Science.gov

Sample records for 28-mesh coal fines

  1. Development of an advanced process for drying fine coal in an inclined fluidized bed: Technical progress report for the second quarter, January 19--March 31, 1989

    SciTech Connect

    Boysen, J.E.; Cha, C.Y.; Berggren, M.H.; Jha, M.C.

    1989-05-01

    This research project is for the development of a technically and economically feasible process for drying and stabilizing of fine particles of high-moisture subbituminous coal. Research activities were initiated with efforts concentrating on characterization of the two feed coals: Eagle Butte coal from AMAX Coal Company's mine located in the Powder River Basin of Wyoming; and coal from Usibelli Coal Mine, Inc.'s mine located in central Alaska. Both of the feed coals are high-moisture subbituminous coals with ''as received'' moisture contents of 29% and 22% for the Eagle Butte and Usibelli coals, respectively. However, physical analyses of the crushed coal samples (--28-mesh particle size range) indicate many differences. The minimum fluidization velocity (MFV) of the feed coals were experimentally determined. The MFV for --28-mesh Eagle Butte coal is approximately 1 ft/min, and the MFV for --28-mesh Usibelli coal is approximately 3 ft/min. 2 refs., 16 figs., 3 tabs.

  2. The Mulled Coal process: An advanced fine coal preparation technology used to improve the handling characteristics of fine wet coal products

    SciTech Connect

    Jamison, P.R.

    1996-12-31

    The Mulled Coal process is a simple low cost method of improving the handling characteristics of the fine wet coal. The process involves the addition of a specifically formulated reagent to fine wet coal by mixing the two together in a pug mill. The converted material (Mulled Coal) retains some of its original surface moisture, but it handles, stores and transports like dry coal. It does not cause any of the sticking, fouling, bridging and freezing problems normally associated with fine wet coal, and, unlike thermally dried fine coal, it will not rewet and it is not dusty. In the process, large (baseball size) loosely bound sticky masses of fine wet coal particles are broken down into granules which are fairly uniform in the 28 Mesh x 0 size range. Due to the unique combination of the mixing action of the pug mill, the surface chemistry of the fine coal particles and the properties of the reagent; the individual granules are tightly bound, and they become completely enveloped by a very thin film of reagent. The reagent envelope will allow moisture out in the vapor stage, but it will not allow moisture back into the agglomerated granule. The envelope also prevents individual granules from adhering to or freezing to one another. The end result is a fine coal product which is free flowing, which is not dusty, and which will not rewet.

  3. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-01-18

    This project is a step in the Department of Energy's program to show that ultra-clean fuel can be produced from selected coals and that the fuel will be a cost-effective replacement for oil and natural gas now fueling boilers in this country. The replacement of premium fossil fuels with coal can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the ultra-clean coal. The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term commercial integration of advanced fine coal cleaning technologies in new or existing coal preparation plants for economically and efficiently processing minus 28-mesh coal fines. A third objective is to determine the distribution of toxic trace elements between clean coal and refuse when applying the advance column flotation and selective agglomeration technologies. The project team consists of Amax Research Development Center (Amax R D), Amax Coal industries, Bechtel Corporation, Center for Applied Energy Research (CAER) at the University of Kentucky, and Arcanum Corporation.

  4. Development of an Advanced Fine Coal Suspension Dewatering Process

    SciTech Connect

    B. K. Parekh; D. P. Patil

    2008-04-30

    With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake

  5. Pelletization of fine coals. Final report

    SciTech Connect

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  6. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 1, October--December 1992

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-01-18

    This project is a step in the Department of Energy`s program to show that ultra-clean fuel can be produced from selected coals and that the fuel will be a cost-effective replacement for oil and natural gas now fueling boilers in this country. The replacement of premium fossil fuels with coal can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the ultra-clean coal. The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term commercial integration of advanced fine coal cleaning technologies in new or existing coal preparation plants for economically and efficiently processing minus 28-mesh coal fines. A third objective is to determine the distribution of toxic trace elements between clean coal and refuse when applying the advance column flotation and selective agglomeration technologies. The project team consists of Amax Research & Development Center (Amax R&D), Amax Coal industries, Bechtel Corporation, Center for Applied Energy Research (CAER) at the University of Kentucky, and Arcanum Corporation.

  7. Process for treating moisture laden coal fines

    DOEpatents

    Davis, Burl E.; Henry, Raymond M.; Trivett, Gordon S.; Albaugh, Edgar W.

    1993-01-01

    A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

  8. Granuflow and Mulled coal: Alternative processes for fine coal recovery

    SciTech Connect

    Davis, B.E.

    1999-07-01

    Granuflow and Mulled Coal were developed in parallel to enhance the ability to recover and process wet coal fines. There are some similarities in the processes; however, the end products are quite different. This paper will compare the properties of the two products prepared from the same coal and identify the unique properties of each. Criteria for selecting between the two processes, including cost, will be discussed.

  9. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  10. Ultra-fine grinding of coal

    SciTech Connect

    Wang Shoulu; Wang Xinguo; Gao Ying

    1997-12-31

    Clean coal is known by its low ash content. Most coals contain a large amount of ash, some of which are finely distributed in the coal matrix. With the conventional cleaning process, such ash can not be removed efficiently. From existing coal preparation plants, much middling and high-ash slime come out as by-products and are used only as inferior fuel. Beijing Graduate School, China University of Mining and Technology, has developed a process for deep-cleaning of coal. This process includes ultra-fine grinding of coal to liberate the locked ash minerals followed by efficient separation with selective coagulation-flotation. With this process, concentrate can be extracted from inferior coal or ultra-clean coal can be obtained from conventional concentrate. Tumbling and vibrating ball mills are conventional for general grinding. However, for ultra-fine grinding they are inefficient and consume much more power. This paper gives some aspects of an ultra-fine grinding mill developed by Beijing Graduate School. The Ultra-Fine Grinding Mill is a JMI series wet grinding mill, and consists of a static horizontal closed tube with a rotor inside. The rotor assembly includes: a horizontal shaft, two vaned disks being fixed apart at the shaft, and longitudinal bar deflectors fixed across the disks. Sufficient clearance is allowed between the disk and end plates of the tube and between the disk rim and tube wall. This configuration enables free passage of grinding medium and pulp within the mill. While the mill is in operation, four principal movements of grinding medium and pulp are created: inward radially by deflectors, oppositely axial by vanes, tangential by rotation, and vibrating due to vortices behind the deflectors.

  11. Engineereing development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 5, October--December 1993

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1994-02-18

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. The project has three major objectives: The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics. A third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  12. Fine coal dry classification and separation

    SciTech Connect

    Fan, M.; Chen, Q.; Zhao, Y.; Tao, D.; Luo, Z.; Zhang, X.; Tao, X.; Yang, G.

    2006-02-15

    Coal is currently cleaned with a minimum of size reduction; fine particle processing, recovery and tailings disposal are major problems; and adequate water resources are not always available. Two-thirds of China's coal is located in arid areas. Hence, dry separation provides an alternative approach. Of the dry coal separation methods available, air dense-medium fluidized beds have been used to separate 6- to 50-mm size coal efficiently. However, excessive bubbling and back mixing of the separated solids in the air-dense media fluidized bed results in a high lower size limit of 6 mm for the feed material, which affects the preparation efficiency. Based on a previous study of air-fluidized dense-media for 6- to 50-mm coal preparation, this paper presents methods and test results on the fine coal dry classification, electrostatic beneficiation of 0- to 0.5-mm coal and magnetically stabilized fluidized beds for separating 0.5- to 6-mm coal.

  13. Dewatering of fine coal using hyperbaric filter

    SciTech Connect

    Yang, J.; Wang, X.H.; Parekh, B.K.

    1995-12-31

    Removal of moisture from ultra-fine clean coal (minus 100 mesh) to below 20% level is difficult using conventional dewatering equipment. This paper describes a couple of dewatering approaches which were found to be effective in providing filter cakes containing less than 20% moisture. These approaches involve addition of metal ion-surfactant, and split size dewatering of coal without addition of any reagent.

  14. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Bi, H.; Campbell, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.

    1991-01-01

    The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 90% pyrite sulfur rejection at an energy recovery greater than 90% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning, method for analysis of samples, development of standard beneficiation test, grinding studies, modification of particle surface, and exploratory R D and support. 5 refs., 22 figs., 34 tabs.

  15. Fine particle clay catalysts for coal liquefaction

    SciTech Connect

    Olson, E.S.

    1991-01-01

    The efficient production of environmentally acceptable distillate fuels requires catalysts for hydrogenation and cleavage of the coal macromolecules and removal of oxygen, nitrogen, and sulfur heteroatoms. The goal of the proposed research is to develop new catalysts for the direct liquefaction of coal. This type of catalyst consists of fine clay particles that have been treated with reagents which form pillaring structures between the aluminosilicate layers of the clay. The pillars not only hold the layers apart but also constitute the active catalytic sites for hydrogenation of the coal and the solvent used in the liquefaction. The pillaring catalytic sites are composed of pyrrhotite, which has been previously demonstrated to be active for coal liquefaction. The pyrrhotite sites are generated in situ by sulfiding the corresponding oxyiron species. The size of the catalyst will be less than 40 nm in order to promote intimate contact with the coal material. Since the clays and reagents for pillaring and activating the clays are inexpensive, the catalysts can be discarded after use, rather than regenerated by a costly process. The proposed work will evaluate methods for preparing the fine particle iron-pillared clay dispersions and for activating the particles to generate the catalysts. Characterization studies of the pillared clays and activated catalysts will be performed. The effectiveness of the pillared clay dispersion for hydrogenation and coal liquefaction will be determined in several types of testing.

  16. Fine particle clay catalysts for coal liquefaction

    SciTech Connect

    Olson, E.S.

    1991-01-01

    The efficient production of environmentally acceptable distillate fuels requires catalysts for hydrogenation and cleavage of the coal macromolecules and removal of oxygen, nitrogen, and sulfur heteroatoms. The goal of the proposed research is to develop new catalysts for the direct liquefaction of coal. This type of catalyst consists of fine clay particles that have been treated with reagents which form pillaring structures between the aluminosilicate layers of the clay. The pillars not only hold the layers apart but also constitute the active catalytic sites for hydrogenation of the coal and solvent used in the liquefaction. The pillaring catalytic sites are composed of pyrrhotite, which has been previously demonstrated to be active for coal liquefaction. The pyrrhotite sites are generated in situ by sulfiding the corresponding oxyiron species. The size of the catalyst will be less than 40 nm in order to promote intimate contact with the coal material. Since the clays and reagents for pillaring and activating the clays are inexpensive, the catalysts can be discarded after use, rather than regenerated by a costly process. The proposed work will evaluate methods for preparing the fine particle iron-pillared clay dispersions and for activating the particles to generate the catalysts. Characterization studies of the pillared clays and activated catalysts will performed. The effectiveness of the pillared clay dispersion for hydrogenation and coal liquefaction will be determined in several types of testing. 5 refs., 1 tab.

  17. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-01-26

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  18. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-11-08

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  19. Combustor for fine particulate coal

    DOEpatents

    Carlson, Larry W.

    1988-01-01

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

  20. Coal-sand attrition system and its' importance in fine coal cleaning

    SciTech Connect

    Mehta, R.K.; Schultz, C.W.

    1992-01-01

    The primary objective of this project is geared toward the substitution of steel media by fracturing silica sand as a grinding media for ultraline coal grinding. The project has been divided into four subgroups for bookkeeping purposes and possible ease of execution. Some of the tasks would be executed simultaneously as overlapping is inevitable. The grouping is as follows: (1) sample procurement, preparation, and characterization; (2) batch grinding tests; (3) continuous grinding tests; and, (4) fracture mechanics. The hardgrove indices for the four coals employed in this work have finally been determined by the personnel at the R and D Center of Drummond Coal Company using 14 [times] 28 mesh feed size materials. The values obtained for the respective coals are given in Table 1.

  1. Filtratin and dewatering of fine coal

    SciTech Connect

    Gala, H.B.; Kakwani, R.; Chiang, S.H.; Tierney, J.W.; Klinzing, G.E.

    1981-01-01

    A fundamental study on filtration and dewatering of fine coal is described. Experiments are being conducted in three areas: (1) the microscopic analysis of filter cakes; (2) the measurement of equilibrium desaturation; and (3) the determination of filtration and dewatering rates. Preliminary experimental results are presented together with some observations on the microstructure of filter cakes. A three dimensional network model has also been developed and is being used to analyze experimental data. 10 figures, 2 tables.

  2. Dewatering studies of fine clean coal

    SciTech Connect

    Parekh, B.K. . Center for Applied Energy Research)

    1991-01-01

    The main objective of the present research program is to study and understand dewatering characteristics of ultra-fine clean coal and to develop process parameters to effectively reduce the moisture to less than 20 percent in the clean coal product. The research approach under investigation utilizes synergistic effect of metal ions and surfactant to lower the moisture of clean coal using conventional vacuum dewatering technique. During this contract period adsorption of di-, tri-, and tetra-valent metal ions, and octadecylamine onto the clean coal was studied. The adsorption of divalent copper ions provided three charge reversal points (or zero-point-of-charges) for the clean coal. The lowest amount of moisture in the filter cake was obtained near the two charge reversal points of the copper-coal system. For the tri-valent aluminum ions and tetra-valent titanium ions one charge reversal, at pH 8.0 and pH 5.0 was observed, respectively. The moisture in the filter cake was lowest near the zero point of charge (ZPC) or both the metal ions. Adsorption of octadecylamine onto the coal provided one ZPC at pH {approximately}7. 0. However, moisture content of the filter cake was not significantly lowered at this pH Morphology of the filter cake obtained without the addition of metal ions or surfactant, showed segregation of large particle at the bottom of filter cake. Efforts are in progress to determine effect of combining metal ions and various (nonionic and anionic) surfactant on filtration, and utilizing a better approach to study the in-situ morphology of the filter cake. 13 figs.

  3. [Coal fineness effect on primary particulate matter features during pulverized coal combustion].

    PubMed

    Lü, Jian-yi; Li, Ding-kai

    2007-09-01

    Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does. PMID:17990536

  4. Method and apparatus for recovering preheater coal fines

    SciTech Connect

    Kovacic, J.E.; Kuchta, B.R.; Perch, M.

    1984-06-05

    Coal fines developed from the processing of coal through a preheating system are accumulated in a secondary cyclone system. The coal fines, at an elevated temperature, are mixed with a hydrocarbon organic binder and compressed into larger particles of sufficient structural integrity and mass to be fed directly through pneumatic pressure coke oven coal charging lines without significant size reduction, resulting in the elimination of fine coal build-up in coke oven standpipes and charging mains as well as overloading of the charging system.

  5. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 6, January--March 1994

    SciTech Connect

    Smit, F.J.; Rowe, R.M.; Anast, K.R.; Jha, M.C.

    1994-05-06

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effectve replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States as well as for advanced combustars currently under development. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals fbr clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 51-month program which started on September 30, 1992. This report discusses the technical progress, made during the 6th quarter of the project from January 1 to March 31, 1994. The project has three major objectives: (1) The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. (2) A secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics. (3) A third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  6. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 3, April--June 1993

    SciTech Connect

    Smit, F.J.; Hogsett, R.F.; Jha, M.C.

    1993-07-28

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 48-month program which started on September 30, 1992. This report discusses the technical progress made during the quarter from April 1 to June 30, 1993. The project has three major objectives: (1) the primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. (2) a secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics; and (3) a third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  7. Recovery of coal fines from preparation plant effluents

    SciTech Connect

    Choudhry, V.

    1991-01-01

    The objectives of this project were to test and demonstrate the feasibility of recovering coal fines that are currently disposed of with coal preparation plant effluent streams and producing a fine clean coal product that can be blended with the plant coarse clean coal. This recovery was effected by means of Michigan Technological University's static tube flotation process, which was successfully demonstrated on a number of raw coals to reject 85% of the pyritic sulfur and recover 90% of the combustible matter. Under this project, the process parameters for the technology were modified for this application in order to recover a low-ash, low-sulfur clean coal that is, at a minimum, compatible with the quality of the clean coal currently produced by the preparation plant.

  8. Natural hydrophobic flocculation of fine coal particles in aqueous solution

    SciTech Connect

    Song, S.; Lu, S.; Trass, O.; Wang, G.; Wang, Z.

    1994-12-31

    The hydrophobic flocculation of fine coal particles with natural hydrophobicity in aqueous solution, which is called natural hydrophobic flocculation, has been studied in this paper. It features no surfactant addition but only high intensity mechanical agitation. The experimental results showed that this flocculation occurred even in the case of {minus}58 mV jet potential of coal particles, that is contrary to the classical DLVO (Derjaguin-LandauVerwey-Overbeek) theory. Wettability of coal particle surface dominates the stability o fine coal particles in aqueous solution. The bigger the contact angle, the more intensive the flocculation of the coal particle suspension. The quantitative theory of natural hydrophobic flocculation is presented in this paper. Using this theory, the authors have calculated the total potential energy of interaction between coal particles in aqueous solution. The results demonstrate that the hydrophobic interaction plays a dominant role in the interaction between coal particles in aqueous solution.

  9. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect

    K. Osseo-Asare; X. Zeng

    2002-01-01

    The objective of this research project is to develop an aqueous biphase extraction process for the treatment of fine coals. Aqueous biphase extraction is an advanced separation technology that relies on the ability of an aqueous system consisting of a water-soluble polymer and another component, e.g., another polymer, an inorganic salt, or a nonionic surfactant, to separate into two immiscible aqueous phases. The principle behind the partition of solid particles in aqueous biphase systems is the physicochemical interaction between the solid surface and the surrounding liquid solution. In order to remove sulfur and mineral matter from fine coal with aqueous biphasic extraction, it is necessary to know the partitioning behavior of coal, as well as the inorganic mineral components. Therefore, in this research emphasis was placed on the partitioning behavior of fine coal particles as well as model fine inorganic particles in aqueous biphase systems.

  10. Coal-sand attrition system and its` importance in fine coal cleaning. Quarterly report, May 31, 1991--August 31, 1992

    SciTech Connect

    Mehta, R.K.; Schultz, C.W.

    1992-12-01

    The primary objective of this project is geared toward the substitution of steel media by fracturing silica sand as a grinding media for ultraline coal grinding. The project has been divided into four subgroups for bookkeeping purposes and possible ease of execution. Some of the tasks would be executed simultaneously as overlapping is inevitable. The grouping is as follows: (1) sample procurement, preparation, and characterization; (2) batch grinding tests; (3) continuous grinding tests; and, (4) fracture mechanics. The hardgrove indices for the four coals employed in this work have finally been determined by the personnel at the R and D Center of Drummond Coal Company using 14 {times} 28 mesh feed size materials. The values obtained for the respective coals are given in Table 1.

  11. Surface electrochemical control for fine coal and pyrite separation

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Zhu, Ximeng; Li, Jun; Bodily, D.M; Zhong, Tingke; Wadsworth, M.E.

    1992-01-01

    A series of fine coal kinetic tests were carried out on three coals. It was found that the rank of flotation rates for the three coals tested were: Upper Freeport > Pittsburgh No. 8 > Illinois No. 6. In the case of Pittsburgh No. 8, the contained coal-pyrite was found to float more slowly than the coal itself when xanthate was used as the collector. In kinetic modeling, first order kinetic models produced large errors for long flotation times. It was found that a modified first order kinetic-model with slow and fast rate constants was appropriate for fine coal flotation. A log-log plot of 1(R{sub j} -R) versus t forms a straight line for the test conditions of this study. The Lai proportionality flotation model was found to apply from the start and extending over a very broad time range.

  12. Efficiency promotion in separation of ultra-fine coal

    SciTech Connect

    Fu Xiaoheng; Wang Zuna; Su Shuanyou

    1998-12-31

    Hydrophobic flocculation process has been successfully applied in the separation of ultra-fine coal, especially in the recovery of low ash concentrate from middling of coking coal or ultra-clean coal from conventional concentrate. In this paper the mechanism of promotion effect of coarse particle addition in the process of hydrophobic flocculation separation of ultra-fine coal has been studied. Experiments show that with the addition of coarse coal particle up to 15%, the ash content of concentrate decreased from 11.32% to 9.80%, the index of separation perfection increased from 72.95% to 75.95%, pulp conditioning time reduced from 10 min to 5 min. It shows that the addition of coarse particles in the proper amount accelerates the floc formation, reduces energy consumption in the mixing step and lowers ash content in concentration.

  13. Hydrophobic flocculation flotation for beneficiating fine coal and minerals

    SciTech Connect

    Song, S.; Valdivieso, A.L.

    1998-06-01

    It is shown that hydrophobic flocculation flotation (HFF) is an effective process to treat finely ground ores and slimes so as to concentrate coal and mineral values at a fine size range. The process is based on first dispersing the fine particles suspension, followed by flocculation of fine mineral values or coal in the form of hydrophobic surfaces either induced by specifically adsorbed surfactants or from nature at the conditioning of the slurry with the shear field of sufficient magnitude. The flocculation is intensified by the addition of a small amount of nonpolar oil. finely ground coals, ilmenite slimes, and gold finely disseminated in a slag have been treated by this process. Results are presented indicating that cleaned coal with low ash and sulfur remaining and high Btu recovery can be obtained, and the refractory ores of ilmenite slimes and fine gold-bearing slag can be reasonably concentrated, leading to better beneficiation results than other separation techniques. In addition, the main operating parameters affecting the HFF process are discussed.

  14. Coal-sand attrition system and its importance in fine coal cleaning. Final report

    SciTech Connect

    Mehta, R.K.; Zhu, Qinsheng

    1993-08-01

    It is known that ultra-fine coals are prerequisite for the deep cleaning of most US coal seams if environmental pollution arising from the use of such coals is to be minimized. Therefore, the production of finely liberated coal particles in conjunction with reduced heavy metal contaminants at low costs is desirable, if not mandatory. The liberation of intimately disseminated impurities from the coal matrix therefore, demands that the material be ground to a high degree of fineness. Similarily, some technologies for coal utilization require superfine particles (i.e., sizes less than ten microns). This implies additional costs for coal preparation plants due to the high energy and media costs associated with fine grinding operations. Besides, there are problems such as severe product contaminations due to media wear and impairment of the quality of coal. Hence, proper choice of grinding media type is important from the viewpoints of cost reduction and product quality. The use of natural quartz sand as grinding media in the comminution of industrial minerals in stirred ball mills has been indicated. The advantages of natural sand compared to steel media include low specific energy inputs, elimination of heavy metal contaminants and low media costs. In this work, the effect of rotor speed, solids concentration and feed-size are studied on four coals in conjunction with silica sand and steel shot. The results obtained are used to evaluate the suitability of silica sands as an alternative grinding media. for coal. Coal-sand and coal-steel systems are compared in terms of specific energy consumption, product fineness, media/wear contaminationanalysis and calorific values, liberation spectrum and particle shape characteristics. In general cleaner flotation concentrate was obtained from coals when they were ground with sand media. The zeta potential of coals was found to be different and lower when they ground with sand.

  15. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S-H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Venkatadri, R.; Bi, H.; Campbell, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.

    1990-01-01

    Research continued on surface control of coal. This report describes Task 7 of the program. The following topics are discussed: quantitative distribution of iron species; surface functional groups; comparison of wet and dry ground samples; study of Illinois No. 6 coal wet ground using additives; study of wet grinding using tall oil; elemental distribution of coal samples wet ground without additives; elemental distribution of coal samples wet ground with tall oil; direct determination of pyrite by x-ray diffraction; electron microprobe measurements; morphology; zeta potential measurements; pyrite size distribution; statistical analysis of grinding study data; grinding using N-pentane; cyclohexane, and N-heptane; study of the effects of the grinding method and time; study of the effects of the agglomeration time; and the pentane to coal ratio. 13 refs.

  16. Remediation of Sucarnoochee soil by agglomeration with fine coal

    SciTech Connect

    Narayanan, P.S.; Arnold, D.W.; Rahnama, M.B. )

    1994-01-01

    Fine-sized Blue Creek coal was used to remove high molecular weight hydrocarbons from Sucarnoochee soil, a fine-sized high-organic soil. Fine coal in slurry form was blended with Sucarnoochee soil contaminated with 15.0% by wt of crude oil, and agglomerates were removed in a standard flotation cell. Crude oil in the remediated soil was reduced from the original 15.0% to less than a tenth of a wt% by a two-step process. Oil removal of approx. 99.3% was obtained. An added benefit was that the low-grade coal used in the process was simultaneously upgraded. The final level of cleaning was not affected by initial oil concentration. The process compared favorably with a hot water wash technique used to recovery oils from contaminated soil.

  17. Laboratory guidelines and procedures for coal analysis: Volume 1, Assessing the cleanability of fine coal

    SciTech Connect

    Bosold, R.C.; Glessner, D.M.

    1988-05-01

    The conventional laboratory static bath float/sink method of measuring the theoretical limits of coal cleaning is unreliable for ultra-fine (minus 100M topsize) coal particles because of their long and erratic settling rates. Developing a reliable method to assess the theoretical cleanability of ultra-fine coal has been given impetus by the increased emphasis on reducing sulfur dioxide emissions from power plants, greater quantities of fines created by mechanized mining methods, and the development of advanced physical coal cleaning processes that grind coal to ultra-fine sizes in an effort to achieve high coal impurities liberation. EPRI, therefore, commissioned researchers at the Homer City Coal Laboratory in western Pennsylvania to develop and demonstrate a float/sink procedure for ultra-fine sizes. Based on test work performed on two ultra-fine size fractions (100M x 200M and 200M x 0), a detailed laboratory procedure using a centrifugal device was established. Results obtained using the guideline presented in this report are as accurate as those obtained using the static bath float/sink method, and for 200M x 0 material, more accurate. In addition, the centrifugal procedure is faster and less costly than the conventional static bath float/sink method. 12 refs., 32 figs., 1 tab.

  18. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, W.; Zou, Y.; Chen, W. ); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. )

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  19. Bench-scale testing of DOE/PETC`s GranuFlow Process for fine coal dewatering and handling. 1: Results using a high-gravity solid-bowl centrifuge

    SciTech Connect

    Wen, W.W.; Killmeyer, R.P.; Lowman, R.H.; Elstrodt, R.

    1995-12-31

    Most advanced fine-coal cleaning processes involve the use of water. Utility companies are concerned not only with the lower Btu content of the resulting wet, cleaned coal, but more importantly with its handleability problems. Solutions to these problems would enhance the utilization of fine-coal cleaning processes in the utility industry. This paper describes testing of the GranuFlow Process, developed and patented by the Pittsburgh Energy Technology Center (PETC) of the US Department of Energy, using a high-gravity solid bowl centrifuge for dewatering and reconstitution of fine-cleaned-coal slurry at 300 lb per hour in PETC`s Coal Preparation Process Research Facility. Fine-cleaned-coal slurry was treated with a bitumen emulsion before dewatering in a high-gravity solid-bowl centrifuge. The treated products appeared to be dry and in a free-flowing granular form, while the untreated products were wet, lumpy, sticky, and difficult to handle. Specifically, test results indicated that the moisture content, handleability, and dust reduction of the dewatered coal product improved as the addition of emulsion increased from 2% to 8%. The improvement in handleability was most visible for the 200 mesh (75 micron) x 0 coal, when compared with 150 mesh (106 micron) x 0, 65 mesh (212 micron) x 0 or 28 mesh (600 micron) x 0 coals. Test results also showed that the moisture content was dramatically reduced (26--37% reduction) for the four different sizes of coals at 6 or 8% emulsion addition. Because of the moisture reduction and the granular form of the product, the freezing problem was also alleviated.

  20. Heavy-liquid benefication of fine coal. Final report

    SciTech Connect

    Keller, D.V. Jr.; Simmons, F.J.

    1983-03-01

    Heavy-Liquid Benefication of Fine Coal is a multitask, fundamental research program directed towards development of a basic understanding of the rheology of fine-coal/heavy-liquid slurries and methods of obtaining useful rheological data, and the application of this understanding to the development of a heavy-liquid fine-coal benefication pilot test facility utilizing cyclone technology. The project duration was two years beginning October 1980, with a total contract cost of $331,000. The major milestones were identified as: (1) the development of a reliable, accurate method for the measurement of the viscosity of various solid/heavy-liquid slurry systems; (2) a survey of a limited number of organic true-heavy-liquids and the choice of one that was representative of this class of liquids for utilization in this project; (3) the evaluation of the rheology of the coal/heavy-liquid and coal/water/magnetite slurry systems using a matrix of parameters including size distribution, solids concentration and density distribution; (4) the design, construction and testing of a one-ton-per-hour pilot-scale cyclone-based true-heavy-liquid, fine-coal benefication facility; and (5) evaluation of the coal cleaning performance and process economics of the pilot facility as compared to state-of-the-art technology. The first nine months of this effort were devoted to the rheological studies, with an effort over the next six months directed towards the design, construction and evaluation of the heavy liquid cyclone (HLC) pilot facility. 35 figures, 14 tables.

  1. An efficient process for recovery of fine coal from tailings of coal washing plants

    SciTech Connect

    Cicek, T.; Cocen, I.; Engin, V.T.; Cengizler, H.

    2008-07-01

    Gravity concentration of hard lignites using conventional jigs and heavy media separation equipment is prone to produce coal-rich fine tailings. This study aims to establish a fine coal recovery process of very high efficiency at reasonable capital investment and operational costs. The technical feasibility to upgrade the properties of the predeslimed fine refuse of a lignite washing plant with 35.9% ash content was investigated by employing gravity separation methods. The laboratory tests carried out with the combination of shaking table and Mozley multi-gravity separator (MGS) revealed that the clean coal with 18% ash content on dry basis could be obtained with 58.9% clean coal recovery by the shaking table stage and 4.1% clean coal recovery by MGS stage, totaling to the sum of 63.0% clean coal recovery from a predeslimed feed. The combustible recovery and the organic efficiency of the shaking table + MGS combination were 79.5% and 95.5%, respectively. Based on the results of the study, a flow sheet of a high-efficiency fine coal recovery process was proposed, which is also applicable to the coal refuse pond slurry of a lignite washing plant.

  2. Predictions of boiler performance when firing fine grind coal fuels

    SciTech Connect

    Hargrove, M.J.; Liljedahl, G.N.; Miemiec, L.S.

    1996-12-31

    The development of advanced coal beneficiation and utilization technologies is being sponsored by the US Department of Energy`s Pittsburgh Energy Technology Center, to encourage the use of the abundant coal reserves. A comprehensive program is being conducted by Combustion Engineering, Inc. (ABB CE), regarding the use of these fuels in existing utility boilers. The preparation process can change the original fuel particle size distribution and hence can affect the combustion and ash deposition behaviors. To evaluate the effects of fine particles independent of the beneficiation process, a Pittsburgh No. 8 coal at three degrees of fineness was selected. Physical, chemical, combustion and fireside characteristics of these fuels were evaluated in laboratory testing. Characterization tests provide the information required to predict the performance and economic impacts of firing these fuels in existing coal and oil-designed utility boilers. Two utility steam generators designed for either coal or oil-firing were selected for performance evaluation. The study units were selected to be representative of a large portion of the current boiler population: a 560 MW coal-designed boiler purchased in 1973; and a 600 MW oil-designed boiler purchased in 1970. Each of these units was previously studied in the DOE Beneficiated Coal Fuels (BCF) evaluation of Spherical Oil Agglomeration Products (SOAP). Both of these units were built by ABB CE, but the fuel related design parameters are similar to those used by other manufacturers. This paper summarizes the results of the performance analysis and describes the economic impacts that can be expected when firing this coal ground to different fineness levels in two utility steam generators.

  3. Analysis of fine coal pneumatic systems

    SciTech Connect

    Mathur, M.P.; Rohatgi, N.D.; Klinzing, G.E.

    1987-01-01

    Many fossil fuel energy processes depend on the movement of solids by pneumatic transport. Despite the considerable amount of work reported in the literature on pneumatic transport, the design of new industrial systems for new products continues to rely to a great extent on empiricism. A pilot-scale test facility has been constructed at Pittsburgh Energy Technology Center (PETC) and is equipped with modern sophisticated measuring techniques (such as Pressure Transducers, Auburn Monitors, Micro Motion Mass flowmeters) and an automatic computer-controlled data acquisition system to study the effects of particle pneumatic transport. Pittsburgh Seam and Montana rosebud coals of varying size consist and moisture content were tested in the atmospheric and pressurized coal flow test loops (AP/CFTL and HP/CFTL) at PETC. The system parameters included conveying gas velocity, injector tank pressure, screw conveyor speed, pipe radius, and pipe bends. In the following report, results from the coal flow tests were presented and analyzed. Existing theories and correlations on two-phase flows were reviewed. Experimental data were compared with values calculated from empirically or theoretically derived equations available in the literature, and new correlations were proposed, when applicable, to give a better interpretation of the data and a better understanding of the various flow regimes involved in pneumatic transport. 55 refs., 56 figs., 6 tabs.

  4. High-efficiency flotation of coarse and fine coal

    SciTech Connect

    Atkinson, B.W.; Conway, C.J.; Jameson, G.J.

    1995-10-01

    The flotation of coal in the fine and coarse particle size ranges presents particular problems. Fine or ultra-fine coal less than 100 microns presents a challenge to conventional flotation machines because the rate of capture of the coal particles can be very low, so longer residence times are needed. Also, conventional mechanical cells are not normally designed with froth properties in mind. Froth drainage may be inadequate, leading to excessive entrainment of ash. The upper limit of flotation of coal is normally put at about 500 {micro}m (30 mesh). It appears that, in mechanical cells, coarser particles tend to be torn away from bubbles in the turbulent environment created by the impeller. In this paper, results are presented from plant trials of a high-intensity flotation column of novel design, namely the Jameson cell. Extensive trials have been conducted on coal slurries with a top size of around 1 mm. Size-by size analysis shows that it is possible to achieve high yields of low ash product over the whole particle size range.

  5. Heavy-liquid-beneficiation of fine coal, Phase II. Final report

    SciTech Connect

    Simmons, F.J.; Keller, D.V. Jr.

    1984-11-01

    Heavy-Liquid-Beneficiation of Fine Coal is a two-phase multitask fundamental research program directed towards the development of a basic understanding of the rheology of fine-coal/heavy-liquid slurries and the application of this understanding to the development and operation of a heavy-liquid fine-coal benefication pilot test facility using cyclone technology. (HLC)

  6. Evaluation of hyperbaric filtration for fine coal dewatering. Final report

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1996-08-15

    The main objectives of the project were to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20% moisture. The program consisted of three phases, namely Phase 1 -- Model Development, Phase 2 -- Laboratory Studies, Phase 3 -- Pilot Plant Testing. The Pennsylvania State University led efforts in Phase 1, the University of Kentucky in Phase 2, and CONSOL Inc. in Phase 3 of the program. All three organizations were involved in all the three phases of the program. The Pennsylvania State University developed a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky conducted experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase 1 and 2 were tested in two of the CONSOL Inc. coal preparation plants using an Andritz Ruthner portable hyperbaric filtration unit.

  7. Waste Coal Fines Reburn for NOx and Mercury Emission Reduction

    SciTech Connect

    Stephen Johnson; Chetan Chothani; Bernard Breen

    2008-04-30

    Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury

  8. Study of fine and ultrafine particles for coal cleaning

    SciTech Connect

    Birlingmair, D.; Buttermore, W.; Chmielewski, T.; Pollard, J.

    1990-04-01

    During the second quarter of work on this new project, critical review of the literature continued. Several new references related to gravity separation were identified and evaluated. A synopsis was assembled to summarize techniques developed by various researchers for the float/sink separation of ultrafine coal. In the reviewed literature, it was commonly concluded that substantial improvements in washability results for ultrafine coals can be obtained only through the application of dynamic (centrifugal) procedures, and through the use of dispersing aids such as ultrasound and surfactants. These results suggest the presence of physicochemical phenomena, typical of colloidal systems. In theoretical studies this quarter, the effects of Brownian motion on fine particle sedimentation have been identified and theoretically quantitated. The interaction between Brownian and gravitational forces was calculated, and a model was prepared to permit estimation of critical particle size in float/sink separations. In laboratory studies this quarter, aliquots of Upper Freeport coal were prepared and subjected to laboratory float/sink separations to investigate the relative effectiveness of static and centrifugal techniques for fine and ultrafine coal. This series will verify results of earlier work and provide a basis for comparing the effects which may result from further modifications to the separation techniques resulting from insights gained in the basic phenomena governing float/sink processes. 15 refs., 6 figs., 1 tab.

  9. Mechanisms governing fine particulate emissions from coal flames

    SciTech Connect

    Clark, W.D.; Chen, S.L.; Kramlich, J.C.; Newton, G.H.; Ruth, L.A. ); Samuelsen, G.S. )

    1988-04-01

    Efforts in this period focused on refining the plans for engineering analysis and fundamental experiments based on the results of a literature review, and modifying the Malvern laser diffraction particle sizer to operate at particle sizes down to 0.5 microns. The engineering analysis plan is to concentrate on development of new models and adaptation of existing models for fine particulate formation by three categories of mechanisms: particle breakup/ash coalescence; direct passage, fragmentation, or agglomeration of extraneous mineral matter; and bubble formation/breakup. The plan for fundamental experiments is to develop a fast, online, optical particle sizing technique which will span the 0.5 to 10 micron size range of interest; to perform global experiments to identify the important parameters affecting fine particle formation; and to perform mechanistic experiments to test specific hypotheses about the mechanisms which control fine particle formation in coal combustion.

  10. DEVELOPMENT OF A NOVEL FINE COAL CLEANING SYSTEM

    SciTech Connect

    Manoj K. Mohanty

    2005-06-01

    The goal of the proposed project was to develop a novel fine coal separator having the ability to clean 1 mm x 0 size coal in a single processing unit. The novel fine coal separator, named as EG(Enhanced Gravity) Float Cell, utilizes a centrifugal field to clean 1 mm x 250 micron size coal, whereas a flotation environment to clean minus 250 micron coal size fraction. Unlike a conventional enhanced gravity concentrator, which rotates to produce a centrifugal field requiring more energy, the EG Float Cell is fed with a tangential feed slurry to generate an enhanced gravity field without any rotating part. A prototype EG Float Cell unit having a maximum diameter of 60 cm (24 inch) was fabricated during the first-half of the project period followed by a series of exploratory tests to make suitable design modification. Test data indicated that there was a significant concentration of coarse heavy materials in the coarse tailings discharge of the EG Float Cell. The increase in weight (%) of 1 mm x 250 micron (16 x 60 mesh) size fraction from 48.9% in the feed to 72.2% in the coarse tailings discharge and the corresponding increase in the ash content from 56.9% to 87.0% is indicative of the effectiveness of the enhanced gravity section of the EG Float Cell. However, the performance of the flotation section needs to be improved. Some of the possible design modifications may include more effective air sparging system for the flotation section to produce finer bubbles and a better wash water distributor.

  11. Dewatering/reconstitution of fine clean coal slurry

    SciTech Connect

    Sung, D.J.; Shao, X.; Parekh, B.K.

    1998-07-01

    This paper describes an innovative approach for in-situ dewatering/hardening of fine clean coal slurry. The technique uses various fibrous waste materials added to coal slurry before dewatering process to obtain a dewatered product with lower cake moisture as well as sufficient strength to facilitate its handling. The study was conducted on both vacuum and pressure bench scale apparatus for dewatering and reconstitution of fine clean coal slurry. The fibrous waste materials investigated included plastic, newspaper, carpet mixed office waste, raw paper and wood fibers. The effects of several surfactants and flocculants on final moisture content of the filter cakes were also determined. The results showed that using the vacuum filter, addition of 10 Kg/ton of mixed office waste fibers decreased the filter cake moisture from 41.3 to 34.8% by weight, a 16% moisture reduction over the baseline data. The addition of fibers showed moisture reduction as well as large improvement in solids loading as much as 2 fold over those observed in the absence of fibers. For the pressure filtration, the addition of plastic fibers provided a filter cake containing 21.4% moisture which is about 2.1% lower than that of the untreated filter cake. The average final cake moisture reduction of 1.5% was achieved for the test fibers using the pressure filter. It was also found that fiber addition in pressure filtration led to shorter cake formation time thus increasing the filtration rate of the coal slurry. The hardening properties of the dried filter cakes with fibers improved significantly such that the cake compression strength improved from 0 to 4.5 Kg/cm{sup 2}, impact resistance from 0 to 4, abrasion resistance from 0 to 70%, and dust reduction efficiency from 0 to 75%.

  12. Dewatering/reconstitution of fine clean coal slurry

    SciTech Connect

    Sung, D.J.; Shao, X.; Parekh, B.K.

    1998-04-01

    This paper describes an innovative approach for in-situ dewatering/hardening of fine clean coal slurry. The technique uses various fibrous waste materials added to coal slurry before dewatering process to obtain a dewatered product with lower cake moisture as well as sufficient strength to facilitate its handling. The study was conducted on both vacuum and pressure bench scale apparatus for dewatering and reconstitution of fine clean coal slurry. The fibrous waste materials investigated included plastic, newspaper, carpet, mixed office waste, raw paper and wood fibers. The effects of several surfactants and flocculants; on final moisture content of the filter cakes were also determined. The results showed that using the vacuum filter, addition of 10 Kg/ton of mixed office waste fibers decreased the filter cake moisture from 41.3 to 34.8 percent by weight, a 16 percent moisture reduction over the baseline data. The addition of fibers showed moisture reduction as well as large improvement in solids loading as much as 2 fold over those observed in the absence of fibers. For the pressure filtration, the addition of plastic fibers provided a filter cake containing 21.4 percent moisture which is about 2.1 percent lower than that of the untreated filter cake. The average final cake moisture reduction of 1.5 percent was achieved for the tested fibers using the pressure filter. It was also found that fiber addition in pressure filtration led to shorter cake formation time thus increasing the filtration rate of the coal slurry. The hardening properties of the dried filter cakes with fibers improved significantly such that the cake compression strength improved from 0 to 4.5 Kg/cm{sup 2}, impact resistance from 0 to 4, abrasion resistance from 0 to 70 percent, and dust reduction efficiency from 0 to 75 percent.

  13. A parametric study of dewatering of fine coal

    SciTech Connect

    Sung, D.J.; Lee, K.J.; Parekh, B.K.

    1996-12-31

    A statistical design of parametric study of pressure filtration for fine coal dewatering is presented. The effects of five major process parameters of the dewatering, i.e. applied pressure, filtration time, cake thickness, solids concentration and slurry pH, on cake moisture reduction and air consumption were investigated. The study was conducted starting with two level factorial experiments to identify the most significant parameters in the filtration process, and concluding with response surface methodologies to establish an optimum operating condition for the dewatering of fine coal with these significant variables. An operating process condition for the dewatering that provided satisfactory performance was determined to be an applied pressure of 93 psi with a cake thickness of 2.5 cm and a filtration time of 4.8 minutes for this specific laboratory filtration system. At the optimum process condition the filter cake containing about 22 percent moisture by weight was obtained and the air was consumed by 4.1 m{sup 3}/(m{sup 2} min.kg). 6 refs., 4 figs., 2 tabs.

  14. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  15. Development of an Ultra-fine Coal Dewatering Technology and an Integrated Flotation-Dewatering System for Coal Preparation Plants

    SciTech Connect

    Wu Zhang; David Yang; Amar Amarnath; Iftikhar Huq; Scott O'Brien; Jim Williams

    2006-12-22

    The project proposal was approved for only the phase I period. The goal for this Phase I project was to develop an industrial model that can perform continuous and efficient dewatering of fine coal slurries of the previous flotation process to fine coal cake of {approx}15% water content from 50-70%. The feasibility of this model should be demonstrated experimentally using a lab scale setup. The Phase I project was originally for one year, from May 2005 to May 2006. With DOE approval, the project was extended to Dec. 2006 without additional cost from DOE to accomplish the work. Water has been used in mining for a number of purposes such as a carrier, washing liquid, dust-catching media, fire-retardation media, temperature-control media, and solvent. When coal is cleaned in wet-processing circuits, waste streams containing water, fine coal, and noncombustible particles (ash-forming minerals) are produced. In many coal preparation plants, the fine waste stream is fed into a series of selection processes where fine coal particles are recovered from the mixture to form diluted coal fine slurries. A dewatering process is then needed to reduce the water content to about 15%-20% so that the product is marketable. However, in the dewatering process currently used in coal preparation plants, coal fines smaller than 45 micrometers are lost, and in many other plants, coal fines up to 100 micrometers are also wasted. These not-recovered coal fines are mixed with water and mineral particles of the similar particle size range and discharged to impoundment. The wasted water from coal preparation plants containing unrecoverable coal fine and mineral particles are called tailings. With time the amount of wastewater accumulates occupying vast land space while it appears as threat to the environment. This project developed a special extruder and demonstrated its application in solid-liquid separation of coal slurry, tailings containing coal fines mostly less than 50 micron. The

  16. Test of a new machine to compact coal, coal fines and solid wastes

    SciTech Connect

    Lin, Y.; Liu, H.; Wen, G.; Burkett, B.; Li, Z.

    1998-07-01

    A new machine has been designed, constructed and tested for compacting coal, coal fines and various solids wastes into 5.4-inch-diameter cylinders (logs) for enhanced handling/transportation. The machine is basically a hydraulic press having the following major components: (1) a cylindrical mold (die) in which the logs are compacted; (2) an upper piston and a lower piston in the mold to apply pressure to the material for compaction between the pistons; (3) the structural frame that holds the mold and the pistons; (4) two hydraulic cylinders--one driving the upper piston and the other driving the lower piston; (5) the hydraulic systems including the oil reservoir, high-pressure oil pumps and the connecting hoses to send the pressurized oil to the upper and lower cylinders; (6) a programmable-logic-controller (PLC) and a computer for monitoring and controlling the hydraulic system including the cylinders. The auxiliary equipment includes a coal feed system (the system that feeds coal into the mold) and a coal log removal system (a system that removes the coal logs exiting from the mold and drops the logs on a conveyor belt).

  17. Test of a new machine to compact coal, coal fines and solid wastes

    SciTech Connect

    Lin, Yuyi; Liu, H.; Wen, Gouping

    1998-04-01

    A new machine has been designed, constructed and tested for compacting coal, coal fines and various solid wastes into 5.4-inch-diameter cylinders (logs) for enhanced handling/transportation. The machine is basically a hydraulic press having the following major components: (1) a cylindrical mold (die) in which the logs are compacted; (2) an upper piston and a lower piston in the mold to apply pressure to the material for compaction between the pistons; (3) the structural frame that holds the mold and the pistons; (4) two hydraulic cylinders--one driving the upper piston and the other driving the lower piston; (5) the hydraulic systems including the oil reservoir, high-pressure oil pumps and the connecting hoses to send the pressurized oil to the upper and lower cylinders; and (6) a programmable-logic-controller (PLC) and a computer for monitoring and controlling the hydraulic system including the cylinders. A photograph of the machine. The auxiliary equipment includes a coal feed system (the system that feeds coal into the mold) and a coal log removal system (a system that removes the coal logs exiting from the mold and drops the logs on a conveyer belt).

  18. Surface electrochemical control for fine coal and pyrite separation

    SciTech Connect

    Hu, Weibai; Zhu, Ximeng; Bodily, D.M.; Wadsworth, M.E.

    1990-01-01

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  19. ULTRASONICALLY-ENHANCED DENSE-MEDIUM CYCLONING FOR FINE COAL AND COAL REFUSE IMPOUNDMENT MATERIALS

    SciTech Connect

    Dr. Mark S. Klima; Dr. Barbara J. Arnold

    2001-08-01

    The Pennsylvania State University, its project team (Typlex, Inc., DAGER, Inc., and PrepTech, Inc.), and advisory committee members have demonstrated the application of ultrasonic energy during dense-medium cyclining and subsequent recovery of fine coal and coal refuse impoundment materials. The results will help to extend the range of conventional dense-medium cyclining to sizes now typically cleaned in relatively inefficient water-only cyclone and spiral concentrators circuits. This technology also provides a potential approach to produce ultra-clean material as would be used for feedstocks for premium carbon products. This report describes Phase I of the project, which involved laboratory testing of dense-medium cyclining and subsequent medium recovery, with and without ultrasonic treatment, along with fundamental dispersion testing. Dense-medium cycloning was conducted with a 76.2-mm (3-in.) diameter cyclone under various conditions including magnetite grade, medium relative density, inlet pressure, cyclone geometry, and feed coal. Dense-medium recovery testing was carried out with a 305-mm (12-in.) diameter x 152-mm (6-in.) wide wet-drum magnetic separator using the cyclone clean coal and refuse products as the feed material. Fundamental testing of dispersion/reagglomeration phenomena was conducted with coal/clay mixtures. In almost all cases, the dense-medium cyclone was capable of achieving separations down to approximately 0.037 mm. Ultrasonic treatment had a slight effect on reducing the ash content of the clean coal. It was also found that ultrasonic treatment improved the purity of the magnetic fraction during wet-drum magnetic separation. The treatment was particularly beneficial for the cyclone overflow material. The fundamental testing indicated that agitation after ultrasonic treatment is necessary to disperse fine particles and to prevent agglomeration.

  20. Surface electrochemical control for fine coal and pyrite separation

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Li, Jun; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

    1991-01-01

    The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report contains three sections, Transpassive Oxidation of Pyrite,'' Flotation and Electrochemical Pretreatment,'' and Flotation Kinetics of Coal and Coal Pyrite.''

  1. Silicone glycol collectors in the beneficiation of fine coal by froth flotation

    SciTech Connect

    Owen, M.J.

    1985-07-02

    A froth flotation process for the beneficiation of fine coal is disclosed which employs as a collector a water-dispersible polyorganosiloxane or a mixture of water-dispersible polyorganosiloxanes which contain organic radicals selected from the group consisting of polyethylene oxide and polypropylene oxide radicals. The process of this invention is especially useful for the beneficiation of difficult-to-float fine coals.

  2. Initial testing of a dynamic column for fine coal flotation

    SciTech Connect

    Lai, R.W.; Patton, R.A.; He, D.X.; Joyce, T.; Chiang, S.H.

    1995-12-31

    This paper describes the design and initial performance of a dynamic column for fine coal column flotation. A dynamic column is a modified conventional column with the insertion of a series of draft tubes that provide individual mixing stages. The mixing is beneficial in generating small and uniform bubbles over a wide range of frother dosages. It is also beneficial in the control of flotation where the fluctuation of froth volume should be minimized. In the modified design, a vortex-inducing plate is attached to the top of each draft tube to create an artificial vortex. In theory the vortex action is desirable for collecting the light clean coal froth within the inner mixing zone, and for passing it upward to the next draft tube stage. The mineral laden slurry, particularly the pyrite, is accelerated outside the vortex zone by centrifugal force to reach the wall where it is carried downward to the bottom of the column. The draft tubes are arranged in a series to accomplish multistage cleaning. The experimental results showed that this dynamic column has the potential advantage of higher throughput and better product recovery as well as improved product quality.

  3. AN ADVANCED CONTROL SYSTEM FOR FINE COAL FLOTATION

    SciTech Connect

    G.H. Luttrell; G.T. Adel

    1999-01-11

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of tailings ash content. Then, based on an on-line estimate of incremental ash, the pulp level is adjusted using a model-based control algorithm to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the eleventh quarter of this project, Task 7 (Operation and Testing) was nearly completed through the efforts of J.A. Herbst and Associates, Virginia Tech, and Pittston Coal Company. As a result of this work, a model-based control system has now been installed which can predict incremental ash based on tailings ash content and general plant data, and adjust pulp level accordingly to maintain a target incremental ash. The system has gone through a shake-down period, training has been carried out for plant operators, and the bulk of the control logic testing has been completed with the results of these tests awaiting analysis under Task 8 (System Evaluation). The flotation model has been shown to predict incremental ash quite successfully, implying that this approach may provide the basis for a useful ''soft sensor'' for on-line incremental ash analysis.

  4. AN ADVANCED CONTROL SYSTEM FOR FINE COAL FLOTATION

    SciTech Connect

    1998-10-25

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of tailings ash content. Then, based on an on-line estimate of incremental ash, the pulp level is adjusted using a model-based control algorithm to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the tenth quarter of this project, Task 6 (Equipment Procurement and Installation) was completed through the efforts of J.A. Herbst and Associates, Virginia Tech, Pittston Coal Company, and FGR Automation. As a result of this work, a model-based control system is now in place which can predict incremental ash based on tailings ash content and general plant data, and adjust pulp level accordingly to maintain a target incremental ash. Testing of this control system is expected to be carried out during the next quarter, and the results of this testing will be reported in the Eleventh Quarterly report. In addition, calibration of the video-based ash analyzer was continued and an extensive set of calibration data were obtained showing that the plant is running remarkably well under manual control. This may be a result of increased attention being paid to froth flotation as a result of this project.

  5. Effect of surfactant washing on enhanced dewatering of fine coal. [Microstructure and porosity of coal filter cakes

    SciTech Connect

    Binkley, T.O.

    1985-01-01

    The final moisture content of fine coal filter cakes in coal preparation plants is determined by the filtration and dewatering process. Washing the coal filter cake with a surfactant solution is a potentially economical technique to reduce the final moisture in a fine coal filter cake. The microscopic structure of the porous coal filter cake determines the relative permeability, porosity and final moisture content of the coal filter cake. An experimental study of washing fine coal filter cakes formed from coal-water slurries was conducted. The effect of surfactants on the structure of fine coal filter cakes and the final moisture of these filter cakes was investigated. The filter cake structure was determined using the Cahn and Fullman section chord method. This micrographic technique of quantitative stereology utilized an optical microscope and an image analyzer to measure particle and pore sizes. The washing phenomena using Triton X-114 and Aerosol-OT was investigated to determine the ability of surfactants to enhance the dewatering of fine coal. A significant reduction in final moisture content was achieved by washing the filter cake with a 100 ppM Aerosol-OT solution. While Triton X-114 can also produce a significant reduction in the final moisture content in a filter cake, the amount of surfactant adsorbed from the wash liquor onto the coal in the filter cake was, however, more than Aerosol-OT. Wash ratios of ten gave optimum results for both types of surfactants. The effects of washing on particle and pore size distributions in the coal filter cake were analyzed by micrographic measurement. The mean size of the particles and pores was used to correlate the washing results. Comparisons were made between double distilled water filter cakes and double distilled water filter cakes washed with either double distilled water or surfactant solutions. Experimental results are discussed. 25 refs., 68 figs., 32 tabs.

  6. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  7. Coal pond fines cleaning with classifying cyclones, spirals, and column flotation

    SciTech Connect

    Carson, W.R.; Arnold, B.J.; Raleigh, C.E. Jr.; Parekh, B.K.

    1997-07-01

    Large reserves of coal pond fines arc found in the Illinois Basin--over 40 million tons in Western Kentucky, over 65 million tons in Southern Illinois, and over 35 million tons in Southern Indiana. If these fines are used to produce coal-water slurry (CWS), fuel costs, NO{sub x} emissions, and pond closure costs can be reduced. Coal fines from this region that are used to produce CWS for co-fire or re-burn may require processing, however, to attain proper particle size distribution and fuel quality. To evaluate the effectiveness of using coal cleaning technologies to control these CWS quality parameters, a simple flowsheet for recovering and processing coal pond fines was designed and tested. Coal fines processing consisted of using classifying cyclones to size at nominal minus 200 mesh, cleaning the classifying cyclone underflow using spirals, and cleaning the overflow using column froth flotation. Ash content of the dean coal from the spiral was reduced to about 10 percent, winch is satisfactory to use for CWS co-firing in a cyclone-fired boiler. The clean coal from column flotation may be used for re-burn in a cydone-fired boiler or as co-fire fuel in a wall-fired or tangentially-fired boiler Heating value recovery during laboratory scale, pilot-scale, and commercial-scale coal cleaning testing was about 80 percent.

  8. Surface electrochemical control for the fine coal and pyrite separation

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Zhu, Ximeng; Li, Jun; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

    1992-01-01

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  9. Surface electrochemical control for fine coal and pyrite separation

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Bodily, D.M.; Wadsworth, M.E.

    1990-01-01

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  10. Surface electrochemical control for the fine coal and pyrite separation

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Wadsworth, M.E.

    1989-01-01

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  11. Surface electrochemical control for fine coal and pyrite separation

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Li, Jun; Riley, A.; Turcotte, S.B.; Benner, R.E.; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tinghe; Wadsworth, M.E.

    1991-01-01

    The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report covers a Raman spectroscopy of species produced electrochemically on pyrite surfaces.

  12. Recovery of ultra fine bituminous coal from screen-bowl centrifuge effluent: A possible feedstock for coal-water slurry fuels?

    SciTech Connect

    Morrison, J.L.; Miller, B.G.; Battista, J.J.

    1998-04-01

    Coal fines have historically been viewed as a size fraction which are difficult to handle and expensive to clean and dewater. Consequently, many coal suppliers in the past have chosen to discard their coal fines in slurry impoundments rather than beneficiating them. These disposal costs are then passed onto the end user. Today, with the advent of advanced fine coal cleaning technologies, more stringent environmental policies, and increased pressure by coal-fired utilities to reduce their operating costs, the industry is taking a more progressive look at fine coal recovery options. This paper discusses a fine coal recovery project which is currently being conducted at the Homer City Coal Cleaning Plant (HCCCP) located in western Pennsylvania. The HCCCP utilizes heavy media cyclone, spiral, and conventional froth flotation circuits to clean approximately 4.3 million tons of low to medium volatile bituminous coal annually for the adjacent 1,884 net MW{sub e} Homer City Generating Station. The project focuses on recovering minus 325 mesh coal fines from the effluent of screen-bowl centrifuges. The HCCCP screen-bowl effluent contains approximately 3 to 5 wt.% of suspended coal fines. Approximately 100,000 tons of coal fines are estimated to be lost per year. These coal fines represent a Btu loss, require flocculent prior to the static thickeners and belt presses, contribute excess moisture to the plant refuse which leads to handling and compaction problems during refuse disposal, and contribute to the premature filling of the refuse site.

  13. Recovery of ultra fine bituminous coal from screen-bowl centrifuge effluent: A possible feedstock for coal-water slurry fuels?

    SciTech Connect

    Morrison, J.L.; Miller, B.G.; Battista, J.J.

    1998-07-01

    Coal fines have historically been viewed as a size fraction which are difficult to handle and expensive to clean and dewater. Consequently, many coal suppliers in the past have chosen to discard their coal fines in slurry impoundments rather than beneficiating them. These disposal costs are then passed onto the end user. Today, with the advent of advanced fine coal cleaning technologies, more stringent environmental policies, and increased pressure by coal-fired utilities to reduce their operating costs, the industry is taking a more progressive look at fine coal recovery options. This paper discusses a fine coal recovery project which is currently being conducted at the Homer City Coal Cleaning Plant (HCCCP) located in western Pennsylvania. The HCCCP utilizes heavy media cyclone, spiral, and conventional froth flotation circuits to clean approximately 4.3 million tons of low to medium volatile bituminous coal annually for the adjacent 1,884 net MW{sub e} Homer City Generating Station. The project focuses on recovering minus 325 mesh coal fines from the effluent of screen-bowl centrifuges. The HCCCP screen-bowl effluent contains approximately 3 to 5 wt.% of suspended coal fines. Approximately 100,000 tons of coal fines are estimated to be lost per year. These coal fines represent a Btu loss, require flocculant prior to the static thickeners and belt presses, contribute excess moisture to the plant refuse which leads to handling and compaction problems during refuse disposal, and contribute to the premature filling of the refuse site.

  14. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    B.K. PAREKH; D. TAO; J.G. GROPPO

    1998-02-03

    The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean-coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high-sulfur and low-sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals.

  15. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  16. Gas generator for fine-grained coal fuels

    SciTech Connect

    Waldhofer, R.

    1981-10-20

    A gas generator is described which uses fine-grained coal and includes a steam boiler, a combustion boiler and a stack leading from the combustion chamber to the steam boiler. The steam boiler is provided with a slanting bottom portion for the discharge of fly ash and slag. The stack from the combustion chamber to the boiler is composed of a gas outlet pipe attached to the combustion chamber and a gas inlet pipe leading to the boiler. The gas outlet and gas inlet pipes are connected by attaching means. The gas inlet pipe has a double wall of which the inner wall with its top extends freely into the slanting bottom portion of the boiler and thus is adapted for axial heat expansion. The outer wall is provided with a heat expansion compensator and is connected with its top end to the said slanting bottom of the boiler and with its bottom end to the connecting means between the gas inlet and gas outlet pipes. The inner wall of the gas inlet pipe may be in the form of a jacket for holding a cooling water.

  17. Desorption kinetics of polycylic aromatic hydrocarbons in coal fines and coal contaminated sediments

    SciTech Connect

    Shorten, C.V.

    1989-01-01

    Batch with fluid replacement (BFR) and time resolved leaching (TRL) methods were developed to determine the desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in coal fines and coal contaminated sediments using various organic solvent/water mixtures. The two techniques were relatively comparable, with a given solvent, solid phase, and experimental time scale. TRL is the method of choice for short term (one day or less) experiments while BFR is better suited for long term desorption studies. Both phenanthrene and chrysene desorbed from coal contaminated sediments following first order kinetics. Predicted equilibrium concentrations ((C){sub eq}) and desorption rate constants (k{sub d}) were estimated using both one and two stage first order kinetic models. Acetone/water solvent mixtures induced desorption of greater amounts of phenanthrene than did more highly polar methanol/water mixtures, and desorption rate coefficients were higher in the acetone mixtures than they were in the methanol mixtures. As predicted by cosolvent theory and microscopic equilibrium, k{sub d} values increased (slightly) with increasing mole fraction cosolvent and (C){sub eq} values also increased (significantly) with increasing mole fraction cosolvent. Experimental design and period of observation of the desorption process appeared to be important in the consideration of observed desorption constants. Solids concentration in the BFR reactors was varied from 1000 to 100,000 mg/l. Total mas of both compounds released to the liquid phase increased significantly with increasing suspended solids concentrations, but relationship between rate constants and solids concentration were more complex.

  18. Improvement of storage, handling, and transportability of fine coal. Final report

    SciTech Connect

    Maxwell, R.C. Jr.; Jamison, P.R.

    1996-03-01

    The Mulled Coal process is a technology which has evolved from a line of investigations which began in the 1970`s. There was a major breakthrough in 1990, and since then, with significant support from DOE-PETC, the technology has progressed from the conceptual stage to a proven laboratory process. It is a simple process which involves the addition of a low cost specifically formulated reagent to wet fine coal by mixing the two in a pug mill. Although the converted material (Mulled Coal) retains some of its original surface moisture, it handles, transports, and stores like dry coal. But, unlike thermally dried fine coal Mulled Coal is not dusty, it will not rewet, and it causes no fugitive dust problems. This project was designed to advance the technology from the status of a process which works well in the laboratory to the status of a technology which is fully ready for commercialization. Project objectives were to: 1. Prove the concept that the technology can be used to produce Mulled Coal of a consistent quality, on a continuous basis, at a convincing rate of production, and at a major preparation plant which produces fine clean coal on a commercial basis. 2. Prove the concept that Mulled Coal, either as a blend with coarser clean coal or as a stand-alone fuel will successfully pass through a representative cross section of conventional coal storage, handling and transportation environments without causing any of the problems normally associated with wet fine coal. 3 Test the design and reliability of Mulled Coal circuit equipment and controls. 4. Test the circuit over a wide range of operating conditions. 5. Project scale-up designs for major equipment components and control circuits. 6. Forecast capital and operating costs for commercial circuits ranging from 25 TPH to 75 TPH. This report describes the work, the test results, and conclusions at each step along the way.

  19. Surface electrochemical control for fine coal and pyrite separation

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Riley, A.; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tinghe; Wadsworth, M.E.

    1991-01-01

    This technical progress report, prepared in accordance with the reporting requirements of DOE Project No. DE-AC22-89PC89758, covers the work performed from April 1, 1991 to June 30, 1991. The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. 6 refs., 20 figs.

  20. Inclined fluidized bed system for drying fine coal

    DOEpatents

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  1. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    SciTech Connect

    E. James Davis

    1999-12-18

    The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.

  2. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1992-01-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO[sub 2] per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO[sub 2] emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  3. An Advanced Control System for Fine Coal Floatation

    SciTech Connect

    Luttrell, G H; Adel, G T

    1998-06-01

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as collector dosage, frother dosage, and pulp level are adjusted using model-based control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the eighth quarter of this project, the analysis of data collected during Task 2 (Sampling and Data Analysis) was completed, and significant progress was made on Task 3 (Model Building and Computer Simulation). Previously, a plant sampling campaign had been conducted at Pittston's Moss No. 3 preparation plant to provide data for the development of a mathematical process model and a model-based control system. During this campaign, a one-half factorial design experiment, blocked into low and high feed rates, was conducted to investigate the effects of collector, frother, and pulp level on model parameters. In addition, samples were collected during the transient period following each change in the manipulated variables to provide data for confirmation of the dynamic process simulator. A residence time distribution (RTD) test was also conducted to estimate the mean residence time. This is a critical piece of information since no feed flowrate measurement is available, and the mean residence time can be used to estimate the feed flowrate. Feed samples were taken at timed intervals and floated in a laboratory flotation cell to investigate the magnitude of feed property disturbances and their duration.

  4. An Advanced Control System For Fine Coal Flotation

    SciTech Connect

    G. H. Luttrell; G. T. Adel

    1998-08-25

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as collector dosage, frother dosage, and pulp level are adjusted using model-based control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the ninth quarter of this project, Task 3 (Model Building and Computer Simulation) and Task 4 (Sensor Testing) were nearly completed, and Task 6 (Equipment Procurement and Installation) was initiated. Previously, data collected from the plant sampling campaign (Task 2) were used to construct a population balance model to describe the steady-state and dynamic behavior of the flotation circuit. The details of this model were presented in the Eighth Quarterly Technical Progress Report. During the past quarter, a flotation circuit simulator was designed and used to evaluate control strategies. As a result of this work, a model-based control strategy has been conceived which will allow manipulated variables to be adjusted in response to disturbances to achieve a target incremental ash value in the last cell of the bank. This will, in effect, maximize yield at an acceptable product quality. During this same period, a video-based ash analyzer was installed on the flotation tailings stream at the Moss No. 3 preparation plant. A preliminary calibration curve was established, and data are continuing to be collected in order to improve the calibration of the analyzer.

  5. XAFS SPECTROSCOPY ANALYSIS OF SELECTED HAP ELEMENTS IN FINE PM DERIVED FROM COAL COMBUSTION

    EPA Science Inventory

    X-ray absorption fine structure (XAFS) spectroscopy has been used to investigate the valence states and molecular structures of sulfur (S), chromium (Cr), arsenic (As), and zinc (Zn) in fine particulate matter (PM) separated from coal flyash produced in a realistic combustion sys...

  6. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect

    Karekh, B K; Tao, D; Groppo, J G

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 - March 31, 1998.

  7. Advanced physical fine coal cleaning spherical agglomeration. Final report

    SciTech Connect

    Not Available

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  8. Dewatering studies of fine clean coal. [Quarterly] technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Parekh, B.K.

    1992-08-01

    Physical cleaning of ultra-fine coal using an advanced froth flotation techniques provides a low ash product, however, due to high surface area of particles the amount of water associated with clean coal is high. Economic removal of water from the froth will be important for commercial applicability of advanced froth flotation processes. The main objective of the present research program is to study and understand the dewatering characteristics of ultra-fine clean coal and to develop process parameters to effectively reduce the moisture to less than 20 percent in the clean coal product. The research approach under investigation utilizes synergistic effects of metal ions and surfactant to lower the moisture of clean coal using a conventional vacuum dewatering technique. The studies have identified a combination of metal ion and surfactant found to be effective in providing a 22 percent moisture filter cake.

  9. The challenge of coal preparation

    SciTech Connect

    Fonseca, A.G.

    1995-10-01

    About 45--50% of the coal mined in the US passes through coal preparation plants; east of the Mississippi River this number increases to about 75-80%. Although the cost for coal preparation is worthwhile to some, the coal industry faces the challenges of continuing downward pressure on the price of coal and the impact of new environmental regulations. Coal preparation, as commercially practiced today, is an effective process achieving 75--80% ash reduction, 15--80% trace element reduction, and 85-90% Btu recovery; it is less effective for pyrite reduction (35--70%), and on-line operating time (40--60%), and suffers from obsolete control systems. Methods will be discussed for reducing costs of coal preparation and improving the performance of coal preparation plants. comments are included on equipment selection, especially for {minus}28 mesh coal, and prep plant operation and control practices. Btu recovery, ash and pyrite reduction, fines processing including dewatering and slurry fuel use options are emphasized. Trace element removal and expert control systems for maximization of prep plant operation also will be highlighted.

  10. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Jiang, Chengliang; Raichur, A.M.

    1992-07-14

    The objective of this project is to conduct extensive studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The flotation characteristics of coal-pyrites under various conditions was studied and compared with ore-pyrite and coal to determine the causes of pyrite rejection difficulties in coal flotation. Both the native and induced floatabilities of pyrites were investigated. It was found that both coal- and ore-pyrites, ff prepared by dry-grinding, show little or no floatability in the absence of any chemical reagents. After ultrasonic pretreatment, ore-pyrite floats effectively in the acidic to neutral pH range. Kentucky No. 9 coal-pyrite (KYPY) shows significant flotation in the pH range 7--10. With ethyl xanthate as collector, ore-pyrite floats well up to pH = 10; while coal-pyrite reveals no flotation above pH = 6. For the first time, the effect of coal collector on the floatability of coal-pyrite has been studied. It was shown that in the presence of fuel oil--a widely used collector for promoting coal flotation, coal-pyrite, particularly for the fine sizes, shows good flotation below pH = 11, whereas ore-pyrite has no or little floatability. These studies demonstrate that one of the main causes of the coal-pyrite flotation in coal separation is the oil-induced floatability due to adsorption/attachment of oil droplets on the coal-pyrite surfaces, the native'' or self-induced'' floatability of pyrite is no as profound as the oil-induced flotation.

  11. Development of an advanced process for drying fine coal in an inclined fluidized bed

    SciTech Connect

    Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

    1990-02-01

    The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

  12. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-08-28

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

  13. Hydrophobic Dewatering of Fine Coal. Topical report, March 1, 1995-March 31, 1997

    SciTech Connect

    Yoon, R.; Sohn, S.; Luttrell, J.; Phillips, D.

    1997-12-31

    Many advanced fine coal cleaning technologies have been developed in recent years under the auspices of the U.S. Department of Energy. However, they are not as widely deployed in industry as originally anticipated. An important reason for this problem is that the cleaned coal product is difficult to dewater because of the large surface area associated with fine particles. Typically, mechanical dewatering, such as vacuum filtration and centrifugation, can reduce the moisture to 20-35% level, while thermal drying is costly. To address this important industrial problem, Virginia Tech has developed a novel dewatering process, in which water is displaced from the surface of fine particulate materials by liquid butane. Since the process is driven by the hydrophobic interaction between coal and liquid butane, it was referred to as hydrophobic dewatering (HD). A fine coal sample with 21.4 pm median size was subjected to a series of bench-scale HD tests. It was a mid-vol bituminous coal obtained from the Microcel flotation columns operating at the Middle Fork coal preparation plant, Virginia. All of the test results showed that the HD process can reduce the moisture to substantially less than 10%. The process is sensitive to the amount of liquid butane used in the process relative to the solids concentration in the feed stream. Neither the intensity nor the time of agitation is critical for the process. Also, the process does not require long time for phase separation. Under optimal operating conditions, the moisture of the fine coal can be reduced to 1% by weight of coal.

  14. Aggregation and colloidal stability of fine-particle coal suspensions

    SciTech Connect

    Schroeder, P.R.; Rubin, A.J.

    1984-01-01

    The aggregation and colloidal stability of colloidal coal suspensions in the presence of varying concentrations of hydrogen ions, neutral salts, and aluminum sulfate were investigated. Critical concentration and critical pH values for coagulation and stabilization were determined from turbidity changes during settling following aggregation. Two colloidal suspensions of a bituminous coal representing stability extremes due to oxidation were compared. In the absence of other coagulants, vigorous oxidation lowered the isoelectric point of the coal sol from pH 5.1 to pH 1.1 and the pH for stabilization from 7.5 to 2.6. The coagulation of the suspensions followed the Schulze-Hardy rule as hydrophobic sols although the oxidized coal sol was slightly less sensitive to neutral salts. The entire log aluminum sulfate concentration-pH stability limit diagram for the oxidized coal sol was established. The boundaries of settling of the coal in the presence of aluminum sulfate were similar to other hydrophobic sols except for small differences in alkaline solution. Regions of ionic coagulation, rapid coagulation due to enmeshment in aluminum hydroxide precipitate, and restabilization were also observed and delineated.

  15. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    SciTech Connect

    Suardini, P.J.

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  16. The effects of grain size composition on the efficiency of fine-grained coal separation

    SciTech Connect

    Blahova, O.; Rezek, K.; Novacek, J.

    1994-12-31

    One factor that favorably affects the economics of exploitation and preparation of coal is reducing the loss of coal matter in the tailings from washeries. Thus, it is necessary to modify existing technologies for the preparation of coking coal. This study of the effects of grain size composition for run-of-mine coal on the efficiency of coal separation, as well as on the quality of the products, was performed on the following equipment used for fine-grained coal separation: fine coal jigs (0.5 to 10/15 mm); jigs (0.5 to 40 mm); heavy medium cyclones (0.5 to 10 mm); slurry hydrocyclones (0.0 to 0.5 mm); HIRST hydrocyclones (0.0 to 0.5 mm); and spiral concentrators (0.0 to 3.0 mm). The results of the study lead to the following conclusions. (1) It is impossible to attain efficient separation in a wide range of fine grain sizes processed simultaneously in a single piece of equipment. (2) Among the equipment available for separation, one type can be found with the highest efficiency for a given grain size of fine coal. (3) The newly introduced spiral concentrators have attained such an efficiency of separation and are so economical that they could be included with advantage between the jigs and the lotion process. This would favorably affect the output and the efficiency of separation of all the equipment involved in the process. (4) All measures to be taken in the flow sheet of coal preparation plants and designed to increase the efficiency of separation should be documented with data that show the expected economic benefits of any change for both the mine and the preparation plant.

  17. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications

    SciTech Connect

    Smit, Frank J; Schields, Gene L; Jha, Mehesh C; Moro, Nick

    1997-09-26

    The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel™ column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications.

  18. Fine coal cleaning via the micro-mag process

    DOEpatents

    Klima, Mark S.; Maronde, Carl P.; Killmeyer, Richard P.

    1991-01-01

    A method of cleaning particulate coal which is fed with a dense medium slurry as an inlet feed to a cyclone separator. The coal particle size distribution is in the range of from about 37 microns to about 600 microns. The dense medium comprises water and ferromagnetic particles that have a relative density in the range of from about 4.0 to about 7.0. The ferromagnetic particles of the dense medium have particle sizes of less than about 15 microns and at least a majority of the particle sizes are less than about 5 microns. In the cyclone, the particulate coal and dense-medium slurry is separated into a low gravity product stream and a high gravity produce stream wherein the differential in relative density between the two streams is not greater than about 0.2. The low gravity and high gravity streams are treated to recover the ferromagnetic particles therefrom.

  19. Dewatering studies of fine clean coal. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Parekh, B.K.

    1992-12-31

    Physical cleaning of ultra-fine coal using advanced froth flotation technique provides a low ash product; however, the amount of water associated with clean coal is high. Economic removal of water from the froth will be important for commercial applicability of the advanced flotation processes. The main objective of the present research program is to study and understand dewatering characteristics of ultra-fine clean coal and to develop process parameters to effectively reduce the moisture to less than 20 percent in the clean coal product. The research approach utilized synergistic effect of metal ions and surfactant addition to lower the moisture of clean coal using the conventional vacuum dewatering technique. The studies have identified a combinations of metal ions and surfactants in providing a 22 percent moisture filter cake. Surface chemical study indicated a direct correlation between the point-of-zero charge (PZC) of metal ion/fine coal system and lowering of moisture in the filter cake. Adsorption of either metal ions or surfactants alone did not provide a significant reduction of moisture in the filter cake. However, a combination of the two provided a filter cake containing about 22 percent moisture. Filtration tests conducted using a laboratory vacuum drum filter indicated that the results obtained in batch filtration could be reproduced on a continuous filtration unit. FT-IR studies indicated that anionic surfactant and metal ions form complex species which adsorbs on the fine coal and results in improved moisture reduction during filtration. Recommendations are offered for testing this novel dewatering process on a pilot scale at a coal preparation plant in Illinois.

  20. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report number 8, October 1--December 31, 1995

    SciTech Connect

    1996-03-15

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. On the other hand, Mulled Coal does not cause the fugitive and airborne dust problems normally associated with thermally dried coal. The objectives of this project are to demonstrate that: the Mulled Coal process, which has been proved to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality, and at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems.

  1. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1990-01-01

    a study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This document is the eighth quarterly report prepared in accordance with the project reporting requirements covering the period from July 1,1990 to September 30, 1990. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. The data from the basic research on coal surfaces, bench scale testing and proof-of-concept scale testing will be utilized to design a final conceptual flowsheet. The economics of the flowsheet will be determined to enable industry to assess the feasibility of incorporating the advanced fine coal cleaning technology into the production of clean coal for generating electricity. 22 figs., 11 tabs.

  2. Fine particle clay catalysts for coal liquefaction. Final technical report

    SciTech Connect

    Olson, E.S.

    1995-08-01

    In an effort to develop new disposable catalysts for direct coal liquefaction, several types of clay-supported pyrrhotite catalysts were prepared and tested. These included iron-pillared montmorillonite, mixed iron/alumina-pillared montmorillonite, iron-impregnated montmorillonite, and iron oxometallate-impregnated montmorillonite.

  3. A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation

    SciTech Connect

    Jiang, C.

    1993-12-31

    Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

  4. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.

    1995-11-01

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both the ash and sulfur contents of run-of-mine coals. The extent of cleaning depends on the liberation characteristics of the coal, which generally improve with reducing particle size. however, since most of the advanced technologies are wet processes, the clean coal product must be dewatered before it can be transported and burned in conventional boilers. This additional treatment step significantly increases the processing cost and makes the industrial applicability of these advanced technologies much less attractive. In order to avoid problems associated with fine coal dewatering, researchers at the Pittsburgh Energy Technology Center (PETC) developed a novel triboelectrostatic separation (TES) process that can remove mineral matter from dry coal. In this technique, finely pulverized coal is brought into contact with a material (such as copper) having a work function intermediate to that of the carbonaceous material and associated mineral matter. Carbonaceous particles having a relatively low work function become positively charged, while particles of mineral matter having significantly higher work functions become negatively charged. once the particles become selectively charged, a separation can be achieved by passing the particle stream through an electrically charged field. Details related to the triboelectrostatic charging phenomenon have been discussed elsewhere (Inculet, 1984).

  5. Study of microscopic structure of porous media - fine coal filter cakes

    SciTech Connect

    Kakwani, R.M.

    1983-01-01

    The macroscopic properties of the porous media, e.g., permeability, capillary pressure, relative permeability, depend upon the microscopic structure of the porous medium. In the coal preparation plants, the filtration and dewatering rates of the fine coal filter cakes are important in determining the final moisture content. The microscopic structure of the porous coal filter cakes plays an important role in these operations. Moreover, the two phase flow through the porous medium can be explained in detail by considering its pore structure. Hence, the development of a technique for the micro-structural analysis of unconsolidated coal filter cakes is investigated. The technique developed is also applicable to many consolidated porous media like sandstones, rocks, etc. Optical methods were utilized to study the micro-structure of fine coal cakes. The investigation of -32 mesh Pittsburgh seam coal cakes reveals a non-uniform structure at low solid concentration of 0.33 kg coal/kg water. An increase in the solid concentration in the slurry produces a more uniform structure with an increase in the filtration and dewatering rates. It was found that coal filter cakes are incompressible over the range of 28 to 67 kPa applied vacuum. An important aspect of this work was to provide quantitative information about the presence of air bubbles in the coal filter cakes. These air bubbles are evolved from the aerated slurry and they reduce the filtration rates. A linear correlation between the particle and pore size distribution of -32 mesh Pittsburgh coal was found.

  6. Evaluation of hyperbaric filtration for fine coal dewatering. Third quarterly technical progress report, March 1, 1993--May 31, 1993

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1993-09-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. Progress is described.

  7. Hindered-bed classifiers for fine coal cleaning

    SciTech Connect

    Honaker, R.Q.

    1996-12-31

    Recent investigations have found that hindered-bed density separators have the potential to be used to compliment or replace technologies that are currently used to clean nominally 16 x 100 mesh coal. In this study, pilot-scale units of the Floatex and Stokes density separators were evaluated in an in-plant test program and their metallurgical performances compared with those currently achieved by an existing spiral circuit. The Floatex and the Stokes units achieved approximately equal separation performances and obtained metallurgical results that are equal or better than the existing spirals currently used to treat the coal in this study. Over a long-term test program of 16 hours, both hindered-bed separators consistently reduced the ash content from about 30% to about 9% while yielding nearly 70% of the feed to the product and recovering greater than 90% of the combustibles. The probable error value obtained for the Stokes and Floatex was approximately 0.12. However, relatively high gravity cut-points of 1.82 and 1.87 were obtained for the Stokes and Floatex separators, respectively, indicating that their use as the sole cleaning device may be limited to coals that have easy-to-clean characteristics.

  8. Hydrophobic aggregation of fine particles in high muddied coal slurry water.

    PubMed

    Chen, Jun; Min, Fanfei; Liu, Lingyun; Peng, Chenliang; Lu, Fangqin

    2016-01-01

    The hydrophobic aggregation of fine particles in high muddied coal slurry water in the presence of four quaternary ammonium salts of 1231(dodecyl trimethyl ammonium chloride), 1431(tetradecyl trimethyl ammonium chloride), 1631(cetyl trimethyl ammonium chloride) and 1831(octadecyl trimethyl ammonium chloride) was investigated through the measurement of contact angles, zeta potentials, aggregation observation, adsorption and sedimentation. The results show that quaternary ammonium salts can enhance the hydrophobicity and reduce the electronegativity of particle surface, and thus induce a strong hydrophobic aggregation of slurry fine particles which promotes the settlement of coal slurry water. The adsorption of quaternary ammonium salts on slurry particles increases with the increase of alkyl chain length and reagent dosage, and will reach equilibrium when the dosage reaches a certain value. Weak alkaline conditions also can promote quaternary ammonium salts to be adsorbed on the coal slurry fine particles. In addition, reasonable energy input and a chemical environment of weak alkaline solution are conducive to hydrophobic aggregation settlement of high muddied coal slurry water with quaternary ammonium salts. The main mechanism of hydrophobic aggregation of coal slurry particles with quaternary ammonium salts is 'adsorption charge neutralization' and hydrophobic interaction.

  9. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    X.H. Wang; J. Wiseman; D.J. Sung; D. McLean; William Peters; Jim Mullins; John Hugh; G. Evans; Vince Hamilton; Kenneth Robinette; Tim Krim; Michael Fleet

    1999-08-01

    Dewatering of ultra-fine (minus 150 {micro}m) coal slurry to less than 20% moisture is difficult using the conventional dewatering techniques. The main objective of the project was to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions and surfactants in combination for the dewatering of ultra-fine clean-coal slurries using various dewatering techniques on a proof-of-concept (POC) scale of 0.5 to 2 tons per hour. The addition of conventional reagents and the application of coal surface modification technique were evaluated using vacuum filtration, hyperbaric (pressure) filtration, ceramic plate filtration and screen-bowl centrifuge techniques. The laboratory and pilot-scale dewatering studies were conducted using the fine-size, clean-coal slurry produced in the column flotation circuit at the Powell Mountain Coal Company, St. Charles, VA. The pilot-scale studies were conducted at the Mayflower preparation plant in St. Charles, VA. The program consisted of nine tasks, namely, Task 1--Project Work Planning, Task 2--Laboratory Testing, Task 3--Engineering Design, Task 4--Procurement and Fabrication, Task 5--Installation and Shakedown, Task 6--System Operation, Task 7--Process Evaluation, Task 8--Equipment Removal, and Task 9--Reporting.

  10. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1990-01-01

    An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This is being accomplished by utilization the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. 31 figs., 22 tabs.

  11. Production of a pellet fuel from Illinois coal fines. Technical report, September 1--November 30, 1994

    SciTech Connect

    Rapp, D.; Lytle, J.; Berger, R.

    1994-12-31

    The primary goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. Stokers are an attractive market for pellets because pellets are well-suited for this application and because western coal is not a competitor in the stoker market. Compliance stoker fuels come from locations such as Kentucky and West Virginia and the price for fuels from these locations is high relative to the current price of Illinois coal. This market offers the most attractive near-term economic environment for commercialization of pelletization technology. For this effort, the authors will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach. This quarter pellet production work commenced and planning for collection and processing of a preparation plant fines fraction is underway.

  12. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    1998-09-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 pm) clean coal. Economical dewatering of an ultra-fine clean-coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 30, 1997.

  13. Heavy-liquid beneficiation of fine coal. First quarterly report, September 18, 1980-December 31, 1980

    SciTech Connect

    Keller, Jr, Douglas V.; Simmons, Frederick J.

    1980-01-01

    The Heavy Liquid Beneficiation of Fine Coal is a fundamental research program directed towards developing a basic understanding of the rheology of fine coal-heavy liquid slurries, and the application of this understanding to the development of a pilot test facility. The tasks scheduled and accomplished in the first quarter were: the selection and characterization of the coal to be used; the design, construction and testing of a dynamic viscosity cell for solid-liquid slurry systems; the selection and evaluation of candidate organic liquids and the determination whether or not one candidate liquid can be taken as representative of the class of liquids; and the ongoing evaluation of the three-dimensional slurry viscosity matrix as generated by coal size fraction, coal density fraction and slurry volume percent solid. The Canterbury Coal is acceptable for the slurry evaluation phase of this program. Freon-113 can be taken as representative of this class of organic liquid and used in the three-dimensional slurry matrix evaluation. The choice of Freon-113 over Freon-11 is a matter of experimental convenience based on the higher boiling point of Freon-113. The dynamic flow viscosity cell as currently designed is capable of generating accurate viscosity data.

  14. Fine particle clay catalysts for coal liquefaction. Quarterly technical report, May 9, 1991--August 8, 1991

    SciTech Connect

    Olson, E.S.

    1991-12-31

    The efficient production of environmentally acceptable distillate fuels requires catalysts for hydrogenation and cleavage of the coal macromolecules and removal of oxygen, nitrogen, and sulfur heteroatoms. The goal of the proposed research is to develop new catalysts for the direct liquefaction of coal. This type of catalyst consists of fine clay particles that have been treated with reagents which form pillaring structures between the aluminosilicate layers of the clay. The pillars not only hold the layers apart but also constitute the active catalytic sites for hydrogenation of the coal and the solvent used in the liquefaction. The pillaring catalytic sites are composed of pyrrhotite, which has been previously demonstrated to be active for coal liquefaction. The pyrrhotite sites are generated in situ by sulfiding the corresponding oxyiron species. The size of the catalyst will be less than 40 nm in order to promote intimate contact with the coal material. Since the clays and reagents for pillaring and activating the clays are inexpensive, the catalysts can be discarded after use, rather than regenerated by a costly process. The proposed work will evaluate methods for preparing the fine particle iron-pillared clay dispersions and for activating the particles to generate the catalysts. Characterization studies of the pillared clays and activated catalysts will be performed. The effectiveness of the pillared clay dispersion for hydrogenation and coal liquefaction will be determined in several types of testing.

  15. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    SciTech Connect

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F.; Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C.; Hu, W.; Zou, Y.; Chen, W.; Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R.

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  16. Development, testing, and demonstration of an optimal fine coal cleaning circuit

    SciTech Connect

    Mishra, M.; Placha, M.; Bethell, P.

    1995-11-01

    The overall objective of this project is to improve the efficiency of fine coal cleaning. The project will be completed in two phases: bench-scale testing and demonstration of four advanced flotation cells and; in-plant proof-of-concept (POC) pilot plant testing of two flotation cells individually and in two-stage combinations. The goal is to ascertain if a two-stage circuit can result in reduced capital and operating costs while achieving improved separation efficiency. The plant selected for this project, Cyprus Emerald Coal Preparation plant, cleans 1200 tph of raw coal. The plant produces approximately 4 million tonnes of clean coal per year at an average as received energy content of 30.2 MJ/Kg (13,000 Btu/lb).

  17. Combustion characterization of the blend of plant coal and recovered coal fines. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Singh, S.; Scaroni, A.; Miller, B.; Choudhry, V.

    1992-12-31

    The overall objective of this proposed research program was to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples were prepared as 100% plant coal, 90% plant coal/10% fines, 85% plant coal/15% fines, and 80% plant coal /20% fines with a particle size distribution of 70% passing through {minus}200 mesh size. The plant coal and recovered coal fines were obtained from the Randolph Preparation Plant of Peabody Coal Co., Marissa, IL. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace was used mainly to measure the emissions and ash deposition study, while the drop tube furnace was used to determine burning profile, combustion efficiency, etc. The burning profile of the plant coal and the three blends was determined in a thermogravimetric analyzer. Results indicated slower burning of the blends due to low volatile matter and oxidized coal particles. Combustion emissions of these samples were determined in the down-fired combustor, while relative ignition temperatures were determined in the drop tube furnace. Chemical composition of ashes were analyzed to establish a correlation with their respective ash fusion temperatures. Overall study of these samples suggested that the blended samples had combustion properties similar to the original plant coal. In other words, flames were stable under identical firing rates of approximately 200,000 Btu`s/hr and 25% excess air. CO, NO{sub x}, and SO{sub x}, were similar to each other and within the experimental error. Combustion efficiency of 99{sup +}% was achievable. Ash chemical analysis of each sample revealed that slagging and fouling should not be different from each other.

  18. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect

    K. Osseo-Asare; X. Zeng

    2001-06-30

    Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. The partitioning behaviors of hematite in the dextran (Dex)/Triton X-100 (TX100) and polyethylene glycol (PEG)/dextran systems were investigated and the effects of some ionic surfactants on solid partition were studied. In both biphase systems, the particles stayed in the bottom dextran-rich phase under all pH conditions. This behavior is attributable to the fact that the hydrophilic oxide particles prefer the more hydrophilic bottom phase. Also, the strong favorable interaction between dextran and ferric oxide facilitates the dispersion of the solids in the polysaccharide-rich phase. In the Dex/TX100 system, addition of sodium dodecylsulfate (SDS) or potassium oleate had no effect on the solid partition; on the other hand, addition of dodecyltrimethylammonium bromide (DTAB) transferred the particles to the top phase or interface at high pH values. In the PEG/Dex system, the preferred location of hematite remained the bottom phase in the presence of either SDS or DTAB. The effects of anionic surfactants on the partition behavior are attributable to the fact that they are not able to replace the strongly adsorbed polysaccharide layer on the ferric oxide surface. The results with the cationic surfactant are due to electrostatic interaction between the cationic surfactant and the charged surface of the solid particles. The difference in solids partitioning in the two systems is the result of the different distribution of DTAB in these systems. In the Dex/TX100 system, DTAB prefers the top surfactant-rich phase, while it concentrates in the bottom phase in the PEG/dextran system.

  19. Evaluation of hyperbaric filtration for fine coal dewatering. Quarterly technical progress report, 1996

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1996-12-31

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, namely Phase I, model development, Phase II, laboratory studies, Phase III, field testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase 11, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit. Accomplishments to date are reported for the three phases.

  20. Production of vapor grown carbon fiber with coal fines without SO{sub 2} emissions

    SciTech Connect

    Burton, D.; Lake, M.; Alig, R.

    1996-12-31

    Each year millions of tons of low-cost hydrocarbons in the form of coal fines are impounded. One potential application would be utilization in a unique process capable of converting the carbon into a highly graphitic vapor-grown carbon fiber (VGCF). This process currently produces vapor-grown carbon fiber from the vapor phase using natural gas, hydrogen sulfide and iron particles. The iron particles initiate the growth of the carbon fibers while the hydrogen sulfide enhances the yield, allowing the process to be economically feasible. Previous demonstrations involving pulverized coal have proven that coal can be used as an alternative source of carbon and sulfur in the production of VGCF. Furthermore, there is evidence that the sulfur from the coal remains with the carbon fiber catalyst during the reaction and does not exhaust as SO{sub 2} into the atmosphere. It is the object of this research to determine if coal fines pulverized to -325 mesh are also a viable source of carbon and sulfur for VGCF production.

  1. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect

    K. Osseo-Asare; X. Zeng

    2001-06-30

    Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. The partitioning behaviors of silica in the polyethylene glycol (PEG)/dextran (Dex) and dextran/Triton X-100 (TX100) systems have been investigated, and the effects of sodium dodecylsulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) on solid partition have been studied. In both biphase systems, silica particles stayed in the top PEG-rich phase at low pH. With increase in pH, the particles moved from the top phase to the interface, then to the bottom phase. At very high pH, the solids preferred the top phase again. These trends are attributable to variations in the polymer/solid and nonionic surfactant/solid interactions. Addition of ionic surfactants into these two systems introduces a weakly charged environment, since ionic surfactants concentrate into one phase, either the top phase or the bottom phase. Therefore, coulombic forces also play a key role in the partition of silica particles because electrostatic attractive or repulsive forces are produced between the solid surface and the ionic-surfactant-concentrated phase. For the PEG/dextran system in the presence of SDS, SiO{sub 2} preferred the bottom dextran-rich phase above its pH{sub PZC}. However, addition of DTAB moved the oxide particles from the top phase to the interface, and then to the bottom phase, with increase in pH. These different behaviors are attributable to the fact that SDS and DTAB concentrated into the opposite phase of the PEG/dextran system. On the other hand, in the dextran/Triton X-100 system, both ionic surfactants concentrated in the top surfactant-rich phase and formed mixed micelles with TX100. Therefore, addition of the anionic surfactant, SDS, moved the silica particles from top phase to the

  2. Appalachian clean coal technology consortium

    SciTech Connect

    Yoon, R.-H.; Basim, B.; Luttrell, G.H.; Phillips, D.I.; Jiang, D.; Tao, D.; Parekh, B.K.; Meloy, T.

    1997-01-28

    Novel chemicals that can be used for increasing the efficiency of fine coal dewatering was developed at Virginia Tech. During the past quarter, Reagent A was tested on three different coal samples in laboratory vacuum filtration tests. these included flotation products from Middle Fork plant, Elkview Mining Company, and CONSOL, Inc. the tests conducted with the Middle Fork coal sample (100 mesh x 0) showed that cake moisture can be reduced by more than 10% beyond what can be achieved without using dewatering aid. This improvement was achieved at 1 lb/ton of Reagent A and 0.1 inch cake thickness. At 0. 5 inches of cake thickness, this improvement was limited to 8% at the same reagent dosage. the results obtained with the Elkview coal (28 mesh x 0) showed similar advantages in using the novel dewatering aid. Depending on the reagent dosage, cake thickness, drying cycle time and temperature, it was possible to reduce the cake moisture to 12 to 14% rage. In addition to achieving lower cake moisture, the use of Reagent A substantially decreased the cake formation time, indicating that the reagent improves the kinetics of dewatering, The test results obtained with CONSOL coal were not as good as with the other coals tested in the present work, which may be attributed to possible oxidation and/or contamination.

  3. Recovery of coal fines from preparation plant effluents. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect

    Choudhry, V.

    1991-12-31

    The objectives of this project were to test and demonstrate the feasibility of recovering coal fines that are currently disposed of with coal preparation plant effluent streams and producing a fine clean coal product that can be blended with the plant coarse clean coal. This recovery was effected by means of Michigan Technological University`s static tube flotation process, which was successfully demonstrated on a number of raw coals to reject 85% of the pyritic sulfur and recover 90% of the combustible matter. Under this project, the process parameters for the technology were modified for this application in order to recover a low-ash, low-sulfur clean coal that is, at a minimum, compatible with the quality of the clean coal currently produced by the preparation plant.

  4. Strength and consolidation characteristics of fine-coal refuse. Annual report

    SciTech Connect

    Huang, Y.H.; Li, J.; Weeratunga, G.

    1987-04-01

    The study is part of a research project entitled Strength and Consolidation Characteristics of Coal Refuse for Design and Construction of Disposal Facilities supported by the Office of Surface Mining, Department of Interior. Information presented in the report will be used for the design and construction of disposal facilities. Fine coal refuse, which is the waste product washing through a no. 28 (0.589 mm) sieve, can be disposed in two different forms: solid or liquid. To be disposed as a solid, the moisture content of fine refuse must be reduced. The investigation on the undrained shear strength of partially saturated fine refuse proceeded in the same manner as that of the combined refuse, and similar equations and charts were developed. These equations and charts can also be used to estimate the undrained shear strength of consolidated fine refuse when disposed as a slurry. To be disposed as a slurry, the fine refuse must be pumped into a lagoon or behind a dam and let settle.

  5. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    SciTech Connect

    Wayne Hill; Roger Demler

    2004-06-01

    The project's overall objective is to develop a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of the coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the nonspecific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to pulverized

  6. SENSOR FOR INDIVIDUAL BURNER CONTROL OF COAL FIRING RATE, FUEL-AIR RATIO AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill

    2004-02-01

    The project's overall objective is to development a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of the coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the non-specific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to

  7. Immersion calorimetry of fine coal particles and its relation to flotation

    SciTech Connect

    Melkus, T.G.; Chiang, S.H.; Wen, W.W.

    1987-01-01

    A Setaram C-80 heat flux microcalorimeter was used to study the surface and interfacial properties of fine coal particles in water containing flotation agents via heat of immersion measurements. Heat of immersion (..delta..H/sub imm/) is usually a small exothermic quantity and can be used to characterize a solid in terms of its relative hydrophobicity or hydrophilicity. The effects of coal type, surface oxidation, mineral matter content, kerosene concentration, and pH on the wetting characteristics were investigated. Although coal is a heterogeneous mixture of organic and inorganic materials, immersional calorimetry has proven to be quite helpful in measuring surface properties of coal, and the following conclusions can be drawn: The heat of immersion decreased with increasing kerosene concentration, which corresponds to the coal particles increasing hydrophobicity; in varying the pH, the ..delta..H/sub imm/ went through a minimum at a pH value of 6.5 to 7.0, which coincides with the reported optimum pH range for flotation; both oxidation and clay slime coating (addition of kaolin), which are known to make the coal less hydrophobic, increased the ..delta..H/sub imm/; and the trends that were shown to exist in the heat of immersion measurements (for varying kerosene concentration, pH oxidation, and clay slime coating) correlated well with independent flotation experiments. 16 refs., 6 figs., 2 tabs.

  8. Potential of Hazardous Waste Encapsulation in Concrete Compound Combination with Coal Ash and Quarry Fine Additives.

    PubMed

    Lieberman, Roy Nir; Anker, Yaakov; Font, Oriol; Querol, Xavier; Mastai, Yitzhak; Knop, Yaniv; Cohen, Haim

    2015-12-15

    Coal power plants are producing huge amounts of coal ash that may be applied to a variety of secondary uses. Class F fly ash may act as an excellent scrubber and fixation reagent for highly acidic wastes, which might also contain several toxic trace elements. This paper evaluates the potential of using Class F fly ashes (<20% CaO), in combination with excessive fines from the limestone quarry industry as a fixation reagent. The analysis included leaching experiments (EN12457-2) and several analytical techniques (ICP, SEM, XRD, etc.), which were used in order to investigate the fixation procedure. The fine sludge is used as a partial substitute in concrete that can be used in civil engineering projects, as it an environmentally safe product. PMID:26510011

  9. Potential of Hazardous Waste Encapsulation in Concrete Compound Combination with Coal Ash and Quarry Fine Additives.

    PubMed

    Lieberman, Roy Nir; Anker, Yaakov; Font, Oriol; Querol, Xavier; Mastai, Yitzhak; Knop, Yaniv; Cohen, Haim

    2015-12-15

    Coal power plants are producing huge amounts of coal ash that may be applied to a variety of secondary uses. Class F fly ash may act as an excellent scrubber and fixation reagent for highly acidic wastes, which might also contain several toxic trace elements. This paper evaluates the potential of using Class F fly ashes (<20% CaO), in combination with excessive fines from the limestone quarry industry as a fixation reagent. The analysis included leaching experiments (EN12457-2) and several analytical techniques (ICP, SEM, XRD, etc.), which were used in order to investigate the fixation procedure. The fine sludge is used as a partial substitute in concrete that can be used in civil engineering projects, as it an environmentally safe product.

  10. DEVELOPMENT OF DEWATERING AIDS FOR MINERALS AND COAL FINES

    SciTech Connect

    Roe-Hoam Yoon; Ramazan Asmatulu; Ismail Yildirim; William Jansen; Jinmig Zhang; Brad Atkinson; Jeff Havens

    2004-07-01

    MCT has developed a suite of novel dewatering chemicals (or aids) that are designed to cause a decrease in the capillary pressures of the water trapped in a filter cake by (1) decreasing the surface tension of water, (2) increasing the contact angles of the particles to be dewatered, and (3) causing the particles to coagulate, all at the same time. The decrease in capillary pressure in turn causes an increase in the rate filtration, an increase in throughput, and a decrease in pressure drop requirement for filtration. The reagents are used frequently as blends of different chemicals in order to bring about the changes in all of the process variables noted above. The minerals and coal samples tested in the present work included copper sulfide, lead sulfide, zinc sulfide, kaolin clay, talc, and silica. The laboratory-scale test work included studies of reagent types, drying cycle times, cake thickness, slurry temperature, conditioning intensity and time, solid content, and reagent dosages. To better understand the mechanisms involved, fundamental studies were also conducted. These included the measurements of the contact angles of the particles to be dewatered (which are the measures of particle hydrophobicity) and the surface tensions of the filtrates produced from dewatering tests. The results of the laboratory-scale filtration experiments showed that the use of the novel dewatering aids can reduce the moistures of the filter cake by 30 to 50% over what can be achieved using no dewatering aids. In many cases, such high levels of moisture reductions are sufficient to obviate the needs for thermal drying, which is costly and energy intensive. Furthermore, the use of the novel dewatering aids cause a substantial increase in the kinetics of dewatering, which in turn results in increased throughput. As a result of these technological advantages, the novel dewatering aids have been licensed to Nalco, which is one of the largest mining chemicals companies of the world. At

  11. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1993-02-12

    The Department of Energy (DOE) awarded a contract entitled Engineering Development of Advanced Physical Fine Coal Cleaning Technology - Froth Flotation'', to ICF Kaiser Engineers with the following team members, Ohio Coal Development Office, Babcock and Wilcox, Consolidation Coal Company, Eimco Process Equipment Company, Illinois State Geological Survey, Virginia Polytechnic Institute and State University, Process Technology, Inc. This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  12. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    SciTech Connect

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  13. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect

    R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

    2001-04-30

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would

  14. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2003-06-02

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process.

  15. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Zhu, Ximeng; Li, Jun; Bodily, D.M; Zhong, Tingke; Wadsworth, M.E.

    1992-09-01

    A series of fine coal kinetic tests were carried out on three coals. It was found that the rank of flotation rates for the three coals tested were: Upper Freeport > Pittsburgh No. 8 > Illinois No. 6. In the case of Pittsburgh No. 8, the contained coal-pyrite was found to float more slowly than the coal itself when xanthate was used as the collector. In kinetic modeling, first order kinetic models produced large errors for long flotation times. It was found that a modified first order kinetic-model with slow and fast rate constants was appropriate for fine coal flotation. A log-log plot of 1(R{sub j} -R) versus t forms a straight line for the test conditions of this study. The Lai proportionality flotation model was found to apply from the start and extending over a very broad time range.

  16. ENGINEERING DEVELOPMENT OF ADVANCED PHYSICAL FINE COAL CLEANING FOR PREMIUM FUEL APPLICATIONS

    SciTech Connect

    none,

    1997-06-01

    Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program "Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications," (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R

  17. Mineralogical characterization of ambient fine/ultrafine particles emitted from Xuanwei C1 coal combustion

    NASA Astrophysics Data System (ADS)

    Lu, Senlin; Hao, Xiaojie; Liu, Dingyu; Wang, Qiangxiang; Zhang, Wenchao; Liu, Pinwei; Zhang, Rongci; Yu, Shang; Pan, Ruiqi; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2016-03-01

    Nano-quartz in Xuanwei coal, the uppermost Permian (C1) coal deposited in the northwest of Yuanan, China, has been regarded as one of factors which caused high lung cancer incidence in the local residents. However, mineralogical characterization of the fine/ultrafine particles emitted from Xuanwei coal combustion has not previously been studied. In this study, PM1 and ultrafine particles emitted from Xuanwei coal combustion were sampled. Chemical elements in the ambient particles were analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and mineralogical characterization of these ambient particles was investigated using scanning electronic microscopy (SEM/EDX) and transmission electronic microscopy, coupled with energy-dispersive spectroscopy (TEM/EDX). Our results showed that the size distribution of mineral particles from the coal combustion emissions ranged from 20 to 200 nm. Si-containing particles and Fe-containing particles accounted for 50.7% of the 150 individual particles measured, suggesting that these two types of particles were major minerals in the ambient particles generally. The nano-mineral particles were identified as quartz (SiO2) and gypsum (CaSO4) based on their crystal parameters and chemical elements. Additionally, there also existed unidentified nano-minerals. Armed with these data, toxicity assessments of the nano-minerals will be carried out in a future study.

  18. Surface properties of coal fines in water. 1. Electrokinetics and surfactant adsorption

    SciTech Connect

    Ayub, A.L.; Al Taweel, A.M.; Kwak, J.C.T.

    1985-01-01

    The adsorption of phenol, p-nitrophenol, the nonionic surfactant Triton X-100 (a commercial mixture of octylphenol poly ethoxylates) and the cationic surfactant dodecyltrimethyl ammonium bromide (DTAB) from aqueous solution on coal fines from a coal washing plant has been studied. Adsorbate solution concentrations range from 0-8 x 10/sup -4/ m. For the cationic and nonionic surfactants both adsorption isotherms and electrokinetic isotherms were determined. The adsorption of phenol, but not of Triton X-100 and DTAB, is found to increase with time for periods up to three hundred h. For short contract times (less than thirty h.), the amount of Triton X-100 adsorbed is about three times higher than the amount of phenol adsorbed at the same solution concentration. The electrokinetic data show that the zeta potential of the coal is not affected by the adsorption of Triton X-100. On the other hand, adsorption of the cationic surfactant strongly influences the zeta potential. For negatively charged coal, i.e., at higher solution pH (iep of the coal used is 5.3), the adsorption of cationic surfactant leads to charge reversal at a typical free surfactant concentration often well below 10/sup -4/ molal. 20 references.

  19. Recovery of coal fines from washery and power plant effluents by integrated technique of oil agglomeration and biofilm formation.

    PubMed

    Sharma, S; Luxamikant; Dastidar, M G; RoyChoudhury, P K

    1999-01-01

    The possibility of applying an integrated technique of oil agglomeration and biofilm formation for recovery of coal fines from coal washeries and power plants effluents has been explored. Laboratory experiments with simulated slurries of different Indian coal fines demonstrate that vegetable oils are satisfactory agglomerating agents for recovery of most of the coal fines depending on the nature of coal and type of oil. The agglomeration behaviour of coal fines was assessed in terms of % yield, % organic matter recovery and % ash rejections. Maximum 85% agglomerate recovery was obtained in the agglomeration stage. Residual oil concentrations in some cases were found to exceed the permissible limit. Recovery of residual coal fines and reduction in residual oil concentration in the resultant slurry after oil agglomeration have been attempted using biofilm formation. A laboratory scale treatment reactor was put under complete recirculation to facilitate attached microbial growth on coal particles as carrier under aerobic conditions. The influence of various parameters on attached growth and stable biofilm formation were studied. The growth patterns of attached cell in suspension and consumption pattern of carbon substrate (oil) have been investigated. Steady decline in residual substrate concentration in the slurry with corresponding increase in the growth of attached and free cell mass is observed. The growth process was favoured in pH range of 6.5-7.0. The attached growth was found to be expanded in size in due course of time ultimately leading to the formation of stable biofilm in the treatment reactor which was subjected to the influent total suspended solids loading resulting from oil agglomeration step. Performance of the biofilm reactor in terms of % reduction in total suspended solids and residual oil concentration in the influent slurry was assessed in continuous mode. Complete recovery of coal fines and 60% degradation of oil was observed in the final

  20. Gasifier feed - Tailor-made from Illinois coals

    SciTech Connect

    Ehrlinger, H.P. III ); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. DESTEC Energy Williams Technology Illinois Coal Association )

    1992-01-01

    The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. This project will bring the expertise of four organizations together to perform the various tasks. The Illinois Coal Association will help direct the project to be the most beneficial to the Illinois coal industry. DESTEC Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technology will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handlability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals. As reported earlier, a variety of possible samples of coal have been analyzed and the gasification performance evaluation reported. Additionally, commercial sized samples of -28 mesh {times} 100 mesh coal -100 {times} 0 coal were subjected to pumpability testing. Neither the coarse product nor the fine product by themselves proved to be good candidates for trouble free pumping, but the mix of the two proved to be a very acceptable product

  1. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1991-01-01

    This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. The conceptual flowsheet will be revised based on the results of the bench scale testing and areas will be identified that need further larger scale design data verification, to prove out the design.

  2. [Characteristics of water soluble inorganic ions in fine particles emitted from coal-fired power plants].

    PubMed

    Duan, Lei; Ma, Zi-Zhen; Li, Zhen; Jiang, Jing-Kun; Ye, Zhi-Xiang

    2015-03-01

    Currently, China suffers from serious pollution of fine particulate matter (PM2.5). Coal-fired power plant is one of the most important sources of PM2.5 in the atmosphere. To achieve the national goals of total emission reductions of sulfur dioxide (SO2) and nitrogen oxides (NO(x)) during the 11th and 12th Five-Year Plan, most of coal-fired power plants in China have installed or will install flue gas desulfurization (FGD) and flue gas denitrification (DNO(x)) systems. As a result, the secondary PM2.5, generated from gaseous pollutants in the atmosphere, would be decreased. However, the physical and chemical characteristics of PM2.5 in flue gas would be affected, and the emission of primary PM2.5 might be increased. This paper summarized the size distributions of PM2.5 and its water soluble ions emitted from coal-fired power plants, and highlighted the effects of FGD and DNO(x) on PM2.5 emission, especially on water soluble ions (such as SO4(2-), Ca2+ and NH4+) in PM2.5. Under the current condition of serious PM2.5 pollution and wide application of FGD and DNO(x), quantitative study on the effects of FGD and DNO(x) installation on emission characteristics of PM2.5 from coal-fired power plants is of great necessity.

  3. Engineering development of advance physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Jha, M.C.; Smit, F.J.; Shields, G.L.

    1995-11-01

    The objective of this project is to develop the engineering design base for prototype fine coal cleaning plants based on Advanced Column Flotation and Selective Agglomeration processes for premium fuel and near-term applications. Removal of toxic trace elements is also being investigated. The scope of the project includes laboratory research and bench-scale testing of each process on six coals followed by design, construction, and operation of a 2 tons/hour process development unit (PDU). Three coals will be cleaned in tonnage quantity and provided to DOE and its contractors for combustion evaluation. Amax R&D (now a subsidiary of Cyprus Amax Mineral Company) is the prime contractor. Entech Global is managing the project and performing most of the research and development work as an on-site subcontractor. Other participants in the project are Cyprus Amax Coal Company, Arcanum, Bechtel, TIC, University of Kentucky and Virginia Tech. Drs. Keller of Syracuse and Dooher of Adelphi University are consultants.

  4. Centrifugal dewatering and reconstitution of fine coal by the GranuFlow Process

    SciTech Connect

    Wen, W.W.; Utz, B.R.; Killmeyer, R.P.

    1997-12-31

    A continuous pilot-scale test of the GranuFlow Process was conducted using a screen-bowl centrifuge for the dewatering and reconstitution of column flotation concentrate at a coal preparation plant in Virginia. In this test, a slipstream of the fine-clean-coal slurry from the column flotation concentrate was treated with a bitumen emulsion before dewatering. The treated products from the screen-bowl centrifuge appeared to be dry and in a free-flowing granular form, while the untreated products were wet, sticky, and difficult to handle. Specifically, test results indicated that the average moisture contents of the dewatered coal were 35.7, 35.5, 32.6, 29.9, and 26.5 wt% with Orimulsion additions of 0, 0.7, 3.2, 4.8, and 6.4 wt%, respectively. The handleability and dust reduction of the dewatered coal product were also vastly improved. A preliminary cost estimate of using Orimulsion in the GranuFlow Process is also included. Because of the simplicity of the process and the low cost of the bitumen emulsion, the commercialization potential of the GranuFlow Process is significant.

  5. Development of the electroacoustic dewatering (EAD) process for fine/ultrafine coal. Final report

    SciTech Connect

    Chauhan, S.P.; Kim, B.C.; Menton, R.; Senapati, N.; Criner, C.L.; Jirjis, B.; Muralidhara, H.S.; Chou, Y.L.; Wu, H.; Hsieh, P.; Johnson, H.R.; Eason, R.; Chiang, S.M.; Cheng, Y.S.; Kehoe, D.

    1991-10-31

    Battelle (Columbus, Ohio) undertook development of its electro-acoustic (EAD) process to demonstrate its commercial potential for continuous dewatering of fine and ultrafine coals. The pilot plant and laboratory results, provided in this report, show that a commercial-size EAD machine is expected to economically achieve the dewatering targets for {minus}100 mesh and {minus}325 mesh coals. The EAD process utilizes a synergistic combination of electric and acoustic (e.g., ultrasonic) fields in conjunction with conventional mechanical processes, such as belt presses, screw presses, plate and frame filter presses, and vacuum filters. The application of EAD is typically most beneficial after a filter cake is formed utilizing conventional mechanical filtration. (VC)

  6. Development of the electroacoustic dewatering (EAD) process for fine/ultrafine coal

    SciTech Connect

    Chauhan, S.P.; Kim, B.C.; Menton, R.; Senapati, N.; Criner, C.L.; Jirjis, B.; Muralidhara, H.S.; Chou, Y.L.; Wu, H.; Hsieh, P. ); Johnson, H.R.; Eason, R. ); Chiang, S.M.; Cheng, Y.S. ); Kehoe, D. )

    1991-10-31

    Battelle (Columbus, Ohio) undertook development of its electro-acoustic (EAD) process to demonstrate its commercial potential for continuous dewatering of fine and ultrafine coals. The pilot plant and laboratory results, provided in this report, show that a commercial-size EAD machine is expected to economically achieve the dewatering targets for {minus}100 mesh and {minus}325 mesh coals. The EAD process utilizes a synergistic combination of electric and acoustic (e.g., ultrasonic) fields in conjunction with conventional mechanical processes, such as belt presses, screw presses, plate and frame filter presses, and vacuum filters. The application of EAD is typically most beneficial after a filter cake is formed utilizing conventional mechanical filtration. (VC)

  7. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill; Roger Demler

    2005-07-01

    To minimize program cost, additional testing is planned to be performed in concert with EPRI-funded testing at the Coal Flow Test Facility in late July. This will be followed by field testing to be performed by EPRI in August. The minimal effort put into the analysis during this reporting period revealed surprising variation in the trends of the dynamic signatures over time. It is unclear whether these temporal trends are related to noise or to the actual dynamics. Further data analysis and fine-tuning of the algorithm will be done upon arrival of the data to be collected in the near future.

  8. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2002-08-15

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  9. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2001-08-01

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end work is progress using an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. For the Third Quarter of this project we present our data on trace metal partitioning obtained from combustion of MSS and Gas, MSS and Coal and Coal and Gas alone.

  10. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2003-01-31

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Previous research results have demonstrated that the inhalation of coal/MSS ash particles cause an increase in lung permeability than coal ash particles alone. Elemental analysis of the coal/MSS ash particles showed that Zn was more abundant in these ash particles than the ash particles of coal ash alone.

  11. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-12-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

  12. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Jiang, C.L.

    1992-01-01

    This is the 9th quarterly technical progress report for the project entitled Pyrite surface characterization and control for advanced fine coal desulfurization technologies'', DE-FG22-90PC90295. The work presented in this report was performed from September 1, 1992 to November 31, 1992. The objective of the project is to conduct extensive fundamental studies on the surface chemistry of pyrite oxidation and flotation and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the surface oxidation of pyrite in various electrolytes was investigated. It has been demonstrated, for the first time, that borate, a pH buffer and electrolyte used by many previous investigators in studying sulfide mineral oxidation, actively participates in the surface oxidation of pyrite. In borate solutions, the surface oxidation of pyrite is tronly enhanced. The anodic oxidation potential of pyrite is lowered by more than 0.4 volts. The initial reaction of the borate enhanced pyrite oxidation can be described by:FeS[sub 2] + B(OH)[sub 4][sup =] ------> [S[sub 2]Fe-B(OH)[sub 4

  13. Enhanced control of fine particles following Title IV coal switching and NOx control

    SciTech Connect

    Durham, M.D.; Baldrey, K.E.; Bustard, C.J.; Martin, C.

    1997-12-31

    Electrostatic precipitators (ESPs) serve as the primary particle control devices for a majority of coal-fired power generating units in the United States. ESPs are used to collect particulate matter that range in size from less than one micrometer in diameter to several hundred micrometers. Many of the options that utilities will use to respond to Title IV of the 1990 Clean Air Act Amendments will result in changes to the ash that will be detrimental to the performance of the ESP causing increased emissions of fine particles and higher opacity. For example, a switch to low-sulfur coal significantly increases particle resistivity while low-NO{sub x} burners increase the carbon content of ashes. Both of these changes could result in derating of the boiler to comply with emissions standards. ADA has developed a chemical additive that is designed to improve the operation of ESI`s to bring these systems into compliance operation without the need for expensive capital modifications. The additives provide advantages over competing technologies in terms of low capital cost, easy to handle chemicals, and relatively non-toxic chemicals. In addition, the new additive is insensitive to ash chemistry which will allow the utility complete flexibility to select the most economical coal. Results from full-scale and pilot plant demonstrations are reported.

  14. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    SciTech Connect

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was

  15. Production of a pellet fuel from Illinois coal fines. Technical report, March 1--May 31, 1995

    SciTech Connect

    Rapp, D.; Lytle, J.

    1995-12-31

    The primary goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. For this effort, we will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach. Previously it has been decided that corn starch would be used as binder and a roller-and-die mill would be used for pellet manufacture. A quality starch binder has been identified and tested. To potentially lower binder costs, a starch that costs about 50% of the high quality starch was tested. Results indicate that the lower cost starch will not lower binder cost because more is required to produce a comparable quality pellet. Also, a petroleum in water emulsion was evaluated as a potential binder. The compound seemed to have adhesive properties but was found to be a poor binder. Arrangements have been made to collect a waste slurry from the mine previously described.

  16. An experimental study and theoretical modeling of fine coal/refuse filtration and dewatering

    SciTech Connect

    Cheng, Y.

    1988-01-01

    The characteristics of fine coal and coal refuse are experimentally investigated by using a laboratory scaled vacuum/air pressure filter. Filter cakes formed under different conditions are micrographically analyzed, and the pore space of the filter cakes is quantified by its equivalent pore size distribution, hydraulic pore diameter distribution and neck size distribution. Three typical Chinese coals, a Pittsburgh seam coal and a refuse sample ware used, and the effects of important operating variables on the filterabilities and the extent of dewatering of these samples are experimental determined. Since macroscopic properties of filter cakes are controlled by the microscopic pore structures, the filter cakes formed in the filtration experiments are analyzed by using a Leitz TAS-Plus image analysis system. A three dimensional simple cubic lattice network is constructed to represent the complex pore structures of filter cakes. The bonds in the network conduct fluid flow and are correlated in the macroflow direction. The sizes and shapes of the bond are determined by three pore size distributions obtained from the cake structural analysis. The equivalent pore diameter distribution determines the cross sectional areas of the bonds, the hydraulic pore diameter considers the shapes of the bonds, and the neck size distribution assigns the neck size to the bonds. Network models are developed based on percolation theory. Single phase permeabilities and dewatering curves of the filter cakes have been successfully predicted by the models. The models, which have been successfully used to predict properties of single phase and two phase flow through a filter cake, may be applied in other fields such as the flow of water through soils and the flow of oil and gas in underground reservoirs.

  17. Experience dewatering fine coal in solidbowl centrifuges at the York Canyon preparation plant

    SciTech Connect

    Alderman, J.K.

    1995-08-01

    In 1990, a study was undertaken at P&M`s York Canyon preparation plant to evaluate options for dewatering froth flotation product. The existing vacuum disc filter was in need of replacement from wear and neglect, and analysis of the feed to the filter showed that only 7% of the particles were larger than 0.15mm (100 mesh) while nearly 60% of the particles were finer than 0.45mm (325 mesh). Size analysis of the filter cake indicated a mass mean diameter (MMD) of 0.092mm and surface moisture of the filter cake was 33%. Preliminary modeling indicated that a surface moisture of 26% might be attainable for this cake with efficient mechanical dewatering. Based upon the fineness of the feed and the need to replace the filter, in 1991 P&M conducted the field testing with a pilot-scale Sharples high-G solidbowl centrifuge. Data from the pilot scale tests led to the conclusion that the solidbowl centrifuges could recover over 90% of feed solids while providing a surface moisture of about 25% in the product cake. When a decision was made in 1992 to replace the existing plant at York Canyon with a new, larger preparation plant, the commercial scale Sharples high-G solidbowl centrifuges were selected for fine dewatering. The following discussion deals with the plant fine coal dewatering circuitry, start-up problems, remedial actions, and machine dewatering performance.

  18. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 7, July 1, 1995--September 30, 1995

    SciTech Connect

    1996-08-22

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled Coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. The Mulled Coal circuit was installed in an empty bay at the Chetopa Preparation Plant. Equipment has been installed to divert a 2.7 tonnes/hr (3 tons/hr) slipstream of the froth concentrate to a dewatering centrifuge. The concentrated wet coal fines from the centrifuge dropped through a chute directly into a surge hopper and feed system for the Mulled Coal circuit. The Mulled Coal product was gravity discharged from the circuit to a truck or product discharge area from which it will be hauled to a stockpile located at the edge of the clean coal stockpile area. During the 3-month operating period, the facility produced 870 tonnes (966 tons) of the Muffed Coal for evaluation in various storage, handling, and transportation equipment and operations. Immediately following the production demonstration, the circuit was disassembled and the facility was decommissioned.

  19. Improvement of storage, handling and transportability of fine coal. Quarterly technical progress report No. 3, July 1, 1994--September 30, 1994

    SciTech Connect

    1996-08-16

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this third quarter of the contract period, activities were underway under Tasks 2 and 3. Sufficient characterization of the feedstock coal options at the Chetopa Plant was conducted and mulling characteristics determined to enable a decision to be made regarding the feedstock selection. It was decided that the froth concentrate will be the feedstock wet fine coal used for the project. On that basis, activities in the areas of design and procurement were initiated.

  20. POC-scale testing of oil agglomeration techniques and equipment for fine coal processing

    SciTech Connect

    W. Pawlak; K. Szymocha

    1999-07-01

    The information presented in this manual is solely for the purpose of operating the POC-scale equipment for fine coal processing as described herein. This manual provides a general description of the process technology and guidelines for plant operating procedures. It is intended for use by the operators and maintenance personnel who will be responsible for the operations of the plant. No attempt should be made to operate the plant until the principles of the process and operating instructions contained in this manual are fully understood. Operating personnel should thoroughly familiarize themselves with all processing equipment prior to commencing plant operation. All equipment is skid mounted to provide a self-contained unit. The dimensions of the unit are comply with standard guidelines. A minimum distance of 2 feet is provided between equipment for walkway and maintenance.

  1. Gasifier feed - Tailor-made from Illinois coals. [Quarterly] report, March 1, 1992--May 31, 1992

    SciTech Connect

    Ehrlinger, H.P. III; Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. |||

    1992-10-01

    The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. This project will bring the expertise of four organizations together to perform the various tasks. The Illinois Coal Association will help direct the project to be the most beneficial to the Illinois coal industry. DESTEC Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technology will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handlability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals. As reported earlier, a variety of possible samples of coal have been analyzed and the gasification performance evaluation reported. Additionally, commercial sized samples of -28 mesh {times} 100 mesh coal -100 {times} 0 coal were subjected to pumpability testing. Neither the coarse product nor the fine product by themselves proved to be good candidates for trouble free pumping, but the mix of the two proved to be a very acceptable product

  2. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2001-05-04

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NO{sub x} concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end we shall use an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NO{sub x} and low NO{sub x} combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined.

  3. Fundamental study for improvement of dewatering of fine coal/refuse. Semi-annual report, November 1981-April 1982

    SciTech Connect

    Chiang, S.H.; Klinzing, G.E.; Tierney, J.W.; Bayles, G.; Gala, H.; Kakwani, R.; Pien, H.L.; Rega, R.; Yetis, U.

    1982-05-01

    The objectives of this research program are to formulate models for predicting the efficiency of mechanical dewatering, the rate of dewatering and the residual moisture content of dewatered coal/refuse and to suggest improved mechanical dewatering methods. To achieve these objectives, the following tasks are being carried out: (1) characterization of fine coal particles and filter cakes; (2) theoretical models for fine coal dewatering, (3) experimental measurement of dewatering; and (4) enhanced dewatering methods. Some highlights for this reporting period are: (1) important improvements in the micrographic analysis of coal filter cakes were achieved, (2) refinement of the model to predict the one-phase flow rate and permeability for the coal cake was initiated; (3) controlled filtration and dewatering experiments were carried out with different size fractions of the -32 mesh Pittsburgh seam-Bruceton mine coal; (4) filtration and dewatering experiments with five surfactants were completed; and (5) data analysis shows a strong correlation for the adsorption isotherm of all five surfactants with the reduction in moisture content. 6 references, 31 figures, 7 tables.

  4. Suppression of fine ash formation in pulverized coal flames. Final technical report, September 30, 1992--January 31, 1996

    SciTech Connect

    Kramlich, J.C.; Chenevert, B.; Park, Jungsung; Hoffman, D.A.; Butcher, E.K.

    1996-07-19

    Coal ash, and particularly fine fly ash, remain one of the principal practical and environmental problems in coal-based power generation. In particular, submicron aerosols are identified with direct inhalation risk. Submicron ash is thought to arise from mineral vaporization during char combustion, followed by nucleation, condensation and coagulation to yield an aerosol. While aerosols are predominantly made out of volatile alkali minerals, they also can include refractory oxides that are chemically reduced to more volatile forms within the char particle and vaporized. Most of the ash of size greater than 1 {mu}m is generated by agglomeration of mineral as the char particle bums out. These two principal mechanisms are thought to account for most of the ash generated in coal combustion. Previous research has shown that various forms of coal treatment can influence the yields of fine ash from combustion. The research reported here investigates various forms of treatment, including physical coal cleaning, aerodynamic sizing, degree of grinding, and combinations of these on both aerosol yields and on yields of fine residual ash (1-4 {mu}m). The work also includes results from the combustion of artificial chars that include individual mineral elements. This research shows that these various forms of coal treatment can significantly change ash characteristics. While none of the treatments affected the bulk of the residual ash size distribution significantly, the yield of the ash aerosol mode (d<0.5 {mu}m) and fine residual ash mode (1-4 {mu}m) are changed by the treatments.

  5. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2001-01-31

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end we shall use an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. For the First Quarter of this three year project work has centered around recruiting a graduate student to take responsibility for execution of portions of the research, and modifying the furnace and supporting equipment to allow the combustion of coal/MMS mixtures. We have readied the analytical panel for measuring NO{sub x} and other gaseous pollutants. We expect initial experiments for data gathering for coal/MSS mixtures to commence in the next Quarter.

  6. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 5, January 1, 1995--March 31, 1995

    SciTech Connect

    1996-08-21

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled Coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. The objectives of this project are to demonstrate that: the Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this reporting period, virtually all of the technical activities and progress was made in the areas of circuit installation and startup operations. Work in these activity areas are described.

  7. Innovative process for concentration of fine particle coal slurries. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect

    Rajchel, M.; Ehrlinger, H.P.; Harnett, D.; Fonseca, A.; Maurer, R.

    1997-05-01

    Williams Technologies, Inc. And Clarke Rajchel Engineering are developing a technology (patent pending) to produce high quality coal water slurries from preparation plant fine coal streams. The WTI/CRE technology uses the novel implementation of high-shear cross-flow separation which replaces and enhances conventional thickening processes by surpassing normally achievable solids loadings. Dilute ultra-fine (minus 100 mesh) solids slurries can be concentrated to greater than 60 weight percent and remixed, as required, with de-watered coarser fractions to produce pumpable, heavily loaded coal slurries. The permeate (filtrate) resulting from this process has been demonstrated to be crystal clear and totally free of suspended solids. The primary objective of this project was to demonstrate the WTI/CRE coal slurry production process technology at the pilot scale. The technology can enable Illinois coal producers and users to realize significant cost and environmental benefits both by eliminating fine coal waste disposal problems and producing an IGCC fuel to produce power which meets all foreseeable clean air standards. Testing was also directed at concentrating mine tailings material to produce a tailings paste which can be mine-back- filled, eliminating the need for tailings ponds. During the grant period, a laboratory-scale test apparatus (up to 3 GPM feed rate) was assembled and operated to demonstrate process performance over a range of feed temperatures and pressures. A dilute coal/water slurry from Consol, Inc.`s Rend Lake Preparation Plant was concentrated with the process to a maximum recorded solids loading of 61.9% solids by weight. Analytical results from the concentrate were evaluated by Destec Energy for suitability as an IGCC fuel.

  8. Hydrocarbon-oil encapsulate bubble flotation of fine coal. Technical progress report for the twelfth quarter, July 1--September 30, 1993

    SciTech Connect

    Peng, F.F.

    1993-12-31

    Two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal. Five different coal samples were used in the column flotation test program. They are Mammoth, Lower Kittanning, Upper Freeport, Pittsburgh No. 8, and Illinois No. 6 seam coals, which correspond to anthracite-, low volatile-, medium volatile-, and high volatile-seam coals, respectively. In this quarterly report, the test results for the Upper Freeport seam coal and Pittsburgh No. 8 seam coal are reported.

  9. Evaluation of hyperbaric filtration for fine coal dewatering. Tenth quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Parekh, B.K.; Leonard, J.W.; Hogg, R.; Fonseca, A.

    1995-09-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases: Phase I, model development; Phase II, laboratory studies; and Phase III, field testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase II, and Consol Inc. in Phase III of the program. All three organizations are involved in-all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit. Accomplishments are discussed for all three phases of study.

  10. Evaluation of hyperbaric filtration for fine coal dewatering. Fourth quarterly technical progress report: June 1, 1993--September 30, 1993

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1993-12-31

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, Model Development, Laboratory Studies, and Field Testing. The Pennsylvania State University is leading efforts in Phase 1, the University of Kentucky in Phase 2, and Consol Inc. in Phase 3 of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in phase 1 and 2 will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

  11. Evaluation of hyperbaric filtration for fine coal dewatering. Eleventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1995-12-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, namely Phase I - Model Development, Phase II - Laboratory Studies, Phase III - Field Testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase II, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

  12. Evaluation of hyperbaric filtration for fine coal dewatering. Twelfth quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1996-02-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, namely: (1) Phase I Model Development; (2) Phase II Laboratory Studies; and (3) Phase III Field Testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase 11, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

  13. Revegetation on a coal fine ash disposal site in South Africa

    SciTech Connect

    Van Rensburg, L.; De Sousa Correia, R.I.; Booysen, J.; Ginster, M.

    1998-11-01

    Eight medium amendments were conducted on top of a fine ash coal dump (i) to evaluate a few cost-effective treatments that could determine the minimum fertility status required for the local ash to support the establishment of a viable vegetation cover, and (ii) to select suitable grass species that would establish on the ash and could serve as a foundation for long-term rehabilitation. Degree and success of grass establishment per medium amelioration treatment is expressed in terms of total biomass, percentage basal cover, and in terms of a condition assessment model. Both the chemical and physical nature of the ash medium before and after amendment was characterized, as were the concentrations of some essential and potentially toxic elements in leaf samples. In terms of medium amelioration 5000 kg ha{sup {minus}1} compost, or 500 kg ha{sup {minus}1} kraal manure or 480 kg 2:3:2 ha{sup {minus}1} proved to be most effective. The grass species that occurred with the highest frequency, irrespective of treatment, were the perennials bermudagrass [Cynodon dactylon (L.) pers. var dactylon], weeping lovegrass [Eragrostis curvula (Schrader) Nees], and the annual teff [Eragrostis tef (Zuccagni) Trotter]. Of the potentially toxic extractable metals monitored in the leaves of vegetation on the dump, only Se accumulated to an average level of 4.4 mg kg{sup {minus}1} that could be toxic to livestock.

  14. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect

    R.-H. Yoon; G.H. Luttrell; A.D. Walters

    2000-01-01

    During the past quarter, several modifications were made to the TES unit and the materials handling system. The cylindrical electrodes were replaced by a set of screen electrodes to provide a more uniform electrostatic field. The problem with the recycle conveyor neutralizing the particle charge was also corrected by replacing it with a bucket elevator. In addition, problems with the turbocharger were corrected by increasing the number of charging stages from one to two. These modifications have significantly improved the separation performance and have permitted the POC-scale unit to achieve results in line with those obtained by the bench-scale separator. The testing phase of the project was continued at a rapid pace during this quarter. The test work showed that the modifications to the TES unit and the reduction in feed size from 28 mesh to 35 mesh resulted in significant overall improvement in yield and combustible recovery compared to the data reported in the last quarter. At that time, there was a significant discrepancy between the bench-scale and the pilot-scale results. The pilot-scale test work is now approaching the bench scale test results. However, further pilot-scale test work is required to further improve the results and duplicate the bench-scale test work.

  15. The forms of trace metals in an Illinois basin coal by x-ray absorption fine structure spectroscopy

    USGS Publications Warehouse

    Chou, I.-Ming; Bruinius, J.A.; Lytle, J.M.; Ruch, R.R.; Huggins, Frank E.; Huffman, G.P.; Ho, K.K.

    1997-01-01

    Utilities burning Illinois coals currently do not consider trace elements in their flue gas emissions. After the US EPA completes an investigation on trace elements, however, this may change and flue gas emission standards may be established. The mode of occurrence of a trace element may determine its cleanability and Hue gas emission potential. X-ray Absorption Fine Structure (XAFS) is a spectroscopic technique that can differentiate the mode of occurrence of an element, even at the low concentrations that trace elements are found in coal. This is principally accomplished by comparing the XAFS spectra of a coal to a database of reference sample spectra. This study evaluated the technique as a potential tool to examine six trace elements in an Illinois #6 coal. For the elements As and Zn, the present database provides a definitive interpretation on their mode of occurrence. For the elements Ti, V, Cr, and Mn the database of XAFS spectra of trace elements in coal was still too limited to allow a definitive interpretation. The data obtained on these elements, however, was sufficient to rule out several of the mineralogical possibilities that have been suggested previously. The results indicate that XAFS is a promising technique for the study of trace elements in coal.

  16. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2002-02-05

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NO{sub x} concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end work is progress using an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NO{sub x} and low NO{sub x} combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Progress in the Sixth Quarter (January 1, 2002 through March 31, 2002) was slow because of slagging problems in the combustor. These required the combustor to be rebuilt, a job that is not yet complete. A paper describing our results heretofore has been accepted by the Journal Environmental Science and Technology.

  17. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2002-02-05

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NO{sub x} concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end work is progress using an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NO{sub x} and low NO{sub x} combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. For the Fifth Quarter of this project we focus on determining whether certain trace metals are associated with certain major species, such as calcium and iron. To this end we present data showing correlations between As, Se,and Sb and major species, such as Ca and Fe. Conversely, lack of correlation between trace metals and elements, such as aluminum can also be used to infer lack of chemical association.

  18. INVESTIGATION OF PRIMARY FINE PARTICULATE MATTER FROM COAL COMBUSTION BY COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY

    EPA Science Inventory

    The particle size distributions, morphologies, and chemical composition distributions of 14 coal fly ash (CFA) samples produced by the combustion of four western U.S. coals (two subbituminous, one lignite, and one bituminous) and three eastern U.S. coals (all bituminous) have bee...

  19. Surface electrochemical control for fine coal and pyrite separation. Final report

    SciTech Connect

    Wadsworth, M.E.; Bodily, D.M.; Hu, Weibai; Chen, Wanxiong; Huang, Qinping; Liang, Jun; Riley, A.M.; Li, Jun; Wann, Jyi-Perng; Zhong, Tingke; Zhu, Ximeng

    1993-01-20

    Laboratory flotation tests were carried out on three coals and on coal pyrite. Floatability measurements included natural floatability, flotation with a xanthate collector and salt flotation. The ranking of the floatability of the three coals were: Upper Freeport > Pittsburgh > Illinois. The floatability of mineral pyrite and coal pyrite increased markedly with xanthate concentration, but decreased with increased pH. In general, coal pyrite was more difficult to float than mineral pyrite. This was attributed to the presence of surface carbonaceous and mineral matter, since floatability of coal pyrite improved by acid pretreatment. Flotation tests demonstrated that the floatability of coal and mineral pyrite was greatly enhanced by the presence of an electrolyte. Flotation was also enhanced by the addition of modifiers such as CuSO{sub 4}, Na{sub 2}S, CO{sub 2} and EDTA. Lime additions markedly reduced the floatability of coal pyrite. Enhanced floatability of coal pyrite resulted when the pyrite was anodically oxidized in a specially constructed electrochemical flotation cell Pretreatment in potential ranges previously observed for polysulfide and sulfur film formation resulted in the enhanced floatability. While interesting trends and influences, both chemical and electrochemical, markedly improved the floatability of coal, there is little hope for reverse flotation as an effective technology for coal/coal-pyrite separations. The effects of poor liberation and entrainment appear overriding.

  20. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction

    SciTech Connect

    Klein, M.T.

    1991-12-30

    The purpose of this work is to investigate the kinetics-assisted design, synthesis and characterization of fme-pardcle, unsupported catalysts for coal liquefaction. The goal is to develop a fundamental understanding of coal catalysis and catalysts that will, in turn, allow for the specification of a novel optimal catalyst for coal liquefaction.

  1. [Based on Curing Age of Calcined Coal Gangue Fine Aggregate Mortar of X-Ray Diffraction and Scanning Electron Microscopy Analysis].

    PubMed

    Dong, Zuo-chao; Xia, Jun-wu; Duan, Xiao-mu; Cao, Ji-chang

    2016-03-01

    By using X-ray diffraction (XRD) and environmental scanning electron microscope (SEM) analysis method, we stud- ied the activity of coal gangue fine aggregate under different calcination temperature. In view of the activity of the highest-700 degrees C high temperature calcined coal gangue fine aggregate mortar of hydration products, microstructure and strength were discussed in this paper, and the change laws of mortar strength with curing age (3, 7, 14, 28, 60 and 90 d) growth were analyzed. Test results showed that coal gangue fine aggregate with the increase of calcination temperature, the active gradually increases. When the calcination temperature reaches 700 degrees C, the activity of coal gangue fine aggregate is the highest. When calcining temperature continues to rise, activity falls. After 700 degrees C high temperature calcined coal gangue fine aggregate has obvious ash activity, the active components of SiO2 and Al2 O3 can be with cement hydration products in a certain degree of secondary hydration reaction. Through on the top of the activity of different curing age 700 degrees C high temperature calcined coal gangue fine aggregate mortar, XRD and SEM analysis showed that with the increase of curing age, secondary hydration reaction will be more fully, and the amount of hydration products also gradually increases. Compared with the early ages of the cement mortar, the products are more stable hydration products filling in mortar microscopic pore, which can further improve the microstructure of mortar, strengthen the interface performance of the mortar. The mortar internal structure is more uniform, calcined coal gangue fine aggregate and cement mortar are more of a strong continuous whole, which increase the later strength of hardened cement mortar, 700 degrees C high temperature calcined coal gangue fine aggregate pozzolanic effect is obvious.

  2. Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 23, April 1, 1994--June 30, 1994

    SciTech Connect

    1995-04-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  3. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 16, July 1, 1992--September 30, 1992

    SciTech Connect

    Not Available

    1992-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  4. Mechanisms governing fine particulate emissions from coal flames. Quarterly technical progress report No. 2, January 1, 1988--March 31, 1988

    SciTech Connect

    Clark, W.D.; Chen, S.L.; Kramlich, J.C.; Newton, G.H.; Ruth, L.A.; Samuelsen, G.S.

    1988-04-01

    Efforts in this period focused on refining the plans for engineering analysis and fundamental experiments based on the results of a literature review, and modifying the Malvern laser diffraction particle sizer to operate at particle sizes down to 0.5 microns. The engineering analysis plan is to concentrate on development of new models and adaptation of existing models for fine particulate formation by three categories of mechanisms: particle breakup/ash coalescence; direct passage, fragmentation, or agglomeration of extraneous mineral matter; and bubble formation/breakup. The plan for fundamental experiments is to develop a fast, online, optical particle sizing technique which will span the 0.5 to 10 micron size range of interest; to perform global experiments to identify the important parameters affecting fine particle formation; and to perform mechanistic experiments to test specific hypotheses about the mechanisms which control fine particle formation in coal combustion.

  5. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ generation by rapid expansion of supercritical fluid solutions

    SciTech Connect

    Not Available

    1991-08-01

    The program objective is to generate ultra-fine catalyst particles (20 to 400 {Angstrom} in size) and quantify their potential for improving coal dissolution in the solubilization stage of two-stage catalytic-catalytic liquefaction systems. It has been shown that catalyst activity increases significantly with decreasing particle size for particle sizes in the submicron range. Ultra-fine catalyst particle generation will be accomplished using a novel two-step process. First, the severe conditions produced by a supercritical fluid (e.g., supercritical H{sub 2}O or CO{sub 2}) will be used to dissolve suitable catalyst compounds (e.g., Fe{sub 2}O{sub 3}, FeS{sub 2}, and/or Fe(CO){sub 5}). Sulfur containing compounds may be added to the supercritical solvent during catalyst dissolution to enhance the catalytic activity of the resulting ultra-fine, iron based, catalyst particles.

  6. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, C.L.

    1992-01-01

    The objective of the project is to conduct extensive fundamental studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the influence of the impurity content, particularly coal/carbon content, on the electrochemical oxidation of pyrite surfaces was investigated. The studies demonstrate that the coal/carbon content in coal-pyrite has a determining effect on the surface reactivity of pyrite. The oxidation behavior of high carbon-content coal-pyrite is completely different from that of purer coal-pyrite and ore-pyrite. The effects of flotation gases on the flotation behavior of coal and the surface hydrophobicity of various coal-pyrite were investigated. It was found from the lab-scale column flotation studies that among the various gases studied (air, oxygen, argon, nitrogen and carbon dioxide), carbon dioxide produced the best results with a combustible recovery of 90% and ash-content of less than 9 percent. Finally, the surface energetic studies revealed that the surfaces of pyrites and coals produced by wet grinding is more heterogenous than that prepared by dry grinding.

  7. FINE PARTICAL AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt; Wayne S. Seames; Art Fernandez

    2003-09-21

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and pulverized coal. The objective was to determine potential tradeoffs between CO{sub 2} mitigation through using a CO{sub 2} neutral fuel, such as municipal sewage sludge, and the emergence of other potential problems such as the emission of toxic fly ash particles. The work led to new insight into mechanisms governing the partitioning of major and trace metals from the combustion of sewage sludge, and mixtures of coal and sewage sludge. The research also showed that the co-combustion of coal and sewage sludge emitted fine particulate matter that might potentially cause greater lung injury than that from the combustion of either coal alone or municipal sewage sludge alone. The reason appeared to be that the toxicity measured required the presence of large amounts of both zinc and sulfur in particles that were inhaled. MSS provided the zinc while coal provided the sulfur. Additional research showed that the toxic effects could most likely be engineered out of the process, through the introduction of kaolinite sorbent downstream of the combustion zone, or removing the sulfur from the fuel. These results are consequences of applying ''Health Effects Engineering'' to this issue. Health Effects Engineering is a new discipline arising out of this work, and is derived from using a collaboration of combustion engineers and toxicologists to mitigate the potentially bad health effects from combustion of this biomass fuel.

  8. Long range transport of fine particle windblown soils and coal fired power station emissions into Hanoi between 2001 to 2008

    NASA Astrophysics Data System (ADS)

    Cohen, David D.; Crawford, Jagoda; Stelcer, Eduard; Bac, Vuong Thu

    2010-10-01

    Fine particulate matter (PM 2.5), source fingerprints and their contributions have been measured and reported previously at Hanoi, Vietnam, from 25 April 2001 to 31 December 2008. In this study back trajectories are used to identify long range transport into Hanoi for two of these sources, namely, windblown dust ( Soil) from 12 major deserts in China and emissions from 33 coal fired power plants ( Coal) in Vietnam and China. There were 28 days of extreme Soil events with concentrations greater than 6 μg m -3 and 25 days of extreme Coal with concentrations greater than 30 μg m -3 from a total of 748 sampling days during the study period. Through the use of back trajectories it was found that long range transport of soil from the Taklamakan and Gobi desert regions (more than 3000 km to the north west) accounted for 76% of the extreme events for Soil. The three local Vietnamese power stations contributed to 15% of the extreme Coal events, while four Chinese power stations between 300 km and 1700 km to the north-east of Hanoi contributed 50% of the total extreme Coal events measured at the Hanoi sampling site.

  9. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 26, January 1, 1995--March 31, 1995

    SciTech Connect

    1995-07-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  10. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly progress report, July - September 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-10-01

    The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale. The study which is in progress is being conducted at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter laboratory dewatering studies were conducted using a 4-in diameter laboratory chemical centrifuge. The baseline data provided a filter cake with about 32% moisture. Addition of 0.3 kg/t of a cationic surfactant lowered the moisture to 29%. Addition of anionic and non-ionic surfactant was not effective in reducing the filter cake moisture content. In the pilot scale studies, a comparison was conducted between the high pressure and vacuum dewatering techniques. The base line data with high pressure and vacuum filtration provided filter cakes with 23.6% and 27.8% moisture, respectively. Addition of 20 g/t of cationic flocculent provided 21% filter cake moisture using the high pressure filter. A 15% moisture filter cake was obtained using 1.5 kg/t of non-ionic surfactant. Vacuum filter provided about 23% to 25% moisture product with additional reagents. The high pressure filter processed about 3 to 4 times more solids compared to vacuum filter.

  11. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    SciTech Connect

    Ferris, D.D.; Bencho, J.R.

    1995-11-01

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project.

  12. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 6, January--March 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-05-03

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1- March 31, 1996.

  13. Appalachian clean coal technology consortium. Technical quarterly progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Yoon, R.H.; Basim, B.; Luttrell, G.H.; Phillips, D.I.

    1997-01-28

    Novel chemicals that can be used for increasing the efficiency of fine coal dewatering was developed at Virginia Tech. During the past quarter, Reagent A was tested on three different coal samples in laboratory vacuum filtration tests. These included flotation products from Middle Fork plant, Elkview Mining Company, and CONSOL, Inc. The tests conducted with the Middle Fork coal sample (100 mesh x 0) showed that cake moisture can be reduced by more than 10% beyond what can be achieved without using dewatering aid. This improvement was achieved at 1 lb/ton of Reagent A and 0.1 inch cake thickness. At 0.5 inches of cake thickness, the improvement was limited to 8% at the same reagent dosage. The results obtained with the Elkview coal (28 mesh x 0) showed similar advantages in using the novel dewatering aid. Depending on the reagent dosage, cake thickness, drying cycle time and temperature, it was possible to reduce the cake moisture to 12 to 14% rage. In addition to achieving lower cake moisture, the use of Reagent A substantially decreased the cake formation time, indicating that the reagent improves the kinetics of dewatering. The test results obtained with CONSOL coal were not as good as with the other coals tested in the present work, which may be attributed to possible oxidation and/or contamination.

  14. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  15. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  16. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  17. Integrating flotation to improve the performance of an HMC circuit treating a low-rank fine coal

    SciTech Connect

    Celik, H.; Polat, M.

    2005-11-01

    One reason that heavy media cyclone (HMC) circuits suffer from the inadvertent loss of magnetite and fine coal is the presence of nonmagnetic material in the magnetic separator feed. In this study, flotation was applied to the undersize fractions of the HMC drain-and-rinse screens to minimize these problems. These fractions, which contain 17.9% nonmagnetic material, are currently sent to magnetic separators and the nonmagnetic portion from the separators contains 39.1% ash. Applying flotation resulted in a clean coal product with an ash content of 8.7% and a calorific value of 6,300 kcal/kg. The refuse from flotation, which will be sent to the magnetic separators, contains 7.7% nonmagnetics.

  18. An Advanced Control System for Fine Coal Flotation. Sixth quarter, technical progress report, July 1-September 30, 1997

    SciTech Connect

    Adel, G.T.; Luttrell, G.H.

    1997-10-27

    Over the past thirty years, process control has spread from the chemical industry into the fields of mineral and coal processing. Today, process control computers, combined with improved instrumentation, are capable of effective control in many modem flotation circuits. Unfortunately, the classical methods used in most control strategies have severe limitations when used in froth flotation. For example, the nonlinear nature of the flotation process can cause single-input, single-output lines to battle each other in attempts to achieve a given objective. Other problems experienced in classical control schemes include noisy signals from sensors and the inability to measure certain process variables. For example, factors related to ore type or water chemistry, such as liberation, froth stability, and floatability, cannot be measured by conventional means. The purpose of this project is to demonstrate an advanced control system for fine coal flotation. The demonstration is being carried out at an existing coal preparation plant by a team consisting of Virginia Polytechnic Institute and State University (VPI&SU) as the prime contractor and J.A. Herbst and Associates as a subcontractor. The objectives of this work are: (1) to identify through sampling, analysis, and simulation those variables which can be manipulated to maintain grades, recoveries, and throughput rates at levels set by management; (2) to develop and implement a model-based computer control strategy that continuously adjusts those variables to maximize revenue subject to various metallurgical, economic, and environmental constraints; and (3) to employ a video-based optical analyzer for on-line analysis of ash content in fine coal slurries.

  19. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Seventh quarterly technical progress report, March 1, 1992--May 31, 1992

    SciTech Connect

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Jiang, Chengliang; Raichur, A.M.

    1992-07-14

    The objective of this project is to conduct extensive studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The flotation characteristics of coal-pyrites under various conditions was studied and compared with ore-pyrite and coal to determine the causes of pyrite rejection difficulties in coal flotation. Both the native and induced floatabilities of pyrites were investigated. It was found that both coal- and ore-pyrites, ff prepared by dry-grinding, show little or no floatability in the absence of any chemical reagents. After ultrasonic pretreatment, ore-pyrite floats effectively in the acidic to neutral pH range. Kentucky No. 9 coal-pyrite (KYPY) shows significant flotation in the pH range 7--10. With ethyl xanthate as collector, ore-pyrite floats well up to pH = 10; while coal-pyrite reveals no flotation above pH = 6. For the first time, the effect of coal collector on the floatability of coal-pyrite has been studied. It was shown that in the presence of fuel oil--a widely used collector for promoting coal flotation, coal-pyrite, particularly for the fine sizes, shows good flotation below pH = 11, whereas ore-pyrite has no or little floatability. These studies demonstrate that one of the main causes of the coal-pyrite flotation in coal separation is the oil-induced floatability due to adsorption/attachment of oil droplets on the coal-pyrite surfaces, the ``native`` or ``self-induced`` floatability of pyrite is no as profound as the oil-induced flotation.

  20. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Munirathinam, M.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. Four high quality coal pyrite samples from the Illinois No. 6, Kentucky No. 9, Pittsburgh No. 8 and Upper Freeport coal seams, and several high purity mineral pyrite samples were acquired. Synthetic single pyrite crystals (5 mm in size) and microcrystalline pyrite particles (averaging 6 {mu}m in size) were carefully obtained. Surface hydrophobicities of coal- and ore-pyrites have been studied by contact angle titration and film flotation methods. The oxidation and reduction behavior of coal-pyrites, ore-pyrites and synthetic pyrite single crystals have been studied suing electrochemical methods, including cyclic voltammetry, rotating-disc electrode technique, open-circuit potential measurements and steady-polarization measurements. 7 refs., 14 figs.

  1. Surface and bulk characterization of particulates in fine-coal processing

    SciTech Connect

    Narayanan, K.S.

    1989-01-01

    An attempt is made to delineate the effects of composition, chemistry and oxidation of heterogeneous coal particulates, of different ranks and origins, on their wettability and floatability. The wetting characteristics of particulate coal samples are assessed using a relatively new film flotation technique, since it characterizes the distribution of lyophobic/lyophilic sites of an assembly of coal particles as encountered in a practical processing environment. The film flotation tests yield a wetting tension distribution diagram and an average critical wetting tension ({gamma}c), which can be used as a measure of hydrophobicity. The technique has been validated by determining the {gamma}c value (26-28 mN/m) for a homogeneous paraffin wax surface using wax-coated coal and other mineral particulates. The {gamma}c values for some of the high-ash and oxidized coals samples are estimated by combining the distribution curves of a number of as received and oxidized coal samples into a single curve by a normalization procedure, since they did not yield a complete distribution curve due to their hydrophilic nature. The film flotation results are compared with micro-scale flotation results obtained with Hallimond tube and vacuum flotation test methods. The Hallimond tube experiments using methanol solutions exhibit a frothing effect at low alcohol concentration and an entrainment effect at high concentrations. Vacuum flotation experiments using salt solutions correlate well with the film flotation results. The floatability of coals decreases with increasing {gamma}c values indicating the ability of film flotation to relate to coal floatability. In conclusion, film flotation appears to be a sensitive technique to delineate the surface wettability and floatability of heterogeneous coal particulates.

  2. Fine coal recovery at the Wabash mine circuit modifications and additions

    SciTech Connect

    Shackleford, M.

    1996-09-01

    During the summer of 1993, Cyprus AMAX coal company commissioned a recently completed 1,500 tons per hour (tph) preparation plant at the Wabash mine near Keensburg, Illinois. Completion and operation of this new plant allow the washing of Wabash Mine`s total coal production. From 1984 to mid 1993, a smaller 250 tph heavy media coarse coal wash plant was used. The new plant allows the mine to assist its primary utility customer to meet air quality emission limitations for their electric power generating facility.

  3. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction

    SciTech Connect

    Klein, M.T.

    1991-02-22

    The first task in our proposed study of catalysts for coal liquefaction was to prepare ultrafine dispersed metal sulfide particles by reactive precipitation from solutions of appropriate metal precursors. At this point, equipment to allow us to prepare these air-sensitive materials in an anaerobic environment has been acquired and assembled. Initial experiments aimed at synthesizing iron sulfide particles have been initiated. As part of the investigation of short contact time catalytic coal liquefaction, initial efforts focused on the noncatalytic pyrolysis reactions of coal and a model compound, Dibenzyl ether (DBE). Two different reactor configurations were examined; catalytic experiments are planned for the coming month.

  4. Energy and environmental research emphasizing low-rank coal -- Task 2.4, Air toxic fine particulate control

    SciTech Connect

    Dunham, G.E.; Heidt, M.K.; Miller, S.J.

    1995-03-01

    Emission from coal-fired boilers is an issue because of the current concern over atmospheric air toxics, which contain high concentrations of trace elements. The best method of minimizing the emission of these air toxic trace elements to the atmosphere is to install high-efficiency fine-particle control devices. After collection, the dust must be removed from the filter bags or electrostatic precipitator (ESP) plates and transferred to the hopper without significant redispersion. Since it is more difficult to collect fine particles, the extent to which the dust is redispersed into its original particle-size distribution will have a major impact on the overall fine-particle collection efficiency of the filter or ESP and, subsequently, the collection efficiency of air toxic metals. The goal of Task 2.4 was to evaluate redispersion of dust in particulate control devices so that the appropriate methods to minimize redispersion can be implemented. The primary objective was to determine the extent that fly ash is redispersed as individual particles upon cleaning of the filters or ESP plates. The current research was to determine if the level of redispersion of fly ash correlates with measurable cohesive dust properties. This will contribute to the long-term project goal of developing models to the point where they can be used to help design particulate control devices for the lowest level of fine-particle emissions at a reasonable cost.

  5. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications: Task 9 - Selective agglomeration Module Testing and Evaluation.

    SciTech Connect

    Moro, N.` Jha, M.C.

    1997-09-29

    The primary goal of this project was the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing of both processes on six coals to optimize the processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report summarizes the findings of all the selective agglomeration (SA) test work performed with emphasis on the results of the PDU SA Module testing. Two light hydrocarbons, heptane and pentane, were tested as agglomerants in the laboratory research program which investigated two reactor design concepts: a conventional two-stage agglomeration circuit and a unitized reactor that combined the high- and low-shear operations in one vessel. The results were used to design and build a 25 lb/hr bench-scale unit with two-stage agglomeration. The unit also included a steam stripping and condensation circuit for recovery and recycle of heptane. It was tested on six coals to determine the optimum grind and other process conditions that resulted in the recovery of about 99% of the energy while producing low ash (1-2 lb/MBtu) products. The fineness of the grind was the most important variable with the D80 (80% passing size) varying in the 12 to 68 micron range. All the clean coals could be formulated into coal-water-slurry-fuels with acceptable properties. The bench-scale results were used for the conceptual and detailed design of the PDU SA Module which was integrated with the existing grinding and dewatering circuits. The PDU was operated for about 9 months. During the first three months, the shakedown testing was performed to fine tune the operation and control of various equipment. This was followed by parametric testing, optimization/confirmatory testing, and finally a

  6. Engineering Development of Advanced Physical Fine Coal Cleaning Technologies: Froth flotation. Quarterly technical progress report No. 21, October 1, 1993--December 31, 1993

    SciTech Connect

    Not Available

    1993-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate.

  7. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report No. 5, October--December, 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1996-02-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74{mu}m) clean coal. Economical dewatering of an ultrafine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the the University of Kentucky Center for Applied Energy Research will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. Accomplishments for the past quarter are described.

  8. Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator

    SciTech Connect

    Ying Li; Achariya Suriyawong; Michael Daukoru; Ye Zhuang; Pratim Biswas

    2009-05-15

    Experiments were carried out in a pilot-scale pulverized coal combustor at the Energy and Environmental Research Center (EERC) burning a Powder River Basin (PRB) subbituminous coal. A scanning mobility particle sizer (SMPS) and an electrical low-pressure impactor (ELPI) were used to measure the particle size distributions (PSDs) in the range of 17 nm to 10 m at the inlet and outlet of the electrostatic precipitator (ESP). At the ESP inlet, a high number concentration of ultrafine particles was found, with the peak at approximately 75 nm. A trimodal PSD for mass concentration was observed with the modes at approximately 80-100 nm, 1-2 {mu}m, and 10 {mu}m. The penetration of ultrafine particles through the ESP increased dramatically as particle size decreased below 70 nm, attributable to insufficient or partial charging of the ultrafine particles. Injection of nanostructured fine-particle sorbents for capture of toxic metals in the flue gas caused high penetration of the ultrafine particles through the ESP. The conventional ESP was modified to enhance charging using soft X-ray irradiation. A slipstream of flue gas was introduced from the pilot-scale facility and passed through this modified ESP. Enhancement of particle capture was observed with the soft X-ray irradiation when moderate voltages were used in the ESP, indicating more efficient charging of fine particles. 32 refs., 5 figs., 1 tab.

  9. Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator.

    PubMed

    Li, Ying; Suriyawong, Achariya; Daukoru, Michael; Zhuang, Ye; Biswas, Pratim

    2009-05-01

    Experiments were carried out in a pilot-scale pulverized coal combustor at the Energy and Environmental Research Center (EERC) burning a Powder River Basin (PRB) subbituminous coal. A scanning mobility particle sizer (SMPS) and an electrical low-pressure impactor (ELPI) were used to measure the particle size distributions (PSDs) in the range of 17 nm to 10 microm at the inlet and outlet of the electrostatic precipitator (ESP). At the ESP inlet, a high number concentration of ultrafine particles was found, with the peak at approximately 75 nm. A trimodal PSD for mass concentration was observed with the modes at approximately 80-100 nm, 1-2 microm, and 10 microm. The penetration of ultrafine particles through the ESP increased dramatically as particle size decreased below 70 nm, attributable to insufficient or partial charging of the ultrafine particles. Injection of nanostructured fine-particle sorbents for capture of toxic metals in the flue gas caused high penetration of the ultrafine particles through the ESP. The conventional ESP was modified to enhance charging using soft X-ray irradiation. A slipstream of flue gas was introduced from the pilot-scale facility and passed through this modified ESP. Enhancement of particle capture was observed with the soft X-ray irradiation when moderate voltages were used in the ESP, indicating more efficient charging of fine particles.

  10. Adverse effects of coal combustion related fine particulate matter (PM2.5) on nematode Caenorhabditis elegans.

    PubMed

    Sun, Lingmei; Lin, Zhiqing; Liao, Kai; Xi, Zhuge; Wang, Dayong

    2015-04-15

    The toxic effects of coal combustion related fine particulate matter (PM2.5), collected from Datong, Shanxi province, China, on nematode Caenorhabditis elegans were investigated. Exposure to PM2.5 resulted in deficits in development, reproduction, locomotion behavior, and lifespan, and induction of intestinal autofluorescence or reactive oxygen species (ROS) production. Prolonged exposure to PM2.5 led to more severe toxicity on nematodes than acute exposure. In addition, exposure to PM2.5 induced altered expression patterns of genes required for the control of oxidative stress. Reduction in mean defecation cycle length and developmental deficits in AVL and DVB neurons, which are involved in the control of defecation behavior, were also triggered by PM2.5 exposure. Thus, oxidative stress and abnormal defecation behavior may contribute greatly to the toxicity of coal combustion related PM2.5 in nematodes. The results also imply that the long-term adverse effects of coal combustion related PM2.5 on environmental organisms should be carefully considered.

  11. Sensor for Individual Burner Control of Firing Rate, Fuel-Air Ratio, and Coal Fineness Correlation

    SciTech Connect

    Wayne Hill; Roger Demler; Robert G. Mudry

    2006-03-01

    To minimize program cost, additional testing was performed in concert with EPRI-funded testing at the Coal Flow Test Facility in late July. The major focus of this effort was noise reduction. As it turned out, the main source of the noise proved to be related to electrical grounding issues and the adjustments needed to address these problems took most of the test period. Once those changes were in place, a very limited quantity of high quality data was obtained and an excellent correlation between the dynamic signature and coal flow was obtained. Additional data were then collected during August. Unfortunately, the sensor signal for the August data collection proved to be extremely weak. Therefore, Airflow Sciences will collect additional laboratory data in October before proceeding with the collection of field data. This will allow the calibration to be expanded to include a wider range of flow conditions and improve the potential applicability to data to be collected at the coal plants.

  12. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 16, July--September, 1996

    SciTech Connect

    Shields, G.L.; Moro, N.; Smit, F.J.; Jha, M.C.

    1996-10-30

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. 28 refs., 13 figs., 19 tabs.

  13. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, April 1, 1990--June 30, 1990

    SciTech Connect

    Hu, Weibai; Zhu, Ximeng; Bodily, D.M.; Wadsworth, M.E.

    1990-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  14. Combustion characterization of coal fines recovered from the handling plant. Quarterly technical progress report No. 2, January 1, 1995--March 31, 1995

    SciTech Connect

    Houshang, Masudi

    1995-04-01

    The main goal of this research project is to evaluate the combustion characteristics of the slurry fuels prepared from the recovered coal fines and plant coal fines. A specific study will include the combustion behavior, flame stability, ash behavior and emissions of SO{sub x}, NO{sub x} and particulate in a well insulated laboratory scale furnace in which the residence time and temperature history of the burning particles are similar to that of utility boiler furnace at 750,000 Btu/hr input and 20% excess air. The slurry fuel will be prepared at 60% solid to match the generic slurry properties, i.e., viscosity less than 500 cp, 100% of particles passing through 100 mesh and 80-90% of solid particles passing through 200 mesh. The coal blend is prepared using a mix of 15% effluent recovered coal and 85% plant fines. Combustion characteristics of the slurry fuels is determined at three different firing rates 750K, 625K, 500K Btu/hr. Finally a comparison of the results is made to determine the advantages of coal water slurry fuel over the plant coal blended form.

  15. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill; Roger Demler; Robert G. Mudry

    2005-01-01

    Additional calibration data were collected in the Coal Flow Test Facility early in this reporting period. These data comprised a total of 181 tests for stud and magnetic accelerometer mounts, with two mounting locations relative to two different pipe elbows, and including some tests with out-of-plane elbows upstream of the test section to produce coal ''roping''. The results found in analyzing these new data were somewhat disappointing: correlations for coal flow rate for a given mount type and mounting location were less accurate than desired, and degraded badly when data from other locations were included in the same analysis. Reviewing all of the data files (from both the earlier testing and recent calibration testing) disclosed a significant fraction of cases with several forms of noise. Eliminating these cases improved the correlations somewhat, but the number of cases that remained did not permit general conclusions to be drawn. It was finally learned that yet another type of noise is present in some data files, producing a strong effect on the correlation accuracy. The cases not subject to this noise correlated very well. It would be desirable to collect additional data in the Coal Flow Test Facility prior to moving on to field data collection, a change in program direction that would require a no-cost time extension.

  16. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect

    R.-H. Yoon; G.H. Luttrell; B. Luvsansambuu; A.D. Walters

    2000-10-01

    Work continued during the past quarter to improve the performance of the POC-scale unit. For the charging system, a more robust ''turbocharger'' has been fabricated and installed. All of the internal components of the charger have been constructed from the same material (i.e., Plexiglas) to prevent particles from contacting surfaces with different work functions. For the electrode system, a new set of vinyl-coated electrodes have been constructed and tested. The coated electrodes (i) allow higher field strengths to be tested without of risk of arcing and (ii) minimize the likelihood of charge reversal caused by particles colliding with the conducting surfaces of the uncoated electrodes. Tests are underway to evaluate these modifications. Several different coal samples were collected for testing during this reporting period. These samples included (i) a ''reject'' material that was collected from the pyrite trap of a pulverizer at a coal-fired power plant, (ii) an ''intermediate'' product that was selectively withdrawn from the grinding chamber of a pulverizer at a power plant, and (iii) a run-of-mine feed coal from an operating coal preparation plant. Tests were conducted with these samples to investigate the effects of several key parameters (e.g., particle size, charger type, sample history, electrode coatings, etc.) on the performance of the bench-scale separator.

  17. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, October 1, 1991--December 31, 1991

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Li, Jun; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

    1991-12-31

    The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report contains three sections, ``Transpassive Oxidation of Pyrite,`` ``Flotation and Electrochemical Pretreatment,`` and ``Flotation Kinetics of Coal and Coal Pyrite.``

  18. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 15, April--June 1996

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-07-25

    Goal is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Scope includes laboratory research and bench-scale testing on 6 coals to optimize these processes, followed by design/construction/operation of a 2-t/hr PDU. During this quarter, parametric testing of the 30-in. Microcel{trademark} flotation column at the Lady Dunn plant was completed and clean coal samples submitted for briquetting. A study of a novel hydrophobic dewatering process continued at Virginia Tech. Benefits of slurry PSD (particle size distribution) modification and pH adjustment were evaluated for the Taggart and Hiawatha coals; they were found to be small. Agglomeration bench-scale test results were positive, meeting product ash specifications. PDU Flotation Module operations continued; work was performed with Taggart coal to determine scaleup similitude between the 12-in. and 6-ft Microcel{trademark} columns. Construction of the PDU selective agglomeration module continued.

  19. Engineering design and analysis of advanced physical fine coal cleaning technologies. Final report

    SciTech Connect

    1994-08-01

    This report describes the gravity separation equipment models available in the Coal Cleaning Simulator developed by Aspen Technology, Inc. This flowsheet simulator was developed in collaboration with ICF Kaiser Engineers, a subcontractor to Aspen Technology, Inc., and CQ Inc., a subcontractor to ICF Kaiser Engineers. The algorithms and FORTRAN programs for modeling gravity separation, which include calculations for predicting process performance, and calculations for equipment sizing and costing, were developed by ICF Kaiser Engineers. Aspen Technology integrated these and other models into the ASPEN PLUS system to provide a simulator specifically tailored for modeling coal cleaning plants. ICF Kaiser Engineers also provided basic documentation for these models; Aspen Technology, Inc. has incorporated the information into this topical report. The report documents both the use and the design bases for the models, and provides to the user a good understanding of their range of applicability and limitations.

  20. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1992-01-01

    In order to develop additional confidence in the conceptual design of the advanced froth flotation circuit, a 2-3 TPH Proof-of-Concept (POC) facility was necessary. During operation of this facility, the ICF KE team will demonstrate the ability of the conceptual flowsheets to meet the program goals of maximum pyritic sulfur reduction coupled with maximum energy recovery on three DOE specified coals. The POC circuit was designed to be integrated into the Ohio Coal Development's facility near Beverly, Ohio. OCDO's facility will provide the precleaning unit operations and ICF KE will add the advanced froth flotation circuitry. The work in this task will include the POC conceptual design, flowsheet development, equipment list, fabrication and construction drawings, procurement specifications and bid packages and a facilities.

  1. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1993-02-12

    Work completed produced the criteria for additional engineering analysis, computation and detailed experimental benchscale testing for areas of uncertainty. The engineering analysis, computation, bench-scale testing and component development was formulated to produce necessary design information to define a commercially operating system. In order to produce the required information by means of bench-scale testing and component development, a uniform coal sample was procured. After agreement with DOE, a selected sample of coal from those previously listed was secured. The test plan was developed in two parts. The first part listed procedures for engineering and computational analyses of those deficiencies previously identified that could be solved without bench scale testing. Likewise, the second part prepared procedures for bench-scale testing and component development for those deficiencies previously identified in Task 3.

  2. Pelletization of fine coals. Technical progress report, March 1, 1992--May 31, 1992

    SciTech Connect

    Sastry, K.V.S.

    1992-09-01

    The first step consisted of producing a batch of seed pellets (in the size range {minus}4.75+4.00 mm) by pelletizing of 200 g of ground coal with desired additives (surface active agents and binders) and moisture content for 800 revolutions. The seed pellets are obtained by sieving the output from the batch drum. The second step involved the production of finished size pellets by layering the seed pellets with stepwise addition of moist feed which is again produced with desired additives and moisture content. Specifically, 25 g of the {minus}4.75+4.00 mm seed pellets are placed in the drum and 20 g of moist fluffy feed is added every 80 revolutions for five times. After 400 revolutions the pellets are sieved on the 4.75 mm screen and the screen undersize which corresponds to new seeds generated during the layering cycles is discarded. Now, 30 g of moist fluffy feed is added every 50 revolutions for five more cycles. These layered pellets are sieved again and the {minus}9.5+8.00 mm pellets. Coal agglomerates produced by the above described technique are nice and spherical. With our past experience with iron ore pelletization we learnt that as long as sufficient fluffy feed is available for the consumption by the seed pellets, they generally grow by forming layers consuming the feed rather than grow by coalescence. This is found to be true in the case of coal also. Growth by coalescence of coal pellets is found to yield raspberry type uneven agglomerates. After ascertaining the possibility of producing nice spherical pellets, several experiments have been conducted to develop the above standard procedure for making pellets in a reproducible way and testing them for their quality.

  3. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1991-01-01

    The design criteria for each unit operation have been developed based upon a number of variables. These variables, at this time, are based upon the best engineering design information available to industry. A number of assumptions utilized in the design criteria are uncertain. The uncertainties of inert atmospheres for grinding and flotation as well as pyrite depressants were answered by the Surface Control Project. It was determined that inerting was not required and no new'' reagents were presented that improved the flotation results. In addition, Tasks 5 and 6 results indicated the required reagent dosage for conventional flotation and advanced flotation. Task 5 results also indicated the need for a clean coal,thickener, the flocculent dosages for both the clean coal and refuse thickeners, and final dewatering requirements. The results from Tasks 5 and 6 and summarized in Task 7 indicate several uncertainties that require continuous long duration testing. The first is the possibility of producing a grab product for both the Pittsburgh and Illinois No. 6 coals in conventional flotation. Second what does long-term recirculation of clarified water do to the product quality The verification process and real data obtained from Tasks 5 and 6 greatly reduced the capital and operating costs for the process. This was anticipated and the test work indeed provided confirming data.

  4. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill; Roger Demler; Robert G. Mudry

    2005-04-01

    A no-cost time extension was requested, to permit additional laboratory testing prior to undertaking field data collection. This was received in this reporting period. To minimize program cost, this additional testing is planned to be performed in concert with EPRI-funded testing at the Coal Flow Test Facility. Since the EPRI schedule was undecided, a hiatus occurred in the test effort. Instead, a significant effort was exerted to analyze the available laboratory test data to see whether the source and nature of noise behaviors could be identified, or whether the key flow information could be extracted even in the presence of the noise. One analysis approach involved filtering the data numerically to reject dynamics outside of various frequency bands. By varying the center frequency and width of the band, the effect of signal frequency on flow dynamics could be examined. Essentially equivalent results were obtained for all frequency bands that excluded a neighborhood of the transducer resonance, indicating that there is little advantage to be gained by limiting the experimental frequency window. Another approach examined the variation of the dynamics over a series of 1-second windows of data, producing an improvement in the prediction of coal flow rate. Yet another approach compared the dynamics of a series of 1-second windows to those of a series of 5-second windows, producing still better results. These results will be developed further in the next reporting period, which should also include further laboratory testing at the Coal Flow Test Facility.

  5. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 4, October 1, 1994--December 31, 1994

    SciTech Connect

    1996-08-20

    The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this fourth quarter of the contract period, activities were underway under Tasks 2 and 3. Sufficient characterization of the bench-scale testing and pilot-plant testing results enabled the design and procurement activities to move forward. On that basis, activities in the areas of design and procurement that had been initiated during the previous quarter were conducted and completed.

  6. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, April 1996--June 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-07-31

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from April 1 - June 30, 1996.

  7. POC-scale testing of an advanced fine coal dewatering equipment/technique: Quarterly technical progress report No. 9, October 1996--December 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1997-01-21

    The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter in the laboratory dewatering studies were conducted using copper and aluminum ions showed that for the low sulfur clean coal slurry addition of 0.1 Kg/t of copper ions was effective in lowering the filter cake moisture from 29 percent to 26.3 percent. Addition of 0.3 Kg/t of aluminum ions provided filter cake with 28 percent moisture. For the high sulfur clean coal slurry 0.5 Kg/t of copper and 0.1 Kg/t of aluminum ions reduced cake moisture from 30.5 percent to 28 percent respectively. Combined addition of anionic (10 g/t) and cationic (10 g/t) flocculants was effective in providing a filter cake with 29.8 percent moisture. Addition of flocculants was not effective in centrifuge dewatering. In pilot scale screen bowl centrifuge dewatering studies it was found that the clean coal slurry feed rate of 30 gpm was optimum to the centrifuge, which provided 65 percent solids capture. Addition of anionic or cationic flocculants was not effective in lowering of filter cake moisture, which remained close to 30 percent for both clean coal slurries.

  8. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 25, October 1, 1994--December 31, 1994

    SciTech Connect

    1994-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  9. Carbonation as a binding mechanism for coal/calcium hydroxide pellets. Final technical report, 1 September, 1992--31 August, 1993

    SciTech Connect

    Rapp, D.; Lytle, J.; Hackley, K.; Dagamac, M.; Berger, R.; Schanche, G.

    1993-12-31

    This research was an investigation of calcium hydroxide, a sulfur-capturing sorbent, as a binder for coal fines. The reaction of carbon dioxide with calcium hydroxide, referred to as carbonation, was studied as a method for improving pellet quality. Carbonation forms a cementitious matrix of calcium carbonate. Research has demonstrated that calcium hydroxide is a viable binder for coal fines and that a roller-and-die pellet mill is an effective method of pellet formation. From a minus 28 mesh preparation plant fine coal sample, a roller-and-die pellet mill produced strong pellets when 5 and 10% calcium hydroxide was used as a binder. The pellets containing 10% calcium hydroxide strengthened considerably when air cured. This increase in strength was attributed to carbonation via atmospheric carbon dioxide. Pellets containing 10 wt% calcium hydroxide were produced using an extruder but pellets formed in this manner were much weaker than pellets produced with the roller-and-die mill. In tests performed using a laboratory hydraulic press, the effect of particle size and compaction pressure on pellet strength was studied. Particle distributions with mean sizes of 200, 90 and 40 microns were tested. The results indicate that pellet strength increased with decreasing particle size and increasing compaction pressure when calcium hydroxide was used as a binder. Pellets containing 10 wt% calcium hydroxide increased in strength by approximately 40% when air dried for one day. As above, this increase in strength was attributed to carbonation of the calcium hydroxide via atmospheric carbon dioxide.

  10. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill; Roger Demler; Robert G. Mudry

    2004-10-01

    Instrumentation difficulties encountered in the previous reporting period were addressed early in this reporting period, resulting in a new instrumentation configuration that appears to be free of the noise issues found previously. This permitted the collection of flow calibration data to begin. The first issues in question are the effects of the type and location of the transducer mount. Data were collected for 15 different transducer positions (upstream and downstream of an elbow in the pipe), with both a stud mount and a magnetic transducer mount, for each of seven combinations of air and coal flow. Analysis of these data shows that the effects of the transducer mount type and location on the resulting dynamics are complicated, and not easily captured in a single analysis. To maximize the practical value of the calibration data, further detailed calibration data will be collected with both the magnetic and stud mounts, but at a single mounting location just downstream of a pipe elbow. This testing will be performed in the Coal Flow Test Facility in the next reporting period. The program progress in this reporting period was sufficient to put us essentially back on schedule.

  11. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 13, October--December, 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-01-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit. During Quarter 13 (October--December 1995), testing of the GranuFlow dewatering process indicated a 3--4% reduction in cake moisture for screen-bowl and solid-bowl centrifuge products. The Orimulsion additions were also found to reduce the potential dustiness of the fine coal, as well as improve solids recovery in the screen-bowl centrifuge. Based on these results, Lady Dunn management now plans to use a screen bowl centrifuge to dewater their Microcel{trademark} column froth product. Subtask 3.3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter. Continuing Subtask 6.4 work, investigating coal-water-slurry formulation, indicated that selective agglomeration products can be formulated into slurries with lower viscosities than advanced flotation products. Subtask 6.5 agglomeration bench-scale testing results indicate that a very fine grind is required to meet the 2 lb ash/MBtu product specification for the Winifrede coal, while the Hiawatha coal requires a grind in the 100- to 150-mesh topsize range. Detailed design work remaining involves the preparation and issuing of the final task report. Utilizing this detailed design, a construction bid package was prepared and submitted to three Colorado based contractors for quotes as part of Task 9.

  12. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, July 1, 1991--September 30, 1991

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Li, Jun; Riley, A.; Turcotte, S.B.; Benner, R.E.; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tinghe; Wadsworth, M.E.

    1991-12-31

    The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report covers a Raman spectroscopy of species produced electrochemically on pyrite surfaces.

  13. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, January 1, 1990--March 31, 1990

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Bodily, D.M.; Wadsworth, M.E.

    1990-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  14. Surface electrochemical control for the fine coal and pyrite separation. Technical progress report, July 21, 1989--September 30, 1989

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Wadsworth, M.E.

    1989-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  15. Surface electrochemical control for the fine coal and pyrite separation. Technical progress report, January 1, 1992--March 31, 1992

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Zhu, Ximeng; Li, Jun; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

    1992-07-01

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  16. Surface electrochemical control for the fine coal and pyrite separation. Technical progress report, October 1, 1989--December 31, 1989

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Wadsworth, M.E.; Bodily, D.M.

    1989-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  17. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1992-01-01

    The construction of the DOE POC at the OCDO facility continued through this entire quarter. By the end of the quarter approximately 90% of all of the construction had been completed. All equipment has beeninstalled, checked for mechanical and installation and operated from a local pushbutton. During this quarter a review of items to be completed for start-up was compiled. This information was then presented to the construction subcontractors and agreement was concluded that all items will be completed and operational for processing coal by February 1, 1993. There are still several items that were not on site for installation during this quarter. These items are the flocculant controls supplied by Westec Engineering, Inc., and the discharge valve for the hyperbaric filter supplied by KHD. Neither of these items will prevent start-up. The flocculants can be manually controlled and provisions are all ready provided to bypass the hyperbaric filter to the Sharpels high-G centrifuge. Both of these items are scheduled for delivery in mid-January.

  18. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Bai, Yueyue; Liu, Zhaojun; Sun, Pingchang; Liu, Rong; Hu, Xiaofeng; Zhao, Hanqing; Xu, Yinbo

    2015-01-01

    The Meihe Basin is a Paleogene pull-apart basin. Long-flame coal, lignite and oil shale are coexisting energy resources deposited in this basin. Ninety-seven samples, including oil shales, coals, brown to gray silt and mudstone, have been collected from the oil shale- and coal-bearing layers to discover the rare earth element geochemistry. The total REE contents of oil shales and coals are 137-256 μg/g and 64-152 μg/g respectively. The chondrite-normalized patterns of oil shales and coals show LREE enrichments, HREE deficits, negative Eu anomalies and negligible Ce anomalies. The chemical index of alteration (CIA) as well as some trace elements is often used to reflect the paleoenvironment at the time of deposition. The results show that fine-grained sediments in both layers were deposited in dysoxic to oxic conditions and in a warm and humid climate, and coals were deposited in a warmer and more humid climate than oil shales. Oil shales and coals are both in the early stage of diagenesis and of terrigenous origin. Besides, diagrams of some major, trace and rare earth elements show that the fine-grained sediments of both layers in the Meihe Basin are mainly from the felsic volcanic rocks and granite, and that their source rocks are mostly deposited in the continental inland arc setting. The analysis of major elements shows that Si, Al, K and Ti, in both layers, are found mainly in a mixed clay mineral assemblage and that Si is also found in quartz. Sodium occurs primarily in clay minerals, whereas Ca is found mainly in the organic matter. In the coal-bearing layer, iron is mainly controlled by organic matter rather than detrital minerals. In contrast, in the oil shale-bearing layer, neither detrital minerals nor organic matter exert a control on the iron content. Analyzing the relationship between rare earth elements and major elements shows that REEs in the oil shales and the coals are both of terrigenous origin and are mainly controlled by detrital minerals

  19. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  20. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 15, April 1, 1992--June 30, 1992

    SciTech Connect

    Not Available

    1993-02-12

    The Department of Energy (DOE) awarded a contract entitled ``Engineering Development of Advanced Physical Fine Coal Cleaning Technology - Froth Flotation``, to ICF Kaiser Engineers with the following team members, Ohio Coal Development Office, Babcock and Wilcox, Consolidation Coal Company, Eimco Process Equipment Company, Illinois State Geological Survey, Virginia Polytechnic Institute and State University, Process Technology, Inc. This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  1. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 11, April--June, 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-07-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 tons of each of three project coals, by each process. During Quarter 11 (April--June, 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at the Lady Dunn Preparation Plant with the installation and calibration of a refurbished 30-inch diameter column. The evaluation of toxic trace element data for column flotation samples continued, with preliminary analysis indicating that reasonably good mass balances were achieved for most elements, and that significant reductions in the concentration of many elements were observed from raw coal, to flotation feed, to flotation product samples. Significant progress was made on Subtask 6.5 selective agglomeration bench-scale testing. Data from this work indicates that project ash specifications can be met for all coals evaluated, and that the bulk of the bridging liquid (heptane) can be removed from the product for recycle to the process. The detailed design of the 2 t/hr selective agglomeration module progressed this quarter with the completion of several revisions of both the process flow, and the process piping and instrument diagrams. Procurement of coal for PDU operation began with the purchase of 800 tons of Taggart coal. Construction of the 2 t/hr PDU continued through this reporting quarter and is currently approximately 60% complete.

  2. Hydrocarbon-oil encapsulated bubble flotation of fine coal using 3-in. ID flotation column. Technical progress report for the eleventh quarter, April 1--June 30, 1993

    SciTech Connect

    Peng, F.F.

    1996-05-01

    There are four modes of the collector dispersion techniques. They are (1) direct liquid additions and stirring, (2) ultrasonic energy collector dispersion, (3) atomized collector dispersion, and (4) gasified collector transported in air stream. Among those collector dispersion techniques, the technique using the gasified collector transported in air phase can be used to enhance the flotation performance with substantial reduction in collector usage and selectivity, compared to the flotation using direct liquid addition (and mechanical agitation) technique. In this phase of study, two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. The 1-in. ID flotation column was used to scale-up to 3-in. ID flotation column. The initial starting point to operate the 3-in ID flotation column were determined using both 1-in. and 3-in. flotation columns based on the three phases of work plans and experiment design. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal.

  3. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 11, April 1, 1991--June 30, 1991

    SciTech Connect

    Not Available

    1991-12-31

    This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. The conceptual flowsheet will be revised based on the results of the bench scale testing and areas will be identified that need further larger scale design data verification, to prove out the design.

  4. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ particle generation by rapid expansion of supercritical fluid solutions. Final technical report

    SciTech Connect

    Not Available

    1994-05-01

    The research conducted by Textron Defense Systems (TDS) represents a potential new and innovative concept for dispersed coal liquefaction. The technical approach is generation of ultra-fine catalyst particles from supercritical solutions by rapid expansion of either catalyst only, or mixtures of catalyst and coal material in supersaturated solvents. The process of rapid expansion of supercritical fluid solutions was developed at Battelle`s Pacific Northwest Laboratories for the intended purpose of providing a new analytical technique for characterizing supercritical fluids. The concept forming the basis of this research is that ultra-fine particles can be generated from supercritical solutions by rapid expansion of either catalyst or catalyst/coal-material mixtures in supersaturated solvents, such as carbon dioxide or water. The focal point of this technique is the rapid transfer of low vapor pressure solute (i.e., catalyst), dissolved in the supercritical fluid solvent, to the gas phase as the solution is expanded through an orifice. The expansion process is characterized by highly nonequilibrium conditions which cause the solute to undergo extremely rapid supersaturation with respect to the solvent, leading to nucleation and particle growth resulting in nanometer size catalyst particles. A supercritical expansion system was designed and built by TDS at their Haverhill facility.

  5. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. First annual report, September 1, 1990--August 30, 1991

    SciTech Connect

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  6. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ generation by rapid expansion of supercritical fluid solutions

    SciTech Connect

    Not Available

    1991-09-01

    The purpose of this program is to design and fabricate an experimental ultra-fine particle generation system; use this system to generate ultra-fine, iron compound, catalyst particles; and to access the ability of these ultra-fine catalyst particles to improve the performance of the solubilization stage of two-stage, catalytic-catalytic liquefaction processes. The effort applied to this program during this reporting period was devoted to experimental design and fabrication tasks.

  7. Testing of the 15-inch air-sparged hydrocyclone for fine coal flotation at the Homer City preparation plant

    SciTech Connect

    Miller, J.D.; Yi, Y.; Gopalakrishnan, S.; Battista, J.J.

    1993-12-31

    Previous plant testing had been limited to the processing of minus 100 mesh classifier overflow (Upper Freeport Coal {approximately} 20% ash) with the 6-inch air-sparged hydrocyclone (ASH-6C) as reported at Coal Prep 92. The ASH-6C unit was found to provide separation efficiencies equivalent, or superior, to separations with the ASH-2C system. During the summer of 1992 the construction of the first 15-inch air-sparged hydrocyclone prototype was completed by the Advanced Processing Technologies, Inc. Installation at the Homer City Coal Preparation Plant was accomplished and testing began in October 1992. The ASH-15C unit can operate at a flowrate as high as 1,000 gpm. Experimental results are reported with respect to capacity, combustible recovery and clean coal quality.

  8. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning. Third quarterly technical progress report, April 1996--June 30, 1996

    SciTech Connect

    Yoon, R.-H.; Mesenyashin, A.; Yan, E.S.; Luttrell, G.H.; Adel, G.T.

    1996-10-01

    The Pittsburgh Energy Technology Center (PETC) developed a triboelectrostatic separation (TES) process which is capable of removing mineral matter from coal without using water. A distinct advantage of this dry coal cleaning process is that it does not entail costly steps of dewatering which is a common problem associated with conventional fine coal cleaning processes. It is the objective of this project to conduct a series of proof-of-concept (POC) scale tests at a throughput of 200--250 kg/hr and obtain scale- up information. Prior to the POC testing, bench-scale test work will be conducted with the objective of increasing the separation efficiency and throughput, for which changes in the basic designs for the charger and the separator may be necessary. The bench- and POC- scale test work will be carried out to evaluate various operating parameters and establish a reliable scale-up procedure. The scale-up data will be used to analyze the economic merits of the TES process. At present, the project is at the stage of engineering design (Task 3). Work accomplished during this reporting period include the construction of a Faraday Cage for measurement of particle charges (Subtask 3.1), construction of a bench-scale triboelectrostatic separator (Subtask 3.2) and development of a theoretical model for predicting motion of charged particles in a non-uniform electrostatic field (Subtask 3.2). This model will be useful for designing the POC module.

  9. Fundamental study for improvement of dewatering of fine coal/refuse. Annual report, August 1982-August 1983

    SciTech Connect

    Chiang, S.H.; Klinzing, G.E.; Morsi, B.J.; Tierney, J.W.; Adams, J.; Bhat, N.; Binkley, T.; Chi, S.M.; Kakwani, R.; Qamar, I.

    1983-09-01

    The overall objective of the study is to seek improved methods of dewatering through a better understanding of the filtration and post-filtration processes. As a first step, efforts have been focused on the mechanism of dewatering in terms of basic properties of coal (and refuse) particles and microstructures of filter cakes, and their relations to filtration rate and final moisture content. Pittsburgh seam-Bruceton Mine coal was used as a base coal with experiments also being conducted with Upper Freeport and Illinois No. 6 coals. During the past year, filter cakes from the above coals with widely varied size ranges were micrographically characterized. The effects of a number of surface active agents and of entrapped air bubbles on the filter cake properties were also studied. A module of the network model for calculating single phase permeabilities was completed and tested. The report is divided into four parts: summary and deliverables; work forecast for the 1983-84; detailed descriptions of technical progress for particle/filter cake characterization; theoretical modeling, and enhanced dewatering methods; and appendices. 11 references, 35 figures, 11 tables.

  10. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly progress report No. 10, January--March 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-04-27

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and benchscale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 ton lots of each of three project coals, by each process. The project began in October, 1992 and is scheduled for completion by June, 1997. During Quarter 10 (January--March, 1995), preliminary work continued for the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at the Lady Dunn Preparation Plant. Towards this end, laboratory flotation testing and refurbishing of the column have been started. The final version of the Subtask 4.2 Advanced Flotation Process Optimization Research topical report was issued, as was a draft version of the Subtask 4.3 report discussing the formulation of coal-water slurry fuels (CWF) from advanced flotation products. A number of product samples from Subtask 4.4 testing were sent to both Combustion Engineering and Penn State for combustion testing. The evaluation of toxic trace element analyses of column flotation products also continued. The detailed design of the 2 t/hr PDU was essentially completed with the approval of various process flow, plant layout, electrical, and vendor equipment drawings. The final version of the Subtask 6.5 -- Selective Agglomeration Bench-Scale Design and Test Plan Report was issued during this reporting quarter. Design and construction of this 25 lb/hr selective agglomeration test unit was completed and preliminary testing started. Construction of the 2 t/hr PDU began following the selection of TIC. The Industrial Company as the construction subcontractor.

  11. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, November 9, 1992--February 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    The mixed iron/alumina pillared clay catalysts and clay-supported iron catalysts have been shown in previous reports of this project to significantly improve yields of heptane-soluble products obtained in the liquefaction of both as received and acid-exchanged Wyodak subbituminous coal and Blind Canyon bituminous coal. In this quarter, the soluble product (LSW) obtained from the noncatalytic low-severity liquefaction of Wyodak coal was used as a feed to determine the activity of iron based catalysts for the hydrogenation and depolymerization steps. Comparison data for liquefaction of the soluble LSW with other catalysts were desired, and these data were obtained for a dispersed form of iron sulfide, prepared via iron hydroxyoxide (PETC method). The iron oxyhydroxide catalyst was directly precipitated on LSW product using either water or ethanol as the solvent. An insight into the functioning of the mixed iron/alumina pillared clay in coal liquefaction was investigated by preparing and studying an iron oxoaluminate structure. An investigation of new methods for the production of tetralin soluble iron oxometallate catalysts and the determination of their catalytic activities was continued in this quarter. The hydrogenation activity of iron oxoaluminate was investigated using pyrene and 1-methylnaphthalene as the test compounds, and results were compared with thermal reactions. In order to determine the loss of activity, recovered catalyst was recycled a second time for the hydrotreating of pyrene. Reaction of 1-methylnaphthalene with iron oxoaluminate also gave very high conversion to 1- and 5-methyltetralins and small amount of 2- and 6-methyltetralins. Liquefaction of Wyodak subbituminous and Blind Canyon bituminous coal was investigated using an in situ sulfided soluble iron oxoaluminate catalyst.

  12. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, February 9, 1993--May 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production and utilization of tetralin-soluble iron oxometallate precursors for coal liquefaction catalysts was continued in this quarter. Further descriptions of the catalytic activities of the sulfided forms were obtained. The hydrogenation activities of catalysts derived from iron oxotitanate and cobalt oxoaluminate were investigated using pyrene as a the test compound, and results were compared with thermal reactions. The hydrogenation activity of iron oxotitanate was superior to other catalysts including iron oxoaluminate. The hydrogenation activity of cobalt oxoaluminate was similar to that of iron oxoaluminate reported in previous quarterly report. The liquefaction of Wyodak subbituminous coal was investigated using in situ sulfided iron oxotitanate catalyst. In order to improve the usefulness of iron oxoaluminate as a liquefaction catalyst, iron oxoaluminate was supported on acid-treated montmorillonite (K-10). Supporting the iron oxoaluminate on an acidic support significantly improved the hydrogenation activity of iron oxoaluminate. The hydrocracking activity was increased by a large factor. Thus the aluminate and titanate structures surrounding the pyrrhotite that forms during sulfidation have a beneficial effect in preventing deactivation of the iron sites, and the presence of the acidic sites in the clay results in effective catalytic synergism between catalyst and support. These clay-supported iron oxometallates are highly promising catalysts for coal liquefaction. Iron oxyhydroxide and triiron supported on acid-treated montmorillonite (K-10) were tested for the liquefaction of ion-exchanged Wyodak (IEW) to minimize effects of the coal mineral matter. Both sulfided catalysts gave very high conversions of coal to THF-soluble and heptane-soluble (oils) products.

  13. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 4

    SciTech Connect

    Smit, F.J.; Hogsett, R.F.; Jha, M.C.

    1993-11-04

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 48-month program which started on September 30, 1992. This report discusses the technical progress made during the 4th quarter of the project from July 1 to September 30, 1993.

  14. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Ninth quarterly technical progress report, September 1, 1992-- December 31, 1992

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Jiang, C.L.

    1992-12-31

    This is the 9th quarterly technical progress report for the project entitled ``Pyrite surface characterization and control for advanced fine coal desulfurization technologies``, DE-FG22-90PC90295. The work presented in this report was performed from September 1, 1992 to November 31, 1992. The objective of the project is to conduct extensive fundamental studies on the surface chemistry of pyrite oxidation and flotation and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the surface oxidation of pyrite in various electrolytes was investigated. It has been demonstrated, for the first time, that borate, a pH buffer and electrolyte used by many previous investigators in studying sulfide mineral oxidation, actively participates in the surface oxidation of pyrite. In borate solutions, the surface oxidation of pyrite is tronly enhanced. The anodic oxidation potential of pyrite is lowered by more than 0.4 volts. The initial reaction of the borate enhanced pyrite oxidation can be described by:FeS{sub 2} + B(OH){sub 4}{sup =} ------> [S{sub 2}Fe-B(OH){sub 4}]{sub surf} + e. This reaction is irreversible and is controlled by the mass-transfer of borate species from the solution to the surface. It has been shown that the above reaction inhibits the adsorption of xanthate on pyrite. Comparative studies have been made with other sulfide minerals. The solution chemistry of the iron-borate systems have been studied to understand the electrochemical results.

  15. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning. Second quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Yoon, R.-H.; Luttrell, G.H.; Adel, G.T.

    1996-08-01

    The Pittsburgh Energy Technology Center (PETC) developed a triboelectrostatic separation (TES) process which is capable of removing mineral matter from coal without using water. A distinct advantage of this dry coal cleaning process is that it does not entail costly steps of dewatering which is a common problem associated with conventional fine coal cleaning processes. It is the objective of this project to conduct a series of proof-of-concept (POC) scale tests at a throughput of 200--250 kg/hr and obtain scale- up information. Prior to the POC testing, bench-scale test work will be conducted with the objective of increasing the separation efficiency and throughput, for which changes in the basic designs for the charger and the separator may be necessary. The bench- and POC- scale test work will be carried out to evaluate various operating parameters and establish a reliable scale-up procedure. The scale-up data will be used to analyze the economic merits of the TES process. All required documents associated with project planning were completed and submitted to DOE for approval during the second quarter of this project. Approval of the project work plan is still pending at this time subject to additional review by DOE of requested modifications to the statement of work. Accomplishments during this reporting period include the set-up of an apparatus for assessing tribocharger performance, continued construction of the bench-scale (1 kg/hr) triboelectrostatic separator and initial development of a fundamental model for predicting the motion of charged particles in a non-uniform electrostatic field.

  16. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, May 8, 1993--August 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    High hydrocracking and liquefaction activity can be achieved with 10 wt.% of sulfided clay-supported iron catalysts. Further tests and demonstrations of this activity were required. Iron hydroxyoxide was generated on acid-treated montmorillonite. The new batch of catalyst exhibited high hydrocracking activity, Three hour tests with the solubilized intermediate from low-severity treatment of Wyodak coal (LSW) gave a high conversion (45%) of the heptane-insoluble LSW intermediate to heptane-soluble products. An investigation of new methods for the production of catalysts from tetralin-soluble iron oxometallates and the determination of their catalytic activities was continued in this quarter. Iron oxotitanate and iron oxoaluminate gave very high conversions of LSW to heptane solubles (61% and 54%, respectively). The high yields of heptane soluble products obtained with these catalysts offers a potential for use in liquefaction stages with solubilized coal, or at least serve as a model for producing active catalysts via mixed metal oxides. Methods for successfully testing dispersed iron catalysts with the low-severity intermediate were also devised. Catalyst recovered from the dispersed iron hydroxyoxide-catalyzed reaction of ion-exchanged Wyodak gave a high conversion (47%) of LSW to heptane solubles.

  17. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, November 9, 1991--February 8, 1992

    SciTech Connect

    Olson, E.S.

    1995-10-01

    The investigation of methods for the production and testing of iron-pillared clay catalysts was continued in this quarter. The surface area of the mixed alumina/iron pillared clay catalyst decreased to 51 m{sup 2}/g on sulfidation. Thus the stability of the alumina pillars during the sulfidation and thermal treatments prevented the total collapse that occurred in the case of the iron-pillared clays. Previously the mixed alumina/iron pillared clays were tested for hydrocracking activities with bibenzyl. This testing was extended to a determination of activity with a second model compound substrate (pyrene), representative of the polynuclear aromatic systems present in coal. Testing of the mixed alumina/iron-pillared catalysts with 1-methylnaphthalene gave interesting results that demonstrate shape selectivity. The clay-supported iron hydroxyoxide catalysts prepared by impregnation of iron species on acidic clays were further investigated. Sulfidation of these catalysts using the carbon disulfide in situ method gave hydrocracking activities with bibenzyl that were somewhat less than those obtained by presulfidation with H{sub 2}/H{sub 2}S mixtures. Liquefaction of Wyodak subbituminous coal was very successful with the iron impregnated clay catalyst, giving a highly soluble product. High conversions were also obtained with the mixed alumina/iron-pillared clay catalyst, but the yield of oil-solubles was considerably lower. Several new catalysts were synthesized with the idea of decreasing the pillar density and thereby increasing the micropore volume. These catalysts were prepared by first pillaring with an organic ammonium pillaring agent, then introducing a lower number of silica or alumina pillars. Finally the iron component was added either before or after thermal removal of organic pillars.

  18. Control of fine particulate emissions from coal-fired utility boilers: Spin filter collection device (rotary cyclone)

    SciTech Connect

    He, Bo X.

    1990-01-01

    A bench-scale test program has been performed to evaluate the concept of placing a porous cylindrical surface (such as a metal screen) at the core of a container and spinning the surface with an external motor for fine particulate/gas separation. The rotating surface enhances the centrifugal effects in the annular region and provides a smooth transition between the flow in the annular and core regions and acts like an enhanced cyclone. It is therefore called a rotary cyclone.'' The porous surface is self-cleaning and offers good steady-state pressure drop characteristics. Objectives of this project are: (1) to carry out theoretical and experimental investigations using the rotary cyclone concept to capture particulates in the 0.5 to 10 micron size range; and (2) to evaluate its economic feasibility based on an engineering scale-up and comparison with conventional fabric filter and electrostatic precipitator systems. It was demonstrated that the efficiency in separating fine particulates is governed by two major characteristics, i.e., the magnitude of the centrifugal force and the approach velocity or the gas-to-surface area ratio. Results from the bench-scale tests have shown a collection efficiency of well over 99% for a typical fly ash. A preliminary conceptual design for a 40 MW installation was developed based on the experimental work. 4 refs., 4 figs., 8 tabs.

  19. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  20. Assessment of reduction behavior of hematite iron ore pellets in coal fines for application in sponge ironmaking

    SciTech Connect

    Kumar, M.; Patel, S.K.

    2009-07-01

    Studies on isothermal reduction kinetics (with F grade coal) in fired pellets of hematite iron ores, procured from four different mines of Orissa, were carried out in the temperature range of 850-1000C to provide information for the Indian sponge iron plants. The rate of reduction in all the fired iron ore pellets increased markedly with a rise of temperature up to 950C, and thereafter it decreased at 1000C. The rate was more intense in the first 30 minutes. All iron ores exhibited almost complete reduction in their pellets at temperatures of 900 and 950C in 2 hours' heating time duration, and the final product morphologies consisted of prominent cracks. The kinetic model equation 1-(1-a){sup 1/3}=kt was found to fit best to the experimental data, and the values of apparent activation energy were evaluated. Reductions of D. R. Pattnaik and M. G. Mohanty iron ore pellets were characterized by higher activation energies (183 and 150 kJ mol{sup -1}), indicating carbon gasification reaction to be the rate-controlling step. The results established lower values of activation energy (83 and 84 kJ mol{sup -1}) for the reduction of G. M. OMC Ltd. and Sakaruddin iron ore pellets, proposing their overall rates to be controlled by indirect reduction reactions.

  1. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, May 9, 1992--August 8, 1992

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production of mixed pillared clay catalysts and clay-supported catalysts and determination of their catalytic activities were continued in this quarter. To demonstrate the reproducibility of the preparative method for high activity iron/alumina-pillared montmorillonite catalysts, a new batch of the catalyst was prepared and tested for hydrocracking activity with bibenzyl. This preparation gave conversion and product distribution similar to that reported previously. The mixed iron/alumina-pillared clay was also prepared using a pillaring solution that was aged for longer period of time. To determine the importance of the type of pillaring support in hydrocracking activity, iron/zirconia-pillared montmorillonite was prepared using the same technique as that for iron/alumina-pillared montmorillonite. The reaction of bibenzyl with the sulfided iron/zirconia-pillared catalyst gave a lower hydrocracking conversion than the iron/alumina-pillared catalyst. Addition of a second catalytic metal to the clay support was attempted to determine if a synergistic effect could improve liquefaction. Ferric nitrate and stannous chloride were added to the clay, but the resulting catalyst was relatively poor for hydrocracking and hydrogenation compared with ferric nitrate supported on the clay. New disposable iron catalysts with high acidity and surface area are desired for coal liquefaction. Synthetic iron aluminosilicates were prepared by methods similar to those used for the nickel-substituted synthetic mica montmorillonite (NiSMM) catalysts, which are very effective for hydrogenation and reforming of hydrocarbons. The iron aluminosilicate catalysts were tested for hydrocracking and hydrogenation of bibenzyl, naphthalene and pyrene. Pyrene hydrogenation was effectively catalyzed by the sulfided synthetic iron catalyst.

  2. Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background.

    PubMed

    Sun, Lingmei; Wu, Quli; Liao, Kai; Yu, Peihang; Cui, Qiuhong; Rui, Qi; Wang, Dayong

    2016-02-01

    Contribution of chemical components in coal combustion related fine particulate matter (PM2.5) to its toxicity is largely unclear. We focused on heavy metals in PM2.5 to investigate their contribution to toxicity formation in Caenorhabditis elegans. Among 8 heavy metals examined (Fe, Zn, Pb, As, Cd, Cr, Cu, and Ni), Pb, Cr, and Cu potentially contributed to PM2.5 toxicity in wild-type nematodes. Combinational exposure to any two of these three heavy metals caused higher toxicity than exposure to Pb, Cr, or Cu alone. Toxicity from the combinational exposure to Pb, Cr, and Cu at the examined concentrations was higher than exposure to PM2.5 (100 mg/L). Moreover, mutation of sod-2 or sod-3 gene encoding Mn-SOD increased susceptibility in nematodes exposed to Fe, Zn, or Ni, although Fe, Zn, or Ni at the examined concentration did not lead to toxicity in wild-type nematodes. Our results highlight the potential contribution of heavy metals to PM2.5 toxicity in environmental organisms.

  3. [Study on the Relationship between the Inhalable Fine Particulate Matter of Xuanwei Coal Combustion and Lung Cancer].

    PubMed

    Yang, Jiapeng; Cao, Yu; Huang, Yunchao; Li, Guangjian; Ye, Lianhua; Zhao, Guangqiang; Lei, Yujie; Chen, Xiaobo; Tian, Linwei

    2015-07-01

    背景与目的 云南省宣威地区是中国乃至世界肺癌的高发区,肺癌已成为制约当地社会经济发展和影响社会民生的重要因素。煤炭是当地主要的生活燃料,燃煤是当地室内污染的主要来源。本研究探讨云南宣威不同肺癌发病率地区烟煤燃烧过程中可吸入细颗粒物(fine particulate matter, PM2.5)产出情况,以及不同地区PM2.5成分异同。探讨吸入细颗粒物与当地肺癌高发的关系。方法 收集宣威市来宾镇老林煤矿C1煤层、宝山镇虎场煤矿K7煤层、文兴镇太平煤矿M30煤层的煤矿进行燃烧试验。收集室内的空气中的PM2.5进行称重,元素分析,用电子显微镜观察其形态,对比三种PM2.5异同。对宣威地区的肺癌患者的术后标本进行电子显微镜观察。结果 室内空气中的PM2.5浓度分别为C1煤(8.244±1.460)mg/m³,K7煤(5.066±0.984)mg/m³,K7煤(5.071±1.460)mg/m³;三组空气中PM2.5浓度两两比较差异有统计学意义(Ρ=0.029)。C1煤层中滤膜上的杂质有(Silicon, Si)和氧(Oxygen, O)元素富集,三组滤膜上均发现了碳(Carbon, C),硫(Sulfur, S)的聚集,在部分的滤膜上可见游离的二氧化硅(SiO2),部分滤膜上有铝(Aluminium, Al)、钙(Calcium, Ca)元素的聚集。C1煤层与其他煤层相比所产生颗粒物形态不规则,成团块状,杂质较多。在部分的宣威来宾地区的肺癌患者术后标本中,发现纳米级细颗粒的杂质。结论 C1煤与K7和M30煤燃烧产生的PM2.5不同,PM2.5的成分可能与当地肺癌高发相关。.

  4. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction. Technical progress report, October 25, 1990--October 24, 1991: Draft

    SciTech Connect

    Klein, M.T.

    1991-12-30

    The purpose of this work is to investigate the kinetics-assisted design, synthesis and characterization of fme-pardcle, unsupported catalysts for coal liquefaction. The goal is to develop a fundamental understanding of coal catalysis and catalysts that will, in turn, allow for the specification of a novel optimal catalyst for coal liquefaction.

  5. Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM2.5) Fraction of Coal Combustion Ash

    SciTech Connect

    T. L. Robl; J. G. Groppo; R. Rathbone; B. Marrs; R. Jewell

    2008-07-18

    polyethylene terphthalate filled polymers were prepared and subjected to SEM analysis to verify that the UFA was well dispersed. The addition of fillers increased the modulus of the HDPE composite, but decreased both the offset yield stress and offset yield strain, showing that the fillers essentially made the composite stiffer but the transition to plastic deformation occurred earlier in filled HDPE as stress was applied. Similar results were obtained with TPE, however, the decrease in either stress or strain at offset yield were not as significant. Dynamic mechanical analyses (DMA) were also completed and showed that although there were some alterations in the properties of the HDPE and TPE, the alterations are small, and more importantly, transition temperatures are not altered. The UFA materials were also tested in expanded urethanes, were improvements were made in the composites strength and stiffness, particularly for lighter weight materials. The results of limited flammability and fire safety testing were encouraging. A flowsheet was developed to produce an Ultra-Fine Ash (UFA) product from reclaimed coal-fired utility pond ash. The flowsheet is for an entry level product development scenario and additional production can be accommodated by increasing operating hours and/or installing replicate circuits. Unit process design was based on experimental results obtained throughout the project and cost estimates were derived from single vendor quotes. The installation cost of this plant is estimated to be $2.1M.

  6. Apparatus for processing coal

    SciTech Connect

    Williams, R.M.

    1985-02-12

    Apparatus for processing coal to prevent the creation of extreme fines and to extract pyrites from the principal coal fractions in which there are two air circulating circuits having processing components which cooperate in their respective circuits to result initially in substantial extraction of fines in the first circuit while releasing principal granulated coal fractions and pyrites to the second circuit where specific gravity separation of the pyrites and principal coal fractions occur. The apparatus includes a source of drying heat added to the air moving in the circuits and delivered at the places where surface moisture drying is most effective. Furthermore, the apparatus is operated so as to reduce coal to a desired size without creating an excessive volume of extreme fines, to separate pyrites and hard to grind components by specific gravity in a region where fines are not present, and to use the extreme fines as a source of fuel to generate drying heat.

  7. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ generation by rapid expansion of supercritical fluid solutions. Quarterly technical progress report, October 1, 1990--December 31, 1990

    SciTech Connect

    Not Available

    1991-08-01

    The program objective is to generate ultra-fine catalyst particles (20 to 400 {Angstrom} in size) and quantify their potential for improving coal dissolution in the solubilization stage of two-stage catalytic-catalytic liquefaction systems. It has been shown that catalyst activity increases significantly with decreasing particle size for particle sizes in the submicron range. Ultra-fine catalyst particle generation will be accomplished using a novel two-step process. First, the severe conditions produced by a supercritical fluid (e.g., supercritical H{sub 2}O or CO{sub 2}) will be used to dissolve suitable catalyst compounds (e.g., Fe{sub 2}O{sub 3}, FeS{sub 2}, and/or Fe(CO){sub 5}). Sulfur containing compounds may be added to the supercritical solvent during catalyst dissolution to enhance the catalytic activity of the resulting ultra-fine, iron based, catalyst particles.

  8. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Eighth quarterly technical progress report, June 1, 1992--August 31, 1992

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, C.L.

    1992-12-01

    The objective of the project is to conduct extensive fundamental studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the influence of the impurity content, particularly coal/carbon content, on the electrochemical oxidation of pyrite surfaces was investigated. The studies demonstrate that the coal/carbon content in coal-pyrite has a determining effect on the surface reactivity of pyrite. The oxidation behavior of high carbon-content coal-pyrite is completely different from that of purer coal-pyrite and ore-pyrite. The effects of flotation gases on the flotation behavior of coal and the surface hydrophobicity of various coal-pyrite were investigated. It was found from the lab-scale column flotation studies that among the various gases studied (air, oxygen, argon, nitrogen and carbon dioxide), carbon dioxide produced the best results with a combustible recovery of 90% and ash-content of less than 9 percent. Finally, the surface energetic studies revealed that the surfaces of pyrites and coals produced by wet grinding is more heterogenous than that prepared by dry grinding.

  9. Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 4, July 1, 1993--September 30, 1993

    SciTech Connect

    Kramlich, J.C.; Hoffman, D.A.; Butcher, E.K.

    1993-10-29

    Laboratory work and studies of full-scale coal-fired boilers have identified two general mechanisms for ash production. The vast majority of the ash is formed from mineral matter that coalesces as the char burns, yielding particles that are normally larger than 0.5 {mu}m. The second major mechanism is the generation of a submicron aerosol through a vaporization/condensation mechanism. Previous work has shown that pulverized bituminous coals that were treated by coal cleaning (via froth flotation) or aerodynamic sizing exhibited altered aerosol emission characteristics. Specifically, the emissions of aerosol for the cleaned and sized coals increased by as much as one order of magnitude. The goals of the present progress are to: (1) perform measurements on carefully characterized coals to identify the means by which the coal treatment increases aerosol yields; (2) investigate means by which coal cleaning can be done in a way that will not increase aerosol yields; (3) identify whether this mechanism can be used to reduce aerosol yields from systems burning straight coal. This paper discusses model description and model formulation, and reports on the progress of furnace design and construction, and coal selection.

  10. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 18, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    This task is the actual demonstration of the advanced froth flotation technology. All previous work has led to this task. ICF KE technicians and process engineers from the team will operate the plant over a 10 month period to demonstrate the capability of the technology to remove 85% of the pyritic sulfur from three different test coals while recovering at least 85% of the as-mined coal`s energy content. Six major subtasks have been included to better define the overall work scope for this task. The ICF KE team will test the Pittsburgh No. 8 seam, the Illinois No. 6 seam and the Upper Freeport seam; the team will operate the circuit in a continuous run; the team will analyze all samples generated in those runs and will develop a plan to store and dispose of the coal and refuse products. All laboratory data generated will be accessible to all team members and the DOE. The test program for the Pittsburgh No. 8 coal began during March 1, 1993. An arrangement has been made between ICF Kaiser Engineers (ICF KE) and American Electric Power (AEP), who is the host for the DOE POC facility. The arrangement calls for AEP to purchase the raw coal and use the clean coal generated by the DOE POC facility. This arrangement permits the processing of raw coal at a very minimal cost of purchasing the raw coal.

  11. Spiral concentrators recover fine coal

    SciTech Connect

    Fiscor, S.

    2005-12-15

    Compound spirals offer better performance in a more efficient configuration. Prep plant operators in the US are increasingly opting to use spiral concentrators. They are easy to install, operate and maintain but their downfall is low capacity. The article describes spirals available from PrepTech/Multotec, Krebs Engineers and Roche MT. It reports on research on spiral concentrator technology. 1 ref., 4 figs.

  12. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Fourth quarterly technical progress report, June 1, 1991--August 31, 1991

    SciTech Connect

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  13. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Third quarterly technical progress report, March 1, 1991--May 30, 1991

    SciTech Connect

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  14. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction. Technical progress report, October 26, 1990--January 26, 1991: Draft

    SciTech Connect

    Klein, M.T.

    1991-02-22

    The first task in our proposed study of catalysts for coal liquefaction was to prepare ultrafine dispersed metal sulfide particles by reactive precipitation from solutions of appropriate metal precursors. At this point, equipment to allow us to prepare these air-sensitive materials in an anaerobic environment has been acquired and assembled. Initial experiments aimed at synthesizing iron sulfide particles have been initiated. As part of the investigation of short contact time catalytic coal liquefaction, initial efforts focused on the noncatalytic pyrolysis reactions of coal and a model compound, Dibenzyl ether (DBE). Two different reactor configurations were examined; catalytic experiments are planned for the coming month.

  15. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 2, January--March 1993

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-04-26

    The main purpose of this project is engineering development of advanced column flotation and selective agglomeration technologies for cleaning coal. Development of these technologies is an important step in the Department of Energy program to show that ultra-clean fuel can be produced from selected United States coals and that this fuel will be a cost-effective replacement for a portion of the premium fuels (oil and natural gas) burned by electric utility and industrial boilers in this country. Capturing a relatively small fraction of the total utility and industrial oil-fired boiler fuel market would have a significant impact on domestic coal production and reduce national dependence on petroleum fuels. Significant potential export markets also exist in Europe and the Pacific Rim for cost-effective premium fuels prepared from ultra-clean coal. The replacement of premium fossil fuels with coal can only be realized if retrofit costs, and boiler derating are kept to a minimum. Also, retrofit boiler emissions must be compatible with national goals for clean air. These concerns establish the specifications for the ash and sulfur levels and combustion properties of ultra-clean coal discussed below. The cost-shared contract effort is for 48 months beginning September 30, 1992, and ending September 30, 1996. This report discusses the technical progress made during the second 3 months of the project, January 1 to March 31, 1993.

  16. Development, testing, and demonstration of an optimal fine coal cleaning circuit. Task 5: Evaluation of bench-scale test results and equipment selection for in-plant pilot tests

    SciTech Connect

    1995-12-14

    The overall objective of this research effort is to improve the efficiency of fine coal flotation in preparation plants above that of currently used conventional cells. In addition to evaluating single-stage operation of four selected advanced flotation devices, the project will also evaluate them in two-stage configurations. The project is being implemented in two phases. Phase 1 comprises bench-scale testing of the flotation units, and Phase 2 comprises in-plant, proof-of-concept (POC), pilot-scale testing of selected configurations at the Cyprus Emerald preparation plant. The Task 5 report presents the findings of the Phase 1 bench-scale test results and provides the basis for equipment selection for Phase 2. Four advanced flotation technologies selected for bench-scale testing are: Jameson cell; Outokumpu HG tank cell; packed column; and open column. In addition to testing all four of the cells in single-stage operation, the Jameson and Outokumpu cells were tested as candidate first-stage cells because of their propensity for rapid attachment of coal particles with air bubbles and low capital and operating costs. The column cells were selected as candidate second-stage cells because of their high-efficiency separation of low-ash products from high-ash feed coals. 32 figs., 72 tabs.

  17. INEZ, KENTUCKY COAL SLURRY SPILL

    EPA Science Inventory

    On October 11th, 2000, a breach of a coal slurry impoundment released approximately 210 million gallons of coal slurry ( a mixture of fine coal particles, silt, clay, sand and water) into the Big Andy Branch, Wolf Creek, and Coldwater Fork. Approximately 75 river miles were affec...

  18. POC-scale testing of an advanced fine coal dewatering equipment/technique: Quarterly technical progress report,January--March 1997

    SciTech Connect

    Tao, D.; Grappo, J.G.; Parekh, B.K.

    1997-05-07

    Laboratory centrifugal dewatering tests were conducted to study the effects of anionic and cationic flocculants on filtration of PMCC compliance (low sulfur) and non-compliance (high sulfur) ultrafine coal slurry. The results obtained with compliance coal indicated that use of 30 g/t anionic flocculant reduced filter cake moisture from 32. 3 to 29.0 percent and increased solids recovery by two absolute percentage points. Use of cationic flocculant had no effects on solids recovery but lowered cake moisture to 27 percent at a dosage of 15 g/t. With the non-compliance coal slurry addition of 15 g/t anionic flocculant lowered cake moisture from 30 to 28.5 percent with marginal effects on solids recovery; addition of cationic flocculant reduced cake moisture by one absolute percentage point. Both flocculants showed marginal effects on solids recovery. Laboratory vacuum filter leaf filtration studies showed that use of flocculants considerably increased filtration kinetics. For example, addition of 15 g/t anionic flocculant to the compliance coal slurry increased filtration kinetics by 10 times and addition of 15 g/t.

  19. Combustion characterization of coal fines recovered from the handling plant. Quarterly technical progress report No. 9, October 1, 1996--December 31, 1996

    SciTech Connect

    Houshang, M.; Samudrala, S.R.; Chenevert, L.

    1997-01-01

    Ash disposals, coal-water slurry fuel and its feedstocks were analyzed for concentrations of major mineral elements based on sulfur free and ash basis. Elements with most concentration levels were found to be silicon, aluminum and iron with silicon having the highest concentration level. The size analysis of the fly ash particles revealed that 90% of particles have sizes less than 30 microns.

  20. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Tenth quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Jiang, C.L.

    1993-08-01

    The objective of the project is to conduct extensive fundamental studies on the surface chemistry of pyrite oxidation and flotation and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. This report summarizes the studies in the following three aspects: (1) the effects of borate, used as pH buffer or electrolyte, on the pyrite surface oxidation and flotation; (2) the quantification of pyrite surface oxidation kinetics under different oxidation potentials; and (3) finding new coal-pyrite depressants. It has been demonstrated, for the first time, that borate, a pH buffer and electrolyte used by many previous investigators in studying pyrite oxidation, actively participates in the surface oxidation of pyrite. In high borate concentration solutions, the surface oxidation of pyrite is strongly enhanced. The anodic oxidation potential of pyrite is lowered by more than 0.4 volts. At low borate concentration, borate is chemisorbed on pyrite surfaces. In the intermediate concentration range, borate dissolves surface iron compounds. Consequently, the flotation of pyrite in borate solutions (using fuel oil as collector) displays depression-flotation-depression phenomena as the borate concentration is increased. The oxidation kinetics of pyrite surfaces has been determined by AC impedance spectroscopy. At low oxidation potentials, only capacitive behavior is observed. However, at high oxidation potentials, an inductive loop appears. The charge transfer resistance decreases with increasing potential, indicating that the oxidation rate increases with increasing potential. A chemical reagent has been found to be very effective in depressing the flotation of coal-pyrites from different sources, while it has little effects on the flotation of coal. The surface chemistry involved in the selective pyrite depression by this new reagent has been investigated by electrochemical studies and contact angle measurements.

  1. Coal char fragmentation during pulverized coal combustion

    SciTech Connect

    Baxter, L.L.

    1995-07-01

    A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

  2. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 13, October 1, 1991--December 31, 1991

    SciTech Connect

    Not Available

    1993-02-12

    Work completed produced the criteria for additional engineering analysis, computation and detailed experimental benchscale testing for areas of uncertainty. The engineering analysis, computation, bench-scale testing and component development was formulated to produce necessary design information to define a commercially operating system. In order to produce the required information by means of bench-scale testing and component development, a uniform coal sample was procured. After agreement with DOE, a selected sample of coal from those previously listed was secured. The test plan was developed in two parts. The first part listed procedures for engineering and computational analyses of those deficiencies previously identified that could be solved without bench scale testing. Likewise, the second part prepared procedures for bench-scale testing and component development for those deficiencies previously identified in Task 3.

  3. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 14, January 1, 1992--March 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    In order to develop additional confidence in the conceptual design of the advanced froth flotation circuit, a 2-3 TPH Proof-of-Concept (POC) facility was necessary. During operation of this facility, the ICF KE team will demonstrate the ability of the conceptual flowsheets to meet the program goals of maximum pyritic sulfur reduction coupled with maximum energy recovery on three DOE specified coals. The POC circuit was designed to be integrated into the Ohio Coal Development`s facility near Beverly, Ohio. OCDO`s facility will provide the precleaning unit operations and ICF KE will add the advanced froth flotation circuitry. The work in this task will include the POC conceptual design, flowsheet development, equipment list, fabrication and construction drawings, procurement specifications and bid packages and a facilities.

  4. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 12, July 1, 1991--September 30, 1991

    SciTech Connect

    Not Available

    1991-12-31

    The design criteria for each unit operation have been developed based upon a number of variables. These variables, at this time, are based upon the best engineering design information available to industry. A number of assumptions utilized in the design criteria are uncertain. The uncertainties of inert atmospheres for grinding and flotation as well as pyrite depressants were answered by the Surface Control Project. It was determined that inerting was not required and no ``new`` reagents were presented that improved the flotation results. In addition, Tasks 5 and 6 results indicated the required reagent dosage for conventional flotation and advanced flotation. Task 5 results also indicated the need for a clean coal,thickener, the flocculent dosages for both the clean coal and refuse thickeners, and final dewatering requirements. The results from Tasks 5 and 6 and summarized in Task 7 indicate several uncertainties that require continuous long duration testing. The first is the possibility of producing a grab product for both the Pittsburgh and Illinois No. 6 coals in conventional flotation. Second what does long-term recirculation of clarified water do to the product quality? The verification process and real data obtained from Tasks 5 and 6 greatly reduced the capital and operating costs for the process. This was anticipated and the test work indeed provided confirming data.

  5. Coal prep `93: 10th international coal preparation exhibition and conference

    SciTech Connect

    1993-12-31

    The conference proceedings are divided into the following subject areas: Coal preparation directions (3 papers); Developing technologies (4); Operations (4); Instrumentation and automation (3); Fine coal cleaning 1 (4); and Fine coal cleaning 2 (3). Twenty-one papers have been processed for inclusion on the data base.

  6. Coal liquefaction process

    SciTech Connect

    Minami, R.; Hosoi, T.; Kanou, T.; Okamura, S.; Sunami, Y.

    1984-03-20

    A coal liquefaction process and apparatus therefor are disclosed. According to this invention, a finely divided coal slurry and a solvent are contacted with molecular hydrogen in the presence of a catalyst, the slurry is separated into a gaseous component, a liquid component and a solid residue, the solid residue (which is the liquefaction residue) is then supplied to a molten metal bath together with oxygen gas to generate a gas entraining fine powdery solids, and the thus recovered fine powdery solids are returned to the liquefaction process as a catalyst.

  7. Characterization of fine and carbonaceous particles emissions from pelletized biomass-coal blends combustion: Implications on residential crop residue utilization in China

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Wang, Yan; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Li, Jun; Zhang, Gan

    2016-09-01

    Bulk biofuel, biomass pellets and pelletized biomass-coal blends were combusted in a typical rural conventional household stove and a high-efficiency stove. Reductions in PM2.5, organic carbon (OC) and elemental carbon (EC) emissions were evaluated by comparing emission factors (EFs) among 19 combinations of biofuel/residential stove types measured using a dilution sampling system. In the low-efficiency stove, the average EFs of PM2.5, OC, and EC of biomass pellets were 2.64 ± 1.56, 0.42 ± 0.36, and 0.30 ± 0.11 g/kg, respectively, significantly lower than those burned in bulk form. EFPM2.5 and EFOC of pelletized biomass combustion in the high-efficiency stove were lower than those of the same biofuel burned in the low-efficiency stove. Furthermore, pelletized corn residue and coal blends burned in the high-efficiency stove could significantly decrease emissions. Compared with the bulk material burned in the low-efficiency stove, the reduction rates of PM2.5, OC and EC from pelletized blends in the high-efficiency stove can reach 84%, 96% and 93%, respectively. If the annually produced corn residues in 2010 had been blended with 10% anthracite coal powder and burnt as pellets, it would have reduced about 82% of PM2.5, 90-96% of OC and 81-92% of EC emission in comparison with burning raw materials in conventional household stoves. Given the low cost, high health benefit and reduction effect on atmospheric pollutants, pelletized blends could be a promising alternative to fossil fuel resources or traditional bulk biofuel.

  8. Coal cleaning process

    SciTech Connect

    Kindig, J.K.

    1994-01-11

    Fine particle coal is beneficiated in specially designed dense medium cyclones to improve particle acceleration and enhance separation efficiency. Raw coal feed is first sized to remove fine coal particles. The coarse fraction is then separated into clean coal, middlings, and refuse. Middlings are comminuted for beneficiation with the fine fraction. The fine fraction is deslimed in a countercurrent cyclone circuit and then separated as multiple fractions of different size specifications in dense medium cyclones. The dense medium contains ultra-fine magnetite particles of a narrow size distribution which aid separation and improves magnetite recovery. Magnetite is recovered from each separated fraction independently, with non-magnetic effluent water from one fraction diluting feed to a smaller-size fraction, and improving both overall coal and magnetite recovery. Magnetite recovery is in specially designed recovery units, based on particle size, with final separation in a rougher-cleaner-scavenger circuit of magnetic drum separators incorporating a high strength rare earth magnet. 12 figs.

  9. Combustion characteristics of fine- and micro-pulverized coal in the mixture of O{sub 2}/CO{sub 2}

    SciTech Connect

    Xiangyong Huang; Xiumin Jiang; Xiangxin Han; Hui Wang

    2008-11-15

    The effects of oxygen concentration, particle size, and heating rate on the coal combustion characteristics under an O{sub 2}/CO{sub 2} atmosphere were investigated. The results indicated that the oxygen concentration played the most important role. As the oxygen concentration increases, the ignition and burnout temperatures decrease and the comprehensive combustion property index S increases. Moreover, the improvement of the oxygen concentration intensified the effects of the other factors. The ignition mechanism changes from hetero-homogeneous type to homogeneous type as the oxygen concentration increases. The ignition and burnout temperatures decrease slightly as the mean particle size decreases, and the index S increases measurably as the mean particle size decreases. The heating rate has different effects on the ignition temperature, burnout temperature, and index S at different oxygen concentrations. 19 refs., 9 figs., 2 tabs.

  10. Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 6, January 1, 1994--March 31, 1994

    SciTech Connect

    Kramlich, J.C.; Butcher, E.K.; Chenevert, B.

    1994-04-30

    During the present quarter the model was coded and tested on the Illinois coal. Some features of the process need discussion. After devolatilization, the char particle heats towards its steady-state combustion temperature. At approximately 1200--1300 K, the particle quickly goes from a temperature where the equilibrium sodium vapor pressure is negligible to a temperature where it is at one atmosphere. This shows that the sodium vaporization occurs under non-isothermal conditions, although the rapid rate of sodium diffusion relative to particle heating suggests that the quasi steady-state formulation for the sodium vaporization portion of the problem is appropriate. It also illustrates the two-stage release pattern for the sodium: (1) an early rapid release of organically-bound sodium, and (2) a more delayed release of acid-washable sodium, and sodium that was complexed into clay chemicals during the organic sodium vaporization. The conditions reported for the present calculations are as follows: Coal: 8.7% ash, 12% H{sub 2}O, 33.5% volatile matter. Elemental sodium represent 0.82% of the ash. For purposes of calculation, the char particle is presumed to consist of the fixed carbon from the proximate analysis, along with the ash. This establishes the mass fraction of sodium and other minerals in the char at the start of char combustion. For the baseline condition, the char particle was assumed to be 50% covered by attached excluded mineral, and the included mineral matter was assumed to be divided into monodisperse 0.5 {mu}m particles that are evenly dispersed throughout the char. The diameter of the char particle was 25 {mu}m.

  11. Production of low ash coal by high efficiency coal preparation

    SciTech Connect

    Horsfall, D.W.

    1995-10-01

    The washability of South African coals is described and the problems encountered in washing at low densities, to make premium products, are enumerated. The measures taken to overcome those problems, when low density separations became a commercial necessity, are described in detail. The descriptions of processes are with specific reference to the three sizes commonly treated separately in coal preparation namely coarse coal, small coal, and fine coal. Some information is given on the performance characteristics of the plants erected to meet market requirements.

  12. Hydrocarbon-oil encapsulated air bubble flotation of fine coal. Technical progress report for the third quarter, April 1, 1991--June 30, 1991

    SciTech Connect

    Peng, F.F.

    1995-01-01

    This report is concerned with the progress made during the third period of the two year project. A significant portion of this reporting period has been consumed in measurement of induction time of oil-free and oil-coated bubbles, modification of collector gasifier, hydrocarbon oil encapsulated flotation tests and float and sink analyses of various rank of coal samples, building a 1-inch column cell, as well as building the ultrasound collector emulsification apparatus. Induction time has been measured using an Electronic Induction Timer. The results indicate that alteration of chemical properties of air bubble by applying hydrocarbon oil or reagent can drastically improve the rate of flotation process. Various techniques have been employed in hydrocarbon oil encapsulated flotation processes to further enhance the selectivity of the process, which include: (1) gasified collector flotation with addition of gasified collector into the air stream in the initial stage; (2) two-stage (rougher-cleaner) gasified collector flotation; and (3) starvation gasified collector flotation by addition of gasified collector at various flotation times. Among these, three techniques used in hydrocarbon oil encapsulated flotation process, the starvation flotation technique provides the best selectivity.

  13. Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 5, October 1, 1993--December 31, 1993

    SciTech Connect

    Kramlich, J.C.; Hoffman, D.A.; Butcher, E.K.

    1994-01-31

    Laboratory work and studies of full-scale coal-fired boilers have identified two general mechanisms for ash production. The vast majority of the ash is formed from mineral matter that coalesces as the char burns, yielding particles that are normally larger than 0.5{mu}m. Flagen and Friedlander proposed a simple model for this residual ash, called the breakup model. The second major mechanism is the generation of a submicron aerosol through a vaporization/condensation mechanism. When the ash size distribution is plotted in terms of number density, the submicron mode generally peaks at about 0.1 {mu}/m. When plotted in terms of mass, this mode is sometimes distinct from the residual ash mode, {sup 13} and sometimes merged into it. Although these particles represent a relatively small fraction of the mass, they can present a large fraction of the surface area. Thus, they are a preferred site for the condensation of the more volatile oxides later in the furnace. This leads to a layering effect in which the refractory oxides are concentrated at the particle core and the more volatile oxides reside at the surface. This also explains the enrichment of the aerosol by volatile oxides that has been noted in samples from practical furnaces. These volatile metal oxides include the majority of the toxic metal contaminants, e.g., mercury, arsenic, selenium and nickel. Risk assessment studies suggest that toxic metal emissions represent a significant portion of the health risk associated with combustion.

  14. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 17, August 1, 1992--December 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    The construction of the DOE POC at the OCDO facility continued through this entire quarter. By the end of the quarter approximately 90% of all of the construction had been completed. All equipment has beeninstalled, checked for mechanical and installation and operated from a local pushbutton. During this quarter a review of items to be completed for start-up was compiled. This information was then presented to the construction subcontractors and agreement was concluded that all items will be completed and operational for processing coal by February 1, 1993. There are still several items that were not on site for installation during this quarter. These items are the flocculant controls supplied by Westec Engineering, Inc., and the discharge valve for the hyperbaric filter supplied by KHD. Neither of these items will prevent start-up. The flocculants can be manually controlled and provisions are all ready provided to bypass the hyperbaric filter to the Sharpels high-G centrifuge. Both of these items are scheduled for delivery in mid-January.

  15. Pretreatment of coal during transport

    DOEpatents

    Johnson, Glenn E.; Neilson, Harry B.; Forney, Albert J.; Haynes, William P.

    1977-04-19

    Many available coals are "caking coals" which possess the undesirable characteristic of fusing into a solid mass when heated through their plastic temperature range (about 400.degree. C.) which temperature range is involved in many common treatment processes such as gasification, hydrogenation, carbonization and the like. Unless the caking properties are first destroyed, the coal cannot be satisfactorily used in such processes. A process is disclosed herein for decaking finely divided coal during its transport to the treating zone by propelling the coal entrained in an oyxgen-containing gas through a heated transport pipe whereby the separate transport and decaking steps of the prior art are combined into a single step.

  16. Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM 2.5) Fraction of Coal Combustion Ash

    SciTech Connect

    R. S. Perrone; J. G. Groppo; T. L. Robl

    2006-07-20

    Three types of chemically and functionally different thermoplastic polymers have been chosen for evaluation with the fly ash derived filler: high density polyethylene (HDPE), thermoplastic elastomer (TPE) and polyethylene terephthalate (PET). The selections were based on volumes consumed in commercial and recycled products. The reference filler selected for comparison was 3 {micro}m calcium carbonate, a material which is commonly used with all three types of polymers. A procedure to prepare filled polymers has been developed and the polymer/filler blends have been prepared. Selected samples of filled polymers were subjected to SEM analysis to verify that the fly ash derived filler and the calcium carbonate were well dispersed. Material taken from a utility ash pond was classified using a novel combination of hydraulic and lamellar classifiers to produce an ultra-fine ash product. This product was dried and used in a series of tests to determine its potential as a filler in plastics. The general properties of the ultra-fine ash from several runs are as follows: D{sub 50}: 3-5 {micro}m; Specific gravity: {approx}2.41; Loss on ignition: 2-3%; Carbon content: 1-2%; Color: dark grey on content: 1-2%; and Morphology: spherical. The addition of fillers increased the modulus of the HDPE composite, but decreased both the offset yield stress and offset yield strain, showing that the fillers essentially made the composite stiffer but the transition to plastic deformation occurred earlier in filled HDPE as stress was applied. Similar results were obtained with TPE, however, the decrease in either stress or strain at offset yield were not as significant. Dynamic mechanical analyses (DMA) were also completed and showed that although there were some alterations in the properties of the HDPE and TPE, with the addition of CaCO{sub 3} and fly ash, the alterations are small, and more importantly, transition temperatures are not altered. A utility patent on the design of the hydraulic

  17. Low-rank coal research

    SciTech Connect

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  18. Nonaqueous coal cleaning process

    SciTech Connect

    Starbuck, A.E.

    1987-09-22

    This patent describes a method of cyclone cleaning of fine particle coal containing carbonaceous material, ash and pyrites comprising the steps of: a. demoisturizing the coal by immersing the coal in a non-aqueous drying liquid having a vaporization temperature higher than that of water. The drying liquid is maintained at a temperature exceeding the vaporization temperature of water, whereby water in the coal is vaporized from the coal and drying liquid; b. transferring the coal to a non-aqueous, agglomerate inhibiting, carrier liquid miscible with the drying liquid. The carrier liquid is comprised of a liquid mixture of a first liquid having a first specific gravity and a second liquid having a second specific gravity different from the first specific gravity. The carrier liquid's specific gravity is adjusted by using a select amount of each of the first and second liquids to yield a carrier liquid specific gravity intermediate the first and second specific gravities. The carrier liquid specific gravity is greater than 1 less than 1.6 selected for effective separation of carbonaceous material from pyrites and ash for a particular coal and wherein the carrier liquid has the characteristic of extracting non-pyrite forms of sulfur from the coal; and c. cycloning the coal in the carrier liquid with a compound cyclone, wherein a first stream predominantly consisting of carbonaceous material and liquid is separated from a second stream predominantly consisting of ash, pyrites and liquid.

  19. Process for producing high-concentration slurry of coal

    SciTech Connect

    Nakaoji, K.; Itoh, H.; Kamao, M.; Takao, Sh.; Tatsumi, Sh.

    1985-02-19

    High concentrated coal-water slurry is produced by coarsely crushing coal, thereafter pulverizing the coarsely crushed coal, together with water and a slurry dispersant, according to necessity, in a wet-type ball mill, and feeding back one portion of the finely pulverized coal slurry thus obtained into the inlet of the wet-type ball mill.

  20. Coal beneficiation by gas agglomeration

    DOEpatents

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  1. Fine Arts.

    ERIC Educational Resources Information Center

    Danzer, Gerald A.; Newman, Mark

    1992-01-01

    Discusses the use of fine arts as sources to enrich the study of history. Suggests that such works will serve as barometers of change, examples of cross-cultural influences, and political messages. Includes suggestions of works and artists from different historic periods. (DK)

  2. New coal dewatering technology turns sludge to powder

    SciTech Connect

    2009-03-15

    Virginian Tech's College of Engineering's Roe-Hoan Yoon and his group have developed a hyperbaric centrifuge that can dewater coal as fine as talcum powder. Such coal fines presently must be discarded by even the most advanced coal cleaning plants because of their high moisture content. The new technology can be used with the Microcel technology to remove ash, to re-mine the fine coal discarded to impoundments and to help minimize waste generation. Virginia Tech has received $1 million in funding from the US Department of State to also help the Indian coal industry produce a cleaner product. 1 photo.

  3. Coal preparation practice in turkey

    SciTech Connect

    Ozbayoglu, G.

    1980-02-01

    Currently, there are six preparation plants operating in Turkey; four treat all the country's run-of-mine (ROM) bituminous coal, and the two remaining plants treat about 15% of the country's total production of lignite. In order to improve the quality of Turkey's ROM coals, various preparation techniques are used. The preparation plant flowsheets include jigs or dense-media separators for cleaning coarse coals; feldspar jigs, concentrating tables, or dense-media cyclones for treating fine coal; and froth flotation for slimes.

  4. Blasting-induced damage in coal

    SciTech Connect

    Kabongo, K.K.

    1995-12-31

    The paper is drawn from a project intended to explore a technique of prediction, control and optimization of fracture in coal induced by blasting. It evaluates the fines generated in coal submitted to dynamic loading stresses in an impact stamp mortar. The aim is to analyze a complex phenomenon of coal response to blast-generated stresses from a series of discrete simulations of shock and gas actions in controllable processes. It is learned that despite the nucleation of primary crushing and fractures to originate from the point of impact energy in coal, a secondary crushing appears to depart from within the burden progressing towards the free boundaries. The extension of the secondary crushing zone appears to be influenced by the magnitude of the breaking stresses generated and the coal burden distance. A strong dependence of fines on the coal`s innate discontinuities (strength) and the energy input is highlighted.

  5. Method of simultaneously grinding coal and dolomite

    SciTech Connect

    Williams, R.M.

    1987-02-10

    A method is described of reducing coal and dolomite, each having its own hardness characteristic, the coal and dolomite being simultaneously reduced in a common impact mill to prepare a common charge of a mix thereof having a particle size as a fuel for combustion. The method comprises: (a) mixing the coal and dolomite initially in a predetermined volumetric ratio in the impact mill, thereby forming a common charge of coal and dolomite; (b) impacting the common charge of coal and dolomite, thereby reducing the size of the coal and dolomite; (c) retaining a portion of the common charge of coal and dolomite during the impacting step in the mill to absorb a portion of the impact energy applied to the coal and dolomite, thereby minimizing the formation of extreme fines; and (d) collecting the common charge of coal and dolomite after the impacting step.

  6. Status and outlook of industrial coal briquetting technology in China

    SciTech Connect

    Liu, S.; Xu, Z.; Li, W.; Tian, B.

    1997-12-31

    Considering that the lump coal supply falls short of demands, great amounts of fine coal and slime are stockpiled, waste energy is extensive, and environmental pollution is serious, this paper summarizes the present situation of industrial coal briquetting technologies and their applications, and evaluates the advantages and disadvantages of several different coal briquette technologies widely used. The authors think that the energetic development of industrial coal briquetting technology is an effective and feasible option to fully utilize fine coal and slime, mitigate the contradiction between supply and demand for lump coal, reduce the production cost of users, as well as decrease and control environmental pollution caused by coal utilization. It is a practical solution for clean coal in China. At present, the research for developing industrial coal briquetting technologies is in the selection and adoption of suitable binders which need dry processing and can produce high strength and waterproof briquettes.

  7. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ generation by rapid expansion of supercritical fluid solutions. Quarterly technical progress report, April 1, 1991--June 30, 1991

    SciTech Connect

    Not Available

    1991-09-01

    The purpose of this program is to design and fabricate an experimental ultra-fine particle generation system; use this system to generate ultra-fine, iron compound, catalyst particles; and to access the ability of these ultra-fine catalyst particles to improve the performance of the solubilization stage of two-stage, catalytic-catalytic liquefaction processes. The effort applied to this program during this reporting period was devoted to experimental design and fabrication tasks.

  8. Coal slurries: An environmental bonus

    SciTech Connect

    Basta, N.; Moore, S.; Ondrey, G.

    1994-05-01

    Developers and promoters of coal-water slurries and similar CWF (coal-water fuel) technologies have had a hard time winning converts since they unveiled their first commercial processes in the 1970s. The economic appeal of such processes, marginal at best, varies with the price of oil. Nevertheless, the technology is percolating, as geopolitics and environmental pressures drive new processes. Such fuels are becoming increasingly important to coal-rich, oil-poor nations such as China, as they attempt to build an onshore fuel supply. Meanwhile, improvements are changing the way coal-fired processes are viewed. Where air pollution regulations once discouraged the use of coal fuels, new coal processes have been developed that cut nitrous oxides (NOx) emissions and provide a use for coal fines, previously viewed as waste. The latest developments in the field were all on display at the 19th International Technical Conference on Coal Utilization and Fuel Systems, held in Clearwater, Fla., on March 21--24. At this annual meeting, sponsored by the Coal and Slurry Technology Association, (Washington, D.C.) and the Pittsburgh Energy Technology Center of the US Dept. of Energy (PETC), some 200 visitors from around the work gathered to discuss the latest developments in coal slurry utilization--new and improved processes, and onstream plants. This paper presents highlights from the conference.

  9. Elk Valley coal implements smartcell flotation technology

    SciTech Connect

    Stirling, J.C.

    2008-06-15

    In anticipation of future raw coal containing higher fines content, Elk Valley Coal Corp.'s Greenhills Operations upgraded their fines circuit to include Wemco SmartCells in March 2007. Positive results were immediately achieved increasing the average flotation tailings ash by 16%. With this increase in yield the SmartCells project paid for itself in less than eight months. 2 figs., 1 tab., 1 photo.

  10. Integrated coal cleaning, liquefaction, and gasification process

    DOEpatents

    Chervenak, Michael C.

    1980-01-01

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  11. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  12. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOEpatents

    Burnet, G.; Gokhale, A.J.

    1990-07-10

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.

  13. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOEpatents

    Burnet, George; Gokhale, Ashok J.

    1990-07-10

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

  14. Gasifier feed - Tailor-made from Illinois coals

    SciTech Connect

    Ehrlinger, H.P. III ); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. DESTEC Energy Williams Technology, Illinois Coal Association )

    1992-01-01

    The main purpose of this project is to produce a feedstock from preparation plant fines from an illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals.

  15. Micronized coal solves mushroom grower's boiler headaches

    SciTech Connect

    Reason, J.

    1984-03-01

    A brief account is given of a Utah mushroom grower who has replaced two underfeed stoker-fired boilers requiring 7 attendants by an ultra-fine pulverised coal-fired system. The coal is ground in a proprietary rotary grinder to 80% through a 325-mesh screen. Information is presented on the mill and the special refractory burners required.

  16. Tribological properties of coal slurries

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Schrubens, Dale L.

    1987-01-01

    A pin-on-disk tribometer was used to study the tribological properties of methyl alcohol-coal slurries. Friction coefficients, steel pin wear rates and wear surface morphological studies were conducted on AISI 440C HT and M-50 bearing steels which were slid dry and in solutions of methyl alcohol, methyl alcohol-fine coal particles, and methyl alcohol-fine coal particles-flocking additive. The latter was an oil derived from coal and originally intended to be added to the coal slurry to improve the sedimentation and rheology properties. The results of this study indicated that the addition of the flocking additive to the coal slurry markedly improved the tribological properties, especially wear. In addition, the type of steel was found to be very important in determining the type of wear that took place. Cracks and pits were found on the M-50 steel pin wear surfaces that slid in the coal slurries while 440C HT steel pins showed none.

  17. Gaseous phase coal surface modification

    SciTech Connect

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  18. Statistical relationship between pyrite grain size distribution and pyritic sulfur reduction in Ohio coal

    USGS Publications Warehouse

    Mazumdar, M.; Carlton, R.W.; Irdi, G.A.

    1988-01-01

    This paper presents a statistical relationship between the pyrite particle size distribution and the potential amount of pyritic sulfur reduction achieved by specific-gravity-based separation. This relationship is obtained from data on 26 Ohio coal samples crushed to 14 ?? 28 mesh. In this paper a prediction equation is developed that considers the complete statistical distribution of all the pyrite particle sizes in the coal sample. Assuming that pyrite particles occurring in coal have a lognormal distribution, the information about the particle size distribution can be encapsulated in terms of two parameters only, the mean and the standard deviation of the logarithms of the grain diameters. When the pyritic sulfur reductions of the 26 coal samples are related to these two parameters, a very satisfactory regression equation (R2 = 0.91) results. This equation shows that information on both these parameters is needed for an accurate prediction of potential sulfur reduction, and that the mean and the standard deviation interact negatively insofar as their influence on pyritic sulfur reduction is concerned. ?? 1988.

  19. Coal pump

    DOEpatents

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  20. A new approach in ultrapurification of coal by selective flocculation

    SciTech Connect

    Moudgil, B.M.

    1992-04-01

    The specific objective of the present investigation is to develop a mathematical and computational model to elicit values of active sites ({phi}) and fractional surface coverage ({theta}) which would yield optimum separation of coal from coal pyrite and coal refuse. Attempts are to be made to select appropriate flocculants and experimental conditions to obtain {phi} and {theta} values as dictated by the theoretical model so as to achieve the desired separation in naturally occurring samples of fine coal. (VC)

  1. Coal desulfurization

    NASA Technical Reports Server (NTRS)

    Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)

    1982-01-01

    A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.

  2. Application and development of coal gasification technologies in China

    SciTech Connect

    Xu, Z.; Tian, B.; Jiang, L.

    1997-12-31

    Coal gasification is the precursor of coal conversion and utilization as an effective option to utilize coal resources reasonably and as a important component of clean coal technology. At present, coal accounts for over three fourths of primary energy production and consumption in China, and the dominate position of coal in the energy mix can not be substituted for a long time in the future. Therefore, coal gasification has a bright prospect of utilization in China. Atmospheric fixed bed coal gasification technologies using lump coal as feedstock have been used widely in different industrial subsectors. The future development of coal gasification are the fixed bed technologies using briquette as feedstock and steam/air enriched with oxygen as agent, fluidized bed technologies using pulverized coal as feedstock and entrained bed technologies using coal water mixture (coal slurry) or dry fine coal as feedstock, with the emphasis on using local coal resources and enhancing conversion and utilization of coals near coal mine areas, so that considerable social, environmental and economic benefits can be achieved.

  3. Coal hydrogenation

    SciTech Connect

    Sinor, J.E.

    1981-01-06

    Disclosure is made of a method and apparatus for reacting carbonaceous material such as pulverized coal with heated hydrogen to form hydrocarbon gases and liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. The heated hydrogen and entrained coal are injected through a rocket engine type injector device. The coal particles are reacted with hydrogen in a reaction chamber downstream of the injector. The products of reaction are rapidly quenched as they exit the reaction chamber and are subsequently collected.

  4. Advanced Fine Particulate Characterization Methods

    SciTech Connect

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  5. Rapid coal analysis. Part II: Slurry atomization DCP emission analysis of NBS coal

    SciTech Connect

    McCurdy, D.L.; Wichman, M.D.; Fry, R.C.

    1985-11-01

    A McCrone Micronising Mills is used to wet grind NBS bituminous coal to a median particle diameter of 5.7 m within 10 min. The finely divided coal slurry is immediately nebulized without sieving into a three-electrode DCP for accurate trace element determinations within 15 min overall lapsed time. Three important parameters contribute to near-quantitative elemental recovery without the use of wet or dry ashing, matrix matching, standard additions, as correction factors. These parameters are: (1) extremely small coal particle size, (2) spray chamber conditions favoring unusually efficient characteristic of the hot DCP. Near-unity response factors are observed for the rapid DCP emission determination of trace metals in finely divided coal slurry. Calibration may therefore be performed simply with aqueous standards. The slurry method gives near quantitative agreement between experimental and certified values for Cr, Cu, Mg, Mn, Ni, and Pb in NBS bituminous coal.

  6. Fine motor control

    MedlinePlus

    ... out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination Muscle ...

  7. New computer program plots coal particle size to monitor pulverizer performance

    SciTech Connect

    Tartar, A.M. ); Mueller, W.K. ); Marrero, T.R.

    1994-11-01

    Maintaining proper coal particle size and distribution is one of many considerations in achieving efficient combustion performance. Improper pulverizer operation and maintenance can result in an excessive percentage of either coarse coal particles, which tends to increase the amount of unburned carbon in the ash, or fine coal particles, which can limit the throughput of the pulverizer and, if too fine, can affect coal burning rates and residence time in boilers. Traditionally, coal particle size plotting and distribution have been done by hand and required special graphing paper formulated using the Rosin and Rammler equation. Now there is an alternative. This article describes a computerized procedure for plotting the fineness of coal particles after the milling process developed by engineers at Union Electric Co., St. Louis, Mo., and the University of Missouri, Columbia. Known as an ANTAR-UE, this procedure is being used by the Betterment Engineering group at Union Electric to plot mill fineness data.

  8. Gasifier feed - Tailor-made from Illinois coals. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Ehrlinger, H.P. III; Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. |||

    1992-08-01

    The main purpose of this project is to produce a feedstock from preparation plant fines from an illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals.

  9. An experimental study on desulfurization of high-sulfur coal slime with free jet flotation column

    SciTech Connect

    Xie Hua; Huang Bo; Xia Qing

    1998-12-31

    A free jet flotation column gives good selectivity and high separation efficiency in treating fine and ultra-fine coal. This paper reports test results of coal desulfurization with a free jet flotation column. Test results showed that when the coal sample from Zhong Liang Shan was processed its pyritic sulfur content was reduced from 3.08% to 0.84%, with 72.22% recovery of combustible matter in clean coal. The concept of Desulfurization Efficiency Index E(ds) for a comprehensive evaluation of desulfurization process is proposed, which is defined as the product of the ratio of sulfur content reduction and the recovery of combustible matters in clean coal.

  10. Mechanisms for selective coalescence of coals

    SciTech Connect

    Wheelock, T.D.; Markuszewski, R.; Fan, C.W.; Drzymala, J.; Allen, R.W.; Hu, Y.C.; Tyson, D.; Xiaoping, Qiu; Lessa, A.

    1988-12-01

    The study of basic mechanisms which underlie various processes for cleaning coal by selective agglomeration with oil was continued. Upper Freeport coal, used extensively in this study, was further characterized by measuring its heat of wetting in dilute salt solutions (CaCl{sub 2}/NaCl/FeCl{sub 3}) range of pH. The effect of mild surface oxidation on the agglomeration characteristics of Lower Kittanning coal was investigated because of the large pyritic sulfur content of this material. Oxidation was performed by exposing a thin layer of the finely ground coal to air at room temperature for 10 days. When the ground material was subsequently agglomerated with heptane, the agglomeration recovery of the oxidized coal was only slightly less than that of unoxidized coal. However, the sulfur content was lower than that of agglomerated coal which had not been oxidized. The effect of pyrite surface properties on the separation of coal/pyrite mixtures was further studied by combining acid-cleaned mineral pyrite with No. 2 gas seam coal from Raleigh Country, West Virginia. The separation was not as good as that obtained previously with mixtures involving mineral pyrite which had been mildly oxidized. 1 ref., 12 figs., 3 tabs.

  11. Coal treatment process and apparatus therefor

    SciTech Connect

    Getsoian, J.A.

    1991-12-31

    This patent describes a process for obtaining product coal agglomerates. It comprises mixing an aqueous slurry of finely divided coal particles and particles of pyrites and other mineral matter with an organic, water-insoluble, steam-strippable, bridging liquid selected from the group consisting of aliphatic saturated hydrocarbons having from 5 to 9 carbon atoms and mixtures thereof, under high shear conditions effective to wet the coal particles with the bridging liquid and convert same into microagglomerates, then mixing the aqueous slurry of the microagglomerates of coal and the particles of pyrites and other mineral matters together with an organic, water-insoluble binder comprising asphalt and the bridging liquid, under low shear conditions effective to agglomerate the microagglomerates to form product coal agglomerates, then separating water and the particles of pyrites and other mineral matter from the product coal agglomerates, then heating the product coal agglomerates and thereby evaporating and removing the bridging liquid from the product coal agglomerates, and then recovering the product coal agglomerates substantially free of the bridging liquid.

  12. Characterization of Fine Powders

    NASA Astrophysics Data System (ADS)

    Krantz, Matthew; Zhang, Hui; Zhu, Jesse

    Fine powders are used in many applications and across many industries such as powdered paints and pigments, ceramics, petrochemicals, plastics, pharmaceuticals, and bulk and fine chemicals, to name a few. In addition, fine powders must often be handled as a waste by-product, such as ash generated in combustion and gasification processes. In order to correctly design a process and process equipment for application and handling of powders, especially fine powders, it is essential to understand how the powder would behave. Many characterization techniques are available for determining the flow properties of powders; however, care must be taken in selecting the most appropriate technique(s).

  13. Upgraded coal interest group. First quarterly technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Weber, W.; Lebowitz, H.E.

    1994-12-31

    The interest group got under way effective January 1, 1994, with nine utility members, EPRI, Bechtel, and the Illinois Clean Coal Institute. DOE participation was effective October 1, 1994. The first meeting was held on April 22, 1994 in Springfield, Illinois and the second meeting was held on August 10--11, 1994 at Johnstown, Pennsylvania. Technical reviews were prepared in several areas, including the following: status of low rank coal upgrading, advanced physical coal cleaning, organic sulfur removal from coal, handling of fine coal, combustion of coal water slurries. It was concluded that, for bituminous coals, processing of fines from coal cleaning plants or impoundments was going to be less costly than processing of coal, since the fines were intrinsically worth less and advanced upgrading technologies require fine coal. Penelec reported on benefits of NOX reductions when burning slurry fuels. Project work was authorized in the following areas: Availability of fines (CQ, Inc.), Engineering evaluations (Bechtel), and Evaluation of slurry formulation and combustion demonstrations (EER/MATS). The first project was completed.

  14. Microwave treatment of a brown coal concentrate from Mugunsk coal for the manufacture of sponge iron

    SciTech Connect

    A.A. Khaidurova; P.N. Konovalov; N.P. Konovalov

    2008-04-15

    A technique for the production of a finely dispersed dry brown coal concentrate with the use of microwave energy is proposed to prepare a charge mixture for the manufacture of sponge iron. The advantages of this technique over analogous industrial processes are demonstrated. The results of experiments on the briquetting of the charge mixture of brown coal and iron ore concentrates without the use of an additional binding agent are described.

  15. Apparatus for centrifugal separation of coal particles

    DOEpatents

    Dickie, William; Cavallaro, Joseph A.; Killmeyer, Richard P.

    1991-01-01

    A gravimetric cell for centrifugal separation of fine coal by density has a cylindrical body and a butterfly valve or other apparatus for selectively sealing the body radially across the approximate center of the cylinder. A removable top is provided which seals the cylinder in the centrifuge and in unvented areas.

  16. Refuse pile design considerations. [Coal preparation plant

    SciTech Connect

    Sawarynski, T.J.

    1981-12-01

    This paper discusses current trends of coarse and fine coal refuse disposal techniques. Emphasis is on site-specific engineering to tailor safe, cost effective, and environmentally sound refuse disposal systems to the needs of a particular mine. Geotechnical design considerations are discussed in relation to system performance, regulatory acceptance, and industry use. 2 refs.

  17. A new approach in ultrapurification of coal by selective flocculation. Final report

    SciTech Connect

    Moudgil, B.M.

    1992-04-01

    The specific objective of the present investigation is to develop a mathematical and computational model to elicit values of active sites ({phi}) and fractional surface coverage ({theta}) which would yield optimum separation of coal from coal pyrite and coal refuse. Attempts are to be made to select appropriate flocculants and experimental conditions to obtain {phi} and {theta} values as dictated by the theoretical model so as to achieve the desired separation in naturally occurring samples of fine coal. (VC)

  18. Undrained shear strength of partially saturated combined coal refuse. First annual report: Strength and consolidation characteristics of coal refuse for design and construction of disposal facilities

    SciTech Connect

    Huang, Y.H.; Li, J.

    1986-09-01

    This report summarizes the results of a study on the undrained shear strength of partially saturated combined refuse. The study is part of a research project entitled 'Strength and Consolidation Characteristics of Coal Refuse for Design and Construction of Disposal Facilities supported by the Office of Surface Mining, Department of the Interior. Information presented in the report will be used for the design and construction of disposal facilities. Coal refuse, the waste product from coal washing, is separated in the coal preparation plant into two fractions (coarse and fine). The fine refuse, in the form of either a slurry or a filter cake, is unstable and difficult to handle.

  19. Modeling Coal Seam Damage in Cast Blasting

    SciTech Connect

    Chung, S.H.; Preece, D.S.

    1998-11-23

    A discrete element computer program named DMC_BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting (Preece & Taylor, 1989). This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in two dimensions. DMC_BLAST calculations compare favorably with data from actual bench blasts (Preece et al, 1993). Coal seam chilling refers to the shattering of a significant portion of the coal leaving unusable fines. It is also refereed to as coal damage. Chilling is caused during a blast by a combination of explosive shock energy and movement of the adjacent rock. Chilling can be minimized by leaving a buffer zone between the bottom of the blastholes and the coal seam or by changing the blast design to decrease the powder factor or by a combination of both. Blast design in coal mine cast blasting is usually a compromise between coal damage and rock fragmentation and movement (heave). In this paper the damage to coal seams from rock movement is examined using the discrete element computer code DMC_BLAST. A rock material strength option has been incorporated into DMC_BLAST by placing bonds/links between the spherical particles used to model the rock. These bonds tie the particles together but can be broken when the tensile, compressive or shear stress in the bond exceeds the defined strength. This capability has been applied to predict coal seam damage, particularly at the toe of a cast blast where drag forces exerted by movement of the overlying rock can adversely effect the top of the coal at the bench face. A simulation of coal mine cast blasting has been performed with special attention being paid to the strength of the coal and its behavior at t he bench face during movement of the overlying material.

  20. Mulled coal: A beneficiated coal form for use as a fuel or fuel intermediate

    SciTech Connect

    Not Available

    1992-05-01

    Energy International is developing a technology that will create a staged formulation with the first coal form (Mulled Coal) that can be stored, transported, and pumped. Just prior to combustion, the Mulled Coal (MC) is modified to provide the properties needed for proper atomization. This concept is an alternative to the expensive and energy intensive thermal drying processing of fine coal wetcakes. The material is suitable for both direct feed use in conventional and fluid bed combustors as well as on-site conversion to combustible slurries. By maintaining the coal form relatively close to the feed wetcake, only minor processing with low additive levels and low energy blending is needed at the point of production. Its conversion to slurry or other use-feed form is made near the time of use and thus the requirements for stability, climatic control, and other storage, transport, and handling requirements are much less severe.

  1. Black Bear Prep plant replaces high-frequency screens with fine wire sieves

    SciTech Connect

    Barbee, C.J.; Nottingham, J.

    2007-12-15

    At the Black Bear prep plant (near Wharncliffe, WV, USA) the clean coal from the spirals traditionally reported to high-frequency screens, which removed high-ash clay fines. Screens have inherent inefficiencies that allow clean coal to report to the screen underflow. The goal of this project was to capture the maximum amount of spiral clean coal while still removing the high-ash clay material found in the spiral product. The reduction of the circulating load and plant downtime for unscheduled maintenance were projected as additional benefits. After the plant upgrade, the maintenance related to the high frequency screens was eliminated and an additional 2.27 tons per hour (tph) of fine coal was recovered, which resulted in a payback period of less than one year. The article was adapted from a paper presented at Coal Prep 2007 in April 2007, Lexington, KY, USA. 1 ref., 1 fig., 1 tab.

  2. Fine particle pollution

    Atmospheric Science Data Center

    2013-01-10

    ...   Satellites Track Human Exposure to Fine Particle Pollution   St. Louis, Missouri Alaskan Wildfires ... provides a good test region for satellite observations of pollution. ( Full St. Louis article ) MISR ...

  3. Analyses of fine paste ceramics

    SciTech Connect

    Sabloff, J A

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  4. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    SciTech Connect

    Michael T. Klein

    1998-10-01

    Major objectives of the present project are to develop a better understanding of the roles of the catalyst and the liquefaction solvent in the coal liquefaction process. An open question concerning the role of the catalyst is whether intimate contact between the catalyst and the coal particles is important or required. To answer this question, it had been planned to coat an active catalyst with a porous silica coating which was found to retain catalyst activity while preventing actual contact between catalyst and coal. Consultation with people in DuPont who coat catalysts for increasing abrasion resistance have indicated that only portions of the catalyst are coated by their process (spray drying) and that sections of uncoated catalyst remain. For that reason, it was decided to suspend the catalyst in a basket separated from the coal in the reactor. The basket walls were to be permeable to the liquefaction solvent but not to the coal particles. Several such baskets were constructed of stainless steel with holes which would not permit passage of coal particles larger than 30 mesh. Liquefactions run with the coal of greater than 30 mesh size gave normal conversion of coal to liquid in the absence of catalyst in the basket, but substantially increased conversion when Ni/Mo on alumina catalyst was in the basket. While this result is interesting and suggestive of some kind of mass transfer of soluble material occurring between the catalyst and the coal, it does not eliminate the possibility of breakdown of the coal particle into particle sizes permeable to the basket. Indeed, a small amount of fine coal has been found inside the basket. To determine whether fine coal from breakdown of the coal particles is responsible for the conversion, a new basket is being prepared with 0.5{micro}m pore size.

  5. Appalachian Clean Coal Technology Consortium. Quarterly technical progress report, 1996

    SciTech Connect

    Yoon, R.-H.; Phillips, D.I.; Luttrell, G.H.; Basim, B.; Sohn, S.; Jiang, X.; Tao, D.; Parekh, B.K.; Meloy, T.

    1996-10-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. In keeping with the recommendations of the Advisory Committee, first-year R&D activities were focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies were conducted by Virginia Tech`s Center for Coal and Minerals Processing and a spiral model was developed by West Virginia University. For the University of Kentucky the advisory board approved a project entitled: ``A Study of Novel Approaches for Destabilization of Flotation Froth``. Project management and administration will be provided by Virginia Tech., for the first year. Progress reports for coal dewatering and destabilization of flotation froth studies are presented in this report.

  6. Coal industry annual 1997

    SciTech Connect

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  7. Coal industry annual 1996

    SciTech Connect

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  8. Coal Industry Annual 1995

    SciTech Connect

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  9. Microbial solubilization of coal

    DOEpatents

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  10. Coal and Energy.

    ERIC Educational Resources Information Center

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  11. Flocculation and filtration dewatering of coal slurries aided by a hydrophobic polymeric flocculant

    SciTech Connect

    Attia, Y.A.; Yu, S. )

    1991-01-01

    This study investigated the adsorption behavior of a totally hydrophobic polymer, FR-7A, and its role in the flocculation and filtration of fine coal slurries. Adsorption of FR-7A on coal, pyrite, and shale minerals revealed that: (a) FR-7A had a higher adsorption affinity to coal and pyrite than that on shale; (b) an acidic slurry condition favored unselective adsorption of FR-7A on coal minerals, leading to improved total flocculation and filtration of fine coal slurries, while alkaline pH and the presence of SMP favored selective adsorption and flocculation of coal from associated minerals in the slurry; and (c) FR-7A aided the flocculation of coal slurries and improved the moisture removal by filtration from 42.4 to 37%.

  12. An update on blast furnace granular coal injection

    SciTech Connect

    Hill, D.G.; Strayer, T.J.; Bouman, R.W.

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  13. Using the undersizes of Karaganda coals in coking charges

    SciTech Connect

    Muzychuk, V.D.; Chernyak, Yu.B.; Khegai, U.; Tyrchenkova, L.M.; Vasyuchkov, E.I.; Vlasova, Z.A.

    1984-01-01

    The requirements for coking coals have increased considerably in the Karaganda basin in connection with starting up the Vostochaya Central Concentrating Mill and coal treatment plant No. 2 of the Karaganda Metallurgical Complex, as well as in connection with the increase in the use of Karaganda coking coals which has taken place at the plants in the Ural and Ukraine regions. The problem of expanding the source of raw materials is of current interest due to the involvement of Karaganda coals with a high ash content in the charge. In this connection, undersizes of the fine classes of Karaganda coals presently used to meet energy needs are of considerable interest. This paper discusses how an undersize of types K and K2 Karaganda coals can be used in determined amounts in the coking charges of the Karaganda Metallurgical Complex. When the amount of type KZh coals in a charges is decreased (less than or equal to 50%), the percentage of coal undersizes from the Karaganda mine must be no more than 5% due to their inferior agglutinating power. When the content of type KZh coal is 55% or more, the percentage of coal undersizes from the Karaganda mine can be increased to 7%. Coal undersizes from the 50th Anniversary of the October Revolution mine possess a higher agglutinating power than those from the Karaganda mine. However, it is not advisable to feed them into a coking charge in an amount surpassing 5% at the present time due to the higher ash content.

  14. Appalachian Clean Coal Technology Consortium. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Feeley, T.J. III

    1995-06-26

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. Affiliate members currently include AMVEST Minerals; Arch Minerals Corp.; A.T. Massey Coal Co.; Carpco, Inc.; CONSOL Inc.; Cyprus Amax Coal Co.; Pittston Coal Management Co.; and Roberts & Schaefer Company. First year research has focused on fine coal dewatering and modeling.

  15. Clean coal

    SciTech Connect

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  16. Coal liquefaction and hydrogenation

    DOEpatents

    Schindler, Harvey D.; Chen, James M.

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  17. Coal industry annual 1993

    SciTech Connect

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  18. Coal combustion science

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  19. Improved fluid bed combustor efficiencies through fines recycle

    SciTech Connect

    Rickman, W.S.

    1980-04-01

    Carbon burnup efficiencies of 99.9% and higher have been attained on a 0.4-MW(t) atmospheric fluid bed combustor with fines recycle. A cyclone and sintered metal filter system separated the fines from the off-gas stream, returning them at 600/sup 0/C (1150/sup 0/F) to the fluid bed. The fines were metered through a unique rotary valve that also served as a pressure boundary between the fluid bed and the fines recycle hopper. Combustor operation was fully automated with a 100-channel process controller and supervisory computer. This high combustion efficiency is especially significant, since the fuel was graphite sized to less than 5 mm (1.3 in.) maximum size. More than 30% of the feed was fine enough to be quickly entrained, placing a substantial burden on the fines recycle system. Detailed modeling techniques were successfully developed to allow prediction of recycle rates and temperatures needed to maintain high combustion efficiency. This model has now been used to analyze coal combustion tests sponsored by Electric Power Research Institute. Surface reaction rate constants were first determined using combustor data taken during cold, low-flow fines recycle tests. These were then used to predict the effect of higher rates of recycle at various temperatures.

  20. Fine-tuning silencing.

    PubMed

    Panning, Barbara

    2010-01-01

    Polycomb Repressive Complex 2 (PRC2) modifies chromatin to silence many embryonic patterning genes, restricting their expression to the appropriate cell populations. Two reports in Cell by Peng et al. (2009) and Shen et al. (2009) identify Jarid2/Jumonji, a new component of PRC2, which inhibits PRC2 enzymatic activity to fine-tune silencing.

  1. Geochemistry of tin (Sn) in Chinese coals.

    PubMed

    Qu, Qinyuan; Liu, Guijian; Sun, Ruoyu; Kang, Yu

    2016-02-01

    Based on 1625 data collected from the published literature, the geochemistry of tin (Sn) in Chinese coals, including the abundance, distribution, modes of occurrence, genetic types and combustion behavior, was discussed to make a better understanding. Our statistic showed the average Sn of Chinese coal was 3.38 mg/kg, almost two times higher than the world. Among all the samples collected, Guangxi coals occupied an extremely high Sn enrichment (10.46 mg/kg), making sharp contrast to Xinjiang coals (0.49 mg/kg). Two modes of occurrence of Sn in Chinese coals were found, including sulfide-bounded Sn and clay-bounded Sn. In some coalfields, such as Liupanshui, Huayingshan and Haerwusu, a response between REEs distribution and Sn content was found which may caused by the transportation of Sn including clay minerals between coal seams. According to the responses reflecting on REEs patterns of each coalfield, several genetic types of Sn in coalfields were discussed. The enrichment of Sn in Guangxi coals probably caused by Sn-rich source rocks and multiple-stage hydrothermal fluids. The enriched Sn in western Guizhou coals was probably caused by volcanic ashes and sulfide-fixing mechanism. The depletion of Sn in Shengli coalfield, Inner Mongolia, may attribute to hardly terrigenous input and fluids erosion. As a relative easily volatilized element, the Sn-containing combustion by-products tended to be absorbed on the fine particles of fly ash. In 2012, the emission flux of Sn by Chinese coal combustion was estimated to be 0.90 × 10(9) g. PMID:25686909

  2. Coal liquefaction

    DOEpatents

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  3. ON TRIMODAL PARTICLE SIZE DISTRIBUTIONS IN FLY ASH FROM PULVERIZED COAL COMBUSTION

    EPA Science Inventory

    Combustion generated fine particles, defined as those with aerodynamic diameters less than 2.5 micrometers, have come under increased regulatory scrutiny because of suspected links to adverse human health effects. Whereas classical theories regarding coal combustion suggest that ...

  4. Coal combustion aerothermochemistry research. Final report

    SciTech Connect

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  5. Pelletizing/reslurrying as a means of distributing and firing clean coal

    SciTech Connect

    Conkle, H.N.

    1992-03-17

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coals studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).

  6. Annual Coal Distribution

    EIA Publications

    2016-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  7. Coal systems analysis

    SciTech Connect

    Warwick, P.D.

    2005-07-01

    This collection of papers provides an introduction to the concept of coal systems analysis and contains examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Chapter are: Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons by Peter D. Warwick. Appalachian coal assessment: Defining the coal systems of the Appalachian Basin by Robert C. Milici. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA by Stephen F. Greb, Cortland F. Eble, and J.C. Hower. Palynology in coal systems analysis The key to floras, climate, and stratigraphy of coal-forming environments by Douglas J. Nichols. A comparison of late Paleocene and late Eocene lignite depositional systems using palynology, upper Wilcox and upper Jackson Groups, east-central Texas by Jennifer M.K. O'Keefe, Recep H. Sancay, Anne L. Raymond, and Thomas E. Yancey. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA by W.C. Riese, William L. Pelzmann, and Glen T. Snyder.

  8. H-Coal Pilot Plant: coal-preparation test. Technical report No. T-5

    SciTech Connect

    McCoy, D.C.; Smith, E.R.

    1980-07-15

    Initial commissioning and test results for the coal-pulverizing-and-drying system in Section 100 are reported. The results obtained in calibrating the weigh feeder which feeds the prepared coal to the Slurry Mix Tank, Q-236, are also given. Coal was first fed to the pulverizing system on April 14 for approximately thirty minutes. On May 2, the pulverizing system was successfully operated for six hours with the bowl mill coal feed rate purposefully varied between 50 and 100% of full load. The system was then voluntarily shut down. These and subsequent operations have demonstrated that: (1) the bowl mill can be operated at coal feed rates of 20 to 40 tons/h, (2) that a 7.6 weight percent moisture coal feed stock can be easily dried to 2.0 weight percent moisture, and (3) that the bowl mill can be adjusted to routinely produce a 90 to 98 weight percent - 100 mesh product (95% - 100 mesh average) with 72 to 89 weight percent passing 200 mesh (80% - 200 mesh average). During the start-up operations, special tests were conducted to determine the heat losses from the pulverizing system. The results indicate that the average system heat loss is 2,850,000 Btu/h and that the thermal efficiency, defined as the number of Btus required to heat and dry the coal divided by the number of Btus supplied by the fuel, is about 81%. The coal grinding tests also demonstrated that even at the relatively low temperatures (200 to 300/sup 0/F) that were maintained in the pulverizing system the fine coal dust produced readily reacts with the low amount of oxygen in the dryer flue gases. The prepared coal weigh feeder was calibrated for a range of 5 to 12.5 tons/h.

  9. Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes

    SciTech Connect

    Glenn A. Shirey; David J. Akers

    2005-12-31

    With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

  10. Appalachian Clean Coal Technology Consortium. Technical progress report, January 1--March 31, 1996

    SciTech Connect

    1996-05-23

    The Appalachian Clean Coal Technology Consortium has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies are conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model will be developed by West Virginia University. The research to be performed by the University of Kentucky has recently been defined as: A Study of Novel Approaches for Destabilization of Flotation Froth. Accomplishments to date of these three projects are presented in this report.

  11. Bench scale testing of micronized magnetite beneficiation. Quarterly technical progress report 3, July--September, 1993

    SciTech Connect

    Anast, K.

    1993-10-29

    This project is aimed at development of a process that, by using ultra fine magnetite suspension, would expand the application of heavy media separation technology to processing fine, {minus}28 mesh coals. These coal fines, produced during coal mining and crushing, are separated in the conventional coal preparation plant and generally impounded in a tailings pond. Development of an economic process for processing these fines into marketable product will expand the utilization of coal for power production in an environmentally acceptable and economically viable way. This process has been successfully researched at PETC but has not been studied on a continuous bench-scale unit, which is a necessary step towards commercial development of this promising technology. The goal of the program is to investigate the technology in a continuous circuit at a reasonable scale to provide a design basis for larger plants and a commercial feasibility data.

  12. Fine particle separation apparatus

    SciTech Connect

    Berriman, L.P.; Paul, D.G.

    1981-07-21

    An apparatus is claimed for separating almost all fine particles, including particles less than 10 microns in diameter, from a gas stream, which requires the input of only a small amount of water and which discharges a correspondingly small amount of particle-water slurry. The apparatus includes a vertical cylindrical chamber having a relatively wide upstream portion that gradually narrows in a transition portion into an elongated throat portion. A central core member extends axially along the throat portion and forms an elongated annular passage. A high velocity gas stream containing fine particles is generally tangentially introduced into the wide upstream portion of the conduit to provide a circulatory flow. Water is introduced through a plurality of parts in the transition portion downstream therefrom, to provide a thin layer of water along the outer walls of the throat. The high velocity circulatory flow of the particle-laden gas along the annular throat region causes fine particles to migrate radially outwardly under high centrifugal forces into the water layer. The water-particle slurry is discharged through a slot in the outer wall of the lower portion of the throat region. The substantially particle-free gas passes through a radial diffuser section therebelow.

  13. Coal combustion products

    USGS Publications Warehouse

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  14. Hydromechanical Advanced Coal Excavator

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Summers, David

    1990-01-01

    Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.

  15. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    SciTech Connect

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  16. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    DOEpatents

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  17. Process for removal of hazardous air pollutants from coal

    DOEpatents

    Akers, David J.; Ekechukwu, Kenneth N.; Aluko, Mobolaji E.; Lebowitz, Howard E.

    2000-01-01

    An improved process for removing mercury and other trace elements from coal containing pyrite by forming a slurry of finely divided coal in a liquid solvent capable of forming ions or radicals having a tendency to react with constituents of pyrite or to attack the bond between pyrite and coal and/or to react with mercury to form mercury vapors, and heating the slurry in a closed container to a temperature of at least about 50.degree. C. to produce vapors of the solvent and withdrawing vapors including solvent and mercury-containing vapors from the closed container, then separating mercury from the vapors withdrawn.

  18. Coal stove

    SciTech Connect

    Trainer, L. E.

    1981-09-22

    A steel-bodied, coal burning stove is provided with an improved combustion system including a one-piece fire pot having an integral, non-shakeable grate. The pot is mounted in the lower regions of the stove and is suspended by a circular mounting ring arrangement which defines the interior of the stove into upper and lower chambers. The pot projects downwardly from the mounting ring arrangement into the lower of the stove chambers. The mounting ring arrangement is constructed to enable air to flow directly from the lower chamber, peripherally about the pot to the upper chamber, bypassing the grate and means are provided to vary the flow of such bypass air.

  19. Coal data: A reference

    SciTech Connect

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  20. Gaseous phase coal surface modification. Final technical report

    SciTech Connect

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  1. Investigations into coal coprocessing and coal liquefaction

    SciTech Connect

    Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P.; Zhang, Tiejun; Haynes, H.W. Jr.

    1994-06-01

    The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

  2. Mulled coal: A beneficiated coal form for use as a fuel or fuel intermediate. Phase 2 system demonstration

    SciTech Connect

    Not Available

    1992-05-01

    Energy International is developing a technology that will create a staged formulation with the first coal form (Mulled Coal) that can be stored, transported, and pumped. Just prior to combustion, the Mulled Coal (MC) is modified to provide the properties needed for proper atomization. This concept is an alternative to the expensive and energy intensive thermal drying processing of fine coal wetcakes. The material is suitable for both direct feed use in conventional and fluid bed combustors as well as on-site conversion to combustible slurries. By maintaining the coal form relatively close to the feed wetcake, only minor processing with low additive levels and low energy blending is needed at the point of production. Its conversion to slurry or other use-feed form is made near the time of use and thus the requirements for stability, climatic control, and other storage, transport, and handling requirements are much less severe.

  3. Optimizing the performance and control of thermal dryer at B.O.C. plant

    SciTech Connect

    Bakota, L.F.

    1996-12-31

    The Bullmoose Operating Corporation is a metallurgical coal mine with an annual output of 2,000,000 metric tons of high quality, medium volatile, bituminous coal. The mine is located in northeastern British Columbia, Canada. All of the coal produced is being hauled via rail to the Pacific coast port terminal in Prince Ruppert and shipped to the Japanese steel mills. The coal plant initially consisted of three circuits - the heavy media cyclones, the water only cyclones and the conventional froth flotation. With changing load on the fine coal circuit, several modifications have been done in a past to optimize the processing of -28 Mesh coal. Currently, the plant is introducing a new {open_quotes}coarse fines{close_quotes} circuit that will eventually process the 32 to 12 Mesh size fraction on the spirals. Following Chart No. 1 is a simplified flowsheet of B.O.C. coal processing and shipping operations.

  4. Very fine Twilights

    NASA Astrophysics Data System (ADS)

    Boico, Vladimir

    1992-04-01

    The author is describing a very fine twilight on 3 January 1992 at 17 h25 m LT (The Sunset was at 16h48m LT) of red - terracotta color. The author is relating this twilight with the volcanic erruption of Pinatubo on the Philipines islands from June 1991. The author is describing the following phenomena related with Volcanic erruption: twilights, the greenish of the Moon's surface, a change in the color of Day Sky to white, Haloes around the Sun. The author is pointing out, that the phenomena mentioned could prolonge in time 2 or 3 years.

  5. Fine needle aspiration cytology.

    PubMed Central

    Lever, J V; Trott, P A; Webb, A J

    1985-01-01

    Fine needle aspiration cytology is an inexpensive, atraumatic technique for the diagnosis of disease sites. This paper describes the technique and illustrates how it may be applied to the management of tumours throughout the body. The limitations of the method, the dangers of false positive reports, and the inevitability of false negative diagnoses are emphasised. In a clinical context the method has much to offer by saving patients from inappropriate operations and investigations and allowing surgeons to plan quickly and more rationally. It is an economically valuable technique and deserves greater recognition. Images PMID:2578481

  6. Hydrodesulfurization of chlorinized coal

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K. (Inventor)

    1983-01-01

    A method of desulfurization is described in which high sulfur coals are desulfurized by low temperature chlorinolysis of coal in liquid media, preferably water, followed by hydrodesulfurization at a temperature above 500 C. The coals are desulfurized to an extent of up to 90% by weight and simultaneously dechlorinated to a chlorine content below 0.1% by weight. The product coals have lower volatiles loss, lower oxygen and nitrogen content and higher fixed carbon than raw coals treated with hydrogen under the same conditions. Heating the chlorinated coal to a temperature above 500 C. in inert gas such as nitrogen results in significantly less desulfurization.

  7. Catagenesis of coals

    SciTech Connect

    Stanov, V.V.

    1981-09-01

    On the basis of the equations of chemical kinetics and thermodynamics a general equation is derived for the metamorphosis of coals. This equation is used to investigate the conditions for catagenic processes in several coal deposits and oil-bearing structures. It is shown that the catagenesis of coal ceases when the temperature falls in connection with uplift and denudation of the strata surrounding the coal. If there is a very rapid burial of the coal-bearing rocks and thus rapid heating, the catagenesis lags somewhat behind coals and anthracites. Catagenesis of lignites is governed by the pressure and rate of burial.

  8. Coal extraction - environmental prediction

    SciTech Connect

    C. Blaine Cecil; Susan J. Tewalt

    2002-08-01

    To predict and help minimize the impact of coal extraction in the Appalachian region, the U.S. Geological Survey (USGS) is addressing selected mine-drainage issues through the following four interrelated studies: spatial variability of deleterious materials in coal and coal-bearing strata; kinetics of pyrite oxidation; improved spatial geologic models of the potential for drainage from abandoned coal mines; and methodologies for the remediation of waters discharged from coal mines. As these goals are achieved, the recovery of coal resources will be enhanced. 2 figs.

  9. Coal feed lock

    DOEpatents

    Pinkel, I. Irving

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  10. Upgraded Coal Interest Group

    SciTech Connect

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  11. Coal desulfurization process

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

    1978-01-01

    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

  12. Coal liquefaction process

    SciTech Connect

    Gorbaty, M.L.; Long, R.B.; Schlosberg, R.H.

    1981-02-24

    An integrated coal pretreatment, liquefaction and gasification process is provided in which particulate coal is contacted with a vapor phase hydrogen donor solvent to swell the coal particles. The swollen coal particles are subjected to coal liquefaction conditions at relatively low temperatures. The solid residue of the coal liquefaction stage is subjected to pyrolysis conditions at relatively high temperatures to produce an additional amount of hydrocarbonaceous oil. The solid residue of the pyrolysis stage is gasified by treatment with steam and a molecular oxygen containing gas to produce a hydrogen-containing gas.

  13. Analysis and discussion on formation and control of primary particulate matter generated from coal-fired power plants.

    PubMed

    Lu, Jianyi; Ren, Xudan

    2014-12-01

    Particulate matter (PM) has been becoming the principal urban pollutant in many major cities in China, and even all over the world. It is reported that the coal combustion process is one of the main sources of PM in the atmosphere. Therefore, an investigation of formation and emission of fine primary PM in coal combustion was conducted. First, the sources and classification of coal-fired primary PM were discussed; then their formation pathways during the coal combustion process were analyzed in detail. Accordingly, the emission control methods for fine particles generated from coal-fired power plants were put forward, and were classified as precombustion control, in-combustion control, and postcombustion control. Precombustion control refers to the processes for improving the coal quality before combustion, such as coal type selection and coal preparation. In-combustion control means to take measures for adjusting the combustion conditions and injection of additives during the combustion process to abate the formation of PM. Postcombustion control is the way that the fine PM are aggregated into larger ones by some agglomeration approaches and subsequently are removed by dust removal devices, or some high-performance modifications of conventional particle emission control devices (PECDs) can be taken for capturing fine particles. Finally, some general management suggestions are given for reducing fine PM emission in coal-fired power plants. Implications: The analysis and discussions of coal properties and its combustion process are critical to recognizing the formation and emission of the fine primary PM in combustion. The measures of precombustion, in-combustion, and postcombustion control based on the analysis and discussions are favorable for abating the PM emission. Practically, some measures of implementation do need the support of national policies, even needing to sacrifice economy to gain environmental profit, but this is the very time to execute these, and

  14. Fine Channel Networks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  15. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOEpatents

    Ignasiak, Teresa; Strausz, Otto; Ignasiak, Boleslaw; Janiak, Jerzy; Pawlak, Wanda; Szymocha, Kazimierz; Turak, Ali A.

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  16. Process for beneficiating coal

    SciTech Connect

    Burgess, L.E.; Fox, K.M.; Herman, D.E.; McGarry, P.E.

    1982-06-01

    Mine run coal is pulverized and the extended surfaces of the coal particles are rendered hydrophobic and oilophilic by a chemical bonding and graft polymerization reaction with a water insoluble organic polymerizable monomer under peroxidation influence in a predominantly water reaction medium. The mineral ash present in the coal and particularly the iron pyrites remains hydrophilic and is separated from the polymeric organic surface bonded coal product in a water washing step wherein the washed coal floats on and is recovered from the water phase and the ash is removed with the separated wash water in a critical wash step. Excess water is removed from the beneficiated hydrophobic surface-altered coal product mechanically. The hydrophobic and oilophilic organic polymeric surface bonded coating about the coal particles is fortified by inclusion of additional unbound free fatty acids by further small additions thereof. The carboxylic acid groups present in the coal-oil product are thereafter converted to a metal soap. The beneficiated coal product can be used ''dry,'' or additional quantities of a liquid hydrocarbon fuel can be incorporated with the ''dry'' beneficiated coal product to produce a flowable fluid or liquid coal product having the rheological property of marked thixotropy. Introduction of this physically induced property into the liquid coal-oil-mixture prevents settling out of the heavier coal particles from the relatively ash-free fluid fuel composition under extended storage periods.

  17. Coal Combustion Science

    SciTech Connect

    Hardesty, D.R.; Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. )

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  18. Apparatus for beneficiating coal

    SciTech Connect

    Burgess, L.E.; Fox, K.M.; Herman, D.E.; McGarry, P.E.

    1985-08-20

    Mine run coal is pulverized and the extended surfaces of the coal particles are rendered hydrophobic and oilophilic by a chemical bonding and graft polymerization reaction with a water insoluble organic polymerizable monomer under peroxidation influence in a predominantly water reaction medium. The mineral ash present in the coal and particularly the iron pyrites remains hydrophilic and is separated from the polymeric organic surface bonded coal product in a water washing step wherein the washed coal floats on and is recovered from the water phase and the ash is removed with the separated wash water in a critical wash step. Excess water is removed from the beneficiated hydrophobic surface-altered coal product mechanically. The hydrophobic and oilophilic organic polymeric surface bonded coating about the coal particles is fortified by inclusion of additional unbound free fatty acids by further small additions thereof. The carboxylic acid groups present in the coal-oil product are thereafter converted to a metal soap. The beneficiated coal product can be used ''dry'', or additional quantities of a liquid hydrocarbon fuel can be incorporated with the ''dry'' beneficiated coal product to produce a flowable fluid or liquid coal product having the rheological property of marked thixotropy. Introduction of this physically induced property into the liquid coal-oil-mixture prevents settling out of the heavier coal particles from the relatively ash-free fluid fuel composition under extended storage periods.

  19. Coal-water mixture fuel burner

    DOEpatents

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  20. Coal pump development phase 3

    NASA Technical Reports Server (NTRS)

    Kushida, R. O.; Sankur, V. D.; Gerbracht, F. G.; Mahajan, V.

    1980-01-01

    Techniques for achieving continuous coal sprays were studied. Coazial injection with gas and pressure atomization were studied. Coal particles, upon cooling, were found to be porous and fragile. Reactivity tests on the extruded coal showed overall conversion to gases and liquids unchanged from that of the raw coal. The potentials for applications of the coal pump to eight coal conversion processes were examined.

  1. International perspectives on coal preparation

    SciTech Connect

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  2. Cleaning of China high sulfur coals by selective dispersion and flocculation

    SciTech Connect

    Wang Li; Liu Zechang; Liu Zhenxue

    1997-12-31

    A process for removing pyritic sulfur from high sulfur coals by selective dispersion and flocculation has been conceptually developed and tested in China. The tentative tests on China high sulfur coals have shown that this coal cleaning process can be very efficient in coal desulfurization, provided the process parameters are properly optimized. While acquiring high coal recovery, the total sulfur rejection with four kinds of coals normally falls in the range 57% to 71% by one-step reverse flocculation, and within the range 40% to 59% by one-step normal flocculation process. This cleaning process presents a promising approach for the removal of pyrite particles from coal fines suspensions. Most of the results presented in this paper are preliminary in nature, and further research is being carried out.

  3. Nitrogen in Chinese coals

    USGS Publications Warehouse

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  4. Indonesian coal mining

    SciTech Connect

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  5. Coal Production 1992

    SciTech Connect

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  6. Coal worker's pneumoconiosis

    MedlinePlus

    ... that results from breathing in dust from coal, graphite, or man-made carbon over a long time. ... Wear a protective mask when working around coal, graphite, or man-made carbon. Companies should enforce the ...

  7. Continuous coal processing method

    NASA Technical Reports Server (NTRS)

    Ryason, P. R. (Inventor)

    1980-01-01

    A coal pump is provided in which solid coal is heated in the barrel of an extruder under pressure to a temperature at which the coal assumes plastic properties. The coal is continuously extruded, without static zones, using, for example, screw extrusion preferably without venting through a reduced diameter die to form a dispersed spray. As a result, the dispersed coal may be continuously injected into vessels or combustors at any pressure up to the maximum pressure developed in the extrusion device. The coal may be premixed with other materials such as desulfurization aids or reducible metal ores so that reactions occur, during or after conversion to its plastic state. Alternatively, the coal may be processed and caused to react after extrusion, through the die, with, for example, liquid oxidizers, whereby a coal reactor is provided.

  8. Annual Coal Report

    EIA Publications

    2016-01-01

    Provides information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience, including Congress, federal and state agencies, the coal industry, and the general public.

  9. Granulation of fine powder

    DOEpatents

    Chen, Ching-Fong

    2016-08-09

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to form a dense compact with a higher density and more uniform pore size distribution.

  10. Coal prep `95

    SciTech Connect

    1995-08-01

    The proceedings of Coal Prep `95 - the 12th International Coal Preparation Exhibition and Conference, held May 2-4, 1995 in Lexington, KY are presented. The Conference covered such topics as chemicals for coal preparation, quality control, coal cleaning, operations, and research and development. A separate abstract was prepared for each of the 24 papers for inclusion in the Energy Science and Technology Database.

  11. Method for fluorinating coal

    DOEpatents

    Huston, John L.; Scott, Robert G.; Studier, Martin H.

    1978-01-01

    Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

  12. Coal Extraction - Environmental Prediction

    USGS Publications Warehouse

    Cecil, C. Blaine; Tewalt, Susan J.

    2002-01-01

    Coal from the Appalachian region has supplied energy to the Nation for more than 200 years. Appalachian coal fueled America through a civil war and helped win two world wars. Appalachian coal has also provided fuel for keeping America warm in the winter and cool in the summer and has served as the basis for the steel, automobile, organic chemicals, chlorine, and aluminum industries. These benefits have not come without environmental costs, however. Coal extraction and utilization have had significant environmental impacts.

  13. Mode of occurrence of chromium in four US coals

    USGS Publications Warehouse

    Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Crowley, S.; Palmer, C.A.; Finkelman, R.B.

    2000-01-01

    The mode of occurrence of chromium in three US bituminous coals and one US subbituminous has been examined using both X-ray absorption fine structure (XAFS) spectroscopy and a selective leaching protocol supplemented by scanning electron microscopy (SEM) and electron microprobe measurements. A synthesis of results from both methods indicates that chromium occurs principally in two forms in the bituminous coals: the major occurrence of chromium is associated with the macerals and is not readily leached by any reagent, whereas a second, lesser occurrence, which is leachable in hydrofluoric acid (HF), is associated with the clay mineral, illite. The former occurrence is believed to be a small particle oxyhydroxide phase (CrO(OH)). One coal also contained a small fraction (<5%) of the chromium in the form of a chromian magnetite, and the leaching protocol indicated the possibility of a similar small fraction of chromium in sulfide form in all three coals. There was little agreement between the two techniques on the mode of occurrence of chromium in the subbituminous coal; however, only a limited number of subbituminous coals have been analyzed by either technique. The chromium in all four coals was trivalent as no evidence was found for the Cr6+ oxidation state in any coal.

  14. Coal production 1989

    SciTech Connect

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  15. Considerations on coal gasification

    NASA Technical Reports Server (NTRS)

    Franzen, J. E.

    1978-01-01

    Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.

  16. Flash hydrogenation of coal

    DOEpatents

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  17. The cumulative effects of using fine particles and cyanobacteria for rehabilitation of disturbed active sand dunes

    NASA Astrophysics Data System (ADS)

    Zaady, Eli; Katra, Itzhak; Barkai, Daniel; Knoll, Yaakov; Sarig, Shlomo

    2016-04-01

    One of the main problems in desertified lands worldwide is active wind-borne sand dunes, which lead to covering of fertile soils and agricultural fields. In regions with more than 100 mm of annual rainfall, sand dunes may be naturally stabilized by biocrusts (biological soil crusts). One of the main restraints of biocrust development is the typical lack of fine particles in sand dunes. Our study investigated the combined application of fine particles [coal fly-ash <100 micrometer] and bio-inoculant of filamentous cyanobacteria, isolated from nearby natural stabilized sand dunes, on the soil surface of active sands for increasing resistance to wind erosion. Boundary-layer wind tunnel experiments were conducted in experimental plots within a greenhouse for examining the effects of adding coal fly-ash and bio-inoculant to active sands. The biocrust development was evaluated via several physical and bio-physiological variables. In all the physical measurements and the bio-physiological variables, the treatment of "sand+inoculum+coal fly-ash" showed significant differences from the "sand-control". The combination led to the best results of surface stabilization in boundary-layer wind tunnel experiments, with the lowest sand fluxes. The filamentous cyanobacteria use the fine particles of the coal fly-ash as bridges for growing toward and adhering to the large sand particles. The cumulative effects of biocrusts and coal fly-ash enhance soil surface stabilization and may allow long-term sustainability.

  18. Automated Camera Array Fine Calibration

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  19. Trace Elements in Coal - Modes of Ocurrence Analysis.

    SciTech Connect

    Palmer, C.A.; Kolker, A.; Finkelman, R.B.; Kolb, K.C.; Mroozkowski, S.J.; Crowley, S.S.; Belkin, H.E.; Bullock, J.H., Jr.; Motooka, J.M.

    1997-07-24

    The objective is to provide modes of occurrence information for the CQ Inc. (CQ) effort being performed under DOE Contract entitled HAPs-Rx: Precombustion Removal of Hazardous Air Pollutant Precursors. This work attempts to provide semi-quantative date on modes of occurrence of 15 elements. Coals investigated include as-mined coals and cleaned fines from the Northern Appalachian and Southern Application, and Eastern Interior regions, and as-mined and natural fines from the Powder River Basin. Study techniques include scanning electron microscopy, electron micropole analysis, and leaching procedures. Microprobe data analysis indicate that pyrite grains in Northern Appalachian and Eastern Interior, and Powder River Basin coals and most of the pyrite grains of the Southern Appalachian coal contain low As concentrations, generally in the 100-500 ppm range. However, the Southern Appalachian coal contains some pyrite grains with much higher As contents, in excess of 4.0 wt. percent As. Micropole analyses and data from leaching experiments indicate that arsenic is primarily associated with pyrite in the bituminous coals. These techniques also indicate that Cr is primarily associated with illite. Other HAP`s elements have multiple associations.

  20. Appalachian Clean Coal Technology Consortium. Quarterly technical progress report, 1996

    SciTech Connect

    Yoon, R.-H.; Phillips, D.I.; Luttrell, G.H.; Basim, B.; Sohn, S.

    1996-07-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies will be conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model is developed by West Virginia University. The research to be performed by the University of Kentucky has recently been determined to be: ``A Study of Novel Approaches for Destabilization of Flotation Froth``. Acoomplishments to date are reported.

  1. The health effects of coal-burning power plants in minnesota

    SciTech Connect

    Ross, D.

    1981-01-01

    The carcinogenic properties of coal combustion products are described and documented with emphasis on beryllium, mercury, and other particulates. Increased coal use in Minnesota and implications of such increases for 1976-1995 are discussed. Details of how a coal-fired power plant works and how pollutants are formed are described. Efforts to minimize health impacts of sulfur oxides and particulates are detailed. An analysis is provided of how health impacts are measured, showing how a lack of precision and data makes it difficult for policymakers to decide which pollutants need regulation and how much regulation is required. It was found that the greatest problem resulting from coal burning in Minnesota is fine particulate pollution. Fine particulates have been implicated in the exacerbation of emphysema, bronchitis, and lung cancer. Increased regulation and limitations on the construction of coal burning electricity generators are supported.

  2. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    SciTech Connect

    Song, Chunshan; Schobert, H.H.

    1993-02-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on the development of novel bimetallic dispersed catalysts for temperature-programmed liquefaction. The ultimate goal of the present research is to develop novel catalytic hydroliquefaction process using highly active dispersed catalysts. The primary objective of this research is to develop novel bimetallic dispersed catalysts from organometallic molecular that can be used in low precursors concentrations (< 1 %) but exhibit high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. The major technical approaches are, first, to prepare the desired heteronuclear organometallic molecules as catalyst precursors that contain covalently bound, two different metal atoms and sulfur in a single molecule. Such precursors will generate finely dispersed bimetallic catalysts such as Fe-Mo, Co-Mo and Ni-Mo binary sulfides upon thermal decomposition. The second major technical approach is to perform the liquefaction of coals unpregnated with the organometallic precursors under temperature-programmed conditions, where the programmed heat-up serves as a step for both catalyst activation and coal pretreatment or preconversion. Two to three different complexes for each of the Fe-Mo, Co-Mo, and Ni-Mo combinations will be prepared. Initial catalyst screening tests will be conducted using a subbituminous coal and a bituminous coal. Effects of coal rank and solvents will be examined with the selected bimetallic catalysts which showed much higher activity than the dispersed catalysts from conventional precursors.

  3. Radionuclides in US coals

    SciTech Connect

    Bisselle, C. A.; Brown, R. D.

    1984-03-01

    The current state of knowledge with respect to radionuclide concentrations in US coals is discussed. Emphasis is placed on the levels of uranium in coal (and lignite) which are considered to represent a concern resulting from coal combustion; areas of the US where such levels have been found; and possible origins of high radionuclide levels in coal. The report reviews relevant studies and presents new data derived from a computerized search of radionuclide content in about 4000 coal samples collected throughout the coterminous US. 103 references, 5 figures, 5 tables.

  4. Coal recovery process

    DOEpatents

    Good, Robert J.; Badgujar, Mohan

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  5. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    SciTech Connect

    Wiltsee, Jr., G. A.

    1983-01-01

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  6. Speciation of chromium in feed coals and ash byproducts from Canadian power plants burning subbituminous and bituminous coals

    SciTech Connect

    Fariborz Goodarzi; Frank E. Huggins

    2005-12-01

    The chromium species in the feed coals and ash byproducts from seven Canadian coal-fired power plants were examined using Cr X-ray absorption near-edge spectroscopy. Chromium in the Canadian feed coals is always found as Cr{sup 3+} but generally has a dual occurrence, as Cr{sup 3+} is distributed to varying degrees between the clay mineral illite and a poorly crystallized chromium oxyhydroxide phase associated with the organic fraction. In two subbituminous feed coals from Alberta, chromium is present largely as Cr{sup 3+}/illite, whereas in two other such coals, it is present predominantly as CrOOH. Chromium in a low-sulfur bituminous feed coal from Alberta is found mostly as Cr{sup 3+}/illite, whereas for feed coals from Nova Scotia with high sulfur contents, chromium is distributed between both Cr{sup 3+}/illite and CrOOH. Very little chromium was found in the limestone used in a fluidized-bed combustor. The chromium species in most bottom ash samples from all seven combustion units is predominantly, if not entirely, Cr{sup 3+} associated with aluminosilicate phases. Chromium speciation for subbituminous electrostatic precipitator fly ash is mostly Cr{sup 3+}, but in some cases, it is slightly lessand varies by sampling location at the plant. Chromium in fly ash from the combustion of bituminous feed coals is predominantlyCr{sup 3+}. A unique species of chromium found in one feed coal and an unrelated fly ash is metallic chromium, similar to that in stainless steel. The occurrence of this form of chromium in these materials indicates contamination from machinery, such as the coal milling machine or possibly wearing down of stainless steel parts by the coal or ash. The observation of this unexpected contamination demonstrates the power and usefulness of X-ray absorption fine-structure spectroscopy for speciation determination. 35 refs., 6 figs., 4 tabs.

  7. Coal: the new black

    SciTech Connect

    Tullo, A.H.; Tremblay, J.-F.

    2008-03-15

    Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

  8. Coal to gas substitution using coal?!

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Schlüter, Ralph

    2010-05-01

    Substitution of carbon-intensive coal with less carbon-intensive natural gas for energy production is discussed as one main pillar targeting reduction of antrophogenic greenhouse gas emissions by means of climate change mitigation. Other pillars are energy efficiency, renewable energies, carbon capture and storage as well as further development of nuclear energy. Taking into account innovative clean coal technologies such as UCG-CCS (underground coal gasification with carbon capture and storage), in which coal deposits are developed using directional drilling technologies and subsequently converted into a synthesis gas of high calorific value, the coupled conceptual approach can provide a synergetic technology for coal utilization and mitigation of carbon emissions. This study aims at the evaluation of UCǴ s carbon mitigation potentials and the review of the economical boundary conditions. The analytical models applied within this study are based on data available from world-wide UCG projects and extensive laboratory studies. In summary, scenarios considering costs and carbon storage potentials are economically feasible and thus competitive with less carbon-intensive energy generation technologies such as natural gas. Thus, coal to gas substitution can be one of the coal based options.

  9. Fine-Tuning Corrective Feedback.

    ERIC Educational Resources Information Center

    Han, ZhaoHong

    2001-01-01

    Explores the notion of "fine-tuning" in connection with the corrective feedback process. Describes a longitudinal case study, conducted in the context of Norwegian as a second a language, that shows how fine-tuning and lack thereof in the provision of written corrective feedback differentially affects a second language learner's restructuring of…

  10. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    USGS Publications Warehouse

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  11. Sedimentology of coal and coal-bearing sequences

    SciTech Connect

    Rahmani, R.A.; Flores, R.M.

    1985-01-01

    Papers on all aspects of coal sedimentology are presented. The emphasis of the book is on coal depositional environments and facies models, and the main topics covered are coal environments, composition and geochemistry, facies models of associated clastic rocks, applications of facies models to coal mining, and sedimentary tectonics of coal basins.

  12. Chemical composition of Martian fines

    NASA Technical Reports Server (NTRS)

    Clark, B. C.; Baird, A. K.; Weldon, R. J.; Tsusaki, D. M.; Schnabel, L.; Candelaria, M. P.

    1982-01-01

    Of the 21 samples acquired for the Viking X-ray fluorescence spectrometer, 17 were analyzed to high precision. Compared to typical terrestrial continental soils and lunar mare fines, the Martian fines are lower in Al, higher in Fe, and much higher in S and Cl concentrations. Protected fines at the two lander sites are almost indistinguishable, but concentration of the element S is somewhat higher at Utopia. Duricrust fragments, successfully acquired only at the Chryse site, invariably contained about 50% higher S than fines. No elements correlate positively with S, except Cl and possibly Mg. A sympathetic variation is found among the triad Si, Al, Ca; positive correlation occurs between Ti and Fe. Sample variabilities are as great within a few meters as between lander locations (4500 km apart), implying the existence of a universal Martian regolith component of constant average composition. The nature of the source materials for the regolith fines must be mafic to ultramafic.

  13. Mode of occurrence of arsenic in four US coals

    USGS Publications Warehouse

    Kolker, A.; Huggins, Frank E.; Palmer, C.A.; Shah, N.; Crowley, S.S.; Huffman, G.P.; Finkelman, R.B.

    2000-01-01

    An integrated analytical approach has been used to determine the mode of occurrence of arsenic in samples of four widely used US coals: the Pittsburgh, Illinois #6, Elkhorn/Hazard, and Wyodak. Results from selective leaching, X-ray absorption fine structure (XAFS) spectroscopy, and electron microprobe analysis show that pyrite is the principal source of arsenic in the three bituminous coals, but the concentration of As in pyrite varies widely. The Wyodak sample contains very little pyrite; its arsenic appears to be primarily associated with organics, as As3+, or as arsenate. Significant (10-40%) fractions of arsenate, derived from pyrite oxidation, are also present in the three bituminous coal samples. This information is essential in developing predictive models for arsenic behavior during coal combustion and in other environmental settings.

  14. Process for hydrogenating coal and coal solvents

    DOEpatents

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  15. Coal mining: A petex primer

    SciTech Connect

    Not Available

    1985-01-01

    This book is an introduction to the coal industry - from planning a mine to delivering coal to a power plant. The primer covers what coal is and how it is used, modern underground and surface mining practices, coal preparation and transport, and the relation between coal and the environment.

  16. Coal sector profile

    SciTech Connect

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  17. Potentially hazardous elements in coal: Modes of occurrence and summary of concentration data for coal components

    USGS Publications Warehouse

    Kolker, A.; Finkelman, R.B.

    1998-01-01

    Mode-of-occurrence data are summarized for 13 potentially hazardous elements (Be, Cr, Mn, Co, Ni, As, Se, Cd, Sb, Hg, Pb, Th, U) in coal. Recent work has refined mode-of-occurrence data for Ni, Cr, and As, as compared to previous summaries. For Cr, dominant modes of occurrence include the clay mineral illite, an amorphous CrO(OH) phase, and Cr-bearing spinels. Nickel is present in Fe-sulfides (pyrite and marcasite) and is also organically bound. Arsenic-bearing pyrite may be the dominant host of As in bituminous coals. Concentration data for the 13 HAPs, obtained primarily by quantitative microanalysis techniques, are compiled for mineral and organic portions of coal. HAPs element concentrations are greatest in Fe-sulfides, and include maxima of 2,300 ppm (Co), 4,500 ppm (Ni), 4.9wt.% (As), 2,000 ppm (Se), 171 ppm (Hg), and 5,500 ppm (Pb). Trace-element microanalysis is a significant refinement over bulk methods, and shows that there is considerable trace-element variation on a fine scale for a given coal, and from one coal to another. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

  18. Development of the chemical and electrochemical coal cleaning (CECC) process

    SciTech Connect

    Yoon, Roe-Hoan; Basilio, C.I.

    1992-05-01

    The Chemical and Electrochemical Coal Cleaning (CECC) process developed at Virginia Polytechnic Institute and State University was studied further in this project. This process offers a new method of physically cleaning both low- and high-rank coals without requiring fine grinding. The CECC process is based on liberating mineral matter from coal by osmotic pressure. The majority of the work was conducted on Middle Wyodak, Pittsburgh No. 8 and Elkhorn No. 3 coals. The coal samples were characterized for a variety of physical and chemical properties. Parametric studies were then conducted to identify the important operating parameters and to establish the optimum conditions. In addition, fundamental mechanisms of the process were studied, including mineral matter liberation, kinetics of mineral matter and pyrite dissolution, ferric ion regeneration schemes and alternative methods of separating the cleaned coal from the liberated mineral matter. The information gathered from the parametric and fundamental studies was used in the design, construction and testing of a bench-scale continuous CECC unit. Using this unit, the ash content of a Middle Wyodak coal was reduced from 6.96 to 1.61% at a 2 lbs/hr throughput. With an Elkhorn No. 3 sample, the ash content was reduced from 9.43 to 1.8%, while the sulfur content was reduced from 1.57 to 0.9%. The mass balance and liberation studies showed that liberation played a more dominant role than the chemical dissolution in removing mineral matter and inorganic sulfur from the different bituminous coals tested. However, the opposite was found to be the case for the Wyodak coal since this coal contained a significant amount of acid-soluble minerals.

  19. Adsorption-induced coal swelling and stress: Implications for methane production and acid gas sequestration into coal seams

    NASA Astrophysics Data System (ADS)

    Cui, Xiaojun; Bustin, R. Marc; Chikatamarla, Laxmi

    2007-10-01

    reduction in permeability, and hence sequestration of H2S in deep coals will be likely impractical. Furthermore, high stresses resulting from sorption of acid gases will potentially cause the coal to yield, fracture or slip, and produce fine particles, which further affect permeability and thus methane production and acid gas sequestration.

  20. 34. BOILER HOUSE, COAL CONVEYOR AND TURNAROUND TRACK FOR COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. BOILER HOUSE, COAL CONVEYOR AND TURN-AROUND TRACK FOR COAL CARS (NOTE: COAL CAR No. 6 IN FAR BACK GROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  1. 35. BOILER HOUSE, TRACK FOR COAL CARS LEADING TO COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. BOILER HOUSE, TRACK FOR COAL CARS LEADING TO COAL TOWER No. 2 (NOTE: SKYLIGHT ABOVE; COAL CARS IN FAR BACKGROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  2. 39. BOILER HOUSE, COAL CONVEYOR LEADING FROM COAL TOWER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. BOILER HOUSE, COAL CONVEYOR LEADING FROM COAL TOWER No. 1 (WEST) (NOTE: COAL CARS No. 9 & 5 IN BACKGROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  3. Looking southeast at coal conveyor leading from the coal unloading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast at coal conveyor leading from the coal unloading station to the coal elevator. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  4. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    SciTech Connect

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

  5. 'RAT' Leaves a Fine Mess

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the light signatures, or spectra, of two sides of the rock dubbed 'Bounce,' located at Meridiani Planum, Mars. The spectra were taken by the miniature thermal emission spectrometer on the Mars Exploration Rover Opportunity. The left side of this rock is covered by fine dust created when the rover drilled into the rock with its rock abrasion tool. These 'fines' produce a layer of pyroxene dust that can be detected here in the top spectrum. The right side of the rock has fewer fines and was used to investigate the composition of this basaltic rock.

  6. Uprated fine guidance sensor study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future orbital observatories will require star trackers of extremely high precision. These sensors must maintain high pointing accuracy and pointing stability simultaneously with a low light level signal from a guide star. To establish the fine guidance sensing requirements and to evaluate candidate fine guidance sensing concepts, the Space Telescope Optical Telescope Assembly was used as the reference optical system. The requirements review was separated into three areas: Optical Telescope Assembly (OTA), Fine Guidance Sensing and astrometry. The results show that the detectors should be installed directly onto the focal surface presented by the optics. This would maximize throughput and minimize point stability error by not incoporating any additional optical elements.

  7. 13. Coal ejectors mounted on aft bulkhead of coal bunker. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Coal ejectors mounted on aft bulkhead of coal bunker. Ejectors were used to flush overboard live coals and clinkers from firebed (pipe for carrying coals overboard has been removed from ejector in foreground). Coal doors from bunker appear beside ejector in foreground). Coal doors from bunker appear beside ejectors at deck; note firing shovels in background against hull. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT

  8. Gasifier feed: Tailor-made from Illinois coals. Final technical report, September 1, 1991--December 31, 1992

    SciTech Connect

    Ehrlinger, H.P. III; Lytle, J.M.; Frost, R.R.; Lizzio, A.A.; Kohlenberger, L.B.; Brewer, K.K. |||

    1992-12-31

    The main purpose of this project was to produce a feedstock from preparation plant fines from an Illinois (IL) coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high-sulfur content and high-Btu value of IL coals are Particularly advantageous in such a gasifier; preliminary-calculations indicate that the increased cost of removing sulfur from the gas from a high-sulfur coal is more than offset b the increased revenue from the sale of the elemental sulfur; additionally the high-Btu IL coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is--higher not only because of the hither Btu value of the coal but also because IL coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for IL coal as compared to approximately 45% for most western coals. During the contract extension, additional coal testing was completed confirming the fact that coal concentrates can be made from plant waste under a variety of flotation conditions 33 tests were conducted, yielding an average of 13326 Btu with 9.6% ash while recovering 86.0%-Of the energy value.

  9. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 March 1995--31 May 1995

    SciTech Connect

    Honaker, R.Q.; Paul, B.C.; Mohanty, M.K.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a run-of-mine coal sample collected from Amax Coal Company`s Delta Coal mine using column flotation and an enhanced gravity separator as separate units and in circuitry arrangements. The {minus}60 mesh run-of-mine sample having an ash content of about 22% was cleaned to 6% while achieving a very high energy recovery of about 87% and a sulfur rejection value of 53% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Packed-Column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  10. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  11. Integrated coal liquefaction process

    DOEpatents

    Effron, Edward

    1978-01-01

    In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

  12. Pulverized coal fuel injector

    DOEpatents

    Rini, Michael J.; Towle, David P.

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  13. Coal-Sizing Auger

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1985-01-01

    Aft end of auger, like forward, face-piercing end, equipped with hard cutting bits such as diamonds. As auger breaks face, pulls broken coal lumps into jaws and forces them into hardened throat section. There, cutting bits chew up lumps: Clearance between throat and auger shaft sets maximum size for coal particles that pass through. Auger motion pushes coal particles into mixing chamber, where paddles combine them with water.

  14. Coal supply for California

    NASA Technical Reports Server (NTRS)

    Yancik, J. J.

    1978-01-01

    The potential sources and qualities of coals available for major utility and industrial consumers in California are examined and analyzed with respect to those factors that would affect the reliability of supplies. Other considerations, such as the requirements and assurances needed by the coal producers to enter into long-term contracts and dedicate large reserves of coal to these contracts are also discussed. Present and potential future mining contraints on coal mine operators are identified and analyzed with respect to their effect on availability of supply.

  15. Coal weathering studies

    SciTech Connect

    Alvarez, R.; Barriocanal, C.; Casal, M.D.; Diez, M.A.; Gonzalez, A.I.; Pis, J.J.; Canga, C.S.

    1996-12-31

    Weathering studies were carried out on coal/blend piles stored in the open yard at the INCAR facilities. Firstly, a typical and complex coal blend used by the Spanish Steel Company, ENSIDESA, prepared and ground at industrial scale, was stored. Several methods have been applied for detecting weathering in coals, Gieseler maximum fluidity being the most sensitive indicator of the loss of thermoplastic properties. Carbonization tests were carried out in a semi-industrial and a movable-wall ovens available at the INCAR Coking Test Plant. In addition to the measurements of internal gas pressure and cooling pressure, laboratory tests to measure expansion/contraction behavior of coals were performed. There is a clear decrease in internal gas pressure with weathering, measured in the semi-industrial oven. A decrease in wall pressure after two months of weathering followed by a period of stabilization lasting practically ten months were observed. As regards coke quality, no significant changes were produced over a storing period of ten months, but after this date impairment was observed. The behavior of selected individual coals stored without grinding, which are components of the blend, was rather different. Some coals showed a maximum wall pressure through the weathering period. Coke quality improved with some coals and was impaired with others due to weathering. It should be pointed out that slight weathering improved coke quality not only in high-volatile and fluid coals but also in medium-volatile coals.

  16. Coal liquefaction quenching process

    DOEpatents

    Thorogood, Robert M.; Yeh, Chung-Liang; Donath, Ernest E.

    1983-01-01

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  17. Coal liquefaction process

    SciTech Connect

    Long, R.B.; Gorbaty, M.L.; Schlosberg, R.H.

    1981-02-24

    In this integrated coal pretreatment, liquefaction, and gasification process, particulate coal is contacted with a vapor-phase hydrogen-donor solvent to swell the coal particles and then subjected to coal liquefaction at relatively low temperatures. The solid residue of the liquefaction stage undergoes pyrolysis at high temperatures to produce an additional amount of oil. The solid residue of the pyrolysis stage is then gasified by treatment with steam and a molecular-oxygen-containing gas to produce a hydrogen-containing gas.

  18. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  19. Handbook of coal analysis

    SciTech Connect

    James G. Speight

    2005-05-01

    The Handbook deals with the various aspects of coal analysis and provides a detailed explanation of the necessary standard tests and procedures that are applicable to coal in order to help define usage and behavior relative to environmental issues. It provides details of the meaning of various test results and how they might be applied to predict coal behavior during use. Emphasis is on ASTM standards and test methods but ISO and BSI standards methods are included. Chapter headings are: Coal analysis; Sampling and sample preparation; Proximate analysis; Ultimate analysis; Mineral matter; Physical and electrical properties; Thermal properties; Mechanical properties; Spectroscopic properties; Solvent properties; and Glossary.

  20. New fine structure cooling rate

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.

    1976-01-01

    One of the dominant electron cooling processes in the ionosphere is caused by electron impact induced fine structure transitions among the ground state levels of atomic oxygen. This fine structure cooling rate is based on theoretical cross sections. Recent advances in the numerical cross section determinations to include polarization effects and more accurate representations of the atomic target result in new lower values. These cross sections are employed in this paper to derive a new fine structure cooling rate which is between 40% and 60% of the currently used rate. A new generalized formula is presented for the cooling rate (from which the fine structure cooling rate is derived), valid for arbitrary mass and temperature difference of the colliding particles and arbitrary inelastic energy difference.

  1. Cooperative research program in coal liquefaction

    SciTech Connect

    Huffman, G.P.

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  2. Cooperative research program in coal liquefaction

    SciTech Connect

    Huffman, G.P.

    1992-01-01

    Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  3. Clean coal technologies market potential

    SciTech Connect

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  4. Coal and coal gas resources in the Piceance Basin, Colorado

    SciTech Connect

    Scott, A.R.; Tyler, R.; Kaiser, W.R.; McMurray, R.G.; Nance, H.S. )

    1996-01-01

    Accurate assessment and delineation of coal and coal gas resources within basins are important aspects of resource development. Previous estimates of coal resources in the Piceance Basin range from 248 to 382 billion tons, and in-place coal gas resources are generally accepted to be 84 Tcf. Assuming no depth restrictions, we estimate coal and coal gas resources to be approximately 289 billion tons and 99 Tcf, respectively. Coal gas resources in the Piceance were calculated using two different approaches because of the topographic relief in the basin. The first method, which correlated ash-free gas content with depth, overestimated coal gas resources under topographically high areas. The second method, based on coal rank, eliminated topographic effects but underestimated coal gas resources in parts of the basin where unusually high gas contents occur owing to gas migration. Therefore, coal gas resources range between 80 and 136 Tcf, depending on the method used. Assuming no depth restrictions, 80 percent of the coal (255 billion tons) and 75 percent of the coal gas (76 Tcf) resources are found in the lower part of the Cameo-Wheeler Fairfield coal group. The regional distribution of coal gas resources generally follows net coal trends. Maximum in-place coal gas resources exceed 60 Bcf/mi[sup 2] in the deeper parts of the basin and are double the 30 Bcf/mi[sup 2] previously reported.

  5. Coal and coal gas resources in the Piceance Basin, Colorado

    SciTech Connect

    Scott, A.R.; Tyler, R.; Kaiser, W.R.; McMurray, R.G.; Nance, H.S.

    1996-12-31

    Accurate assessment and delineation of coal and coal gas resources within basins are important aspects of resource development. Previous estimates of coal resources in the Piceance Basin range from 248 to 382 billion tons, and in-place coal gas resources are generally accepted to be 84 Tcf. Assuming no depth restrictions, we estimate coal and coal gas resources to be approximately 289 billion tons and 99 Tcf, respectively. Coal gas resources in the Piceance were calculated using two different approaches because of the topographic relief in the basin. The first method, which correlated ash-free gas content with depth, overestimated coal gas resources under topographically high areas. The second method, based on coal rank, eliminated topographic effects but underestimated coal gas resources in parts of the basin where unusually high gas contents occur owing to gas migration. Therefore, coal gas resources range between 80 and 136 Tcf, depending on the method used. Assuming no depth restrictions, 80 percent of the coal (255 billion tons) and 75 percent of the coal gas (76 Tcf) resources are found in the lower part of the Cameo-Wheeler Fairfield coal group. The regional distribution of coal gas resources generally follows net coal trends. Maximum in-place coal gas resources exceed 60 Bcf/mi{sup 2} in the deeper parts of the basin and are double the 30 Bcf/mi{sup 2} previously reported.

  6. Preliminary study on the mode of occurrence of arsenic in high arsenic coals from southwest Guizhou Province

    USGS Publications Warehouse

    Ding, Z.; Zheng, B.; Zhang, Jiahua; Belkin, H.E.; Finkelman, R.B.; Zhao, F.; Zhou, D.; Zhou, Y.; Chen, C.

    1999-01-01

    Coal samples from high arsenic coal areas have been analyzed by electron microprobe analyzer (EMPA), scanning electron microscopy with an energy dispersive X-ray analyzer (SEM-EDX), X-ray diffraction analysis (XRD), low temperature ashing (LTA), transmission electron microscopy (TEM), X-ray absorption fine structure (XAFS), instrument neutron activation analysis (INAA) and wet chemical analysis. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, and As-bearing clays are found in the high arsenic coals, their contents do not account for the abundance of arsenic in the some coals. Analysis of the coal indicates that arsenic exists mainly in the form of As5+ and As3+, combined with compounds in the organic matrix. The occurrence of such exceptionally high arsenic contents in coal and the fact that the arsenic is dominantly organically associated are unique observations. The modes of occurrence of arsenic in high As-coals are discussed.

  7. Appalachian clean coal technology consortium. Quarterly report, July 1, 1995--September 30, 1995

    SciTech Connect

    1995-11-20

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies are being conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model will be developed by West Virginia University. The most promising approach to improving spiral separation efficiency is through extensive computer modeling of fluid and solids flow in the various operating regions of the spiral. Accomplishments for these two tasks are described.

  8. Study of the comminution characteristics of coal by single particle breakage test device

    SciTech Connect

    Sahoo, R.

    2005-09-01

    Single-particle breakage tests of South Blackwater and Ensham coal from the Bowen Basin area in Queensland were conducted by a computer-monitored twin-pendulum device to measure the energy utilization pattern of the breakage particles. Three particle sizes (-16.0+13.2mm, -13.2+11.2mm, -11.2+9.5mm) of each coal were tested by a pendulum device at five input energy levels to measure the specific comminution energy. When particles were tested at constant input energy, the variation of comminution energy between the same size broken particles of Ensham coal was minimal, because Ensham coal is a softer and higher friability coal, which absorbs more input energy than harder coal during breakage tests. For different particle sizes, the specific comminution energy increases linearly with the input energy and the fineness of the breakage products increases with the specific comminution energy. The size distribution graphs are curved but approach linearity in the finer region. At a constant input energy, the twin pendulum breakage product results show that the fineness of the products increases with decrease in particle size and South Blackwater coal produced finer products than the Ensham coal. The t-curves are the family of size distribution curves, which can describe the product size distribution of the breakage particles during single-particle breakage tests.

  9. Some Challenges Posed by Coal Bed Methane Regional Assessment Modeling.

    PubMed

    Moore, Catherine R; Doherty, John; Howell, Stephen; Erriah, Leon

    2015-01-01

    Coal measures (coal bearing rock strata) can contain large reserves of methane. These reserves are being exploited at a rapidly increasing rate in many parts of the world. To extract coal seam gas, thousands of wells are drilled at relatively small spacing to depressurize coal seams to induce desorption and allow subsequent capture of the gas. To manage this process effectively, the effect of coal bed methane (CBM) extraction on regional aquifer systems must be properly understood and managed. Groundwater modeling is an integral part of this management process. However, modeling of CBM impacts presents some unique challenges, as processes that are operative at two very different scales must be adequately represented in the models. The impacts of large-scale gas extraction may be felt over a large area, yet despite the significant upscaling that accompanies construction of a regional model, near-well conditions and processes cannot be ignored. These include the highly heterogeneous nature of many coal measures, and the dual-phase flow of water and gas that is induced by coal seam depressurization. To understand these challenges, a fine-scale model was constructed incorporating a detailed representation of lithological heterogeneity to ensure that near-well processes and conditions could be examined. The detail of this heterogeneity was at a level not previously employed in models built to assess groundwater impacts arising from CBM extraction. A dual-phase reservoir simulator was used to examine depressurization and water desaturation processes in the vicinity of an extractive wellfield within this fine-scale model. A single-phase simulator was then employed so that depressurization errors incurred by neglecting near-well, dual-phase flow could be explored. Two models with fewer lithological details were then constructed in order to examine the nature of depressurization errors incurred by upscaling and to assess the interaction of the upscaling process with the

  10. Some Challenges Posed by Coal Bed Methane Regional Assessment Modeling.

    PubMed

    Moore, Catherine R; Doherty, John; Howell, Stephen; Erriah, Leon

    2015-01-01

    Coal measures (coal bearing rock strata) can contain large reserves of methane. These reserves are being exploited at a rapidly increasing rate in many parts of the world. To extract coal seam gas, thousands of wells are drilled at relatively small spacing to depressurize coal seams to induce desorption and allow subsequent capture of the gas. To manage this process effectively, the effect of coal bed methane (CBM) extraction on regional aquifer systems must be properly understood and managed. Groundwater modeling is an integral part of this management process. However, modeling of CBM impacts presents some unique challenges, as processes that are operative at two very different scales must be adequately represented in the models. The impacts of large-scale gas extraction may be felt over a large area, yet despite the significant upscaling that accompanies construction of a regional model, near-well conditions and processes cannot be ignored. These include the highly heterogeneous nature of many coal measures, and the dual-phase flow of water and gas that is induced by coal seam depressurization. To understand these challenges, a fine-scale model was constructed incorporating a detailed representation of lithological heterogeneity to ensure that near-well processes and conditions could be examined. The detail of this heterogeneity was at a level not previously employed in models built to assess groundwater impacts arising from CBM extraction. A dual-phase reservoir simulator was used to examine depressurization and water desaturation processes in the vicinity of an extractive wellfield within this fine-scale model. A single-phase simulator was then employed so that depressurization errors incurred by neglecting near-well, dual-phase flow could be explored. Two models with fewer lithological details were then constructed in order to examine the nature of depressurization errors incurred by upscaling and to assess the interaction of the upscaling process with the

  11. New Coal Standards.

    ERIC Educational Resources Information Center

    Heritage, John

    1979-01-01

    Tighter federal air pollution control standards for new coal-burning electric power plants have been issued. Through use of air pollution control devices all types of coal will be useable under the new standards. Even stricter standards may be imposed where visibility may be affected in areas now enjoying very clean air. (RE)

  12. Carboniferous coal swamp vegetation

    SciTech Connect

    Phillips, T.L.; Peppers, R.A.; DiMichele, W.A.

    1984-01-01

    The Carboniferous Period was one of considerable change on the Earth. The volume explores these changes by using plant morphology and paleoecology to develop the relationship between plant evolution and the derived coal sources. Both are interrelated by the regional and stratigraphic trends in paleoecology and paleoclimatology. The book is divided into three sections dealing with geology, plant morphology including palynology, and paleoecology. In Section I, the paleogeography, geologic settings of major coal basins, coal resources, coal-ball origins and occurrences, and the sources of paleobotanical information are presented with biostratigraphic correlations of Europe and the United States. Section II emphasizes plant morphology as form and structure provide the means of identifying plants and, in turn, establishing development, size, habit, reproductive biology, environmental parameters, and evolutionary change. Quantitative abundances and stratigraphic ranges of plants and spores are compared and summarized. Lastly, Section III integrates coal-ball peats and coal-spore floras as complementary sources for the quantitative analyses of coal-swamp vegetation in relation to climate and coal. The local and regional swamp studies are interfaced and basinal geology and depositional interpretations in a stratigraphic succession.

  13. Mechanochemical hydrogenation of coal

    DOEpatents

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  14. Coal prep 96

    SciTech Connect

    1996-12-31

    The proceedings of the 13th International Coal Preparation Exhibition and Conference-Coal Prep 96 are presented. The conference was held April 30 to May 2, 1996 in Lexington, KY. A separate abstract and indexing was prepared for each of the 22 papers presented at the conference for inclusion in the Energy Science and Technology Database.

  15. Coal prep '90

    SciTech Connect

    Not Available

    1990-01-01

    This book contains proceedings from the Coal Prep 90 conference in Cincinnati on May 6-10, 1990. Topics covered include coal cleaning, quality control, instrumentation automation and process control, operations and maintenance, and moisture reduction and classification. Individual articles are abstracted separately.

  16. Coal prep '94

    SciTech Connect

    Not Available

    1994-01-01

    The Coal Prep 1994 Conference held May 3-5, 1994 in Lexington, KY presented papers on materials handling, developments in other countries, research and development, dewatering, and coal cleaning. The papers have been abstracted and indexed separately for inclusion in the Energy Science and Technology Database.

  17. COAL USE REPORT

    EPA Science Inventory

    The world's coal reserves have been estimated to be about one exagram accessible with current extraction technology. The energy content has been valued at 290 zettajourles. Using a value of 15 terawatt as the current global energy consumption, the coal supply could global needs f...

  18. Method for coal liquefaction

    DOEpatents

    Wiser, Wendell H.; Oblad, Alex G.; Shabtai, Joseph S.

    1994-01-01

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

  19. Coal liquefaction process

    DOEpatents

    Carr, Norman L.; Moon, William G.; Prudich, Michael E.

    1983-01-01

    A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

  20. Plasma gasification of coals

    SciTech Connect

    Kruzhilin, G.I.; Khudyakov, G.N.; Tselishchev, P.A.

    1981-01-01

    To avoid problems of transporting coal from Siberia to the European part of the Soviet Union, plasma gasification could be used to give methane and liquid methyl fuel which could be transported by pipeline. Plasma-assisted gasification is particularly effective in the case of brown coals. (11 refs.)

  1. LIBS Analysis for Coal

    NASA Astrophysics Data System (ADS)

    E. Romero, Carlos; De Saro, Robert

    Coal is a non-uniform material with large inherent variability in composition, and other important properties, such as calorific value and ash fusion temperature. This quality variability is very important when coal is used as fuel in steam generators, since it affects boiler operation and control, maintenance and availability, and the extent and treatment of environmental pollution associated with coal combustion. On-line/in situ monitoring of coal before is fed into a boiler is a necessity. A very few analytical techniques like X-ray fluorescence and prompt gamma neutron activation analysis are available commercially with enough speed and sophistication of data collection for continuous coal monitoring. However, there is still a need for a better on-line/in situ technique that has higher selectivity, sensitivity, accuracy and precision, and that is safer and has a lower installation and operating costs than the other options. Laser induced breakdown spectroscopy (LIBS) is ideal for coal monitoring in boiler applications as it need no sample preparation, it is accurate and precise it is fast, and it can detect all of the elements of concern to the coal-fired boiler industry. LIBS data can also be adapted with advanced data processing techniques to provide real-time information required by boiler operators nowadays. This chapter summarizes development of LIBS for on-line/in situ coal applications in utility boilers.

  2. Coal combustion ash haulback

    SciTech Connect

    Gray, R.E.; Gray, T.A.

    1998-12-31

    Coal mining disturbs large tracts of land which must be reclaimed. Unfortunately, iron sulfides which are common in most coals and the adjacent strata weather, forming acid mine drainage (AMD) which degrades surface and ground water. Burning of coal produces combustion by products, most of which are placed in ponds or landfills. Suitable disposal areas are difficult to find and permit, especially in urban areas. This has led to ash haulback--where the waste generated during coal burning is hauled back to a mine for disposal. The potential advantages of coal combustion ash haulback are: Disposal occurs in a disturbed area (mine) rather than disturb additional land near the power plant; The same vehicles used to haul coal from the mine can be used to return the ash to the mine; Ash, if alkaline, may provide neutralization of acidic water or mine overburden commonly found at coal mines; and Low permeability ash could reduce ground water flow through the mine backfill, thus reducing leaching of acid forming constituents or metals. Placement of ash in surface mines provides an efficient, cost-effective method of disposal while at the same time contributing to reclamation of the mine. Wise natural resource management suggests a reasonable approach to disposal of coal ash is to return it to its original location--the mine.

  3. Integration of stripping of fines slurry in a coking and gasification process

    DOEpatents

    DeGeorge, Charles W.

    1980-01-01

    In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

  4. Biochemical removal of HAP precursors from coal. Quarterly technical progress report, 1996

    SciTech Connect

    1996-12-31

    Shake flask tests were completed of microbial pyrite and HAP precursor removal from Rosebud subbituminous coal. Significant amounts of Ni, F, Mn, Cd, Co and Be were removed from this coal. Analyses in connection with leach column tests of Pittsburgh coal were completed and confirmed significant removal of Ni, F, Mn, Cd, Co and As from this coal. Although Hg was not removed from Pittsburgh coal by microbial attack, there was a correlation between HCl leaching of Hg from this coal and the extent of depyritization. Since HgS is soluble in HCl, the results suggest HgS is exposed by chemical and microbial dissolution of coal pyrite. Column tests with cleaned Indiana No. 5 coal are in progress and show significant early dissolution of Ni, Mn, Cd, Co and As. A final shake flask test with Kentucky No. 9 coal was begun. Pittsburgh coal with a low content of fines was shipped to the Idaho National Engineering Laboratory (INEL) in preparation for slurry column tests of HAP precursor removal. Project results were presented at the PETC contractor`s conference held in Pittsburgh. A project progress review meeting was also held with the PETC technical project monitor.

  5. State coal profiles, January 1994

    SciTech Connect

    Not Available

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  6. Coal Formation and Geochemistry

    NASA Astrophysics Data System (ADS)

    Orem, W. H.; Finkelman, R. B.

    2003-12-01

    Coal is one of the most complex and challenging natural materials to analyze and to understand. Unlike most rocks, which consist predominantly of crystalline mineral grains, coal is largely an assemblage of amorphous, degraded plant remains metamorphosed to various degrees and intermixed with a generous sprinkling of minute syngenetic, diagenetic, epigenetic, and detrital mineral grains, and containing within its structure various amounts of water, oils, and gases. Each coal is unique, having been derived from different plant sources over geologic time, having experienty -45ced different thermal histories, and having been exposed to varying geologic processes. This diversity presents a challenge to constructing a coherent picture of coal geochemistry and the processes that influence the chemical composition of coal.Despite the challenge coal presents to geochemists, a thorough understanding of the chemistry and geology of this complex natural substance is essential because of its importance to our society. Coal is, and will remain for sometime, a crucial source of energy for the US and for many other countries (Figure 1). In the USA, more than half of the electricity is generated by coal-fired power plants, and almost 90% of the coal mined in the USA is sold for electricity generation (Pierce et al., 1996). It is also an important source of coke for steel production, chemicals, pharmaceuticals, and even perfumes ( Schobert, 1987). It may also, in some cases, be an economic source of various mineral commodities. The utilization of coal through mining, transport, storage, combustion, and the disposal of the combustion by-products, also presents a challenge to geochemists because of the wide range of environmental and human health problems arising from these activities. The sound and effective use of coal as a natural resource requires a better understanding of the geochemistry of coal, i.e., the chemical and mineralogical characteristics of the coal that control its

  7. Sulfur compounds in coal

    NASA Technical Reports Server (NTRS)

    Attar, A.; Corcoran, W. H.

    1977-01-01

    The literature on the chemical structure of the organic sulfur compounds (or functional groups) in coal is reviewed. Four methods were applied in the literature to study the sulfur compounds in coal: direct spectrometric and chemical analysis, depolymerization in drastic conditions, depolymerization in mild conditions, and studies on simulated coal. The data suggest that most of the organic sulfur in coal is in the form of thiophenic structures and aromatic and aliphatic sulfides. The relative abundance of the sulfur groups in bituminous coal is estimated as 50:30:20%, respectively. The ratio changes during processing and during the chemical analysis. The main effects are the transformation during processing of sulfides to the more stable thiophenic compounds and the elimination of hydrogen sulfide.

  8. Coal resources of Alaska

    SciTech Connect

    Sanders, R.B.

    1982-01-01

    In the late 1800s, whaling ships carried Alaskan coal, and it was used to thaw ground for placer gold mining. Unfortunate and costly political maneuvers in the early 1900s delayed coal removal, but the Alaska Railroad and then World War II provided incentives for opening mines. Today, 33 million acres (about 9% of the state) is classified as prospectively valuable for coal, much of it under federal title. Although the state's geology is poorly known, potential for discovery of new fields exists. The US Geological Survey estimates are outdated, although still officially used. The total Alaska onshore coal resource is estimated to be 216 to 4216 billion tons of which 141 billion tons are identified resources; an additional 1430 billion tons are believed to lie beneath Cook Inlet. Transportation over mountain ranges and wetlands is the biggest hurdle for removal. Known coal sources and types are described and mapped. 1 figure.

  9. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  10. Underground Coal Thermal Treatment

    SciTech Connect

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  11. ON LINE MEASUREMENT OF PRIMARY FINE PARTICULATE MATTER

    SciTech Connect

    Dale R. Tree

    1999-09-01

    The measurement of fine particulate in pulverized coal flames has several applications of importance. These include but are not limited to: (1) The detection of fine particulate in the effluent for pollution control; (2) The detection of soot and fuel burnout in real time within a boiler; and (3) The quantification of soot within coal flame for improved understanding of pulverized coal flame heat transfer and soot modeling. A method has been investigated using two-color extinction along a line of sight within the flame which provides a continuous real-time measurement of the soot concentration. The method uses two inexpensive HeNe lasers and simple light detectors. The results of testing the method on a pilot scale 0.2 MW pulverized coal reactor demonstrate the method is working well in a qualitative sense and an error analysis performed on the uncertainty of the assumed values demonstrates the method to be accurate to within {+-} 30%. Additional experiments designed to quantify the measurement more accurately are ongoing. Measurements at the end of the reactor just prior to the exit showed soot could not be detected until the overall equivalence ratio became greater than 1.0. The detection limit for the method was estimated to be 1 x 10{sup -8} soot volume fraction. Peak soot concentration was found to approach a level of 0.88 x 10{sup -6} at the sootiest condition. The method was used to obtain an axial profile of soot concentration aligned with the down-fired pulverized coal flame for three different flame swirls of 0, 0.5 and 1.5 and an overall equivalence ratio of 1.2. The axial measurements showed the soot concentration to increase initially and level off to a constant maximum value. At 0.5 swirl the soot volume fraction increased more rapidly near the burner and both the 0.5 and 1.5 swirl cases showed that soot had reached a maximum by 0.9 m, but the 0 swirl soot concentration was still increasing. Previous measurements of species and velocity in the reactor

  12. Apparatus and method for feeding coal into a coal gasifier

    DOEpatents

    Bissett, Larry A.; Friggens, Gary R.; McGee, James P.

    1979-01-01

    This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.

  13. Attitudes toward Women Coal Miners in an Appalachian Coal Community.

    ERIC Educational Resources Information Center

    Trent, Roger B.; Stout-Wiegand, Nancy

    1987-01-01

    In a coal mining community, a survey revealed that the level of negative sentiment toward women coal miners was substantial and varied by gender role. Male coal miners were negative toward female co-workers, but they supported women's right to coal mine jobs, while female homemakers did not. (Author/CH)

  14. Spectrographic analysis of coal and coal ash

    USGS Publications Warehouse

    Hunter, R.G.; Headlee, A.J.W.

    1950-01-01

    Coal can be analyzed on the spectrograph for per cent ash and composition of ash in a matter of a few minutes, using the total energy method. The composition of the ash so determined can be used to calculate ash softening temperatures. This analysis can be made in sufficiently short a time to control tipple and washing operations for preparation of coal to meet specifications. This spectrographic method can be readily adapted to the analysis of rocks, minerals, and inorganic chemicals of all kinds.

  15. Coal and coal-bearing strata: recent advances

    SciTech Connect

    Scott, A.C.

    1987-01-01

    This volume contains keynote papers presented at the International Symposium on Coal and Coal-bearing Strata held at the University of London, April 1986. The authors reviewed progress in their fields over the past 15 years. Nine keynote lectures plus seven other invited contributions by experts in geology, geochemistry, sedimentology and biology are included in the volume. Coal, a major fossil fuel, is of broad interest to geologists and technological professionals alike. Topics in this volume include the formation of peat, coalification, coal geochemistry, palaeobotanical and palynological studies, sedimentology, coal exploration, oil-prone coals, and numerous coal basins. This volume is of interest not only to workers in the coal, oil, and gas industries, but also to survey geologists, lecturers, and students alike who are concerned with recent advances in the study of coal and coal-bearing strata.

  16. Removal of mercury from powder river basin coal by low-temperature thermal treatment

    SciTech Connect

    Merriam, N.W.

    1993-07-01

    This report describes work conducted at Western Research Institute (WRI) to remove mercury from Powder River Basin (PRB) coal as part of the research performed under Task 2.1, Development and Optimization of a Process for the Production of a Premium Solid Fuel from Western US Coals, of the 1993 Annual Project Plan. In the tests minus 16 mesh PRB coal was fed to a bench-scale fluidized-bed reactor where it was heated by contact with carbon dioxide fluidizing gas. A side stream of the gas from the reactor was passed through traps containing activated carbon where mercury driven from the coal was collected. The feed coal (which contains about 0.062 milligrams of mercury/kilogram of coal), the fines elutriated from the reactor, the activated carbon, and the condensed water from the reactor were analyzed for mercury. The solid products were analyzed using cold vapor atomic adsorption spectroscopy (ASTM D3684) while the water was analyzed using US Environmental Protection Agency (EPA) Method 245.1 which is based upon reduction of mercury to elemental form followed by adsorption at a wave length of 253.7 nanometers. The results of these tests show that about 70 to 80 wt % of the mercury is removed from the coal when the temperature is raised from about 300{degree}F (149{degree}C) to about 550{degree}F (288{degree}C). The remaining 20 wt % of the mercury remains in the char at temperatures up to about 1100{degree}F (593{degree}C). About 0.5 wt % of the mercury in the feed coal is condensed with water recovered from the coal. Nearly all of the mercury driven from the coal remains in the gas stream. Fines elutriated from the reactor contain about the same concentration of mercury as the feed coal.

  17. Coal in a changing climate

    SciTech Connect

    Lashof, D.A.; Delano, D.; Devine, J.

    2007-02-15

    The NRDC analysis examines the changing climate for coal production and use in the United States and China, the world's two largest producers and consumers of coal. The authors say that the current coal fuel cycle is among the most destructive activities on earth, placing an unacceptable burden on public health and the environment. There is no such thing as 'clean coal.' Our highest priorities must be to avoid increased reliance on coal and to accelerate the transition to an energy future based on efficient use of renewable resources. Energy efficiency and renewable energy resources are technically capable of meeting the demands for energy services in countries that rely on coal. However, more than 500 conventional coal-fired power plants are expected in China in the next eight years alone, and more than 100 are under development in the United States. Because it is very likely that significant coal use will continue during the transition to renewables, it is important that we also take the necessary steps to minimize the destructive effects of coal use. That requires the U.S. and China to take steps now to end destructive mining practices and to apply state of the art pollution controls, including CO{sub 2} control systems, to sources that use coal. Contents of the report are: Introduction; Background (Coal Production; Coal Use); The Toll from Coal (Environmental Effects of Coal Production; Environmental Effects of Coal Transportation); Environmental Effects of Coal Use (Air Pollutants; Other Pollutants; Environmental Effects of Coal Use in China); What Is the Future for Coal? (Reducing Fossil Fuel Dependence; Reducing the Impacts of Coal Production; Reducing Damage From Coal Use; Global Warming and Coal); and Conclusion. 2 tabs.

  18. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    SciTech Connect

    Not Available

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  19. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final quarterly technical progress report No. 6, October 1, 1991--December 31, 1991

    SciTech Connect

    Conkle, H.N.

    1992-03-17

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coals studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).

  20. Coal Activities for Secondary Students.

    ERIC Educational Resources Information Center

    American Coal Foundation, Washington, DC.

    This collection of lesson plans designed for teachers of 4th- through 12th-grade students utilizes an assortment of teaching strategies for topics related to coal and the coal industry. Activities cover the following topics: coal formation; coal identification; "the geologist's dilemma" (a supply and demand activity); geologic time and the…