20-60 g L(-1)  NaCl. For both yeasts, the improved contents of protein and proline after NaCl preincubation contributed to the cadmium tolerance. The thiol contents in P. kudriavzevii under cadmium stress were alleviated by NaCl preincubation, which might be due to the decrease of intracellular cadmium bioaccumulation. NaCl preincubation enhanced the contents of glycerol and trehalose in P. kudriavzevii under cadmium stress, while no acceleration was observed in S. cerevisiae. The results suggested that NaCl preincubation could be applied in cadmium removal by growing P. kudriavzevii to increase the cadmium tolerance of the yeast.

  9. Pharmaceutical bioaccumulation by periphyton and snails in an effluent-dependent stream during an extreme drought.

    PubMed

    Du, Bowen; Haddad, Samuel P; Scott, W Casan; Chambliss, C Kevin; Brooks, Bryan W

    2015-01-01

    Increasing evidence indicates that pharmaceutical bioaccumulate in fish collected downstream from municipal wastewater effluent discharges. However, studies of pharmaceutical bioaccumulation by other aquatic organisms, including primary producers (e.g., periphyton) and grazers (e.g., snails), are lacking in wadeable streams. Here, we examined environmental occurrence and bioaccumulation of a range of pharmaceuticals and other contaminants of emerging concern in surface water, a common snail (Planorbid sp.) and periphyton from an effluent-dependent stream in central Texas, USA, during a historic drought, because such limited dilution and instream flows may represent worst-case exposure scenarios for aquatic life to pharmaceuticals. Water and tissue samples were liquid-liquid extracted and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization. Target analytes included 21 pharmaceuticals across multiple drug classes and 2 pharmacologically active metabolites. Several pharmaceuticals were detected at up to 4.7 μg kg(-1) in periphyton and up to 42 μg kg(-1) in Planorbid sp. We then identified limitations of several bioconcentration factor and bioaccumulation factor models, developed for other invertebrates, to assist interpretation of such field results. Observations from the present study suggest that waterborne exposure to pharmaceuticals may be more important than dietary exposure for snails.

  10. Forecasting fish biomasses, densities, productions, and bioaccumulation potentials of Mid-Atlantic wadeable streams

    EPA Science Inventory

    Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the BASS bioaccumulation and fish community model and data collected by the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP)....

  11. Bioaccumulation of perfluorochemicals in sediments by the aquatic oligochaete Lumbriculus variegatus.

    PubMed

    Higgins, Christopher P; McLeod, Pamela B; MacManus-Spencer, Laura A; Luthy, Richard G

    2007-07-01

    Bioaccumulation of perfluoroalkyl sulfonates, perfluorocarboxylates, and 2-(N-ethylperfluorooctane sulfonamido) acetic acid (N-EtFOSAA) from laboratory-spiked and contaminated field sediments was assessed using the freshwater oligochaete, Lumbriculus variegatus. Semistatic batch experiments were conducted to monitor the biological uptake of these perfluorochemicals (PFCs) over 56 days. The elimination of PFCs was measured as the loss of PFCs in L. variegatus exposed to PFC-spiked sediment for 28 days and then transferred to clean sediment. The resultant data suggest that PFCs in sediments are readily bioavailable and that bioaccumulation from sediments does not continually increase with increasing perfluorocarbon chain length. Perfluorooctane sulfonate (PFOS) and perfluorononanoate were the most bioaccumulative PFCs, as measured by laboratory-based estimated steady-state biota sediment accumulation factors (BSAFs) and BSAFs measured using contaminated field sediments. Elimination rate constants for perfluoroalkyl sulfonates and perfluorocaroboxylates were generally smaller than those previously measured for other organic contaminants. Last, a PFOS precursor, N-EtFOSAA, accumulated in the worm tissues and appeared to undergo biotransformation to PFOS and other PFOS precursors. This suggests that N-EtFOSAA, which has been detected in sediments and sludge often at levels exceeding PFOS, may contribute to the bioaccumulation of PFOS in aquatic organisms.

  12. Exploring the Use of Multimedia Fate and Bioaccumulation Models to Calculate Trophic Magnification Factors (TMFs)

    EPA Science Inventory

    The trophic magnification factor (TMF) is considered to be a key metric for assessing the bioaccumulation potential of organic chemicals in food webs. Fugacity is an equilibrium criterion and thus reflects the relative thermodynamic status of a chemical in the environment and in ...

  13. Annual flooding and fish-mercury bioaccumulation in the environmentally impacted Rio Madeira (Amazon).

    PubMed

    Bastos, Wanderley R; de Almeida, Ronaldo; Dórea, José G; Barbosa, Antonio C

    2007-04-01

    Regular annual flooding of the Amazonian rivers changes the aquatic environment affecting fish feeding strategies. The Rio Madeira has been greatly impacted by deforestation for agricultural projects, damming for a hydroelectric power plant, and alluvial gold extraction. We studied fish-Hg concentrations within defined weight ranges of representative species at the top of the food web, comparing high and low water seasons. Selected piscivorous species (Cichla spp, Hoplias malabaricus, Pinirampus pirinampu, Serrasalmus spp) showed a large variation of Hg concentrations but only "traíra" (Hoplias malabaricus) showed a statistically significant difference between seasons. However, the bioaccumulation trends during high and low waters were similar for "tucunaré" (Cichla spp) and "traíra" (Hoplias malabaricus) but different for "piranhas" (Serrasalmus spp), "barba chata" (Pinirampus pirinampu) and the detritivorous Prochilodus nigricans. Fish-Hg bioaccumulation is species specific; changes in feeding strategies brought by flooding seasons can change the bioaccumulation pattern without systematically affecting the overall accrual of methylmercury in tertiary consumer species. It appears that naturally occurring Hg and the high sediment load of the Rio Madeira are secondary factors in the Hg bioaccumulation pattern of fish species at the top of the food chain.

  14. ENHANCED BIOACCUMULATION OF HEAVY METAL BY BACTERIA CELLS DISPLAYING SYNTHETIC PHYTOCHELATINS. (R827227)

    EPA Science Inventory

    A novel strategy using synthetic phytochelatins is described for the purpose of developing microbial agents for enhanced bioaccumulation of toxic metals. Synthetic genes encoding for several metal-chelating phytochelatin analogs (Glu-Cys)nGly (EC8 (n = 8), EC11 (n = 11...

  15. Methylmercury in Marine Ecosystems: Spatial Patterns and Processes of Production, Bioaccumulation, and Biomagnification

    EPA Science Inventory

    The spatial variation of MeHg production, bioaccumulation and biomagnification in marine food webs is poorly characterized but critical to understanding the links between sources and higher trophic levels such as fish that are ultimately vectors of human and wildlife exposure. Th...

  16. MICHTOX: A MASS BALANCE AND BIOACCUMULATION MODEL FOR TOXIC CHEMICALS IN LAKE MICHIGAN

    EPA Science Inventory

    MICHTOX is a toxic chemical mass balance and bioaccumulation model for Lake Michigan. It was developed for USEPA's Region V in support of the Lake Michigan Lake-wide Management Plan (LaMP) to provide guidance on expected water quality improvements in response to critical pollutan...

  17. Use of the clam Asaphis deflorata as a potential indicator of organochlorine bioaccumulation in Hong Kong coastal sediments.

    PubMed

    Moganti, Shanti; Richardson, Bruce J; McClellan, Katherine; Martin, Michael; Lam, Paul K S; Zheng, Gene J

    2008-01-01

    In order to test its ability as a bioaccumulator, the deposit feeding clam Asaphis deflorata, collected from a clean coastal area in Hong Kong (Ding Chau, Ma On Shan), was exposed to field-collected sediments representing a gradient of contamination. Sediments were collected from four sites, namely Shek O in the southeast of Hong Kong Island, Ap Lei Chau in Aberdeen district, Tai Kok Tsui in the Mong Kok waterfront, and To Kwa Wan near Kowloon City pier. Shek O was the cleanest and To Kwa Wan was the most polluted site. Replicate 30L fiberglass tanks containing equal numbers of organisms were maintained for 28 days, with equal quantities of sediment and filtered seawater. Prior to this the animals were depurated for 10 days in clean sediment. During the 28-day holding period, sampling of both sediment and clams was performed on days 0, 10 and 28, along with condition index measurements. Concentrations of organochlorine pesticides and PCBs in sediments showed that Shek O was the cleanest of the sites, followed by Ap Lei Chau, Tai Kok Tsui and To Kwa Wan. There were marked differences among the sites, especially in PAH concentrations, with To Kwa Wan showing extremely high sediment concentrations. Following exposure, the biota concentrations of various organochlorine pesticides and PCBs suggested that there was sediment concentration-dependent accumulation by A. deflorata on day 10 of the experiment. However, there was no significant increase on day 28 for any of the compounds tested. Contaminant concentrations in clams feeding on Shek O sediments were minimal and almost the same on all sampling days, indicating the presence of only baseline contaminant concentrations. The condition indices (CI) of the clams on various sampling days showed that the animals were relatively more stable in sediment from Shek O. There were some deaths in all the test tanks (including those containing Shek O sediments). In addition, clams appeared to bury faster in the cleaner Shek O

  18. Does equilibrium passive sampling reflect actual in situ bioaccumulation of PAHs and petroleum hydrocarbon mixtures in aquatic worms?

    PubMed

    Muijs, Barry; Jonker, Michiel T O

    2012-01-17

    Over the past couple of years, several analytical methods have been developed for assessing the bioavailability of environmental contaminants in sediments and soils. Comparison studies suggest that equilibrium passive sampling methods generally provide the better estimates of internal concentrations in organisms and thus of subsequent risks. However, field studies to validate the potential of passive sampling to predict actual in situ bioaccumulation are scarce and limited information only exists on selected, individual compounds. The present study investigated whether bioaccumulation of PAH and complex petroleum hydrocarbon mixtures in field-exposed aquatic worms could be predicted properly with passive samplers. To this end, in situ bioaccumulation in aquatic worms at 6 PAH-contaminated locations and 8 petroleum hydrocarbon (oil)-contaminated locations was compared with the results of in situ solid phase micro extraction (SPME) applications. For the oil-contaminated sediments, bioaccumulation was also assessed in the lab with polyoxymethylene solid phase extraction (POM-SPE). Actual PAH bioaccumulation was generally predicted within a factor of 4 with in situ SPME, using temperature-adjusted SPME fiber-water partition coefficients and lab-derived bioaccumulation factors (BAFs) for the worm species used, demonstrating the method's potential under field conditions. In situ SPME appeared to be less suitable for predicting bioaccumulation of oil however, in contrast to POM-SPE in the lab, which assessed in situ oil bioaccumulation within a factor of 3, while also closely reflecting the actual distribution of oil boiling point fractions (the hydrocarbon block profile) as accumulated by the worms. All in all, the results indicated that (specific) equilibrium passive samplers, either applied in the field or the lab, have great potential for assessing bioaccumulation of environmental contaminant mixtures from field-contaminated sediments.

  19. Early lymphocyte recovery at 28 d post-transplant is predictive of reduced risk of relapse in patients with acute myeloid leukemia transplanted with peripheral blood stem cell grafts.

    PubMed

    Michelis, Fotios V; Messner, Hans A; Loach, David; Uhm, Jieun; Gupta, Vikas; Lipton, Jeffrey H; Seftel, Matthew D; Kuruvilla, John; Kim, Dennis D

    2014-10-01

    Allogeneic hematopoietic cell transplantation (HCT) is potentially curative for acute myeloid leukemia (AML). Impact of lymphocyte recovery on post-transplant outcomes has been suggested but reports are conflicting. We evaluated the impact of lymphocyte recovery at 28 d post-HCT in 191 AML patients using peripheral blood stem cells as graft. Patients were divided into those with absolute lymphocyte count (ALC) ≥ 0.5 × 10(9) /L (n = 111, 58%; high ALC group) and those with ALC < 0.5 × 10(9) /L (n = 80, 42%; low ALC group), at day 28 post-transplant. With a median follow-up of 49 months, overall survival (OS) was significantly improved in the high ALC group (59% at 3 yr) vs. patients with low ALC (40% at 3 yr, P = 0.03). Cumulative incidence of relapse (CIR) was significantly lower in the high ALC group (16% at 3 yr) vs. low ALC group (36% at 3 yr, P = 0.001). Multivariable analysis for CIR demonstrated high ALC group as an independent factor decreasing relapse risk (P = 0.03, HR = 0.49, 95% CI = 0.26-0.92). Multivariable analysis for OS and non-relapse mortality did not demonstrate ALC ≥ 0.5 × 10(9) /L at 28 d post-transplant to be predictive. We conclude that lymphocyte recovery with ALC ≥ 0.5 × 10(9) /L at day 28 post-transplant is associated with less relapse in AML patients undergoing allogeneic peripheral blood HCT, but without survival benefit.

  20. Comparative performance evaluation of Aspergillus lentulus for dye removal through bioaccumulation and biosorption.

    PubMed

    Kaushik, Prachi; Malik, Anushree

    2013-05-01

    Dyes used in various industries are discharged into the environment and pose major environmental concern. In the present study, fungal isolate Aspergillus lentulus was utilized for the treatment of various dyes, dye mixtures and dye containing effluent in dual modes, bioaccumulation (employing growing biomass) and biosorption (employing pre-cultivated biomass). The effect of dye toxicity on the growth of the fungal isolate was studied through phase contrast and scanning electron microscopy. Dye biosorption was studied using first and second-order kinetic models. Effects of factors influencing adsorption and isotherm studies were also conducted. During bioaccumulation, good removal was obtained for anionic dyes (100 mg/l), viz. Acid Navy Blue, Fast Red A and Orange-HF dye (99.4 %, 98.8 % and 98.7 %, respectively) in 48 h. Cationic dyes (10 mg/l), viz. Rhodamine B and Methylene Blue, had low removal efficiency (80.3 % [48 h] and 92.7 % [144 h], respectively) as compared to anionic dyes. In addition to this, fungal isolate showed toxicity response towards Methylene Blue by producing larger aggregates of fungal pellets. To overcome the limitations of bioaccumulation, dye removal in biosorption mode was studied. In this mode, significant removal was observed for anionic (96.7-94.3 %) and cationic (35.4-90.9 %) dyes in 24 h. The removal of three anionic dyes and Rhodamine B followed first-order kinetic model whereas removal of Methylene Blue followed second-order kinetic model. Overall, fungal isolate could remove more than 90 % dye from different dye mixtures in bioaccumulation mode and more than 70 % dye in biosorption mode. Moreover, significant color removal from handmade paper unit effluent in bioaccumulation mode (86.4 %) as well as in biosorption mode (77.1 %) was obtained within 24 h. This study validates the potential of fungal isolate, A. lentulus, to be used as the primary organism for treating dye containing wastewater.

  1. Contrasting PCB bioaccumulation patterns among Lake Huron lake trout reflect basin-specific ecology.

    PubMed

    Paterson, Gordon; Ryder, Mark; Drouillard, Ken G; Haffner, G Douglas

    2016-01-01

    This study collected multiple age classes of lake trout from Lake Huron's Main Basin, Georgian Bay, and North Channel regions to compare and contrast top predator polychlorinated biphenyl (PCB) bioaccumulation patterns in separate compartments of the same ecosystem. Sum PCB concentrations were highest for Main Basin (260 ± 24.9 ng g(-1) wet wt) fish, followed by Georgian Bay (74.6 ± 16.2 ng g(-1) ) and North Channel (42.0 ± 3.3 ng g(-1)) fish. Discriminant functions analysis of lake trout PCB profiles and stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values clearly distinguished fish by location, indicating high degrees of basin fidelity throughout their lifetimes in addition to highly contrasting PCB bioaccumulation profiles. These unique profiles were not attributable to significant differences in lake trout lipid contents (p = 0.856) or trophic position (δ(15)N; p = 0.334), with rainbow smelt representing the primary prey across the basins. Furthermore, significant differences were observed among the basins for the relationships between PCB biomagnification factors and hydrophobicity. An empirical model for predicting PCB biomagnification in Lake Huron lake trout indicated that basin-specific population growth rates and prey abundances were significant for explaining these contrasting patterns of PCB bioaccumulation. The results of the present study are fundamental for understanding the role of ecology in legacy persistent organic pollutant (POP) bioaccumulation. Specifically, ecosystem characteristics such as prey abundances, foraging ecology, and ultimately consumer growth can regulate the variability of legacy POP bioaccumulation as observed within and among a wide range of freshwater ecosystems.

  2. Cross-basin comparison of mercury bioaccumulation in Lake Huron lake trout emphasizes ecological characteristics.

    PubMed

    Abma, Rachel A; Paterson, Gordon; McLeod, Anne; Haffner, G Doug

    2015-02-01

    Understanding factors influencing mercury (Hg) bioaccumulation in fish is important for examining both ecosystem and human health. However, little is known about how differing ecosystem and biological characteristics can drive Hg bioaccumulation in top predators. The present study compared and contrasted Hg bioaccumulation in multiple age classes of lake trout (Salvelinus namaycush) collected from each of Lake Huron's Georgian Bay, North Channel, and Main Basin regions. Mercury concentrations exhibited a basin specific pattern with Main Basin fish having the highest average concentration (0.19 ± 0.01 mg/kg), followed by Georgian Bay (0.15 ± 0.02 mg/kg), and North Channel (0.07 ± <0.01 mg/kg) fish. Age-related increases in Hg concentrations were observed across the 3 basins with North Channel fish exhibiting the slowest rate of Hg bioaccumulation. No significant difference was determined between the relationships describing Hg concentration and age between Main Basin and Georgian Bay fish (p < 0.05). Mercury biomagnification factors (BMF) determined between lake trout and rainbow smelt, lake trout's primary prey, were significantly correlated with fish age and differed across the 3 basins (p < 0.05). Specifically, Georgian Bay fish exhibited the greatest age related increase in Hg BMF followed by Main Basin and North Channel fish, and these differences could not be attributed to trophic level (δ(15)N) effects or lake trout growth rates. A highly significant negative relationship was determined between Hg BMFs and basin specific prey fish densities indicating that ecological factors associated with food acquisition and foraging efficiencies play an important role in Hg bioaccumulation in feral fish communities.

  3. Uptake pathway for Ag bioaccumulation in three benthic invertebrates exposed to contaminated sediments

    USGS Publications Warehouse

    Yoo, H.; Lee, J.-S.; Lee, B.-G.; Lee, I.T.; Schlekat, C.E.; Koh, C.-H.; Luoma, S.N.

    2004-01-01

    We exposed 3 benthic invertebrates, the clam Macoma balthica, the polychaete Neanthes arenaceodentata and the amphipod Leptocheirus plumulosus, to Ag-contaminated sediments to evaluate the relative importance of various uptake routes (sediments, porewater or overlying water, and supplementary food) for Ag bioaccumulation. Silver bioaccumulation was evaluated at 4 levels of sediment Ag (0.1, 0,3, 1,2 and 3.3 ??mol Ag g-1) and 2 levels of acid-volatile sulfide (AVS), <0.5 or ???40 ??mol g-1, and compared among food treatments with or without Ag contamination, or with different food rations. L. plumulosus were incubated for 35 d in the Ag-contaminated sediments after 3 mo of Ag-sediment equilibration, and M. balthica and N. arenaceodentata for 19 d after 5 mo equilibration. Ag bioaccumulation in the 3 organisms was significantly correlated with 1N HCl-extractable Ag concentrations (Ag-SEM: simultaneously extracted Ag with AVS) in sediments. The Ag concentrations in porewater and overlying water were greatest in the sediments with least AVS, consistent with previous studies. Nevertheless, the amphipod and clam exposed to oxic sediments (<0.5 ??mol AVS g-1) accumulated amounts of Ag similar to those accumulated by organisms exposed to anoxic sediments (???40 ??mol AVS g-1), when Ag-SEM levels were comparable. The dissolved Ag source was important for bioaccumulation in the polychaete N. arenaceodentata. Amphipods fed Ag-contaminated food contained ???1.8-fold more tissue Ag concentrations than those fed uncontaminated food. As suggested in kinetic (DYMBAM) modeling studies, ingestion of contaminated sediments and food were the principle routes of Ag bioaccumulation by the benthic invertebrates during chronic exposure, but the relative importance of each uptake route differed among species.

  4. Spatial and taxonomic variation in trace element bioaccumulation in two herbivores from a coal combustion waste contaminated stream.

    PubMed

    Fletcher, Dean E; Lindell, Angela H; Stillings, Garrett K; Mills, Gary L; Blas, Susan A; Vaun McArthur, J

    2014-03-01

    Dissimilarities in habitat use, feeding habits, life histories, and physiology can result in syntopic aquatic taxa of similar trophic position bioaccumulating trace elements in vastly different patterns. We compared bioaccumulation in a clam, Corbicula fluminea and mayfly nymph Maccaffertium modestum from a coal combustion waste contaminated stream. Collection sites differed in distance to contaminant sources, incision, floodplain activity, and sources of flood event water and organic matter. Contaminants variably accumulated in both sediment and biofilm. Bioaccumulation differed between species and sites with C. fluminea accumulating higher concentrations of Hg, Cs, Sr, Se, As, Be, and Cu, but M. modestum higher Pb and V. Stable isotope analyses suggested both spatial and taxonomic differences in resource use with greater variability and overlap between species in the more physically disturbed site. The complex but essential interactions between organismal biology, divergence in resource use, and bioaccumulation as related to stream habitat requires further studies essential to understand impacts of metal pollution on stream systems.

  5. Intra- and inter-laboratory reliability of a cryopreserved trout hepatocyte assay for the prediction of chemical bioaccumulation potential

    EPA Science Inventory

    Cryopreserved trout hepatocytes provide a convenient in vitro system for measuring the intrinsic clearance of xenobiotics. Measured clearance rates can then be extrapolated to the whole animal as a means of improving modeled bioaccumulation predictions. To date, however, the in...

  6. Exploring the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus using dynamic energy budget modeling

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we conducted growth and bioaccumulation studies that contribute t...

  7. PCDD/F and dioxin-like PCB bioaccumulation by Manila clam from polluted areas of Venice lagoon (Italy).

    PubMed

    Sfriso, Adriano; Facca, Chiara; Raccanelli, Stefano

    2014-01-01

    POP bioaccumulation pathways in the clam Tapes philippinarum were examined for two years from juveniles to adult size. Two polluted sites, one with sandy sediment, the other muddy were compared with a reference site characterized by low contamination levels. Juvenile clams coming from a hatchery were reared both on the sediment and in nets suspended at 30 cm from the bottom. POP changes in clam tissue were related to the concentrations recorded in sediments and in the particulate matter during the entire fattening period. Results provided interesting data on the relationships between environmental contamination and bioaccumulation. Contrary to studies on the decontamination times of the clams collected in polluted areas, this work investigates the preferential clam bioaccumulation pathways during growth under different environmental conditions. In general POP bioaccumulation resulted to be correlated to concentrations in SPM rather than in sediments and was higher in S-clams rather than in B-clams.

  8. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species.

    PubMed

    Moses, Sara K; Harley, John R; Lieske, Camilla L; Muir, Derek C G; Whiting, Alex V; O'Hara, Todd M

    2015-11-15

    Risk assessments of persistent organic pollutants (POPs) are often based on octanol-water (KOW) partitioning dynamics and may not adequately reflect bioaccumulation in air-breathing organisms. It has been suggested that compounds with low KOW and high octanol-air partitioning (KOA) coefficients have the potential to bioaccumulate in air-breathing organisms, including marine mammals. Here we evaluate differences in concentrations of POPs for two trophically matched Arctic species, spotted seal (Phoca largha) and sheefish (Stenodus leucichthys). We compared concentrations of 108 POPs in matched tissues (liver and muscle) across three ranges of KOW. We found a significant positive correlation between POP concentration and log KOA in spotted seal tissues for low log KOW compounds (log KOW <5.5, p<0.05). This provides further evidence for empirical models and observed bioaccumulation patterns in air-breathing organisms, and highlights the potential for bioaccumulation of these compounds in Arctic marine mammals.

  9. Modeling lead bioavailability and bioaccumulation by Lumbriculus variegatus using artificial particles. Potential use in chemical remediation processes.

    PubMed

    Miño, Lelia A; Folco, Sabina; Pechén de D'Angelo, Ana M; Verrengia Guerrero, Noemí R

    2006-04-01

    Artificial particles, specifically a diverse selection of chromatographical resins, have been recommended and used as a useful experimental model to predict the bioavailability and bioaccumulation of sediment-bound organic chemicals. In this work the same experimental model was adopted to investigate the bioavailability and bioaccumulation of lead by the freshwater oligochaete Lumbriculus variegatus. Particle-water partition coefficients were also determined. Sand particles and the anionic exchange resin promoted a similar uptake and bioaccumulation of lead. Instead, in the presence of the cationic exchanger the metal was not detected in the animals. For neutral particles, the uptake and accumulation depended on the chemistry of the functional groups at the active sites. In addition, a significant negative correlation was found between bioaccumulation and the particle-water partition coefficients. These studies may help to develop alternative methods for chemical remediation of lead-contaminated aquatic systems.

  10. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species

    PubMed Central

    Moses, Sara K.; Harley, John R.; Lieske, Camilla L.; Muir, Derek C.G.; Whiting, Alex V.; O'Hara, Todd M.

    2015-01-01

    Risk assessments of persistent organic pollutants (POPs) are often based on octanol-water (KOW) partitioning dynamics and may not adequately reflect bioaccumulation in air-breathing organisms. It has been suggested that compounds with low KOW and high octanol-air partitioning (KOA) coefficients have the potential to bioaccumulate in air-breathing organisms, including marine mammals. Here we evaluate differences in concentrations of POPs for two trophically matched Arctic species, spotted seal (Phoca largha) and sheefish (Stenodus leucichthys). We compared concentrations of 108 POPs in matched tissues (liver and muscle) across three ranges of KOW. We found a significant positive correlation between POP concentration and log KOA in spotted seal tissues for low log KOW compounds (log KOW <5.5, p<0.05). This provides further evidence for empirical models and observed bioaccumulation patterns in air-breathing organisms, and highlights the potential for bioaccumulation of these compounds in Arctic marine mammals. PMID:26440545

  11. In Vitro-In Vivo Extrapolation of Quantitative Hepatic Biotransformation Data for Fish: II. Modeled Effects on Chemical Bioaccumulation

    EPA Science Inventory

    The goals of this study were to evaluate the potential for measured in vitro rates of metabolism in fish to impact chemical bioaccumulation, and establish a basis for making comparisons among the two modeling approaches.

  12. Bioaccumulation kinetics of the conventional energetics TNT and RDX relative to insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles.

    PubMed

    Lotufo, Guilherme R; Biedenbach, James M; Sims, Jerre G; Chappell, Pornsawan; Stanley, Jacob K; Gust, Kurt A

    2015-04-01

    The manufacturing of explosives and their loading, assembling, and packing into munitions for use in testing on training sites or battlefields has resulted in contamination of terrestrial and aquatic sites that may pose risk to populations of sensitive species. The bioaccumulative potential of the conventional explosives 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and of the insensitive munitions (i.e., less shock sensitive) compound 2,4-dinitroanisole (DNAN) were assessed using the Northern leopard frog, Rana pipiens. Trinitrotoluene entering the organism was readily biotransformed to aminodinitrotoluenes, whereas no transformation products were measured for RDX or DNAN. Uptake clearance rates were relatively slow and similar among compounds (1.32-2.19 L kg(-1) h(-1) ). Upon transfer to uncontaminated water, elimination rate was very fast, resulting in the prediction of fast time to approach steady state (5 h or less) and short elimination half-lives (1.2 h or less). A preliminary bioconcentration factor of 0.25 L kg(-1) was determined for the insensitive munitions compound 3-nitro-1,2,4-trizole-5-one (NTO) indicating negligible bioaccumulative potential. Because of the rapid elimination rate for explosives, tadpoles inhabiting contaminated areas are expected to experience harmful effects only if under constant exposure conditions given that body burdens can rapidly depurate preventing tissue concentrations from persisting at levels that may cause detrimental biological effects.

  13. Age and trophic position dominate bioaccumulation of mercury and organochlorines in the food web of Lake Washington.

    PubMed

    McIntyre, Jenifer K; Beauchamp, David A

    2007-01-01

    Understanding the mechanisms of bioaccumulation in food webs is critical to predicting which food webs are at risk for higher rates of bioaccumulation that endanger the health of upper-trophic predators, including humans. Mercury and organochlorines were measured concurrently with stable isotopes of nitrogen and carbon in key fishes and invertebrates of Lake Washington to explore important pathways of bioaccumulation in this food web. Across the food web, age and trophic position together were highly significant predictors of bioaccumulation. Trophic position was more important than age for predicting accumulation of mercury, sigmaDDT, and sigma-chlordane, whereas age was more important than trophic position for predicting sigmaPCB. Excluding age from the analysis inflated the apparent importance of trophic position to bioaccumulation for all contaminants. Benthic and pelagic habitats had similar potential to bioaccumulate contaminants, although higher sigma-chlordane concentrations in organisms were weakly associated with more benthic carbon signals. In individual fish species, contaminant concentrations increased with age, size, and trophic position (delta15N), whereas relationships with carbon source (delta13C) were not consistent. Lipid concentrations were correlated with contaminant concentrations in some but not all fishes, suggesting that lipids were not involved mechanistically in bioaccumulation. Contaminant concentrations in biota did not vary among littoral sites. Collectively, these results suggest that age may be an important determinant of bioaccumulation in many food webs and could help explain a significant amount of the variability in apparent biomagnification rates among food webs. As such, effort should be made when possible to collect information on organism age in addition to stable isotopes when assessing food webs for rates of biomagnification.

  14. Age and trophic position dominate bioaccumulation of mercury and organochlorines in the food web of Lake Washington

    USGS Publications Warehouse

    McIntyre, J.K.; Beauchamp, D.A.

    2007-01-01

    Understanding the mechanisms of bioaccumulation in food webs is critical to predicting which food webs are at risk for higher rates of bioaccumulation that endanger the health of upper-trophic predators, including humans. Mercury and organochlorines were measured concurrently with stable isotopes of nitrogen and carbon in key fishes and invertebrates of Lake Washington to explore important pathways of bioaccumulation in this food web. Across the food web, age and trophic position together were highly significant predictors of bioaccumulation. Trophic position was more important than age for predicting accumulation of mercury, ???DDT, and ???-chlordane, whereas age was more important than trophic position for predicting ???PCB. Excluding age from the analysis inflated the apparent importance of trophic position to bioaccumulation for all contaminants. Benthic and pelagic habitats had similar potential to bioaccumulate contaminants, although higher ???-chlordane concentrations in organisms were weakly associated with more benthic carbon signals. In individual fish species, contaminant concentrations increased with age, size, and trophic position (??15N), whereas relationships with carbon source (??13C) were not consistent. Lipid concentrations were correlated with contaminant concentrations in some but not all fishes, suggesting that lipids were not involved mechanistically in bioaccumulation. Contaminant concentrations in biota did not vary among littoral sites. Collectively, these results suggest that age may be an important determinant of bioaccumulation in many food webs and could help explain a significant amount of the variability in apparent biomagnification rates among food webs. As such, effort should be made when possible to collect information on organism age in addition to stable isotopes when assessing food webs for rates of biomagnification. ?? 2006 Elsevier B.V. All rights reserved.

  15. Acute toxicity, critical body residues, Michaelis-Menten analysis of bioaccumulation, and ionoregulatory disturbance in response to waterborne nickel in four invertebrates: Chironomus riparius, Lymnaea stagnalis, Lumbriculus variegatus and Daphnia pulex.

    PubMed

    Leonard, Erin M; Wood, Chris M

    2013-06-01

    We investigated the bioaccumulation and acute toxicity (48 h or 96 h) of Ni in four freshwater invertebrate species in two waters with hardness of 40 (soft water) and 140 mg L(-1) as CaCO(3) (hard water). Sensitivity order (most to least) was Lymnaea stagnalis > Daphnia pulex > Lumbriculus variegatus > Chironomus riparius. In all cases water hardness was protective against acute Ni toxicity with LC(50) values 3-3.5× higher in the hard water vs. soft water. In addition, higher water hardness significantly reduced Ni bioaccumulation in these organisms suggesting that competition by Ca and Mg for uptake at the biotic ligand may contribute to higher metal resistance. CBR50 values (Critical Body Residues) were less dependent on water chemistry (i.e. more consistent) than LC(50) values within and across species by ~2 fold. These data support one of the main advantages of the Tissue Residue Approach (TRA) where tissue concentrations are generally less variable than exposure concentrations with respect to toxicity. Whole body Ni bioaccumulation followed Michaelis-Menten kinetics in all organisms, with greater hardness tending to decrease B(max) with no consistent effect on K(d). Across species, acute Ni LC(50) values tended to increase with both K(d) and B(max) values - i.e. more sensitive species exhibited higher binding affinity and lower binding capacity for Ni, but there was no correlation with body size. With respect to biotic ligand modeling, log K(NiBL) values derived from Ni bioaccumulation correlated well with log K(NiBL) values derived from toxicity testing. Both whole body Na and Mg levels were disturbed, suggesting that disruption of ionoregulatory homeostasis is a mechanism of acute Ni toxicity. In L. stagnalis, Na depletion was a more sensitive endpoint than mortality, however, the opposite was true for the other organisms. This is the first study to show the relationship between Na and Ni.

  16. Contribution of aqueous and dietary uptakes to lead (Pb) bioaccumulation in Gammarus pulex: From multipathway modeling to in situ validation.

    PubMed

    Hadji, Rym; Urien, Nastassia; Uher, Emmanuelle; Fechner, Lise C; Lebrun, Jérémie D

    2016-07-01

    Although dynamic approaches are nowadays used increasingly to describe metal bioaccumulation in aquatic organisms, the validation of such laboratory-derived modeling is rarely assessed under environmental conditions. Furthermore, information on bioaccumulation kinetics of Pb and the significance of its uptake by dietary route is scarce in freshwater species. This study aims at modeling aqueous and dietary uptakes of Pb in the litter-degrader Gammarus pulex and assessing the predictive quality of multipathway modeling from in situ bioaccumulation data. In microcosms, G. pulex were exposed to environmentally realistic concentrations of Pb (from 0.1 to 10µg/L) in the presence of Pb-contaminated poplar leaves, which were enclosed or not in a net to distinguish aqueous and dietary uptakes. Results show that water and food both constitute contamination sources for gammarids. Establishing biodynamic parameters involved in Pb aqueous and dietary uptake and elimination rates enabled to construct a multipathway model to describe Pb bioaccumulation in gammarids. This laboratory-derived model successfully predicted bioaccumulation measured in native populations of G. pulex collected in situ when local litter was used as dietary exposure source. This study demonstrates not only the suitable applicability of biodynamic parameters for predicting Pb bioaccumulation but also the necessity of taking dietary uptake into account for a better interpretation of the gammarids' contamination in natural conditions.

  17. Facile synthesis of (55)Fe-labeled well-dispersible hematite nanoparticles for bioaccumulation studies in nanotoxicology.

    PubMed

    Huang, Bin; Xiao, Lin; Yang, Liu-Yan; Ji, Rong; Miao, Ai-Jun

    2016-06-01

    Although water-dispersible engineered nanoparticles (ENPs) have a wide range of applications, the ENPs used in many nanotoxicological studies tend to form micron-sized aggregates in the exposure media and thus cannot reflect the toxicity of real nanoparticles. Here we described the synthesis of bare hematite nanoparticles (HNPs-0) and two poly(acrylic acid) (PAA)-coated forms (HNPs-1 and HNPs-2). All three HNPs were well dispersed in deionized water, but HNPs-0 quickly aggregated in the three culture media tested. By contrast, the suspensions of HNPs-1 and HNPs-2 remained stable, with negligible amounts of PAA and Fe(3+) liberated from either one under the investigated conditions. To better quantify the accumulation of the coated HNPs, a relatively innocuous (55)Fe-labeled form of HNPs-2 was synthesized as an example and its accumulation in three phytoplankton species was tested. Consistent with the uptake kinetics model for conventional pollutants, the cellular accumulation of HNPs-2 increased linearly with exposure time for two of the three phytoplankton species. These results demonstrate the utility of (55)Fe-labeled well-dispersible HNPs as a model material for nanoparticle bioaccumulation studies in nanotoxicology.

  18. Influence of eutrophication on metal bioaccumulation and oral bioavailability in oysters, Crassostrea angulata.

    PubMed

    Li, Shun-Xing; Chen, Li-Hui; Zheng, Feng-Ying; Huang, Xu-Guang

    2014-07-23

    Oysters (Crassostrea angulata) are often exposed to eutrophication. However, how these exposures influence metal bioaccumulation and oral bioavailability (OBA) in oysters is unknown. After a four month field experimental cultivation, bioaccumulation factors (BAF) of metals (Fe, Cu, As, Cd, and Pb) from seawater to oysters and metal oral bioavailability in oysters by bionic gastrointestinal tract were determined. A positive effect of macronutrient (nitrate N and total P) concentration in seawater on BAF of Cd in oysters was observed, but such an effect was not significant for Fe, Cu, Pb, and As. Only OBA of As was significantly positively correlated to N and P contents. For Fe, OBA was negatively correlated with N. The regular variation of the OBA of Fe and As may be due to the effect of eutrophication on the synthesis of metal granules and heat-stable protein in oysters, respectively.

  19. Removal of persistent bioaccumulative toxic chemicals from pulp and paper mill effluent streams

    SciTech Connect

    Holm, S.E.

    1995-12-31

    Several organizations have called for the reduction of PBTs or Persistent Bioaccumulative Toxics because of this class of chemicals potential environmental consequences when released into the environment. PBTs are persistent because of their resistance to biological contamination, because they bioaccumulate in the fatty tissue of organisms, and are toxic to aquatic species at relatively low levels. PBTs may be produced commercially such as for use as a pesticide or herbicide or inadvertently as byproducts, such as from diesel engines, incinerators, and during pulp bleaching using chlorine or chlorine derivatives. This paper will show how the pulp and paper industry has utilized the pollution prevention technique of process change to remove the levels of PBTs from its waste stream and how this process change relates to decreasing levels of specific PBTs in the environment. Chlorinated phenolic compounds and dioxin will be used as examples.

  20. Influence of global climate change on chemical fate and bioaccumulation: the role of multimedia models.

    PubMed

    Gouin, Todd; Armitage, James M; Cousins, Ian T; Muir, Derek C G; Ng, Carla A; Reid, Liisa; Tao, Shu

    2013-01-01

    Multimedia environmental fate models are valuable tools for investigating potential changes associated with global climate change, particularly because thermodynamic forcing on partitioning behavior as well as diffusive and nondiffusive exchange processes are implicitly considered. Similarly, food-web bioaccumulation models are capable of integrating the net effect of changes associated with factors such as temperature, growth rates, feeding preferences, and partitioning behavior on bioaccumulation potential. For the climate change scenarios considered in the present study, such tools indicate that alterations to exposure concentrations are typically within a factor of 2 of the baseline output. Based on an appreciation for the uncertainty in model parameters and baseline output, the authors recommend caution when interpreting or speculating on the relative importance of global climate change with respect to how changes caused by it will influence chemical fate and bioavailability.

  1. Bioaccumulation and toxicodynamics of cadmium to freshwater planarian and the protective effect of N-acetylcysteine.

    PubMed

    Wu, Jui-Pin; Chen, Hon-Cheng; Li, Mei-Hui

    2012-08-01

    Although toxic responses of freshwater planarians after exposure to environmental toxicants can be observed through external toxicological end points, physiological responses inside the bodies of treated planarians have rarely been investigated. The present study was designed, using cadmium (Cd) as a reference toxicant, to determine its bioaccumulation and toxicodynamics in the freshwater planarian, Dugesia japonica, after acute toxicity was obtained. Accumulated Cd concentrations, metallothionein levels, and the oxidative status in planarians were determined after exposure to Cd. Furthermore, we hypothesized that the acute death of Cd-treated planarians was associated with increased oxidative stress. After Cd-treated planarians were coexposed to antioxidant, N-acetylcysteine (NAC), we found that NAC protected planarians from Cd lethality by maintaining the oxidative status and decreasing the bioaccumulation of Cd. The results of the present study support planarians being used as a practical model for toxicological studies of environmental contaminants in the future.

  2. Exploring the effects of consumer-resource dynamics on contaminant bioaccumulation by aquatic herbivores

    SciTech Connect

    Spencer, M.; Fisher, N.S.; Wang, W.X.

    1999-07-01

    The authors explore the consequences of consumer-resource interactions for bioaccumulation in two aquatic systems (cadmium accumulation in Dreissena polymorpha and polychlorinated biphenyl accumulation in calanoid copepods). They explicitly link the feeding and growth rates of consumers to the abundance of resources under a variety of assumptions about the nature of the interactions between them. The models are parameterized using field and laboratory data, and predictions are quantitatively compared with field-measured distributions of tissue concentrations. Different assumptions about consumer-resource interactions result in different predicted distributions of tissue concentrations and illustrate the way these interactions constrain the bioaccumulation of contaminants. Linking feeding and growth rates to resource abundances will be important whenever these abundances change over time. User-friendly software will make these ideas accessible to nontheoreticians.

  3. Bioaccumulation of four heavy metals in two populations of grass shrimp, Palaemonetes pugio

    SciTech Connect

    Khan, A.T.; Weis, J.S.; D'Andrea, L.

    1989-03-01

    Bioaccumulation can occur only if the rate of uptake of a chemical by an organism exceeds its rate of elimination. Many aquatic animals are able to excrete a greater proportion of their intake under contaminated conditions and thus maintain trace metal concentration in the body at an approximately normal level. The biological activity or the metabolic rate of an organism often changes due to natural seasonal variations causing the rate of incorporation and release of heavy metals to change. This paper reports on the comparative bioaccumulation of Hg, Cd, Cu, and Zn in two populations of grass shrimp, Palaemontes pugio, one of the few species surviving in highly contaminated estuaries in northern New Jersey. One population they studied was from Piles Creek (PC), a tributary of the Arthur Kill in heavily industrialized Linden, New Jersey, and the other population was from Big Sheepshead Creek (BSC), a relatively pristine creek near non-industrialized Tuckerton, New Jersey.

  4. Retracted: Long-term copper toxicity in apple trees (Malus pumila Mill) and bioaccumulation in fruits.

    PubMed

    Sun, Bai-Ye; Kan, Shi-Hong; Zhang, Yan-Zong; Wu, Jun; Deng, Shi-Huai; Liu, Chun-Sheng; Yang, Gang

    2010-01-15

    The following article from Environmental Toxicology, 'Long-term Copper Toxicity in Apple Trees (Malus pumila Mill) and Bioaccumulation in Fruits' by Bai-Ye Sun, Shi- Hong Kan, Yan-Zong Zhang, Jun Wu, Shi-Huai Deng, Chun-Sheng Liu and Gang Yang, published online on January 15, 2010 in Wiley InterScience (www.interscience.wiley.com; DOI: 10.1002/tox.20565), has been retracted by agreement between the authors, the journal Editor in Chief, Dr. Paul Tchounwou, and Wiley Periodicals, Inc. The retraction has been agreed at the request of the authors due to overlap with 'Copper Toxicity and Bioaccumulation in Chinese Cabbage (Brassica pekinensis Rupr.)' by Zhi-Ting Xiong and Hai Wang, published in Environmental Toxicology, Volume 20, pages 188-194, 2005.

  5. Agricultural wetlands as potential hotspots for mercury bioaccumulation: Experimental evidence using caged fish

    USGS Publications Warehouse

    Ackerman, J.T.; Eagles-Smith, C. A.

    2010-01-01

    Wetlands provide numerous ecosystem services, but also can be sources of methylmercury (MeHg) production and export. Rice agricultural wetlands in particular may be important sites for MeHg bioaccumulation due to their worldwide ubiquity, periodic flooding schedules, and high use by wildlife. We assessed MeHg bioaccumulation within agricultural and perennial wetlands common to California's Central Valley during summer, when the majority of wetland habitats are shallowly flooded rice fields. We introduced caged western mosquitofish (Gambusia affinis) within white rice (Oryza sativa), wild rice (Zizania palustris), and permanent wetlands at water inlets, centers, and outlets. Total mercury (THg) concentrations and body burdens in caged mosquitofish increased rapidly, exceeding baseline values at introduction by 135% to 1197% and 29% to 1566% among sites, respectively, after only 60 days. Mercury bioaccumulation in caged mosquitofish was greater in rice fields than in permanent wetlands, with THg concentrations at wetland outlets increasing by 12.1, 5.8, and 2.9 times over initial concentrations in white rice, wild rice, and permanent wetlands, respectively. In fact, mosquitofish caged at white rice outlets accumulated 721 ng Hg/fish in just 60 days. Mercury in wild mosquito fish and Mississippi silversides (Menidia audens) concurrently sampled at wetland outlets also were greater in white rice and wild rice than permanent wetlands. Within wetlands, THg concentrations and body burdens of both caged and wild fish increased from water inlets to outlets in white rice fields, and tended to not vary among sites in permanent wetlands. Fish THg concentrations in agricultural wetlands were high, exceeding 0.2 ??g/g ww in 82% of caged fish and 59% of wild fish. Our results indicate that shallowly flooded rice fields are potential hotspots for MeHg bioaccumulation and, due to their global prevalence, suggest that agricultural wetlands may be important contributors to Me

  6. Corbicula fluminea as a Bioaccumulation Indicator Species: A Case Study at the Columbia and Willamette Rivers

    DTIC Science & Technology

    2009-06-01

    bivalves to sediment and/or the water column in situ. A third method is the systematic collection of various organisms (fish, bivalves , insects, etc...Caged bivalves also must be deployed and retrieved, but they have the advantage of maintaining physiological processes such as uptake rate...metabolism, and elimination. However, the SPMDs and caged bivalves do not necessarily reflect steady-state bioaccumulation that would be present in the

  7. Mercury bioaccumulation and trophic transfer in sympatric snapper species from the Gulf of Mexico.

    PubMed

    Bank, Michael S; Chesney, Edward; Shine, James P; Maage, Amund; Senn, David B

    2007-10-01

    Consumption of marine fish is a major route of toxic methyl mercury (MeHg) exposure to ocean apex predators and human populations. Here we explore the influence of trophic structure on total mercury (Hg) accumulation in red snapper (RS, Lutjanus campechanus) and gray snapper (GS, Lutjanus griseus) from the coastal Louisiana region of the Gulf of Mexico, west of the Mississippi River. The objectives of this investigation were to: (1) determine the effectiveness of the use of offshore recreational fishing charter boats and marinas as sources of fish samples and (2) compare species differences in Hg bioaccumulation, trophic position, and carbon sources. Our data show that length-normalized Hg concentrations (> or = 97% as MeHg in tissue of both species) were 230% greater in GS in comparison to RS collected from the same general area. Stable C and N isotope signatures (delta15N and delta13C) indicate that GS occupy a slightly higher trophic position (approximately 30% of one trophic position higher) on the Gulf food web in comparison to RS and that GS appear to incorporate higher trophic positioned prey, continually and at smaller sizes. Mercury was strongly correlated with combined delta15N and delta13C in pooled species data, arguing that most of the substantial difference in Hg bioaccumulation between RS and GS can be explained by modest differences in their trophic position and, to a lesser degree, carbon sources, which had low variation and high overlap among species. These observations demonstrate that even minor to moderate differences in trophic position and food habits in sympatric species can create relatively large differences in bioaccumulation regimes and underscores the importance of quantitative characterization of trophic structure in marine MeHg bioaccumulation studies.

  8. Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: Human health risk assessment.

    PubMed

    Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; Tornisielo, Valdemar Luiz; Vilca, Franz Zirena; Bittencourt-Oliveira, Maria do Carmo

    2016-10-01

    Microcystin-LR (MC-LR) is one of the most toxic and common microcystins (MCs) variant found in aquatic ecosystems. Little is known about the possibility of recovering microcystins contaminated agricultural crops. The objectives of this study were to determine the bioaccumulation and depuration kinetics of MC-LR in leaf tissues of lettuce and arugula, and estimate the total daily intake (ToDI) of MC-LR via contaminated vegetables by humans. Arugula and lettuce were irrigated with contaminated water having 5 and 10μgL(-1) of MC-LR for 7days (bioaccumulation), and subsequently, with uncontaminated water for 7days (depuration). Quantification of MC-LR was performed by LC-MS/MS. The one-compartment biokinetic model was employed for MC-LR bioaccumulation and depuration data analysis. MC-LR was only accumulated in lettuce. After 7days of irrigation with uncontaminated water, over 25% of accumulated MC-LR was still retained in leaf tissues of plants treated with 10μgL(-1) MC-LR. Total daily toxin intake by adult consumers (60kg-bw) exceeded the 0.04μgMC-LRkg(-1) limit recommended by WHO. Bioaccumulation was found to be linearly proportional to the exposure concentration of the toxin, increasing over time; and estimated to become saturated after 30days of uninterrupted exposure. On the other hand, MC-LR depuration was less efficient at higher exposure concentrations. This is because biokinetic half-life calculations gave 2.9 and 3.7days for 5 and 10μgL(-1) MC-LR treatments, which means 29-37days are required to eliminate the toxin. For the first time, our results demonstrated the possibility of MC-LR decontamination of lettuce plants.

  9. Enantioseletive bioaccumulation and metabolization of diniconazole in earthworms (Eiseniafetida) in an artificial soil.

    PubMed

    Wang, Huili; Chen, Jinhui; Guo, Bao-Yuan; Li, Jianzhong

    2014-01-01

    Degradation and enantioselective bioaccumulation of diniconazole in earthworms (Eiseniafetida) in artificial soil was investigated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) method under laboratory condition. Three exposure concentrations (1 mg/kg, 10 mg/kg and 25 mg/kg) of diniconazole in soil (dry weight) to earthworms were used. The uptake kinetics fitted the first-order kinetics well. The bioaccumulation factors (BAF) of R, S isomers were 6.6046 and 8.5115 in 25 mg/kg dose exposure, 2.6409 and 2.9835 in 10mg/kg dose exposure, 1.7784 and 2.0437 in 1 mg/kg dose exposure, respectively. Bioaccumulation of diniconazole in earthworm tissues was enantioselective with a preferential accumulation of S-diniconazole and the enantiomer fractions were about 0.45-0.50 in all three level dose exposures. In addition, it was obvious that both R-diniconazole and S-diniconazole had bioaccumulation effect in earthworm. Diniconazole was metabolized to 1,2,4-triazole, (E)-3-(1H-1,2,4-triazol-1-yl) acrylaldehyde, (E, S)-4-(2, 4-dichlorophenyl)-2, 2-dimethyl-5-(1H-1,2,4-triazol-1-yl)pent-4-ene-1,3-diol, and (E)-4-(2, 4-dichlorophenyl)-3-hydroxy-2,2-dimethyl-5-(1H-1,2,4-triazol-1-yl) pent-4-enoic acid in earthworms; the metabolites of 1,2,4-triazole and (E)-3-(1H-1,2,4-triazol-1-yl)acrylaldehyde could be detected in soil as well.

  10. An investigation of enhanced mercury bioaccumulation in fish from offshore feeding.

    PubMed

    Chételat, John; Cloutier, Louise; Amyot, Marc

    2013-08-01

    We investigated the dietary pathways of mercury transfer in the food web of Morency Lake (Canada) to determine the influence of carbon source and habitat use on mercury bioaccumulation in fish. Whole-body concentrations of methylmercury (MeHg) were significantly different in four fish species (white sucker, brown bullhead, pumpkinseed and smallmouth bass) and increased with both trophic position and greater feeding on offshore (versus littoral) carbon. An examination of fish gut contents and the depth distribution of invertebrates in Morency Lake showed that smallmouth bass and brown bullhead were supplementing their littoral diet with the consumption of either opossum shrimp (Mysis diluviana) or profundal amphipods in offshore waters. The zooplanktivore Mysis had significantly higher MeHg concentrations than zooplankton and benthic invertebrates, and it was an elevated source of MeHg to smallmouth bass. In contrast, profundal amphipods consumed by brown bullhead did not have higher MeHg concentrations than littoral amphipods. Instead, partitioning of benthic invertebrate resources likely explains the greater MeHg bioaccumulation in brown bullhead, associated with offshore feeding of amphipods. White sucker and brown bullhead had a similar trophic position but white sucker consumed more chironomids, which had one-third the MeHg concentration of amphipods. Our findings suggest that offshore feeding in a lake can affect fish MeHg bioaccumulation via two different processes: (1) the consumption of MeHg-enriched pelagic prey, or (2) resource partitioning of benthic primary consumers with different MeHg concentrations. These observations on the mechanisms of habitat-specific bioaccumulation highlight the complexity of MeHg transfer through lake food webs.

  11. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners.

    PubMed

    Bittencourt-Oliveira, Maria do Carmo; Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; de Oliveira, Ênio Tiago; dos Santos, Flávio

    2016-06-01

    The use of microcystins (MCs) contaminated water to irrigate crop plants represents a human health risk due to their bioaccumulation potential. In addition, MCs cause oxidative stress and negatively influence photosynthetic activities in plants. The present study was aimed at investigating the effect of MCs on photosynthetic parameters and antioxidative response of lettuce. Furthermore, the bioaccumulation factor (BAF) of total MCs, MC-LR and MC-RR in the vegetable after irrigation with contaminated water was determined. Lettuce crops were irrigated for 15 days with water containing cyanobacterial crude extracts (Microcystis aeruginosa) with MC-LR (0.0, 0.5, 2.0, 5.0 and 10.0 µg L(-1)), MC-RR (0.0, 0.15, 0.5, 1.5 and 3.0 µg L(-1)) and total MCs (0.0, 0.65, 2.5, 6.5 and 13.0 µg L(-1)). Increased net photosynthetic rate, stomatal conductance, leaf tissue transpiration and intercellular CO2 concentration were recorded in lettuce exposed to different MCs concentrations. Antioxidant response showed that glutathione S-transferase activity was down-regulated in the presence of MCs. On the other hand, superoxide dismutase, catalase and peroxidase activities were upregulated with increasing MCs concentrations. The bioaccumulation factor (BAF) of total MCs and MC-LR was highest at 6.50 and 5.00 µg L(-1), respectively, while for MC-RR, the highest BAF was recorded at 1.50 µg L(-1) concentration. The amount of total MCs, MC-LR and MC-RR bioacumulated in lettuce was highest at the highest exposure concentrations. However, at the lowest exposure concentration, there were no detectable levels of MC-LR, MC-RR and total MCs in lettuce. Thus, the bioaccumulation of MCs in lettuce varies according to the exposure concentration. In addition, the extent of physiological response of lettuce to the toxins relies on exposure concentrations.

  12. Dynamic Energy Budgets and Bioaccumulation: A Model for Marine Mammals and Marine Mammal Populations

    DTIC Science & Technology

    2006-06-01

    extensively used in medicine to determine proper drug dosage (e.g. Levin et al 1982, Nestorov 2003 (review)) and ecology to determine effects of exposure to...5 2.9.3 Pharmacokinetics (DLs and CI) ...................... 85 3 Bioaccumulation and effects of exposure in marine mammal popu- lations 87 3.1...97 3.2.4 The individual-based model ...... ................... 98 3.3 Results ......... ................................... 103 3.3.1 Effects of

  13. Modelling the bioaccumulation of persistent organic pollutants in agricultural food chains for regulatory exposure assessment.

    PubMed

    Takaki, Koki; Wade, Andrew J; Collins, Chris D

    2017-02-01

    New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.

  14. Identifying new persistent and bioaccumulative organics among chemicals in commerce II: pharmaceuticals.

    PubMed

    Howard, Philip H; Muir, Derek C G

    2011-08-15

    The goal of this study was to identify commercial pharmaceuticals that might be persistent and bioaccumulative (P&B) and that were not being considered in current wastewater and aquatic environmental measurement programs. We developed a database of 3193 pharmaceuticals from two U.S. Food and Drug Administration (FDA) databases and some lists of top ranked or selling drugs. Of the 3193 pharmaceuticals, 275 pharmaceuticals have been found in the environment and 399 pharmaceuticals were, based upon production volumes, designated as high production volume (HPV) pharmaceuticals. All pharmaceuticals that had reported chemical structures were evaluated for potential bioaccumulation (B) or persistence (P) using quantitative structure property relationships (QSPR) or scientific judgment. Of the 275 drugs detected in the environment, 92 were rated as potentially bioaccumulative, 121 were rated as potentially persistent, and 99 were HPV pharmaceuticals. After removing the 275 pharmaceuticals previously detected in the environment, 58 HPV compounds were identified that were both P&B and 48 were identified as P only. Of the non-HPV compounds, 364 pharmaceuticals were identified that were P&B. This study has yielded some interesting and probable P&B pharmaceuticals that should be considered for further study.

  15. A fugacity approach for assessing the bioaccumulation of hydrophobic organic compounds from estuarine sediment.

    PubMed

    Golding, Christopher J; Gobas, Frank A P C; Birch, Gavin F

    2008-05-01

    The bioavailability of four sediment-spiked hydrophobic organic contaminants (HOCs; chrysene, benzo[a]pyrene, chlordane, and Aroclor 1254) was investigated by comparing bioaccumulation by the amphipod Corophium colo with uptake into a thin film of ethylene/vinyl acetate (EVA) copolymer. The EVA thin film is a solid-phase extraction medium previously identified as effective at measuring the bioavailable contaminant fraction in sediment. The present study presents the results of 11 separate treatments in which chemical uptake into EVA closely matched uptake into lipid over 10 d. For all compounds, the concentration in EVA was a good approximation for the concentration in lipid, suggesting that this medium would be an appropriate biomimetic medium for assessing the bioaccumulation of HOCs during risk assessment of contaminated sediment. For chrysene and benzo[a]pyrene, limitations on bioaccumulation and toxicity because of low aqueous solubility were observed. The fugacity of the compounds in lipid (flip) and in the EVA thin film (fEVA) also was determined. The ratio of flip to fEVA was greater than one for all chemicals, indicating that all chemicals biomagnified over the duration of the exposure and demonstrating the potential for EVA thin-film extraction to assess trophic transfer of HOCs.

  16. Where does that mercury come from? Assessing mercury speciation and bioaccumulation in terrestrial and aquatic amphibians

    NASA Astrophysics Data System (ADS)

    Bank, M. S.

    2009-12-01

    Mercury deposition and contamination in the United States, and elsewhere, is widespread and well-documented and continues to be a public-health issue of concern for certain sectors of the global human population. Documentation of the pervasiveness of this contaminant is a first step toward understanding the potential environmental health and ecological implications of mercury pollution. Identifying broad scale distribution patterns of mercury bioaccumulation can convey to regulators that certain ecosystems may be degraded and require development of policies and regulations that may reduce mercury emissions, and ultimately, improve air and water quality. A more synthesized, holistic, perspective on the mechanisms related to aquatic and terrestrial biogeochemistry linkages of fate, transport, and bioavailability of mercury in aquatic ecosystems will result from long term, multi-ecosystem monitoring programs coupled with process-oriented research questions. Here I present total and monomethylmercury field data from experimental (NSF-LTER) and reference (NPS, USFS) ecosystems in the conterminous United States. Using these measurements I evaluate the use of stable isotope and uncertainty analysis techniques for comparative modeling purposes in aquatic and terrestrial amphibian species. Additionally, I present a synthesis of mercury speciation, bioaccumulation, distribution, and ecotoxicity in terrestrial and aquatic species and ecosystems across a broad gradient of physical, climatic, and biotic settings. The role of scale, disturbance mechanisms, geography, and abiotic and biotic factors governing mercury distribution and bioaccumulation in the different ecosystem types will also be discussed.

  17. Phylogeny and size differentially influence dissolved Cd and Zn bioaccumulation parameters among closely related aquatic insects.

    PubMed

    Poteat, Monica D; Buchwalter, David B

    2014-05-06

    Evolutionarily distinct lineages can vary markedly in their accumulation of, and sensitivity to, contaminants. However, less is known about variability among closely related species. Here, we compared dissolved Cd and Zn bioaccumulation in 19 species spanning two species-rich aquatic insect families: Ephemerellidae (order Ephemeroptera (mayflies)), generalized to be metal sensitive, and Hydropsychidae (order Trichoptera (caddisflies)), generalized to be metal tolerant. Across all species, Zn and Cd uptake rate constants (k(u)s), efflux rate constants (k(e)s) and bioconcentration factors (BCFs) strongly covaried, suggesting that these metals share transport pathways in these distinct lineages. K(u)s and BCFs were substantially larger in Ephemerellidae than in Hydropsychidae, whereas k(e)s did not dramatically differ between the two families. Body size played an important role in driving ku differences among species, but had no influence on k(e)s. While familial differences in metal bioconcentration were striking, each family exhibited tremendous variability in all bioaccumulation parameters. At finer levels of taxonomic resolution (within families), phylogeny did not account for differences in metal bioaccumulation. These findings suggest that intrafamily variability can be profound and have important practical implications in that we need to better understand how well "surrogate species" represent their fellow congeners and family members.

  18. Mercury bioaccumulation in northern two-lined salamanders from streams in the northeastern United States.

    PubMed

    Bank, Michael S; Loftin, Cynthia S; Jung, Robin E

    2005-03-01

    Mercury (Hg) bioaccumulation in salamanders has received little attention despite widespread Hg contamination of aquatic ecosystems and worldwide amphibian declines. Here we report concentrations of methyl Hg (MeHg) and total Hg in larval northern two-lined salamanders (Eurycea bislineata bislineata) collected from streams in Acadia National Park (ANP), Maine, and Bear Brook Watershed, Maine (BBWM; a paired, gauged watershed treated with bimonthly applications (25 kg/ha/yr) of ammonium sulfate [(NH4)2SO4]) since 1989), and Shenandoah National Park (SNP), Virginia. MeHg comprised 73-97% of total Hg in the larval salamander composite samples from ANP. At BBWM we detected significantly higher total. Hg levels in larvae from the (NH4)2SO4 treatment watershed. At ANP total Hg concentrations in salamander larvae were significantly higher from streams in unburned watersheds in contrast with larval samples collected from streams located in watersheds burned by the 1947 Bar Harbor fire. Additionally, total Hg levels were significantly higher in salamander larvae collected at ANP in contrast with SNP. Our results suggest that watershed-scale attributes including fire history, whole-catchment (NH4)2SO4 additions, wetland extent, and forest cover type influence mercury bioaccumulation in salamanders inhabiting lotic environments. We also discuss the use of this species as an indicator of Hg bioaccumulation in stream ecosystems.

  19. The role of cannibalism and contaminant source on bioaccumulation in aquatic food webs.

    PubMed

    Fraser, Alison J; Cahill, Thomas M; Lasenby, David C; Mackay, Donald; Milford, Lynne

    2005-04-01

    Two aspects of bioaccumulation in an aquatic food web are explored. First, the possible implications of cannibalism, including the scavenging of conspecifics, as a factor influencing food web bioaccumulation and biomagnification are explored by examining the behavior of total polychlorinated biphenyls (PCBs) in a simple aquatic food web consisting of plankton, juvenile and adult Mysis relicta, Diporeia, and alewife. From an analysis of trophic transfer efficiencies and food consumption rates, it is concluded that, for M. relicta, a maximum extent of cannibalism in a population is about 10%, although certain individuals may be more cannibalistic. The model suggests that cannibalism and scavenging of dead conspecifics generally result in an increase in concentration by self-biomagnification, but the effect is small and unlikely to exceed 5% on the average. Concentration differences also are likely to result from changes in the relative amounts of the dietary components. Highly cannibalistic individuals may achieve higher levels of bioaccumulation. In extreme cases, the food web model becomes mathematically unstable because of excessive feedback of high concentrations. A major implication is that differences in extent of cannibalism and scavenging probably contribute significantly to natural concentration variation in a population. Second, and more important, is the effect of benthic versus pelagic sources, especially when significant fugacity differences exist between these zones. A simple method is described by which the separate contributions from these sources can be estimated for organisms at higher trophic levels.

  20. Similarity analysis of PAH and PCB bioaccumulation patterns in sediment-exposed Chironomus tentans larvae

    SciTech Connect

    Wood, L.W.; O`Keefe, P.; Bush, B.

    1997-02-01

    Larvae of the aquatic insect Chironomus tentans were exposed at the third or fourth instar stage to sediments collected near the outfalls of two aluminum foundries and an aluminum fabrication plant. Biota and sediment bioaccumulation factors (BFs), based on wet tissue weights and dry sediment weights, ranged from 0.07 to 0.27 for polycyclic aromatic hydrocarbons (PAHs) and from 0.22 to 1.42 for polychlorinated biphenyls (PCBs). A higher rate of metabolism of PAHs compared with PCBs could explain the differences in BF values for the two groups of chemicals. It was found, using community similarity procedures from the field of ecology, that the congener patterns for PAHs and PCBs bioaccumulated by the larvae differed from the pattern of the same compounds in the sediments to which they were exposed. Affinity analysis indicated that the larvae favored the higher molecular weight PAH and PCB congeners. Preferential ingestion of sediments with defined particle size ranges, metabolism, and octanol/water partition coefficients (log K{sub ow}) are factors that may have influenced the bioaccumulation patterns. However, no single factor could adequately account for the differences between the larval and sediment patterns.

  1. Bioaccumulation of human pharmaceuticals in fish across habitats of a tidally influenced urban bayou.

    PubMed

    Du, Bowen; Haddad, Samuel P; Luek, Andreas; Scott, W Casan; Saari, Gavin N; Burket, S Rebekah; Breed, Christopher S; Kelly, Martin; Broach, Linda; Rasmussen, Joseph B; Chambliss, C Kevin; Brooks, Bryan W

    2016-04-01

    Though pharmaceuticals and other contaminants of emerging concern are increasingly observed in inland water bodies, the occurrence and bioaccumulation of pharmaceuticals in estuaries and coastal ecosystems are poorly understood. In the present study, bioaccumulation of select pharmaceuticals and other contaminants of emerging concern was examined in fish from Buffalo Bayou, a tidally influenced urban ecosystem that receives effluent from a major (∼200 million gallons per day) municipal wastewater treatment plant in Houston, Texas, USA. Using isotope dilution liquid chromatography-tandem mass spectrometry, various target analytes were observed in effluent, surface water, and multiple fish species. The trophic position of each species was determined using stable isotope analysis. Fish tissue levels of diphenhydramine, which represented the only pharmaceutical detected in all fish species, did not significantly differ between freshwater and marine fish predominantly inhabiting benthic habitats; however, saltwater fish with pelagic habitat preferences significantly accumulated diphenhydramine to the highest levels observed in the present study. Consistent with previous observations from an effluent-dependent freshwater river, diphenhydramine did not display trophic magnification, which suggests site-specific, pH-influenced inhalational uptake to a greater extent than dietary exposure in this tidally influenced urban ecosystem. The findings highlight the importance of understanding differential bioaccumulation and risks of ionizable contaminants of emerging concern in habitats of urbanizing coastal systems.

  2. Assessing the bioaccumulation potential of ionizable organic compounds: Current knowledge and research priorities.

    PubMed

    Armitage, James M; Erickson, Russell J; Luckenbach, Till; Ng, Carla A; Prosser, Ryan S; Arnot, Jon A; Schirmer, Kristin; Nichols, John W

    2016-11-07

    The objective of the present study was to review the current knowledge regarding the bioaccumulation potential of ionizable organic compounds (IOCs), with a focus on the availability of empirical data for fish. Aspects of the bioaccumulation potential of IOCs in fish that can be characterized relatively well include the pH dependence of gill uptake and elimination, uptake in the gut, and sorption to phospholipids (membrane-water partitioning). Key challenges include the lack of empirical data for biotransformation and binding in plasma. Fish possess a diverse array of proteins that may transport IOCs across cell membranes. Except in a few cases, however, the significance of this transport for uptake and accumulation of environmental contaminants is unknown. Two case studies are presented. The first describes modeled effects of pH and biotransformation on the bioconcentration of organic acids and bases, while the second employs an updated model to investigate factors responsible for accumulation of perfluorinated alkyl acids. The perfluorinated alkyl acid case study is notable insofar as it illustrates the likely importance of membrane transporters in the kidney and highlights the potential value of read-across approaches. Recognizing the current need to perform bioaccumulation hazard assessments and ecological and exposure risk assessment for IOCs, the authors provide a tiered strategy that progresses (as needed) from conservative assumptions (models and associated data) to more sophisticated models requiring chemical-specific information. Environ Toxicol Chem 2016;9999:1-16. © 2016 SETAC.

  3. Enantioselective bioaccumulation of hexaconazole and its toxic effects in adult zebrafish (Danio rerio).

    PubMed

    Wang, Yao; Xu, Li; Li, Dongzhi; Teng, Miaomiao; Zhang, Renke; Zhou, Zhiqiang; Zhu, Wentao

    2015-11-01

    Little is known about the bioaccumulation and toxicity of hexaconazole (HEX) in spite of the fact that they are indispensable parts for a comprehensive assessment of its environmental behavior and toxic effects in organisms of freshwater ecosystems. In this study, adult zebrafish were used to study the enantioselective bioaccumulation of HEX and its effect endpoints in liver, including oxidative stress and the regulation of apoptosis-related gene expression. Significant enantioselective bioaccumulation was demonstrated when exposed to HEX of 100 and 200 μg L(-)(1), finding that the (-)-enantiomer tended to accumulate in zebrafish more easily than (+)-enantiomer. Activities of antioxidant enzymes (SOD, CAT and GPx) and GSH content were all significantly decreased when zebrafish were exposed to 50 and 200 μg L(-1) HEX for 21 d. A series of genes of the apoptosis pathway were examined in groups treated with 50 and 200 μg L(-)(1) HEX for 21 d using real-time PCR. Significant up-regulation of p53, Puma, Apaf-1, caspase-3 and caspase-9 expression and down-regulation of Bcl-2/Bax expression ratio were proved. The overall results indicated that waterborne HEX was able to produce oxidative stress and induce apoptosis through the involvement of caspases in adult zebrafish. The above information will play a vital role in the integrated environmental risk assessment of HEX and make its toxic mechanism in fish clear.

  4. Occurrence, bioaccumulation, and trophic magnification of pharmaceutically active compounds in Taihu Lake, China.

    PubMed

    Xie, Zhengxin; Lu, Guanghua; Liu, Jianchao; Yan, Zhenhua; Ma, Binni; Zhang, Zhenghua; Chen, Wei

    2015-11-01

    The occurrence, bioaccumulation, and trophic magnification of pharmaceutically active compounds, (PhACs) including antibiotics (roxithromycin and erythromycin), non-steroidal anti-inflammatory drugs (ibuprofen and diclofenac), a non-selective β-adrenoceptor blocker (propranolol), an antiepileptic drug (carbamazepine), and steroid estrogens (17β-estradiol and 17α-ethynylestradiol), were investigated in Taihu Lake, China. All eight PhACs were widely detected in surface water and sediment samples with maximal concentrations in the range of 8.74-118 ng L(-1) and 0.78-42.5 ng g(-1) dry weight (dw), respectively. The investigated organisms in the natural freshwater food web in Taihu Lake included phytoplankton, zooplankton, zoobenthos, and fish, and the maximal concentrations of target compounds in these biota samples ranged from 0.65 to 132 ng g(-1) dw. Bioaccumulation factors (BAFs) for all target PhACs were lower than 1000 L kg(-1), suggesting their low bioaccumulation potential in aquatic organisms from Taihu Lake. Trophic magnification factors (TMFs) were estimated at 1.11 for roxithromycin, 0.31 for propranolol, and 1.06 for diclofenac, indicating none of these PhACs underwent trophic magnification in this freshwater food web.

  5. Prey-specific determination of arsenic bioaccumulation and transformation in a marine benthic fish.

    PubMed

    Zhang, Wei; Zhang, Li; Wang, Wen-Xiong

    2017-02-06

    The sediments from Chinese coastal waters contain relatively high concentrations of arsenic (As), mainly arsenate As(V), which may be transferred along the marine benthic food chain. The prey-specific determination of As bioaccumulation and transformation in marine benthic fish remains little known. In this study, we focused on a typical marine benthic food chain comprising of sediments, deposit-feeding invertebrates (polychaete Nereis succinea and clam Gafrarium tumidum) and goby fish Mugilogobius chulae. Graded exposed experiments using different As exposure durations and concentrations were conducted to examine their transformation rate and efficiency. Radiotracer techniques were used to determine the rates of As uptake (as arsenate) from seawater, assimilation from two prey and its subsequent efflux in the goby fish. We demonstrated that the two prey (polychates and clams) displayed different As biotransformation in the goby fish. Biotransformation rate was higher in the goby fish fed on the clams than on the polychaetes, and biotransformation efficiency was lower with increasing inorganic As concentration in the prey. The As overall bioaccumulation in the goby fish was very low, mainly because of the low dissolved uptake and dietary assimilation and high efflux. Combining the biotransformation and biokinetics measurements, our findings highlighted that different prey containing different As concentrations and As species resulted in the comparable As bioaccumulation in the goby fish.

  6. Comparative bioaccumulation of chlorinated hydrocarbons from sediment by two infaunal invertebrates

    SciTech Connect

    Meador, J.P.; Adams, N.G.; Casillas, E.; Bolton, J.L.

    1995-12-31

    Bioaccumulation of chlorinated hydrocarbons (CHs) from field-contaminated sediments by two infaunal invertebrates, Rhepoxynius abronius and Armandia brevis was examined in the laboratory. Sediments were selected over a large geographical area of an urban estuary, the Hudson-Raritan, to assess the potential for bioaccumulation. Amphipod and polychaete tissue burdens were highly correlated over sites; however, concentrations of the trichlorobiphenyls in the polychaete were about twice that found in the amphipod and 4 to 8 times higher for the more hydrophobic PCBs. Unlike PAHs from these sediments, concentrations of CHs in IW and sediment indicated that partition coefficients (K{sub oc}) were generally as predicted. K{sub oc} values determined with non-sorbed interstitial water concentrations (IW{sub free}) were much closer to predicted values compared to those based on the total chlorinated compound. As expected, BAF values were highly variable among sites and increased greatly with declining TOC content. The BAF{sub loc} (lipid/organic carbon normalized bioaccumulation factor) for trichlorobiphenyls in the polychaete was similar to that for the amphipod; however the polychaete BAF{sub loc} increased with increasing hydrophobicity and was maximum for the pentachlorobiphenyls and close to the expected maximum. Some evidence for site-specific BAF{sub loc} values was found because of a strong correlation between BAF{sub loc} and sediment concentration; however for some PCBs, this correlation was weak.

  7. Selective bioaccumulation and elimination of hexachlorocyclohexane isomers in Tubifex tubifex (Oligochaeta, Tubificidae).

    PubMed

    Di, Shanshan; Huang, Ledan; Diao, Jinling; Zhou, Zhiqiang

    2016-04-01

    In this study, Tubifex tubifex worms were exposed to sediment-associated hexachlorocyclohexane (HCH) isomers to study the bioaccumulation and elimination behaviors of HCH isomers in T. tubifex. During a 10-day bioaccumulation experiment, bioaccumulation curves of HCHs were approximate to M-type in T. tubifex. The enantioselective behaviors of α-HCH enantiomers were observed in T. tubifex, with concentrations of (+)-α-HCH higher than that of (-)-α-HCH. The concentration of γ-HCH in T. tubifex was higher than that of β-HCH and α-HCH. The existence of worms can accelerate the dissipation of HCHs in sediment, and the dissipation half-lives of α-HCH, β-HCH, and γ-HCH were 8.39, 23.90, and 3.10 days, respectively. In the elimination experiment, approximately 0.053 (37.1%), 0.074 (45.9%), and 0.042 mg/kgwwt (38.4%) α-HCH, β-HCH, and γ-HCH were depleted or excreted in T. tubifex on the first day, respectively. The body residues in T. tubifex were 0.084 (α-HCH), 0.082 (β-HCH), and 0.061 mg/kgwwt (γ-HCH) at the end of elimination experiment. Furthermore, the existence of T. tubifex could affect the overlying water quality parameters.

  8. Forecasting fish biomasses, densities, productions, and bioaccumulation potentials of mid-atlantic wadeable streams.

    PubMed

    Barber, M Craig; Rashleigh, Brenda; Cyterski, Michael J

    2016-01-01

    Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the Bioaccumulation and Aquatic System Simulator (BASS) bioaccumulation and fish community model and data collected by the US Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Average annual biomasses and population densities and annual productions are estimated for 352 randomly selected streams. Realized bioaccumulation factors (BAF) and biomagnification factors (BMF), which are dependent on these forecasted biomasses, population densities, and productions, are also estimated by assuming constant water exposures to methylmercury and tetra-, penta-, hexa-, and hepta-chlorinated biphenyls. Using observed biomasses, observed densities, and estimated annual productions of total fish from 3 regions assumed to support healthy fisheries as benchmarks (eastern Tennessee and Catskill Mountain trout streams and Ozark Mountains smallmouth bass streams), 58% of the region's wadeable streams are estimated to be in marginal or poor condition (i.e., not healthy). Using simulated BAFs and EMAP Hg fish concentrations, we also estimate that approximately 24% of the game fish and subsistence fishing species that are found in streams having detectable Hg concentrations would exceed an acceptable human consumption criterion of 0.185 μg/g wet wt. Importantly, such streams have been estimated to represent 78.2% to 84.4% of the Mid-Atlantic's wadeable stream lengths. Our results demonstrate how a dynamic simulation model can support regional assessment and trends analysis for fisheries.

  9. Bioaccumulation patterns of polychlorinated biphenyls and chlorinated pesticides in northwest Atlantic pilot whales

    SciTech Connect

    Weisbrod, A.V.; Shea, D.; Moore, M.J.; Stegeman, J.J.

    2000-03-01

    Contaminant exposure is widespread among marine mammals but is of unknown significance. This study characterized organochlorine bioaccumulation in pilot whales, and these bioaccumulation patterns are proposed as representative of Northwest (NW) Atlantic cetacea. Samples were collected from whales stranded in Massachusetts and caught in nets. Polychlorinated biphenyl (PCB) and chlorinated pesticide concentrations were determined via GC/ECD and found to be similar to those reported for other NW Atlantic odontocetes. The organochlorine in highest concentration was 4,4{prime}-DDE, followed by trans-nonachlor, 4,4{prime}-DDD, dieldrin, cis-chlordane, C14(52), C15(95), C15(101), C15(118), C16(138), C16(149), C16(153), C17(180), and C17(187). The concentration of 19 pesticides was higher in blubber than liver. The concentration of 26 PCB congeners was also greater in blubber than liver. Principal component analysis and ANOVA indicated that blubber accumulated proportionately more of the most recalcitrant compounds, such as 4,4{prime}-DDE and nonmetabolizable PCBs, compared to liver. Whales that stranded together had more similar bioaccumulation than animals of the same gender or maturity. The high variation among individuals in tissue concentrations and the similarity within a stranding group suggest that pilot whale pods are exposed to a large range of pollutant sources, such as through different prey and feeding locations.

  10. Organochlorine exposure and bioaccumulation in the endangered northwest Atlantic right whale (Eubalaena glacialis) population

    SciTech Connect

    Weisbrod, A.V.; Shea, D.; Moore, M.J.; Stegeman, J.J.

    2000-03-01

    Exposure to toxicants is one factor hypothesized to influence population growth of the northern right whale. Organochlorines in right whale skin, feces, and prey were measured and used to identify factors influencing exposure and bioaccumulation. Concentrations of 30 polychlorinated biphenyls (PCBs) and 20 pesticides in skin biopsies were consistent with other baleenopterids. Concentrations in feces and prey were two orders of magnitude less than in biopsies. In principal component analysis, organochlorines in biopsies matched those from Bay of Fundy, Canada, zooplankton, whereas feces were like Cape Cod, USA, copepods. Year of biopsy collection was the principal factor associated with differential accumulation of nonmetabolizable PCBs, 4,4{prime}-DDE, and dieldrin. Biopsies collected during winter had lower concentrations of lipid and metabolizable compounds than biopsies collected during summer. Concentrations of metabolizable PCBs increased with age in males. The bioaccumulation patterns implied that blubber burdens change annually because of the ingestion of different prey or prey from distinct locations and the release of some organochlorines stored in blubber during lipid depletion in winter. Because biopsy concentrations were lower than those found in marine mammals affected by PCBs and DDTs, the authors do not have evidence that the endangered whales bioaccumulate hazardous concentrations of organochlorines.

  11. Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake.

    PubMed

    Xie, Zhengxin; Lu, Guanghua; Yan, Zhenhua; Liu, Jianchao; Wang, Peifang; Wang, Yonghua

    2017-03-01

    Pharmaceuticals are increasingly detected in environmental matrices, but information on their trophic transfer in aquatic food webs is insufficient. This study investigated the bioaccumulation and trophic transfer of 23 pharmaceuticals in Taihu Lake, China. Pharmaceutical concentrations were analyzed in surface water, sediments and 14 aquatic species, including plankton, invertebrates and fish collected from the lake. The median concentrations of the detected pharmaceuticals ranged from not detected (ND) to 49 ng/L in water, ND to 49 ng/g dry weight (dw) in sediments, and from ND to 130 ng/g dw in biota. Higher concentrations of pharmaceuticals were found in zoobenthos relative to plankton, shrimp and fish muscle. In fish tissues, the observed pharmaceutical contents in the liver and brain were generally higher than those in the gills and muscle. Both bioaccumulation factors (median BAFs: 19-2008 L/kg) and biota-sediment accumulation factors (median BSAFs: 0.0010-0.037) indicated a low bioaccumulation potential for the target pharmaceuticals. For eight of the most frequently detected pharmaceuticals in food webs, the trophic magnification factors (TMFs) were analyzed from two different regions of Taihu Lake. The TMFs for roxithromycin, propranolol, diclofenac, ibuprofen, ofloxacin, norfloxacin, ciprofloxacin and tetracycline in the two food webs ranged from 0.28 to 1.25, suggesting that none of these pharmaceuticals experienced trophic magnification. In addition, the pharmaceutical TMFs did not differ significantly between the two regions in Taihu Lake.

  12. The bryophyte Fontinalis antipyretica Hedw. bioaccumulates oxytetracycline, flumequine and oxolinic acid in the freshwater environment.

    PubMed

    Delépée, Raphaël; Pouliquen, Hervé; Le Bris, Hervé

    2004-04-25

    In recent years, the fate of pharmacological substances in the aquatic environment have been more and more studied. Oxolinic acid (OA), flumequine (FLU) and oxytetracycline (OTC) are commonly used antibacterial agents. A large amount of these drugs is released into water directly by dissolved fraction and indirectly in urine and feces. Monitoring these compounds in the freshwater environment is difficult because of the lack of suitable indicators. The aim of this work was to evaluate the OA, FLU and OTC bioaccumulation abilities of Fontinalis antipyretica Hedw., known for heavy metal bioaccumulation. The experiment described was decomposed for two times: a 10-days accumulation period during which bryophytes were in contact with antibiotics and a 15-days post-exposure period during which bryophytes were in water with no antibiotic. This experiment showed that this bryophyte strongly accumulates OA, FLU and OTC in freshwater. Bioaccumulation factors (ratio of concentrations in bryophyte and water) ranged between 75 and 450. Moreover, OA, FLU and OTC persisted in the bryophyte for a long time with clearance between 0.19 and 3.04 ng/g/day. Mean residence times ranged between 18 and 59 days. Accumulation and decontamination mechanism models were proposed.

  13. Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan.

    PubMed

    Eqani, Syed Ali Musstjab Akber Shah; Bhowmik, Avit Kumar; Qamar, Sehrish; Shah, Syed Tahir Abbas; Sohail, Muhammad; Mulla, Sikandar I; Fasola, Mauro; Shen, Heqing

    2016-11-01

    Mercury (Hg) contamination of environment is a major threat to human health in developing countries like Pakistan. Human populations, particularly children, are continuously exposed to Hg contamination via dust particles due to the arid and semi-arid climate. However, a country wide Hg contamination data for dust particles is lacking for Pakistan and hence, human populations potentially at risk is largely unknown. We provide the first baseline data for total mercury (THg) contamination into dust particles and its bioaccumulation trends, using scalp human hair samples as biomarker, at 22 sites across five altitudinal zones of Pakistan. The human health risk of THg exposure via dust particles as well as the proportion of human population that are potentially at risk from Hg contamination were calculated. Our results indicated higher concentration of THg in dust particles and its bioaccumulation in the lower Indus-plain agricultural and industrial areas than the other areas of Pakistan. The highest THg contamination of dust particles (3000ppb) and its bioaccumulation (2480ppb) were observed for the Lahore district, while the highest proportion (>40%) of human population was identified to be potentially at risk from Hg contamination from these areas. In general, children were at higher risk of Hg exposure via dust particles than adults. Regression analysis identified the anthropogenic activities, such as industrial and hospital discharges, as the major source of Hg contamination of dust particles. Our results inform environmental management for Hg control and remediation as well as the disease mitigation on potential hotspots.

  14. Tungsten toxicity, bioaccumulation, and compartmentalization into organisms representing two trophic levels.

    PubMed

    Kennedy, Alan J; Johnson, David R; Seiter, Jennifer M; Lindsay, James H; Boyd, Robert E; Bednar, Anthony J; Allison, Paul G

    2012-09-04

    Metallic tungsten has civil and military applications and was considered a green alternative to lead. Recent reports of contamination in drinking water and soil have raised scrutiny and suspended some applications. This investigation employed the cabbage Brassica oleracae and snail Otala lactea as models to determine the toxicological implications of sodium tungstate and an aged tungsten powder-spiked soil containing monomeric and polymeric tungstates. Aged soil bioassays indicated cabbage growth was impaired at 436 mg of W/kg, while snail survival was not impacted up to 3793 mg of W/kg. In a dermal exposure, sodium tungstate was more toxic to the snail, with a lethal median concentration of 859 mg of W/kg. While the snail significantly bioaccumulated tungsten, predominately in the hepatopancreas, cabbage leaves bioaccumulated much higher concentrations. Synchrotron-based mapping indicated the highest levels of W were in the veins of cabbage leaves. Our results suggest snails consuming contaminated cabbage accumulated higher tungsten concentrations relative to the concentrations directly bioaccumulated from soil, indicating the importance of robust trophic transfer investigations. Finally, synchrotron mapping provided evidence of tungsten in the inner layer of the snail shell, suggesting potential use of snail shells as a biomonitoring tool for metal contamination.

  15. Bioaccumulation and related effects of PCBs and organochlorinated pesticides in freshwater fish Hypostomus commersoni.

    PubMed

    Bussolaro, D; Filipak Neto, F; Glinski, A; Roche, H; Guiloski, I C; Mela, M; Silva de Assis, H C; Oliveira Ribeiro, C A

    2012-08-01

    Few studies have investigated the bioaccumulation of persistent organic pollutants (POPs) in Brazilian native freshwater fish. In order to evaluate the bioavailability, potential risk to human exposure and the effects of POPs in the fish Hypostomus commersoni, muscle and liver samples of thirteen specimens were collected in a lake located in the city of Ponta Grossa (Parana State, Southern Brazil). Also, the liver and gills were considered for histopathological studies, and oxidative stress was investigated in the liver. Expressive concentrations of POPs were observed in the liver and muscle, with a total of 427 ± 78.7 and 69.2 ± 18.1 ng g(-1) dry weights of polychlorinated biphenyls (PCBs), respectively. Negative correlations between the concentration of several POPs and glutathione S-transferase and glucose-6-phosphate dehydrogenase were found. Otherwise, the cholinesterase activity in the muscle and brain presented positive correlations with the concentration of POPs. The hepatic bioaccumulation of some banned pesticides like aldrin, dieldrin and DDT was associated with various histopathological findings in the liver and gills. Necrotic areas, fibrosis, leukocyte infiltration, and the absence of macrophage centers were observed in the liver, indicating both chronic exposure and immunological suppression. Neoplasic changes were observed in the gills, confirming the carcinogenic potential reported for some of the investigated pollutants. The current work was the first to study the bioaccumulation of POPs in H. commersoni, an important species in ecological aspects and as a vehicle to human exposure to PCBs and organochlorine pesticides (OCPs).

  16. Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes

    USGS Publications Warehouse

    Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.

    2008-01-01

    Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.

  17. Metabolism and bioaccumulation of nitroaromatic munitions by-products in earthworms and plants

    SciTech Connect

    Reddy, T.V.; Chang, L.W.; Smith, M.K.; Daniel, F.B.; Wiechman, B.; Reddy, G.

    1994-12-31

    Previously the authors have used earthworm and plant bioassays to evaluate the toxicity of nitroaromatic ammunition by-products. In the present study, they investigated the uptake, metabolism and possible bioaccumulation of these compounds in earthworms and plants. Earthworms were maintained on artificial soil supplemented with {sup 14}[C] trinitrobenzene (TNB). The authors also studied the translocation, metabolism and bioaccumulation of {sup 14}[C] 1,3-dinitrobenzene (DNB) by germinating oat and lettuce seeds planted on artificial soil. Acetone extracts of tissue and gut contents of earthworms exposed to TNB for different intervals contained only a small fraction of the original radioactivity, which did not increase with time. The radioactivity extracted from earthworms co-eluted with 1,3-dinitroaniline (DNAN) on HPLC and the amount of radioactivity decreased with time. In the DNB plant studies, five day old oat seedlings accumulated 17% of {sup 14}[C] radioactivity. HPLC of acetone extracts revealed unidentified radioactive peaks but DNB radioactivity was not detected. The radioactivity from butanol extracts of both oats and lettuce coeluted with aniline and 3-nitroaniline and the radioactivity increased with time. These results suggest that oats and lettuce bioaccumulate DNB metabolites, which might result in the transfer of toxicants to herbivores.

  18. Effects of phytoplankton cell size and chloride concentration on the bioaccumulation of methylmercury in marine phytoplankton.

    PubMed

    Kim, Hyunji; Van Duong, Hieu; Kim, Eunhee; Lee, Byeong-Gweon; Han, Seunghee

    2014-08-01

    In the current study, the effects of phytoplankton cell size and methylmercury (MeHg) speciation on the bioaccumulation of MeHg by marine phytoplankton were investigated. Volume concentration factors (VCFs) of MeHg were determined in relation to the surface area to volume ratio of the cells for four species of diatom and a cyanobacteria species cultured in unenriched seawater. The VCFs of MeHg, ranging from 7.3 × 10(4) to 1.6 × 10(6) , increased linearly as the cell surface area-to-volume ratio increased. It suggests that pico- and nano-dominated phytoplankton communities may lead to larger MeHg accumulation than the one dominated by microphytoplankton. MeHg VCFs increased with increasing chloride concentration from 0.47 to 470 mM, indicating that MeHg bioaccumulation is enhanced under conditions that facilitate membrane permeability by the formation of neutral MeHgCl species. Overall results suggest that the size distributions of the planktonic community as well as the seawater chemistry affect MeHg bioaccumulation by marine phytoplankton.

  19. Mercury bioaccumulation and decontamination kinetics in the edible cockle Cerastoderma edule.

    PubMed

    Cardoso, P G; Grilo, T F; Pereira, E; Duarte, A C; Pardal, M A

    2013-02-01

    Mercury bioaccumulation and decontamination kinetics in the edible cockle Cerastoderma edule were studied through a mesocosms experiment after a medium-term exposure to the metal. The results revealed that the bivalve presented distinct bioaccumulation kinetics according to the different tissues. While the gills showed a linear accumulation pattern, the digestive gland and the entire organism presented a saturation model, with higher accumulation during the first 7d of exposure and lower during the rest of the time. In addition, the bioaccumulation rate was not proportional to the Hg concentration, since the organisms under lower contamination presented higher bioconcentration factors than the ones under higher contamination. Gills were the tissues with higher mercury accumulation capability. Concerning the decontamination phase, C. edule lost approximately 80% of the mercury after 24h exposure in clean seawater. Nevertheless, never reached the original condition, showing in the final (20 d detox), Hg levels (>0.5 ppm) higher than those allowed by the legislation regulating human food consumption. This represents a matter of concern for Human health.

  20. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    NASA Astrophysics Data System (ADS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-03-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores ( <10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation.

  1. Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia feotida).

    PubMed

    Qu, Han; Wang, Peng; Ma, Rui-xue; Qiu, Xing-xu; Xu, Peng; Zhou, Zhi-qiang; Liu, Dong-hui

    2014-07-01

    The enantioselective acute toxicity to earthworms of racemic fipronil and its individual enantiomers was studied. R-(-)-fipronil was approximately 1.5 times more toxic than the racemate and approximately 2 times more toxic than S-(+)-fipronil after 72 and 96 h of exposure, respectively. Assays of fipronil enantiomer bioaccumulation and degradation in earthworms were conducted. The bio-concentration factors (BCFs) were slightly different between the two enantiomers. The enantiomeric fraction (EF) values in earthworms in the bioaccumulation period were approximately 0.5, which indicated there was no enantioselective bioaccumulation. In contrast, the degradation of fipronil in earthworms was enantioselective: the t1/2 values for R- and S-fipronil were 3.3 and 2.5 days, respectively, in natural soil, and 2.1 and 1.4 days, respectively, in artificial soil. The results of soil analyses showed that the degradation of fipronil was not enantioselective, which suggested that the enantioselectivity of fipronil in earthworms results from the organism's metabolism. The study also demonstrated that the presence of earthworms could accelerate the degradation of fipronil in soil.

  2. Numerical evaluation of bioaccumulation and depuration kinetics of PAHs in Mytilus galloprovincialis.

    PubMed

    Yakan, S D; Focks, A; Klasmeier, J; Okay, O S

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are important organic pollutants in the aquatic environment due to their persistence and bioaccumulation potential both in organisms and in sediments. Benzo(a)anthracene (BaA) and phenanthrene (PHE), which are in the priority pollutant list of the U.S. EPA (Environmental Protection Agency), are selected as model compounds of the present study. Bioaccumulation and depuration experiments with local Mediterranean mussel species, Mytilus galloprovincialis were used as the basis of the study. Mussels were selected as bioindicator organisms due to their broad geographic distribution, immobility and low enzyme activity. Bioaccumulation and depuration kinetics of selected PAHs in Mytilus galloprovincialis were described using first order kinetic equations in a three compartment model. The compartments were defined as: (1) biota (mussel), (2) surrounding environment (seawater), and (3) algae (Phaeodactylum tricornutum) as food source of the mussels. Experimental study had been performed for three different concentrations. Middle concentration of the experimental data was used as the model input in order to represent other high and low concentrations of selected PAHs. Correlations of the experiment and model data revealed that they are in good agreement. Accumulation and depuration trend of PAHs in mussels regarding also the durations can be estimated effectively with the present study. Thus, this study can be evaluated as a supportive tool for risk assessment in addition to monitoring studies.

  3. Mercury bioaccumulation in northern two-lined salamanders from streams in the northeastern United States

    USGS Publications Warehouse

    Bank, M.S.; Loftin, C.S.; Jung, R.E.

    2005-01-01

    Mercury (Hg) bioaccumulation in salamanders has received little attention despite widespread Hg contamination of aquatic ecosystems and worldwide amphibian declines. Here we report concentrations of methyl Hg (MeHg) and total Hg in larval northern two-lined salamanders (Eurycea bislineata bislineata) collected from streams in Acadia National Park (ANP), Maine, and Bear Brook Watershed, Maine (BBWM; a paired, gauged watershed treated with bimonthly applications (25 kg/ha/yr) of ammonium sulfate [(NH4)(2)SO4]) since 1989), and Shenandoah National Park (SNP), Virginia. MeHg comprised 73-97% of total Hg in the larval salamander composite samples from ANP. At BBWM we detected significantly higher total Hg levels in larvae from the (NH4)(2)SO4 treatment watershed. At ANP total Hg concentrations in salamander larvae were significantly higher from streams in unburned watersheds in contrast with larval samples collected from streams located in watersheds burned by the 1947 Bar Harbor fire. Additionally, total Hg levels were significantly higher in salamander larvae collected at ANP in contrast with SNP. Our results suggest that watershed-scale attributes including. re history, whole-catchment (NH4)(2)SO4 additions, wetland extent, and forest cover type influence mercury bioaccumulation in salamanders inhabiting lotic environments. We also discuss the use of this species as an indicator of Hg bioaccumulation in stream ecosystems.

  4. The detoxification process, bioaccumulation and damage effect in juvenile white shrimp Litopenaeus vannamei exposed to chrysene.

    PubMed

    Ren, Xianyun; Pan, Luqing; Wang, Lin

    2015-04-01

    This study aimed to evaluate the effect of chrysene (CHR) on detoxification enzymes, bioaccumulation and effect of CHR on biomolecule damage in different organs of the juvenile white shrimp Litopenaeus vannamei. In this study, juvenile white shrimp L. vannamei were exposed to CHR for 21 days at four different concentrations as 0, 0.3, 2.1 and 14.7 μg/L. Results showed that CHR bioaccumulation increased rapidly at first then reached a plateau. The activities of aryl hydrocarbon hydroxylase (AHH), 7-ethoxyresorufin O-deethylase (EROD), epoxide hydrolase (EH), glutathione-S-transferase (GST), sulfotransferase (SULT) and uridinediphosphate glucuronyltransferase (UGT) were induced and then became stable gradually. Moreover, 2.1 and 14.7 μg/L CHR treatments increased activity of superoxide dismutase (SOD) in gills and hepatopancreas, while total antioxidant capacity (T-AOC) and GSH/GSSG were suppressed after CHR exposure. Additionally, lipid peroxidation (LPO) levels, protein carbonyl (PC) contents and DNA damage were induced throughout the exposure period, and different trends were detected with time of exposure. Overall, these novel findings of CHR bioaccumulation and resulted toxicity demonstrate that CHR could affect the physical status of L. vannamei. This study will form a solid basis for a realistic extrapolation scientific data for aquaculture water monitoring and food security.

  5. Ground state properties of trigonal prismatic and trigonal bipyramidal d1,9, d2,8, d3,7, and d5 systems: Effects of trigonal distortion

    NASA Astrophysics Data System (ADS)

    Hempel, Judith C.; Miller, Michael E.

    1981-09-01

    Empirical ligand field theory has been used to calculate ground state energy space diagrams for d1,9, d2,8, d3,7, and d5 systems of D3h symmetry and allowed ground states for trigonal bipyramidal (five coordinate) and trigonal prismatic (six coordinate) D3h geometries have been identified. We demonstrate that entirely similar behavior should be expected for trigonal prismatic and trigonal bipyramidal d5 systems. Spin-orbit calculations complete within the d5 basis are used to establish that the ESR zero field parameter D for a 6A'1(D3h) ground state will normally be negative. Normalized spherical harmonic (NSH) ligand field Hamiltonians symmetry adapted to chains based on the D6h covering group are defined for all trigonal symmetries. Multiple symmetry parameter sets, which arise for trigonal symmetries other than D3h, describe the range of orbital mixing possible. Spin-orbit and Zeeman interactions reveal the effects of orbital mixing and restrict to two the number of symmetry parameter sets possible for a trigonal system. We specifically consider the magnetic properties of the five coordinate complexes of C3v symmetry [M(Me6tren)Br]Br, with M = Cu(II) and Ni(II) using calculations for C3v symmetry which incorporate spin-orbit and Zeeman interactions and are complete within the dn basis.

  6. Impact of an urban multi-metal contamination gradient: metal bioaccumulation and tolerance of river biofilms collected in different seasons.

    PubMed

    Faburé, Juliette; Dufour, Marine; Autret, Armelle; Uher, Emmanuelle; Fechner, Lise C

    2015-02-01

    The aim of this study was to investigate the repeatability and seasonal variability of the biological response of river biofilms chronically exposed to a multi-metal pressure in an urban contamination gradient. Biofilms were grown on immersed plastic membranes at three sites on the Seine river upstream (site 1) and downstream (sites 2 and 3) from Paris (France). They were collected in four different seasons (autumn, spring, summer and winter). Biofilm tolerance to Cu, Ni, Pb and Zn was measured using a PICT (Pollution-Induced Community Tolerance) approach with a previously developed short-term toxicity test based on β-glucosidase (heterotrophic) activity. Metal concentrations in the river and also in the biofilm samples (total and non-exchangeable bioaccumulated metals) were also monitored. Biofilm-accumulated metal concentrations reflected the increase of the multi-metal exposure along the urban gradient. These concentrations were strongly correlated with dissolved and particulate organic carbon and with the total metal fraction in the river water, which recalls the significant influence of the environmental parameters on metal uptake processes in river biofilms. Overall, natural biofilms allow monitoring water quality by integrating the variations of a diffuse metal contamination overtime. Tolerance levels globally increased from site 1 to site 3 reflecting the metal pollution gradient measured in the river water collected at the three sites. Cu tolerance tended to increase during warm seasons but no clear seasonal tendency could be found for Ni, Pb and Zn. Furthermore, principal component analysis clearly discriminated samples collected upstream (site 1) from samples collected downstream (sites 2 and 3) along the first principal component which was correlated to the metal gradient. Samples collected in winter were also separated from the others along the second principal component correlated to parameters like water temperature and Total Suspended Solids

  7. Methylmercury bioaccumulation across a productivity gradient in streams

    EPA Science Inventory

    Conceptual models have identified periphyton as a potentially improtant pathway for biomagnifying pollutants in streams. This hypothesis, however, has neither been tested experimentally, norinvestigated form ethylmercury (MeHg) a ubiquitous aquatic contaminant.

  8. Studies on fate and toxicity of nanoalumina in male albino rats: Lethality, bioaccumulation and genotoxicity.

    PubMed

    Morsy, Gamal M; El-Ala, Kawther S Abou; Ali, Atef A

    2016-02-01

    The purpose of this study is to follow-up the distribution, lethality percentile doses (LDs) and bioaccumulation of aluminium oxide nanoparticles (Al2O3-NPs, average diameter 9.83 ± 1.61 nm) in some tissues of male albino rats, and to evaluate its genotoxicity to the brain tissues, during acute and sublethal experiments. The LDs of Al2O3-NPs, including median lethal dose (LD50), were estimated after intraperitoneal injection. The computed LD50 at 24 and 48 h were 15.10 and 12.88 g/kg body weight (b.w.), respectively. For acute experiments, the bioaccumulation of aluminium (Al) in the brain, liver, kidneys, intestine and spleen was estimated after 48 h of injection with a single acute dose (3.9, 6.4 and 8.5 g/kg b.w.), while for sublethal experiments it was after 1, 3, 7, 14 and 28 days of injection with 1.3 g/kg b.w. once in 2 days. Multi-way analysis of variance affirmed that Al uptake, in acute experiments, was significantly affected by the injected doses, organs (brain, liver, kidneys, intestine and spleen) and their interactions, while for sublethal experiments an altogether effect based on time (1, 3, 7, 14, 28 days), doses (0 and 1.3 g), organs and their interactions was reported. In addition, Al accumulated in the brain, liver, kidney, intestine and spleen of rats administered with Al2O3-NPs were significantly higher than the corresponding controls, during acute and sublethal experiments. The uptake of Al by the spleen of rats injected with acute doses was greater than that accumulated by kidney>brain>intestine>liver, whereas the brain of rats injected with sublethal dose accumulated lesser amount of Al followed by the kidneyBioaccumulation of Al, in all studied tissues, was positively correlated with the injected doses (in acute term) and the experimental periods (in sublethal term). In the acute and sublethal experiments, comet assay parameters such as the tail intensity (i.e. DNA percentage), tail extent moment and olive tail

  9. Evaluation of the potential bioaccumulation ability of the blood cockle (Anadara granosa L.) for assessment of environmental matrices of mudflats.

    PubMed

    Mirsadeghi, Seiedeh Aghileh; Zakaria, Mohamad Pauzi; Yap, Chee Kong; Gobas, Frank

    2013-06-01

    The spatial distribution of 19 polycyclic aromatic hydrocarbons (tPAHs) was quantified in aquacultures located in intertidal mudflats of the west coast of Peninsular Malaysia in order to investigate bioaccumulation of PAH in blood cockles, Anadara granosa (A. granosa). Fifty-four samples from environmental matrices and A. granosa were collected. The sampling locations were representative of a remote area as well as PAH-polluted areas. The relationship of increased background levels of PAH to anthropogenic PAH sources in the environment and their effects on bioaccumulation levels of A. granosa are investigated in this study. The levels of PAH in the most polluted station were found to be up to ten-fold higher than in remote areas in blood cockle. These high concentrations of PAHs reflected background contamination, which originates from distant airborne and waterborne transportation of contaminated particles. The fraction and source identification of PAHs, based on fate and transport considerations, showed a mix of petrogenic and pyrogenic sources. The relative biota-sediment accumulation factors (RBSAF), relative bioaccumulation factors from filtered water (RBAFw), and from suspended particulate matter (SPM) (RBAFSP) showed higher bioaccumulations of the lower molecular weight of PAHs (LMWs) in all stations, except Kuala Juru, which showed higher bioaccumulation of the higher molecular weight of PAHs (HMWs). Calculations of bioaccumulation factors showed that blood cockle can accumulate PAHs from sediment as well as water samples, based on the physico-chemical characteristics of habitat and behaviour of blood cockles. Correlations among concentrations of PAHs in water, SPM, sediment and A. granosa at the same sites were also found. Identification of PAH levels in different matrices showed that A. granosa can be used as a good biomonitor for LMW of PAHs and tPAHs in mudflats. Considering the toxicity and carcinogenicity of PAHs, the bioaccumulation by blood cockles

  10. Issues Relating To Sediment Toxicity Testing And Bioaccumulation Of Persistent Chemicals In SRS Sediments

    SciTech Connect

    WINONA, SPECHT

    2005-03-01

    Many chemical contaminants that enter a water body in an aqueous form are ultimately deposited to the sediments. Over time, the concentrations of contaminants in sediments may build up to concentrations that are much higher than those found in the water column. However, not all chemicals present in sediments are toxic/bioavailable. Factors that affect bioavailability include aqueous solubility, pH, redox, and composition of the sediment matrix (grain size, mineral constituents, organic matter), and for metals, the quantity of acid volatile sulfides that are present in the sediments. Many sediments contain multiple chemical contaminants, which may interact synergistically or antagonistically with respect to toxicity.

  11. TOXICITY AND BIOACCUMULATION OF PFOS IN A PARTIAL LIFE CYCLE TEST WITH THE NORTHERN LEOPARD FROG

    EPA Science Inventory

    A number of recent monitoring studies have demonstrated elevated concentrations of perfluorooctane sulfonate (PFOS) in humans and wildlife throughout the world. Although no longer actively manufactured, the global distribution and relative persistence of PFOS indicates a need to...

  12. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish

    USGS Publications Warehouse

    Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.

    2015-01-01

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  13. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish.

    PubMed

    Ackerman, Joshua T; Kraus, Tamara E C; Fleck, Jacob A; Krabbenhoft, David P; Horwath, William R; Bachand, Sandra M; Herzog, Mark P; Hartman, C Alex; Bachand, Philip A M

    2015-05-19

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  14. Effect of pollution by particulate iron on the morphoanatomy, histochemistry, and bioaccumulation of three mangrove plant species in Brazil.

    PubMed

    Arrivabene, Hiulana Pereira; Souza, Iara da Costa; Có, Walter Luiz Oliveira; Conti, Melina Moreira; Wunderlin, Daniel Alberto; Milanez, Camilla Rozindo Dias

    2015-05-01

    In Brazil, some mangrove areas are subjected to air pollution by particulate iron from mining activities. However, the effect of this pollutant on mangrove plants is not well known. This study aimed to comparatively analyze the morphoanatomy, histochemistry, and iron accumulation in leaves of Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle. Samples were collected from five mangrove sites of Espírito Santo state, each of which is exposed to different levels of particulate iron pollution. The amount of particulate material settled on the leaf surface was greater in A. schaueriana and L. racemosa, which contain salt glands. High iron concentrations were found in leaves of this species, collected from mangrove areas with high particulate iron pollution, which suggests the foliar absorption of this element. None of the samples from any of the sites showed morphological or structural damage on the leaves. Scanning electron microscopy (SEM) coupled to X-ray diffraction rendered a good method for evaluating iron on leaves surfaces. A histochemical test using Prussian blue showed to be an appropriate method to detect iron in plant tissue, however, proved to be an unsuitable method for the assessment of the iron bioaccumulation in leaves of A. schaueriana and R. mangle. So far, this study demonstrates the need of evaluating the pathway used by plants exposed to contaminated particulate matter to uptake atmospheric pollutants.

  15. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils

    PubMed Central

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A.; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D.

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  16. Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream

    PubMed Central

    Du, Bowen; Haddad, Samuel P.; Luek, Andreas; Scott, W. Casan; Saari, Gavin N.; Kristofco, Lauren A.; Connors, Kristin A.; Rash, Christopher; Rasmussen, Joseph B.; Chambliss, C. Kevin; Brooks, Bryan W.

    2014-01-01

    Though pharmaceuticals are increasingly observed in a variety of organisms from coastal and inland aquatic systems, trophic transfer of pharmaceuticals in aquatic food webs have not been reported. In this study, bioaccumulation of select pharmaceuticals was investigated in a lower order effluent-dependent stream in central Texas, USA, using isotope dilution liquid chromatography–tandem mass spectrometry (MS). A fish plasma model, initially developed from laboratory studies, was tested to examine observed versus predicted internal dose of select pharmaceuticals. Pharmaceuticals accumulated to higher concentrations in invertebrates relative to fish; elevated concentrations of the antidepressant sertraline and its primary metabolite desmethylsertraline were observed in the Asian clam, Corbicula fluminea, and two unionid mussel species. Trophic positions were determined from stable isotopes (δ15N and δ13C) collected by isotope ratio-MS; a Bayesian mixing model was then used to estimate diet contributions towards top fish predators. Because diphenhydramine and carbamazepine were the only target compounds detected in all species examined, trophic magnification factors (TMFs) were derived to evaluate potential trophic transfer of both compounds. TMFs for diphenhydramine (0.38) and carbamazepine (1.17) indicated neither compound experienced trophic magnification, which suggests that inhalational and not dietary exposure represented the primary route of uptake by fish in this effluent-dependent stream. PMID:25313153

  17. Relevance of intracellular partitioning of metals in prey to differential metal bioaccumulation among populations of mummichogs (Fundulus heteroclitus).

    PubMed

    Goto, Daisuke; Wallace, William G

    2009-12-01

    Intracellular partitioning of trace metals is critical to metal tolerance in aquatic organisms and may also influence metal trophic transfer in ecosystems. In this study, we tested the relevance of metal (Cd, Cu, Pb, and Zn) intracellular partitioning in prey as an indicator of metal trophic availability to benthic forage fish, mummichogs (Fundulus heteroclitus), in chronically metal-polluted salt marshes in New York, USA. Two common prey of mummichogs in the study area, Palaemonetes pugio and Nereis acuminata, generally stored increasingly higher proportions of non-essential metals (particularly Pb) in insoluble (less trophically available) cellular components, as the whole body burdens increased. In contrast, intracellular partitioning of essential metals (Cu and Zn) in invertebrate prey varied relatively little among sites. Differential Cd and Pb intracellular partitioning patterns within P. pugio among sites were significantly associated with Cd and Pb whole body burdens in mummichogs, respectively (i.e., prey-driven bioreduction of metals), while bioaccumulation of Cu and Zn in mummichogs was similar among populations. The findings in this study suggest that metal intracellular partitioning within prey may be partially responsible for metal trophic availability to a predator in metal-polluted habitats, while there was also evidence that some predator-dependent processes may offset differential trophic availabilities from prey.

  18. Differential influences of Cu and Zn chronic exposure on Cd and Hg bioaccumulation in an estuarine oyster.

    PubMed

    Liu, Fengjie; Wang, Wen-Xiong

    2014-03-01

    In this study, the effects of Cu and Zn exposure, alone and in combination, on the bioaccumulation of Cd and Hg were investigated in an estuarine oyster Crassostrea hongkongensis under different salinity gradients. We showed that Zn, but not Cu, exposure significantly enhanced the Cd bioaccumulation. In contrast, both Cu and Zn exposure significantly enhanced the Hg bioaccumulation. Combined exposure and salinity did not affect the metal interactions in oysters. The increased tissue concentrations of Cd or Hg were associated with their increased storage in inducible metal-binding ligands (e.g. metallothionein-like proteins, MTLP) by Cu/Zn exposure. The differential roles of Cu and Zn exposure in Cd and Hg bioaccumulation resulted from their contrasting ligand induction and affinities. Analysis of field collected oysters indicated that Cu/Zn exposure was a significant contributor to tissue concentrations of Cd, Cu and Hg. Overall, biochemical/physiological changes of the animals chronically exposed to metal stressors played a key role in affecting tissue concentrations of other metals. One metal's ability to enhance the bioaccumulation of other metals depended upon the relative affinities of the metals for MTLP.

  19. Bioaccumulation of PCB-153 and effects on molecular biomarkers acetylcholinesterase, glutathione-S-transferase and glutathione peroxidase in Mytilus galloprovincialis mussels.

    PubMed

    Vidal-Liñán, Leticia; Bellas, Juan; Soriano, José Antonio; Concha-Graña, Estefanía; Muniategui, Soledad; Beiras, Ricardo

    2016-07-01

    In this study, PCB-153 bioaccumulation kinetics and concentration-response experiments were performed employing wild Mytilus galloprovincialis mussels. In addition, the activity of three enzymatic biomarkers: glutathione S-transferase (GST), glutathione peroxidase (GPx) and acetylcholinesterase (AChE), were measured in the mussel gills. The experimental data fitted well to an asymptotic accumulation model with a high bioconcentration factor (BCF) of 9324 L kg(-1) and a very limited depuration capacity, described by a low excretion rate coefficient (Kd = 0.083 d(-1)). This study reports by first time in mussels significant inhibition of GST activity and significant induction of GPx activity as a result of exposure to dissolved PCB-153. In contrast, AChE activity was unaffected at all concentrations and exposure times tested. The effects on both enzymes are time-dependent, which stresses the difficulties inherent to the use of these biomarkers in chemical pollution monitoring programs.

  20. Improvement, Verification, and Refinement of Spatially-Explicit Exposure Models in Risk Assessment - FishRand Spatially-Explicit Bioaccumulation Model Demonstration

    DTIC Science & Technology

    2015-08-01

    Germany.  von Stackelberg, K., 2010. Spatially-Explicit Bioaccumulation Modeling. Presented at the Society for Environmental Toxicology and Chemistry ...Explicit Bioaccumulation Modeling. Presented at the Society for Environmental Toxicology and Chemistry Annual Meeting, November 2010, Portland, OR... Environmental Response, Compensation, and Liability Act CERCLIS Comprehensive Environmental Response, Compensation, and Liability Information System

  1. A dynamic and mechanistic model of PCB bioaccumulation in the European hake ( Merluccius merluccius)

    NASA Astrophysics Data System (ADS)

    Bodiguel, Xavier; Maury, Olivier; Mellon-Duval, Capucine; Roupsard, François; Le Guellec, Anne-Marie; Loizeau, Véronique

    2009-08-01

    Bioaccumulation is difficult to document because responses differ among chemical compounds, with environmental conditions, and physiological processes characteristic of each species. We use a mechanistic model, based on the Dynamic Energy Budget (DEB) theory, to take into account this complexity and study factors impacting accumulation of organic pollutants in fish through ontogeny. The bioaccumulation model proposed is a comprehensive approach that relates evolution of hake PCB contamination to physiological information about the fish, such as diet, metabolism, reserve and reproduction status. The species studied is the European hake ( Merluccius merluccius, L. 1758). The model is applied to study the total concentration and the lipid normalised concentration of 4 PCB congeners in male and female hakes from the Gulf of Lions (NW Mediterranean sea) and the Bay of Biscay (NE Atlantic ocean). Outputs of the model compare consistently to measurements over the life span of fish. Simulation results clearly demonstrate the relative effects of food contamination, growth and reproduction on the PCB bioaccumulation in hake. The same species living in different habitats and exposed to different PCB prey concentrations exhibit marked difference in the body accumulation of PCBs. At the adult stage, female hakes have a lower PCB concentration compared to males for a given length. We successfully simulated these sex-specific PCB concentrations by considering two mechanisms: a higher energy allocation to growth for females and a transfer of PCBs from the female to its eggs when allocating lipids from reserve to eggs. Finally, by its mechanistic description of physiological processes, the model is relevant for other species and sets the stage for a mechanistic understanding of toxicity and ecological effects of organic contaminants in marine organisms.

  2. Linkage of bioaccumulation and biological effects to changes in pollutant loads in south San Francisco Bay

    USGS Publications Warehouse

    Hornberger, M.I.; Luoma, S.N.; Cain, D.J.; Parchaso, F.; Brown, C.L.; Bouse, R.M.; Wellise, C.; Thompson, J.K.

    2000-01-01

    The developed world has invested billions of dollars in waste treatment since the 1970s; however, changes in ecological or biological responses are rarely associated with reductions in metal pollutants. Here we present a novel, 23-yr time series of environmental change from a San Francisco Bay mudflat located 1 km from the discharge of a suburban domestic sewage treatment plant. Samples of surface sediment, the bioindicator Macoma balthica, and metals loading data were used to establish links between discharge, bioaccumulation, and effects. Mean annual Ag concentrations in M. balthica were 106 ??g/g in 1978 and 3.67 ??g/g in 1998. Concentrations of Cu declined from 287 ??g/g in 1980 to a minimum of 24 ??g/g in 1991. Declining Cu bioaccumulation was strongly correlated with decreasing Cu loads from the plant between 1977 and 1998. Relationships with bioaccumulation and total annual precipitation suggested that inputs from nonpoint sources were most important in controlling Zn bioavailability during the same period. Ecoepidemiological criteria were used to associate failed gamete production in M. balthica to a metals-enriched environment. Reproduction persistently failed between the mid-1970s and mid-1980s; it recovered after metal contamination declined. Other potential environmental causes such as food availability, sediment chemistry, or seasonal salinity fluctuations were not related to the timing of the change in reproductive capability. The results establish an associative link, suggesting that it is important to further investigate the chemical interference of Cu and/or Ag with invertebrate reproduction at relatively moderate levels of environmental contamination.

  3. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation

    USGS Publications Warehouse

    Chasar, L.C.; Scudder, B.C.; Stewart, A.R.; Bell, A.H.; Aiken, G.R.

    2009-01-01

    Trophic dynamics (community composition and feeding relationships) have been identified as important drivers of methylmercury (MeHg) bioaccumulation in lakes, reservoirs, and marine ecosystems. The relative importance of trophic dynamics and geochemical controls on MeHg bioaccumulation in streams, however, remains poorly characterized. MeHg bioaccumulation was evaluated in eight stream ecosystems across the United States (Oregon, Wisconsin, and Florida) spanning large ranges in climate, landscape characteristics, atmospheric Hg deposition, and stream chemistry. Across all geographic regions and all streams, concentrations of total Hg (THg) in top predator fish and forage fish, and MeHg in invertebrates, were strongly positively correlated to concentrations of filtered THg (FTHg), filtered MeHg (FMeHg), and dissolved organic carbon (DOC); to DOC complexity (as measured by specific ultraviolet absorbance); and to percent wetland in the stream basins. Correlations were strongest for nonurban streams. Although regressions of log[Hg] versus ??15N indicate that Hg in biota increased significantly with increasing trophic position within seven of eight individual streams, Hg concentrations in top predator fish (including cutthroat, rainbow, and brown trout; green sunfish; and largemouth bass) were not strongly influenced by differences in relative trophic position. Slopes of log[Hg] versus ??15N, an indicator of the efficiency of trophic enrichment, ranged from 0.14 to 0.27 for all streams. These data suggest that, across the large ranges in FTHg (0.14-14.2 ng L-1), FMeHg (0.023-1.03 ng L-1), and DOC (0.50-61.0 mg L-1) found in this study, Hg contamination in top predator fish in streams likely is dominated by the amount of MeHg available for uptake at the base of the food web rather than by differences in the trophic position of top predator fish. ?? 2009 American Chemical Society.

  4. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation.

    PubMed

    Chasar, Lia C; Scudder, Barbara C; Stewart, A Robin; Bell, Amanda H; Aiken, George R

    2009-04-15

    Trophic dynamics (community composition and feeding relationships) have been identified as important drivers of methylmercury (MeHg) bioaccumulation in lakes, reservoirs, and marine ecosystems. The relative importance of trophic dynamics and geochemical controls on MeHg bioaccumulation in streams, however, remains poorly characterized. MeHg bioaccumulation was evaluated in eight stream ecosystems across the United States (Oregon, Wisconsin, and Florida) spanning large ranges in climate, landscape characteristics, atmospheric Hg deposition, and stream chemistry. Across all geographic regions and all streams, concentrations of total Hg (THg) in top predator fish and forage fish, and MeHg in invertebrates, were strongly positively correlated to concentrations of filtered THg (FTHg), filtered MeHg (FMeHg), and dissolved organic carbon (DOC); to DOC complexity (as measured by specific ultraviolet absorbance); and to percent wetland in the stream basins. Correlations were strongest for nonurban streams. Although regressions of log[Hg] versus delta15N indicate that Hg in biota increased significantly with increasing trophic position within seven of eight individual streams, Hg concentrations in top predator fish (including cutthroat, rainbow, and brown trout; green sunfish; and largemouth bass) were not strongly influenced by differences in relative trophic position. Slopes of log[Hg] versus delta15N, an indicator of the efficiency of trophic enrichment, ranged from 0.14 to 0.27 for all streams. These data suggest that, across the large ranges in FTHg (0.14-14.2 ng L(-1)), FMeHg (0.023-1.03 ng L(-1)), and DOC (0.50-61.0 mg L(-1)) found in this study, Hg contamination in top predatorfish in streams likely is dominated by the amount of MeHg available for uptake at the base of the food web rather than by differences in the trophic position of top predator fish.

  5. Bioaccumulation of metals in sediments, fish and plant from Tisza river (Serbia)

    NASA Astrophysics Data System (ADS)

    Štrbac, Snežana; Gajica, Gordana; Kašanin-Grubin, Milica; Šajnović, Aleksandra; Vasić, Nebojša; Jovančićević, Branimir; Simonović, Predrag

    2014-05-01

    In the aquatic environments metals originate from various natural and anthropogenic sources. The purpose of the study was to assess the bioaccumulation level of metals in sediments fish and common reed at four different localities of the Tisza River stretch in Serbia. For purpose of this study concentrations of Al, As, B, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sr and Zn were determined in sediment, common reed (Phragmites australis (Cav.) Trin. ex Steud. 1841) and four ecologically different fish species (piscivorous northern pike (Esox lucius L.), benthivorous sterlet (Acipenser ruthenus L.) silver bream (Brama brama L.), omnivorous common carp (Cyprinus carpio L.)). Analysis of metals was carried out for liver, gills, brain, testicles and ovaries in fish and in the rhizome, stem and leaves of the common reed and sediment fraction <0,0063mm. The concentrations of metals have been assessed using the Inductively Coupled Plasma - optical emission spectrometry. Obtained results revealed that Al and Fe had the highest concentrations in sediment, fish and common reed samples. The research proved a strong positive correlation between the concentrations of all metals in the sediment, fish and common reed. The highest concentration of heavy metals was recorded in omnivorous common carp Cyprinus carpio, and organs that the most intensively accumulated the greatest number of them were liver and gills. Accumulated metals in the common reed were not distributed evenly, but there are target organs for bioaccumulation. Concentrations in below-ground organs were usually higher than above-ground organs, and the general decreasing trend of element content was rhizome>leaves>stems. Obtained results indicate that the location does not have impact to the level of bioaccumulation. On the basis of this research the under-ground organ (rhizome) of common reed, liver and gills and omnivorous fish species could be recommended as environmental indicators for the presence of metals during

  6. Hot Spots of Mercury Bioaccumulation in Amphibian Populations From the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Bank, M. S.

    2008-12-01

    Mercury (Hg) contamination in the United States (U.S.) is well-documented and continues to be a public- health issue of great concern. Fish consumption advisories have been issued throughout much of the U.S. due to elevated levels of methylmercury (MeHg). Methylmercury contamination in the developing fetus and in young children is a major public health issue for certain sectors of the global human population. Moreover, identifying MeHg hot spots and the effects of MeHg pollution on environmental health and biodiversity are also considered a high priority for land managers, risk assessors, and conservation scientists. Despite their overall biomass and importance to aquatic and terrestrial ecosystems, Hg and MeHg bioaccumulation dynamics and toxicity in amphibians are not well studied, especially when compared to other vertebrate taxa such as birds, mammals, and fish species. Population declines in amphibians are well documented and likely caused by synergistic and interacting, multiple stressors such as climate change, exposure to toxic pollutants, fungal pathogens, and habitat loss and ecosystem degradation. Protecting quality of terrestrial ecosystems in the U.S. has enormous ramifications for economic and public health of the nation's residents and is fundamental to maintaining the biotic integrity of surface waters, riparian zones, and environmental health of forested landscapes nationwide. Determining Hg concentration levels for terrestrial and surface water ecosystems also has important implications for protecting the nation's fauna. Here I present an overview of the National Amphibian Mercury Program and evaluate variation in MeHg hotspots, Hg bioaccumulation and distribution in freshwater and terrestrial habitats across a broad gradient of physical, climatic, biotic, and ecosystem settings to identify the environmental conditions and ecosystem types that are most sensitive to Hg pollution. The role of geography, disturbance mechanisms, and abiotic and biotic

  7. Mercury in Pacific bluefin tuna (Thunnus orientalis):bioaccumulation and trans-Pacific Ocean migration

    USGS Publications Warehouse

    Colman, John A.; Nogueira, Jacob I.; Pancorbo, Oscar C.; Batdorf, Carol A.; Block, Barbara A.

    2015-01-01

    Pacific bluefin tuna (Thunnus orientalis) have the largest home range of any tuna species and are well known for the capacity to make transoceanic migrations. We report the measurement of mercury (Hg) concentrations in wild Pacific bluefin tuna (PBFT), the first reported with known size-of-fish and capture location. The results indicate juvenile PBFT that are recently arrived in the California Current from the western Pacific Ocean have significantly higher Hg concentrations in white muscle (0.51 ug/g wet mass, wm) than PBFT of longer California Current residency (0.41 ug/g wm). These new arrivals are also higher in Hg concentration than PBFT in farm pens (0.43 ug/g wm) that were captured on arrival in the California Current and raised in pens on locally derived feed. Analysis by direct Hg analyzer and attention to Hg by tissue type and location on the fish allowed precise comparisons of mercury among wild and captive fish populations. Analysis of migration and nearshore residency, determined through extensive archival tagging, bioaccumulation models, trophic investigations, and potential coastal sources of methylmercury, indicates Hg bioaccumulation is likely greater for PBFT juvenile habitats in the western Pacific Ocean (East China Sea, Yellow Sea) than in the eastern Pacific Ocean (California Current). Differential bioaccumulation may be a trophic effect or reflect methylmercury availability, with potential sources for coastal China (large hypoxic continental shelf receiving discharge of three large rivers, and island-arc volcanism) different from those for coastal Baja California (small continental shelf, no large rivers, spreading-center volcanism).

  8. Importance of using regional and national data in comparative bioaccumulation studies: A case study

    SciTech Connect

    Rawa, A.; Peterson, S.C.; Eich, C.

    1995-12-31

    As part of an investigation to determine whether site-related contaminants are bioaccumulating in fish from Puffer Pond (located at the Sudbury US Army Training Annex, Massachusetts), filet and whole body preparations from yellow perch, chain pickerel, and brown bullhead were analyzed for mercury and other contaminants and compared with levels in the same fish species from Ministers Pond, a nearby off-site ``background`` pond. The mean concentration of mercury was higher in pickerel from Puffer Pond (0.61 {micro}g/g versus 0.50 {micro}g/g). Mercury was also found to be higher an average in perch from Puffer Pond (0.38 {micro}g/g versus 0.24 {micro}g/g) suggesting potential site-related contamination. Results were subsequently compared to Massachusetts clean water reference data, to USEPA national background mercury data, and to nationwide USFWS contaminant biomonitoring program mercury data. Average mercury concentrations were 0.47 {micro}g/g, 0.34 {micro}g/g, and 0.11 {micro}g/g, respectively. The variety of fish species, analytical methods, and times and locations of capture make direct comparison uncertain, but the data provide additional perspective. Specifically, Puffer Pond fish, with a mean mercury concentration of 0.36 {micro}g/g, and Ministers Pond fish, with a mean concentration of 0.37 {micro}g/g, exhibit mercury levels within the range of national and regional background mercury levels. Mercury was not found at detectable concentrations in surface water or sediment of either pond. Bioaccumulation of mercury in Puffer Pond and clean water bodies in Massachusetts is likely related to the low-pH of the water and atmospheric deposition of mercury from global and regional sources rather than from site-related sources. This study emphasizes the importance of consulting regional and national data when drawing conclusions from comparative bioaccumulation studies.

  9. Fugacity and activity analysis of the bioaccumulation and environmental risks of decamethylcyclopentasiloxane (D5).

    PubMed

    Gobas, Frank A P C; Xu, Shihe; Kozerski, Gary; Powell, David E; Woodburn, Kent B; Mackay, Don; Fairbrother, Anne

    2015-12-01

    As part of an initiative to evaluate commercial chemicals for their effects on human and environmental health, Canada recently evaluated decamethylcyclopentasiloxane (D5; CAS no. 541-02-06), a high-volume production chemical used in many personal care products. The evaluation illustrated the challenges encountered in environmental risk assessments and the need for the development of better tools to increase the weight of evidence in environmental risk assessments. The present study presents a new risk analysis method that applies thermodynamic principles of fugacity and activity to express the results of field monitoring and laboratory bioaccumulation and toxicity studies in a comprehensive risk analysis that can support risk assessments. Fugacity and activity ratios of D5 derived from bioaccumulation measures indicate that D5 does not biomagnify in food webs, likely because of biotransformation. The fugacity and activity analysis further demonstrates that reported no-observed-effect concentrations of D5 normally cannot occur in the environment. Observed fugacities and activities in the environment are, without exception, far below those corresponding with no observed effects, in many cases by several orders of magnitude. This analysis supports the conclusion of the Canadian Board of Review and the Minister of the Environment that D5 does not pose a danger to the environment. The present study further illustrates some of the limitations of a persistence-bioaccumulation-toxicity-type criteria-based risk assessment approach and discusses the merits of the fugacity and activity approach to increase the weight of evidence and consistency in environmental risk assessments of commercial chemicals.

  10. Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons.

    PubMed

    Almeda, Rodrigo; Wambaugh, Zoe; Wang, Zucheng; Hyatt, Cammie; Liu, Zhanfei; Buskey, Edward J

    2013-01-01

    We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1) the effects of crude oil (Louisiana light sweet oil) on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in mesozooplankton communities, (2) the lethal effects of dispersant (Corexit 9500A) and dispersant-treated oil on mesozooplankton, (3) the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4) the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L(-1) in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20), dispersant (0.25 µl L(-1)) and dispersant-treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L(-1)) to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments.

  11. Bioaccumulation of heavy metals both in wild and mariculture food chains in Daya Bay, South China

    NASA Astrophysics Data System (ADS)

    Qiu, Yao-Wen

    2015-09-01

    Bioaccumulation and trophic transfer of heavy metals both in the natural marine ecosystem (seawater, sediment, coral reef, phytoplankton, macrophyte, shrimp, crab, shellfish, planktivorous and carnivorous fish) and in the mariculture ecosystem (compound feed, trash fish, farmed pompano and snapper) were studied at Daya Bay, a typical subtropical bay in Southern China. The levels of Cu, Zn, Pb and Cd in sediment were 11.7, 10.2, 53.8 and 2.8 times than those in coral reef, respectively. Pb and Zn levels were markedly higher in phytoplankton than in macrophyte, probably caused by the larger specific surface area in phytoplankton. The highest levels of Zn (98.1), Pb (1.87) and Cd (5.11 μg g-1 dw) in wild organisms were all found in clam (Veremolpa scabra), indicating that these metals were apt to bioaccumulate in shellfish. The average concentrations of Cu, Zn, Pb and Cd in wild fish were 3.7, 2.1, 0.4 and 22.2 times than those in farmed fish, confirming the "growth dilution" hypothesis in farmed fish. Heavy metal bioconcentration factors (BCFs) in algae, bioaccumulation factors (BAFs) in wild species and transfer factors (TFs) in organism were calculated and discussed. The results suggested that biologically essential Cu and Zn were easier to accumulate in fish than non-essential Cd. Concentrations of Cu, Zn and Cd were several times higher in wild fish than in farmed fish whereas the opposite was observed for Pb. This metal also showed the highest transfer factor from food, which means that special attention must be given to fish feed production in relation to metal contamination.

  12. Interactions between Zooplankton and Crude Oil: Toxic Effects and Bioaccumulation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Almeda, Rodrigo; Wambaugh, Zoe; Wang, Zucheng; Hyatt, Cammie; Liu, Zhanfei; Buskey, Edward J.

    2013-01-01

    We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1) the effects of crude oil (Louisiana light sweet oil) on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in mesozooplankton communities, (2) the lethal effects of dispersant (Corexit 9500A) and dispersant-treated oil on mesozooplankton, (3) the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4) the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L−1 in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20), dispersant (0.25 µl L−1) and dispersant- treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L−1) to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments. PMID:23840628

  13. Bioaccumulation and biotransformation of the beta-blocker propranolol in multigenerational exposure to Daphnia magna.

    PubMed

    Jeong, Tae-Yong; Kim, Tae-Hun; Kim, Sang Don

    2016-09-01

    Multigenerational bioaccumulation and biotransformation activity and short-term kinetics (e.g., uptake and depuration) of propranolol in Daphnia magna were investigated at environmental concentration. The body burden and the major metabolite, desisopropyl propranolol (DIP), of propranolol were quantified using LC-MS/MS at the end of each generation after exposure for 11 generations. The accumulation of propranolol in D. magna at an environmental concentration of 0.2 μg/L was not much different between the parent (F0) and the eleventh filial (F10) generation. However, at 28 μg/L, its accumulation was 1.6 times higher-up to 18.9 μg/g-in the F10 generation relative to the F0. In contrast to propranolol, DIP intensity gradually increased from F0 to F10 at 0.2 μg/L, reflecting an increase in detoxification load and biotransformation performance; no increasing trend was observed at 28 μg/L. The bioaccumulation factor (BAF) showed higher values with a lower concentration and longer period of exposure. The average values of the BAF for 21 days of long-term exposure in successive 11 generations were 440.4 ± 119.7 and 1026.5 ± 208.6 L/kg for 28 μg/L and 0.2 μg/L, respectively. These are comparable to the BAF of 192 for the short-term 72-h exposure at 28 μg/L in the parent generation. It is also recommended that future studies for pharmaceutical ingredients be conducted on drug-drug interaction and structural characteristics on the prediction of biotransformation activity and bioaccumulation rate.

  14. Chemical composition and bioaccumulation ability of Boletus badius (Fr.) Fr. collected in western Poland.

    PubMed

    Proskura, Natalia; Podlasińska, Joanna; Skopicz-Radkiewicz, Lidia

    2017-02-01

    The aim of the study was to determine content of 17 elements (Co, Cd, Cu, Cr, Ni, Pb, Zn, Mn, Fe, Mg, Na, Ca, K, N, C, S and P) and their bioaccumulation factors (BCF) in bay bolete (Boletus badius (Fr.) Fr.) fruiting bodies (caps and stalks) and underneath soil samples collected from forest sites in lubuskie voivodeship in Poland. Forty-eight samples of Boletus badius (Fr.) Fr. fruiting bodies and the same number of underneath soil substrate samples were collected in forest sites of Sulęcin Forest District in western Poland. Copper and zinc were absorbed most strongly from soil substrate, which is performed by bioaccumulation factors (BCFCap/Soil = 16.57 and 11.60, respectively), wherein Pb, Co, Cr, Fe and Mn were excluded from bioaccumulation (BCF < 1.0). The mean content of Cd in caps and stalks was 1.44 ± 0.88 and 2.01 ± 1.26 mg kg(-1) dry weight, respectively and in contrary to Pb (≈3.00 ± 2.66 and 2.01 ± 1.26 mg kg(-1) d. w.) this metal is strongly accumulated from subsoil (BCFCap/Soil = 11.12 and BCFStipe/Soil = 10.83). The fruiting bodies of Boletus badius were distinguished by elevated content of Cr, Zn, Pb and Cd. Few statistically significant metal-to-metal correlations were observed. The correlation between forest habitat types and metals concentrations was also analysed. An attempt of estimation of Pb and Cd safe dose for human consumption was made.

  15. Bioaccumulation of perfluoroalkyl acids by earthworms (Eisenia fetida) exposed to contaminated soils.

    PubMed

    Rich, Courtney D; Blaine, Andrea C; Hundal, Lakhwinder; Higgins, Christopher P

    2015-01-20

    The presence of perfluoroalkyl acids (PFAAs) in biosolids-amended and aqueous film-forming foam (AFFF)-impacted soils results in two potential pathways for movement of these environmental contaminants into terrestrial foodwebs. Uptake of PFAAs by earthworms (Eisenia fetida) exposed to unspiked soils with varying levels of PFAAs (a control soil, an industrially impacted biosolids-amended soil, a municipal biosolids-amended soil, and two AFFF-impacted soils) was measured. Standard 28 day exposure experiments were conducted in each soil, and measurements taken at additional time points in the municipal soil were used to model the kinetics of uptake. Uptake and elimination rates and modeling suggested that steady state bioaccumulation was reached within 28 days of exposure for all PFAAs. The highest concentrations in the earthworms were for perfluorooctane sulfonate (PFOS) in the AFFF-impacted Soil A (2160 ng/g) and perfluorododecanoate (PFDoA) in the industrially impacted soil (737 ng/g). Wet-weight (ww) and organic carbon (OC)-based biota soil accumulation factors (BSAFs) for the earthworms were calculated after 28 days of exposure for all five soils. The highest BSAF in the industrially impacted soil was for PFDoA (0.42 goc/gww,worm). Bioaccumulation factors (BAFs, dry-weight-basis, dw) were also calculated at 28 days for each of the soils. With the exception of the control soil and perfluorodecanoate (PFDA) in the industrially impacted soil, all BAF values were above unity, with the highest being for perfluorohexanesulfonate (PFHxS) in the AFFF-impacted Soil A (139 gdw,soil/gdw,worm). BSAFs and BAFs increased with increasing chain length for the perfluorocarboxylates (PFCAs) and decreased with increasing chain length for the perfluoroalkyl sulfonates (PFSAs). The results indicate that PFAA bioaccumulation into earthworms depends on soil concentrations, soil characteristics, analyte, and duration of exposure, and that accumulation into earthworms may be a potential

  16. Literature review on the use of bioaccumulation for heavy metal removal and recovery

    SciTech Connect

    Benemann, J.R. , Pinole, CA ); Wilde, E.W. )

    1991-02-01

    Bioaccumulation of metals by microbes -- bioremoval'' -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

  17. Literature review on the use of bioaccumulation for heavy metal removal and recovery. Volume 2

    SciTech Connect

    Benemann, J.R.; Wilde, E.W.

    1991-02-01

    Bioaccumulation of metals by microbes -- `` bioremoval`` -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R&D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

  18. Forest floor decomposition, metal exchangeability, and metal bioaccumulation by exotic earthworms: Amynthas agrestis and Lumbricus rubellus.

    PubMed

    Richardson, J B; Görres, J H; Friedland, A J

    2016-09-01

    Earthworms have the potential to reduce the retention of pollutant and plant essential metals in the forest floor (organic horizons) by decomposing organic matter and increasing exchangeability of metals. We conducted a laboratory experiment to investigate the effects of two exotic earthworms, Amynthas agrestis and Lumbricus rubellus, on forest floor decomposition, metal exchangeability, and metal bioaccumulation. Eighty-one pots containing homogenized forest floor material were incubated for 20, 40, or 80 days under three treatments: no earthworms, A. agrestis added, or L. rubellus added. For earthworm treatments, A. agrestis and L. rubellus were stocked at densities observed in previous field studies. Pots containing either A. agrestis or L. rubellus had lost more forest floor mass than the control plots after 40 and 80 days of incubation. Forest floor pots containing A. agrestis had significantly lower % C (16 ± 1.5 %) than control pots (21 ± 1.2 %) after 80 days. However, L. rubellus consumed more forest floor and C mass than A. agrestis, when evaluated on a per earthworm biomass basis. Exchangeable (0.1 M KCl + 0.01 M AcOH extractable) and stable (15 M HNO3+ 10 M HCl extractable) concentrations of Al, Ca, Cd, Cu, Mg, Mn, Pb, and Zn in forest floor material were measured. Stable concentrations and % exchangeable metals in forest floor material were similar among treatments. Although exchangeable metal concentrations varied significantly for most metals among treatments (except Mg and Zn), we conclude that earthworms did not increase or decrease the exchangeability of metals. However, earthworms bioaccumulated Cu, Cd, Zn, and Mg and had potentially hazardous tissue concentrations of Al and Pb. This was best illustrated by calculating bioaccumulation factors using exchangeable concentrations rather than total concentrations. Future research is needed to understand the effect of earthworms on metals in other soil types.

  19. Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage

    USGS Publications Warehouse

    Dovick, Meghan A.; Kulp, Thomas R.; Arkle, Robert .; Pilliod, David

    2015-01-01

    We compared As and Sb bioaccumulation and biomagnification when these metalloids co-occurred at varying environmental concentrations in a stream and wetlands near a contaminated mine site in Idaho (USA). We measured As and Sb concentrations in water and substrate samples, and in tissues of organisms representing several trophic levels. Bioaccumulation of both As and Sb was observed in stream organisms with the following trend of bio-diminution with increasing trophic level: primary producers > tadpoles > macroinvertebrates > trout. We also note reductions in metalloid concentrations in one of two stream remediation reaches engineered within the past 17 years to ameliorate metalloid contamination in the stream. Several wetlands contained thick microbial mats and were highly populated with boreal toad tadpoles that fed on them. The mats were extremely contaminated (up to 76 564 mg kg–1 As and 675 mg kg–1 Sb) with amorphous As- and Sb-bearing minerals that we interpret as biogenic precipitates from geomicrobiological As- and Sb-cycling. Ingested mat material provided a direct source of metalloids to tadpoles, and concentrations of 3867 mg kg–1 (As) and 375 mg kg–1 (Sb) reported here represent the highest whole body As and Sb levels ever reported in living tadpoles. The bulk of tadpole metalloid burden remained in the gut despite attempts to purge the tadpoles prior to analysis. This study adds to a number of recent investigations reporting bioaccumulation, but not biomagnification, of As and Sb in food webs. Moreover, our results suggest that tadpoles, in particular, may be more resistant to metalloid contamination than previously assumed.

  20. The mismatch between bioaccumulation in field and laboratory environments: Interpreting the differences for metals in benthic bivalves.

    PubMed

    Belzunce-Segarra, Maria J; Simpson, Stuart L; Amato, Elvio D; Spadaro, David A; Hamilton, Ian L; Jarolimek, Chad V; Jolley, Dianne F

    2015-09-01

    Laboratory-based bioaccumulation and toxicity bioassays are frequently used to predict the ecological risk of contaminated sediments in the field. This study investigates the bioassay conditions most relevant to achieving environmentally relevant field exposures. An identical series of metal-contaminated marine sediments were deployed in the field and laboratory over 31 days. Changes in metal concentrations and partitioning in both sediments and waters were used to interpret differences in metal exposure and bioaccumulation to the benthic bivalve Tellina deltoidalis. Loss of resuspended sediments and deposition of suspended particulate matter from the overlying water resulted in the concentrations of Cu, Pb and Zn (major contaminants) becoming lower in the 1-cm surface layer of field-deployed sediments. Lower exchange rates of overlying waters in the laboratory resulted in higher dissolved metal exposures. The prediction of metal bioaccumulation by the bivalves in field and laboratory was improved by considering the metal partitioning within the surface sediments.

  1. First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain).

    PubMed

    Corcellas, Cayo; Eljarrat, Ethel; Barceló, Damià

    2015-02-01

    For the first time, this work described pyrethroid bioaccumulation in edible river fish samples. We analyzed 42 whole fish samples collected in 4 different Iberian rivers. All samples were positive to these insecticides. Levels of concentration ranged from 12 to 4938ngg(-1) lipid weight (lw). Moreover, isomeric characterization was carried out. Our results remarked a general preference of cis isomers in bioaccumulation. Finally, the enantiomeric evaluation showed that there was an enantioselective bioaccumulation of some pyrethroids, depending on the studied species. Pyrethroid concentrations were compared with levels obtained for other common pollutants, such as flame retardants, personal care products, hormones and pharmaceuticals. The highest values corresponded to pyrethroid insecticides, even though, pyrethroid levels are safe for human consumption taken into account the current regulations.

  2. Bioaccumulation and depuration of some trace metals in the mussel, Perna viridis (Linnaeus)

    SciTech Connect

    Lakshmanan, P.T. ); Nambisan, P.N.K. )

    1989-07-01

    Bivalves are well known for their ability to concentrate heavy metals in their tissue from environmental water. Experimental studies on the accumulation of these pollutants by molluscs have been extensively conducted. The depuration of accumulated metals in a toxicant free medium has also been studied. Bivalve molluscs may form useful tools in monitoring heavy metal pollution. However, such studies are scant in tropical species. This paper reports the bioaccumulation and depuration of Hg, Cu, Zn and Pb by the mussel Perna viridis (Linnaeus) from seawater and explores its suitability as an indicator organism for metal pollution.

  3. Bioaccumulation of metals by blue mussel (Mytilus edulis) deployed in New Bedford Harbor, Massachusetts

    SciTech Connect

    McGovern, D.G.; Bergen, B.J.; Nelson, W.G.

    1995-12-31

    As part of a marine Superfund site remedial monitoring program, blue mussels, Mytilus edulis, were deployed for 28 day intervals to monitor the levels of bioavailable copper, cadmium, lead, nickel and zinc in New Bedford Harbor, Massachusetts. Dissolved and particulate seawater samples were collected periodically during twelve separate deployments and analyzed for these metals also. Bioconcentration factors, the concentration in mussel tissue normalized to dissolved, particulate and total seawater concentrations, were calculated. Previous studies conducted at this site demonstrated that these six metals bioconcentrate in blue mussels and that bioaccumulation patterns vary for each metal. The sources of this variability are discussed with respect to the partitioning of each metal in seawater.

  4. Heavy Metal Bioaccumulation in an Atypical Primitive Neuroectodermal Tumor of the Abdominal Wall.

    PubMed

    Roncati, Luca; Gatti, Antonietta Morena; Capitani, Federico; Barbolini, Giuseppe; Maiorana, Antonio; Palmieri, Beniamino

    2015-01-01

    Heavy metals are able to interfere with the function of vital cellular components. Besides in trace heavy metals, which are essential at low concentration for humans, there are heavy metals with a well-known toxic and oncogenic potential. In this study, for the first time in literature, we report the unique adulthood case of an atypical primitive neuroectodermal tumor of the abdominal wall, diagnosed by histology and immunohistochemistry, with the molecular hybridization support. The neoplasia occurred in a patient chronically exposed to a transdermal delivery of heavy metal salts (aluminum and bismuth), whose intracellular bioaccumulation has been revealed by elemental microanalysis.

  5. Evaluating bioaccumulation of suspected endocrine disruptors into periphytons and benthos in the Tama River.

    PubMed

    Takahashi, A; Higashitani, T; Yakou, Y; Saitou, M; Tamamoto, H; Tanaka, H

    2003-01-01

    There are two major routes through which fish are exposed to endocrine disruptors (EDs); one route is through water that is a habitat; the other is through aquatic food such as algae and benthos. Few studies on the bioaccumulation of EDs in food have been conducted. Therefore, we evaluated the concentration in food of nonylphenol (NP), bisphenol A (BPA) and 17beta-estradiol (E2), which were frequently detected in river water and in final discharge of Wastewater Treatment Plants (WWTPs) in Japan. We also evaluated the estrogenicity of samples using recombinant yeast. NP concentrations ranged 0.1-0.4 microg/L in the river water, while they ranged 8-130 microg/kg-wet in the periphytons and 8-140 microg/kg-wet in the benthos. BPA concentrations ranged 0.02-0.15 microg/L in the river water, while they ranged 2-8.8 microg/kg-wet in the periphytons and 0.3-12 microg/kg-wet in the benthos. E2 concentrations ranged 0.0001-0.0076 microg/L in the water, while they ranged 0.09-2.26 microg/kg-wet in the periphytons and <0.01-0.22 microg/kg-wet in the benthos. The estrogenicity ranged 0.0001-0.0464 microg-E2equivalent/L in the water, while it ranged 3.4-66.8 microg-E2equivalent/kg-wet in the periphytons and 7.4-5458 microg-E2equivalent/kg-wet in the benthos. Bioaccumulation factors of NP are estimated as 160-650 for the periphytons, and 63-990 for the benthos, respectively. Bioaccumulation factors of BPA are estimated as 18-650 for the periphytons, and 8-170 for the benthos, respectively. Bioaccumulation factors of E2 are estimated as 64-1,200 for the periphytons, and 100-160 for the benthos, respectively. The ratios of the periphytons an