Science.gov

Sample records for 28-d bioaccumulation tests

  1. Sediment bioaccumulation testing with fish

    USGS Publications Warehouse

    Mac, Michael J.; Schmitt, Christopher J.; Burton, G. Allen

    1992-01-01

    In this chapter, we discuss methods for conducting bioaccumulation bioassays with fish; the advantages and disadvantages of using fish rather than invertebrates; and problems associated with bioaccumulation testing, with a special emphasis on statistical treatment.

  2. Sediment bioaccumulation test with Lumbriculus variegatus: Effects of feeding

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  3. Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  4. Integrated testing strategy (ITS) for bioaccumulation assessment under REACH.

    PubMed

    Lombardo, Anna; Roncaglioni, Alessandra; Benfentati, Emilio; Nendza, Monika; Segner, Helmut; Fernández, Alberto; Kühne, Ralph; Franco, Antonio; Pauné, Eduard; Schüürmann, Gerrit

    2014-08-01

    REACH (registration, evaluation, authorisation and restriction of chemicals) regulation requires that all the chemicals produced or imported in Europe above 1 tonne/year are registered. To register a chemical, physicochemical, toxicological and ecotoxicological information needs to be reported in a dossier. REACH promotes the use of alternative methods to replace, refine and reduce the use of animal (eco)toxicity testing. Within the EU OSIRIS project, integrated testing strategies (ITSs) have been developed for the rational use of non-animal testing approaches in chemical hazard assessment. Here we present an ITS for evaluating the bioaccumulation potential of organic chemicals. The scheme includes the use of all available data (also the non-optimal ones), waiving schemes, analysis of physicochemical properties related to the end point and alternative methods (both in silico and in vitro). In vivo methods are used only as last resort. Using the ITS, in vivo testing could be waived for about 67% of the examined compounds, but bioaccumulation potential could be estimated on the basis of non-animal methods. The presented ITS is freely available through a web tool.

  5. Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading.

    PubMed

    Burkhard, Lawrence P; Hubin-Barrows, Dylan; Billa, Nanditha; Highland, Terry L; Hockett, James R; Mount, David R; Norberg-King, Teresa J

    2016-07-01

    At contaminated sediment sites, the bioavailability of contaminants in sediments is assessed using sediment-bioaccumulation tests with Lumbriculus variegates (Lv). The testing protocols recommend that ratio of total organic carbon (TOC) in sediment to L. variegatus (dry weight) (TOC/Lv) should be no less than 50:1. Occasionally, this recommendation is not followed, especially with sediments having low TOC, e.g., <1 %. This study evaluated the impacts and resulting biases in the testing results when the recommendation of "no less than 50:1" is not followed. In the study, seven sediments were tested with a series of TOC/Lv ratios that spanned the recommendation. With increasing loading of organisms, growth of the organisms decreased in six of the seven sediments tested. Residues of polychlorinated biphenyls (PCBs) in the L. variegatus were measured in six of the seven sediments tested, and differences in PCB residues among loading ratios across all sediments were small, i.e., ±50 %, from those measured at the minimum recommended ratio of 50:1 TOC/Lv. In all sediment, PCB residues increased with increasing loading of the organisms for the mono-, di-, and tri-chloro-PCBs. For tetra-chloro and heavier PCBs, residues increased with increasing loading of organisms for only two of the six sediments. PCB residues were not significantly different between TOC/Lv loadings of 50:1 and mid-20:1 ratios indicating that equivalent results can be obtained with TOC/Lv ratios into the mid-20:1 ratios. Overall, the testing results suggest that when testing recommendation of 50:1 TOC/Lv is not followed, potential biases in the biota-sediment accumulations factors from the sediment-bioaccumulation test will be small. PMID:27165691

  6. Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading.

    PubMed

    Burkhard, Lawrence P; Hubin-Barrows, Dylan; Billa, Nanditha; Highland, Terry L; Hockett, James R; Mount, David R; Norberg-King, Teresa J

    2016-07-01

    At contaminated sediment sites, the bioavailability of contaminants in sediments is assessed using sediment-bioaccumulation tests with Lumbriculus variegates (Lv). The testing protocols recommend that ratio of total organic carbon (TOC) in sediment to L. variegatus (dry weight) (TOC/Lv) should be no less than 50:1. Occasionally, this recommendation is not followed, especially with sediments having low TOC, e.g., <1 %. This study evaluated the impacts and resulting biases in the testing results when the recommendation of "no less than 50:1" is not followed. In the study, seven sediments were tested with a series of TOC/Lv ratios that spanned the recommendation. With increasing loading of organisms, growth of the organisms decreased in six of the seven sediments tested. Residues of polychlorinated biphenyls (PCBs) in the L. variegatus were measured in six of the seven sediments tested, and differences in PCB residues among loading ratios across all sediments were small, i.e., ±50 %, from those measured at the minimum recommended ratio of 50:1 TOC/Lv. In all sediment, PCB residues increased with increasing loading of the organisms for the mono-, di-, and tri-chloro-PCBs. For tetra-chloro and heavier PCBs, residues increased with increasing loading of organisms for only two of the six sediments. PCB residues were not significantly different between TOC/Lv loadings of 50:1 and mid-20:1 ratios indicating that equivalent results can be obtained with TOC/Lv ratios into the mid-20:1 ratios. Overall, the testing results suggest that when testing recommendation of 50:1 TOC/Lv is not followed, potential biases in the biota-sediment accumulations factors from the sediment-bioaccumulation test will be small.

  7. Sediment bioaccumulation test with Lumbriculus variegatus: effects of feeding.

    PubMed

    Burkhard, Lawrence P; Hubin-Barrows, Dylan; Billa, Nanditha; Highland, Terry L; Hockett, James R; Mount, David R; Norberg-King, Teresa J; Hawthorne, Steven; Miller, David J; Grabanski, Carol B

    2015-05-01

    Standard sediment-bioaccumulation test methods specify that Lumbriculus variegatus should not be fed during the 28-day exposure. This lack of feeding can lead to decreases in L. variegatus weight and lipid content during the 28-day exposure period. Differences in intrinsic nutritional content of sediments could lead to additional variability in organism performance and/or contaminant uptake. To evaluate the potential benefits of feeding, sediment-bioaccumulation tests were performed comparing treatments with and without supplemental feeding with tropical fish food and also comparing performance food introduced as blended slurry versus fine flakes. The ration of food provided had to be limited to 6 mg/300-mL beaker with 250 mg of L. variegatus (ww) receiving three feedings per week to maintain acceptable dissolved oxygen (DO) in the test chambers. Relative weight change during exposure varied across sediments in the absence of food from very little change to as much as a 40 % decrease from starting weight. Feeding slurry and flake foods increased the total weight of recovered organisms by 32 and 48 %, respectively, but they did not decrease variability in weight changes across sediments. Lipid contents of the organisms decreased similarly across all feeding treatments during the test. At test termination, lipid contents of L. variegatus across unfed, slurry-fed, and flake-fed treatments were not significantly different per Tukey's honest significant difference test with 95 % family-wise confidence. Feeding resulted in polychlorinated biphenyl residues in L. variegatus being generally slightly less (median 78 %) and slightly greater (median 135 %) than the unfed treatments with slurry and flake formulated foods, respectively. PMID:25796613

  8. Sediment bioaccumulation test with Lumbriculus variegatus (EPA test method 100.3) effects of feeding and organism loading rate

    EPA Science Inventory

    Sediment bioaccumulation test methodology of USEPA and ASTM in 2000 specifies that the Lumbriculus variegatus should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry weight of no less than 50:1. It ...

  9. TCDD/TCDF levels in bioaccumulation test tissues and their corresponding sediments

    SciTech Connect

    Schrock, M.E.; Barrows, E.S.

    1995-12-31

    Sediments from eight highly urbanized, industrial areas were analyzed for 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8 tetrachlorodibenzofuran (TCDD/TCDF) contamination. The polychaete Nereis virens was exposed to the contaminated sediment for 28 days and then analyzed for TCDD/TCDF to evaluate the potential bioaccumulation of these contaminants, Levels of TCDD/TCDF accumulated in N. virens in general increased as the amount of sediment contamination increased and were significantly greater than levels in N. virens exposed to uncontaminated sediment. In addition, accumulation factors were calculated based on the levels of TCDD/TCDF in the test organisms and sediments, the organism lipid content, and the sediment total organic carbon content to predict the maximum amount of TCDD/TCDF likely to be accumulated from the sediments.

  10. Effects of feeding and organism loading rate on PCB accumulation by Lumbriculus variegatus in sediment bioaccumulation testing

    EPA Science Inventory

    Sediment bioaccumulation test methods published by USEPA and ASTM in 2000 specify that the Lumbriculus variegatus, a freshwater oligochaete, should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry we...

  11. BIOACCUMULATION AND AQUATIC SYSTEM SIMULATOR (BASS) USER'S MANUAL BETA TEST VERSION 2.1

    EPA Science Inventory

    BASS (Bioaccumulation and Aquatic System Simulator) is a Fortran 95 simulation program that predicts the population and bioaccumulation dynamics of age-structured fish assemblages that are exposed to hydrophobic organic pollutants and class B and borderline metals that complex wi...

  12. Molecular Assessment of Bacterial Community Dynamics and Functional End Points during Sediment Bioaccumulation Tests.

    PubMed

    Diepens, Noël J; Dimitrov, Mauricio R; Koelmans, Albert A; Smidt, Hauke

    2015-11-17

    Whole sediment toxicity tests play an important role in environmental risk assessment of organic chemicals. It is not clear, however, to what extent changing microbial community composition and associated functions affect sediment test results. We assessed the development of bacterial communities in artificial sediment during a 28 day bioaccumulation test with polychlorinated biphenyls, chlorpyrifos, and four marine benthic invertebrates. DGGE and 454-pyrosequencing of PCR-amplified 16S rRNA genes were used to characterize bacterial community composition. Abundance of total bacteria and selected genes encoding enzymes involved in important microbially mediated ecosystem functions were measured by qPCR. Community composition and diversity responded most to the time course of the experiment, whereas organic matter (OM) content showed a low but significant effect on community composition, biodiversity and two functional genes tested. Moreover, OM content had a higher influence on bacterial community composition than invertebrate species. Medium OM content led to the highest gene abundance and is preferred for standard testing. Our results also indicated that a pre-equilibration period is essential for growth and stabilization of the bacterial community. The observed changes in microbial community composition and functional gene abundance may imply actual changes in such functions during tests, with consequences for exposure and toxicity assessment. PMID:26466173

  13. Influence of compost addition on lead and arsenic bioavailability in reclaimed orchard soil assessed using Porcellio scaber bioaccumulation test.

    PubMed

    Udovic, M; McBride, M B

    2012-02-29

    Long-term application of lead arsenate in orchards has led to a significant accumulation of Pb and As in the topsoil. Reclamation of old orchards for agricultural purposes entails the exposure of humans to Pb and As, which can be reduced by adequate remediation actions. In this study, we assessed the remediation efficiency of compost addition, commonly used as a sustainable agricultural practice, in decreasing the human exposure Pb and As by direct ingestion. The remediation was evaluated based on Pb and As bioavailability, assessed by means of a selective non-exhaustive chemical extraction (modified Morgan extraction, MME), with a physiologically based extraction test (PBET) for the assessment of Pb and As bioavailability in ingested soils and with a novel in vivo bioaccumulation test with isopods (Porcellio scaber). All the tests showed that compost addition consistently reduced Pb, but increased As potential bioavailability. The bioaccumulation test with P. scaber was sensitive to changes in Pb and As bioavailability in test soils. However, the results indicate that the bioavailability of As could be under- or overestimated using solely chemical extraction tests. Indirect assessment of trace metal bioavailability with bioaccumulation in isopods can be used as complementary source of data to the existing in vitro chemical extraction test approach for the estimation of human exposure to trace elements in polluted and remediated soil. This is the first report on the use of As accumulation in P. scaber as a tool for the assessment of As bioavailability in contaminated orchard soil.

  14. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates

    SciTech Connect

    Not Available

    1994-06-01

    The procedures are described for testing freshwater organisms in the laboratory to evaluate the toxicity or bioaccumulation of contaminants associated with whole sediments. Sediments may be collected from the field or spiked with compounds in the laboratory. Toxicity methods are outlined for two organisms, the amphipod Hyalella azteca and the midge Chironomus tentans. The toxicity tests are conducted for 10 d in 300 ml chambers containing 100 ml of sediment and 175 ml of overlying water. Overlying water is renewed daily and test organisms are fed during the toxicity tests. The endpoint in the toxicity test with H. azteca is survival and the endpoints in the toxicity test with C. tentans are survival and growth. Procedures are primarily described for testing freshwater sediments; however, estaurine sediments (up to 15%) can also be tested with H. azteca. Guidance for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus is provided in the manual.

  15. Sediment bioaccumulation test with upper Mississippi River sediments using the oligochaete Lumbriculus variegatus

    SciTech Connect

    Brunson, E.L.; Canfield, T.J.; Dwyer, F.J.; Ingersoll, C.G.; Kemble, N.E.

    1995-12-31

    The test is part of the U.S.G.S. investigation Flood Effects on Surficial Bed Sediments Stored in the Navigational Pools of the Upper Mississippi River. In the laboratory Lumbriculus variegatus were exposed 28 days to sediments collected from 13 upper Mississippi River stations. The laboratory exposure was conducted using guidelines published in USEPA Methods for Measuring the Toxicity and Bioaccumulation of Sediment associated Contaminants with Freshwater Invertebrates. For comparison to laboratory results, native oligochaetes were isolated in the field from subsamples of each of the 13 sediments. Both laboratory exposed and field collected oligochaetes were allowed to clear their gut contents for 24 hours after sampling. After elimination, the oligochaete samples were stored frozen until analyzed. Organic contaminants were measured in the both sets of oligochaetes and the concentrations were compared. In general the concentrations of contaminants in both laboratory an field-collected oligochaetes were low. For many of the compounds measured, there was good agreement between laboratory exposed and field collected oligochaetes.

  16. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates.

    PubMed

    Sidney, Livia Alvarenga; Diepens, Noël J; Guo, Xiaoying; Koelmans, Albert A

    2016-07-01

    Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We used a battery test procedure with multiple enclosures in one aquarium, which maximized uniformity of exposure for the different species, such that the remaining variability was due mostly to species traits. The relative importance of uptake from either pore water or sediment ingestion was manipulated by using 28 d aged standard OECD sediment with low (1%) and medium (5%) OM content and 13 months aged sediment with medium OM (5%) content. Survival was ≥76% and wet weight increased for all species. Reproduction of H. azteca and weight gain of H. azteca and S. corneum were significantly higher in the medium OM aged sediments than in other sediments, perhaps due to a more developed microbial community (i.e., increase in food resources). Biota-sediment accumulation factors (BSAF) ranged from 3 to 114, depending on species and PCB congener, with C. riparius (3-10)bioaccumulation model with species-specific bioaccumulation parameters fitted well to the experimental data and showed that bioaccumulation parameters were depended on species traits. Enclosure-based battery tests and mechanistic BSAF models are expected to improve the quality of the exposure assessment in whole sediment toxicity tests. PMID:27126443

  17. Trophic transfer of polychlorinated biphenyls (PCB) in a boreal lake ecosystem: testing of bioaccumulation models.

    PubMed

    Figueiredo, Kaisa; Mäenpää, Kimmo; Leppänen, Matti T; Kiljunen, Mikko; Lyytikäinen, Merja; Kukkonen, Jussi V K; Koponen, Hannu; Biasi, Christina; Martikainen, Pertti J

    2014-01-01

    Understanding the fate of persistent organic chemicals in the environment is fundamental information for the successful protection of ecosystems and humans. A common dilemma in risk assessment is that monitoring data reveals contaminant concentrations in wildlife, while the source concentrations, route of uptake and acceptable source concentrations remain unsolved. To overcome this problem, different models have been developed in order to obtain more precise risk estimates for the food webs. However, there is still an urgent need for studies combining modelled and measured data in order to verify the functionality of the models. Studies utilising field-collected data covering entire food webs are particularly scarce. This study aims to contribute to tackling this problem by determining the validity of two bioaccumulation models, BIOv1.22 and AQUAWEBv1.2, for application to a multispecies aquatic food web. A small boreal lake, Lake Kernaalanjärvi, in Finland was investigated for its food web structure and concentrations of PCBs in all trophic levels. Trophic magnification factors (TMFs) were used to measure the bioaccumulation potential of PCBs, and the site-specific environmental parameters were used to compare predicted and observed concentrations. Site-specific concentrations in sediment pore water did not affect the modelling endpoints, but accurate site-specific measurements of freely dissolved concentrations in water turned out to be crucial for obtaining realistic model-predicted concentrations in biota. Numerous parameters and snapshot values affected the model performances, bringing uncertainty into the process and results, but overall, the models worked well for a small boreal lake ecosystem. We suggest that these models can be optimised for different ecosystems and can be useful tools for estimating the bioaccumulation and environmental fate of PCBs.

  18. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: A review of methods and applications

    SciTech Connect

    Ingersoll, C.G.; Ankley, G.T.; Benoit, D.A.

    1995-11-01

    This paper reviews recent developments in methods for evaluating the toxicity and bioaccumulation of contaminants associated with freshwater sediments and summarizes example case studies demonstrating the application of these methods. Over the past decade, research has emphasized development of more specific testing procedures for conducting 10-d toxicity tests with the amphipod Hyalella azteca and the midge Chironomus tentans. Toxicity endpoints measured in these tests are survival for H. azteca and survival and growth for C. tentans. Guidance has also been developed for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus, including determination of bioaccumulation kinetics for different compound classes. These methods have been applied to a variety of sediments to address issues ranging from site assessments to bioavailability of organic and inorganic contaminants using field-collected and laboratory-spiked samples. Survival and growth of controls routinely meet or exceed test acceptability criteria. Results of laboratory bioaccumulation studies with L. variegatus have been confirmed with comparisons to residues (PCBs, PAHs, DDT) present from synoptically collected field populations of oligochaetes. Additional method development is currently underway to develop chronic toxicity tests and to provide additional data-confirming responses observed in laboratory sediment tests with natural benthic populations.

  19. Effects of Activated Carbon on PCB Bioaccumulation and Biological Responses of Chironomus riparius in Full Life Cycle Test.

    PubMed

    Nybom, Inna; Abel, Sebastian; Waissi, Greta; Väänänen, Kristiina; Mäenpää, Kimmo; Leppänen, Matti T; Kukkonen, Jussi V K; Akkanen, Jarkko

    2016-05-17

    The nonbiting midge Chironomus riparius was used to study the remediation potential and secondary effects of activated carbon (AC, ø 63-200 μm) in PCB contaminated sediments. AC amendments efficiently reduced PCB bioavailability determined by Chironomus riparius bioaccumulation tests and passive samplers. PCBs were shown to transfer from larvae to adults. Lower PCB concentrations were observed in adult midges emerging from AC amended compared to unamended sediments. Increased reproduction, survival, larval growth and gut wall microvilli length were observed with low AC dose (0.5% sediment dw) compared to unamended sediment, indicating an improved success of larvae in the sediment with low organic carbon content. On the other hand, higher AC doses (2.5% sediment dw) caused adverse effects on emergence and larval development. In addition, morphological changes in the gut wall microvilli layer were observed. This study showed that the secondary effects of AC amendments are dependent on the dose and the sediment characteristics. Metamorphic species, such as C. riparius, may act as a vector for organic pollutants from aquatic to terrestrial ecosystems and according to this study the AC amendments may reduce this transport. PMID:27100921

  20. Influence of compost addition on lead and arsenic bioavailability in reclaimed orchard soil assessed using Porcellio scaber bioaccumulation test

    PubMed Central

    Udovic, M.; McBride, M.B.

    2015-01-01

    A long history of lead arsenate application in orchards has led to significant accumulation of Pb and As in the topsoil. Besides the threat that such soils represent for the environment, reclamation of old orchards for agricultural purposes implies the exposure of humans to Pb and As. In this study we assessed the influence of vegetable compost addition (as a sustainable agricultural practice) to contaminated acidic orchard soil on Pb and As bioavailability, assessed with two selective non-exhaustive chemical extractions and with an in vivo bioaccumulation test with an isopod (P. scaber). The treatment with compost caused a significant increase in soil pH and total carbon content, resulting in a consistent decrease of Pb bioavailability. In contrast, the bioavailability of As increased, indicating that a complementary treatment should be used for reducing the bioavailability of As in old orchard soils. This is the first report on the use of As accumulation in P. scaber as a tool for the assessment of As bioavailability in contaminated orchard soil. PMID:22240057

  1. Toxicity, bioaccumulation, and biotransformation of silver nanoparticles in marine organisms.

    PubMed

    Wang, Huanhua; Ho, Kay T; Scheckel, Kirk G; Wu, Fengchang; Cantwell, Mark G; Katz, David R; Horowitz, Doranne Borsay; Boothman, Warren S; Burgess, Robert M

    2014-12-01

    The toxicity, bioaccumulation, and biotransformation of citrate and polyvinylpyrrolidone (PVP) coated silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) in marine organisms via marine sediment exposure was investigated. Results from 7-d sediment toxicity tests indicate that AgNP-citrate and AgNP-PVP did not exhibit toxicity to the amphipod (Ampelisca abdita) and mysid (Americamysis bahia) at ≤75 mg/kg dry wt. A 28-d bioaccumulation study showed that Ag was significantly accumulated in the marine polychaete Nereis virens (N. virens) in the AgNP-citrate, AgNP-PVP and a conventional salt (AgNO3) treatments. Synchrotron X-ray absorption spectroscopy (XAS) results showed the distribution of Ag species in marine sediments amended with AgNP-citrate, AgNP-PVP, and AgNO3 was AgCl (50–65%) > Ag2S (32–42%) > Ag metal (Ag0) (3–11%). In N virens, AgCl (25–59%) and Ag2S (10–31%) generally decreased and, Ag metal (32–44%) increased, relative to the sediments. The patterns of speciation in the worm were different depending upon the coating of the AgNP and both types of AgNPs were different than the AgNO3 salt. These results show that the AgNP surface capping agents influenced Ag uptake, biotransformation, and/or excretion. To our knowledge, this is the first demonstration of the bioaccumulation and speciation of AgNPs in a marine organism (N. virens).

  2. The influence of time on lead toxicity and bioaccumulation determined by the OECD earthworm toxicity test.

    PubMed

    Davies, Nicola A; Hodson, Mark E; Black, Stuart

    2003-01-01

    Internationally agreed standard protocols for assessing chemical toxicity of contaminants in soil to worms assume that the test soil does not need to equilibrate with the chemical to be tested prior to the addition of the test organisms and that the chemical will exert any toxic effect upon the test organism within 28 days. Three experiments were carried out to investigate these assumptions. The first experiment was a standard toxicity test where lead nitrate was added to a soil in solution to give a range of concentrations. The mortality of the worms and the concentration of lead in the survivors were determined. The LC50s for 14 and 28 days were 5311 and 5395 microgPb g(-1)soil respectively. The second experiment was a timed lead accumulation study with worms cultivated in soil containing either 3000 or 5000 microgPb g(-1)soil. The concentration of lead in the worms was determined at various sampling times. Uptake at both concentrations was linear with time. Worms in the 5000 microg g(-1) soil accumulated lead at a faster rate (3.16 microg Pb g(-1)tissue day(-1)) than those in the 3000 microg g(-1) soil (2.21 microg Pb g(-1)tissue day(-1)). The third experiment was a timed experiment with worms cultivated in soil containing 7000 microgPb g(-1)soil. Soil and lead nitrate solution were mixed and stored at 20 degrees C. Worms were added at various times over a 35-day period. The time to death increased from 23 h, when worms were added directly after the lead was added to the soil, to 67 h when worms were added after the soil had equilibrated with the lead for 35 days. In artificially Pb-amended soils the worms accumulate Pb over the duration of their exposure to the Pb. Thus time limited toxicity tests may be terminated before worm body load has reached a toxic level. This could result in under-estimates of the toxicity of Pb to worms. As the equilibration time of artificially amended Pb-bearing soils increases the bioavailability of Pb decreases. Thus addition of

  3. Proposed annex to the ASTM Standard Guide E1676-95, bioaccumulation testing utilizing Eisenia foetida

    SciTech Connect

    Roper, J.; Simmers, J.; Lee, C.; Tatem, H.

    1995-12-31

    A detailed description of the method developed at the Waterways Experiment Station (WES) to determine sediment toxicity utilizing the earthworm, Eisenia foetida. This method has been used successfully in evaluating the target contaminants; metals, PAHs, and PCBs. This procedure is currently a proposed annex to the ASTM Standard Guide E1676-95: Conducting a Laboratory Soil Toxicity Test With The Lumbricid Earthworm, Eisenia foetida.

  4. Biodegradation and bioaccumulation of phthalates

    SciTech Connect

    Scholz, N.; Diefenbach, R.

    1995-12-31

    Phthalate esters very often are considered as persistent in the environment. This view is supported by an assumed lack of biodegradability, the high log K{sub ow} values and the assumed high bioaccumulation potential. Results are presented which show phthalates esters to be readily biodegradable even with a non-adapted inoculum. Combined with a lack of relevant bioaccumulation in aquatic organisms, a reconsideration of the environmental impact of these substances is necessary. Special prerequisites for testing poorly water soluble substances are also discussed.

  5. Bioaccumulation of PAHs by the estuarine polychaete, Streblospio benedicti: Comparison between radioisotope and GC/MS analyses

    SciTech Connect

    Ferguson, P.L.; Chandler, G.T.; Shipp, M.R.

    1995-12-31

    Bioaccumulation of sediment associated organic contaminants can be measured using traditional analytical approaches such as gas chromatography/mass spectrometry, or by employing radioisotope techniques. The authors compared these methods by measuring bioaccumulation of common polycyclic aromatic hydrocarbons (PAHs) in sediments by the opportunistic deposit/suspension feeding polychaete, Streblospio benedicti. First, the authors exposed S. benedicti to {sup 14}C-fluoranthene for 28 days. On days 3, 6, 10, 18, and 28, worms were sampled and measured for {sup 14}C activity. They performed a similar 28d test with three non radiolabeled PAHs (fluoranthene, benzo[a]pyrene, and 1,2-benzanthracene). The S. benedicti body burden of each compound was quantified by gas chromatography-mass spectrometry. Results from the radioisotope assay indicate that S. benedicti accumulates sediment associated {sup 14}C-fluoranthene at a level 95-135X that of sediment after 28d. Differences between detected {sup 14}C activity and GC/MS measured fluoranthene in S. benedicti tissue may indicate transformation of the parent PAH to other compounds which could retain a radiolabel. GC/MS in turn may indicate the presence of a metabolic pathway which polychaetes such as S. benedicti utilize to eliminate PAH body burdens.

  6. Development of a list of reference chemicals for evaluating alternative methods to in vivo fish bioaccumulation tests.

    PubMed

    Rodriguez-Sanchez, Neus; Cronin, Mark Timothy David; Lillicrap, Adam; Madden, Judith Clare; Piechota, Przemyslaw; Tollefsen, Knut Erik

    2014-12-01

    The aim to reduce the number of animals in experiments has highlighted the need to develop and validate nonanimal methods as alternatives to bioaccumulation studies using fish. The present study details a novel 3-tier approach to develop a list of reference compounds to aid this process. The approach was based on 1) the inclusion of relevant chemical classes supported by high-quality in vivo data for the bioconcentration factor (BCF), whole-body biotransformation rates (K(met)), and metabolism characterization for rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio) (tiers I and II); and 2) the refinement to ensure a broad coverage of hydrophobicity, bioconcentration potential, molecular weight, maximum molecular diameter, whole-body biotransformation half-lives, and metabolic pathways (tier III). In silico techniques were employed to predict maximal log BCF and molecular and metabolic properties. Of the 157 compounds considered as reference compounds, 144 were supported by high-quality BCF data, 8 were supported by K(met) data, and 5 were supported by in vivo metabolism data. Additional criteria for refinement of the list of reference compounds were suggested to aid practical implementation in experimental efforts. The present list of reference compounds is anticipated to facilitate the development of alternative approaches, enhance understanding of in vivo and in vitro bioaccumulation relationships, and refine in silico BCF and metabolism predictions.

  7. Bioaccumulation of fullerene (C60) and corresponding catalase elevation in Lumbriculus variegatus.

    PubMed

    Wang, Jiafan; Wages, Mike; Yu, Shuangying; Maul, Jonathan D; Mayer, Greg; Hope-Weeks, Louisa; Cobb, George P

    2014-05-01

    Fullerene (C(60)), with its unique physical properties and nanometer size, has been mass-produced for many applications in recent decades. The increased likelihood of direct release into the environment has raised interest in understanding both the environmental fate and corresponding biological effects of fullerenes to living organisms. Because few studies have emphasized fullerene uptake and resulting biochemical responses by living organisms, a toxicity screening test and a 28-d bioaccumulation test for Lumbriculus variegatus were performed. No mortality was observed in the range of 0.05 mg C(60) /kg dry sediment to 11.33 mg C(60) /kg dry sediment. A biota-sediment accumulation factor of micron-sized fullerene agglomerates (µ-C(60)) was 0.032 ± 0.008 at day 28, which is relatively low compared with pyrene (1.62 ± 0.22). Catalase (CAT) activity, an oxidative stress indicator, was elevated significantly on day 14 for L. variegatus exposed to µ-C(60) (p = 0.034). This peak CAT activity corresponded to the highest body residues observed in the present study, 199 ± 80 µg C(60) /kg dry weight sediment. Additionally, smaller C(60) agglomerate size increased bioaccumulation potential in L. variegatus. The relationship between C(60) body residue and the increased CAT activity followed a linear regression. All results suggest that C(60) has a lower bioaccumulation potential than pyrene but a higher potential to induce oxidative stress in L. variegatus.

  8. RELATIONSHIP BETWEEN METABOLISM AND BIOACCUMULATION OF BENZO[A]PYRENE IN BENTHIC INVERTEBRATES

    EPA Science Inventory

    The potential influence of polycyclic aromatic hydrocarbon (PAH) metabolism on bioaccumulation is well accepted, but rarely has been examined in many species of benthic invertebrates that commonly are found in contaminated sediments, or used in bioaccumulation or toxicity tests. ...

  9. Evaluation of a first-order model for the prediction of the bioaccumulation of PCBs and DDT from sediment into the marine deposit-feeding clam Macoma nasuta

    SciTech Connect

    Boese, B.L.; Lee, H. II; Echols, S.

    1997-07-01

    A first-order model for predicting contaminant bioaccumulation from sediments into benthic invertebrates was validated using a marine deposit-feeding clam, Macoma nasuta, exposed to polychlorobiphenyl (PCB)-spiked and dichlorodiphenyltrichloroethane (DDT)-contaminated sediments. Contaminant uptake and depuration were analyzed following short-term and long-term sediment exposures. Uptake and depuration rates were used to predict steady-state bioaccumulation factors (BAFs) and exposure times needed to attain steady state. These predictions were compared to observed steady-state BAFs. Estimating elimination and uptake rates from depuration and short-term uptake experiments was an accurate means of predicting BAFs for some PCBs but was not as accurate for predicting DDT BAFs. The exposure time need to attain steady state was poorly predicted by the model. The results demonstrated that a standard 28-d bioaccumulation test estimated steady-state tissue residues within two-fold and was a better predictor than the model for the BAFs of superlipophilic PCBs (log K{sub ow} > 7). Differences in contaminant bioavailability were noted between field-contaminated (DDT) and laboratory-spiked (PCB) sediments.

  10. Dynamic bioaccumulation of organics in finned fish

    SciTech Connect

    Vohra, R.; Cohen, Y.

    1995-12-31

    A compartmental food-chain bioaccumulation model was developed to predict the degree of bioaccumulation of hydrophobic toxins in finned fish under dynamic conditions. The model was developed with the intent of minimizing the number of required user-input parameters while maintaining flexibility of describing a wide range of plausible scenarios. The model is shown to be in excellent agreement with more complex models and with available field data. The effect of various uptake mechanisms, morphometric parameters and species diet on toxin accumulation in finned fish will be illustrated via a number of test cases covering a wide set of species. The integration of the current bioaccumulation model with multimedia chemical transport and fate models such as the recent Integrated Spatial Multimedia Compartmental Model (Cohen and van de Water, in Computer Techniques in Environmental Studies, Vol. 1, Pollution Modeling, Zannetti (Ed.), 1994) will also be described and illustrated via selected test cases.

  11. Toxicity and bioaccumulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin in long-term tests with the freshwater benthic invertebrates Chironomus tentans and Lumbriculus variegatus

    SciTech Connect

    West, C.W.; Ankley, G.T.; Nichols, J.W.; Elonen, G.E.; Nessa, D.E.

    1997-06-01

    Two species of freshwater benthic invertebrates, Chronomus tentans and Lumbriculus variegatus, were exposed to three dietary concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and toxicity and bioaccumulation were determined. No toxic effects were observed in full life cycle tests with either species at tissue residue concentrations up to 9,533 ng TCDD/g lipid. The observed lack of sensitivity of the two species to TCDD was consistent with a presumed absence of the aryl hydrocarbon receptor in aquatic invertebrates. Predictions of lipid-normalized tissue concentrations were made based on lipid-normalized TCDD concentrations in the food and were within 15% of targeted concentrations in both species. Depuration studies indicated that TCDD elimination followed first-order kinetics, with elimination rate constants of 0.0014 to 0.0022 h{sup {minus}1} for L. variegatus and 0.0070 to 0.0099 h{sup {minus}1} for C. tentans. Half-lives ranged from 315 to 495 h in L. variegatus and from 70 to 99 h in C. tentans. The ability of invertebrates to accumulate relatively high concentrations of TCDD in the absence of toxic effects may be relevant to the transfer of contaminants through aquatic food webs to potentially sensitive vertebrate species.

  12. Revisiting Bioaccumulation Criteria

    EPA Science Inventory

    The objective of workgroup 5 was to revisit the B(ioaccumulation) criteria that are currently being used to identify POPs under the Stockholm Convention and PBTs under CEPA, TSCA, REACh and other programs. Despite the lack of a recognized definition for a B substance, we defined ...

  13. Bioaccumulation and toxicity of single-walled carbon nanotubes to benthic organisms at the base of the marine food chain.

    PubMed

    Parks, Ashley N; Portis, Lisa M; Schierz, P Ariette; Washburn, Kate M; Perron, Monique M; Burgess, Robert M; Ho, Kay T; Chandler, G Thomas; Ferguson, P Lee

    2013-06-01

    As the use of single-walled carbon nanotubes (SWNTs) increases over time, so does the potential for environmental release. This research aimed to determine the toxicity, bioavailability, and bioaccumulation of SWNTs in marine benthic organisms at the base of the food chain. The toxicity of SWNTs was tested in a whole sediment exposure with the amphipod Ampelisca abdita and the mysid Americamysis bahia. In addition, SWNTs were amended to sediment and/or food matrices to determine their bioavailability and bioaccumulation through these routes in A. abdita, A. bahia, and the estuarine amphipod Leptocheirus plumulosus. No significant mortality to any species via sediment or food matrices was observed at concentrations up to 100 ppm. A novel near-infrared fluorescence spectroscopic method was utilized to measure and characterize the body burdens of pristine SWNTs in nondepurated and depurated organisms. We did not detect SWNTs in depurated organisms but quantified them in nondepurated A. abdita fed SWNT-amended algae. After a 28-d exposure to [(14) C]SWNT-amended sediment (100 µg/g) and algae (100 µg/g), [(14) C]SWNT was detected in depurated and nondepurated L. plumulosus amphipods at 0.50 µg/g and 5.38 µg/g, respectively. The results indicate that SWNTs are bioaccessible to marine benthic organisms but do not appear to accumulate or cause toxicity.

  14. Bioaccumulation of PCBs Across Concentration Gradients in Sediments

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus quantify the relationships between the chemical residues in sediments and benthic invertebrates, and these relationships are expressed as biota-sediment accumulation factors (BSAF). At some field sites, BSAFs decr...

  15. Harmonization of standard toxicity test methods used in North America

    SciTech Connect

    Ingersoll, C.G.; Dwyer, F.J.; Ankley, G.T.

    1995-12-31

    Over the past two years, Environment Canada (EC) and the US Environmental Protection Agency (EPA) have developed standard methods for conducting toxicity and bioaccumulation tests with freshwater, estuarine, and marine sediments. Existing ASTM methods were used as a basis to harmonize these methods for conducting testing with either field-collected or laboratory-spiked sediments. For freshwater toxicity tests, methods are described by EC and EPA for the amphipod Hyalella azteca and the midges Chironomus tentans and C. riparius. Endpoints include 10- to 14-d survival of growth. Methods are also described by EPA for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus. For estuarine and marine toxicity tests, methods are described for several amphipods (i.e., Rhepoxynius abronius, Ampelisca abdita, Eohaustorius estuarius, Leptocheirus plumulosus). Endpoints include 10-d survival and reburial. EC is also developing methods for conducting toxicity tests with Atlantic, Pacific, and Arctic Canadian species of polychaetes. Methods are described by EPA for conducting 28-d bioaccumulation tests with a variety of mollusks (i.e., Macoma spp.) and polychaetes (i.e., Nereis spp.). Slight inconsistencies in methods between freshwater and estuarine/marine testing or between EC and EPA testing include: (1) static vs. flow-through conditions, (2) sieving of sediment, (3) types and quantity of food, (4) age of test organisms, or (4) duration of the test and required endpoints. Additional research is in progress to: (1) develop chronic toxicity tests with amphipods and midges measuring survival, growth, or reproduction, (2) develop whole-sediment toxicity identification evaluation (TIE) procedures, (3) refine sediment spiking procedures, and (4) field-validate laboratory tests.

  16. A bioaccumulation bioassay for freshwater sediments

    USGS Publications Warehouse

    Mac, Michael J.; Noguchi, George E.; Hesselberg, Robert J.; Edsall, Carol C.; Shoesmith, John A.; Bowker, James D.

    1990-01-01

    A laboratory bioassay is described for determining the bioavailability of contaminants from freshwater sediments. The bioassay consists of 10-d exposures to whole sediments under flow-through conditions. After testing five species, the fathead minnow (Pimephales promelas) and the earthworm (Lubricus terrestris) were recommended for use in the test. When the availability of polychlorinated biphenyls (PCBs), Hg and Zn from Great Lakes sediments was examined in laboratory exposures, only the PCBs were accumulated. A field validation study demonstrated that the magnitude of accumulation in laboratory exposures was similar to that in organisms caged in the field. A protocol is recommended for using the test as a standardized bioaccumulation bioassay.

  17. A tiered assessment strategy for more effective evaluation of bioaccumulation of chemicals in fish.

    PubMed

    Lillicrap, Adam; Springer, Tim; Tyler, Charles R

    2016-03-01

    There is currently limited guidance available for regulators and risk assessors on how to use data from non-guideline methods when assessing the bioaccumulation potential of a chemical. Furthermore, bioaccumulation assessments can be more subjective than they need to be due to the lack of a guidance framework on how to use/include the range of information that may be available for a substance. Under some circumstances, in silico, in vitro and/or in vivo non-test guideline data may be sufficient to classify whether a substance is bioaccumulative without the need for further animal testing. Classifying the bioaccumulative potential of a substance is especially difficult when the bioconcentration factor (BCF) is close to the threshold for defining it as bioaccumulative/very bioaccumulative (B/vB), and a more structured process is required to reduce uncertainty in the BCF estimates. In these situations, in silico and in vitro data can, and should, be used to provide greater confidence in classifying these substances. To aid future evaluations of bioaccumulation data, a proposed tiered assessment strategy is presented incorporating all available data on the bioaccumulative properties of a substance. In addition, a revised scheme is recommended for improving the classification of the bioaccumulative potential of a substance. PMID:26724733

  18. Exterior view of south wall of Oxidizer Conditioning Structure (T28D), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior view of south wall of Oxidizer Conditioning Structure (T-28D), looking north. The taller structure immediately to the rear in the upper left background is the Long-Term Oxidizer Silo (T-28B) - Air Force Plant PJKS, Systems Integration Laboratory, Oxidizer Conditioning Structure, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  19. Exterior view of LongTerm Oxidizer Silo (T28D) in left background ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior view of Long-Term Oxidizer Silo (T-28D) in left background (taller structure) and adjacent Oxidizer Conditioning Structure (T-28B) at extreme left background, looking south. At far right in foreground is a nitrogen tank in a concrete truck well - Air Force Plant PJKS, Systems Integration Laboratory, Long-Term Oxidizer Silo, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  20. Temperature-dependent bioaccumulation of polycyclic aromatic hydrocarbons.

    PubMed

    Muijs, Barry; Jonker, Michiel T O

    2009-06-15

    Bioaccumulation factors (BAFs) play a key role in risk assessment of chemicals in sediments and soils. For hydrophobic organic chemicals (HOCs), BAFs are, however, difficult to determine and values are mostly obtained by modeling. Apart from a lack of reliable data, the applicability of lab-derived values in the field situation is unknown, as exposure conditions (e.g., temperature, pH, salinity, test species, number of chemicals) are standardized in the lab, whereas they may vary in the field. In this study, the effect of temperature on the bioaccumulation of a series of moderate to very hydrophobic PAHs in aquatic worms was studied by using polydimethylsiloxane (PDMS)-coated solid phase microextraction (SPME) fibers. The results indicated that bioaccumulation of nonmetabolizable HOCs is an exothermic, enthalpy-driven process, thus decreasing with increasing temperature. As such, biotic concentrations may be several times higher in winter than in summertime, which could have ecotoxicological consequences. A two-parameter linear free energy relationship was derived with which PAH bioaccumulation can be predicted from temperature and the chemicals' hydrophobicities. Comparing the determined (thermodynamics of) PAH partitioning into organisms and PDMS indicated that the latter phase cannot be used as a surrogate phase for animal lipids. Still, SPME provides an appropriate analytical tool for the measurement of aqueous concentrations, from which bioaccumulation can subsequently be estimated by using BAFs. PMID:19603671

  1. Temperature-dependent bioaccumulation of polycyclic aromatic hydrocarbons.

    PubMed

    Muijs, Barry; Jonker, Michiel T O

    2009-06-15

    Bioaccumulation factors (BAFs) play a key role in risk assessment of chemicals in sediments and soils. For hydrophobic organic chemicals (HOCs), BAFs are, however, difficult to determine and values are mostly obtained by modeling. Apart from a lack of reliable data, the applicability of lab-derived values in the field situation is unknown, as exposure conditions (e.g., temperature, pH, salinity, test species, number of chemicals) are standardized in the lab, whereas they may vary in the field. In this study, the effect of temperature on the bioaccumulation of a series of moderate to very hydrophobic PAHs in aquatic worms was studied by using polydimethylsiloxane (PDMS)-coated solid phase microextraction (SPME) fibers. The results indicated that bioaccumulation of nonmetabolizable HOCs is an exothermic, enthalpy-driven process, thus decreasing with increasing temperature. As such, biotic concentrations may be several times higher in winter than in summertime, which could have ecotoxicological consequences. A two-parameter linear free energy relationship was derived with which PAH bioaccumulation can be predicted from temperature and the chemicals' hydrophobicities. Comparing the determined (thermodynamics of) PAH partitioning into organisms and PDMS indicated that the latter phase cannot be used as a surrogate phase for animal lipids. Still, SPME provides an appropriate analytical tool for the measurement of aqueous concentrations, from which bioaccumulation can subsequently be estimated by using BAFs.

  2. Effects of Feeding Rate and Loading Density on Bioaccumulation of PCBs in Oligochaete Lumbriculus variegatus

    EPA Science Inventory

    Sediment tests with aquatic organisms can provide valuable information about potential toxicity and the bioavailability of polychlorinated biphenyls (PCBs) to the organisms. The USEPA 28-day Lumbriculus variegatus bioaccumulation test for sediments when successfully perfor...

  3. IN SITU BIOASSAY CHAMBER FOR ASSESSMENT OF SEDIMENT TOXICITY AND BIOACCUMULATION USING BENTHIC INVERTEBRATES

    EPA Science Inventory

    In this study, we describe the construction of a simple, inexpensive bioassay chamber for testing sediment toxicity (survival and growth) and bioaccumulation under field conditions using the midge Chironomus tentans and the oligochaete Lumbriculus variegatus. The test chamber is ...

  4. Bioaccumulation Assessment using Predictive Approaches

    EPA Science Inventory

    Mandated efforts to assess chemicals for their potential to bioaccumulate within the environment are increasingly moving into the realm of data inadequacy. Consequently, there is an increasing reliance on predictive tools to complete regulatory requirements in a timely and cost-e...

  5. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms.

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) coated silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) in marine organisms via marine sediment exposure was investigated. Results from 7-d sediment toxicity tests indicate that Ag...

  6. Evaluation of toxicity to the amphipod, Hyalella azteca, and to the midge, Chironomus dilutus; and bioaccumulation by the oligochaete, Lumbriculus variegatus, with exposure to PCB-contaminated sediments from Anniston, Alabama

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.; Brumbaugh, William G.; Coady, Matthew R.; Farrar, J. Daniel; Lotufo, Guilherme R.; Kemble, Nile E.; Kunz, James L.; Stanley, Jacob K.; Sinclair, Jesse A.

    2014-01-01

    characterization of samples of whole sediment included analyses of grain size, TOC, and nutrients. Organic chemical characterization of samples of whole sediment included PCB homologs and select (13) PCB congeners, parent and alkylated polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, and polychlorinated dibenzo-p-dioxins; and dibenzofurans. The PCB aroclors analyzed included 1016, 1221, 1232, 1242, 1248, 1254, 1260, 1262 and 1268. Analyses of whole sediment also included total metals, simultaneously extracted metals, and acid volatile sulfide. Chemical characterization of samples of pore water isolated from samples of whole sediment at the start of the sediment toxicity exposures or at the start of the sediment bioaccumulation exposures included metals, major cations, major anions, dissolved organic carbon, and additional water-quality characteristics. Concentrations of metals or PCBs in pore water during the sediment toxicity exposures or during sediment bioaccumulation exposures also were determined using peeper samples (for metals) or solid-phase microextraction (SPME) samplers (for PCBs). The bioavailability and bioaccumulation of PCBs in 14 sediment samples were investigated using SPME passive samplers and the 28-d L. variegatus whole-sediment bioaccumulation exposures In general the accumulation of PCBs consistently was predicted through the use of organic carbon normalization and equilibrium partitioning. In these sediments, PCB homologs were accumulated differently based on bioavailability and potential to accumulate in oligochaetes. As part of this assessment homolog specific biota sediment accumulation factor values were developed that could be applied across the larger site to predict tissue levels of PCBs. The whole-sediment toxicity tests done with H. azteca and C. dilutus met the established ASTM and USEPA test acceptability criteria. The most responsive H. azteca endpoints were day 42 survival normalized young per female and day 28 biomass and

  7. Evaluation of PCB bioaccumulation by Lumbriculus variegatus in field-collected sediments

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on polychlorinated biphenyl (PCBs) contaminated sediment samples from the Hudson, Grasse, and Fox Rivers Superfund sites with concurrent measurement of PCB concentrations in sediment interstitial water. Th...

  8. Improving plant bioaccumulation science through consistent reporting of experimental data.

    PubMed

    Fantke, Peter; Arnot, Jon A; Doucette, William J

    2016-10-01

    Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments.

  9. Improving plant bioaccumulation science through consistent reporting of experimental data.

    PubMed

    Fantke, Peter; Arnot, Jon A; Doucette, William J

    2016-10-01

    Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments. PMID:27393944

  10. Review of existing terrestrial bioaccumulation models and terrestrial bioaccumulation modeling needs for organic chemicals

    EPA Science Inventory

    Protocols for terrestrial bioaccumulation assessments are far less-developed than for aquatic systems. This manuscript reviews modeling approaches that can be used to assess the terrestrial bioaccumulation potential of commercial organic chemicals. Models exist for plant, inver...

  11. Use of In Vitro Absorption, Distribution, Metabolism, and Excretion (ADME) Data in Bioaccumulation Assessments for Fish

    SciTech Connect

    Nichols, John W.; Erhardt, Susan; Dyer, Scott; James, Margaret O.; Moore, Margo; Plotzke, Kathleen; Segner, Helmut; Schultz, Irvin R.; Thomas, Karluss; Vasiluk, Luba; Weisbrod, Anne V.

    2007-11-01

    A scientific workshop was held in 2006 to discuss the use of in vitro Absorption, Distribution, Metabolism, and Excretion (ADME) data in chemical bioaccumulation assessments for fish. Computer-based (in silico) modeling tools are widely used to estimate chemical bioaccumulation. These in silico methods have inherent limitations that result in inaccurate estimates for many compounds. Based on a review of the science workshop participants concluded that two factors, absorption and metabolism, represent the greatest sources of uncertainty in current bioaccumulation models. Both factors can be investigated experimentally using in vitro test systems.

  12. Effects of storage on sediment toxicity, bioaccumulation potential, and chemistry. Final report

    SciTech Connect

    Tatem, H.E.; Brandon, D.L.; Lee, C.R.; Jarvis, A.S.; Rhett, R.G.

    1991-01-01

    Current guidance on storage of sediments for bioassay/bioaccumulation tests requires that samples be held at 4 C and used within 2 weeks of collection. The objective of this study was to determine the effects of sediment storage for 40 weeks on sediment toxicity, bioaccumulation potential, and chemical analyses. Toxicity and bioaccumulation tests were conducted five times during 40 weeks of storage. Chemical analyses were performed three times during this period. The data indicate that sediments can be held for longer than 2 to 4 weeks, in many cases, without significant effect on test results. However, results of the study also show that tests performed at different times can produce different results. This study showed that a sediment that was toxic to mysids remained toxic during 16 weeks of sediment storage. Two sediments that were toxic initially continued to show significant toxicity after 8 and 16 weeks of sediment storage. One sediment, not toxic initially or at 4 weeks, changed during storage, becoming significantly toxic compared to the Atlantic Ocean (Ref) sediment. The bioaccumulation results showed that certain sediment contaminants (lead, mercury, polychlorinated biphenyls, and some polycyclic aromatic hydrocarbons, PAHs), generally do not reveal a statistical change in bioaccumulation, relative to Ref animals, during 16 weeks of sediment storage. Other PAHs, including phenanthrene, anthracene, benzo (a) anthracene, and chrysene, did change in bioaccumulation potential during storage.

  13. Iron bioaccumulation in mycelium of Pleurotus ostreatus.

    PubMed

    Almeida, Sandra M; Umeo, Suzana H; Marcante, Rafael C; Yokota, Meire E; Valle, Juliana S; Dragunski, Douglas C; Colauto, Nelson B; Linde, Giani A

    2015-03-01

    Pleurotus ostreatus is able to bioaccumulate several metals in its cell structures; however, there are no reports on its capacity to bioaccumulate iron. The objective of this study was to evaluate cultivation variables to increase iron bioaccumulation in P. ostreatus mycelium. A full factorial design and a central composite design were utilized to evaluate the effect of the following variables: nitrogen and carbon sources, pH and iron concentration in the solid culture medium to produce iron bioaccumulated in mycelial biomass. The maximum production of P. ostreatus mycelial biomass was obtained with yeast extract at 2.96 g of nitrogen L (-1) and glucose at 28.45 g L (-1) . The most important variable to bioaccumulation was the iron concentration in the cultivation medium. Iron concentration at 175 mg L (-1) or higher in the culture medium strongly inhibits the mycelial growth. The highest iron concentration in the mycelium was 3500 mg kg (-1) produced with iron addition of 300 mg L (-1) . The highest iron bioaccumulation in the mycelium was obtained in culture medium with 150 mg L (-1) of iron. Iron bioaccumulation in P. ostreatus mycelium is a potential alternative to produce non-animal food sources of iron. PMID:26221108

  14. Iron bioaccumulation in mycelium of Pleurotus ostreatus

    PubMed Central

    Almeida, Sandra M.; Umeo, Suzana H.; Marcante, Rafael C.; Yokota, Meire E.; Valle, Juliana S.; Dragunski, Douglas C.; Colauto, Nelson B.; Linde, Giani A.

    2015-01-01

    Pleurotus ostreatus is able to bioaccumulate several metals in its cell structures; however, there are no reports on its capacity to bioaccumulate iron. The objective of this study was to evaluate cultivation variables to increase iron bioaccumulation in P. ostreatus mycelium. A full factorial design and a central composite design were utilized to evaluate the effect of the following variables: nitrogen and carbon sources, pH and iron concentration in the solid culture medium to produce iron bioaccumulated in mycelial biomass. The maximum production of P. ostreatus mycelial biomass was obtained with yeast extract at 2.96 g of nitrogen L −1 and glucose at 28.45 g L −1 . The most important variable to bioaccumulation was the iron concentration in the cultivation medium. Iron concentration at 175 mg L −1 or higher in the culture medium strongly inhibits the mycelial growth. The highest iron concentration in the mycelium was 3500 mg kg −1 produced with iron addition of 300 mg L −1 . The highest iron bioaccumulation in the mycelium was obtained in culture medium with 150 mg L −1 of iron. Iron bioaccumulation in P. ostreatus mycelium is a potential alternative to produce non-animal food sources of iron. PMID:26221108

  15. Chiral xenobiotics bioaccumulations and environmental health prospectives.

    PubMed

    Hussain, Iqbal; ALOthman, Zeid A; Alwarthan, Abdulrahman A; Sanagi, Mohd Marsin; Ali, Imran

    2015-08-01

    The chiral xenobiotics are very dangerous for all of us due to the different enantioselective toxicities of the enantiomers. Besides, these have different enantioselective bioaccumulations and behaviors in our body and other organisms. It is of urgent need to understand the enantioselective bioaccumulations, toxicities, and the health hazards of the chiral xenobiotics. The present article describes the classification, sources of contamination, distribution, enantioselective bioaccumulation, and the toxicities of the chiral xenobiotics. Besides, the efforts are also made to discuss the prevention and remedial measures of the havoc of the chiral xenobiotics. The challenges of the chiral xenobiotics have also been highlighted. Finally, future prospectives are also discussed.

  16. Sediment bioaccumulation testing: Manistique Harbor sediments

    EPA Science Inventory

    Manistique Harbor AOC public meeting and availability session on August 28th in Manistique, MI. This meeting/session is organized by GLNPO; they are EPA's lead on AOC restoration efforts. The goal of the meeting is to engage with the community with all the work that has been d...

  17. Uptake and bioaccumulation of Cry toxins by an aphidophagous predator.

    PubMed

    Paula, Débora P; Andow, David A

    2016-02-01

    Uptake of Cry toxins by insect natural enemies has rarely been considered and bioaccumulation has not yet been demonstrated. Uptake can be demonstrated by the continued presence of Cry toxin after exposure has stopped and gut contents eliminated. Bioaccumulation can be demonstrated by showing uptake and that the concentration of Cry toxin in the natural enemy exceeds that in its food. We exposed larvae of the aphidophagous predator, Harmonia axyridis, to Cry1Ac and Cry1F through uniform and constant tritrophic exposure via an aphid, Myzus persicae, and looked for toxin presence in the pupae. We repeated the experiment using only Cry1F and tested newly emerged adults. Both Cry toxins were detected in pupae, and Cry1F was detected in recently emerged, unfed adults. Cry1Ac was present 2.05 times and Cry1F 3.09 times higher in predator pupae than in the aphid prey. Uptake and bioaccumulation in the third trophic level might increase the persistence of Cry toxins in the food web and mediate new exposure routes to natural enemies. PMID:26686057

  18. Perfluorinated chemicals in surface waters and sediments from northwest Georgia, USA, and their bioaccumulation in Lumbriculus variegatus

    USGS Publications Warehouse

    Lasier, Peter J.; Washington, John W.; Hassan, Sayed M.; Jenkins, Thomas M.

    2011-01-01

    Concentrations of perfluorinated chemicals (PFCs) were measured in surface waters and sediments from the Coosa River watershed in northwest Georgia, USA, to examine their distribution downstream of a suspected source. Samples from eight sites were analyzed using liquid chromatography-tandem mass spectrometry. Sediments were also used in 28-d exposures with the aquatic oligochaete, Lumbriculus variegatus, to assess PFC bioaccumulation. Concentrations of PFCs in surface waters and sediments increased significantly below a land-application site (LAS) of municipal/industrial wastewater and were further elevated by unknown sources downstream. Perfluorinated carboxylic acids (PFCAs) with eight or fewer carbons were the most prominent in surface waters. Those with 10 or more carbons predominated sediment and tissue samples. Perfluorooctane sulfonate (PFOS) was the major homolog in contaminated sediments and tissues. This pattern among sediment PFC concentrations was consistent among sites and reflected homolog concentrations emanating from the LAS. Concentrations of PFCs in oligochaete tissues revealed patterns similar to those observed in the respective sediments. The tendency to bioaccumulate increased with PFCA chain length and the presence of the sulfonate moiety. Biota-sediment accumulation factors indicated that short-chain PFCAs with fewer than seven carbons may be environmentally benign alternatives in aquatic ecosystems; however, sulfonates with four to seven carbons may be as likely to bioaccumulate as PFOS.

  19. Effect of feeding in 30-day bioaccumulation assays using Hyalella azteca in fluoranthene-dosed sediment

    SciTech Connect

    Harkey, G.A.; Landrum, P.F.

    1995-12-31

    Current protocols for conducting freshwater sediment bioaccumulation tests require that food be added to exposures. To determine effects of adding food, 30-day bioaccumulation assays were conducted with H. azteca exposed to sediment dosed with four concentrations (0.05 to 1,267 nmol/g dry weight) of fluoranthene. Accumulation was significantly greater in fed versus non-fed animals at all dose levels after 96 and 240 hours of exposure and continued to be greater after 30 days in the low dose levels. At sediment concentrations above 634 nmol/g dw, survival of unfed animals dropped to 34% after 30 days, However, after 30 days, reproduction was observed in fed animals exposed to sediment concentrations > 16 times the expected LC50 calculated for fluoranthene in sediment. These data raise questions concerning the interpretation of standard toxicity and bioaccumulation tests when food is routinely added.

  20. A REVIEW OF BIOACCUMULATION MODELING APPROACHES FOR PERSISTENT ORGANIC POLLUTANTS

    EPA Science Inventory

    Persistent organic pollutants and mercury are likely to bioaccumulate in biological components of the environment, including fish and wildlife. The complex and long-term dynamics involved with bioaccumulation are often represented with models. Current scientific developments in t...

  1. Revisiting Bioaccumulation Criteria for POPS and PBT Assessments

    EPA Science Inventory

    Scientists from academia, industry and government reviewed current international regulations for the screening of commercial chemicals for bioaccumulation in the context of the current state of the science in the area of bioaccumulation. Based on this review several recommendat...

  2. The State of In Vitro Science for Use in Bioaccumulation Assessments for Fish

    SciTech Connect

    Weisbrod, Anne V.; Sahi, Jasminder; Segner, Helmut; James, Margaret O.; Nichols, John W.; Schultz, Irvin R.; Erhardt, Susan; Cowan-Ellsberry, Christina; Bonnell, Mark; Hoeger, Birgit

    2009-01-01

    Through the concerted evaluations of thousands of commercial substances for the qualities of persistence, bioaccumulation, and toxicity as a result of the United Nations Environment Program’s Stockholm Convention, it has become apparent that fewer empirical data are available on bioaccumulation than other endpoints and that bioaccumulation models were not designed to accommodate all chemical classes. Due to the number of chemicals that may require further assessment, in vivo testing is cost prohibitive and discouraged due to the large number of animals needed. Although in vitro systems are less developed and characterized for fish, multiple high-throughput in vitro assays have been used to explore the dietary uptake and elimination of pharmaceuticals and other xenobiotics by mammals. While similar processes determine bioaccumulation in mammalian species, a review of methods to measure chemical bioavailability in fish screening systems, such as chemical biotransformation or metabolism in tissue slices, perfused tissues, fish embryos, primary and immortalized cell lines, and subcellular fractions, suggest quantitative and qualitative differences between fish and mammals exist. Using in vitro data in assessments for whole organisms or populations requires certain considerations and assumptions to scale data from a test tube to a fish, and across fish species. Also, different models may incorporate the predominant site of metabolism, such as the liver, and significant presystemic metabolism by the gill or gastrointestinal system to help accurately convert in vitro data into representative whole-animal metabolism and subsequent bioaccumulation potential. The development of animal alternative tests for fish bioaccumulation assessment is framed in the context of in vitro data requirements for regulatory assessments in Europe and Canada.

  3. Inclusion of bioaccumulation in environmental risk assessment: An integrated approach

    SciTech Connect

    Kloepper-Sams, P.J.; Cowan, C.E.; Larson, R.J.; Versteeg, D.J.

    1995-12-31

    Historically, the potential to bioaccumulate has been ignored in risk assessments or assessed in isolation. Bioaccumulation can be included in an integrated approach by posing two questions. (1) Is the duration of acute aquatic testing sufficient to identify effects due to direct exposure? This can be addressed by comparing T95 (time to reach 95% of steady state) with test duration. (2) Do dietary sources contribute substantially to exposure; is so, will this affect organisms higher in the food web? This can be addressed in stages. (1) A suitable QSAR can be employed to estimate the Bioconcentration Factor (BCF). Because aquatic dietary exposure to non-ionic, poorly metabolized organics is not significant for compounds with log K{sub ow} below {approximately}4.5--5, only compounds with BCF > 1,000 (log K{sub ow} {approximately}4.3) are further evaluated. (2) Predicted BCFs may be refined by measuring the predictive parameter (e.g., K{sub ow}) or the BCF. (3) If the ``parent`` BCF remains > 1,000, a food chain model is employed to derive bioaccumulation factors (BAF) which may be achieved in the food web of interest. The BAF is then combined with Predicted Environmental Concentration (PEC) values to derive a PECoral or concentration available in prey. This is then compared with a Predicted No Effect Concentration (PNEC)oral for consumer organism(s). Mammalian toxicity databases on new and HVP existing chemicals may assist in deriving the PNECoral. (4) Further refinement of the PECoral or PNECoral may be needed. Mitigating circumstances such as metabolism and reduced bioavailability must also be considered. Such an approach may be necessary for a subset of chemicals and would be tailored dependent on chemical use, release, environmental fate -- especially persistence -- and distribution.

  4. Coplanar and non-coplanar congener-specificity of PCB bioaccumulation and immunotoxicity in sea stars.

    PubMed

    Danis, Bruno; Cattini, Chantal; Teyssié, Jean-Louis; Villeneuve, Jean-Pierre; Fowler, Scott W; Warnau, Michel

    2006-08-23

    The sea star Asterias rubens (L.), a representative species of the North Sea benthic environment, was exposed to a mixture of 10 selected PCB congeners (3 coplanar or c-PCBs, and 7 non-coplanar) via experimentally contaminated sediments. Both the degree of bioaccumulation and subsequent immunotoxic effects of these PCBs were determined. A strong congener-specificity for both bioaccumulation and immunotoxicity was found as well as a probable induction of a congener-specific detoxification mechanism resulting in the dramatic decrease in body levels of the three coplanar congeners tested (PCBs 77, 126 and 169). Moreover, a correlation was found between the bioaccumulation of c-PCBs and their immunotoxic effects. These findings suggest that coplanar congeners should be included in the list of congeners recommended to be analyzed for biological impact-oriented marine monitoring programmes.

  5. INVESTIGATING COMPLEXITY IN FOOD WEB BIOACCUMULATION MODELING USING THE BIOACCUMULATION AND AQUATIC SYSTEM SIMULATOR

    EPA Science Inventory

    Bioaccumulation of methylmercury in exposed fish communities is primarily mediated via dietary uptake rather than direct gill uptake from the ambient water. Consequently, accurate predication of fish methylmercury concentrations demands reasonably realistic presentations of a com...

  6. Toxicity and bioaccumulation of a mixture of heavy metals in Chironomus tentans (Diptera: Chironomidae) in synthetic sediment

    SciTech Connect

    Harrahy, E.A.; Clements, W.H.

    1997-02-01

    This research investigated toxicity and bioaccumulation of a mixture of Cd, Cu, Pb, and Zn in Chironomus tentans in synthetic sediment, and compared predicted to measured steady-state bioaccumulation factors (BAFs). In a toxicity test, C. tentans were exposed to various dilutions of a base concentration (1.0 X) of a mixture of the four metals (5 {micro}g/g Cd. 10 {micro}g/g Cu. 70 {micro}g/g Pb, and 300 {micro}g/g Zn) in synthetic sediment. Mortality ranged from 17 to 100%. To measure bioaccumulation of the metals, C. tentans were exposed to 0.35 X the base concentration for a period of up to 14 d in two uptake tests. Bioaccumulation of all four metals increased over the 14-d uptake phases. Concentrations of metals in chironomids were significantly correlated with exposure time in the uptake phases. Only concentrations of copper approached background levels after 7 d depuration. Uptake rate coefficients and elimination rate constants were determined for each metal. Bioaccumulation factors were highest for Cd and lowest for Pb. With the exception of Pb, steady-state BAFs were within a factor of about two of those calculated using the first-order kinetic model. The high BAFs calculated may indicate greater bioavailability in synthetic sediment. Studies comparing toxicity and bioaccumulation of natural and synthetic sediments are necessary before the use of synthetic sediments is widely adopted.

  7. Metals Bioaccumulation Mechanism in Neem Bark.

    PubMed

    Krishnani, Kishore K; Boddu, Veera M; Moon, Deok Hyun; Ghadge, S V; Sarkar, Biplab; Brahmane, M P; Choudhary, K; Kathiravan, V; Meng, Xiaoguang

    2015-09-01

    The aim of this work was to define the bioaccumulation mechanism of metals onto the non-living biomaterial prepared from an extensively available plant bark biomass of neem (Azadirachta indica). Based on maximum ultimate fixation capacities (mmol/g) of the product, metals ions could be arranged as Hg(2+) < Cd(2+) < Pb(2+) ≅ Cu(2+). Surface properties of the biomaterial were characterized by X-ray photoelectron spectroscopy and X-ray diffraction techniques for their sorption mechanism. Whewellite (C2CaO4 · H2O) was identified in the biomaterial, which indicated that calcium ions are electrovalently bonded with carboxylate ions facilitating the ion exchange mechanism with metal ions. Bioaccumulation of metal ions was also studied by Fourier transform infrared spectroscopy, which indicated the presence of functional groups implicated in adsorbing metal ions. Biomaterial did not adsorb anionic As(III), As(V) and Cr(VI), because of their electrostatic repulsion with carboxylic functional groups. Neem bark can be used as bioindicators, bioaccumulators and biomonitors while determining environmental pressures. Metal bioaccumulative properties and structural investigation of plant bark has potential in providing quantitative information on the metal contamination in the surrounding environment. PMID:26193837

  8. Metals Bioaccumulation Mechanism in Neem Bark.

    PubMed

    Krishnani, Kishore K; Boddu, Veera M; Moon, Deok Hyun; Ghadge, S V; Sarkar, Biplab; Brahmane, M P; Choudhary, K; Kathiravan, V; Meng, Xiaoguang

    2015-09-01

    The aim of this work was to define the bioaccumulation mechanism of metals onto the non-living biomaterial prepared from an extensively available plant bark biomass of neem (Azadirachta indica). Based on maximum ultimate fixation capacities (mmol/g) of the product, metals ions could be arranged as Hg(2+) < Cd(2+) < Pb(2+) ≅ Cu(2+). Surface properties of the biomaterial were characterized by X-ray photoelectron spectroscopy and X-ray diffraction techniques for their sorption mechanism. Whewellite (C2CaO4 · H2O) was identified in the biomaterial, which indicated that calcium ions are electrovalently bonded with carboxylate ions facilitating the ion exchange mechanism with metal ions. Bioaccumulation of metal ions was also studied by Fourier transform infrared spectroscopy, which indicated the presence of functional groups implicated in adsorbing metal ions. Biomaterial did not adsorb anionic As(III), As(V) and Cr(VI), because of their electrostatic repulsion with carboxylic functional groups. Neem bark can be used as bioindicators, bioaccumulators and biomonitors while determining environmental pressures. Metal bioaccumulative properties and structural investigation of plant bark has potential in providing quantitative information on the metal contamination in the surrounding environment.

  9. Metals bioaccumulation mechanism in neem bark

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this work was to define the bioaccumulation mechanism of metals onto the non-living biomaterial prepared from an extensively available plant bark biomass of neem (Azadirachta indica). Based on maximum ultimate fixation capacities (mmol/g) of the product, metals ions could be arranged as H...

  10. PERSISTENT, BIOACCUMULATIVE, AND TOXIC POLLUTANTS (PBTS)

    EPA Science Inventory

    Article describes the class of compounds known as persistent, bioaccumulative, and toxic pollutants (known as PBTs), including the mechanisms responsible for ability to build up the food chain and for causing adverse health effects and ecosystem damage. Exposure to numerous PBTs ...

  11. Bioaccumulation of decamethylpentacyclosiloxane (D5): A review.

    PubMed

    Gobas, Frank A P C; Powell, David E; Woodburn, Kent B; Springer, Tim; Huggett, Duane B

    2015-12-01

    Decamethylpentacyclosiloxane (D5) is a widely used, high-production volume personal care product with an octanol-water partition coefficient (log K(OW)) of 8.09. Because of D5's high K(OW) and widespread use, it is subject to bioaccumulation assessments in many countries. The present study provides a compilation and an in-depth, independent review of bioaccumulation studies involving D5. The findings indicate that D5 exhibits depuration rates in fish and mammals that exceed those of extremely hydrophobic, nonbiotransformable substances; that D5 is subject to biotransformation in mammals and fish; that observed bioconcentration factors in fish range between 1040 L/kg and 4920 L/kg wet weight in laboratory studies using non-radiolabeled D5 and between 5900 L/kg and 13 700 L/kg wet weight in an experiment using C(14) radiolabeled D5; and that D5 was not observed to biomagnify in most laboratory experiments and field studies. Review of the available studies shows a high degree of internal consistency among findings from different studies and supports a broad comprehensive approach in bioaccumulation assessments that includes information from studies with a variety of designs and incorporates multiple bioaccumulation measures in addition to the K(OW) and bioconcentration factor. PMID:26363134

  12. Food Pyramids and Bio-Accumulation.

    ERIC Educational Resources Information Center

    Baker, Valerie

    1998-01-01

    Students learn about marine food chains, bioaccumulation, the energy pyramid, and potential ocean pollutants and their effects on ocean ecosystems in this activity which involves having students pull drawings of marine organisms which include diatoms, copepods, anchovies, bonito, and killer whale out of a bag, then demonstrating the food chain by…

  13. Persistent, bioaccumulative and toxic substances in fish: human health considerations.

    PubMed

    Dórea, José G

    2008-08-01

    Fish are important dietary items that provide essential nutrients. Fish however, bioaccumulate monomethyl mercury (MMHg) and organo-halogenated pollutants (OHP) that are persistent bioaccumulative and toxic substances (PBTS). Unlike man-made OHP, MMHg is mainly of natural origin but background concentrations of aquatic systems are determined by the environmental Hg-methylating potential. Industrial activities can modulate environmental discharges and fish bioaccumulation of PBTS. Fish and seafood consumption are associated with human body load of PBTS, but farming practices that utilize fishmeal increase the terrestrial food chain resulting in farm-animal accumulation of PBTS. These substances are neurotoxic and endocrine active that can impact humans and wild life, but chemical characteristics of MMHg and OHP modulate interactions with animal tissues. MMHg is protein reactive with a faster metabolism (months) than OHP that are stored and slowly (years) metabolized in fat tissues. Except for brain-Hg, neither Hg nor OHP in tissues are markers of toxic effects; however, deficits in neurobehavioral test-scores of children have been shown in some fish-eating populations. These deficits are transient and within normal range, and are not prodromes of neurological diseases. Although population studies show that consumption of fish at current levels of contamination do not explain neurological disorders, endocrine activity remains controversial. Understanding risk of hazard caused by fish-PBTS consumption requires a wide range of expertise. We discuss chemical, toxic, metabolic, and ecological characteristics associated with PBTS in fish. There are proven health outcome derived from fish consumption, while risk of exposure to avoidable PBTS is a chance that can be minimized by societal actions.

  14. Persistence, bioaccumulation, and toxicity of halogen-free flame retardants.

    PubMed

    Waaijers, Susanne L; Kong, Deguo; Hendriks, Hester S; de Wit, Cynthia A; Cousins, Ian T; Westerink, Remco H S; Leonards, Pim E G; Kraak, Michiel H S; Admiraal, Wim; de Voogt, Pim; Parsons, John R

    2013-01-01

    Polymers are synthetic organic materials having a high carbon and hydrogen content, which make them readily combustible. Polymers have many indoor uses and their flammability makes them a fire hazard. Therefore, flame retardants (FRs) are incorporated into these materials as a safety measure. Brominated flame retardants (BFRs), which accounted for about 21% of the total world market of FRs, have several unintended negative effects on the environment and human health. Hence, there is growing interest in finding appropriate alternative halogen-free flame retardants (HFFRs). Many of these HFFRs are marketed already, although their environ- mental behavior and toxicological properties are often only known to a limited extent, and their potential impact on the environment cannot yet be properly assessed. Therefore, we undertook this review to make an inventory of the available data that exists (up to September 2011) on the physical-chemical properties, pro- duction volumes, persistence, bioaccumulation, and toxicity (PBT) of a selection of HFFRs that are potential replacements for BFRs in polymers. Large data gaps were identified for the physical-chemical and the PBT properties of the reviewed HFFRs. Because these HFFRs are currently on the market, there is an urgent need to fill these data gaps. Enhanced transparency of methodology and data are needed to reevaluate certain test results that appear contradictory, and, if this does not provide new insights, further research should be performed. TPP has been studied quite extensively and it is clearly persistent, bioaccumulative, and toxic. So far, RDP and BDP have demonstrated low to high ecotoxicity and persistence. The compounds ATH and ZB exerted high toxicity to some species and ALPI appeared to be persistent and has low to moderate reported ecotoxicity. DOPO and MPP may be persistent, but this view is based merely on one or two studies, clearly indicating a lack of information. Many degradation studies have been

  15. Bioaccumulation and critical body burden of fluoranthene in estuarine amphipods

    SciTech Connect

    Driscoll, S.K.; Dickhut, R.; Schaffner, L.

    1995-12-31

    A standard estuarine sediment toxicity test organism, the amphipod Leptocheirus plumulosus, was exposed to {sup 14}C-fluoranthene, a polycyclic aromatic hydrocarbon that is ubiquitous in contaminated coastal sediments. In water-only toxicity tests, the 10-d LC50 was 187.2 nmol/L and the critical body burden associated with 50% mortality on day 8 was 0.694 {micro}mol fluoranthene-equivalents/gww tissue. These results suggest that L. plumulosus is more sensitive to fluoranthene than other species of amphipods that have been examined. Also, the critical body burden measured in water-only tests for this species is lower than the predicted value that is associated with death by accumulation of nonpolar organic compounds such as fluoranthene in other organisms. Sediment toxicity, bioaccumulation, ability to metabolize fluoranthene, elimination rate, and critical body burden of fluoranthene in L. plumulosus will be compared to results previously determined for the freshwater amphipods, Diporeia sp. and Hyalella azteca.

  16. Medium-chain chlorinated paraffins (MCCPs): a review of bioaccumulation potential in the aquatic environment.

    PubMed

    Thompson, Roy; Vaughan, Martin

    2014-01-01

    , especially concerning field data where limited sampling points are available and the difficulty in assessing the bioaccumulative potential of MCCPs as mixtures of different congeners. In conclusion, although some laboratory bioaccumulation values have a potential for concern, the majority of field values are more favorable when assessing the bioaccumulative potential of MCCPs. Definitive conclusions on the PBT assessment of MCCPs can be eased with further testing in both areas of P and B in the laboratory in conjunction with further monitoring of biota in the field to derive more robust field data.

  17. Toxicity, Bioaccumulation and Depuration of Bromoform in Five Marine Species

    SciTech Connect

    Gibson, C. I.; Tone, F. C.; Wilkinson, P.; Blaylock, J. W.; Schirmer, R. E.

    1981-01-01

    Bromoform has been identified as the single most abundant halogenated organic compound produced by the chlorination of marine waters. To determine the potential biological effects of its release into marine waters, short-term toxicity bioassays and 28-day uptake/28-day depuration studies were conducted with five marine species: Protothaca staminea, Mercenaria mercenaria, Crassostrea virginica, Penaeus aztecus, and Brevoortia tyrannus. The bioassay studies indicate that 96-hr LC50s ranged from approximately 7 ppm for B. tyrannus to greater than 40 ppm for P. staminea. Behavioral changes were noted in P. aztecus and B. tyrannus exposed to sublethal concentrations of bromoform. In all species tested, the uptake and depuration of bromoform was rapid. Bromoform was present in all exposed animal tissues within 24 hours and was depurated within 48 hours. In the mollusk species, there was bioaccumulation above water concentrations in the first week of exposure, and then the tissue concentrations fell to levels approximately equal to the water concentrations. The shrimp and menhaden also bioaccumulated bromoform above water concentrations in the first week of exposure, but then the tissue concentrations fell to approximately 0.4 {micro}g/g and remained at this level independent of water concentrations.

  18. An investigation into ciguatoxin bioaccumulation in sharks.

    PubMed

    Meyer, Lauren; Capper, Angela; Carter, Steve; Simpfendorfer, Colin

    2016-09-01

    Ciguatoxins (CTXs) produced by benthic Gambierdiscus dinoflagellates, readily biotransform and bioaccumulate in food chains ultimately bioconcentrating in high-order, carnivorous marine species. Certain shark species, often feeding at, or near the top of the food-chain have the ability to bioaccumulate a suite of toxins, from both anthropogenic and algal sources. As such, these apex predators are likely sinks for CTXs. This assumption, in conjunction with anecdotal knowledge of poisoning incidents, several non-specific feeding trials whereby various terrestrial animals were fed suspect fish flesh, and a single incident in Madagascar in 1994, have resulted in the widespread acceptance that sharks may accumulate CTXs. This prompted a study to investigate original claims within the literature, as well as investigate CTX bioaccumulation in the muscle and liver of 22 individual sharks from nine species, across four locations along the east coast of Australia. Utilizing an updated ciguatoxin extraction method with HPLC-MS/MS, we were unable to detect P-CTX-1, P-CTX-2 or P-CTX-3, the three primary CTX congeners, in muscle or liver samples. We propose four theories to address this finding: (1) to date, methods have been optimized for teleost species and may not be appropriate for elasmobranchs, or the CTXs may be below the limit of detection; (2) CTX may be biotransformed into elasmobranch-specific congeners as a result of unique metabolic properties; (3) 22 individuals may be an inadequate sample size given the rare occurrence of high-order ciguatoxic organisms and potential for CTX depuration; and (4) the ephemeral nature and inconsistent toxin profiles of Gambierdiscus blooms may have undermined our classifications of certain areas as CTX hotspots. These results, in combination with the lack of clarity within the literature, suggest that ciguatoxin bioaccumulation in sharks remains elusive, and warrants further investigation to determine the dynamics of toxin production

  19. Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water.

    PubMed

    Xia, Xinghui; Dai, Zhineng; Rabearisoa, Andry Harinaina; Zhao, Pujun; Jiang, Xiaoman

    2015-01-01

    The influence of humic substances and protein compounds on the bioaccumulation of six types of perfluoroalkyl substances (PFASs) in Daphnia magna was compared. The humic substances included humic acid (HA) and fulvic acid (FA), the protein compounds included chicken egg albumin (albumin) and peptone, and the PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Four concentrations (0, 1, 10, and 20 mg L(-1)) of the four dissolved organic matter (DOM) types were investigated. At the 1 mg L(-1) level, HA and albumin enhanced all tested PFAS bioaccumulation, whereas FA and peptone only enhanced the bioaccumulation of shorter-chain PFASs (PFOS, PFOA, and PFNA). However, all four DOM types decreased all tested PFAS bioaccumulation at the 20 mg L(-1) level, and the decreasing ratios of bioaccumulation factors caused by FA, HA, albumin, and peptone were 1-49%, 23-77%, 17-58%, and 8-56%, respectively compared with those without DOM. This is because DOM not only reduced the bioavailable concentrations and uptake rates of PFASs but also lowered the elimination rates of PFASs in D. magna, and these opposite effects would change with different DOM types and concentrations. Although the partition coefficients (L kg(-1)) of PFASs between HA and water (10(4.21)-10(4.98)) were much lower than those between albumin and water (10(4.92)-10(5.86)), their effects on PFAS bioaccumulation were comparable. This study suggests that although PFASs are a type of proteinophilic compounds, humic substances also have important effects on their bioavailability and bioaccumulation in aquatic organisms.

  20. Bioaccumulation of polychlorinated dibenzo-p-dioxins in sediment by oligochaetes: Influence of exposure pathway and contact time

    SciTech Connect

    Loonen, H.; Parsons, J.R.; Govers, H.A.J.; Muir, D.C.G.

    1997-07-01

    Oligochaetes (Lumbriculus variegatus) were exposed simultaneously to radiolabeled [{sup 3}H]2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and [{sup 14}C]octachlorodibenzo-p-dioxin (OCDD) in sediment for 28 d, in order to study accumulation processes of hydrophobic substances. Elimination was studied for a further 20 d. The uptake and elimination rate constants and the bioaccumulation factors (BAFs) were determined for TCDD and OCDD in the presence and absence of sediment (overlying water). Steady-state concentrations in oligochaetes were achieved for TCDD but not for OCDD over the 28-d exposure. Biota-sediment accumulation factors (BSAFs) after a 28-d exposure were 1.6 {+-} 0.27 for TCDD and 0.07 {+-} 0.02 for OCDD. Steady-state log BAF values (lipid based) for TCDD and OCDD in oligochaetes in the overlying water were 5.9 and 5.5 L/kg, respectively. The effect of incubation time between sediment and contaminants was investigated by repeating the accumulation study after a contact period of 21 months. BSAFs of sediment-sorbed TCDD and OCDD were 1.5 to 2-fold lower for the long contact time sediment. Based on comparison of predicted accumulation from pore water and observed accumulation by sediment-exposed oligochaetes, it was concluded that 1.4-fold greater accumulation occurred due to assimilation of TCDD and OCDD from ingested sediment. This additional accumulation in the presence of sediment, not accounted for by uptake only from pore waters, was consistent with literature data for other hydrophobic organochlorines.

  1. Bioaccumulation dynamics and exposure routes of Cd and Cu among species of aquatic mayflies

    USGS Publications Warehouse

    Cain, D.; Croteau, M.-N.; Luoma, S.

    2011-01-01

    Consumption of periphyton is a potentially important route of metal exposure to benthic invertebrate grazers. The present study examined the bioaccumulation kinetics of dissolved and dietary Cd and Cu in five species of mayflies (class Insecta). Artificial stream water and benthic diatoms were separately labeled with enriched stable metal isotopes to determine physiological rate constants used by a biokinetic bioaccumulation model. The model was employed to simulate the effects of metal partitioning between water and food, expressed as the bioconcentration factor (BCF), as well as ingestion rate (IR) and metal assimilation efficiency of food (AE), on the relative importance of water and food to metal bioaccumulation. For all test species, the contribution of dietary uptake of Cd and Cu increased with BCF. For a given BCF, the contribution of food to the body burden increased with kuf, the metal uptake rate constant from food that combined variation in IR and AE. To explore the relative importance of water and diet exposure routes under field conditions, we used estimated site-specific aqueous free-ion concentrations to model Cd and Cu accumulation from aqueous exposure, exclusively. The predicted concentrations accounted for less than 5% of the observed concentrations, implying that most bioaccumulated metal was acquired from food. At least for the taxa considered in this study, we conclude that consumption of metal-contaminated periphyton can result in elevated metal body burdens and potentially increase the risk of metal toxicity. ?? 2011 SETAC.

  2. Bioaccumulation of ionic titanium and titanium dioxide nanoparticles in zebrafish eleutheroembryos.

    PubMed

    López-Serrano Oliver, Ana; Muñoz-Olivas, Riansares; Sanz Landaluze, Jon; Rainieri, Sandra; Cámara, Carmen

    2015-01-01

    The production of titanium dioxide nanoparticles (TiO(2) NPs) for commercial applications has greatly increased over the last years and consequently the potential risk for human health. There is a growing awareness of the need to understand the behavior and influence these nanoparticles exert on the environment. Bioaccumulation serves as a good integrator to assess chemical exposure in aquatic systems and is dependent on factors, such as the exposure routes, diet and the aqueous medium. We analyzed the experimental bioaccumulation capability of ionic titanium and TiO(2) NPs by zebrafish (Danio rerio) eleutheroembryos through bioconcentration factors (BCFs), after 48 or 72 h of exposure. The stability of both chemical forms in an aquatic medium was fully characterized for further bioaccumulation studies. Several stabilizing agents (humic acids, soluble starch, polyethylene glycol, Na(4)P(2)O(7) and Na(2)HPO(4)) for anatase and rutile, the two allotrophs of TiO(2) NPs, were evaluated to check the evolution of the aggregation process. Around 60% of TiO(2) NPs remained disaggregated under simulated environmental conditions with the addition of 50 mg L(-1) of humic acids. However, the presence of eleutheroembryos in the exposure medium increased TiO(2) NPs aggregation in the experimental tests. The BCFs values obtained in all cases were <100, which classifies ionic titanium and TiO(2) NPs as non-bioaccumulative substances, under the REACH regulations.

  3. Bioaccumulation of fossil fuel components during single-compound and complex-mixture exposures of Daphnia magna

    SciTech Connect

    Dauble, D.D.; Carlile, D.W.; Hanf, R.W. Jr.

    1986-07-01

    The authors conducted tests with the water flea (Daphnia magna) to compare the bioaccumulation of compounds presented alone with the bioaccumulation of these same compounds when they were presented within a complex coal liquid, water-soluble fraction. Phenol and aniline were used as representative compounds because they are highly soluble, moderately toxic, and common to many fossil fuel liquid products and corresponding wastes. The tests were primarily designed to aid in development of predictive models relating to the transport and fate of components from complex mixtures in aquatic biota.

  4. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals.

    PubMed

    Rendal, Cecilie; Kusk, Kresten Ole; Trapp, Stefan

    2011-11-01

    It is recognized that the pH of exposure solutions can influence the toxicity and bioaccumulation of ionizing compounds. The present study investigates whether it can be considered a general rule that an ionizable compound is more toxic and more bioaccumulative when in the neutral state. Three processes were identified to explain the behavior of ionizing compounds with changing pH: the change in lipophilicity when a neutral compound becomes ionized, electrical attraction, and the ion trap. The literature was screened for bioaccumulation and toxicity tests of ionizing organic compounds performed at multiple pH levels. Toxicity and bioconcentration factors (BCFs) were higher for acids at lower pH values, whereas the opposite was true for bases. The effect of pH was most pronounced when pH - pK(a) was in the range of -1 to 3 for acids, and -3 to 1 for bases. The factor by which toxicity and BCF changed with pH was correlated with the lipophilicity of the compound (log K(OW) of the neutral compound). For both acids and bases, the correlation was positive, but it was significant only for acids. Because experimental data in the literature were limited, results were supplemented with model simulations using a dynamic flux model based on the Fick-Nernst-Planck diffusion equation known as the cell model. The cell model predicts that bases with delocalized charges may in some cases show declining bioaccumulation with increasing pH. Little information is available for amphoteric and zwitterionic compounds; however, based on simulations with the cell model, it is expected that the highest toxicity and bioaccumulation of these compounds will be found where the compounds are most neutral, at the isoelectric point. PMID:21823161

  5. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals.

    PubMed

    Rendal, Cecilie; Kusk, Kresten Ole; Trapp, Stefan

    2011-11-01

    It is recognized that the pH of exposure solutions can influence the toxicity and bioaccumulation of ionizing compounds. The present study investigates whether it can be considered a general rule that an ionizable compound is more toxic and more bioaccumulative when in the neutral state. Three processes were identified to explain the behavior of ionizing compounds with changing pH: the change in lipophilicity when a neutral compound becomes ionized, electrical attraction, and the ion trap. The literature was screened for bioaccumulation and toxicity tests of ionizing organic compounds performed at multiple pH levels. Toxicity and bioconcentration factors (BCFs) were higher for acids at lower pH values, whereas the opposite was true for bases. The effect of pH was most pronounced when pH - pK(a) was in the range of -1 to 3 for acids, and -3 to 1 for bases. The factor by which toxicity and BCF changed with pH was correlated with the lipophilicity of the compound (log K(OW) of the neutral compound). For both acids and bases, the correlation was positive, but it was significant only for acids. Because experimental data in the literature were limited, results were supplemented with model simulations using a dynamic flux model based on the Fick-Nernst-Planck diffusion equation known as the cell model. The cell model predicts that bases with delocalized charges may in some cases show declining bioaccumulation with increasing pH. Little information is available for amphoteric and zwitterionic compounds; however, based on simulations with the cell model, it is expected that the highest toxicity and bioaccumulation of these compounds will be found where the compounds are most neutral, at the isoelectric point.

  6. The effect of sediment on survival, growth, reproductive success and bioaccumulation in Neanthes: Summary report

    SciTech Connect

    Gerlinger, T.V.; Fanizzi, M.; Soong, K.; Armstrong, J.; Reish, D.J.

    1995-12-31

    Sediments taken from the vicinity of the County Sanitation Districts of Orange County ocean outfall were tested for survival, growth, reproduction and bioaccumulation of toxicants on the polychaete, Neanthes arenaceodentata. The end points were survival, growth (dry weight), reproductive success (as number of emerged larvae) and bioaccumulation (metals, DDT, PCBs). Ten experiments have been conducted over a 2 year period of which 2 measured reproductive success. The experiments for survival and growth utilized 2--3 week old post-emergence juvenile worms and subjected them to different test sediments including an inert sediment and plain sea water control. Worms were fed during the experiments. Experiments for reproductive success and bioaccumulation consisted of placing 100 juvenile worms each in 10 gallon aquaria together with test sediment for a 35--40 day period. After which, 10--15 pairs were made and each pair was placed in a separate 1 liter beaker together with sediment for the reproductive experiment. The remaining worms in each aquarium were used for chemical analysis. No toxic responses, as measured by survival, growth and reproductive success, were noted at any station during the 2 year study. Growth was generally lower in the inert sediment and sea water controls compared to test sediments indicating that worms were obtaining some nutrients from the sediment. No difference was noted in the number of emerged juveniles in any test container. While worms accumulated metals and organics in their tissue, there was neither a relationship to the station location nor to survival, growth or reproduction.

  7. Comparative contribution of trophic transfer and biotransformation on arsenobetaine bioaccumulation in two marine fish.

    PubMed

    Zhang, Wei; Guo, Zhiqiang; Zhou, Yanyan; Chen, Lizhao; Zhang, Li

    2016-10-01

    Marine fish can accumulate high arsenic (As) concentrations, with arsenobetaine (AsB) as the major species in the body. However, whether the high AsB accumulation in fish occurs mainly through trophic transfer from diet or biotransformation in the fish body remains unclear. This study investigated the trophic transfer and biotransformation of As in two marine fish (seabream Acanthopagrus schlegeli and grunt Terapon jarbua) fed artificial and clam diets for 28 d. The different diets contained different proportions of inorganic [As(III) and As(V)] and organic [methylarsenate (MMA), dimethylarsenate (DMA), and AsB] As compounds. Positive correlations were observed between the accumulated As concentrations and AsB concentrations in both fish, suggesting that AsB contributed to the accumulation of total As in marine fish. Based on the calculated total input of AsB and detected AsB concentrations in the muscle of the seabream and grunt, the ingested amounts of AsB accounted for 0.1-0.3%, 8.1-14.4% of detected AsB concentrations, respectively, in the muscle of seabream and grunt fish species, suggesting that AsB was mainly biotransformed versus trophically transferred in these marine fish. In summary, this study demonstrates that marine fish prefer to biotransform inorganic As forms into AsB, resulting in high bioaccumulation of total As.

  8. Comparative contribution of trophic transfer and biotransformation on arsenobetaine bioaccumulation in two marine fish.

    PubMed

    Zhang, Wei; Guo, Zhiqiang; Zhou, Yanyan; Chen, Lizhao; Zhang, Li

    2016-10-01

    Marine fish can accumulate high arsenic (As) concentrations, with arsenobetaine (AsB) as the major species in the body. However, whether the high AsB accumulation in fish occurs mainly through trophic transfer from diet or biotransformation in the fish body remains unclear. This study investigated the trophic transfer and biotransformation of As in two marine fish (seabream Acanthopagrus schlegeli and grunt Terapon jarbua) fed artificial and clam diets for 28 d. The different diets contained different proportions of inorganic [As(III) and As(V)] and organic [methylarsenate (MMA), dimethylarsenate (DMA), and AsB] As compounds. Positive correlations were observed between the accumulated As concentrations and AsB concentrations in both fish, suggesting that AsB contributed to the accumulation of total As in marine fish. Based on the calculated total input of AsB and detected AsB concentrations in the muscle of the seabream and grunt, the ingested amounts of AsB accounted for 0.1-0.3%, 8.1-14.4% of detected AsB concentrations, respectively, in the muscle of seabream and grunt fish species, suggesting that AsB was mainly biotransformed versus trophically transferred in these marine fish. In summary, this study demonstrates that marine fish prefer to biotransform inorganic As forms into AsB, resulting in high bioaccumulation of total As. PMID:27584085

  9. A method for improving predictive modeling by taking into account lag time: Example of selenium bioaccumulation in a flowing system.

    PubMed

    Beckon, William N

    2016-07-01

    For bioaccumulative substances, efforts to predict concentrations in organisms at upper trophic levels, based on measurements of environmental exposure, have been confounded by the appreciable but hitherto unknown amount of time it may take for bioaccumulation to occur through various pathways and across several trophic transfers. The study summarized here demonstrates an objective method of estimating this lag time by testing a large array of potential lag times for selenium bioaccumulation, selecting the lag that provides the best regression between environmental exposure (concentration in ambient water) and concentration in the tissue of the target organism. Bioaccumulation lag is generally greater for organisms at higher trophic levels, reaching times of more than a year in piscivorous fish. Predictive modeling of bioaccumulation is improved appreciably by taking into account this lag. More generally, the method demonstrated here may improve the accuracy of predictive modeling in a wide variety of other cause-effect relationships in which lag time is substantial but inadequately known, in disciplines as diverse as climatology (e.g., the effect of greenhouse gases on sea levels) and economics (e.g., the effects of fiscal stimulus on employment).

  10. A method for improving predictive modeling by taking into account lag time: Example of selenium bioaccumulation in a flowing system.

    PubMed

    Beckon, William N

    2016-07-01

    For bioaccumulative substances, efforts to predict concentrations in organisms at upper trophic levels, based on measurements of environmental exposure, have been confounded by the appreciable but hitherto unknown amount of time it may take for bioaccumulation to occur through various pathways and across several trophic transfers. The study summarized here demonstrates an objective method of estimating this lag time by testing a large array of potential lag times for selenium bioaccumulation, selecting the lag that provides the best regression between environmental exposure (concentration in ambient water) and concentration in the tissue of the target organism. Bioaccumulation lag is generally greater for organisms at higher trophic levels, reaching times of more than a year in piscivorous fish. Predictive modeling of bioaccumulation is improved appreciably by taking into account this lag. More generally, the method demonstrated here may improve the accuracy of predictive modeling in a wide variety of other cause-effect relationships in which lag time is substantial but inadequately known, in disciplines as diverse as climatology (e.g., the effect of greenhouse gases on sea levels) and economics (e.g., the effects of fiscal stimulus on employment). PMID:27149556

  11. Digestive determinants of benzo[a]pyrene and phenanthrene bioaccumulation by a deposit-feeding polychaete

    SciTech Connect

    Penry, D.L.; Weston, D.P.

    1998-11-01

    The uptake of hydrophobic contaminants from ingested sediment can contribute significantly to body burdens of deposit feeders, and feeding behavior and digestive physiology can play important roles in bioaccumulation. The authors examined the uptake of polycyclic aromatic hydrocarbons (PAHs) by the deposit-feeding polychaete Abarenicola pacifica in experiments in which worms were first acclimated to low or high organic carbon sediments with 0.08 or 0.45% total organic carbon, respectively and then transferred to low or high organic carbon test sediments contaminated with radiolabeled phenanthrene or benzo[a]pyrene. Ingestion rate was measurements are essential in many types of bioaccumulation studies because differences in ingestion rates between sediment types may confound some traditional measures of bioavailability. Physiological acclimation to the low or high organic carbon sediments did not appear to affect PAH uptake from the test sediments, but acclimation did affect biotransformation capabilities, particularly for phenanthrene.

  12. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

    PubMed Central

    Ferrão-Filho, Aloysio da S.; Kozlowsky-Suzuki, Betina

    2011-01-01

    Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis), chronic effects (e.g., reduction in growth and fecundity), biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases), and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research. PMID:22363248

  13. Modeling of Bioaccumulation in Marine Benthic Invertebrates Using a Multispecies Experimental Approach.

    PubMed

    Diepens, Noël J; Van den Heuvel-Greve, Martine J; Koelmans, Albert A

    2015-11-17

    The causal links between species traits and bioaccumulation by marine invertebrates are poorly understood. We assessed these links by measuring and modeling polychlorinated biphenyl bioaccumulation by four marine benthic species. Uniformity of exposure was achieved by testing each species in the same aquarium, separated by enclosures, to ensure that the observed variability in bioaccumulation was due to species traits. The relative importance of chemical uptake from pore water or food (organic matter, OM) ingestion was manipulated by using artificial sediment with different OM contents. Biota sediment accumulation factors (BSAFs) ranged from 5 to 318, in the order Nereis virens < Arenicola marina ≈ Macoma balthica < Corophium volutator. Calibration of a kinetic model provided species-specific parameters that represented the key species traits, thus illustrating how models provide an opportunity to read across benthic species with different feeding strategies. Key traits included species-specific differentiation between (1) ingestion rates, (2) ingestion of suspended and settled OM, and (3) elimination rates. The high BSAF values and their concomitant variability across the species challenges approaches for exposure assessment based on pore water concentration analysis and equilibrium partition theory. We propose that combining multienclosure testing and modeling will substantially improve exposure assessment in sediment toxicity tests.

  14. Strain-Dependent Norovirus Bioaccumulation in Oysters ▿

    PubMed Central

    Maalouf, Haifa; Schaeffer, Julien; Parnaudeau, Sylvain; Le Pendu, Jacques; Atmar, Robert L.; Crawford, Sue E.; Le Guyader, Françoise S.

    2011-01-01

    Noroviruses (NoVs) are the main agents of gastroenteritis in humans and the primary pathogens of shellfish-related outbreaks. Some NoV strains bind to shellfish tissues by using carbohydrate structures similar to their human ligands, leading to the hypothesis that such ligands may influence bioaccumulation. This study compares the bioaccumulation efficiencies and tissue distributions in oysters (Crassostrea gigas) of three strains from the two principal human norovirus genogroups. Clear differences between strains were observed. The GI.1 strain was the most efficiently concentrated strain. Bioaccumulation specifically occurred in digestive tissues in a dose-dependent manner, and its efficiency paralleled ligand expression, which was highest during the cold months. In comparison, the GII.4 strain was very poorly bioaccumulated and was recovered in almost all tissues without seasonal influence. The GII.3 strain presented an intermediate behavior, without seasonal effect and with less bioaccumulation efficiency than that of the GI.1 strain during the cold months. In addition, the GII.3 strain was transiently concentrated in gills and mantle before being almost specifically accumulated in digestive tissues. Carbohydrate ligand specificities of the strains at least partly explain the strain-dependent bioaccumulation characteristics. In particular, binding to the digestive-tube-specific ligand should contribute to bioaccumulation, whereas we hypothesize that binding to the sialic acid-containing ligand present in all tissues would contribute to retain virus particles in the gills or mantle and lead to rapid destruction. PMID:21441327

  15. Computer-assisted expert system for interpreting the consequences of bioaccumulation in aquatic animals (COBIAA). Technical note

    SciTech Connect

    Lutz, C.H.; Markstrom, E.; Dillon, T.; Wright, J.R.; Houck, M.H.

    1992-11-01

    This technical note describes a prototype expert system being developed to assist managers and scientists in the interpretation of bioaccumulation test results and their potential effect on the disposal of dredged material. This is a microcomputer, MS-DOS(TM)-based system, operating in the Microsoft Windows(TM)-environment.

  16. Bioaccumulation of Triclocarban in Lumbriculus variegatus

    PubMed Central

    Higgins, Christopher P.; J.Paesani, Zachary; Abbot Chalew, Talia E.; Halden, Rolf U.

    2009-01-01

    The antimicrobial triclocarban (TCC) has been detected in streams and municipal biosolids throughout the United States. In addition, TCC and potential TCC transformation products have been detected at high levels (ppm range) in sediments near major United States cities. Previous work has suggested that TCC is relatively stable in these environments, thereby raising concerns about the potential for bioaccumulation in sediment-dwelling organisms. Bioaccumulation of TCC from sediments was assessed using the freshwater oligochaete, Lumbriculus variegatus. Worms were exposed to TCC in sediment spiked to 22.4 ppm to simulate the upper bound of environmental concentrations. Uptake from laboratory-spiked sediment was examined over 56 days for TCC and 4,4′dichlorocarbanilide (DCC), a chemical impurity in and potential transformation product of TCC. The clearance of TCC from worms placed in clean sediment was also examined over 21 d after an initial 35-d exposure to TCC in laboratory-spiked sediment. Concentrations of TCC and DCC were monitored in the worms, sediment, and the overlying water using liquid chromatography tandem mass spectrometry. Experimental data were fitted using a standard biodynamic model to generate uptake and elimination rate constants for TCC in L. variegatus. These rate constants were used to estimate steady-state lipid and organic-carbon normalized biota-sediment accumulation factors (BSAFs) for TCC and DCC of 2.2 ± 0.2 and 0.3 ± 0.1 goc/glip, respectively. Alternatively, directly-measured BSAFs for TCC and DCC after 56 days of exposure were 1.6 ± 0.6 and 0.5 ± 0.2 goc/glip, respectively. Loss of TCC from pre-exposed worms followed first-order kinetics, and the fitted elimination rate-constant was identical to that determined from the uptake portion of the present study. Overall, study observations indicate that TCC bioaccumulates from sediments in a manner that is consistent with the traditional hydrophobic organic contaminant paradigm. PMID

  17. Bioaccumulation of toxic substances associated with dredging and dredged material disposal: a literature review

    USGS Publications Warehouse

    Seelye, James G.; Mac, Michael J.

    1984-01-01

    A literature review of sediment bioassessment was conducted as the first step in the development of a more standardized and ecologically sound test procedure for evaluating sediment quality. Based on the review, the authors concluded that 1) a standardized laboratory bioassessment test should consist of flowthrough exposure of at least 10 days duration using more than one aquatic organism including at least an infaunal benthic invertebrate and a fish species. 2) Before adoption of a laboratory sediment bioassessment procedure, the laboratory results should be evaluated by comparison with field conditions. 3) Most current sediment bioassessment regulatory tests measure acute toxicity or bioaccumulation. Development of tests to evaluate chronic, sublethal effects is needed.

  18. Influence of feeding and earthworm density on compound bioaccumulation in earthworms Eisenia andrei.

    PubMed

    Šmídová, Klára; Šerá, Jana; Bielská, Lucie; Hofman, Jakub

    2015-12-01

    Earthworm density and feeding during exposure to contaminated soil have been used inconsistently in bioaccumulation studies, which may lead to possible errors in risk assessment and modeling. Hydrophobic organic pollutants with a wide range of environmental properties (phenanthrene, pyrene, lindane, p,p'-DDT, and PCB 153) were used to study the effect of different earthworm densities in combination with the presence or absence of feeding on bioaccumulation factors (BAFs). Similar BAFs were found at various soil-to-worm ratios, with the exception of phenanthrene. We recommend using at least 15 gsoil dw per earthworm. The absence of feeding doubled the BAFs and, thus, using no food ration can be considered as "the worst case scenario". Whenever food is to be applied (i.e. to ensure the validity of the test in earthworm mass loss), we suggest feeding depending on the organic carbon content of the studied soil. PMID:26378968

  19. Influence of feeding and earthworm density on compound bioaccumulation in earthworms Eisenia andrei.

    PubMed

    Šmídová, Klára; Šerá, Jana; Bielská, Lucie; Hofman, Jakub

    2015-12-01

    Earthworm density and feeding during exposure to contaminated soil have been used inconsistently in bioaccumulation studies, which may lead to possible errors in risk assessment and modeling. Hydrophobic organic pollutants with a wide range of environmental properties (phenanthrene, pyrene, lindane, p,p'-DDT, and PCB 153) were used to study the effect of different earthworm densities in combination with the presence or absence of feeding on bioaccumulation factors (BAFs). Similar BAFs were found at various soil-to-worm ratios, with the exception of phenanthrene. We recommend using at least 15 gsoil dw per earthworm. The absence of feeding doubled the BAFs and, thus, using no food ration can be considered as "the worst case scenario". Whenever food is to be applied (i.e. to ensure the validity of the test in earthworm mass loss), we suggest feeding depending on the organic carbon content of the studied soil.

  20. Environmental effects of dredging. Use of daphnia magna to predict consequences of bioaccumulation

    SciTech Connect

    1987-03-01

    Results reported herein represent a portion of the laboratory research evaluating the relationship between mercury and cadmium tissue residues and biological effects in the freshwater crustacean, Daphnia magna (commonly known as the water flea). Procedures presented here for a 28-day Daphnia magna toxicity test could be used in screening for water-column toxicity resulting from open-water disposal of a specific dredged material. As a part of its regulatory and dredging programs, the U. S. Army Corps of Engineers often conducts, or requires to be conducted, an assessment of the potential for bioaccumulation of environmental contaminants from sediment scheduled for dredging and open-water disposal. There is, at present, no generally accepted guidance available to aid in the interpretation of the biological consequences of bioaccumulation. To provide an initial basis for such guidance, the Environmental Laboratory is conducting both literature database analyses and experimental laboratory studies as part of the Long-Term Effects of Dredging Operations (LEDO) Program.

  1. Steady-state model describing bioaccumulation of organic contaminants in benthic invertebrates

    SciTech Connect

    Morrison, H.; Lazar, R.; Haffner, G.D.; Whittle, D.M.; Gobas, F.A.P.C.

    1995-12-31

    Although both Canada and the United States use the equilibrium partitioning (EP) method to establish sediment quality criteria guidelines, the ability of this method to accurately predict bioaccumulation has not been thoroughly tested. When predictions of the EP model were compared to PCB data, on five species of benthic invertebrates from western Lake Erie, actual concentrations exceeded predicted concentrations for congeners with log K{sub ow} > 6. A comparison of water/sediment, organism/sediment and organism/water fugacity ratios indicated that western Lake Erie is not in thermodynamic equilibrium. An alternative model to the EP model was derived which does not assume that the system is in equilibrium and provides a mechanism for biomagnification. The model accurately predicted bioaccumulation in benthic invertebrates.

  2. Enantioselective acute toxicity effects and bioaccumulation of furalaxyl in the earthworm (Eisenia foetida).

    PubMed

    Qin, Fang; Gao, Yongxin; Guo, Baoyuan; Xu, Peng; Li, Jianzhong; Wang, Huili

    2014-06-01

    The enantioselectivities of individual enantiomers of furalaxyl in acute toxicity and bioaccumulation in the earthworm (Eisenia foetida) were studied. The acute toxicity was tested by filter paper contact test. After 48 h of exposure, the calculated LC50 values of the R-form, rac-form, and S-form were 2.27, 2.08, and 1.22 µg cm(-2), respectively. After 72 h of exposure, the calculated LC50 values were 1.90, 1.54, and 1.00 µg cm(-2), respectively. Therefore, the acute toxicity of furalaxyl enantiomers was enantioselective. During the bioaccumulation experiment, the enantiomer fraction of furalaxyl in earthworm tissue was observed to deviate from 0.50 and maintained a range of 0.55-0.60; in other words, the bioaccumulation of furalaxyl was enantioselective in earthworm tissue with a preferential accumulation of S-furalaxyl. The uptake kinetic of furalaxyl enantiomers fitted the first-order kinetics well and the calculated kinetic parameters were consistent with the low accumulation efficiency.

  3. Comparative toxicity and bioaccumulation of fenvalerate and esfenvalerate to earthworm Eisenia fetida.

    PubMed

    Ye, Xiaoqing; Xiong, Kang; Liu, Jing

    2016-06-01

    More attention is being paid to the enantioselective toxicity of chiral pesticides. However, limited investigations have been done to assess the ecological risks of chiral pesticides to soil community. Fenvalerate (FV), an extensively used synthetic pyrethroid, is a typical chiral pesticide. The most insecticidally active enantiomer of FV, esfenvalerate (ESFV), also has been marketed and widely used. In this study, the toxicological sensitivity and bioaccumulation of FV and ESFV in earthworms were assessed. The results showed that FV was less toxic than ESFV, but more accumulated in earthworms. ESFV was at least 4 times more toxic to earthworms than FV according to the filter paper contact toxicity test and the artificial soil test. Enantiospecific induction in oxidative stress was observed in earthworms exposed to FV and ESFV. The bioaccumulation of FV and ESFV in earthworm tissues was also enantioselective, preferentially accumulating FV. The uptake of ESFV by earthworms was lower than that of FV, so that the biota to soil accumulation factor (BSAF) value of ESFV was lower than that of FV. Our findings suggest that the enantioselective toxicity and bioaccumulation of chiral pesticides should be considered for evaluating ecological risks of these compounds to non-target organisms. PMID:26900980

  4. Predicting the bioaccumulation of polyaromatic hydrocarbons and polychlorinated biphenyls in benthic animals in sediments.

    PubMed

    Tuikka, A I; Leppänen, M T; Akkanen, J; Sormunen, A J; Leonards, P E G; van Hattum, B; van Vliet, L A; Brack, W; Smedes, F; Kukkonen, J V K

    2016-09-01

    There were two main objectives in this study. The first was to compare the accuracy of different prediction methods for the chemical concentrations of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the organism, based on the measured chemical concentrations existing in sediment dry matter or pore water. The predicted tissue concentrations were compared to the measured ones after 28-day laboratory test using oligochaeta worms (Lumbriculus variegatus). The second objective was to compare the bioaccumulation of PAHs and PCBs in the laboratory test with the in situ bioaccumulation of these compounds. Using the traditional organic carbon-water partitioning model, tissue concentrations were greatly overestimated, based on the concentrations in the sediment dry matter. Use of an additional correction factor for black carbon with a two-carbon model, significantly improved the bioaccumulation predictions, thus confirming that black carbon was important in binding the chemicals and reducing their accumulation. The predicted PAH tissue concentrations were, however, high compared to the observed values. The chemical concentrations were most accurately predicted from their freely dissolved pore water concentrations, determined using equilibrium passive sampling. The patterns of PCB and PAH accumulation in sediments for laboratory-exposed L. variegatus were similar to those in field-collected Lumbriculidae worms. Field-collected benthic invertebrates and L. variegatus accumulated less PAHs than PCBs with similar lipophilicity. The biota to sediment accumulation factors of PAHs tended to decrease with increasing sediment organic carbon normalized concentrations. The presented data yields bioconcentration factors (BCF) describing the chemical water-lipid partition, which were found to be higher than the octanol-water partition coefficients, but on a similar level with BCFs drawn from relevant literature. In conclusion, using the two-carbon model method

  5. Predicting the bioaccumulation of polyaromatic hydrocarbons and polychlorinated biphenyls in benthic animals in sediments.

    PubMed

    Tuikka, A I; Leppänen, M T; Akkanen, J; Sormunen, A J; Leonards, P E G; van Hattum, B; van Vliet, L A; Brack, W; Smedes, F; Kukkonen, J V K

    2016-09-01

    There were two main objectives in this study. The first was to compare the accuracy of different prediction methods for the chemical concentrations of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the organism, based on the measured chemical concentrations existing in sediment dry matter or pore water. The predicted tissue concentrations were compared to the measured ones after 28-day laboratory test using oligochaeta worms (Lumbriculus variegatus). The second objective was to compare the bioaccumulation of PAHs and PCBs in the laboratory test with the in situ bioaccumulation of these compounds. Using the traditional organic carbon-water partitioning model, tissue concentrations were greatly overestimated, based on the concentrations in the sediment dry matter. Use of an additional correction factor for black carbon with a two-carbon model, significantly improved the bioaccumulation predictions, thus confirming that black carbon was important in binding the chemicals and reducing their accumulation. The predicted PAH tissue concentrations were, however, high compared to the observed values. The chemical concentrations were most accurately predicted from their freely dissolved pore water concentrations, determined using equilibrium passive sampling. The patterns of PCB and PAH accumulation in sediments for laboratory-exposed L. variegatus were similar to those in field-collected Lumbriculidae worms. Field-collected benthic invertebrates and L. variegatus accumulated less PAHs than PCBs with similar lipophilicity. The biota to sediment accumulation factors of PAHs tended to decrease with increasing sediment organic carbon normalized concentrations. The presented data yields bioconcentration factors (BCF) describing the chemical water-lipid partition, which were found to be higher than the octanol-water partition coefficients, but on a similar level with BCFs drawn from relevant literature. In conclusion, using the two-carbon model method

  6. ASSESSING BIOACCUMULATION FOR DERIVING NATIONAL HUMAN HEALTH WATER QUALITY CRITERIA

    EPA Science Inventory

    The United States Environmental Protection Agency is revising its methodology for deriving national ambient water quality criteria (AWQC) to protect human health. A component of this guidance involves assessing the potential for chemical bioaccumulation in commonly consumed fish ...

  7. Combined effects of sugarcane bagasse extract and synthetic dyes on the growth and bioaccumulation properties of Pichia fermentans MTCC 189.

    PubMed

    Das, Devlina; Charumathi, D; Das, Nilanjana

    2010-11-15

    Bioaccumulation of synthetic dyes viz. Acid Blue 93, Direct Red 28 and Basic Violet 3 by growing cells of yeast, Pichia fermentans MTCC 189 was investigated in growth media prepared from sugarcane bagasse extract. The maximum dye bioaccumulation was determined at pH 5.0 for all the dyes tested. Two kinetic models viz. Noncompetitive and Uncompetitive models were tested in order to determine the toxic effects of dyes on the specific growth rate of P. fermentans MTCC 189. Basic Violet 3 was found to be more toxic than the other two dyes. The combined effects of sugarcane bagasse extract and initial Basic Violet 3 dye concentrations on the specific growth rate and dye bioaccumulation efficiency of P. fermentans MTCC 189 was investigated and optimized using Response Surface Methodology (RSM). A 2(2) full factorial central composite design was successfully used for analysis of results. The optimum combination predicted via RSM confirmed that P. fermentans MTCC 189 was capable of bioaccumulating Basic Violet 3 dye upto 69.8% in the medium containing 10 mg/L of dye and 24 g/L sugar extracted from sugarcane bagasse.

  8. Bioaccumulation of Multiwall Carbon Nanotubes in Tetrahymena thermophila by Direct Feeding or Trophic Transfer.

    PubMed

    Mortimer, Monika; Petersen, Elijah J; Buchholz, Bruce A; Orias, Eduardo; Holden, Patricia A

    2016-08-16

    Consumer goods contain multiwall carbon nanotubes (MWCNTs) that could be released during product life cycles into the environment, where their effects are uncertain. Here, we assessed MWCNT bioaccumulation in the protozoan Tetrahymena thermophila via trophic transfer from bacterial prey (Pseudomonas aeruginosa) versus direct uptake from growth media. The experiments were conducted using (14)C-labeled MWCNT ((14)C-MWCNT) doses at or below 1 mg/L, which proved subtoxic since there were no adverse effects on the growth of the test organisms. A novel contribution of this study was the demonstration of the ability to quantify MWCNT bioaccumulation at low (sub μg/kg) concentrations accomplished by employing accelerator mass spectrometry (AMS). After the treatments with MWCNTs at nominal concentrations of 0.01 mg/L and 1 mg/L, P. aeruginosa adsorbed considerable amounts of MWCNTs: (0.18 ± 0.04) μg/mg and (21.9 ± 4.2) μg/mg bacterial dry mass, respectively. At the administered MWCNT dose of 0.3 mg/L, T. thermophila accumulated up to (0.86 ± 0.3) μg/mg and (3.4 ± 1.1) μg/mg dry mass by trophic transfer and direct uptake, respectively. Although MWCNTs did not biomagnify in the microbial food chain, MWCNTs bioaccumulated in the protozoan populations regardless of the feeding regime, which could make MWCNTs bioavailable for organisms at higher trophic levels. PMID:27398725

  9. Bioaccumulation of highly hydrophobic organohalogen flame retardants from sediments: application of toxicokinetics and passive sampling techniques.

    PubMed

    Li, Huizhen; Zhang, Baozhong; Wei, Yanli; Wang, Fei; Lydy, Michael J; You, Jing

    2014-06-17

    Highly hydrophobic organohalogen flame retardants (HHOFRs) are found ubiquitously in the environment; therefore, a better understanding of their bioavailability is needed. In the current study, bioaccumulation testing using the oligochaete, Lumbriculus variegatus, and passive sampling (solid-phase microextraction (SPME)) were performed to study the bioaccumulation potential of HHOFRs, including decabromodiphenyl ether (deca-BDE), decabromodiphenyl ethane (DBDPE), and dechlorane plus (DP), in laboratory-spiked and field-collected sediments. The HHOFRs were bioavailable to L. variegatus even though their biota-sediment accumulation factors were low (0.016 ± 0.002 to 0.48 ± 0.082 g organic carbon/g lipid, syn-DP > anti-DP > deca-BDE > DBDPE). Hydrophobicity and stereoisomerism affected HHOFR bioavailability. Meanwhile, HHOFR concentrations on the SPME fibers (Cf) correlated with those in biota (Cb), suggesting the potential application of SPME in bioavailability prediction for those compounds. The log Cf to log Cb correlation for deca-BDE and DP had a greater intercept than that for polychlorinated biphenyls (data obtained from the literature) although the slopes were similar, while data for DBDPE fell on the regression line for PCBs, implying some uncertainty in application of SPMEs across chemical classes. The increasing sorptive ability of proteins for HHOFRs in comparison to the less-brominated BDEs suggested that protein-binding should be considered when estimating bioaccumulation potential of HHOFRs in benthic invertebrates.

  10. An arctic terrestrial food-chain bioaccumulation model for persistent organic pollutants.

    PubMed

    Kelly, Barry C; Gobas, Frank A P C

    2003-07-01

    A model representing the bioaccumulation of persistent organic pollutants (POPs) in arctic terrestrial mammalian food-chains is developed, parametrized, tested, and analyzed. The model predicts concentrations of POPs in lichen, caribou (Rangifer tarandus), and wolf (Canis lupus) food-chains of Canada's central and western arctic region from measured concentrations in air and snowpack meltwater. The model accounts for temporal and seasonal variation in diet composition, life-stage, body weight, and fat content over the life-span of the animal. Model predicted concentrations of 25 organic chemicals forecasted for caribou and wolves from Cambridge Bay (69 degrees 07' N 105 degrees 03' W), Inuvik (68 degrees 18' N 133 degrees 29' W) and Bathurst Inlet (64 degrees 15' N 113 degrees 07' W) are shown to be in good agreement with the observed data. The model illustrates a strong relationship between biomagnification factors and chemical K(OA) and illustrates the effect of age, sex, and temperature on POPs bioaccumulation. Model results show that POPs with K(OA)s < 10(5) do not biomagnify in arctic terrestrial food-chains, while substances that exhibit log K(OA)s > 5 and also exhibit a log K(OW) > 2, show significant bioaccumulation in arctic terrestrial food-chains. The model shows that persistent low K(OW) (K(OW)s < 10(5)) but high K(OA) substances such as beta-HCH, 1,2,4,5 tetrachlorobenzene, and beta-endosulfan biomagnify in terrestrial mammals. PMID:12875402

  11. Removal and bioaccumulation of heavy metals from aqueous solutions using freshwater algae.

    PubMed

    Shamshad, Isha; Khan, Sardar; Waqas, Muhammad; Ahmad, Nadeem; Khushnood-Ur-Rehman; Khan, Kifayatullah

    2015-01-01

    Four freshwater algae, including Cladophora glomerata, Oedogonium westii, Vaucheria debaryana and Zygnema insigne, were tested for their bioaccumulation capacity for cadmium (Cd), chromium (Cr) and lead (Pb) in a controlled environment with an average temperature of 18 °C, and light/dark duration of 12:12 h. Experiments were performed in aqueous solutions containing selected heavy metals (HM) (ranging from 0.05 to 1.5 mg L(-1)) with 0.5 g of living algae at 18 °C and pH 6.8. The results indicated that C. glomerata was observed to be the most competent species for the removal of Cr, Cd and Pb from aqueous solutions. HM removal trends were in the order of Cd>Cr>Pb while the removal efficiency of selected algae species was in the order of C. glomerata, O. westii, V. debaryana and Z. insigne. The bioaccumulation capacity of C. glomerata, V. debaryana and Z. insigne was observed for different HM. Removal of HM was higher with low levels of HM in aqueous solutions. The results indicated that C. glomerata, O. westii, V. debaryana and Z. insigne had significant (P≤0.01) diverse bioaccumulation capacity for Cr, Cd and Pb. PMID:25607667

  12. Bioaccumulation of Multiwall Carbon Nanotubes in Tetrahymena thermophila by Direct Feeding or Trophic Transfer.

    PubMed

    Mortimer, Monika; Petersen, Elijah J; Buchholz, Bruce A; Orias, Eduardo; Holden, Patricia A

    2016-08-16

    Consumer goods contain multiwall carbon nanotubes (MWCNTs) that could be released during product life cycles into the environment, where their effects are uncertain. Here, we assessed MWCNT bioaccumulation in the protozoan Tetrahymena thermophila via trophic transfer from bacterial prey (Pseudomonas aeruginosa) versus direct uptake from growth media. The experiments were conducted using (14)C-labeled MWCNT ((14)C-MWCNT) doses at or below 1 mg/L, which proved subtoxic since there were no adverse effects on the growth of the test organisms. A novel contribution of this study was the demonstration of the ability to quantify MWCNT bioaccumulation at low (sub μg/kg) concentrations accomplished by employing accelerator mass spectrometry (AMS). After the treatments with MWCNTs at nominal concentrations of 0.01 mg/L and 1 mg/L, P. aeruginosa adsorbed considerable amounts of MWCNTs: (0.18 ± 0.04) μg/mg and (21.9 ± 4.2) μg/mg bacterial dry mass, respectively. At the administered MWCNT dose of 0.3 mg/L, T. thermophila accumulated up to (0.86 ± 0.3) μg/mg and (3.4 ± 1.1) μg/mg dry mass by trophic transfer and direct uptake, respectively. Although MWCNTs did not biomagnify in the microbial food chain, MWCNTs bioaccumulated in the protozoan populations regardless of the feeding regime, which could make MWCNTs bioavailable for organisms at higher trophic levels.

  13. Assessing bioaccumulation of polybrominated diphenyl ethers for aquatic species by QSAR modeling.

    PubMed

    Mansouri, Kamel; Consonni, Viviana; Durjava, Mojca Kos; Kolar, Boris; Öberg, Tomas; Todeschini, Roberto

    2012-10-01

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in textiles, foams and plastics. Highly bioaccumulative with toxic effects including developmental neurotoxicity estrogen and thyroid hormones disruption, they are considered as persistent organic pollutants (POPs) and have been found in human tissues, wildlife and biota worldwide. But only some of them are banned from EU market. For the environmental fate studies of these compounds the bioconcentration factor (BCF) is one of the most important endpoints to start with. We applied quantitative structure-activity relationships techniques to overcome the limited experimental data and avoid more animal testing. The aim of this work was to assess the bioaccumulation of PBDEs by means of QSAR. First, a BCF dataset of specifically conducted experiments was modeled. Then the study was extended by predicting the bioaccumulation and biomagnification factors using some experimental values from the literature. Molecular descriptors were calculated using DRAGON 6. The most relevant ones were selected and resulting models were compared paying attention to the applicability domain.

  14. Removal and bioaccumulation of heavy metals from aqueous solutions using freshwater algae.

    PubMed

    Shamshad, Isha; Khan, Sardar; Waqas, Muhammad; Ahmad, Nadeem; Khushnood-Ur-Rehman; Khan, Kifayatullah

    2015-01-01

    Four freshwater algae, including Cladophora glomerata, Oedogonium westii, Vaucheria debaryana and Zygnema insigne, were tested for their bioaccumulation capacity for cadmium (Cd), chromium (Cr) and lead (Pb) in a controlled environment with an average temperature of 18 °C, and light/dark duration of 12:12 h. Experiments were performed in aqueous solutions containing selected heavy metals (HM) (ranging from 0.05 to 1.5 mg L(-1)) with 0.5 g of living algae at 18 °C and pH 6.8. The results indicated that C. glomerata was observed to be the most competent species for the removal of Cr, Cd and Pb from aqueous solutions. HM removal trends were in the order of Cd>Cr>Pb while the removal efficiency of selected algae species was in the order of C. glomerata, O. westii, V. debaryana and Z. insigne. The bioaccumulation capacity of C. glomerata, V. debaryana and Z. insigne was observed for different HM. Removal of HM was higher with low levels of HM in aqueous solutions. The results indicated that C. glomerata, O. westii, V. debaryana and Z. insigne had significant (P≤0.01) diverse bioaccumulation capacity for Cr, Cd and Pb.

  15. Feeding reduces waterborne Cu bioaccumulation in a marine rabbitfish Siganus oramin.

    PubMed

    Guo, Zhiqiang; Zhang, Wei; Du, Sen; Zhou, Yanyan; Gao, Na; Zhang, Li; Green, Iain

    2016-01-01

    Waterborne metal uptake has been extensively studied and dietary metal assimilation is increasingly recognized in fish, whilst the interaction between the two uptake routes is largely overlooked. This study compared the waterborne Cu bioaccumulation ((65)Cu as tracer) in a juvenile rabbitfish at different feeding regimes (starvation (SG), feeding normal diet (NDG) or diet supplemented with extra Cu (DCG)) to test the hypothesis that feeding can influence waterborne metal uptake in marine fish. NDG and DCG diet was fed as a single meal and then all fish were exposed to waterborne (65)Cu for 48 h, during which the time course sampling was conducted to determine (65)Cu bioaccumulation, chyme flow and dietary Cu assimilation. The results revealed that SG fish accumulated the highest (65)Cu, followed by NDG (61% of SG), whilst DCG fish accumulated the lowest (65)Cu (34% of SG). These results suggested a protective effect of feeding against waterborne Cu bioaccumulation. This effect was most notable between 10 min and 16 h when there was chyme in gastrointestinal tract (GT). Dietary Cu assimilation mainly occurred before 16 h after feeding. Waterborne (65)Cu influx rate in the GT was positively correlated with (65)Cu contents of chyme in NDG, whereas it was largely negatively correlated with (65)Cu contents of chyme in DCG. The waterborne Cu uptake in the GT was mainly influenced by the chyme flow and dietary Cu assimilation. Overall, our findings suggested that feeding has an important effect on waterborne metal uptake and that both the feeding status of the fish and the relative metal exposure through water and food should be considered in prediction of the metal bioaccumulation and biomonitoring programs. PMID:26552536

  16. Feeding reduces waterborne Cu bioaccumulation in a marine rabbitfish Siganus oramin.

    PubMed

    Guo, Zhiqiang; Zhang, Wei; Du, Sen; Zhou, Yanyan; Gao, Na; Zhang, Li; Green, Iain

    2016-01-01

    Waterborne metal uptake has been extensively studied and dietary metal assimilation is increasingly recognized in fish, whilst the interaction between the two uptake routes is largely overlooked. This study compared the waterborne Cu bioaccumulation ((65)Cu as tracer) in a juvenile rabbitfish at different feeding regimes (starvation (SG), feeding normal diet (NDG) or diet supplemented with extra Cu (DCG)) to test the hypothesis that feeding can influence waterborne metal uptake in marine fish. NDG and DCG diet was fed as a single meal and then all fish were exposed to waterborne (65)Cu for 48 h, during which the time course sampling was conducted to determine (65)Cu bioaccumulation, chyme flow and dietary Cu assimilation. The results revealed that SG fish accumulated the highest (65)Cu, followed by NDG (61% of SG), whilst DCG fish accumulated the lowest (65)Cu (34% of SG). These results suggested a protective effect of feeding against waterborne Cu bioaccumulation. This effect was most notable between 10 min and 16 h when there was chyme in gastrointestinal tract (GT). Dietary Cu assimilation mainly occurred before 16 h after feeding. Waterborne (65)Cu influx rate in the GT was positively correlated with (65)Cu contents of chyme in NDG, whereas it was largely negatively correlated with (65)Cu contents of chyme in DCG. The waterborne Cu uptake in the GT was mainly influenced by the chyme flow and dietary Cu assimilation. Overall, our findings suggested that feeding has an important effect on waterborne metal uptake and that both the feeding status of the fish and the relative metal exposure through water and food should be considered in prediction of the metal bioaccumulation and biomonitoring programs.

  17. Modeling the effect of water chemistry on the bioaccumulation of waterborne cadmium in zebra mussels.

    PubMed

    Bourgeault, Adeline; Gourlay-Francé, Catherine; Tusseau-Vuillemin, Marie-Hélène

    2010-10-01

    The present study aims at investigating the effects of Zn, Ca, and dissolved organic carbon (DOC) on the waterborne Cd bioaccumulation of a freshwater bivalve (Dreissena polymorpha). Mussels were exposed for 48 h at 3 µg/L of Cd in different media. Their physiological activities were assessed by separately measuring the filtration rate in the same exposure water. Increased Zn (from 3 to 89 µg/L) and Ca (from 37 to 131 mg/L) concentrations in water led to a threefold and sevenfold reduction of Cd bioaccumulation, whereas the effect of DOC varied greatly depending on its concentration. At low DOC concentrations (from 0.2 to 1.1 mg/L), the uptake of Cd increased, whereas at higher concentrations (from 1.1 to 17.1 mg/L), the uptake decreased. The filtration activity was not strongly influenced by either Zn or Ca concentration, whereas it was modified in enriched DOC media in the same manner as Cd uptake. A competitive model was built to predict the waterborne uptake rate constant of Cd (k (u)) as a function of Zn and Ca concentrations in the water. Over the range of DOC concentrations we tested, organic matter was shown to influence Cd bioaccumulation in two ways: by modifying Cd speciation and thus its bioavailability and its interaction with the biological membrane, and by affecting the mussel's physiology and therefore its sensitivity to metal. The present study provides a useful means of adjusting the toxicokinetic constant to the water's physicochemical characteristics and proposes a unifying model that takes into account the different geochemical and biological influences on bioaccumulation.

  18. Flow-through bioassay for measuring bioaccumulation of toxic substances from sediment

    USGS Publications Warehouse

    Mac, Michael J.; Edsall, Carol C.; Hesselberg, Robert J.; Sayers, Richard E.

    1984-01-01

    Over 10 million cubic meters of sediment are dredged annually from Great Lakes waterways. Because much of this material is taken from harbors, connecting channels, and other nearshore areas that often are contaminated with toxic substances, the sediments proposed for dredging need to be evaluated for the presence of bioavailable contaminants and the potential for toxicity to the biota. Sound decisions on the appropriate disposal of the dredged material can be made only after such an evaluation. Presently, no standardized procedure exists for evaluating dredged material in freshwater systems although current criteria for discharge of dredged material into marine water have been developed (USEPA/CE 1977). In the ocean discharge guideline, it is recommended that bioassays be conducted on liquid, solid, and suspended particulate phases of dredged material. because it appears that the solid phase has the greatest potential for environmental damage and because measurement of bioaccumulation must be made to evaluate sediments for disposal (USEPA/CE 1977, Seeyle and Mac 1983), we developed a bioassay for testing the solid phase of dredged material that measures the survival of organisms and, perhaps more important, the bioaccumulation of toxic substances by aquatic organisms from naturally contaminated sediments (Peddicord et al. 1980; Rubinstein et al. 1980, 1983; Seeyle st al. 1982), several have used testing methods that result in unacceptable mortality to control organisms (Bahnick et al. 1981, Prater et al. 1983). Our bioassay is intended to estimate the potential for bioaccumlation of contaminants from sediments that are not acutely toxic to test organisms, but are suspected of containing persistent contaminants. By using test organisms that are not highly susceptible to toxic compounds, the bioaccumulation test allows estimation of the potential food-chain accumulation of contaminants that may occur in local biota from surficial sediments. In practice

  19. Bioaccumulation surveillance in Milford Haven Waterway.

    PubMed

    Langston, W J; O'Hara, S; Pope, N D; Davey, M; Shortridge, E; Imamura, M; Harino, H; Kim, A; Vane, C H

    2012-01-01

    Biomonitoring of contaminants (metals, organotins, polyaromatic hydrocarbons (PAHs), PCBs) was undertaken in Milford Haven Waterway (MHW) and a reference site in the Tywi Estuary (St Ishmael/Ferryside) during 2007-2008. Bioindicator species encompassed various uptake routes-Fucus vesiculosus (dissolved contaminants); Littorina littorea (grazer); Mytilus edulis and Cerastoderma edule (suspension feeders); and Hediste (=Nereis) diversicolor (sediments). Differences in feeding and habitat preference have subtle implications for bioaccumulation trends though, with few exceptions, contaminant burdens in MHW were higher than the Tywi reference site, reflecting inputs. Elevated metal concentrations were observed at some MHW sites, whilst As and Se (molluscs and seaweed) were consistently at the higher end of the UK range. However, for most metals, distributions in MH biota were not exceptional. Several metal-species combinations indicated increases in bioavailability upstream, which may reflect the influence of geogenic/land-based sources-perhaps enhanced by lower salinity. TBT levels in MH mussels were below OSPAR toxicity thresholds and in the Tywi were close to zero. Phenyltins were not accumulated appreciably in M. edulis, whereas some H. diversicolor populations appear subjected to localized (historical) sources. PAHs in H. diversicolor were distributed evenly across most of MHW, although acenaphthene, fluoranthene, pyrene, benzo(a)anthracene and chrysene were highest at one site near the mouth; naphthalenes in H. diversicolor were enriched in the mid-upper Haven (a pattern seen in M. edulis for most PAHs). Whilst PAH (and PCB) concentrations in MH mussels were mostly above reference and OSPAR backgrounds, they are unlikely to exceed ecotoxicological thresholds. Bivalve Condition indices (CI) were highest at the Tywi reference site and at the seaward end of MH, decreasing upstream-giving rise to several significant (negative) relationships between CI and body burdens

  20. Evaluation of toxicity to the amphipod, Hyalella azteca, and to the midge, Chironomus dilutus; and bioaccumulation by the oligochaete, Lumbriculus variegatus, with exposure to PCB-contaminated sediments from Anniston, Alabama

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.; Brumbaugh, William G.; Coady, Matthew R.; Farrar, J. Daniel; Lotufo, Guilherme R.; Kemble, Nile E.; Kunz, James L.; Stanley, Jacob K.; Sinclair, Jesse A.; Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.

    2014-01-01

    characterization of samples of whole sediment included analyses of grain size, TOC, and nutrients. Organic chemical characterization of samples of whole sediment included PCB homologs and select (13) PCB congeners, parent and alkylated polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, and polychlorinated dibenzo-p-dioxins; and dibenzofurans. The PCB aroclors analyzed included 1016, 1221, 1232, 1242, 1248, 1254, 1260, 1262 and 1268. Analyses of whole sediment also included total metals, simultaneously extracted metals, and acid volatile sulfide. Chemical characterization of samples of pore water isolated from samples of whole sediment at the start of the sediment toxicity exposures or at the start of the sediment bioaccumulation exposures included metals, major cations, major anions, dissolved organic carbon, and additional water-quality characteristics. Concentrations of metals or PCBs in pore water during the sediment toxicity exposures or during sediment bioaccumulation exposures also were determined using peeper samples (for metals) or solid-phase microextraction (SPME) samplers (for PCBs). The bioavailability and bioaccumulation of PCBs in 14 sediment samples were investigated using SPME passive samplers and the 28-d L. variegatus whole-sediment bioaccumulation exposures In general the accumulation of PCBs consistently was predicted through the use of organic carbon normalization and equilibrium partitioning. In these sediments, PCB homologs were accumulated differently based on bioavailability and potential to accumulate in oligochaetes. As part of this assessment homolog specific biota sediment accumulation factor values were developed that could be applied across the larger site to predict tissue levels of PCBs. The whole-sediment toxicity tests done with H. azteca and C. dilutus met the established ASTM and USEPA test acceptability criteria. The most responsive H. azteca endpoints were day 42 survival normalized young per female and day 28 biomass and

  1. Mercury bioaccumulation in Hayward Marsh, California

    SciTech Connect

    Ohlendorf, H.; Byron, E.; Taylor, L.; Cortes, R.

    1995-12-31

    Hayward Marsh was created in 1988 to provide wildlife habitat using treated wastewater from Union Sanitary District, which is located in the San Francisco Bay area. Mercury has been identified as one of the major contaminants of concern for San Francisco Bay sediment and biota. This study was conducted to determine whether mercury bioaccumulation in the Marsh occurred at ecologically significant levels. Sediment, benthic and free-swimming aquatic invertebrates, fish, bird eggs, and muskrat livers were analyzed. Mercury concentrations in the various media were compared to regional background levels and potential adverse effect levels. The findings indicated that mercury concentrations were generally similar to background levels and that there was a low probability of adverse effects to wildlife feeding in the Marsh. An important aspect of the study was inclusion of three bird species, along with their potential food organisms, in the sampling, one of the species had elevated mercury levels in its eggs but those birds probably were exposed outside the Marsh because the two other species and common food-chain organisms did not show elevated mercury levels.

  2. Increased Mercury Bioaccumulation Follows Water Quality Improvement

    SciTech Connect

    Bogle, M.A.; Peterson, M.J.; Smith, J.G.; Southworth, G.R.

    1999-09-15

    Changes in physical and chemical characteristics of aquatic habitats made to reduce or eliminate ecological risks can sometimes have unforeseen consequences. Environmental management activities on the U.S. Dept. of Energy reservation in Oak Ridge, Tennessee,have succeeded in improving water quality in streams impacted by discharges fi-om industrial facilities and waste disposal sites. The diversity and abundance of pollution-sensitive components of the benthic macroinvertebrate communities of three streams improved after new waste treatment systems or remedial actions reduced inputs of various toxic chemicals. Two of the streams were known to be mercury-contaminated from historical spills and waste disposal practices. Waterborne mercury concentrations in the third were typical of uncontaminated systems. In each case, concentrations of mercury in fish, or the apparent biological availability of mercury increased over the period during which ecological metrics indicated improved water quality. In the system where waterborne mercury concentrations were at background levels, increased mercury bioaccumulation was probably a result of reduced aqueous selenium concentrations; however, the mechanisms for increased mercury accumulation in the other two streams remain under investigation. In each of the three systems, reduced inputs of metals and inorganic anions was followed by improvements in the health of aquatic invertebrate communities. However, this reduction in risk to aquatic invertebrates was accompanied by increased risk to humans and piscivorous wildlife related to increased mercury concentrations in fish.

  3. Mercury Speciation and Bioaccumulation In Riparian and Upland Food Webs of the White Mountains Region, New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Rodenhouse, N.; Gebauer, R.; Lowe, W.; McFarland, K.; Bank, M. S.

    2015-12-01

    The soils and foods webs associated with mid to high elevation, forested, headwater streams are potential hotspots for mercury methylation and bioaccumulation but are not well studied. We tested the hypothesis that spatial variation in mercury bioaccumulation in upland taxa associated with headwater streams can be explained by variation in soil conditions promoting Hg methylation such as soil moisture, pH, and sulfur and organic matter content. We sampled at high (c. 700m) and mid elevation (c. 500m) in northern hardwood forest adjacent to and away from (75m) replicate headwater streams in the Hubbard Brook and Jeffers Brook watersheds of the White Mountains region, New Hampshire, USA. These forested watersheds differed primarily in soil calcium content and pH. We measured and assessed spatial variation in total Hg (THg) and methyl Hg (MeHg) concentrations in soils, insects, spiders, salamanders and birds. We also tested whether trophic position, as determined by nitrogen stable isotopes, was a major predictor of Hg bioaccumulation across these riparian and upland forest taxa. We found elevated levels of THg in all measured components of the food web, and conditions for methylation were better in the upland forest sites compared to the riparian sites located adjacent to headwater streams. Both THg and MeHg in biota were positively correlated with trophic position as indicated by 15N enrichment. In fact, trophic position was a better predictor of THg and MeHg content than spatial location, but the spatial patterning of bioaccumulation differed among taxa. Our data show that that significant Hg bioaccumulation and biomagnification can occur in soils and food webs of mid to high elevation temperate deciduous forests of the Northeast. They also suggest that mercury methylation in forested watersheds is a widespread phenomenon and not limited to areas with high soil moisture, such as lotic environments.

  4. A field assessment of long-term laboratory sediment toxicity tests with the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Wang, Ning; Hayward, Jeannie M. R.; Jones, John R.; Jones, Susan B.; Ireland, D. Scott

    2005-01-01

    Response of the amphipod Hyalella azteca exposed to contaminated sediments for 10 to 42 d in laboratory toxicity tests was compared to responses observed in controlled three-month invertebrate colonization exposures conducted in a pond. Sediments evaluated included a sediment spiked with dichlorodiphenyldichloroethane (DDD) or dilutions of a field sediment collected from the Grand Calumet River (GCR) in Indiana (USA) (contaminated with organic compounds and metals). Consistent effects were observed at the highest exposure concentrations (400 ??g DDD/goc [DDD concentrations normalized to grams of organic carbon (goc) in sedimentl or 4% GCR sediment) on survival, length, and reproduction of amphipods in the laboratory and on abundance of invertebrates colonizing sediments in the field. Effect concentrations for DDD observed for 10-d length and 42-d reproduction of amphipods (e.g., chronic value [ChV] of 66 ??g DDD/goc and 25% inhibition concentration [IC25] of 68 ??g DDD/goc for reproduction) were similar to the lowest effect concentrations for DDD measured on invertebrates colonizing sediment the field. Effect concentrations for GCR sediment on 28-d survival and length and 42-d reproduction and length of amphipods (i.e., ChVs of 0.20-0.66% GCR sediment) provided more conservative effect concentrations compared to 10-d survival or length of amphipods in the laboratory or the response of invertebrates colonizing sediment in the field (e.g., ChVs of 2.2% GCR sediment). Results of this study indicate that use of chronic laboratory toxicity tests with H. azteca and benthic colonization studies should be used to provide conservative estimates of impacts on benthic communities exposed to contaminated sediments. Bioaccumulation of DDD by oligochaetes colonizing the DDD-spiked sediment was similar to results of laboratory sediment tests previously conducted with the oligochaete Lumbriculus variegates, confirming that laboratory exposures can be used to estimate

  5. Usefulness of the lipid index for bioaccumulation studies with Daphnia magna

    SciTech Connect

    Dauble, D.D.; Klopfer, D.C.; Carlile, D.W.; Hanf, R.W. Jr.

    1985-01-01

    Bioaccumulation studies with Daphnia magna have become an important tool for hazard evaluation of potentially toxic materials released to aquatic environments. Despite widespread use of this test organism, little attention has been paid to the influence of stored lipids on uptake of xenobiotics. The authors drew upon principles of zooplankton population dynamics in the limnological literature to define experimental parameters for bioconcentration testing of organic compounds. Adult test populations were initially starved and monitored for lipid content and brood production. Mean lipid index values declined at 72 h to less than 50% of those observed at 24 h. The number of hatched young peaked at 48 h and was inversely related to lipid storage and ovary production. In a separate experiment, uptake kinetics of /sup 14/C-labelled quinoline were compared between two daphnid test groups with mean lipid scores of 5.4 and 2.8 respectively. Total radioactivity was significantly higher for the high lipid group at 8 h, and the coefficient of variation was lower. Estimated bioconcentration factors adjusted to dry weight were similar. Our studies indicated that lipid reserves of daphnid test populations can be routinely monitored as an indicator of stress in the laboratory. Bioaccumulation tests should be limited to less than 24 h to avoid depletion of lipid stores, which may cause increased variation in tissue concentration over time. 19 references, 2 figures, 2 tables.

  6. Bioaccumulation and toxicity of silver compounds: A review

    SciTech Connect

    Ratte, H.T.

    1999-01-01

    A review of the literature revealed that bioaccumulation of silver in soil is rather low, even if the soil is amended with silver-containing sewage sludge. Plants grown on tailings of silver mines were found to have silver primarily in the root systems. In marine and freshwater systems, the highest reported bioconcentration factors (BCFs) were observed in algae, probably because of adsorption of the dissolved silver to the cell surface. In herbivorous organisms, the BCF was lower by about two orders of magnitude. Low amounts of silver were assimilated from food with no substantial biomagnification. In carnivores (e.g., fish), the BCF was also lower by one order of magnitude with no indication of biomagnification. Toxicity of silver occurs mainly in the aqueous phase and depends on the concentration of active, free Ag{sup +} ions. Accordingly, many processes and water characteristics reduce silver toxicity by stopping the formation of free Ag{sup +}, binding Ag{sup +}, or preventing binding of Ag{sup +} to the reactive surfaces of organisms. The solubility of a silver compound, and the presence of complexing agents dissolved organic carbon, and competing ions are important. In soil, sewage sludge, and sediment, in which silver sulfide predominates, the toxicity of silver, even at high total concentrations, is very low. The highly soluble silver thiosulfate complex has low toxicity, which can be attributed to the silver complexed by thiosulfate. Silver nitrate is one of the most toxic silver compounds. The toxic potential of silver chloride complexes in seawater is and will be an important issue for investigation. Aquatic chronic tests, long-term tests, and tests including sensitive life stages show lower toxicity thresholds. The organisms viewed as most sensitive to silver are small aquatic invertebrates, particularly embryonic and larval stages.

  7. Summary of Cefic-LRI sponsored workshop: Recent scientific developments in bioaccumulation research

    EPA Science Inventory

    Current bioaccumulation regulations in most jurisdictions include only the bioconcentration factor (BCF) and the octanol-water partition coefficient (KOW) for screening assessments. Methods for evaluating bioaccumulation continue to evolve and various other metrics have been prop...

  8. Dietary Uptake Models Used for Modeling the Bioaccumulation of Organic Contaminants in Fish

    EPA Science Inventory

    Numerous models have been developed to predict the bioaccumulation of organic chemicals in fish. Although chemical dietary uptake can be modeled using assimilation efficiencies, bioaccumulation models fall into two distinct groups. The first group implicitly assumes that assimila...

  9. APPROACHES FOR MEASUREMENTS OF FIELD BIOACCUMULATION OF POPS AND THEIR APPLICATION TO LESS PERSISTENT CHEMICALS

    EPA Science Inventory

    This presentation will focus on where and when field based approaches for assessing bioaccumulation of chemicals in aquatic food webs can be used for predicting bioaccumulation of the thousands of existing chemicals in commerce.

  10. THE RELATIONSHIP OF BIOACCUMULATIVE CHEMICALS IN WATER AND SEDIMENT TO RESIDUES IN FISH: A VISUALIZATION APPROACH

    EPA Science Inventory

    A visualization approach is developed and presented for depicting and interpreting bioaccumulation relationships and data, i.e., bioaccumulation factors (BAFs), biota-sediment accumulation factors (BSAFs) and chemical residues in fish, using water-sediment chemical concentration ...

  11. Bioaccumulation of metals by Hyalella azteca exposed to contaminated sediments from the upper Clark Fork River, Montana

    SciTech Connect

    Ingersoll, C.G.; Brumbaugh, W.G.; Dwyer, F.J.; Kemble, N.E. . Midwest Science Center)

    1994-12-01

    Macroinvertebrate contaminated with metals in the Clark Fork River of Montana have been demonstrated to be a potentially toxic component in the diet of trout. Because sediment was the suspected source of metals to these invertebrates, bioaccumulation of As, Cd, Cu, Pb, and Zn from sediment was evaluated by exposing the amphipod Hyalella azteca for 28 d in the laboratory to samples of sediment collected from depositional areas of the Clark Fork River. Benthic invertebrates collected from riffles adjacent to the depositional areas were also analyzed for metals. The pattern of metal accumulation between laboratory-exposed and field-collected animals was similar; however, the concentrations of metals in laboratory-exposed amphipods were often 50 to 75% less than were the concentrations of metals in the field-collected invertebrates. These findings indicate that sediment is a significant source of metals to invertebrates in the Clark Fork River. Additional studies should be conducted to determine threshold concentrations for effects of dietary metals on fish. Long-term monitoring of the river should include sampling benthic invertebrates for metal accumulation.

  12. Cylindrospermopsin: A Decade of Progress on Bioaccumulation Research

    PubMed Central

    Kinnear, Susan

    2010-01-01

    Cylindrospermopsin (CYN) is rapidly being recognised as one of the most globally important of the freshwater algal toxins. The ever-expanding distribution of CYN producers into temperate zones is heightening concern that this toxin will represent serious human, as well as environmental, health risks across many countries. Since 1999, a number of studies have demonstrated the ability for CYN to bioaccumulate in freshwater organisms. This paper synthesizes the most current information on CYN accumulation, including notes on the global distribution of CYN producers, and a précis of CYN’s ecological and human effects. Studies on the bioaccumulation of CYN are systematically reviewed, together with an analysis of patterns of accumulation. A discussion on the factors influencing bioaccumulation rates and potential is also provided, along with notes on detection, monitoring and risk assessments. Finally, key gaps in the existing research are identified for future study. PMID:20411114

  13. Joint use of laboratory bioassays and field-collected plants to evaluate toxicity and contaminant bioaccumulation

    SciTech Connect

    Long, S.P.; Byron, E.R.; Ohlendorf, H.M.

    1995-12-31

    Soil toxicity tests using lettuce (Latuca saliva) were conducted using soil samples collected as part of ecological risk assessments at two facilities in California. At some sites, terrestrial plants were collected in the field for chemical analysis. Ecological concerns focused on exposures to plants, phytophagous insects, and their secondary consumers, such as birds and small mammals. The toxicity tests were used to assess potential exposures to a variety of site-specific contaminants including organochlorine pesticides, PCBs, PAHs, petroleum hydrocarbons, heavy metals, and other inorganic substances. Site soils were combined with clean control soils to produce toxicity test soil dilutions containing 100%, 75%, 50%, 25%, and 0% site soils. Observations of seed germination and growth were made at day 0, 7, 14, 21 and 28. Toxicity test results were combined with soil chemical analytical results and physical characteristics to establish NOAELs and LOAELs. Bioaccumulation in the lettuce and field-collected plants was evaluated by comparing plant contaminant to soil contaminant concentrations. Allometric equations and sublethal toxicity data were used to predict potential effects on birds and small mammals. Whole-body contaminant concentrations in insects collected on some of the plants in the field were also considered in evaluating the potential for toxicity to insectivorous birds. The study indicated that contaminant uptake was occurring in the field-collected and bioassay plants but not the insects. Site factors in addition to soil contaminant concentration influenced the potential for plant toxicity and bioaccumulation.

  14. Hepatic cadmium, metal-binding proteins and bioaccumulation in bluegills exposed to aqueous cadmium

    USGS Publications Warehouse

    Cope, W.G.; Atchison, G.J.; Wiener, J.G.

    1994-01-01

    We examined sublethal responses of juvenile bluegills Lepomis macrochirus to aqueous cadmium in two 28-d tests (test I, 0.0-8.4 μg Cd per liter; test II, 0.0-32.3 μg Cd per liter) in an intermittent-flow diluter. The experimental design was completely randomized, with two replicates in each of eight treatments (seven Cd exposures and one water control with 25 fish per replicate). Cadmium did not affect the growth of test fish. The mean whole-body concentrations of Cd in exposed fish were 1.8- to 44-fold those in controls in the two tests. Mean concentrations of hepatic nonthionein cytosolic Cd (not bound by metal-binding proteins, MBP) in all Cd treatments greatly exceeded those in controls, and mean concentrations of hepatic MBP in all treatments except one (0.8 μg Cd per liter in test I) exceeded those in controls. Nonthionein cytosolic Cd, hepatic MBP, and whole-body Cd in bluegills were linearly related to exposure concentrations within the range 0 to 20 μg Cd per liter. Much of the total Cd-binding capacity of hepatic MBP per fish was occupied by Cd after the 28-d exposures, although additional Cd-binding capacity remained unoccupied by Cd in fish in all treatments. The mean total Cd-binding capacity of hepatic MBP per fish, which ranged from 1.7 to 14 nmol Cd in test I and from 0.8 to 24 nmol Cd in test II, increased in a concentration-response manner at exposure concentrations below 13 μg/L. Nonthionein cytosolic Cd was the most sensitive indicator of Cd exposure, based on an LOEC of 0.8 μg Cd per liter.

  15. Toxicity and bioaccumulation of biosolids-borne triclocarban (TCC) in terrestrial organisms.

    PubMed

    Snyder, Elizabeth Hodges; O'Connor, George A; McAvoy, Drew C

    2011-01-01

    Triclocarban (TCC) toxicity and bioaccumulation data are primarily limited to direct human and animal dermal exposures, animal ingestion exposures to neat and feed-spiked TCC, and/or aquatic organism exposures. Three non-human, terrestrial organism groups anticipated to be the most highly exposed to land-applied, biosolids-borne TCC are soil microbes, earthworms, and plants. The three ecological receptors are expected to be at particular risk due to unique modes of exposure (e.g. constant, direct contact with soil; uptake of amended soil and pore water), inherently greater sensitivity to environmental contaminants (e.g. increased body burdens, permeable membranes), and susceptibility to minute changes in the soil environment. The toxicities of biosolids-borne TCC to Eisenia fetida earthworms and soil microbial communities were characterized using adaptations of the USEPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) Guidelines 850.6200 (Earthworm Subchronic Toxicity Test) and 850.5100 (Soil Microbial Community Toxicity Test), respectively. The resultant calculated TCC LC50 value for E. fetida was 40 mg TCC kg amended fine sand(-1). Biosolids-borne TCC in an amended fine sand had no significant effect on soil microbial community respiration, ammonification, or nitrification. Bioaccumulation of biosolids-borne TCC by E. fetida and Paspulum notatum was measured to characterize potential biosolids-borne TCC movement through the food chain. Dry-weight TCC bioaccumulation factor (BAF) values in E. fetida and P. notatum ranged from 5.2-18 and 0.00041-0.007 (gsoil gtissue(-1)), respectively. PMID:21035164

  16. Toxicity and bioaccumulation of biosolids-borne triclocarban (TCC) in terrestrial organisms.

    PubMed

    Snyder, Elizabeth Hodges; O'Connor, George A; McAvoy, Drew C

    2011-01-01

    Triclocarban (TCC) toxicity and bioaccumulation data are primarily limited to direct human and animal dermal exposures, animal ingestion exposures to neat and feed-spiked TCC, and/or aquatic organism exposures. Three non-human, terrestrial organism groups anticipated to be the most highly exposed to land-applied, biosolids-borne TCC are soil microbes, earthworms, and plants. The three ecological receptors are expected to be at particular risk due to unique modes of exposure (e.g. constant, direct contact with soil; uptake of amended soil and pore water), inherently greater sensitivity to environmental contaminants (e.g. increased body burdens, permeable membranes), and susceptibility to minute changes in the soil environment. The toxicities of biosolids-borne TCC to Eisenia fetida earthworms and soil microbial communities were characterized using adaptations of the USEPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) Guidelines 850.6200 (Earthworm Subchronic Toxicity Test) and 850.5100 (Soil Microbial Community Toxicity Test), respectively. The resultant calculated TCC LC50 value for E. fetida was 40 mg TCC kg amended fine sand(-1). Biosolids-borne TCC in an amended fine sand had no significant effect on soil microbial community respiration, ammonification, or nitrification. Bioaccumulation of biosolids-borne TCC by E. fetida and Paspulum notatum was measured to characterize potential biosolids-borne TCC movement through the food chain. Dry-weight TCC bioaccumulation factor (BAF) values in E. fetida and P. notatum ranged from 5.2-18 and 0.00041-0.007 (gsoil gtissue(-1)), respectively.

  17. Assessment of soil stabilization by chemical extraction and bioaccumulation using earthworm, Eisenia fetida

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Tae; Abd Aziz, Azilah; Han, Heop Jo; Kim, Kyoung-Woong

    2014-05-01

    Soil stabilization does not remove heavy metals from contaminated soil, but lowers their exposures to ecosystem. Thus, it should be evaluated by measuring the fractions of heavy metals which are mobile and/or bioavailable in soils. The study compared several chemical extractions which intended to quantify the mobile or bioaccessible fractions with uptake and bioaccumulation by earthworm, Eisenia fetida. Soil samples were taken from the abandoned mine area contaminated with As, Cd, Cu, Pb and/or Zn. To stabilize heavy metals, the soils were amended with limestone and steel slag at 5% and 2% (w/w), respectively. All chemical extractions and earthworm tests were applied to both the contaminated and the stabilized soils with triplicates. The chemical extractions consisted of six single extractions which were 0.01M CaCl2 (unbufferred), EDTA or DTPA (chelating), TCLP (acidic), Mehlich 3 (mixture), and aqua regia (peudo-total). Sequential extractions were also applied to fractionate heavy metals in soils. In earthworm tests, worms were exposed to the soils for uptake of heavy metals. After 28 days of exposure to soils, worms were transferred to clean soils for elimination. During the tests, three worms were randomly collected at proper sampling events. Worms were rinsed with DI water and placed on moist filter paper for 48 h for depuration. Filter paper was renewed at 24 h to prevent coprophagy. The worms were killed with liquid nitrogen, dried in the oven, and digested with aqua regia for ICP-MS analysis. In addition to the bioaccumulation, several toxicity endpoints were observed such as burrowing time, mortality, cocoon production, and body weight changes. Toxicokinetics was applied to determine the uptake and elimination heavy metals by the earthworms. Bioaccumulation factor (BAF) was estimated using total metal concentrations and body burdens. Pearson correlation and simple linear regression were applied to evaluate the relationship between metal fractions by single

  18. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) capped silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) and titanium dioxide (TiO2) NPs in marine organisms via marine sediment exposure were investigated. Results from 7-d sedimen...

  19. Comparison and Evaluation of Laboratory and Field Measured Bioaccumulation Endpoints

    EPA Science Inventory

    Evaluation of bioaccumulation endpoints on a fugacity basis allows provides a framework to assess the biomagnification potential of a chemical and assess data deficiencies, i.e., uncertainties and lack of data. In addition, it is suggested that additional guidance is needed in o...

  20. Uptake and bioaccumulation of three PCBs by Chlorella fusca

    SciTech Connect

    Wang, K.; Rott, B.; Korte, F.

    1982-01-01

    This paper reports the bioaccumulation of three PCBs (2,4'-dichlorobiphenyl, 2,4,6,2'-tetrachlorobiphenyl and 2,4,6,2',4'-pentachlorobiphenyl) by the green alga Chlorella fusca under various conditions. A probable pattern of the bioconcentration mechanism is suggested. No metabolites were extracted from algae or water 6 days after incubation with PCBs.

  1. EVALUATION OF TWO METHODS FOR PREDICTION OF BIOACCUMULATION FACTORS

    EPA Science Inventory

    Two methods for deriving bioaccumulation factors (BAFs) used by the U.S. Environmental Protection Agency (EPA) in development of water quality criteria were evaluated using polychlorinated biphenyls (PCB) data from the Hudson River and Green Bay ecosystems. Greater than 90% of th...

  2. Optimizing fish sampling for fish–mercury bioaccumulation factors

    EPA Science Inventory

    Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop total maximum daily load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to s...

  3. COMMUNICATING RISKS OF PERSISTANT BIOACCUMULATING TOXICS IN FOODS

    EPA Science Inventory

    The primary route of exposure to many persistant bioaccumulating toxins (PBT) such as methyl mercury, PCDs or Dioxins is though foods. Many people, but particularly subsistence fishermen, pregnant women and children, are at high risk for methyl mercury toxicity because of their c...

  4. Fluoride bioaccumulation and toxic effects on the survival and behavior of the endangered white-clawed crayfish Austropotamobius pallipes (Lereboullet).

    PubMed

    Aguirre-Sierra, Arantxa; Alonso, Alvaro; Camargo, Julio A

    2013-08-01

    Laboratory experiments were performed to examine the toxic effects of fluoride (F(-)) on the survival and behavior of white-clawed crayfish (Austropotamobius pallipes). Body fluoride contents (bioaccumulation) of test crayfish were also examined. No significant differences between male and female crayfish regarding mortality, escape (tail-flip) response, and fluoride bioaccumulation were detected. For mortality, 48-, 72-, 96-, 120-, 144-, 168-, and 192-h median lethal concentrations (LC50) were estimated to be 93.0, 55.3, 42.7, 36.5, 32.9, 30.6, and 28.9 mg F(-)/l, respectively. For the escape response, 48-, 72-, 96-, 120-, 144-, 168- and 192-h median effective concentrations (EC50) were estimated to be 18.4, 11.1, 8.6, 7.4, 6.7, 6.2 and 5.9 mg F(-)/l, respectively. Average food consumption in test crayfish tended to decrease with increasing water fluoride concentration with a 192-h lowest-observed effect concentration of 10.7 mg F(-)/l. These results indicate that the escape response was the most sensitive end point to fluoride toxicity followed by food consumption and mortality. Fluoride bioaccumulation in test crayfish increased with increasing water fluoride concentration and exposure time. The exoskeleton accumulated more fluoride than muscle. A comparison of the obtained results with previous data for other freshwater invertebrates shows that white-clawed crayfish are relatively tolerant to fluoride toxicity. We conclude that fluoride pollution in freshwater ecosystems should not be viewed as an important risk factor contributing to the catastrophic decrease of A. pallipes in many European countries. Our results indicate that fluoride bioaccumulation in A. pallipes might be used as a bioindicator of fluoride pollution in freshwater ecosystems where it is present.

  5. Fluoride bioaccumulation and toxic effects on the survival and behavior of the endangered white-clawed crayfish Austropotamobius pallipes (Lereboullet).

    PubMed

    Aguirre-Sierra, Arantxa; Alonso, Alvaro; Camargo, Julio A

    2013-08-01

    Laboratory experiments were performed to examine the toxic effects of fluoride (F(-)) on the survival and behavior of white-clawed crayfish (Austropotamobius pallipes). Body fluoride contents (bioaccumulation) of test crayfish were also examined. No significant differences between male and female crayfish regarding mortality, escape (tail-flip) response, and fluoride bioaccumulation were detected. For mortality, 48-, 72-, 96-, 120-, 144-, 168-, and 192-h median lethal concentrations (LC50) were estimated to be 93.0, 55.3, 42.7, 36.5, 32.9, 30.6, and 28.9 mg F(-)/l, respectively. For the escape response, 48-, 72-, 96-, 120-, 144-, 168- and 192-h median effective concentrations (EC50) were estimated to be 18.4, 11.1, 8.6, 7.4, 6.7, 6.2 and 5.9 mg F(-)/l, respectively. Average food consumption in test crayfish tended to decrease with increasing water fluoride concentration with a 192-h lowest-observed effect concentration of 10.7 mg F(-)/l. These results indicate that the escape response was the most sensitive end point to fluoride toxicity followed by food consumption and mortality. Fluoride bioaccumulation in test crayfish increased with increasing water fluoride concentration and exposure time. The exoskeleton accumulated more fluoride than muscle. A comparison of the obtained results with previous data for other freshwater invertebrates shows that white-clawed crayfish are relatively tolerant to fluoride toxicity. We conclude that fluoride pollution in freshwater ecosystems should not be viewed as an important risk factor contributing to the catastrophic decrease of A. pallipes in many European countries. Our results indicate that fluoride bioaccumulation in A. pallipes might be used as a bioindicator of fluoride pollution in freshwater ecosystems where it is present. PMID:23532451

  6. Bioaccumulation of Multiwall Carbon Nanotubes in Tetrahymena thermophila by Direct Feeding or Trophic Transfer

    DOE PAGES

    Mortimer, Monika; Petersen, Elijah J.; Buchholz, Bruce A.; Orias, Eduardo; Holden, Patricia A.

    2016-07-11

    We report that consumer goods contain multiwall carbon nanotubes (MWCNTs) that could be released during product life cycles into the environment, where their effects are uncertain. Here, we assessed MWCNT bioaccumulation in the protozoan Tetrahymena thermophila via trophic transfer from bacterial prey (Pseudomonas aeruginosa) versus direct uptake from growth media. The experiments were conducted using 14C-labeled MWCNT (14C-MWCNT) doses at or below 1 mg/L, which proved subtoxic since there were no adverse effects on the growth of the test organisms. A novel contribution of this study was the demonstration of the ability to quantify MWCNT bioaccumulation at low (sub μg/kg)more » concentrations accomplished by employing accelerator mass spectrometry (AMS). After the treatments with MWCNTs at nominal concentrations of 0.01 mg/L and 1 mg/L, P. aeruginosa adsorbed considerable amounts of MWCNTs: (0.18 ± 0.04) μg/mg and (21.9 ± 4.2) μg/mg bacterial dry mass, respectively. At the administered MWCNT dose of 0.3 mg/L, T. thermophila accumulated up to (0.86 ± 0.3) μg/mg and (3.4 ± 1.1) μg/mg dry mass by trophic transfer and direct uptake, respectively.Finally, aAlthough MWCNTs did not biomagnify in the microbial food chain, MWCNTs bioaccumulated in the protozoan populations regardless of the feeding regime, which could make MWCNTs bioavailable for organisms at higher trophic levels.« less

  7. Thermal Inactivation of Enteric Viruses and Bioaccumulation of Enteric Foodborne Viruses in Live Oysters (Crassostrea virginica)

    PubMed Central

    Araud, Elbashir; DiCaprio, Erin; Ma, Yuanmei; Lou, Fangfei; Gao, Yu; Kingsley, David; Hughes, John H.

    2016-01-01

    Human enteric viruses are among the main causative agents of shellfish-associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stabilities of the predominant enteric viruses were determined both in tissue culture and in oyster tissues. A human norovirus (HuNoV) GII.4 strain, HuNoV surrogates (murine norovirus [MNV-1], Tulane virus [TV]), hepatitis A virus (HAV), and human rotavirus (RV) bioaccumulated to high titers within oyster tissues, with different patterns of bioaccumulation for the different viruses. We tested the thermal stability of each virus at 62, 72, and 80°C in culture medium. The viruses can be ranked from the most heat resistant to the least stable as follows: HAV, RV, TV, MNV-1. In addition, we found that oyster tissues provided protection to the viruses during heat treatment. To decipher the mechanism underlying viral inactivation by heat, purified TV was treated at 80°C for increasing time intervals. It was found that the integrity of the viral capsid was disrupted, whereas viral genomic RNA remained intact. Interestingly, heat treatment leading to complete loss of TV infectivity was not sufficient to completely disrupt the receptor binding activity of TV, as determined by the porcine gastric mucin–magnetic bead binding assay. Similarly, HuNoV virus-like particles (VLPs) and a HuNoV GII.4 strain retained some receptor binding ability following heat treatment. Although foodborne viruses have variable heat stability, 80°C for >6 min was sufficient to completely inactivate enteric viruses in oysters, with the exception of HAV. PMID:26826225

  8. Bioaccumulation and Elimination of the Herbicide Clomazone in the Earthworms Eisenia fetida.

    PubMed

    Cao, Jia; Li, Ping; Li, Qing X; Zheng, Pengfei; Diao, Xiaoping

    2015-11-01

    Acute toxicity, bioaccumulation, and elimination of herbicide clomazone in the earthworm Eisenia fetida were investigated in the different exposure systems. The LC50 values of clomazone on earthworms were 5.6 μg cm(-2) in the contact filter paper test (48 h), 174.9 mg kg(-1) (7 days) and 123.4 mg kg(-1) (14 days) in artificial soil test, respectively. Clomazone could rapidly bioaccumulate in earthworms and reached the highest concentration after 3 days exposure, with the maximum concentrations of 9.0, 35.3 and 142.3 mg kg(-1) at 10.0, 40.0 and 160.0 mg kg(-1) of clomazone, respectively. Clomazone uptake showed a good correlation with exposure concentration. After the 14th day, clomazone declined to minimum value. About 74%-80% of accumulated clomazone was eliminated within 1 day after exposed to clomazone-free soil. However, a trace amount of clomazone persisted for a relatively long time in earthworms.

  9. Supercritical fluid extraction of persistent organic pollutants from natural and artificial soils and comparison with bioaccumulation in earthworms.

    PubMed

    Bielská, Lucie; Šmídová, Klára; Hofman, Jakub

    2013-05-01

    Selective supercritical fluid extraction (SSFE) was used as a measurement of compound chemical accessibility and as a predictor of compound bioavailability from three natural soils and artificial analogues prepared to have comparable total organic carbon content. Soils spiked with phenanthrene, pyrene, PCB 153, lindane, and p,p'-DDT were aged for 0, 14, 28, or 56 days and then selectively extracted by supercritical fluid extraction. Compounds exhibited decreasing extractability with increasing pollutant-soil contact time and increasing total organic carbon content in tested soils. However, the different extractability of compounds from artificial and natural pairs having comparable TOC indicates the limitations of using TOC as an extrapolation basis between various soils. The comparison of extractability with bioaccumulation by earthworms (Eisenia fetida) previously published by Vlčková and Hofman (2012) showed that only for PAHs it was possible to predict their bioaccumulation by means of selective SFE. PMID:23416268

  10. Uncertainty analysis for an equilibrium partitioning-based estimator of polynuclear aromatic hydrocarbon bioaccumulation potential in sediments

    SciTech Connect

    Clarke, J.U.; McFarland, V.A.

    2000-02-01

    In regulatory evaluations of contaminated sediments, an equilibrium partitioning-based screening test called theoretical bioaccumulation potential (TBP) is often performed to estimate the probable concentrations of neutral organic contaminants that would eventually accumulate in aquatic organisms from continuous exposure to a sediment. The TBP is calculated from contaminant concentration and organic carbon content of the sediment, lipid content of target organisms, and a partition coefficient, usually the biota-sediment accumulation factor (BSAF). However, routine applications of TBP have not included analysis of uncertainty. This paper demonstrates two methods for uncertainty analysis of TBP: a computational method that incorporates random and systematic error and a simulation method using bootstrap resampling of replicated model input parameters to calculate statistical uncertainty measures. For prediction of polynuclear aromatic hydrocarbon (PAH) bioaccumulation in bivalves exposed to contaminated sediments, uncertainty as a factor of TBP ranged from 1.2 to 4.8 using the computational method and 0.5 to 1.9 based on bootstrap 95% confidence intervals. Sensitivity analysis indicated that BSAF parameters, especially tissue contaminant concentration and lipid content, contributed most to TBP uncertainty. In bootstrap tests of significance, TBP significantly over- or underestimated actual PAH bioaccumulation in bivalves in 41% and 10% of comparisons, respectively.

  11. A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 2: Integrated application to a shallow estuary.

    PubMed

    Rosen, Gunther; Chadwick, D Bart; Burton, G Allen; Taulbee, W Keith; Greenberg, Marc S; Lotufo, Guilherme R; Reible, Danny D

    2012-03-01

    A comprehensive, weight-of-evidence based ecological risk assessment approach integrating laboratory and in situ bioaccumulation and toxicity testing, passive sampler devices, hydrological characterization tools, continuous water quality sensing, and multi-phase chemical analyses was evaluated. The test site used to demonstrate the approach was a shallow estuarine wetland where groundwater seepage and elevated organic and inorganic contaminants were of potential concern. Although groundwater was discharging into the surficial sediments, little to no chemical contamination was associated with the infiltrating groundwater. Results from bulk chemistry analysis, toxicity testing, and bioaccumulation, however, suggested possible PAH toxicity at one station, which might have been enhanced by UV photoactivation, explaining the differences between in situ and laboratory amphipod survival. Concurrently deployed PAH bioaccumulation on solid-phase micro-extraction fibers positively correlated (r(2) ≥ 0.977) with in situ PAH bioaccumulation in amphipods, attesting to their utility as biomimetics, and contributing to the overall improved linkage between exposure and effects demonstrated by this approach.

  12. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.

    PubMed

    Katagi, Toshiyuki

    2010-01-01

    information on aquatic species, other than fish, that pertains to bioconcentration factors, metabolism, and elimination is rather limited in the literature. The kinds of basic information that is unavailable but is needed on important aquatic species includes biochemistry, physiology, position in food web, habitat, life cycle, etc. such information is very important to obtaining improved ecotoxicology risk assessments for many pesticides and other chemicals. More research attention on the behavior of pesticides in, and affect on many standard aquatic test species (e.g., daphnids, chironomids, oligochaetes and some bivalves) would particularly be welcome. In addition to improving ecotoxicology risk assessments on target species, such information would also assist in better delineating affects on species at higher trophic levels that are predaceous on the target species. There is also need for designing and employing more realistic approaches to measure bioconcentration and bioaccumulation, and ecotoxicology effects of pesticides in natural environment. The currently employed steady-state laboratory exposure studies are insufficient to deal with the complexity of parameters that control the contrasts to the abiotic processes of pesticide investigated under the strictly controlled conditions, each process is significantly affected in the natural environment not only by the site-specific chemistry of water and sediment but also by climate. From this viewpoint, ecotoxicological assessment should be conducted, together with the detailed analyses of abiotic processes, when higher-tier mesocosm studies are performed. Moreover, in-depth investigation is needed to better understand the relationship between pesticide residues in organisms and associated ecotoxicological endpoints. The usual exposure assessment is based on apparent (nominal) concentrations fo pesticides, and the residues of pesticides or their metabolites in the organisms are not considered in to the context of

  13. Bioaccumulation, subcellular distribution, and acute effects of chromium in Japanese medaka (Oryzias latipes).

    PubMed

    Li, Lixia; Chen, Hongxing; Bi, Ran; Xie, Lingtian

    2015-11-01

    Chromium (Cr) is an essential element but is toxic to aquatic organisms at elevated concentrations. In the present study, adult Japanese medaka (Oryzias latipes) were exposed to a sublethal hexavalent chromium (Cr(VI)) concentration via dissolved and dietary exposures for 6 d. Various measurements of Cr were made: bioaccumulation in different tissues, subcellular distribution in the liver, effects on antioxidants and acetylcholinesterase (AChE), and Cr-induced lipid peroxidation. The results showed that bioaccumulation increased dramatically in all tested tissues from dissolved exposure but only significantly in the intestine from dietary treatment, implying that dissolved exposure may be predominant for Cr accumulation in medaka. Subcellular distribution revealed that Cr accumulated in the liver was mainly (46%) associated with the heat-stable protein fraction. Among the antioxidants examined, catalase (CAT) responded to dissolved Cr exposure in most tissues whereas superoxide dismutase (SOD) was less responsive. Malondialdehyde concentrations were significantly elevated in most tissues examined in the dissolved Cr-exposed fish, but were only elevated in the liver and intestine in the dietary Cr-exposed fish. The AChE activity in the brain was stimulated by 49% in the dissolved Cr-exposed fish. Reductions in condition factor and gonadosomatic index were also observed. These data help in an understanding of Cr tissue distribution and the acute effects of Cr in Japanese medaka.

  14. Ecological factors contributing to variability of persistent organic pollutant bioaccumulation within forage fish communities of the Detroit River, Ontario, Canada.

    PubMed

    McLeod, Anne M; Paterson, Gord; Drouillard, Ken G; Haffner, G Douglas

    2014-08-01

    Understanding variability of contaminant bioaccumulation within and among fish populations is critical for distinguishing between the chemical and biological mechanisms that contribute to food web biomagnification and quantifying contaminant exposure risks in aquatic ecosystems. The present study examined the relative contributions of chemical hydrophobicity (octanol-water partition coefficient [KOW ]) and habitat use as factors regulating variability in polychlorinated biphenyl (PCB) congener bioaccumulation in 3 lower trophic level cyprinid species across spatial and temporal scales. Bluntnose minnows (Pimephales notatus), spottail shiners (Notropis hudsonius), and emerald shiners (Notropis atherinoides) were sampled at 3 locations in the Detroit River, Ontario, Canada. Variability in PCB concentration was evaluated with respect to several factors, including chemical hydrophobicity, site, season, species, and weight using sum of squares and Levene's test of homogeneity of variance. Individual variability in bioaccumulated congener-specific residues depended on chemical hydrophobicity with mid- and high-range KOW congeners (log KOW  >6.0), demonstrating the highest amount of variance compared with low KOW congeners. Different feeding strategies also contributed to the variance observed for mid-range KOW congeners among species. In the present study, benthic feeding specialists exhibited lower variance in PCB concentrations compared with the 2 generalist species. The results indicate that chemical hydrophobicity and feeding ecology not only contribute to differences in the biomagnification potentials of fish, but also regulate between-individual variation in PCB concentrations both across and within fish species. PMID:24729083

  15. Ecological factors contributing to variability of persistent organic pollutant bioaccumulation within forage fish communities of the Detroit River, Ontario, Canada.

    PubMed

    McLeod, Anne M; Paterson, Gord; Drouillard, Ken G; Haffner, G Douglas

    2014-08-01

    Understanding variability of contaminant bioaccumulation within and among fish populations is critical for distinguishing between the chemical and biological mechanisms that contribute to food web biomagnification and quantifying contaminant exposure risks in aquatic ecosystems. The present study examined the relative contributions of chemical hydrophobicity (octanol-water partition coefficient [KOW ]) and habitat use as factors regulating variability in polychlorinated biphenyl (PCB) congener bioaccumulation in 3 lower trophic level cyprinid species across spatial and temporal scales. Bluntnose minnows (Pimephales notatus), spottail shiners (Notropis hudsonius), and emerald shiners (Notropis atherinoides) were sampled at 3 locations in the Detroit River, Ontario, Canada. Variability in PCB concentration was evaluated with respect to several factors, including chemical hydrophobicity, site, season, species, and weight using sum of squares and Levene's test of homogeneity of variance. Individual variability in bioaccumulated congener-specific residues depended on chemical hydrophobicity with mid- and high-range KOW congeners (log KOW  >6.0), demonstrating the highest amount of variance compared with low KOW congeners. Different feeding strategies also contributed to the variance observed for mid-range KOW congeners among species. In the present study, benthic feeding specialists exhibited lower variance in PCB concentrations compared with the 2 generalist species. The results indicate that chemical hydrophobicity and feeding ecology not only contribute to differences in the biomagnification potentials of fish, but also regulate between-individual variation in PCB concentrations both across and within fish species.

  16. Impacts of loach bioturbation on the selective bioaccumulation of HBCDD diastereoisomers and enantiomers by mirror carp in a microcosm.

    PubMed

    Zhang, Yanwei; Wang, Lei; Sun, Hongwen; Yao, Tianqi; Zhu, Hongkai; Xu, Jiayao; Liu, Xiaowei

    2016-11-01

    To assess the impacts of bioturbation at the water-sediment interface on the bioaccumulation of hexabromocyclododecane diastereoisomers (HBCDDs) by pelagic organisms and the bioisomerization and enantioselectivity therein, we built microcosms containing water, mirror carp (Cyprinus carpio), and sediment. The microcosms were sorted into two groups, with or without loach (Misgurnus anguillicaudatus) living at the water-sediment interface. A 50-d accumulation test was conducted by spiking the microcosms with the three main HBCDD diastereoisomers (α-, β-, and γ-HBCDDs) separately. The HBCDDs were mainly associated with the sediment. The dissolved organic matter and suspended particulate matter content increased due to loach bioturbation, which promoted the release of sediment-associated HBCDDs and led to enhanced HBCDD bioaccumulation in the carp. Isomerization from β- and γ-HBCDD to α-HBCDD occurred in the carp, and the amounts of isomerization did not increase proportionally with increasing bioaccumulation. Moreover, the enantioselectivity of the HBCDD diastereoisomers showed species-specific differences between mirror carp and loach, and no significant change in the enantioselectivity in the carp was observed in the presence of loach. PMID:27565315

  17. Chronic sublethal effects of San Francisco Bay sediments on nereis (neanthes) arenaceodentata; bioaccumulation from bedded sediments. Final report

    SciTech Connect

    Moore, D.; Dillon, T.M.

    1993-09-01

    In previous studies with San Francisco Bay sediments, minimal chronic sublethal effects were detected (Miscellaneous Paper D-93-1 and another Miscellaneous Paper in preparation by Moore and Dillon). To ensure that the lack of effects was not due to a lack of contaminant uptake, a bioaccumulation experiment was conducted. Bioaccumulation from bedded sediments was evaluated following a 9-week exposure with the marine polychaete worm Nereis (Neanthes) arenaceodentata. Two sediments were evaluated, a contaminated San Francisco Bay test sediment and a clean control sediment from Sequim, WA. Animals were exposed as early juveniles through adulthood. Tissues were analyzed for metals, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pesticides. Worms exposed to the contaminated San Francisco Bay sediment had significantly higher tissue residues of silver (0.30 mg/kg dry weight) and tributyltin (0.298 mg/kg dry weight). Conversely, tissue residues of control animals were significantly higher in cadmium (0.67 mg/kg dry weight) and lead (1.89 mg/kg dry weight). Small Amounts (0.02 mg/kg dry weight) of aldrin and dieldrin were measured in worms exposed to the contaminated sediment, while dieldrin and 8-BHC were found in Bioaccumulation, Neanthes, Chronic sublethal, San Francisco Bay, Dredged, Material, Sediment.

  18. Evaluation of metal/acid-volatile sulfide relationships in the prediction of metal bioaccumulation by benthic macroinvertebrates

    SciTech Connect

    Ankley, G.T.

    1996-12-01

    Recent studies have demonstrated that the toxicity of divalent cationic metals (cadmium, copper, lead, nickel, and zinc) in sediments can be controlled through binding to acid-volatile sulfide (AVS). When the molar concentration of AVS exceeds that of the metals (i.e., the metal/AVS ratio is less than unity), they exist predominantly as insoluble metal sulfides, which presumably are not biologically available. Thus, at metal/AVS ratios less than 1, toxicity of sediment-associated metals to benthic macro-invertebrates has not been observed. However, bioaccumulation may provide a more direct assessment of contaminant bioavailability than the presence or absence of toxicity. The purpose of this report is to comprehensively review available literature on metal bioaccumulation versus sediment metal/AVS relationships to further examine the tenet that AVS controls metal bioavailability. In all, 12 studies were evaluated; these ranged from short-term (10-d) laboratory experiments with metal-spiked or field-collected sediments containing cadmium, copper, lead, nickel, and/or zinc to long-term (> 1-year) field studies with sediments spiked with cadmium or zinc. Test organisms included mollusks, oligochaetes, polychaetes, amphipods, and midges. The preponderance of studies indicated reduced accumulation of metals at sediment metal/AVS ratios of less than 1. However, there were exceptions to this general observation, two of which occurred in short-term laboratory experiments with cadmium- or nickel-spiked sediments. In these studies there appeared to be a linear accumulation of metals with increasing sediment metal concentrations irrespective of the metal/AVS ratio. Although there is experimental evidence suggesting that significant bioaccumulation of metals does not occur when there is sufficient AVS available to bind them, the existence of data to the contrary indicates the need for further research into factors controlling the bioaccumulation of metals from sediments.

  19. Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation

    PubMed Central

    Ward, Darren M.; Nislow, Keith H.; Folt, Carol L.

    2010-01-01

    Mercury is a ubiquitous contaminant in aquatic ecosystems, posing a significant health risk to humans and wildlife that eat fish. Mercury accumulates in aquatic food webs as methylmercury (MeHg), a particularly toxic and persistent organic mercury compound. While mercury in the environment originates largely from anthropogenic activities, MeHg accumulation in freshwater aquatic food webs is not a simple function of local or regional mercury pollution inputs. Studies show that even sites with similar mercury inputs can produce fish with mercury concentrations ranging over an order of magnitude. While much of the foundational work to identify the drivers of variation in mercury accumulation has focused on freshwater lakes, mercury contamination in stream ecosystems is emerging as an important research area. Here, we review recent research on mercury accumulation in stream-dwelling organisms. Taking a hierarchical approach, we identify a suite of characteristics of individual consumers, food webs, streams, watersheds, and regions that are consistently associated with elevated MeHg concentrations in stream fish. We delineate a conceptual, mechanistic basis for explaining the ecological processes that underlie this vulnerability to MeHg. Key factors, including suppressed individual growth of consumers, low rates of primary and secondary production, hydrologic connection to methylation sites (e.g. wetlands), heavily forested catchments, and acidification are frequently associated with increased MeHg concentrations in fish across both streams and lakes. Hence, we propose that these interacting factors define a syndrome of characteristics that drive high MeHg production and bioaccumulation rates across these freshwater aquatic ecosystems. Finally, based on an understanding of the ecological drivers of MeHg accumulation, we identify situations when anthropogenic effects and management practices could significantly exacerbate or ameliorate MeHg accumulation in stream fish

  20. Toxicity and bioaccumulation of ethofumesate enantiomers in earthworm Eisenia fetida.

    PubMed

    Xu, Peng; Wang, Yinghuan; Zhang, Yanfeng; Li, Jianzhong; Wang, Huili

    2014-10-01

    Earthworms represent an important food source for many vertebrates and as a result, predators may encounter toxic effects via the food chain from consumption of contaminated worms. Therefore, including an assessment of xenobiotic to worms in risk assessment procedures is advisable. Here we studied the acute toxicity, bioaccumulation and elimination of ethofumesate enantiomers in earthworm, Eisenia fetida, in a soil. A slight difference in toxicity to earthworm between two enantiomers was found, and the calculated LC50 values for (+)-, rac- and (-)-ethofumesate were 4.51, 5.93 and 7.98 μg/cm(2), respectively, indicating that the acute toxicity of ethofumesate enantiomers was enantioselective. Earthworm can uptake ethofumesate but the bioaccumulation curve did not reach the steady state. In the elimination experiment, the concentrations of ethofumesate in earthworm declined following a first-order decay model with a short half life of 1.8d. The bioaccumulation and elimination of ethofumesate in earthworm were both nonenantioselective. In combination with other studies, a linear relationship between Log BSAFs and Log Kow was observed, and the Log BSAFs increased with increasing Log Kow. But the elimination rate did not show any correlation with the Kow value.

  1. Hydrocarbon Bioaccumulation from contaminated sediment by a deposit feeding polychaete

    SciTech Connect

    Weston, D.P. )

    1990-01-09

    This study examined the role of sediment organic carbon content in aromatic hydrocarbon bioaccumulation and assessed the importance of two routes of hydrocarbon uptake: (1) uptake of the dissolved contaminant fraction from interstitial or overlying water; and (2) uptake of the particulate contaminant fraction from ingested sediments. The lugworm, Abarenicola pacifica, was exposed to three sediments contaminated with [[sup 3]H] benzo(a)pyrene (BaP). By manipulating the organic content of these sediments it was possible to establish three treatments with similar BaP concentrations in the interstitial water, but differing in the amount of BaP in the bulk sediment. BaP bioaccumulation over the first few days of exposure was correlated with feeding rate, implicating ingested sediments as a source of implicating ingested sediments as a source of BaP. The greatest body burden, however, was attained in those individuals held in sediments with the lowest organic carbon content and the lowest BaP concentration. Body burden at steady state was not correlated with either BaP concentrations in bulk sediment (dry weight or organic normalized basis) or the interstitial water. Increased organic matter decreased BaP bioavailability in a non-linear fashion. Bioaccumulation factors relative to water and organic content were relatively constant between 1 and 2% organic carbon in the sediment, but these same accumulation factors substantially underestimated body burden if applied to sandy sediments with little (0.3%) organic carbon.

  2. [Effect and bioaccumulation of heavy metals (Zn, Cd) on Micractinium pusillum ALGA].

    PubMed

    Toumi, A; Belkoura, M; Benabdallah, S; El Alami, M; Idrissi, L Loukili; Nejmeddine, A

    2007-01-01

    Heavy metals (Zn and Cd) effect and their bioaccumulation by a microalga Micractinium pusillum were investigated. Results showed that Cd was more toxic than Zn on Micractinium pusillum. Indeed, inhibitory concentrations of 50% of alga population in 72h (IC(50,72h)) were 0.28 and 0.34 mg l(-1) respectively for Cd and Zn. On the other hand, metal extracted rates from medium solution were more important for Zn than for Cd, essentially for the two first concentrations tested (0.06 and 0.12 mg l(-1)). Furthermore, Zn and Cd extracted proportions were more important for the low concentrations tested and decreased progressively with increasing concentrations applied. This mechanism of extraction corresponds principally to their biosorption by Micractinium pusillum.

  3. Influence of lead-doped hydroponic medium on the adsorption/bioaccumulation processes of lead and phosphorus in roots and leaves of the aquatic macrophyte Eicchornia crassipes.

    PubMed

    Espinoza-Quiñones, Fernando R; Módenes, Aparecido Nivaldo; de Oliveira, Ana Paula; Trigueros, Daniela Estelita Goes

    2013-11-30

    In this study, lead bioaccumulation by the living free-floating aquatic macrophyte Eicchornia crassipes in different hydroponic conditions with variations in phosphorus and lead concentrations was investigated. A set of growth experiments in hydroponic media doped with lead and phosphorus within a wide concentration range was performed for 32 days in a greenhouse. All experiments were carried out with periodic replacement of all nutrients and lead. The concentration of lead and nutrients in biomass was determined by synchrotron radiation-excited total reflection X-ray fluorescence. By increasing the lead concentration in the medium, a reduction in biomass growth was observed, but a higher phosphorus retention in roots and leaves was shown at lower lead concentrations. In addition, an increase in the amount of bioaccumulated lead and phosphorus in roots was observed for higher lead and phosphorus concentrations in the medium, reaching saturation values of 4 mg Pb g(-1) and 7 mg P g(-1), respectively. Four non-structural kinetic models were tested, to represent the bioaccumulation of lead and phosphorus in roots. Pseudo-second order and irreversible kinetic models described the lead bioaccumulation data well, however, an irreversible kinetic model better fitted phosphorus uptake in roots.

  4. Metal/metalloid (As, Cd and Zn) bioaccumulation in the earthworm Eisenia andrei under different scenarios of climate change.

    PubMed

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-08-01

    This study aimed at assessing the effects of global warming (increasing air temperature and decreasing soil moisture content) on the bioaccumulation kinetics of As, Cd and Zn in the earthworm Eisenia andrei in two polluted soils (mine tailing and watercourse soil). Earthworms were exposed for up to 21 d under four climate conditions: 20 °C + 50% soil water holding capacity (WHC) (standard conditions), 20 °C + 30% WHC, 25 °C + 50% WHC and 25 °C + 30% WHC. Porewater metal/metalloid availability did not change in the mine tailing soil after the incubation period under the different climate conditions tested. However, in the watercourse soil, porewater Cd concentrations decreased from ∼63 to ∼32-41 μg L(-1) after 21 d and Zn concentrations from ∼3761 to ∼1613-2170 μg L(-1), especially at 20 °C and 50% WHC. In both soils, As and Zn showed similar bioaccumulation patterns in the earthworms, without major differences among climate conditions. Earthworm concentrations peaked after 1-3 d of exposure (in μg g(-1) dry weight: As∼32.5-108, Zn∼704-1172) and then remained constant (typical pattern of essential elements even for As). For Cd the bioaccumulation pattern changed when changing the climate conditions. Under standard conditions, earthworm Cd concentrations increased to ∼12.6-18.5 μg g(-1) dry weight without reaching equilibrium (typical pattern of non-essential elements). However when increasing temperature and/or decreasing soil moisture content the bioaccumulation pattern changed towards that more typical of essential elements due to increased Cd elimination rates (from ∼0.11 to ∼0.24-1.27 d(-1) in the mine tailing soil, from ∼0.07 to ∼0.11-0.35 d(-1) in the watercourse soil) and faster achievement of a steady state. This study shows that metal/metalloid bioaccumulation pattern in earthworms may change dependent on climate conditions.

  5. Metal/metalloid (As, Cd and Zn) bioaccumulation in the earthworm Eisenia andrei under different scenarios of climate change.

    PubMed

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-08-01

    This study aimed at assessing the effects of global warming (increasing air temperature and decreasing soil moisture content) on the bioaccumulation kinetics of As, Cd and Zn in the earthworm Eisenia andrei in two polluted soils (mine tailing and watercourse soil). Earthworms were exposed for up to 21 d under four climate conditions: 20 °C + 50% soil water holding capacity (WHC) (standard conditions), 20 °C + 30% WHC, 25 °C + 50% WHC and 25 °C + 30% WHC. Porewater metal/metalloid availability did not change in the mine tailing soil after the incubation period under the different climate conditions tested. However, in the watercourse soil, porewater Cd concentrations decreased from ∼63 to ∼32-41 μg L(-1) after 21 d and Zn concentrations from ∼3761 to ∼1613-2170 μg L(-1), especially at 20 °C and 50% WHC. In both soils, As and Zn showed similar bioaccumulation patterns in the earthworms, without major differences among climate conditions. Earthworm concentrations peaked after 1-3 d of exposure (in μg g(-1) dry weight: As∼32.5-108, Zn∼704-1172) and then remained constant (typical pattern of essential elements even for As). For Cd the bioaccumulation pattern changed when changing the climate conditions. Under standard conditions, earthworm Cd concentrations increased to ∼12.6-18.5 μg g(-1) dry weight without reaching equilibrium (typical pattern of non-essential elements). However when increasing temperature and/or decreasing soil moisture content the bioaccumulation pattern changed towards that more typical of essential elements due to increased Cd elimination rates (from ∼0.11 to ∼0.24-1.27 d(-1) in the mine tailing soil, from ∼0.07 to ∼0.11-0.35 d(-1) in the watercourse soil) and faster achievement of a steady state. This study shows that metal/metalloid bioaccumulation pattern in earthworms may change dependent on climate conditions. PMID:27182979

  6. Lead bioaccumulation and toxicity in tissues of economically fish species from river and marine water.

    PubMed

    Askary Sary, Abolfazl; Mohammadi, Maryam

    2012-07-01

    Bioaccumulation of lead was determined in muscle and liver of Barbus xanthopterus, Liza abu, Barbus grypus, Acanthopagrus latus, Platycephalus indicus, Otolithes ruber exposed to lead contaminated river and marine in Khouzestan. Significant variations in metal values were evaluated using student's t test at p < 0.05. In river fish, liver was polluted in comparison with muscle and high level was in B. xanthopterus (2.80 mg kg(-1) wet weight) except for B. grypus in Karkhe River (1.73 mg kg(-1)wet weight). In marine fish, muscle was contaminated than liver and high level was in O. ruber (47.18 mg kg(-1)wet weight) except for O. ruber in Mahshahr seaport (17.85 mg kg(-1) wet weight).

  7. Inter-laboratory comparison of clearance rates of xenobiotics by cryopreserved trout hepatocytes for the prediction of bioaccumulation potential

    EPA Science Inventory

    Hepatic biotransformation is an important determinant of chemical bioaccumulation in fish. Consequently, improvements to bioaccumulation models can be made using estimates of chemical biotransformation rates. Cryopreserved trout hepatocytes have previously been used to measure ...

  8. Inter-laboratory comparison of xenobiotic clearance rates determined using cryopreserved trout hepatocytes for improving bioaccumulation predictions

    EPA Science Inventory

    Hepatic biotransformation is an important determinant of chemical bioaccumulation in fish. Consequently, bioaccumulation models can be improved using estimates of chemical biotransformation rates. Cryopreserved trout hepatocytes have been used to measure the clearance rates of so...

  9. Use of the aquatic oligochaete lumbriculus variegatus for assessing the toxicity and bioaccumulation of sediment-associated contaminants

    SciTech Connect

    Phipps, G.L.; Ankley, G.T.; Benoit, D.A.; Mattson, V.R. )

    1993-02-01

    In this paper the authors describe test methods utilizing the aquatic oligochaete Lumbriculus variegatus to assess the acute and chronic toxicity and the presence of bioaccumulatable compounds in contaminated sediments. Lumbriculus variegatus was chosen as a test species because (a) it represents an ecologically relevant component of freshwater ecosystems; (b) it is suitable for long-term testing and evaluation of chronic toxicity end points (e.g., growth, reproduction); (c) it is exposed via all important routes of concern, including ingesting of contaminated particles; and (d) it has sufficient biomass to assess bioaccumulation of contaminants. Also, Lumbriculus variegatus is easily cultured and handled. Described herein are culturing procedures and test protocols for Lumbriculus variegatus, as well as two examples of the types of experimental data generated when using the oligochaete in test with contaminated sediments. Two case studies are presented in which L. variegatus was used to assess the bioaccumulation of metals (cadmium, nickel) from contaminated sediments and assess the toxicity of sediment samples collected from the copper-contaminated Keweenaw Waterway system in Michigan.

  10. Enantioselective bioaccumulation of diniconazole in Tenebrio molitor larvae.

    PubMed

    Liu, Chen; LV, Xiao Tian; Zhu, Wen Xue; QU, Hao Yang; Gao, Yong Xin; Guo, Bao Yuan; Wang, Hui Li

    2013-12-01

    The enantioselective bioaccumulation of diniconazole in Tenebrio molitor Linne larva was investigated with liquid chromatography tandem mass spectrometry based on the ChiralcelOD-3R[cellulose tri-(3,5-dimethylphenyl carbamate)] column. In this study we documented the effects of dietary supplementation with wheat bran contaminated by racemic diniconazole at two dose levels of 20 mg kg(-1) and 2 mg kg(-1) (dry weight) in Tenebrio molitor. The results showed that both doses of diniconazole were taken up by Tenebrio molitor rapidly in the first few days, the concentrations of R-enantiomer and S-enantiomer at high doses reached the highest level of 0.55 mg kg(-1) and 0.48 mg kg(-1) , respectively, on the 1(st) d, and the concentrations of them obtained a maxima of 0.129 mg kg(-1) and 0.128 mg kg(-1) at low dose, respectively, on the 3(rd) d, which means that the concentration of diniconazole was proportional to the time of achieving the highest accumulated level. It afterwards attained equilibrium after a sharp decline at both 20 mg kg(-1) and 2 mg kg(-1) of diniconazole. The determination results from the feces of Tenebrio molitor demonstrated that the extraction recovery (ER) values of the high dose group were higher than that of the low dose group and the values were all above 1; therefore, it could be inferred that enantiomerization existed in Tenebrio molitor. Additionally, the biota accumulation factor was used to evaluate the bioaccumulation of diniconazole enantiomers, showing that the bioaccumulation of diniconazole in Tenebrio molitor was enantioselective with preferential accumulation of S-enantiomer.

  11. Bioaccumulation of total mercury in the earthworm Eisenia andrei.

    PubMed

    Le Roux, Shirley; Baker, Priscilla; Crouch, Andrew

    2016-01-01

    Earthworms are a major part of the total biomass of soil fauna and play a vital role in soil maintenance. They process large amounts of plant and soil material and can accumulate many pollutants that may be present in the soil. Earthworms have been explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but limited information is available for mercury uptake and bioaccumulation in earthworms and very few report on the factors that influence the kinetics of Hg uptake by earthworms. It is known however that the uptake of Hg is strongly influenced by the presence of organic matter, hence the influence of ligands are a major factor contributing to the kinetics of mercury uptake in biosystems. In this work we have focused on the uptake of mercury by earthworms (Eisenia andrei) in the presence of humic acid (HA) under varying physical conditions of pH and temperature, done to assess the role of humic acid in the bioaccumulation of mercury by earthworms from soils. The study was conducted over a 5-day uptake period and all earthworm samples were analysed by direct mercury analysis. Mercury distribution profiles as a function of time, bioaccumulation factors (BAFs), first order rate constants and body burden constants for mercury uptake under selected conditions of temperature, pH as well as via the dermal and gut route were evaluated in one comprehensive approach. The results showed that the uptake of Hg was influenced by pH, temperature and the presence of HA. Uptake of Hg(2+) was improved at low pH and temperature when the earthworms in soil were in contact with a saturating aqueous phase. The total amount of Hg(2+) uptake decreased from 75 to 48 % as a function of pH. For earthworms in dry soil, the uptake was strongly influenced by the presence of the ligand. Calculated BAF values ranged from 0.1 to 0.8. Mercury uptake typically followed first order kinetics with rate constants determined as 0.2 to 1 h(-1). PMID:27347466

  12. Bioaccumulation of ergovaline in bovine lateral saphenous veins in vitro.

    PubMed

    Klotz, J L; Kirch, B H; Aiken, G E; Bush, L P; Strickland, J R

    2009-07-01

    Ergot alkaloids have been associated with vasoconstriction in grazing livestock affected by the fescue toxicosis syndrome. Previous in vitro investigations studying how ergot alkaloids caused vasoconstriction have shown that ergovaline has a distinct receptor affinity and sustained contractile response. A similar contractile response has not been noted for lysergic acid. The objectives of this study were to determine if repetitive in vitro exposure of bovine lateral saphenous vein to lysergic acid or ergovaline would result in an increasing contractile response and if a measurable bioaccumulation of the alkaloids in the vascular tissue occurs over time. Segments of vein were surgically biopsied from healthy, Angus x Brangus cross-bred, fescue-naïve yearling heifers (n = 16) or collected from healthy mixed breed and sex cattle immediately after slaughter (n = 12) at a local abattoir. Veins were trimmed of excess fat and connective tissue, sliced into cross-sections, and suspended in a myograph chamber containing 5 mL of oxygenated Krebs-Henseleit buffer (95% O(2)/5% CO(2); pH = 7.4; 37 degrees C). Contractile responses to repetitive additions of ergovaline (1 x 10(-9) and 1 x 10(-7) M) and lysergic acid (1 x 10(-5) and 1 x 10(-4) M) were evaluated using the biopsied veins. For the bioaccumulation experiments, veins collected at the abattoir underwent repetitive additions of 1 x 10(-7) M ergovaline and 1 x 10(-5) M lysergic acid and the segments were removed after every 2 additions and media rinses for alkaloid quantification via HPLC/mass spectrometry. Contractile data were normalized as a percentage of contractile response induced by a reference dose of norepinephrine (1 x 10(-4) M). Repetitive additions of 1 x 10(-9) M ergovaline and 1 x 10(-5) and 1 x 10(-4) M lysergic acid resulted in contractile response with a negative slope (P < 0.02). In contrast, repetitive addition of 1 x 10(-7) M ergovaline resulted in a contractile response that increased with each

  13. Bioaccumulation and ecotoxicity of carbon nanotubes.

    PubMed

    Jackson, Petra; Jacobsen, Nicklas Raun; Baun, Anders; Birkedal, Renie; Kühnel, Dana; Jensen, Keld Alstrup; Vogel, Ulla; Wallin, Håkan

    2013-09-13

    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships.

  14. Bioaccumulation and ecotoxicity of carbon nanotubes

    PubMed Central

    2013-01-01

    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships. PMID:24034413

  15. Estimation of the bioaccumulation potential of a nonchlorinated bisphenol and an ionogenic xanthene dye to Eisenia andrei in field-collected soils, in conjunction with predictive in silico profiling.

    PubMed

    Princz, Juliska; Bonnell, Mark; Ritchie, Ellyn; Velicogna, Jessica; Robidoux, Pierre-Yves; Scroggins, Rick

    2014-02-01

    In silico-based model predictions, originating from structural and mechanistic (e.g., transport, bioavailability, reactivity, and binding potential) profiling, were compared against laboratory-derived data to estimate the bioaccumulation potential in earthworms of 2 organic substances (1 neutral, 1 ionogenic) known to primarily partition to soil. Two compounds representative of specific classes of chemicals were evaluated: a nonchlorinated bisphenol containing an -OH group (4,4′-methylenebis[2,6-di-tert-butylphenol] [Binox]), and an ionogenic xanthene dye (2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-3′,6′-dihydroxy-, disodium salt [Phloxine B]). Soil bioaccumulation studies were conducted using Eisenia andrei and 2 field-collected soils (a clay loam and a sandy soil). In general, the in silico structural and mechanistic profiling was consistent with the observed soil bioaccumulation tests. Binox did not bioaccumulate to a significant extent in E. andrei in either soil type; however, Phloxine B not only accumulated within tissue, but was not depurated from the earthworms during the course of the elimination phase. Structural and mechanistic profiling demonstrated the binding and reactivity potential of Phloxine B; this would not be accounted for using traditional bioaccumulation metrics, which are founded on passive-based diffusion mechanisms. This illustrates the importance of profiling for reactive ionogenic substances; even limited bioavailability combined with reactivity can result in exposures to a hazardous substance not predictable by traditional in silico modeling methods. PMID:24173968

  16. Estimation of the bioaccumulation potential of a nonchlorinated bisphenol and an ionogenic xanthene dye to Eisenia andrei in field-collected soils, in conjunction with predictive in silico profiling.

    PubMed

    Princz, Juliska; Bonnell, Mark; Ritchie, Ellyn; Velicogna, Jessica; Robidoux, Pierre-Yves; Scroggins, Rick

    2014-02-01

    In silico-based model predictions, originating from structural and mechanistic (e.g., transport, bioavailability, reactivity, and binding potential) profiling, were compared against laboratory-derived data to estimate the bioaccumulation potential in earthworms of 2 organic substances (1 neutral, 1 ionogenic) known to primarily partition to soil. Two compounds representative of specific classes of chemicals were evaluated: a nonchlorinated bisphenol containing an -OH group (4,4′-methylenebis[2,6-di-tert-butylphenol] [Binox]), and an ionogenic xanthene dye (2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-3′,6′-dihydroxy-, disodium salt [Phloxine B]). Soil bioaccumulation studies were conducted using Eisenia andrei and 2 field-collected soils (a clay loam and a sandy soil). In general, the in silico structural and mechanistic profiling was consistent with the observed soil bioaccumulation tests. Binox did not bioaccumulate to a significant extent in E. andrei in either soil type; however, Phloxine B not only accumulated within tissue, but was not depurated from the earthworms during the course of the elimination phase. Structural and mechanistic profiling demonstrated the binding and reactivity potential of Phloxine B; this would not be accounted for using traditional bioaccumulation metrics, which are founded on passive-based diffusion mechanisms. This illustrates the importance of profiling for reactive ionogenic substances; even limited bioavailability combined with reactivity can result in exposures to a hazardous substance not predictable by traditional in silico modeling methods.

  17. Influence of salinity on the bioaccumulation and photoinduced toxicity of fluoranthene to an estuarine shrimp and oligochaete.

    PubMed

    Weinstein, John E

    2003-12-01

    The effect of salinity on the photoinduced toxicity of waterborne fluoranthene to larvae of the grass shrimp (Palaemonetes pugio) and tubificid oligochaete worms (Monopylephorus rubroniveus) was studied in a laboratory system under simulated sunlight. In the grass shrimp toxicity tests, five concentrations of fluoranthene (0, 3.6, 7.3, 13.8, and 29.0 microg/L) and four salinities (6.9, 14.5, 21.2, and 28.6 per thousand) were achieved. In the oligochaete toxicity tests, five concentrations of fluoranthene (0, 0.8, 1.4, 3.3, and 7.7 microg/L) and four salinities (7.1, 13.3, 20.5, and 27.6 per thousand) were achieved. Salinity had no effect on either the photoinduced toxicity or the bioaccumulation of fluoranthene in the grass shrimp. However, the highest level of salinity decreased the median lethal time for the oligochaete. Bioaccumulation of fluoranthene was inversely related to salinity for the oligochaete. Additional experiments demonstrated an inverse relationship between salinity and short-term osmotic weight change in the oligochaete. Weight of the grass shrimp larvae was not affected by salinity. These findings show that salinity can influence the toxicity and bioaccumulation of fluoranthene in some estuarine organisms. The influence of salinity on these populations may be related to physiological responses associated with internal osmotic volume changes. Thus, salinity needs to be taken into account when assessing the risk of photoactivated polycyclic aromatic hydrocarbon (PAH) to at least some estuarine species.

  18. Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web.

    PubMed

    Ruhí, Albert; Acuña, Vicenç; Barceló, Damià; Huerta, Belinda; Mor, Jordi-Rene; Rodríguez-Mozaz, Sara; Sabater, Sergi

    2016-01-01

    Increasing evidence exists that emerging pollutants such as pharmaceuticals (PhACs) and endocrine-disrupting compounds (EDCs) can be bioaccumulated by aquatic organisms. However, the relative role of trophic transfers in the acquisition of emerging pollutants by aquatic organisms remains largely unexplored. In freshwater ecosystems, wastewater treatment plants are a major source of PhACs and EDCs. Here we studied the entrance of emerging pollutants and their flow through riverine food webs in an effluent-influenced river. To this end we assembled a data set on the composition and concentrations of a broad spectrum of PhACs (25 compounds) and EDCs (12 compounds) in water, biofilm, and three aquatic macroinvertebrate taxa with different trophic positions and feeding strategies (Ancylus fluviatilis, Hydropsyche sp., Phagocata vitta). We tested for similarities in pollutant levels among these compartments, and we compared observed bioaccumulation factors (BAFs) to those predicted by a previously-developed empirical model based on octanol-water distribution coefficients (Dow). Despite a high variation in composition and levels of emerging pollutants across food web compartments, observed BAFs in Hydropsyche and Phagocata matched, on average, those already predicted. Three compounds (the anti-inflammatory drug diclofenac, the lipid regulator gemfibrozil, and the flame retardant TBEP) were detected in water, biofilm and (at least) one macroinvertebrate taxa. TBEP was the only compound present in all taxa and showed magnification across trophic levels. This suggests that prey consumption may be, in some cases, a significant exposure route. This study advances the notion that both waterborne exposure and trophic interactions need to be taken into account when assessing the potential ecological risks of emerging pollutants in aquatic ecosystems. PMID:26170111

  19. Bioaccumulation of decabromodiphenyl ether (BDE209) in earthworms in the presence of lead (Pb).

    PubMed

    Zhang, Wei; Chen, Lin; Liu, Kou; Chen, Lei; Lin, Kuangfei; Chen, Yongsheng; Yan, Zenguang

    2014-07-01

    BDE209 (decabromodiphenyl ether) and lead (Pb) are the main contaminants at e-waste recycling sites, and their potential toxicological effects on terrestrial organisms have received extensive attention. However, the impact on earthworms of exposure to the two chemicals remains almost unknown. Therefore, indoor incubation tests were performed on control and contaminated soil samples to determine the uptake and transformation of BDE209 in the presence of Pb for the first time. The results have demonstrated that Pb addition can affect BDE209 bioaccumulation efficiency compared with exposure to BDE209 alone. For a low BDE209 concentration (1mgkg(-1)), Pb addition barely affected the uptake of BDE209, whereas for a high BDE209 concentration (100mgkg(-1)), Pb addition elicited a complex response. Scanning electron microscope (SEM) observation indicated that a higher level of Pb (250 and 500mgkg(-1)) facilitated the uptake of BDE209 through the skin. Gas chromatography/mass spectrometry (GC/MS) analysis showed that the peak of BDE209 accumulation usually appeared in the joint exposure groups involving 10 or 100mgkg(-1) BDE209 and 250mgkg(-1) Pb, and the average bioaccumulation factor (BAF) was 0.53, which is more than 1.2 times that of single exposure to BDE209 (average=0.44). Also, the earthworms eliminated more BDE209 after 21d, and the biodegradation products were mainly BDE206 and BDE208. Furthermore, Pb addition can affect the transformation efficiency of BDE209 in earthworms, and several lower bromodiphenyl ethers can be detected. The results of these observations have provided a basic understanding of the potential ecotoxicological effects of joint PBDE and heavy metal exposure on terrestrial invertebrates.

  20. Bioaccumulation of animal adenoviruses in the pink shrimp.

    PubMed

    Luz, Roger B; Staggemeier, Rodrigo; Fabres, Rafael B; Soliman, Mayra C; Souza, Fernanda G; Gonçalves, Raoni; Fausto, Ivone V; Rigotto, Caroline; Heinzelmann, Larissa S; Henzel, Andréia; Fleck, Juliane D; Spilki, Fernando R

    2015-01-01

    Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100) Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR) in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems. PMID:26413052

  1. Species-specific mercury bioaccumulation in a diverse fish community.

    PubMed

    Donald, David B; Wissel, Björn; Anas, M U Mohamed

    2015-12-01

    Mercury bioaccumulation models developed for fish provide insight into the sources and transfer of Hg within ecosystems. Mercury concentrations were assessed for 16 fish species of the western reach of Lake Diefenbaker, Saskatchewan, Canada. For top predators (northern pike, Esox Lucius; walleye, Sander vitreum), Hg concentrations were positively correlated to δ(15)N, and δ(15)N to fish age, suggesting that throughout life these fish fed on organisms with increasingly higher trophic values and Hg concentrations. However, fish mass and/or age were the principal parameters related to Hg concentrations for most species. For 9 common species combined, individual variation in Hg concentration was explained in declining order of importance by fish mass, trophic position (δ(15)N), and fish age. Delta (15)N value was not the leading variable related to Hg concentration for the assemblage, probably because of the longevity of lower--trophic-level species (3 species ≥ 20 yr), substantial overlap in Hg concentration and δ(15)N values for large-bodied fish up to 3000 g, and complex relationships between Hg concentration and δ(15)N among species. These results suggest that the quantity of food (and Hg) consumed each year and converted to fish mass, the quantity of Hg bioaccumulated over years and decades, and trophic position were significant determinants of Hg concentration in Lake Diefenbaker fish.

  2. Bioaccumulation of explosive compounds in the marine mussel, Mytilus galloprovincialis.

    PubMed

    Rosen, Gunther; Lotufo, Guilherme R

    2007-10-01

    The bioaccumulative potential of the explosive compounds, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) were assessed in water only exposures with the Mediterranean mussel (Mytilus galloprovincialis). Toxicokinetics experiments provided uptake rates, elimination rates, biological half-lives, and bioconcentration factors (BCFs). Kinetic BCFs were 1.61, 0.87, and 0.44, for TNT, RDX, and HMX, respectively, and confirmed the expected low bioaccumulative potential of these weakly hydrophobic compounds based on logK(ow). Because apparent steady-state conditions were observed within the 4h uptake period, steady-state BCFs were also calculated, and were within 20% of kinetic BCFs. TNT was rapidly biotransformed to aminodinitrotoluenes within minutes, while no transformation products were measured for RDX or HMX. Uptake clearance rates varied among the compounds, while elimination rates and associated half-lives were extremely fast (0.15-0.49h). It is unlikely, based on these data, that exposure conditions for these explosive compounds in the marine environment pose unacceptable risks to mussels, and it appears that potential for trophic transfer is quite low. PMID:17629944

  3. Bioaccumulation of animal adenoviruses in the pink shrimp.

    PubMed

    Luz, Roger B; Staggemeier, Rodrigo; Fabres, Rafael B; Soliman, Mayra C; Souza, Fernanda G; Gonçalves, Raoni; Fausto, Ivone V; Rigotto, Caroline; Heinzelmann, Larissa S; Henzel, Andréia; Fleck, Juliane D; Spilki, Fernando R

    2015-01-01

    Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100) Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR) in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems.

  4. Arsenic and mercury bioaccumulation in the aquatic plant, Vallisneria neotropicalis.

    PubMed

    Lafabrie, C; Major, K M; Major, C S; Cebrián, J

    2011-03-01

    Arsenic (As) and mercury (Hg) are among the most toxic metals/metalloids. The overall goal of this study was to investigate the bioaccumulation of these trace elements in Vallisneria neotropicalis, a key trophic species in aquatic environments. For this purpose, As and Hg concentrations were determined in sediments and natural populations of V. neotropicalis in sub-estuaries of Mobile Bay (Alabama, USA), differing with respect to past and present anthropogenic impact. Analyses indicate that the Fish River is the most contaminated among the sub-estuaries investigated; levels of As found in Fish River sediments fall within a range that could potentially cause adverse effects in biota. Sediment As concentrations were only moderately correlated with those in V. neotropicalis; no correlation was found between sediment and plant Hg levels. However, several parameters could have masked such potential relationships (e.g., differences in sediment characteristics and "biological dilution" phenomena). Results presented herein highlight the numerous parameters that can influence metal/metalloids accumulation in aquatic plants as well as species-specific responses to trace element contamination. Finally, this study underscores the need for further investigation into contaminant bioaccumulation in ecologically and economically important coastal environments. PMID:21168896

  5. Metals bioaccumulation in two edible bivalves and health risk assessment.

    PubMed

    El-Shenawy, Nahla S; Loutfy, Naglaa; Soliman, Maha F M; Tadros, Menerva M; Abd El-Azeez, Ahmed A

    2016-03-01

    Our aim was to quantify the bioaccumulation of 13 metals in two edible bivalves (Ruditapes decussatus and Paphia undulata) in Lake Timsah, Egypt. A potential human health risk assessment was conducted to evaluate the hazards from bivalve consumption. Fe, Al, Zn, and Sr had the highest concentrations in the bivalve samples. The levels of Cd were much lower than the maximum permissible level, while Pb concentrations in the two bivalves were nearly two times the permissible level. The extent of bioaccumulation factor was site- and species-specific. For low and high bivalve-consuming groups, the estimated daily intake of Pb and Cd ranged from 0.01 to 0.76 μg/kg/day. For low and high bivalve-consuming groups, hazard quotients (HQs) for metals were found to be less than 1 for both bivalve species, except for Co in the high-consuming group. In conclusion, even though there was no apparent risk to bivalve consumers from being exposed to single metals, there is a risk from being exposed to the 13 studied metals together, especially for high bivalve-consuming groups such as fishermen.

  6. A method for partitioning cadmium bioaccumulated in small aquatic organisms

    SciTech Connect

    Siriwardena, S.N.; Rana, K.J.; Baird, D.J.

    1995-09-01

    A series of laboratory experiments was conducted to evaluate bioaccumulation and surface adsorption of aqueous cadmium (Cd) by sac-fry of the African tilapia Oreochromis niloticus. In the first experiment, the design consisted of two cadmium treatments: 15 {micro}g Cd{center_dot}L{sup {minus}1} in dilution water and a Cd-ethylenediaminetetraacetic acid (Cd-EDTA) complex at 15 {micro}m{center_dot}L{sup {minus}1}, and a water-only control. There were five replicates per treatment and 40 fish per replicate. It was found that EDTA significantly reduced the bioaccumulation of cadmium by tilapia sac-fry by 34%. Based on the results, a second experiment was conducted to evaluate four procedures: a no-rinse control; rinsing in EDTA; rinsing in distilled water; and rinsing in 5% nitric acid, for removing surface-bound Cd from exposed sac-fry. In this experiment, 30 fish in each of five replicates were exposed to 15 {micro}g Cd{center_dot}L{sup {minus}1} for 72 h, processed through the rinse procedures, and analyzed for total Cd. The EDTA rinse treatment significantly reduced (p<0.05) Cd concentrations of the exposed fish relative to those receiving no rinse. It was concluded that the EDTA rinse technique may be useful in studies evaluating the partitioning of surface-bound and accumulated cadmium in small aquatic organisms.

  7. Mercury and methylmercury in individual zooplankton: Implications for bioaccumulation

    SciTech Connect

    Not Available

    1992-09-01

    Using trace-metal-clean sampling and handling techniques along with ultrasensitive analytical procedures, it is possible to measure both total Hg and monomethylmercury (methyl-Hg) in natural planktonic communities with the same level of taxonomic, ontogenic, and trophic resolution that is currently possible in fish communities. In an experimentally manipulated lake, both acidification and trophic position enhanced the bioaccumulation of methyl-Hg in the plankton. A consistant pattern of methyl-Hg enrichment (2-4 x) in water, bulk phytoplankton, and individual zooplankton was associated with a 1.5 unit pH decrease in Little Rock Lake. Regardless of pH, bioconcentration factors [Bf = log(Cb/Cw), where Cb and Cw are Hg concentrations in biota and water] were substantially higher for methyl-Hg than those for total Hg or nonmethyl-Hg at three pelagic trophic levels ([approximately]10-100x). Between each trophic level, the Bf(methyl-Hg) increased by [approximately]-0.5 log units, clearly indicating biomagnification. Although somewhat higher in the acidified basin, Bf(methyl-Hg) was more strongly influenced by trophic position than by pH. This suggests that methyl-Hg was bioaccumulated largely in proportion to supply and that acidification may have directly increased supply to the base of the food chain. 24 refs., 3 figs., 2 tabs.

  8. Influences on mercury bioaccumulation factors for the Savannah River.

    PubMed

    Paller, M H; Bowers, J A; Littrell, J W; Guanlao, A V

    2004-02-01

    Mercury TMDLs (Total Maximum Daily Loads) are a regulatory instrument designed to reduce the amount of mercury entering a water body and ultimately to control the bioaccumulation of mercury in fish. TMDLs are based on a BAF (bioaccumulation factor), which is the ratio of methyl mercury in fish to dissolved methyl mercury in water. Analysis of fish tissue and aqueous methyl mercury samples collected at a number of locations and over several seasons in a 118-km reach of the Savannah River demonstrated that species-specific BAFs varied by factors of three to eight. Factors contributing to BAF variability were location, habitat, and season-related differences in fish muscle tissue mercury levels and seasonal differences in dissolved methyl mercury levels. Overall (all locations, habitats, and seasons) average BAFs were 3.7 x 10(6) for largemouth bass, 1.4 x 10(6) for sunfishes, and 2.5 X 10(6) for white catfish. Determination of representative BAFs for mercury in fish from large rivers necessitates collecting large and approximately equal numbers of fish and aqueous methyl mercury samples over a seasonal cycle from the entire area and all habitats to be represented by the TMDL.

  9. Enantiomerization and enantioselective bioaccumulation of metalaxyl in Tenebrio molitor larvae.

    PubMed

    Gao, Yongxin; Wang, Huili; Qin, Fang; Xu, Peng; Lv, Xiaotian; Li, Jianzhong; Guo, Baoyuan

    2014-02-01

    The enantiomerization and enantioselective bioaccumulation of metalaxyl by a single dose of exposure to Tenebrio molitor larvae under laboratory condition were studied by high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. Exposure of enantiopure R-metalaxyl and S-metalaxyl in Tenebrio molitor larvae exhibited significant enantiomerization, with formation of the R enantiomers from the S enantiomers, and vice versa, which might be attributed to the chiral pesticide catalyzed by a certain enzyme in Tenebrio molitor larvae. Enantiomerization was not observed in wheat bran during the period of 21 d. In addition, bioaccumulation of rac-metalaxyl in Tenebrio molitor larvae was enantioselective with a preferential accumulation of S-metalaxyl. These results showed that enantioselectivity was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of metalaxyl enantiomers.

  10. Bioaccumulation of animal adenoviruses in the pink shrimp

    PubMed Central

    Luz, Roger B.; Staggemeier, Rodrigo; Fabres, Rafael B.; Soliman, Mayra C.; Souza, Fernanda G.; Gonçalves, Raoni; Fausto, Ivone V.; Rigotto, Caroline; Heinzelmann, Larissa S.; Henzel, Andréia; Fleck, Juliane D.; Spilki, Fernando R.

    2015-01-01

    Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100) Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR) in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems. PMID:26413052

  11. Toxicity and bioaccumulation of bromadiolone to earthworm Eisenia fetida.

    PubMed

    Liu, Jing; Xiong, Kang; Ye, Xiaoqing; Zhang, Jianyun; Yang, Ye; Ji, Li

    2015-09-01

    Bromadiolone, a potent second-generation anticoagulant rodenticide, has been extensively used worldwide for the field control of rodents. Invertebrates may be at risk from primary poisoning as a result of bromadiolone bait applications. However, there are few data regarding the toxicity and bioaccumulation of bromadiolone to earthworms. In this study, we reported that bromadiolone was toxic to earthworms at 1mg/kg soil, which is a likely concentration in the field following application of bromadiolone baits. Exposure to bromadiolone resulted in a significant inhibition of earthworm growth. The antioxidant activities of superoxide dismutase and catalase were slightly increased in earthworms, while malondialdehyde content (as a molecular marker indicative of the damage to lipid peroxidation) was dominantly elevated over the duration of exposure. Bromadiolone in soil is bioaccumulative to earthworms. The biota to soil accumulation factors (BSAFs) of bromadiolone were concentration dependent and BSAFs decreased as the level of bromadiolone in soil increased. These results suggest earthworms are not only the potential subject to primary poisoning but also the source of secondary exposure for insectivores and scavengers following application of bromadiolone. PMID:25965004

  12. Bioaccumulation of explosive compounds in the marine mussel, Mytilus galloprovincialis.

    PubMed

    Rosen, Gunther; Lotufo, Guilherme R

    2007-10-01

    The bioaccumulative potential of the explosive compounds, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) were assessed in water only exposures with the Mediterranean mussel (Mytilus galloprovincialis). Toxicokinetics experiments provided uptake rates, elimination rates, biological half-lives, and bioconcentration factors (BCFs). Kinetic BCFs were 1.61, 0.87, and 0.44, for TNT, RDX, and HMX, respectively, and confirmed the expected low bioaccumulative potential of these weakly hydrophobic compounds based on logK(ow). Because apparent steady-state conditions were observed within the 4h uptake period, steady-state BCFs were also calculated, and were within 20% of kinetic BCFs. TNT was rapidly biotransformed to aminodinitrotoluenes within minutes, while no transformation products were measured for RDX or HMX. Uptake clearance rates varied among the compounds, while elimination rates and associated half-lives were extremely fast (0.15-0.49h). It is unlikely, based on these data, that exposure conditions for these explosive compounds in the marine environment pose unacceptable risks to mussels, and it appears that potential for trophic transfer is quite low.

  13. Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua.

    PubMed

    Zhang, Wei; Huang, Liangmin; Wang, Wen-Xiong

    2011-10-01

    Arsenic (As) is a ubiquitous toxic metalloid that is causing widespread public concern. Recent measurements have indicated that some marine fish in China might be seriously contaminated with As. Yet the biokinetics and bioaccumulation pathway of As in fish remain little understood. In this study, we employed a radiotracer technique to quantify the dissolved uptake, dietary assimilation and subsequent efflux of As(V) in a marine predatory fish, Terapon jarbua. The dissolved uptake of As showed a linear pattern over a range of dissolved concentrations from 0.5 to 50 μg L(-1), with a corresponding uptake rate constant of 0.0015 L g(-1)d(-1). The assimilation efficiencies (AEs) of dietary As were only 3.1-7.4% for fish fed with copepods, clams, prey fish, or artificial diets, and were much lower than the As that entered the trophically available metal fraction in the prey. The dietary AEs were independent of the As(V) concentrations in the artificial diets. The efflux rate constant of As in fish following the dietary exposure was 0.03 d(-1). Modeling calculations showed that dietary uptake could be the primary route for As bioaccumulation in fish, and the corresponding contributions of waterborne and dietary uptakes were related to the bioconcentration factor (BCF) of the prey and the ingestion rate of fish. This study demonstrates that As(V) has a low bioavailability to T. jarbua.

  14. Joint use of laboratory bioassays and field-collected invertebrates to evaluate toxicity and contaminant bioaccumulation

    SciTech Connect

    Long, S.P.; Byron, E.R.; Ohlendorf, H.M.

    1995-12-31

    Soil toxicity tests using earthworms (Eisenia andrei) were conducted using soil samples collected as part of ecological risk assessments for several sites at two facilities in California. At some sites, earthworms or other terrestrial invertebrates were collected in the field for chemical analysis. Ecological concerns focused on exposures to soil invertebrates and their secondary consumers, such as birds and small mammals. The toxicity tests were used to assess potential exposures to a variety of site-specific contaminants including organochlorine pesticides, PCBs, PAHs, petroleum hydrocarbons, heavy metals, and other inorganic substances. Site soils were combined with clean control soils to produce toxicity test soil dilutions containing 100%, 75%, 50%, 25%, and 0% site soils. Earthworm mortality and other observations were made at day 0, 7, 14, 21 and 28. Toxicity test results were combined with soil chemical analytical results and physical characteristics to establish NOAELs and LOAELs. Bioaccumulation in the laboratory earthworms and field-collected invertebrates was evaluated by comparing whole-body contaminant to soil contaminant concentrations. Allometric equations and sublethal toxicity data were used to predict potential effects on birds and small mammals. Earthworm toxicity tests indicated a wide range of sensitivity to on-site contaminants and showed the importance of considering potential confounding influences due to soil parameters other than contaminant concentration.

  15. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals

    USGS Publications Warehouse

    van den Brink, Nico W.; Arblaster, Jennifer A.; Bowman, Sarah R.; Conder, Jason M.; Elliott, John E.; Johnson, Mark S.; Muir, Derek C.G.; Natal-da-Luz, Tiago; Rattner, Barnett A.; Sample, Bradley E.; Shore, Richard F.

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.

  16. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals.

    PubMed

    van den Brink, Nico W; Arblaster, Jennifer A; Bowman, Sarah R; Conder, Jason M; Elliott, John E; Johnson, Mark S; Muir, Derek C G; Natal-da-Luz, Tiago; Rattner, Barnett A; Sample, Bradley E; Shore, Richard F

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts. PMID:26436822

  17. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals.

    PubMed

    van den Brink, Nico W; Arblaster, Jennifer A; Bowman, Sarah R; Conder, Jason M; Elliott, John E; Johnson, Mark S; Muir, Derek C G; Natal-da-Luz, Tiago; Rattner, Barnett A; Sample, Bradley E; Shore, Richard F

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.

  18. Bioaccumulation of toxaphene congeners in the lake superior food web

    USGS Publications Warehouse

    Muir, D.C.G.; Whittle, D.M.; De Vault, D. S.; Bronte, C.R.; Karlsson, H.; Backus, S.; Teixeira, C.

    2004-01-01

    The bioaccumulation and biotransformation of toxaphene was examined in the food webs of Lake Superior and Siskiwit Lake (Isle Royale) using congener specific analysis as well as stable isotope ratios of carbon and nitrogen to characterize food webs. Toxaphene concentrations (calculated using technical toxaphene) in lake trout (Salvelinus namaycush) from the western basin of Lake Superior (N = 95) averaged (±SD) 889 ± 896 ng/g wet wt and 60 ± 34 ng/g wet wt in Siskiwit Lake. Major congeners in lake trout were B8-789 (P38), B8-2226 (P44), B9-1679 (P50), and B9-1025 (P62). Toxaphene concentrations were found to vary seasonally, especially in lower food web organisms in Lake Superior and to a lesser extent in Siskiwit Lake. Toxaphene concentrations declined significantly in lake herring (Coregonus artedii), rainbow smelt (Omerus mordax), and slimy sculpin (Cottus cognatus) as well as in zooplankton (> 102 &mn;m) and Mysis (Mysis relicta) between May and October. The seasonal variation may reflect seasonal shifts in the species abundance within the zooplankton community. Trophic magnification factors (TMF) derived from regressions of toxaphene congener concentrations versus δ15N were > 1 for most octa- and nonachlorobornanes in Lake Superior except B8-1413 (P26) and B9-715. Log bioaccumulation factors (BAFs) for toxaphene congeners in lake trout (ng/g lipid/ng/L dissolved) ranged from 4.54 to 9.7 and were significantly correlated with log octanol-water partition coefficients. TMFs observed for total toxaphene and congener B9-1679 in Lake Superior were similar to those in Arctic lakes, as well as to previous studies in the Great Lakes, which suggests that the bioaccumulation behavior of toxaphene is similar in pelagic food webs of large, cold water systems. However, toxaphene concentrations were lower in lake trout from Siskiwit Lake and lakes in northwestern Ontario than in Lake Superior possibly because of shorter food chains and greater reliance on zooplankton or

  19. Metallothionein modulation in relation to cadmium bioaccumulation and age-dependent sensitivity of Chironomus riparius larvae.

    PubMed

    Toušová, Zuzana; Kuta, Jan; Hynek, David; Adam, Vojtěch; Kizek, René; Bláha, Luděk; Hilscherová, Klára

    2016-06-01

    The goal of this study was to contribute to understanding of the mechanisms behind sensitivity differences between early and late instar larvae of Chironomus riparius and to address the influence of the differences in standard testing approaches on the toxicity evaluation. A 10-day contact sediment toxicity test was carried out to assess sensitivity to cadmium exposure in relation to different age and laboratory culture line origin of test organisms. Chironomid larvae of early (OECD 218 method) and late instar (US-EPA600/R-99/064 method) differed substantially in sensitivity of traditional endpoints (OECD: LOEC 50 and 10 μg Cd/g dry weight (dw); US-EPA: LOEC > 1000 and 100 μg Cd/g dw for survival and growth, respectively). Bioaccumulated cadmium and metallothioneins (MTs) concentrations were analyzed to investigate the role of MTs in reduced sensitivity to cadmium in late instar larvae. Metallothioneins were induced after treatment to greater Cd concentrations, but their levels in relation to cadmium body burdens did not fully explain low sensitivity of late instars to cadmium, which indicates some other effective way of detoxification in late instars. This study brings new information related to the role of MTs in age-dependent toxicant sensitivity and discusses the implications of divergence in data generated by chironomid sediment toxicity tests by standardized methods using different instars. PMID:26957427

  20. Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.

    PubMed

    Hlodák, Michal; Urík, Martin; Matúš, Peter; Kořenková, Lucia

    2016-01-01

    Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.

  1. Bioaccumulation of organic contaminants by benthic invertebrates of the Chesapeake Bay

    SciTech Connect

    Kimbrough, K.; Dickhut, R.

    1995-12-31

    In situ partitioning of PCBs and PAHs between benthic invertebrates and the environment has been compared to previously obtained laboratory bioaccumulation results. Previous laboratory studies show a characteristic nonlinear plot when bioaccumulation factors (BAF) are plotted against octanol-water partition coefficients (K{sub ow}), on a log-log scale. This phenomena can be explained by desorption and elimination kinetics. However preliminary in situ studies show a different relationship between field BAFs and K{sub ow} which may be explained by other biogeochemical factors. In situ and laboratory PAH and PCB partitioning measurements will be used to determine major mechanisms affecting contaminant bioaccumulation.

  2. Bioaccumulation of hepatotoxins - a considerable risk in the Latvian environment.

    PubMed

    Barda, Ieva; Kankaanaää, Harri; Purina, Ingrida; Balode, Maija; Sjövall, Olli; Meriluoto, Jussi

    2015-01-01

    The Gulf of Riga, river Daugava and several interconnected lakes around the City of Riga, Latvia, form adynamic brackish-freshwater system favouring occurrence of toxic cyanobacteria. We examined bioaccumulation of microcystins and nodularin-R in aquatic organisms in Latvian lakes, the Gulf of Riga and west coast of open Baltic Sea in 2002-2007. The freshwater unionids accumulated toxins efficiently,followed by snails. In contrast, Dreissena polymorpha and most lake fishes (except roach) accumulated much less hepatotoxins. Significant nodularin-R concentrations were detected also in marine clams and flounders. No transfer of nodularin-R and microcystins between lake and brackish water systems took place. Lake mussels can transfer hepatotoxins to higher organisms, and also effectively remove toxins from the water column. Obvious health risks to aquatic organisms and humans are discussed. PMID:25463728

  3. Identifying new persistent and bioaccumulative organics among chemicals in commerce.

    PubMed

    Howard, Philip H; Muir, Derek C G

    2010-04-01

    The goal of this study was to identify commercial chemicals that might be persistent and bioaccumulative (P&B) and that were not being considered in current Great Lakes, North American, and Arctic contaminant measurement programs. We combined the Canadian Domestic Substance List (DSL), a list of 3059 substances of "unknown or variable composition complex reaction products and biological materials" (UVCBs), and the U.S. Environmental Protection Agency (U.S. EPA) Toxic Substances Control Act (TSCA) Inventory Update Rule (IUR) database for years 1986, 1990, 1994, 1998, 2002, and 2006 yielding a database of 22263 commercial chemicals. From that list, 610 chemicals were identified by estimates from U.S EPA EPISuite software and using expert judgment. This study has yielded some interesting and probable P&B chemicals that should be considered for further study. Recent studies, following up our initial reports and presentations on this work, have confirmed the presence of many of these chemicals in the environment.

  4. Selected Issues Associated with the Risk Assessment Process for Pesticides with Persistent, Bioaccumulative, and Toxic Characteristics

    EPA Science Inventory

    This Scientific Advisory Panel meeting will address selected scientific issues associated with assessing the potential ecological risks resulting from use of a pesticide active ingredient which has persistent, bioaccumulative, and toxic (PBT) characteristics. EPA will pose speci...

  5. Optimizing the use of rainbow trout hepatocytes for bioaccumulation assessments with fish

    EPA Science Inventory

    Measured rates of biotransformation by cryopreserved trout hepatocytes can be extrapolated to the whole animal as a means of predicting metabolism impacts on chemical bioaccumulation. Future use of these methods within a regulatory context requires, however, that they be standar...

  6. FACTORS INFLUENCING THE DESIGN OF BIOACCUMULATION FACTOR AND BIOTA-SEDIMENT ACCUMULATION FACTOR FIELD STUDIES

    EPA Science Inventory

    A series of modeling simulations were performed to develop an understanding of the underlying factors and principles involved in developing field sampling designs for measuring bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs. These simulations reveal...

  7. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation

    EPA Science Inventory

    This Critcal Review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-seven studies were found where both passive sampler uptake and organism bioaccumulat...

  8. [Bioaccumulation of heavy metals in macrofungi and its application in ecological remediation].

    PubMed

    An, Xin-Long; Zhou, Qi-Xing

    2007-08-01

    As an important type of environmental biological resources, macrofungi are vitally useful in our life. Compared with green plants, macrofungi can accumulate high concentrations of heavy metals such as Cd, Pb and Hg. In this paper, the bioaccumulation of heavy metals in macrofungi and the advantages of using macrofungi in ecological remediation of heavy metals pollution were discussed. The main factors affecting the bioaccumulation of heavy metals in macrofungi, include the species, ecological types, bioaccumulation characteristics and genetic potentials of macrofungi, the morphologic traits, parts and lifetime of mycelium and fruiting bodies, the intervals between fructifications, and the ecological environments. It was suggested that to screen out the macrofungi with effective bioaccumulation of heavy metals, be prone to artificially cultured, better adjustable to environments and easily post-disposed would be the important domain to be explored in the future.

  9. [Bioaccumulation of heavy metals in macrofungi and its application in ecological remediation].

    PubMed

    An, Xin-Long; Zhou, Qi-Xing

    2007-08-01

    As an important type of environmental biological resources, macrofungi are vitally useful in our life. Compared with green plants, macrofungi can accumulate high concentrations of heavy metals such as Cd, Pb and Hg. In this paper, the bioaccumulation of heavy metals in macrofungi and the advantages of using macrofungi in ecological remediation of heavy metals pollution were discussed. The main factors affecting the bioaccumulation of heavy metals in macrofungi, include the species, ecological types, bioaccumulation characteristics and genetic potentials of macrofungi, the morphologic traits, parts and lifetime of mycelium and fruiting bodies, the intervals between fructifications, and the ecological environments. It was suggested that to screen out the macrofungi with effective bioaccumulation of heavy metals, be prone to artificially cultured, better adjustable to environments and easily post-disposed would be the important domain to be explored in the future. PMID:17974263

  10. FACTORS INFLUENCING THE DESIGN OF BIOACCUMULATION FACTOR AND BIOTA-SEDIMENT ACCUMULATION FACTOR FIELD STUDIES

    EPA Science Inventory

    General guidance for designing field studies to measure bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs) is not available. To develop such guidance, a series of modeling simulations were performed to evaluate the underlying factors and principles th...

  11. Methylmercury in Marine Ecosystems: Spatial Patterns and Processes of Production, Bioaccumulation, and Biomagnification

    PubMed Central

    Chen, Celia; Amirbahman, Aria; Fisher, Nicholas; Harding, Gareth; Lamborg, Carl; Nacci, Diane; Taylor, David

    2008-01-01

    The spatial variation of MeHg production, bioaccumulation and biomagnification in marine food webs is poorly characterized but critical to understanding the links between sources and higher trophic levels such as fish that are ultimately vectors of human and wildlife exposure. This paper discusses both large and local scale processes controlling Hg supply, methylation, bioaccumulation and transfer in marine ecosystems. While global estimates of Hg supply suggest important open ocean reservoirs of MeHg, only coastal processes and food webs are known sources of MeHg production, bioaccumulation, and bioadvection. The patterns observed to date suggest that not all sources and biotic receptors are spatially linked and that physical and ecological processes are important in transferring MeHg from source regions to bioaccumulation in marine food webs and from lower to higher trophic levels. PMID:19015919

  12. Optimizing Stream Water Mercury Sampling for Calculation of Fish Bioaccumulation Factors

    EPA Science Inventory

    Mercury (Hg) bioaccumulation factors (BAFs) for game fishes are widely employed for monitoring, assessment, and regulatory purposes. Mercury BAFs are calculated as the fish Hg concentration (Hgfish) divided by the water Hg concentration (Hgwater) and, consequently, are sensitive ...

  13. Bioaccumulation of trace metals in the brown shrimp Crangon crangon (Linnaeus, 1758) from the German Wadden Sea.

    PubMed

    Jung, K; Zauke, G-P

    2008-07-30

    The objective of the present study is to evaluate the suitability of the brown shrimp Crangon crangon (Linnaeus, 1758) from the German Wadden Sea as a biomonitor for the trace metals Cd, Pb, Cu, and Zn and to analyse whether the two-compartment model sensu OECD could be used as a predictive tool to assess environmental quality. The tested decapods accumulated Cd and Pb upon exposure and it was possible to estimate significant model parameters of two-compartment models, while they did not respond to waterborn Cu and Zn. Kinetic BCFs at theoretical equilibrium were 860 for Cd and 750 for Pb. A tentative estimation showed the following sensitivity of C. crangon to an increase of soluble metal exposure: 0.4 microg Cd l(-1) and 0.9 microg Pb l(-1). Available information can be used to quantify a measure of agreement or disagreement between bioaccumulation in various decapods. This can be regarded as an important step in the calibration of biomonitors, which is necessary to assess the potential for bioaccumulation on different temporal and geographical scales.

  14. Bioaccumulation of copper and toxic effects on feeding, growth, fecundity and development of pond snail Lymnaea luteola L.

    PubMed

    Das, Sangita; Khangarot, B S

    2011-01-15

    We studied the bioaccumulation and the toxic effects of Cu on survival, number of eggs and eggmasses laying, embryo development, growth, and food consumption in an Indian pond snail, Lymnaea luteola L. exposed for 7 weeks. Copper caused loss of chemoreception, locomotion and inhibited food consumption significantly during 7 weeks of exposure. Food consumption in Cu exposed snails significantly decreased and at 56 and 100 μg L(-1), snail stopped feeding activity. Mean number of eggmasses or eggs significantly decreased in Cu concentrations during the 7 week study. The percentage hatching decreased in Cu concentrations but there was more than 95% hatched in control in 10-11 days after spawning. Egg development was completely inhibited at 100 μg L(-1), while abnormal embryonic development observed at 32 and 56 μg L(-1) of Cu. The Cu concentration in tissues increased in Cu treated snails and bioaccumulation factor ranged from 2.3 to 18.7. Snail growth at 5.6 and 10 μg L(-1) was reduced by 6.2% and 16.9%, respectively. The study revealed that snail embryos and adults could be used as in vivo test models for ecotoxicological studies. Findings of present study are helpful for advancing water quality guidelines for protecting aquatic biota.

  15. Intestinal nematodes affect selenium bioaccumulation, oxidative stress biomarkers, and health parameters in juvenile rainbow trout (Oncorhynchus mykiss).

    PubMed

    Hursky, Olesya; Pietrock, Michael

    2015-02-17

    In environmental studies, parasites are often seen as a product of enhanced host susceptibility due to exposure to one or several stressors, whereas potential consequences of infections on host responses are often overlooked. Therefore, the present study focused on effects of parasitism on bioaccumulation of selenium (Se) in rainbow trout (Oncorhynchus mykiss). Joint effects of biological (parasite) and chemical (Se) stressors on biomarkers of oxidative stress (glutathione-S-transferase (GST), superoxide dismutase (SOD)), and fish health (condition factor (K), hepatosomatic index (HSI), gross energy) were also examined. Fish of the control group received uncontaminated food, while test fish, either experimentally infected with the nematode Raphidascaris acus or not, were exposed to dietary selenomethionine (Se-Met) at an environmentally relevant dose over 7 weeks. Selenium bioaccumulation by the parasite was low relative to its host, and parasitized trout showed slowed Se accumulation in the muscle as compared to uninfected fish. Furthermore, GST and SOD activities of trout exposed to both Se-Met and parasites were generally significantly lower than in fish exposed to Se-Met alone. Gross energy concentrations, but not K or HSI, were reduced in fish exposed to both Se-Met and R. acus. Together the experiment strongly calls for consideration of parasites when interpreting effects of pollutants on aquatic organisms in field investigations. PMID:25633167

  16. Metal bioaccumulation in aquatic species: quantification of uptake and elimination rate constants using physicochemical properties of metals and physiological characteristics of species.

    PubMed

    Veltman, Karin; Huijbregts, Mark A J; Van Kolck, Maurits; Wang, Wen-Xiong; Hendriks, A Jan

    2008-02-01

    Mechanistic bioaccumulation models are powerful tools in environmental risk assessment as they provide insight in varying accumulation patterns across species, contaminants, and conditions, and they are applicable beyond tested cases. In these models key parameters, as absorption and elimination rate constants, are predicted based on chemical specific properties and physiological characteristics. However, due to the complex environmental behavior of metals, the development of mechanistic bioaccumulation models has lagged behind that for organic chemicals. Absorption and elimination rate constants of organic substances have long been linked to their octanol-water partition coefficient, yet no equivalent quantitative relationships exist for metals. In the present study, we successfully related metal absorption rate constants to a metal specific property, the covalent index, and a species-characteristic, the ventilation rate. This quantitative relationship holds for a wide range of organisms and metals, i.e., 17 aquatic species and 10 metals, suggesting that a generic modeling approach of metal uptake kinetics is feasible for aquatic organisms. In contrast, elimination rate constants show no metal - specific character. Average, weight-corrected elimination rate constants are relatively similar among metals and species, suggesting that a single weight-corrected elimination rate constant can be used in bioaccumulation studies on aquatic species.

  17. Complementary nontargeted and targeted mass spectrometry techniques to determine bioaccumulation of halogenated contaminants in freshwater species.

    PubMed

    Myers, Anne L; Watson-Leung, Trudy; Jobst, Karl J; Shen, Li; Besevic, Sladjana; Organtini, Kari; Dorman, Frank L; Mabury, Scott A; Reiner, Eric J

    2014-12-01

    Assessing the toxicological significance of complex environmental mixtures is challenging due to the large number of unidentified contaminants. Nontargeted analytical techniques may serve to identify bioaccumulative contaminants within complex contaminant mixtures without the use of analytical standards. This study exposed three freshwater organisms (Lumbriculus variegatus, Hexagenia spp., and Pimephales promelas) to a highly contaminated soil collected from a recycling plant fire site. Biota extracts were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and mass defect filtering to identify bioaccumulative halogenated contaminants. Specific bioaccumulative isomers were identified by comprehensive two-dimensional gas chromatography high-resolution time-of-flight mass spectrometry (GCxGC-HRToF). Targeted analysis of mixed brominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PXDD/PXDFs, X = Br and Cl) was performed by atmospheric pressure gas chromatography tandem mass spectrometry (APGC-MS/MS). Relative sediment and biota instrument responses were used to estimate biota-sediment accumulation factors (BSAFs). Bioaccumulating contaminants varied among species and included polychlorinated naphthalenes (PCNs), polychlorinated dibenzofurans (PCDFs), chlorinated and mixed brominated/chlorinated anthracenes/phenanthrenes, and pyrenes/fluoranthenes (Cl-PAHs and X-PAHs, X = Br and Cl), as well as PXDD/PXDFs. Bioaccumulation potential among isomers also varied. This study demonstrates how complementary high-resolution mass spectrometry techniques identify persistent and bioaccumulative contaminants (and specific isomers) of environmental concern.

  18. Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594.

    PubMed

    Sandana Mala, John Geraldine; Unni Nair, Balachandran; Puvanakrishnan, Rengarajulu

    2006-06-01

    Chromium toxicity is of prime concern due to chrome tanning processes in the leather sector. Chrome tanning results in the discharge of toxic levels of chromium causing pollution hazards. Chromium levels of Cr(III) and Cr(VI) were high above permissible limits in chrome samples after chrome tanning. The potential of Aspergillus niger MTCC 2594 to accumulate chromium as well as its biosorption capacity is investigated in this study. Bioaccumulation of Cr(III) and Cr(VI) in the spent chrome liquor has resulted in a 75-78% reduction of the initial Cr content in 24-36 h. A. niger biomass is found to be very effective in the biosorption of Cr(III) and Cr(VI) in spent chrome liquor. Maximum adsorption of 83% for biosorption of Cr(III) at 48 h and 79% of Cr(VI) at 36 h in spent chrome liquor is observed. The biosorption characteristics fit well with Langmuir and Freundlich isotherms and the adsorption parameters are evaluated. The biosorption of Cr also follows Lagergren kinetics. A. niger biomass is effectively used for the biosorption of chromium with 79-83% Cr removal in 36-48 h.

  19. Bioaccumulation of Hg in the mushroom Pleurotus ostreatus

    SciTech Connect

    Bressa, G.; Cima, L.; Costa, P.

    1988-10-01

    The possibility of utilizing industrial, urban, and other wastes for the growth of a product which is directly edible by humans is fascinating. However, it is possible that many wastes containing toxic substances, for example, heavy metals, could reach the food chain and produce adverse effects on human health. To this end, we studied the possibility of bioaccumulation of Hg by a mushroom, Pleurotus ostreatus, grown on an artificial compost containing this element. Concentrations of 0.05, 0.1, and 0.2 mg/kg of Hg as Hg(NO/sub 3/)/sub 2/.H/sub 2/O were added to three groups of the same compost, successively inoculated with the mycelia of the mushroom. Higher concentrations strongly reduced the growth of the mycelia and therefore were not utilized. The concentrations of Hg in the substrate and in the mushroom were evaluated by AAS. The range of the accumulation factor was found to be 65-140, i.e., very marked. This finding suggests that the cultivation of P. ostreatus on substrates containing Hg from industrial and urban wastes could involve possible risks to human health.

  20. Mercury bioaccumulation in wood frogs developing in seasonal pools

    USGS Publications Warehouse

    Loftin, Cynthia S.; Calhoun, Aram J. K.; Nelson, Sarah J.; Elskus, Adria; Simon, Kevin S.

    2012-01-01

    Seasonal woodland pools contribute significant biomass to terrestrial ecosystems through production of pool-breeding amphibians. The movement of amphibian metamorphs potentially transports toxins bioaccumulated during larval development in the natal pool into the surrounding terrestrial environment. We documented total mercury (THg) in seasonal woodland pool water, sediment, litter, and Lithobates sylvaticus LeConte (Wood Frog) in Acadia National Park, ME. THg concentrations in pool water varied over the study season, increasing during April—June and remaining high in 2 of 4 pools upon October refill. Water in pools surrounded by softwoods had lower pH, greater dissolved organic carbon, and greater THg concentrations than pools surrounded by hardwoods, with seasonal patterns in sediment THg but not litter THg. THg increased rapidly from near or below detection in 1–2 week old embryos (<0.2 ng; 0–0.49 ppb wet weight) to 17.1–54.2 ppb in tadpoles within 6 weeks; 7.2–42.0% of THg was methyl Hg in tadpoles near metamorphosis. Metamorphs emigrating from seasonal pools may transfer mercury into terrestrial food webs.

  1. Bioaccumulation and degradation of atrazine in several Chinese ryegrass genotypes.

    PubMed

    Sui, Ying; Yang, Hong

    2013-12-01

    Soil pollution with herbicides is a global problem. Before phytoremediation technology is developed for the plant-based clean-up of polluted soils, investigation of potential plants that can be used to accumulate and degrade herbicides is a critical step. In this study, three selected genotypes of ryegrass were comprehensively analyzed with regard to the atrazine accumulation, degradation and toxicological response. Under the conditions of soil with 0.8 mg kg(-1) atrazine, the maximum value for atrazine accumulation was 2.70 mg kg(-1) in shoots and 0.58 mg kg(-1) in roots. The residue of atrazine in soil with ryegrass cultivation was much lower than that in soil without ryegrass cultivation. Also, the content of atrazine residues in the rhizosphere was significantly lower than that in the non-rhizosphere soil. Activities of several enzymes (urease, invertase, polyphenol oxidase, acid phosphatase and alkaline phosphatase) in soil were assayed. These enzymes were depressed by atrazine but activated by ryegrass cultivation, even in the presence of atrazine. Finally, comparative studies have been conducted on the ryegrass genotypes in response to atrazine. They showed different capacities of degradation and bioaccumulation of atrazine. One of the grass cultivars Changjiang II (CJ) had better growth and higher levels of chlorophyll, but displayed less oxidative injury than two others, Abode (AB) and Jiewei (JW), under atrazine exposure. PMID:24196985

  2. Triclosan: current status, occurrence, environmental risks and bioaccumulation potential.

    PubMed

    Dhillon, Gurpreet Singh; Kaur, Surinder; Pulicharla, Rama; Brar, Satinder Kaur; Cledón, Maximiliano; Verma, Mausam; Surampalli, Rao Y

    2015-05-01

    Triclosan (TCS) is a multi-purpose antimicrobial agent used as a common ingredient in everyday household personal care and consumer products. The expanded use of TCS provides a number of pathways for the compound to enter the environment and it has been detected in sewage treatment plant effluents; surface; ground and drinking water. The physico-chemical properties indicate the bioaccumulation and persistence potential of TCS in the environment. Hence, there is an increasing concern about the presence of TCS in the environment and its potential negative effects on human and animal health. Nevertheless, scarce monitoring data could be one reason for not prioritizing TCS as emerging contaminant. Conventional water and wastewater treatment processes are unable to completely remove the TCS and even form toxic intermediates. Considering the worldwide application of personal care products containing TCS and inefficient removal and its toxic effects on aquatic organisms, the compound should be considered on the priority list of emerging contaminants and its utilization in all products should be regulated. PMID:26006133

  3. Temporal trends in organic contaminant bioaccumulation in Boston Harbor

    SciTech Connect

    Hall, M.P.; Connor, M.S.; Downey, P.C.

    1995-12-31

    Since 1987 the MWRA has used in situ caged mussels (Mytilus edulis) to assess organic contaminant (PAHs, PCBs, organochlorine pesticides) bioaccumulation resulting from the primary treatment discharge of its Deer Island POTW. Results indicate a substantial reduction in many contaminants, most notably the Low Molecular Weight (petrogenic) PAHs which are clearly associated with the Deer Island discharge. NOAA `Mussel Watch` and other fish tissue contaminant data are used to support the observation of these decreases. Effluent water quality data and concurrent mussel body burden data from dirty and clean control sites are used to interpret the trends and elucidate the contamination sources. During the same time frame histopathological analyses of winter flounder collected in proximity to the Deer Island discharge have shown a marked reduction in liver lesions and other contaminant related diseases. More recently (since 1992) slight elevations in chlordane, dieldrin, and total DDTs have been noted in mussel, flounder, and lobster tissue collected from Boston Harbor and Massachusetts Bay. The authors discuss the possibility that remobilization of contaminants from the sediments may be a source of this apparent increase.

  4. Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential

    PubMed Central

    Dhillon, Gurpreet Singh; Kaur, Surinder; Pulicharla, Rama; Brar, Satinder Kaur; Cledón, Maximiliano; Verma, Mausam; Surampalli, Rao Y.

    2015-01-01

    Triclosan (TCS) is a multi-purpose antimicrobial agent used as a common ingredient in everyday household personal care and consumer products. The expanded use of TCS provides a number of pathways for the compound to enter the environment and it has been detected in sewage treatment plant effluents; surface; ground and drinking water. The physico-chemical properties indicate the bioaccumulation and persistence potential of TCS in the environment. Hence, there is an increasing concern about the presence of TCS in the environment and its potential negative effects on human and animal health. Nevertheless, scarce monitoring data could be one reason for not prioritizing TCS as emerging contaminant. Conventional water and wastewater treatment processes are unable to completely remove the TCS and even form toxic intermediates. Considering the worldwide application of personal care products containing TCS and inefficient removal and its toxic effects on aquatic organisms, the compound should be considered on the priority list of emerging contaminants and its utilization in all products should be regulated. PMID:26006133

  5. Bioaccumulation of Hg in the mushroom Pleurotus ostreatus.

    PubMed

    Bressa, G; Cima, L; Costa, P

    1988-10-01

    The possibility of utilizing industrial, urban, and other wastes for the growth of a product which is directly edible by humans is fascinating. However, it is possible that many wastes containing toxic substances, for example, heavy metals, could reach the food chain and produce adverse effects on human health. To this end, we studied the possibility of bioaccumulation of Hg by a mushroom, Pleurotus ostreatus, grown on an artificial compost containing this element. Concentrations of 0.05, 0.1, and 0.2 mg/kg of Hg as Hg(NO3)2.H2O were added to three groups of the same compost, successively inoculated with the mycelia of the mushroom. Higher concentrations strongly reduced the growth of the mycelia and therefore were not utilized. The concentrations of Hg in the substrate and in the mushroom were evaluated by AAS. The range of the accumulation factor was found to be 65-140, i.e., very marked. This finding suggests that the cultivation of P. ostreatus on substrates containing Hg from industrial and urban wastes could involve possible risks to human health. PMID:3234295

  6. Triclosan: current status, occurrence, environmental risks and bioaccumulation potential.

    PubMed

    Dhillon, Gurpreet Singh; Kaur, Surinder; Pulicharla, Rama; Brar, Satinder Kaur; Cledón, Maximiliano; Verma, Mausam; Surampalli, Rao Y

    2015-05-22

    Triclosan (TCS) is a multi-purpose antimicrobial agent used as a common ingredient in everyday household personal care and consumer products. The expanded use of TCS provides a number of pathways for the compound to enter the environment and it has been detected in sewage treatment plant effluents; surface; ground and drinking water. The physico-chemical properties indicate the bioaccumulation and persistence potential of TCS in the environment. Hence, there is an increasing concern about the presence of TCS in the environment and its potential negative effects on human and animal health. Nevertheless, scarce monitoring data could be one reason for not prioritizing TCS as emerging contaminant. Conventional water and wastewater treatment processes are unable to completely remove the TCS and even form toxic intermediates. Considering the worldwide application of personal care products containing TCS and inefficient removal and its toxic effects on aquatic organisms, the compound should be considered on the priority list of emerging contaminants and its utilization in all products should be regulated.

  7. Optimizing fish sampling for fish - mercury bioaccumulation factors

    USGS Publications Warehouse

    Scudder Eikenberry, Barbara C.; Riva-Murray, Karen; Knightes, Christopher D.; Journey, Celeste A.; Chasar, Lia C.; Brigham, Mark E.; Bradley, Paul M.

    2015-01-01

    Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop Total Maximum Daily Load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to sampling and data-treatment methods. Data collected by fixed protocol from 11 streams in 5 states distributed across the US were used to assess the effects of Hgfish normalization/standardization methods and fish sample numbers on BAF estimates. Fish length, followed by weight, was most correlated to adult top-predator Hgfish. Site-specific BAFs based on length-normalized and standardized Hgfish estimates demonstrated up to 50% less variability than those based on non-normalized Hgfish. Permutation analysis indicated that length-normalized and standardized Hgfish estimates based on at least 8 trout or 5 bass resulted in mean Hgfish coefficients of variation less than 20%. These results are intended to support regulatory mercury monitoring and load-reduction program improvements.

  8. Cadmium tolerance and bioaccumulation of 18 hemp accessions.

    PubMed

    Shi, Gangrong; Liu, Caifeng; Cui, Meicheng; Ma, Yuhua; Cai, Qingsheng

    2012-09-01

    Hemp (Cannabis sativa L.) is a fast-growing and high biomass producing plant species, which has been traditionally grown as multiple-use crop and recently considered as an energy crop. In order to screen accessions that can be cultivated in cadmium (Cd)-contaminated soils for biodiesel production, the ability of Cd tolerance and bioaccumulation of 18 hemp cultivars or ecotypes were evaluated in pot experiment under 25 mg Cd kg(-1) (dry weight, DW) soil condition, in terms of plant growth, pigment contents, chlorophyll fluorescence, and Cd accumulation at 45 days after seedling emergence. Results showed that seedlings of all cultivars, except USO-31, Shenyang and Shengmu, could grow quite well under 25 mg Cd kg(-1) (DW) soil condition. Among them, Yunma 1, Yunma 2, Yunma 3, Yunma 4, Qujing, Longxi, Lu'an, Xingtai, and Shuyang showed great biomass (>0.5 g plant(-1)), high tolerance factors (68.6-92.3%), and little reduction of pigment content and chlorophyll fluorescence under 25 mg Cd kg(-1) (DW) soil stress, indicating these cultivars had a strong tolerance to Cd stress and could be cultivated in Cd-contaminated soils. Cultivars Longxi, Lu'an, Xingtai, Yunma 2, Yunma 3, Yunma 4, and Qujing exhibited higher Cd concentrations and total Cd in shoots. These cultivars, therefore, are good candidates for the implementation of the new strategy of cultivating biodiesel crops for phytoremediation of Cd-contaminated soils.

  9. Bioaccumulation of perfluoroalkyl substances by Daphnia magna in water with different types and concentrations of protein.

    PubMed

    Xia, Xinghui; Rabearisoa, Andry H; Jiang, Xiaoman; Dai, Zhineng

    2013-10-01

    Perfluoroalkyl substances (PFASs) are sometimes regarded as proteinophilic compounds, however, there is no research report about the effect of environmental protein on the bioaccumulation of PFASs in waters. In the present study we investigated influences of protein on the bioaccumulation of six kinds of PFASs by Daphnia magna in water; it included perfluorooctane sulfonate, perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Two types of protein including bovine albumin from animal and soy peptone from plant were compared and the effects of protein concentration were investigated. Both types of protein at high concentrations (10 and 20 mg L(-1)) suppressed the bioaccumulation of PFASs. When protein concentration increased from 0 to 20 mg L(-1), the decreasing ratios of the PFAS body burden (35.3-52.9%) in Daphnia magna induced by bovine albumin were significantly higher than those (22.0-36.6%) by soy peptone. The dialysis bag experiment results showed that the binding of PFASs to protein followed the Freundlich isotherm, suggesting it is not a linear partitioning process but an adsorption-like process. The partition coefficients of PFASs between bovine albumin and water were higher compared to soy peptone; this resulted in higher reducing rates of freely dissolved concentrations of PFASs with increasing bovine albumin concentration, leading to a stronger suppression of PFAS bioaccumulation. However, the presence of both types of protein with a low concentration (1 mg L(-1)) enhanced the bioaccumulation of PFASs. Furthermore, the water-based bioaccumulation factor based on the freely dissolved concentrations of PFASs even increased with and the depuration rate constants of PFASs from Daphnia magna decreased with protein concentration, suggesting that protein would not only reduce the bioavailable concentrations and uptake rates of PFASs but also lower the elimination rates of PFASs in

  10. Acute Toxicity and Bioaccumulation of Chloroform to Four Species of Freshwater Fish

    SciTech Connect

    ,

    1980-08-01

    Acute toxicity of chloroform to four species of freshwater fish was studied in flow-through 96-hr toxicity tests. Chloroform is toxic to fish in the tens of parts per million, a concentration well above that which would be expected to be produced under normal power plant chlorination conditions. Investigations of acute toxicity of chloroform and the bioaccumulation of chlorinated compounds in tissues of fish revealed differences in tolerance levels and tissue accumulations. Mean 96-hr LC{sub 50}s for chloroform were 18 ppm for rainbow trout and bluegill, 51 ppm for largemouth bass and 75 ppm for channel catfish. Mortalities of bluegill and largemouth bass occurred during the first 4 hr of exposure while rainbow trout and channel catfish showed initial tolerance and mortalities occurred during the latter half of the 96-hr exposure. Rainbow trout had the highest level of chloroform tissue accumulation, 7 {micro}g/g tissue, catfish the second highest, 4 {micro}g/g tissue, followed by bluegill and largemouth bass which each accumulated about 3 {micro}g/g tissue. Accumulation of chloroform was less than one order of magnitude above water concentrations for all species.

  11. Bioaccumulation of human waterborne protozoa by zebra mussel (Dreissena polymorpha): interest for water biomonitoring.

    PubMed

    Palos Ladeiro, M; Aubert, D; Villena, I; Geffard, A; Bigot, A

    2014-01-01

    Cryptosporidium parvum, Giardia duodenalis and Toxoplasma gondii are ubiquitous pathogens, which waterborne transmission has been largely demonstrated. Since they can be found in various watercourses, interactions with aquatic organisms are possible. Protozoan detection for watercourses biomonitoring is currently based on large water filtration. The zebra mussel, Dreissena polymorpha, is a choice biological model in ecotoxicological studies which are already in use to detect chemical contaminations in watercourses. In the present study, the zebra mussel was tested as a new tool for detecting water contamination by protozoa. In vivo exposures were conducted in laboratory experiments. Zebra mussel was exposed to various protozoan concentrations for one week. Detection of protozoa was realized by Taqman real time qPCR. Our experiments evidenced C. parvum, G. duodenalis and T. gondii oocyst bioaccumulation by mussels proportionally to ambient contamination, and significant T. gondii prevalence was observed in muscle tissue. To our knowledge, this is the first study that demonstrates T. gondii oocyst accumulation by zebra mussel. The results from this study highlight the capacity of zebra mussels to reveal ambient biological contamination, and thus to be used as a new effective tool in sanitary biomonitoring of water bodies. PMID:24112626

  12. Methylmercury cycling, bioaccumulation, and export from agricultural and non-agricultural wetlands in the Yolo Bypass

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Fleck, Jacob; Alpers, Charles N.; Ackerman, Josh; Eagles-Smith, Collin; Stricker, Craig; Stephenson, Mark; Feliz, David; Gill, Gary; Bachand, Philip; Brice, Ann; Kulakow, Robin

    2010-01-01

    d) Identification and testing of potential management approaches for reducing MeHg contamination. In addition, the quantitative results reported here assess the effect of current land use practices in the Yolo Bypass MeHg production, bioaccumulation and export, and provide process-based advice towards achieving current goals of the RWQCB-CVR's Sacramento -- San Joaquin Delta Estuary TMDL for Methyl & Total Mercury (Wood et al., 2010b). Further work is necessary to evaluate biotic exposure in the Yolo Bypass Wildlife Area at higher trophic levels (e.g. birds), to quantify winter hydrologic flux of MeHg to the larger Delta ecosystem, and to evaluate rice straw management options to limit labile carbon supplies to surface sediment during winter months. In summary, agricultural management of rice fields -- specifically the periodic flooding and production of easily degraded organic matter -- promotes the production of MeHg beyond rates seen in naturally vegetated wetlands, whether seasonally or permanently flooded., The exported load from MeHg from these agricultural wetlands may be controlled by limiting hydrologic export from fields to enhance on-site MeHg removal processes, but the tradeoff is that this impoundement increases Me Hg exposure to resident organisms.

  13. Bioaccumulative characteristics of hexabromocyclododecanes in freshwater species from an electronic waste recycling area in China.

    PubMed

    Zhang, Xiaoling; Yang, Fangxing; Luo, Caihong; Wen, Sheng; Zhang, Xian; Xu, Ying

    2009-09-01

    Hexabromocyclododecanes (HBCDs) are now emerging ubiquitous contaminants due to their wide usage, persistence and toxicities. To investigate the bioaccumulative characteristics of HBCDs, sediments, Winkle (Littorina littorea), crucian carp (Carassius carassius) and loach (Misgurnus anguillicaudatus) were collected from two streams near an E-waste dismantling site in China, and HBCD exposure test was then conducted on Chinese rare minnow. The concentration of HBCDs was 14 ng g(-1) dry weight in sediments, 186, 377 and 1791 ng g(-1) lipid weight in winkle, crucian carp and loach, respectively. gamma-HBCD was found to be the dominant diastereoisomer in the sediments (63% of total HBCDs). However, alpha-HBCD was selectively accumulated in the biotic samples and contributed to 77%, 63% and 63% of total HBCDs in winkle, crucian carp and loach, respectively. Moreover, an enrichment of (-)-enantiomers of alpha- and gamma-HBCD were found in the winkle. The reverse results were observed in the crucian carp and loach. Similar observations of diastereoisomeric and enantiomeric composition were obtained in Chinese rare minnow with those found in the crucian carp and loach. These results indicate that the freshwater species from the streams are contaminated by HBCDs. alpha-HBCD can be selectively accumulated in organisms and the accumulative characteristics are enantioselective among species. PMID:19616822

  14. Bioaccumulation of thallium in an agricultural soil as affected by solid-phase association

    NASA Astrophysics Data System (ADS)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin

    2016-04-01

    The work focused on the biogeochemical behavior of synthetic Tl modified phases, namely birnessite, ferrihydrite, and calcite, in a neutral soil Leptosol. The data presented here clearly demonstrate a strong relationship between the mineralogical position of Tl in the soil and its uptake by the studied plant (Sinapis alba L.). All tested Tl phases behaved as potential Tl sources in the rhizosphere, with a maximum for ferrihydrite and minimum for birnessite. Therefore, it can be concluded that Mn(III,IV) oxides, if present in the soil system, may reduce biological uptake of Tl to a substantial degree, including the case of Tl-accumulating species (i.e., Brassicaceae). It was proven that even Tl-enriched calcite present in the carbonate-rich soil is an important precursor for further contaminant mobilization, despite its relative resistance to degradation. Our data indicate that the fate of secondary Tl phases in the rhizosphere might be significantly influenced by the pH of the soil matrix, i.e., soils with lower pHs reduce their stability, making them more susceptible to further degradation by root exudates. Bulk soil mineralogy and the content and quality of SOM are thus suggested to be critical parameters controlling the bioaccumulation potential for Tl. This research was supported by the Czech Science Foundation (grant no. 14-01866S).

  15. Determination of potentially bioaccumulating complex mixtures of organochlorine compounds in wastewater: a review.

    PubMed

    Contreras López, M Concepción

    2003-03-01

    Organic chlorine compounds can be persistent environmental contaminants and may be accumulated through the food chain to the aquatic organisms, to fish and humans, depending basically on their hydrophobic properties. Consequently, there is an interest to measure these organic compounds from both the scientific and regulatory communities. The analytical essays have been improved for measuring specific organic chlorine compounds that present the most toxicological potential (polychlorinated biphenyls [PCBs], certain pesticides and dioxins), although they are tedious and time-consuming procedures. The existing tests to measure adsorbable organic halogens (AOX) or extractable organic halogens (EOX) do not distinguish the more hydrophobic organic chlorine matter. The intention of this paper is to make a review of the existing methods to measure the potentially bioaccumulating organochlorine compounds (OCs) from wastewater and propose a methodology to a standardisation procedure for complex mixtures of OCs in wastewater, such as pulp mill effluents. A new method has been proposed for determining the most hydrophobic part of the extractable organic halogens (EOX(fob)), the lowest reported value is 0.6 microg/l, expressed as chloride, and the relative standard deviation at 20 microg/l is 7% on laboratory samples and 30% on real effluents. This new procedure could be a valuable tool to complement environmental risk assessment studies of wastewater discharges. PMID:12605924

  16. Enantiomer-specific toxicity and bioaccumulation of alpha-cypermethrin to earthworm Eisenia fetida.

    PubMed

    Diao, Jinling; Xu, Peng; Liu, Donghui; Lu, Yule; Zhou, Zhiqiang

    2011-09-15

    Alpha-cypermethrin, a synthetic pyrethroid, is highly effective against a wide range of chewing and sucking insects in crops, and it is a racemic mixture of two enantiomers ((+)-1R-cis-αS+(-)-1S-cis-αR). Studies about the toxicity of alpha-cypermethrin to non-target organisms are mainly focused on aquatic organisms, whereas information regarding terrestrial organisms is relatively much less. Very little report about its enantioselective toxicity is known, so the present study tested the enantiomer-specific acute toxicity to earthworm Eisenia fetida. Experiment about bioaccumulation of two enantiomers in soil was conducted, peak-shaped accumulation curves were observed for both enantiomers, and the calculated biota to soil accumulations factor (BSAF) have significant difference between the two enantiomers. It was obvious that earthworm can uptake alpha-cypermethrin enantioselectively, preferentially accumulating (-)-(1S-cis-αR)-enantiomer. Great difference in toxicity to earthworm between two enantiomers was found, and the calculated LC(50) values for (+)-(1R-cis-αS)-, (-)-(1S-cis-αR)-, and rac-alpha-cypermethrin were 49.53, 1663.87 and 165.61 ng/cm(2), respectively. The acute toxicity of alpha-cypermethrin enantiomers was enantioselective.

  17. Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms.

    PubMed

    Petersen, Elijah J; Pinto, Roger A; Landrum, Peter F; Weber, Walter J

    2009-06-01

    Increasing production of and application potentials for carbon nanotubes (CNTs) suggest these materials will enter soil and sediment ecosystems in significant masses in upcoming years. This may result in ecological risks, either from the presence of the CNTs themselves or, given their exceptional sorption capacities, from their effects on the fate and accumulation of concurrently present hydrophobic organic chemicals (HOCs). Here we test the influence of additions of single-walled CNTs (SWNTs) and multi-walled CNTs (MWNTs) to two different pyrene-contaminated soils on uptake of this HOC by earthworms (Eisenia foetida). The effects of nanotube additions to the soils were observed to be CNT concentration dependent, with 0.3 mg nanotubes per gram of soil having no impact, while 3.0 mg/g of SWNTs or MWNTs substantially decreased pyrene bioaccumulation from both contaminated soils. The presence of CNTs also affected pyrene elimination rates. After a 14-day exposure to pyrene-spiked soils, earthworms showed enhanced elimination rates in soils amended with 3.0 mg CNT/g but not 0.3 mg CNT/g. These results suggest that the presence of SWNTs or MWNTs in terrestrial ecosystems will have concentration-dependent effects on decreasing HOC accumulation by earthworms in a manner similar to that expected of most "hard" carbons. PMID:19569349

  18. Bioaccumulation factor of {sup 137}Cs in some marine biotas from West Bangka Indonesia

    SciTech Connect

    Suseno, Heny

    2014-03-24

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34.

  19. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae.

    PubMed

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-01-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag(+), C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag(+), and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs. PMID:27615743

  20. Bioaccumulation factor of 137Cs in some marine biotas from West Bangka Indonesia

    NASA Astrophysics Data System (ADS)

    Suseno, Heny

    2014-03-01

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34.

  1. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae

    PubMed Central

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-01-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag+, C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag+, and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs. PMID:27615743

  2. Organochlorine bioaccumulation and trophic transfer model for the pilot whale in the northwest Atlantic

    SciTech Connect

    Weisbrod, A.V.; Shea, D.; Moore, M.J.; Stegeman, J.J.

    1995-12-31

    The goals of this project were: (1) to determine the level of organochlorine exposure to pilot whales; (2) to identify tissue and individual bioaccumulation patterns, and (3) to develop a predictive model to approximate contaminant bioaccumulation into blubber. Samples from eighteen pilot whales beached in 1990--91 on Cape Cod, MA were analyzed by GC/ECD and GC/MS for polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAHs). Individual congeners and total PCBs were identified and found to be high (ppm range) in several individuals. Blubber and liver differences in metabolizable PCB congeners correlate with differences in CYP 1A abundance and activity in mature vs. immature animals. ANOVA and cluster analyses were performed to identify specific bioaccumulation patterns. Pod or exposure conditions appear to be the most important factor in bioaccumulation in these whales. Maturity level, gender, and metabolizability also seem to influence bioaccumulation in various tissues. These patterns were applied in the development of a steady state mass balance model, which focuses on exposure differences rather than metabolic and gender influences. Using a range of environmental contaminant concentrations for seawater, plankton, squid and fish, the model`s low range of output values best approximated blubber residues.

  3. Bioaccumulation characteristics of perfluoroalkyl acids (PFAAs) in coastal organisms from the west coast of South Korea.

    PubMed

    Hong, Seongjin; Khim, Jong Seong; Wang, Tieyu; Naile, Jonathan E; Park, Jinsoon; Kwon, Bong-Oh; Song, Sung Joon; Ryu, Jongseong; Codling, Garry; Jones, Paul D; Lu, Yonglong; Giesy, John P

    2015-06-01

    Year-round monitoring for perfluoroalkyl acids (PFAAs) along the west coast of South Korea targeting long-term changes in water and coastal organisms has been conducted since 2008. In this study, we present the most recent 5-years of accumulated data and scrutinize the relationship between concentrations in water and biota highlighting bioaccumulation characteristics. Twelve individual PFAAs in samples of water (n=43) and biota (n=59) were quantified by use of HPLC-MS/MS after solid phase extraction. In recent years, concentrations of PFAAs in water have been generally decreasing, but profiles of relative concentrations of individual PFAAs vary among location and year. Bioaccumulation of PFAAs in various organisms including fishes, bivalves, crabs, gastropods, shrimps, starfish, and polychaetes varied among species. However, overall bioaccumulation of PFAAs was dependent on corresponding concentrations of PFAAs in water within an area. In organ-specific distributions of PFAAs, greater concentrations of PFAAs were found in intestine of fish (green eel goby). This result suggests that PFAAs are mainly accumulated via dietary exposure, while greater concentrations were found in gill and intestine of bivalve (oyster) which suggests both waterborne and dietary exposures to these organisms. Concentrations of PFAAs in biota did not decrease over time (2008-2010), indicating that continuing bioaccumulation followed by slow degradation or excretion of PFAAs accumulated in biota. Overall, spatio-temporal distributions of PFAAs in water and bioaccumulation characteristics seemed to be associated with recent restrictions of PFOS-based products and uses of PFBS-based substitutes.

  4. Significance of Xenobiotic Metabolism for Bioaccumulation Kinetics of Organic Chemicals in Gammarus pulex

    PubMed Central

    2012-01-01

    Bioaccumulation and biotransformation are key toxicokinetic processes that modify toxicity of chemicals and sensitivity of organisms. Bioaccumulation kinetics vary greatly among organisms and chemicals; thus, we investigated the influence of biotransformation kinetics on bioaccumulation in a model aquatic invertebrate using fifteen 14C-labeled organic xenobiotics from diverse chemical classes and physicochemical properties (1,2,3-trichlorobenzene, imidacloprid, 4,6-dinitro-o-cresol, ethylacrylate, malathion, chlorpyrifos, aldicarb, carbofuran, carbaryl, 2,4-dichlorophenol, 2,4,5-trichlorophenol, pentachlorophenol, 4-nitrobenzyl-chloride, 2,4-dichloroaniline, and sea-nine (4,5-dichloro-2-octyl-3-isothiazolone)). We detected and identified metabolites using HPLC with UV and radio-detection as well as high resolution mass spectrometry (LTQ-Orbitrap). Kinetics of uptake, biotransformation, and elimination of parent compounds and metabolites were modeled with a first-order one-compartment model. Bioaccumulation factors were calculated for parent compounds and metabolite enrichment factors for metabolites. Out of 19 detected metabolites, we identified seven by standards or accurate mass measurements and two via pathway analysis and analogies to other compounds. 1,2,3-Trichlorobenzene, imidacloprid, and 4,6-dinitro-o-cresol were not biotransformed. Dietary uptake contributed little to overall uptake. Differentiation between parent and metabolites increased accuracy of bioaccumulation parameters compared to total 14C measurements. Biotransformation dominated toxicokinetics and strongly affected internal concentrations of parent compounds and metabolites. Many metabolites reached higher internal concentrations than their parents, characterized by large metabolite enrichment factors. PMID:22321051

  5. Role of benthic communities in organic contaminant transport and fate. 2: Bioaccumulation and biotransformation

    SciTech Connect

    Dickhut, R.M.; Schaffner, L.C.; Lay, P.W.; Mitra, S. |

    1994-12-31

    Numerous macrobenthic organisms from lower Chesapeake Bay have been observed to rapidly accumulate and transform a series of organic contaminants (OCs). Bioaccumulation and biotransformation vary both within and among major taxa, and with the OC physical-chemical properties. Bioaccumulation of OCs is rapid for various organisms regardless of feeding behavior indicating that uptake of contaminants from the dissolved phase may be important. Comparison of OC and metabolite body burdens to those in the corresponding sediment indicate three types of behavior for OC fluxes through the organisms over 56 days of exposure to contaminated sediments: steady state between contaminant uptake and elimination, faster uptake than elimination corresponding to bioaccumulation, and rapid loss relative to uptake, with decreasing bioaccumulation factors with time. OC loss mechanisms from operationally defined detectable pools in benthic biota may include: elimination of parent compound or metabolites, and binding of reactive metabolites to cellular structures. OC metabolite production and loss rates in benthic macrofauna from Chesapeake Bay are currently under investigation. Bioaccumulation and transformation of OCs by benthic organisms are of importance in determining their effects, including trophic transfer of organic pollutants, on aquatic ecosystems.

  6. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae

    NASA Astrophysics Data System (ADS)

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-09-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag+, C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag+, and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs.

  7. Incorporating ecological data and associated uncertainty in bioaccumulation modeling: methodology development and case study.

    PubMed

    De Laender, Frederik; Van Oevelen, Dick; Middelburg, Jack J; Soetaert, Karline

    2009-04-01

    Bioaccumulation models predict internal concentrations of hydrophobic chemicals by incorporating key gain/loss processes reflecting the ecology of the exposed species and the characteristics of the chemical. Here, we propose a new methodology that uses ecological data and the principle of mass balance in food webs to estimate bioaccumulation in food webs. To this end, we combine linear inverse models (LIMs) that estimate food web flows based on mass balance with a mechanistic bioaccumulation model (OMEGA). In a case study we show that uncertainty ranges on bioaccumulation predictions were on average estimated a factor of 4 lower by LIM-OMEGA than by an OMEGA application that does not consider mass balance within food webs, most notably for chemicals with log Kow > 5, reflecting an increasing importance of uptake through food ingestion for those chemicals. Ranges of internal concentrations predicted by LIM-OMEGA were smaller in enclosures with fish, as strong predation pressure from the latter on mesozooplankton constrains food web flows and thus bioaccumulation.

  8. Study of toxicity and bioaccumulation of copper in the silver sea bream Sparus sarba

    SciTech Connect

    Wong, P.P.K.; Chu, L.M.; Wong, C.K.

    1999-05-01

    The toxicity and bioaccumulation of copper were studied in fingerlings (mean body weight = 9.4 {+-} 2.1 g) and subadults (mean body weight = 85.5 {+-} 27.1 g) of the silver sea bream Sparus sarba. Test fish were obtained from local fish culture sites. Static tests over 96 h showed that subadults were not more tolerant to copper than the much smaller fingerlings. The 24-h, 48-h, 72-h, and 96-h LC50 for fingerlings were 2.01 mg Cu L{sup {minus}1}, 1.28 mg Cu L{sup {minus}1}, 1.17 mg Cu L{sup {minus}1}, and 1.03 mg Cu L{sup {minus}1}, respectively. The values for subadults were 2.36 mg Cu L{sup {minus}1}, 1.52 mg Cu L{sup {minus}1}, 1.34 mg Cu L{sup {minus}1}, and 1.24 mg Cu L{sup {minus}1}, respectively. Copper concentrations corresponding to 13%, 25%, and 40% of the 96-h LC50 value were used to study the effects of copper exposure on the growth rate of S. sarba in 30-d bioassays. The growth rate of fingerlings was higher than that of subadults by approximately a hundred-fold. For both fingerlings and subadults, reduced growth was observed at 0.15 mg Cu L{sup {minus}1} ({approximately}40% of the 96-h LC50 value). Growth appeared to be a more sensitive endpoint for toxicity tests than mortality. Fish exposed to copper for 30 d contained more copper than control animals. The highest copper concentrations for both fingerlings and subadults were found in the intestine. The order of copper concentration was intestine > liver > gonad > gills, skin and muscle.

  9. Prediction of ecotoxicological behavior of chemicals: relationship between n-octanol/water partition coefficient and bioaccumulation of organic chemicals by alga Chlorella

    SciTech Connect

    Geyer, H.; Politzki, G.; Freitag, D.

    1984-01-01

    The bioaccumulation potential of organic chemicals by the green alga Chlorella fusca was determined. A quantitative relationship was found to exist between the lipophilicity (n-octanol/water partition coefficient) of the chemicals and the bioaccumulation factor.

  10. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms.

    PubMed

    Širić, Ivan; Humar, Miha; Kasap, Ante; Kos, Ivica; Mioč, Boro; Pohleven, Franc

    2016-09-01

    Heavy metals cause serious problems in the environment, and they can be accumulated in organisms, especially in the higher fungi. The concentration of Ni, Cr, Pb, Cd, and Hg in 10 species of edible mushrooms in Medvednica Nature Park, Croatia was therefore determined. In addition, the similarity between the studied species was determined by cluster analysis based on concentrations of the aforementioned metals in the fruiting bodies. The contents of nickel, chromium, lead, cadmium, and mercury in the fruiting bodies of mushrooms were obtained by X-ray fluorescence spectrometry. The highest concentrations of Ni (3.62 mg kg(-1)), Cr (3.01 mg kg(-1)), and Cd (2.67 mg kg(-1)) were determined in Agaricus campestris. The highest concentration of Pb (1.67 mg kg(-1)) was determined in Macrolepiota procera, and the highest concentration of Hg (2.39 mg kg(-1)) was determined in Boletus edulis. The concentration of all heavy metals significantly differed (p < 0.001) between examined saprophytic and ectomycorrhizal mushrooms. Considering anatomical part of the fruiting body (cap-stipe), a considerably higher concentration of the analyzed elements was found in the cap for all mushroom species. According to calculated bioconcentration factors, all the examined species were found to be bioexclusors of Ni, Cr, and Pb and bioaccumulators of Cd and Hg. Cluster analysis performed on the basis of the accumulation of the studied metals revealed great phenotypic similarity of mushroom species belonging to the same genus and partial similarity of species of the same ecological affiliation. PMID:27272918

  11. Bioaccumulation and maternal transfer of mercury and selenium in amphibians.

    PubMed

    Bergeron, Christine M; Bodinof, Catherine M; Unrine, Jason M; Hopkins, William A

    2010-04-01

    Amphibian population declines have been documented worldwide and environmental contaminants are believed to contribute to some declines. Maternal transfer of bioaccumulated contaminants to offspring may be an important and overlooked mechanism of impaired reproductive success that affects amphibian populations. Mercury (Hg) is of particular concern due to its ubiquity in the environment, known toxicity to other wildlife, and complex relationships with other elements, such as selenium (Se). The objectives of the present study were to describe the relationships between total Hg (THg), methlymercury (MMHg), and Se in three amphibian species (Plethodon cinereus, Eurycea bislineata cirrigera, and Bufo americanus) along a Hg-polluted river and floodplain, and to determine if B. americanus maternally transfers Hg and Se to its eggs in a tissue residue-dependent manner. Total Hg and MMHg concentrations in all species spanned two orders of magnitude between the reference and contaminated areas, while Se concentrations were generally low in all species at both sites. Strong positive relationships between THg and MMHg in tissues of all species were observed throughout. Both Hg and Se were maternally transferred from females to eggs in B. americanus, but the percentage of the females' Hg body burden transferred to eggs was low compared with Se. In addition, Hg concentrations appeared to positively influence the amount of Se transferred from female to eggs. The present study is the first to confirm a correlation between Hg concentrations in female carcass and eggs in amphibians and among the first to describe co-transference of Se and Hg in an anamniotic vertebrate. The results suggest future work is needed to determine whether maternal transfer of Hg has transgenerational implications for amphibian progeny.

  12. Bioaccumulation of radionuclides in fertilized Canadian Shield lake basins.

    PubMed

    Bird, G A; Hesslein, R H; Mills, K H; Schwartz, W J; Turner, M A

    1998-07-11

    Radionuclide tracers of heavy metals (59Fe, 60Co, 65Zn, 75Se, 85Sr, 134Cs and 203Hg) representing potential contamination from nuclear power plants, industry and agriculture were added to separate basins of Lake 226, Experimental Lakes Area, northwestern Ontario. The two basins were part of a eutrophication experiment and differed in their trophic status; the north basin (L226N) was eutrophic whereas the south basin (L226S) was mesotrophic. Our objective was to determine the uptake of the radionuclides by biota and the effect of lake trophic status on their bioaccumulation. The trophic status of the lakes did not appear to have a marked effect on the accumulation of radionuclides by the biota. This may have been because of a mid-summer leakage of nutrients between the basins which enhanced primary production in L226S, because there is a time lag between primary production and the availability of the radionuclides to the fishes or because trophic status does not affect the uptake of at least some of these radionuclides. However, there was a tendency for faster uptake of the radionuclides in L226N by fish than L226S, but the differences were not significant. Concentrations in the biota generally decreased in the order: fathead minnow > pearl dace > tadpoles > slimy sculpin > leeches. Concentrations in biota generally decreased in the order. 65Zn > 203Hg > 75Se > 134Cs > 60Co > 85Sr = 59Fe. Cobalt-60 concentrations in tadpoles were greater than in the other biota. Radionuclide concentrations in the tissues of lake whitefish indicated that uptake was predominantly from food. Radionuclide concentrations were usually higher in the posterior gut, liver and kidney than in other tissues, whereas body burdens were generally high in the muscle for 75Se, 134Cs and 203Hg; kidney and gut for 60Co; and bone for 65Zn and 75Se. Mercury-203 burdens were also high in the bone and gut. PMID:9718743

  13. Bioaccumulation of radionuclides in fertilized Canadian Shield lake basins.

    PubMed

    Bird, G A; Hesslein, R H; Mills, K H; Schwartz, W J; Turner, M A

    1998-07-11

    Radionuclide tracers of heavy metals (59Fe, 60Co, 65Zn, 75Se, 85Sr, 134Cs and 203Hg) representing potential contamination from nuclear power plants, industry and agriculture were added to separate basins of Lake 226, Experimental Lakes Area, northwestern Ontario. The two basins were part of a eutrophication experiment and differed in their trophic status; the north basin (L226N) was eutrophic whereas the south basin (L226S) was mesotrophic. Our objective was to determine the uptake of the radionuclides by biota and the effect of lake trophic status on their bioaccumulation. The trophic status of the lakes did not appear to have a marked effect on the accumulation of radionuclides by the biota. This may have been because of a mid-summer leakage of nutrients between the basins which enhanced primary production in L226S, because there is a time lag between primary production and the availability of the radionuclides to the fishes or because trophic status does not affect the uptake of at least some of these radionuclides. However, there was a tendency for faster uptake of the radionuclides in L226N by fish than L226S, but the differences were not significant. Concentrations in the biota generally decreased in the order: fathead minnow > pearl dace > tadpoles > slimy sculpin > leeches. Concentrations in biota generally decreased in the order. 65Zn > 203Hg > 75Se > 134Cs > 60Co > 85Sr = 59Fe. Cobalt-60 concentrations in tadpoles were greater than in the other biota. Radionuclide concentrations in the tissues of lake whitefish indicated that uptake was predominantly from food. Radionuclide concentrations were usually higher in the posterior gut, liver and kidney than in other tissues, whereas body burdens were generally high in the muscle for 75Se, 134Cs and 203Hg; kidney and gut for 60Co; and bone for 65Zn and 75Se. Mercury-203 burdens were also high in the bone and gut.

  14. Bioaccumulation of selenium in birds at Kesterson Reservoir, California

    USGS Publications Warehouse

    Ohlendorf, H.M.; Hothem, R.L.; Bunck, C.M.; Marois, Katherine C.

    1990-01-01

    This study was conducted to determine selenium (Se) concentrations in tissues of birds collected during the 1983-1985 nesting seasons at Kesterson Reservoir (an area receiving high-Se irrigation drainage water), compare them with birds from reference sites within California's Central Valley, and relate them to food-chain Se concentrations at the study sites. Within years, Se in livers of adult birds collected early and late in the nesting season changed significantly at both Kesterson and the primary reference site (Volta Wildlife Area). These changes were related to the length of time birds had been present at the study sites and the associated accumulation (at Kesterson) or depuration (at Volta) of Se. All species showed significant location differences, which were greatest in species that occurred at Kesterson throughout the year or fed more consistently within the reservoir. There were few species differences in Se for birds at the reference sites (where food-chain Se levels were 'normal' [ 50 ?/g Se/g), species patterns varied by year, probably because of varying periods of residence and other factors. Se concentrations in kidneys and livers of American coots (Fulica americana) were significantly correlated (r = 0.9845); Se concentrations in breast muscles and livers of juvenile ducks (Anas spp.) also were correlated (r = 0.8280). Body weights of adult coots were negatively correlated with liver Se concentration. Late-season resident breeding birds or pre-fledging juvenile birds reared at a site usually provided the best indication of site-specific Se bioaccumulation.

  15. Bioaccumulation of heavy metals in macroinvertebrates living in stormwater wetlands

    SciTech Connect

    Karouna, N.K.; Sparling, D.W.

    1995-12-31

    The design of stormwater wetlands and ponds as wildlife habitats has prompted concern over the potential uptake of runoff contaminants by aquatic fauna. Stormwater wetlands provide a diverse array of habitat for aquatic macroinvertebrates. The importance of macroinvertebrates in aquatic communities has been well documented. Aquatic macroinvertebrates also serve as a major food source of many aquatic vertebrates, including fish and birds. The objectives of the study were to: (1) examine the responses of the macroinvertebrate community to water and sediment concentrations of heavy metals, and other water quality parameters; (2) determine whether macroinvertebrates living in stormwater wetlands bioaccumulate significant concentrations of heavy metals; (3) relate the concentrations of heavy metals in sediment, water and macroinvertebrates to land use in the surrounding watershed; (4) determine sediment and water toxicity to macroinvertebrates. Twenty stormwater wetlands, representing four land uses commercial, residential, highway and control, were monitored in this study. Water quality parameters, including pH, DO, turbidity, conductivity, hardness and metal concentrations were monitored bi-weekly for six months. Sediment samples were collected three times during the same period. Macroinvertebrate communities were sampled during alternate weeks after water collections. Ten-day sediment bioassays were conducted using the amphipod Hyalella azteca. Preliminary data analyses have indicated no significant difference in sediment and water metal concentrations between land uses. However, Zn concentrations in macroinvertebrates were significantly higher (p < 0.05) in wetlands serving commercial watersheds than in those serving the remaining three land uses. No differences have been detected in composition of invertebrate communities due to land use category.

  16. Bioaccumulation of P-32 in bluegill and catfish

    SciTech Connect

    Kahn, B.; Turgeon, K.S.; Martini, D.K.; Dunkerly, S.J.; El-Shinawy, R.M.K.; Wilson, M.D.; Hammond, R.A.; Uribe, R.; Mizner, A.A.

    1985-02-01

    Bluegill and catfish were fed P-32 at a constant feeding rate per body weight to determine the bioaccummulation factor (BF/sub r/) for P-32 in muscle relative to water. The fish were maintained in flow-through tanks at two feeding levels. The bluegill accumulated P-32 for 51 days, followed by depuration for 28 days. The catfish study had to be teminated after 11 days. Fish were analyzed in triplicte for P-32 and phosphorus at intervals of 1 to 8 days. Additional aquaria experiments were performed to determine the effects of water temperature, feeding rate, and type of food (worms vs. pellets) on P-32 uptake, and to observe P-32 uptake from water by unfed fish (including fish with blocked esophagus). A simple calculational model was used to determine the phosphorus turnover constant from the specific activity in tissue relative to food. This ratio at steady state approaches the BF/sub r/BF ratio (where BF is the phosphorus bioaccumulation factor) if P-32 transfers rapidly from water to food. The bluegill showed a weight gain of 0.2 %/d, a phosphorous turnover constant in muscle of 0.43 %/d, and a BF/sub r//BF ratio of 0.081 at the higher feeding rate, and 0.05 %/d, 0.34 %/d, and 0.064 at the lower feeding rate. Hence, respective P-32 BF/sub r/ values are 6000 and 4000 at a phosphorus BF of 70,000. The BF/sub r/ values for catfish were approximately twice as high. The aquarium experiments suggest that the higher factors are due to a much higher phosphorus intake, higher water temperature, higher retention from pellets than from worms, and possible higher retention by catfish than bluegill under the same conditions. 36 references, 15 figures, 22 tables.

  17. How Do High School Science Textbooks in Korea, Japan, and the U.S. Explain Bioaccumulation-Related Concepts?

    ERIC Educational Resources Information Center

    Kim, Heung-Tae; Kim, Jae Geun

    2013-01-01

    Although bioaccumulation-related concepts are important scientific knowledge, a study on whether high school textbooks include appropriate explanations has not been conducted. The present study investigated science and biology textbooks from Korea, Japan, and the U.S., focusing on how bioaccumulation-related concepts were defined, what types of…

  18. Structural changes in response to bioaccumulation of iron and mercury in Chromolaena odorata (L.) King & Robins.

    PubMed

    Swapna, K S; Salim, Nabeesa; Chandra, Ratheesh; Puthur, Jos T

    2015-09-01

    A comparative study was designed to elucidate the effect of iron and mercury on the morphological and anatomical changes as well as bioaccumulation potential in Chromolaena odorata. Plants were grown in half-strength Hoagland nutrient medium artificially contaminated with known quantities of HgCl2 (15 μM) and FeCl3 (1000 μM). Bioaccumulation of Hg and Fe was maximum in the root, and comparatively reduced bioaccumulation was recorded in the stem and leaves. Microscopic studies on morphology and anatomy revealed development of trichomes and lenticels on the stem and modified trichomes on leaves. Localized deposits of stained masses in various internal parts of the root, stem and leaf also were observed. Differential adaptation/strategy of C. odorata to attain tolerance towards Hg and Fe and phytoremediation potential of the plant is discussed.

  19. Spatial and temporal variation in mercury bioaccumulation by zooplankton in Lake Champlain (North America)

    PubMed Central

    Kamman, Neil; Williams, Jason; Bugge, Deenie; Taylor, Vivien; Jackson, Brian; Miller, Eric

    2012-01-01

    Trophic transfer of Hg across lakes within a region has been related to multiple environmental factors, but the nature of these relationships across distinct basins within individual large lakes is unknown. We investigated Hg bioaccumulation in zooplankton in basins of differing trophic status in Lake Champlain (Vermont, USA) to determine the strongest predictors of Hg bioaccumulation. Zooplankton were sampled in Malletts Bay (oligotrophic) and Missisquoi Bay (eutrophic) in 2005–2008. Zooplankton in the eutrophic basin had lower concentrations of total Hg and MeHg than those in the oligotrophic basin in all years but 2007, when no bloom occurred in Missisquoi. In addition, Hg concentrations in seston and small zooplankton, sampled during 2009 at 12 sites spanning the lake, decreased with increasing phytoplankton and zooplankton biomass. Thus, Hg bioaccumulation in zooplankton across basins in Lake Champlain is related to trophic status, as observed previously in multiple lake studies. PMID:21995871

  20. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    SciTech Connect

    Young, J.S.

    1986-07-01

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing /sup 60/Co and /sup 63/Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated.

  1. Biosorption and bioaccumulation of thallium by thallium-tolerant fungal isolates.

    PubMed

    Sun, Jialong; Zou, Xiao; Xiao, Tangfu; Jia, Yanlong; Ning, Zengping; Sun, Min; Liu, Yizhang; Jiang, Tao

    2015-11-01

    Little is known about the biosorption and bioaccumulation capacity of thallium (Tl) by microorganisms that occur in Tl-polluted soil. The present study focused on characterizing the biosorption and bioaccumulation of Tl by Tl-tolerant fungi isolated from Tl-polluted soils. Preliminary data showed a positive correlation between the biomass and the biosorbed Tl content. The Tl-tolerant strains were capable of bioaccumulating Tl, up to 7189 mg kg(-1) dry weight. The subcellular distribution of Tl showed obvious compartmentalization: cytoplasm ≫ cell wall > organelle. The majority of Tl (up to 79%) was found in the cytoplasm, suggesting that intracellular compartmentalization appeared to be responsible for detoxification. These findings further suggest the applicability of the fungal isolates for cleanup of Tl in Tl-polluted water and soil.

  2. Effect of incorporation of uncertainty in PCB bioaccumulation factors on modeled receptor doses

    SciTech Connect

    Welsh, C.; Duncan, J.; Purucker, S.; Richardson, N.; Redfearn, A.

    1995-12-31

    Bioaccumulation factors (BAFs) are regularly employed in ecological risk assessments to model contaminant transfer through ecological food chains. The authors compiled data on bioaccumulation of PCBs in plants, invertebrates, birds, and mammals from published literature and used these data to develop regression equations relating soil or food concentrations to bioaccumulation. They then used Latin Hypercube simulation techniques and simple food chain models to incorporate uncertainty in the BAF regressions into the derivation of exposure dose estimates for selected wildlife receptors. The authors present their preliminary results in this paper. Dose estimates ranged over several orders of magnitude for herbivorous, insectivorous, and carnivorous receptors. These results suggest incorporating the uncertainty in BAF values into food chain exposure models could provide risk assessors and risk managers with information on the probability of a given outcome that can be used in interpreting the potential risks at hazardous waste sites.

  3. Relationship between the lability of sediment-bound Cd and its bioaccumulation in edible oyster.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita; Chennuri, Kartheek; Bardhan, Pratirupa

    2015-11-15

    A linkage between Cd speciation in sediments and its bioaccumulation in edible oyster (Crassostrea sp.) from a tropical estuarine system was established. Bioaccumulation of Cd in edible oyster increased with the increasing lability and dissociation rate constants of Cd-sediment complexes in the bottom sediments. Total Cd concentration in sediment was not a good indicator of Cd-bioavailability. Increasing trace metal competition in sediments increased lability and bioavailability of Cd in the tropical estuarine sediment. Low thermodynamic stability and high bioavailability of Cd in the estuarine sediment were responsible for high bioaccumulation of Cd in edible oysters (3.2-12.2mgkg(-1)) even though the total concentration of Cd in the bottom sediment was low (0.17-0.49mgkg(-1)).

  4. Environmental effects of dredging: Critical body residue (CBR) approach for interpreting the consequences of bioaccumulation of neutral organic contaminants. Technical notes

    SciTech Connect

    Dillon, T.M.; Gibson, A.

    1992-12-01

    This technical note describes a procedure for interpreting tissue residues of neutral organic chemicals generated in 28-day dredged material bioaccumulation bioassays. This interpretive guidance uses a critical body residue (CBR) of neutral organic chemicals reported for the fathead minnow, Pirnephales pmmelas. The CBR is based on a very large U.S. Environmental Protection Agency (EPA) acute toxicity database and well accepted quantitative structure activity relation- ships (QSARs). Guidance in this technical note is not appropriate when xenobiotic metabolism of neutral organic contaminants is likely. Background The evaluation of dredged material requires an assessment of `unacceptable adverse impacts.` Testing to support this evaluation will often include sediment bioassays.

  5. A non-equilibrium model for predicting bioaccumulation of organic contaminants in aquatic food-webs

    SciTech Connect

    Morrison, H.; Lazar, R.; Haffner, G.D.; Whittle, D.M.; Gobas, F.A.P.C.

    1995-12-31

    A sub-model describing bioaccumulation and biomagnification in benthic invertebrates was incorporated into a steady-state food-web model (Gobas, 1993) was modified, to estimate concentrations of organic contaminants in aquatic organisms based on chemical concentrations in water and sediments. Model predictions were in good agreement with field data when applied to western Lake Erie. The improved ability of the model to simulate bioaccumulation by benthic invertebrates, makes this model particularly useful for quantifying contaminant transfer in the benthic food-web.

  6. Oxidative toxicity of perfluorinated chemicals in green mussel and bioaccumulation factor dependent quantitative structure-activity relationship.

    PubMed

    Liu, Changhui; Chang, Victor W C; Gin, Karina Y H

    2014-10-01

    Concerns regarding perfluorinated chemicals (PFCs) have risen in recent years because of their ubiquitous presence and high persistency. However, data on the environmental impacts of PFCs on marine organisms are very limited. Oxidative toxicity has been suggested to be one of the major toxic pathways for PFCs to induce adverse effects on organisms. To investigate PFC-induced oxidative stress and oxidative toxicity, a series of antioxidant enzyme activities and oxidative damage biomarkers were examined to assess the adverse effects of the following 4 commonly detected compounds: perfluoro-octanesulfonate, perfluoro-ocanoic acid, perfluorononanoic acid, and perfluorodecanoic acid, on green mussel (Perna viridis). Quantitative structure-activity relationship (QSAR) models were also established. The results showed that all the tested PFCs are able to induce antioxidant response and oxidative damage on green mussels in a dose-dependent manner. At low exposure levels (0 µg/L-100 µg/L), activation of antioxidant enzymes (catalase [CAT] and superoxide dismutase [SOD]) was observed, which is an adaptive response to the excessive reactive oxygen species induced by PFCs, while at high exposure levels (100 µg/L-10 000 µg/L), PFCs were found to inhibit some enzyme activity (glutathione S-transferase and SOD) where the organism's ability to respond in an adaptive manner was compromised. The oxidative stress under high PFC exposure concentration also led to lipid and DNA damage. PFC-induced oxidative toxicity was found to be correlated with the bioaccumulation potential of PFCs. Based on this relationship, QSAR models were established using the bioaccumulation factor (BAF) as the molecular descriptor for the first time. Compared with previous octanol-water partition coefficient-dependent QSAR models, the BAF-dependent QSAR model is more suitable for the impact assessment of PFCs and thus provides a more accurate description of the toxic behavior of these compounds.

  7. Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms.

    PubMed

    Meador, J P; Stein, J E; Reichert, W L; Varanasi, U

    1995-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the marine environment, occurring at their highest environmental concentrations around urban centers. While they can occur naturally, the highest concentrations are mainly from human activities, and the primary sources are combustion products and petroleum. Two factors, lipid and organic carbon, control to a large extent the partitioning behavior of PAHs in sediment, water, and tissue; the more hydrophobic a compound, the greater the partitioning to these phases. These two factors, along with the octanol-water partition coefficient, are the best predictors of this partitioning and can be used to determine PAH behavior and its bioavailability in the environment. It is well known that the lipid of organisms contains the highest levels of hydrophobic compounds such as PAHs, and that organic carbon associated with sediment or dissolved in water can have the greatest influence on PAH bioavailability. Partitioning of combustion-derived PAHs between water and sediment may be much less than predicted, possibly because associations with particles are much stronger than expected. This reduced partitioning may produce erroneous results in predicting bioaccumulation where uptake from water is important. Accumulation of PAHs occurs in all marine organisms; however, there is a wide range in tissue concentrations from variable environmental concentrations, level and time of exposure, and species ability to metabolize these compounds. PAHs generally partition into lipid-rich tissues, and their metabolites can be found in most tissues. In fish, liver and bile accumulate the highest levels of parent PAH and metabolites; hence, these are the best tissues to analyze when determining PAH exposure. In invertebrates, the highest concentrations can be found in the internal organs, such as the hepatopancreas, and tissue concentrations appear to follow seasonal cycles, which may be related to variations in lipid content or spawning

  8. Bioaccumulation Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010

    SciTech Connect

    Adams, Marshall; Brandt, Craig C; Fortner, Allison M

    2012-05-01

    In December 2008, an ash dike at the Tennessee Valley Authority (TVA) Kingston Fossil Plant ruptured, releasing over one billion gallons of coal fly ash into the Emory and Clinch Rivers. Coal fly ash may contain several contaminants of concern, but of these selenium (Se) and arsenic (As) have been highlighted because of their toxicity and tendency to bioaccumulate in aquatic food chains. To assess the potential impact of the spilled fly ash on humans and the environment, a comprehensive biological and environmental monitoring program was established, for which resident aquatic organisms (among other sample media) are collected to determine contaminant exposure and evaluate the risk to humans and wildlife. Studies on bioaccumulation and fish health are major components of the TVA Biological Monitoring Program for the Kingston fly ash project. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish species in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure (to metals) and effects on fish, (4) evaluating, along with information regarding other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology transfer or model study focused on how to best evaluate the environmental effects of fly ash, not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report summarizes the bioaccumulation results from the first two years of study after the fly ash spill, including

  9. SOME BIOACCUMULATION FACTORS AND BIOTA-SEDIMENT ACCUMULATION FACTORS FOR POLYCYCLIC AROMATIC HYDROCARBONS IN LAKE TROUT

    EPA Science Inventory

    Bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs) for phenanthrene, fluoranthene, pyrene, benz[a]anthracene, and chrysene/triphenylene were calculated using the tissue data of Zabik et al. for Salvelinus namaycush siscovet with 20.5% lipid content, th...

  10. Equilibrium sampling to determine the thermodynamic potential for bioaccumulation of persistent organic pollutants from sediment.

    PubMed

    Jahnke, Annika; MacLeod, Matthew; Wickström, Håkan; Mayer, Philipp

    2014-10-01

    Equilibrium partitioning (EqP) theory is currently the most widely used approach for linking sediment pollution by persistent hydrophobic organic chemicals to bioaccumulation. Most applications of the EqP approach assume (I) a generic relationship between organic carbon-normalized chemical concentrations in sediments and lipid-normalized concentrations in biota and (II) that bioaccumulation does not induce levels exceeding those expected from equilibrium partitioning. Here, we demonstrate that assumption I can be obviated by equilibrating a silicone sampler with chemicals in sediment, measuring chemical concentrations in the silicone, and applying lipid/silicone partition ratios to yield concentrations in lipid at thermodynamic equilibrium with the sediment (CLip⇌Sed). Furthermore, we evaluated the validity of assumption II by comparing CLip⇌Sed of selected persistent, bioaccumulative and toxic pollutants (polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB)) to lipid-normalized concentrations for a range of biota from a Swedish background lake. PCBs in duck mussels, roach, eel, pikeperch, perch and pike were mostly below the equilibrium partitioning level relative to the sediment, i.e., lipid-normalized concentrations were ≤CLip⇌Sed, whereas HCB was near equilibrium between biota and sediment. Equilibrium sampling allows straightforward, sensitive and precise measurement of CLip⇌Sed. We propose CLip⇌Sed as a metric of the thermodynamic potential for bioaccumulation of persistent organic chemicals from sediment useful to prioritize management actions to remediate contaminated sites.

  11. Methylmercury in Marine Ecosystems: Spatial Patterns and Processes of Production, Bioaccumulation, and Biomagnification

    EPA Science Inventory

    The spatial variation of MeHg production, bioaccumulation and biomagnification in marine food webs is poorly characterized but critical to understanding the links between sources and higher trophic levels such as fish that are ultimately vectors of human and wildlife exposure. Th...

  12. Organophosphorus and Organochlorine Pesticides Bioaccumulation by Eichhornia crassipes in Irrigation Canals in an Urban Agricultural System.

    PubMed

    Mercado-Borrayo, B M; Cram Heydrich, Silke; Pérez, Irma Rosas; Hernández Quiroz, Manuel; De León Hill, Claudia Ponce

    2015-01-01

    A natural wetland in Mexico City Metropolitan Area is one of the main suppliers of crops and flowers, and in consequence its canals hold a high concentration of organochlorine (OC) and organophosphorus (OP) pesticides. There is also an extensive population of water hyacinth (Eichhornia crassipes), which is considered a plague; but literature suggests water hyacinth may be used as a phytoremediator. This study demonstrates bioaccumulation difference for the OC in vivo suggesting their bioaccumulation is ruled by their log K(ow), while all the OP showed bioaccumulation regardless of their log K(ow). The higher bioaccumulation factors (BAF) of the accumulated OC pesticides cannot be explained by their log K(ow), suggesting that the OC pesticides may also be transported passively into the plant. Translocation ratios showed that water hyacinth is an accumulating plant with phytoremediation potential for all organophosphorus pesticides studied and some organochlorine pesticides. An equation for free water surface wetlands with floating macrophytes, commonly used for the construction of water-cleaning wetlands, showed removal of the pesticides by the wetland with room for improvement with appropriate management.

  13. Exploring the Use of Multimedia Fate and Bioaccumulation Models to Calculate Trophic Magnification Factors (TMFs)

    EPA Science Inventory

    The trophic magnification factor (TMF) is considered to be a key metric for assessing the bioaccumulation potential of organic chemicals in food webs. Fugacity is an equilibrium criterion and thus reflects the relative thermodynamic status of a chemical in the environment and in ...

  14. Sediment contamination and associates laboratory-measured bioaccumulation in New York/New Jersey waterways

    SciTech Connect

    Rosman, L.B.; Barrows, E.S.

    1995-12-31

    Sediments from 10 New York/New Jersey waterways within the Hudson-Raritan Estuary and Long Island Sound were collected to depths representative of dredging activity. Composited core sediments representing each waterway were analyzed for metals, PAHs, PCBs, and pesticides. To assess bioaccumulation, sand worms (Nereis virens) and blunt-nose clams (Macoma nasuta) were exposed for 28 days to sediment composites and to New York Bight sediment. Tissues were analyzed for the same constituents as the sediment samples. The results highlight the range and magnitude of sediment contamination in NY/NJ waterways. Concentrations of some metals in sediments, compared with NY Bight sediment, were at least 10 times higher. Total PAHs reached 30,000 {micro}g/kg (dry weight). The sum of DDT, DDD, and DDE, the dominant pesticides, exceeded 3,000{micro}g/kg (dry weight). Total PCBs approached 3,000 {micro}g/kg (dry weight). Tissues exposed to sediments from several waterways bioaccumulated organic compounds at concentrations 10 times greater than those exposed to New York Bight sediments. Metals were bioaccumulated to a lesser degree. The presence and extent of bioaccumulated contaminants, along with sediment chemistry and benthic toxicity, create a profile characterizing each waterway.

  15. Stereoselectivity in bioaccumulation and excretion of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae.

    PubMed

    Lv, Xiaotian; Liu, Chen; Li, Yaobin; Gao, Yongxin; Wang, Huili; Li, Jianzhong; Guo, Baoyuan

    2014-09-01

    Stereoselectivity in bioaccumulation and excretion of stereoisomers of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae through dietary exposure was investigated. Liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method that use a ChiralcelOD-3R[cellulosetris-Tris-(3, 5-dichlorophenyl-carbamate)] chromatography column was applied to carry out chiral separation of the stereoisomers. Wheat bran was spiked with racemic epoxiconazole at two dose levels of 20mg/kg and 2mg/kg (dry weight) to feed T. molitor larvae. The results showed that both the doses of epoxiconazole were taken up by Tenebrio molitor larvae rapidly at the initial stages. There was a significant trend of stereoselective bioaccumulation in the larvae with a preferential accumulation of (-)-epoxiconazole in the 20mg/kg dose. The stereoselectivity in bioaccumulation in the 2mg/kg dosage was not obvious compared to the 20mg/kg group. Results of excretion indicated an active excretion is an important pathway for the larvae to eliminate epoxiconazole which was a passive transport process with non stereoselectivity. The faster elimination might be the reason for the low accumulation of epoxiconazole, as measured by bioaccumulation factor (BAF). PMID:24907454

  16. Assessing the bioaccumulation of contaminants from sediments by fish and other aquatic organisms

    USGS Publications Warehouse

    Willford, Wayne A.; Mac, Michael J.; Hesselberg, Robert J.

    1987-01-01

    Contaminated sediments that are not acutely toxic to aquatic organisms but contain bioaccumulable toxic substances present a common, yet poorly understood problem for regulatory decision makers. In order to recommend options to minimize bioaccumulation of these toxic substances, decisionmakers need estimates of 1. which substances are available for accumulation by aquatic organisms; and 2. the potential impacts of such accumulation. The most direct and meaningful approach to estimating bioavailability is measurement of contaminant uptake by aquatic organisms exposed to the sediments of concern. Reasonably reliable methodologies exist for performing such exposures in the laboratory and in situ using marine or freshwater organisms. Such methods can demonstrate short-term potential for bioaccumulation of toxics from the sediments, but not necessarily the biological significance or long-term impact of any accumulated residues in the organisms and transfer of those residues through the food chain. Since most contaminated sediments contain a mixture of toxic substances, determination of the biological significance of their accumulation is not likely in the near future. Thus, the direct measurement of significant bioaccumulation of toxic substances from the sediments remains the most immediately useful index in a decision-making process.

  17. Modeling Bioaccumulation as a Potential Route of Riverine Foodweb Exposures to PFOS

    EPA Science Inventory

    Perfluorinated acids are compounds of interest as bioaccumulators; these persistent chemicals have been found in humans and animals throughout the world. Perfluoroctane sulfonate (PFOS) has an especially high bioconcentration factor in fish, due to the stability of PFOS in the e...

  18. Forecasting fish biomasses, densities, productions, and bioaccumulation potentials of Mid-Atlantic wadeable streams

    EPA Science Inventory

    Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the BASS bioaccumulation and fish community model and data collected by the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP)....

  19. Annual flooding and fish-mercury bioaccumulation in the environmentally impacted Rio Madeira (Amazon).

    PubMed

    Bastos, Wanderley R; de Almeida, Ronaldo; Dórea, José G; Barbosa, Antonio C

    2007-04-01

    Regular annual flooding of the Amazonian rivers changes the aquatic environment affecting fish feeding strategies. The Rio Madeira has been greatly impacted by deforestation for agricultural projects, damming for a hydroelectric power plant, and alluvial gold extraction. We studied fish-Hg concentrations within defined weight ranges of representative species at the top of the food web, comparing high and low water seasons. Selected piscivorous species (Cichla spp, Hoplias malabaricus, Pinirampus pirinampu, Serrasalmus spp) showed a large variation of Hg concentrations but only "traíra" (Hoplias malabaricus) showed a statistically significant difference between seasons. However, the bioaccumulation trends during high and low waters were similar for "tucunaré" (Cichla spp) and "traíra" (Hoplias malabaricus) but different for "piranhas" (Serrasalmus spp), "barba chata" (Pinirampus pirinampu) and the detritivorous Prochilodus nigricans. Fish-Hg bioaccumulation is species specific; changes in feeding strategies brought by flooding seasons can change the bioaccumulation pattern without systematically affecting the overall accrual of methylmercury in tertiary consumer species. It appears that naturally occurring Hg and the high sediment load of the Rio Madeira are secondary factors in the Hg bioaccumulation pattern of fish species at the top of the food chain. PMID:17356898

  20. Annual flooding and fish-mercury bioaccumulation in the environmentally impacted Rio Madeira (Amazon).

    PubMed

    Bastos, Wanderley R; de Almeida, Ronaldo; Dórea, José G; Barbosa, Antonio C

    2007-04-01

    Regular annual flooding of the Amazonian rivers changes the aquatic environment affecting fish feeding strategies. The Rio Madeira has been greatly impacted by deforestation for agricultural projects, damming for a hydroelectric power plant, and alluvial gold extraction. We studied fish-Hg concentrations within defined weight ranges of representative species at the top of the food web, comparing high and low water seasons. Selected piscivorous species (Cichla spp, Hoplias malabaricus, Pinirampus pirinampu, Serrasalmus spp) showed a large variation of Hg concentrations but only "traíra" (Hoplias malabaricus) showed a statistically significant difference between seasons. However, the bioaccumulation trends during high and low waters were similar for "tucunaré" (Cichla spp) and "traíra" (Hoplias malabaricus) but different for "piranhas" (Serrasalmus spp), "barba chata" (Pinirampus pirinampu) and the detritivorous Prochilodus nigricans. Fish-Hg bioaccumulation is species specific; changes in feeding strategies brought by flooding seasons can change the bioaccumulation pattern without systematically affecting the overall accrual of methylmercury in tertiary consumer species. It appears that naturally occurring Hg and the high sediment load of the Rio Madeira are secondary factors in the Hg bioaccumulation pattern of fish species at the top of the food chain.

  1. Modulation of cadmium bioaccumulation and enhancing cadmium tolerance in Pichia kudriavzevii by sodium chloride preincubation.

    PubMed

    Ma, Ning; Li, Chunsheng; Zhang, Dandan; Yu, Jinzhi; Xu, Ying

    2016-07-01

    Application of growing microorganisms for cadmium removal is limited by the sensitivity of living cells to cadmium. The effects of sodium chloride (NaCl) preincubation on the cadmium bioaccumulation and tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae were investigated in this study. NaCl preincubation significantly reduced the intracellular and cell-surface cadmium bioaccumulation of P. kudriavzevii at both 6 and 20 mg L(-1) cadmium, while no obvious effect was observed in S. cerevisiae except that the intracellular cadmium bioaccumulation at 20 mg L(-1) cadmium was reduced obviously by 20-60 g L(-1)  NaCl. For both yeasts, the improved contents of protein and proline after NaCl preincubation contributed to the cadmium tolerance. The thiol contents in P. kudriavzevii under cadmium stress were alleviated by NaCl preincubation, which might be due to the decrease of intracellular cadmium bioaccumulation. NaCl preincubation enhanced the contents of glycerol and trehalose in P. kudriavzevii under cadmium stress, while no acceleration was observed in S. cerevisiae. The results suggested that NaCl preincubation could be applied in cadmium removal by growing P. kudriavzevii to increase the cadmium tolerance of the yeast. PMID:26753521

  2. Bioaccumulation and oxidative stress in Daphnia magna exposed to arsenite and arsenate.

    PubMed

    Fan, Wenhong; Ren, Jinqian; Li, Xiaomin; Wei, Chaoyang; Xue, Feng; Zhang, Nan

    2015-11-01

    Arsenic pollution and its toxicity to aquatic organisms have attracted worldwide attention. The bioavailability and toxicity of arsenic are highly related to its speciation. The present study investigated the differences in bioaccumulation and oxidative stress responses in an aquatic organism, Daphnia magna, induced by 2 inorganic arsenic species (As(III) and As(V)). The bioaccumulation of arsenic, Na(+) /K(+) -adenosine triphosphatase (ATPase) activity, reactive oxygen species (ROS) content, total superoxide dismutase (SOD) activity, total antioxidative capability, and malondialdehyde content in D. magna were determined after exposure to 500 µg/L of arsenite and arsenate for 48 h. The results showed that the oxidative stress and antioxidative process in D. magna exposed to arsenite and arsenate could be divided into 3 phases, which were antioxidative response, oxidation inhibition, and antioxidative recovery. In addition, differences in bioaccumulation, Na(+) /K(+) -ATPase activity, and total SOD activity were also found in D. magna exposed to As(III) and As(V). These differences might have been the result of the high affinity of As(III) with sulfhydryl groups in enzymes and the structural similarity of As(V) to phosphate. Therefore, arsenate could be taken up by organisms through phosphate transporters, could substitute for phosphate in biochemical reactions, and could lead to a change in the bioaccumulation of arsenic and activity of enzymes. These characteristics were the possible reasons for the different toxicity mechanisms in the oxidative stress process of arsenite and arsenate.

  3. BIOACCUMULATION, BIOTRANSFORMATION, AND METABOLITE FORMATION OF FIPRONIL AND CHIRAL LEGACY PESTICIDES IN RAINBOW TROUT

    EPA Science Inventory

    To assess the fate of current-use pesticides it is important to understand their bioaccumulation and biotransformation by aquatic biota. We examined the dietary accumulation and enantioselective biotransformation of the chiral current-use pesticide fipronil, along with a mixture ...

  4. Influence of environmental variables on bioaccumulation of mercury. Environmental effects of dredging. Technical note

    SciTech Connect

    Clarkks, J.; Lutz, C.; McFarland, V.

    1988-12-01

    The purpose of this note examines the effects of environmental factors on the bioavailability of mercury from sediment and describes results of a laboratory experiment to assess the influence of temperature, salinity, and suspended sediment on bioaccumulation of mercury in estuarine clams and killifish.

  5. Experts Workshop on the Ecotoxicological Risk Assessment of Ionizable Organic Chemicals: Bioaccumulation/ADME

    EPA Science Inventory

    The bioaccumulation potential of neutral organic chemicals (e.g., PCBs, DDT, brominated flame retardants) has received a great deal of attention from scientists in the field of environment toxicology and chemistry over the past four decades. Regulations based on our understanding...

  6. Stereoselectivity in bioaccumulation and excretion of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae.

    PubMed

    Lv, Xiaotian; Liu, Chen; Li, Yaobin; Gao, Yongxin; Wang, Huili; Li, Jianzhong; Guo, Baoyuan

    2014-09-01

    Stereoselectivity in bioaccumulation and excretion of stereoisomers of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae through dietary exposure was investigated. Liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method that use a ChiralcelOD-3R[cellulosetris-Tris-(3, 5-dichlorophenyl-carbamate)] chromatography column was applied to carry out chiral separation of the stereoisomers. Wheat bran was spiked with racemic epoxiconazole at two dose levels of 20mg/kg and 2mg/kg (dry weight) to feed T. molitor larvae. The results showed that both the doses of epoxiconazole were taken up by Tenebrio molitor larvae rapidly at the initial stages. There was a significant trend of stereoselective bioaccumulation in the larvae with a preferential accumulation of (-)-epoxiconazole in the 20mg/kg dose. The stereoselectivity in bioaccumulation in the 2mg/kg dosage was not obvious compared to the 20mg/kg group. Results of excretion indicated an active excretion is an important pathway for the larvae to eliminate epoxiconazole which was a passive transport process with non stereoselectivity. The faster elimination might be the reason for the low accumulation of epoxiconazole, as measured by bioaccumulation factor (BAF).

  7. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.).

    PubMed

    Besseling, Ellen; Wegner, Anna; Foekema, Edwin M; van den Heuvel-Greve, Martine J; Koelmans, Albert A

    2013-01-01

    It has been speculated that marine microplastics may cause negative effects on benthic marine organisms and increase bioaccumulation of persistent organic pollutants (POPs). Here, we provide the first controlled study of plastic effects on benthic organisms including transfer of POPs. The effects of polystyrene (PS) microplastic on survival, activity, and bodyweight, as well as the transfer of 19 polychlorinated biphenyls (PCBs), were assessed in bioassays with Arenicola marina (L.). PS was pre-equilibrated in natively contaminated sediment. A positive relation was observed between microplastic concentration in the sediment and both uptake of plastic particles and weight loss by A. marina. Furthermore, a reduction in feeding activity was observed at a PS dose of 7.4% dry weight. A low PS dose of 0.074% increased bioaccumulation of PCBs by a factor of 1.1-3.6, an effect that was significant for ΣPCBs and several individual congeners. At higher doses, bioaccumulation decreased compared to the low dose, which however, was only significant for PCB105. PS had statistically significant effects on the organisms' fitness and bioaccumulation, but the magnitude of the effects was not high. This may be different for sites with different plastic concentrations, or plastics with a higher affinity for POPs.

  8. Influences of sedimentary organic matter quality on the bioaccumulation of 4-nonylphenol by estuarine amphipods.

    PubMed

    Hecht, Scott A; Gunnarsson, Jonas S; Boese, Bruce L; Lamberson, Janet O; Schaffner, Christian; Giger, Walter; Jepson, Paul C

    2004-04-01

    Nonylphenol (NP) is a moderately persistent, hydrophobic chemical with endocrine-disrupting and acute narcotic effects in aquatic biota. Concern exists about the ultimate fate of NP in aquatic ecosystems and the potential for bioaccumulation by benthic biota from the sediment with the potential for further transfer to higher trophic levels. Our goals were to determine if benthic amphipods bioaccumulate significant amounts of NP from sediment and to determine how additions of organic matter influence NP bioaccumulation by amphipods. Estuarine sediment was spiked with 14C-NP and enriched with two types of organic carbon (OC) sources of different nutritional qualities. Macrophytic algae (Ulva species) were used as a labile and nutritious OC source. Wood lignins were used as a refractory and low-nutrition OC source. Nonylphenol bioaccumulation was measured in Eohaustorius estuarius, Grandidierella japonica, and Corophium salmonis after 16 d of exposure. Nonylphenol accumulation was inversely proportional to OC quantity, but was unaffected by OC nutritional quality. Significant differences were found in the accumulation patterns between the three amphipod species. Mean biota-sediment accumulation factors ranged from 8.1 to 33.9 in E. estuarius, from 4.6 to 17.2 in G. japonica, and averaged 7.1 in male C. salmonis and 16.0 in female C. salmonis. These accumulation factors indicate that estuarine amphipods could constitute an important source of NP to higher trophic levels, such as juvenile fish. PMID:15095881

  9. ENHANCED BIOACCUMULATION OF HEAVY METAL BY BACTERIA CELLS DISPLAYING SYNTHETIC PHYTOCHELATINS. (R827227)

    EPA Science Inventory

    A novel strategy using synthetic phytochelatins is described for the purpose of developing microbial agents for enhanced bioaccumulation of toxic metals. Synthetic genes encoding for several metal-chelating phytochelatin analogs (Glu-Cys)nGly (EC8 (n = 8), EC11 (n = 11...

  10. Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil

    SciTech Connect

    van Gestel, C.A.; Ma, W.C.

    1988-06-01

    The acute toxicity of five chlorophenols for two earthworm species was determined in two sandy soils differing in organic matter content and the results were compared with adsorption data. Adsorption increased with increasing organic matter content of the soils, but for tetra- and pentachlorophenol was also influenced by soil pH. Earthworm toxicity was significantly higher in the soil with a low level of organic matter. This difference disappeared when LC50 values were recalculated to concentrations in soil solution using adsorption data. Eisenia fetida andrei showed LC50 values lower than those of Lumbricus rubellus although bioaccumulation was generally higher in the latter species. Toxicity and bioaccumulation based on soil solution concentrations increased with increasing lipophilicity of the chlorophenols. The present results indicate that the toxicity and bioaccumulation and therefore the bioavailability of chlorophenols in soil to earthworms are dependent on the concentration in soil solution and can be predicted on the basis of adsorption data. Both the toxicity of and bioaccumulation data on chlorophenols in earthworms demonstrated surprisingly good agreement with those on chlorophenols in fish.

  11. Modeling bioaccumulation and biotransformation of PAHs and PCBs by benthic macrofauna from lower Chesapeake Bay

    SciTech Connect

    Dickhut, R.M.; Schaffner, L.C.; Lay, P.; Mitra, S.

    1995-12-31

    The bioaccumulation and biotransformation of selected PAHs and PCBs from sediments spiked with radiolabeled compounds were examined in benthic communities from lower chesapeake Bay during summer and winter. Kinetic models were then used to determine the steady-state bioaccumulation factors (BAFs) for the parent compounds in various benthic macrofaunal organisms, as well as the BAFs of aqueous soluble metabolites that tended to accumulate in the animals. BAFs for the parent compounds increased with the octanol-water partition coefficient (K{sub ow}) of the compound up to a log K{sub ow} of approximately 6. However, in contrast to previous studies, the elimination rate constant was the dominant factor controlling the observed nonequilibrium with respect to bioaccumulation of the organic contaminants. Consequently, BAFs for the parent contaminants were related to the physical-chemical factors regulating passive elimination, as well as metabolic transformation of the parent compound. Aqueous soluble metabolite BAFs were directly related to the physical-chemical factors dictating the rate of formation of the conjugated complexes. Overall, body burdens of organic contaminants were higher in the summer relative to winter, as were the aqueous soluble metabolite fractions of contaminants in the animals, possibly indicating that organism activities as well as lipid pools are higher in summer compared to winter. The results indicate that a variety of physical, chemical, and biological factors interact in the ecosystem to dictate bioaccumulation and biotransformation of organic contaminants.

  12. Thermal inactivation of enteric viruses and bioaccumulation of enteric foodborne viruses in live oysters (Crassostrea virginica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human enteric viruses are one of the main causative agents of shellfish associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stability of the most predominant enteric viruses were determined in both tissue culture and in oyster tissues. A human nor...

  13. BIOACCUMULATION AND BIOTRANSFORMATION OF CHIRAL TRIAZOLE FUNGICIDES IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    EPA Science Inventory

    There are very little data on the bioaccumulation and biotransformation of current-use pesticides (CUPs) despite the fact that such data are critical in assessing their fate and potential toxic effects in aquatic organisms. To help address this issue, juvenile rainbow trout (Onco...

  14. Modulation of cadmium bioaccumulation and enhancing cadmium tolerance in Pichia kudriavzevii by sodium chloride preincubation.

    PubMed

    Ma, Ning; Li, Chunsheng; Zhang, Dandan; Yu, Jinzhi; Xu, Ying

    2016-07-01

    Application of growing microorganisms for cadmium removal is limited by the sensitivity of living cells to cadmium. The effects of sodium chloride (NaCl) preincubation on the cadmium bioaccumulation and tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae were investigated in this study. NaCl preincubation significantly reduced the intracellular and cell-surface cadmium bioaccumulation of P. kudriavzevii at both 6 and 20 mg L(-1) cadmium, while no obvious effect was observed in S. cerevisiae except that the intracellular cadmium bioaccumulation at 20 mg L(-1) cadmium was reduced obviously by 20-60 g L(-1)  NaCl. For both yeasts, the improved contents of protein and proline after NaCl preincubation contributed to the cadmium tolerance. The thiol contents in P. kudriavzevii under cadmium stress were alleviated by NaCl preincubation, which might be due to the decrease of intracellular cadmium bioaccumulation. NaCl preincubation enhanced the contents of glycerol and trehalose in P. kudriavzevii under cadmium stress, while no acceleration was observed in S. cerevisiae. The results suggested that NaCl preincubation could be applied in cadmium removal by growing P. kudriavzevii to increase the cadmium tolerance of the yeast.

  15. Assessments of chromium (and other metals) in vegetables and potential bio-accumulations in humans living in areas affected by tannery wastes.

    PubMed

    Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin

    2014-10-01

    Chromium (Cr) commonly enters the food chain through uptake by vegetables. However, accurate prediction of plant uptake of Cr (and other metals) still remains a challenge. In this study, we evaluated 5 indices of availability for Cr (and other metals) to identify reliable predictors of metal transfer from soils to garlic, onion, bokchoy, radish and celery grown in soils impacted by tannery wastes. The potential bio-accumulation of Cr in humans was calculated from the Cr content of vegetable predicted by the best bio-availability index, amounts of vegetable consumed and recommended daily doses for Cr. Our results show that soil total Cr is the best predictor of Cr transfer from soils to onion (Cr in onion=8.51+0.005 Total Cr) while Cr extractable by Synthetic Precipitation Leaching Procedure at pH 5 correlates very well with Cr uptake by bokchoy (Cr bokchoy=5.86+7.32 SPLP-5 Cr) and garlic (Cr garlic=7.63+2.36 SPLP-5 Cr). The uptake of Cr by radish and celery could not be reliably estimated by any of the 5 indices of availability tested in this study. Potential bio-accumulation of Cr in humans (BA-Cr) increases from soils with low Cr (BA-Cr=11.5) to soil with high total Cr (BA-Cr=31.3). Due to numerous soil factors affecting the behavior of Cr in soils and the physiological differences among vegetables, we suggest that the prediction of the transfer of Cr (and other metals) from soils to plants should be specific to site, metal and vegetable. Potential bio-accumulation of Cr in humans can be derived from a transfer function of Cr from soils to plants and the human consumption of vegetables.

  16. Bioaccumulation and toxicity of selenium during a life-cycle exposure with desert pupfish (Cyprinodon macularius)

    USGS Publications Warehouse

    2012-01-01

    Populations of desert pupfish (Cyprinodon macularius; pupfish), a federally-listed endangered species, inhabit irrigation drains in the Imperial Valley agricultural area of southern California. These drains have varying degrees of selenium (Se) contamination of water, sediment, and aquatic biota. Published Se toxicity studies suggest that these levels of Se contamination may pose risk of chronic toxicity to Se-sensitive fish, but until recently there have been no studies of the chronic toxicity of Se to desert pupfish. A life-cycle Se exposure with pupfish was conducted to estimate dietary and tissue thresholds for toxic effects of Se on all life stages. The dietary exposure was based on live oligochaete worms (Lumbriculus variegatus) dosed with Se by a laboratory food chain based on selenized yeast. Oligochaetes readily accumulated Se from mixtures of selenized and control yeasts. The protocol for dosing oligochaetes for pupfish feeding studies included long-term (at least 28 days) feeding of a low-ration of yeast mixtures to large batches of oligochaetes. Oligochaetes were dosed at five Se levels in a 50-percent dilution series. Pupfish were simultaneously fed Se-dosed oligochaetes and exposed to a series of Se concentrations in water (consisting of 85 percent selenate and 15 percent selenite) to produce exposures that were consistent with Se concentrations and speciation in pupfish habitats. The nutritional characteristics of oligochaete diets were consistent across the range of oligochaete Se concentrations tested. The life-cycle exposure started with laboratory-cultured juvenile pupfish that were exposed to Se through sexual maturation and reproduction (150 days; F0 exposure). The Se exposure continued with eggs, larvae, and juveniles produced by Se-exposed parents (79 days; F1 exposure). Selenium exposure (water and diets), Se bioaccumulation (whole-body and eggs), and toxicity endpoints (juvenile and adult survival and growth; egg production and hatching

  17. Contrasting PCB bioaccumulation patterns among Lake Huron lake trout reflect basin-specific ecology.

    PubMed

    Paterson, Gordon; Ryder, Mark; Drouillard, Ken G; Haffner, G Douglas

    2016-01-01

    This study collected multiple age classes of lake trout from Lake Huron's Main Basin, Georgian Bay, and North Channel regions to compare and contrast top predator polychlorinated biphenyl (PCB) bioaccumulation patterns in separate compartments of the same ecosystem. Sum PCB concentrations were highest for Main Basin (260 ± 24.9 ng g(-1) wet wt) fish, followed by Georgian Bay (74.6 ± 16.2 ng g(-1) ) and North Channel (42.0 ± 3.3 ng g(-1)) fish. Discriminant functions analysis of lake trout PCB profiles and stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values clearly distinguished fish by location, indicating high degrees of basin fidelity throughout their lifetimes in addition to highly contrasting PCB bioaccumulation profiles. These unique profiles were not attributable to significant differences in lake trout lipid contents (p = 0.856) or trophic position (δ(15)N; p = 0.334), with rainbow smelt representing the primary prey across the basins. Furthermore, significant differences were observed among the basins for the relationships between PCB biomagnification factors and hydrophobicity. An empirical model for predicting PCB biomagnification in Lake Huron lake trout indicated that basin-specific population growth rates and prey abundances were significant for explaining these contrasting patterns of PCB bioaccumulation. The results of the present study are fundamental for understanding the role of ecology in legacy persistent organic pollutant (POP) bioaccumulation. Specifically, ecosystem characteristics such as prey abundances, foraging ecology, and ultimately consumer growth can regulate the variability of legacy POP bioaccumulation as observed within and among a wide range of freshwater ecosystems.

  18. Uptake pathway for Ag bioaccumulation in three benthic invertebrates exposed to contaminated sediments

    USGS Publications Warehouse

    Yoo, H.; Lee, J.-S.; Lee, B.-G.; Lee, I.T.; Schlekat, C.E.; Koh, C.-H.; Luoma, S.N.

    2004-01-01

    We exposed 3 benthic invertebrates, the clam Macoma balthica, the polychaete Neanthes arenaceodentata and the amphipod Leptocheirus plumulosus, to Ag-contaminated sediments to evaluate the relative importance of various uptake routes (sediments, porewater or overlying water, and supplementary food) for Ag bioaccumulation. Silver bioaccumulation was evaluated at 4 levels of sediment Ag (0.1, 0,3, 1,2 and 3.3 ??mol Ag g-1) and 2 levels of acid-volatile sulfide (AVS), <0.5 or ???40 ??mol g-1, and compared among food treatments with or without Ag contamination, or with different food rations. L. plumulosus were incubated for 35 d in the Ag-contaminated sediments after 3 mo of Ag-sediment equilibration, and M. balthica and N. arenaceodentata for 19 d after 5 mo equilibration. Ag bioaccumulation in the 3 organisms was significantly correlated with 1N HCl-extractable Ag concentrations (Ag-SEM: simultaneously extracted Ag with AVS) in sediments. The Ag concentrations in porewater and overlying water were greatest in the sediments with least AVS, consistent with previous studies. Nevertheless, the amphipod and clam exposed to oxic sediments (<0.5 ??mol AVS g-1) accumulated amounts of Ag similar to those accumulated by organisms exposed to anoxic sediments (???40 ??mol AVS g-1), when Ag-SEM levels were comparable. The dissolved Ag source was important for bioaccumulation in the polychaete N. arenaceodentata. Amphipods fed Ag-contaminated food contained ???1.8-fold more tissue Ag concentrations than those fed uncontaminated food. As suggested in kinetic (DYMBAM) modeling studies, ingestion of contaminated sediments and food were the principle routes of Ag bioaccumulation by the benthic invertebrates during chronic exposure, but the relative importance of each uptake route differed among species.

  19. Bioaccumulation of nickel and its biochemical and genotoxic effects on juveniles of the neotropical fish Prochilodus lineatus.

    PubMed

    Palermo, Francine F; Risso, Wagner E; Simonato, Juliana D; Martinez, Claudia B R

    2015-06-01

    Juveniles of the freshwater fish Prochilodus lineatus were exposed to three concentrations of nickel (Ni): 25, 250 and 2500 µg L(-1) or water only for periods of 24 and 96 h to test for Ni bioaccumulation, its effects on antioxidant defenses and metallothioneins, and the occurrence of DNA damage. After exposure, the fish were sampled and tissue removed from the gills, liver, kidney and muscle to test for Ni accumulation and conduct biochemical (gills and liver) and genotoxic (blood cells and gills) analyses. The results showed that Ni accumulates in the organs in different proportions (kidney>liver>gills>muscle) and accumulation varied according to exposure time. Metallothionein (MT) levels increased in the liver and gills after exposure to Ni, implying that the presence of Ni in these tissues could induce MT synthesis. We also observed that Ni exposure affected antioxidant defenses, increasing lipid peroxidation in the liver of fish exposed to Ni for 96 h at the highest concentration tested. DNA damage increased in both blood cells and gills of fish exposed to all Ni concentrations, indicating the genotoxic potential of Ni on fish. We therefore concluded that Ni accumulates in various tissues and results in oxidative and DNA damage in P. lineatus, and that the maximum permitted Ni concentration set in Brazilian legislation (25 µg L(-1)) for freshwaters is not safe for this species. PMID:25744913

  20. Importance of black carbon in distribution and bioaccumulation models of polycyclic aromatic hydrocarbons in contaminated marine sediments.

    PubMed

    Vinturella, Amy E; Burgess, Robert M; Coull, Brent A; Thompson, Kimberly M; Shine, James P

    2004-11-01

    The roles and relative importance of nonpyrogenic organic carbon (NPOC) and black carbon (BC) as binding phases of polycyclic aromatic hydrocarbons (PAHs) were assessed by their ability to estimate pore water concentrations and biological uptake in various marine sediments. Sediment bioaccumulation tests were performed with the marine polychaete Nereis virens, using a polyethylene device to estimate pore water concentrations of PAHs. Using existing partitioning data for pyrene and phenanthrene, it was found that the traditional Equilibrium Partitioning model, which assumes all organic carbon is NPOC (EqP(OC)), overestimated the measured pore water concentrations in the test sediments by one to three orders of magnitude. Instead, the measured pore water concentrations were better predicted from a distribution scenario that uses both BC and NPOC (EqP(NPOc,BC)) When comparing actual worm body burdens of pyrene and phenanthrene with the two model estimates of worm tissue concentrations, the EqP(OC) model tended to overestimate actual body burdens by three orders of magnitude, while the EqP(NPOC,BC) model came much closer to the true body burden values. The observed distribution of PAHs in the test sediments was used to calculate BC partition coefficients for five PAHs, which were one to two orders of magnitude higher than their corresponding organic carbon-normalized distribution coefficients, or K(OC)s. Together, these results suggest that, in certain situations, adding black carbon to distribution models may be necessary to predict accurately the bioavailability of PAHs.

  1. Intra- and inter-laboratory reliability of a cryopreserved trout hepatocyte assay for the prediction of chemical bioaccumulation potential

    EPA Science Inventory

    Cryopreserved trout hepatocytes provide a convenient in vitro system for measuring the intrinsic clearance of xenobiotics. Measured clearance rates can then be extrapolated to the whole animal as a means of improving modeled bioaccumulation predictions. To date, however, the in...

  2. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species.

    PubMed

    Moses, Sara K; Harley, John R; Lieske, Camilla L; Muir, Derek C G; Whiting, Alex V; O'Hara, Todd M

    2015-11-15

    Risk assessments of persistent organic pollutants (POPs) are often based on octanol-water (KOW) partitioning dynamics and may not adequately reflect bioaccumulation in air-breathing organisms. It has been suggested that compounds with low KOW and high octanol-air partitioning (KOA) coefficients have the potential to bioaccumulate in air-breathing organisms, including marine mammals. Here we evaluate differences in concentrations of POPs for two trophically matched Arctic species, spotted seal (Phoca largha) and sheefish (Stenodus leucichthys). We compared concentrations of 108 POPs in matched tissues (liver and muscle) across three ranges of KOW. We found a significant positive correlation between POP concentration and log KOA in spotted seal tissues for low log KOW compounds (log KOW <5.5, p<0.05). This provides further evidence for empirical models and observed bioaccumulation patterns in air-breathing organisms, and highlights the potential for bioaccumulation of these compounds in Arctic marine mammals. PMID:26440545

  3. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species.

    PubMed

    Moses, Sara K; Harley, John R; Lieske, Camilla L; Muir, Derek C G; Whiting, Alex V; O'Hara, Todd M

    2015-11-15

    Risk assessments of persistent organic pollutants (POPs) are often based on octanol-water (KOW) partitioning dynamics and may not adequately reflect bioaccumulation in air-breathing organisms. It has been suggested that compounds with low KOW and high octanol-air partitioning (KOA) coefficients have the potential to bioaccumulate in air-breathing organisms, including marine mammals. Here we evaluate differences in concentrations of POPs for two trophically matched Arctic species, spotted seal (Phoca largha) and sheefish (Stenodus leucichthys). We compared concentrations of 108 POPs in matched tissues (liver and muscle) across three ranges of KOW. We found a significant positive correlation between POP concentration and log KOA in spotted seal tissues for low log KOW compounds (log KOW <5.5, p<0.05). This provides further evidence for empirical models and observed bioaccumulation patterns in air-breathing organisms, and highlights the potential for bioaccumulation of these compounds in Arctic marine mammals.

  4. Exploring the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus using dynamic energy budget modeling

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we conducted growth and bioaccumulation studies that contribute t...

  5. Spatial and taxonomic variation in trace element bioaccumulation in two herbivores from a coal combustion waste contaminated stream.

    PubMed

    Fletcher, Dean E; Lindell, Angela H; Stillings, Garrett K; Mills, Gary L; Blas, Susan A; Vaun McArthur, J

    2014-03-01

    Dissimilarities in habitat use, feeding habits, life histories, and physiology can result in syntopic aquatic taxa of similar trophic position bioaccumulating trace elements in vastly different patterns. We compared bioaccumulation in a clam, Corbicula fluminea and mayfly nymph Maccaffertium modestum from a coal combustion waste contaminated stream. Collection sites differed in distance to contaminant sources, incision, floodplain activity, and sources of flood event water and organic matter. Contaminants variably accumulated in both sediment and biofilm. Bioaccumulation differed between species and sites with C. fluminea accumulating higher concentrations of Hg, Cs, Sr, Se, As, Be, and Cu, but M. modestum higher Pb and V. Stable isotope analyses suggested both spatial and taxonomic differences in resource use with greater variability and overlap between species in the more physically disturbed site. The complex but essential interactions between organismal biology, divergence in resource use, and bioaccumulation as related to stream habitat requires further studies essential to understand impacts of metal pollution on stream systems.

  6. Assessing element-specific patterns of bioaccumulation across New England lakes

    PubMed Central

    Ward, Darren M.; Mayes, Brandon; Sturup, Stefan; Folt, Carol L.; Chen, Celia Y.

    2012-01-01

    Little is known about differences among trace elements in patterns of bioaccumulation in freshwater food webs. Our goal was to identify patterns in bioaccumulation of different elements that are large and consistent enough to discern despite variation across lakes. We measured methylmercury (MeHg) and trace element (As, Cd, Hg, Pb, and Zn) concentrations in food web components of seven New England lakes on 3–5 dates per lake, and contrasted patterns of bioaccumulation across lakes, metals and seasons. In each lake, trace element concentrations were compared across trophic levels, including three size fractions of zooplankton, planktivorous fish, and piscivorous fish. The trophic position of each food web component was estimated from N isotope analysis. Trace element concentrations varied widely among taxa, lakes and sampling dates. Yet, we identified four consistent patterns of bioaccumulation that were consistent across lakes: (1) MeHg concentration increased (i.e., was biomagnified) and Pb concentration decreased (i.e., was biodiminished) with increased trophic position. (2) Zinc concentration (as with MeHg) was higher in fish than in zooplankton, but overall variation in Zn concentration (unlike MeHg) was low. (3) Arsenic and Cd concentrations (as with Pb) were lower in fish than in zooplankton, but (unlike Pb) were not significantly correlated with trophic position within zooplankton or fish groups. (4) Average summer concentrations of As, Pb, Hg, and MeHg in zooplankton significantly predicted their concentrations in either planktivorous or piscivorous fish. Our secondary goal was to review sampling approaches in forty-five published studies to determine the extent to which current sampling programs facilitate cross-lake and cross-study comparisons of bioaccumulation. We found that studies include different components of the food web and sample too infrequently to enable strong cross-lake and cross-study comparisons. We discuss sampling strategies that would

  7. Dynamic multipathway modeling of Cd bioaccumulation in Daphnia magna using waterborne and dietborne exposures.

    PubMed

    Goulet, Richard R; Krack, Susannah; Doyle, Patrick J; Hare, Landis; Vigneault, Bernard; McGeer, James C

    2007-02-28

    We tested the predictive ability of the dynamic multipathway bioaccumulation model (DYMBAM) to characterize Cd accumulation in Daphnia magna, a species commonly used in toxicity tests and because of its sensitivity, particularly to metals, a species that is relied upon in ecological risk assessments. We conducted chronic exposure experiments in which D. magna were exposed to either dietborne Cd alone or to both dietborne and waterborne Cd. In the food-only treatments, the algae Chlamydomonas reinhardtii or Pseudokirchneriella subcapitata were pre-exposed to free Cd ion concentrations, [Cd(2+)], from 0.001 to 100nM (0.001-11microgL(-1)) then, on a daily feeding renewal basis, fed to D. magna over 21 days. In the water plus food treatment, D. magna were exposed for 21 days to the same range of [Cd(2+)] and fed with the same algal species that had been exposed to Cd at various concentrations. In the algal exposure media, Cd concentrations in algae were directly related to those in water and were characterized by a linear regression model using the log transformed concentration of the WHAM predicted Cd(2+) concentration. The DYMBAM was used with estimated values of the model constants for ingestion rate (0.08-0.34gg(-1)day(-1)) and growth rate (0.085-0.131day(-1)) based on our experimental data and with literature values for rate constants of Cd influx and efflux as well as Cd assimilation efficiency. Measured Cd concentrations in D. magna agreed with model predictions within a factor of 3. Using the model, we predict that food is an important contributor of Cd burden to D. magna, particularly at lower Cd exposure concentrations over an environmentally realistic gradient of free Cd in water. However, this cladoceran also takes up Cd from water and this exposure route becomes increasingly important at very high concentrations of free Cd (>10nM or 1.1microgL(-1)). Nevertheless, Cd produced lethal effects in D. magna that were exposed to this metal in water and diet, but

  8. Bioaccumulation kinetics of the conventional energetics TNT and RDX relative to insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles.

    PubMed

    Lotufo, Guilherme R; Biedenbach, James M; Sims, Jerre G; Chappell, Pornsawan; Stanley, Jacob K; Gust, Kurt A

    2015-04-01

    The manufacturing of explosives and their loading, assembling, and packing into munitions for use in testing on training sites or battlefields has resulted in contamination of terrestrial and aquatic sites that may pose risk to populations of sensitive species. The bioaccumulative potential of the conventional explosives 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and of the insensitive munitions (i.e., less shock sensitive) compound 2,4-dinitroanisole (DNAN) were assessed using the Northern leopard frog, Rana pipiens. Trinitrotoluene entering the organism was readily biotransformed to aminodinitrotoluenes, whereas no transformation products were measured for RDX or DNAN. Uptake clearance rates were relatively slow and similar among compounds (1.32-2.19 L kg(-1) h(-1) ). Upon transfer to uncontaminated water, elimination rate was very fast, resulting in the prediction of fast time to approach steady state (5 h or less) and short elimination half-lives (1.2 h or less). A preliminary bioconcentration factor of 0.25 L kg(-1) was determined for the insensitive munitions compound 3-nitro-1,2,4-trizole-5-one (NTO) indicating negligible bioaccumulative potential. Because of the rapid elimination rate for explosives, tadpoles inhabiting contaminated areas are expected to experience harmful effects only if under constant exposure conditions given that body burdens can rapidly depurate preventing tissue concentrations from persisting at levels that may cause detrimental biological effects.

  9. Age and trophic position dominate bioaccumulation of mercury and organochlorines in the food web of Lake Washington

    USGS Publications Warehouse

    McIntyre, J.K.; Beauchamp, D.A.

    2007-01-01

    Understanding the mechanisms of bioaccumulation in food webs is critical to predicting which food webs are at risk for higher rates of bioaccumulation that endanger the health of upper-trophic predators, including humans. Mercury and organochlorines were measured concurrently with stable isotopes of nitrogen and carbon in key fishes and invertebrates of Lake Washington to explore important pathways of bioaccumulation in this food web. Across the food web, age and trophic position together were highly significant predictors of bioaccumulation. Trophic position was more important than age for predicting accumulation of mercury, ???DDT, and ???-chlordane, whereas age was more important than trophic position for predicting ???PCB. Excluding age from the analysis inflated the apparent importance of trophic position to bioaccumulation for all contaminants. Benthic and pelagic habitats had similar potential to bioaccumulate contaminants, although higher ???-chlordane concentrations in organisms were weakly associated with more benthic carbon signals. In individual fish species, contaminant concentrations increased with age, size, and trophic position (??15N), whereas relationships with carbon source (??13C) were not consistent. Lipid concentrations were correlated with contaminant concentrations in some but not all fishes, suggesting that lipids were not involved mechanistically in bioaccumulation. Contaminant concentrations in biota did not vary among littoral sites. Collectively, these results suggest that age may be an important determinant of bioaccumulation in many food webs and could help explain a significant amount of the variability in apparent biomagnification rates among food webs. As such, effort should be made when possible to collect information on organism age in addition to stable isotopes when assessing food webs for rates of biomagnification. ?? 2006 Elsevier B.V. All rights reserved.

  10. Growth inhibition in early life-stage tests predicts full life-cycle toxicity effects of lead in the freshwater pulmonate snail, Lymnaea stagnalis.

    PubMed

    Munley, Kathleen M; Brix, Kevin V; Panlilio, Jennifer; Deforest, David K; Grosell, Martin

    2013-03-15

    The freshwater pulmonate snail, Lymnaea stagnalis, is the most sensitive freshwater organism tested to date for several metals (Co, Cu, Pb, Ni) based on 28 d early life-stage (ELS) tests in which growth was the most sensitive endpoint. The United States Environmental Protection Agency (USEPA) has expressed concern that growth in 28 d ELS tests with mollusks may overpredict toxicity because of the potential for recovery in a full life-cycle (LC) test. Consequently, the USEPA only accepts the survival endpoint for these tests in establishing water quality criteria (WQC). To address this concern, the current study aimed to test the sensitivity of L. stagnalis to Pb in a 56 d full LC test evaluating survival, growth, reproductive and embryonic growth endpoints and compare the estimated effect levels to those established using the 28 d ELS test design. The most sensitive endpoints in this study were 28 d growth and 56 d egg mass production, both with a NOEC of <1.0 μg L(-1) and a LOEC of 1.0 μg L(-1), showing that the ELS growth endpoint is predictive of the 56 d reproduction endpoint. Snails exposed to 1.0 and 2.7 μg L(-1) Pb showed full and partial recovery from growth inhibition between 28 and 56 d. While this recovery supports the USEPA's concern about the 28 d growth endpoint; considering the reproductive lifespan of L. stagnalis and the recovery dose-response, we conclude that the 28 d growth endpoint will be within a factor of 3 of full LC endpoints. This is consistent with the level of precision previously determined for fish ELS tests, which the USEPA accepts for WQC derivation, and suggests that tests using 28 d ELS growth endpoint for L. stagnalis may be acceptable for inclusion in WQC derivation.

  11. Facile synthesis of (55)Fe-labeled well-dispersible hematite nanoparticles for bioaccumulation studies in nanotoxicology.

    PubMed

    Huang, Bin; Xiao, Lin; Yang, Liu-Yan; Ji, Rong; Miao, Ai-Jun

    2016-06-01

    Although water-dispersible engineered nanoparticles (ENPs) have a wide range of applications, the ENPs used in many nanotoxicological studies tend to form micron-sized aggregates in the exposure media and thus cannot reflect the toxicity of real nanoparticles. Here we described the synthesis of bare hematite nanoparticles (HNPs-0) and two poly(acrylic acid) (PAA)-coated forms (HNPs-1 and HNPs-2). All three HNPs were well dispersed in deionized water, but HNPs-0 quickly aggregated in the three culture media tested. By contrast, the suspensions of HNPs-1 and HNPs-2 remained stable, with negligible amounts of PAA and Fe(3+) liberated from either one under the investigated conditions. To better quantify the accumulation of the coated HNPs, a relatively innocuous (55)Fe-labeled form of HNPs-2 was synthesized as an example and its accumulation in three phytoplankton species was tested. Consistent with the uptake kinetics model for conventional pollutants, the cellular accumulation of HNPs-2 increased linearly with exposure time for two of the three phytoplankton species. These results demonstrate the utility of (55)Fe-labeled well-dispersible HNPs as a model material for nanoparticle bioaccumulation studies in nanotoxicology.

  12. Solid phase microextraction of organic pollutants from natural and artificial soils and comparison with bioaccumulation in earthworms.

    PubMed

    Bielská, Lucie; Šmídová, Klára; Hofman, Jakub

    2014-02-01

    The presented study investigates the use of passive sampling, i.e. solid phase microextraction with polydimethylsiloxane fibers (PDMS-SPME), to assess the bioavailability of fiver neutral organic chemicals (phenanthrene, pyrene, lindane, p,p'-DDT, and PCB 153) spiked to natural and artificial soils after different aging times. Contaminant bioavailability was assessed by comparing PDMS concentrations with results from a 10 day bioaccumulation test with earthworms (Eisenia fetida). The hypotheses tested were (i) organic carbon (OC) normalization, which is commonly used to account for sorption and bioavailability of hydrophobic organic chemicals in soil risk assessment, has limitations due to differences in sorptive properties of OC and aging processes (i.e. sequestration and biodegradation) and (ii) PDMS-SPME provides a more reliable measure of soil contaminant bioavailability than OC normalized soil concentrations. The above stated hypotheses were confirmed since the results showed that: (i) the PDMS/soil organic carbon partition ratio (R) accounting for the role that OC plays in partitioning significantly differed between soils and aging times and (ii) the correlation with earthworm concentrations was better using porewater concentrations derived from PDMS concentrations than when organic normalized soil concentrations were used. Capsule: Sorption of organic compounds measured by SPME method and their bioavailability to earthworms cannot be reliably predicted using OC content. PMID:24433790

  13. Bioaccumulation of four heavy metals in two populations of grass shrimp, Palaemonetes pugio

    SciTech Connect

    Khan, A.T.; Weis, J.S.; D'Andrea, L.

    1989-03-01

    Bioaccumulation can occur only if the rate of uptake of a chemical by an organism exceeds its rate of elimination. Many aquatic animals are able to excrete a greater proportion of their intake under contaminated conditions and thus maintain trace metal concentration in the body at an approximately normal level. The biological activity or the metabolic rate of an organism often changes due to natural seasonal variations causing the rate of incorporation and release of heavy metals to change. This paper reports on the comparative bioaccumulation of Hg, Cd, Cu, and Zn in two populations of grass shrimp, Palaemontes pugio, one of the few species surviving in highly contaminated estuaries in northern New Jersey. One population they studied was from Piles Creek (PC), a tributary of the Arthur Kill in heavily industrialized Linden, New Jersey, and the other population was from Big Sheepshead Creek (BSC), a relatively pristine creek near non-industrialized Tuckerton, New Jersey.

  14. Toxicity and bioaccumulation of fipronil in the nontarget arthropodan fauna associated with subalpine mosquito breeding sites.

    PubMed

    Chaton, P F; Ravanel, P; Tissut, M; Meyran, J C

    2002-05-01

    In order to examine ecological impact of fipronil use for larval culicine control in natural hydrosystems, toxicity and bioaccumulation of this new insecticide were analyzed on aquatic species representative of the nontarget arthropodan fauna (nonculicine larval Diptera: Chaoboridae, Chironomidae; planktonic Crustacea: Cladocera, Copepoda, Ostracoda) associated with target larval mosquito populations in the subalpine breeding sites. Standard toxicological bioassays using fipronil aqueous solutions from 1 to 2000 nM indicated different sensitivity levels among species. Insecticide bioaccumulation analyses, using [(14)C]fipronil solutions in simplified laboratory ecosystem, also indicated large differences among species. These differences may come from biological parameters characteristic of each species. Taking into account these nontarget effects of fipronil, a possible strategy of use of this insecticide for integrated mosquito control management was proposed, which is based upon selective dietary absorption of the insecticide by larval Culicidae.

  15. Toxicity and bioaccumulation of cadmium in experimental cultures of Duckweed, Lemna polyrrhiza

    SciTech Connect

    Charpentier, S.; Garnier, J.; Flaugnatti, R.

    1987-06-01

    Knowledge of the mechanism of Itai-Itai disease aided the research concerning the bioaccumulation of heavy metals in plants and aquatic organisms. Because of their characteristics, lemnaceae can be considered as an interesting experimental material. Their small size, rapid growth and vegetative reproduction permitted us to obtain experimental cultures and to study the effect of cadmium: toxicity and bioaccumulation. The species Lemna polyrrhiza having a very voluminous root system, was used in this work. The effects of cadmium chloride (Cd Cl/sub 2/-2.5 H/sub 2/O) and Cadmium sulfate (3 Cd SO/sub 4/-8H/sub 2/O) were compared. The toxicity effect was approached by the numeration of plants.

  16. Exploring the effects of consumer-resource dynamics on contaminant bioaccumulation by aquatic herbivores

    SciTech Connect

    Spencer, M.; Fisher, N.S.; Wang, W.X.

    1999-07-01

    The authors explore the consequences of consumer-resource interactions for bioaccumulation in two aquatic systems (cadmium accumulation in Dreissena polymorpha and polychlorinated biphenyl accumulation in calanoid copepods). They explicitly link the feeding and growth rates of consumers to the abundance of resources under a variety of assumptions about the nature of the interactions between them. The models are parameterized using field and laboratory data, and predictions are quantitatively compared with field-measured distributions of tissue concentrations. Different assumptions about consumer-resource interactions result in different predicted distributions of tissue concentrations and illustrate the way these interactions constrain the bioaccumulation of contaminants. Linking feeding and growth rates to resource abundances will be important whenever these abundances change over time. User-friendly software will make these ideas accessible to nontheoreticians.

  17. Bioaccumulation markers and biochemical responses in European sea bass (Dicentrarchus labrax) raised under different environmental conditions.

    PubMed

    Greco, Luna; Serrano, Roque; Blanes, Miguel A; Serrano, Elena; Capri, Ettore

    2010-01-01

    Site- and season-specific biochemical responses and bioaccumulations of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were analysed in tissues from sea bass raised under four different environmental conditions and sampled in April and July. Samples were analysed for condition factor (CF), liver somatic index (LSI), glutathione S-transferase (GST) activity, and glycogen and lactate contents. Results showed the presence of PCBs and DDTs, with site- and season-specific variations in its concentrations. CFs did not differ significantly, while LSIs in samples from two of the four sites decreased between April and July. GST activities were lower in samples with higher concentrations of PCBs and DDTs. Lactate and glycogen contents were influenced to a greater extent by the season than by levels of contamination. The study demonstrated that farming methods could play a crucial role in both health status and bioaccumulation of OC compounds in farmed sea bass.

  18. Influence of global climate change on chemical fate and bioaccumulation: the role of multimedia models.

    PubMed

    Gouin, Todd; Armitage, James M; Cousins, Ian T; Muir, Derek C G; Ng, Carla A; Reid, Liisa; Tao, Shu

    2013-01-01

    Multimedia environmental fate models are valuable tools for investigating potential changes associated with global climate change, particularly because thermodynamic forcing on partitioning behavior as well as diffusive and nondiffusive exchange processes are implicitly considered. Similarly, food-web bioaccumulation models are capable of integrating the net effect of changes associated with factors such as temperature, growth rates, feeding preferences, and partitioning behavior on bioaccumulation potential. For the climate change scenarios considered in the present study, such tools indicate that alterations to exposure concentrations are typically within a factor of 2 of the baseline output. Based on an appreciation for the uncertainty in model parameters and baseline output, the authors recommend caution when interpreting or speculating on the relative importance of global climate change with respect to how changes caused by it will influence chemical fate and bioavailability.

  19. Bioaccumulation and toxicodynamics of cadmium to freshwater planarian and the protective effect of N-acetylcysteine.

    PubMed

    Wu, Jui-Pin; Chen, Hon-Cheng; Li, Mei-Hui

    2012-08-01

    Although toxic responses of freshwater planarians after exposure to environmental toxicants can be observed through external toxicological end points, physiological responses inside the bodies of treated planarians have rarely been investigated. The present study was designed, using cadmium (Cd) as a reference toxicant, to determine its bioaccumulation and toxicodynamics in the freshwater planarian, Dugesia japonica, after acute toxicity was obtained. Accumulated Cd concentrations, metallothionein levels, and the oxidative status in planarians were determined after exposure to Cd. Furthermore, we hypothesized that the acute death of Cd-treated planarians was associated with increased oxidative stress. After Cd-treated planarians were coexposed to antioxidant, N-acetylcysteine (NAC), we found that NAC protected planarians from Cd lethality by maintaining the oxidative status and decreasing the bioaccumulation of Cd. The results of the present study support planarians being used as a practical model for toxicological studies of environmental contaminants in the future.

  20. Influence of eutrophication on metal bioaccumulation and oral bioavailability in oysters, Crassostrea angulata.

    PubMed

    Li, Shun-Xing; Chen, Li-Hui; Zheng, Feng-Ying; Huang, Xu-Guang

    2014-07-23

    Oysters (Crassostrea angulata) are often exposed to eutrophication. However, how these exposures influence metal bioaccumulation and oral bioavailability (OBA) in oysters is unknown. After a four month field experimental cultivation, bioaccumulation factors (BAF) of metals (Fe, Cu, As, Cd, and Pb) from seawater to oysters and metal oral bioavailability in oysters by bionic gastrointestinal tract were determined. A positive effect of macronutrient (nitrate N and total P) concentration in seawater on BAF of Cd in oysters was observed, but such an effect was not significant for Fe, Cu, Pb, and As. Only OBA of As was significantly positively correlated to N and P contents. For Fe, OBA was negatively correlated with N. The regular variation of the OBA of Fe and As may be due to the effect of eutrophication on the synthesis of metal granules and heat-stable protein in oysters, respectively.

  1. Lead bioaccumulation in emydid turtles of an urban lake and its relationship to shell disease.

    PubMed

    Bishop, Brian E; Savitzky, Barbara A; Abdel-Fattah, Tarek

    2010-05-01

    Urban runoff contributes significant amounts of heavy metals into receiving waters in which turtles make up a large portion of the biodiversity. Turtles accumulate heavy metals in their body and shell bone, yet little is known about how it affects their health. Studies in vertebrates have shown bioaccumulation of lead to have several deleterious effects such as immunosuppression, impairment of skeletal calcification and competition with calcium ion uptake. This study surveys the bioaccumulation of lead in emydid turtles of an urban lake and investigates the differences based on species, sex, size and its possible relationship to shell disease. Shell disease was quantified and small sections of shell were collected from each specimen and analyzed for lead content using Graphite Furnace Atomic Adsorption Spectrometry. Significant differences of lead accumulation were found between species, yet not with sex or body size. Linear regression comparison of lead concentration and shell disease showed no positive correlation. PMID:20144483

  2. Removal of persistent bioaccumulative toxic chemicals from pulp and paper mill effluent streams

    SciTech Connect

    Holm, S.E.

    1995-12-31

    Several organizations have called for the reduction of PBTs or Persistent Bioaccumulative Toxics because of this class of chemicals potential environmental consequences when released into the environment. PBTs are persistent because of their resistance to biological contamination, because they bioaccumulate in the fatty tissue of organisms, and are toxic to aquatic species at relatively low levels. PBTs may be produced commercially such as for use as a pesticide or herbicide or inadvertently as byproducts, such as from diesel engines, incinerators, and during pulp bleaching using chlorine or chlorine derivatives. This paper will show how the pulp and paper industry has utilized the pollution prevention technique of process change to remove the levels of PBTs from its waste stream and how this process change relates to decreasing levels of specific PBTs in the environment. Chlorinated phenolic compounds and dioxin will be used as examples.

  3. INFLUENCE OF GLOBAL CLIMATE CHANGE ON CHEMICAL FATE AND BIOACCUMULATION: THE ROLE OF MULTIMEDIA MODELS

    PubMed Central

    Gouin, Todd; Armitage, James M; Cousins, Ian T; Muir, Derek CG; Ng, Carla A; Reid, Liisa; Tao, Shu

    2013-01-01

    Multimedia environmental fate models are valuable tools for investigating potential changes associated with global climate change, particularly because thermodynamic forcing on partitioning behavior as well as diffusive and nondiffusive exchange processes are implicitly considered. Similarly, food-web bioaccumulation models are capable of integrating the net effect of changes associated with factors such as temperature, growth rates, feeding preferences, and partitioning behavior on bioaccumulation potential. For the climate change scenarios considered in the present study, such tools indicate that alterations to exposure concentrations are typically within a factor of 2 of the baseline output. Based on an appreciation for the uncertainty in model parameters and baseline output, the authors recommend caution when interpreting or speculating on the relative importance of global climate change with respect to how changes caused by it will influence chemical fate and bioavailability. Environ. Toxicol. Chem. 2013;32:20–31. © 2012 SETAC PMID:23136071

  4. Bioaccumulation of Metals in Tissues of Seahorses Collected from Coastal China.

    PubMed

    Zhang, Wei; Zhang, Yanhong; Zhang, Li; Lin, Qiang

    2016-03-01

    Seahorses, which have been used in Chinese traditional medicine, are poor swimmers and easily affected by regional ecological conditions. In this study, we investigated the bioaccumulation of nine metals in different tissues of four seahorse species (Hippocampus trimaculatus, H. histrix, H. kelloggi, and H. kuda) from six locations along the Chinese coast. The present study found relatively low concentrations of metals in the seahorses compared with those in other marine fishes. There was a location-dependent variation in metal concentrations in the seahorses, especially between developed and less developed cities. Results also showed metal concentrations varied among different seahorse species and tissues, with H. kelloggi having higher bioaccumulation ability compared with H. trimaculatus and higher metal levels were found in visceral mass, muscle, and skin tissues than those in brain, lips gill, endoskeleton, and exoskeleton tissues in the seahorses. Among different metals, Mg had the highest tissue concentrations in all the seahorses, followed by Al and Mn.

  5. Bioaccumulation and effects of perfluorinated compounds (PFCs) in zebra mussels (Dreissena polymorpha).

    PubMed

    Fernández-Sanjuan, María; Faria, Melissa; Lacorte, Silvia; Barata, Carlos

    2013-04-01

    Perfluorinated chemicals (PFCs) have been used for many years in numerous industrial products and are known to accumulate in organisms. A recent survey showed that tissue levels of PFCs in aquatic organisms varied among compounds and species being undetected in freshwater zebra mussels Dreissena polymorpha. Here we studied the bioaccumulation kinetics and effects of two major PFCs, perfluorooctane sulfonic acid compound (PFOS) and perfluorooctanoic acid (PFOA), in multixenobiotic transporter activity (MXR) and filtration and oxygen consumption rates in zebra mussel exposed to a range of concentrations of a PCF mixture (1-1,000 μg/L) during 10 days. Results indicate a low potential of the studied PFCs to bioaccumulate in zebra mussel tissues. PFCs altered mussel MXR transporter activity being inhibited at day 1 but not at day 10. Bioaccumulation kinetics of PFCs were inversely related with MXR transporter activity above 9 ng/g wet weight and unrelated at tissue concentration lower than 2 ng/g wet weight suggesting that at high tissue concentrations, these type of compounds may be effluxed out by MXR transporters and as a result have a low potential to be bioaccumulated in zebra mussels. Oxygen consumption rates but not filtering rates were increased in all exposure levels and periods indicating that at environmental relevant concentrations of 1 μg/L, the studied PFCs enhanced oxidative metabolism of mussels. Overall, the results obtained in this study confirm previous findings in the field indicating that an important fraction of PFC accumulated in mussel tissues is eliminated actively by MXR transporters or other processes that are metabolically costly. PMID:22990576

  6. Heavy metal bioaccumulation and mobility from rice plants to Nilaparvata lugens (Homoptera: Delphacidae) in China.

    PubMed

    Wan, Ting-li; Liu, Shun; Tang, Qi-yi; Cheng, Jia-an

    2014-06-01

    Samples of soils, rice plants, and the adult, long-winged, brown planthoppers, Nilaparvata lugens (Stål) (Homoptera: Delphacidae), were collected from 18 sites of 9 regions in southern China. The concentrations of seven elements (Cu, Zn, As, Mo, Ag, Cd, and Pb) were measured using inductively coupled plasma mass spectrometry. Heavy metal mobility and bioaccumulation were analyzed in the rice plant-N. lugens system. The concentrations of Zn, As, Cd, and Pb in rice plants were positively correlated with their relevant concentrations in soil samples The bioconcentration factors of the seven elements in the rice plant-N. lugens system showed that the order of metal accumulation was Mo>Zn>Ag>Cd>Cu>Pb>As. In particular, Mo and Zn showed significantly high accumulation in N. lugens. A cluster analysis and factor analysis showed that the bioaccumulation of these seven elements in the rice plant-N. lugens system could be classified into two groups, closely related to their molar mass. The first group consisted of five elements with relatively light molar masses: Cu, Zn, As, Mo, and Ag. Cu and Zn, which have nearly equal molar masses, showed similar accumulation levels in N. lugens. The second group included two elements with relatively heavy molar masses: Cd and Pb. This study demonstrated that bioaccumulation of seven heavy metals was regular in the rice plant-N. lugens system. N. lugens could be used as bioindicators of the contaminated degree for Zn in rice paddy fields. This information may provide a basis for future ecological research on the bioaccumulation mechanism in N. lugens. PMID:24735989

  7. Bioaccumulation of PCBs in young-of-the-year striped bass: A nine month time series

    SciTech Connect

    Brownawell, B.J.; Malloy, T.A.; LeBlanc, L.A.; Thomann, R.V.

    1995-12-31

    The purpose of this study was to determine uptake of PCBs in rapidly growing young-of-the-year (YOY) striped bass (Morone saxatilis) in the Hudson River Estuary and to compare the data to predictions from both steady-state and time-dependent food-chain bioaccumulation modeling. Striped bass in the Hudson are spawned in freshwater, enter the upper estuary in early summer, and overwinter in the lower estuary. The authors have determined that their PCB exposure in water varies little over this time. Striped bass life history, prey composition, and bioenergetics have been determined in prior or ongoing projects. High and relatively uniform PCB water concentrations (10--28 ng/L) in the Hudson Estuary make it an excellent model ecosystem to study PCB bioaccumulation. YOY fish were collected at approximately one month intervals from the upper Hudson River Estuary on ten dates beginning on July 1, 1994 (average wet of 0.3 g) and ending on April 4, 1995 (wet weights of 100--150 g). Striped bass and zooplankton prey (determined by gut contents) were analyzed for PCBs and lipids. PCB concentrations generally increased over the first three months with a stronger time dependence for more highly chlorinated homologues. Lipid-based PCB concentrations decreased in the late fall, likely due to a seasonal increase in storage lipids, Consistent with steady-state food-chain model predictions, bioaccumulation factors (BAFs) were highly correlated with K{sub ow} and lipid-based BAFs were above those estimated by lipid-based equilibrium with water. In the presentation they discuss the results of fully time-dependent BAF calculations and will show how the implications of steady-stale assumptions on bioaccumulation modeling become apparent when considering rapidly growing organisms like YOY striped bass.

  8. Agricultural wetlands as potential hotspots for mercury bioaccumulation: Experimental evidence using caged fish

    USGS Publications Warehouse

    Ackerman, J.T.; Eagles-Smith, C. A.

    2010-01-01

    Wetlands provide numerous ecosystem services, but also can be sources of methylmercury (MeHg) production and export. Rice agricultural wetlands in particular may be important sites for MeHg bioaccumulation due to their worldwide ubiquity, periodic flooding schedules, and high use by wildlife. We assessed MeHg bioaccumulation within agricultural and perennial wetlands common to California's Central Valley during summer, when the majority of wetland habitats are shallowly flooded rice fields. We introduced caged western mosquitofish (Gambusia affinis) within white rice (Oryza sativa), wild rice (Zizania palustris), and permanent wetlands at water inlets, centers, and outlets. Total mercury (THg) concentrations and body burdens in caged mosquitofish increased rapidly, exceeding baseline values at introduction by 135% to 1197% and 29% to 1566% among sites, respectively, after only 60 days. Mercury bioaccumulation in caged mosquitofish was greater in rice fields than in permanent wetlands, with THg concentrations at wetland outlets increasing by 12.1, 5.8, and 2.9 times over initial concentrations in white rice, wild rice, and permanent wetlands, respectively. In fact, mosquitofish caged at white rice outlets accumulated 721 ng Hg/fish in just 60 days. Mercury in wild mosquito fish and Mississippi silversides (Menidia audens) concurrently sampled at wetland outlets also were greater in white rice and wild rice than permanent wetlands. Within wetlands, THg concentrations and body burdens of both caged and wild fish increased from water inlets to outlets in white rice fields, and tended to not vary among sites in permanent wetlands. Fish THg concentrations in agricultural wetlands were high, exceeding 0.2 ??g/g ww in 82% of caged fish and 59% of wild fish. Our results indicate that shallowly flooded rice fields are potential hotspots for MeHg bioaccumulation and, due to their global prevalence, suggest that agricultural wetlands may be important contributors to Me

  9. Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: Human health risk assessment.

    PubMed

    Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; Tornisielo, Valdemar Luiz; Vilca, Franz Zirena; Bittencourt-Oliveira, Maria do Carmo

    2016-10-01

    Microcystin-LR (MC-LR) is one of the most toxic and common microcystins (MCs) variant found in aquatic ecosystems. Little is known about the possibility of recovering microcystins contaminated agricultural crops. The objectives of this study were to determine the bioaccumulation and depuration kinetics of MC-LR in leaf tissues of lettuce and arugula, and estimate the total daily intake (ToDI) of MC-LR via contaminated vegetables by humans. Arugula and lettuce were irrigated with contaminated water having 5 and 10μgL(-1) of MC-LR for 7days (bioaccumulation), and subsequently, with uncontaminated water for 7days (depuration). Quantification of MC-LR was performed by LC-MS/MS. The one-compartment biokinetic model was employed for MC-LR bioaccumulation and depuration data analysis. MC-LR was only accumulated in lettuce. After 7days of irrigation with uncontaminated water, over 25% of accumulated MC-LR was still retained in leaf tissues of plants treated with 10μgL(-1) MC-LR. Total daily toxin intake by adult consumers (60kg-bw) exceeded the 0.04μgMC-LRkg(-1) limit recommended by WHO. Bioaccumulation was found to be linearly proportional to the exposure concentration of the toxin, increasing over time; and estimated to become saturated after 30days of uninterrupted exposure. On the other hand, MC-LR depuration was less efficient at higher exposure concentrations. This is because biokinetic half-life calculations gave 2.9 and 3.7days for 5 and 10μgL(-1) MC-LR treatments, which means 29-37days are required to eliminate the toxin. For the first time, our results demonstrated the possibility of MC-LR decontamination of lettuce plants. PMID:27267723

  10. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners.

    PubMed

    Bittencourt-Oliveira, Maria do Carmo; Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; de Oliveira, Ênio Tiago; dos Santos, Flávio

    2016-06-01

    The use of microcystins (MCs) contaminated water to irrigate crop plants represents a human health risk due to their bioaccumulation potential. In addition, MCs cause oxidative stress and negatively influence photosynthetic activities in plants. The present study was aimed at investigating the effect of MCs on photosynthetic parameters and antioxidative response of lettuce. Furthermore, the bioaccumulation factor (BAF) of total MCs, MC-LR and MC-RR in the vegetable after irrigation with contaminated water was determined. Lettuce crops were irrigated for 15 days with water containing cyanobacterial crude extracts (Microcystis aeruginosa) with MC-LR (0.0, 0.5, 2.0, 5.0 and 10.0 µg L(-1)), MC-RR (0.0, 0.15, 0.5, 1.5 and 3.0 µg L(-1)) and total MCs (0.0, 0.65, 2.5, 6.5 and 13.0 µg L(-1)). Increased net photosynthetic rate, stomatal conductance, leaf tissue transpiration and intercellular CO2 concentration were recorded in lettuce exposed to different MCs concentrations. Antioxidant response showed that glutathione S-transferase activity was down-regulated in the presence of MCs. On the other hand, superoxide dismutase, catalase and peroxidase activities were upregulated with increasing MCs concentrations. The bioaccumulation factor (BAF) of total MCs and MC-LR was highest at 6.50 and 5.00 µg L(-1), respectively, while for MC-RR, the highest BAF was recorded at 1.50 µg L(-1) concentration. The amount of total MCs, MC-LR and MC-RR bioacumulated in lettuce was highest at the highest exposure concentrations. However, at the lowest exposure concentration, there were no detectable levels of MC-LR, MC-RR and total MCs in lettuce. Thus, the bioaccumulation of MCs in lettuce varies according to the exposure concentration. In addition, the extent of physiological response of lettuce to the toxins relies on exposure concentrations.

  11. Mercury bioaccumulation and trophic transfer in sympatric snapper species from the Gulf of Mexico.

    PubMed

    Bank, Michael S; Chesney, Edward; Shine, James P; Maage, Amund; Senn, David B

    2007-10-01

    Consumption of marine fish is a major route of toxic methyl mercury (MeHg) exposure to ocean apex predators and human populations. Here we explore the influence of trophic structure on total mercury (Hg) accumulation in red snapper (RS, Lutjanus campechanus) and gray snapper (GS, Lutjanus griseus) from the coastal Louisiana region of the Gulf of Mexico, west of the Mississippi River. The objectives of this investigation were to: (1) determine the effectiveness of the use of offshore recreational fishing charter boats and marinas as sources of fish samples and (2) compare species differences in Hg bioaccumulation, trophic position, and carbon sources. Our data show that length-normalized Hg concentrations (> or = 97% as MeHg in tissue of both species) were 230% greater in GS in comparison to RS collected from the same general area. Stable C and N isotope signatures (delta15N and delta13C) indicate that GS occupy a slightly higher trophic position (approximately 30% of one trophic position higher) on the Gulf food web in comparison to RS and that GS appear to incorporate higher trophic positioned prey, continually and at smaller sizes. Mercury was strongly correlated with combined delta15N and delta13C in pooled species data, arguing that most of the substantial difference in Hg bioaccumulation between RS and GS can be explained by modest differences in their trophic position and, to a lesser degree, carbon sources, which had low variation and high overlap among species. These observations demonstrate that even minor to moderate differences in trophic position and food habits in sympatric species can create relatively large differences in bioaccumulation regimes and underscores the importance of quantitative characterization of trophic structure in marine MeHg bioaccumulation studies.

  12. Enantioseletive bioaccumulation and metabolization of diniconazole in earthworms (Eiseniafetida) in an artificial soil.

    PubMed

    Wang, Huili; Chen, Jinhui; Guo, Bao-Yuan; Li, Jianzhong

    2014-01-01

    Degradation and enantioselective bioaccumulation of diniconazole in earthworms (Eiseniafetida) in artificial soil was investigated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) method under laboratory condition. Three exposure concentrations (1 mg/kg, 10 mg/kg and 25 mg/kg) of diniconazole in soil (dry weight) to earthworms were used. The uptake kinetics fitted the first-order kinetics well. The bioaccumulation factors (BAF) of R, S isomers were 6.6046 and 8.5115 in 25 mg/kg dose exposure, 2.6409 and 2.9835 in 10mg/kg dose exposure, 1.7784 and 2.0437 in 1 mg/kg dose exposure, respectively. Bioaccumulation of diniconazole in earthworm tissues was enantioselective with a preferential accumulation of S-diniconazole and the enantiomer fractions were about 0.45-0.50 in all three level dose exposures. In addition, it was obvious that both R-diniconazole and S-diniconazole had bioaccumulation effect in earthworm. Diniconazole was metabolized to 1,2,4-triazole, (E)-3-(1H-1,2,4-triazol-1-yl) acrylaldehyde, (E, S)-4-(2, 4-dichlorophenyl)-2, 2-dimethyl-5-(1H-1,2,4-triazol-1-yl)pent-4-ene-1,3-diol, and (E)-4-(2, 4-dichlorophenyl)-3-hydroxy-2,2-dimethyl-5-(1H-1,2,4-triazol-1-yl) pent-4-enoic acid in earthworms; the metabolites of 1,2,4-triazole and (E)-3-(1H-1,2,4-triazol-1-yl)acrylaldehyde could be detected in soil as well.

  13. Bioaccumulation and effects of perfluorinated compounds (PFCs) in zebra mussels (Dreissena polymorpha).

    PubMed

    Fernández-Sanjuan, María; Faria, Melissa; Lacorte, Silvia; Barata, Carlos

    2013-04-01

    Perfluorinated chemicals (PFCs) have been used for many years in numerous industrial products and are known to accumulate in organisms. A recent survey showed that tissue levels of PFCs in aquatic organisms varied among compounds and species being undetected in freshwater zebra mussels Dreissena polymorpha. Here we studied the bioaccumulation kinetics and effects of two major PFCs, perfluorooctane sulfonic acid compound (PFOS) and perfluorooctanoic acid (PFOA), in multixenobiotic transporter activity (MXR) and filtration and oxygen consumption rates in zebra mussel exposed to a range of concentrations of a PCF mixture (1-1,000 μg/L) during 10 days. Results indicate a low potential of the studied PFCs to bioaccumulate in zebra mussel tissues. PFCs altered mussel MXR transporter activity being inhibited at day 1 but not at day 10. Bioaccumulation kinetics of PFCs were inversely related with MXR transporter activity above 9 ng/g wet weight and unrelated at tissue concentration lower than 2 ng/g wet weight suggesting that at high tissue concentrations, these type of compounds may be effluxed out by MXR transporters and as a result have a low potential to be bioaccumulated in zebra mussels. Oxygen consumption rates but not filtering rates were increased in all exposure levels and periods indicating that at environmental relevant concentrations of 1 μg/L, the studied PFCs enhanced oxidative metabolism of mussels. Overall, the results obtained in this study confirm previous findings in the field indicating that an important fraction of PFC accumulated in mussel tissues is eliminated actively by MXR transporters or other processes that are metabolically costly.

  14. The detoxification process, bioaccumulation and damage effect in juvenile white shrimp Litopenaeus vannamei exposed to chrysene.

    PubMed

    Ren, Xianyun; Pan, Luqing; Wang, Lin

    2015-04-01

    This study aimed to evaluate the effect of chrysene (CHR) on detoxification enzymes, bioaccumulation and effect of CHR on biomolecule damage in different organs of the juvenile white shrimp Litopenaeus vannamei. In this study, juvenile white shrimp L. vannamei were exposed to CHR for 21 days at four different concentrations as 0, 0.3, 2.1 and 14.7 μg/L. Results showed that CHR bioaccumulation increased rapidly at first then reached a plateau. The activities of aryl hydrocarbon hydroxylase (AHH), 7-ethoxyresorufin O-deethylase (EROD), epoxide hydrolase (EH), glutathione-S-transferase (GST), sulfotransferase (SULT) and uridinediphosphate glucuronyltransferase (UGT) were induced and then became stable gradually. Moreover, 2.1 and 14.7 μg/L CHR treatments increased activity of superoxide dismutase (SOD) in gills and hepatopancreas, while total antioxidant capacity (T-AOC) and GSH/GSSG were suppressed after CHR exposure. Additionally, lipid peroxidation (LPO) levels, protein carbonyl (PC) contents and DNA damage were induced throughout the exposure period, and different trends were detected with time of exposure. Overall, these novel findings of CHR bioaccumulation and resulted toxicity demonstrate that CHR could affect the physical status of L. vannamei. This study will form a solid basis for a realistic extrapolation scientific data for aquaculture water monitoring and food security.

  15. Methylmercury bioaccumulation in invertebrates of boreal streams in Norway: effects of aqueous methylmercury and diet retention.

    PubMed

    de Wit, Heleen A; Kainz, Martin J; Lindholm, Markus

    2012-05-01

    Transfer of aqueous methylmercury (MeHg) to primary consumers in aquatic foodwebs is poorly understood despite its importance for bioaccumulation of MeHg. We studied bioaccumulation of MeHg in simple aquatic food chains of two humic boreal streams in relation to streamwater chemistry, food web characteristics and dietary fatty acid (FA) biomarkers. Transfer of aqueous MeHg into primary consumers was similar in both streams, resulting in higher MeHg in consumers in the MeHg-rich stream. Trophic enrichment of MeHg and dietary retention of FA biomarkers was the same in both streams, suggesting that exposure to aqueous MeHg at the base of the food chain determined levels of MeHg in biota. In addition, contents of dietary biomarkers suggested that ingestion of algae reduced MeHg bioaccumulation, while ingestion of bacteria stimulated MeHg uptake. Dietary uptake of bacteria could thus be an important pathway for MeHg-transfer at the bottom of food chains in humic streams.

  16. Similarity analysis of PAH and PCB bioaccumulation patterns in sediment-exposed Chironomus tentans larvae

    SciTech Connect

    Wood, L.W.; O`Keefe, P.; Bush, B.

    1997-02-01

    Larvae of the aquatic insect Chironomus tentans were exposed at the third or fourth instar stage to sediments collected near the outfalls of two aluminum foundries and an aluminum fabrication plant. Biota and sediment bioaccumulation factors (BFs), based on wet tissue weights and dry sediment weights, ranged from 0.07 to 0.27 for polycyclic aromatic hydrocarbons (PAHs) and from 0.22 to 1.42 for polychlorinated biphenyls (PCBs). A higher rate of metabolism of PAHs compared with PCBs could explain the differences in BF values for the two groups of chemicals. It was found, using community similarity procedures from the field of ecology, that the congener patterns for PAHs and PCBs bioaccumulated by the larvae differed from the pattern of the same compounds in the sediments to which they were exposed. Affinity analysis indicated that the larvae favored the higher molecular weight PAH and PCB congeners. Preferential ingestion of sediments with defined particle size ranges, metabolism, and octanol/water partition coefficients (log K{sub ow}) are factors that may have influenced the bioaccumulation patterns. However, no single factor could adequately account for the differences between the larval and sediment patterns.

  17. Patterns of bioaccumulation of polybrominated diphenyl ether and polychlorinated biphenyl congeners in marine mussels.

    PubMed

    Debruyn, Adrian M H; Meloche, Lizanne M; Lowe, Christopher J

    2009-05-15

    Marine mussels (Modiolus modiolus) and sediment from 14 stations near a municipal outfall and three reference locations were analyzed for polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) to evaluate and compare patterns of bioaccumulation of individual congeners between these two groups of chemicals. Of the 47 PBDEs and 209 PCBs analyzed, 34 PBDE and 153 PCB congeners or coeluting groups of congeners were detected in one or more matrices. The predominant PBDE congeners were BDEs 47, 99, 100, and 209, accounting for 80-90% of the total PBDEs in all matrices. PCBs and PBDEs exhibited a parabolic relationship of the biota-sediment accumulation factor (BSAF) versus the log octanol-water partition coefficient(Kow). Below Kow 10(5.5), BSAFs ranged between 1 and 3, reflecting approximate equilibrium between mussels and sedimentforthese relatively water soluble congeners. BSAFs increased with increasing Kow to maximum values of approximately 30-100 for congeners with Kow approximately 10(7) and then declined at higher Kow to a value of approximately 1 for BDE 209. BSAFs for PBDEs were generally 2- to 3-fold higher than those for PCBs of a similar Kow. The calculated BSAFs for PBDE congeners indicate that PBDEs have a pattern of bioaccumulative behavior in mussels similar to that of the PCBs, and that some PBDE congeners may be more bioaccumulative in mussels than PCBs. PMID:19544876

  18. Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment.

    PubMed

    Zenker, Armin; Cicero, Maria Rita; Prestinaci, Francesca; Bottoni, Paola; Carere, Mario

    2014-01-15

    Pharmaceuticals, among the emerging contaminants, are one of the most relevant groups of substances in aquatic ecosystems due to universal use, their chemico-physical properties and known mode of action in aquatic organisms at low concentrations. After administration many drugs and their transformation products are only retained to some extent in wastewater treatment plants therefore entering the aquatic environment in considerable high amounts. The yearly consumption to treat human and animal diseases, also in livestock and aquaculture was estimated to be hundred thousands tons per year leading to high concentrations in surface water of developed countries. Mostly, pharmaceutical residues in effluents of wastewater treatment plants or in the water column of surface waters have been reported, but data about concentrations in the aquatic biota, partitioning of pharmaceuticals to biosolids, soils, and sediments and the bioaccumulation properties are often lacking. Chronic and subtle effects can be expected when aquatic organisms are long term exposed by pseudo-persistent, persistent and accumulative compounds. This review aims to summarize the current state of research about the fate of pharmaceuticals regarding bioconcentration, bioaccumulation and potential biomagnification in aquatic ecosystems. More comprehensive approaches for the evaluation of environmental (ERA) and human health risk assessment (HRA) are included and analytical methods required to detect bioaccumulation of pharmaceuticals are discussed.

  19. Bioaccumulation of human pharmaceuticals in fish across habitats of a tidally influenced urban bayou.

    PubMed

    Du, Bowen; Haddad, Samuel P; Luek, Andreas; Scott, W Casan; Saari, Gavin N; Burket, S Rebekah; Breed, Christopher S; Kelly, Martin; Broach, Linda; Rasmussen, Joseph B; Chambliss, C Kevin; Brooks, Bryan W

    2016-04-01

    Though pharmaceuticals and other contaminants of emerging concern are increasingly observed in inland water bodies, the occurrence and bioaccumulation of pharmaceuticals in estuaries and coastal ecosystems are poorly understood. In the present study, bioaccumulation of select pharmaceuticals and other contaminants of emerging concern was examined in fish from Buffalo Bayou, a tidally influenced urban ecosystem that receives effluent from a major (∼200 million gallons per day) municipal wastewater treatment plant in Houston, Texas, USA. Using isotope dilution liquid chromatography-tandem mass spectrometry, various target analytes were observed in effluent, surface water, and multiple fish species. The trophic position of each species was determined using stable isotope analysis. Fish tissue levels of diphenhydramine, which represented the only pharmaceutical detected in all fish species, did not significantly differ between freshwater and marine fish predominantly inhabiting benthic habitats; however, saltwater fish with pelagic habitat preferences significantly accumulated diphenhydramine to the highest levels observed in the present study. Consistent with previous observations from an effluent-dependent freshwater river, diphenhydramine did not display trophic magnification, which suggests site-specific, pH-influenced inhalational uptake to a greater extent than dietary exposure in this tidally influenced urban ecosystem. The findings highlight the importance of understanding differential bioaccumulation and risks of ionizable contaminants of emerging concern in habitats of urbanizing coastal systems. PMID:26587912

  20. Fullerene-associated phenanthrene contributes to bioaccumulation but is not toxic to fish.

    PubMed

    Hu, Xialin; Li, Jing; Shen, Mohai; Yin, Daqiang

    2015-05-01

    The present study investigated the effects of aqueous fullerene suspensions (nC60 ) on the bioavailability and toxicity of phenanthrene (Phe) to junior carp (Cyprinus carpio). Bioaccumulation factors (BAFs) were calculated based on total as well as free concentrations of Phe. Equal BAF values were obtained with and without nC60 based on the total concentrations, whereas greater BAFs were found in the presence of nC60 when free Phe concentrations were applied. The results demonstrated that nC60 could act as a contaminant carrier to facilitate Phe bioaccumulation. The concentration-response relationship of induced hepatic 7-ethoxysorufin-O-deethylase activity was established in regard to the total and free concentrations of aqueous Phe solutions as well as the body residues. The concentration-response curves were reliant on the nC60 concentration when the total concentration of Phe was employed as a variable but were independent of nC60 presence when free concentration or body residue was employed as a variable, implying that the latter 2 parameters were more accurate in evaluating biological effects. Particles of C60 were mostly distributed in fish liver and intestines, which indicated the primary routine of uptake was through ingestion. Approximately 22% to 100% of the Phe-nC60 complex contributed to the bioaccumulation, whereas the complex did not contribute to the toxicity.

  1. Soil geochemistry and digestive solubilization control mercury bioaccumulation in the earthworm Pheretima guillemi.

    PubMed

    Dang, Fei; Zhao, Jie; Greenfield, Ben K; Zhong, Huan; Wang, Yujun; Yang, Zhousheng; Zhou, Dongmei

    2015-07-15

    Mercury presents a potential risk to soil organisms, yet our understanding of mercury bioaccumulation in soil dwelling organisms is limited. The influence of soil geochemistry and digestive processes on both methylmercury (MeHg) and total mercury (THg) bioavailability to earthworms (Pheretima guillemi) was evaluated in this study. Earthworms were exposed to six mercury-contaminated soils with geochemically contrasting properties for 36 days, and digestive fluid was concurrently collected to solubilize soil-associated mercury. Bioaccumulation factors were 7.5-31.0 and 0.2-0.6 for MeHg and THg, respectively, and MeHg accounted for 17-58% of THg in earthworm. THg and MeHg measured in soils and earthworms were negatively associated with soil total organic carbon (TOC). Earthworm THg and MeHg also increased with increasing soil pH. The proportion of MeHg and THg released into the digestive fluid (digestive solubilizable mercury, DSM) was 8.3-18.1% and 0.4-1.3%, respectively. The greater solubilization of MeHg by digestive fluid than CaCl2, together with a biokinetic model-based estimate of dietary MeHg uptake, indicated the importance of soil ingestion for MeHg bioaccumulation in earthworms.

  2. Spatial trends and factors affecting mercury bioaccumulation in freshwater fishes of Washington State, USA.

    PubMed

    Mathieu, Callie; Mattieu, Callie A; Furl, Chad V; Roberts, Tanya M; Friese, Michael

    2013-07-01

    Twenty-four lakes in Washington State, United States, were sampled for largemouth and smallmouth bass as well as water chemistry parameters during 2005 to 2009 to evaluate trends in mercury (Hg) concentrations. We analyzed spatial patterns in bass Hg levels across a gradient of land and climate types, lake chemistry parameters, and physical watershed characteristics to identify factors influencing Hg bioaccumulation. Across the state, bass Hg levels followed rainfall patterns and were statistically greater on the coastal west side of the state and lowest in the drier eastern region. Lake and watershed variables with the strongest correlations to Hg bioaccumulation in bass were annual watershed precipitation (+) and lake alkalinity (-). Principal component analysis (PCA) explaining 50.3 % of the variance in the dataset indicated that wet, forested landscapes were more likely to contain lakes with greater fish Hg levels than alkaline lakes in drier agriculture-dominated or open space areas. The PCA did not show wetland abundance and lake DOC levels as variables influencing bass Hg levels, but these were generally associated with small, shallow lakes containing greater chlorophyll levels. The effect of in-lake productivity may have counteracted the role of wetlands in Hg bioaccumulation among this study's lakes. PMID:23435684

  3. Mercury bioaccumulation and decontamination kinetics in the edible cockle Cerastoderma edule.

    PubMed

    Cardoso, P G; Grilo, T F; Pereira, E; Duarte, A C; Pardal, M A

    2013-02-01

    Mercury bioaccumulation and decontamination kinetics in the edible cockle Cerastoderma edule were studied through a mesocosms experiment after a medium-term exposure to the metal. The results revealed that the bivalve presented distinct bioaccumulation kinetics according to the different tissues. While the gills showed a linear accumulation pattern, the digestive gland and the entire organism presented a saturation model, with higher accumulation during the first 7d of exposure and lower during the rest of the time. In addition, the bioaccumulation rate was not proportional to the Hg concentration, since the organisms under lower contamination presented higher bioconcentration factors than the ones under higher contamination. Gills were the tissues with higher mercury accumulation capability. Concerning the decontamination phase, C. edule lost approximately 80% of the mercury after 24h exposure in clean seawater. Nevertheless, never reached the original condition, showing in the final (20 d detox), Hg levels (>0.5 ppm) higher than those allowed by the legislation regulating human food consumption. This represents a matter of concern for Human health.

  4. Comparative bioaccumulation of chlorinated hydrocarbons from sediment by two infaunal invertebrates

    SciTech Connect

    Meador, J.P.; Adams, N.G.; Casillas, E.; Bolton, J.L.

    1995-12-31

    Bioaccumulation of chlorinated hydrocarbons (CHs) from field-contaminated sediments by two infaunal invertebrates, Rhepoxynius abronius and Armandia brevis was examined in the laboratory. Sediments were selected over a large geographical area of an urban estuary, the Hudson-Raritan, to assess the potential for bioaccumulation. Amphipod and polychaete tissue burdens were highly correlated over sites; however, concentrations of the trichlorobiphenyls in the polychaete were about twice that found in the amphipod and 4 to 8 times higher for the more hydrophobic PCBs. Unlike PAHs from these sediments, concentrations of CHs in IW and sediment indicated that partition coefficients (K{sub oc}) were generally as predicted. K{sub oc} values determined with non-sorbed interstitial water concentrations (IW{sub free}) were much closer to predicted values compared to those based on the total chlorinated compound. As expected, BAF values were highly variable among sites and increased greatly with declining TOC content. The BAF{sub loc} (lipid/organic carbon normalized bioaccumulation factor) for trichlorobiphenyls in the polychaete was similar to that for the amphipod; however the polychaete BAF{sub loc} increased with increasing hydrophobicity and was maximum for the pentachlorobiphenyls and close to the expected maximum. Some evidence for site-specific BAF{sub loc} values was found because of a strong correlation between BAF{sub loc} and sediment concentration; however for some PCBs, this correlation was weak.

  5. Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes

    USGS Publications Warehouse

    Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.

    2008-01-01

    Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.

  6. Influence of plant-earthworm interactions on SOM chemistry and p,p'-DDE bioaccumulation.

    PubMed

    Kelsey, Jason W; Slizovskiy, Ilya B; Petriello, Michael C; Butler, Kelly L

    2011-05-01

    Laboratory experiments assessed how bioaccumulation of weathered p,p'-DDE from soil and humic acid (HA) chemistry are affected by interactions between the plants Cucurbita pepo ssp. pepo and ssp. ovifera and the earthworms Eisenia fetida, Lumbricus terrestris, and Apporectodea caliginosa. Total organochlorine phytoextraction by ssp. pepo increased at least 25% in the presence of any of the earthworm species (relative to plants grown in isolation). Uptake of the compound by ssp. ovifera was unaffected by earthworms. Plants influenced earthworm bioaccumulation as well. When combined with pepo, p,p'-DDE levels in E. fetida decreased by 50%, whereas, in the presence of ovifera, bioconcentration by L. terrestris increased by more than 2-fold. Spectral analysis indicated a decrease in hydrophobicity of HA in each of the soils in which both pepo and earthworms were present. However, HA chemistry from ovifera treatments was largely unaffected by earthworms. Risk assessments of contaminated soils should account for species interactions, and SOM chemistry may be a useful indictor of pollutant bioaccumulation. PMID:21421253

  7. Metabolism and bioaccumulation of nitroaromatic munitions by-products in earthworms and plants

    SciTech Connect

    Reddy, T.V.; Chang, L.W.; Smith, M.K.; Daniel, F.B.; Wiechman, B.; Reddy, G.

    1994-12-31

    Previously the authors have used earthworm and plant bioassays to evaluate the toxicity of nitroaromatic ammunition by-products. In the present study, they investigated the uptake, metabolism and possible bioaccumulation of these compounds in earthworms and plants. Earthworms were maintained on artificial soil supplemented with {sup 14}[C] trinitrobenzene (TNB). The authors also studied the translocation, metabolism and bioaccumulation of {sup 14}[C] 1,3-dinitrobenzene (DNB) by germinating oat and lettuce seeds planted on artificial soil. Acetone extracts of tissue and gut contents of earthworms exposed to TNB for different intervals contained only a small fraction of the original radioactivity, which did not increase with time. The radioactivity extracted from earthworms co-eluted with 1,3-dinitroaniline (DNAN) on HPLC and the amount of radioactivity decreased with time. In the DNB plant studies, five day old oat seedlings accumulated 17% of {sup 14}[C] radioactivity. HPLC of acetone extracts revealed unidentified radioactive peaks but DNB radioactivity was not detected. The radioactivity from butanol extracts of both oats and lettuce coeluted with aniline and 3-nitroaniline and the radioactivity increased with time. These results suggest that oats and lettuce bioaccumulate DNB metabolites, which might result in the transfer of toxicants to herbivores.

  8. Mercury bioaccumulation in northern two-lined salamanders from streams in the northeastern United States

    USGS Publications Warehouse

    Bank, M.S.; Loftin, C.S.; Jung, R.E.

    2005-01-01

    Mercury (Hg) bioaccumulation in salamanders has received little attention despite widespread Hg contamination of aquatic ecosystems and worldwide amphibian declines. Here we report concentrations of methyl Hg (MeHg) and total Hg in larval northern two-lined salamanders (Eurycea bislineata bislineata) collected from streams in Acadia National Park (ANP), Maine, and Bear Brook Watershed, Maine (BBWM; a paired, gauged watershed treated with bimonthly applications (25 kg/ha/yr) of ammonium sulfate [(NH4)(2)SO4]) since 1989), and Shenandoah National Park (SNP), Virginia. MeHg comprised 73-97% of total Hg in the larval salamander composite samples from ANP. At BBWM we detected significantly higher total Hg levels in larvae from the (NH4)(2)SO4 treatment watershed. At ANP total Hg concentrations in salamander larvae were significantly higher from streams in unburned watersheds in contrast with larval samples collected from streams located in watersheds burned by the 1947 Bar Harbor fire. Additionally, total Hg levels were significantly higher in salamander larvae collected at ANP in contrast with SNP. Our results suggest that watershed-scale attributes including. re history, whole-catchment (NH4)(2)SO4 additions, wetland extent, and forest cover type influence mercury bioaccumulation in salamanders inhabiting lotic environments. We also discuss the use of this species as an indicator of Hg bioaccumulation in stream ecosystems.

  9. Effect of PCB Bioavailability Changes in Sediments on Bioaccumulation in Fish.

    PubMed

    Fadaei, Hilda; Watson, Aaron; Place, Allen; Connolly, John; Ghosh, Upal

    2015-10-20

    In situ sediment amendment with sorbents such as activated carbon (AC) can effectively reduce the bioavailability of hydrophobic organic chemicals such as polychlorinated biphenyls (PCBs). However, there is limited experimental or modeling assessment of how bioavailability changes in sediments impact bioaccumulation in fish - the primary risk driver for exposure to humans and top predators in the aquatic ecosystem. In the present study we performed laboratory aquarium experiments and modeling to explore how PCB sorption in sediments impacted exposure pathways and bioaccumulation in fish. Results showed that freely dissolved PCBs in porewater and overlying water measured by passive sampling were reduced by more than 95% upon amendment with 4.5% fine granular AC. The amendment also reduced the PCB uptake in fish by 87% after 90 days of exposure. Measured freely dissolved concentrations were incorporated in equilibrium and kinetic models for predicting uptake by fish. Predicted uptake using the kinetic model was generally within a factor of 2 for total PCBs measured in fish. The kinetic model output was most sensitive to overlying water PCBs, lipid fraction, and dissolved oxygen concentration (regulating gill ventilation). Our results indicate that by incorporating changes in freely dissolved PCB concentrations in bioaccumulation models it is possible to predict effectiveness of sediment remediation in reducing PCB uptake in fish. PMID:26402889

  10. Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan.

    PubMed

    Eqani, Syed Ali Musstjab Akber Shah; Bhowmik, Avit Kumar; Qamar, Sehrish; Shah, Syed Tahir Abbas; Sohail, Muhammad; Mulla, Sikandar I; Fasola, Mauro; Shen, Heqing

    2016-11-01

    Mercury (Hg) contamination of environment is a major threat to human health in developing countries like Pakistan. Human populations, particularly children, are continuously exposed to Hg contamination via dust particles due to the arid and semi-arid climate. However, a country wide Hg contamination data for dust particles is lacking for Pakistan and hence, human populations potentially at risk is largely unknown. We provide the first baseline data for total mercury (THg) contamination into dust particles and its bioaccumulation trends, using scalp human hair samples as biomarker, at 22 sites across five altitudinal zones of Pakistan. The human health risk of THg exposure via dust particles as well as the proportion of human population that are potentially at risk from Hg contamination were calculated. Our results indicated higher concentration of THg in dust particles and its bioaccumulation in the lower Indus-plain agricultural and industrial areas than the other areas of Pakistan. The highest THg contamination of dust particles (3000ppb) and its bioaccumulation (2480ppb) were observed for the Lahore district, while the highest proportion (>40%) of human population was identified to be potentially at risk from Hg contamination from these areas. In general, children were at higher risk of Hg exposure via dust particles than adults. Regression analysis identified the anthropogenic activities, such as industrial and hospital discharges, as the major source of Hg contamination of dust particles. Our results inform environmental management for Hg control and remediation as well as the disease mitigation on potential hotspots.

  11. Developmental patterns of copper bioaccumulation in a marine fish model Oryzias melastigma.

    PubMed

    Guo, Zhiqiang; Zhang, Wei; Du, Sen; Green, Iain; Tan, Qiaoguo; Zhang, Li

    2016-01-01

    Allometry is known to be an important factor influencing metal bioaccumulation in animals. However, it is not clear whether effects are due to body size per se or changes in physiological traits during the animals' development. We therefore investigated the biokinetics of copper (Cu) and predicted Cu bioaccumulation during the development of a fish model, the marine medaka. The results revealed that the waterborne Cu uptake rate constant decreased and dietary Cu assimilation efficiency increased during development from larvae to adults. Thus, the allometric dependency of the biokinetic parameters in juveniles and adults can not be simply extrapolated to the whole life cycle. The body Cu concentration in the fish was predicted by the biokinetic model, which showed a rapid increase in the larval stage, followed by a slight increase from juveniles to adults, and then a relatively stable plateau in the post-adult stage. Dietary Cu uptake became more important as fish developed from larvae to juveniles, but became less important from juveniles to adults. These findings suggested that the developmental patterns of metal bioaccumulation are driven by an integrated biological/physiological shift through animals' ontogeny rather than a simple allometric dependent change. The developmental changes of metal uptake should be considered in ecological bioassessment and biomonitoring programs.

  12. Tungsten toxicity, bioaccumulation, and compartmentalization into organisms representing two trophic levels.

    PubMed

    Kennedy, Alan J; Johnson, David R; Seiter, Jennifer M; Lindsay, James H; Boyd, Robert E; Bednar, Anthony J; Allison, Paul G

    2012-09-01

    Metallic tungsten has civil and military applications and was considered a green alternative to lead. Recent reports of contamination in drinking water and soil have raised scrutiny and suspended some applications. This investigation employed the cabbage Brassica oleracae and snail Otala lactea as models to determine the toxicological implications of sodium tungstate and an aged tungsten powder-spiked soil containing monomeric and polymeric tungstates. Aged soil bioassays indicated cabbage growth was impaired at 436 mg of W/kg, while snail survival was not impacted up to 3793 mg of W/kg. In a dermal exposure, sodium tungstate was more toxic to the snail, with a lethal median concentration of 859 mg of W/kg. While the snail significantly bioaccumulated tungsten, predominately in the hepatopancreas, cabbage leaves bioaccumulated much higher concentrations. Synchrotron-based mapping indicated the highest levels of W were in the veins of cabbage leaves. Our results suggest snails consuming contaminated cabbage accumulated higher tungsten concentrations relative to the concentrations directly bioaccumulated from soil, indicating the importance of robust trophic transfer investigations. Finally, synchrotron mapping provided evidence of tungsten in the inner layer of the snail shell, suggesting potential use of snail shells as a biomonitoring tool for metal contamination.

  13. Organochlorine exposure and bioaccumulation in the endangered northwest Atlantic right whale (Eubalaena glacialis) population

    SciTech Connect

    Weisbrod, A.V.; Shea, D.; Moore, M.J.; Stegeman, J.J.

    2000-03-01

    Exposure to toxicants is one factor hypothesized to influence population growth of the northern right whale. Organochlorines in right whale skin, feces, and prey were measured and used to identify factors influencing exposure and bioaccumulation. Concentrations of 30 polychlorinated biphenyls (PCBs) and 20 pesticides in skin biopsies were consistent with other baleenopterids. Concentrations in feces and prey were two orders of magnitude less than in biopsies. In principal component analysis, organochlorines in biopsies matched those from Bay of Fundy, Canada, zooplankton, whereas feces were like Cape Cod, USA, copepods. Year of biopsy collection was the principal factor associated with differential accumulation of nonmetabolizable PCBs, 4,4{prime}-DDE, and dieldrin. Biopsies collected during winter had lower concentrations of lipid and metabolizable compounds than biopsies collected during summer. Concentrations of metabolizable PCBs increased with age in males. The bioaccumulation patterns implied that blubber burdens change annually because of the ingestion of different prey or prey from distinct locations and the release of some organochlorines stored in blubber during lipid depletion in winter. Because biopsy concentrations were lower than those found in marine mammals affected by PCBs and DDTs, the authors do not have evidence that the endangered whales bioaccumulate hazardous concentrations of organochlorines.

  14. Bioaccumulation patterns of polychlorinated biphenyls and chlorinated pesticides in northwest Atlantic pilot whales

    SciTech Connect

    Weisbrod, A.V.; Shea, D.; Moore, M.J.; Stegeman, J.J.

    2000-03-01

    Contaminant exposure is widespread among marine mammals but is of unknown significance. This study characterized organochlorine bioaccumulation in pilot whales, and these bioaccumulation patterns are proposed as representative of Northwest (NW) Atlantic cetacea. Samples were collected from whales stranded in Massachusetts and caught in nets. Polychlorinated biphenyl (PCB) and chlorinated pesticide concentrations were determined via GC/ECD and found to be similar to those reported for other NW Atlantic odontocetes. The organochlorine in highest concentration was 4,4{prime}-DDE, followed by trans-nonachlor, 4,4{prime}-DDD, dieldrin, cis-chlordane, C14(52), C15(95), C15(101), C15(118), C16(138), C16(149), C16(153), C17(180), and C17(187). The concentration of 19 pesticides was higher in blubber than liver. The concentration of 26 PCB congeners was also greater in blubber than liver. Principal component analysis and ANOVA indicated that blubber accumulated proportionately more of the most recalcitrant compounds, such as 4,4{prime}-DDE and nonmetabolizable PCBs, compared to liver. Whales that stranded together had more similar bioaccumulation than animals of the same gender or maturity. The high variation among individuals in tissue concentrations and the similarity within a stranding group suggest that pilot whale pods are exposed to a large range of pollutant sources, such as through different prey and feeding locations.

  15. Phylogeny and size differentially influence dissolved Cd and Zn bioaccumulation parameters among closely related aquatic insects.

    PubMed

    Poteat, Monica D; Buchwalter, David B

    2014-05-01

    Evolutionarily distinct lineages can vary markedly in their accumulation of, and sensitivity to, contaminants. However, less is known about variability among closely related species. Here, we compared dissolved Cd and Zn bioaccumulation in 19 species spanning two species-rich aquatic insect families: Ephemerellidae (order Ephemeroptera (mayflies)), generalized to be metal sensitive, and Hydropsychidae (order Trichoptera (caddisflies)), generalized to be metal tolerant. Across all species, Zn and Cd uptake rate constants (k(u)s), efflux rate constants (k(e)s) and bioconcentration factors (BCFs) strongly covaried, suggesting that these metals share transport pathways in these distinct lineages. K(u)s and BCFs were substantially larger in Ephemerellidae than in Hydropsychidae, whereas k(e)s did not dramatically differ between the two families. Body size played an important role in driving ku differences among species, but had no influence on k(e)s. While familial differences in metal bioconcentration were striking, each family exhibited tremendous variability in all bioaccumulation parameters. At finer levels of taxonomic resolution (within families), phylogeny did not account for differences in metal bioaccumulation. These findings suggest that intrafamily variability can be profound and have important practical implications in that we need to better understand how well "surrogate species" represent their fellow congeners and family members.

  16. Bioaccumulation and excretion of enantiomers of myclobutanil in Tenebrio molitor larvae through dietary exposure.

    PubMed

    Lv, Xiaotian; Liu, Chen; Li, Yaobin; Gao, Yongxin; Guo, Baoyuan; Wang, Huili; Li, Jianzhong

    2013-12-01

    The bioaccumulation and excretion of enantiomers of myclobutanil in Tenebrio molitor larvae through dietary exposure under laboratory conditions were investigated using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. The wheat bran fed to Tenebrio molitor larvae was spiked with racemic myclobutanil at two dose levels of 20 mg/kg and 2 mg/kg (dry weight). The results showed that there was a significant trend of enantioselective bioaccumulation in the larvae with a preferential accumulation of (-)-myclobutanil in 20 mg/kg dose exposure, but it was not obviously observed in the 2 mg/kg dose group. A kinetic model considering enantiomerization between the two enantiomers based on first-order reactions was built and the rate constants were estimated to discuss the kinetic reason for the different concentrations of individual enantiomers in the larvae. The approximations implied an inversion between the two enantiomers with a relatively higher rate of the inversion from (-)-myclobutanil to (+)-myclobutanil. Meanwhile, analysis of data of excretion samples suggested the active excretion is probably an important pathway for the insect to eliminate myclobutanil rapidly with nonenantioselectivity as a passive transport process, which was consistent with the low accumulation efficiency of myclobutanil measured by BAF (bioaccumulation factor).

  17. Forecasting fish biomasses, densities, productions, and bioaccumulation potentials of mid-atlantic wadeable streams.

    PubMed

    Barber, M Craig; Rashleigh, Brenda; Cyterski, Michael J

    2016-01-01

    Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the Bioaccumulation and Aquatic System Simulator (BASS) bioaccumulation and fish community model and data collected by the US Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Average annual biomasses and population densities and annual productions are estimated for 352 randomly selected streams. Realized bioaccumulation factors (BAF) and biomagnification factors (BMF), which are dependent on these forecasted biomasses, population densities, and productions, are also estimated by assuming constant water exposures to methylmercury and tetra-, penta-, hexa-, and hepta-chlorinated biphenyls. Using observed biomasses, observed densities, and estimated annual productions of total fish from 3 regions assumed to support healthy fisheries as benchmarks (eastern Tennessee and Catskill Mountain trout streams and Ozark Mountains smallmouth bass streams), 58% of the region's wadeable streams are estimated to be in marginal or poor condition (i.e., not healthy). Using simulated BAFs and EMAP Hg fish concentrations, we also estimate that approximately 24% of the game fish and subsistence fishing species that are found in streams having detectable Hg concentrations would exceed an acceptable human consumption criterion of 0.185 μg/g wet wt. Importantly, such streams have been estimated to represent 78.2% to 84.4% of the Mid-Atlantic's wadeable stream lengths. Our results demonstrate how a dynamic simulation model can support regional assessment and trends analysis for fisheries. PMID:25858149

  18. Developmental patterns of copper bioaccumulation in a marine fish model Oryzias melastigma.

    PubMed

    Guo, Zhiqiang; Zhang, Wei; Du, Sen; Green, Iain; Tan, Qiaoguo; Zhang, Li

    2016-01-01

    Allometry is known to be an important factor influencing metal bioaccumulation in animals. However, it is not clear whether effects are due to body size per se or changes in physiological traits during the animals' development. We therefore investigated the biokinetics of copper (Cu) and predicted Cu bioaccumulation during the development of a fish model, the marine medaka. The results revealed that the waterborne Cu uptake rate constant decreased and dietary Cu assimilation efficiency increased during development from larvae to adults. Thus, the allometric dependency of the biokinetic parameters in juveniles and adults can not be simply extrapolated to the whole life cycle. The body Cu concentration in the fish was predicted by the biokinetic model, which showed a rapid increase in the larval stage, followed by a slight increase from juveniles to adults, and then a relatively stable plateau in the post-adult stage. Dietary Cu uptake became more important as fish developed from larvae to juveniles, but became less important from juveniles to adults. These findings suggested that the developmental patterns of metal bioaccumulation are driven by an integrated biological/physiological shift through animals' ontogeny rather than a simple allometric dependent change. The developmental changes of metal uptake should be considered in ecological bioassessment and biomonitoring programs. PMID:26675367

  19. Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia feotida).

    PubMed

    Qu, Han; Wang, Peng; Ma, Rui-xue; Qiu, Xing-xu; Xu, Peng; Zhou, Zhi-qiang; Liu, Dong-hui

    2014-07-01

    The enantioselective acute toxicity to earthworms of racemic fipronil and its individual enantiomers was studied. R-(-)-fipronil was approximately 1.5 times more toxic than the racemate and approximately 2 times more toxic than S-(+)-fipronil after 72 and 96 h of exposure, respectively. Assays of fipronil enantiomer bioaccumulation and degradation in earthworms were conducted. The bio-concentration factors (BCFs) were slightly different between the two enantiomers. The enantiomeric fraction (EF) values in earthworms in the bioaccumulation period were approximately 0.5, which indicated there was no enantioselective bioaccumulation. In contrast, the degradation of fipronil in earthworms was enantioselective: the t1/2 values for R- and S-fipronil were 3.3 and 2.5 days, respectively, in natural soil, and 2.1 and 1.4 days, respectively, in artificial soil. The results of soil analyses showed that the degradation of fipronil was not enantioselective, which suggested that the enantioselectivity of fipronil in earthworms results from the organism's metabolism. The study also demonstrated that the presence of earthworms could accelerate the degradation of fipronil in soil.

  20. Bioaccumulation and primary risk assessment of persistent organic pollutants with various bivalves.

    PubMed

    Takabe, Yugo; Tsuno, Hiroshi; Nishimura, Fumitake; Tanii, Nobuo; Maruno, Hirofumi; Tsurukawa, Masahiro; Suzuki, Motoharu; Matsumura, Chisato

    2012-01-01

    Field surveys on persistent organic pollutant (POP) bioaccumulation were conducted with oysters, clams and scallops whose consumption amount accounted for large shares in the total consumption of shellfish in Japan. There was no numerical difference in bioaccumulation characteristics between oysters, clams, scallops, Corbicula and Mytilus galloprovincialis. Therefore, it was clear that the bioaccumulation characteristics in oysters, clams and scallops, which are important for food, could be ascertained by using the monitoring results with Corbicula and M. galloprovincialis which are easily sampled in various water areas in the world. Non-cancer risk (hazard quotient, HQ) and cancer risk (excess cancer risk, ΔR) via shellfish ranged from 10⁻⁸ to 10⁻⁴ and from 10⁻¹¹ to 10⁻⁷, respectively, at sampling points, which showed the risks of POP exposure via shellfish to be low enough. However, concerning the intake of other food, the importance of dieldrin monitoring should be suggested in Japan. Based on these results, the effectiveness of primary risk assessment could be suggested for screening chemicals whose preferential monitoring is needed. PMID:23109578

  1. Mercury bioaccumulation and decontamination kinetics in the edible cockle Cerastoderma edule.

    PubMed

    Cardoso, P G; Grilo, T F; Pereira, E; Duarte, A C; Pardal, M A

    2013-02-01

    Mercury bioaccumulation and decontamination kinetics in the edible cockle Cerastoderma edule were studied through a mesocosms experiment after a medium-term exposure to the metal. The results revealed that the bivalve presented distinct bioaccumulation kinetics according to the different tissues. While the gills showed a linear accumulation pattern, the digestive gland and the entire organism presented a saturation model, with higher accumulation during the first 7d of exposure and lower during the rest of the time. In addition, the bioaccumulation rate was not proportional to the Hg concentration, since the organisms under lower contamination presented higher bioconcentration factors than the ones under higher contamination. Gills were the tissues with higher mercury accumulation capability. Concerning the decontamination phase, C. edule lost approximately 80% of the mercury after 24h exposure in clean seawater. Nevertheless, never reached the original condition, showing in the final (20 d detox), Hg levels (>0.5 ppm) higher than those allowed by the legislation regulating human food consumption. This represents a matter of concern for Human health. PMID:23141557

  2. Bioaccumulation Efficiency, Tissue Distribution, and Environmental Occurrence of Hepatitis E Virus in Bivalve Shellfish from France

    PubMed Central

    Grodzki, Marco; Schaeffer, Julien; Piquet, Jean-Côme; Le Saux, Jean-Claude; Chevé, Julien; Ollivier, Joanna; Le Pendu, Jacques

    2014-01-01

    Hepatitis E virus (HEV), an enteric pathogen of both humans and animals, is excreted by infected individuals and is therefore present in wastewaters and coastal waters. As bivalve molluscan shellfish are known to concentrate viral particles during the process of filter feeding, they may accumulate this virus. The bioaccumulation efficiencies of oysters (Crassostrea gigas), flat oysters (Ostrea edulis), mussels (Mytilus edulis), and clams (Ruditapes philippinarum) were compared at different time points during the year. Tissue distribution analysis showed that most of the viruses were concentrated in the digestive tissues of the four species. Mussels and clams were found to be more sensitive to sporadic contamination events, as demonstrated by rapid bioaccumulation in less than 1 h compared to species of oysters. For oysters, concentrations increased during the 24-h bioaccumulation period. Additionally, to evaluate environmental occurrence of HEV in shellfish, an environmental investigation was undertaken at sites potentially impacted by pigs, wild boars, and human waste. Of the 286 samples collected, none were contaminated with hepatitis E virus, despite evidence that this virus is circulating in some French areas. It is possible that the number of hepatitis E viral particles discharged into the environment is too low to detect or that the virus may have a very short period of persistence in pig manure and human waste. PMID:24795382

  3. Bioaccumulation of human pharmaceuticals in fish across habitats of a tidally influenced urban bayou.

    PubMed

    Du, Bowen; Haddad, Samuel P; Luek, Andreas; Scott, W Casan; Saari, Gavin N; Burket, S Rebekah; Breed, Christopher S; Kelly, Martin; Broach, Linda; Rasmussen, Joseph B; Chambliss, C Kevin; Brooks, Bryan W

    2016-04-01

    Though pharmaceuticals and other contaminants of emerging concern are increasingly observed in inland water bodies, the occurrence and bioaccumulation of pharmaceuticals in estuaries and coastal ecosystems are poorly understood. In the present study, bioaccumulation of select pharmaceuticals and other contaminants of emerging concern was examined in fish from Buffalo Bayou, a tidally influenced urban ecosystem that receives effluent from a major (∼200 million gallons per day) municipal wastewater treatment plant in Houston, Texas, USA. Using isotope dilution liquid chromatography-tandem mass spectrometry, various target analytes were observed in effluent, surface water, and multiple fish species. The trophic position of each species was determined using stable isotope analysis. Fish tissue levels of diphenhydramine, which represented the only pharmaceutical detected in all fish species, did not significantly differ between freshwater and marine fish predominantly inhabiting benthic habitats; however, saltwater fish with pelagic habitat preferences significantly accumulated diphenhydramine to the highest levels observed in the present study. Consistent with previous observations from an effluent-dependent freshwater river, diphenhydramine did not display trophic magnification, which suggests site-specific, pH-influenced inhalational uptake to a greater extent than dietary exposure in this tidally influenced urban ecosystem. The findings highlight the importance of understanding differential bioaccumulation and risks of ionizable contaminants of emerging concern in habitats of urbanizing coastal systems.

  4. Forecasting fish biomasses, densities, productions, and bioaccumulation potentials of mid-atlantic wadeable streams.

    PubMed

    Barber, M Craig; Rashleigh, Brenda; Cyterski, Michael J

    2016-01-01

    Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the Bioaccumulation and Aquatic System Simulator (BASS) bioaccumulation and fish community model and data collected by the US Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Average annual biomasses and population densities and annual productions are estimated for 352 randomly selected streams. Realized bioaccumulation factors (BAF) and biomagnification factors (BMF), which are dependent on these forecasted biomasses, population densities, and productions, are also estimated by assuming constant water exposures to methylmercury and tetra-, penta-, hexa-, and hepta-chlorinated biphenyls. Using observed biomasses, observed densities, and estimated annual productions of total fish from 3 regions assumed to support healthy fisheries as benchmarks (eastern Tennessee and Catskill Mountain trout streams and Ozark Mountains smallmouth bass streams), 58% of the region's wadeable streams are estimated to be in marginal or poor condition (i.e., not healthy). Using simulated BAFs and EMAP Hg fish concentrations, we also estimate that approximately 24% of the game fish and subsistence fishing species that are found in streams having detectable Hg concentrations would exceed an acceptable human consumption criterion of 0.185 μg/g wet wt. Importantly, such streams have been estimated to represent 78.2% to 84.4% of the Mid-Atlantic's wadeable stream lengths. Our results demonstrate how a dynamic simulation model can support regional assessment and trends analysis for fisheries.

  5. Methylmercury bioaccumulation across a productivity gradient in streams

    EPA Science Inventory

    Conceptual models have identified periphyton as a potentially improtant pathway for biomagnifying pollutants in streams. This hypothesis, however, has neither been tested experimentally, norinvestigated form ethylmercury (MeHg) a ubiquitous aquatic contaminant.

  6. Impact of an urban multi-metal contamination gradient: metal bioaccumulation and tolerance of river biofilms collected in different seasons.

    PubMed

    Faburé, Juliette; Dufour, Marine; Autret, Armelle; Uher, Emmanuelle; Fechner, Lise C

    2015-02-01

    The aim of this study was to investigate the repeatability and seasonal variability of the biological response of river biofilms chronically exposed to a multi-metal pressure in an urban contamination gradient. Biofilms were grown on immersed plastic membranes at three sites on the Seine river upstream (site 1) and downstream (sites 2 and 3) from Paris (France). They were collected in four different seasons (autumn, spring, summer and winter). Biofilm tolerance to Cu, Ni, Pb and Zn was measured using a PICT (Pollution-Induced Community Tolerance) approach with a previously developed short-term toxicity test based on β-glucosidase (heterotrophic) activity. Metal concentrations in the river and also in the biofilm samples (total and non-exchangeable bioaccumulated metals) were also monitored. Biofilm-accumulated metal concentrations reflected the increase of the multi-metal exposure along the urban gradient. These concentrations were strongly correlated with dissolved and particulate organic carbon and with the total metal fraction in the river water, which recalls the significant influence of the environmental parameters on metal uptake processes in river biofilms. Overall, natural biofilms allow monitoring water quality by integrating the variations of a diffuse metal contamination overtime. Tolerance levels globally increased from site 1 to site 3 reflecting the metal pollution gradient measured in the river water collected at the three sites. Cu tolerance tended to increase during warm seasons but no clear seasonal tendency could be found for Ni, Pb and Zn. Furthermore, principal component analysis clearly discriminated samples collected upstream (site 1) from samples collected downstream (sites 2 and 3) along the first principal component which was correlated to the metal gradient. Samples collected in winter were also separated from the others along the second principal component correlated to parameters like water temperature and Total Suspended Solids

  7. Methylmercury Bioaccumulation in Rice and Wetland Biota: employing integrated indices of processes that drive methylmercury risk

    NASA Astrophysics Data System (ADS)

    Eagles-Smith, C.; Ackerman, J.; Windham-Myers, L.; Fleck, J.

    2013-12-01

    Wetlands often are associated with elevated methylmercury (MeHg) production and food web bioaccumulation, making them potentially important sources of Hg to surrounding waters and to wetland-dependent fish and wildlife. However, the cycling of MeHg through wetlands can vary markedly with wetland type. Agricultural wetlands such as rice fields can exhibit particularly pronounced MeHg concentrations and bioaccumulation because their biogeochemical, hydrological, and ecological characteristics facilitate the conversion of inorganic mercury (Hg) to MeHg. Rice fields are characterized by a series of seasonal extreme wetting and drying cycles, sulfate-containing fertilizers, and high levels of labile organic carbon, all of which are key processes in the Hg cycle. Rice fields comprise approximately 20% of freshwater habitats and 11% of cultivated land area globally, providing critical wildlife habitat while offering substantial economic, human health, and ecosystem benefits. Thus, there is strong impetus to better understand the drivers of Hg cycling in rice fields and to develop useful management approaches for minimizing Hg risk associated with rice agriculture without compromising rice production. We examined the role of rice wetlands on MeHg bioaccumulation through foodwebs by employing biosentinel caged fish as integrators of MeHg cycling processes. With experimental field studies in California's Central Valley, we placed biosentinel fishes into nine rice wetlands that were subjected to three different harvest strategies, and into nine managed wetlands that encompassed three different hydrological regimes. We simultaneously measured a suite of biogeochemical processes in surface water, sediment, and pore water in order to link the response in fish Hg bioaccumulation with within-field processes that regulate MeHg cycling. Our preliminary results indicate that fish Hg concentrations were 1.6 times higher in rice wetlands than in managed wetlands. Additionally, fish Hg

  8. Toxicity and bioaccumulation of 2,4,6-trinitrotoluene in fathead minnow (Pimephales promelas).

    PubMed

    Yoo, Leslie J; Lotufo, Guilherme R; Gibson, Alfreda B; Steevens, Jeffery A; Sims, Jerre G

    2006-12-01

    Few studies have determined the toxicity and bioaccumulation potential of explosive compounds in freshwater fish. In the present study, fathead minnow (Pimephales promelas) were exposed to a range of 2,4,6-trinitrotoluene (TNT) concentrations (0.44-44 micromol/L [0.1-10 mg/L] and 4.4-22.0 micromol/L [1.0-5.0 mg/L] in 4- and 10-d experiments, respectively). Median lethal concentrations of 11.93 micromol/L (2.7 mg/L; 95% confidence limit [CL], 10.29-13.83 micromol/L) and 9.68 micromol/L (2.20 mg/L; 95% CL, 9.17-10.22 micromol/L) were calculated in the 4- and 10-d experiments, respectively, and median lethal body residue of 101.0 micromol/kg (95% CL, 86.0-118.7 micromol/kg) was calculated in 4-d experiments. To study bioaccumulation, fish were exposed to 4.4 micromol/L (1 mg/L) of TNT for 12 h. Rapid bioaccumulation of TNT occurred within the first 10 min of exposure (ku = 30.4 L/kg/ h). Elimination of sigmaTNT (molar sum of TNT and degradation products 2- and 4-aminodinitrotoluenes) was fast, with an elimination rate (ke) of 2.24/h and a short half-life (0.31 h). The bioconcentration factors determined using 6-h mean tissue and water concentrations of sigmaTNT were 8.40 and 4.68 L/kg for the uptake experiment and the uptake portion of the elimination experiments, respectively. To determine the target organ for TNT in fish, juvenile fathead minnow were exposed to 2.2 micromol/L (0.5 mg/L) of [14C]TNT for 10 d. Radiolabeled compounds primarily bioaccumulated in the visceral tissues and spleen in comparison to gill, brain, muscle, and remainder tissue groups. The present study demonstrates the low bioaccumulation potential and rapid uptake of TNT in the fathead minnow.

  9. TOXICITY AND BIOACCUMULATION OF PFOS IN A PARTIAL LIFE CYCLE TEST WITH THE NORTHERN LEOPARD FROG

    EPA Science Inventory

    A number of recent monitoring studies have demonstrated elevated concentrations of perfluorooctane sulfonate (PFOS) in humans and wildlife throughout the world. Although no longer actively manufactured, the global distribution and relative persistence of PFOS indicates a need to...

  10. Evaluation of the potential bioaccumulation ability of the blood cockle (Anadara granosa L.) for assessment of environmental matrices of mudflats.

    PubMed

    Mirsadeghi, Seiedeh Aghileh; Zakaria, Mohamad Pauzi; Yap, Chee Kong; Gobas, Frank

    2013-06-01

    The spatial distribution of 19 polycyclic aromatic hydrocarbons (tPAHs) was quantified in aquacultures located in intertidal mudflats of the west coast of Peninsular Malaysia in order to investigate bioaccumulation of PAH in blood cockles, Anadara granosa (A. granosa). Fifty-four samples from environmental matrices and A. granosa were collected. The sampling locations were representative of a remote area as well as PAH-polluted areas. The relationship of increased background levels of PAH to anthropogenic PAH sources in the environment and their effects on bioaccumulation levels of A. granosa are investigated in this study. The levels of PAH in the most polluted station were found to be up to ten-fold higher than in remote areas in blood cockle. These high concentrations of PAHs reflected background contamination, which originates from distant airborne and waterborne transportation of contaminated particles. The fraction and source identification of PAHs, based on fate and transport considerations, showed a mix of petrogenic and pyrogenic sources. The relative biota-sediment accumulation factors (RBSAF), relative bioaccumulation factors from filtered water (RBAFw), and from suspended particulate matter (SPM) (RBAFSP) showed higher bioaccumulations of the lower molecular weight of PAHs (LMWs) in all stations, except Kuala Juru, which showed higher bioaccumulation of the higher molecular weight of PAHs (HMWs). Calculations of bioaccumulation factors showed that blood cockle can accumulate PAHs from sediment as well as water samples, based on the physico-chemical characteristics of habitat and behaviour of blood cockles. Correlations among concentrations of PAHs in water, SPM, sediment and A. granosa at the same sites were also found. Identification of PAH levels in different matrices showed that A. granosa can be used as a good biomonitor for LMW of PAHs and tPAHs in mudflats. Considering the toxicity and carcinogenicity of PAHs, the bioaccumulation by blood cockles

  11. Evaluation of the potential bioaccumulation ability of the blood cockle (Anadara granosa L.) for assessment of environmental matrices of mudflats.

    PubMed

    Mirsadeghi, Seiedeh Aghileh; Zakaria, Mohamad Pauzi; Yap, Chee Kong; Gobas, Frank

    2013-06-01

    The spatial distribution of 19 polycyclic aromatic hydrocarbons (tPAHs) was quantified in aquacultures located in intertidal mudflats of the west coast of Peninsular Malaysia in order to investigate bioaccumulation of PAH in blood cockles, Anadara granosa (A. granosa). Fifty-four samples from environmental matrices and A. granosa were collected. The sampling locations were representative of a remote area as well as PAH-polluted areas. The relationship of increased background levels of PAH to anthropogenic PAH sources in the environment and their effects on bioaccumulation levels of A. granosa are investigated in this study. The levels of PAH in the most polluted station were found to be up to ten-fold higher than in remote areas in blood cockle. These high concentrations of PAHs reflected background contamination, which originates from distant airborne and waterborne transportation of contaminated particles. The fraction and source identification of PAHs, based on fate and transport considerations, showed a mix of petrogenic and pyrogenic sources. The relative biota-sediment accumulation factors (RBSAF), relative bioaccumulation factors from filtered water (RBAFw), and from suspended particulate matter (SPM) (RBAFSP) showed higher bioaccumulations of the lower molecular weight of PAHs (LMWs) in all stations, except Kuala Juru, which showed higher bioaccumulation of the higher molecular weight of PAHs (HMWs). Calculations of bioaccumulation factors showed that blood cockle can accumulate PAHs from sediment as well as water samples, based on the physico-chemical characteristics of habitat and behaviour of blood cockles. Correlations among concentrations of PAHs in water, SPM, sediment and A. granosa at the same sites were also found. Identification of PAH levels in different matrices showed that A. granosa can be used as a good biomonitor for LMW of PAHs and tPAHs in mudflats. Considering the toxicity and carcinogenicity of PAHs, the bioaccumulation by blood cockles

  12. Bioaccumulation and toxicity of selenium during a life-cycle exposure with desert pupfish (Cyprinodon macularius)

    USGS Publications Warehouse

    2012-01-01

    Populations of desert pupfish (Cyprinodon macularius; pupfish), a federally-listed endangered species, inhabit irrigation drains in the Imperial Valley agricultural area of southern California. These drains have varying degrees of selenium (Se) contamination of water, sediment, and aquatic biota. Published Se toxicity studies suggest that these levels of Se contamination may pose risk of chronic toxicity to Se-sensitive fish, but until recently there have been no studies of the chronic toxicity of Se to desert pupfish. A life-cycle Se exposure with pupfish was conducted to estimate dietary and tissue thresholds for toxic effects of Se on all life stages. The dietary exposure was based on live oligochaete worms (Lumbriculus variegatus) dosed with Se by a laboratory food chain based on selenized yeast. Oligochaetes readily accumulated Se from mixtures of selenized and control yeasts. The protocol for dosing oligochaetes for pupfish feeding studies included long-term (at least 28 days) feeding of a low-ration of yeast mixtures to large batches of oligochaetes. Oligochaetes were dosed at five Se levels in a 50-percent dilution series. Pupfish were simultaneously fed Se-dosed oligochaetes and exposed to a series of Se concentrations in water (consisting of 85 percent selenate and 15 percent selenite) to produce exposures that were consistent with Se concentrations and speciation in pupfish habitats. The nutritional characteristics of oligochaete diets were consistent across the range of oligochaete Se concentrations tested. The life-cycle exposure started with laboratory-cultured juvenile pupfish that were exposed to Se through sexual maturation and reproduction (150 days; F0 exposure). The Se exposure continued with eggs, larvae, and juveniles produced by Se-exposed parents (79 days; F1 exposure). Selenium exposure (water and diets), Se bioaccumulation (whole-body and eggs), and toxicity endpoints (juvenile and adult survival and growth; egg production and hatching

  13. Concentration dependence of biotransformation in fish liver S9: Optimizing substrate concentrations to estimate hepatic clearance for bioaccumulation assessment.

    PubMed

    Lo, Justin C; Allard, Gayatri N; Otton, S Victoria; Campbell, David A; Gobas, Frank A P C

    2015-12-01

    In vitro bioassays to estimate biotransformation rate constants of contaminants in fish are currently being investigated to improve bioaccumulation assessments of hydrophobic contaminants. The present study investigates the relationship between chemical substrate concentration and in vitro biotransformation rate of 4 environmental contaminants (9-methylanthracene, pyrene, chrysene, and benzo[a]pyrene) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions and methods to determine maximum first-order biotransformation rate constants. Substrate depletion experiments using a series of initial substrate concentrations showed that in vitro biotransformation rates exhibit strong concentration dependence, consistent with a Michaelis-Menten kinetic model. The results indicate that depletion rate constants measured at initial substrate concentrations of 1 μM (a current convention) could underestimate the in vitro biotransformation potential and may cause bioconcentration factors to be overestimated if in vitro biotransformation rates are used to assess bioconcentration factors in fish. Depletion rate constants measured using thin-film sorbent dosing experiments were not statistically different from the maximum depletion rate constants derived using a series of solvent delivery-based depletion experiments for 3 of the 4 test chemicals. Multiple solvent delivery-based depletion experiments at a range of initial concentrations are recommended for determining the concentration dependence of in vitro biotransformation rates in fish liver fractions, whereas a single sorbent phase dosing experiment may be able to provide reasonable approximations of maximum depletion rates of very hydrophobic substances.

  14. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish.

    PubMed

    Ackerman, Joshua T; Kraus, Tamara E C; Fleck, Jacob A; Krabbenhoft, David P; Horwath, William R; Bachand, Sandra M; Herzog, Mark P; Hartman, C Alex; Bachand, Philip A M

    2015-05-19

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  15. Effect of pollution by particulate iron on the morphoanatomy, histochemistry, and bioaccumulation of three mangrove plant species in Brazil.

    PubMed

    Arrivabene, Hiulana Pereira; Souza, Iara da Costa; Có, Walter Luiz Oliveira; Conti, Melina Moreira; Wunderlin, Daniel Alberto; Milanez, Camilla Rozindo Dias

    2015-05-01

    In Brazil, some mangrove areas are subjected to air pollution by particulate iron from mining activities. However, the effect of this pollutant on mangrove plants is not well known. This study aimed to comparatively analyze the morphoanatomy, histochemistry, and iron accumulation in leaves of Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle. Samples were collected from five mangrove sites of Espírito Santo state, each of which is exposed to different levels of particulate iron pollution. The amount of particulate material settled on the leaf surface was greater in A. schaueriana and L. racemosa, which contain salt glands. High iron concentrations were found in leaves of this species, collected from mangrove areas with high particulate iron pollution, which suggests the foliar absorption of this element. None of the samples from any of the sites showed morphological or structural damage on the leaves. Scanning electron microscopy (SEM) coupled to X-ray diffraction rendered a good method for evaluating iron on leaves surfaces. A histochemical test using Prussian blue showed to be an appropriate method to detect iron in plant tissue, however, proved to be an unsuitable method for the assessment of the iron bioaccumulation in leaves of A. schaueriana and R. mangle. So far, this study demonstrates the need of evaluating the pathway used by plants exposed to contaminated particulate matter to uptake atmospheric pollutants.

  16. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils.

    PubMed

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  17. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils

    PubMed Central

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A.; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D.

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  18. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish

    USGS Publications Warehouse

    Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.

    2015-01-01

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  19. Effect of pollution by particulate iron on the morphoanatomy, histochemistry, and bioaccumulation of three mangrove plant species in Brazil.

    PubMed

    Arrivabene, Hiulana Pereira; Souza, Iara da Costa; Có, Walter Luiz Oliveira; Conti, Melina Moreira; Wunderlin, Daniel Alberto; Milanez, Camilla Rozindo Dias

    2015-05-01

    In Brazil, some mangrove areas are subjected to air pollution by particulate iron from mining activities. However, the effect of this pollutant on mangrove plants is not well known. This study aimed to comparatively analyze the morphoanatomy, histochemistry, and iron accumulation in leaves of Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle. Samples were collected from five mangrove sites of Espírito Santo state, each of which is exposed to different levels of particulate iron pollution. The amount of particulate material settled on the leaf surface was greater in A. schaueriana and L. racemosa, which contain salt glands. High iron concentrations were found in leaves of this species, collected from mangrove areas with high particulate iron pollution, which suggests the foliar absorption of this element. None of the samples from any of the sites showed morphological or structural damage on the leaves. Scanning electron microscopy (SEM) coupled to X-ray diffraction rendered a good method for evaluating iron on leaves surfaces. A histochemical test using Prussian blue showed to be an appropriate method to detect iron in plant tissue, however, proved to be an unsuitable method for the assessment of the iron bioaccumulation in leaves of A. schaueriana and R. mangle. So far, this study demonstrates the need of evaluating the pathway used by plants exposed to contaminated particulate matter to uptake atmospheric pollutants. PMID:25655694

  20. Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream

    PubMed Central

    Du, Bowen; Haddad, Samuel P.; Luek, Andreas; Scott, W. Casan; Saari, Gavin N.; Kristofco, Lauren A.; Connors, Kristin A.; Rash, Christopher; Rasmussen, Joseph B.; Chambliss, C. Kevin; Brooks, Bryan W.

    2014-01-01

    Though pharmaceuticals are increasingly observed in a variety of organisms from coastal and inland aquatic systems, trophic transfer of pharmaceuticals in aquatic food webs have not been reported. In this study, bioaccumulation of select pharmaceuticals was investigated in a lower order effluent-dependent stream in central Texas, USA, using isotope dilution liquid chromatography–tandem mass spectrometry (MS). A fish plasma model, initially developed from laboratory studies, was tested to examine observed versus predicted internal dose of select pharmaceuticals. Pharmaceuticals accumulated to higher concentrations in invertebrates relative to fish; elevated concentrations of the antidepressant sertraline and its primary metabolite desmethylsertraline were observed in the Asian clam, Corbicula fluminea, and two unionid mussel species. Trophic positions were determined from stable isotopes (δ15N and δ13C) collected by isotope ratio-MS; a Bayesian mixing model was then used to estimate diet contributions towards top fish predators. Because diphenhydramine and carbamazepine were the only target compounds detected in all species examined, trophic magnification factors (TMFs) were derived to evaluate potential trophic transfer of both compounds. TMFs for diphenhydramine (0.38) and carbamazepine (1.17) indicated neither compound experienced trophic magnification, which suggests that inhalational and not dietary exposure represented the primary route of uptake by fish in this effluent-dependent stream. PMID:25313153

  1. Effect of inorganic salts on the growth and Cd2+ bioaccumulation of Zygosaccharomyces rouxii cultured under Cd2+ stress.

    PubMed

    Jiang, Wei; Xu, Ying; Li, Chunsheng; Lv, Xin; Wang, Dongfeng

    2013-01-01

    Using living cells to remove heavy metals was limited by the sensitivity of living cells to heavy metal ions. Effect of inorganic salts on the growth and Cd(2+) bioaccumulation of Zygosaccharomyces rouxii (Z. rouxii) was studied. Results showed that NaCl, KCl, CaCl(2) and MgCl(2) could markedly reduce the growth inhibition ratio while NaNO(3), KNO(3), Na(2)SO(4) and K(2)SO(4) significantly increased it. Effect of inorganic salts on the Cd(2+) bioaccumulation of Z. rouxii indicated that different inorganic salts could promote or restrain the growth of Z. rouxii under Cd(2+) stress by weakening or enhancing Cd(2+) bioaccumulation. Although NaCl and KCl lowered the Cd(2+) accumulation per unit weight of Z. rouxii biomass, the total Cd(2+) bioaccumulation and Cd(2+) percentage removal both markedly increased. It suggested that NaCl and KCl could be introduced to enhance the growth and Cd(2+) bioaccumulation of Z. rouxii under Cd(2+) stress. PMID:23182039

  2. Bioaccumulation of PCB-153 and effects on molecular biomarkers acetylcholinesterase, glutathione-S-transferase and glutathione peroxidase in Mytilus galloprovincialis mussels.

    PubMed

    Vidal-Liñán, Leticia; Bellas, Juan; Soriano, José Antonio; Concha-Graña, Estefanía; Muniategui, Soledad; Beiras, Ricardo

    2016-07-01

    In this study, PCB-153 bioaccumulation kinetics and concentration-response experiments were performed employing wild Mytilus galloprovincialis mussels. In addition, the activity of three enzymatic biomarkers: glutathione S-transferase (GST), glutathione peroxidase (GPx) and acetylcholinesterase (AChE), were measured in the mussel gills. The experimental data fitted well to an asymptotic accumulation model with a high bioconcentration factor (BCF) of 9324 L kg(-1) and a very limited depuration capacity, described by a low excretion rate coefficient (Kd = 0.083 d(-1)). This study reports by first time in mussels significant inhibition of GST activity and significant induction of GPx activity as a result of exposure to dissolved PCB-153. In contrast, AChE activity was unaffected at all concentrations and exposure times tested. The effects on both enzymes are time-dependent, which stresses the difficulties inherent to the use of these biomarkers in chemical pollution monitoring programs.

  3. Bioaccumulation of PCB-153 and effects on molecular biomarkers acetylcholinesterase, glutathione-S-transferase and glutathione peroxidase in Mytilus galloprovincialis mussels.

    PubMed

    Vidal-Liñán, Leticia; Bellas, Juan; Soriano, José Antonio; Concha-Graña, Estefanía; Muniategui, Soledad; Beiras, Ricardo

    2016-07-01

    In this study, PCB-153 bioaccumulation kinetics and concentration-response experiments were performed employing wild Mytilus galloprovincialis mussels. In addition, the activity of three enzymatic biomarkers: glutathione S-transferase (GST), glutathione peroxidase (GPx) and acetylcholinesterase (AChE), were measured in the mussel gills. The experimental data fitted well to an asymptotic accumulation model with a high bioconcentration factor (BCF) of 9324 L kg(-1) and a very limited depuration capacity, described by a low excretion rate coefficient (Kd = 0.083 d(-1)). This study reports by first time in mussels significant inhibition of GST activity and significant induction of GPx activity as a result of exposure to dissolved PCB-153. In contrast, AChE activity was unaffected at all concentrations and exposure times tested. The effects on both enzymes are time-dependent, which stresses the difficulties inherent to the use of these biomarkers in chemical pollution monitoring programs. PMID:27176625

  4. Bioaccumulation of metals in sediments, fish and plant from Tisza river (Serbia)

    NASA Astrophysics Data System (ADS)

    Štrbac, Snežana; Gajica, Gordana; Kašanin-Grubin, Milica; Šajnović, Aleksandra; Vasić, Nebojša; Jovančićević, Branimir; Simonović, Predrag

    2014-05-01

    In the aquatic environments metals originate from various natural and anthropogenic sources. The purpose of the study was to assess the bioaccumulation level of metals in sediments fish and common reed at four different localities of the Tisza River stretch in Serbia. For purpose of this study concentrations of Al, As, B, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sr and Zn were determined in sediment, common reed (Phragmites australis (Cav.) Trin. ex Steud. 1841) and four ecologically different fish species (piscivorous northern pike (Esox lucius L.), benthivorous sterlet (Acipenser ruthenus L.) silver bream (Brama brama L.), omnivorous common carp (Cyprinus carpio L.)). Analysis of metals was carried out for liver, gills, brain, testicles and ovaries in fish and in the rhizome, stem and leaves of the common reed and sediment fraction <0,0063mm. The concentrations of metals have been assessed using the Inductively Coupled Plasma - optical emission spectrometry. Obtained results revealed that Al and Fe had the highest concentrations in sediment, fish and common reed samples. The research proved a strong positive correlation between the concentrations of all metals in the sediment, fish and common reed. The highest concentration of heavy metals was recorded in omnivorous common carp Cyprinus carpio, and organs that the most intensively accumulated the greatest number of them were liver and gills. Accumulated metals in the common reed were not distributed evenly, but there are target organs for bioaccumulation. Concentrations in below-ground organs were usually higher than above-ground organs, and the general decreasing trend of element content was rhizome>leaves>stems. Obtained results indicate that the location does not have impact to the level of bioaccumulation. On the basis of this research the under-ground organ (rhizome) of common reed, liver and gills and omnivorous fish species could be recommended as environmental indicators for the presence of metals during

  5. A dynamic and mechanistic model of PCB bioaccumulation in the European hake ( Merluccius merluccius)

    NASA Astrophysics Data System (ADS)

    Bodiguel, Xavier; Maury, Olivier; Mellon-Duval, Capucine; Roupsard, François; Le Guellec, Anne-Marie; Loizeau, Véronique

    2009-08-01

    Bioaccumulation is difficult to document because responses differ among chemical compounds, with environmental conditions, and physiological processes characteristic of each species. We use a mechanistic model, based on the Dynamic Energy Budget (DEB) theory, to take into account this complexity and study factors impacting accumulation of organic pollutants in fish through ontogeny. The bioaccumulation model proposed is a comprehensive approach that relates evolution of hake PCB contamination to physiological information about the fish, such as diet, metabolism, reserve and reproduction status. The species studied is the European hake ( Merluccius merluccius, L. 1758). The model is applied to study the total concentration and the lipid normalised concentration of 4 PCB congeners in male and female hakes from the Gulf of Lions (NW Mediterranean sea) and the Bay of Biscay (NE Atlantic ocean). Outputs of the model compare consistently to measurements over the life span of fish. Simulation results clearly demonstrate the relative effects of food contamination, growth and reproduction on the PCB bioaccumulation in hake. The same species living in different habitats and exposed to different PCB prey concentrations exhibit marked difference in the body accumulation of PCBs. At the adult stage, female hakes have a lower PCB concentration compared to males for a given length. We successfully simulated these sex-specific PCB concentrations by considering two mechanisms: a higher energy allocation to growth for females and a transfer of PCBs from the female to its eggs when allocating lipids from reserve to eggs. Finally, by its mechanistic description of physiological processes, the model is relevant for other species and sets the stage for a mechanistic understanding of toxicity and ecological effects of organic contaminants in marine organisms.

  6. Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage

    USGS Publications Warehouse

    Dovick, Meghan A.; Kulp, Thomas R.; Arkle, Robert .; Pilliod, David

    2016-01-01

    We compared As and Sb bioaccumulation and biomagnification when these metalloids co-occurred at varying environmental concentrations in a stream and wetlands near a contaminated mine site in Idaho (USA). We measured As and Sb concentrations in water and substrate samples, and in tissues of organisms representing several trophic levels. Bioaccumulation of both As and Sb was observed in stream organisms with the following trend of bio-diminution with increasing trophic level: primary producers>tadpoles>macroinvertebrates>trout. We also note reductions in metalloid concentrations in one of two stream remediation reaches engineered within the past 17 years to ameliorate metalloid contamination in the stream. Several wetlands contained thick microbial mats and were highly populated with boreal toad tadpoles that fed on them. The mats were extremely contaminated (up to 76 564 mg kg-1 As and 675 mg kg-1 Sb) with amorphous As- and Sb-bearing minerals that we interpret as biogenic precipitates from geomicrobiological As- and Sb-cycling. Ingested mat material provided a direct source of metalloids to tadpoles, and concentrations of 3867 mg kg-1 (As) and 375 mg kg-1 (Sb) reported here represent the highest whole body As and Sb levels ever reported in living tadpoles. The bulk of tadpole metalloid burden remained in the gut despite attempts to purge the tadpoles prior to analysis. This study adds to a number of recent investigations reporting bioaccumulation, but not biomagnification, of As and Sb in food webs. Moreover, our results suggest that tadpoles, in particular, may be more resistant to metalloid contamination than previously assumed.

  7. Interactions between Zooplankton and Crude Oil: Toxic Effects and Bioaccumulation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Almeda, Rodrigo; Wambaugh, Zoe; Wang, Zucheng; Hyatt, Cammie; Liu, Zhanfei; Buskey, Edward J.

    2013-01-01

    We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1) the effects of crude oil (Louisiana light sweet oil) on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in mesozooplankton communities, (2) the lethal effects of dispersant (Corexit 9500A) and dispersant-treated oil on mesozooplankton, (3) the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4) the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L−1 in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20), dispersant (0.25 µl L−1) and dispersant- treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L−1) to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments. PMID:23840628

  8. Tissue concentrations, bioaccumulation, and biomagnification of synthetic musks in freshwater fish from Taihu Lake, China.

    PubMed

    Zhang, Xiaolan; Xu, Qing; Man, Shoukuan; Zeng, Xiangying; Yu, Yingxin; Pang, Yuping; Sheng, Guoying; Fu, Jiamo

    2013-01-01

    Synthetic musks are ubiquitous pollutants in aquatic environments. As hydrophobic chemicals, they can accumulate in terrestrial and aquatic organisms. Investigations into the bioaccumulation of these chemicals in aquatic ecosystem have, however, been limited, and previous results were inconsistent among species and ecosystem. Studies on this topic have been carried out in European countries, the USA, and Japan, but very few are known of the situation in China. The aim of this study was to investigate contaminant levels of musks in fish from Taihu Lake, the second largest freshwater lake in China, as well as bioaccumulation and biomagnification of the pollutants in the freshwater food chain. Five polycyclic musks and two nitro musks were determined in 24 fish species and nine surface sediment samples from Taihu Lake. HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[γ]-2-benzopyran) and AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene) were the predominant contaminants in the fish samples, with concentrations ranging from below the limit of detection (LOD) to 52.9 and from bioaccumulation characteristics were suggested, but no significant region-specific differences were observed. Normalized biota-sediment accumulation factors for HHCB and AHTN were noted to increase with trophic levels in fish. Trophic magnification factors were estimated at 1.12 for HHCB and 0.74 for AHTN. A biomagnification for HHCB, and probably biodilution for AHTN, in the freshwater food chain are indicated, when trophic magnification factors were concerned. However, the correlations between logarithmic concentrations of the chemicals and trophic levels were not statistically significant. Further study using

  9. Bioaccumulation, temporal trend, and geographical distribution of synthetic musks in the marine environment.

    PubMed

    Nakata, Haruhiko; Sasaki, Hiroshi; Takemura, Akira; Yoshioka, Motoi; Tanabe, Shinsuke; Kannan, Kurunthachalam

    2007-04-01

    Bioaccumulation of synthetic musks in a marine food chain was investigated by analyzing marine organisms at various trophic levels, including lugworm, clam, crustacean, fish, marine mammal, and bird samples collected from tidal flat and shallow water areas of the Ariake Sea, Japan. Two of the polycyclic musks, HHCB and AHTN, were the dominant compounds found in most of the samples analyzed, whereas nitro musks were not detected in any of the organisms, suggesting greater usage of polycyclic musks relative to the nitro musks in Japan. The highest concentrations of HHCB were detected in clams (258-2730 ng/g lipid wt.), whereas HHCB concentrations in mallard and black-headed gull were low, and comparable with concentrations in fish and crab. These results are in contrast to the bioaccumulation pattern of polychlorinated biphenyls; for which a positive correlation between the concentration and the trophic status of organisms was found. Such a difference in the bioaccumulation is probably due to the metabolism and elimination of HHCB in higher trophic organisms. Temporal trends in concentrations of synthetic musks were examined by analyzing tissues of marine mammals from Japanese coastal waters collected during 1977-2005. HHCB concentrations in marine mammals have shown significant increase since the early 1990s, suggesting a continuous input of this compound into the marine environment. Comparison of the time trend for HHCB with those for PCBs and PBDEs suggested that the rates of increase in HHCB concentrations were higher than the other classes of pollutants. To examine the geographical distribution of HHCB, we have analyzed tissues of fish, marine mammals, and birds collected from several locations. Synthetic musks were not detected in a sperm whale (pelagic species) from Japanese coastal water and in eggs of south polar skua from Antarctica. While the number of samples analyzed is limited, these results imply a lack of long-range transportation potential of

  10. Impact of zinc acclimation on bioaccumulation and homeostasis in Chlorella kesslerii.

    PubMed

    Hassler, Christel S; Behra, Renata; Wilkinson, Kevin J

    2005-08-30

    Growth curves, cellular Zn contents and cellular protein expression were examined for the green alga, Chlorella kesslerii, as a function of different Zn growth regimes (growth in 16 pM, 1.7 nM or 1.6 microM calculated Zn2+). Zn homeostasis was responsible for observed differences in the capacity of the organism to accumulate Zn. The rapid acclimation that occurred in response to a Zn deficiency was likely due to the production of Zn transport sites. No differences were observed among cellular phytochelatin contents or efflux rate constants, although efflux did play an important role in regulating Zn cellular content. A long-term adaptation to Zn was not thought to occur since bioaccumulation and biological responses were similar for four successive cultures (30-40 days, 16-19 cell cycles) at different [Zn2+]. Among proteins that were influenced by the Zn growth regime, the Rubisco and histone H3 proteins were identified as being induced in the presence of 1.6 microM Zn2+ as compared with 1.7 nM Zn2+. The impact of the Zn preconditioning demonstrated that the concentrations of essential metals in the algal growth media would have an important, if not predominant effect on toxicity or bioaccumulation assessments. Furthermore, the high regulation of Zn transport and intracellular events by the microorganisms will likely preclude the use of simple metal uptake models including the free ion activity model and the biotic ligand model to predict either bioaccumulation or toxicological effects of Zn and perhaps other essential metals. PMID:15993955

  11. Linkage of bioaccumulation and biological effects to changes in pollutant loads in south San Francisco Bay

    USGS Publications Warehouse

    Hornberger, M.I.; Luoma, S.N.; Cain, D.J.; Parchaso, F.; Brown, C.L.; Bouse, R.M.; Wellise, C.; Thompson, J.K.

    2000-01-01

    The developed world has invested billions of dollars in waste treatment since the 1970s; however, changes in ecological or biological responses are rarely associated with reductions in metal pollutants. Here we present a novel, 23-yr time series of environmental change from a San Francisco Bay mudflat located 1 km from the discharge of a suburban domestic sewage treatment plant. Samples of surface sediment, the bioindicator Macoma balthica, and metals loading data were used to establish links between discharge, bioaccumulation, and effects. Mean annual Ag concentrations in M. balthica were 106 ??g/g in 1978 and 3.67 ??g/g in 1998. Concentrations of Cu declined from 287 ??g/g in 1980 to a minimum of 24 ??g/g in 1991. Declining Cu bioaccumulation was strongly correlated with decreasing Cu loads from the plant between 1977 and 1998. Relationships with bioaccumulation and total annual precipitation suggested that inputs from nonpoint sources were most important in controlling Zn bioavailability during the same period. Ecoepidemiological criteria were used to associate failed gamete production in M. balthica to a metals-enriched environment. Reproduction persistently failed between the mid-1970s and mid-1980s; it recovered after metal contamination declined. Other potential environmental causes such as food availability, sediment chemistry, or seasonal salinity fluctuations were not related to the timing of the change in reproductive capability. The results establish an associative link, suggesting that it is important to further investigate the chemical interference of Cu and/or Ag with invertebrate reproduction at relatively moderate levels of environmental contamination.

  12. Hot Spots of Mercury Bioaccumulation in Amphibian Populations From the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Bank, M. S.

    2008-12-01

    Mercury (Hg) contamination in the United States (U.S.) is well-documented and continues to be a public- health issue of great concern. Fish consumption advisories have been issued throughout much of the U.S. due to elevated levels of methylmercury (MeHg). Methylmercury contamination in the developing fetus and in young children is a major public health issue for certain sectors of the global human population. Moreover, identifying MeHg hot spots and the effects of MeHg pollution on environmental health and biodiversity are also considered a high priority for land managers, risk assessors, and conservation scientists. Despite their overall biomass and importance to aquatic and terrestrial ecosystems, Hg and MeHg bioaccumulation dynamics and toxicity in amphibians are not well studied, especially when compared to other vertebrate taxa such as birds, mammals, and fish species. Population declines in amphibians are well documented and likely caused by synergistic and interacting, multiple stressors such as climate change, exposure to toxic pollutants, fungal pathogens, and habitat loss and ecosystem degradation. Protecting quality of terrestrial ecosystems in the U.S. has enormous ramifications for economic and public health of the nation's residents and is fundamental to maintaining the biotic integrity of surface waters, riparian zones, and environmental health of forested landscapes nationwide. Determining Hg concentration levels for terrestrial and surface water ecosystems also has important implications for protecting the nation's fauna. Here I present an overview of the National Amphibian Mercury Program and evaluate variation in MeHg hotspots, Hg bioaccumulation and distribution in freshwater and terrestrial habitats across a broad gradient of physical, climatic, biotic, and ecosystem settings to identify the environmental conditions and ecosystem types that are most sensitive to Hg pollution. The role of geography, disturbance mechanisms, and abiotic and biotic

  13. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation

    USGS Publications Warehouse

    Chasar, L.C.; Scudder, B.C.; Stewart, A.R.; Bell, A.H.; Aiken, G.R.

    2009-01-01

    Trophic dynamics (community composition and feeding relationships) have been identified as important drivers of methylmercury (MeHg) bioaccumulation in lakes, reservoirs, and marine ecosystems. The relative importance of trophic dynamics and geochemical controls on MeHg bioaccumulation in streams, however, remains poorly characterized. MeHg bioaccumulation was evaluated in eight stream ecosystems across the United States (Oregon, Wisconsin, and Florida) spanning large ranges in climate, landscape characteristics, atmospheric Hg deposition, and stream chemistry. Across all geographic regions and all streams, concentrations of total Hg (THg) in top predator fish and forage fish, and MeHg in invertebrates, were strongly positively correlated to concentrations of filtered THg (FTHg), filtered MeHg (FMeHg), and dissolved organic carbon (DOC); to DOC complexity (as measured by specific ultraviolet absorbance); and to percent wetland in the stream basins. Correlations were strongest for nonurban streams. Although regressions of log[Hg] versus ??15N indicate that Hg in biota increased significantly with increasing trophic position within seven of eight individual streams, Hg concentrations in top predator fish (including cutthroat, rainbow, and brown trout; green sunfish; and largemouth bass) were not strongly influenced by differences in relative trophic position. Slopes of log[Hg] versus ??15N, an indicator of the efficiency of trophic enrichment, ranged from 0.14 to 0.27 for all streams. These data suggest that, across the large ranges in FTHg (0.14-14.2 ng L-1), FMeHg (0.023-1.03 ng L-1), and DOC (0.50-61.0 mg L-1) found in this study, Hg contamination in top predator fish in streams likely is dominated by the amount of MeHg available for uptake at the base of the food web rather than by differences in the trophic position of top predator fish. ?? 2009 American Chemical Society.

  14. Forest floor decomposition, metal exchangeability, and metal bioaccumulation by exotic earthworms: Amynthas agrestis and Lumbricus rubellus.

    PubMed

    Richardson, J B; Görres, J H; Friedland, A J

    2016-09-01

    Earthworms have the potential to reduce the retention of pollutant and plant essential metals in the forest floor (organic horizons) by decomposing organic matter and increasing exchangeability of metals. We conducted a laboratory experiment to investigate the effects of two exotic earthworms, Amynthas agrestis and Lumbricus rubellus, on forest floor decomposition, metal exchangeability, and metal bioaccumulation. Eighty-one pots containing homogenized forest floor material were incubated for 20, 40, or 80 days under three treatments: no earthworms, A. agrestis added, or L. rubellus added. For earthworm treatments, A. agrestis and L. rubellus were stocked at densities observed in previous field studies. Pots containing either A. agrestis or L. rubellus had lost more forest floor mass than the control plots after 40 and 80 days of incubation. Forest floor pots containing A. agrestis had significantly lower % C (16 ± 1.5 %) than control pots (21 ± 1.2 %) after 80 days. However, L. rubellus consumed more forest floor and C mass than A. agrestis, when evaluated on a per earthworm biomass basis. Exchangeable (0.1 M KCl + 0.01 M AcOH extractable) and stable (15 M HNO3+ 10 M HCl extractable) concentrations of Al, Ca, Cd, Cu, Mg, Mn, Pb, and Zn in forest floor material were measured. Stable concentrations and % exchangeable metals in forest floor material were similar among treatments. Although exchangeable metal concentrations varied significantly for most metals among treatments (except Mg and Zn), we conclude that earthworms did not increase or decrease the exchangeability of metals. However, earthworms bioaccumulated Cu, Cd, Zn, and Mg and had potentially hazardous tissue concentrations of Al and Pb. This was best illustrated by calculating bioaccumulation factors using exchangeable concentrations rather than total concentrations. Future research is needed to understand the effect of earthworms on metals in other soil types. PMID:27272919

  15. Enantiomerization and enantioselective bioaccumulation of benalaxyl in Tenebrio molitor larvae from wheat bran.

    PubMed

    Gao, Yongxin; Chen, Jinhui; Wang, Huili; Liu, Chen; Lv, Xiaotian; Li, Jianzhong; Guo, Baoyuan

    2013-09-25

    The enantiomerization and enatioselecive bioaccumulation of benalaxyl by dietary exposure to Tenebrio molitor larvae under laboratory conditions were studied by HPLC-MS/MS. Exposure of enantiopure R-benalaxyl and S-benalaxyl in T. molitor larvae revealed significant enantiomerization with formation of the R enantiomers from the S enantiomers, and vice versa. Enantiomerization was not observed in wheat bran during the period of 21 days. For the bioaccumulation experiment, the enantiomer fraction in T. molitor larvae was maintained approximately at 0.6, whereas the enantiomer fraction in wheat bran was maintained at 0.5; in other words, the bioaccumulation of benalaxyl was enantioselective in T. molitor larvae. Mathematical models for a process of uptake, degradation, and enantiomerization were developed, and the rates of uptake, degradation, and enantiomerization of R-benealaxyl and S-benealaxyl were estimated, respectively. The results were that the rate of uptake of R-benalaxyl (kRa = 0.052 h(-1)) was slightly lower than that of S-benalaxyl (kSa = 0.061 h(-1)) from wheat bran; the rate of degradation of R-benalaxyl (kRd = 0.285 h(-1)) was higher than that of S-benalaxyl (kSd = 0.114 h(-1)); and the rate of enantiomerization of R-benalaxyl (kRS = 0.126 h(-1)) was higher than that of S-benalaxyl (kSR = 0.116 h(-1)). It was suggested that enantioselectivtiy was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of chiral pesticides.

  16. Literature review on the use of bioaccumulation for heavy metal removal and recovery

    SciTech Connect

    Benemann, J.R. , Pinole, CA ); Wilde, E.W. )

    1991-02-01

    Bioaccumulation of metals by microbes -- bioremoval'' -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

  17. Literature review on the use of bioaccumulation for heavy metal removal and recovery. Volume 2

    SciTech Connect

    Benemann, J.R.; Wilde, E.W.

    1991-02-01

    Bioaccumulation of metals by microbes -- `` bioremoval`` -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R&D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

  18. Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons.

    PubMed

    Almeda, Rodrigo; Wambaugh, Zoe; Wang, Zucheng; Hyatt, Cammie; Liu, Zhanfei; Buskey, Edward J

    2013-01-01

    We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1) the effects of crude oil (Louisiana light sweet oil) on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in mesozooplankton communities, (2) the lethal effects of dispersant (Corexit 9500A) and dispersant-treated oil on mesozooplankton, (3) the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4) the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L(-1) in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20), dispersant (0.25 µl L(-1)) and dispersant-treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L(-1)) to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments. PMID:23840628

  19. Bioaccumulation of perfluoroalkyl acids by earthworms (Eisenia fetida) exposed to contaminated soils.

    PubMed

    Rich, Courtney D; Blaine, Andrea C; Hundal, Lakhwinder; Higgins, Christopher P

    2015-01-20

    The presence of perfluoroalkyl acids (PFAAs) in biosolids-amended and aqueous film-forming foam (AFFF)-impacted soils results in two potential pathways for movement of these environmental contaminants into terrestrial foodwebs. Uptake of PFAAs by earthworms (Eisenia fetida) exposed to unspiked soils with varying levels of PFAAs (a control soil, an industrially impacted biosolids-amended soil, a municipal biosolids-amended soil, and two AFFF-impacted soils) was measured. Standard 28 day exposure experiments were conducted in each soil, and measurements taken at additional time points in the municipal soil were used to model the kinetics of uptake. Uptake and elimination rates and modeling suggested that steady state bioaccumulation was reached within 28 days of exposure for all PFAAs. The highest concentrations in the earthworms were for perfluorooctane sulfonate (PFOS) in the AFFF-impacted Soil A (2160 ng/g) and perfluorododecanoate (PFDoA) in the industrially impacted soil (737 ng/g). Wet-weight (ww) and organic carbon (OC)-based biota soil accumulation factors (BSAFs) for the earthworms were calculated after 28 days of exposure for all five soils. The highest BSAF in the industrially impacted soil was for PFDoA (0.42 goc/gww,worm). Bioaccumulation factors (BAFs, dry-weight-basis, dw) were also calculated at 28 days for each of the soils. With the exception of the control soil and perfluorodecanoate (PFDA) in the industrially impacted soil, all BAF values were above unity, with the highest being for perfluorohexanesulfonate (PFHxS) in the AFFF-impacted Soil A (139 gdw,soil/gdw,worm). BSAFs and BAFs increased with increasing chain length for the perfluorocarboxylates (PFCAs) and decreased with increasing chain length for the perfluoroalkyl sulfonates (PFSAs). The results indicate that PFAA bioaccumulation into earthworms depends on soil concentrations, soil characteristics, analyte, and duration of exposure, and that accumulation into earthworms may be a potential

  20. Mercury in Pacific bluefin tuna (Thunnus orientalis):bioaccumulation and trans-Pacific Ocean migration

    USGS Publications Warehouse

    Colman, John A.; Nogueira, Jacob I.; Pancorbo, Oscar C.; Batdorf, Carol A.; Block, Barbara A.

    2015-01-01

    Pacific bluefin tuna (Thunnus orientalis) have the largest home range of any tuna species and are well known for the capacity to make transoceanic migrations. We report the measurement of mercury (Hg) concentrations in wild Pacific bluefin tuna (PBFT), the first reported with known size-of-fish and capture location. The results indicate juvenile PBFT that are recently arrived in the California Current from the western Pacific Ocean have significantly higher Hg concentrations in white muscle (0.51 ug/g wet mass, wm) than PBFT of longer California Current residency (0.41 ug/g wm). These new arrivals are also higher in Hg concentration than PBFT in farm pens (0.43 ug/g wm) that were captured on arrival in the California Current and raised in pens on locally derived feed. Analysis by direct Hg analyzer and attention to Hg by tissue type and location on the fish allowed precise comparisons of mercury among wild and captive fish populations. Analysis of migration and nearshore residency, determined through extensive archival tagging, bioaccumulation models, trophic investigations, and potential coastal sources of methylmercury, indicates Hg bioaccumulation is likely greater for PBFT juvenile habitats in the western Pacific Ocean (East China Sea, Yellow Sea) than in the eastern Pacific Ocean (California Current). Differential bioaccumulation may be a trophic effect or reflect methylmercury availability, with potential sources for coastal China (large hypoxic continental shelf receiving discharge of three large rivers, and island-arc volcanism) different from those for coastal Baja California (small continental shelf, no large rivers, spreading-center volcanism).

  1. Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons.

    PubMed

    Almeda, Rodrigo; Wambaugh, Zoe; Wang, Zucheng; Hyatt, Cammie; Liu, Zhanfei; Buskey, Edward J

    2013-01-01

    We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1) the effects of crude oil (Louisiana light sweet oil) on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in mesozooplankton communities, (2) the lethal effects of dispersant (Corexit 9500A) and dispersant-treated oil on mesozooplankton, (3) the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4) the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L(-1) in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20), dispersant (0.25 µl L(-1)) and dispersant-treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L(-1)) to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments.

  2. Bioaccumulation and biotransformation of the beta-blocker propranolol in multigenerational exposure to Daphnia magna.

    PubMed

    Jeong, Tae-Yong; Kim, Tae-Hun; Kim, Sang Don

    2016-09-01

    Multigenerational bioaccumulation and biotransformation activity and short-term kinetics (e.g., uptake and depuration) of propranolol in Daphnia magna were investigated at environmental concentration. The body burden and the major metabolite, desisopropyl propranolol (DIP), of propranolol were quantified using LC-MS/MS at the end of each generation after exposure for 11 generations. The accumulation of propranolol in D. magna at an environmental concentration of 0.2 μg/L was not much different between the parent (F0) and the eleventh filial (F10) generation. However, at 28 μg/L, its accumulation was 1.6 times higher-up to 18.9 μg/g-in the F10 generation relative to the F0. In contrast to propranolol, DIP intensity gradually increased from F0 to F10 at 0.2 μg/L, reflecting an increase in detoxification load and biotransformation performance; no increasing trend was observed at 28 μg/L. The bioaccumulation factor (BAF) showed higher values with a lower concentration and longer period of exposure. The average values of the BAF for 21 days of long-term exposure in successive 11 generations were 440.4 ± 119.7 and 1026.5 ± 208.6 L/kg for 28 μg/L and 0.2 μg/L, respectively. These are comparable to the BAF of 192 for the short-term 72-h exposure at 28 μg/L in the parent generation. It is also recommended that future studies for pharmaceutical ingredients be conducted on drug-drug interaction and structural characteristics on the prediction of biotransformation activity and bioaccumulation rate. PMID:27373739

  3. Bioaccumulation of perfluoroalkyl acids by earthworms (Eisenia fetida) exposed to contaminated soils.

    PubMed

    Rich, Courtney D; Blaine, Andrea C; Hundal, Lakhwinder; Higgins, Christopher P

    2015-01-20

    The presence of perfluoroalkyl acids (PFAAs) in biosolids-amended and aqueous film-forming foam (AFFF)-impacted soils results in two potential pathways for movement of these environmental contaminants into terrestrial foodwebs. Uptake of PFAAs by earthworms (Eisenia fetida) exposed to unspiked soils with varying levels of PFAAs (a control soil, an industrially impacted biosolids-amended soil, a municipal biosolids-amended soil, and two AFFF-impacted soils) was measured. Standard 28 day exposure experiments were conducted in each soil, and measurements taken at additional time points in the municipal soil were used to model the kinetics of uptake. Uptake and elimination rates and modeling suggested that steady state bioaccumulation was reached within 28 days of exposure for all PFAAs. The highest concentrations in the earthworms were for perfluorooctane sulfonate (PFOS) in the AFFF-impacted Soil A (2160 ng/g) and perfluorododecanoate (PFDoA) in the industrially impacted soil (737 ng/g). Wet-weight (ww) and organic carbon (OC)-based biota soil accumulation factors (BSAFs) for the earthworms were calculated after 28 days of exposure for all five soils. The highest BSAF in the industrially impacted soil was for PFDoA (0.42 goc/gww,worm). Bioaccumulation factors (BAFs, dry-weight-basis, dw) were also calculated at 28 days for each of the soils. With the exception of the control soil and perfluorodecanoate (PFDA) in the industrially impacted soil, all BAF values were above unity, with the highest being for perfluorohexanesulfonate (PFHxS) in the AFFF-impacted Soil A (139 gdw,soil/gdw,worm). BSAFs and BAFs increased with increasing chain length for the perfluorocarboxylates (PFCAs) and decreased with increasing chain length for the perfluoroalkyl sulfonates (PFSAs). The results indicate that PFAA bioaccumulation into earthworms depends on soil concentrations, soil characteristics, analyte, and duration of exposure, and that accumulation into earthworms may be a potential

  4. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice.

    PubMed

    Vermeulen, Frouke; Van den Brink, Nico W; D'Havé, Helga; Mubiana, Valentine K; Blust, Ronny; Bervoets, Lieven; De Coen, Wim

    2009-11-01

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way.

  5. The mismatch between bioaccumulation in field and laboratory environments: Interpreting the differences for metals in benthic bivalves.

    PubMed

    Belzunce-Segarra, Maria J; Simpson, Stuart L; Amato, Elvio D; Spadaro, David A; Hamilton, Ian L; Jarolimek, Chad V; Jolley, Dianne F

    2015-09-01

    Laboratory-based bioaccumulation and toxicity bioassays are frequently used to predict the ecological risk of contaminated sediments in the field. This study investigates the bioassay conditions most relevant to achieving environmentally relevant field exposures. An identical series of metal-contaminated marine sediments were deployed in the field and laboratory over 31 days. Changes in metal concentrations and partitioning in both sediments and waters were used to interpret differences in metal exposure and bioaccumulation to the benthic bivalve Tellina deltoidalis. Loss of resuspended sediments and deposition of suspended particulate matter from the overlying water resulted in the concentrations of Cu, Pb and Zn (major contaminants) becoming lower in the 1-cm surface layer of field-deployed sediments. Lower exchange rates of overlying waters in the laboratory resulted in higher dissolved metal exposures. The prediction of metal bioaccumulation by the bivalves in field and laboratory was improved by considering the metal partitioning within the surface sediments.

  6. Sterilization affects soil organic matter chemistry and bioaccumulation of spiked p,p'-DDE and anthracene by earthworms.

    PubMed

    Kelsey, Jason W; Slizovskiy, Ilya B; Peters, Richard D; Melnick, Adam M

    2010-06-01

    Laboratory experiments were conducted to assess the effects of soil sterilization on the bioavailability of spiked p,p'-DDE and anthracene to the earthworms Eisenia fetida and Lumbricus terrestris. Physical and chemical changes to soil organic matter (SOM) induced by sterilization were also studied. Uptake of both compounds added after soil was autoclaved or gamma irradiated increased for E. fetida. Sterilization had no effect on bioaccumulation of p,p'-DDE by L. terrestris, and anthracene uptake increased only in gamma-irradiated soils. Analyses by FT-IR and DSC indicate sterilization alters SOM chemistry and may reduce pollutant sorption. Chemical changes to SOM were tentatively linked to changes in bioaccumulation, although the effects were compound and species specific. Artifacts produced by sterilization could lead to inaccurate risk assessments of contaminated sites if assumptions derived from studies carried out in sterilized soil are used. Ultimately, knowledge of SOM chemistry could aid predictions of bioaccumulation of organic pollutants. PMID:20227150

  7. Differential bioaccumulation of (134)Cs in tropical marine organisms and the relative importance of exposure pathways.

    PubMed

    Metian, Marc; Pouil, Simon; Hédouin, Laetitia; Oberhänsli, François; Teyssié, Jean-Louis; Bustamante, Paco; Warnau, Michel

    2016-02-01

    Bioaccumulation of (134)Cs was determined in 5 tropical marine species: three bivalves (the oysters Isognomon isognomum and Malleus regula, and the clam Gafrarium pectinatum), one decapod (shrimp Penaeus stylirostris) and one alga (Lobophora variegata). Marine organisms were exposed to the radionuclides via different pathways: seawater (all of them), food (shrimp and bivalves) and sediment (bivalves). Our results indicate that the studied tropical species accumulate Cs similarly than species from temperate regions whereas retention capacities seems to be greater in the tropical species. Bioaccumulation capacities of the two oysters were similar for all the exposure pathways. The alga, and to a lesser extent the shrimp, concentrated dissolved Cs more efficiently than the bivalves (approx. 14 and 7 times higher, respectively). Assimilation efficiencies of Cs in bivalves and shrimp after a single feeding with radiolabelled food were comprised between 7.0 ± 0.4 and 40.7 ± 4.3%, with a variable retention time (half-life -Tb1/2- ranging from 16 ± 3 to 89 ± 55 d). Although the clam lives buried in the sediment, this exposure pathway resulted in low bioaccumulation efficiency for sediment-bound Cs (mean transfer factor: 0.020 ± 0.001) that was lower than the two oyster species, which are not used to live in this media (0.084 ± 0.003 and 0.080 ± 0.005). Nonetheless, Cs accumulated from sediment was similarly absorbed (61.6 ± 9.7 to 79.2 ± 2.3%) and retained (Tb1/2: 37 ± 2 to 58 ± 25 d) for the three bivalves species. Despite the poor transfer efficiency of Cs from food, the use of a global bioaccumulation model indicated that the trophic pathways was the main uptake route of Cs in the bivalves and shrimp. In shelled organisms, shells played a non-negligible role in Cs uptake, and their composition and structure might play a major role in this process. Indeed, most of the Cs taken up from seawater and sediment was principally located on the hard parts of the

  8. Bioaccumulation and depuration of some trace metals in the mussel, Perna viridis (Linnaeus)

    SciTech Connect

    Lakshmanan, P.T. ); Nambisan, P.N.K. )

    1989-07-01

    Bivalves are well known for their ability to concentrate heavy metals in their tissue from environmental water. Experimental studies on the accumulation of these pollutants by molluscs have been extensively conducted. The depuration of accumulated metals in a toxicant free medium has also been studied. Bivalve molluscs may form useful tools in monitoring heavy metal pollution. However, such studies are scant in tropical species. This paper reports the bioaccumulation and depuration of Hg, Cu, Zn and Pb by the mussel Perna viridis (Linnaeus) from seawater and explores its suitability as an indicator organism for metal pollution.

  9. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners.

    PubMed

    Bittencourt-Oliveira, Maria do Carmo; Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; de Oliveira, Ênio Tiago; dos Santos, Flávio

    2016-06-01

    The use of microcystins (MCs) contaminated water to irrigate crop plants represents a human health risk due to their bioaccumulation potential. In addition, MCs cause oxidative stress and negatively influence photosynthetic activities in plants. The present study was aimed at investigating the effect of MCs on photosynthetic parameters and antioxidative response of lettuce. Furthermore, the bioaccumulation factor (BAF) of total MCs, MC-LR and MC-RR in the vegetable after irrigation with contaminated water was determined. Lettuce crops were irrigated for 15 days with water containing cyanobacterial crude extracts (Microcystis aeruginosa) with MC-LR (0.0, 0.5, 2.0, 5.0 and 10.0 µg L(-1)), MC-RR (0.0, 0.15, 0.5, 1.5 and 3.0 µg L(-1)) and total MCs (0.0, 0.65, 2.5, 6.5 and 13.0 µg L(-1)). Increased net photosynthetic rate, stomatal conductance, leaf tissue transpiration and intercellular CO2 concentration were recorded in lettuce exposed to different MCs concentrations. Antioxidant response showed that glutathione S-transferase activity was down-regulated in the presence of MCs. On the other hand, superoxide dismutase, catalase and peroxidase activities were upregulated with increasing MCs concentrations. The bioaccumulation factor (BAF) of total MCs and MC-LR was highest at 6.50 and 5.00 µg L(-1), respectively, while for MC-RR, the highest BAF was recorded at 1.50 µg L(-1) concentration. The amount of total MCs, MC-LR and MC-RR bioacumulated in lettuce was highest at the highest exposure concentrations. However, at the lowest exposure concentration, there were no detectable levels of MC-LR, MC-RR and total MCs in lettuce. Thus, the bioaccumulation of MCs in lettuce varies according to the exposure concentration. In addition, the extent of physiological response of lettuce to the toxins relies on exposure concentrations. PMID:26896895

  10. Heavy Metal Bioaccumulation in an Atypical Primitive Neuroectodermal Tumor of the Abdominal Wall.

    PubMed

    Roncati, Luca; Gatti, Antonietta Morena; Capitani, Federico; Barbolini, Giuseppe; Maiorana, Antonio; Palmieri, Beniamino

    2015-01-01

    Heavy metals are able to interfere with the function of vital cellular components. Besides in trace heavy metals, which are essential at low concentration for humans, there are heavy metals with a well-known toxic and oncogenic potential. In this study, for the first time in literature, we report the unique adulthood case of an atypical primitive neuroectodermal tumor of the abdominal wall, diagnosed by histology and immunohistochemistry, with the molecular hybridization support. The neoplasia occurred in a patient chronically exposed to a transdermal delivery of heavy metal salts (aluminum and bismuth), whose intracellular bioaccumulation has been revealed by elemental microanalysis.

  11. Assessment of concentration, bioaccumulation and sources of polycyclic aromatic hydrocarbons in zooplankton of Chabahar Bay.

    PubMed

    Ziyaadini, Morteza; Mehdinia, Ali; Khaleghi, Leila; Nassiri, Mahmoud

    2016-06-15

    The amounts and sources of polycyclic aromatic hydrocarbons (PAHs) and their bioaccumulation factors (BAFs) in the zooplankton community of Chabahar Bay were investigated. The highest amounts of total PAHs (tPAHs) in the water and zooplankton samples were 62.2ngL(-1) and 1478.6ngg(-1) dry weights, in near the Shahid Beheshti Port and desalination, respectively. The greatest amount of BAF (51,780) was obtained in the entry of Bay, and it was related to the phenanthrene accumulation. Using molecular ratio, the results showed that the major input source of PAH compounds in zooplankton of Chabahar Bay was pyrolytic (fuel) source.

  12. Multivariate modeling of PCB bioaccumulation in three-spined stickleback (Gasterosteus aculeatus)

    SciTech Connect

    Bavel, B. van; Andersson, P.; Wingfors, H.; Bergqvist, P.A.; Rappe, C.; Tysklind, M.; Aahgren, J.; Norrgren, L.

    1996-06-01

    Three-spined sticklebacks were exposed to 20 polychlorinated biphenyls (PCBs) through gastrointestinal intake. The PCBs, viz. 2,2{prime},3,4-TeCB, 2,2{prime},4,6{prime}-TeCB, 2,3,3{prime},5{prime}-TeCB, 2,3,4,4{prime}-TeCB, 2,3{prime},4,5{prime}-TeCB, 3,3{prime},4,5-TeCB, 2,2{prime},3,4{prime},6-PeCB, 2,2{prime},4,4{prime},5-PeCB, 2,2{prime},4,6,6{prime}-PeCB, 2,3,3{prime},5,6-PeCB, 2,3,4,4{prime},6-PeCB, 3,3{prime}4,4{prime}5-PeCB, 2,2{prime},3,4,5,6{prime}-HxCB, 2,2{prime},4,4{prime},5,5{prime}-HxCB, 3,3{prime},4,4{prime},5,5{prime}-HxCB, 2,2{prime},3,3{prime},4,5,6-HpCB, 2,2{prime},3,4,4{prime},6,6{prime}-HpCB, 2,2{prime},3,4{prime},5,6,6{prime}-HpCB, 2,3,3{prime},4,4{prime},5,6-HpCB, and 2,3,3{prime},4{prime},5,5{prime},6-HpCB, were selected by means of a full factorial design in combination with principal component analyses based on several physicochemical properties of tetra- through hepta-PCBs. After exposure to the training set, pooled samples of the sticklebacks were analyzed by GC-MS after lipid determination and cleanup using Florisil open-column chromatography. Bioaccumulation factors (BAFs) were calculated on a lipid basis by dividing the PCB concentrations in the fish by the respective concentrations in the feed. Higher chlorinated PCBs showed, in general, higher bioaccumulation than the lower chlorinated congeners. Polychlorinated biphenyls with vicinal hydrogens in the meta- and para-positions exhibited low bioaccumulation. Finally, 18 of the 20 measured BAFs were used to calculate a multivariate quantitative structure-activity relationship (QSAR) by means of partial least squares fitting to latent structures. By applying this QSAR, the bioaccumulation potentials of 136 nontested tetra- through hepta-PCB congeners were predicted.

  13. A National Pilot Study of Mercury Contamination of Aquatic Ecosystems Along Multiple Gradients: Bioaccumulation in Fish

    USGS Publications Warehouse

    Brumbaugh, William G.; Krabbenhoft, David P.; Helsel, Dennis R.; Wiener, James G.; Echols, Kathy R.

    2001-01-01

    Water, sediment, and fish were sampled in the summer and fall of 1998 at 106 sites from 20 U.S. watershed basins to examine relations of mercury (Hg) and methylmercury (MeHg) in aquatic ecosystems. Bioaccumulation of Hg in fish from these basins was evaluated in relation to species, Hg and MeHg in surficial sediment and water, and watershed characteristics. Bioaccumulation was strongly (positively) correlated with MeHg in water (r = 0.63, p < 0.001) but only moderately with the MeHg in sediment (r = 0.33, p < 0.001) or total Hg in water (r = 0.28, p < 0.01). Of the other significantly measured parameters, pH, DOC, sulfate, sediment LOI, and the percent wetlands of each basin were also significantly correlated with Hg bioaccumulation in fish. The best model for predicting Hg bioaccumulation included Me Hg in water, PH of the water, % wetlands in the basin, and the AVS content of the sediment. These four variables accounted for 45% of the variability of the fish fillet Hg concentration normalized (divided) by total length; however, the majority was described by MeHg in water. A MeHg water concentration 0.12 ng/L was on average, associated with a fish fillet Hg concentration of 0.3 mg/kg wet weight for an age-3 fish when all species were considered. For age-3 largemouth bass, a MeHg water concentration of 0.058 ng/L was associated with the 0.3 mg/kg fillet concentration. Based on rankings for Hg in sediment, water, and fish, sampling sites from the following five study basins had the greatest Hg contamination: Nevada Basin and Range, South Florida Basin, Sacramento River Basin (California), Santee River Basin and Caostal Drainages (South Carolina), and the Long Island and New Jersey Coastal DRainags. A sampling and analysis strategy based on this pilot study is planned for all USGS/NAWQA study units over the next decade.

  14. [Dissolution, absorption and bioaccumulation in gastrointestinal tract of mercury in HgS-containing traditional medicines Cinnabar and Zuotai].

    PubMed

    Zheng, Zhi-yuan; Li, Cen; Zhang, Ming; Yang, Hong-xia; Geng, Lu-jing; Li, Lin-shuai; Du, Yu-zhi; Wei, Li-xin

    2015-06-01

    α-HgS is the main component of traditional Chinese medicine cinnabar, while β-HgS is the main component of Tibetan medicine Zuotai. However, there was no comparative study on the dissolution and absorption in gastrointestinal tract and bioaccumulation in organs of mercury in Cinnabar, Zuotai, α-HgS and β-HgS. In this study, the dissolution process of the four compounds in the human gastrointestinal tract was simulated to determine the mercury dissolutions and compare the mercury dissolution of different medicines and the dissolution-promoting capacity of different solutions. To explore the absorption and bioaccumulation of cinnabar and Zuotai in organisms, mice were orally administered with clinical equivalent doses cinnabar and Zuotai. Meanwhile, a group of mice was given α-HgS and β-HgS with the equivalent mercury with cinnabar, while another group was given β-HgS and HgCl2 with the equivalent mercury with Zuotai. The mercury absorption and bioaccumulation capacities of different medicines in mice and their mercury bioaccumulation in different tissues and organs were compared. The experimental results showed a high mercury dissolutions of Zuotai in artificial gastrointestinal fluid, which was followed by β-HgS, cinnabar and α-HgS. As for the mercury absorption and bioaccumulation in mice, HgCl2 was the highest, β-HgS was the next, and a-HgS was slightly higher than cinnabar. The organs with the mercury bioaccumulation from high to low were kidney, liver and brain. This study is close to clinical practices and can provide reference for the clinical safe medication as well as a study model for the safety evaluation on heavy metal-containing medicines by observing the mercury dissolution, absorption, distribution and accumulation of mercury-containing medicines cinnabar and zuotai. PMID:26591542

  15. Bioaccumulation of organochlorine pesticides and polychlorinated biphenyls by loaches living in rice paddy fields of Northeast China.

    PubMed

    Zhang, Haijun; Lu, Xianbo; Zhang, Yichi; Ma, Xindong; Wang, Shuqiu; Ni, Yuwen; Chen, Jiping

    2016-09-01

    The concentrations of 21 organochlorine pesticide (OCP) residues and 18 polychlorinated biphenyl (PCB) congeners were measured in two loach species (Misgurnus mohoity and Paramisgurnus dabryanus) and the soils of their inhabiting rice paddies from three typical rice production bases of Northeast China to explore the main factors influencing the bioaccumulation. The concentrations of ∑18PCBs and ∑21OCPs in loaches were determined to be in the ranges of 0.14-0.76 ng g(-1) wet weight (ww) and 1.19-78.53 ng g(-1) ww, respectively. Most of loaches showed the considerably high contamination levels of dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), which accounted for over 97% of the total OCPs. The much lower maximum allowable loach consumption rates (<15 g d(-1)) indicated a high carcinogenic risk that results from the consumption of rice-field loaches. The field biota-soil accumulation factor (BSAF) was calculated as a main measure of bioaccumulation potential. The comparisons of BSAF values and the results of multivariate analysis indicated that habitat-specific environmental conditions, mainly the paddy soil contamination levels and average temperature, decisively affected the bioaccumulation of organochlorine contaminants. When the influence of lipid contents was offset, M. mohoity loaches were found to have a higher potential to accumulation PCBs and OCPs than P. dabryanus loaches, while the bioaccumulation potentials did not exhibit significant differences between juvenile and adult loaches and between male and female loaches. The octanol-water partition coefficient (KOW) was the main chemical factor influencing bioaccumulation potentials. The BSAF values presented an increasing tendency with increasing log KOW values from 6.0 to approximately 7.0, followed by a decreasing tendency with a continuous increase in log KOW values. Moreover, loaches exhibited an isomeric-selective bioaccumulation for p

  16. Laboratory Protocol for Measuring the Bioaccumulation of Mercury by Earthworms

    NASA Astrophysics Data System (ADS)

    Steffy, D.; Nichols, A.; McLaughlin, A.

    2007-12-01

    Protocol was developed for a series of laboratory tests to determine if Canadian earthworms ( Lumbricus terrestris) can hyperaccumulate mercury from the soil in which they live. Two batches of 300 hundred worms each were measured for mercury uptake by establishing 3 populations (one control and two of known contamination). Populations were sampled every two weeks. Worm lengths were measured as an indicator of worm age and health. Worm tissue was processed by a modified EPA Method 7470 consisting of freeze drying, vacuum extraction, oxidation and acid extraction of the mercury. Each sample needed 2.000 g dry weight of worm tissue required 5 to 6 worms to be homogenized. Mercury concentration in the extraction fluid was measured by a CETAC M-6100 cold vapor mercury analyzer with an ASX-400 Autosampler having a method detection limit of 0.05 ppb. QA/QC activities such as calibration of instrumentation, spike samples, blank samples, reagent control samples, triplicate samples, and standard samples ensure acurate and precise measurements of mercury levels in tissue samples.

  17. Mutagenicity, dioxin-like activity and bioaccumulation of alkylated picene and chrysene derivatives in a German lignite.

    PubMed

    Meyer, Wiebke; Seiler, Thomas-Benjamin; Christ, Andreas; Redelstein, Regine; Püttmann, Wilhelm; Hollert, Henner; Achten, Christine

    2014-11-01

    In a former study, a German lignite extract exhibited toxicity to Danio rerio and Caenorhabditis elegans and was shown to have mutagenic and dioxin-like activity. Besides the comparatively low content of known toxic polycyclic aromatic hydrocarbons (PAH), highly intensive peaks of m/z 274 and m/z 324 were observed during the chromatographic analysis. These compounds are assumed to be alkylated chrysenes and picenes (3,3,7-trimethyl-1,2,3,4-tetrahydrochrysene, 1,2-(1'-isopropylpropano)-7-methylchrysene and an isomer of the latter, 1,2,9-trimethyl-1,2,3,4-tetrahydropicene and 2,2,9-trimethyl-1,2,3,4-tetrahydropicene). These compounds are intermediates in the diagenetic formation of chrysene and picene from triterpenoids. Due to their general high abundance in lignites and the toxicity observed for the lignite extract, the mechanism-specific toxicity and bioavailability of these compounds were investigated in the present study using the approach of effect-directed analysis. After the separation of the compounds from other PAH, their mutagenic activity (Ames Fluctuation test) and dioxin-like activity (EROD activity) were studied. Both, mutation induction factor (up to 2.9±2.7) and dioxin-like activity (Bio-TEQ of 224±75 pg/g; represents the amount (pg) 2,3,7,8-tetrachlorodibenzo-p-dioxin per g coal that would provoke the same toxic effect) were rather low. Bioavailability estimated by the bioaccumulation test with Lumbriculus variegatus was also very limited. Based on the obtained results, the environmental risk of the highly abundant alkylated chrysenes and picenes in lignites is concluded to be low.

  18. Explaining differences between bioaccumulation measurements in laboratory and field data through use of a probabilistic modeling approach

    USGS Publications Warehouse

    Selck, Henriette; Drouillard, Ken; Eisenreich, Karen; Koelmans, Albert A.; Palmqvist, Annemette; Ruus, Anders; Salvito, Daniel; Schultz, Irv; Stewart, Robin; Weisbrod, Annie; van den Brink, Nico W.; van den Heuvel-Greve, Martine

    2012-01-01

    In the regulatory context, bioaccumulation assessment is often hampered by substantial data uncertainty as well as by the poorly understood differences often observed between results from laboratory and field bioaccumulation studies. Bioaccumulation is a complex, multifaceted process, which calls for accurate error analysis. Yet, attempts to quantify and compare propagation of error in bioaccumulation metrics across species and chemicals are rare. Here, we quantitatively assessed the combined influence of physicochemical, physiological, ecological, and environmental parameters known to affect bioaccumulation for 4 species and 2 chemicals, to assess whether uncertainty in these factors can explain the observed differences among laboratory and field studies. The organisms evaluated in simulations including mayfly larvae, deposit-feeding polychaetes, yellow perch, and little owl represented a range of ecological conditions and biotransformation capacity. The chemicals, pyrene and the polychlorinated biphenyl congener PCB-153, represented medium and highly hydrophobic chemicals with different susceptibilities to biotransformation. An existing state of the art probabilistic bioaccumulation model was improved by accounting for bioavailability and absorption efficiency limitations, due to the presence of black carbon in sediment, and was used for probabilistic modeling of variability and propagation of error. Results showed that at lower trophic levels (mayfly and polychaete), variability in bioaccumulation was mainly driven by sediment exposure, sediment composition and chemical partitioning to sediment components, which was in turn dominated by the influence of black carbon. At higher trophic levels (yellow perch and the little owl), food web structure (i.e., diet composition and abundance) and chemical concentration in the diet became more important particularly for the most persistent compound, PCB-153. These results suggest that variation in bioaccumulation

  19. Bioaccumulation of trace metals in shellfish and fish of Bonny River and creeks around Okrika in Rivers State, Nigeria.

    PubMed

    Marcus, A C; Okoye, C O B; Ibeto, C N

    2013-06-01

    Lead, nickel, vanadium and cadmium were determined in fish and shellfish muscles, to assess contamination levels and identify bio-indicators. Vanadium was not detectable. Lead and cadmium were slightly above legal limits used in South East Asia, but lower than those of Australia and New Zealand. Higher contents of nickel, cadmium and lead in Pachymelania aurita and Crassostrea rhizophorae, lead in Mugil cephalus and cadmium in Periophthalmus koelreuteri, mark these species out as possible bio-indicators for the three metals in aquatic systems. Patterns of bioaccumulation seem to suggest that biophysiological and ecological characteristics influence bioaccumulation of trace metals in fish and shell fish.

  20. Literature-derived bioaccumulation models for earthworms: Development and validation

    SciTech Connect

    Sample, B.E.; Suter, G.W. II; Beauchamp, J.J.; Efroymson, R.A.

    1999-09-01

    Estimation of contaminant concentrations in earthworms is a critical component in many ecological risk assessments. Without site-specific data, literature-derived uptake factors or models are frequently used. Although considerable research has been conducted on contaminant transfer from soil to earthworms, most studies focus on only a single location. External validation of transfer models has not been performed. The authors developed a database of soil and tissue concentrations for nine inorganic and two organic chemicals. Only studies that presented total concentrations in departed earthworms were included. Uptake factors and simple and multiple regression models of natural-log-transformed concentrations of each analyte in soil and earthworms were developed using data from 26 studies. These models were then applied to data from six additional studies. Estimated and observed earthworm concentrations were compared using nonparametric Wilcoxon signed-rank tests. Relative accuracy and quality of different estimation methods were evaluated by calculating the proportional deviation of the estimate from the measured value. With the exception of Cr, significant, single-variable (e.g., soil concentration) regression models were fit for each analyte. Inclusion of soil Ca improved model fits for Cd and Pb. Soil pH only marginally improved model fits. The best general estimates of chemical concentrations in earthworms were generated by simple ln-ln regression models for As, Cd, Cu, Hg, Mn, Pb, Zn, and polychlorinated biphenyls. No method accurately estimated Cr or Ni in earthworms. Although multiple regression models including pH generated better estimates for a few analytes, in general, the predictive utility gained by incorporating environmental variables was marginal.

  1. Bioaccumulation of native polycyclic aromatic hydrocarbons from sediment by a polychaete and a gastropod: freely dissolved concentrations and activated carbon amendment.

    PubMed

    Cornelissen, Gerard; Breedveld, Gijs D; Naes, Kristoffer; Oen, Amy M P; Ruus, Anders

    2006-09-01

    The present paper describes a study on the bioaccumulation of native polycyclic aromatic hydrocarbons (PAHs) from three harbors in Norway using the polychaete Nereis diversicolor and the gastropod Hinia reticulata. First, biota-sediment accumulation factors (BSAFs) were measured in laboratory bioassays using the original sediments. Median BSAFs were 0.004 to 0.01 kg organic carbon/kg lipid (10 PAHs and 6 organism-sediment combinations), which was a factor of 89 to 240 below the theoretical BSAF based on total sediment contents (which is approximately one). However, if BSAFs were calculated on the basis of measured freely dissolved PAH concentrations in the pore water (measured with polyoxymethylene passive samplers), it appeared that these BSAFfree values agreed well with the measured BSAFs, within a factor of 1.7 to 4.3 (median values for 10 PAHs and six organism-sediment combinations). This means that for bioaccumulation, freely dissolved pore-water concentrations appear to be a much better measure than total sediment contents. Second, we tested the effect of 2% (of sediment dry wt) activated carbon (AC) amendments on BSAE The BSAFs were significantly reduced by a factor of six to seven for N. diversicolor in two sediments (i.e., two of six organism-sediment combinations), whereas no significant reduction was observed for H. reticulata. This implies that either site-specific evaluations of AC amendment are necessary, using several site-relevant benthic organisms, or that the physiology of H. reticulata caused artifactually high BSAF values in the presence of AC.

  2. Bioaccumulation and toxicity of selenium during a life-cycle exposure with desert pupfish (Cyprinodon macularius)

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Papoulias, Diana M.; Ivey, Chris D.; Kunz, James L.; Annis, Mandy; Ingersoll, Christopher G.

    2012-01-01

    Populations of desert pupfish (Cyprinodon macularius; pupfish), a federally-listed endangered species, inhabit irrigation drains in the Imperial Valley agricultural area of southern California. These drains have varying degrees of selenium (Se) contamination of water, sediment, and aquatic biota. Published Se toxicity studies suggest that these levels of Se contamination may pose risk of chronic toxicity to Se-sensitive fish, but until recently there have been no studies of the chronic toxicity of Se to desert pupfish.A life-cycle Se exposure with pupfish was conducted to estimate dietary and tissue thresholds for toxic effects of Se on all life stages. The dietary exposure was based on live oligochaete worms (Lumbriculus variegatus) dosed with Se by a laboratory food chain based on selenized yeast. Oligochaetes readily accumulated Se from mixtures of selenized and control yeasts. The protocol for dosing oligochaetes for pupfish feeding studies included long-term (at least 28 days) feeding of a low-ration of yeast mixtures to large batches of oligochaetes. Oligochaetes were dosed at five Se levels in a 50-percent dilution series. Pupfish were simultaneously fed Se-dosed oligochaetes and exposed to a series of Se concentrations in water (consisting of 85 percent selenate and 15 percent selenite) to produce exposures that were consistent with Se concentrations and speciation in pupfish habitats. The nutritional characteristics of oligochaete diets were consistent across the range of oligochaete Se concentrations tested.The life-cycle exposure started with laboratory-cultured juvenile pupfish that were exposed to Se through sexual maturation and reproduction (150 days; F0 exposure). The Se exposure continued with eggs, larvae, and juveniles produced by Se-exposed parents (79 days; F1 exposure). Selenium exposure (water and diets), Se bioaccumulation (whole-body and eggs), and toxicity endpoints (juvenile and adult survival and growth; egg production and hatching

  3. Fluoride bioaccumulation by hydroponic cultures of camellia (Camellia japonica spp.) and sugar cane (Saccharum officinarum spp.).

    PubMed

    Camarena-Rangel, Nancy; Rojas Velázquez, Angel Natanael; Santos-Díaz, María del Socorro

    2015-10-01

    The ability of hydroponic cultures of camellia and sugar cane adult plants to remove fluoride was investigated. Plants were grown in a 50% Steiner nutrient solution. After an adaptation period to hydroponic conditions, plants were exposed to different fluoride concentrations (0, 2.5, 5 and 10 mg L(-1)). Fluoride concentration in the culture medium and in tissues was measured. In sugar cane, fluoride was mainly located in roots, with 86% of it absorbed and 14% adsorbed. Sugar cane plants removed 1000-1200 mg fluoride kg(-1) dry weight. In camellia plants the highest fluoride concentration was found in leaf. Roots accumulated fluoride mainly through absorption, which was 2-5 times higher than adsorption. At the end of the experiment, fluoride accumulation in camellia plants was 1000-1400 mgk g(-1) dry weight. Estimated concentration factors revealed that fluoride bioaccumulation is 74-221-fold in camellia plants and 100-500-fold in sugar cane plants. Thus, the latter appear as a suitable candidate for removing fluoride from water due to their bioaccumulation capacity and vigorous growth rate; therefore, sugar cane might be used for phytoremediation. PMID:25930125

  4. Modelling growth and bioaccumulation of Polychlorinated biphenyls in common sole ( Solea solea)

    NASA Astrophysics Data System (ADS)

    Eichinger, M.; Loizeau, V.; Roupsard, F.; Le Guellec, A. M.; Bacher, C.

    2010-10-01

    Experiments were performed on juvenile sole in controlled conditions in the aim of understanding how the biology of common sole may affect the accumulation and dilution of Polychlorinated biphenyls (PCBs). The fish were raised in optimal conditions and divided into two tanks: one control tank and one PCB tank. 4 PCB congeners were added to food for 3 months in the PCB tank; the soles were subsequently fed unspiked food for 3 months. Growth (length and weight) and PCB concentrations were monitored in both tanks and juvenile sole growth was not significantly affected by PCBs in our experimental conditions. We used the Dynamic Energy Budget (DEB) theory to model sole biology and paid special attention to model calibration through the wide use of data from the literature. The model accurately reproduced fish growth in both tanks. We coupled a bioaccumulation model to reproduce the concentration dynamics of the 4 PCB congeners used. This model did not require additional calibration and was dependent solely on the growth model and PCB concentrations in food. The bioaccumulation model accurately simulated PCB accumulation in fish, but overestimated PCB concentrations in fish during the dilution phase. This may suggest that in addition to PCB dilution due to growth, PCB concentrations decreased due to other PCB elimination mechanisms. Finally, we discussed potential improvements to the model and its future applications.

  5. Agricultural soils spiked with copper mine wastes and copper concentrate: implications for copper bioavailability and bioaccumulation.

    PubMed

    Ginocchio, Rosanna; Sánchez, Pablo; de la Fuente, Luz María; Camus, Isabel; Bustamante, Elena; Silva, Yasna; Urrestarazu, Paola; Torres, Juan C; Rodríguez, Patricio H

    2006-03-01

    A better understanding of exposure to and effects of copper-rich pollutants in soils is required for accurate environmental risk assessment of copper. A greenhouse experiment was conducted to study copper bioavailability and bioaccumulation in agricultural soils spiked with different types of copper-rich mine solid wastes (copper ore, tailing sand, smelter dust, and smelter slag) and copper concentrate. A copper salt (copper sulfate, CuSO4) that frequently is used to assess soil copper bioavailability and phytotoxicity also was included for comparison. Results showed that smelter dust, tailing sand, and CuSO4 are more likely to be bioavailable and, thus, toxic to plants compared with smelter slag, concentrate, and ore at equivalent total copper concentrations. Differences may be explained by intrinsic differences in copper solubilization from the source materials, but also by their capability to decrease soil pH (confounding effect). The copper toxicity and bioaccumulation in plants also varied according to soil physicochemical characteristics (e.g., pH and total organic carbon) and the available levels of plant nutrients, such as nitrogen, phosphorus, and potassium. Chemistry/mineralogy of mine materials, soil/pore-water chemistry, and plant physiological status thus should be integrated for building adequate models to predict phytotoxicity and environmental risk of copper. PMID:16566155

  6. Effects of biochar on the transformation and earthworm bioaccumulation of organic pollutants in soil.

    PubMed

    Gu, Jianqiang; Zhou, Wenqiang; Jiang, Bingqi; Wang, Lianhong; Ma, Yini; Guo, Hongyan; Schulin, Rainer; Ji, Rong; Evangelou, Michael W H

    2016-02-01

    Little is known about the effects of biochar on the fate and behavior of micropollutants in soil, especially in the presence of soil macrofauna. Using a 14C-tracer, we studied the fate of 2,4-dichlorophenol and phenanthrene, after 30 days in soil in the presence of a biochar (0-5%, dry weight) produced from China fir at 400 °C and/or the earthworm Metaphire guillelmi. Application of the biochar significantly reduced the degradation and mineralization of both pollutants and strongly increased the accumulation of their metabolites in soil. The earthworm had no significant effects on the degradation of parent molecules of the pollutants but it significantly reduced the mineralization of the pollutants independent of the presence of the biochar. Although at an application rate of <1% the biochar strongly sorbed both pollutants, it did not significantly decrease the bioaccumulation of free dichlorophenol and phenanthrene and their metabolites by the earthworm. Our results demonstrate the complex effects of biochar on the fate, transformation, and earthworm bioaccumulation of organic pollutants in soil. They show that biochar application may not be an appropriate strategy for treating soil contaminated with hydrophobic organic pollutants and underline the importance of soil-feeding earthworms in risk assessments of biochar effects on soil remediation.

  7. Effects of biochar on the transformation and earthworm bioaccumulation of organic pollutants in soil.

    PubMed

    Gu, Jianqiang; Zhou, Wenqiang; Jiang, Bingqi; Wang, Lianhong; Ma, Yini; Guo, Hongyan; Schulin, Rainer; Ji, Rong; Evangelou, Michael W H

    2016-02-01

    Little is known about the effects of biochar on the fate and behavior of micropollutants in soil, especially in the presence of soil macrofauna. Using a 14C-tracer, we studied the fate of 2,4-dichlorophenol and phenanthrene, after 30 days in soil in the presence of a biochar (0-5%, dry weight) produced from China fir at 400 °C and/or the earthworm Metaphire guillelmi. Application of the biochar significantly reduced the degradation and mineralization of both pollutants and strongly increased the accumulation of their metabolites in soil. The earthworm had no significant effects on the degradation of parent molecules of the pollutants but it significantly reduced the mineralization of the pollutants independent of the presence of the biochar. Although at an application rate of <1% the biochar strongly sorbed both pollutants, it did not significantly decrease the bioaccumulation of free dichlorophenol and phenanthrene and their metabolites by the earthworm. Our results demonstrate the complex effects of biochar on the fate, transformation, and earthworm bioaccumulation of organic pollutants in soil. They show that biochar application may not be an appropriate strategy for treating soil contaminated with hydrophobic organic pollutants and underline the importance of soil-feeding earthworms in risk assessments of biochar effects on soil remediation. PMID:26694792

  8. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research.

    PubMed

    Hou, Rui; Xu, Yiping; Wang, Zijian

    2016-06-01

    Due to their widespread use, organophosphate flame retardants (OPFRs) are commonly detected in various environmental matrices and have been identified as emerging contaminants. Considering the adverse effects of OPFRs, many researchers have paid their attention on the absorption, bioaccumulation, metabolism and internal exposure processes of OPFRs in animals and humans. In this article, we first review the diverse absorption routes of OPFRs by animals and humans (e.g., inhalation, ingestion, dermal absorption and gill absorption). Bioaccumulation and biomagnification potentials of OPFRs in different types of organisms and food webs are also summarized, based on quite limited available data and results. For metabolism, we review the Phase-I and Phase-II metabolic processes for each type of OPFRs (chlorinated OPFRs, alkyl-OPFRs and aryl-OPFRs) in the animals and humans, as well as toxicokinetic information and putative exposure biomarkers on OPFRs. Finally, we highlight gaps in our knowledge and critical directions for future internal exposure studies of OPFRs in animals and humans. PMID:27010170

  9. Heavy metals bioaccumulation in Berseem (Trifolium alexandrinum) cultivated in areas under intensive agriculture, Punjab, India.

    PubMed

    Bhatti, Sandip Singh; Sambyal, Vasudha; Nagpal, Avinash Kaur

    2016-01-01

    Berseem (Trifolium alexandrinum) is one of the main fodder crops of Punjab, India. But due to the heavy metal contamination of agricultural soils by anthropogenic activities, there is rise in metal bioaccumulation in crops like Berseem. In addition to human influence, heavy metal contents in soil are highly dependent on soil characteristics also. Therefore a study was conducted in areas having intensive agricultural practices to analyze physico-chemical characteristics of soils under Berseem cultivation and heavy metal bioaccumulation in Berseem. The studied soils were alkaline, sandy in texture and low in soil organic matter. Among the studied heavy metals (Cr, Cu, Cd, Co and Pb) in soil and Berseem, Cr content in Berseem was found to be above maximum permissible limits. Soil to Berseem metal bioaccmulation factor (BAF) was above 1 for Cr, Cu, Cd and Co in many samples and highest BAF was found for Co (4.625). Hence it can be concluded that Berseem from studied areas was unsafe for animal consumption.

  10. Influence of nutrient additions on cadmium bioaccumulation by aquatic invertebrates in littoral enclosures

    SciTech Connect

    Currie, R.S.; Muir, D.C.G.; Fairchild, W.L.; Holoka, M.H.; Hecky, R.E.

    1998-12-01

    Cadmium distribution and bioaccumulation were examined over a 2-year period (1991--1992) in two nutrient-enriched and two control littoral enclosures and in the littoral zone in Lake 382 (L382). Lake 382, a small oligotrophic lake, is located within the Experimental Lakes Area in northwestern Ontario, Canada, and received experimental Cd additions from 1987 to 1992. In the second year of this study, chlorophyll a and suspended C concentrations in the nutrient-enriched enclosures increased by 6.6 and 3.4 times, respectively, compared to the controls. As a result of increased particulate produced by the nutrient additions, Cd concentrations in water from the nutrient-enriched enclosures were higher compared to the controls. Estimated Cd/C concentrations in water were lower in the nutrient-enriched enclosures relative to the controls because of higher particle concentrations. Effects on Cd bioaccumulation were limited even though mesotrophic to eutrophic conditions were reached in the nutrient-enriched enclosures had consistently higher Cd concentrations compared to the controls, but significant differences were not detected. Enhanced accumulation of Cd-rich particulate matter by these organisms may account for this trend. Mussels and crayfish accumulated significantly more Cd when exposed in the lake compared to the enclosures. This observation is due to elevated Cd water concentrations in the lake compared to the enclosures because of continued Cd additions to the lake. These results suggest that the water route of exposure is an important pathway for Cd accumulation by these organisms.

  11. Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals

    PubMed Central

    Peterson, Sarah H.; Ackerman, Joshua T.; Costa, Daniel P.

    2015-01-01

    Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200–1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ13C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation. PMID:26085591

  12. Cadmium-induced changes in trace element bioaccumulation and proteomics perspective in four marine bivalves.

    PubMed

    Liu, Fengjie; Wang, Da-Zhi; Wang, Wen-Xiong

    2012-06-01

    Bivalves are employed widely as biomonitors of metal pollution and proteomics has increasingly been applied to solve ecotoxicological issues. This study aimed to investigate the effects of Cd exposure on the bioaccumulation of other trace elements and reveal the molecular mechanisms using proteomics technologies. The results showed that Cd exposure resulted in remarkable changes in body concentrations of Zn, Cu, Ag, Co, Ni, Pb, and Se in four marine bivalves (scallop Chlamys nobilis, clam Ruditapes philippinarum, mussel Perna viridis, and oyster Saccostrea cucullata). Generally, the bivalves exposed to higher Cd concentration accumulated higher concentrations of Zn, Cu, and Se, but a lower concentration of Co. The accumulation of Ag, Ni, and Pb was specific for different species. The data strongly suggest that the influences of one metal exposure on the bioaccumulation of other metals/metalloids need to be considered in interpreting body concentrations of the elements in the biomonitors. Cd exposure had little effect on bivalve proteomes, and the identified proteins were insufficient to explain the observed disruption of trace element metabolism. However, protein expression signatures composed of the altered proteins could distinguish the clams and the mussels with different body Cd levels. The strong up-regulation of galectin in Cd-exposed oysters indicated the protein as a novel biomarker in environmental monitoring.

  13. Bioaccumulation kinetics of brominated flame retardants (polybrominated diphenyl ethers) in blue mussels (Mytilus edulis)

    SciTech Connect

    Gustafsson, K.; Bjoerk, M.; Burreau, S.; Gilek, M. )

    1999-06-01

    Baltic Sea blue mussels, Mytilus edulis, were exposed to polybrominated diphenyl ethers (PBDEs, IUPAC congeners 47, 99, and 153) and polychlorinated biphenyls (PCBs, congeners 31, 52, 77, 118, and 153) in a flow-through experimental setup for 44 d. After the exposure phase, the mussels were allowed to depurate in natural brackish water for 26 d. After analyses, uptake clearance rate coefficients (k[sub u]), depuration rate coefficients (k[sub d]), and bioaccumulation factors (BAF) were calculated. A rapid uptake of all PBDEs and PCBs was observed, especially for PBDE congeners 47 and 99. The depuration rate decreased with increasing hydrophobicity as expected for the PCBs, but for the PBDEs, depuration rate coefficients appeared to be of the same magnitude for all three congeners independently of log K[sub OW]. The BAFs obtained for PBDE 47 and PBDE 99 were higher than for all other substances in the study, severalfold higher than for PCBs of similar hydrophobicity. The presented data indicate that the bioaccumulation potential of PBDEs, extensively used as flame retardants, is similar or higher than that of PCBs for filter feeding organisms such as blue mussels.

  14. Concentrations, distribution, and bioaccumulation of synthetic musks in the Haihe River of China.

    PubMed

    Hu, Zhengjun; Shi, Yali; Cai, Yaqi

    2011-09-01

    Seven typical synthetic musks (SMs) in the samples from the surface water, sediment and fish of the Haihe River were measured. The SM concentrations in the sediment and surface water of the Haihe River were significantly lower than those in the Dagu Drainage River and Chentaizi Drainage River (p<0.05). Along the flow direction, the SM concentrations in surface water and sediment tended to increase from the upstream to the downstream of Dagu Drainage River. The Bioaccumulation factors (BAFs) of galaxolide (HHCB) and tonalide (AHTN) were calculated at high levels in the muscles of crucian carp, common carp, and silver carp. Most of the biota-sediment accumulation factors (BSAFs) for HHCB and AHTN were higher than 1.7, suggesting magnification possibly exist in the musk bioaccumulations of the three fishes in the Haihe River. No significant differences in HHCB/AHTN ratios were observed among the water, fish, and sediment samples (p>0.05). However, the HHCB/AHTN values in the Haihe River were much lower than those in the Dagu Drainage River and Chentaizi Drainage River (p<0.05). Compared with several typical persistent organic pollutants (POPs), the musk concentrations were higher or comparable in the Haihe River.

  15. Influence of Mining Pollution on Metal Bioaccumulation and Biomarker Responses in Cave Dwelling Fish, Clarias gariepinus.

    PubMed

    du Preez, Gerhard; Wepener, Victor

    2016-07-01

    Cave ecosystems remain largely unstudied and risk being severely degraded as a result of anthropogenic activities. The Wonderfontein Cave, situated in the extensive gold mining region of the Witwatersrand Basin, is one such system that hosts a population of Clarias gariepinus, which is exposed to the influx of polluted mine water from the Wonderfontein Spruit River. The aim of this study was to investigate the bioaccumulation of metals, as well as relevant biomarkers, in C. gariepinus specimens sampled from the Wonderfontein Cave during high (April 2013) and low (September 2013) flow surveys. Results were also compared to a surface population associated with the Wonderfontein Spruit River. There were temporal differences in metal bioaccumulation patterns and this was attributed to the lack of dilution during the low flow period. Metals associated with acid mine drainage, i.e. Co, Mn and Zn were significantly higher in the Wonderfontein Cave population and were reflected in an increase in oxidative stress biomarkers (catalase, protein carbonyls and superoxide dismutase) and the induction of metallothionein, a biomarker of metal exposure. The surface population was exposed to metals associated with geological weathering processes, i.e. Fe and Al.

  16. Dynamic modeling of copper bioaccumulation by Mytilus edulis in the presence of humic acid aggregates.

    PubMed

    Sánchez-Marín, Paula; Aierbe, Eneko; Lorenzo, J Ignacio; Mubiana, Valentine K; Beiras, Ricardo; Blust, Ronny

    2016-09-01

    Copper (Cu) complexation by humic acids (HA) is expected to decrease Cu bioavailability for aquatic organisms as predicted by metal bioavailability models, such as the biotic ligand model (BLM). This has been confirmed for non-feeding organisms such as marine invertebrate embryos or microalgae, but for filter-feeding organisms such as the mussel Mytilus edulis, Cu bioaccumulation was higher in the presence of HA, suggesting that part of the Cu-HA complexes were available for uptake. This study shows the dynamic modeling of Cu accumulation kinetics in the gills and rest of the soft-body of M. edulis in the absence and presence of HA. Assuming that truly dissolved Cu is taken in the body via the gills following BLM premises, and including uptake of Cu-HA aggregates via the gut into the rest compartment, this two-compartmental model could successfully explain the observed bioaccumulation data. This modeling approach gives strong evidence to the hypothesis that Cu-HA aggregates can be ingested by mussels leading to Cu absorption in the digestive system. PMID:27498364

  17. Geochemical features of heavy metal bioaccumulation in the Guaymas Basin of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Demina, L. L.; Galkin, S. V.

    2009-10-01

    Atomic absorption spectroscopy (flame and graphite furnace techniques) and instrumental neutron activation analysis were used for determining the Fe, Mn, Zn, Cu, Pb, Cd, Ag, Co, Cr, As, Se, Sb, Ba, Au, and Hg contents in 25 samples of different tissues and whole organisms inhabiting the southern trough in the Guaymas Basin (Gulf of California) and in several samples of its bottom waters. It is shown that the habitat environment of this hydrothermal field with high primary production of both photosynthetic and bacterial chemosynthetic origin influences the Fe and Mn ratios in the waters of the microbiotopes and the distribution patterns of the metals in the external and internal organs of the benthic animals. In the dominant specialized taxa, the maximal bioaccumulation of metals is registered both in the organs related to bacterial chemosynthesis such as the trophosome of Vestimentifera Riftia pachyptila and the gills of the vesicomyid clam Archivestica gigas and in other organs. The other organisms such as the mollusks Nuculana grasslei, actinias Paraphelliactis pabista, Actinaria, and Spongia and the crabs Munidopsis alvisca demonstrate high bioaccumulation properties as well. The metal concentration coefficient is highly variable ranging from 10 to 104. The changes in the molar Fe/Mn ratio values imply the partitioning of these two metals in the following migration succession: microbiotope water-external organs-internal organs.

  18. Bioaccumulation of organic and inorganic selenium in a laboratory food chain

    SciTech Connect

    Besser, J.M.; Canfield, T.J.; La Point, T.W. )

    1993-01-01

    Aquatic organisms accumulated selenium (Se) from inorganic and organic Se species via aqueous and food-chain exposure routes. The authors measured aqueous and food-chain Se bioaccumulation from selenate, selenite, and seleno-L-methionine in a laboratory food chain of algae (Chlamydomonas reinhardtii), daphnids (Daphnia magna), and fish (bluegill, Lepomis macrochirus). Selenium concentrations were monitored radiometrically with [sup 75]Se-labeled compounds. All three organisms concentrated Se more strongly from aqueous selenomethionine than from either inorganic Se species. Bioconcentration factors estimated from 1 [mu]g Se/L Se-methionine exposures were approximately 16,000 for algae, 200,000 for daphnids, and 5,000 for bluegills. Algae and daphnids concentrated Se more strongly from selenite than selenate whereas bluegills concentrated Se about equally from both inorganic species. Bioaccumulation of foodborne Se by daphnids and bluegills was similar in food chains dosed with different Se species. Daphnids and bluegills did not accumulate Se concentrations greater than those in their diet, except at very low dietary Se concentrations. Food-chain concentration factors (CFs) for daphnids decreased from near 1.0 to 0.5 with increases in algal Se concentrations, whereas CFs estimated from bluegill exposures averaged 0.5 over a range of foodborne Se concentrations. In exposures based on selenite, bluegills accumulated greater Se concentrations from food than from water.

  19. Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals.

    PubMed

    Peterson, Sarah H; Ackerman, Joshua T; Costa, Daniel P

    2015-07-01

    Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200-1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ(13)C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation.

  20. Bioaccumulation Dynamics of Arsenate at the Base of Aquatic Food Webs.

    PubMed

    Lopez, Adeline R; Hesterberg, Dean R; Funk, David H; Buchwalter, David B

    2016-06-21

    Periphyton is an important food source at the base of freshwater ecosystems that tends to bioconcentrate trace elements making them trophically available. The potential for arsenic-a trace element of particular concern due to its widespread occurrence, toxicity, and carcinogenicity-to bioconcentrate in periphyton and thus be available to benthic grazers is less well characterized. To better understand arsenate bioaccumulation dynamics in lotic food webs, we used a radiotracer approach to characterize accumulation in periphyton and subsequent trophic transfer to benthic grazers. Periphyton bioconcentrated As between 3,200-9,700-fold (dry weight) over 8 days without reaching steady state, suggesting that periphyton is a major sink for arsenate. However, As-enriched periphyton as a food source for the mayfly Neocloeon triangulifer resulted in negligible As accumulation in a full lifecycle exposure. Additional studies estimate dietary assimilation efficiency in several primary consumers ranging from 22% in the mayfly N. triangulifer to 75% in the mayfly Isonychia sp. X-ray fluorescence mapping revealed that As was predominantly associated with iron oxides in periphyton. We speculate that As adsorption to Fe in periphyton may play a role in reducing dietary bioavailability. Together, these results suggest that trophic movement of As in lotic food webs is relatively low, though species differences in bioaccumulation patterns are important.

  1. Heavy metals bioaccumulation in Berseem (Trifolium alexandrinum) cultivated in areas under intensive agriculture, Punjab, India.

    PubMed

    Bhatti, Sandip Singh; Sambyal, Vasudha; Nagpal, Avinash Kaur

    2016-01-01

    Berseem (Trifolium alexandrinum) is one of the main fodder crops of Punjab, India. But due to the heavy metal contamination of agricultural soils by anthropogenic activities, there is rise in metal bioaccumulation in crops like Berseem. In addition to human influence, heavy metal contents in soil are highly dependent on soil characteristics also. Therefore a study was conducted in areas having intensive agricultural practices to analyze physico-chemical characteristics of soils under Berseem cultivation and heavy metal bioaccumulation in Berseem. The studied soils were alkaline, sandy in texture and low in soil organic matter. Among the studied heavy metals (Cr, Cu, Cd, Co and Pb) in soil and Berseem, Cr content in Berseem was found to be above maximum permissible limits. Soil to Berseem metal bioaccmulation factor (BAF) was above 1 for Cr, Cu, Cd and Co in many samples and highest BAF was found for Co (4.625). Hence it can be concluded that Berseem from studied areas was unsafe for animal consumption. PMID:27026870

  2. Bioaccumulation of lead in milk of buffaloes from Cooum River Belt in Chennai.

    PubMed

    Sahayaraj, P Arockia; Ayyadurai, K

    2009-09-01

    Bioaccumulation of heavy metals has been studied in aquatic flora and fauna to a greater extent than in terrestrial animals. Hence, this study was performed to find out whether lead was excreted in the milk of buffaloes reared near the Cooum belt which was fed by contaminated feed and polluted water from the nearby wells. The concentrations of lead in milk of buffaloes fed under farm conditions were also studied. The results have indicated that the ground water (0.32 microg ml(-1)) and feed (8.62 microg g(-1)) are the sources of lead in buffalo milk (0.06 microg ml(-1)). It revealed that one unit increases of lead in water and feed corresponded to an increase of 77.38 and 37.77 units respectively in milk of buffaloes reared near the contaminated watercourse. However, the milk of buffaloes from Central Cattle Breeding Farm is free from lead (0.013 microg ml(-1)) pollution. The reason for bioaccumulation of lead in the milk of buffaloes reared near the sewage carrying river is due to drinking of contaminated ground water from wells and bore-wells dug near the river.

  3. Fluoride bioaccumulation by hydroponic cultures of camellia (Camellia japonica spp.) and sugar cane (Saccharum officinarum spp.).

    PubMed

    Camarena-Rangel, Nancy; Rojas Velázquez, Angel Natanael; Santos-Díaz, María del Socorro

    2015-10-01

    The ability of hydroponic cultures of camellia and sugar cane adult plants to remove fluoride was investigated. Plants were grown in a 50% Steiner nutrient solution. After an adaptation period to hydroponic conditions, plants were exposed to different fluoride concentrations (0, 2.5, 5 and 10 mg L(-1)). Fluoride concentration in the culture medium and in tissues was measured. In sugar cane, fluoride was mainly located in roots, with 86% of it absorbed and 14% adsorbed. Sugar cane plants removed 1000-1200 mg fluoride kg(-1) dry weight. In camellia plants the highest fluoride concentration was found in leaf. Roots accumulated fluoride mainly through absorption, which was 2-5 times higher than adsorption. At the end of the experiment, fluoride accumulation in camellia plants was 1000-1400 mgk g(-1) dry weight. Estimated concentration factors revealed that fluoride bioaccumulation is 74-221-fold in camellia plants and 100-500-fold in sugar cane plants. Thus, the latter appear as a suitable candidate for removing fluoride from water due to their bioaccumulation capacity and vigorous growth rate; therefore, sugar cane might be used for phytoremediation.

  4. Toxicity and bioaccumulation of sediment-associated silver nanoparticles in the estuarine polychaete, Nereis (Hediste) diversicolor.

    PubMed

    Cong, Yi; Banta, Gary T; Selck, Henriette; Berhanu, Deborah; Valsami-Jones, Eugenia; Forbes, Valery E

    2014-11-01

    In this study, the toxicities of sediment-associated silver added to sediment as commercially available silver nanoparticles (Ag NPs, 20 and 80 nm) and aqueous Ag (AgNO3) to the estuarine polychaete, Nereis (Hediste) diversicolor, were investigated for both individual and subcellular endpoints after 10 d of exposure. Both Ag NP types were characterized in parallel to the toxicity studies and found to be polydispersed and overlapping in size. Burrowing activity decreased (marginally) with increasing Ag concentration and depended on the form of Ag added to sediment. All worms accumulated Ag regardless of the form in which it was added to the sediment, and worm size (expressed as dry weight) was found to significantly affect bioaccumulation such that smaller worms accumulated more Ag per body weight than larger worms. Lysosomal membrane permeability (neutral red retention time, NRRT) and DNA damage (comet assay tail moment and tail DNA intensity %) of Nereis coelomocytes increased in a concentration-dependent manner in all three Ag treatments. Ag NP treatments were more toxic than aqueous Ag for all toxicity endpoints, even though bioaccumulation did not differ significantly among Ag forms. No significant difference in toxicity was observed between the two Ag NP treatments which was attributed to their overlap in particle size.

  5. Bioaccumulation and analytics of pharmaceutical residues in the environment: A review.

    PubMed

    Puckowski, Alan; Mioduszewska, Katarzyna; Łukaszewicz, Paulina; Borecka, Marta; Caban, Magda; Maszkowska, Joanna; Stepnowski, Piotr

    2016-08-01

    The presence of pharmaceutical residues in various environmental compartments is an issue of increasing concern. The widespread occurrence of these compounds in water and soil samples has been demonstrated in a number of analytical studies. However, the data about their concentrations in biota samples is scarce. Moreover, the trophic transfer of pharmaceuticals remains largely unexplored, despite increasing evidence of the potential bioaccumulation of those compounds. Therefore, the main aim of this review is to present an overview of the current state of data about the bioaccumulation and analytical methodologies used for the determination of pharmaceutical residues in biota samples. This work focuses on the most commonly found pharmaceuticals in the environment: antibiotics, analgesic and anti-inflammatory drugs, steroid hormones, antihypertensives and antidepressants. We do hope that the collected data will allow a better understanding of pharmaceutical pollution and the exposure of non-target organisms. However, although impressive progress has undoubtedly been made, in order to fully understand the behavior of these chemicals in the environment, there are still numerous gaps to be filled in our overall knowledge in this field.

  6. Modeling organic chemical fate in aquatic systems: significance of bioaccumulation and relevant time-space scales.

    PubMed

    Thomann, R V

    1995-06-01

    The importance of aquatic food chain bioaccumulation of organic chemicals in contributing to human dose is derived. It is shown that for chemicals with log octanol water partition coefficients greater than about 3, the role of food chain transfer to fish consumed by humans becomes the more dominant route over drinking water. Modeling of aquatic food chain bioaccumulation then becomes necessary to accurately estimate dose of such chemicals to humans. The relevant time and space scales for groundwater and surface water also indicate a division of organic chemicals at a log octanol water partition coefficient of about 3. For chemicals greater than that level, groundwater transport is minimal, while for chemicals with log octanol water coefficients of less than about 3, detention times are long relative to surface water and biodegradation processes become more significant. An illustration is given of modeling the groundwater transport of two organic chemicals (BCEE and benzene) and a metal (chromium) at a Superfund site. The model indicates that after 10 years only a relatively small fraction of the chemicals had traveled in the groundwater about 300 m to the point of release from the site to surface water. On the other hand, steady state in the adjacent stream and lake is reached rapidly over a distance of 2000 m, illustrating the difference in spatial and temporal scales for the groundwater and surface water.

  7. Bioaccumulation and analytics of pharmaceutical residues in the environment: A review.

    PubMed

    Puckowski, Alan; Mioduszewska, Katarzyna; Łukaszewicz, Paulina; Borecka, Marta; Caban, Magda; Maszkowska, Joanna; Stepnowski, Piotr

    2016-08-01

    The presence of pharmaceutical residues in various environmental compartments is an issue of increasing concern. The widespread occurrence of these compounds in water and soil samples has been demonstrated in a number of analytical studies. However, the data about their concentrations in biota samples is scarce. Moreover, the trophic transfer of pharmaceuticals remains largely unexplored, despite increasing evidence of the potential bioaccumulation of those compounds. Therefore, the main aim of this review is to present an overview of the current state of data about the bioaccumulation and analytical methodologies used for the determination of pharmaceutical residues in biota samples. This work focuses on the most commonly found pharmaceuticals in the environment: antibiotics, analgesic and anti-inflammatory drugs, steroid hormones, antihypertensives and antidepressants. We do hope that the collected data will allow a better understanding of pharmaceutical pollution and the exposure of non-target organisms. However, although impressive progress has undoubtedly been made, in order to fully understand the behavior of these chemicals in the environment, there are still numerous gaps to be filled in our overall knowledge in this field. PMID:26968887

  8. Mercury bioaccumulation in an estuarine predator: Biotic factors, abiotic factors, and assessments of fish health.

    PubMed

    Smylie, Meredith S; McDonough, Christopher J; Reed, Lou Ann; Shervette, Virginia R

    2016-07-01

    Estuarine wetlands are major contributors to mercury (Hg) transformation into its more toxic form, methylmercury (MeHg). Although these complex habitats are important, estuarine Hg bioaccumulation is not well understood. The longnose gar Lepisosteus osseus (L. 1758), an estuarine predator in the eastern United States, was selected to examine Hg processes due to its abundance, estuarine residence, and top predator status. This study examined variability in Hg concentrations within longnose gar muscle tissue spatially and temporally, the influence of biological factors, potential maternal transfer, and potential negative health effects on these fish. Smaller, immature fish had the highest Hg concentrations and were predominantly located in low salinity waters. Sex and diet were also important factors and Hg levels peaked in the spring. Although maternal transfer occurred in small amounts, the potential negative health effects to young gar remain unknown. Fish health as measured by fecundity and growth rate appeared to be relatively unaffected by Hg at concentrations in the present study (less than 1.3 ppm wet weight). The analysis of biotic and abiotic factors relative to tissue Hg concentrations in a single estuarine fish species provided valuable insight in Hg bioaccumulation, biomagnification, and elimination. Insights such as these can improve public health policy and environmental management decisions related to Hg pollution. PMID:27086072

  9. Influence of Mining Pollution on Metal Bioaccumulation and Biomarker Responses in Cave Dwelling Fish, Clarias gariepinus.

    PubMed

    du Preez, Gerhard; Wepener, Victor

    2016-07-01

    Cave ecosystems remain largely unstudied and risk being severely degraded as a result of anthropogenic activities. The Wonderfontein Cave, situated in the extensive gold mining region of the Witwatersrand Basin, is one such system that hosts a population of Clarias gariepinus, which is exposed to the influx of polluted mine water from the Wonderfontein Spruit River. The aim of this study was to investigate the bioaccumulation of metals, as well as relevant biomarkers, in C. gariepinus specimens sampled from the Wonderfontein Cave during high (April 2013) and low (September 2013) flow surveys. Results were also compared to a surface population associated with the Wonderfontein Spruit River. There were temporal differences in metal bioaccumulation patterns and this was attributed to the lack of dilution during the low flow period. Metals associated with acid mine drainage, i.e. Co, Mn and Zn were significantly higher in the Wonderfontein Cave population and were reflected in an increase in oxidative stress biomarkers (catalase, protein carbonyls and superoxide dismutase) and the induction of metallothionein, a biomarker of metal exposure. The surface population was exposed to metals associated with geological weathering processes, i.e. Fe and Al. PMID:27086300

  10. Using conditional inference trees and random forests to predict the bioaccumulation potential of organic chemicals.

    PubMed

    Strempel, Sebastian; Nendza, Monika; Scheringer, Martin; Hungerbühler, Konrad

    2013-04-01

    The present study presents a data-oriented, tiered approach to assessing the bioaccumulation potential of chemicals according to the European chemicals regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). The authors compiled data for eight physicochemical descriptors (partition coefficients, degradation half-lives, polarity, and so forth) for a set of 713 organic chemicals for which experimental values of the bioconcentration factor (BCF) are available. The authors employed supervised machine learning methods (conditional inference trees and random forests) to derive relationships between the physicochemical descriptors and the BCF values. In a first tier, the authors established rules for classifying a chemical as bioaccumulative (B) or nonbioaccumulative (non-B). In a second tier, the authors developed a new tool for estimating numerical BCF values. For both cases the optimal set of relevant descriptors was determined; these are biotransformation half-life and octanol-water distribution coefficient (log D) for the classification rules and log D, biotransformation half-life, and topological polar surface area for the BCF estimation tool. The uncertainty of the BCF estimates obtained with the new estimation tool was quantified by comparing the estimated and experimental BCF values of the 713 chemicals. Comparison with existing BCF estimation methods indicates that the performance of this new BCF estimation tool is at least as high as that of existing methods. The authors recommend the present study's classification rules and BCF estimation tool for a consensus application in combination with existing BCF estimation methods.

  11. Bioaccumulation of heavy metals by freshwater algal species of Bhavnagar, Gujarat, India.

    PubMed

    Jaiswar, Santial; Kazi, Mudassar Anisoddin; Mehta, Shailesh

    2015-11-01

    The present study investigated copper, cadmium, lead and zinc accumulation in algal species Oedogonium, Cladophora, Oscillatoria and Spirogyra from freshwater habitats of Bhavnagar, India. Eight different locations were periodically sampled during August 2009 to March 2011. The general trend of heavy metal concentrations in all the algal species in present study (except at few stations), were found to be in the following order: Zn > Cu > Pb > Cd. Highest accumulation of Cu was recorded in Oedogonium, while Cladophora showed highest accumulation of Pb signifying a good bioaccumulator. Oscillatoria and Oedogonium were highest Zn accumulating algae which showed significant difference between the means at P < 0.05. ANOVA was performed for comparing significance mean between the groups and within the group for heavy metals in water. The concentration of heavy metals in water was in the following order: Zn > Cu > Pb > Cd. The present study showed that Oedogonium, Cladophora, Oscillatoria and Spirogyra were excellent bioaccumulator and could be utilized as biomonitoring agents in water bodies receiving waste contaminated by metals.

  12. Bioaccumulation of heavy metals in Mbaa River and the impact on aquatic ecosystem.

    PubMed

    Ajima, M N O; Nnodi, P C; Ogo, O A; Adaka, G S; Osuigwe, D I; Njoku, D C

    2015-12-01

    The bioaccumulation and toxic effects of heavy metals have caused ecological damage to aquatic ecosystem. In this study, concentration of heavy metals including zinc, lead, cadmium, iron, and copper were determined in the sediment and water as well as in the muscle, gill, and intestine of two fish species (Pelmatochromis guentheri and Pelmatochromis pulcher) of Mbaa River in Southeastern Nigeria. Samples were collected at three different spots from the river, and the level of heavy metals specified above were determined by atomic absorption spectroscopy (AAS) after a modified wet digestion process. The results indicated that sediment had the highest concentration of the heavy metals investigated while water had the lowest concentration. Fish tissues showed appreciable bioaccumulation of these metals as evidenced by a higher concentration profile when compared with that of water. Furthermore, the concentration of these heavy metals in water and their bioconcentration factor in the fish were above the recommended limit by WHO and FEPA, indicating that Mbaa River along Inyishi may not be suitable for drinking nor the fish safe for human consumption. The study also reveals the use of fish as bioindicator of aquatic environment.

  13. The role of irrigation techniques in arsenic bioaccumulation in rice (Oryza sativa L.).

    PubMed

    Spanu, Antonino; Daga, Leonardo; Orlandoni, Anna Maria; Sanna, Gavino

    2012-08-01

    The bioaccumulation of arsenic compounds in rice is of great concern worldwide because rice is the staple food for billions of people and arsenic is one of the most toxic and carcinogenic elements at even trace amounts. The uptake of arsenic compounds in rice comes mainly from its interaction with system soil/water in the reducing conditions typical of paddy fields and is influenced by the irrigation used. We demonstrate that the use of sprinkler irrigation produces rice kernels with a concentration of total arsenic about fifty times lower when compared to rice grown under continuous flooding irrigation. The average total amount of arsenic, measured by a fully validated ICP-MS method, in 37 rice grain genotypes grown with sprinkler irrigation was 2.8 ± 2.5 μg kg(-1), whereas the average amount measured in the same genotypes grown under identical conditions, but using continuous flooding irrigation was 163 ± 23 μg kg(-1). In addition, we find that the average concentration of total arsenic in rice grains cultivated under sprinkler irrigation is close to the total arsenic concentration found in irrigation waters. Our results suggest that, in our experimental conditions, the natural bioaccumulation of this element in rice grains may be completely circumvented by adopting an appropriate irrigation technique. PMID:22765219

  14. Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals.

    PubMed

    Peterson, Sarah H; Ackerman, Joshua T; Costa, Daniel P

    2015-07-01

    Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200-1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ(13)C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation. PMID:26085591

  15. Delonix regia and Casuarina equisetifolia as passive biomonitors and as bioaccumulators of atmospheric trace metals.

    PubMed

    Ukpebor, Emmanuel Ehiabhi; Ukpebor, Justina Ebehirieme; Aigbokhan, Emmanuel; Goji, Idris; Onojeghuo, Alex Okiemute; Okonkwo, Anthony Chinedum

    2010-01-01

    The suitability of two common and ubiquitously distributed and exotic ornamental plant species in Nigeria-Delonix regia and Casuarina equisetifolia as biomonitors and as effective bioaccumulators of atmospheric trace metals (Cd, Pb, Zn and Cu) has been evaluated. Bark and leaf samples from these plant species were collected in June and July 2006 at five locations in Benin City. Four of the sampling sites were in areas of high traffic density and commercial activities, the fifth site is a remote site, selected to act as a control and also to provide background information for the metals. The plant samples were collected and processed using standard procedures and trace metals were determined using atomic absorption spectrometer. The bark of the plants was able to bioaccumulate the trace metals, especially Pb which originates from anthropogenic contributions in the city. The Pb range of 20.00-70.00 microg/g measured for the bark samples of D. regia, exceeded the normal plant Pb concentration of 0.2-20.0 microg/g and most Pb data available in literature. The bark of the plants was observed to accumulate more metals compared to the leave, while D. regia was found to be slightly better than C. equisetifolia in trace metal uptake efficiency. Spatial variations in the distributions of Pb and Zn were significant (p < 0.05), and the continuous use of leaded fuel in Nigeria was identified as the predominant source of Pb in the atmosphere.

  16. Do pharmaceuticals bioaccumulate in marine molluscs and fish from a coastal lagoon?

    PubMed

    Moreno-González, R; Rodríguez-Mozaz, S; Huerta, B; Barceló, D; León, V M

    2016-04-01

    The bioaccumulation of 20 pharmaceuticals in cockle (Cerastodema glaucum), noble pen shell (Pinna nobilis), sea snail (Murex trunculus), golden grey mullet (Liza aurata) and black goby (Gobius niger) was evaluated, considering their distribution throughout the Mar Menor lagoon and their variations in spring and autumn 2010. The analytical procedure was adapted for the different matrices as being sensitive and reproducible. Eighteen out of the 20 compounds analysed were found at low ngg(-1) in these species throughout the lagoon. Hydrochlorothiazide and carbamazepine were detected in all species considered. The bioaccumulation of pharmaceuticals was heterogeneous in the lagoon, with a higher number of pharmaceuticals being detected in fish (18) than in wild molluscs (8), particularly in golden grey mullet muscle (16). В-blockers and psychiatric drugs were preferentially bioccumulated in fish and hydrochlorothiazide was also confirmed in caged clams. The higher detection frequency and concentrations found in golden grey mullet suggested that mugilids could be used as an indicator of contamination by pharmaceuticals in coastal areas. To the best of our knowledge, this is the first study that shows data about hydrochlorothiazide, levamisole and codeine in wild marine biota. PMID:26775009

  17. Bioaccumulation of heavy metals in pre-fledgling tree swallows, Tachycineta bicolor

    SciTech Connect

    Kraus, M.L. )

    1989-09-01

    Wetlands in urbanized areas are frequently degraded by human activity. The Hackensack River Estuary in Northeastern New Jersey is no exception. This estuary contains over 1,600 acres of landfill, and receives various levels of treated effluent from seven different sewage treatment plants. Heavy metals are a common pollutant in the Hackensack River Basin. Bioaccumulation of heavy metals in birds is a well documented phenomenon. Studies have shown that near shore predatory birds have higher mercury levels in their feathers than do pelagic predatory birds. Other studies have shown that insectivorous pied flycatcher nestlings and black-crowned night heron pre-fledglings show heavy metal body burdens that correlate well with the distance of their nests from a heavy metal source. The tree swallow (Tachycineta bicolor) is a common summer resident in the Hackensack Meadowlands. This species readily nests in man-made nest boxes, and has used boxes erected for this purpose in the Hackensack Meadowlands District (HMD). The swallows feed primarily on adult midges (Chironomus decorus) which are prevalent in the region. This relationship makes the tree swallows and midges an ideal model for food chain bioaccumulation studies.

  18. Bioaccumulation of selenium from coal fly ash and associated environmental hazards in a freshwater fish community

    SciTech Connect

    Besser, J.; Giesy, J.; Brown, R.; Herdt, T.; Dawson, G.

    1995-12-31

    Bioaccumulation of Se by fish from Pigeon River and Pigeon Lake, Michigan, which receive inputs of Se from a coal fly-ash disposal facility, was studied to assess potential hazards of Se toxicity to fish and wildlife. Se concentrations in fish from sites receiving Se inputs from fly ash disposal ponds were significantly greater than concentrations in fish from upstream sites, which were near normal background concentrations. Se bioaccumulation differed substantially among fish species, especially in the most contaminated site, where whole-body Se concentrations for the five species analyzed ranged from 1.4 to 3.8 {micro}g/g (wet wt.). The top predator in the community, northern pike (Esox lucius), had Se concentrations less than those in likely prey species. Among lower-order consumers, Se concentrations were greater in limnetic species (spottail shiner, Notropis hudsonius, and yellow perch, Perca flavescens), than in benthic species (white sucker, Catostomus commersoni, and rock bass, Ambloplites rupestris). Se concentrations in tissues of fish from the lower Pigeon River and Pigeon Lake approached, but did not exceed lowest observable effect concentrations (LOAECs) for Se in tissues of sensitive fish species. However, Se concentrations in several fish species exceeded LOAECs for dietary Se exposure of sensitive species of birds and mammals, suggesting that consumption of fish in these areas may pose a hazard to piscivorous wildlife.

  19. Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals

    USGS Publications Warehouse

    Peterson, Sarah H.; Ackerman, Joshua T.; Costa, Daniel P.

    2015-01-01

    Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200–1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ13C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation.

  20. A probabilistic model for silver bioaccumulation in aquatic systems and assessment of human health risks

    USGS Publications Warehouse

    Warila, James; Batterman, Stuart; Passino-Reader, Dora R.

    2001-01-01

    Silver (Ag) is discharged in wastewater effluents and is also a component in a proposed secondary water disinfectant. A steady-state model was developed to simulate bioaccumulation in aquatic biota and assess ecological and human health risks. Trophic levels included phytoplankton, invertebrates, brown trout, and common carp. Uptake routes included water, food, or sediment. Based on an extensive review of the literature, distributions were derived for most inputs for use in Monte Carlo simulations. Three scenarios represented ranges of dilution and turbidity. Compared with the limited field data available, median estimates of Ag in carp (0.07-2.1 Iμg/g dry weight) were 0.5 to 9 times measured values, and all measurements were within the predicted interquartile range. Median Ag concentrations in biota were ranked invertebrates > phytoplankton > trout > carp. Biotic concentrations were highest for conditions of low dilution and low turbidity. Critical variables included Ag assimilation eficiency, specific feeding rate, and the phytoplankton bioconcentration factor. Bioaccumulation of Ag seems unlikely to result in txicity to aquatic biota and humans consuming fish. Although the highest predicted Ag concentrations in water (>200 ng/L) may pose chronic risks to early survival and development of salmonids and risks of argyria to subsistence fishers, these results occur under highly conservative conditions.

  1. Antioxidative responses and bioaccumulation in Japanese flounder larvae and juveniles under chronic mercury exposure.

    PubMed

    Huang, Wei; Cao, Liang; Ye, Zhenjiang; Yin, Xuebo; Dou, Shuozeng

    2010-06-01

    This study investigated the sub-lethal effects of waterborne mercury on growth, bioaccumulation and antioxidative responses of larvae and juveniles of Japanese flounder (Paralichthys olivaceus). Fish were exposed to 0-10 microg Hg(2)(+)L(-1) solutions from embryonic to the juvenile stages for 80 days. Antioxidative responses to mercury exposure were studied in metamorphosing larvae (18 days post hatching, dph), settling larvae (33 dph) and juveniles (78 dph). Results showed that increasing mercury concentration led to increased mercury bioaccumulation and reduced flounder growth. Of the antioxidants investigated, superoxide dismutase (SOD) and catalase (CAT) activities at the three developmental stages were sensitive to mercury exposure and increased with increasing mercury concentration. Glutathione (GSH) content was elevated in metamorphosing larvae, but decreased in juveniles as mercury concentration increased. Glutathione-S-transferase (GST) activity did not significantly vary with mercury concentration in either larvae or juveniles. Mercury exposure did not affect malondialdehyde (MDA) content of larvae, but significantly increased MDA content of juveniles. Results suggest that flounder larvae and juveniles have the potential to manipulate the levels of antioxidants such as SOD, CAT and GSH, which protect flounder from oxidative stress induced by mercury exposure. These antioxidants could serve as biomarkers of mercury contamination in the aquatic environment.

  2. Zinc and copper bioaccumulation in fish from Laizhou Bay, the Bohai Sea

    NASA Astrophysics Data System (ADS)

    Liu, Jinhu; Cao, Liang; Huang, Wei; Zhang, Chuantao; Dou, Shuozeng

    2014-05-01

    Zinc (Zn) and copper (Cu) concentrations were determined in the tissues (muscle, stomach, liver, gills, skin, and gonads) of five commercial fish species (mullet Liza haematocheilus, flathead Platycephalus indicus, mackerel Scomberomorus niphonius, silver pomfret Pampus argenteus, and sea bass Lateolabrax japonicus) from Laizhou Bay in the Bohai Sea. Metal bioaccumulation was highest in the metabolically active tissues of the gonads and liver. Bioconcentration factors for Zn were higher in all tissues (gonads 44.35, stomach 7.73, gills 7.72, liver 5.61, skin 4.88, and muscle 1.63) than the corresponding values for Cu (gonads 3.50, stomach 3.00, gills 1.60, liver 5.43, skin 1.50, and muscle 0.93). Mackerel tissues accumulated metal to higher concentrations than did other fish species, but bioaccumulation levels were not significantly correlated with the trophic levels of the fish. Zn and Cu concentrations in the tissues were generally negatively correlated with fish length, except for a few tissues of sea bass. Risk assessment based on national and international permissible limits and provisional tolerances for weekly intake of Zn and Cu revealed that the concentrations of these two metals in muscle were relatively low and would not pose hazards to human health.

  3. Facilitated bioaccumulation of perfluorooctanesulfonate in zebrafish by nano-TiO2 in two crystalline phases.

    PubMed

    Qiang, Liwen; Shi, Xiaomei; Pan, Xiaoyu; Zhu, Lingyan; Chen, Meng; Han, Yuwei

    2015-11-01

    Zebrafish were placed in the upper layer of aquariums to investigate the impacts of anatase and rutile nano-TiO2 on perfluorooctanesulfonate (PFOS) bioaccumulation in zebrafish. Both variations of particle hydrodynamic size and concentration in water column suggest that anatase was better dispersed than rutile. PFOS could be significantly adsorbed on nano-TiO2 to form TiO2-PFOS complexes, leading to reduced concentration of PFOS in upper layer. Due to enhanced exposure to PFOS by ingestion and adhesion of TiO2-PFOS complexes, the whole-body PFOS concentration in zebrafish was enhanced by 59.0% (95% CI: 55.9%, 61.9%) and 25.4% (95% CI: 24.8%, 25.6%) in the presence of anatase and rutile nano-TiO2 after equilibrium compared with the control with PFOS alone. The bioaccumulation of PFOS was much more promoted by anatase, which was attributed by greater adsorption capacity of PFOS to anatase, slower migration of their complex in water column, and slower elimination rate of anatase from fish. PMID:26319509

  4. Results of chemical, toxicological, and bioaccumulation evaluations of dioxins, furans, and guaicol/organic acids in sediments from the Grays Harbor/Chehalis River area

    SciTech Connect

    Word, J.Q.; Ward, J.A.; Squires, A.L.

    1990-09-01

    The Battelle/Marine Sciences Laboratory (MSL) was requested by the US Army Corps of Engineers (USACE), Seattle District, to assist in planning and conducting sampling, toxicological tests, and chemistry evaluations on sediment samples collected from the Chehalis River in Grays Harbor, Washington. The objectives of the study were to investigate the toxicity and biological effects of sediments that might potentially contain dioxins, furans, and organic acids, as a result of industrial practices in the Grays Harbor area, on sensitive marine species. In addition to the toxicological tests conducted using standard bioassays, sediment chemistry tests were performed to determine levels of selected chemicals, and elutriates of sediments were tested chemically and biologically to determine contaminant mobility in water. Also, bioaccumulation measurements were made to determine chemical mobility in animal tissue. A joint task group, including representatives from the USACE, Washington Department of Ecology (WDOE), Washington Department of Natural Resources (WDNR), Washington Department of Fisheries (WDOF), and Region 9 of the US Environmental Protection Agency (USEPA) participated in designing the testing program and reviewing data produced by MSL. The results of this analysis will be included in a supplemental Environmental Assessment (EA) prepared by the USACE for the Grays Harbor Dredging Program, beginning in early 1990. 13 refs., 5 figs., 8 tabs.

  5. Toxicological effects of particulate matter (PM2.5) on rats: Bioaccumulation, antioxidant alterations, lipid damage, and ABC transporter activity.

    PubMed

    Ribeiro, Joaquim de Paula; Kalb, Ana Cristina; Campos, Paula Peixoto; Cruz, Alex Rubén Huaman De La; Martinez, Pablo Elias; Gioda, Adriana; Souza, Marta Marques de; Gioda, Carolina Rosa

    2016-11-01

    Previous studies have demonstrated the harmful effects of atmospheric pollutants on cardiac systems because of the presence of particulate matter (PM), a complex mixture of numerous substances including trace metals. In this study, the toxicity of PM2.5 from two regions, rural (PM2.5 level of 8.5 ± 4.0 μg m(-3)) and industrial (PM2.5 level of 14.4 ± 4.1 μg m(-3)) in Brazil, was investigated through in vivo experiments in rats. Metal accumulation and biochemical responses were evaluated after rats were exposed to three different concentrations of PM2.5 in saline extract (10× dilution, 5× dilution, and concentrated). The experimental data showed the bioaccumulation of diverse trace metals in the hearts of groups exposed to PM2.5 from both regions. Furthermore, mobilization of the antioxidant defenses and an increase in lipid peroxidation of the cardiac tissue was observed in response to the industrial and rural area PM2.5. Glutathione-S-transferase activity was increased in groups exposed to the 5× and concentrated rural PM2.5. Additionally, ATP-binding cassette (ABC) transporter activity in the cardiac tissue exposed to PM2.5 was reduced in response to the 5× dilution of the rural and industrial region PM2.5. Histological analysis showed a decrease in the percentage of cardiac cells in the heart at all tested concentrations. The results indicate that exposure to different concentrations of PM2.5 from both sources causes biochemical and histological changes in the heart with consequent damage to biological structures; these factors can favor the development of cardiac diseases.

  6. Bioaccumulation of cadmium and lead and its effects on hepatopancreas morphology in three terrestrial isopod crustacean species.

    PubMed

    Mazzei, V; Longo, G; Brundo, M V; Sinatra, F; Copat, C; Oliveri Conti, G; Ferrante, M

    2014-12-01

    This study was designed to compare cadmium (Cd) and lead (Pb) bioaccumulation in three species of oniscidean isopods - Armadillidium granulatum Brandt, Armadillidium vulgare (Latreille) and Porcellio laevis Latreille which were exposed for three weeks to a contaminated diet, and to determine the morphological and ultrastructural changes in hepatopancreas. Metal accumulation, determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), was linearly associated with the exposed concentration and was a function of the metal and the species tested. All three species accumulated lower levels of Pb than Cd. A. vulgare accumulated the largest concentration of Pb, especially at the higher doses, whereas P. laevis showed the greatest Cd accumulation, and the highest Cd concentration was lethal for all exposed species. The highest concentrations of Pb and Cd induced significant changes both in the general morphology of tubules and in the ultrastructural organization of epithelial cells in hepatopancreas. Some Pb/Cd induced alterations include: brush border disorganization; reduction of the basal labyrinth formed by the plasma membrane; condensation of some cytoplasm areas and of chromatin; rough endoplasmic reticulum and mitochondrial alterations; increase of secondary lysosomes and of type B granules in S cells. Some of the ultrastructural changes observed overlap with those induced by prolonged starvation, whereas others can be useful biomarkers of heavy metal toxicity. This study has confirmed that in terrestrial isopods, the accumulation of the different metals occurs in a species-specific manner; therefore ecological monitoring and assessment studies should consider each species individually. The research has confirmed that in the terrestrial isopods the accumulation of the different metals occurs in a species-specific way; therefore each species should first be evaluated in view of its employ in biomonitoring programs.

  7. Bioaccumulation of cadmium and lead and its effects on hepatopancreas morphology in three terrestrial isopod crustacean species.

    PubMed

    Mazzei, V; Longo, G; Brundo, M V; Sinatra, F; Copat, C; Oliveri Conti, G; Ferrante, M

    2014-12-01

    This study was designed to compare cadmium (Cd) and lead (Pb) bioaccumulation in three species of oniscidean isopods - Armadillidium granulatum Brandt, Armadillidium vulgare (Latreille) and Porcellio laevis Latreille which were exposed for three weeks to a contaminated diet, and to determine the morphological and ultrastructural changes in hepatopancreas. Metal accumulation, determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), was linearly associated with the exposed concentration and was a function of the metal and the species tested. All three species accumulated lower levels of Pb than Cd. A. vulgare accumulated the largest concentration of Pb, especially at the higher doses, whereas P. laevis showed the greatest Cd accumulation, and the highest Cd concentration was lethal for all exposed species. The highest concentrations of Pb and Cd induced significant changes both in the general morphology of tubules and in the ultrastructural organization of epithelial cells in hepatopancreas. Some Pb/Cd induced alterations include: brush border disorganization; reduction of the basal labyrinth formed by the plasma membrane; condensation of some cytoplasm areas and of chromatin; rough endoplasmic reticulum and mitochondrial alterations; increase of secondary lysosomes and of type B granules in S cells. Some of the ultrastructural changes observed overlap with those induced by prolonged starvation, whereas others can be useful biomarkers of heavy metal toxicity. This study has confirmed that in terrestrial isopods, the accumulation of the different metals occurs in a species-specific manner; therefore ecological monitoring and assessment studies should consider each species individually. The research has confirmed that in the terrestrial isopods the accumulation of the different metals occurs in a species-specific way; therefore each species should first be evaluated in view of its employ in biomonitoring programs. PMID:25279851

  8. Toxicological effects of particulate matter (PM2.5) on rats: Bioaccumulation, antioxidant alterations, lipid damage, and ABC transporter activity.

    PubMed

    Ribeiro, Joaquim de Paula; Kalb, Ana Cristina; Campos, Paula Peixoto; Cruz, Alex Rubén Huaman De La; Martinez, Pablo Elias; Gioda, Adriana; Souza, Marta Marques de; Gioda, Carolina Rosa

    2016-11-01

    Previous studies have demonstrated the harmful effects of atmospheric pollutants on cardiac systems because of the presence of particulate matter (PM), a complex mixture of numerous substances including trace metals. In this study, the toxicity of PM2.5 from two regions, rural (PM2.5 level of 8.5 ± 4.0 μg m(-3)) and industrial (PM2.5 level of 14.4 ± 4.1 μg m(-3)) in Brazil, was investigated through in vivo experiments in rats. Metal accumulation and biochemical responses were evaluated after rats were exposed to three different concentrations of PM2.5 in saline extract (10× dilution, 5× dilution, and concentrated). The experimental data showed the bioaccumulation of diverse trace metals in the hearts of groups exposed to PM2.5 from both regions. Furthermore, mobilization of the antioxidant defenses and an increase in lipid peroxidation of the cardiac tissue was observed in response to the industrial and rural area PM2.5. Glutathione-S-transferase activity was increased in groups exposed to the 5× and concentrated rural PM2.5. Additionally, ATP-binding cassette (ABC) transporter activity in the cardiac tissue exposed to PM2.5 was reduced in response to the 5× dilution of the rural and industrial region PM2.5. Histological analysis showed a decrease in the percentage of cardiac cells in the heart at all tested concentrations. The results indicate that exposure to different concentrations of PM2.5 from both sources causes biochemical and histological changes in the heart with consequent damage to biological structures; these factors can favor the development of cardiac diseases. PMID:27567156

  9. Improvement of zinc bioaccumulation and biomass yield in the mycelia and fruiting bodies of Pleurotus florida cultured on liquid media.

    PubMed

    Poursaeid, Nasser; Azadbakht, Abas; Balali, Gholam Reza

    2015-04-01

    The effect of different concentrations of zinc on the bioaccumulation of zinc and biomass yield in both mycelium and fruiting body of Pleurotus florida cultivated in liquid medium was studied. The results showed that the optimum yield of mycelia (11.33 ± 0.44 g/L) and fruiting bodies (7.70 ± 0.19 g/L) dry biomass was obtained in a liquid medium containing 100 mg/L of zinc. At a zinc concentration of 200 mg/L, the highest concentration of zinc in the mycelia and fruiting bodies reached 1.869 ± 0.115 and 0.151 ± 0.008 mg/g dry weight, respectively. The addition of zinc to the culture media significantly reduced zinc bioaccumulation factor in mycelia (from 24.64 ± 0.52 to 3.35 ± 0.24) and fruiting bodies (from 36.71 ± 0.30 to 0.49 ± 0.02) dry weight. Our findings indicated that the ability of zinc bioaccumulation in the mycelia is much higher than in the fruiting bodies. The fundamental information obtained in this study will be useful for the improvement of zinc bioaccumulation and biomass yield in mycelia and fruiting bodies of P. florida cultivated in liquid media to obtain maximum zinc-enriched biomass.

  10. VALIDATION OF AMBIENT WATER QUALITY CRITERIA (AWQC) BIOACCUMULATION METHODOLOGY USING FIELD DATA FROM GREEN BAY AND THE HUDSON RIVER

    EPA Science Inventory

    In 1998, EPA published its draft revision to the methodology for deriving ambient water quality criteria to protect human health. Four methods were proposed to determine lipid-normalized bioaccumulation factors based on freely-dissolved water concentrations (BAFs) for nonpolar or...

  11. Toxicity and bioaccumulation of copper in Limnodrilus hoffmeisteri under different pH values: Impacts of perfluorooctane sulfonate.

    PubMed

    Meng, Lingjun; Yang, Shaogui; Feng, Mingbao; Qu, Ruijuan; Li, Yong; Liu, Jiaoqin; Wang, Zunyao; Sun, Cheng

    2016-03-15

    Aquatic oligochaete Limnodrilus hoffmeisteri (L. hoffmeisteri) has been commonly used as a lethal and/or sub-lethal toxicological model organism in ecological risk assessments in contaminated water environments. In this study, experiments were conducted to investigate the potential toxic effects of copper (Cu(II)) with or without perfluorooctane sulfonate (PFOS) under different pH values (6.0, 7.0 and 8.0) on LC50, bioaccumulation, and oxidative stress biomarkers in L. hoffmeisteri after 3 and 7 days. The LC50 values of Cu(II) decreased with the increasing pH and the addition of PFOS. After each exposure, increasing bioaccumulation of Cu(II) in L. hoffmeisteri was observed in the combined exposure treatments, whereas the bioaccumulation of PFOS decreased. Moreover, the activity of superoxide dismutase, the level of glutathione, and the content of malondialdehyde were significantly altered after these exposures, possibly indicating that the bioaccumulation of Cu(II) and PFOS caused adverse effects on antioxidant defenses of L. hoffmeisteri. The integrated biomarker response index, indicates that the combined effect was proposed as synergism, which is coincided with the results of toxic unit. Moreover, this work showed that aquatic environment may become more livable when water conditions changed from acidic to near-neutral or alkaline.

  12. Biosorption of strontium from simulated nuclear wastewater by Scenedesmus spinosus under culture conditions: adsorption and bioaccumulation processes and models.

    PubMed

    Liu, Mingxue; Dong, Faqin; Kang, Wu; Sun, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan

    2014-06-01

    Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately 10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions.

  13. THE RELATIONSHIP OF BIOACCUMULATIVE CHEMICALS IN WATER AND SEDIMENT TO CHEMICAL RESIDUES IN FISH: A VISUALIZATION APPROACH

    EPA Science Inventory

    An approach to viewing and evaluating bioaccumulation data by using water-sediment chemical concentration (XY) plots will be presented. One of the difficulties for those outside of the detailed study of PBTs is the relative importance and interrelationships among variables influ...

  14. Bioaccumulation and Toxicity of Single-Walled Carbon Nanotubes to Benthic Organisms at the Base of the Marine Food Chain

    EPA Science Inventory

    As the use of single-walled carbon nanotubes (SWNTs) increases over time, so does the potential for environmental release. This research aimed to determine the toxicity, bioavailability, and bioaccumulation of SWNTs in marine benthic organisms at the base of the food chain. The t...

  15. Influence of reactive sulfide (AVS) and supplementary food on Ag, Cd and Zn bioaccumulation in the marine polychaete Neanthes arenaceodentata

    USGS Publications Warehouse

    Lee, J.-S.; Lee, B.-G.; Yoo, H.; Koh, C.-H.; Luoma, S.N.

    2001-01-01

    A laboratory bioassay determined the relative contribution of various pathways of Ag, Cd and Zn bioaccumulation in the marine polychaete Neanthes arenaceodentata exposed to moderately contaminated sediments. Juvenile worms were exposed for 25 d to experimental sediments containing 5 different reactive sulfide (acid volatile sulfides, AVS) concentrations (1 to 30 ??mol g-1), but with constant Ag, Cd, and Zn concentrations of 0.1, 0.1 and 7 ??mol g-1, respectively. The sediments were supplemented with contaminated food (TetraMin??) containing 3 levels of Ag-Cd-Zn (uncontaminated, 1?? or 5??1 metal concentrations in the contaminated sediment). The results suggest that bioaccumulation of Ag, Cd and Zn in the worms occurred predominantly from ingestion of contaminated sediments and contaminated supplementary food. AVS or dissolved metals (in porewater and overlying water) had a minor effect on bioaccumulation of the 3 metals in most of the treatments. The contribution to uptake from the dissolved source was most important in the most oxic sediments, with maximum contributions of 8% for Ag, 30% for Cd and 20% for Zn bioaccumulation. Sediment bioassays where uncontaminated supplemental food is added could seriously underestimate metal exposures in an equilibrated system; N. arenaceodentata feeding on uncontaminated food would be exposed to 40-60% less metal than if the food source was equilibrated (as occurs in nature). Overall, the results show that pathways of metal exposure are dynamically linked in contaminated sediments and shift as external geochemical characteristics and internal biological attributes vary.

  16. Copper and cadmium in bottom sediments dredged from Wyścigi Pond, Warsaw, Poland--contamination and bioaccumulation study.

    PubMed

    Wojtkowska, Małgorzata; Karwowska, Ewa; Chmielewska, Iwona; Bekenova, Kundyz; Wanot, Ewa

    2015-12-01

    This research covered an evaluation of the copper and cadmium concentrations in bottom sediments dredged from one of the ponds in Warsaw. The samples of sediments, soil, and plants were analyzed in terms of Cu and Cd content. The research concerned the heap of dredged bottom sediments from Wyścigi Pond, Warsaw, Poland. Two boreholes were made to obtain sediment cores with depths of A 162.5 cm and B 190.0 cm. The cores were divided into 10 sub-samples with a thickness of about 15-20 cm. A control sample of soil was taken from the horse racecourse several hundred meters away from the heap. The vegetation was sampled directly from the heap. The predominating plants were tested: Urtica dioica, Glechoma hederacea, Euonymus verrucosus, and Drepanocladus aduncus. A control sample of U. dioica taken outside of the heap was also tested. The commercial PHYTOTOXKIT microbiotest was applied to evaluate the influence of heavy metal-contaminated sediments (used as soil) on germination and growth of the chosen test plants. The analyses of cadmium and copper concentrations revealed that the metal concentration in sediments was diverse at different depths of sampling, probably reflecting their concentration in stored layers of sediments. Moreover, the metal content in core A was four to five times lower than that in core B, which reveals heterogeneity of the sediments in the tested heap. In core A, the copper concentration ranged from 4.7 to 13.4 mg/kg d.w. (average 8.06 ± 0.71 mg/kg d.w.), while in core B, it ranged from 9.2 to 82.1 mg/kg d.w. (average 38.56 ± 2.6 mg/kg d.w.). One of the results of the heavy metal presence in soils is their bioaccumulation in plants. Comparing plant growth, more intensive growth of roots was observed in the case of plants growing on the control (reference) soil than those growing on sediments. The intensive development of both primary and lateral roots was noticed. During this early growth, metal accumulation in plants occurred

  17. Assessing the Influences of Mercury Bioaccumulation and Bioavailability in Everglades Food Webs

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Bemis, B. E.

    2005-05-01

    Eastern mosquitofish are an important sentinel species used to monitor mercury contamination of the aquatic ecosystem in the Everglades. Like other freshwater fish, the primary route of mercury uptake into mosquitofish tissues is through diet as bioavailable methylmercury. Yet, it is unclear whether variations in mosquitofish mercury observed across the Everglades are due primarily to differences in bioaccumulation (i.e., increase of mercury at higher trophic levels) or abundance of methylmercury available to the food web base. We use isotopic methods to investigate the importance of these two controls on mosquitofish mercury at the landscape scale. As part of the USEPA REMAP project, mosquitofish, periphyton, and sediments were collected during September 1996 from over one hundred sites throughout the Everglades and analyzed for mercury concentration and many other parameters. The USGS analyzed splits of the samples for d15N, d13C, and d34S. Mosquitofish were analyzed as composites of 5-10 fish and periphyton and 0-5 cm sediment samples were analyzed in bulk. Tissue d15N is widely used to estimate the relative trophic positions of organisms in a food web, and should correlate positively with tissue mercury if bioaccumulation is an important control on mosquitofish mercury concentration. Tissue d34S values potentially indicate the extent of dissimilatory sulfate reduction in sediments, a process used by sulfate-reducing bacteria (SRB) during conversion of inorganic Hg(II) to bioavailable methylmercury. Because this process increases the d34S value of remaining sulfate (assimilated by the food web base), mosquitofish d34S should show positive correlations with SRB activity, methylmercury production, and mosquitofish mercury concentrations. Mosquitofish and periphyton isotopes are significantly correlated (d15N-Mosq vs. d15N-Peri, d34S-Mosq vs. d34S-Peri), indicating that a component of the bulk periphyton analyzed in this study is part of the mosquitofish food web

  18. A dynamic multimedia environmental and bioaccumulation model for brominated flame retardants in Lake Huron and Lake Erie, USA.

    PubMed

    Lim, Dong-Hee; Lastoskie, Christian M

    2011-05-01

    Polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) may pose a worldwide pollution problem because of their persistence, long-range transport capability, and predisposition to bioaccumulate. The ubiquitous presence of PBBs and PBDEs has heightened interest in determination of their fate. We report results for a fugacity-based dynamic environmental and bioaccumulation model of the fate of hexabromobiphenyl (hexaBB) discharged into the Saginaw Bay region of Lake Huron, USA. We calculated transient fugacity profiles of hexaBB in Lake Huron and Lake Erie water and sediment during the 1970s, 1980s, and 1990s. The hexaBB concentrations in the environmental compartments were used as inputs for a dynamic bioaccumulation model of Lake Huron and Lake Erie aquatic biota. The model results indicate that the sediment compartments of Lakes Huron and Erie serve as reservoirs for the accumulation and slow transfer of hexaBB to the food web constituents of these lakes. We present bioaccumulation factors (BAFs) and compare the predicted hexaBB concentrations in lake trout from the bioaccumulation model with measurements during the period 1980 to 2000. An uncertainty analysis for this model suggests that errors associated with input parameter uncertainty can be reduced by refining estimates of the sediment degradation half-life of hexaBB. The corroborated PBB model has carryover application for modeling the fate of polybrominated diphenyl ether (PBDE) contaminants in the Great Lakes. By fitting model outputs to field measurement data using the transformed least square fit method, we report estimations of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) emission rates into the Lake Huron and Lake Erie watershed areas. PMID:21312244

  19. Interspecific comparison of polycyclic aromatic hydrocarbons and persistent organochlorines bioaccumulation in bivalves from a Mediterranean coastal lagoon.

    PubMed

    León, Víctor M; Moreno-González, Rubén; González, Emilia; Martínez, Fulgencio; García, Víctor; Campillo, Juan A

    2013-10-01

    The bioaccumulation of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) was characterized in cockle, oyster and noble pen shell from nine areas in the Mar Menor lagoon with different hydrodynamic and pollutant sources. Biota, sediment and water samples were simultaneously collected in the spring and autumn of 2010. Considering all bivalve samples, PAH concentrations ranged from 8.98 to 370 μg·kg(-1) d.w., those of PCBs from 0.15 to 42.36 μg·kg(-1) d.w. and those of DDXs from below detection limit to 240.6 μg·kg(-1) d.w., where p,p'-DDE was the main fraction. The bioaccumulation of PAHs was similar for cockle, oyster and noble pen shell, being higher close to ports and wastewater effluents. However, DDX and PCB bioaccumulations in oyster and noble pen shell were significantly higher than in cockle in spring (p=0.02). The first organic pollutant bioaccumulation data for noble pen shell were obtained in this study, showing a preferential accumulation of pyrene. The increase of PAH bioaccumulation in autumn, as compared to spring, was low, due to high water temperatures during the summer, which favoured PAH dissipation processes. No significant seasonal variations were detected for OCPs and PCBs, except in some specific areas. The PAH, PCB and OCP levels detected in these bivalves were lower than OSPAR/MED POL environmental assessment criteria, except for p,p'-DDE in bivalves sited close to El Albujón watercourse mouth.

  20. A dynamic multimedia environmental and bioaccumulation model for brominated flame retardants in Lake Huron and Lake Erie, USA.

    PubMed

    Lim, Dong-Hee; Lastoskie, Christian M

    2011-05-01

    Polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) may pose a worldwide pollution problem because of their persistence, long-range transport capability, and predisposition to bioaccumulate. The ubiquitous presence of PBBs and PBDEs has heightened interest in determination of their fate. We report results for a fugacity-based dynamic environmental and bioaccumulation model of the fate of hexabromobiphenyl (hexaBB) discharged into the Saginaw Bay region of Lake Huron, USA. We calculated transient fugacity profiles of hexaBB in Lake Huron and Lake Erie water and sediment during the 1970s, 1980s, and 1990s. The hexaBB concentrations in the environmental compartments were used as inputs for a dynamic bioaccumulation model of Lake Huron and Lake Erie aquatic biota. The model results indicate that the sediment compartments of Lakes Huron and Erie serve as reservoirs for the accumulation and slow transfer of hexaBB to the food web constituents of these lakes. We present bioaccumulation factors (BAFs) and compare the predicted hexaBB concentrations in lake trout from the bioaccumulation model with measurements during the period 1980 to 2000. An uncertainty analysis for this model suggests that errors associated with input parameter uncertainty can be reduced by refining estimates of the sediment degradation half-life of hexaBB. The corroborated PBB model has carryover application for modeling the fate of polybrominated diphenyl ether (PBDE) contaminants in the Great Lakes. By fitting model outputs to field measurement data using the transformed least square fit method, we report estimations of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) emission rates into the Lake Huron and Lake Erie watershed areas.

  1. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil.

    PubMed

    Khan, Sardar; Chao, Cai; Waqas, Muhammad; Arp, Hans Peter H; Zhu, Yong-Guan

    2013-08-01

    Biochar addition to soil has been proposed to improve plant growth by increasing soil fertility, minimizing bioaccumulation of toxic metal(liod)s and mitigating climate change. Sewage sludge (SS) is an attractive, though potentially problematic, feedstock of biochar. It is attractive because of its large abundance; however, it contains elevated concentrations of metal(loid)s and other contaminants. The pyrolysis of SS to biochar (SSBC) may be a way to reduce the availability of these contaminants to the soil and plants. Using rice plant pot experiments, we investigated the influence of SSBC upon biomass yield, bioaccumulation of nutrients, and metal(loid)s, and green housegas (GHG) emissions. SSBC amendments increased soil pH, total nitrogen, soil organic carbon and available nutrients and decreased bioavailable As, Cr, Co, Ni, and Pb (but not Cd, Cu, and Zn). Regarding rice plant properties, SSBC amendments significantly (P ≤ 0.01) increased shoot biomass (71.3-92.2%), grain yield (148.8-175.1%), and the bioaccumulation of phosphorus and sodium, though decreased the bioaccumulation of nitrogen (except in grain) and potassium. Amendments of SSBC significantly (P ≤ 0.05) reduced the bioaccumulation of As, Cr, Co, Cu, Ni, and Pb, but increased that of Cd and Zn, though not above limits set by Chinese regulations. Finally regarding GHG emissions, SSBC significantly (P < 0.01) reduced N2O emissions and stimulated the uptake/oxidation of CH4 enough to make both the cultivated and uncultivated paddy soil a CH4 sink. SSBC can be beneficial in rice paddy soil but the actual associated benefits will depend on site-specific conditions and source of SS; long-term effects remain a further unknown. PMID:23796060

  2. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil.

    PubMed

    Khan, Sardar; Chao, Cai; Waqas, Muhammad; Arp, Hans Peter H; Zhu, Yong-Guan

    2013-08-01

    Biochar addition to soil has been proposed to improve plant growth by increasing soil fertility, minimizing bioaccumulation of toxic metal(liod)s and mitigating climate change. Sewage sludge (SS) is an attractive, though potentially problematic, feedstock of biochar. It is attractive because of its large abundance; however, it contains elevated concentrations of metal(loid)s and other contaminants. The pyrolysis of SS to biochar (SSBC) may be a way to reduce the availability of these contaminants to the soil and plants. Using rice plant pot experiments, we investigated the influence of SSBC upon biomass yield, bioaccumulation of nutrients, and metal(loid)s, and green housegas (GHG) emissions. SSBC amendments increased soil pH, total nitrogen, soil organic carbon and available nutrients and decreased bioavailable As, Cr, Co, Ni, and Pb (but not Cd, Cu, and Zn). Regarding rice plant properties, SSBC amendments significantly (P ≤ 0.01) increased shoot biomass (71.3-92.2%), grain yield (148.8-175.1%), and the bioaccumulation of phosphorus and sodium, though decreased the bioaccumulation of nitrogen (except in grain) and potassium. Amendments of SSBC significantly (P ≤ 0.05) reduced the bioaccumulation of As, Cr, Co, Cu, Ni, and Pb, but increased that of Cd and Zn, though not above limits set by Chinese regulations. Finally regarding GHG emissions, SSBC significantly (P < 0.01) reduced N2O emissions and stimulated the uptake/oxidation of CH4 enough to make both the cultivated and uncultivated paddy soil a CH4 sink. SSBC can be beneficial in rice paddy soil but the actual associated benefits will depend on site-specific conditions and source of SS; long-term effects remain a further unknown.

  3. Pattern and annual rates of Scrobicularia plana mercury bioaccumulation in a human induced mercury gradient (Ria de Aveiro, Portugal)

    NASA Astrophysics Data System (ADS)

    Coelho, J. P.; Rosa, M.; Pereira, E.; Duarte, A.; Pardal, M. A.

    2006-09-01

    Due to the lack of knowledge regarding annual bioaccumulation rates in estuarine and marine fauna, the main aim of this work was to study the annual mercury bioaccumulation in the well-documented bivalve species Scrobicularia plana along a human induced mercury gradient in the Ria de Aveiro coastal lagoon (Portugal) and in a nearby, non-polluted system (Mondego estuary), parallel to the risks associated with its consumption by humans. Minimum total mercury concentration was as low as 0.019 mg kg -1 (wwt) in 4+ year old organisms in the reference site, where a significant negative correlation ( p < 0.05) was found between total mercury concentrations and size, resulting in negative bioaccumulation rates (detoxification). On the other hand, values reached 1.8 mg kg -1 (wwt) in 3+ year old bivalves from the most contaminated area, where a strong positive correlation with size was found ( p < 0.01) and annual bioaccumulation rates were as high as 0.25 mg kg -1 yr -1. Annual bioaccumulation rates were highly correlated with suspended particulate matter mercury concentrations. Even though the levels of organic mercury contents increased parallel to the contamination gradient, at each sampling station, no increment was found with age, which corresponded to a decrease in organic mercury percentage with age. In terms of ecological management and public health, the ratio of 0.01 consistently found between Scrobicularia plana annual mercury accumulation rates and SPM mercury levels for most sites may permit to roughly estimate S. plana contamination of commercial sized individuals (>2.5 cm) and, if verified and confirmed in other systems, be used as a simple management tool.

  4. Interspecific comparison of polycyclic aromatic hydrocarbons and persistent organochlorines bioaccumulation in bivalves from a Mediterranean coastal lagoon.

    PubMed

    León, Víctor M; Moreno-González, Rubén; González, Emilia; Martínez, Fulgencio; García, Víctor; Campillo, Juan A

    2013-10-01

    The bioaccumulation of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) was characterized in cockle, oyster and noble pen shell from nine areas in the Mar Menor lagoon with different hydrodynamic and pollutant sources. Biota, sediment and water samples were simultaneously collected in the spring and autumn of 2010. Considering all bivalve samples, PAH concentrations ranged from 8.98 to 370 μg·kg(-1) d.w., those of PCBs from 0.15 to 42.36 μg·kg(-1) d.w. and those of DDXs from below detection limit to 240.6 μg·kg(-1) d.w., where p,p'-DDE was the main fraction. The bioaccumulation of PAHs was similar for cockle, oyster and noble pen shell, being higher close to ports and wastewater effluents. However, DDX and PCB bioaccumulations in oyster and noble pen shell were significantly higher than in cockle in spring (p=0.02). The first organic pollutant bioaccumulation data for noble pen shell were obtained in this study, showing a preferential accumulation of pyrene. The increase of PAH bioaccumulation in autumn, as compared to spring, was low, due to high water temperatures during the summer, which favoured PAH dissipation processes. No significant seasonal variations were detected for OCPs