Science.gov

Sample records for 280-320 nm radiation

  1. 15 CFR 280.320 - Maintenance of the certificate of recordal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... English language and must include the following: (1) The name of the manufacturer; (2) The address of the... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Maintenance of the certificate of recordal. 280.320 Section 280.320 Commerce and Foreign Trade Regulations Relating to Commerce and...

  2. Solar ultraviolet radiation exclusion increases soybean internode lengths and plant height

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] cultivars Williams-82 and Maverick were grown in a polycarbonate greenhouse, a glass greenhouse, and outdoors (during daytime) to investigate the effect of (i) exclusion of both solar UV-B radiation (280-320 nm) and UV-A radiation (320-400 nm), (ii) exclusion of sola...

  3. RESPONSE OF OXIDATIVE STRESS DEFENSE SYSTEMS IN RICE (ORYZA SATIVA) LEAVES WITH SUPPLEMENTAL UV-B RADIATION

    EPA Science Inventory

    The impact of elevated ultraviolet-B radiation (UV-B, 280-320 nm) on membrane systems and lipid peroxidation, and possible involvement of active oxygen radicals was investigated in leaves of two UV-B susceptible rice cultivars (Oryza sativa L. cvs IR74 and Dular). Rice seedlings ...

  4. Radiation Status of Sub-65 nm Electronics

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2011-01-01

    Ultra-scaled complementary metal oxide semiconductor (CMOS) includes commercial foundry capabilities at and below the 65 nm technology node Radiation evaluations take place using standard products and test characterization vehicles (memories, logic/latch chains, etc.) NEPP focus is two-fold: (1) Conduct early radiation evaluations to ascertain viability for future NASA missions (i.e. leverage commercial technology development). (2) Uncover gaps in current testing methodologies and mechanism comprehension -- early risk mitigation.

  5. Radiation Tolerance of 65nm CMOS Transistors

    DOE PAGES

    Krohn, M.; Bentele, B.; Christian, D. C.; ...

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20°C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  6. Radiation Failures in Intel 14nm Microprocessors

    NASA Technical Reports Server (NTRS)

    Bossev, Dobrin P.; Duncan, Adam R.; Gadlage, Matthew J.; Roach, Austin H.; Kay, Matthew J.; Szabo, Carl; Berger, Tammy J.; York, Darin A.; Williams, Aaron; LaBel, K.; Ingalls, James D.

    2016-01-01

    In this study the 14 nm Intel Broadwell 5th generation core series 5005U-i3 and 5200U-i5 was mounted on Dell Inspiron laptops, MSI Cubi and Gigabyte Brix barebones and tested with Windows 8 and CentOS7 at idle. Heavy-ion-induced hard- and catastrophic failures do not appear to be related to the Intel 14nm Tri-Gate FinFET process. They originate from a small (9 m 140 m) area on the 32nm planar PCH die (not the CPU) as initially speculated. The hard failures seem to be due to a SEE but the exact physical mechanism has yet to be identified. Some possibilities include latch-ups, charge ion trapping or implantation, ion channels, or a combination of those (in biased conditions). The mechanism of the catastrophic failures seems related to the presence of electric power (1.05V core voltage). The 1064 nm laser mimics ionization radiation and induces soft- and hard failures as a direct result of electron-hole pair production, not heat. The 14nm FinFET processes continue to look promising for space radiation environments.

  7. [Advances in influence of UV-B radiation on medicinal plant secondary metabolism].

    PubMed

    Wu, Yang; Fang, Minfeng; Yue, Ming; Chai, Yongfu; Wang, Hui; Li, Yifei

    2012-08-01

    Stratospheric ozone depletion results in an increased level of solar UV-B radiation (UV-B, 280-320 nm) reaching the earth surface. By the effect of UV-B radiation, various medicinal active ingredients changed because of the change of gene expression, enzyme activity and secondary metabolism, clinical effect is also changed. The research status of UV-B radiation and the accumulation of plant secondary metabolites in the past 10 years were summarized in this paper to supply reference for cultivation and exploitation of the medicinal plants.

  8. Effects of solar ultraviolet photons on mammalian cell DNA. [UVA (320-400 nm):a2

    SciTech Connect

    Peak, M.J.; Peak, J.G.

    1991-01-01

    This document presents information on the possible mechanisms of carcinogenesis caused by UVA (ultraviolet radiation in the 320--400 nm region). Most studies showing the carcinogenic effects of ultraviolet light have concentrated on UVB (280--320 nm). UVA had been considered harmless even though it penetrates biological tissues better than UVB. Recently, it has become apparent that UVA is also capable of causing damage to cellular DNA. This was unexpected because the DNA UV absorption spectrum indicates a negligible probability that photons of wavelengths longer than 320 nm will be directly absorbed. The most common defects induced in DNA by UVB are pyrimidine photoproducts, such as thymidine dimers. UVA photons produce defects resembling those caused by ionizing radiations: single- and double-strand breaks, and DNA-protein crosslinks. This paper also discusses the role of DNA repair mechanisms in UVA-induced defects and the molecular mechanisms of UVA damage induction. 38 refs. (MHB)

  9. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOEpatents

    Gruen, Dieter M.

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  10. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation

    SciTech Connect

    Barnes, P.W.; Flint, S.D.; Caldwell, M.M. )

    1990-10-01

    Recent evidence of a general, global decline of stratospheric ozone has heightened concern about possible ecological consequences of increases in solar ultraviolet-B (UV-B, 280-320 nm) radiation resulting from ozone depletion. The influence of UV-B radiation (280-320 nanometers) on the morphology of 12 common dicot and monocot crop or weed species was examined to determine whether any common responses could be found that might, in turn, be useful in predicting possible changes in competitive balance under solar UV-B enhancement. Under glasshouse conditions, UV-B exposure (simulating a 20% reduction in stratospheric ozone at Logan, Utah) was found to reduce leaf blade and internode lengths and increase leaf and axillary shoot production in several species. Overall, the directions of these trends were similar in the majority of species that exhibited a significant response. These morphological changes occurred without any significant reduction in total shoot dry matter production. There was no clear distinction in the response of crops and weeds, though monocots were found to be generally more responsive than dicots. Previous work in dense canopies has shown that the photomorphogenetic effects of UV-B alter leaf placement and thereby influence competition for light. Our results suggest that, under these conditions, changes in competitive balance resulting from increased UV-B might be expected more frequently when monocots are involved in mixtures, rather than mixtures of only dicots.

  11. [UV-radiation--sources, wavelength, environment].

    PubMed

    Hölzle, Erhard; Hönigsmann, Herbert

    2005-09-01

    The UV-radiation in our environment is part of the electromagnetic radiation, which emanates from the sun. It is designated as optical radiation and reaches from 290-4,000 nm on the earth's surface. According to international definitions UV irradiation is divided into short-wave UVC (200-280 nm), medium-wave UVB (280-320 nm), and long-wave UVA (320-400 nm). Solar radiation which reaches the surface of the globe at a defined geographical site and a defined time point is called global radiation. It is modified quantitatively and qualitatively while penetrating the atmosphere. Besides atmospheric conditions, like ozone layer and air pollution, geographic latitude, elevation, time of the season, time of the day, cloudiness and the influence of indirect radiation resulting from stray effects in the atmosphere and reflection from the underground play a role in modifying global radiation, which finally represents the biologically effective radiation. The radiation's distribution on the body surface varies according to sun angle and body posture. The cumulative UV exposure is mainly influenced by outdoor profession and recreational activities. The use of sun beds and phototherapeutic measures additionally may contribute to the cumulative UV dose.

  12. A cesium bromide photocathode excited by 405 nm radiation

    NASA Astrophysics Data System (ADS)

    Maldonado, J. R.; Cheng, Y. T.; Pianetta, P.; Pease, Fabian W.; Hesselink, L.

    2014-07-01

    In several applications, such as electron beam lithography and X-ray differential phase contrast imaging, there is a need for a free electron source with a current density at least 10 A/cm2 yet can be shaped with a resolution down to 20 nm and pulsed. Additional requirements are that the source must operate in a practical demountable vacuum (>1e-9 Torr) and be reasonably compact. In prior work, a photocathode comprising a film of CsBr on metal film on a sapphire substrate met the requirements except it was bulky because it required a beam (>10 W/cm2) of 257 nm radiation. Here, we describe an approach using a 405 nm laser which is far less bulky. The 405 nm laser, however, is not energetic enough to create color centers in CsBr films. The key to our approach is to bombard the CsBr film with a flood beam of about 1 keV electrons prior to operation. Photoelectron efficiencies in the range of 100-1000 nA/mW were demonstrated with lifetimes exceeding 50 h between electron bombardments. We suspect that the electron bombardment creates intraband color centers whence electrons can be excited by the 405 nm photons into the conduction band and thence into the vacuum.

  13. Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment.

    PubMed

    Noonan, Frances P; Zaidi, M Raza; Wolnicka-Glubisz, Agnieszka; Anver, Miriam R; Bahn, Jesse; Wielgus, Albert; Cadet, Jean; Douki, Thierry; Mouret, Stephane; Tucker, Margaret A; Popratiloff, Anastas; Merlino, Glenn; De Fabo, Edward C

    2012-06-06

    Malignant melanoma of the skin (CMM) is associated with ultraviolet radiation exposure, but the mechanisms and even the wavelengths responsible are unclear. Here we use a mammalian model to investigate melanoma formed in response to precise spectrally defined ultraviolet wavelengths and biologically relevant doses. We show that melanoma induction by ultraviolet A (320-400 nm) requires the presence of melanin pigment and is associated with oxidative DNA damage within melanocytes. In contrast, ultraviolet B radiation (280-320 nm) initiates melanoma in a pigment-independent manner associated with direct ultraviolet B DNA damage. Thus, we identified two ultraviolet wavelength-dependent pathways for the induction of CMM and describe an unexpected and significant role for melanin within the melanocyte in melanomagenesis.

  14. Bacterial inactivation by solar ultraviolet radiation compared with sensitivity to 254 nm radiation.

    PubMed

    Coohill, Thomas P; Sagripanti, Jose-Luis

    2009-01-01

    Our goal was to derive a quantitative factor that would allow us to predict the solar sensitivity of vegetative bacterial cells to natural solar radiation from the wealth of data collected for cells exposed to UVC (254 nm) radiation. We constructed a solar effectiveness spectrum for inactivation of vegetative bacterial cells by combining the available action spectra for vegetative cell killing in the solar range with the natural sunlight spectrum that reaches the ground. We then analyzed previous studies reporting the effects of solar radiation on vegetative bacterial cells and on bacterial spores. Although UVC-sensitive cells were also more sensitive to solar radiation, we found no absolute numerical correlation between the relative solar sensitivity of vegetative cells and their sensitivity to 254 nm radiation. The sensitivity of bacterial spores to solar exposure during both summer and winter correlated closely to their UVC sensitivity. The estimates presented here should make it possible to reasonably predict the time it would take for natural solar UV to kill bacterial spores or with a lesser degree of accuracy, vegetative bacterial cells after dispersion from an infected host or after an accidental or intentional release.

  15. Intraspecific variation in sensitivity to UV-B radiation in rice

    SciTech Connect

    Barnes, P.W.; Maggard, S.; Holman, S.R.; Vergara, B.S.

    1993-01-01

    Twenty-two cultivars of rice (Oryza sativa L.) from diverse origins were grown under greenhouse conditions and exposed to ultraviolet-B radiation (UV-B; 280-320 nm) simulating a 5% reduction in stratospheric ozone in spring for the Philippines (14 deg N lat.) to evaluate growth and morphological responses to UV-B. In comparison to controls that received no UV-B, plants exposed to UV-B exhibited significantly reduced dry matter production (total plant and shoot), shoot height, leaf blade length and total leaf area, increased number of tillers, and greater weight fractions in leaf blades and roots. For most cultivars, the relative effects of UV-B on shoot morphology were greater than the effects on biomass production. The direction of the UV-B effects were generally similar for all cultivars, however, there were significant differences among cultivars in the magnitude of the UV-B-induced changes.

  16. Gracilaria bursa-pastoris (Gmelin) Silva extract attenuates ultraviolet B radiation-induced oxidative stress in human keratinocytes.

    PubMed

    Piao, M J; Kim, K C; Zheng, J; Yao, C W; Cha, J W; Kang, H K; Yoo, E S; Koh, Y S; Ko, M H; Lee, N H; Hyun, Jin Won

    2014-01-01

    The purpose of this study was to assess the protective effects of an ethanol extract derived from the red alga Gracilaria bursa-pastoris (Gmelin) Silva (GBE) on ultraviolet B (UVB)-irradiated human HaCaT keratinocytes. GBE exhibited scavenging activity against intracellular reactive oxygen species that were induced by either hydrogen peroxide or UVB radiation. In addition, both the superoxide anion and the hydroxyl radical were scavenged by GBE in cell-free systems. GBE absorbed light in the UVB range (280-320 nm) of the electromagnetic spectrum and lessened the extent of UVB-induced oxidative damage to cellular lipids, proteins, and DNA. Finally, GBE-treated keratinocytes showed a reduction in UVB-induced apoptosis, as exemplified by fewer apoptotic bodies. These results suggest that GBE exerts cytoprotective actions against UVB-stimulated oxidative stress by scavenging ROS and absorbing UVB rays, thereby attenuating injury to cellular constituents and preventing cell death.

  17. Characterization of radiation effects in 65 nm digital circuits with the DRAD digital radiation test chip

    NASA Astrophysics Data System (ADS)

    Jara Casas, L. M.; Ceresa, D.; Kulis, S.; Miryala, S.; Christiansen, J.; Francisco, R.; Gnani, D.

    2017-02-01

    A Digital RADiation (DRAD) test chip has been specifically designed to study the impact of Total Ionizing Dose (TID) (<1 Grad) and Single Event Upset (SEU) on digital logic gates in a 65 nm CMOS technology. Nine different versions of standard cell libraries are studied in this chip, basically differing in the device dimensions, Vt flavor and layout of the device. Each library has eighteen test structures specifically designed to characterize delay degradation and power consumption of the standard cells. For SEU study, a dedicated test structure based on a shift register is designed for each library. TID results up to 500 Mrad are reported.

  18. Machining of optical microstructures with 157 nm laser radiation

    NASA Astrophysics Data System (ADS)

    Temme, Thorsten; Ostendorf, Andreas; Kulik, Christian J.

    2003-11-01

    The precision machining of glass by laser ablation has been expanded with the short wavelength of the 157 nm of the F2 excimer laser. The high absorption of this wavelength in any optical glass, especially in UV-grade fused silica, offers a new approach to generate high quality surfaces, addressing also micro-optical components. In this paper, the machining of basic diffractive and refractive optical components and the required machining and process technology is presented. Applications that are addressed are cylindrical and rotational symmetrical micro lenses and diffractive optics like phase transmission grating and diffractive optical elements (DOEs). These optical surfaces have been machined into bulk material as well as on fiber end surfaces, to achieve compact (electro) -- optical elements with high functionality and packaging density. The short wavelength of 157 nm used in the investigations require either vacuum or high purity inert gas environments. The influence of different ambient conditions is presented.

  19. Effects of long-term, elevated ultraviolet-B radiation on phytochemicals in the bark of silver birch (Betula pendula).

    PubMed

    Tegelberg, Riitta; Aphalo, Pedro J; Julkunen-Tiitto, Riitta

    2002-12-01

    Long-term outdoor experiments were conducted to investigate the effects of elevated ultraviolet-B (UV-B, 280-320 nm) radiation on secondary metabolites (phenolics and terpenoids) and the main soluble sugars (sucrose, raffinose and glucose) in the bark of silver birch (Betula pendula Roth) saplings. Saplings were exposed to a constant 50% increase in erythemal UV irradiance (UV-B(CIE); based on the CIE (International Commission on Illumination) erythemal action spectrum) and a small increase in UV-A radiation (320-400 nm) for three growing seasons in an irradiation field in central Finland. Two control groups were used: saplings exposed to ambient radiation and saplings exposed to slightly increased UV-A radiation. Concentrations of sucrose, raffinose and glucose in bark were higher in UV-treated saplings than in saplings grown in ambient radiation, indicating that stem carbohydrate metabolism was changed by long-term elevated UV radiation. Saplings in the elevated UV-A + UV-B radiation treatment and the UV-A radiation control treatment had significantly increased concentrations of certain UV-absorbing phenolics, such as salidroside, 3,4'-dihydroxypropiophenone-3-glucoside, (+)-catechin and (-)-epicatechin compared with saplings in ambient radiation. In contrast, the radiation treatments had no effect on the non-UV-B-absorbing terpenoids, papyriferic acid and deacetylpapyriferic acid. We conclude that plant parts, in addition to leaves, accumulate specific phenolic UV-filters in response to UV radiation exposure.

  20. Brain lesion induced by 1319nm laser radiation

    NASA Astrophysics Data System (ADS)

    Yang, Zaifu; Chen, Hongxia; Wang, Jiarui; Chen, Peng; Ma, Ping; Qian, Huanwen

    2010-11-01

    The laser-tissue interaction has not been well defined at the 1319 nm wavelength for brain exposure. The goal of this research effort was to identify the behavioral and histological changes of brain lesion induced by 1319 nm laser. The experiment was performed on China Kunming mice. Unilateral brain lesions were created with a continuous-wave Nd:YAG laser (1319nm). The brain lesions were identified through behavioral observation and histological haematoxylin and eosin (H&E) staining method. The behavior change was observed for a radiant exposure range of 97~773 J/cm2. The histology of the recovery process was identified for radiant exposure of 580 J/cm2. Subjects were sacrificed 1 hour, 1 week, 2 weeks, 3 months, 7 months and 13 months after laser irradiation. Results showed that after laser exposure, behavioral deficits, including kyphosis, tail entasia, or whole body paralysis could be noted right after the animals recovered from anesthesia while gradually disappeared within several days and never recurred again. Histologically, the laser lesion showed a typical architecture dependent on the interval following laser treatment. The central zone of coagulation necrosis is not apparent right after exposure but becomes obvious within several days. The nerotic tissue though may persist for a long time, will finally be completely resorbed. No carbonization granules formed under our exposure condition.

  1. MicroRNAs in skin response to UV radiation.

    PubMed

    Syed, Deeba N; Khan, Mohammad Imran; Shabbir, Maria; Mukhtar, Hasan

    2013-09-01

    Solar ultraviolet (UV) radiation, an ubiquitous environmental carcinogen, is classified depending on the wavelength, into three regions; short-wave UVC (200-280 nm), mid-wave UVB (280-320 nm), and long-wave UVA (320- 400 nm). The human skin, constantly exposed to UV radiation, particularly the UVB and UVA components, is vulnerable to its various deleterious effects such as erythema, photoaging, immunosuppression and cancer. To counteract these and for the maintenance of genomic integrity, cells have developed several protective mechanisms including DNA repair, cell cycle arrest and apoptosis. The network of damage sensors, signal transducers, mediators, and various effector proteins is regulated through changes in gene expression. MicroRNAs (miRNAs), a group of small non-coding RNAs, act as posttranscriptional regulators through binding to complementary sequences in the 3´-untranslated region of their target genes, resulting in either translational repression or target degradation. Recent studies show that miRNAs add an additional layer of complexity to the intricately controlled cellular responses to UV radiation. This review summarizes our current knowledge of the role of miRNAs in the regulation of the human skin response upon exposure to UV radiation.

  2. Generation of coherent 19- and 38-nm radiation at a free-electron laser directly seeded at 38 nm.

    PubMed

    Ackermann, S; Azima, A; Bajt, S; Bödewadt, J; Curbis, F; Dachraoui, H; Delsim-Hashemi, H; Drescher, M; Düsterer, S; Faatz, B; Felber, M; Feldhaus, J; Hass, E; Hipp, U; Honkavaara, K; Ischebeck, R; Khan, S; Laarmann, T; Lechner, C; Maltezopoulos, Th; Miltchev, V; Mittenzwey, M; Rehders, M; Rönsch-Schulenburg, J; Rossbach, J; Schlarb, H; Schreiber, S; Schroedter, L; Schulz, M; Schulz, S; Tarkeshian, R; Tischer, M; Wacker, V; Wieland, M

    2013-09-13

    Initiating the gain process in a free-electron laser (FEL) from an external highly coherent source of radiation is a promising way to improve the pulse properties such as temporal coherence and synchronization performance in time-resolved pump-probe experiments at FEL facilities, but this so-called "seeding" suffers from the lack of adequate sources at short wavelengths. We report on the first successful seeding at a wavelength as short as 38.2 nm, resulting in GW-level, coherent FEL radiation pulses at this wavelength as well as significant second harmonic emission at 19.1 nm. The external seed pulses are about 1 order of magnitude shorter compared to previous experiments allowing an ultimate time resolution for the investigation of dynamic processes enabling breakthroughs in ultrafast science with FELs. The seeding pulse is the 21st harmonic of an 800-nm, 15-fs (rms) laser pulse generated in an argon medium. Methods for finding the overlap of seed pulses with electron bunches in spatial, longitudinal, and spectral dimensions are discussed and results are presented. The experiment was conducted at FLASH, the FEL user facility at DESY in Hamburg, Germany.

  3. Comparative mutagenesis and interaction between near-ultraviolet (313- to 405-nm) and far-ultraviolet (254-nm) radiation in Escherichia coli strains with differing repair capabilities.

    PubMed Central

    Turner, M A; Webb, R B

    1981-01-01

    Comparative mutagenesis and possible synergistic interaction between broad-spectrum (313- to 405-nm) near-ultraviolet (black light bulb [BLB]) radiation and 254-nm radiation were studied in Escherichia coli strains WP2 (wild type), WP2s (uvrA), WP10 (recA), WP6 (polA), WP6s (polA uvrA), WP100 (uvrA recA), and WP5 (lexA). With BLB radiation, strains WP2s and WP6s demonstrated a high level of mutagenesis, whereas strains WP2, WP5, WP6, WP10, and WP100 did not demonstrate significant mutagenesis. In contrast, 254-nm radiation was mutagenic in strains WP2, WP2s, WP6, and WP6s, but strains WP5, WP10, and WP100 were not significantly mutated. The absence of mutagenesis by BLB radiation in lexA and recA strains WP10, WP5, and WP100 suggests that lex+ rec+ repair may play a major role in mutagenesis by both BLB and 254-nm radiation. The hypothesis that BLB radiation selectively inhibits rec+ lex+ repair was tested by sequential BLB-254-nm radiation. With strain WP2, a fluence of 30 J/m2 at 254 nm induced trp+ revertants at a frequency of 15 X 10(-6). However, when 10(5) J/m2 or more of BLB radiation preceded the 254-nm exposure, no trp+ revertants could be detected. A similar inhibition of 254-nm mutagenesis was observed with strain WP6 (polA). However, strains WP2s (uvrA) and wP6s (polA uvrA) showed enhanced 254-nm mutagenesis when a prior exposure to BLB radiation was given. PMID:7021529

  4. DNA repair synthesis in the rat retina following in vivo exposure to 300-nm radiation

    SciTech Connect

    Rapp, L.M.; Jose, J.G.; Pitts, D.G.

    1985-03-01

    Quantitative autoradiography was used to study the incorporation of /sup 3/H-thymidine into the retina of albino rats following in vivo exposure to 300-nm radiation. Relative to background labeling in unexposed eyes, there was 8-20 times as much label per unit area in the outer nuclear layer, inner nuclear layer, and ganglion cells of 300-nm exposed retinas. The photoreceptor inner segments also showed thymidine labeling in both control and exposed retinas.

  5. Association of amphibians with attenuation of ultraviolet-b radiation in montane ponds

    USGS Publications Warehouse

    Adams, M.J.; Schindler, D.E.; Bury, B.R.

    2001-01-01

    Ambient ultraviolet-b (UV-B) radiation (280-320 nm) has increased at north-temperate latitudes in the last two decades. UV-B can be detrimental to amphibians, and amphibians have shown declines in some areas during this same period. We documented the distribution of amphibians and salmonids in 42 remote, subalpine and alpine ponds in Olympic National Park, Washington, United States. We inferred relative exposure of amphibian habitats to UV-B by estimating the transmission of 305- and 320-nm radiation in pond water. We found breeding Ambystoma gracile, A. macrodactylum and Rana cascadae at 33%, 31%, and 45% of the study sites, respectively. Most R. cascadae bred in fishless shallow ponds with relatively low transmission of UV-B. The relationship with UV-B exposure remained marginally significant even after the presence of fish was included in the model. At 50 cm water depth, there was a 55% reduction in incident 305-nm radiation at sites where breeding populations of R. cascadae were detected compared to other sites. We did not detect associations between UV-B transmission and A. gracile or A. macrodactylum. Our field surveys do not provide evidence for decline of R. cascadae in Olympic National Park as has been documented in Northern California, but are consistent with the hypothesis that the spatial distribution of R. cascadae breeding sites is influenced by exposure to UV-B. Substrate or pond depth could also be related to the distribution of R. cascadae in Olympic National Park.

  6. New apparatus with high radiation energy between 320 to 460 nm: physical description and dermatological applications

    SciTech Connect

    Mutzhas, M.F.; Holzle, E.; Hofmann, C.; Plewig, G.

    1981-01-01

    A new apparatus (UVASUN 5000) is presented with high radiation energy between 320 to 460 nm. The radiator is a specially developed source for high uv-A intensity, housing a quartz bulb with a mixture of argon, mercury and metal-halides. The uv-A energy in the range of 320 to 400 nm is about 84% of the total radiation energy. Effects of very high doses of uv-A on human skin were studied. Following single uv-A applications the minimal tanning dose uv-A (MTD) and the immediate pigment darkening (IPD) dose of uv-A were established. Repeated exposure to this uv-A delivering system yields long lasting dark brown skin pigmentation without any clinical or histological signs of sunburn (uv-B) damage, epidermal hyperplasia or thickening of the stratum corneum. Minimal therapeutic results were seen in the phototherapy of vitiligo and inflammatory acne.

  7. Altitude effect in UV radiation during the Evaluation of the Effects of Elevation and Aerosols on the Ultraviolet Radiation 2002 (VELETA-2002) field campaign

    NASA Astrophysics Data System (ADS)

    Sola, Y.; Lorente, J.; Campmany, E.; de Cabo, X.; Bech, J.; RedañO, A.; MartíNez-Lozano, J. A.; Utrillas, M. P.; Alados-Arboledas, L.; Olmo, F. J.; DíAz, J. P.; Expósito, F. J.; Cachorro, V.; Sorribas, M.; Labajo, A.; Vilaplana, J. M.; Silva, A. M.; Badosa, J.

    2008-12-01

    The Evaluation of the Effects of Elevation and Aerosols on the Ultraviolet Radiation 2002 (VELETA-2002) field campaign was designed to study the influence of aerosols and altitude on solar UV irradiance. The altitude effect (AE) was evaluated for UV irradiance under cloudless conditions by taking spectral and broadband measurements in SE Spain in the summer of 2002 at three nearby sites located at different heights (680 m, 2200 m, and 3398 m). A spectral radiative transfer model (Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART)) was also applied, mainly to evaluate the tropospheric ozone impact on AE. Results are related to the optical properties and air mass origin of the aerosols as determined by back-trajectory analysis. During the 1-week observing period of the campaign, there were two main synoptic situations with different air masses (polar maritime and tropical continental air mass associated with a Saharan dust event). The AE showed a high dependency on wavelength, solar zenith angle, and aerosols, although the growth of the mixing layer during the day also caused substantial AE variability. Saharan dust caused an increase in AE, especially in the UVB region and in the erythemal irradiance. In the UVA (320-400 nm) band the AE ranged 6-8% km-1 at noon, while for the UVB (280-320 nm) band it reached 7-11% km-1. The AE for erythemally weighted irradiance ranged from 11 to 14% km-1 between the lowest and highest stations when it was calculated from spectral measurements.

  8. Response of five tropical plant species to natural solar ultraviolet-B radiation

    SciTech Connect

    Searles, P.S.; Caldwell, M.M. ); Winter, K. )

    1994-06-01

    The tropical latitudes currently receive high solar ultraviolet-B radiation (UV-B, 280-320 nm) even without ozone depletion. Thus, the influence of natural, present-day UV-B irradiance was examined for three native rainforest tree species and two economically important species on Barro Colorado Island, Panama (9[degrees] N). Solar UV-B radiation conditions were obtained using a UV-B excluding plastic film or a near-ambient UV-B transmitting film over potted plants in a small clearing. Significant differences were often exhibited as increased foliar UV-B absorbing compounds, increased leaf mass pre area, and reduced leaf blade length for plants receiving solar UV-B radiation. Plant height was typically reduced under solar UV-B, but some variation among species in response was seen. Biomass and photosystem II function were generally unaffected. The results provide evidence that tropical vegetation responds to the present level of Solar UV-B radiation. This suggests even a small increase in UV-B radiation with ozone depletion may have biological implications.

  9. Effects of solar ultraviolet radiation on antarctic phytoplankton during springtime ozone depletion

    SciTech Connect

    Villafane, V.E.; Helbling, E.W.; Holm-Hansen, O.

    1994-12-31

    In recent years, much attention has been given to the formation of the seasonal ozone {open_quotes}hole{close_quotes} over Antarctica, with the concomitant increase in ultraviolet-B [UV-B, 280-320-nanometer (nm)] radiation levels. The enhanced UV-B radiation can be very damaging to biological systems and has been shown to cause a significant decrease in rates of primary production. This paper describes the impact of {open_quotes}normal{close_quotes} ultraviolet radiation (UVR), as well as enhanced UV-B radiation, on natural assemblages of phytoplankton as well as on just the nanoplankton fraction cells less than 20 micrometers ({mu}m). The studies also included estimation of the impact of UVR as influenced by the taxonomic composition of the phytoplankton and the mitigating effect of cellular UV-absorbing compounds. All studies were carried out at Palmer Station (64.7{degrees}S 64.1{degrees}W) on Anvers Island from early October to the end of December 1993. This period provided excellent opportunities to document the impact of enhanced UV-B radiation on phytoplankton because the ozone hole was very well developed over Palmer Station in the month of October; column ozone concentrations ranged from 140 to 220 Dobson units (DU). 10 refs, 3 figs.

  10. Nanosecond-time-response temperature measurements using radiation thermometry during 193-nm and 247-nm pulsed light irradiation: comparison of corneal surface temperature histories

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Arai, Tsunenori; Sato, Shunichi; Morimoto, Yuji; Obara, Minoru; Kikuchi, Makoto

    2001-07-01

    We have developed the fast time-response measurement of thermal radiation with 15ns rise time to monitor the corneal surface temperature during ArF excimer laser ablation. In this study, e aim to investigate the influence of the relation between the corneal penetration depth and sampling depth of the measurement system on the measured temperature using 193 nm and 247 nm pulsed lights which have different penetration depths of cornea. When the sampling depth was defined as the penetration depth of cornea at the thermal radiation wavelength, we obtained about 3 micrometers of the sampling depth by pulsed photothermal radiometry (PPTR). In the case of the 247 nm light irradiation, where the corneal absorption coefficient at 247 nm was approximately equal to that for the thermal radiation, we found that the measured temperature rises were same as the estimated temperature rises based on the photothermal process. In contrast, in the case of the 193 nm light irradiation, where the absorption coefficient at 193 nm was larger than that for the thermal radiation, we found that the measured temperature rises were lower than the estimated temperature rises.

  11. Lack of photoprotection against UVB-induced erythema by immediate pigmentation induced by 382 nm radiation

    SciTech Connect

    Black, G.; Matzinger, E.; Gange, R.W.

    1985-11-01

    Immediate pigment darkening (IPD) was induced on the backs of 11 human volunteers of skin types III and IV by exposing the skin to UVA radiation (382 nm). The minimum erythema dose (MED) of UVB radiation was also determined by exposing sites to graduated doses of 304 nm radiation. The order of exposure of distinct anatomic areas was as follow: UVB followed by IPD induction; IPD induction followed by UVB; IPD induction followed 3 h later by UVB; and UVB only. Erythema responses induced by UVB were graded by inspection 24 h later and the MEDs in the 4 areas were compared. The induction of IPD before UVB exposure caused no significant change in the MED compared to sites receiving UVB only, or receiving UVA radiation after UVB, confirming that the IPD reaction does not protect against UVB-induced erythema. There was also no evidence of photorecovery, i.e., an increase in the MED of UVB resulting from exposure to longer wavelength, UV or visible radiation following UVB exposure.

  12. INTERACTION OF LASER RADIATION WITH MATTER: Rearrangement of a phosphosilicate glass network induced by the 193-nm radiation

    NASA Astrophysics Data System (ADS)

    Larionov, Yu V.; Sokolov, V. O.; Plotnichenko, V. G.

    2008-10-01

    The IR absorption and Raman spectra of phosphosilicate glass (PSG) are measured during its exposure to radiation at a wavelength of 193 nm. The obtained data demonstrate the complicated rearrangement dynamics of the glass network around phosphor atoms and of the glass network as a whole. The experimental dependences are explained by the model of the PSG network based on the concepts of the theory of rigidity percolation.

  13. New silicon photodiodes for detection of the 1064nm wavelength radiation

    NASA Astrophysics Data System (ADS)

    Wegrzecki, Maciej; Piotrowski, Tadeusz; Puzewicz, Zbigniew; Bar, Jan; Czarnota, Ryszard; Dobrowolski, Rafal; Klimov, Andrii; Kulawik, Jan; Kłos, Helena; Marchewka, Michał; Nieprzecki, Marek; Panas, Andrzej; Seredyński, Bartłomiej; Sierakowski, Andrzej; Słysz, Wojciech; Synkiewicz, Beata; Szmigiel, Dariusz; Zaborowski, Michał

    2016-12-01

    In this paper a concept of a new bulk structure of p+-υ-n+ silicon photodiodes optimized for the detection of fast-changing radiation at the 1064 nm wavelength is presented. The design and technology for two types of quadrant photodiodes, the 8-segment photodiode and the 32-element linear photodiode array that were developed according to the concept are described. Electric and photoelectric parameters of the photodiodes mentioned above are presented.

  14. New apparatus with high radiation energy between 320-460 nm: physical description and dermatological applications

    SciTech Connect

    Mutzhas, M.F.; Holzle, E.; Hofmann, C.; Plewig, G.

    1981-01-01

    A new apparatus (UVASUN 5000) is presented with high-radiation energy between 320 to 460 nm. The measureable energy below 320 nm was shown to be many orders of magnitude too low to produce erythema. The radiator is a specially developed source for high uv-A intensity, housing a quartz bulb with a mixture of argon, mercury and metal-halides. At a skin-target distance of 0.2 m the size of the irradiated area is 0.35 x 0.35 m, and the measured mean uv-A intensity is about 1400 W. m-2 (140 mW . cm-2). The uv-A energy in the range of 320 to 400 nm is about 84% of the total radiation energy. Effects of very high doses of uv-A on human skin were studied. Following single uv-a applications the minimal tanning dose uv-A (MTD) and the immediate pigment darkening (IPD) dose of uv-A were established. The calculated IPD threshold time was 1.8 min at 0.2 m. Repeated exposure to this uv-A delivering system yields long lasting dark brown skin pigmentation without any clinical or histological signs of sunburn (uv-B) damage, epidermal hyperplasia or thickening of the stratum corneum. The instrument was also successfully used for photo-patch testing and reproduction of skin lesions of polymorphous light eruption. Minimal therapeutic results were seen in the phototherapy of vitiligo and inflammatory acne.

  15. Inflammatory Cytokine Expression and Sebum Production after Exposure of Cultured Human Sebocytes to Ultraviolet A Radiation and Light at Wavelengths of 650 nm and 830 nm

    PubMed Central

    Chae, Soo Yuhl; Ryu, Hyo Sub; Jang, Yong Hyun; Lee, Seok-Jong; Kim, Do Won

    2015-01-01

    Background The effectiveness of ultraviolet (UV) radiation, visible light, or infrared light therapy for the treatment of acne is the subject of ongoing scientific debate. Objective This study was conducted to investigate changes in sebum production and the expression of inflammatory cytokines, matrix metalloproteinases (MMPs), and antimicrobial peptides (AMPs), following exposure of cultured human sebocytes to UVA radiation and light at wavelengths of 650 nm and 830 nm. Methods Reverse transcription polymerase chain reaction assays were performed to measure the gene expression levels of inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-8, and tumor necrosis factor-α), MMPs (MMP-1, MMP-3, and MMP-9), and AMPs (psoriasin, hBD-2, hBD-3, and LL-37) in cultured sebocytes after exposure to UVA radiation (2 J/cm2, 3 J/cm2, and 5 J/cm2) and light at wavelengths of 650 nm (14 J/cm2, 29 J/cm2, and 87 J/cm2) and 830 nm (5 J/cm2, 10 J/cm2, and 30 J/cm2). Expression of inflammatory cytokine proteins and sebum production were measured using enzyme-linked immunoassays and a lipid analysis kit, respectively. Results Exposure of cultured sebocytes to UVA radiation and light at wavelengths of 650 nm and 830 nm did not show a significant increase in the expression of inflammatory cytokines, MMPs, or AMPs. Sebum production was not significantly decreased after exposure to UVA radiation and light at both wavelengths. Conclusion We propose that UVA radiation, visible light, and infrared light can be used to target Propionibacterium acnes for the treatment of acne, without an increase in the expression of inflammatory biomarkers and sebum production. PMID:25834355

  16. Radiative lifetimes of nitrogen dioxide for excitation wavelengths from 400 to 750 nm

    SciTech Connect

    Patten, K.O. Jr.; Burley, J.D.; Johnston, H.S. )

    1990-10-04

    At room temperature, the radiative lifetimes of nitrogen dioxide excited by pulsed, tunable, dye laser radiation are measured in a 50-L flask, for excitation wavelengths ranging from 400 to 750 nm, at total pressures between 0.25 and 2.0 mTorr, and for times between 0.7 and 60 {mu}s. The data are analyzed in terms of the Stern-Volmer mechanism to give zero-pressure radiative constants (k{sub 0} = 1/{tau}{sub 0}) and empirical collisional quenching rate constants k{sub q} by ground-state nitrogen dioxide. (a) The observed radiative coefficients generally increase linearly with increasing excitation energy (cm{sup {minus}1}): k{sub 0}/s{sup {minus}1} = 0.504(E-E{sub 0}) + 7.96 {times} 10{sup 3}, where E is the excitation energy and E{sub 0} is the energy of the origin of the {sup 2}B{sub 2} excited state. At wavelengths above about 540 nm there are strong state-to-state variations of radiative lifetime, producing large apparent scatter in the data. The zero-pressure radiative lifetimes {tau}{sub 0} are compared to previous measurements and are in rough agreement with a number of earlier studies. (b) On the other hand, different investigators typically obtain different numerical values for the Stern-Volmer collisional quenching rate constants. As observed here, the quenching rate constants k{sub q} are found to vary by almost a factor of 6 as filters are changed in front of the photomultiplier tube with all other experimental conditions held constant. Some of the difficulties of observing meaningful quenching rate constants for nitrogen dioxide are discussed.

  17. A cesium bromide photocathode excited by 405 nm radiation

    SciTech Connect

    Maldonado, J. R.; Cheng, Y. T.; Pease, Fabian W.; Hesselink, L.; Pianetta, P.

    2014-07-14

    In several applications, such as electron beam lithography and X-ray differential phase contrast imaging, there is a need for a free electron source with a current density at least 10 A/cm{sup 2} yet can be shaped with a resolution down to 20 nm and pulsed. Additional requirements are that the source must operate in a practical demountable vacuum (>1e-9 Torr) and be reasonably compact. In prior work, a photocathode comprising a film of CsBr on metal film on a sapphire substrate met the requirements except it was bulky because it required a beam (>10 W/cm{sup 2}) of 257 nm radiation. Here, we describe an approach using a 405 nm laser which is far less bulky. The 405 nm laser, however, is not energetic enough to create color centers in CsBr films. The key to our approach is to bombard the CsBr film with a flood beam of about 1 keV electrons prior to operation. Photoelectron efficiencies in the range of 100–1000 nA/mW were demonstrated with lifetimes exceeding 50 h between electron bombardments. We suspect that the electron bombardment creates intraband color centers whence electrons can be excited by the 405 nm photons into the conduction band and thence into the vacuum.

  18. In vitro investigations on the effect of dermal fibroblasts on keratinocyte responses to ultraviolet B radiation.

    PubMed

    Fernandez, Tara L; Van Lonkhuyzen, Derek R; Dawson, Rebecca A; Kimlin, Michael G; Upton, Zee

    2014-01-01

    Exposure to ultraviolet radiation is closely linked to the development of skin cancers in humans. The ultraviolet B (UVB) radiation wavelength (280-320 nm), in particular, causes DNA damage in epidermal keratinocytes, which are linked to the generation of signature premalignant mutations. Interactions between dermal fibroblasts and keratinocytes play a role in epidermal repair and regeneration after UVB-induced damage. To investigate these processes, established two and three-dimensional culture models were utilized to study the impact of fibroblast-keratinocyte crosstalk during the acute UVB response. Using a coculture system it was observed that fibroblasts enhanced keratinocyte survival and the repair of cyclobutane pyrimidine dimers (CPDs) after UVB radiation exposure. These findings were also mirrored in irradiated human skin coculture models employed in this study. Fibroblast coculture was shown to play a role in the expression and activation of members of the apoptotic cascade, including caspase-3 and Bad. Interestingly, the expression and phosphorylation of p53, a key player in the regulation of keratinocyte cell fate postirradiation, was also shown to be influenced by fibroblast-produced factors. This study highlights the importance of synergistic interactions between fibroblasts and keratinocytes in maintaining a functional epidermis while promoting repair and regeneration following UVB radiation-induced damage.

  19. Core level photoionization on free sub-10-nm nanoparticles using synchrotron radiation

    SciTech Connect

    Meinen, Jan; Leisner, Thomas; Khasminskaya, Svetlana; Eritt, Markus; Antonsson, Egill; Langer, Burkhard; Ruehl, Eckart

    2010-08-15

    A novel instrument is presented, which permits studies on singly charged free nanoparticles in the diameter range from 1 to 30 nm using synchrotron radiation in the soft x-ray regime. It consists of a high pressure nanoparticle source, a high efficiency nanoparticle beam inlet, and an electron time-of-flight spectrometer suitable for probing surface and bulk properties of free, levitated nanoparticles. We show results from x-ray photoelectron spectroscopy study near the Si L{sub 3,2}-edge on 8.2 nm SiO{sub 2} particles prepared in a nanoparticle beam. The possible use of this apparatus regarding chemical reactions on the surface of nanometer-sized particles is highlighted. This approach has the potential to be exploited for process studies on heterogeneous atmospheric chemistry.

  20. Radiation tolerance study of a commercial 65 nm CMOS technology for high energy physics applications

    NASA Astrophysics Data System (ADS)

    Ding, Lili; Gerardin, Simone; Bagatin, Marta; Bisello, Dario; Mattiazzo, Serena; Paccagnella, Alessandro

    2016-09-01

    This paper reports the radiation tolerance study of a commercial 65 nm technology, which is a strong candidate for the Large Hadron Collider applications. After exposure to 3 MeV protons till 1 Grad dose, the 65 nm CMOS transistors, especially the pMOSFETs, showed severe long-term degradation mainly in the saturation drain currents. There were some differences between the degradation levels in the nMOSFETs and the pMOSFETs, which were likely attributed to the positive charges trapped in the gate spacers. After exposure to heavy ions till multiple strikes, the pMOSFETs did not show any sudden loss of drain currents, the degradations in the characteristics were negligible.

  1. Initial Results on an Approach for Creating Tunable UV Radiation for Spectroscopy at 243nm

    NASA Astrophysics Data System (ADS)

    Khademian, Ali; Shiner, David

    2004-05-01

    Convenient tunable coherent UV radiation could be used in number of atomic physics applications. Our particular interest is in a 243nm laser that can be used to precisely measure the 1S to 2S interval in atomic tritium. An approach is being investigated which might ultimately be less cumbersome and expensive than current methods. A multi longitudinal mode "980nm" pump module is converted to a single longitudinal mode laser using costume fiber Bragg grating. Results for the short term frequency stability will be given. A first doubling stage using PPMgO:LN waveguide has been investigated and experimental results will be discussed. A second stage of doubling, using CLBO, which we calculated to have a better conversion efficiency than well known BBO crystal, is planned. Theoretical calculation for this stage and comparison with BBO will be presented.

  2. Effects of Nd:YAG (532 nm) laser radiation on `clean' cotton

    NASA Astrophysics Data System (ADS)

    Bloisi, F.; Vicari, L.; Barone, A. C.; Martuscelli, E.; Gentile, G.; Polcaro, C.

    The use of pulsed laser radiation in order to remove small particles from a substrate has gained a growing interest in the last decade, finding applications in several fields ranging from the microcircuits industry to cultural heritage restoration and conservation. The application of such a technique requires the knowledge of the correct laser irradiation parameters to be used in order to obtain a desired result avoiding substrate damage. In this paper we have studied the effect of frequency-doubled (532 nm) Nd:YAG laser radiation on clean cotton samples. We have observed that `yellowing' is present even at low fluences. This suggests that less invasive laser assisted particle removal techniques, some of which have already been proposed by different authors, must be considered.

  3. Arctic stratospheric ozone depletion and increased UVB radiation: potential impacts to human health.

    PubMed

    De Fabo, Edward C

    2005-12-01

    Contrary to popular belief, stratospheric ozone depletion, and the resultant increase in solar UV-B (280-320 nm), are unlikely to fully recover soon. Notwithstanding the success of the Montreal Protocol in reducing the amount of ozone destroying chemicals into the stratosphere, the life-times of these compounds are such that even with full compliance with the Protocol by all countries, it will be decades before stratospheric ozone could return to pre-1980 levels. This raises the question, therefore, of what will happen to biological processes essential to the maintenance of life on earth which are sensitive to damage by increased UV-B radiation, particularly those involved with human health? The polar regions, because of the vagaries of climate and weather, are the bellwether for stratospheric ozone depletion and will, therefore, be the first to experience impacts due to increases in solar UV-B radiation. The impacts of these are incompletely understood and cannot be predicted with certainty. While some UV-B impacts on human health are recognized, much is unknown, unclear and uncertain. Thus, this paper attempts, as a first approximation, to point out potential impacts to the health and welfare of human inhabitants of the Arctic due to increased solar UV-B radiation associated with stratospheric ozone depletion. As will be seen, much more data is critically needed before adequate risk assessment can occur.

  4. Ultraviolet-B radiation and plant competition: experimental approaches and underlying mechanisms.

    PubMed

    Furness, Nancy H; Jolliffe, Peter A; Upadhyaya, Mahesh K

    2005-01-01

    Under realistic stratospheric ozone depletion scenarios, ultraviolet-B radiation (280-320 nm) (UV-B) influences plant morphology and plant competitive interactions. Influence of UV-B on plant competition can be studied using a variety of experimental and analytical approaches including inverse yield-density models and allometric, neighborhood or size-structure analyses that provide links between plant and ecosystem responses. These approaches differ in their abilities to extract information regarding competitive interactions and their morphological underpinnings. Only a limited number of studies have been carried out to investigate UV-B effects on plant competition, and most of these have used the replacement series approach, which has received much criticism. Nonetheless, results to date indicate that slight differences in UV-B-induced morphological responses of species grown within associations can alter canopy structure thereby influencing photosynthetically active radiation (PAR) interception and relative competitive ability. Because the response of individuals of the same species is expected to be uniform, UV-B may influence intraspecific competition less than interspecific competition. Before we can make clear generalizations and predictions concerning the effects of this radiation on plant competition, an understanding is crucial of the mechanisms underlying UV-B-induced shifts in competitive interactions by assessing competition over time.

  5. 193-nm radiation durability study of MoSi binary mask and resulting lithographic performance

    NASA Astrophysics Data System (ADS)

    Servin, Isabelle; Belledent, Jérôme; Pain, Laurent; Connolly, Brid; Sczyrba, Martin; Lamantia, Matt

    2011-05-01

    Dimensions on mask continue to shrink to keep up with the ITRS roadmap. This has implications on the material of choice for the blanks. For example, the new binary OMOG stack (Opaque MOSi on Glass) was successfully introduced to meet the mask specifications at the 32nm technology node. Obviously 193-nm optical lithography will be further used in production at even higher NA and lower k1 emphasizing, for example, the impact on wafer of any electromagnetic field migration effects. Indeed, long term radiation damage inducing CD growth and consequently, device yield loss, has already been reported [1, 2]. This mechanism, known as Electric Field induced Migration of chrome (EMF) often shortens the mask's lifetime. Here, a study was conducted to investigate the impact of intensive ArF scanner exposure both on final wafer and mask performances. The Si printed wafers measured with top-down CD-SEM were characterized with respect to CD uniformity, linearity, Sub Resolution Assist Feature (SRAF) printability through process window, MEEF, DOF, and OPC accuracy. The data was also correlated to advanced mask inspection results (e.g. AIMSTM) taken at the same location. More precisely, this work follows a preliminary study [1] which pointed out that OMOG is less sensitive to radiation than standard COG (Chrome On Glass). And, in this paper, we report on results obtained at higher energy to determine the ultimate lifetime of OMOG masks.

  6. Overview of the inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense.

    PubMed

    Coohill, Thomas P; Sagripanti, Jose-Luis

    2008-01-01

    Our goal was to ultimately predict the sensitivity of untested bacteria (including those of biodefense interest) to ultraviolet (UV) radiation. In this study, we present an overview and analysis of the relevant 254 nm data previously reported and available in the literature. The amount of variability in this data prevented us from determining an "average" response for any bacterium. Therefore, we developed particular selection criteria to include the data in our analysis and suggested future guidelines for reporting UV sensitivity results. We then compiled a table of the sensitivity to 254 nm UV for 38 bacteria and three bacterial spores. The UV sensitivity was quite similar (within 10%) among the spores of Bacillus anthracis (strains Vollum 1B and Sterne), Bacillus subtilis, and Bacillus megaterium. These data indicate that spores of B. subtilis and B. megaterium could be adequate simulants of B. anthracis spores in UVC experiments. Spores of B. anthracis, B. subtilis and B. megaterium were 5-10 times more resistant to UV than were their corresponding vegetative cells. The vegetative cells of B. anthracis showed similar UV sensitivity to those of Burkholderia pseudomallei, Shigella sonnei, and a wild-type strain of Escherichia coli. Yersinia enterocolitica and Vibrio cholerae appeared more sensitive to UV and Salmonella typhi slightly more resistant to UV than E. coli. The sensitivity (at 254 nm) of all vegetative bacteria ranged from 11 to 80 Jm(2) for a 1 Log(10) kill and from 25-200 Jm(2) for 4 Log(10) kill.

  7. Different oxidative stress response in keratinocytes and fibroblasts of reconstructed skin exposed to non extreme daily-ultraviolet radiation.

    PubMed

    Marionnet, Claire; Pierrard, Cécile; Lejeune, François; Sok, Juliette; Thomas, Marie; Bernerd, Françoise

    2010-08-10

    Experiments characterizing the biological effects of sun exposure have usually involved solar simulators. However, they addressed the worst case scenario i.e. zenithal sun, rarely found in common outdoor activities. A non-extreme ultraviolet radiation (UV) spectrum referred as "daily UV radiation" (DUVR) with a higher UVA (320-400 nm) to UVB (280-320 nm) irradiance ratio has therefore been defined. In this study, the biological impact of an acute exposure to low physiological doses of DUVR (corresponding to 10 and 20% of the dose received per day in Paris mid-April) on a 3 dimensional reconstructed skin model, was analysed. In such conditions, epidermal and dermal morphological alterations could only be detected after the highest dose of DUVR. We then focused on oxidative stress response induced by DUVR, by analyzing the modulation of mRNA level of 24 markers in parallel in fibroblasts and keratinocytes. DUVR significantly modulated mRNA levels of these markers in both cell types. A cell type differential response was noticed: it was faster in fibroblasts, with a majority of inductions and high levels of modulation in contrast to keratinocyte response. Our results thus revealed a higher sensitivity in response to oxidative stress of dermal fibroblasts although located deeper in the skin, giving new insights into the skin biological events occurring in everyday UV exposure.

  8. A Monolithic Active Pixel Sensor for ionizing radiation using a 180 nm HV-SOI process

    NASA Astrophysics Data System (ADS)

    Hemperek, Tomasz; Kishishita, Tetsuichi; Krüger, Hans; Wermes, Norbert

    2015-10-01

    An improved SOI-MAPS (Silicon On Insulator Monolithic Active Pixel Sensor) for ionizing radiation based on thick-film High Voltage SOI technology (HV-SOI) has been developed. Similar to existing Fully Depleted SOI-based (FD-SOI) MAPS, a buried silicon oxide inter-dielectric (BOX) layer is used to separate the CMOS electronics from the handle wafer which is used as a depleted charge collection layer. FD-SOI MAPS suffers from radiation damage such as transistor threshold voltage shifts due to charge traps in the oxide layers and charge states created at the silicon oxide boundaries (back gate effect). The X-FAB 180-nm HV-SOI technology offers an additional isolation by deep non-depleted implant between the BOX layer and the active circuitry which mitigates this problem. Therefore we see in this technology a high potential to implement radiation-tolerant MAPS with fast charge collection property. The design and measurement results from a first prototype are presented including charge collection in neutron irradiated samples.

  9. Effects of UV radiation on the lipids and proteins of bacteria studied by mid-infrared spectroscopy.

    PubMed

    Santos, Ana L; Moreirinha, Catarina; Lopes, Diana; Esteves, Ana Cristina; Henriques, Isabel; Almeida, Adelaide; Domingues, M Rosário M; Delgadillo, Ivonne; Correia, António; Cunha, Angela

    2013-06-18

    Knowledge of the molecular effects of UV radiation (UVR) on bacteria can contribute to a better understanding of the environmental consequences of enhanced UV levels associated with global climate changes and will help to optimize UV-based disinfection strategies. In the present work, the effects of exposure to UVR in different spectral regions (UVC, 100-280 nm; UVB, 280-320 nm; and UVA, 320-400 nm) on the lipids and proteins of two bacterial strains ( Acinetobacter sp. strain PT5I1.2G and Pseudomonas sp. strain NT5I1.2B) with distinct UV sensitivities were studied by mid-infrared spectroscopy. Exposure to UVR caused an increase in methyl groups associated with lipids, lipid oxidation, and also led to alterations in lipid composition, which were confirmed by gas chromatography. Additionally, mid-infrared spectroscopy revealed the effects of UVR on protein conformation and protein composition, which were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), oxidative damage to amino acids, and changes in the propionylation, glycosylation and/or phosphorylation status of cell proteins. Differences in the targets of UVR in the two strains tested were identified and may explain their discrepant UV sensitivities. The significance of the results is discussed from an ecological standpoint and with respect to potential improvements in UV-based disinfection technologies.

  10. Diffuse solar UV radiation and implications for preventing human eye damage.

    PubMed

    Parisi, A V; Green, A; Kimlin, M G

    2001-02-01

    Ocular UV exposure is a function of both the direct and diffuse components of solar radiation. Broadband global and diffuse UV measurements were made in the morning, noon and afternoon. Thirty sets of measurements were made in summer and 50 in each of the other seasons at each of the periods in full sun. Corresponding sets were made in the shade of Australian evergreen trees: 42 trees in summer and 50 in each of the other seasons. The percentage diffuse UV was higher for the shorter 320-400 nm range (UVB) than for 280-320 nm (UVA). The percentage diffuse UVB ranged from 23 to 59%, whereas the percentage diffuse UVA ranged from 17 to 31%. The percentage diffuse UV was lower at noon than in the morning and afternoon with the difference more pronounced for the UVB. The average percentage diffuse UVB over all the measurements in the tree shade for the morning, noon and afternoon was 62, 58 and 71%, respectively, and the average percentage diffuse UVA was 52, 51 and 59%, respectively.

  11. Inverting OII 83.4 nm dayglow profiles using Markov chain radiative transfer

    NASA Astrophysics Data System (ADS)

    Geddes, George; Douglas, Ewan; Finn, Susanna C.; Cook, Timothy; Chakrabarti, Supriya

    2016-11-01

    Emission profiles of the resonantly scattered OII 83.4 nm triplet can in principle be used to estimate O+ density profiles in the F2 region of the ionosphere. Given the emission source profile, solution of this inverse problem is possible but requires significant computation. The traditional Feautrier solution to the radiative transfer problem requires many iterations to converge, making it time consuming to compute. A Markov chain approach to the problem produces similar results by directly constructing a matrix that maps the source emission rate to an effective emission rate which includes scattering to all orders. The Markov chain approach presented here yields faster results and therefore can be used to perform the O+ density retrieval with higher resolution than would otherwise be possible.

  12. Sunlight suppressing rejection of 280- to 320-nm UV-radiation-induced skin tumors in mice

    SciTech Connect

    Morison, W.L.; Kelley, S.P.

    1985-02-01

    Repeated exposure of female C3H/HeNCR- mice to sunlight prevented the normal immunologic rejection of a UV-induced tumor. This systemic immunologic alteration was transferred to syngeneic lethally X-irradiated animals with lymphoid cells from mice exposed to sunlight. The lymphoid cells also were able to suppress the capacity of lymphoid cells from normal animals to reject a UV-induced tumor. The 295- to 320-nm wave band appeared to be responsible for this immunosuppressive effect of sunlight because suppression was prevented by filtration of the radiation through Mylar and by application of a sunscreen containing para-aminobenzoic acid. These observations may have importance in understanding the pathogenesis of sunlight-induced skin cancer in humans.

  13. Solar ultraviolet-B radiation in urban environments: the case of Baltimore, Maryland.

    PubMed

    Heisler, Gordon M; Grant, Richard H; Gao, Wei; Slusser, James R

    2004-01-01

    Ultraviolet-B radiation (UV-B, 280-320 nm) has important effects in urban areas, including those on human health. Broadband UV-B radiation is monitored in Baltimore, MD, as part of the Baltimore Ecosystem Study, a long-term ecological research program. We compare broadband UV-B irradiance in Baltimore with UV-B at two nearby locations: a more rural station 64 km southeast and a suburban station 42 km southwest. The monitoring station in Baltimore is on the roof of a 33-m-tall building; there are no significant obstructions to sky view. The U.S. Department of Agriculture UV-B Monitoring and Research Program provided all sensors, which were calibrated at the National Oceanic and Atmospheric Administration Central UV Calibration Facility. UV-B irradiances at the three sites generally were similar. Over all conditions, Baltimore and the suburban site measured 3.4% less irradiance than the rural site. This difference is within the anticipated +/-3% calibration uncertainty of the pyranometers. On 59 days with cloud-free conditions at all three sites, average differences in measured UV-B among the three sites were even smaller; Baltimore measured 1.2% less irradiance than the rural site. High aerosol optical thickness strongly reduced daily UV-B dose, whereas [SO2] had no influence. Surface O3 increased with increasing UV-B dose when [NO2] exceeded 10 ppb.

  14. Response of Two Legumes to Two Ultraviolet-B Radiation Regimes

    NASA Technical Reports Server (NTRS)

    Levy, Daniel L.; Skiles, J. W.

    2000-01-01

    Depletion of the stratospheric ozone layer has been directly linked to increased levels of UV radiation at the earth's surface. The purpose of this study was to evaluate the responses of soybean (Glycine max) and alfalfa (Medicago sativa) to increased UV-B radiation (280-320 nm). Soybean and alfalfa were grown successively in a growth chamber that provided UV-B intensities 45% above nominal summer field levels. Mylar-D (UVB opaque) and mono-acetate (UV-B transparent) films were used to establish the two UV-B treatments. Soybean grown under increased UV showed 21% smaller internodal lengths and higher concentrations of UV-B absorbing pigments (i.e. flavonoids) compared to plants grown under no UV. Significant results for alfalfa included 22% greater leaf flavonoid concentration under increased UV, 14% greater leaf chlorophyll concentration under no UV, and 32% greater above-ground biomass with no UV. These leguminous species possess mechanisms that protect against UV-B damage as indicated by increases in foliar concentrations of UV-B absorbing compounds. Alfalfa appears to be more sensitive to UV-B damage than soybean. Remote sensing of chlorophyll fluorescence may offer a means of monitoring UV-induced plant stress and damage.

  15. Kinetics of avoidance of simulated solar uv radiation by two arthropods

    SciTech Connect

    Barcelo, J.A.; Calkins, J.

    1980-12-01

    There is an increasing likelihood that the solar uv-B radiation (lambda = 280-320 nm) reaching the earth's surface will increase due to depletion of the stratospheric ozone layer. It is recognized that many organisms are insufficiently resistant to solar uv-B to withstand full summer sunlight and thus mechanisms which facilitate avoidance of solar uv-B exposure may have significance for the survival of sensitive species. There are many alternative pathways which would lead to avoidance of solar uv-B. We have investigated the dynamics of biological reactions to simulated solar uv-B radiation in two small arthropods, the two-spotted spider mite Tetranychus urticae Koch and the aquatic copepod Cyclops serrulatus. Observations of positioning and rate of movement were made; a mathematical formalism was developed which assisted in interpretation of the observations. Our observations suggest that, although avoidance would mitigate increased solar uv-B effects, even organisms which specifically reduce their uv-B exposure would encounter additional stress if ozone depletion does occur.

  16. Absorption of 308-nm excimer laser radiation by balanced salt solution, sodium hyaluronate, and human cadaver eyes

    SciTech Connect

    Keates, R.H.; Bloom, R.T.; Schneider, R.T.; Ren, Q.; Sohl, J.; Viscardi, J.J. )

    1990-11-01

    Absorption of the excimer laser radiations of 193-nm argon fluorine and 308-nm xenon chloride in balanced salt solution, sodium hyaluronate, and human cadaver eyes was measured. The absorption of these materials as considerably different for the two wavelengths; we found that 308-nm light experienced much less absorption than the 193-nm light. The extinction coefficient (k) for 308 nm was k = 0.19/cm for balanced salt solution and k = 0.22/cm for sodium hyaluronate. In contrast to this, the extinction coefficient for 193 nm was k = 140/cm for balanced salt solution and k = 540/cm for sodium hyaluronate. Two 1-day-old human phakic cadaver eyes showed complete absorption with both wavelengths. Using aphakic eyes, incomplete absorption was noted at the posterior pole with 308 nm and complete absorption was noted with 193 nm. The extinction in the anterior part of aphakic eyes (the first 6 mm) was 4.2/cm for 308 nm, meaning that the intensity of the light is reduced by a factor of 10 after traveling the first 5.5 mm. However, we observed that the material in the eye fluoresces, meaning the 308 nm is transformed into other (longer) wavelengths that travel through the total eye with minimal absorption. Conclusions drawn from this experiment are that the use of the 308-nm wavelength may have undesirable side effects, while the use of the 193-nm wavelength should be consistent with ophthalmic use on both the cornea and the lens.

  17. Response of Two Plant Species to Two Ultraviolet-B Radiation Regimes

    NASA Technical Reports Server (NTRS)

    Levy, Daniel L.; Skiles, J. W.; Peterson, David (Technical Monitor)

    1996-01-01

    The depleted stratospheric ozone layer has been directly linked to increased levels of ultraviolet radiation at the earth's surface. It is important to understand what effect this will have on plants. We tested the hypothesis that in response to increased UV-B radiation (280-320 man), soybean (Glycine max Merrill) and alfalfa (Mercado Saliva L.) would produce higher concentrations of flavonoids than plants screened from UV-B. Soybean and alfalfa plants were grown successively in a growth chamber that provided UV-B radiation intensities 45% above summer field levels. A wooden frame was used to suspend mylar-D film over one group of plants and mono-acetate film over another group. Mylar is opaque in the 280-316 nm range, and acetate absorbs most radiation from 280-290 nm and then reduces intensities in the 290-320 nm range by roughly 15%. Leaf chlorophyll concentration was determined with a Minolta SPAD-502 chlorophyll meter; the BRAD meter was calibrated with N,N- extractions. Flavonoids were extracted with an acidified methanol/water solution. Soybean grown under the acetate treatment showed 26% smaller internodal lengths and higher concentrations of flavonoids compared to plants grown under mylar. Significant results for alfalfa included 22% greater leaf flavonoid concentration under acetate, 14% greater leaf chlorophyll concentration under mylar, and 32% greater above-ground biomass under mylar. We found that increased UV-B radiation leads to increased production of UV-B absorbing compounds (i.e. flavonoids) in soybean and alfalfa leaves. This suggests that a protective mechanism in these plants is triggered by UV-B. In response, flavonoids are produced that absorb UV-B, and consequently decrease potentially damaging effects to the plants. In addition, we hypothesize that this flavonoid protection mechanism saturates at certain UV-B intensities.

  18. Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation

    NASA Astrophysics Data System (ADS)

    Hatem, O.; Freeman, J. R.; Cunningham, J. E.; Cannard, P. J.; Robertson, M. J.; Linfield, E. H.; Davies, A. G.; Moodie, D. G.

    2016-05-01

    We demonstrate efficient generation of terahertz (THz) frequency radiation by pulsed excitation, at wavelengths between 800 and 1550 nm, of photoconductive (PC) switches fabricated using Fe-doped InGaAsP wafers, grown by metal organic chemical vapor deposition (MOCVD). Compared to our previous studies of Fe-doped InGaAs wafers, Fe:InGaAsP wafers exhibited five times greater dark resistivity to give a value of 10 kΩ cm, and Fe:InGaAsP PC switches produced five times higher THz power emission. The effect of Fe-doping concentration (between 1E16 and 1.5E17 cm-3) on optical light absorption (between 800 and 1600 nm), on resistivity, and on THz emission is also discussed.

  19. Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by raman scattering.

    PubMed

    Egermann, Jan; Seeger, Thomas; Leipertz, Alfred

    2004-10-10

    We describe the use of linear Raman scattering for the investigation of fuel-rich sooting flames. In comparison, the frequency-tripled and -quadrupled fundamental wavelengths of a Nd:YAG laser have been used as an excitation source for study of the applicability of these laser wavelengths for analysis of sooting flames. The results obtained show that, for the investigation of strongly sooting flames, 266-nm excitation is better than 355-nm excitation. Although the entire fluorescence intensity of polycyclic aromatic hydrocarbons (PAHs) decreases with rising excitation wavelength, there is increased interference with the Raman signals by displacement of the spectral region of the Raman signals toward the fluorescence maximum of the laser-induced fluorescence emissions. Besides the broadband signals of PAHs, narrowband emissions of laser-produced C2 occur in the spectra of sooting flames and affect the Raman signals. These C2 emission bands are completely depolarized and can be separated by polarization-resolved detection. A comparison of the laser-induced fluorescence emissions of an ethylene flame with those of a methane flame shows the same spectral features, but the intensity of the emissions is larger by a factor of 5 for the ethylene fuel. Using 266-nm radiation for Raman signal excitation makes possible measurements in the ethylene flame also.

  20. Influence of the solar UV-radiation intensity on the 630-nm nightglow emission in the 23rd solar cycle

    NASA Astrophysics Data System (ADS)

    Ievenko, I. B.; Alekseev, V. N.; Parnikov, S. G.

    2011-10-01

    It is well known that the 630-nm nightglow emission intensity in midlatitudes increases by more than a factor of 2 during a sunspot maximum. It has been assumed that the phenomenon is caused by variations in solar UV radiation during a solar cycle (Fishkova, 1983). We present the results of photometric measurements of the nightglow 630.0 nm emission intensity at a latitude of 63° E and longitude of 130° E (Yakutsk) in 1990-2007. The dependence of the 630-nm emission intensity on solar activity on magnetically quiet days in the 22nd and 23rd solar cycles is shown. The close relationship between the 630-nm nightglow intensity and the intensity of extreme UV (EUV) with a correlation coefficient of 0.8-0.9 in 1997-2007 is ascertained from the SOHO/SEM data. The dominance of solar EUV in the excitation of nightglow 630-nm emission has thus been experimentally proved.

  1. SCIATRAN 2.0 - A new radiative transfer model for geophysical applications in the 175 - 2400 nm spectral region.

    NASA Astrophysics Data System (ADS)

    Rozanov, A.; Rozanov, V.; Buchwitz, M.; Kokhanovsky, A.; Burrows, J. P.

    The SCIATRAN radiative transfer models (RTMs) are next generation RTMs based on the well-known GOMETRAN model which was originally developed to simulate solar radiation backscattered from the atmosphere and reflected from the Earth's surface in the spectral range 240--800 nm as measured by the Global Ozone Monitoring Experiment (GOME) in nadir viewing geometry. A successor RTM called SCIATRAN was extended to cover the spectral range 240--2380 nm comprising the 8 spectral channels of the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instrument. SCIATRAN versions up to 1.2 utilize the pseudo-spherical approach, including refraction, appropriate for solar zenith angles up to about 92° and near-nadir viewing angles. A new generation of the SCIATRAN radiative transfer model (version 2.0) comprises all features of the latest SCIATRAN 1.2 RTM supporting additionally radiative transfer calculations in a spherical atmosphere. The program is written in FORTRAN 95 and suitable for parallel execution using the OMP-standard. The wavelength range covered by the radiative transfer model is extended to 175 nm including Schuman-Runge and Herzberg absorption bands. The SCIATRAN 2.0 model exhibits the following new capabilities : (i) modeling of the scattered solar radiation in limb viewing geometry as well as any kind of measurements of the scattered radiation within the atmosphere, (ii) corresponding quasi-analytical calculation of weighting functions of atmospheric parameters, (iii) airmass factor calculations for ground-based, space- and airborne measurements including off-axis geometry, (iv) accounting for photochemically active species, i.e., radiative transfer calculations can be performed using solar zenith angle dependent vertical distributions of atmospheric trace gases, (v) height resolved radiation fluxes, including actinic fluxes for photolysis rate calculations, (vi) inelastic rotational Raman scattering in any supported viewing

  2. UVB radiation as a potential selective factor favoring microcystin producing bloom forming Cyanobacteria.

    PubMed

    Ding, Yi; Song, Lirong; Sedmak, Bojan

    2013-01-01

    Due to the stratospheric ozone depletion, several organisms will become exposed to increased biologically active UVB (280-320 nm) radiation, not only at polar but also at temperate and tropical latitudes. Bloom forming cyanobacteria are exposed to UVB radiation on a mass scale, particularly during the surface bloom and scum formation that can persist for long periods of time. All buoyant species of cyanobacteria are at least periodically exposed to higher irradiation during their vertical migration to the surface that usually occurs several times a day. The aim of this study is to assess the influence on cyanobacteria of UVB radiation at realistic environmental intensities. The effects of two UVB intensities of 0.5 and 0.99 W/m(2) in up to 0.5 cm water depth were studied in vitro on Microcystis aeruginosa strains, two microcystin producing and one non-producing. After UVB exposure their ability to proliferate was estimated by cell counting, while cell fitness and integrity were evaluated using light microscopy, autofluorescence and immunofluorescence. Gene damage was assessed by TUNEL assay and SYBR Green staining of the nucleoide area. We conclude that UVB exposure causes damage to the genetic material, cytoskeletal elements, higher sedimentation rates and consequent cell death. In contrast to microcystin producers (PCC7806 and FACHB905), the microcystin non-producing strain PCC7005 is more susceptible to the deleterious effects of radiation, with weak recovery ability. The ecological relevance of the results is discussed using data from eleven years' continuous UVB radiation measurements within the area of Ljubljana city (Slovenia, Central Europe). Our results suggest that increased solar radiation in temperate latitudes can have its strongest effect during cyanobacterial bloom formation in spring and early summer. UVB radiation in this period may significantly influence strain composition of cyanobacterial blooms in favor of microcystin producers.

  3. An ethanol extract derived from Bonnemaisonia hamifera scavenges ultraviolet B (UVB) radiation-induced reactive oxygen species and attenuates UVB-induced cell damage in human keratinocytes.

    PubMed

    Piao, Mei Jing; Hyun, Yu Jae; Cho, Suk Ju; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2012-12-14

    The present study investigated the photoprotective properties of an ethanol extract derived from the red alga Bonnemaisonia hamifera against ultraviolet B (UVB)-induced cell damage in human HaCaT keratinocytes. The Bonnemaisonia hamifera ethanol extract (BHE) scavenged the superoxide anion generated by the xanthine/xanthine oxidase system and the hydroxyl radical generated by the Fenton reaction (FeSO₄ + H₂O₂), both of which were detected by using electron spin resonance spectrometry. In addition, BHE exhibited scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species (ROS) that were induced by either hydrogen peroxide or UVB radiation. BHE reduced UVB-induced apoptosis, as shown by decreased apoptotic body formation and DNA fragmentation. BHE also attenuated DNA damage and the elevated levels of 8-isoprostane and protein carbonyls resulting from UVB-mediated oxidative stress. Furthermore, BHE absorbed electromagnetic radiation in the UVB range (280-320 nm). These results suggest that BHE protects human HaCaT keratinocytes against UVB-induced oxidative damage by scavenging ROS and absorbing UVB photons, thereby reducing injury to cellular components.

  4. Growth response of an estuarine diatom (Melosira nummuloides (Dillw. )Ag. ) to UV-B (290-320 nm) radiation

    SciTech Connect

    Thompson, B.E.; Worrest, R.C.; Van Dyke, H.

    1980-03-01

    An increase in the transmission of solar radiation in the UV-B region (specifically, 290 to 320 nm) is expected to occur as a result of anthropogenic degradation of stratospheric ozone. The potential impact of increased levels of UV-B radiation upon the biosphere is of ecological concern. In a previous study a community of estuarine organisms received a daily exposure to a simulated solar spectrum enhanced in UV-B radiation for a period of six weeks. A dominant species of diatom growing at the surface of these communities were isolated and identified to be Melosira nummuloides. Short chains of this diatom were irradiated for a four-hour period on each of three consecutive days. Fluorescent sunlamps filtered by a 290 mm cut-off filter (0.13 to 0.50 mm cellulose acetate) or a 315 nm cut-off filter (0.13 mm Mylar S) provided a range of fluence which closely approximated natural fluence levels. A least squares regression analysis of the number of cell divisions on the biologically weighted fluence indicated a significant depression in the growth of this scies by radiation in the 290 to 320 nm waveband.

  5. On Sensitivity of Spectral Radiative Fluxes to Atmospheric Water Vapor in the 940 nm Region (Numerical Simulation)

    SciTech Connect

    Zhuravleva, T.B.; Firsov, K.M.

    2005-03-18

    Water vapor is well known to be a critical component in many aspects of atmospheric research, such as radiative transfer and cloud and aerosol processes. This requires both improved measurements of the columnar water vapor and its profiles in the atmosphere in a wide range of conditions, and adjustment of water vapor parameterizations in radiation codes including the perfection of spectroscopic parameters. In this paper we will present the results of comparison of our calculations and downward solar fluxes measured with Rotating Shadowband Spectroradiometer under conditions of horizontally homogeneous clouds. We also will discuss the sensitivity of atmospheric radiation characteristics to variations of water vapor in the band 940 nm: these results may be useful for development of new methods of retrieval of the total column water vapor content (WVC) in the atmosphere from data of radiation observations.

  6. Technology and mechanism of neuron inactivation by N2 laser radiation (λ=337 nm), mercury-vapor lamp (Hg λ=365 nm), and low-coherence UV-A sun radiation

    NASA Astrophysics Data System (ADS)

    Akchurin, Garif G.; Akchurin, George G.; Seliverstov, George A.; Trofimov, Artyom Y.

    2005-04-01

    The method of the local functional injury of somatic frog's nerve using high coherent UV-A radiation of N2 laser (λ=337nm, P~10 mW), coherent mercury-vapor lamp radiation (λ=365 312 nm PΣ~2 mW/cm2) and low-coherence UV-A sun radiation (400-315 nm, PΣ~10 mW) was realized. The level of injury was assessed from the decrease of compound action potential of the nerve stimulated extracellularly by electrical pulses of millisecond duration. Study of dynamic response of the bundle of axons revealed the decrease of the number of action potential which can be generated (less than 105). This decrease may be attributed to destruction of action transport and/or voltage-activated ion channels of axon membrane. The dose dependence of the level of nerve injury was studied using varied both intensity and duration of high and low-coherent UV-A irradiation.

  7. Stress relaxation in InGaAsP/InP heterostructures for 1064-nm laser radiation converters

    NASA Astrophysics Data System (ADS)

    Marichev, A. E.; Levin, R. V.; Gordeeva, A. B.; Gagis, G. S.; Kuchinskii, V. I.; Pushnyi, B. V.; Prasolov, N. D.; Shmidt, N. M.

    2017-01-01

    Specific features of mechanical-stress relaxation in InGaAsP/InP heterostructures for 1064 nm laser radiation converters have been studied. It is established that stress relaxation via the formation of an ordered relief on the surface of solid-solution layers in InGaAsP/InP heterostructures with indium content up to 80% can decrease the probability of spinodal decomposition of the solid solution, enhance its photoluminescence intensity, and increase the efficiency of laser-radiation conversion.

  8. Radiation Performance of 1 Gbit DDR SDRAMs Fabricated in the 90 nm CMOS Technology Node

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.; Gorelick, Jerry L.; Berg, M. D.; Kim, H.; LaBel, K.; Friendlich, M.; Koga, R.; George, J.; Crain, S.; Yu, P.; Reed, R. A.

    2006-01-01

    We present Single Event Effect (SEE) and Total Ionizing Dose (TID) data for 1 Gbit DDR SDRAMs (90 nm CMOS technology) as well as comparing this data with earlier technology nodes from the same manufacturer.

  9. SCIATRAN 2.0 A new radiative transfer model for geophysical applications in the 175 2400 nm spectral region

    NASA Astrophysics Data System (ADS)

    Rozanov, A.; Rozanov, V.; Buchwitz, M.; Kokhanovsky, A.; Burrows, J. P.

    A successor version of the SCIATRAN radiative transfer model (RTM) has been developed to perform radiative transfer modeling in any observation geometry appropriate to measurements of the scattered solar radiation in the Earth's atmosphere. The model is designed to be used as a forward model in the retrieval of atmospheric constituents from measurements of scattered solar light by satellite, ground-based, or airborne instruments in UV-Vis-NIR spectral region. Furthermore, it can be used to calculate air mass factors or fluxes. The new generation of the SCIATRAN model comprises all features of the latest SCIATRAN 1.2 RTM supporting additionally radiative transfer calculations in a spherical atmosphere. The program is written in FORTRAN 95 and suitable for parallel execution using the OpenMP standard. The wavelength range covered by the radiative transfer model is extended to 175-2380 nm including Schuman-Runge and Herzberg absorption bands of oxygen. The SCIATRAN 2.0 model exhibits the following new capabilities: (i) modeling of the scattered solar radiation in limb viewing geometry as well as any kind of measurements of the scattered radiation within the atmosphere, (ii) corresponding quasi-analytical calculation of weighting functions of atmospheric parameters, (iii) airmass factor calculations for ground-based, space and airborne measurements including off-axis geometry, (v) accounting for photochemically active species, i.e., radiative transfer calculations can be performed using solar zenith angle dependent vertical distributions of atmospheric species, (iv) height resolved radiation fluxes, including actinic fluxes for photolysis rate calculations, (vi) inelastic rotational Raman scattering in any supported viewing geometry, (vii) new effective approximations for radiative transfer modeling in presence of clouds. The SCIATRAN model is freely available via the world wide web for non-commercial scientific applications.

  10. [The effect of solar ultraviolet radiation (UVR) on induction of skin cancers].

    PubMed

    Pacholczyk, Marta; Czernicki, Jan; Ferenc, Tomasz

    Ultraviolet radiation is a physical mutagenic and cancerogenic factor. About 95% of ultraviolet A (UVA) (320-400 nm) and 5% of UVB (280-320 nm) reach the Earth's surface. Melanin is a natural skin protective factor against UV radiation. Skin cancers associated with long-term exposure to UV radiation are: basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and cutaneous malignant melanoma (CMM). The high risk of BCC development is related to acute and repeated exposure to UV causing sunburn. Molecular studies of BBC demonstrated disorders in sonic hedgehog (SHH) cell signaling regulation pathway, associated with the suppressor protein patched homolog 1 gene (PTCH1) mutations. The risk of the BCC development is related to the polymorphism of melanokortin-1 receptor gene (MC1R). Tumor P53 gene mutations observed in BCC cells has been classified as secondary genetic changes. In SCC cells UV-induced mutations were mostly related to P53 gene. Increased expression of cyclooxigenase- 2 gene (COX-2) plays a significant role in the development of SCC. Other pathogenetic factors include intensification of the synthesis of pro-inflammatory cytokines (tumor necrosis factor α (TNF-α), interleukin-1 α (IL-1α), IL-1β and IL-6). Currently, the role of UVB has been recognized in the pathogenesis of CMM. In CMM cells the following gene mutations were noted: cyclindependent kinase inhibitor 2A INK4A (p16INK4A), cyclin-dependent kinase 4 (CDK4), Ras, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and proto-oncogene B-Raf (BRAF). The BRAF gene mutations were observed in ~50% of CMM cases. Mutations of P53 gene are not characteristic of CMM cells. Med Pr 2016;67(2):255-266.

  11. The influence of ultraviolet-B radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during Springtime ozone depletion in Antarctica.

    PubMed

    Ruhland, Christopher T; Xiong, Fusheng S; Clark, W Dennis; Day, Thomas A

    2005-01-01

    We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm) on the growth, biomass production and phenylpropanoid concentrations of Deschampsia antarctica during the springtime ozone depletion season at Palmer Station, along the Antarctic Peninsula. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B either by 83% (reduced UV-B) or by 12% (near-ambient UV-B) over the 63 day experiment (7 November 1998-8 January 1999) when ozone depletion averaged 17%. Plants growing under near-ambient UV-B had 41% and 40% lower relative growth rates and net assimilation rates, respectively, than those under reduced UV-B. The former plants produced 50% less total biomass as a result of having 47% less aboveground biomass. The reduction in aboveground biomass was a result of a 29% lower leaf elongation rate resulting in shorter leaves and 59% less total leaf area in plants grown under reduced UV-B. p-Coumaric, caffeic and ferulic acids were the major hydroxycinnamic acids, and luteolin derivatives were the major flavonoids in both insoluble and soluble leaf extracts. Concentrations of insoluble p-coumaric and caffeic acid and soluble ferulic acids were 38%, 48% and 60% higher, respectively, under near-ambient UV-B than under reduced UV-B. There were no UV-B effects on concentrations of insoluble or soluble flavonoids.

  12. NM23 deficiency promotes metastasis in a UV radiation-induced mouse model of human melanoma.

    PubMed

    Jarrett, Stuart G; Novak, Marian; Harris, Nathan; Merlino, Glenn; Slominski, Andrezj; Kaetzel, David M

    2013-01-01

    Cutaneous malignant melanoma is the most lethal form of skin cancer, with 5-year survival rates of <5 % for patients presenting with metastatic disease. Mechanisms underlying metastatic spread of UVR-induced melanoma are not well understood, in part due to a paucity of animal models that accurately recapitulate the disease in its advanced forms. We have employed a transgenic mouse strain harboring a tandem deletion of the nm23-m1 and nm23-m2 genes to assess the combined contribution of these genes to suppression of melanoma metastasis. Crossing of the nm23-h1/nm23-h2 knockout in hemizygous-null form ([m1m2](+/-)) to a transgenic mouse strain (hepatocyte growth factor/scatter factor-overexpressing, or HGF(+) strain) vulnerable to poorly-metastatic, UVR-induced melanomas resulted in UVR-induced melanomas with high metastatic potential. Metastasis to draining lymph nodes was seen in almost all cases of back skin melanomas, while aggressive metastasis to lung, thoracic cavity, liver and bone also occurred. Interestingly, no differences were observed in the invasive characteristics of primary melanomas of HGF(+) and HGF(+) × [m1m2](+/-) strains, with both exhibiting invasion into the dermis and subcutis, indicating factors other than simple invasive activity were responsible for metastasis of HGF(+) × [m1m2](+/-) melanomas. Stable cell lines were established from the primary and metastatic melanoma lesions from these mice, with HGF(+) × [m1m2](+/-) lines exhibiting increased single cell migration and genomic instability. These studies demonstrate for the first time in vivo a potent metastasis suppressor activity of NM23 in UVR-induced melanoma, and have provided new tools for identifying molecular mechanisms that underlie melanoma metastasis.

  13. Effects of ultraviolet-B radiation on fungal disease development in Cucumis sativus

    SciTech Connect

    Orth, A.B.; Teramura, A.H.; Sisler, H.D. )

    1990-09-01

    Stratospheric ozone depletion due to increased atmospheric pollutants has received considerable attention because of the potential increase in ultraviolet-B (UV-B, 280-320 nm) radiation that will reach the earth's surface. Three cucumber (Cucumis sativus L.) cultivars were exposed to a daily dose of 11.6 kJ m{sup {minus}2} biologically effective ultraviolet-B (UV-B{sub BE}) radiation in an unshaded greenhouse before and/or after injection by Colletotrichum lagenarium (Pass.) Ell. and Halst. or Cladosporium cucumerinum Ell. and Arth. and analyzed for disease development. Two of these cultivars, Poinsette and Calypso Hybrid, were disease resistant, while the third cultivar, Straight-8, was disease susceptible. Preinfectional treatment of 1 to 7 days with UV-B{sub BE} in Straight-8 led to greater severity of both diseases. Postinfectional UV treatment did not lead to increased disease severity caused by C. lagenarium, while preinfectional UV treatment in both Straight-8 and Poinsette substantially increased disease severity. Although resistant cultivars Poinsette and Calypso Hybrid showed increased anthracnose disease severity when exposed to UV-B, this effect was apparent only on the cotyledons. Both higher spore concentration and exposure to UV-B radiation resulted in greater disease severity. Of the cucumber cultivars tested for UV-B sensitivity, growth in Poinsette was most sensitive and Calypso Hybrid was least sensitive. These preliminary results indicate that the effects of UV-B radiation on disease development in cucumber vary depending on cultivar, timing and duration of UV-B exposure, inoculation level, and plant age.

  14. Mitochondrial dependent oxidative stress in cell culture induced by laser radiation at 1265 nm.

    PubMed

    Saenko, Yury V; Glushchenko, Eugenia S; Zolotovskii, Igor O; Sholokhov, Evgeny; Kurkov, Andrey

    2016-04-01

    Photodynamic therapy is the main technique applied for surface carcinoma treatment. This technique employs singlet oxygen generated via a laser excited photosensitizer as a main damaging agent. However, prolonged sensitivity to intensive light, relatively low tissue penetration by activating light the cost of photosensitizer (PS) administration can limit photodynamic therapy applications. Early was reported singlet oxygen generation without photosensitizer induced by a laser irradiation at the wavelength of 1250-1270 nm. Here, we study the dynamics of oxidative stress, DNA damage, changes of mitochondrial potential, and mitochondrial mass induced by a laser at 1265 nm have been studied in HCT-116 and CHO-K cells. Laser irradiation of HCT-116 and CHO-K cells has induced a dose-dependent cell death via increasing intracellular reactive oxygen species (ROS) concentration, increase of DNA damage, decrease of mitochondrial potential, and reduced glutathione. It has been shown that, along with singlet oxygen generation, the increase of the intracellular ROS concentration induced by mitochondrial damage contributes to the damaging effect of the laser irradiation at 1265 nm.

  15. Impact of ultraviolet-B radiation on photosystem II activity and its relationship to the inhibition of carbon fixation rates for antarctic ice algae communities

    SciTech Connect

    Schofield, O.; Prezelin, B.B.; Kroon, B.M.A.

    1995-10-01

    One goal of the Icecolors 1993 study was to determine whether or not photosystem II (PSII) was a major target site for photoinhibition by ultraviolet-B radiation (Q{sub UVB}, 280-320 nm) in natural communities. Second, the degree to which Q{sub UVB} inhibition of PSII could account for Q{sub UVB} effects on whole cell rates of carbon fixation in phytoplankton was assessed. On 1 October, 1993, at Palmer Station (Antarctica), dense samples of a frazil ice algal community were collected and maintained outdoors in the presence or absence of Q{sub UVB} and/or ultraviolet-A (Q{sub UVA}, 320-400 nm) radiation. The time of day course of UV inhibition of primary production was tracted. Over the day, {phi}{sub IIe}{degrees} declined due to increasing time-integrated dose exposure of Q{sub UVB}. The Q{sub UVB}-driven inhibition of {phi}{sub IIe}{degrees} increased from 4% in the early morning hours to a maximum of 23% at the end of the day. The Q{sub UVB} photoinhibition of PSII quantum yield did not recover by 6 h after sunset. In contrast, photoinhibition by Q{sub UVA} and photosynthetically available radiation (Q{sub PAR}, 400-700 nm) recovered during the late afternoon. Fluorescence-based estimates of carbon fixation rates were linearly correlated with measured carbon fixation. Fluorescence overestimated the observed Q{sub UVB} inhibition in measured carbon fixation rates. Researchers should be cautious in using fluorescence measurements to infer ultraviolet inhibition for rates of carbon fixation until there is a greater understanding of the coupling of carbon metabolism to PSII activity for natural populations. Despite these current limitations, fluorescence-based technologies represent powerful tools for studying the impact of the ozone hole on natural populations on spatial/temporal scales not possible using conventional productivity techniques. 55 refs., 11 figs., 2 tabs.

  16. Interaction of pulse laser radiation of 532 nm with model coloration layers for medieval stone artefacts

    NASA Astrophysics Data System (ADS)

    Colson, J.; Nimmrichter, J.; Kautek, W.

    2014-05-01

    Multilayer polychrome coatings on medieval and Renaissance stone artefacts represent substantial challenges in laser cleaning. Therefore, polychromic models with classical pigments, minium Pb22+PbO, zinc white (ZnO), and lead white ((PbCO3)2·Pb(OH)2) in an acrylic binder, were irradiated with a Q-switched Nd:YAG laser emitting at 532 nm. The studied medieval pigments exhibit strongly varying incubation behaviours directly correlated to their band gap energies. Higher band gaps beyond the laser photon energy of 2.3 eV require more incubative generation of defects for resonant transitions. A matching of the modification thresholds after more than four laser pulses was observed. Laser cleaning with multiple pulsing should not exceed ca. 0.05 J/cm2 when these pigments coexist in close spatial proximity.

  17. Radiation hardness studies of AMS HV-CMOS 350 nm prototype chip HVStripV1

    NASA Astrophysics Data System (ADS)

    Kanisauskas, K.; Affolder, A.; Arndt, K.; Bates, R.; Benoit, M.; Di Bello, F.; Blue, A.; Bortoletto, D.; Buckland, M.; Buttar, C.; Caragiulo, P.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hiti, B.; Hoeferkamp, M.; Hommels, L. B. A.; Huffman, B. T.; John, J.; Kenney, C.; Kramberger, J.; Liang, Z.; Mandic, I.; Maneuski, D.; Martinez-Mckinney, F.; MacMahon, S.; Meng, L.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Peric, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seidel, S.; Seiden, A.; Shipsey, I.; Song, W.; Staniztki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zhang, J.; Zhu, H.

    2017-02-01

    CMOS active pixel sensors are being investigated for their potential use in the ATLAS inner tracker upgrade at the HL-LHC. The new inner tracker will have to handle a significant increase in luminosity while maintaining a sufficient signal-to-noise ratio and pulse shaping times. This paper focuses on the prototype chip "HVStripV1" (manufactured in the AMS HV-CMOS 350nm process) characterization before and after irradiation up to fluence levels expected for the strip region in the HL-LHC environment. The results indicate an increase of depletion region after irradiation for the same bias voltage by a factor of ≈2.4 and ≈2.8 for two active pixels on the test chip. There was also a notable increase in noise levels from 85 e‑ to 386 e‑ and from 75 e‑ to 277 e‑ for the corresponding pixels.

  18. Sudden exposure to solar UV-B radiation reduces net CO(2) uptake and photosystem I efficiency in shade-acclimated tropical tree seedlings.

    PubMed

    Krause, G Heinrich; Grube, Esther; Virgo, Aurelio; Winter, Klaus

    2003-02-01

    Tree seedlings developing in the understory of the tropical forest have to endure short periods of high-light stress when tree-fall gaps are formed, and direct solar radiation, including substantial UV light, reaches the leaves. In experiments simulating the opening of a tree-fall gap, the response of photosynthesis in leaves of shade-acclimated seedlings (Anacardium excelsum, Virola surinamensis, and Calophyllum longifolium) to exposure to direct sunlight (for 20-50 min) was investigated in Panama (9 degrees N). To assess the effects of solar UV-B radiation (280-320 nm), the sunlight was filtered through plastic films that selectively absorbed UV-B or transmitted the complete spectrum. The results document a strong inhibition of CO(2) assimilation by sun exposure. Light-limited and light-saturated rates of photosynthetic CO(2) uptake by the leaves were affected, which apparently occurred independently of a simultaneous inhibition of potential photosystem (PS) II efficiency. The ambient UV-B light substantially contributed to these effects. The photochemical capacity of PSI, measured as absorbance change at 810 nm in saturating far-red light, was not significantly affected by sun exposure of the seedlings. However, a decrease in the efficiency of P700 photooxidation by far-red light was observed, which was strongly promoted by solar UV-B radiation. The decrease in PSI efficiency may result from enhanced charge recombination in the reaction center, which might represent an incipient inactivation of PSI, but contributes to thermal dissipation of excessive light energy and thereby to photoprotection.

  19. Analysis of the efficiency of using 1265-nm cw laser radiation for initiating oxidative stress in the tissue of a solid malignant tumour

    SciTech Connect

    Gening, T P; Voronova, O S; Dolgova, D R; Abakumova, T V; Zolotovskii, Igor' O; Sholokhov, E M; Kurkov, Andrei S; Gening, S O

    2012-09-30

    The possibility of laser initiation of oxidative stress was studied by the example of the tumour tissue of cervix. The laser facility with the operating wavelength 1265 nm that falls within the region of resonance absorption of molecular oxygen was used for initiation. The source of radiation in the experiments was a fibre SRS laser with the repeated cascade conversion of radiation of a 1125-nm ytterbium laser. (optical fibres, lasers and amplifiers. properties and applications)

  20. Analysis of the efficiency of using 1265-nm cw laser radiation for initiating oxidative stress in the tissue of a solid malignant tumour

    NASA Astrophysics Data System (ADS)

    Gening, T. P.; Voronova, O. S.; Dolgova, D. R.; Abakumova, T. V.; Zolotovskii, Igor'O.; Sholokhov, E. M.; Kurkov, Andrei S.; Gening, S. O.

    2012-09-01

    The possibility of laser initiation of oxidative stress was studied by the example of the tumour tissue of cervix. The laser facility with the operating wavelength 1265 nm that falls within the region of resonance absorption of molecular oxygen was used for initiation. The source of radiation in the experiments was a fibre SRS laser with the repeated cascade conversion of radiation of a 1125-nm ytterbium laser.

  1. Near ultraviolet radiation (280-400 nm): Direct and indirect effects on microbial pathogens

    SciTech Connect

    Asthana, A.

    1993-01-01

    Responses of pigmented pathogenic fungi and E. coli strains differing in DNA repair and catalase proficiency to direct and indirect effects of ultraviolet radiation were evaluated. Pigments in the four fungal pathogens of Citrus differed in their ability to protect against direct UV and damage by UV-A -mediated phototoxins of both host and non-host origin. UV-A and UV-B did not inactivate the fungal species. Differential protection in wild type strains of the two Fusarium spp. and in the wild type strains of the two Penicilium spp. against UV-C was observed. Wild type and mutants with altered coloration in Penicilium spp. protected to varying extent against both [alpha]-T and 8-MOP in the presence of UV-A. UV-B irradiation of E. coli resulted in inactivation of strains deficient in DNA excision repair. Plasmid DNA damaged in vitro by UV-B from lamp systems as well as by sunlight, and transformed in vivo into bacterial cells lacking specific nucleases showed reduced transformation in DNA excision repair strains. UV-B enriched wavelengths isolated from a solar simulator affected plasmid DNA in a similar manner as UV-B from lamp systems. Sunlight, however affected the membrane of whole cells. Concentration of foliar furanocoumarins of Citrus jambhiri decreased with UV-B irradiation. Phototoxicity to Fusarium spp. was accounted for, in part, by furanocoumarins, psoralen and bergapten (5-MOP) and others. Pure psoralen and 5-MOP affected both Fusarium spp. similarly and carotenoids protected only partially in the wild type strains. Citrus targetted the cell membrane in Fusarium spp.l and in E. coli strains; carotenoids in both of which protected against such damage. Loss in structural integrity of plasmid DNA when treated with citral and UV-A correlated with loss in transforming activity. Biological damage to membrane and DNA was due to the production of hydrogen peroxide. Fruit-rot pathogens Penicilium spp. were not affected by either furanocoumarins or citrals.

  2. Impact of ultraviolet-B radiation on planktonic fish larvae: alteration of the osmoregulatory function.

    PubMed

    Sucré, Elliott; Vidussi, Francesca; Mostajir, Behzad; Charmantier, Guy; Lorin-Nebel, Catherine

    2012-03-01

    Coastal marine ecosystems are submitted to variations of several abiotic and biotic parameters, some of them related to global change. Among them the ultraviolet-B (UV-B) radiation (UVBR: 280-320 nm) may strongly impact planktonic fish larvae. The consequences of an increase of UVBR on the osmoregulatory function of Dicentrarchus labrax larvae have been investigated in this study. In young larvae of D. labrax, as in other teleosts, osmoregulation depends on tegumentary ion transporting cells, or ionocytes, mainly located on the skin of the trunk and of the yolk sac. As early D. labrax larvae passively drift in the top water column, ionocytes are exposed to solar radiation. The effect of UVBR on larval osmoregulation in seawater was evaluated through nanoosmometric measurements of the blood osmolality after exposure to different UV-B treatments. A loss of osmoregulatory capability occured in larvae after 2 days of low (50 μWcm(-2): 4 h L/20 h D) and medium (80 μWcm(-2): 4 h L/20 h D) UVBR exposure. Compared to control larvae kept in the darkness, a significant increase in blood osmolality, abnormal behavior and high mortalities were detected in larvae exposed to UVBR from 2 days on. At the cellular level, an important decrease in abundance of tegumentary ionocytes and mucous cells was observed after 2 days of exposure to UVBR. In the ionocytes, two major osmoeffectors were immunolocalized, the Na+/K(+)-ATPase and the Na+/K+/2Cl- cotransporter. Compared to controls, the fluorescent immunostaining was lower in UVBR-exposed larvae. We hypothesize that the impaired osmoregulation in UVBR-exposed larvae originates from the lower number of tegumentary ionocytes and mucous cells. This alteration of the osmoregulatory function could negatively impact the survival of young larvae at the surface water exposed to UVBR.

  3. Analysis of 46.9-nm Pulsed Laser Radiation Aftereffects in Sc/Si Multilayer X-Ray Mirrors

    NASA Astrophysics Data System (ADS)

    Pershyn, Yu. P.; Voronov, D. L.; Zubarev, E. N.; Sevryukova, V. A.; V. Kondratenko, V.; Vaschenko, G.; Grisham, M.; Menoni, C. S.; Rocca, J. J.; Vinogradov, A. V.; Artyukov, I. A.; Uspenskii, Yu. A.

    Specific structural changes in Sc/Si multilayers (MLs) irradiated by nanosecond 46.9-nm single laser pulses with fluences of 0.04-5.00 J/cm2 were studied by methods of SEM and cross-sectional TEM. The threshold damage was found to be 0.08 J/cm2. The ML melts down under the fluence F >0.08 J/cm2, and the exothermic reaction of silicide formation starts. Main degradation mechanisms of MLs are discussed. The results of this study can be used for development of advanced multilayer mirrors capable handling the intense radiation conditions of new generation coherent X-ray sources.

  4. [Study of soft X-ray radiation in 8-20 nm region from a laser plasma source].

    PubMed

    Guo, Y

    1998-06-01

    A repetitive-laser-produced-plasma (LPP) soft X-ray source with a pulse repetition rate up to 10 Hz was developed. Spectra ranging from 8 to 20 nm were obtained from plasmas generated respectively by a 100 mJ (lambda = 0.53 microm) and 800 mJ (lambda = 1.06 microm) Nd:YAG laser focused on the following different target materials: C, Mg, Al, Ti, Fe, Cu, Zn, Sn, W, Pb and Bi. The dependence of spectral distribution on the target materials and laser parameters, such as pulsed laser energy, laser focus power density etc. are analyzed. The intensities of the soft X-ray radiation with different atomic numbers are characterized.

  5. The dose-response relationship for tumourigenesis by UV radiation in the region 311-312 nm.

    PubMed

    Sterenborg, H J; van Weelden, H; van der Leun, J C

    1988-09-01

    Groups of hairless mice were irradiated daily with Philips TL01 UVB sources. This type of lamp has become available recently and was developed for UVB phototherapy of psoriasis. The TL01 emits radiation in a narrow band around 311-312 nm. Tumours developed on all animals. The dose-response relationship had practically the same shape as that found in a similar experiment with Westinghouse FS40 sunlamps; the tumour induction time appeared to be proportional to the daily dose to a power of -0.58. An additional experiment was performed with a TL01 from which the shorter wavelengths were filtered away. This reduced the carcinogenic effectiveness by a factor of 2.3. The potential of the filtered lamp for phototherapy of psoriasis is discussed.

  6. Ocular temperature elevation induced by threshold in vivo exposure to 1090-nm infrared radiation and associated heat diffusion

    NASA Astrophysics Data System (ADS)

    Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per G.

    2014-10-01

    An in vivo exposure to 197 W/cm2 1090-nm infrared radiation (IRR) requires a minimum 8 s for cataract induction. The present study aims to determine the ocular temperature evolution and the associated heat flow at the same exposure conditions. Two groups of 12 rats were unilaterally exposed within the dilated pupil with a close to collimated beam between lens and retina. Temperature was recorded with thermocouples. Within 5 min after exposure, the lens light scattering was measured. In one group, the temperature rise in the exposed eye, expressed as a confidence interval (0.95), was 11±3°C at the limbus, 16±6°C in the vitreous behind lens, and 16±7°C on the sclera next to the optic nerve, respectively. In the other group, the temperature rise in the exposed eye was 9±1°C at the limbus and 26±11°C on the sclera next to the optic nerve, respectively. The difference of forward light scattering between exposed and contralateral not exposed eye was 0.01±0.09 tEDC. An exposure to 197 W/cm2 1090-nm IRR for 8 s induces a temperature increase of 10°C at the limbus and 26°C close to the retina. IRR cataract is probably of thermal origin.

  7. Ocular temperature elevation induced by threshold in vivo exposure to 1090-nm infrared radiation and associated heat diffusion.

    PubMed

    Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per G

    2014-01-01

    An in vivo exposure to 197  W/cm 2 1090-nm infrared radiation (IRR) requires a minimum 8 s for cataract induction. The present study aims to determine the ocular temperature evolution and the associated heat flow at the same exposure conditions. Two groups of 12 rats were unilaterally exposed within the dilated pupil with a close to collimated beam between lens and retina. Temperature was recorded with thermocouples. Within 5 min after exposure, the lens light scattering was measured. In one group, the temperature rise in the exposed eye, expressed as a confidence interval (0.95), was 11±3°C at the limbus, 16±6°C in the vitreous behind lens, and 16±7°C on the sclera next to the optic nerve, respectively. In the other group, the temperature rise in the exposed eye was 9±1°C at the limbus and 26±11°C on the sclera next to the optic nerve, respectively. The difference of forward light scattering between exposed and contralateral not exposed eye was 0.01±0.09 tEDC. An exposure to 197  W/cm 2 1090-nm IRR for 8 s induces a temperature increase of 10°C at the limbus and 26°C close to the retina. IRR cataract is probably of thermal origin.

  8. Ozonation and UV254nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater.

    PubMed

    Sousa, José M; Macedo, Gonçalo; Pedrosa, Marta; Becerra-Castro, Cristina; Castro-Silva, Sérgio; Pereira, M Fernando R; Silva, Adrián M T; Nunes, Olga C; Manaia, Célia M

    2017-02-05

    Conventional wastewater treatment has a limited capacity to reduce antibiotic resistant bacteria and genes (ARB&ARG). Tertiary treatment processes are promising solutions, although the transitory inactivation of bacteria may select ARB&ARG. This study aimed at assessing the potential of ozonation and UV254nm radiation to inactivate cultivable fungal and bacterial populations, and the selected genes 16S rRNA (common to all bacteria), intI1 (common in Gram-negative bacteria) and the ARG vanA, blaTEM, sul1 and qnrS. The abundance of the different microbiological parameters per volume of wastewater was reduced by ∼2 log units for cultivable fungi and 16S rRNA and intI1 genes, by∼3-4 log units, for total heterotrophs, enterobacteria and enterococci, and to values close or below the limits of quantification for ARG, for both processes, after a contact time of 30min. Yet, most of the cultivable populations, the 16S rRNA and intI1 genes as well as the ARG, except qnrS after ozonation, reached pre-treatment levels after 3days storage, suggesting a transitory rather than permanent microbial inactivation. Noticeably, normalization per 16S rRNA gene evidenced an increase of the ARG and intI1 prevalence, mainly after UV254nm treatment. The results suggest that these tertiary treatments may be selecting for ARB&ARG populations.

  9. Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm

    PubMed Central

    Wang, Jiarui; Jiao, Luguang; Jing, Xiaomin; Chen, Hongxia; Hu, Xiangjun; Yang, Zaifu

    2016-01-01

    The retinal damage effects induced by transitional near-infrared (NIR) lasers have been investigated for years. However, the damage threshold dependence on exposure duration has not been revealed. In this paper, the in-vivo retinal damage ED50 thresholds were determined in chinchilla grey rabbits for 1319 nm laser radiation for exposure durations from 0.1 s to 10 s. The incident corneal irradiance diameter was fixed at 5 mm. The ED50 thresholds given in terms of the total intraocular energy (TIE) for exposure durations of 0.1, 1 and 10 s were 1.36, 6.33 and 28.6 J respectively. The ED50 thresholds were correlated by a power law equation, ED50 = 6.31t0.66 [J] where t is time [s], with correlation coefficient R = 0.9999. There exists a sufficient safety margin (factor of 28~60) between the human ED50 thresholds derived from the rabbit and the maximum permissible exposure (MPE) values in the current laser safety standards. PMID:27231639

  10. Monopersulfate photocatalysis under 365 nm radiation. Direct oxidation and monopersulfate promoted photocatalysis of the herbicide tembotrione.

    PubMed

    Solís, Rafael R; Rivas, F Javier; Tierno, Mercedes

    2016-10-01

    Oxone(®) (potassium monopersulfate, MPS) has been used to oxidize the herbicide tembotrione in aqueous solution. Tembotrione elimination kinetics by MPS direct oxidation has been studied. The influence of the main operating variables affecting the process (MPS concentration, temperature and pH) has been evaluated. The process follows 2/3 and first orders in MPS and tembotrione concentrations, respectively. Optimal pH is located around circumneutral conditions. MPS decomposition in the presence of 365 nm UVA radiation and titanium dioxide has also been studied. A kinetic mechanism that simulates MPS decomposition has been proposed, showing the positive effect of titania load and MPS concentration. The system MPS/UVA/TiO2 significantly improves tembotrione and mineralization rate abatement if compared to runs conducted in the absence of MPS. Tembotrione total abatement was achieved in 20 min when 0.05 g L(-1) of titania and 10(-4) M of Oxone(®) were used. TOC conversion was roughly 70% in 90 min under similar operating conditions. An experimental design (Plackett-Burman) has been considered to study the influence of the main variables affecting tembotrione photocatalytic oxidation promoted by MPS.

  11. Photodynamic tumor therapy and on-line fluorescence spectroscopy after ALA administration using 633-nm light as therapeutic and fluorescence excitation radiation

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Kienle, Alwin; Boehncke, Wolf-Henning; Kaufmann, Roland; Rueck, Angelika C.; Meier, Thomas H.; Steiner, Rudolf W.

    1994-09-01

    Photodynamic therapy (PDT) and on-line fluorescence spectroscopy were carried out on human tumors after 5-aminolevulinic acid (ALA) administration using 633-nm light of a dye laser as therapeutic radiation and as fluorescence excitation radiation. This has the advantages of (1) enabling use of one laser for PDT and fluorescence diagnosis only, (2) enabling the possibility of on-line fluorescence measurements, and (3) exciting protoporphyrin molecules in deep tissue layers. Monte Carlo calculations were carried out to determine excitation and fluorescence phonon distribution in case of red and violet excitation radiation. The results show the possibility of depth-resolved measurements on the fluorophore distribution by variation of excitation wavelength. The high penetration depth of 633-nm radiation results in a higher ratio of the 700-nm protoporphyrin fluorescence of the xenotransplanted tumor It to Is compared with 407-nm excitation. No values greater than 1 for the ratio I/Is were found, however, in case of intravenous ALA injection even for red excitation. Therefore, a large amount of ALA will be metabolized in the skin and can cause photosensitivity of the patient when applied systematically. In contrast, protoporphyrin fluorescence limited to the pretreated skin area was detected in case of topically applied ALA to patients with mycosis funcoides and erythroplasy of Queyrat. The influence of remitted excitation light and of the spontaneous radiation from the laser as well as the possible excitation of foodbased degradation products of chlorophyll has to be considered in high-sensitivity fluorescence measurements.

  12. Temperature-controlled in vivo ocular exposure to 1090-nm radiation suggests that near-infrared radiation cataract is thermally induced

    NASA Astrophysics Data System (ADS)

    Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per

    2015-01-01

    The damage mechanism for near-infrared radiation (IRR) induced cataract is unclear. Both a photochemical and a thermal mechanism were suggested. The current paper aims to elucidate a photochemical effect based on investigation of irradiance-exposure time reciprocity. Groups of 20 rats were unilaterally exposed to 96-W/cm2 IRR at 1090 nm within the dilated pupil accumulating 57, 103, 198, and 344 kJ/cm2, respectively. Temperature was recorded at the limbus of the exposed eye. Seven days after exposure, the lenses were macroscopically imaged and light scattering was quantitatively measured. The average maximum temperature increases for exposure times of 10, 18, 33, and 60 min were expressed as 7.0±1.1, 6.8±1.1, 7.6±1.3, and 7.4±1.1°C [CI (0.95)] at the limbus of the exposed eye. The difference of light scattering in the lenses between exposed and contralateral not-exposed eyes was 0.00±0.02, 0.01±0.03, -0.01±0.02, and -0.01±0.03 transformed equivalent diazepam concentration (tEDC), respectively, and no apparent morphological changes in the lens were observed. An exposure to 96-W/cm2 1090-nm IRR projected on the cornea within the dilated pupil accumulating radiant exposures up to 344 kJ/cm2 does not induce cataract if the temperature rise at the limbus is <8°C. This is consistent with a thermal damage mechanism for IRR-induced cataract.

  13. Temperature-controlled in vivo ocular exposure to 1090-nm radiation suggests that near-infrared radiation cataract is thermally induced.

    PubMed

    Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per

    2015-01-01

    The damage mechanism for near-infrared radiation (IRR) induced cataract is unclear. Both a photochemical and a thermal mechanism were suggested. The current paper aims to elucidate a photochemical effect based on investigation of irradiance-exposure time reciprocity. Groups of 20 rats were unilaterally exposed to 96-W/cm(2) IRR at 1090 nm within the dilated pupil accumulating 57, 103, 198, and 344 kJ/cm(2), respectively. Temperature was recorded at the limbus of the exposed eye. Seven days after exposure, the lenses were macroscopically imaged and light scattering was quantitatively measured. The average maximum temperature increases for exposure times of 10, 18, 33, and 60 min were expressed as 7.0 ± 1.1, 6.8 ± 1.1, 7.6 ± 1.3, and 7.4 ± 1.1 °C [CI (0.95)] at the limbus of the exposed eye. The difference of light scattering in the lenses between exposed and contralateral not-exposed eyes was 0.00 ± 0.02, 0.01 ± 0.03, -0.01 ± 0.02, and -0.01 ± 0.03 transformed equivalent diazepam concentration (tEDC), respectively, and no apparent morphological changes in the lens were observed. An exposure to 96-W/cm(2) 1090-nm IRR projected on the cornea within the dilated pupil accumulating radiant exposures up to 344 kJ/cm(2) does not induce cataract if the temperature rise at the limbus is <8 °C. This is consistent with a thermal damage mechanism for IRR-induced cataract.

  14. Spaced sensor measurements of artificial airglow emission at 630 nm of ionosphere caused by ``Sura'' facility radiation in November 2013

    NASA Astrophysics Data System (ADS)

    Nasyrov, Igor; Grach, Savely; Gumerov, Rustam; Shindin, Alexey; Kogogin, Denis; Dementiev, Vladislav

    Some first results on simultaneous observation artificial airglow emission at 630 nm during HF pumping of the ionosphere by “Sura” facility from two spatial situated experimental sites are reported. The measurements of artificial airglow are usually conducted in red and green lines of atomic oxygen (the radiation of levels O((1) D) and O((1) S) under their excitation by electronic impact) with wave lengths of 630 and 557.7 nm and excitation energy of 1.96 and 4.17 eV accordingly. An enhancement of airglow intensity in the red line is related at present to the electron heating by powerful radio waves. The idea of the experiment was to estimate the heated volume three-dimensional structure and drift motion one. The experiment was carried out in November 2013 at the “Sura” radio facility, situated near Nizhny Novgorod, Russia (geographical coordinates 56.13(o) N, 46.10(o) E, geomagnetic field declination and inclination are ˜ 10.0(o) east and ˜ 71.5(o) , respectively). Conditions of ionosphere were checked by means of "Cady" ionosonde during “Sura” runs. According to the ionospheric conditions, on the 7(th) of November the “Sura” facility operated at frequency 4.540 MHz. At this frequency the effective radiated power was about 120MW. The HF beam width at the “Sura” facility is ˜ 12(o) . A square wave pump modulation of 5 min on, 5 min off, was used. Measurements were carried out in the period from 14:40 to 17:30 UTC. Optical imaging was performed on two spatial experimental sites: “Vasilsursk” (situated about 500 m from antenna system of “Sura” facility); “Raifa” (situated about 170 km from “Sura” facility at the Magnetic Observatory of Kazan Federal University, geographical coordinates 55.93(o) N, 48.75(o) E). They both were fitted out Peltier-cooled front-illuminated bare CCD cameras with 16-bit slow-scan read-out (S1C3). On “Vasilsursk” site the images were binned down to 256× 256 pixels in addition to cooling, in order

  15. The effect of the operation modes of a gas discharge low-pressure amalgam lamp on the intensity of generation of 185 nm UV vacuum radiation

    SciTech Connect

    Vasilyak, L. M.; Drozdov, L. A. Kostyuchenko, S. V.; Sokolov, D. V.; Kudryavtsev, N. N.; Sobur, D. A.

    2011-12-15

    The effect of the discharge current, mercury vapor pressure, and the inert gas pressure on the intensity and efficiency of the 185 nm line generation are considered. The spectra of the UV radiation (vacuum ultraviolet) transmission by protective coatings from the oxides of rare earth metals and aluminum are investigated.

  16. Carbon uptake in a marine diatom during acute exposure to ultraviolet B radiation: Relative importance of damage and repair

    SciTech Connect

    Lesser, M. P. ); Cullen, J.J. Dalhousie Univ., Halifax, Nova Scotia ); Neale, P.J. Univ. of California, Berkeley, CA )

    1994-04-01

    Experiments on a marine diatom, Thalassiosira pseudonana (Hustedt) clone 3H, demonstrate that under moderate photon flux densities (75 [mu]mol quanta [center dot] m[sup [minus]2][center dot]s[sup [minus]1]) of visible light inhibition of photosynthesis by supplemental ultraviolet (UV) radiation (UV-B: 280-320 nm) is well described as a hyperbolic function of UV-B irradiance for time scales of 0.5-4 h. Results are consistent with predictions of a recently developed model of photosynthesis under the influence of UV and visible irradiance. Although net destruction of chlorophyll occurs during a 4-h exposure to UV-B, and the effect is a function of exposure, the principal effect of UV-B is a decrease in chlorophyll-specific photosynthetic rate. The dependence of photoinhibition on dosage rate, rather than cumulative dose, and the hyperbolic shape of the relationship are consistent with net photoinhibition being an equilibrium between damage and repair. The ratio of damage to repair is estimated by a mathematical analysis of the inhibition of photosynthesis during exposures to UV-B. A nitrate-limited culture was much more sensitive to UV-B than were the nutrient-replete cultures, but the kinetics of photoinhibition were similar. The analysis suggests that the nutrient-limited culture was much more sensitive than the nutrient-replete cultures because repair or turnover of critical proteins associated with photosynthesis is inhibited. An inhibitor of chloroplast protein synthesis was used to suppress repair processes. Photoinhibition by UV-B was enhanced, and inhibition was a function of cumulative dose, as expected if damage were not countered by repair. The fundamental importance of repair processes should be considered in the design of field experiments and models of UV-B effects in the environment, especially in the context of vertical mixing. Repair processes must also be considered whenever biological weighting functions are developed. 69 refs., 6 figs., 3 tabs.

  17. Inactivation of avirulent Yersinia pestis in Butterfield's phosphate buffer and frankfurters by UVC (254 nm) and gamma radiation.

    PubMed

    Sommers, Christopher H; Cooke, Peter H

    2009-04-01

    Yersinia pestis is the causative agent of plague. Although rare, pharyngeal plague in humans has been associated with consumption or handling of meat prepared from infected animals. The risks of contracting plague from consumption of deliberately contaminated food are currently unknown. Gamma radiation is a penetrating form of electromagnetic radiation, and UVC radiation is used for decontamination of liquids or food surfaces. Gamma radiation D10-values (the radiation dose needed to inactivate 1 log unit pathogen) were 0.23 (+/-0.01) and 0.31 (+/-0.03) kGy for avirulent Y. pestis inoculated into Butterfield's phosphate buffer and onto frankfurter surfaces, respectively, at 0 degree C. A UVC radiation dose of 0.25 J/cm2 inactivated avirulent Y. pestis suspended in Butterfield's phosphate buffer. UVC radiation doses of 0.5 to 4.0 J/cm2 inactivated 0.97 to 1.20 log units of the Y. pestis surface inoculated onto frankfurters. A low gamma radiation dose of 1.6 kGy could provide a 5-log reduction and a UVC radiation dose of 1 to 4 J/cm2 would provide a 1-log reduction of Y. pestis surface inoculated onto frankfurters. Y. pestis was capable of growth on frankfurters during refrigerated storage (10 degrees C). Gamma radiation of frankfurters inhibited the growth of Y. pestis during refrigerated storage, and UVC radiation delayed the growth of Y. pestis.

  18. Visible optical radiation generates bactericidal effect applicable for inactivation of health care associated germs demonstrated by inactivation of E. coli and B. subtilis using 405-nm and 460-nm light emitting diodes

    NASA Astrophysics Data System (ADS)

    Hönes, Katharina; Stangl, Felix; Sift, Michael; Hessling, Martin

    2015-07-01

    The Ulm University of Applied Sciences is investigating a technique using visible optical radiation (405 nm and 460 nm) to inactivate health-hazardous bacteria in water. A conceivable application could be point-of-use disinfection implementations in developing countries for safe drinking water supply. Another possible application field could be to provide sterile water in medical institutions like hospitals or dental surgeries where contaminated pipework or long-term disuse often results in higher germ concentrations. Optical radiation for disinfection is presently mostly used in UV wavelength ranges but the possibility of bacterial inactivation with visible light was so far generally disregarded. One of the advantages of visible light is, that instead of mercury arc lamps, light emitting diodes could be used, which are commercially available and therefore cost-efficient concerning the visible light spectrum. Furthermore they inherit a considerable longer life span than UV-C LEDs and are non-hazardous in contrast to mercury arc lamps. Above all there are specific germs, like Bacillus subtilis, which show an inactivation resistance to UV-C wavelengths. Due to the totally different deactivation mechanism even higher disinfection rates are reached, compared to Escherichia coli as a standard laboratory germ. By 460 nm a reduction of three log-levels appeared with Bacillus subtilis and a half log-level with Escherichia coli both at a dose of about 300 J/cm². By the more efficient wavelength of 405 nm four and a half log-levels are reached with Bacillus subtilis and one and a half log-level with Escherichia coli also both at a dose of about 300 J/cm². In addition the employed optical setup, which delivered a homogeneous illumination and skirts the need of a stirring technique to compensate irregularities, was an important improvement compared to previous published setups. Evaluated by optical simulation in ZEMAX® the designed optical element provided proven

  19. DNA breaks caused by monochromatic 365 nm ultraviolet-A radiation or hydrogen peroxide and their repair in human epithelioid and xeroderma pigmentosum cells.

    PubMed

    Peak, J G; Pilas, B; Dudek, E J; Peak, M J

    1991-08-01

    The induction and repair of DNA single-strand breaks (SSB) assayed by alkaline filter elution was compared in human epithelioid P3 and xeroderma pigmentosum (XP) cells exposed to monochromatic 365-nm UV-A radiation and H2O2. Initial yields of SSB were measured with the cells held at 0.5 degrees C during exposure. The yield from exposure to 365-nm radiation was slightly greater in XP than in P3 cells, whereas H2O2 produced more than three times as many SSB in P3 compared with XP cells. o-Phenanthroline (50 mM) markedly inhibited the yields of SSB induced in XP cells by H2O2, but had no effect on those produced by 365-nm UV-A. These results are consistent with the fact that P3 cells, unlike XP cells, have undetectable levels of catalase. The measured production of trace amounts of H2O2 by the actual 365-nm UV-A exposures was not sufficient to account for the numbers of breaks that were observed. Single-strand breaks produced by both agents were completely repaired after 50 min in P3 cells, as were H2O2-induced SSB in XP cells. However, 25% of the 365-nm UV-A-induced SSB in XP cells remained refractory to repair after 60 min. The results show that SSB produced by these two agents are different and that 365 nm radiation produces most SSB in cells by mechanisms other than by production of H2O2.

  20. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA High-power EUV (13.5 nm) light source

    NASA Astrophysics Data System (ADS)

    Borisov, Vladimir M.; Borisova, Galina N.; Vinokhodov, Aleksandr Yu; Zakharov, S. V.; Ivanov, Aleksandr S.; Kiryukhin, Yurii B.; Mishchenko, Valentin A.; Prokof'ev, Aleksandr V.; Khristoforov, Oleg B.

    2010-10-01

    Characteristics of a discharge-produced plasma (DPP) light source in the spectral band 13.5±0.135 nm, developed for Extreme Ultra Violet (EUV) lithography, are presented. EUV light is generated by DPP in tin vapour formed between rotating disk electrodes. The discharge is ignited by a focused laser beam. The EUV power 1000 W/(2π sr) in the spectral band 13.5±0.135 nm was achieved with input power about of ~63 kW to the plasma at a pulse repetition rate ~7 kHz . The results of numerical simulation are compared with the experimental data.

  1. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair.

    PubMed

    Wong, Chiew-Yen; Teoh, Ming-Li; Phang, Siew-Moi; Lim, Phaik-Eem; Beardall, John

    2015-01-01

    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm), PAR plus ultraviolet-A (320-400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280-320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  2. New Measurements of the Absolute Spectral Energy Distribution of Solar Radiation in the Range Double Lambda 650-1070 NM

    NASA Astrophysics Data System (ADS)

    Burlov-Vasilev, K. A.; Vasileva, I. E.; Matveev, Yu. B.

    1996-01-01

    Spectral measurements of the solar disk centre intensity for the near-IR region have been made at he Terskol High-Altitude Station in 1992. These measurements are the continuation of the program for the solar absolute spectral energy distribution investigation. Data published earlier are extended to the longwave spectral region up to 1070 nm. The special-purpose solar telescope SEF-1 was used. We compared the disk centre brightness with brightness of the calibrated region of the standard ribbon tungsten lamp. The atmospheric extinction was taken into account by the Bouguer method with simultaneous control of the atmosphere stability. The 1-nm integrals of the disk centre intensity in the range double lamda 650-1070 nm based on 5-day measurements in March-October 1992 are given. The uncertainty of these values is 2%. In regions with strong telluric absorption by oxygen and water-vapour bands, the reductions are made, using synthetic atmospheric absorption spectra computed on the basis of molecular parameter atlas HITRAN and the standard model atmosphere. By the use of the solar limb darkening coefficients the values of the solar flux at 1 A.U. were derived. Our measurements show the best agreement with the data of Makarova, Kharitonov, and Kazachevskaya as well as with the common data from Shaw and Frohlich. For lambda greater than 850 nm our data are systematically lower than the data by Neckel and Labs.

  3. Comparison of theory with atomic oxygen 130.4 nm radiation data from the Bow Shock ultraviolet 2 rocket flight

    NASA Technical Reports Server (NTRS)

    Levin, Deborah A.; Candler, Graham V.; Collins, Robert J.; Howlett, Carl L.; Espy, Patrick; Whiting, Ellis; Park, Chul

    1993-01-01

    Comparison is made between the results obtained from a state-of-the-art flow and radiative model and bow shock vacuum ultraviolet (VUV) data obtained the recent Bow Shock 2 Flight Experiment. An extensive data set was obtained from onboard rocket measurements at a reentry speed of 5 km/sec between the altitudes of approximately 65-85 km. A description of the NO photoionization cell used, the data, and the interpretation of the data will be presented. The primary purpose of the analyses is to assess the utility of the data and to propose a radiation model appropriate to the flight conditions of Bow Shock 2. Theoretical predictions based on flow modeling discussed in earlier work and a new radiation model are compared with data.

  4. Multilayer Fresnel zone plates for high energy radiation resolve 21 nm features at 1.2 keV.

    PubMed

    Keskinbora, Kahraman; Robisch, Anna-Lena; Mayer, Marcel; Sanli, Umut T; Grévent, Corinne; Wolter, Christian; Weigand, Markus; Szeghalmi, Adriana; Knez, Mato; Salditt, Tim; Schütz, Gisela

    2014-07-28

    X-ray microscopy is a successful technique with applications in several key fields. Fresnel zone plates (FZPs) have been the optical elements driving its success, especially in the soft X-ray range. However, focusing of hard X-rays via FZPs remains a challenge. It is demonstrated here, that two multilayer type FZPs, delivered from the same multilayer deposit, focus both hard and soft X-rays with high fidelity. The results prove that these lenses can achieve at least 21 nm half-pitch resolution at 1.2 keV demonstrated by direct imaging, and sub-30 nm FWHM (full-pitch) resolution at 7.9 keV, deduced from autocorrelation analysis. Reported FZPs had more than 10% diffraction efficiency near 1.5 keV.

  5. Preliminary Radiation Testing of a State-of-the-Art Commercial 14nm CMOS Processor/System-on-a-Chip

    NASA Technical Reports Server (NTRS)

    Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei

    2015-01-01

    Hardness assurance test results of Intel state-of-the-art 14nm “Broadwell” U-series processor / System-on-a-Chip (SoC) for total ionizing dose (TID) are presented, along with exploratory results from trials at a medical proton facility. Test method builds upon previous efforts [1] by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).

  6. Preliminary Radiation Testing of a State-of-the-Art Commercial 14nm CMOS Processor - System-on-a-Chip

    NASA Technical Reports Server (NTRS)

    Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei

    2015-01-01

    Hardness assurance test results of Intel state-of-the-art 14nm Broadwell U-series processor System-on-a-Chip (SoC) for total dose are presented, along with first-look exploratory results from trials at a medical proton facility. Test method builds upon previous efforts by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).

  7. Focusing and photon flux measurements of the 2.88-nm radiation at the sample plane of the soft x-ray microscope, based on capillary discharge source

    NASA Astrophysics Data System (ADS)

    Nawaz, M. Fahad; Jancarek, Alexandr; Nevrkla, Michal; Wachulak, Przemyslaw; Limpouch, Jiri; Pina, Ladislav

    2015-05-01

    Feasibility measurements leading to the development of a Soft X-ray (SXR) microscopy setup, based on capillary discharge XUV source is presented. Here the Z-pinching plasma is acting as a source of XUV radiation, emitting incoherent radiation in the "water-window" (λ = 2.3 - 4.4 nm) region of interest (natural contrast between the carbon and oxygen edges).This soft X-ray microscopy setup will realize imaging of the biological objects with high spatial resolution. The 2.88 nm radiation line is filtered out from the water-window band, and is focused by an axi-symmetric ellipsoidal mirror, coated with nickle. The focussed spot size is measured and reported. Flux measurements for the available number of photons (photons/pulse) at the sample plane has been carried out with AXUV PIN diode at the sample plane (slightly out of focus). For imaging, a fresnel zone plate lens will be used as an objective. The overall compact transmission SXR microscopy setup design is presented.

  8. Evaluating Ultraviolet Radiation Exposures Determined from TOMS Satellite Data at Sites of Amphibian Declines in Central and South America

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Smith, David E. (Technical Monitor)

    2000-01-01

    Many amphibian species have experienced substantial population declines, or have disappeared altogether, during the last several decades at a number of amphibian census sites in Central and South America. This study addresses the use of satellite-derived trends in solar ultraviolet-B (UV-B; 280-320 nm) radiation exposures at these sites over the last two decades, and is intended to demonstrate a role for satellite observations in determining whether UV-B radiation is a contributing factor in amphibian declines. UV-B radiation levels at the Earth's surface were derived from the Total Ozone Mapping Spectrometer (TOMS) satellite data, typically acquired daily since 1979. These data were used to calculate the daily erythemal (sunburning) UV-B, or UV-B(sub ery), exposures at the latitude, longitude, and elevation of each of 20 census sites. The annually averaged UV-B(sub ery) dose, as well as the maximum values, have been increasing in both Central and South America, with higher levels received at the Central American sites. The annually averaged UV-B(sub ery) exposures increased significantly from 1979-1998 at all 11 Central American sites examined (r(exp 2) = 0.60 - 0.79; P<=0.015), with smaller but significant increases at five of the nine South American sites (r(exp 2) = 0.24-0.42; P<=0.05). The contribution of the highest UV-B(sub ery) exposure levels (>= 6750 J/sq m*d) to the annual UV-B(sub ery) total has increased from approx. 5% to approx. 15% in Central America over the 19 year period, but actual daily exposures for each species are unknown. Synergy among UV-B radiation and other factors, especially those associated with alterations of water chemistry (e.g., acidification) in aqueous habitats is discussed. These findings justify further research concerning whether UV-B(sub ery) radiation plays a role in amphibian population declines and extinctions.

  9. The action of NIR (808nm) laser radiation and gold nanorods labeled with IgA and IgG human antibodies on methicillin-resistant and methicillin sensitive strains of Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Tuchina, Elena S.; Petrov, Pavel O.; Ratto, Fulvio; Centi, Sonia; Pini, Roberto; Tuchin, Valery V.

    2015-03-01

    The effect of NIR laser radiation (808 nm) on methicillin-sensitive and methicillin resistant strains of Staphylococcus aureus incubated with gold nanorods is studied. Nanorods having length of 44 (± 4) nm and diameter of 10 (± 3) nm with the absorption maximum in the NIR (800 nm), functionalized with human immunoglobulins IgA and IgG, were synthesized and used in the studies. The killing ability up to 97% of the microorganism populations by using this nanotechnology was shown.

  10. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Action of the 216-nm fifth harmonic of a Nd:YAP laser on photosensitive germanosilicate glass films

    NASA Astrophysics Data System (ADS)

    Murav'ev, S. V.; Mal'shakova, O. A.; Golant, K. M.; Denisov, A. N.; Mashinsky, V. M.; Sazhin, O. D.

    2003-11-01

    The absorption spectrum, refractive index, and relief of the surface of a germanosilicate glass film are studied upon the non-destructive action of the 216-nm (5.75-eV) fifth harmonic of a repetitively pulsed Nd:YAP laser. It is shown that laser irradiation of films induces a strong photorefractive effect despite the relatively low absorption coefficient. For the 100-mJ cm-2 energy density and above, two-photon process make a noticeable contribution to the absorption of laser radiation at 216 nm. The diffraction efficiency of photoinduced phase gratings achieved ~7×10-3 for the exposure dose ~6 kJ cm-2, which corresponds to the induced refractive index 1.5×10-3. At higher exposure doses, a relief appears on a film surface and the diffraction efficiency of a phase grating is reduced.

  11. Quasi-continuous-wave 589-nm radiation based on intracavity frequency-doubled Nd:GGG/BaWO4 Raman laser

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Liu, Zhaojun; Cong, Zhenhua; Men, Shaojie; Rao, Han; Xia, Jinbao; Zhang, Sasa; Zhang, Huaijin

    2016-07-01

    Quasi-continuous-wave (QCW) 589-nm radiation was realized based on a frequency-doubled crystalline Raman laser. The fundamental wave with macro-micro-pulse trains was generated from an acousto-optically Q-switched QCW diode side-pumped Nd:GGG laser. Intracavity Raman conversion was accomplished by a BaWO4 crystal and the second harmonic generation was finished by a KTP crystal. Under a pumping power of 126.0 W with a macro-pulse frequency of 300 Hz and duration of 300 μs, the maximum 589 nm output power of 4.2 W was obtained at a micro-pulse frequency of 33.3 kHz. The micro-pulse width was 13.6 ns.

  12. Effects of UV radiation on phytoplankton

    NASA Astrophysics Data System (ADS)

    Smith, Raymond C.; Cullen, John J.

    1995-07-01

    It is now widely documented that reduced ozone will result in increased levels of ultraviolet (UV) radiation, especially UV-B (280-320nm), incident at the surface of the earth [Watson, 1988; Anderson et al., 1991; Schoeberl and Hartmann, 1991; Frederick and Alberts, 1991; WMO, 1991; Madronich, 1993; Kerr and McElroy, 1993], and there is considerable and increasing evidence that these higher levels of UV-B radiation may be detrimental to various forms of marine life in the upper layers of the ocean. With respect to aquatic ecosystems, we also know that this biologically- damaging mid-ultraviolet radiation can penetrate to ecologically- significant depths in marine and freshwater systems [Jerlov, 1950; Lenoble, 1956; Smith and Baker, 1979; Smith and Baker, 1980; Smith and Baker, 1981; Kirk et al., 1994]. This knowledge, plus the dramatic decline in stratospheric ozone over the Antarctic continent each spring, now known to be caused by anthropogenically released chemicals [Solomon, 1990; Booth et al., 1994], has resulted in increased UV-environmental research and a number of summary reports. The United Nations Environmental Program (UNEP) has provided recent updates with respect to the effects of ozone depletion on aquatic ecosystems (Hader, Worrest, Kumar in UNEP 1989, 1991, Hader, Worrest, Kumar and Smith UNEP 1994) and the Scientific Committee on Problems of the Environment (SCOPE) has provided [SCOPE, 1992] a summary of the effects of increased UV radiation on biological systems. SCOPE has also reported [SCOPE, 1993] on the effects of increased UV on the biosphere. In addition, several books have recently been published reviewing various aspects of environmental UV photobiology [Young et al., 1993], UV effects on humans, animals and plants [Tevini, 1993], the biological effects of UV radiation in Antarctica [Weiler and Penhale, 1994], and UV research in freshwater ecosystems [Williamson and Zagarese, 1994]. Several other reviews are relevant [NAS, 1984; Caldwell

  13. Ablation of poly(methyl methacrylate) and poly(2-hydroxyethyl methacrylate) by 308, 222 and 193 nm excimer-laser radiation

    NASA Astrophysics Data System (ADS)

    Costela, A.; Figuera, J. M.; Florido, F.; García-Moreno, I.; Collar, E. P.; Sastre, R.

    1995-03-01

    Data on the ablation of Poly(Methyl MetAcylate) (PMMA) and Poly(2-Hydroxyethyl MetAcylate) (PHEMA) with 0%, 1% and 20% of Ethylene Glycol DiMethAcrylate (EGDMA) as crosslinking monomer by 193, 222 and 308 nm laser radiation are presented. Direct photoetching of PMMA at 308 nm is demonstrated for laser fluences ranging from 2 to 18 J/cm2. The ablation rate of PHEMA is lower than the corresponding to PMMA and decreases when the amount of EGDMA increases. The determination of the absorbed energy density required to initiate significant ablation suggests that the photoetching mechanism is similar for all the polymers studied and is a function of the irradiation wavelength. The Beer-Lambert law, the Srinivasan, Smrtic and Babu (SSB) theory and the kinetic model of the moving interface are used to analyze the experimental results. It is shown that only the moving interface theory fits well the etch rate for all the selected polymers at the three radiation wavelengths.

  14. Accurate Quantification of Ionospheric State Based on Comprehensive Radiative Transfer Modeling and Optimal Inversion of the OI 135.6-nm Emission

    NASA Astrophysics Data System (ADS)

    Qin, J.; Kamalabadi, F.; Makela, J. J.; Meier, R. J.

    2015-12-01

    Remote sensing of the nighttime OI 135.6-nm emission represents the primary means of quantifying the F-region ionospheric state from optical measurements. Despite its pervasive use for studying aeronomical processes, the interpretation of these emissions as a proxy for ionospheric state remains ambiguous in that the relative contributions of radiative recombination and mutual neutralization to the production and, especially, the effects of scattering and absorption on the transport of the 135.6-nm emissions have not been fully quantified. Moreover, an inversion algorithm, which is robust to varying ionospheric structures under different geophysical conditions, is yet to be developed for statistically optimal characterization of the ionospheric state. In this work, as part of the NASA ICON mission, we develop a comprehensive radiative transfer model from first principle to investigate the production and transport of the nighttime 135.6-nm emissions. The forward modeling investigation indicates that under certain conditions mutual neutralization can contribute up to ~38% to the 135.6-nm emissions. Moreover, resonant scattering and pure absorption can reduce the brightness observed in the limb direction by ~40% while enhancing the brightness in the nadir direction by ~25%. Further analysis shows that without properly addressing these effects in the inversion process, the peak electron density in the F-region ionosphere (NmF2) can be overestimated by up to ~24%. To address these issues, an inversion algorithm that properly accounts for the above-mentioned effects is proposed for accurate quantification of the ionospheric state using satellite measurements. The ill-posedness due to the intrinsic presence of noise in real data is coped with by incorporating proper regularizations that enforce either global smoothness or piecewise smoothness of the solution. Application to model-generated data with different signal-to-noise ratios show that the algorithm has achieved

  15. Mutagenic and lethal effects of near-ultraviolet radiation (290-400 nm) on bacteria and phage.

    PubMed

    Eisenstark, A

    1987-01-01

    Despite decades of study of the effect of near-ultraviolet radiation (NUV) on bacterial cells, insights into mechanisms of deleterious alterations and subsequent recovery are just now emerging. These insights are based on observations that 1) damage by NUV may be caused by a reactive oxygen molecule, since H2O2 may be a photoproduct of NUV; 2) some, but not all, of the effects of NUV and H2O2 are interchangeable; 3) there is an inducible regulon (oxyR) that responds to oxidative stress and is involved in protection against NUV; 4) a number of NUV-sensitive mutants are defective either in the capacity to detoxify reactive oxygen molecules or to repair DNA damage caused by NUV; and 5) recovery from NUV damage may not directly involve induction of the SOS response. Since several distinctly different photoreceptors and targets are involved, it is unknown whether NUV lethality and mutagenesis result from an accumulation of damages or whether there is a particularly critical photoeffect. To fully understand the mechanisms involved, it is important to identify the chromophore(s) of NUV, the mechanism of toxic oxygen species generation, the role of the oxidative defense regulon (oxyR), the specific lesions in the DNA, and the enzymatic events of subsequent repair.

  16. Transmission of 1064 nm laser radiation during ablation with an ultra-short pulse laser (USPL) system

    NASA Astrophysics Data System (ADS)

    Schelle, Florian; Meister, Jörg; Oehme, Bernd; Frentzen, Matthias

    2012-01-01

    During ablation of oral hard tissue with an USPL system a small amount of the incident laser power does not contribute to the ablation process and is being transmitted. Partial transmission of ultra-short laser pulses could potentially affect the dental pulp. The aim of this study was to assess the transmission during ablation and to deduce possible risks for the patient. The study was performed with an Nd:YVO4 laser, emitting pulses with a duration of 8 ps at a wavelength of 1064 nm. A repetition rate of 500 kHz and an average power of 9 W were chosen to achieve high ablation efficiency. A scanner system created square cavities with an edge length of 1 mm. Transmission during ablation of mammoth ivory and dentin slices with a thickness of 2 mm and 5 mm was measured with a power meter, placed directly beyond the samples. Effects on subjacent blood were observed by ablating specimens placed in contact to pork blood. In a separate measurement the temperature increase during ablation was monitored using an infrared camera. The influence of transmission was assessed by tuning down the laser to the corresponding power and then directly irradiating the blood. Transmission during ablation of 2 mm specimens was about 7.7% (ivory) and 9.6% (dentin) of the incident laser power. Ablation of specimens directly in contact to blood caused coagulation at longer irradiation times (t~18s). Direct irradiation of blood with the transmitted power provoked bubbling and smoke formation. Temperature measurements identified heat generation as the main reason for the observed coagulation.

  17. Autonomous portable solar ultraviolet spectroradiometer (APSUS) - a new CCD spectrometer system for localized, real-time solar ultraviolet (280-400 nm) radiation measurement.

    PubMed

    Hooke, Rebecca; Pearson, Andy; O'Hagan, John

    2014-01-01

    Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown.

  18. F 2 excimer laser (157 nm) radiation modification and surface ablation of PHEMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells

    NASA Astrophysics Data System (ADS)

    Zainuddin; Chirila, Traian V.; Barnard, Zeke; Watson, Gregory S.; Toh, Chiong; Blakey, Idriss; Whittaker, Andrew K.; Hill, David J. T.

    2011-02-01

    Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F 2 excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm 2 area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm -2. The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.

  19. Solar Electromagnetic Radiation Study for Solar Cycle 22: Solar Ultraviolet Irradiance, 120 to 300 NM: Report of Working Groups 2 and 3 of SOLERS 22

    NASA Technical Reports Server (NTRS)

    Rottman, G. J.; Cebula, R. P.; Gillotay, D.; Simon, P. A.

    1996-01-01

    This report summarizes the activities of Working Group 2 and Working Group 3 of the SOLax Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) Program. The international (SOLERS22) is Project 1.2 of the Solar-Terrestrial Energy Program (STEP) sponsored by SCOSTEP, a committee of the International Council of Scientific Unions). SOLERS22 is comprised of five Working Groups, each concentrating on a specific wave-length range: WG-1 - visible and infrared, WG-2 - mid-ultraviolet (200 < A < 300 nm), WG-3 - Far-ultraviolet (lambda greater than 100 and lambda less than 200 nanometers), WG-4 - extreme-ultraviolet (lambda greater than 10 and lambda less than 100 nm), and WG-5 - X-ray (lambda greater than 1 and lambda less than 10 nano meters). The overarching goals of SOLERS22 are to: 1) establish daily solar irradiance values in the specified wavelength ranges, 2) consider the evolving solar structures as the cause of temporal variations, and 3) understand the underlying physical processes driving these changes.

  20. Assessment of the risk of solar ultraviolet radiation to amphibians. III. Prediction of impacts in selected northern midwestern wetlands.

    PubMed

    Diamond, Stephen A; Peterson, Gregory S; Tietge, Joseph E; Ankley, Gerald T

    2002-07-01

    Solar ultraviolet radiation, especially UVB (280-320 nm), has been hypothesized to be at least partially responsible for adverse effects (e.g., declines and malformations) in amphibian species throughout the world. Evaluation of this hypothesis has been limited by the paucity of high-quality UV dose-response data and reliable estimates of typical UV doses that occur in amphibian habitats. In this preliminary risk assessment for effects of UV radiation on amphibians, dose-response relationships quantified in outdoor experiments were compared with UV exposure estimates for 26 wetlands in northern Minnesota and Wisconsin. A comparison of wetland doses, derived from model prediction, historical data, and dissolved organic carbon (DOC) characterization, with experimental effects levels for green (R. clamitans), northern leopard (R. pipiens), and mink (R. septentrionalis) frogs indicated that the risk of mortality and malformations due to UV exposure is low for the majority of wetlands evaluated. Wetland UV dose, averaged over the entire breeding season, exceeded effects doses for mortality for all three species in two of the 26 wetlands examined and for one species in an additional wetland. On the basis of evidence that shorter term doses caused mortality in amphibian larvae, 3-day doses were also evaluated. In three of the wetlands examined, 3-day doses in excess of 85% of full sunlight (the level that appeared to trigger effects in controlled experimentation) occurred at frequencies ranging 22-100% for all three species and at frequencies ranging from 15% to 58% for R. pipiens and R. septentrionalis in three additional wetlands. Risk of malformation in R. pipiens was apparent in five of the 26 wetlands evaluated. Overall, estimated UVB doses in 21 of the wetlands never exceeded experimental effects doses for mortality or malformations. These results suggest that most amphibians are not currently at significant risk for UVB effects in northern Minnesota and Wisconsin

  1. Exposure of nondividing populations of primary human fibroblasts to UV (254 nm) radiation induces a transient enhancement in capacity to repair potentially lethal cellular damage

    SciTech Connect

    Tyrrell, R.M.

    1984-02-01

    Nondividing (arrested) populations of primary human fibroblasts from normal individuals exposed to an intial dose (1.5 or 3 Jm/sup -2/) of far-UV (254 nm) radiation and then incubated in medium containing low (0.5%) serum develop enhanced resistance to inactivation of cloning efficiency by a second (challenge) dose of UV. The resistance develops within 2-4 days, after which there is a decline. Resistance develops to a higher degree and more rapidly (1-2 days) in cells derived from patients with the variant form of xeroderma pigmentosum. Excision-deficient cells from xeroderma pigmentosum complementation group A individuals also develop UV resistance after a lower (0.2 Jm/sup -2/) exposure to UV. Enhanced UV resistance does not develop in UV-irradiated cell populations incubated with the protein synthesis inhibitor cycloheximide (5 ..mu..M). These observations are consistent with the interpretation that exposure of human fibroblasts to low doses of UV induces synthesis of a protein involved in a metabolic pathway that transiently enhances the capacity of cells to repair potentially lethal damage resulting from a subsequent dose of UV.

  2. [Effect of dimethyl sulfoxide on the extent of DNA single-strand breaks and alkali-labile sites induced by 365 nm UV-radiation in human blood lymphocyte nucleoids].

    PubMed

    Smetanina, N M; Pustovalova, M V; Osipov, A N

    2014-01-01

    It is shown that exposure of 365 nm UV radiation at doses of 10, 20 and 50 kJ/m2 induces a dose-dependent increase in DNA single-strand breaks and alkali-labile sites (SSB and ALS) detected by comet and halo assays in human blood lymphocyte nucleoids. Adding 10% dimethyl sulfoxide (DMSO) reduces the SSB and ALS yields--in 3 times. A strong drop in the output of UV-A-induced SSB and ALS in lymphocyte nucleoids in the presence of DMSO shows the leading role of *OH radicals in this DNA damage formation under exposure to 365-nm UV-radiation.

  3. Effect of enhanced UV-B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae)

    SciTech Connect

    Demchik, S.M.; Day, T.A.

    1996-05-01

    Three experiments examined the influence of ultraviolet-B radiation (UV-B; 280-320 nm) exposure on reproduction in Brassica rapa (Brassicacaeae). Plants were grown in a greenhouse under three biologically effective UV-B levels that stimulated either an ambient stratospheric ozone level (control), 16% ({open_quotes}low enhanced{close_quotes}), or 32% ({open_quotes}high enhanced{close_quotes}) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment,pollen production and viability per flower were reduced by {approx}50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollen was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, the influence of source-plant UV-B exposure on in vitro pollen from plants was examined and whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B was reduced from 65 to 18%. Viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from {approx}43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa. 37 refs., 4 figs., 2 tabs.

  4. The effects of UV radiation, litter chemistry, and drought on desert litter decomposition

    NASA Astrophysics Data System (ADS)

    Lee, H.; Nieto, B.; Hewins, D. B.; Barnes, P. W.; McDowell, N. G.; Pockman, W.; Rahn, T.; Throop, H. L.

    2011-12-01

    Recent studies suggest that photodegradation by solar UV radiation can be a major driver of litter decomposition in dryland ecosystems. The importance of photodegradation in litter decomposition appears to decline with precipitation, suggesting that the relative importance of photodegradation may increase given current projections of future increases in drought severity in the southwestern USA. Several previous studies indicate that UV-B radiation (280-320 nm) is the most effective waveband in breaking chemical bonds forming organic material, but whether UV-B exposure may facilitate subsequent decomposition by microbes (i.e., photo-priming) has received little attention. In this study, we tested the effects of pre-exposure UV radiation (photo-priming), litter chemistry (lignin and cellulose content and nitrogen content), and drought on the rate of litter decomposition in a semi-arid ecosystem. To understand the effects of UV radiation on litter decomposition, we pre-exposed litter to three radiation treatments: control (no radiation), UV-A+visible, UV-A+UV-B+visible. Litter was exposed to the equivalent of three months' solar radiation of southern New Mexico prior to microbial decomposition. There were three litter types: basswood sheets (high lignin content), pure cellulose filter paper, and mesquite (Prosopis glandulosa) leaflets. Following radiation treatment, litter was placed in mesh litterbags that were buried within a large-scale precipitation manipulation experiment at the Sevilleta Long-Term Ecological Research site: control (ambient precipitation), elevated precipitation (x2 ambient precipitation), and drought (x0.5 ambient precipitation). We collected a subset of bags at 0, 1, 3, and 6 months and measured mass remaining and carbon (C) and nitrogen (N) content. After 6 months, mass remaining of filter paper and basswood sheets did not differ from the initial mass, but mesquite mass remaining declined over 30%. The pre-exposure UV effects had minimal

  5. White light upconversion emissions from Tm3++Ho3++Yb3+ codoped tellurite and germanate glasses on excitation with 798 nm radiation

    NASA Astrophysics Data System (ADS)

    Giri, Neeraj Kumar; Rai, D. K.; Rai, S. B.

    2008-12-01

    White light has been produced using 798 nm laser excitation in Tm3++Ho3++Yb3+ codoped tellurite and germanate glasses. These glasses simultaneously generate the three primary colors, red, green, and blue, on 798 nm excitation. Thus, multicolor emission obtained was tuned to white luminescence by adjusting the Ho3+ ion concentration and excitation power. UV excitation and fluorescence spectra of these triply doped glasses give additional emissions, which do not appear on 798 nm excitation.

  6. Photosynthesis, Growth, and Ultraviolet Irradiance Absorbance of Cucurbita pepo L. Leaves Exposed to Ultraviolet-B Radiation (280-315 nm).

    PubMed

    Sisson, W B

    1981-01-01

    Net photosynthesis, growth, and ultraviolet (UV) radiation absorbance were determined for the first leaf of Cucurbita pepo L. exposed to two levels of UV-B irradiation and a UV-B radiation-free control treatment. Absorbance by extracted flavonoid pigments and other UV-B radiation-absorbing compounds from the first leaves increased with time and level of UV-B radiation impinging on leaf surfaces. Although absorbance of UV-B radiation by extracted pigments increased substantially, UV-B radiation attenuation apparently was insufficient to protect completely the photosynthetic apparatus or leaf growth processes. Leaf expansion was repressed by daily exposure to 1365 Joules per meter per day of biologically effective UV-B radiation but not by exposure to 660 Joules per meter per day. Photosynthesis measured through ontogenesis of the first leaf was depressed by both UV-B radiation treatments. Repression of photosynthesis by UV-B radiation was especially evident during the ontogenetic period of maximum photosynthetic activity.

  7. Photosynthesis, Growth, and Ultraviolet Irradiance Absorbance of Cucurbita pepo L. Leaves Exposed to Ultraviolet-B Radiation (280-315 nm) 1

    PubMed Central

    Sisson, William B.

    1981-01-01

    Net photosynthesis, growth, and ultraviolet (UV) radiation absorbance were determined for the first leaf of Cucurbita pepo L. exposed to two levels of UV-B irradiation and a UV-B radiation-free control treatment. Absorbance by extracted flavonoid pigments and other UV-B radiation-absorbing compounds from the first leaves increased with time and level of UV-B radiation impinging on leaf surfaces. Although absorbance of UV-B radiation by extracted pigments increased substantially, UV-B radiation attenuation apparently was insufficient to protect completely the photosynthetic apparatus or leaf growth processes. Leaf expansion was repressed by daily exposure to 1365 Joules per meter per day of biologically effective UV-B radiation but not by exposure to 660 Joules per meter per day. Photosynthesis measured through ontogenesis of the first leaf was depressed by both UV-B radiation treatments. Repression of photosynthesis by UV-B radiation was especially evident during the ontogenetic period of maximum photosynthetic activity. PMID:16661610

  8. Photosynthesis, growth, and ultraviolet irradiance absorbance of Cucurbita pepo L. leaves exposed to ultraviolet-B radiation (280 to 315 nm)

    SciTech Connect

    Sisson, W.B.

    1981-01-01

    Net photosynthesis, growth, and ultraviolet (uv) radiation absorbance were determined for the first leaf of Cucurbita pepo L. exposed to two levels of uv-B irradiation and a uv-B radiation-free control treatment. Absorbance by extracted flavonoid pigments and other uv-B radiation-absorbing compounds from the first leaves increased with time and level of uv-B radiation impinging on leaf surfaces. Although absorbance of uv-B radiation by extracted pigments increased substantially, uv-B radiation attenuation apparently was insufficient to protect completely the photosynthetic apparatus or leaf growth processes. Leaf expansion was repressed by daily exposure to 1365 Joules per meter per day of biologically effective uv-B radiation by not by exposure to 660 Joules per meter per day. Photosynthesis measured through ontogenesis of the first leaf was depressed by both uv-B radiation treatments. Repression of photosynthesis by uv-B radiation was especially evident during the ontogenetic period of maximum photosynthetic activity.

  9. Trends in Retinal Damage Thresholds from 100-Millisecond Near-Infrared Laser Radiation Exposures: A Study at 1,110, 1,130, 1,150, and 1,319 nm

    DTIC Science & Technology

    2009-01-01

    HeNe laser was expanded and attenuated for use as a pointer to allow for careful placement of retinal lesions. A Spectra Physics 532-nm Millennia laser ...recorded on a DVD . The NIR camera helped to confirm that the laser beam was not clipped by the subject’s iris when delivering the NIR laser radiation. The...NEAR-INFRARED LASER ADIATION: A STUDY AT 1110, 1130, 1150, 1139 NM 5a. CONTRACT NUMBER F41624-02-D-7003 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  10. Generation of high power 200 mW laser radiation at 177.3 nm in KBe2BO3F2 crystal

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Liu, Lijuan; Wang, Xiaoyang; Chen, Chuangtian; Zhang, Xin; Lin, Shujie

    2015-12-01

    With a newly developed diffusion-bonded KBe2BO3F2 prism-coupled device and by temperature stabilization of the device, we have achieved an average power of 200 mW at 177.3 nm through the sixth harmonic generation of a picosecond Nd:YAG laser. This is the highest power at 177.3 nm ever generated in any nonlinear optical crystals. A stable average power of 72.2 mW at 177.3 nm was also obtained with a small fluctuation of 3.2 % over a period of 30 min. Moreover, both the angle and temperature acceptances for the 177.3 nm generation were reported for the first time in this paper.

  11. Comparative study of the application of microcurrent and AsGa 904 nm laser radiation in the process of repair after calvaria bone excision in rats

    NASA Astrophysics Data System (ADS)

    Mendonça, J. S.; Neves, L. M. G.; Esquisatto, M. A. M.; Mendonça, F. A. S.; Santos, G. M. T.

    2013-03-01

    This study evaluated the effects of microcurrent stimulation (10 μA/5 min) and 904 nm GaAs laser irradiation (3 J cm-2 for 69 s/day) on excisional lesions created in the calvaria bone of Wistar rats. The results showed significant responses in the reduction of inflammatory cells and an increase in the number of new blood vessels, number of fibroblasts and deposition of birefringent collagen fibers when these data were compared with those of samples of the untreated lesions. Both applications, microcurrent and laser at 904 nm, favored tissue repair in the region of bone excisions during the study period and these techniques can be used as coadjuvantes in the repair of bone tissue.

  12. Induction of pyrimidine dimers and unscheduled DNA synthesis in cultured mouse epithelial cells exposed to 254-nm- and u. v. -B radiation

    SciTech Connect

    Yotti, L.P.; Ley, R.D.

    1983-01-01

    The induction and fate of pyrimidine dimers and unscheduled DNA synthesis were measured in u.v.-irradiated primary, newborn SENCAR mouse epithelial cells. Unscheduled DNA synthesis was induced in a dose responsive manner by two u.v. sources, a germicidal lamp (254 nm) and an FS40 sunlamp (280--400 nm). Using the endonuclease-sensitive site assay to detect pyrimidine dimer production and excision, we examined the response of the newborn mouse cells to both u.v. sources. We were unable to detect the removal of pyrimidine dimers with either of the two sources of u.v. The speculation is made that primary, newborn mouse epidermal cells excise u.v.-induced pyrimidine dimers to an extent below the level of detection of the endonuclease-sensitive site assay but to an extent sufficient to induce unscheduled DNA synthesis.

  13. Experimental investigation of dissociation pathways of cooled HeH{sup +} following valence electron excitation at 32 nm by intense free-electron-laser radiation

    SciTech Connect

    Pedersen, H. B.; Lammich, L.; Domesle, C.; Jordon-Thaden, B.; Ullrich, J.; Wolf, A.; Heber, O.; Treusch, R.; Guerassimova, N.

    2010-08-15

    The dissociation pathways of HeH{sup +} have been investigated below the first ionization continuum by photoabsorption at 32 nm, using fragment momentum imaging in a crossed-beams experiment at the free-electron laser in Hamburg (FLASH). Investigations were done both for ions with several vibrational levels excited in the ion source and for ions vibrationally cooled in an electrostatic ion trap prior to the irradiation. The product channels He{sup +}(1s)+H(nl) and He(1snl)+H{sup +} were separated and the He(1snl)+H{sup +} channel was particularly studied by coincidence detection of the He and H{sup +} fragments on two separate fragment detectors. At 32 nm excitation, the branching ratio between the product channels was found to be {sigma}{sub He}{sup +}{sub +H}/{sigma}{sub He+H}{sup +}=0.96{+-}0.11 for vibrationally hot and 1.70{+-}0.48 for vibrationally cold ions. The spectra of kinetic energy releases for both channels revealed that photodissociation at 32 nm leads to high Rydberg states (n > or approx. 3-4) of the emerging atomic fragments irrespective of the initial vibrational excitation of HeH{sup +}. The fragment angular distributions showed that dissociation into the He+H{sup +} channel mostly ({approx}70%) proceeds through {sup 1{Pi}} states, while for the He{sup +}+H channel {sup 1{Sigma}} and {sup 1{Pi}} states are of about equal importance.

  14. Porcine skin damage thresholds for 0.6 to 9.5 cm beam diameters from 1070-nm continuous-wave infrared laser radiation.

    PubMed

    Vincelette, Rebecca; Noojin, Gary D; Harbert, Corey A; Schuster, Kurt J; Shingledecker, Aurora D; Stolarski, Dave; Kumru, Semih S; Oliver, Jeffrey W

    2014-03-01

    There is an increasing use of high-power fiber lasers in manufacturing and telecommunications industries operating in the infrared spectrum between 1000 and 2000 nm, which are advertised to provide as much as 10 kW continuous output power at 1070 nm. Safety standards have traditionally been based on experimental and modeling investigations with scant data available for these wavelengths. A series of studies using 1070-nm infrared lasers to determine the minimum visible lesion damage thresholds in skin using the Yucatan miniature pig (Sus scrofa domestica) for a range of beam diameters (0.6, 1.1, 1.9, 2.4, 4.7, and 9.5 cm) and a range of exposure durations (10 ms to 10 s) is presented. Experimental peak temperatures associated with each damage threshold were measured using thermal imaging. Peak temperatures at damage threshold for the 10-s exposures were ∼10°C lower than those at shorter exposures. The lowest and highest experimental minimum visible lesion damage thresholds were found to have peak radiant exposures of 19 and 432  J/cm2 for the beam diameter-exposure duration pairs of 2.4 cm, 25 ms and 0.6 cm, 10 s, respectively. Thresholds for beam diameters >2.5  cm had a weak to no effect on threshold radiant exposure levels for exposure times ≤0.25  s, but may have a larger effect on thresholds for exposures ≥10  s.

  15. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Generating collimated intense monochromatic beams of soft x radiation from an X-pinch in the wavelength region 0.4-1.0 nm by means of spherical crystal mirrors

    NASA Astrophysics Data System (ADS)

    Faenov, A. Ya; Mingaleev, A. R.; Pikuz, S. A.; Pikuz, T. A.; Romanova, V. M.; Skobelev, I. Yu; Shelkovenko, T. A.

    1993-05-01

    The generation of collimated intense monochromatic beams of soft x radiation in the wavelength interval 0.4-1.0 nm from an X-pinch is reported. This is the first such report. High-quality mica crystals with dimensions of 10 × (30-35) mm were used to form beams with an energy of 2-3.2 μJ, a wavelength spread Δλ/λ=4 · 10-3, and a divergence of 5 · 10-4 rad. The mica crystals were bent into spherical surfaces with a radius of curvature of 10 or 25 cm. The characteristics of the resulting beams are compared with those of the beams from Ta lasers, with a wavelength ~4.5 nm, which are the shortest-wavelength x-ray lasers which have been reported to date. This comparison shows that the beams obtained in the present study are better than those from the Ta laser in terms of several characteristics (divergence, wavelength, and efficiency), while they are worse (but not greatly so) in terms of certain other characteristics (wavelength spread and energy in the pulse. It is thus possible today to solve many practical problems involving the use of collimated intense monochromatic beams of soft x radiation in the wavelength interval 0.25-2.0 nm. These problems can be solved with the help of the x radiation from an X-pinch or from plasmas produced by picosecond or femtosecond table-top lasers and short-focal-length, large-aperture crystal mirrors.

  16. Design of a 10-bit segmented current-steering digital-to-analog converter in CMOS 65 nm technology for the bias of new generation readout chips in high radiation environment

    NASA Astrophysics Data System (ADS)

    De Robertis, G.; Loddo, F.; Mattiazzo, S.; Pacher, L.; Pantano, D.; Tamma, C.

    2016-01-01

    A new pixel front end chip for HL-LHC experiments in CMOS 65nm technology is under development by the CERN RD53 collaboration together with the Chipix65 INFN project. This work describes the design of a 10-bit segmented current-steering Digital-to-Analog Converter (DAC) to provide a programmable bias current to the analog blocks of the circuit. The main requirements are monotonicity, good linearity, limited area consumption and radiation hardness up to 10 MGy. The DAC was prototyped and electrically tested, while irradiation tests will be performed in Autumn 2015.

  17. Low-intensity LED (625 and 405 nm) and laser (805 nm) killing of Propionibacterium acnes and Staphylococcus epidermidis

    NASA Astrophysics Data System (ADS)

    Tuchina, Elena S.; Tuchin, Valery V.

    2009-02-01

    In the present work we have investigated in vitro sensitivity of microorganisms P. acnes and S. epidermidis to action of red (625 nm and 405 nm) and infrared (805 nm) radiations in combination with photosensitizes Methylene Blue and Indocyanine Green.

  18. 5-Methoxypsoralen, the melanogenic additive in sun-tan preparations, is tumorigenic in mice exposed to 365 nm u. v. radiation

    SciTech Connect

    Zajdela, F.; Bisagni, E.

    1981-01-01

    5-Methoxypsoralen (5 MOP), the melanogenic component present in several suntan preparations was synthesized and tested by topical applications in inbred XVII nc/Z albino mice combined with 365 nm irradiation with the aim of establishing the relative carcinogenic activity of this compound, as compared to 8-methoxypsoralen (8 MOP) and psoralen. 85% of the animals developed tumors and 25% had multiple tumors. Additional treatment with 12-O-tetradecanoylphorbol-13-acetate raised the tumor incidence to 100%. Tumors caused by 5 MOP show much longer latent periods than those induced by psoralen and 8 MOP. Most of the tumors were rapidly growing squamous cell carcinomas giving metastases in 20% of the animals. The possible long-term effects that might follow the use of 5 MOP in humans are discussed.

  19. SOLAR RADIATION AND INDUCTION OF DNA DAMAGE, MUTATIONS AND SKIN CANCERS.

    SciTech Connect

    SETLOW,R.B.

    2007-05-10

    An understanding of the effects of sunlight on human skin begins with the effects on DNA and extends to cells, animals and humans. The major DNA photoproducts arising from UVB (280-320 nm) exposures are cyclobutane pyrimidine dimers. If unrepaired, they may kill or mutate cells and result in basal and squamous cell carcinomas. Although UVA (320-400 nm) and visible wavelengths are poorly absorbed by DNA, the existing data indicate clearly that exposures to these wavelengths are responsible, in an animal model, for {approx}95 % of the incidence of cutaneous malignant melanoma (CMM). Six lines of evidence, to be discussed in detail, support the photosensitizing role of melanin in the induction of this cancer. They are: (1) Melanomas induced in backcross hybrids of small tropical fish of the genus Xiphophorus, exposed to wavelengths from 302-547 nm, indicate that {approx}95% of the cancers induced by exposure to sunlight would arise from UVA + visible wavelengths; (2) The action spectrum for inducing melanin-photosensitized oxidant production is very similar to the spectrum for inducing melanoma; (3) Albino whites and blacks, although very sensitive to sunburn and the sunlight induction of non-CMM, have very low incidences of CMM; (4) The incidence of CMM as a function of latitude is very similar to that of UVA, but not UVB; (5) Use of UVA-exposing sun-tanning parlors by the young increases the incidence rate of CMM and (6) Major mutations observed in CMM are not UVB-induced.

  20. Interaction of wide band gap single crystals with 248 nm excimer laser radiation. XII. The emission of negative atomic ions from alkali halides

    SciTech Connect

    Kimura, Kenichi; Langford, S. C.; Dickinson, J. T.

    2007-12-01

    Many wide band gap materials yield charged and neutral emissions when exposed to sub-band-gap laser radiation at power densities below the threshold for optical breakdown and plume formation. In this work, we report the observation of negative alkali ions from several alkali halides under comparable conditions. We observe no evidence for negative halogen ions, in spite of the high electron affinities of the halogens. Significantly, the positive and negative alkali ions show a high degree of spatial and temporal overlap. A detailed study of all the relevant particle emissions from potassium chloride (KCl) suggests that K{sup -} is formed by the sequential attachment of two electrons to K{sup +}.

  1. Exposure to ultraviolet radiation (290-400 nm) causes oxidative stress, DNA damage, and expression of p53/p73 in laboratory experiments on embryos of the spotted salamander, Ambystoma maculatum.

    PubMed

    Lesser, M P; Turtle, S L; Farrell, J H; Walker, C W

    2001-01-01

    Developing embryos of the spotted salamander, Ambystoma maculatum, exposed to ultraviolet radiation (UVR; 290-400 nm) in the laboratory show a significant sensitivity to UVB (290-320 nm) radiation. Embryos in laboratory experiments exhibited significant DNA damage during exposures to UVR despite a significant increase in the production of the protective pigment melanin in response to UVR exposure. DNA damage occurs as a result of both the direct effects of exposure to UVR, and the indirect effects are mediated by the production of reduced oxygen intermediates. The production of reactive oxygen species initiates the expression of p53/p73 that leads to either DNA repair or apoptosis. When similar experiments are conducted on salamander embryos exposed to solar UVR in vernal pools, the embryos show significantly less sensitivity and higher survivorship. The differences between laboratory and field experiments are a result of the attenuation of UVR caused by the accumulation of dissolved organic carbon within the pools of these wooded areas. These findings suggest that northeastern populations of spotted salamanders are sensitive to UVR but are not significantly affected by present-day irradiances of UVR in the field. These results do suggest that continued decreases in stratospheric ozone over temperate latitudes have the potential to affect spotted salamanders in their natural habitats.

  2. Forecast of solar radiation storms by on-line NM one-minute data, 1. automatically search of great FEP event beginning

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Pustilnik, L. A.; Sternlieb, A.; Zukerman, I. G.

    2001-08-01

    It is well known that in periods of great FEP fluxes of energetic particles can be so big that memory of computers and other electronics in space may be destroyed, satellites and spacecrafts became dead: according to NOAA Space Weather Scales are dangerous Solar Radiation Storms S5extreme (flux level of particles with energy > 10 MeV more than 105 ), S4-severe (flux more than 104 ) and S3-strong (flux more than 103 3). In these periods is necessary to switch off some part of electronics for few hours to protect computer memories. These periods are also dangerous for astronauts on space-ships, and passengers and crew in commercial jets (especially during S5 storms). The problem is how to forecast exactly these dangerous phenomena. We show that exact forecast can be made by using high-energy particles (few GeV/nucleon and higher) which transportation from the Sun is characterized by much bigger diffusion coefficient than for small and middle energy particles. Therefore high energy particles came from the Sun much more early (8-20 minutes after acceleration and escaping into solar wind) than main part of smaller energy particles caused dangerous situation for electronics (about 30-60 minutes later). We describe here principles and experience of automatically working of program "FEP-Search". The positive result which shows the exact beginning of FEP event on the Emilio Segre' Observatory (2025 m above sea level, Rc = 10.8 GV), is determined now automatically by simultaneously increasing on 2.5 St. Dev. in two sections of neutron supermonitor. The next 1-min data the program "FEP-Search" uses for checking that the observed increase reflects the beginning of real great FEP or not. If yes, automatically starts to work on line the programs "FEP-Research".

  3. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  4. TBT toxicity on a natural planktonic assemblage exposed to enhanced ultraviolet-B radiation.

    PubMed

    Sargian, Peggy; Pelletier, Emilien; Mostajir, Behzad; Ferreyra, Gustavo A; Demers, Serge

    2005-07-01

    A microcosm approach was designed to study the combined effects of tributyltin (TBT) from antifouling paints and ultraviolet-B radiation (UVBR: 280-320 nm), on a natural planktonic assemblage (<150 microm) isolated from the St. Lawrence Estuary at the end of the springtime. Microcosms (9l, cylindrical Teflon bags, 75 cm heightx25 cm width) were immersed in the water column of mesocosms (1800 l, polyethylene bags, 2.3 m depth) and exposed to two different UVBR regimes: natural ambient UVBR (NUVBR), and enhanced level of UVBR (HUVBR). During consecutive 5 days, effects of TBT (120 ng l -1) and enhanced UVBR (giving a biologically weighted UVBR 2.15-fold higher than natural light condition) were monitored in the samples coming from following treatments: (i) NUVBR light condition without TBT (NUVBR), (ii) NUVBR light condition with TBT-added (NUVBR+TBT), (iii) HUVBR light condition without TBT (HUVBR) and (iv) HUVBR light condition with TBT-added (HUVBR+TBT). Each treatment was conducted in triplicate microcosms. Different parameters were then measured during 5 days, including TBT analysis, bacterial abundance and productivity, phytoplankton abundance, cellular characteristics and growth rates, as well as in vivo chlorophyll a (Chl a) fluorescence. Following TBT addition (NUVBR+TBT treatment), Chl a concentrations never exceeded 1 microg l-1 whereas final values as high as 54 microg l-1 were observed in TBT-free treatments (NUVBR and HUVBR). TBT addition resulted also in the lost of fluorescence signal of the maximum efficiency of the photosystem II in phytoplankton assemblage. TBT toxicity caused on phytoplankton <20 microm an increase of mean cell size and changes in shape reflected a drastic disturbance of the cell cycle leading to an inhibition of the apparent growth rate. These negative effects of TBT resulted in a final abundance of phytoplankton <20 microm of 591+/-35 cells ml-1 in NUVBR+TBT relative to NUVBR treatment (i.e., 31,846+/-312 cells ml-1). Moreover

  5. RadNet Air Data From Navajo Lake, NM

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Navajo Lake, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  6. RadNet Air Data From Albuquerque, NM

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Albuquerque, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  7. RadNet Air Data From Carlsbad, NM

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Carlsbad, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  8. Sub-10 nm nanopantography

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; Donnelly, Vincent M.; Ruchhoeft, Paul; Economou, Demetre J.

    2015-11-01

    Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

  9. Albuquerque, NM, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Albuquerque, NM (35.0N, 106.5W) is situated on the edge of the Rio Grande River and flood plain which cuts across the image. The reddish brown surface of the Albuquerque Basin is a fault depression filled with ancient alluvial fan and lake bed sediments. On the slopes of the Manzano Mountains to the east of Albuquerque, juniper and other timber of the Cibola National Forest can be seen as contrasting dark tones of vegetation.

  10. Yb fiber amplifier at 972.5 nm with frequency quadrupling to 243.1 nm

    NASA Astrophysics Data System (ADS)

    Burkley, Z.; Rasor, C.; Cooper, S. F.; Brandt, A. D.; Yost, D. C.

    2017-01-01

    We demonstrate a continuous-wave ytterbium-doped fiber amplifier which produces 6.3 W at a wavelength of 972.5 nm. We frequency-quadruple this source in two resonant doubling stages to generate 530 mW at 243.1 nm. Radiation at this wavelength is required to excite the 1S-2S transition in atomic hydrogen and could therefore find application in experimental studies of hydrogen and anti-hydrogen.

  11. Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide.

    PubMed

    Nishikawa, Tadashi; Ozawa, Akira; Nishida, Yoshiki; Asobe, Masaki; Hong, Feng-Lei; Hänsch, Theodor W

    2009-09-28

    A solid-state-laser based single-frequency 589 nm light source that can be easily used in the laboratory is needed for sodium spectroscopy studies and cold sodium atom experiments. This paper shows that by using a periodically poled Zn-doped LiNbO(3) ridge waveguide for sum-frequency generation, we can obtain a high conversion efficiency to 589 nm light from two sub-watt 1064 and 1319 nm Nd:YAG lasers via a simple single pass wavelength conversion process without employing an enhancement cavity. A 494 mW light at 589 nm is generated and achieves overall conversion efficiency from the laser power of 41%. Excellent long-term stability of output power is obtained and its standard deviation is characterized to be 0.09%.

  12. In vitro germination characteristics of maize pollen to detect biological activity of environmental pollutants

    SciTech Connect

    Pfahler, P.L.

    1981-01-01

    In vitro pollen germination in maize was evaluated as a method of assessing the mutagenic and physiological effects of environmental pollutants on higher organisms. The extent of mutations was effectively determined by testing sporophytes homozygous for the mutated allele. Physiological effects were effectively determined when chemical agents were added directly into the in vitro medium. Exposure of pollen grains during in vitro germination to ultraviolet radiation in the range 280-320 nm produced little or no change in the germination or rupture percentage but a sharp decrease in pollen tube growth after 1 hr.

  13. 3 Watt CW OPO tunable 604nm to 616nm for quantum optics applications

    NASA Astrophysics Data System (ADS)

    Henderson, Angus; Halfmann, Thomas; Mieth, Simon

    2012-06-01

    A continuous wave optical parametric oscillator (CW OPO) pumped by a fiber laser has been developed which emits up to 3 Watts of single longitudinal mode radiation tunable in the wavelength range 604nm to 616nm. The device is a modified version of the ``Argos'' Model 2400 commercial product by Lockheed Martin Aculight. A 15 Watt 1064nm fiber laser pumps a CW OPO based upon periodically-poled Lithium Niobate (PPLN). A short section of the nonlinear crystal is poled to allow efficient intracavity sum frequency generation (SFG) between the OPO pump and signal wavelengths to generate orange radiation. The device can be coarsely tuned by matching the poling periods and temperature within the nonlinear crystal to phase-match both OPO and SFG processes simultaneously. Fine mode-hop-free tuning of the orange wavelength of up to 100GHz range can be achieved by applying a voltage to a PZT which tunes the pump laser. By similar intracavity conversion schemes, the system offers the potential of providing high power at wavelengths from 600nm to 1400nm in addition to the direct signal and idler wavelength ranges from 1400nm to 4630nm. Such capability comes without the complexity and reliability issues which are inherent in dye and Ti:Sapphire systems. Details of the OPO system performance and its use in quantum optics applications will be provided.

  14. Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}

    DOEpatents

    Marshall, C.D.; Payne, S.A.; Krupke, W.F.

    1996-05-14

    Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

  15. Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6

    DOEpatents

    Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.

    1996-01-01

    Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

  16. Prevention of polymorphic light eruption with a sunscreen of very high protection level against UVB and UVA radiation under standardized photodiagnostic conditions.

    PubMed

    Schleyer, Verena; Weber, Oliver; Yazdi, Amir; Benedix, Frauke; Dietz, Klaus; Röcken, Martin; Berneburg, Mark

    2008-01-01

    Polymorphic light eruption (PLE), with an overall prevalence of 10-20%, is mainly provoked by ultraviolet A (UVA) (320-400 nm) and to a lesser degree by UVB (280-320 nm). The most effective prophylaxis of PLE, application of UV protection clothing, is not feasible for all sun-exposed areas of the skin and UV-hardening is time-consuming and may be associated with side-effects. Most sunscreens protect predominantly against UVB and therefore fail to prevent PLE. The protection level of potent UVA-protective filters remains unresolved. This single-centre, open, placebo-controlled, intra-individual, comparative study, analysed the efficacy of a sunscreen of very high protection level against UVB and UVA, containing methylene bis-benzotriazolyl tetramethylbutylphenol (Tinosorb M), bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S) and butyl methoxydibenzoylmethane as UVA absorbing filters, in the prevention of PLE under standardized photodiagnostic conditions. After determination of the minimal erythema dose at day 0, photoprovocation was performed in 12 patients with a clinical history of PLE, on days 1, 2 and 3 with 100 J/cm2 UVA and variable doses of UVB, starting with the 1.5-fold minimal erythema dose of UVB. Prior to irradiation, placebo was applied to the right and sunscreen to the left dorsal forearm under COLIPA (European Cosmetic, Toiletry and Perfumery Association) conditions. In 10 patients PLE could be provoked at the placebo site, with positive reactions in 90% of the UVA, 40% of the UVB and 90% of the UVA/UVB irradiated fields. At the site with the active treatment none of these patients developed PLE. These data demonstrate that a sunscreen with effective filters against UVA and UVB can successfully prevent the development of PLE. Further studies are needed to examine whether regular application of sunscreen under everyday conditions, especially in doses less than the tested COLIPA-norm, could be an equivalent alternative to UV-hardening therapy.

  17. A contribution toward understanding the biospherical significance of Antarctic ozone depletion

    NASA Technical Reports Server (NTRS)

    Lubin, Dan; Mitchell, Greg; Frederick, John E.; Alberts, Amy D.; Booth, C. R.; Lucas, Timothy; Neuschuler, David

    1992-01-01

    The paper presents and compares measurements of biologically active UV radiation made by the NSF scanning spectroradiometer (UV-monitor) at Palmer Station, Antarctica, during the Austral springs of 1988, 1989, and 1990. Column ozone abundance above Palmer Station is computed from these measurements using a multiple wavelength algorithm. Two contrasting action spectra are employed to estimate the biologically relevant dose from the spectral measurements: a standard weighting function for damage to DNA, and a new action spectrum representing the potential for photosynthesis inhibition in Antarctic phytoplankton. The former weights only UV-B wavelengths (280-320 nm) and gives the most weight to wavelengths shorter than 300 nm, while the latter includes large contributions out to 355 nm. Ozone abundances and dose-weighted irradiances provided by the NSF UV-monitor are used to derive the radiation amplification factors for both DNA- and phytoplankton-effective irradiance.

  18. O(1)S 557.7nm and O(1)D 630 nm emissions in shuttle thruster plumes

    NASA Technical Reports Server (NTRS)

    Viereck, R. A.; Murad, E.; Pike, C. P.; Mende, S. B.; Swenson, G. A.; Elgin, J. B.; Bernstein, L. S.; Lucid, S.

    1995-01-01

    Radiation resulting from interaction between the effluent cloud of a space shuttle thruster and the ambient atmosphere was observed with a spectograph aboard the shutttle. The spectral measurements were made between 400 and 800 nm with a resolutoion of 3 nm. The primary emissions are identified as NO2, HNO, O(1)D, and O(1)S. These are the first observations od O(1)S emission in the shuttle plume. These data are compared with the previous measurements, and possible excitation mechanisms are discussed. The results are also compared with a Monte Carlo simulation of thruster plume-atmosphere interaction radiation.

  19. Optical constants determination of neodymium and gadolinium in the 3-nm to 100-nm wavelength range

    NASA Astrophysics Data System (ADS)

    Kjornrattanawanich, B.; Windt, D. L.; Uspenskii, Y. A.; Seely, J. F.

    2006-08-01

    The optical constants (n, k) of the wavelength-dependent index of refraction N = n+ik = 1-δ+ik of Nd (Neodymium) and Gd (Gadolinium) are determined in the wavelength range of 3 nm to 100 nm by the transmittance method using synchrotron radiation. Nd and Gd films with thicknesses ranging from 5 nm to 180 nm were fabricated on Si photodiodes (which served as the coating substrates as well as the detectors) and capped with Si layers to protect these reactive rare earth elements from oxidation. The imaginary part (k) obtained directly from the transmittance measurement is used in the derivation of the real part (δ) of the complex index of refraction N through the Kramers- Kronig integral. The measured optical constants are used in the design of currently developed Nd- and Gd-based multilayers for solar imaging applications. Our results on Nd and Gd optical constants and the reflectance of some Nd- and Gd-based multilayers are presented.

  20. High power terahertz generation using 1550 nm plasmonic photomixers

    NASA Astrophysics Data System (ADS)

    Berry, Christopher W.; Hashemi, Mohammad R.; Preu, Sascha; Lu, Hong; Gossard, Arthur C.; Jarrahi, Mona

    2014-07-01

    We present a 1550 nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

  1. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    NASA Astrophysics Data System (ADS)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  2. Generation of Thermospheric OI 845 nm Emission by Bowen Fluorescence

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Sharpee, B. D.; Cosby, P. C.; Slanger, T. G.

    2006-12-01

    777 and 845 nm emissions from the 3p-3s multiplets of atomic oxygen are commonly observed at non-auroral latitudes in the terrestrial nightglow. By studying the relative strengths of these emissions we can learn something about the mechanisms that produce them and what they can teach us about the atmosphere. Recently [1] we have used intensity-calibrated sky spectra from the Keck telescopes to investigate the relative strengths of a wide range of O-atom Rydberg lines and have confirmed that electron-ion radiative recombination is a primary source of excitation for both the triplet and quintet systems. Following the intensity of the 777 and 845 nm lines during the night, we find that for most of the night the quintet 777 nm line is consistently stronger than the triplet 845 nm line, with a nearly constant intensity ratio I(777)/I(845) near 2.3, although both intensities fall rapidly as the night progresses. However, late in the night the 845 nm intensity levels off, while the 777 nm intensity continues to fall, and the I(777)/I(845) ratio plunges by a factor of 5-10. We interpret these observations as indicating that the O-atom quintet states are still being excited by the same mechanism as earlier in the night, i.e. radiative recombination, but some triplet states are also being excited by an additional mechanism. Such a mechanism has been proposed before [2-6] but not previously observed directly in the terrestrial nightglow. The oxygen triplet 3d-2p transition at 102.576 nm is in close coincidence with the solar hydrogen Lyman-β line at 102.572 nm. Radiative transport in the hydrogen geocorona will deliver Lyman-β intensity into the Earth's shadow and will produce triplet O(3d 3D) high in the atmosphere, even prior to direct solar illumination. The result is observable in a radiative cascade sequence 3d-3p(1129 nm) → 3p- 3s(845 nm) → 3s-2p(130 nm). A similar effect is observed in the H-α emission, which is also excited by Lyman-β absorption. This process

  3. Radiation detection system

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.; Lyons, Peter B.

    1981-01-01

    A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.

  4. Electron beam inspection methods for imprint lithography at 32 nm

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; Sreenivasan, S. V.; Resnick, Douglas J.

    2009-01-01

    Step and Flash Imprint Lithography redefines nanoimprinting. This novel technique involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned solid on the substrate. Compatibility with existing CMOS processes requires a mask infrastructure in which resolution, inspection and repair are all addressed. The purpose of this paper is to understand the limitations of inspection at half pitches of 32 nm and below. A 32 nm programmed defect mask was fabricated. Patterns included in the mask consisted of an SRAM Metal 1 cell, dense lines, and dense arrays of pillars. Programmed defect sizes started at 4 nm and increased to 48 nm in increments of 4 nm. Defects in both the mask and imprinted wafers were characterized scanning electron microscopy and the measured defect areas were calculated. These defects were then inspected using a KLA-T eS35 electron beam wafer inspection system. Defect sizes as small as 12 nm were detected, and detection limits were found to be a function of defect type.

  5. Defect inspection of imprinted 32 nm half pitch patterns

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; McMackin, Ian; Perez, Joseph; Sreenivasan, S. V.; Resnick, Douglas J.

    2008-10-01

    Step and Flash Imprint Lithography redefines nanoimprinting. This novel technique involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned solid on the substrate. Compatibility with existing CMOS processes requires a mask infrastructure in which resolution, inspection and repair are all addressed. The purpose of this paper is to understand the limitations of inspection at half pitches of 32 nm and below. A 32 nm programmed defect mask was fabricated. Patterns included in the mask consisted of an SRAM Metal 1 cell, dense lines, and dense arrays of pillars. Programmed defect sizes started at 4 nm and increased to 48 nm in increments of 4 nm. Defects in both the mask and imprinted wafers were characterized scanning electron microscopy and the measured defect areas were calculated. These defects were then inspected using a KLA-T eS35 electron beam wafer inspection system. Defect sizes as small as 12 nm were detected, and detection limits were found to be a function of defect type.

  6. The polarization properties of Fe II 614.9 nm

    NASA Technical Reports Server (NTRS)

    Lites, Bruce W.

    1993-01-01

    The anomalous Zeeman splitting of the Fe II line at 614.9 nm results in four unusual properties of the polarization signature of this line in the presence of magnetic fields: the absence of linear polarization, no magnetooptical effect, the independence of intensity at line center from the inclination of the field, and a depolarizing self-absorption. The origin of these properties is illustrated in terms of the transfer of line radiation in an idealized solar atmosphere.

  7. Sub-180 nm generation with borate crystal

    NASA Astrophysics Data System (ADS)

    Qu, Chen; Yoshimura, Masashi; Tsunoda, Jun; Kaneda, Yushi; Imade, Mamoru; Sasaki, Takatomo; Mori, Yusuke

    2014-10-01

    We demonstrated a new scheme for the generation of 179 nm vacuum-ultraviolet (VUV) light with an all-solid-state laser system. It was achieved by mixing the deep-ultraviolet (DUV) of 198.8 nm and the infrared (IR) of 1799.9 nm. While CsB3O5 (CBO) did not satisfy the phase-matching at around 180 nm, 179 nm output was generated with LiB3O5 (LBO) for the first time. The phase-matching property of LBO at around 180 nm was also investigated. There was small deviation from theoretical curve in the measurement, which is still considered reasonable.

  8. Er-doped YVO4 amplifier diode pumped at 976 nm

    NASA Astrophysics Data System (ADS)

    Newburgh, G. A.; Dubinskii, Mark

    2016-05-01

    We report on the use of a 976 nm diode pumped Er:YVO4 slab for the amplification of 1603 nm laser radiation with a small signal gain of 2.1. To the best of our knowledge, this represents the first use of Er:YVO4 as a non-resonantly pumped amplifier.

  9. Absorption spectrum of DNA for wavelengths greater than 300 nm

    SciTech Connect

    Sutherland, J.C.; Griffin, K.P.

    1981-06-01

    Although DNA absorption at wavelengths greater than 300 nm is much weaker than that at shorter wavelengths, this absorption seems to be responsible for much of the biological damage caused by solar radiation of wavelengths less than 320 nm. Accurate measurement of the absorption spectrum of DNA above 300 nm is complicated by turbidity characteristic of concentrated solutions of DNA. We have measured the absorption spectra of DNA from calf thymus, Clostridium perfringens, Escherichia coli, Micrococcus luteus, salmon testis, and human placenta using procedures which separate optical density due to true absorption from that due to turbidity. Above 300 nm, the relative absorption of DNA increases as a function of guanine-cytosine content, presumably because the absorption of guanine is much greater than the absorption of adenine at these wavelengths. This result suggests that the photophysical processes which follow absorption of a long-wavelength photon may, on the average, differ from those induced by shorter-wavelength photons. It may also explain the lower quantum yield for the killing of cells by wavelengths above 300 nm compared to that by shorter wavelengths.

  10. Simultaneous three-wavelength continuous wave laser at 946 nm, 1319 nm and 1064 nm in Nd:YAG

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Zhao, Lianshui; Zhai, Pei; Xia, Jing; Fu, Xihong; Li, Shutao

    2013-01-01

    A continuous-wave (cw) diode-end-pumped Nd:YAG laser that generates simultaneous laser at the wavelengths 946 nm, 1319 nm and 1064 nm is demonstrated. The optimum oscillation condition for the simultaneous three-wavelength operation has been derived. Using the separation of the three output couplers, we obtained the maximum output powers of 0.24 W at 946 nm, 1.07 W at 1319 nm and 1.88 W at 1064 nm at the absorbed pump power of 11.2 W. A total output power of 3.19 W for the three-wavelength was achieved at the absorbed pump power of 11.2 W with optical conversion efficiency of 28.5%.

  11. Commercial Parts Radiation Testing

    DTIC Science & Technology

    2015-01-13

    AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSE/Keith Avery 1 cy ... AFRL -RV-PS- AFRL -RV-PS- TR-2014-0172 TR-2014-0172 COMMERCIAL PARTS RADIATION TESTING Craig J. Kief COSMIAC at UNM 2350 Alamo Avenue SE Suite 300...Vehicles Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE

  12. Laser cooling of beryllium ions using a frequency-doubled 626 nm diode laser.

    PubMed

    Cozijn, F M J; Biesheuvel, J; Flores, A S; Ubachs, W; Blume, G; Wicht, A; Paschke, K; Erbert, G; Koelemeij, J C J

    2013-07-01

    We demonstrate laser cooling of trapped beryllium ions at 313 nm using a frequency-doubled extended cavity diode laser operated at 626 nm, obtained by cooling a ridge waveguide diode laser chip to -31°C. Up to 32 mW of narrowband 626 nm laser radiation is obtained. After passage through an optical isolator and beam shaping optics, 14 mW of 626 nm power remains of which 70% is coupled into an external enhancement cavity containing a nonlinear crystal for second-harmonic generation. We produce up to 35 μW of 313 nm radiation, which is subsequently used to laser cool and detect 6×10(2) beryllium ions, stored in a linear Paul trap, to a temperature of about 10 mK, as evidenced by the formation of Coulomb crystals. Our setup offers a simple and affordable alternative for Doppler cooling, optical pumping, and detection to presently used laser systems.

  13. Cumulative reduction of primary skin tumor growth in UV-irradiated mice by the combination of retinyl palmitate and canthaxanthin.

    PubMed

    Gensler, H L; Aickin, M; Peng, Y M

    1990-08-01

    The effects of dietary supplementation with retinyl palmitate, canthaxanthin, or the combination of both, on photocarcinogenesis was determined in pigmented C3H/HeN mice. The basal diet was the American Institute of Nutrition Diet 76A, to which was added 120 IU of retinyl palmitate per g diet, 1% canthaxanthin, or the combination of both. Administration of the diets began 18 weeks before the first UVB radiation (280-320 nm) treatment and continued throughout the study. The UV source was a bank of 6 Westinghouse FS40 lamps which delivered to the mice a total dose of 9.9 x 10(5) J/m2, delivered over 24 weeks. These diets significantly reduced the tumor burden per mouse induced by UV irradiation, however they did not influence tumor incidence. The combination of retinyl palmitate plus canthaxanthin was more effective than either agent alone at reducing autochthonous tumor growth, a result which has not been previously reported.

  14. New antireflective coatings for 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Xu, Gu; Guerrero, Douglas J.; Dobson, Norman

    1998-06-01

    New bottom antireflective coatings (BARCs) for 193 nm lithography have been recently developed by Brewer Science Inc. Copolymers of benzyl methacrylate (or benzyl acrylate) and hydroxypropyl methacrylate have been synthesized and used as a main component in 193 nm BARCs. The acrylic copolymers have strong absorbance at 193 nm UV light wavelength. The 193 nm BARCs were formulated in safe solvents such as ethyl lactate and formed by spin-on coating process. Thermosetting of the 193 nm BARCs limited their intermixing with photoresists. These 193 nm BARCs had optical density of about 10 micrometers -1, k equals 0.35, and n equals 1.81. Preliminary oxygen plasma etch rates were > 1.5 times DUV resists. Good profiles at small feature sizes (< 0.20 micrometers ) were achieved with tested photoresists.

  15. Photoinitiated oxidation of geosmin and 2-methylisoborneol by irradiation with 254 nm and 185 nm UV light.

    PubMed

    Kutschera, Kristin; Börnick, Hilmar; Worch, Eckhard

    2009-05-01

    The degradation of geosmin and 2-methylisoborneol (2-MIB) by UV irradiation at different wavelengths was investigated under varying boundary conditions. The results showed that conventional UV radiation (254 nm) is ineffective in removing these compounds from water. In contrast to the usual UV radiation UV/VUV radiation (254+185 nm) was more effective in the removal of the taste and odour compounds. The degradation could be described by a simple pseudo first-order rate law with rate constants of about 1.2 x 10(-3) m(2)J(-1) for geosmin and 2-MIB in ultrapure water. In natural water used for drinking water abstraction the rate constants decreased to 2.7 x 10(-4) m(2)J(-1) for geosmin and 2.5 x 10(-4) m(2)J(-1) for 2-MIB due to the presence of NOM. Additionally, the formation of the by-product nitrite was studied. In the UV/VUV irradiation process up to 0.6 mg L(-1) nitrite was formed during the complete photoinitiated oxidation of the odour compounds. However, the addition of low ozone doses could prevent the formation of nitrite in the UV/VUV irradiation experiments.

  16. Time-resolved hydrino continuum transitions with cutoffs at 22.8 nm and 10.1 nm

    NASA Astrophysics Data System (ADS)

    Mills, R. L.; Lu, Y.

    2011-09-01

    Spectra of low energy, high current pinch discharges in pure hydrogen, oxygen, nitrogen, and helium were recorded in the EUV region, and continuum radiation was only observed from hydrogen [www.blacklightpower.com/pdf/GEN3_Harvard.pdf; Int. J. Hydrogen Energy 35, 8446 (2010); Cent. Eur. J. Phys. 8, 318 (2010)]. The continuum radiation bands at 10.1 and 22.8 nm and going to longer wavelengths for theoretically predicted transitions of hydrogen to lower-energy, so called "hydrino" states, was observed first at blacklight power, Inc. (BLP) and reproduced at the Harvard center for astrophysics (CfA). Considering the low energy of 5.2 J per pulse, the observed radiation in the energy range of about 120 eV to 40 eV and reference experiments, no conventional explanation was found to be plausible, including electrode metal emission, Bremsstrahlung radiation, ion recombination, molecular or molecular ion band radiation, and instrument artifacts involving radicals and energetic ions reacting at the CCD and H2 re-radiation at the detector chamber. To further study these continuum bands assigned to hydrinos, time resolved spectra were performed that showed a unique delay of the continuum radiation of about 0.1 μs and a duration of < 2 μs following the high-voltage pulse consistent with the mechanism of recombination to form the optimal high-density atomic hydrogen in the pinch that permits the H-H interactions to cause the hydrino transitions and corresponding emission.

  17. Pattern transfer processes for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Miyoshi, Seiro; Furukawa, Takamitsu; Watanabe, Hiroyuki; Irie, Shigeo; Itani, Toshiro

    2002-07-01

    We describe and evaluate three kinds of pattern transfer processes that are suitable for 157-nm lithography. These transfer processes are 1) a hard mask (HM) process using SiO as a HM material, 2) a HM process using an organic bottom anti-reflecting coating (BARC)/SiN structure, and 3) a bi- layer process using a silicon-containing resist and an organic film as the bottom layer. In all of these processes, the underlayer fo the resist acts as an anti-reflecting layer. For the HM processes, we patterned a newly developed fluorine-containing resist using a 157-nm microstepper, and transferred the resist patterns to the hard mask by reactive ion etching (RIE) with minimal critical dimension shift. Using the HM pattern, we then fabricated a 65nm Wsi/poly-Si gate pattern using a high-NA microstepper (NA=0.85). With the bi-layer process, we transferred a 60nm 1:1 lines and spaces pattern of a newly developed silicon-containing resist to a 300nm-thick organic film by RIE. The fabrication of a 65nm 1:1 gate pattern and 60nm 1:1 organic film patten clearly demonstrated that 157-nm lithography is the best candidate for fabricating sub-70nm node devices.

  18. Can DUV take us below 100 nm?

    NASA Astrophysics Data System (ADS)

    Finders, Jo; Jorritsma, Louis; Eurlings, Mark; Moerman, Richard; van Greevenbroek, Henk; van Schoot, Jan B.; Flagello, Donis G.; Socha, Robert J.; Stammler, Thomas

    2001-09-01

    Currently, the 130 nm SIA node is being implemented at leading edge semiconductor manufacturing facilities. Previously, this node appeared to be the insertion point for 193 nm lithography. However, it is evident that for the majority of applications 248 nm will be the wavelength of choice. This once again raises the question how far DUV lithography (248 nm) will take us. To investigate this, overlay, imaging and productivity related issues have to be considered. Although these items become more and more linked at low k1-factors (e.g. overlay and imaging), this paper will focus on some of the imaging related topics.

  19. Lithography strategy for 65-nm node

    NASA Astrophysics Data System (ADS)

    Borodovsky, Yan A.; Schenker, Richard E.; Allen, Gary A.; Tejnil, Edita; Hwang, David H.; Lo, Fu-Chang; Singh, Vivek K.; Gleason, Robert E.; Brandenburg, Joseph E.; Bigwood, Robert M.

    2002-07-01

    Intel will start high volume manufacturing (HVM) of the 65nm node in 2005. Microprocessor density and performance trends will continue to follow Moore's law and cost-effective patterning solutions capable of supporting it have to be found, demonstrated and developed during 2002-2004. Given the uncertainty regarding the readiness and respective capabilities of 157nm and 193nm lithography to support 65nm technology requirements, Intel is developing both lithographic options and corresponding infrastructure with the intent to use both options in manufacturing. Development and use of dual lithographic options for a given technology node in manufacturing is not a new paradigm for Intel: whenever introduction of a new exposure wavelength presented excessive risk to the manufacturing schedule, Intel developed parallel patterning approaches in time for the manufacturing ramp. Both I-line and 248nm patterning solutions were developed and successfully used in manufacturing of the 350nm node at Intel. Similarly, 248nm and 193nm patterning solutions were fully developed for 130nm node high volume manufacturing.

  20. Experimental study of 248nm excimer laser etching of alumina

    NASA Astrophysics Data System (ADS)

    Hu, Hongtao; Shao, Jingzhen; Wang, Xi; Fang, Xiaodong

    2016-10-01

    The 248 nm excimer laser etching characteristic of alumina ceramic and sapphire had been studied using different laser fluence and different number of pulses. And the interaction mechanism of 248 nm excimer laser with alumina ceramic and sapphire had been analyzed. The results showed that when the laser fluence was less than 8 J/cm2, the etching depth of alumina ceramic and sapphire were increased with the increase of laser fluence and number of pulses. At the high number pulses and high-energy, the surface of the sapphire had no obvious melting phenomenon, and the alumina ceramic appeared obvious melting phenomenon. The interaction mechanism of excimer laser with alumina ceramics and sapphire was mainly two-photon absorption. But because of the existence of impurities and defects, the coupling between the laser radiation and ceramic and sapphire was strong, and the thermal evaporation mechanism was also obvious.

  1. Performance of Thin Borosilicate Glass Sheets at 351-nm

    SciTech Connect

    Whitman, P K; Hahn, D; Soules, T; Norton, M; Dixit, S; Donohue, G; Folta, J; Hollingsworth, W; Mainschein-Cline, M

    2004-11-11

    Previously, we reported preliminary results for commercial thin borosilicate glass sheets evaluated for use as a frequently-replaced optic to separate the radiation and contamination produced by the inertial confinement fusion experiments in the National Ignition Facility target chamber from the expensive precision laser optics which focus and shape the 351-nm laser beam. The goal is identification of low cost substrates that can deliver acceptable beam energy and focal spots to the target. The two parameters that dominate the transmitted beam quality are the transmitted wave front error and 351-nm absorption. Commercial materials and fabrication processes have now been identified which meet the beam energy and focus requirements for all of the missions planned for the National Ignition Facility. We present the first data for use of such an optic on the National Ignition Facility laser.

  2. Wavelength Dependence in the Analysis of Carbon Content in Coal by Nanosecond 266 nm and 1064 nm Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiongwei; Wang, Zhe; Fu, Yangting; Li, Zheng; Ni, Weidou

    2015-08-01

    The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength laser ablation, the 266 nm wavelength laser ablation has less thermal effects, resulting in a better crater morphology on the coal pellets. Besides, the 266 nm wavelength laser ablation also provides better laser-sample coupling and less plasma shielding, resulting in a higher carbon line intensity and better signal reproducibility. The carbon contents in the bituminous coal samples have better linearity with the line intensities of atomic carbon measured by the 266 nm wavelength than those measured by the 1064 nm wavelength. The partial least square (PLS) model was established for the quantitative analysis of the carbon content in coal samples by LIBS. The results show that both of the 266 nm and 1064 nm wavelengths are capable of achieving good performance for the quantitative analysis of carbon content in coal using the PLS method. supported by National Natural Science Foundation of China (No. 51276100) and National Basic Research Program of China (973 Program) (No. 2013CB228501)

  3. Sub-70 nm resolution tabletop microscopy at 13.8 nm using a compact laser-plasma EUV source.

    PubMed

    Wachulak, Przemyslaw W; Bartnik, Andrzej; Fiedorowicz, Henryk

    2010-07-15

    We report the first (to our knowledge) demonstration of a tabletop, extreme UV (EUV) transmission microscope at 13.8 nm wavelength with a spatial (half-pitch) resolution of 69 nm. In the experiment, a compact laser-plasma EUV source based on a gas puff target is applied to illuminate an object. A multilayer ellipsoidal mirror is used to focus quasi-monochromatic EUV radiation onto the object, while a Fresnel zone plate objective forms the image. The experiment and the spatial resolution measurements, based on a knife-edge test, are described. The results might be useful for the realization of a compact high-resolution tabletop imaging systems for actinic defect characterization.

  4. UV Generation of 25 mJ/pulse at 289 nm for Ozone Lidar

    NASA Technical Reports Server (NTRS)

    Storm, Mark E.; Marsh, Waverly; Barnes, James C.

    1998-01-01

    Our paper describes a technique for generating tunable UV laser radiation between 250-300 nm capable of energies up to 30-5O mJ/pulse. The tunability of this source is attractive for selecting ozone absorption cross sections which are optimal for ozone DIAL detection throughout the troposphere. A Nd:YAG laser is used to pump a pulsed titanium sapphire laser which is then frequency tripled into the UV. Titanium sapphire (TiS) lases robustly between 750-900 nm. In initial experiments we have converted 110 mJ of 867 nm from a TiS laser into 28 mJ at 289 nm. The energy conversion efficiency was 62% for doubling into 433 nm and 25% into 289 nm.

  5. Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Xia, Jing; Liu, Huilong; Pu, Xiaoyun

    2014-10-01

    We report a diode-pumped continuous-wave (cw) triple-wavelength Nd:YVO4 laser operating at 914, 1084, and 1086 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous triple-wavelength laser. Using a T-shaped cavity, we realized an efficient triple-wavelength operation at 4F3/2→4I9/2 and 4F3/2→4I11/2 transitions for Nd:YVO4 crystal, simultaneously. At an absorbed pump power of 16 W (or 25 W of incident pump power), the maximum output power was 2.3 W, which included 914 nm, 1084 nm, and 1086 nm three wavelengths, and the optical conversion efficiency with respect to the absorbed pump power was 14.4%.

  6. Final report on the torque comparison EURAMET.M.T-S2, measurand torque: 10 N.m, 20 N.m, 40 N.m, 60 N.m, 80 N.m, and 100 N.m

    NASA Astrophysics Data System (ADS)

    Röske, Dirk

    2017-01-01

    The purpose of the EURAMET comparison EURAMET.M.T-S2 was to compare the measuring capabilities up to 100 N.m of a reference-type torque calibration machine of ZAG, Slovenia, with the torque standard machine of the Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany) acting as pilot laboratory. A very stable TT1 torque transducer with well-known properties and two torque measuring bridges was used as travelling standard. According to the technical protocol, torque steps of at least 10 N.m, 20 N.m, 40 N.m, 60 N.m, 80 N.m, and 100 N.m had to be measured both in clockwise and anticlockwise directions. For each of the torque steps and both senses of direction of the torque vector, En values were calculated. The results are in general in good agreement with the claimed measurement uncertainties except for the very first measurement at ZAG with additional support and four plate couplings. It seems to be sufficient in a vertical set-up (vertical torque axis) to use only two flexible couplings and there is no need for a further support between the transducers. The measurements with two couplings fulfill the requirement to the En value and support ZAG's claimed uncertainties of measurement. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. Sub-70-nm pattern fabrication using an alternating phase-shifting mask in 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Irie, Shigeo; Kanda, Noriyoshi; Watanabe, Kunio; Suganaga, Toshifumi; Itani, Toshiro

    2002-07-01

    In Selete, we have developed various resolution-enhancement technologies (RETs) such as the alternating phase shifting mask (alt-PSM), attenuated-PSM (att-PSM), and off-axis illumination (OAI). The alt-PSM, for example, reduces the k1 factor and extends the lithographic performance. A problem concerning the alt-PSM is the difference in the transmitted light intensities of the non-phase-shifting region and the phase-shifting region which can cause critical-dimension (CD) placement error. The transmitted light intensities of the two regions can be made equal by side-etching, in which the quartz (Qz) is undercut by wet-etching at the side of the transmitting region. We sought to optimize the mask structure in terms of a high numerical aperture (NA) through a simulation using two kinds of structures with a 157 nm exposure wavelength. The structures were a single-trench structure and a dual-trench structure, with each trench dug in the transmitting region. To attain a high NA (NA equals 0.85), we tried to optimize the parameters of the Cr film thickness, the amount of the undercut (side-etching), and the phase shift. The evaluated line pattern sizes were 70 nm (line/space size equals 70/70 nm, 70/140 nm, 70/210 nm, and 70/350 nm) and 50 nm (line/space size equals 50/50 nm, 50/100 nm, 50/150 nm, and 50/250 nm) at the wafer. Further, using the optimized mask, we calculated the lithographic margin of a sub 70 nm pattern through a simulation. For the 70 nm line patterns, we found that it will be difficult to fabricate precisely a 70 nm line patten using a mask with a single- trench structure. And we also found that the most suitable conditions for the dual-trench structure mask were a 90 nm undercut, a 100 nm Cr film thickness, and a 180 degree(s) phase shift. The exposure latitude at a depth of focus (DOF) of 0.3 micrometers , simulated using the optimized mask, was 5.3% for the 70/70 nm pattern, 3.6% for 70/140 nm 16.0% for 70/210 nm, and 29.3% for 70/350 nm. As the pitch

  8. Sub-10 nm nanopantography

    SciTech Connect

    Tian, Siyuan Donnelly, Vincent M. E-mail: economou@uh.edu; Economou, Demetre J. E-mail: economou@uh.edu; Ruchhoeft, Paul

    2015-11-09

    Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

  9. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  10. Radiation dosimetry.

    PubMed Central

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists. PMID:2040250

  11. UV RADIATION EFFECTS ON MICROBES AND MICROBIAL PROCESSES

    EPA Science Inventory

    The ultraviolet (UV) region of solar radiation is defined as wavelengths in the range of 200 to 400 nm. In contrast to visible radiation (400 - 800 nm), which has a well-defined role as the energy source for most of the Earth's primary production, the effects of UV radiation on b...

  12. Coherent quasi-CW 153-nm light source at high repetition rate

    NASA Astrophysics Data System (ADS)

    Nomura, Yutaka; Ito, Yoshiaki; Ozawa, Akira; Wang, Xiaoyang; Chen, Chuangtian; Shin, Shik; Watanabe, Shuntaro; Kobayashi, Yohei

    2012-02-01

    We present a quasi-cw laser in vacuum ultraviolet region at megahertz repetition rate. The narrowband pulses generated from an ytterbium-fiber laser system at 33 MHz repetition rate at the central wavelength of 1074 nm is frequency-converted by successive stages of LBO crystals and KBBF crystals. The generated radiation at 153 nm has the shortest wavelength achieved through phase-matched frequency conversion processes in nonlinear optical crystals to our knowledge.

  13. Gallup, NM, CARE Grant Success Story

    EPA Pesticide Factsheets

    A CARE Grant, Level II award, was made to Gallup, NM to focus on cleaning up the waste stream, reuse and recycling of materials, and reclaiming land for these purposes through outreach, education and organization.

  14. Recent progress in 193-nm antireflective coatings

    NASA Astrophysics Data System (ADS)

    Meador, James D.; Guerrero, Douglas J.; Xu, Gu; Shao, Xie; Dobson, Norman; Claypool, James B.; Nowak, Kelly A.

    1999-06-01

    This paper presents the chemistries and properties of organic, spin-on, bottom antireflective coatings (BARCs) that are designed for 193 nm lithography. All of the BARCs are thermosetting and use dye-attached/incorporated polymers. A first generation product, NEXT, will soon be commercialized. NEXT is built form i-line and deep-UV chemistries with the polymeric constituent being a substitute novolac. This product provide outstanding resolution of 0.16 micrometers L/S with several 193 nm photoresists. Second generation chemical platforms under study include acrylics, polyesters, and polyethers with the 193 nm absorbing chromophore being an aromatic function. The performance of selected BARCs from the four platforms is described, including: optical properties, 193 nm litho, plasma etch rates, Prolith modeling data, spin-bowl and waste line compatibility, and ambient stability.

  15. A 4 to 0.1 nm FEL Based on the SLAC Linac

    SciTech Connect

    Pellegrini, C.; /UCLA

    2012-06-05

    The author show that using existing electron gun technology and a high energy linac like the one at SLAC, it is possible to build a Free Electron Laser operating around the 4 nm water window. A modest improvement in the gun performance would further allow to extend the FEL to the 0.1 nm region. Such a system would produce radiation with a brightness many order of magnitude above that of any synchrotron radiation source, existing or under construction, with laser power in the multigawatt region and subpicosecond pulse length.

  16. Infrared Radiative Properties of Food Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precisely, infrared radiation is electromagnetic radiation whose wavelength is longer than that of visible light, but shorter than that of terahertz radiation and microwaves. The infrared portion of the electromagnetic spectrum spans roughly three orders of magnitude (750 nm to 100 µm) and has been...

  17. Fabrication of sub-10 nm metal nanowire arrays with sub-1 nm critical dimension control

    NASA Astrophysics Data System (ADS)

    Pi, Shuang; Lin, Peng; Xia, Qiangfei

    2016-11-01

    Sub-10 nm metal nanowire arrays are important electrodes for building high density emerging ‘beyond CMOS’ devices. We made Pt nanowire arrays with sub-10 nm feature size using nanoimprint lithography on silicon substrates with 100 nm thick thermal oxide. We further studied the critical dimension (CD) evolution in the fabrication procedure and achieved 0.4 nm CD control, providing a viable solution to the imprint lithography CD challenge as specified by the international technology roadmap for semiconductors. Finally, we fabricated Pt/TiO2/Pt memristor crossbar arrays with the 8 nm electrodes, demonstrating great potential in dimension scaling of this emerging device.

  18. Compact 498-nm light source based on intracavity sum-frequency Nd:GGG laser

    NASA Astrophysics Data System (ADS)

    Wang, A. G.; Li, Y. L.

    2011-08-01

    We report a coherent cyan radiation at 498 nm by intracavity sum-frequency generation of the 937 and 1062 nm laser-lines of the Nd:GGG crystal. With a diode pump power of 18.2 W, the maximum cyan output power of 186 mW is obtained. The beam quality M2 value is 1.22 in the horizontal plane. The output power stability over 30 min is better than 5%. To the best of our knowledge, this is first work on intracavity sum-frequency generation of a diode pumped Nd:GGG laser at 498 nm.

  19. Modeling of Tm-doped ZBLAN blue upconversion fiber lasers operating at 455 nm

    NASA Astrophysics Data System (ADS)

    Brunet, Francois; Laperle, Pierre; Vallee, Real; LaRochelle, Sophie; Pujol, Lionel

    1999-12-01

    We present a model for 455-nm thulium-doped fluorozirconate fiber lasers co-pumped at 645 nm and 1064 nm. Twelve radiative transitions are accounted for in our model, along with cross- relaxation and cooperative upconversion processes. Blue laser output power is computed using a rate equation analysis. Relevant spectroscopic data used in our model are given, including cross-section measurements that we have performed. The results of our simulation show a good agreement with previously published experimental data. The importance of cross-relaxation processes is discussed. The dependence of output laser power on fiber length, output mirror reflectivity, and pump powers is also addressed.

  20. 494 nm blue laser based on sum-frequency mixing of diode pumped Nd3+ lasers

    NASA Astrophysics Data System (ADS)

    Zou, J.; Wang, L. R.

    2012-02-01

    We report for the first time a continuous-wave (CW) blue radiation at 494 nm by intracavity sumfrequency generation of 912 nm Nd:GdVO4 laser and 1079 nm Nd:YAlO3 (Nd:YAP) laser. Using type-I critical phase matching LiB3O5 (LBO) crystal, 494 nm blue laser was obtained by 912 and 1079 nm intra-cavity sum-frequency mixing, and output power of 179 mW was demonstrated. At the output power level of 179 mW, the output power stability is better than 3.5% and laser beam quality M 2 factor is 1.21.

  1. An anti-reflection coating for use with PMMA at 193 nm

    NASA Technical Reports Server (NTRS)

    Yen, Anthony; Smith, Henry I.; Schattenburg, M. L.; Taylor, Gary N.

    1992-01-01

    An antireflection coating (ARC) for use with poly(methyl methacrylate) (PMMA) resist for ArF excimer laser lithography (193 nm) was formulated. It consists of PMMA and a bis-azide, 4.4-prime-diazidodiphenyl sulfone (DDS) which crosslinks the film after deep UV (260 nm) irradiation and subsequent annealing. The reacted DDS then serves as the absorber for the 193 nm radiation and also prevents mixing of the ARC and PMMA during PMMA spin-coating and development. The effectiveness of the ARC was demonstrated by exposing, in PMMA, using achromatic holographic lithography, gratings of 100 nm period (about 50 nm linewidth) that are almost entirely free of an orthogonal standing wave.

  2. 810nm, 980nm, 1470nm and 1950nm diode laser comparison: a preliminary "ex vivo" study on oral soft tissues

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Merigo, Elisabetta; Sozzi, Michele; Selleri, Stefano; Vescovi, Paolo; Cucinotta, Annamaria

    2015-02-01

    The introduction of diode lasers in dentistry has several advantages, mainly consisting on the reduced size, reduced cost and possibility to beam delivering by optical fibers. At the moment the two diode wavelengths normally utilized in the dental field are 810 and 980 nm for soft tissues treatments. The aim of this study was to compare the efficacy of four different diode wavelengths: 810, 980, 1470 and 1950 nm diode laser for the ablation of soft tissues. Several samples of veal tongue were exposed to the four different wavelengths, at different fluences. The internal temperature of the soft tissues, in the area close to the beam, was monitored with thermocouple during the experiment. The excision quality of the exposed samples have been characterized by means of an optical microscope. Tissue damages and the cut regularity have been evaluated on the base of established criteria. The lowest thermal increase was recorded for 1950 nm laser. Best quality and speed of incision were obtained by the same wavelength. By evaluating epithelial, stromal and vascular damages for all the used wavelengths, the best result, in terms of "tissue respect", have been obtained for 1470 and 1950 nm exposures. From the obtained results 1470 and 1950 nm diode laser showed to be the best performer wavelengths among these used in this "ex vivo" study, probably due to their greatest affinity to water.

  3. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  4. 14nm M1 triple patterning

    NASA Astrophysics Data System (ADS)

    Li, Qiao; Ghosh, Pradiptya; Abercrombie, David; LaCour, Pat; Kanodia, Suniti

    2012-03-01

    With 20nm production becoming a reality, research has started to focus on the technology needs for 14nm. The LELE double patterning used in 20nm production will not be able to resolve M1 for 14nm. Main competing enabling technologies for the 14nm M1 are SADP, EUV, and LELELE (referred as LE3 thereafter) triple patterning. SADP has a number of concerns of 1. density, as a layout geometry needs to stay complete as a whole, and can not be broken; 2. the complexity in SADP mask generation and debug feedback to designers; 3. the subtraction nature of the trim mask further complicates OPC and yield. While EUV does not share those concerns, it faces significant challenges on the manufacturing equipment side. Of the SADP concerns, LE3 only shares that of complexity involved in mask generation and intuitive debug feedback mechanism. It does not require a layout geometry to stay as a whole, and it benefits from the affinity to LELE which is being deployed for 20nm production. From a process point of view, this benefit from affinity to LELE is tremendous due to the data and knowledge that have been collected and will be coming from the LELE deployment. In this paper, we first recount the computational complexity of the 3-colorability problem which is an integral part of a LE3 solution. We then describe graph characteristics that can be exploited such that 3-colorability is equivalent under divide-and-conquer. Also outlined are heuristics, which are generally applied in solving computationally intractable problems, for the 3-colorability problem, and the importance in choosing appropriate worst-case exponential runtime algorithms. This paper concludes with a discussion on the new hierarchical problem that faces 3-colorability but not 2-colorability and proposals for non-3-colorability feedback mechanism.

  5. Comparative study of Nd:KGW lasers pumped at 808 nm and 877 nm

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Ge, Wen-Qi; Zhao, Tian-Zhuo; He, Jian-Guo; Feng, Chen-Yong; Fan, Zhong-Wei

    2015-10-01

    The laser performance and thermal analysis of Nd:KGW laser continuously pumped by 808 nm and 877 nm are comparatively investigated. Output power of 670 mW and 1587 mW, with nearly TEM00 mode, are achieved respectively at 808 nm pump and 877 nm pump. Meanwhile, a high-power passively Q-switched Nd:KGW/Cr4+:YAG laser pumped at 877 nm is demonstrated. An average output power of 1495 mW is obtained at pump power of 5.22 W while the laser is operating at repetition of 53.17 kHz. We demonstrate that 877 nm diode laser is a more potential pump source for Nd:KGW lasers.

  6. Radiation Belt Dynamics

    DTIC Science & Technology

    2015-12-27

    is unlimited. 15 DISTRIBUTION LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117... AFRL -RV-PS- AFRL -RV-PS- TR-2016-0007 TR-2016-0007 RADIATION BELT DYNAMICS Jay M. Albert, et al. 27 December 2015 Final Report APPROVED FOR... KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data included in this

  7. Synthesis of fluorinated materials for 193-nm immersion lithography and 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Yamashita, T.; Ishikawa, T.; Yoshida, T.; Hayamai, T.; Araki, Takayuki; Aoyama, H.; Hagiwara, T.; Itani, Toshiro; Fujii, Kiyoshi

    2005-05-01

    Various fluorinated polymers were synthesized for application in 193-nm immersion lithography with the goal of improving 157-nm photoresist performance. Their fundamental properties were characterized, such as transparency at 193-nm and 157-nm (wavelength) and solubility in water and a standard alkaline developer. High transparency, i.e., absorbance better than 0.3 μm-1 at 193-nm wavelength, was achieved. The dissolution behaviors of them were studied by using the Quartz Crystal Microbalance (QCM) method. We find that the dissolution rate of Poly(norbornene-2-fluoro-2-hexafluoroalchol) (PNB1FVIP) in 0.065N tetramethylammonium hydroxide (TMAH) was >200 times (nm/s) faster than that of the copolymer of tetrafluoroethylene (TFE) and norbornene-2-fluoro-2-hexafluoroalchol (TFE/NB1FVIP). A resist based on TFE/NB1FVIP was able to delineate 75 nm dense lines by exposure at 193-nm (wavelength) with an alternating phase shift mask using a 0.75 NA ArF scanner. The dissolution rates of the fluoropolymers in water and a 0.262N and 0.065 TMAH can be controlled by optimizing counter monomers containing hexafluoroisopropanol (HFA) unit, carboxylic acid unit and so on. In addition, we have collect water contact angle data. This data shows that fluoropolymers can be used as resist cover materials for 193-nm immersion lithography.

  8. First Experiences with Chip Development on the Commercial STM 65 nm Process

    NASA Astrophysics Data System (ADS)

    Syed, M.; Helfers, T.; Baumgarte, V.; Papadas, C.

    2013-08-01

    Currently Astrium GmbH is involved in the High Performance Data Processor (HPDP) development programme targeting the implementation of the commercially available reconfigurable array processor IP (XPP from the company PACT XPP Technologies) in a radiation hardened technology. In the current complementary development phase, it is planned to prototype the HPDP chip in commercial STM 65 nm technology. The idea behind this prototyping approach is not only to verify the functionality of the HPDP chip design, but also to get accustomed to the chip development flow of the future European deep sub-micron process. The prototyping is being carried out within the ESA Greek Industry Incentive Scheme by Integrated Systems Development (ISD). It is estimated that the HPDP prototype chip will be available in Q3 of 2013. As the STM 65nm process is planned to be made available as a radiation hardened process in the near future, the current exercise enables Astrium to gain experience with using this technology, to get accustomed to the STM development flow, to identify and avoid any hurdles in the future planned radiation hardened HPDP chip development. The HPDP chip is foreseen by ESA as a candidate for the first manufacturing run of the radiation hardened STM 65nm process. This exercise also assists in identifying any shortcomings of the proposed design methodology for the STM 65nm process.

  9. Radiation Therapy

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Radiation Therapy KidsHealth > For Teens > Radiation Therapy A A ... how to cope with side effects. What Is Radiation Therapy? Cancer is a disease that causes cells ...

  10. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.

  11. The 503nm pigment of Escherichia coli

    PubMed Central

    Kamitakahara, Joyce R.; Polglase, W. J.

    1970-01-01

    The yield of cell protein was one-third less for streptomycin-dependent Escherichia coli B than for the wild-type parent strain when both were grown aerobically on a medium with limiting glucose, but anaerobically the yield of protein was similar for both strains. The transient pigment absorbing at 503nm that is known to be present in E. coli and other organisms was not detectable in streptomycin-dependent mutants nor in a non-dependent (energy-deficient) revertant. When wild-type E. coli B was grown on limiting glucose–salts medium containing 2,4 dinitrophenol, the yield of cell protein was decreased and formation of the 503nm pigment was inhibited. Fumarase, aconitase and glucose 6-phosphate dehydrogenase were de-repressed in E. coli B cells grown with excess of glucose in a medium containing 2,4-dinitrophenol. In air-oxidized, wild-type E. coli B cells, the 503nm pigment appeared before reduced cytochromes when gluconate was the substrate but failed to appear when succinate was the substrate. The results provide evidence for a role of the 503nm pigment in aerobic energy metabolism, possibly as an electron acceptor from NADPH. PMID:4395501

  12. Laser ablation of polymeric materials at 157 nm

    NASA Astrophysics Data System (ADS)

    Costela, A.; García-Moreno, I.; Florido, F.; Figuera, J. M.; Sastre, R.; Hooker, S. M.; Cashmore, J. S.; Webb, C. E.

    1995-03-01

    Results are presented on the ablation by 157 nm laser radiation of polytetrafluoroethylene (PTFE), polyimide, polyhydroxybutyrate (PHB), poly(methyl methacrylate) (PMMA), and poly(2-hydroxyethyl methacrylate) with 1% of ethylene glycol dimethacrylate as a crosslinking monomer. Direct photoetching of PHB and undoped PTFE is demonstrated for laser fluences ranging from 0.05 to 0.8 J/cm2. The dependence of the ablation process on the polymer structure is analyzed, and insight into the ablation mechanism is gained from an analysis of the data using Beer-Lambert's law and the kinetic model of the moving interface. Consideration of the absorbed energy density required to initiate significant ablation suggests that the photoetching mechanism is similar for all the polymers studied.

  13. High power terahertz generation using 1550 nm plasmonic photomixers

    SciTech Connect

    Berry, Christopher W.; Hashemi, Mohammad R.; Jarrahi, Mona; Preu, Sascha; Lu, Hong; Gossard, Arthur C.

    2014-07-07

    We present a 1550 nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

  14. Radiation Protection

    MedlinePlus

    Jump to main content US EPA United States Environmental Protection Agency Search Search Radiation Protection Share Facebook Twitter Google+ Pinterest Contact Us Radiation Protection Document Library View ...

  15. Atmospheric radiation

    SciTech Connect

    Harshvardhan, M.R. )

    1991-01-01

    Studies of atmospheric radiative processes are summarized for the period 1987-1990. Topics discussed include radiation modeling; clouds and radiation; radiative effects in dynamics and climate; radiation budget and aerosol effects; and gaseous absorption, particulate scattering and surface reflection. It is concluded that the key developments of the period are a defining of the radiative forcing to the climate system by trace gases and clouds, the recognition that cloud microphysics and morphology need to be incorporated not only into radiation models but also climate models, and the isolation of a few important unsolved theoretical problems in atmospheric radiation.

  16. Generation of third harmonic picosecond pulses at 355 nm by sum frequency mixing in periodically poled MgSLT crystal

    NASA Astrophysics Data System (ADS)

    Kaltenbach, André; Schönau, Thomas; Lauritsen, Kristian; Tränkle, Günther; Erdmann, Rainer

    2015-02-01

    Third harmonic 355nm picosecond pulses are generated by sum frequency mixing in a periodically poled magnesium doped stoichiometric lithium tantalate (PPMgSLT) crystal. The third harmonic generation is based on the 1064nm radiation of a gain-switched distributed feedback (DFB) diode laser which is amplified by a two-stage fiber amplifier. The diode laser is freely triggerable at variable repetition rates up to 80MHz and provides optical pulses of 65 ps FWHM duration and pulse energies in the range of 5 pJ. The 355nm third harmonic generation is realized in a two-step conversion process. First, the 1064nm fundamental radiation is frequency-doubled to 532 nm, afterwards both frequencies are mixed in the PPMgSLT crystal to 355 nm. The UV-radiation shows a pulse width of 60 ps, a good beam profile and stable pulse energy over a wide range of repetition rates by proprietary pump power management. At 355nm a pulse peak power of 5.3W was achieved with 192W pulse peak power of the fundamental radiation.

  17. Prophylaxis and treatment of acute radiation ulcers in rats with low-power infrared laser radiation

    NASA Astrophysics Data System (ADS)

    Kursova, Larisa V.; Kaplan, Michael A.; Nikitina, Rosa G.; Maligina, Antonina I.

    1999-12-01

    Exposure of radiation ulcers in rats to low-power infrared laser radiation (LPLR) (wavelength--890 nm, pulse power--6 W, frequency--150 and 300 Hz, irradiation time--10 min) noticeably accelerates their healing, reduces exudative processes, increases number of specialized cells in wound. Application of LPLR prior to radiation damage decreases ulcer dimensions.

  18. VizieR Online Data Catalog: Thorium spectrum from 250nm to 5500nm (Redman+, 2014)

    NASA Astrophysics Data System (ADS)

    Redman, S. L.; Nave, G.; Sansonetti, C. J.

    2014-04-01

    We observed the spectrum of a commercial sealed Th/Ar HCL running at 25mA for almost 15hr starting on 2011 November 2. The region of observation was limited to between 8500/cm and 28000/cm (360nm and 1200nm) by the sensitivity of the silicon photodiode detector. (5 data files).

  19. 1125-nm quantum dot laser for tonsil thermal therapy

    NASA Astrophysics Data System (ADS)

    McMillan, Kathleen

    2011-03-01

    Thermal therapy has the potential to provide a nonexcisional alternative to tonsillectomy. Clinical implementation requires that the lymphoid tissue of tonsils is heated homogeneously to produce an amount of primary thermal injury that corresponds to gradual postoperative tonsil shrinkage, with minimal risk of damage to underlying critical blood vessels. Optical constants are derived for tonsils from tissue components and used to calculate the depth of 1/e of irradiance. The 1125 nm wavelength is shown to correspond to both deep penetration and minimal absorption by blood. A probe for tonsil thermal therapy that comprises two opposing light emitting, temperature controlled surfaces is described. For ex vivo characterization of tonsil heating, a prototype 1125 nm diode laser is used in an experimental apparatus that splits the laser output into two components, and delivers the radiation to sapphire contact window surfaces of two temperature controlled cells arranged to irradiate human tonsil specimens from opposing directions. Temperatures are measured with thermocouple microprobes at located points within the tissue during and after irradiation. Primary thermal damage corresponding to the recorded thermal histories are calculated from Arrhenius parameters for human tonsils. Results indicate homogeneous heating to temperatures corresponding to the threshold of thermal injury and above can be achieved in advantageously short irradiation times.

  20. Pelvic radiation - discharge

    MedlinePlus

    Radiation of the pelvis - discharge; Cancer treatment - pelvic radiation; Prostate cancer - pelvic radiation; Ovarian cancer - pelvic radiation; Cervical cancer - pelvic radiation; Uterine cancer - pelvic radiation; Rectal cancer - ...

  1. Efficient 1645-nm Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Young, York E.; Setzler, Scott D.; Snell, Kevin J.; Budni, Peter A.; Pollak, Thomas M.; Chicklis, E. P.

    2004-05-01

    We report a resonantly fiber-laser-pumped Er:YAG laser operating at the eye-safe wavelength of 1645 nm, exhibiting 43% optical efficiency and 54% incident slope efficiency and emitting 7-W average power when repetitively Q switched at 10 kHz. To our knowledge, this is the best performance (conversion efficiency and average power) obtained from a bulk solid-state Q-switched erbium laser. At a 1.1-kHz pulse repetition frequency the laser produces 3.4-mJ pulses with a corresponding peak power of 162 kW. Frequency doubling to produce 822.5-nm, 4.7-kW pulses at 10 kHz was performed to demonstrate the laser's utility.

  2. DNA Charge Transport over 34 nm

    PubMed Central

    Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.

    2011-01-01

    Molecular wires show promise in nanoscale electronics but the synthesis of uniform, long conductive molecules is a significant challenge. DNA of precise length, by contrast, is easily synthesized, but its conductivity has not been explored over the distances required for nanoscale devices. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation that is accessible to protein binding. Similar electron transfer rates are measured through 100-mer and 17-mer monolayers, consistent with rate-limiting electron tunneling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses most reports of molecular wires. PMID:21336329

  3. Binary 193nm photomasks aging phenomenon study

    NASA Astrophysics Data System (ADS)

    Dufaye, Félix; Sartelli, Luca; Pogliani, Carlo; Gough, Stuart; Sundermann, Frank; Miyashita, Hiroyuki; Hidenori, Yoshioka; Charras, Nathalie; Brochard, Christophe; Thivolle, Nicolas

    2011-05-01

    193nm binary photomasks are still used in the semiconductor industry for the lithography of some critical layers for the nodes 90nm and 65nm, with high volumes and over long period. These 193nm binary masks seem to be well-known but recent studies have shown surprising degrading effects, like Electric Field induced chromium Migration (EFM) [1] or chromium migration [2] [3] . Phase shift Masks (PSM) or Opaque MoSi On Glass (OMOG) might not be concerned by these effects [4] [6] under certain conditions. In this paper, we will focus our study on two layers gate and metal lines. We will detail the effects of mask aging, with SEM top view pictures revealing a degraded chromium edge profile and TEM chemical analyses demonstrating the growth of a chromium oxide on the sidewall. SEMCD measurements after volume production indicated a modified CD with respect to initial CD data after manufacture. A regression analysis of these CD measurements shows a radial effect, a die effect and an isolated-dense effect. Mask cleaning effectiveness has also been investigated, with sulphate or ozone cleans, to recover the mask quality in terms of CD. In complement, wafer intrafield CD measurements have been performed on the most sensitive structure to monitor the evolution of the aging effect on mask CD uniformity. Mask CD drift have been correlated with exposure dose drift and isolated-dense bias CD drift on wafers. In the end, we will try to propose a physical explanation of this aging phenomenon and a solution to prevent from it occurring.

  4. Laser damage database at 1064 nm

    SciTech Connect

    Rainer, F.; Gonzales, R.P.; Morgan, A.J.

    1990-03-01

    In conjunction with our diversification of laser damage testing capabilities, we have expanded upon a database of threshold measurements and parameter variations at 1064 nm. This includes all tests at low pulse-repetition frequencies (PRF) ranging from single shots to 120 Hz. These tests were conducted on the Reptile laser facility since 1987 and the Variable Pulse Laser (VPL) facility since 1988. Pulse durations ranged from 1 to 16 ns. 10 refs., 14 figs.

  5. Dosimetric analysis for low-level laser therapy (LLLT) of the human inner ear at 593 nm and 633 nm

    NASA Astrophysics Data System (ADS)

    Beyer, Wolfgang; Baumgartner, Reinhold; Tauber, Stefan

    1998-12-01

    The administration of low-level-laserlight for irradiation of the inner ear could represented a new therapeutic model for complex diseases of the inner ear. However, successful therapy requires a well-defined light dosimetry based on a dosimetric analysis of the human cochlea that represents a complex anatomy. The light distribution inside the cochlear windings, produced by an irradiation of the tympanic membrane, was quantitatively measured ex vivo for HeNe laser wavelengths of 593 nm and 633 nm. To obtain the space irradiance within an intact cochlea a correction factor of about 6 has been determined by Monte Carlo calculations. It follows from 3 contributions, first the backscattering of light in the bony parts removed during the preparation procedure of the specimen, second the change of index of refraction from the bony parts to air and third some geometrical factors due to the angular distribution of the radiation. The transmission of light across the tympanic cavity and the promontory depends strongly on the wavelength. Due to the observed spatial intensity variations of a factor 10 and more inside the cochlear windings the optimum external light dose has to be chosen with regard to the tonotopy of the ear.

  6. Mode-locked Nd:YAG laser with output at 1052, 1061, 1064, and 1074 nm

    SciTech Connect

    Badalian, A.A.; Sapondzhian, S.O.; Sarkisian, D.G.; Torosian, G.A.

    1985-10-01

    The picosecond Nd:YAG laser with an output radiation at 1064 nm is currently widely used. However, in connection with many applications, picosecond pulses at other wavelengths are also needed. The present study is, therefore, concerned with the development of a picosecond laser which provides pulses at 1052, 1061.5, and 1073.7 nm. Lasing at 1052, 1061.5, 1064, and 1073.7 nm was achieved by varying the angle between the resonator axis and the normal to the etalon by four degrees. Attention is given to the measurement of the lengths of the ultrashort pulses, and the transverse distribution of the energy in the second harmonic for the wavelength 1052 nm. The discretely tunable picosecond Nd:YAG laser described appears to be a promising tool for many research applications. 9 references.

  7. Quantitative photoabsorption and fluorescence spectroscopy of benzene, naphthalene, and some derivatives at 106-295 nm

    NASA Technical Reports Server (NTRS)

    Suto, Masako; Wang, Xiuyan; Shan, Jun; Lee, L. C.

    1992-01-01

    Photoabsorption and fluorescence cross sections of benzene, (o-, m-, p-) xylenes, naphthalene, 1-methylnaphthalene, and 2-ethylnaphthalene in the gas phase are measured at 106-295 nm using synchrotron radiation as a light source. Fluorescences are observed from the photoexcitation of benzene and xylenes at 230-280 nm and from naphthalene and its derivatives at 190-295 nm. The absolute fluorescence cross section is determined by calibration with respect to the emission intensity of the NO(A-X) system, for which the fluorescence quantum yield is equal to 1. To cross-check the current calibration method, the quantum yield of the SO2(C-X) system at 220-230 nm was measured since it is about equal to 1. The current quantum-yield data are compared with previously published values measured by different methods.

  8. Radiation Effects in Solid Nitrogen

    NASA Astrophysics Data System (ADS)

    Savchenko, E. V.; Khyzhniy, I. V.; Uyutnov, S. A.; Bludov, M. A.; Barabashov, A. P.; Gumenchuk, G. B.; Bondybey, V. E.

    2017-04-01

    The radiation effects and relaxation processes in pre-irradiated by an electron beam solid N2 have been studied with a focus on the behavior of the so far unidentified emission band at 360 nm. The study was performed using optical and current spectroscopy methods: cathodoluminescence and developed by our group nonstationary luminescence, as well as spectrally resolved thermally stimulated luminescence, and thermally stimulated exoelectron emission. The measurements cover the temperature range of the α -phase existence. Activation spectroscopy evidenced connection of the 360 nm band with the neutralization reaction. Possible scenarios of N4+ neutralization via dissociative recombination are discussed, and interpretation of the 360 nm band is suggested.

  9. 75 FR 81437 - Amendment of Class E Airspace; Taos, NM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Taos, NM. Decommissioning of the Ski non-directional beacon (NDB) at Taos Regional Airport, Taos, NM... Taos, NM area. Decommissioning of the Ski NDB and cancellation of the NDB approach at Taos...

  10. Deep ultraviolet (254 nm) focal plane array

    NASA Astrophysics Data System (ADS)

    Cicek, Erdem; Vashaei, Zahra; McClintock, Ryan; Razeghi, Manijeh

    2011-10-01

    We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A/cm2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated.

  11. Laser-induced bulk damage of silica glass at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Kashiwagi, R.; Aramomi, S.

    2016-12-01

    Laser processing machines using Nd:YAG 3rd harmonic wave (355 nm) and 4th harmonic wave (266 nm) have been developed and put into practical use lately. Due to this, optical elements with high laser durability to 355 nm and 266 nm are required. Silica glass is the optical element which has high UV transmission and high laser durability. Laser-induced surface damage of the silica glass has been studied in detail, but we hardly have the significant knowledge of laserinduced bulk damage. This knowledge is required in order to evaluate the silica glass itself. That is because cracks and scratches on the surface give rise to a higher possibility of damage. Therefore, we studied the laser durability of a variety of the silica glass samples by 1-on-1 and S-on-1 laser-induced bulk damage threshold (LIDT) at 355 nm and 266 nm. In this study, we gained knowledge in three areas about bulk damage to the silica glass. First, the LIDT became lower as shot counts increased. Second, the LIDT decreased as the hydroxyl content in the silica glass increased. Last, the LIDT became higher as the hydrogen concentration in the silica glass increased. Under the UV irradiation, impurities are generated and the silica glass absorbs more light. Therefore, the LIDT decreased as shot counts increased. Also, the hydroxyl in particular generates more impurities, so damage easily occurs. On the other hand, the hydrogen reacts with impurities and absorption is suppressed. Based on these results, we can improve laser durability at 355 nm and 266 nm by reducing the hydroxyl content and increasing the hydrogen concentration in the silica glass.

  12. 248nm silicon photoablation: Microstructuring basics

    NASA Astrophysics Data System (ADS)

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M.

    2015-05-01

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  13. Photolysis of formic acid at 355 nm

    NASA Astrophysics Data System (ADS)

    Martinez, Denhi; Bautista, Teonanacatl; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2015-05-01

    Formic acid is well known as a food additive and recently an application on fuel cell technology has emerged. In this work we have studied the dissociative ionization process by multiphoton absorption of formic acid molecules at 355nm wavelength photons, using TOF spectrometry in reflectron mode (R-TOF). Some of the most abundant ionic fragments produced are studied at different settings of the laser harmonic generator. The dependence of the products on these conditions is reported. This work was supported by CONACYT Project 165410 and PAPIIT IN102613 and IN101215.

  14. 248nm silicon photoablation: Microstructuring basics

    SciTech Connect

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M.

    2015-05-15

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  15. Nonlinear absorption properties of DKDP crystal at 263 nm and 351 nm

    NASA Astrophysics Data System (ADS)

    Chai, Xiangxu; Zhu, Qihua; Feng, Bin; Li, Fuquan; Feng, Xi; Wang, Fang; Han, Wei; Wang, Liquan

    2017-02-01

    At the wavelength of 263 nm and 351 nm, the nonlinear absorption curves of 66% deuterated DKDP crystal were measured in the geometries of beam polarizing along the optics axis (E∥Z) and perpendicular to it (E⊥Z). The results indicate that the nonlinear absorption in the E⊥Z geometry is stronger than that in the E∥Z geometry. The nonlinear absorptions at 263 nm and 351 nm are identified to two- and three-photon absorption, respectively. The theoretical fits to the experimental data yields the two-photon absorption coefficients of 0.32 ± 0.03 cm/GW (E⊥Z geometry) and 0.17 ± 0.02 cm/GW (E∥Z geometry) at 263 nm, and the three-photon absorption coefficients of (8.1 ± 1.1) × 10-4 cm3/GW2 (E⊥Z geometry) and (2.2 ± 0.5) × 10-4 cm3/GW2 (E∥Z geometry) at 351 nm.

  16. [Carbonization in endovasal laser obliteration by radial light guide with wavelength of 1470 and 970 nm].

    PubMed

    Shaidakov, E V; Ilyukhin, E A; Grigoryan, A G; Bulatov, V L; Rosukhovsky, D A; Shonov, O A

    2015-01-01

    The authors assessed the effect of carbonization and its influence on the parameters of endovasal laser obliteration (EVLO) depending on wavelength of laser radiation (970 and 1470 nm) using a light guide with radial emission. They also analysed the value of drop of radiation power of the light guide after performing EVLO and visually assessed the degree of damage of the glass tip of the radial fibre by means of ultra-close-up photography. The study comprised a total of 20 patients with varicose disease. A total of ten procedures of EVLO were performed in two modes: mode one - W-laser 1470 nm, mode two - H-laser 970 nm, using fibre with radial emission, an automatic retractor of the light guide. It was determined that the median of power loss after EVLO with W-laser amounted to 0.6 W, and that for H-laser - 3.15 W (p=0.002). Ultra-close-up photography showed pronounced damage of the glass tip of the radial light guide while using H-laser and no damages while using the W-laser. It was proved that using laser radiation with wavelength of 970 nm using the light guide with radial emission leads to pronounced carbonization on the surface of the glass tip of the light guide, its damage, a decrease in radiation power and risk of mechanical destruction of the flask. Using the laser with wavelength of 1470 nm with the use of radial light guide did not result in the development of such negative effects, which increases the service life of laser fibre and makes it possible to use it for obliteration of several segments in one patient.

  17. Space Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.

  18. DNA charge transport over 34 nm

    NASA Astrophysics Data System (ADS)

    Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.

    2011-03-01

    Molecular wires show promise in nanoscale electronics, but the synthesis of uniform, long conductive molecules is a significant challenge. Deoxyribonucleic acid (DNA) of precise length, by contrast, is synthesized easily, but its conductivity over the distances required for nanoscale devices has not been explored. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base-pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation accessible to protein binding. Similar electron-transfer rates measured through 100-mer and 17-mer monolayers are consistent with rate-limiting electron tunnelling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses that of most reports of molecular wires.

  19. Diode-pumped quasi-three-level Nd:GdV O4-Nd:YAG sum-frequency laser at 464 nm

    NASA Astrophysics Data System (ADS)

    Lu, Jie

    2014-04-01

    We report a laser architecture to obtain continuous-wave (cw) blue radiation at 464 nm. A 808 nm diode pumped a Nd:GdV O4 crystal emitting at 912 nm. A part of the pump power was then absorbed by the Nd:GdV O4 crystal. The remainder was used to pump a Nd:YAG crystal emitting at 946 nm. Intracavity sum-frequency mixing at 912 and 946 nm was then realized in a LiB3O5 (LBO) crystal to produce blue radiation. We obtained a cw output power of 1.52 W at 464 nm with a pump laser diode emitting 18.4 W at 808 nm.

  20. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  1. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  2. The cause of spatial structure in solar He i 1083 nm multiplet images

    NASA Astrophysics Data System (ADS)

    Leenaarts, Jorrit; Golding, Thomas; Carlsson, Mats; Libbrecht, Tine; Joshi, Jayant

    2016-10-01

    Context. The He i 1083 nm is a powerful diagnostic for inferring properties of the upper solar chromosphere, in particular for the magnetic field. The basic formation of the line in one-dimensional models is well understood, but the influence of the complex three-dimensional structure of the chromosphere and corona has however never been investigated. This structure must play an essential role because images taken in He i 1083 nm show structures with widths down to 100 km. Aims: We aim to understand the effect of the three-dimensional temperature and density structure in the solar atmosphere on the formation of the He i 1083 nm line. Methods: We solved the non-LTE radiative transfer problem assuming statistical equilibrium for a simple nine-level helium atom that nevertheless captures all essential physics. As a model atmosphere we used a snapshot from a 3D radiation-MHD simulation computed with the Bifrost code. Ionising radiation from the corona was self-consistently taken into account. Results: The emergent intensity in the He i 1083 nm is set by the source function and the opacity in the upper chromosphere. The former is dominated by scattering of photospheric radiation and does not vary much with spatial location. The latter is determined by the photonionisation rate in the He i ground state continuum, as well as the electron density in the chromosphere. The spatial variation of the flux of ionising radiation is caused by the spatially-structured emissivity of the ionising photons from material at T ≈ 100 kK in the transition region. The hotter coronal material produces more ionising photons, but the resulting radiation field is smooth and does not lead to small-scale variation of the UV flux. The corrugation of the transition region further increases the spatial variation of the amount of UV radiation in the chromosphere. Finally we find that variations in the chromospheric electron density also cause strong variation in He i 1083 nm opacity. We compare our

  3. 65nm RadSafe™ Technology for RC64 and Advanced SOCs

    NASA Astrophysics Data System (ADS)

    Liran, Tuvia; Ginosar, Ran; Lange, Fredy; Mandler, Alberto; Aviely, Peleg; Meirov, Henri; Goldberg, Michael; Meister, Zeev; Oliel, Mickey

    2015-09-01

    The trend of scaling of microelectronic provides certain advantages for space components, as well as some challenges. It enables implementing highly integrated and high performance ASICs, reducing power, area and weight. Scaling also improves the immunity to TID and SEL in most cases, but increases soft error rate significantly. Ramon Chips adopted the 65nm technology for implementing RC64 [1,2], a 64 core DSP for space applications, and for making other future products. The 65nm process node is widely used, very mature, and supported by wide range of IP providers. Thus the need for full custom design of cores and IPs is minimized, and radiation hardening is achievable by mitigating the radiation effects on the available IPs, and developing proprietary IPs only for complementing the available IPs. The RadSafe_65TM technology includes hardened standard cells and I/O libraries, methods for mitigation of radiation effects in COTS IP cores (SRAM, PLL, SERDES, DDR2/3 interface) and adding unique cores for monitoring radiation effects and junction temperature. We had developed RADIC6, a technology development vehicle, for verification of all hard cores and verification of the methodologies and design flow required for RC64. RADIC6 includes the test structures for characterizing the IP cores for immunity to all radiation effects. This paper describes the main elements and IP cores of RadSafe_65TM, as well as the contents of RADIC6 test chip.

  4. TCSPC FLIM in the wavelength range from 800 nm to 1700 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Shcheslavsky, Vladislav

    2016-03-01

    Excitation and detection in the wavelength range above 800nm is a convenient and relatively inexpensive way to increase the penetration depth in optical microscopy. Moreover, detection at long wavelength avoids the problem that tissue autofluorescence contaminates the signals from endogenous fluorescence probes. FLIM at NIR wavelength may therefore be complementary to multiphoton microscopy, especially if the lifetimes of NIR fluorophores report biological parameters of the tissue structures they are bound to. Unfortunately, neither the excitation sources nor the detectors of standard confocal and multiphoton laser scanning systems are directly suitable for excitation and detection of NIR fluorescence. Most of these problems can be solved, however, by using ps diode lasers or Ti:Sapphire lasers at their fundamental wavelength, and NIR-sensitive detectors. With NIR-sensitive PMTs the detection wavelength range can be extended up to 900 nm, with InGaAs SPAD detectors up to 1700 nm. Here, we demonstrate the use of a combination of laser scanning, multi-dimensional TCSPC, and advanced excitation sources and detectors for FLIM at up to 1700 nm. The performance was tested at tissue samples incubated with NIR dyes. The fluorescence lifetimes generally get shorter with increasing absorption and emission wavelengths of the dyes. For the cyanine dye IR1061, absorbing around 1060 nm, the lifetime was found to be as short as 70 ps. Nevertheless the fluorescence decay could still be clearly detected. Almost all dyes showed clear lifetime changes depending on the binding to different tissue constituents.

  5. Comparison of 980-nm and 1070-nm in endovenous laser treatment (EVLT)

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Tabakoglu, Ozgur; Ergenoglu, Mehmet U.; Gülsoy, Murat

    2009-07-01

    The use of endovenous laser treatment for varicose veins has been increasing in recent years. It is a safer technique than surgical vein stripping. Its complications (e.g. bruising, pain) are less than the complications of surgical vein stripping. But best parameters such as optimum wavelength, power, and application duration are still under investigation to clarify uncertainties about this technique. To prevent its complications and improve its clinical outcomes, the exact mechanism of it has to be known. The aim of this study is to investigate the effect of different laser wavelengths on endovenous laser therapy. In this study 980-nm diode laser and 1070-nm fiber laser were used. Human veins were irradiated with 980-nm and 1070-nm lasers at 8 W and 10 W to find the optimal power and wavelength. After laser application, remarkable shrinkage was observed. Inner and outer diameters of the veins also narrowed for both of the laser types. 10 W of 980-nm laser application led to better shrinkage results.

  6. Dual illumination OCT at 1050nm and 840nm for whole eye segment imaging

    NASA Astrophysics Data System (ADS)

    Fan, Shanhui; Qin, Lin; Dai, Cuixia; Zhou, Chuanqing

    2014-11-01

    We presented an improved dual channel dual focus spectral domain optical coherence tomography (SD-OCT) with two illuminations at 840 nm and 1050 nm for whole eye segment imaging and biometry in vivo. The two light beams were coupled and optically optimized to scan the anterior and posterior segment of the eye simultaneously. This configuration with dichroic mirrors integrated in the sample arm enables us to acquire images from the anterior segment and retina effectively with minimum loss of sample signal. In addition, the full resolved complex (FRC) method was applied to double the imaging depth for the whole anterior segment imaging by eliminating the mirror image. The axial resolution for 1050 nm and 840 nm OCT was 14 μm and 8 μm in air, respectively. Finally, the system was successfully tested in imaging the unaccommodated and accommodated eyes. The preliminary results demonstrated the significant improvements comparing with our previous dual channel SD-OCT configuration in which the two probing beams had the same central wavelength of 840 nm.

  7. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  8. New single-layer positive photoresists for 193-nm photolithography

    NASA Astrophysics Data System (ADS)

    Okoroanyanwu, Uzodinma; Shimokawa, Tsutomu; Byers, Jeff D.; Medeiros, David R.; Willson, C. Grant; Niu, Qingshang J.; Frechet, Jean M. J.; Allen, Robert D.

    1997-07-01

    New series of chemically amplified, single layer, positive tone photoresists for 193 nm lithography have been developed. These resists were formulated from a series of cycloaliphatic co- and terpolymers of 2-methyl propyl bicyclo(2.2.1)hept-2- ene-5-carboxylate (carbo-tert-butoxynorbornene), bicyclo(2.2.1)hept-2-ene carboxylic acid (norbornene carboxylic acid), 8-methyl-8-carboxy tetracyclo(4,4,0.12,5,17,10)dodec-3-ene (methyltetracyclododecene carboxylic acid), norbornenemethanol, and maleic anhydride, which were synthesized by free radical, vinyl addition and ring opening metathesis polymerization techniques. The polymers derived from ring opening metathesis polymerization have bee successfully hydrogenated to provide yet another member of this group of materials. The cycloaliphatic polymer backbones provide etch resistance, mechanical properties and stability to radiation. The lithographic function is provided by carefully tailored pendant groups, which include an acid functionality that is masked by protecting groups that undergo acid catalyzed thermolysis as well as polar groups that influence the adhesion, wetability and dissolution properties of the polymer. The polymers are soluble in common organic solvents and have glass transition temperatures ranging from less than 60 degrees Celsius to higher than 250 degrees Celsius depending on their specific structure and mode of polymerization. They are at least as transparent at 193 nm as the corresponding acrylics. Their dry etch resistance varies with the formulation, but the base polymers etch more slowly than novolac under conditions typically used to pattern polysilicon. Upon exposure and baking, the resists have demonstrated high sensitivities (9-25 mJ/cm2), and 0.16 micrometer features have bean resolved.

  9. Lasing at 300 nm and below: Optical challenges and perspectives

    SciTech Connect

    Garzella, D.; Couprie, M.E. |; Billardon, M.

    1995-12-31

    The FEL experiment in the visible and near UV on the Super ACO storage ring has given, since 1989, important informations on the SRFEL dynamics and, furthermore, a very good beam stability has been achieved. In addition, the operation at 350 nm with this good stability and a long beam lifetime allowed us to perform the first user experiment in biology and to start with a campaign for using the laser as photons source for experiments in other domains, coupling FEL light and the Synchrotron Radiation. For this, FEL starts to be very competitive with respect to the other conventional laser sources, provided that it could oscillate further in the UV, say at 300 nm and below. So, the real challenge is now given by the lasing at shorter wavelengths and, for this, by the optical technology existing nowadays. Since 1992 the efforts have been concentrating to look for every kind of solution allowing us to overcome the problem of having a very low gain. From an optical point of view, in the range of wavelengths explored, there is a lack of transparents dielectric materials for substrates and coatings. Substrates are required at the same time to be relatively not absorbing (a few tens 10{sup -6}), to have a very good surface quality (RMS roughness below 10 {Angstrom}) because of scattering losses dramatically increasing in this spectral range and, due to the thermal load of the undulator emission, to have adequate thermal characteristics. In order to fulfill all these requirements, a good characterisation and modelisation of the substrates is needed, especially to correlate thermal loading and mechanical deformations from one hand, and roughness and scattering losses from the other hand. Coatings must be not absorbing too and, above all, the most amorphous as possible (this could be obtained with IBS deposition technique), in order to insure a good reproduction of the substrate roughness at the interfaces and on the top layer and an higher resistance to the XUV photons load.

  10. Method for radiation detection and measurement

    DOEpatents

    Miller, S.D.

    1993-12-21

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. 9 figures.

  11. Method for radiation detection and measurement

    DOEpatents

    Miller, Steven D.

    1993-01-01

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength.

  12. 308-nm excimer laser in endodontics

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  13. Microscope illumination systems for 157 nm

    NASA Astrophysics Data System (ADS)

    Pesch, Alexander; Uhlendorf, Kristina; Deparnay, Arnaud; Erdmann, Lars; Kuschnerus, Peter; Engel, Thomas; Brunner, Robert

    2003-05-01

    The image quality of an inspection microscope depends strongly on the performance of the illumination system. Especially in the case of laser-based illumination it is necessary to transform the original beam profile into a homogeneous light spot with a flat top field distribution. Simultaneously, speckles caused by the coherence of the laser have to be reduced. Here we discuss different ways to homogenize the multi mode beam profile of a pulsed compact 157 nm excimer laser. A variety of setups, combining dynamic acting diffusers, microlens arrays and primary lenses were realized and characterized in several geometrical arrangements. The homogenizers were evaluated and characterized especially with respect to the statistical behavior on the integrated pulse number.

  14. Laser-Matter Interactions with a 527 nm Drive

    SciTech Connect

    Glenzer, S; Niemann, C; Witman, P; Wegner, P; Mason, D; Haynam, C; Parham, T; Datte, P

    2007-02-16

    The primary goal of this Exploratory Research is to develop an understanding of laser-matter interactions with 527-nm light (2{omega}) for studies of interest to numerous Laboratory programs including inertial confinement fusion (ICF), material strength, radiation transport, and hydrodynamics. In addition, during the course of this work we will develop the enabling technology and prototype instrumentation to diagnose a high fluence laser beam for energy, power, and near field intensity profile at 2{omega}. Through this Exploratory Research we have established an extensive experimental and modeling data base on laser-matter interaction with 527 nm laser light (2{omega}) in plasma conditions of interest to numerous Laboratory programs. The experiments and the laser-plasma interaction modeling using the code pF3D have shown intensity limits and laser beam conditioning requirements for future 2{omega} laser operations and target physics experiments on the National Ignition Facility (NIF). These findings have set requirements for which present radiation-hydrodynamic simulations indicate the successful generation of relevant pressure regimes in future 2{omega} experiments. To allow these experiments on the NIF, optics and optical mounts were prepared for the 18mm Second Harmonic Generation Crystal (SHG crystal) that would provide the desired high conversion efficiency from 1{omega} to 2{omega}. Supporting experimental activities on NIF included high-energy 1{omega} shots at up to 22kJ/beamline (4MJ full NIF 1{omega} equivalent energy) that demonstrated, in excess, the 1{omega} drive capability of the main laser that is required for 2{omega} operations. Also, a very extensive 3{omega} campaign was completed (see ''The National Ignition Facility Laser Performance Status'' UCRL-JRNL-226553) that demonstrated that not only doubling the laser, but also tripling the laser (a much more difficult and sensitive combination) met our model predictions over a wide range of laser

  15. Collateral damage-free debridement using 193nm ArF laser

    NASA Astrophysics Data System (ADS)

    Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.

    2011-03-01

    Burn eschar and other necrotic areas of the skin and soft tissue are anhydrous compared to the underlying viable tissue. A 193 nm ArF excimer laser, emitting electromagnetic radiation at 6.4 eV at fluence exceeding the ablation threshold, will debride such necrotic areas. Because such radiation is strongly absorbed by aqueous chloride ions through the nonthermal process of electron photodetachment, debridement will cease when hydrated (with chloride ions) viable tissue is exposed, avoiding collateral damage to this tissue. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.

  16. Emission in argon and krypton at 147 nm excited by runaway-electron-induced diffusion discharge

    SciTech Connect

    Gerasimov, Gennadii N; Krylov, B E; Lomaev, Mikhail I; Rybka, D V; Tarasenko, Viktor F

    2010-05-26

    Plasma emission of a pulsed diffuse discharge produced at increased pressures due to the preionisation of the gap by runaway electrons is studied in argon, krypton, and xenon. Nanosecond voltage pulses with the amplitude {approx}220 kV were applied to the discharge gap. It is shown that the presence of xenon ({approx}0.01%) in argon and krypton leads to the emergence of high-power narrowband radiation at awavelength of 147 nm. It is assumed that this radiation belongs to the bands of heteronuclear molecules Xe*Ar and Xe*Kr.

  17. Ultraviolet-induced photodegradation of cucumber (Cucumis sativus L. ) microsomal and soluble protein tryptophanyl residues in vitro

    SciTech Connect

    Caldwell, C.R. )

    1993-03-01

    The in vitro effects of ultraviolet B (280--320 nm) radiation on microsomal membrane proteins and partially purified ribulose bisphosphate carboxylase (Rubisco) from cucumber (Cucumis sativus L.) was investigated by measuring the direct photolytic reduction of tryptophan fluorescence and the formation of fluorescent photooxidation products. Exposure of microsomes and Rubisco to monochromatic 300-nm radiation resulted in the loss of intrinsic tryptophan fluorescence and the production of blue-emitting fluorophores. The major product of tryptophan photolysis was tentatively identified as N-formylkynurenine (N-FK). Even though the rates of tryptophan photodegradation and N-FK formation were similar, the amount of blue fluorescence produced was significantly higher in the microsomes relative to Rubisco. Studies with various free radical scavengers and other modifiers indicated that tryptophan photodegradation requires oxygen species. The optimum wavelengths for loss of tryptophan fluorescence were 290 nm for the microsomes and 280 nm for Rubisco. The temperature dependence of tryptophan fluorescence and rate of tryptophan photodegradation indicated an alteration in the cucumber microsomal membranes at about 24[degrees]C, which influenced protein structure and tryptophan photosensitivity. 29 refs., 6 figs., 1 tab.

  18. Effects of radiation on laser diodes.

    SciTech Connect

    Phifer, Carol Celeste

    2004-09-01

    The effects of ionizing and neutron radiation on the characteristics and performance of laser diodes are reviewed, and the formation mechanisms for nonradiative recombination centers, the primary type of radiation damage in laser diodes, are discussed. Additional topics include the detrimental effects of aluminum in the active (lasing) volume, the transient effects of high-dose-rate pulses of ionizing radiation, and a summary of ways to improve the radiation hardness of laser diodes. Radiation effects on laser diodes emitting in the wavelength region around 808 nm are emphasized.

  19. Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis

    PubMed Central

    Mulholland, George W.; Donnelly, Michelle K.; Hagwood, Charles R.; Kukuck, Scott R.; Hackley, Vincent A.; Pui, David Y. H.

    2006-01-01

    The peak particle size and expanded uncertainties (95 % confidence interval) for two new particle calibration standards are measured as 101.8 nm ± 1.1 nm and 60.39 nm ± 0.63 nm. The particle samples are polystyrene spheres suspended in filtered, deionized water at a mass fraction of about 0.5 %. The size distribution measurements of aerosolized particles are made using a differential mobility analyzer (DMA) system calibrated using SRM® 1963 (100.7 nm polystyrene spheres). An electrospray aerosol generator was used for generating the 60 nm aerosol to almost eliminate the generation of multiply charged dimers and trimers and to minimize the effect of non-volatile contaminants increasing the particle size. The testing for the homogeneity of the samples and for the presence of multimers using dynamic light scattering is described. The use of the transfer function integral in the calibration of the DMA is shown to reduce the uncertainty in the measurement of the peak particle size compared to the approach based on the peak in the concentration vs. voltage distribution. A modified aerosol/sheath inlet, recirculating sheath flow, a high ratio of sheath flow to the aerosol flow, and accurate pressure, temperature, and voltage measurements have increased the resolution and accuracy of the measurements. A significant consideration in the uncertainty analysis was the correlation between the slip correction of the calibration particle and the measured particle. Including the correlation reduced the expanded uncertainty from approximately 1.8 % of the particle size to about 1.0 %. The effect of non-volatile contaminants in the polystyrene suspensions on the peak particle size and the uncertainty in the size is determined. The full size distributions for both the 60 nm and 100 nm spheres are tabulated and selected mean sizes including the number mean diameter and the dynamic light scattering mean diameter are computed. The use of these particles for calibrating DMAs and for

  20. Radiation Proctopathy

    PubMed Central

    Grodsky, Marc B.; Sidani, Shafik M.

    2015-01-01

    Radiation therapy is a widely utilized treatment modality for pelvic malignancies, including prostate cancer, rectal cancer, and cervical cancer. Given its fixed position in the pelvis, the rectum is at a high risk for injury secondary to ionizing radiation. Despite advances made in radiation science, up to 75% of the patients will suffer from acute radiation proctitis and up to 20% may experience chronic symptoms. Symptoms can be variable and include diarrhea, bleeding, incontinence, and fistulization. A multitude of treatment options exist. This article summarizes the latest knowledge relating to radiation proctopathy focusing on the vast array of treatment options. PMID:26034407

  1. Creation and investigation of powerful EUV sources (λ ≈ 13.5 nm)

    NASA Astrophysics Data System (ADS)

    Borisov, V. M.; Borisova, G. N.; Vinokhodov, A. Yu.; Ivanov, A. S.; Kiryukhin, Yu. B.; Mishchenko, V. A.; Prokofiev, A. V.; Khristoforov, O. B.

    2010-03-01

    Results are presented from experimental studies of repetitively pulsed EUV (λ = 13.5 ± 0.135 nm) sources based on a laser-initiated discharge in tin vapor between rotating disk electrodes. Radiative characteristics of two sources with different systems of tin supply onto the electrode surface and different types of power supply have been compared. A number of new effects have been revealed at pulse repetition rates as high as ˜4000 Hz. A mean radiation power of 520 W into the 2π solid angle has been achieved in the spectral band 13.5 ± 0.135 nm at a deposited electrical power of 24 kW.

  2. All solid-state 191.7 nm deep-UV light source by seventh harmonic generation of an 888 nm pumped, Q-switched 1342 nm Nd:YVO₄ laser with excellent beam quality.

    PubMed

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2014-06-02

    In this paper we report on the realization of a deep-UV light source using the 1.3 μm transition of neodymium as pumping wavelength. The 191.7 nm radiation was obtained by generating the seventh harmonic of a high-power Q-switched 1342 nm Nd:YVO4 laser. A cesium lithium borate crystal was used for sum frequency mixing of the sixth harmonic and the fundamental. With a total of four conversion stages, up to 240 mW were achieved, with excellent beam quality at 155 mW (M2 < 1.7) and 190 mW (M2 < 1.9).

  3. What are the causes for the spread of GLE parameters deduced from NM data?

    NASA Astrophysics Data System (ADS)

    Bütikofer, R.; Flückiger, E.

    2015-08-01

    Investigations have shown that the analysis results of ground level enhancements (GLEs) based on neutron monitor (NM) data for a selected event can differ considerably depending the procedure used. This may have significant consequences e.g. for the assessment of radiation doses at flight altitudes. The reasons for the spread of the GLE parameters deduced from NM data can be manifold and are at present unclear. They include differences in specific properties of the various analysis procedures (e.g. NM response functions, different ways in taking into account the dynamics of the Earth's magnetospheric field), different characterisations of the solar particle flux near Earth as well as the specific selection of NM stations used for the analysis. In the present paper we quantitatively investigate this problem for a time interval during the maximum phase of the GLE on 13 December 2006. We present and discuss the changes in the resulting GLE parameters when using different NM response functions, different model representations of the Earth's magnetospheric field as well as different assumptions for the solar particle spectrum and pitch angle distribution near Earth. The results of the study are expected to yield a basis for the reduction in the spread of the GLE parameters deduced from NM data.

  4. Wettability control of a polymer surface through 126 nm vacuum ultraviolet light irradiation

    NASA Astrophysics Data System (ADS)

    Hozumi, Atsushi; Shirahata, Naoto; Nakanishi, Youichiro; Asakura, Shuuichi; Fuwa, Akio

    2004-07-01

    The control of the surface wettability of poly (methyl methacrylate) (PMMA) substrates has been successfully demonstrated using an Ar2* excimer lamp radiating 126 nm vacuum ultraviolet (VUV) light. Each of the samples was exposed to 126 nm VUV light in air over the pressure range of 2×10-4-105 Pa. Although at the process pressures of 10, 103, and 105 Pa, the PMMA surfaces became relatively hydrophilic, the degree of hydrophilicity depended markedly on the pressure. The minimum water contact angles of the samples treated at 10, 103, and 105 Pa were about 50°, 33°, and 64°, respectively. These values were larger than those of PMMA substrates hydrophilized through 172 nm VUV irradiation conducted under the same conditions. On the other hand, after 126 nm VUV irradiation conducted under the high vacuum condition of 2×10-4 Pa, the PMMA substrate surface became carbon-rich, probably due to preferential cross-linking reactions, as evidenced by x-ray photoelectron spectroscopy. This surface was hydrophobic, showing a water contact angle of about 101°. Although the 126 nm VUV-irradiated surfaces appeared relatively smooth when observed by atomic force microscope, very small particles with diameters of 30-60 nm, which probably originated from the readhesion of photodecomposed products, existed on all of the sample surfaces. .

  5. Imaging at high spatial resolution: Soft x-ray microscopy to 15nm

    SciTech Connect

    Attwood, D.; Chao, W.; Anderson, E.; Liddle, J.A.; Harteneck, B.; Fischer, P.; Schneider, G.; Le Gros, M.; Larabell, C.

    2006-04-05

    Soft x-ray microscopy has now achieved 15 nm spatial resolution with new zone plates and bending magnet radiation. Combined with elemental sensitivity and flexible sample environment (applied magnetic or electric fields, wet samples, windows, overcoatings) this emerges as a valuable tool for nanoscience and nanotechnology, complimenting common electron and scanning tip microscopies. In this presentation we describe recent advances in spatial resolution, expectations for the near future, and applications to magnetic materials, bio-tomography, etc.

  6. Photodissociation of the Propargyl (C3D3) Radicals at 248 nm and 193 nm

    SciTech Connect

    Neumark., D.M.; Crider, P.E.; Castiglioni, L.; Kautzman, K.K.

    2009-01-21

    The photodissociation of perdeuterated propargyl (D{sub 2}CCCD) and propynyl (D{sub 3}CCC) radicals was investigated using fast beam photofragment translational spectroscopy. Radicals were produced from their respective anions by photodetachment at 540 nm and 450 nm (below and above the electron affinity of propynyl). The radicals were then photodissociated by 248 nm or 193 nm light. The recoiling photofragments were detected in coincidence with a time- and position-sensitive detector. Three channels were observed: D{sub 2} loss, CD + C{sub 2}D{sub 2}, and CD{sub 3} + C{sub 2}. Obervation of the D loss channel was incompatible with this experiment and was not attempted. Our translational energy distributions for D{sub 2} loss peaked at nonzero translational energy, consistent with ground state dissociation over small (< 1 eV) exit barriers with respect to separated products. Translational energy distributions for the two heavy channels peaked near zero kinetic energy, indicating dissociation on the ground state in the absence of exit barriers.

  7. Evaluation of the Diode laser (810nm,980nm) on dentin tubule diameter following internal bleaching

    PubMed Central

    Kiomarsi, Nazanin; Salim, Soheil; Sarraf, Pegah; Javad-Kharazifard, Mohammad

    2016-01-01

    Background The aim of this study was to evaluate the effect of diode laser irradiation and bleaching materials on the dentinal tubule diameter after laser bleaching. Material and Methods The dentin discs of 40 extracted third molar were used in this experiment. Each disc surface was divided into two halves by grooving. Half of samples were laser bleached at different wavelengths with two different concentrations of hydrogen peroxide. Other half of each disc with no laser bleaching remained as a negative control. Dentin discs were assigned randomly into four groups (n=10) with following hydrogen peroxide and diode laser wavelength specifications; Group 1 (30% - 810 nm), group 2 (30% - 980 nm), group 3 (46% - 810 nm) and group 4 (46% - 980 nm). All specimens were sent for scanning electron microscopic (SEM) analysis in order to measure tubular diameter in laser treated and control halves. Data were analyzed by ANOVA and Tukey test (p<0.05). Results A significant reduction in dentin tubule diameter was observed in groups 1, 2 and 4. There was no significant difference between groups 1 and 2 and between groups 3 and 4 after bleaching. Conclusions The SEM results showed that diode laser was able to reduce dentin tubule diameter and its effect on dentin was dependent on chemical action of bleaching material. Key words:Laser, diode, dentin, tubule, diameter. PMID:27398172

  8. THE SPECTRUM OF THORIUM FROM 250 nm TO 5500 nm: RITZ WAVELENGTHS AND OPTIMIZED ENERGY LEVELS

    SciTech Connect

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm{sup –1} to 1800 cm{sup –1}). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer and Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis and Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  9. The Spectrum of Thorium from 250 nm to 5500 nm: Ritz Wavelengths and Optimized Energy Levels

    NASA Astrophysics Data System (ADS)

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm-1 to 1800 cm-1). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer & Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis & Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  10. NXT:1980Di immersion scanner for 7nm and 5nm production nodes

    NASA Astrophysics Data System (ADS)

    de Graaf, Roelof; Weichselbaum, Stefan; Droste, Richard; McLaren, Matthew; Koek, Bert; de Boeij, Wim

    2016-03-01

    Immersion scanners remain the critical lithography workhorses in semiconductor device manufacturing. When progressing towards the 7nm device node for logic and D18 device node for DRAM production, pattern-placement and layer-to-layer overlay requirements keep progressively scaling down and consequently require system improvements in immersion scanners. The on-product-overlay requirements are approaching levels of only a few nanometers, imposing stringent requirements on the scanner tool design in terms of reproducibility, accuracy and stability. In this paper we report on the performance of the NXT:1980Di immersion scanner. The NXT:1980Di builds upon the NXT:1970Ci, that is widely used for 16nm, 14nm and 10nm high-volume manufacturing. We will discuss the NXT:1980Di system- and sub-system/module enhancements that drive the scanner overlay, focus and productivity performance. Overlay, imaging, focus, productivity and defectivity data will be presented for multiple tools. To further reduce the on-product overlay system performance, alignment sensor contrast improvements as well as active reticle temperature conditioning are implemented on the NXT:1980Di. Reticle temperature conditioning will reduce reticle heating overlay and the higher contrast alignment sensor will improve alignment robustness for processed alignment targets. Due to an increased usage of multiple patterning techniques, an increased number of immersion exposures is required. NXT:1980Di scanner design modifications raised productivity levels from 250wph to 275wph. This productivity enhancement provides lower cost of ownership (CoO) for customers using immersion technology.

  11. Characterization of LANDSAT Panels Using the NIST BRDF Scale from 1100 nm to 2500 nm

    NASA Technical Reports Server (NTRS)

    Markham, Brian; Tsai, Benjamin K.; Allen, David W.; Cooksey, Catherine; Yoon, Howard; Hanssen, Leonard; Zeng, Jinan; Fulton, Linda; Biggar, Stuart; Markham, Brian

    2010-01-01

    Many earth observing sensors depend on white diffuse reflectance standards to derive scales of radiance traceable to the St Despite the large number of Earth observing sensors that operate in the reflective solar region of the spectrum, there has been no direct method to provide NIST traceable BRDF measurements out to 2500 rim. Recent developments in detector technology have allowed the NIST reflectance measurement facility to expand the operating range to cover the 250 nm to 2500 nm range. The facility has been modified with and additional detector using a cooled extended range indium gallium arsenide (Extended InGaAs) detector. Measurements were made for two PTFE white diffuse reflectance standards over the 1100 nm to 2500 nm region at a 0' incident and 45' observation angle. These two panels will be used to support the OLI calibration activities. An independent means of verification was established using a NIST radiance transfer facility based on spectral irradiance, radiance standards and a diffuse reflectance plaque. An analysis on the results and associated uncertainties will be discussed.

  12. 10{times} reduction imaging at 13.4nm

    SciTech Connect

    Tichenor, D.A.; Kubiak, G.D.; Malinowski, M.E.

    1994-08-01

    A Schwarzschild imaging system has been designed to achieve 0.1 {mu}m resolution in a 0.4 mm diameter field of view when operated at a center wavelength of 13.4 nm. A decentered aperture is located on the convex primary resulting in an unobstructed numerical aperture of 0.08 and a corresponding depth of field of {plus_minus} 1 {mu}m. The Schwarzschild imaging objective is part of a five-reflection system containing the laser plasma source (LPS), condensing optics, turning mirror and reflection mask as shown in Figure 1. Extreme ultraviolet (EUV) radiation is generated by impinging a laser beam onto a copper target. The plasma source is driven by a Lambda Physik PLX 250 KrF excimer laser emitting 0.6 Joule, 20 ns pulses at a 200 Hz maximum repetition rate. Measurements of the source indicate that the full-width-half-maximum diameter is less than 100 {mu}m.

  13. Maskless plasmonic lithography at 22 nm resolution.

    PubMed

    Pan, Liang; Park, Yongshik; Xiong, Yi; Ulin-Avila, Erick; Wang, Yuan; Zeng, Li; Xiong, Shaomin; Rho, Junsuk; Sun, Cheng; Bogy, David B; Zhang, Xiang

    2011-01-01

    Optical imaging and photolithography promise broad applications in nano-electronics, metrologies, and single-molecule biology. Light diffraction however sets a fundamental limit on optical resolution, and it poses a critical challenge to the down-scaling of nano-scale manufacturing. Surface plasmons have been used to circumvent the diffraction limit as they have shorter wavelengths. However, this approach has a trade-off between resolution and energy efficiency that arises from the substantial momentum mismatch. Here we report a novel multi-stage scheme that is capable of efficiently compressing the optical energy at deep sub-wavelength scales through the progressive coupling of propagating surface plasmons (PSPs) and localized surface plasmons (LSPs). Combining this with airbearing surface technology, we demonstrate a plasmonic lithography with 22 nm half-pitch resolution at scanning speeds up to 10 m/s. This low-cost scheme has the potential of higher throughput than current photolithography, and it opens a new approach towards the next generation semiconductor manufacturing.

  14. Faster qualification of 193-nm resists for 100-nm development using photo cell monitoring

    NASA Astrophysics Data System (ADS)

    Jones, Chris M.; Kallingal, Chidam; Zawadzki, Mary T.; Jeewakhan, Nazneen N.; Kaviani, Nazila N.; Krishnan, Prakash; Klaum, Arthur D.; Van Ess, Joel

    2003-05-01

    The development of 100-nm design rule technologies is currently taking place in many R&D facilities across the world. For some critical alyers, the transition to 193-nm resist technology has been required to meet this leading edge design rule. As with previous technology node transitions, the materials and processes available are undergoing changes and improvements as vendors encounter and solve problems. The initial implementation of the 193-nm resits process did not meet the photolithography requirements of some IC manufacturers due to very high Post Exposure Bake temperature sensitivity and consequently high wafer to wafer CD variation. The photoresist vendors have been working to improve the performance of the 193-nm resists to meet their customer's requirements. Characterization of these new resists needs to be carried out prior to implementation in the R&D line. Initial results on the second-generation resists evaluated at Cypress Semicondcutor showed better CD control compared to the aelrier resist with comparable Depth of Focus (DOF), Exposure Latitute, Etch Resistance, etc. In addition to the standard lithography parameters, resist characterization needs to include defect density studies. It was found that the new resists process with the best CD control, resulted in the introduction of orders of magnitude higher yield limiting defects at Gate, Contact adn Local Interconnect. The defect data were shared with the resists vendor and within days of the discovery the resist vendor was able to pinpoint the source of the problem. The fix was confirmed and the new resists were successfully released to production. By including defect monitoring into the resist qualification process, Cypress Semiconductor was able to 1) drive correction actions earlier resulting in faster ramp and 2) eliminate potential yield loss. We will discuss in this paper how to apply the Micro Photo Cell Monitoring methodology for defect monitoring in the photolithogprhay module and the

  15. Gd plasma source modeling at 6.7 nm for future lithography

    SciTech Connect

    Li Bowen; Dunne, Padraig; O'Sullivan, Gerry; Higashiguchi, Takeshi; Yugami, Noboru; Otsuka, Takamitsu; Jiang, Weihua; Endo, Akira

    2011-12-05

    Plasmas containing gadolinium have been proposed as sources for next generation lithography at 6.x nm. To determine the optimum plasma conditions, atomic structure calculations have been performed for Gd{sup 11+} to Gd{sup 27+} ions which showed that n = 4 - n = 4 resonance transitions overlap in the 6.5-7.0 nm region. Plasma modeling calculations, assuming collisional-radiative equilibrium, predict that the optimum temperature for an optically thin plasma is close to 110 eV and that maximum intensity occurs at 6.76 nm under these conditions. The close agreement between simulated and experimental spectra from laser and discharge produced plasmas indicates the validity of our approach.

  16. 420nm alkali blue laser based on two-photon absorption

    NASA Astrophysics Data System (ADS)

    Tan, Yan-nan; Li, Yi-min; Liu, Tong; Gong, Fa-quan; Jia, Chun-yan; Hu, Shu; Gai, Bao-dong; Guo, Jing-wei; Liu, Wan-fa

    2015-02-01

    Based on two-photon absorption, a 420nm blue laser of alkali Rb vapor was demonstrated, and a dye laser was used as the pumping laser. Utilizing the energy level structure of Rb atom, lasering mechanism and two-photon absorption process are analyzed. Absorbing two 778.1nm photons, Rb atoms were excited from 52 S1/2 to 52 D5/2, then relaxed to 62 P3/2 with mid infrared photon radiation. 420nm blue laser was achieved by the transition 62 P3/2-->52 S1/2. To improve efficiency of the blue laser, two-photon resonant excitation pumped alkali vapor blue lasers are proposed, which will be good beam quality, high efficiency and scalable blue lasers. The development of diode pumped alkali vapor blue laser is expected.

  17. Performance of a polarizer using synthetic mica crystal in the 12-25 nm wavelength range

    NASA Astrophysics Data System (ADS)

    Cui, Ming-Qi; Chen, Kai; Zhao, Jia; Sun, Li-Juan; Xi, Shi-Bo; Yan, Fen

    2011-05-01

    To develop polarizer functioning in the extreme ultraviolet (EUV) and soft X-ray region, the polarization performance of synthetic mica has been investigated theoretically with a simulation code using Fresnel equations and optical constants from the Henke database. The reflectance of synthetic mica crystal for s and p polarization was measured to investigate its polarization performance in a home-made synchrotron radiation soft X-ray polarimeter at beamline 3W1B, Beijing Synchrotron Radiation Facility (BSRF). The reflectivity of the synthetic mica crystal at an angle of grazing incidence of 48° was obtained from the experimental data, which is about 4.8×10-3 at 25 nm and 6.0×10-4 at 12 nm, and the linear polarizance of the X-ray reflected by the synthetic mica crystal that we measured using an analyzer-rotating method increases from 80% to 96.6% in this EUV region, while higher than 98.2% in the simulation. The result indicates that this synthetic mica crystal works as a practical polarizer in this EUV region of 12-25 nm, and also in an extensive wavelength region higher than 25 nm.

  18. Radiator technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    1993-01-01

    Radiator technology is discussed in the context of the Civilian Space Technology Initiative's (CSTI's) high capacity power-thermal management project. The CSTI project is a subset of a project to develop a piloted Mars nuclear electric propulsion (NEP) vehicle. The following topics are presented in vugraph form: advanced radiator concepts; heat pipe codes and testing; composite materials; radiator design and integration; and surface morphology.

  19. Hawking radiation

    NASA Astrophysics Data System (ADS)

    Parentani, Renaud; Spindel, Philippe

    2011-12-01

    Hawking radiation is the thermal radiation predicted to be spontaneously emitted by black holes. It arises from the steady conversion of quantum vacuum fluctuations into pairs of particles, one of which escaping at infinity while the other is trapped inside the black hole horizon. It is named after the physicist Stephen Hawking who derived its existence in 1974. This radiation reduces the mass of black holes and is therefore also known as black hole evaporation.

  20. Analysis of the UV-B Regime and Potential Effects on Alfalfa

    NASA Technical Reports Server (NTRS)

    Seitz, Jeffery C.

    1998-01-01

    Life at the surface of the Earth, over the last 400 m.y., evolved under conditions of decreased short-wave radiation (i.e., ultraviolet) relative to solar output due to absorption and scattering by constituents (e.g., ozone, water vapor, aerosols) in the upper atmosphere. However, a significant amount of ultraviolet radiation in the range from 280-320 nm, known as ultraviolet-B radiation, reaches the Earth's surface and has sufficient energy to be damaging to biologic tissue. Natural fluctuations in atmospheric constituents (seasonal variation, volcanic eruptions, etc.), changes in the orbital attitude of the Earth (precession, axial tilt, orbital eccentricity), and long-term solar variability contribute to changes in the total amount of ultraviolet radiation reaching the surface of the Earth, and thus, the biosphere. More recently, the atmospheric release of commercial propellants and refrigerants, known as chlorofluorocarbons (CFCs), has contributed to a significant depletion in naturally occurring ozone in the stratosphere. Thus, decreased stratospheric ozone has resulted in an increased UV-B flux at the Earth's surface which may have profound effects on terrestrial and marine organisms. In this study, we are investigating the effects of differing solar UV-B fluxes on alfalfa (Medicago sativa L.), an important agricultural crop. A long-term goal of this research is to develop spectral signatures to detect plant response to increased UV-B radiation from remote sensor platforms.

  1. Improving vacuum-UV (VUV) photolysis of organic compounds in water with a phosphor converted xenon excimer lamp emitting at 193 nm.

    PubMed

    Schulze-Hennings, U; Pötschke, L; Wietor, C; Bringmann, S; Braun, N; Hayashi, D; Linnemann, V; Pinnekamp, J

    A novel vacuum ultraviolet excimer lamp emitting light at 193 nm was used to investigate the degradation of organic micropollutants in ultrapure water and wastewater treatment plant (WWTP) effluent. Overall, light at 193 nm proved to be efficient to degrade the investigated micropollutants (diclofenac, diatrizoic acid, sulfamethoxazole). Experiments with WWTP effluent proved the ability of radiation at 193 nm to degrade micropollutants which are hardly removed with commonly used oxidation technologies like ozonation (diatrizoic acid, ethylenediaminetetraacetic acid, perfluorooctanoic acid, and perfluorooctanesulfonic acid).

  2. EUV light source with high brightness at 13.5 nm

    NASA Astrophysics Data System (ADS)

    Borisov, V. M.; Koshelev, K. N.; Prokof'ev, A. V.; Khadzhiyskiy, F. Yu; Khristoforov, O. B.

    2014-11-01

    The results of the studies on the development of a highbrightness radiation source in the extreme ultraviolet (EUV) range are presented. The source is intended for using in projection EUV lithography, EUV mask inspection, for the EUV metrology, etc. Novel approaches to creating a light source on the basis of Z-pinch in xenon allowed the maximal brightness [130 W(mm2 sr)-1] to be achieved in the vicinity of plasma for this type of radiation sources within the 2% spectral band centred at the wavelength of 13.5 nm that corresponds to the maximal reflection of multilayer Mo/Si mirrors. In this spectral band the radiation power achieves 190 W in the solid angle of 2π at a pulse repetition rate of 1.9 kHz and an electric power of 20 kW, injected into the discharge.

  3. EUV light source with high brightness at 13.5 nm

    SciTech Connect

    Borisov, V M; Prokof'ev, A V; Khristoforov, O B; Koshelev, K N; Khadzhiyskiy, F Yu

    2014-11-30

    The results of the studies on the development of a highbrightness radiation source in the extreme ultraviolet (EUV) range are presented. The source is intended for using in projection EUV lithography, EUV mask inspection, for the EUV metrology, etc. Novel approaches to creating a light source on the basis of Z-pinch in xenon allowed the maximal brightness [130 W(mm{sup 2} sr){sup -1}] to be achieved in the vicinity of plasma for this type of radiation sources within the 2% spectral band centred at the wavelength of 13.5 nm that corresponds to the maximal reflection of multilayer Mo/Si mirrors. In this spectral band the radiation power achieves 190 W in the solid angle of 2π at a pulse repetition rate of 1.9 kHz and an electric power of 20 kW, injected into the discharge. (laser applications and other topics in quantum electronics)

  4. Optical breakdown threshold investigation of 1064 nm laser induced air plasmas

    SciTech Connect

    Thiyagarajan, Magesh; Thompson, Shane

    2012-04-01

    We present the theoretical and experimental measurements and analysis of the optical breakdown threshold for dry air by 1064 nm infrared laser radiation and the significance of the multiphoton and collisional cascade ionization process on the breakdown threshold measurements over pressures range from 10 to 2000 Torr. Theoretical estimates of the breakdown threshold laser intensities and electric fields are obtained using two distinct theories namely multiphoton and collisional cascade ionization theories. The theoretical estimates are validated by experimental measurements and analysis of laser induced breakdown processes in dry air at a wavelength of 1064 nm by focusing 450 mJ max, 6 ns, 75 MW max high-power 1064 nm IR laser radiation onto a 20 {mu}m radius spot size that produces laser intensities up to 3 - 6 TW/cm{sup 2}, sufficient for air ionization over the pressures of interest ranging from 10 to 2000 Torr. Analysis of the measured breakdown threshold laser intensities and electric fields are carried out in relation with classical and quantum theoretical ionization processes, operating pressures. Comparative analysis of the laser air breakdown results at 1064 nm with corresponding results of a shorter laser wavelength (193 nm) [M. Thiyagarajan and J. E. Scharer, IEEE Trans. Plasma Sci. 36, 2512 (2008)] and a longer microwave wavelength (10{sup 8} nm) [A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966)]. A universal scaling analysis of the breakdown threshold measurements provided a direct comparison of breakdown threshold values over a wide range of frequencies ranging from microwave to ultraviolet frequencies. Comparison of 1064 nm laser induced effective field intensities for air breakdown measurements with data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the scaled collisional microwave portion. The measured breakdown threshold of 1064 nm laser intensities are then

  5. Ultraviolet radiation effects

    NASA Technical Reports Server (NTRS)

    Slemp, Wayne S.

    1989-01-01

    Solar ultraviolet testing was not developed which will provide highly accelerated (20 to 50X) exposures that correlate to flight test data. Additional studies are required to develop an exposure methodology which will assure that accelerated testing can be used for qualification of materials and coatings for long duration space flight. Some conclusions are listed: Solar UV radiation is present in all orbital environments; Solar UV does not change in flux with orbital altitude; UV radiation can degrade most coatings and polymeric films; Laboratory UV simulation methodology is needed for accelerated testing to 20 UV solar constants; Simulation of extreme UV (below 200 nm) is needed to evaluate requirements for EUV in solar simulation.

  6. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths.

    PubMed

    Liehr, Sascha; Breithaupt, Mathias; Krebber, Katerina

    2017-03-31

    Distributed measurement of humidity is a sought-after capability for various fields of application, especially in the civil engineering and structural health monitoring sectors. This article presents a method for distributed humidity sensing along polymethyl methacrylate (PMMA) polymer optical fibers (POFs) by analyzing wavelength-dependent Rayleigh backscattering and attenuation characteristics at 500 nm and 650 nm wavelengths. Spatially resolved humidity sensing is obtained from backscatter traces of a dual-wavelength optical time domain reflectometer (OTDR). Backscatter dependence, attenuation dependence as well as the fiber length change are characterized as functions of relative humidity. Cross-sensitivity effects are discussed and quantified. The evaluation of the humidity-dependent backscatter effects at the two wavelength measurements allows for distributed and unambiguous measurement of relative humidity. The technique can be readily employed with low-cost standard polymer optical fibers and commercial OTDR devices.

  7. Polarization properties of lidar scattering from clouds at 347 nm and 694 nm.

    PubMed

    Pal, S R; Carswell, A I

    1978-08-01

    The polarization characteristics of lidar scattering from cumulus and low-lying shower clouds have been measured with a system operating at 694 nm (red) and 347 nm (blue). The backscatter profiles of the polarization components as well as of the total intensity of the return are presented and discussed for the two wavelengths. The linear depolarization ratio delta, which can be used as a measure of the unpolarized multiple scattering, has been obtained at both wavelengths. This quantity has a very low value at cloud base for both wavelengths and increases with pulse penetration. The blue registers generally higher values of a within the cloud. The measured total intensity backscatter functions for both wavelengths are presented and discussed in relation to theoretical calculations of cloud models.

  8. Novel 980-nm and 490-nm light sources using vertical cavity lasers with extended coupled cavities

    NASA Astrophysics Data System (ADS)

    McInerney, John G.; Mooradian, Aram; Lewis, Alan; Shchegrov, Andrei V.; Strzelecka, Eva M.; Lee, Dicky; Watson, Jason P.; Liebman, Michael K.; Carey, Glen P.; Umbrasas, Arvydas; Amsden, Charles A.; Cantos, Brad D.; Hitchens, William R.; Heald, David L.; Doan, Vincent V.; Cannon, J. L.

    2003-04-01

    We have developed novel electrically pumped, surface-emitting lasers emitting at 980 nm with an extended coupled cavity. The concept is scalable from monolithic low power devices all the way to high power extended cavity lasers. The latter have demonstrated 1W cw multi-mode and 0.5 W cw in a TEM00 mode and a single frequency, with 90% coupling efficiency into a single-mode fiber. By inserting a nonlinear optical medium in the external cavity, efficient and compact frequency doubling has been achieved with CW output powers 5-40 mW demonstrated at 490 nm. The latter devices are especially noteworthy due to their very low noise, sub 10 μrad beam pointing stability combined with small size, low power consumption and high efficiency.

  9. A 15 W 1152 nm Raman fiber laser with 6 nm spectral width for Ho3+-doped crystal's pumping source

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyan; Jiang, Huawei

    2016-12-01

    A 11.5 W 1152 nm Raman fiber laser with 6 nm spectral width was demonstrated based on the resonator constructed with one fiber loop mirror and one fiber Bragg grating. By mans of experimental measurement and theoretical calculation, the reflectivity of the fiber loop mirror was confirmed as 0.93. The Yb3+-doped 1090 nm fiber length was about 5 m. When the maximum pumping power of 976 nm laser was 54.8 W, 32.2 W 1090 nm laser was obtained and the optical to optical conversion efficiency from 1090 nm to 1152 nm light was 48%. Finally, the 1152 nm Raman fiber laser was used for pumping Ho3+:LLF crystal, and the 1194 nm fluorescence emission peak was detected for the first time.

  10. Investigations of a dual seeded 1178nm Raman laser system

    NASA Astrophysics Data System (ADS)

    Block, Matthew; Henry, Leanne J.; Klopfer, Michael; Jain, Ravinder

    2016-03-01

    The leakage of 1121 nm power from a resonator cavity because of spectral broadening seriously degrades the performance of a Raman resonator by reducing the 1121 nm circulating power and the 1178 nm output power. Therefore, it is important to understand the conditions which minimize 1121 nm power leakage, maximize 1121 intracavity and 1178 nm output power while enabling a manageable Stimulated Brillouin Scattering gain for narrow linewidth systems. It was found that cavity lengths longer than approximately 40 m didn't result in significantly more 1121 nm linewidth broadening. Relative to the high reflectivity bandwidth of the fiber Bragg gratings, it was found that 4 nm FBGs seemed to optimize 1178 nm amplification while minimizing the amount of 1121 nm power leakage. A two stage high power 1178 nm Raman system was built and 20 W of 1178 nm output power was achieved with a polarization extinction ratio of 21 and nearly diffraction limited beam quality. Linewidth broadening was found to increase as the 1178 nm output increased and was approximately 8 GHz when the 1178 nm output power was 20 W. Because of the linewidth broadening, a co-pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application which requires narrow linewidth.

  11. Multi-watt 589nm fiber laser source

    SciTech Connect

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  12. Multi-watt 589nm fiber laser source

    NASA Astrophysics Data System (ADS)

    Dawson, Jay W.; Drobshoff, Alex D.; Beach, Raymond J.; Messerly, Michael J.; Payne, Stephen A.; Brown, Aaron; Pennington, Deanna M.; Bamford, Douglas J.; Sharpe, Scott J.; Cook, David J.

    2006-02-01

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichio-metric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd 3+ fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the 1088nm 4-level laser transition. At 15W, the 938nm laser has an M2 of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  13. TUNABLE DIODE LASER MEASUREMENTS OF NO2 NEAR 670 NM AND 395 NM. (R823933)

    EPA Science Inventory

    Two single-mode diode lasers were used to record high-resolution absorption spectra of NO2 (dilute in Ar) near 670.2 and 394.5 nm over a range of temperatures (296 to 774 K) and total pressures (2.4 x 10(-2) to 1 atm). A commercial InGaAsP laser was tuned 1.3 cm(-1) at a repetiti...

  14. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    DOE PAGES

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; ...

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less

  15. A robust 45 nm gate-length CMOSFET for 90 nm Hi-speed technology

    NASA Astrophysics Data System (ADS)

    Lim, K. Y.; Chan, V.; Rengarajan, R.; Lee, H. K.; Rovedo, N.; Lim, E. H.; Yang, S.; Jamin, F.; Nguyen, P.; Lin, W.; Lai, C. W.; Teh, Y. W.; Lee, J.; Kim, L.; Luo, Z.; Ng, H.; Sudijono, J.; Wann, C.; Yang, I.

    2006-04-01

    We have developed a robust 45 nm gate-length CMOSFET for 90 nm node high performance application. Aggressive gate length and gate dielectric scaling along with optimized strain engineering enable high performance device similar to 65 nm node CMOSFET [Nakahara Y, et al. IEDM Tech Dig 2003;281] We have utilized oxy-nitride gate with post-nitridation anneal, high ramp rate spike anneal, low temperature spacer scheme and stress controlled SiN contact etch stop liner process in order to improve drive current as well as transistor short-channel roll-off. In particular, we will focus on the study of middle-of-line (MOL) process parameters, (i.e. MOL thermal expense and mechanical stress from contact etch stop liner) on transistor performance and reliability. Based on the study, we have obtained device exhibit drive-current of 900/485 μA/μm for NMOSFET and PMOSFET, respectively, at standard supply voltage of 1 V.

  16. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    SciTech Connect

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; Schrimpf, R. D.; Labello, R.; Nichols, J.; Weeden-Wright, S. L.

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environments for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.

  17. UV 380 nm Reflectivity of the Earth's Surface

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Celarier, E.; Larko, D.

    2000-01-01

    The 380 nm radiance measurements of TOMS (Total Ozone Mapping Spectrometer) have been converted into a global data set of daily (1979 to 1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice). Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicates the presence of clouds, haze, or aerosols in the satellite field of view. Statistical analysis of 14 years of daily data show that most snow/ice-free regions of the Earth have their largest fraction of days each year when the reflectivity is low (R less than 10%). The 380 nm reflectivity data shows that the true surface reflectivity is 2 to 3% lower than the most frequently occurring reflectivity value for each TOMS scene. The most likely cause of this could be a combination of frequently occurring boundary-layer water or aerosol haze. For most regions, the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain-forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R greater than 15%) more than half of each year. In the low to middle latitudes, the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show the presence of large nearly clear ocean areas and the effects

  18. Radiation Therapy

    MedlinePlus

    ... can watch you during the procedure. As you go through radiation treatment, you may feel like you're all ... treatment. Avoid exposing the treated area to the sun during the weeks you're getting radiation therapy. And when the treatment's over, wear sunscreen ...

  19. Understanding Radiation.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Radiation is a natural energy force that has been a part of the environment since the Earth was formed. It takes various forms, none of which can be smelled, tasted, seen, heard, or felt. Nevertheless, scientists know what it is, where it comes from, how to measure and detect it, and how it affects people. Cosmic radiation from outer space and…

  20. Radiation Therapy

    MedlinePlus

    ... Tumors In Children Pediatric Brain Tumor Diagnosis Family Impact Late Effects After Treatment Returning to School Pediatric ... Una publicación de ABTA en español. Radiation Imaging Technology Information on Radiation and Imaging Technology Home Donor and ...

  1. Radiation Therapy

    MedlinePlus

    ... them from spreading. About half of all cancer patients receive it. The radiation may be external, from special machines, or internal, from radioactive substances that a doctor places inside your body. The type of radiation therapy you receive depends on many factors, including The ...

  2. Radiation Exposure

    MedlinePlus

    ... particles. It occurs naturally in sunlight. Man-made radiation is used in X-rays, nuclear weapons, nuclear power plants and cancer treatment. If you are exposed to small amounts of radiation over a long time, it raises your risk ...

  3. On Helium 1083 nm Line Polarization during the Impulsive Phase of an X1 Flare

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.; Kleint, Lucia; Sainz Dalda, Alberto

    2015-12-01

    We analyze spectropolarimetric data of the He i 1083 nm multiplet (1s2s{}3{S}1-1s2p{}3{P}2,1,0o) during the X1 flare SOL2014-03-29T17:48, obtained with the Facility Infrared Spectrometer (FIRS) at the Dunn Solar Telescope. While scanning active region NOAA 12017, the FIRS slit crossed a flare ribbon during the impulsive phase, when the helium line intensities turned into emission at ≲twice the continuum intensity. Their linear polarization profiles are of the same sign across the multiplet including 1082.9 nm, intensity-like, at ≲5% of the continuum intensity. Weaker Zeeman-induced linear polarization is also observed. Only the strongest linear polarization coincides with hard X-ray (HXR) emission at 30-70 keV observed by RHESSI. The polarization is generally more extended and lasts longer than the HXR emission. The upper J = 0 level of the 1082.9 nm component is unpolarizable thus, lower-level polarization is the culprit. We make non-LTE radiative transfer calculations in thermal slabs optimized to fit only intensities. The linear polarizations are naturally reproduced, through a systematic change of sign with wavelength of the radiation anisotropy when slab optical depths of the 1082.9 component are ≲1. Neither are collisions with beams of particles needed, nor can they produce the same sign of polarization of the 1082.9 and 1083.0 nm components. The He i line polarization merely requires heating sufficient to produce slabs of the required thickness. Widely different polarizations of Hα, reported previously, are explained by different radiative anisotropies arising from slabs of different optical depths.

  4. Radiation detector

    DOEpatents

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  5. Radiation detector

    DOEpatents

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  6. Radiation retinopathy.

    PubMed Central

    Zamber, R W; Kinyoun, J L

    1992-01-01

    Radiation therapy is effective against many cancerous and noncancerous disease processes. As with other therapeutics, side effects must be anticipated, recognized, and managed appropriately. Radiation retinopathy is a vision-threatening complication of ocular, orbital, periorbital, facial, nasopharyngeal, and cranial irradiation. Factors that appear important in the pathogenesis of radiation retinopathy include total radiation dosage, fraction size, concomitant chemotherapy, and preexisting vascular disorders. Clinical manifestations of the disorder include macular edema and nonproliferative and proliferative retinopathy, similar to changes seen in diabetic retinopathy. Argon laser photocoagulation has proved efficacious for managing macular edema and fibrovascular proliferation in some of these patients. Ongoing basic laboratory and clinical research efforts have led to a better understanding of the pathogenesis, natural history, and treatment response of radiation retinopathy. The ultimate goal of this knowledge is to improve the prevention, recognition, and management of this vision-threatening complication. Images PMID:1441494

  7. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  8. Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength

    NASA Astrophysics Data System (ADS)

    Leo, François; Gorza, Simon-Pierre; Safioui, Jassem; Kockaert, Pascal; Coen, Stéphane; Dave, Utsav; Kuyken, Bart; Roelkens, Gunther

    2014-06-01

    We experimentally and numerically study dispersive wave emission, soliton fission and supercontinuum generation in a silicon wire at telecommunication wavelengths. Through dispersion engineering, we experimentally confirm a previously reported numerical study [1] and show that the emission of resonant radiation from the solitons can lead to the generation of a supercontinuum spanning over 500 nm. An excellent agreement with numerical simulations is observed.

  9. Cell projection use in maskless lithography for 45nm and 32nm logic nodes

    NASA Astrophysics Data System (ADS)

    Manakli, S.; Komami, H.; Takizawa, M.; Mitsuhashi, T.; Pain, L.

    2009-03-01

    Due to the ever-increasing cost of equipment and mask complexity, the use of optical lithography for integrated circuit manufacturing is increasingly more complex and expensive. Recent workshops and conferences in semiconductor lithography underlined that one alternative to support sub-32nm technologies is mask-less lithography option using electron beam technology. However, this direct write approach based on variable shaped beam principle (VSB) is not sufficient in terms of throughput, i.e. of productivity. New direct write techniques like multibeam systems are under development, but these solutions will not be mature before 2012. The use of character/cell projection (CP) on industrial VSB tools is the first step to deal with the throughput concerns. This paper presents the status of the CP technology and evaluates its possible use for the 45nm and 32nm logic nodes. It will present standard cell and SRAM structures that are printed as single characters using the CP technique. All experiments are done using the Advantest tool (F3000) which can project up to 100 different cells per layer. Cell extractions and design have been performed with the design and software solution developed by D2S. In this paper, we first evaluate the performance gain that can be obtained with the CP approach compared to the standard VSB approach. This paper also details the patterning capability obtained by using the CP concept. An evaluation of the CD uniformity and process stability is also presented. Finally this paper discusses about the improvements of this technique to address high resolution and to improve the throughput concerns.

  10. Non-Equilibrium Radiation from Shock-Heated Air

    DTIC Science & Technology

    1991-07-01

    v- n 260nm LTER" vkT 4e_-. W 4 e IW- l watts (1) 2 (Q r)u cm3 sr cm - I r 0 I I .l I 1 I I I j 0 2 4 6 8 10 12 14 16 18 20 22 where CALCULATED ...Measurements, 210 nm 293 6 Radiation Measurements, 2 0 nm 30 7 Infrared Radiation Matrix, Experiment and Calculation 31 8 Three Temporal Parameters...Characterizing Non-equilibrium 32 I Infrared Radiation 9 Infrared Incubation Time, Experiment and Calculation 33 1 1 0 Infrared Time-To-Half-Peak

  11. Manufacturability of 2x-nm devices with EUV tool

    NASA Astrophysics Data System (ADS)

    Tawarayama, Kazuo; Nakajima, Yumi; Kyoh, Suigen; Aoyama, Hajime; Matsunaga, Kentaro; Magoshi, Shunko; Tanaka, Satoshi; Hayashi, Yumi; Mori, Ichiro

    2011-04-01

    Due to the promising development status of EUVL as a practical lithography technology for the 2x-nm node, we are continuing to evaluate its process liability using the EUV1 at Selete, which has an Off-Axis illumination capability. The resolution limit of the EUV1 for L&S patterns is currently 18 nm for dipole illumination, and 16 nm for aggressive dipole illumination. This study examined the critical points of EUVL for device manufacturing through wafer processes. The yield obtained from electrical measurements indicates the maturity of the technology, including the resist process, the tool, and the mask. Optimization of the resist and RIE processes significantly improved the yield. The final yields obtained from electrical measurements were 100% for hp 30 nm, 70% for hp 28 nm, and 40% for hp 26 nm. These results demonstrate EUV lithography to be a practical technology that is now suitable for 2x nm semiconductor manufacture.

  12. [Radiation carcinogenesis].

    PubMed

    Hosoi, Yoshio

    2013-11-01

    Misrepair of DNA damage induced by ionizing radiation is a potential cause of carcinogenesis following exposure to radiation. Radiation exposure increases the incidence of the same types of mutations that occur spontaneously in a given population. A high incidence of DNA double-strand breaks is characteristic of damage by ionizing radiation compared with those induced by other environmental mutagens. In China, residents living in areas with high level background radiation(6mSv/y) had a significantly higher frequency of dicentric and ring chromosomes compared to that for the residents living in the control areas(2mSv/y). Radiation-associated increases in risk were seen for most sites. Gender-averaged excess absolute risk rates estimated at age 70, after exposure at age 30, differ in the sites, and the risks of gastric cancer, breast cancer, colon cancer, and lung cancer were highly increased, in that order. Latent periods for the development of leukemia and thyroid cancer after radiation exposure at ages younger than 18 were shorter compared to those for other solid cancers.

  13. Ultraviolet 320 nm laser excitation for flow cytometry.

    PubMed

    Telford, William; Stickland, Lynn; Koschorreck, Marco

    2017-02-27

    Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry.

  14. Sidewall spacer quadruple patterning for 15nm half-pitch

    NASA Astrophysics Data System (ADS)

    Xu, Ping; Chen, Yongmei; Chen, Yijian; Miao, Liyan; Sun, Shiyu; Kim, Sung-Woo; Berger, Ami; Mao, Daxin; Bencher, Christ; Hung, Raymond; Ngai, Chris

    2011-04-01

    193nm immersion lithography, with the single-exposure resolution limitation of half-pitch 38nm, has extended its patterning capability to about 20nm using the double-patterning technique[1]. Despite the non-trivial sub-20nm patterning challenges, several NAND Flash manufacturers are already pursuing for sub-16nm patterning technology. 25nm NAND flash memory has already begun production in 2010, and given the typical 2-year scaling cycle, sub-16nm NAND devices should see pilot or mass production as early as 2014. Using novel patterning techniques such as sidewall spacer quadruple patterning (upon 120nm to 128nm pitch using dry ArF lithography) or triple patterning (upon 90nm pitch using immersion ArF lithography), we are able to extend optical lithography to sub-16nm half-pitch and demonstrate the lithographic performance that can nearly meet the ITRS roadmap requirements. In this paper, we conduct an in-depth review and demonstration of sidewall spacer quadruple patterning; including 300mm wafer level data of the mean values and CDU along with a mathematical assessment of the various data pools for sub-16nm lines and spaces. By understanding which processes (lithography, deposition, and etch) define the critical dimension of each data pool, we can make predictions of CDU capability for the sidewall spacer quad patterning. Our VeritySEM4i CD SEM tool demonstrated high measurement yield during fully automated measurements, which enables accurate lines, spaces and CDU measurements of the sub-16nm. The patterns generated from the sidewall spacer quadruple patterning techniques are used as a hardmask to transfer sub-16nm lines and spaces patterns to underneath amorphous silicon and silicon oxide layers, or poly silicon layer for 1X STI or poly gate applications.

  15. Measurements of Stokes parameters of materials at 1064-nm and 532-nm wavelengths

    NASA Astrophysics Data System (ADS)

    Tan, Songxin; Narayanan, Ram M.; Kalshoven, James E., Jr.

    2001-09-01

    Laser radar systems have found wide applications in the field of remote sensing. Reflectance as well as polarization features are used together for applications ranging from environmental monitoring to target classification. The Stokes parameters are ideal quantities for characterizing the above features because they provide useful information on both light intensity and polarization state. The University of Nebraska is currently refurbishing an airborne multi-wavelength laser radar system based on the NASA Goddard Space Flight Center (GSFC) developed Airborne Laser Polarimetric Sensor (ALPS). The system uses a Nd:YAG laser operating at wavelengths of 1064 nm and 532 nm, and contains four channels at each wavelength to measure the polarization states. This system was used to measure the Stokes parameters of backscattered laser light from different materials. These included canvas tarp, white paper, plywood, concrete, aluminum plate and anodized aluminum plate. The data provide an understanding of the polarized scattering properties of various materials, and are expected to be useful in developing target discrimination algorithms.

  16. Radiation dosimeter

    DOEpatents

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  17. Radiation dosimeter

    DOEpatents

    Fox, Richard J.

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  18. Radiation Hydrodynamics

    SciTech Connect

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish

  19. Row orientation effect on UV-B, UV-A and PAR solar irradiation components in vineyards at Tuscany, Italy

    NASA Astrophysics Data System (ADS)

    Grifoni, D.; Carreras, G.; Zipoli, G.; Sabatini, F.; Dalla Marta, A.; Orlandini, S.

    2008-11-01

    Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines ( Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280-320 nm) can affect plant-disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280-400 nm), spectral UV-B and UV-A (320-400 nm), the biological effective UVBE, as well as the PAR (400-700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.

  20. Histological study of the thyroid gland following 904-nm laser radiation

    NASA Astrophysics Data System (ADS)

    Perez de Vargas, I.; Parrado, C.; Gonzalez, V.; Vidal, Lourdes; Rius, F.

    1993-06-01

    The present histological and stereological studies are on thyroid glands of Wistar rats irradiated with an IR laser. The animals were exposed to total doses of 46,80 J/cm2, and sacrificed at 1, 40, and 180 days after the last treatment. A morphological and stereological study was made on follicular epithelium, follicle, stroma, and capillary. The laser beam produced an increase of follicular epithelial volume and hyperplasia of follicular cells in the animals sacrificed at 1, 40, and 180 days after the last treatment. Capillary dilation underwent a progressive decrease as time passed. It was higher in the animals sacrificed after 24 hours, then it decreased after 40 days and finally disappeared after 180 days.

  1. Expression of NM23 in human melanoma progression and metastasis.

    PubMed Central

    Easty, D. J.; Maung, K.; Lascu, I.; Véron, M.; Fallowfield, M. E.; Hart, I. R.; Bennett, D. C.

    1996-01-01

    NM23 is a putative metastasis-suppressor gene for some human cancers. Here we have studied NM23 expression during melanoma progression using Northern blotting and immunocytochemistry. There was no significant difference in the average amounts of NM23 mRNA between cell lines derived from metastatic and primary melanomas. The level of NM23 mRNA was also determined for three pairs of poorly metastatic parental (P) and their highly metastatic variant (M) cell lines; the ratios for M/P were 1.2, 0.98 and 0.80. Next we used immunocytochemistry to study NM23 protein in normal skin, benign naevi and primary and metastatic melanomas. Melanocytes in all normal skin and benign samples were positive for NM23; however most primary melanomas (7/11) were not stained by the antibody. All metastatic melanoma samples (5/5) were positively stained. Findings were similar with an antiserum reactive with both forms of NM23 (H1 and H2), and with an antibody specific for NM23-H1. No relationship was apparent between NM23 immunoreactivity in primary tumours and their aggressiveness or prognosis. Hence, in contrast to the situation described for murine melanoma, the amount of NM23 mRNA or protein in human melanoma did not correlate inversely with metastasis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8679442

  2. Radiation therapy

    MedlinePlus

    ... Intensity-modulated radiotherapy (IMRT) Image-guided radiotherapy (IGRT) Proton therapy is another kind of radiation used to ... than using x-rays to destroy cancer cells, proton therapy uses a beam of special particles called ...

  3. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  4. Radiation Basics

    MedlinePlus

    ... of the heaviest radioactive elements, such as uranium , radium and polonium. Even though alpha particles are very ... is roughly the activity of one gram of Radium-226. Curies are not used to measure radiation ...

  5. Radiation Transport

    SciTech Connect

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  6. Comment on "New probing techniques of radiative shocks"

    NASA Astrophysics Data System (ADS)

    Busquet, Michel

    2014-05-01

    In this comment, we discuss the possibility of imaging the radiative precursor of a strong shock with a 21.2 nm soft x-ray laser probe and we analyze the data presented in C.Stehlé et al "New probing techniques of radiative shocks", (Optics Communications 285, 64, 2012) in order to derive some estimation of the achieved resolution. We show that the presented results are inconclusive for the existence of a radiative precursor. Furthermore, our best estimation of cold and warm Xenon VUV opacities tells that 21.2 nm backlighting would not be able to probe this radiative precursor.

  7. Radiation enteritis.

    PubMed

    Harb, Ali H; Abou Fadel, Carla; Sharara, Ala I

    2014-01-01

    Radiation enteritis continues to be a major health concern in recipients of radiation therapy. The incidence of radiation enteritis is expected to continue to rise during the coming years paralleling the unprecedented use of radiotherapy in pelvic cancers. Radiation enteritis can present as either an acute or chronic syndrome. The acute form presents within hours to days of radiation exposure and typically resolves within few weeks. The chronic form may present as early as 2 months or as long as 30 years after exposure. Risk factors can be divided into patient and treatment-related factors. Chronic radiation enteritis is characterized by progressive obliterative endarteritis with exaggerated submucosal fibrosis and can manifest by stricturing, formation of fistulae, local abscesses, perforation, and bleeding. In the right clinical context, diagnosis can be confirmed by cross-sectional imaging, flexible or video capsule endoscopy. Present treatment strategies are directed primarily towards symptom relief and management of emerging complications. Recently, however, there has been a shift towards rational drug design based on improved understanding of the molecular basis of disease in an effort to limit the fibrotic process and prevent organ damage.

  8. LASERS: Study of a Tm:Ho:YLF laser pumped by a Raman shifted erbium-doped fibre laser at 1678 nm

    NASA Astrophysics Data System (ADS)

    Kalachev, Yu L.; Mikhailov, Viktor A.; Podreshetnikov, V. V.; Shcherbakov, Ivan A.

    2010-06-01

    The lasing, spectral, and luminescent characteristics of a Tm:Ho:YLF laser pumped by a Raman shifted erbium-doped fibre laser (λ = 1678 nm) into the 1682-nm absorption line of the 3H6-3F4 transition of the Tm3+ ion are studied. It is shown that the total (with respect to the absorbed power) and slope laser efficiencies upon pulsed pumping reach 46% and 50%, respectively. The output radiation power in the cw regime is 400 mW. The comparative measurements showed that pumping by a fibre laser at 1678 nm is more efficient than diode pumping at 792 nm.

  9. Segmentation of the macular choroid in OCT images acquired at 830nm and 1060nm

    NASA Astrophysics Data System (ADS)

    Lee, Sieun; Beg, Mirza F.; Sarunic, Marinko V.

    2013-06-01

    Retinal imaging with optical coherence tomography (OCT) has rapidly advanced in ophthalmic applications with the broad availability of Fourier domain (FD) technology in commercial systems. The high sensitivity afforded by FD-OCT has enabled imaging of the choroid, a layer of blood vessels serving the outer retina. Improved visualization of the choroid and the choroid-sclera boundary has been investigated using techniques such as enhanced depth imaging (EDI), and also with OCT systems operating in the 1060-nm wavelength range. We report on a comparison of imaging the macular choroid with commercial and prototype OCT systems, and present automated 3D segmentation of the choroid-scleral layer using a graph cut algorithm. The thickness of the choroid is an important measurement to investigate for possible correlation with severity, or possibly early diagnosis, of diseases such as age-related macular degeneration.

  10. A precise measurement of lunar spectral irradiance from 450 nm to 1000 nm

    NASA Astrophysics Data System (ADS)

    Cramer, C. E.; Lykke, K.; Woodward, J. T.; Smith, A. W.

    2013-12-01

    Although the Moon is our nearest celestial neighbor, our knowledge of its absolute spectral irradiance is an order of magnitude less precise than our knowledge of the best-calibrated stars, including the Sun. A precise determination of the Moon's absolute spectral irradiance has the potential to improve on-orbit calibrations of Earth-observing instruments and extend atmospheric monitoring techniques based on Sun photometry to nighttime measurements based on lunar spectrophotometry. Observations of the Moon have already been used to track changes in satellite sensor response at the sub-percent level, relying on a model of lunar irradiance developed by the United States Geological Survey to predict time-dependent changes in lunar irradiance. The absolute scale of this model, however, is not known accurately enough to allow the Moon to specify an absolute scale for instrument response on orbit or to bridge gaps in various climate data records. We report initial measurements of lunar spectral irradiance with an uncertainty below 1 % from 420 nm to 1000 nm and compare them with the USGS model. Our measurement uncertainty meets the radiometric calibration requirement for many climate data records derived from satellite images, including those for vegetation, aerosols, and snow and ice albedo. It therefore opens the possibility of using the Moon as a calibration standard to bridge gaps in satellite coverage and validate atmospheric retrieval algorithms. Our measurement technique also yields detailed information about the atmosphere at the measurement site, suggesting that lunar observations are a possible solution for aerosol monitoring during the polar winter and can provide nighttime measurements to complement aerosol data collected with Sun photometers. Our measurement, made with a novel apparatus, is an order of magnitude more accurate than the previous state-of-the-art and has continuous spectral coverage, removing the need to interpolate between filter passbands.

  11. Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance

    SciTech Connect

    Heath, D.F.; Schlesinger, B.M.

    1986-07-20

    Five years of 160- to 400-nm solar flux measurements by the Solar Backscattered Ultraviolet experiment on Nimbus 7 have been analyzed. The flux in the center of strong lines and at shorter wavelengths varies with periods that correspond to modulation by the rotation of active regions. The modulation is greater at the centers of strong lines and at shorter wavelengths, corresponding to radiation that originates at higher levels in the solar atmosphere. The ratio of the irradiance in the core of the Mg 280-nm line to the irradiance at neighboring wavelengths is used as an index of solar variation. A scaling factor is derived by comparing rotational modulation at other wavelengths with the rotational modulation of the index. The scaled Mg II 280-nm strength successfully represents both rotational and long-term variations across the Al absorption edge near 210 nm. This ratio can therefore provide an empirical representation of long-term ultraviolet solar variability. Scaling factors are derived and changes estimated at several ultraviolet wavelengths. At 204 nm, in the wavelength region that drives atmospheric photochemistry, the solar irradiance drops about 4% from its average level for 1979-1980 to late 1983. The total estimated range of variation of the 27-day averaged (one rotation) 204-nm irradiance is 6%, over the 5 years of measurements. A least squares fit shows that over the 5 years, 27-day averages of 10.7-cm radio flux and of the Mg II index follow a linear relation. The radio flux can therefore be used to estimate changes in the solar ultraviolet for times before the launch of Nimbus 7.

  12. Sub-10 nm patterning using EUV interference lithography.

    PubMed

    Päivänranta, Birgit; Langner, Andreas; Kirk, Eugenie; David, Christian; Ekinci, Yasin

    2011-09-16

    Extreme ultraviolet (EUV) lithography is currently considered as the leading technology for high-volume manufacturing below sub-20 nm feature sizes. In parallel, EUV interference lithography based on interference transmission gratings has emerged as a powerful tool for industrial and academic research. In this paper, we demonstrate nanopatterning with sub-10 nm resolution using this technique. Highly efficient and optimized molybdenum gratings result in resolved line/space patterns down to 8 nm half-pitch and show modulation down to 6 nm half-pitch. These results show the performance of optical nanopatterning in the sub-10 nm range and currently mark the record for photon-based lithography. Moreover, an efficient phase mask completely suppressing the zeroth-order diffraction and providing 50 nm line/space patterns over large areas is evaluated. Such efficient phase masks pave the way towards table-top EUV interference lithography systems.

  13. Spectral emission properties of a LPP light source in the sub-200nm range for wafer inspection applications

    NASA Astrophysics Data System (ADS)

    Gambino, Nadia; Rollinger, Bob; Hudgins, Duane; Abhari, Reza; Abreau, F.

    2015-03-01

    In this work, the spectral emission proprieties of a droplet-based laser-produced plasma are investigated in the VUV range. These studies are performed with a spectrograph operating from 30 nm to 180 nm at a spectral resolution of 0.1 nm. The emission spectra are recorded for different droplet-based metal fuels such as tin, indium and gallium in the presence of different background gas pressure levels. The experimental results are relevant for alternative light sources that would be needed for future wafer inspection tools. In addition, the experimental results help to determine the Out- Of-Band (OOB) radiation emission of the EUV source. By tuning the type of fuel, the laser energies and the background gas, the LPP light source shows good capabilities to be operated as a tunable light source that covers a spectral emission range from the EUV to the sub-200 nm range.

  14. Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature.

    PubMed

    Li, K H; Liu, X; Wang, Q; Zhao, S; Mi, Z

    2015-02-01

    Ultraviolet laser radiation has been adopted in a wide range of applications as diverse as water purification, flexible displays, data storage, sterilization, diagnosis and bioagent detection. Success in developing semiconductor-based, compact ultraviolet laser sources, however, has been extremely limited. Here, we report that defect-free disordered AlGaN core-shell nanowire arrays, formed directly on a Si substrate, can be used to achieve highly stable, electrically pumped lasers across the entire ultraviolet AII (UV-AII) band (∼320-340 nm) at low temperatures. The laser threshold is in the range of tens of amps per centimetre squared, which is nearly three orders of magnitude lower than those of previously reported quantum-well lasers. This work also reports the first demonstration of electrically injected AlGaN-based ultraviolet lasers monolithically grown on a Si substrate, and offers a new avenue for achieving semiconductor lasers in the ultraviolet B (UV-B) (280-320nm) and ultraviolet C (UV-C) (<280 nm) bands.

  15. 32nm node technology development using interference immersion lithography

    NASA Astrophysics Data System (ADS)

    Sewell, Harry; McCafferty, Diane; Markoya, Louis; Hendrickx, Eric; Hermans, Jan; Ronse, Kurt

    2005-05-01

    The 38nm and 32nm lithography nodes are the next major targets for optical lithography on the Semiconductor Industry Roadmap. The recently developed water-based immersion lithography using ArF illumination will be able to provide an optical solution for lithography at the 45nm node, but it will not be able to achieve the 38nm or the 32nm nodes as currently defined. To achieve these next lithographic nodes will require new, very high refractive index fluids to replace the water used in current immersion systems. This paper describes tests and experiments using an interference immersion lithography test jig to develop key technology for the 32nm node. Interference imaging printers have been available for years, and with the advent of Immersion Lithography, they have a new use. Interference immersion image printing offers users a rapid, cost-effective way to develop immersion lithography, particularly at extremely high resolutions. Although it can never replace classical lens-based lithography systems for semiconductor device production, it does offer a way to develop resist and fluid technology at a relatively low cost. Its simple image-forming format offers easy access to the basic physics of advanced imaging. Issues such as: Polarization of the image forming light rays; Fluid/resist interaction during exposure; Topcoat film performance; and the Line Edge Roughness (LER) of resists at extremely high resolutions can all be readily studied. Experiments are described and results are provided for work on: 32nm imaging tests; high refractive index fluid testing using 193nm wavelength at resolutions well beyond current lens-based system capabilities; and polarization configuration testing on 45nm, 38nm, and 32nm L/S features. Results on the performance of resists and topcoats are reported for 32nm L/S features.

  16. Detection limits of 405 nm and 633 nm excited PpIX fluorescence for brain tumor detection during stereotactic biopsy

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; Götz, Marcus; Haj-Hosseini, Neda; Hollnburger, Bastian; Sroka, Ronald; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2016-04-01

    5-aminolevulinic-acid-(5-ALA)-induced protoporphyrin IX (PpIX) fluorescence may be used to improve stereotactic brain tumor biopsies. In this study, the sensitivity of PpIX-based tumor detection has been investigated for two potential excitation wavelengths (405 nm, 633 nm). Using a 200 μm fiber in contact with semi-infinite optical phantoms containing ink and Lipovenös, PpIX detection limits of 4.0 nM and 200 nM (relating to 1 mW excitation power) were determined for 405 nm and 633 nm excitation, respectively. Hence, typical PpIX concentrations in glioblastomas of a few μM should be well detectable with both wavelengths. Additionally, blood layers of selected thicknesses were placed between fiber and phantom. Red excitation was shown to be considerably less affected by blood interference: A 50 μm blood layer, for instance, blocked the 405- nm-excited fluorescence completely, but reduced the 633-nm-excited signal by less than 50%. Ray tracing simulations demonstrated that - without blood layer - the sensitivity advantage of 405 nm rises for decreasing fluorescent volume from 50-fold to a maximum of 100-fold. However, at a tumor volume of 1 mm3, which is a typical biopsy sample size, the 633-nm-excited fluorescence signal is only reduced by about 10%. Further simulations revealed that with increasing fiber-tumor distance, the signal drops faster for 405 nm. This reduces the risk of detecting tumor tissue outside the needle's coverage, but diminishes the overlap between optically and mechanically sampled volumes. While 405 nm generally offers a higher sensitivity, 633 nm is more sensitive to distant tumors and considerably superior in case of blood-covered tumor tissue.

  17. Synchrotron radiation with radiation reaction

    NASA Astrophysics Data System (ADS)

    Nelson, Robert W.; Wasserman, Ira

    1991-04-01

    A rigorous discussion is presented of the classical motion of a relativistic electron in a magnetic field and the resulting electromagnetic radiation when radiation reaction is important. In particular, for an electron injected with initial energy gamma(0), a systematic perturbative solution to the Lorentz-Dirac equation of motion is developed for field strengths satisfying gamma(0) B much less than 6 x 10 to the 15th G. A particularly accurate solution to the electron orbital motion in this regime is found and it is demonstrated how lowest-order corrections can be calculated. It is shown that the total energy-loss rate corresponds to what would be found using the exact Larmor power formula without including radiation reaction. Provided that the particle energy and field strength satisfy the same contraint, it is explicitly demonstrated that the intuitive prescription for calculating the time-integrated radiation spectrum described above is correct.

  18. Electric Field-Assisted Photochemical Water Splitting Should Operate with 287 nm Light.

    PubMed

    Bachler, Vinzenz; Gärtner, Wolfgang

    2016-05-01

    The major photoreaction of water is the homolytic splitting of one O-H bond starting from the 1(1) B1 excited state (λmax = 167 nm). This reaction produces H• and •OH radicals. The combination of two H• atoms leads to the potential energy carrier dihydrogen. However, the energy required to obtain the photoreactive 1(1) B1 electronic state is about 7.4 eV, which cannot be effectively provided by solar radiation. The sun light spectrum on earth comprises the visible and ultraviolet region, but shows vanishing intensity near 7 eV (177.1 nm). This work provides theoretical evidence that the photoreactive 1(1) B1 state of water can be shifted into the ultraviolet (UV-B) light region (≈287 nm) by including explicitly an electric field in the calculations of the water absorption spectrum. To accomplish such bathochromic shift, a large field strength of 3.08 VÅ(-1) is required. The field-dependent excitation energies were calculated by applying the symmetry-adapted cluster configuration interaction (SAC-CI) procedure. Based on this theoretical analysis, we propose that photochemical water splitting can be accomplished by means of 287 nm light provided the water molecule is favorably oriented by an external electric field and is subsequently activated by a reversal of the field orientation.

  19. Demonstration of a GaAs-based 1550-nm continuous wave photomixer

    SciTech Connect

    Zhang, W.-D. Brown, E. R.; Middendorf, J. R.

    2015-01-12

    An Er:GaAs-based 1550-nm CW photomixer is demonstrated. The related mechanism is extrinsic photoconductivity with optical absorption between the localized deep levels created by the Er and the extended states above the conduction band edge of GaAs. With the power boost made possible by a fiber-coupled erbium-doped-fiber amplifier, the Er:GaAs photomixers, operating at 1550 nm, radiate THz power levels easily measured by a Golay cell, and display a power spectrum having a −3 dB roll-off frequency of 307 GHz. This corresponds to a photocarrier lifetime of 520 fs, in good agreement with a previous measurement of the bandwidth of the same material in a photoconductive switch.

  20. Laser trapping dynamics of 200 nm-polystyrene particles at a solution surface

    NASA Astrophysics Data System (ADS)

    Yuyama, Ken-ichi; Sugiyama, Teruki; Masuhara, Hiroshi

    2013-09-01

    We present laser trapping behaviors of 200 nm-polystyrene particles in D2O solution and at its surface using a focused continuous-wave laser beam of 1064 nm. Upon focusing the laser beam into the solution surface, the particles are gathered at the focal spot, and their assembly is expanded to the outside and becomes much larger than the focal volume. The resultant assembly is observed colored under halogen lamp illumination, which is due to a periodic structure like a colloidal crystal. This trapping behavior is much different compared to the laser irradiation into the inside of the solution where a particle-like assembly with a size similar to that of the focal volume is prepared. These findings provide us new insights to consider how radiation pressure of a focused laser beam acts on nanoparticles at a solution surface.

  1. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  2. Brain radiation - discharge

    MedlinePlus

    Radiation - brain - discharge; Cancer-brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  3. Correlation between Sun Protection Factor and Antioxidant Activity, Phenol and Flavonoid Contents of some Medicinal Plants

    PubMed Central

    Ebrahimzadeh, Mohammad Ali; Enayatifard, Reza; Khalili, Masoumeh; Ghaffarloo, Mahdieh; Saeedi, Majid; Yazdani Charati, Jamshid

    2014-01-01

    Long exposure of UV radiation increases risk of skin diseases such as cancer and photoallergic reactions. UV-B (280-320 nm) radiation is mainly responsible for inducing the skin problems. Skin protection is a suitable method against ultraviolet radiation-induced damage. Various synthetic agents have been used as photo protective but because of their potential toxicity in humans, they have limited usage. Natural substances have been recently considered as potential sunscreen resources due to their absorption in the UV region and their antioxidant activity. In the present study, the UV protective effects of 20 extracts from four common medicinal plants were evaluated. Their phenol and flavonoid contents and antioxidant activities were determined and correlation between SPF and these contents were evaluated. SPFs were between 0.102 and 24.470. The highest value was reached with ultrasonic extract of Crataegus pentagyna (SPF = 24.47) followed by methanolic extract of Feijoa sellowiana (SPF = 1.30). Good correlation was found between SPF and phenolic contents (Correlation Coefficient = 0.55 and p = 0.01) but no correlations were found between SPF and flavonoid contents or antioxidant activity. These extracts can be used alone or as additives in other sun screen formulations to enhance their SPF. PMID:25276206

  4. Correlation between Sun Protection Factor and Antioxidant Activity, Phenol and Flavonoid Contents of some Medicinal Plants.

    PubMed

    Ebrahimzadeh, Mohammad Ali; Enayatifard, Reza; Khalili, Masoumeh; Ghaffarloo, Mahdieh; Saeedi, Majid; Yazdani Charati, Jamshid

    2014-01-01

    Long exposure of UV radiation increases risk of skin diseases such as cancer and photoallergic reactions. UV-B (280-320 nm) radiation is mainly responsible for inducing the skin problems. Skin protection is a suitable method against ultraviolet radiation-induced damage. Various synthetic agents have been used as photo protective but because of their potential toxicity in humans, they have limited usage. Natural substances have been recently considered as potential sunscreen resources due to their absorption in the UV region and their antioxidant activity. In the present study, the UV protective effects of 20 extracts from four common medicinal plants were evaluated. Their phenol and flavonoid contents and antioxidant activities were determined and correlation between SPF and these contents were evaluated. SPFs were between 0.102 and 24.470. The highest value was reached with ultrasonic extract of Crataegus pentagyna (SPF = 24.47) followed by methanolic extract of Feijoa sellowiana (SPF = 1.30). Good correlation was found between SPF and phenolic contents (Correlation Coefficient = 0.55 and p = 0.01) but no correlations were found between SPF and flavonoid contents or antioxidant activity. These extracts can be used alone or as additives in other sun screen formulations to enhance their SPF.

  5. Modification in growth, biomass and yield of radish under supplemental UV-B at different NPK levels.

    PubMed

    Singh, Suruchi; Kumari, Rima; Agrawal, Madhoolika; Agrawal, S B

    2011-05-01

    Growth, biomass, yield and quality characteristics of radish (Raphanus sativus L. var. Pusa Himani) were investigated under supplemental UV-B (sUV-B; 280-320 nm; +7.2 kJ m(-2) d(-1)) radiation at varying levels of soil NPK. Combinations of NPK were recommended, 1.5 times NPK, 1.5 times N and 1.5 times K. sUV-B radiation negatively affected the growth and economic yield with more reductions at 1.5 times recommended NPK, N and K compared to recommended NPK. Total biomass remained unaffected in plants at recommended NPK under sUV-B radiation. At 1.5 times NPK and N more partitioning of biomass to shoot led to reduction in root shoot ratio and consequently yield under sUV-B. Nutrients in edible part declined maximally at 1.5 times recommended K under sUV-B. The study suggests that higher than recommended NPK makes radish plants more sensitive to sUV-B in terms of yield by allocating less photosynthates towards roots compared to shoots.

  6. Effector and Suppressor Circuits of the Immune Response are Activated in vivo by Different Mechanisms

    NASA Astrophysics Data System (ADS)

    Okamoto, Hiroyuki; Kripke, Margaret L.

    1987-06-01

    The application of fluorescein isothiocyanate (FITC) onto the skin of mice induces a contact hypersensitivity immune response. Lymph nodes draining the skin painted with FITC contain fluorescent cells that induce contact hypersensitivity to FITC when injected into normal mice. The antigen-presenting cells responsible for activating the effector pathway of the contact hypersensitivity response express Ia histocompatibility determinants and are resistant to inactivation with γ -radiation. Exposing the skin to low doses of UV radiation (280-320 nm) before the application of FITC suppresses the contact hypersensitivity response to FITC. Cells present in the draining lymph nodes of these mice induce suppressor T lymphocytes when injected into normal recipients. The inducer cells in the draining lymph nodes are Thy 1+,Ia- and are inactivated by γ -radiation. These studies demonstrate that different mechanisms are involved in the in vivo activation of effector and suppressor immune responses, and they suggest that the mode of initial antigen presentation determines which immunologic circuit will be activated in response to a contact-sensitizing antigen.

  7. Effector and suppressor circuits of the immune response are activated in vivo by different mechanisms

    SciTech Connect

    Okamoto, H.; Kripke, M.L.

    1987-06-01

    The application of fluorescein isothiocyanate (FITC) onto the skin of mice induces a contact hypersensitivity immune response. Lymph nodes draining the skin painted with FITC contain fluorescent cells that induce contact hypersensitivity to FITC when injected into normal mice. The antigen-presenting cells responsible for activating the effector pathway of the contact hypersensitivity response express Ia histocompatibility determinants and are resistant to inactivation with gamma-radiation. Exposing the skin to low doses of UV radiation (280-320 nm) before the application of FITC suppresses the contact hypersensitivity response to FITC. Cells present in the draining lymph nodes of these mice induce suppressor T lymphocytes when injected into normal recipients. The inducer cells in the draining lymph nodes are Thy 1+, Ia- and are inactivated by gamma-radiation. These studies demonstrate that different mechanisms are involved in the in vivo activation of effector and suppressor immune responses, and they suggest that the mode of initial antigen presentation determines which immunologic circuit will be activated in response to a contact-sensitizing antigen.

  8. Development of a 266 nm Raman lidar for profiling atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Uesugi, T.; Tsuda, T.; Yabuki, M.; Liu, Y.

    2014-12-01

    It is projected that localized extreme weather events could increase due to the effects of global warming, resulting in severe weather disasters, such as a torrential rain, floods, and so on. Understanding water vapor's behavior in the atmosphere is essen- tial to understand a fundamental mechanism of these weather events. Therefore, continuous monitoring system to measure the atmospheric water vapor with good spatio-temporal resolution is required. We have developed several water vapor Raman lidar systems employing the laser wavelengths of 355 and 532 nm. However, the signal-to-noise ratio of the Raman lidar strongly depends on the sky background because of the detection of the weak inelastic scattering of light by molecules. Therefore, these systems were mainly used during nighttime. Hence, we have newly developed a water vapor Raman lidar using a quadrupled Nd:YAG laser at a wavelength of 266 nm. This wavelength is in the ultraviolet (UV) range below 300 nm known as the "solar-blind" region, because practically all radiation at these wavelengths is absorbed by the ozone layer in the stratosphere. It has the advantage of having no daytime solar background radiation in the system. The lidar is equipped with a 25 cm receiving telescope and is used for measuring the light separated into an elastic backscatter signal and vibrational Raman signals of nitrogen and water vapor at wavelengths of 266.1, 283.6, and 294.6 nm, respectively. This system can be used for continuous water vapor measurements in the lower troposphere. This study introduces the design of the UV lidar system and shows the preliminary results of water vapor profiles.

  9. Electrodeless microwave source of UV radiation

    NASA Astrophysics Data System (ADS)

    Barkhudarov, E. M.; Kozlov, Yu. N.; Kossyi, I. A.; Malykh, N. I.; Misakyan, M. A.; Taktakishvili, I. M.; Khomichenko, A. A.

    2012-06-01

    The parameters of an electrodeless microwave low-pressure discharge in an Ar + Hg vapor mixture are studied, the design of a UV radiation source for water disinfection is suggested, and its main characteristics are presented. The domestic microwave oven ( f = 2.45 GHz; N = kW) is used as a microwave radiation source. The maximal UV power at wavelength λ = 254 nm amounts to 120-130 W.

  10. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity

    PubMed Central

    Saeed, A.; Panaro, S.; Zaccaria, R. Proietti; Raja, W.; Liberale, C.; Dipalo, M.; Messina, G. C.; Wang, H.; De Angelis, F.; Toma, A.

    2015-01-01

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5 nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding. PMID:26057661

  11. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity

    NASA Astrophysics Data System (ADS)

    Saeed, A.; Panaro, S.; Zaccaria, R. Proietti; Raja, W.; Liberale, C.; Dipalo, M.; Messina, G. C.; Wang, H.; de Angelis, F.; Toma, A.

    2015-06-01

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5 nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding.

  12. Temperature-dependent 780-nm laser absorption by engineering grade aluminum, titanium, and steel alloy surfaces

    SciTech Connect

    Rubenchik, Alexander M.; Wu, Sheldon S. Q.; Kanz, V. Keith; LeBlanc, Mary M.; Lowdermilk, W. Howard; Rotter, Mark D.; Stanley, Joel R.

    2014-07-17

    When modeling laser interaction with metals for various applications it requires a knowledge of absorption coefficients for real, commercially available materials with engineering grade (unpolished, oxidized) surfaces. But, most currently available absorptivity data pertain to pure metals with polished surfaces or vacuum-deposited thin films in controlled atmospheres. A simple laboratory setup is developed for the direct calorimetric absorptivity measurements using a diode-array laser emitting at 780 nm. A scheme eliminating the effect of convective and radiative losses is implemented. Futhermore, the obtained absorptivity results differ considerably from existing data for polished pure metals and are essential for the development of predictive laser-material interaction models.

  13. Shot noise startup of the 6 NM SASE FEL at the Tesla Test Facility

    SciTech Connect

    Pierini, P.; Fawley, W.M.

    1995-12-31

    We present here an analysis of the shot noise startup of the 6 nm SASE FEI proposal at the TESLA Test Facility in DESY The statistical of the saturation length and output power due to the intrinsic randomness of the noise startup are investigated with the use of the 2D time dependent code GINGER, that takes into account propagation effects and models shot noise. We then provide estimates for the spectral contents and linewidth of the emitted radiation and describe its spiking characteristics. The output radiation will develop superradiant spikes seeded by the shot noise in the electron beam, which can entrance the average emitted power at the expense of some spectral broadening.

  14. Evaluation of dental pulp repair using low level laser therapy (688 nm and 785 nm) morphologic study in capuchin monkeys

    NASA Astrophysics Data System (ADS)

    Pretel, H.; Oliveira, J. A.; Lizarelli, R. F. Z.; Ramalho, L. T. O.

    2009-02-01

    The aim of this study was to evaluate the hypothesis that low-level laser therapy (LLLT) 688 nm and 785 nm accelerate dentin barrier formation and repair process after traumatic pulp exposure. The sample consisted of 45 premolars of capuchin monkeys (Cebus apella) with pulp exposure Class V cavities. All premolars were treated with calcium hydroxide (Ca(OH)2), divided in groups of 15 teeth each, and analyzed on 7th, 25th, and 60th day. Group GI - only Ca(OH)2, GII - laser 688 nm, and GIII - laser 785 nm. Laser beam was used in single and punctual dose with the parameters: continuous, 688 nm and 785 nm wavelength, tip's area of 0.00785 cm2, power 50 mW, application time 20 s, dose 255 J/cm2, energy 2 J. Teeth were capped with Ca(OH)2, Ca(OH)2 cement and restored with amalgam. All groups presented pulp repair. On 25th day the thickness of the formed dentin barrier was different between the groups GI and GII (p < 0.05) and between groups GI and GIII (p < 0.01). On 60th day there was difference between GI and GIII (p < 0.01). It may be concluded that, LLLT 688 nm and 785 nm accelerated dentin barrier formation and consequently pulp repair process, with best results using infrared laser 785 nm.

  15. Radiation myelopathy.

    PubMed Central

    Sanyal, B; Pant, G C; Subrahmaniyam, K; Agrawal, M S; Mohanty, S

    1979-01-01

    Five cases of radiation myelopathy were found in a total of 10,000 cases given radiotherapy from 1968 to 1977. The clinical presentation and treatment details including the total dose, treatment volume, number of fractionations, overall time, and the RET value at the spinal cord were calculated and compared with other reports on this subject. The total number of fractionations ranged from 20 to 26 with an overall time of 32 days to 37 days. The dose received by four patients ranged from 1030 to 1900 RET, a little higher than the tolerance level of the spinal cord as compared to reported values. Two patients in this series had high blood pressure. The incidence of radiation myelopathy, already acceptably low, could possibly be reduced further by meticulous planning of radiation. PMID:448380

  16. Radiation effects.

    PubMed

    Preston, R J

    2012-01-01

    International Commission on Radiological Protection (ICRP) Committee 1 (C1) considers the risk of induction of cancer and heritable disease; the underlying mechanisms of radiation action; and the risks, severity, and mechanisms of induction of tissue reactions (formerly 'deterministic effects'). C1 relies upon the interpretation of current knowledge of radio-epidemiological studies; current information on the underlying mechanisms of diseases and radiation-induced disease; and current radiobiological studies at the whole animal, tissue, cell, and molecular levels. This overview will describe the activities of C1 in the context of the 2007 Recommendations of ICRP. In particular, the conclusions from the most recent C1 Task Group deliberations on radon and lung cancer, and tissue reactions will be discussed. Other activities are described in summary fashion to illustrate those areas that C1 judge to be likely to influence the development of the risk estimates and nominal risk coefficients used for radiation protection purposes.

  17. Scattering matrices of martian dust analogs at 488 nm and 647 nm

    NASA Astrophysics Data System (ADS)

    Dabrowska, Dominika D.; Muñoz, Olga; Moreno, Fernando; Ramos, José L.; Martínez-Frías, Jesús; Wurm, Gerhard

    2015-04-01

    We present measurements of the complete scattering matrix as a function of the scattering angle of five martian dust analogs, namely montmorillonite, two palagonite (JSC-1) samples, basalt, and calcite. The measurements are performed at 488 and 647 nm, covering the scattering angle range from 3° to 177°. The experimental scattering matrices are compared with results of Lorenz-Mie calculations performed for the same size distributions and refractive indices as our analog samples. As expected, we find that scattering matrices of realistic polydispersions of dust particles cannot be replaced by such calculated matrices. In contrast, the measured phase functions for our martian dust analogs may be considered a good approximation for martian dust at the studied wavelengths. Further, because of the sensitivity of polarimetry to particle microphysics, spectro-polarimetric observations from the martian surface appear to be a powerful diagnostic tool to infer the composition of the dust in the martian atmosphere. To facilitate the use of the experimental matrices for multiple-scattering calculations with polarization included, we compute the corresponding synthetic scattering matrices based on the measurements and defined in the full angle range from 0° to 180°.

  18. Radiation receiver

    DOEpatents

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  19. Radiation receiver

    DOEpatents

    Hunt, Arlon J.

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  20. On high speed transmission with the 850nm VCSELs

    NASA Astrophysics Data System (ADS)

    Turkiewicz, Jarosław P.; Chorchos, Łukasz; Puerta Ramirez, Rafael; Vegas Olmos, Juan Jose; Ledentsov, Nikolay

    2016-09-01

    One of the key research challenges is development of energy efficient high bit rate data interconnects. The most promising solutions are based on 850 nm vertical cavity surface emitting lasers (VCSEL) and multi mode fibre (MMF). In this paper options to realize energy efficient 850 nm data interconnects are discussed and evaluated.

  1. Evolution of the gate current in 32 nm MOSFETs under irradiation

    NASA Astrophysics Data System (ADS)

    Palumbo, F.; Debray, M.; Vega, N.; Quinteros, C.; Kalstein, A.; Guarin, F.

    2016-05-01

    Radiation induced currents on single 32 nm MOSFET transistors have been studied using consecutive runs of 16O at 25 MeV. The main feature is the generation of current peaks - in the gate and channel currents - due to the collection of the electro-hole pairs generated by the incident radiation runs. It has been observed that the incident ions cause damage in the dielectric layer and in the substrate affecting the collection of carriers, and hence the radiation-induced current peaks. It has been find out a decrease of the current peak due to the increase of the series resistance by non-ionizing energy loss in the semiconductor substrate, and an increase of the leakage current due to defects in the gate oxide by ionizing energy loss. For low levels of damage in the gate oxide, the main feature is the shift of the VTH. Hot carriers heated by the incident radiation in the depletion region and injected in the gate oxide cause the change of the VTH due to electron or hole trapping for n- or p-channel respectively. The overall results illustrate that these effects must be taken into consideration for an accurate reliability projection.

  2. RADIATION SOURCES

    DOEpatents

    Brucer, M.H.

    1958-04-15

    A novel long-lived source of gamma radiation especially suitable for calibration purposes is described. The source of gamma radiation is denoted mock iodine131, which comprises a naixture of barium-133 and cesium-137. The barium and cesium are present in a barium-cesium ratio of approximately 5.7/1 to 14/1, uniformly dispersed in an ion exchange resin and a filter surrounding the resin comprised of a material of atomic number below approximately 51, and substantially 0.7 to 0.9 millimeter thick.

  3. Radiation dermatitis

    SciTech Connect

    Shack, R.B.; Lynch, J.B.

    1987-04-01

    Even in this era of modern radiotherapy, injuries associated with the medical and industrial use of radiation devices will continue to pose a difficult problem for the reconstructive surgeon. It must be borne in mind that the single most serious hazard to surgery in irradiated tissue is the lodgement of bacteria in tissue rendered avascular by the radiation and the secondary necrosis from the infection itself. The basic principles of wound management must be augmented by thorough knowledge of the use of well-vascularized muscle and musculocutaneous flap to provide adequate, blood-rich, soft-tissue coverage.

  4. Electron beam inspection of 16nm HP node EUV masks

    NASA Astrophysics Data System (ADS)

    Shimomura, Takeya; Narukawa, Shogo; Abe, Tsukasa; Takikawa, Tadahiko; Hayashi, Naoya; Wang, Fei; Ma, Long; Lin, Chia-Wen; Zhao, Yan; Kuan, Chiyan; Jau, Jack

    2012-11-01

    EUV lithography (EUVL) is the most promising solution for 16nm HP node semiconductor device manufacturing and beyond. The fabrication of defect free EUV mask is one of the most challenging roadblocks to insert EUVL into high volume manufacturing (HVM). To fabricate and assure the defect free EUV masks, electron beam inspection (EBI) tool will be likely the necessary tool since optical mask inspection systems using 193nm and 199nm light are reaching a practical resolution limit around 16nm HP node EUV mask. For production use of EBI, several challenges and potential issues are expected. Firstly, required defect detection sensitivity is quite high. According to ITRS roadmap updated in 2011, the smallest defect size needed to detect is about 18nm for 15nm NAND Flash HP node EUV mask. Secondly, small pixel size is likely required to obtain the high sensitivity. Thus, it might damage Ru capped Mo/Si multilayer due to accumulated high density electron beam bombardments. It also has potential of elevation of nuisance defects and reduction of throughput. These challenges must be solved before inserting EBI system into EUV mask HVM line. In this paper, we share our initial inspection results for 16nm HP node EUV mask (64nm HP absorber pattern on the EUV mask) using an EBI system eXplore® 5400 developed by Hermes Microvision, Inc. (HMI). In particularly, defect detection sensitivity, inspectability and damage to EUV mask were assessed. As conclusions, we found that the EBI system has capability to capture 16nm defects on 64nm absorber pattern EUV mask, satisfying the sensitivity requirement of 15nm NAND Flash HP node EUV mask. Furthermore, we confirmed there is no significant damage to susceptible Ru capped Mo/Si multilayer. We also identified that low throughput and high nuisance defect rate are critical challenges needed to address for the 16nm HP node EUV mask inspection. The high nuisance defect rate could be generated by poor LWR and stitching errors during EB writing

  5. Thin bilayer resists for 193-nm and future photolithography II

    NASA Astrophysics Data System (ADS)

    Hishiro, Yoshi; Hyatt, Michael

    2007-03-01

    Bilayer, Si-containing resists are a technique of interest and a strong candidate to replace chemical vapor deposition (CVD) hardmask processes for small critical dimensions (CDs). Previously, we proposed a very thin film approach using bilayer resists for future lithography, defined the requirements for the resists, and demonstrated 55nm transferred patterns with high aspect ratios using 2-beam interferometer exposure. In this paper, we have demonstrated smaller-than- 60nm transferred patterns with a high numerical aperture (NA) scanner, as well as 45nm and 40nm transferred patterns with a 2-beam system using a 20% Si-containing thin bilayer resist. Immersion scanner exposure and a 35nm CD with 2- beam system were also studied.

  6. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  7. Generation and biological evaluation of the products formed from the exposure of Phenothiazine to a 266nm laser beam

    NASA Astrophysics Data System (ADS)

    Alexandru, T.; Pascu, M. L.; Danko, B.; Nastasa, V.; Boni, M.; Militaru, A.; Andrei, I. R.; Staicu, A.; Hunyadi, A.; Armada, A.; Viveiros, M.; Amaral, L.

    2013-06-01

    Phenothiazine exposed to white light or UV radiation undergoes a variety of reactions that result in the degradation of the parental compound and the formation of new species. Chlorpromazine exposed to the 266 nm laser beam of given energy levels yielded species derived from it, whose number increased with the exposure duration. At distinct time intervals the irradiation products were evaluated by spectrophotometry between 200-1500 nm, Thin Layer Chromatography, and for antimicrobial activity of Chlorpromazine against different test organisms such as Staphylococcus aureus.

  8. Focal Spots of Size λ/23 Open Up Far-Field Florescence Microscopy at 33 nm Axial Resolution

    NASA Astrophysics Data System (ADS)

    Dyba, Marcus; Hell, Stefan W.

    2002-04-01

    We report spots of excited molecules of 33 nm width created with focused light of λ = 760 nm wavelength and conventional optics along the optic axis. This is accomplished by exciting the molecules with a femtosecond pulse and subsequent depletion of their excited state with red-shifted, picosecond-pulsed, counterpropagating, coherent light fields. The λ/23 ratio constitutes what is to our knowledge the sharpest spatial definition attained with freely propagating electromagnetic radiation. The sub-diffraction spots enable for the first time far-field fluorescence microscopy with resolution at the tens of nanometer scale, as demonstrated in images of membranes of bacillus megaterium.

  9. ESTIMATION OF UV RADIATION DOSE IN NORTHERN MINNESOTA WETLANDS

    EPA Science Inventory

    The ultraviolet (UV) B wavelength range (280 nm to 320 nm) of solar radiation can be a significant biological stressor, and has been hypothesized to be partially responsible for amphibian declines and malformation. This hypothesis has been difficult to evaluate, in part, because ...

  10. Radiation Emergencies

    MedlinePlus

    ... If the exposure is large enough, it can cause premature aging or even death. Although there are no guarantees of safety during a radiation emergency, you can take actions to protect yourself. You should have a disaster plan. Being prepared can help reduce fear, anxiety ...

  11. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  12. Radiation Models

    ERIC Educational Resources Information Center

    James, W. G. G.

    1970-01-01

    Discusses the historical development of both the wave and the corpuscular photon model of light. Suggests that students should be informed that the two models are complementary and that each model successfully describes a wide range of radiation phenomena. Cites 19 references which might be of interest to physics teachers and students. (LC)

  13. Radiation accidents

    SciTech Connect

    Saenger, E.L.

    1986-09-01

    It is essential that emergency physicians understand ways to manage patients contaminated by radioactive materials and/or exposed to external radiation sources. Contamination accidents require careful surveys to identify the metabolic pathway of the radionuclides to guide prognosis and treatment. The level of treatment required will depend on careful surveys and meticulous decontamination. There is no specific therapy for the acute radiation syndrome. Prophylactic antibodies are desirable. For severely exposed patients treatment is similar to the supportive care given to patients undergoing organ transplantation. For high-dose extremity injury, no methods have been developed to reverse the fibrosing endarteritis that eventually leads to tissue death so frequently found with this type of injury. Although the Three Mile Island episode of March 1979 created tremendous public concern, there were no radiation injuries. The contamination outside the reactor building and the release of radioiodine were negligible. The accidental fuel element meltdown at Chernobyl, USSR, resulted in many cases of acute radiation syndrome. More than 100,000 people were exposed to high levels of radioactive fallout. The general principles outlined here are applicable to accidents of that degree of severity.

  14. Radiation Insulation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Radiation insulation technology from Apollo and subsequent spacecraft was used to develop superinsulators, used by makers of cold weather apparel, to make parkas, jackets, boots and outdoor gear such as sleeping bags. The radiant barrier technology offers warmth retention at minimal weight and bulk.

  15. Ultrastructure: effects of melanin pigment on target specificity using a pulsed dye laser (577 nm)

    SciTech Connect

    Tong, A.K.; Tan, O.T.; Boll, J.; Parrish, J.A.; Murphy, G.F.

    1987-06-01

    It has been shown recently that brief pulses of 577 nm radiation from the tunable dye laser are absorbed selectively by oxyhemoglobin. This absorption is associated with highly specific damage to superficial vascular plexus blood vessels in those with lightly pigmented (type I-II) skin. To determine whether pigmentary differences in the overlying epidermis influence this target specificity, we exposed both type I (fair) and type V (dark) normal human skin to varying radiant exposure doses over 1.5-microsecond pulse durations from the tunable dye laser at a wavelength of 577 nm. Using ultrastructural techniques, we found in type I skin that even clinical subthreshold laser exposures caused reproducible alterations of erythrocytes and adjacent dermal vascular endothelium without comparable damage to the overlying epidermis. In contrast, degenerated epidermal basal cells represented the predominant form of cellular damage after laser exposure of type V skin at comparable doses. We conclude that epidermal melanin and vascular hemoglobin are competing sites for 577 nm laser absorption and damage, and that the target specificity of the 577 nm tunable dye laser is therefore influenced by variations in epidermal pigmentation. This finding is relevant to the clinical application of the tunable dye laser in the ablative treatment of vascular lesions. We also found on ultrastructure that the presence of electron-lucent circular structures of approximately 800 A in diameter were observed only at and above clinical threshold doses in those with type I skin and at the highest dose of 2.75 J/cm2 in type V skin. It has been proposed that these structures might be heat-fixed molds of water vapor. Both this and ultrastructural changes of epidermal basal cells demonstrate mechanisms responsible for alteration of tissue after exposure to 577 nm, which are discussed.

  16. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    SciTech Connect

    Cahoon, Erica M.; Almirall, Jose R.

    2010-05-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  17. Variation of cell spreading on TiO2 film modified by 775 nm and 388 nm femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Tsukamoto, M.; Shinonaga, T.; Sato, Y.; Chen, P.; Nagai, A.; Hanawa, T.

    2014-03-01

    Titanium (Ti) is one of the most used biomaterials in metals. However, Ti is typically artificial materials. Thus, it is necessary for improving the biocompatibility of Ti. Recently, coating of the titanium dioxides (TiO2) film on Ti plate has been proposed to improve biocompatibility of Ti. We have developed coating method of the film on Ti plate with an aerosol beam. Periodic structures formation on biomaterials was also a useful method for improving the biocompatibility. Direction of cell spreading might be controlled along the grooves of periodic microstructures. In our previous study, periodic nanostructures were formed on the film by femtosecond laser irradiation at fundamental wave (775 nm). Period of the periodic nanostructures was about 230 nm. In cell test, cell spreading along the grooves of the periodic nanostructures was observed although it was not done for the film without the periodic nanostructures. Then, influence of the period of the periodic nanostructures on cell spreading has not been investigated yet. The period might be changed by changing the laser wavelength. In this study, the periodic nanostructures were created on the film with femtosecond laser at 775nm and 388 nm, respectively. After cell test, cell spreading along the grooves of the periodic nanostructures was observed on 775 nm and 388nm laser irradiated areas. Distribution of direction of cell spreading on laser irradiated area was also examined. These results suggested that controlling the cell spreading on periodic nanostructures with period of 230 nm was better than that with period of 130 nm.

  18. A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm.

    PubMed

    Steinborn, R; Koglbauer, A; Bachor, P; Diehl, T; Kolbe, D; Stappel, M; Walz, J

    2013-09-23

    A stable, continuous wave, single frequency fiber amplifier system at 1015 nm with 10 W output power is presented. It is based on a large mode double clad fiber cooled to liquid nitrogen temperature. The amplified light is frequency quadrupled to 254 nm and used for spectroscopy of the 6¹S → 6³P transition in mercury.

  19. EUV reticle inspection with a 193nm reticle inspector

    NASA Astrophysics Data System (ADS)

    Broadbent, William; Inderhees, Gregg; Yamamoto, Tetsuya; Lee, Isaac; Lim, Phillip

    2013-06-01

    The prevailing industry opinion is that EUV Lithography (EUVL) will enter High Volume Manufacturing (HVM) in the 2015 - 2017 timeframe at the 16nm HP node. Every year the industry assesses the key risk factors for introducing EUVL into HVM - blank and reticle defects are among the top items. To reduce EUV blank and reticle defect levels, high sensitivity inspection is needed. To address this EUV inspection need, KLA-Tencor first developed EUV blank inspection and EUV reticle inspection capability for their 193nm wavelength reticle inspection system - the Teron 610 Series (2010). This system has become the industry standard for 22nm / 3xhp optical reticle HVM along with 14nm / 2xhp optical pilot production; it is further widely used for EUV blank and reticle inspection in R and D. To prepare for the upcoming 10nm / 1xhp generation, KLA-Tencor has developed the Teron 630 Series reticle inspection system which includes many technical advances; these advances can be applied to both EUV and optical reticles. The advanced capabilities are described in this paper with application to EUV die-to-database and die-to-die inspection for currently available 14nm / 2xhp generation EUV reticles. As 10nm / 1xhp generation optical and EUV reticles become available later in 2013, the system will be tested to identify areas for further improvement with the goal to be ready for pilot lines in early 2015.

  20. Sub-30-nm defect removal on EUV substrates

    NASA Astrophysics Data System (ADS)

    Rastegar, Abbas; Eichenlaub, Sean; Kadaksham, Arun John; House, Matt; Cha, Brian; Yun, Henry

    2009-01-01

    Naturally occurring sub 30 nm defects on quartz and Low Thermal Expansion Material (LTEM) substrates were characterized by using Atomic Force Microscope(AFM). Our data indicates that a majority of defects on the incoming substrate are hard defects including large, flat particles with a height less than 5 nm, tiny particles with a size of 10 nm to 30 nm SEVD and pits with a depth of about 9 nm. All the soft particles added by handling with sizes of >50 nm can be removed with a single cleaning process. At least four cleaning cycles are required to remove all of the remaining embedded particles. However, after particle removal in their initial location a shallow pit remains. Based on detailed characterization of defect and surface by AFM, we propose that these hard particles are added during the glass polishing step and therefore it is important to revisit the glass Chemical Mechanical Polishing (CMP) processes and optimize them for defect reduction. A qualitative value for particle removal efficiency (PRE) of >99% was obtained for 20 nm Poly Styrene Latex Sphere (PSL) deposited particles on surface of glass.

  1. Airglow-solar spectrometer instrument (20-700 nm) aboard the San Marco D/L satellite

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.; Seidl, P.; Wita, C.

    1985-10-01

    The ASSI experiment aboard the San Marco D/L aeronomy satellite will monitor the airglow, solar, and interplanetary radiations from the EUV through the visible spectral regions. Four spectrometers with solar pointing control cover this broad region using channels with eighteen overlapping wavelength ranges with spectral resolutions from 0.8 to 3.0 nm, which are adequate for aeronomy. Large dynamic ranges up to 1:10 to the 11th permit the measurement of faint airglow or interplanetary radiation and intense solar emissions with one and the same instrument. Instrumental details such as the special optical design and calibration procedures are presented in detail.

  2. Photoionization branching ratios and vibrational intensity distribution for N2, CO; and CO2 between 53 and 75 nm

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Gardner, J. L.

    1973-01-01

    The probability of radiation producing ions in specific electronic and vibrational levels was documented. For example, when a narrow band-pass of solar ionizing photons is incident on an atmospheric species it is now possible to describe, accurately, how the radiant energy is shared among the various electronic states of the ions produced. The molecules studied were N2, CO, and CO2. These molecules were photoionized by radiation between 53 and 75 nm. The effects of autoionization are discussed and continuum vibrational intensities are tabulated and compared with theoretical Franck-Condon factors where available. The branching ratios and partial cross sections for ionization into various electronic states are tabulated.

  3. Measurements of the diffuse ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Fix, John D.; Craven, John D.; Frank, Louis A.

    1989-01-01

    The imaging instrumentation on the Dynamics Explorer 1 satellite has been used to measure the intensity of the diffuse ultraviolet radiation on two great circles about the sky. It is found that the isotropic component of the diffuse ultraviolet radiation (possibly of extragalactic origin) has an intensity of 530 + or - 80 units (a unit is 1 photon per sq cm s A sr) at a wavelength of 150 nm. The Galactic component of the diffuse ultraviolet radiation has a dependence on Galactic latitude which requires strongly forward scattering particles if it is produced by dust above the Galactic plane.

  4. Photomask technology for 32nm node and beyond

    NASA Astrophysics Data System (ADS)

    Hikichi, Ryugo; Ishii, Hiroyuki; Migita, Hidekazu; Kakehi, Noriko; Shimizu, Mochihiro; Takamizawa, Hideyoshi; Nagano, Tsugumi; Hashimoto, Masahiro; Iwashita, Hiroyuki; Suzuki, Toshiyuki; Hosoya, Morio; Ohkubo, Yasushi; Ushida, Masao; Mitsui, Hideaki

    2008-05-01

    193nm-immersion lithography is the most promising technology for 32nm-node device fabrication. At the 32nm technology-node, the performance of photomasks, not only phase-shift masks but also binary masks, needs to be improved, especially in "resolution" and "CD accuracy". To meet sub-100nm resolution with high precision, further thinning of resist thickness will be needed. To improve CD performance, we have designed a new Cr-on-glass (COG) blank for binary applications, having OD-3 at 193nm. This simple Cr structure can obtain superior performance with the conventional mask-making process. Since the hardmask concept is one of the alternative solutions, we have also designed a multilayered binary blank. The new COG blank (NTARC) was fully dry-etched with over 25% shorter etching time than NTAR7, which is a conventional COG blank. Thinner resist (up to 200nm) was possible for NTARC. NTARC with 200nm-thick resist showed superior resolution and CD linearity in all pattern categories. On the other hand, the multilayered binary stack gives us a wide etching margin for several etching steps. Super thin resist (up to 100nm) was suitable by using a Cr-hardmask on a MoSi-absorber structure (COMS). The COMS blanks showed superior performance, especially in tiny clear patterns, such as the isolated hole pattern. We confirmed that these new photomask blanks, NTARC and COMS, will meet the requirements for 32nm-node and beyond, for all aspects of mask-making.

  5. EUV mask inspection study for sub-20nm device

    NASA Astrophysics Data System (ADS)

    Shin, Inkyun; Yoon, Gisung; Na, Ji Hoon; Chung, Paul D. H.; Jeon, Chan-Uk

    2012-11-01

    Reflected light inspection has been used to inspect EUVL mask which consists of multi layers and metal absorber. However, sub-wavelength half pitch patterns and reflected inspection make unprecedented phenomenon like tone inversion. These lead EUV inspection more difficult in detectability and inspectability for separating out defects and false. In this study, we report the evaluation result of inspection dependency of illumination conditions like OAI(Off-Axis Illumination), sigma and polarization for sub-20nm EUVL PDM(programmed defect mask). With inspection of sub- 20nm device mask, we finally address the inspection feasibility for sub-20nm device and the future direction of inspection technology.

  6. 80 nm tunable DBR-free semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Albrecht, A. R.; Cederberg, J. G.; Sheik-Bahae, M.

    2016-07-01

    We report a widely tunable optically pumped distributed Bragg reflector (DBR)-free semiconductor disk laser with 6 W continuous wave output power near 1055 nm when using a 2% output coupler. Using only high reflecting mirrors, the lasing wavelength is centered at 1034 nm and can be tuned up to a record 80 nm by using a birefringent filter. We attribute such wide tunability to the unique broad effective gain bandwidth of DBR-free semiconductor disk lasers achieved by eliminating the active mirror geometry.

  7. High-Performance 1645-nm Er: YAG Laser

    DTIC Science & Technology

    2007-09-25

    laser set-up is shown in Figure 1. An IPG Photonics TEM00 erbium fiber laser , which provided 20 W cw power at 1532.4 nm, was used in these experi...output of the resonantly fiber - laser -pumped Er:AYG laser at 1645 nm using 0.25% doped crystal out- performed the 0.5% doped crystal. In addition to the...the advantages of small quantum defect and small thermal load for the laser materials. High-brightness erbium fiber pump lasers at 1532 nm not only

  8. Absolute absorption cross sections of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Parkinson, W. H.; Freeman, D. E.

    1992-01-01

    An account is given of progress of work on absorption cross section measurements of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm. In this wavelength region, the penetration of solar radiation into the Earth's atmosphere is controlled by O2 and O3. The transmitted radiation is available to dissociate trace species such as halocarbons and nitrous oxide. We have recently measured absolute absorption cross sections of O3 in the wavelength region 240-350 nm (Freeman et al., 1985; Yoshino et al., 1988). We apply these proven techniques to the determination of the absorption cross section of O3 at 300 K, 228 K and 195 K throughout the wavelength region 185-240 nm. A paper titled 'Absolute Absorption Cross Section Measurements of Ozone in the Wavelength Region 185-254 nm and the Temperature Dependence' has been submitted for publication in the Journal of Geophysical Research.

  9. A Compact "Water Window" Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology.

    PubMed

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F; Bartnik, Andrzej; Adjei, Daniel; Vondrová, Šárka; Turňová, Jana; Jančarek, Alexandr; Limpouch, Jiří; Vrbová, Miroslava; Fiedorowicz, Henryk

    2015-10-01

    Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from "water window" spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the "water window" is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.

  10. A New Quantum Sensor for Measuring Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Johnson, D.; Thomas, T.; Heinicke, D.; Peterson, R.; Morgan, P.; McDermitt, D. K.; Burba, G. G.

    2015-12-01

    A quantum sensor measures photosynthetically active radiation (PAR, in μmol of photons m-2 s-1) in the 400 nm to 700 nm waveband. Plants utilize this radiation to drive photosynthesis, though individual plant responses to incident radiation may vary within this range. The new quantum sensor (model LI-190R, LI-COR Biosciences, Lincoln, NE), with an optical filter and silicon photodiode detector housed in a cosine-corrected head, is designed to provide a better response to incident radiation across the 400-700 nm range. The new design is expected to significantly improve spectral response due to uniformity across the PAR waveband, but particularly in the wavebands from 520 nm to 600 nm and 665 nm to 680 nm, and sharp cutoffs in the regions below and above the PAR waveband. Special care was taken to make sure that PAR sensor would not substantially respond to incident radiation above the 700 nm threshold because this can lead to errors when performing measurements in environments with a large proportion of near-infrared radiation, such as canopy understory. The physical housing of the sensor is designed to be weather-resistant, to effectively shed precipitation, provide protection at high temperature and high humidity conditions, and has a cosine-corrected response to 82° zenith angle. The latter is particularly important when measuring incident radiation at low elevation angles, diffuse light, or low light conditions. This presentation describes the principles of the new design, and shows the performance results from field experiments and laboratory tests.

  11. Quantifying solar spectral irradiance in aquatic habitats for the assessment of photoenhanced toxicity

    USGS Publications Warehouse

    Barron, M.G.; Little, E.E.; Calfee, R.; Diamond, S.

    2000-01-01

    The spectra and intensity of solar radiation (solar spectral irradiance [SSI]) was quantified in selected aquatic habitats in the vicinity of an oil field on the California coast. Solar spectral irradiance measurements consisted of spectral scans (280-700 rim) and radiometric measurements of ultraviolet (UV): UVB (280-320 nm) and UVA (320-400 nm). Solar spectral irradiance measurements were taken at the surface and at various depths in two marsh ponds, a shallow wetland, an estuary lagoon, and the intertidal area of a high-energy sandy beach. Daily fluctuation in SSI showed a general parabolic relationship with time; maximum structure-activity relationship (SAR) was observed at approximate solar noon. Solar spectral irradiance measurements taken at 10-cm depth at approximate solar noon in multiple aquatic habitats exhibited only a twofold variation in visible light and UVA and a 4.5-fold variation in UVB. Visible light ranged from 11,000 to 19,000 ??W/cm2, UVA ranged from 460 to 1,100 ??W/cm2, and UVB ranged from 8.4 to 38 ??W/cm2. In each habitat, the attenuation of light intensity with increasing water depth was differentially affected over specific wavelengths of SSI. The study results allowed the development of environmentally realistic light regimes necessary for photoenhanced toxicity studies.

  12. At what time should one go out in the sun?

    PubMed

    Moan, Johan; Dahlback, Arne; Porojnicu, Alina Carmen

    2008-01-01

    To get an optimal vitamin D supplement from the sun at a minimal risk of getting cutaneous malignant melanoma (CMM), the best time of sun exposure is noon. Thus, common health recommendations given by authorities in many countries, that sun exposure should be avoided for three to five hours around noon and postponed to the afternoon, may be wrong and may even promote CMM. The reasons for this are (1) The action spectrum for CMM is likely to be centered at longer wavelengths (UVA, ultraviolet A, 320-400 nm) than that of vitamin D generation (UVB, ultraviolet B, 280-320 nm). (2) Scattering of solar radiation on clear days is caused by small scattering elements, Rayleigh dominated and increases with decreasing wavelengths. A larger fraction of UVA than of UVB comes directly and unscattered from the sun. (3) The human body can be more realistically represented by a vertical cylinder than by a horizontal, planar surface, as done in almost all calculations in the literature. With the cylinder model, high UVA fluence rates last about twice as long after noon as high UVB fluence rates do. In view of this, short, nonerythemogenic exposures around noon should be recommended rather than longer nonerythemogenic exposures in the afternoon. This would give a maximal yield of vitamin D at a minimal CMM risk.

  13. Solar UVA exposures

    NASA Astrophysics Data System (ADS)

    Parisi, Alfio V.; Kimlin, Michael G.

    2005-08-01

    Exposures to UVA radiation (320 - 400 nm) have been linked to increasing the risk of skin cancer, premature skin photoageing and skin wrinkling. The relative proportion of the UVA irradiances in the solar spectrum changes with time of day and season. Material such as window glass found in offices, homes and motor vehicles acts as a barrier to the shorter solar UVB wavelengths (280 - 320 nm) and transmits some of the longer UVA wavelengths (dependent on the type of glass). As a result, the spectrum of the filtered UV transmitted through the material may be substantially different from that of the unfiltered solar UV spectrum. This results in a change in the relative ratio of UVA to UVB irradiances and a consequent change in the biologically damaging UV exposures. For these environments where the UVB wavelengths have been removed and the UVA wavelengths are still present, it is necessary to consider the erythemal irradiances due to these UVA wavelengths only. This paper investigates the times taken for an exposure of 1 SED (standard erythemal dose) due to the UVA wavelengths.

  14. Radiation Therapy: Professions in Radiation Therapy

    MedlinePlus

    ... and typically one to two years of clinical physics training. They are certified by the American Board of Radiology or the American Board of Medical Physics . Radiation Therapist Radiation therapists work with radiation oncologists. ...

  15. Laboratory source of synchrotron radiation: TROLL-2

    NASA Astrophysics Data System (ADS)

    Anevsky, S. I.; Vernyi, A. E.; Panasjuk, V. S.; Khromchenko, V. B.

    1987-11-01

    A laboratory synchrotron radiation (SR) source TROLL-2 is described. Its main parameters are as follows: the energy of the accelerated particles = 24 MeV; the orbit radius = 20 mm; the SR pulse half-width = 2 ms, the maximum spectral radiant power (at λ = 350 nm) = 1.2×10 6 W/m.

  16. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion in murine skin by systemic effects of ultraviolet irradiation.

    PubMed

    Gensler, H L; Simpson, P J; Powell, M B

    1992-07-01

    Systemic effects of UVB irradiation (280-320 nm) have been shown to prevent subsequent chemical tumorigenesis induced by an initiation-promotion protocol. The present investigation was designed to determine whether initiation or promotion is prevented by UV irradiation. Groups of 25 B6D2F1/J mice received 12 weeks of intermittent dorsal UVB radiation treatments administered before, or 3 weeks after, initiation with a single application of 7,12-dimethylbenz[a]anthracene on the ventral skin. All mice were promoted ventrally with 5 micrograms 12-O-tetradecanoylphorbol-13-acetate (TPA) applied three times weekly throughout the experiment. UV irradiation consisted of five 30-min exposures per week to a bank of 6 Westinghouse FS40 sunlamps. UV irradiation applied before or after initiation resulted in a decrease of 18-16 tumors per group of 25 mice, for a reduction of 61 and 50%, respectively, at 24 weeks after the first TPA treatment. Thus, prevention of tumor development was similar whether the UV influence was present or not during initiation. This finding suggests that the UV prevention of promotion could account for UV inhibition of skin tumors induced by an initiation-promotion regimen. Consistent with this concept, pretreatment of mice with dorsal UVB radiation was found to reduce DNA synthesis after exposure to TPA by 46%, although it did not decrease tritiated benzo[a]pyrene binding to DNA, in ventral epidermis. Thus, UVB irradiation systemically reduced TPA-induced tumor promotion in murine skin.

  17. High-resolution defect inspection of step-and-flash imprint lithography for 32-nm half-pitch patterning

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; McMackin, Ian; Sreenivasan, S. V.; Resnick, Douglas J.

    2009-03-01

    Step and Flash Imprint involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned solid on the substrate. Compatibility with existing CMOS processes requires a mask infrastructure in which resolution, inspection and repair are all addressed. The purpose of this paper is to understand the limitations of inspection at half pitches of 32 nm and below. A 32 nm programmed defect mask was fabricated. Patterns included in the mask consisted of an SRAM Metal 1 cell, dense lines, and dense arrays of pillars. Programmed defect sizes started at 4 nm and increased to 48 nm in increments of 4 nm. Defects in both the mask and imprinted wafers were characterized scanning electron microscopy and the measured defect areas were calculated. These defects were then inspected using KLA-T eS35 and NGR2100 electron beam wafer inspection systems. Defect sizes as small as 8 nm were detected, and detection limits were found to be a function of defect type.

  18. Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm

    NASA Astrophysics Data System (ADS)

    von Brunn, P.; Heuer, A. M.; Fornasiero, L.; Huber, G.; Kränkel, C.

    2016-08-01

    Even though the first Nd3+-doped sesquioxide lasers have been realized more than 50 years ago, up to now no reports on efficient laser operation of Nd3+:doped sesquioxides can be found. In this work, we review the favorable spectroscopic properties of the sesquioxide Nd3+:Lu2O3 in terms of ground state absorption, stimulated emission, and excited state absorption cross sections as well as the upper level lifetime. Making use of these properties, we achieved efficient laser performance on eight different laser transitions in the wavelength range between 917 nm and 1463 nm under Ti:sapphire laser pumping using state-of-the-art HEM-grown Nd3+:Lu2O3 crystals with good optical quality. At the strongest transition around 1076 nm we determined a slope efficiency of 69%, which represents the highest efficiency ever obtained for a Nd3+-doped sesquioxide. Furthermore, we could generate watt level output powers and high slope efficiencies for seven other transitions. Lasers at 917 nm, 1053 nm, 1108 nm and 1463 nm were realized for the first time and the latter represents one of the longest laser wavelengths obtained on the 4F3/2  →  4I13/2 transition in Nd3+-doped materials.

  19. 76 FR 76801 - New Mexico Disaster #NM-00024

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... Mexico Disaster NM-00024 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a... New Mexico (FEMA- 4047-DR), dated 11/23/2011. Incident: Flooding. Incident Period: 08/19/2011...

  20. Diffuse optical spectroscopy of breast tissue extended to 1100 nm

    NASA Astrophysics Data System (ADS)

    Taroni, Paola; Bassi, Andrea; Comelli, Daniela; Farina, Andrea; Cubeddu, Rinaldo; Pifferi, Antonio

    2009-09-01

    The feasibility of in vivo measurements in the range of 1000 to 1100 nm and the potential benefits of operation in that wavelength range for diagnostic applications are investigated. To this purpose, an existing system for time-resolved diffuse spectroscopy is modified to enable in vivo studies to be carried out continuously from 600 to 1100 nm. The optical characterization of collagen powder is extended to 1100 nm and an accurate measurement of the absorption properties of lipid is carried out over the entire spectral range. Finally, the first in vivo absorption and scattering spectra of breast tissue are measured from 10 healthy volunteers between 600 and 1100 nm and tissue composition is evaluated in terms of blood parameters and water, lipid, and collagen content using a spectrally constrained global fitting procedure.

  1. Compact frequency-quadrupled pulsed 1030nm fiber laser

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Goldberg, Lew; Cole, Brian; DiLazaro, Tom; Hays, Alan D.

    2016-03-01

    A compact 1030nm fiber laser for ultraviolet generation at 257.5nm is presented. The laser employs a short length of highly-doped, large core (20μm), coiled polarization-maintaining ytterbium-doped double-clad fiber pumped by a wavelength-stabilized 975nm diode. It is passively Q-switched via a Cr4+:YAG saturable absorber and generates 2.4W at 1030nm in a 110μJ pulse train. Lithium triborate (LBO) and beta-barium borate (BBO) are used to achieve 325mW average power at the fourth harmonic. The laser's small form factor, narrow linewidth and modest power consumption are suitable for use in a man-portable ultraviolet Raman explosives detection system.

  2. Resonant tuning fork detector for electromagnetic radiation.

    PubMed

    Pohlkötter, Andreas; Willer, Ulrike; Bauer, Christoph; Schade, Wolfgang

    2009-02-01

    A mechanical quartz microresonator (tuning fork) is used to detect electromagnetic radiation. The detection scheme is based on forces created due to the incident electromagnetic radiation on the piezoelectric tuning fork. A force can be created due to the transfer of the photon momentum of the incident electromagnetic radiation. If the surfaces of the tuning fork are nonuniformly heated, a second force acts on it, the so-called photophoretic force. These processes occur for all wavelengths of the incident radiation, making the detector suitable for sensing of ultraviolet, visible, and mid-infrared light, even THz-radiation. Here the detector is characterized in the visible range; noise analysis is performed for 650 nm and 5.26 microm. A linear power characteristic and the dependence on pulse lengths of the incoming light are shown. Examples for applications for the visible and mid-infrared spectral region are given by 2f and absorption spectroscopy of oxygen and nitric oxide, respectively.

  3. The Missing Solar Irradiance Spectrum: 1 to 7 nm

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Lewis, M.; David, M.; Schunk, R. W.; Woods, T. N.; Eparvier, F. G.; Warren, H. P.

    2015-12-01

    During large X-class flares the Earth's upper atmospheric E-region responds immediately to solar photons in the 1 to 7 nm range. The response can change the E-region density by factors approaching 10, create large changes in conductivity, and plague HF communications. GOES-XRS provide 0.1 to 0.8 nm and a 0.05 to 0.4 nm integral channels; SOHO-SEM provided a 0 to 50 nm irradiance; TIMED and SORCE-XPS diode measurements also integrated down to 0.1 nm; and most recently SDO-EVE provided a 0.1 to 7 nm irradiance. For atmospheric response to solar flares the cadence is also crucial. Both GOES and SDO provided integral measurements at 10 seconds or better. Unfortunately these measurements have failed to capture the 1 to 7 nm spectral changes that occur during flares. It is these spectral changes that create the major impact since the ionization cross-section of the dominant atmospheric species, N2 and O2, both contain step function changes in the cross-sections. Models of the solar irradiance over this critical wavelength regime have suffered from the need to model the spectral variability based on incomplete measurements. The most sophisticated empirical model FISM [Chamberlin et al., 2008] used 1 nm spectral binning and various implementations of the above integral measurements to describe the 1 to 7 nm irradiance. Since excellent solar observations exist at other wavelengths it is possible to construct an empirical model of the solar atmosphere and then use this model to infer the spectral distribution at wavelengths below 5 nm. This differential emission measure approach has been used successfully in other contexts [e.g., Warren, 2005, Chamberlin et al., 2009]. This paper contrasts the broadband versus spectrally resolved descriptions of the incoming irradiance that affects the upper atmospheric E-layer. The results provide a prescription of what wavelength resolution would be needed to adequately measure the incoming solar irradiance in the 1 to 7 nm range.

  4. Picosecond holmium fibre laser pumped at 1125 \\ {\\text{nm}}

    NASA Astrophysics Data System (ADS)

    Kamynin, V. A.; Filatova, S. A.; Zhluktova, I. V.; Tsvetkov, V. B.

    2016-12-01

    We report a passively mode-locked, all-fibre holmium laser based on nonlinear polarisation rotation. As a pump source use is made of an 1125-{\\text{nm}} ytterbium-doped fibre laser. The pulse repetition rate of the holmium laser is 7.5 {\\text{MHz}}, and the pulse duration does not exceed 52 {\\text{ps}} at wavelengths of 2065 and 2080 {\\text{nm}}. The average laser output power reaches 5 {\\text{mW}}.

  5. Investigation of a Pulsed 1550 nm Fiber Laser System

    DTIC Science & Technology

    2015-12-15

    Jain 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...14. ABSTRACT There is a strong need for a pulsed laser system at eye safe wavelengths for illuminator applications . High power pulsed 1550 nm fiber...system at eye safe wavelengths for illuminator applications . High power pulsed 1550 nm fiber lasers systems are able to generate, shaped, pulses at

  6. 670-nm light treatment reduces complement propagation following retinal degeneration

    PubMed Central

    2012-01-01

    Aim Complement activation is associated with the pathogenesis of age-related macular degeneration (AMD). We aimed to investigate whether 670-nm light treatment reduces the propagation of complement in a light-induced model of atrophic AMD. Methods Sprague–Dawley (SD) rats were pretreated with 9 J/cm2 670-nm light for 3 minutes daily over 5 days; other animals were sham treated. Animals were exposed to white light (1,000 lux) for 24 h, after which animals were kept in dim light (5 lux) for 7 days. Expression of complement genes was assessed by quantitative polymerase chain reaction (qPCR), and immunohistochemistry. Counts were made of C3-expressing monocytes/microglia using in situ hybridization. Photoreceptor death was also assessed using outer nuclear layer (ONL) thickness measurements, and oxidative stress using immunohistochemistry for 4-hydroxynonenal (4-HNE). Results Following light damage, retinas pretreated with 670-nm light had reduced immunoreactivity for the oxidative damage maker 4-HNE in the ONL and outer segments, compared to controls. In conjunction, there was significant reduction in retinal expression of complement genes C1s, C2, C3, C4b, C3aR1, and C5r1 following 670 nm treatment. In situ hybridization, coupled with immunoreactivity for the marker ionized calcium binding adaptor molecule 1 (IBA1), revealed that C3 is expressed by infiltrating microglia/monocytes in subretinal space following light damage, which were significantly reduced in number after 670 nm treatment. Additionally, immunohistochemistry for C3 revealed a decrease in C3 deposition in the ONL following 670 nm treatment. Conclusions Our data indicate that 670-nm light pretreatment reduces lipid peroxidation and complement propagation in the degenerating retina. These findings have relevance to the cellular events of complement activation underling the pathogenesis of AMD, and highlight the potential of 670-nm light as a non-invasive anti-inflammatory therapy. PMID:23181358

  7. Development of a new high transmission phase shift mask technology for 10 nm logic node

    NASA Astrophysics Data System (ADS)

    Faure, Thomas; Sakamoto, Yoshifumi; Toda, Yusuke; Badger, Karen; Seki, Kazunori; Lawliss, Mark; Isogawa, Takeshi; Zweber, Amy; Kagawa, Masayuki; Wistrom, Richard; Xu, Yongan; Lobb, Granger; Viswanathan, Ramya; Hu, Lin; Inazuki, Yukio; Nishikawa, Kazuhiro

    2016-05-01

    In this paper we will describe the development of a new 12% high transmission phase shift mask technology for use with the 10 nm logic node. The primary motivation for this work was to improve the lithographic process window for 10 nm node via hole patterning by reducing the MEEF and improving the depth of focus (DOF). First, the simulated MEEF and DOF data will be compared between the 6% and high T PSM masks with the transmission of high T mask blank varying from 12% to 20%. This resulted in selection of a 12% transmission phase shift mask. As part of this work a new 12% attenuated phase shift mask blank was developed. A detailed description and results of the key performance metrics of the new mask blank including radiation durability, dry etch properties, film thickness, defect repair, and defect inspection will be shared. In addition, typical mask critical dimension uniformity and mask minimum feature size performance for 10 nm logic node via level mask patterns will be shown. Furthermore, the results of work to optimize the chrome hard mask film properties to meet the final mask minimum feature size requirements will be shared. Lastly, the key results of detailed lithographic performance comparisons of the process of record 6% and new 12% phase shift masks on wafer will be described. The 12% High T blank shows significantly better MEEF and larger DOF than those of 6% PSM mask blank, which is consistent with our simulation data.

  8. Pathogen control in complex fluids with water-coupled excimer lamps at 282 and 308 nm.

    PubMed

    Coogan, John J

    2005-01-01

    Water-coupled excimer lamp systems have been developed to inactivate microorganisms within complex, low-optical quality, fluids. Monochromatic lamps were selected to minimize UV-B and UV-C absorption within the carrier fluids while maximizing deposition within specific chemical targets. Fundamentals, system scaling and power supply design are discussed. This work used two large-surface area excimer lamps as intense sources of near monochromatic radiation at 308 and 282 nm. Data are presented for two distinct fluid systems: flow-through processing of large-volume metalworking fluids used in heavy industry and batch irradiation of human blood plasma and platelet suspensions used in transfusion medicine. In the first, a 200-600 L/min reactor is used to control bacterial concentrations within metalworking fluids used in large-scale metal machining processes. Control is defined as the maintenance of 10(3) to 10(4) CFU/mL in fluids that without treatment would have concentrations over 10(7) CFU/mL. The second is a batch process for viral inactivation in undiluted blood bank products. Samples of fresh frozen plasma and platelet suspensions were spiked with high titers of porcine parvovirus (PPV) and irradiated at 308 and 282 nm. Although both wavelengths were effective at reducing PPV levels, 308 nm light resulted in both higher rates of viral inactivation (greater than 6 log units) and lower rates of fluid degradation.

  9. Surface modification of polyhedral oligomeric silsesquioxane block copolymer films by 157 nm laser light

    NASA Astrophysics Data System (ADS)

    Sarantopoulou, Evangelia; Kollia, Zoe; Cefalas, Alkiviadis Constantinos; Siokou, Ageliki Elina; Argitis, Panagiotis; Bellas, Vassilios; Kobe, Spomenka

    2009-06-01

    Thin films of ethyl polyhedral oligomeric silsesquioxane (ethyl-POSS) containing polymers at different compositions were chemically modified using laser irradiation at 157 nm. The irradiation caused photodissociation of C-O and C-H bonds followed by the formation of new chemical bonds. The content of Si-O and C-O bonds increased, as did the surface hardness. Vacuum ultraviolet (VUV) absorption, mass spectrometry, x-ray photoelectron spectroscopy, and atomic force microscopy imaging and indentation were used to evaluate the effects of the 157 nm irradiation. The chemical modification was restricted to a thin surface layer. The layer depth was determined by the penetration depth of the 157 nm VUV photons inside the thin copolymer layer. With prolonged VUV irradiation, the absorbance of the polymers increased, eventually becoming saturated. The chemical changes were accompanied by surface hardening, as evidenced by the increase in the Young's modulus from 4 to 24 GPa due to glassification of the irradiated parts. The chemically modified layer acts as a shield against photodissociation and degradation of the deeper portion of the POSS polymer by VUV radiation. Applications include the protection of solar cells on low orbit satellites from solar VUV photons.

  10. Adsorbate-induced structural changes in 1-3 nm platinum nanoparticles.

    PubMed

    Lei, Yu; Zhao, Haiyan; Rivas, Rosa Diaz; Lee, Sungsik; Liu, Bin; Lu, Junling; Stach, Eric; Winans, Randall E; Chapman, Karena W; Greeley, Jeffrey P; Miller, Jeffrey T; Chupas, Peter J; Elam, Jeffrey W

    2014-07-02

    We investigated changes in the Pt-Pt bond distance, particle size, crystallinity, and coordination of Pt nanoparticles as a function of particle size (1-3 nm) and adsorbate (H2, CO) using synchrotron radiation pair distribution function (PDF) and X-ray absorption spectroscopy (XAS) measurements. The ∼1 nm Pt nanoparticles showed a Pt-Pt bond distance contraction of ∼1.4%. The adsorption of H2 and CO at room temperature relaxed the Pt-Pt bond distance contraction to a value close to that of bulk fcc Pt. The adsorption of H2 improved the crystallinity of the small Pt nanoparticles. However, CO adsorption generated a more disordered fcc structure for the 1-3 nm Pt nanoparticles compared to the H2 adsorption Pt nanoparticles. In situ XANES measurements revealed that this disorder results from the electron back-donation of the Pt nanoparticles to CO, leading to a higher degree of rehybridization of the metal orbitals in the Pt-adsorbate system.

  11. Performance of multilayer optical coatings under long-term 532nm laser exposure

    NASA Astrophysics Data System (ADS)

    Poulios, D.; Konoplev, O.; Chiragh, F.; Vasilyev, A.; Stephen, M.; Strickler, K.

    2013-11-01

    The effects of long-term exposure to high intensity 532 nm radiation on various dielectric-coated optics are studied. To investigate potential photodarkening effects on optical surfaces, an accelerated life test platform was constructed where optics were exposed to 532 nm radiation from a short-pulse, high repetition rate fiber amplifier at total doses up to 1 trillion shots. The first run of trillion-shot tests were conducted on e-beam deposited and ion beam sputtering (IBS) coated high reflecting mirrors with onsurface intensities ranging from 1.0-1.4 GW/cm2. It was found that the e-beam coated mirrors failed catastrophically at less than 150 billion shots, while the IBS coated mirror was able to complete the trillionshot test with no measurable loss of reflectivity. Profiling the IBS mirror surface with a high-resolution white light interferometer post-irradiation revealed a ~10 nm high photocontamination deposit at the irradiation site that closely matched the intensity profile of the laser spot. Trillion-shot surface exposure tests were also conducted at multiple surface sites of an LBO frequency doubling crystal at ~1.5 GW/cm2 at multiple surface sites. The transmitted power and on-surface beam size were monitored throughout the tests, and periodic measurements of the beam quality and waist location of the transmitted light were also made using an M2 meter. No changes in transmitted power or M2 were observed in any of the tests, but 3D surface profiling revealed laser-induced contamination deposits at each site tested.

  12. Radiative heating of thin Al foils by intense extreme ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Grabovski, E. V.; Sasorov, P. V.; Shevelko, A. P.; Aleksandrov, V. V.; Andreev, S. N.; Basko, M. M.; Branitski, A. V.; Gritsuk, A. N.; Volkov, G. S.; Laukhin, Ya. N.; Mitrofanov, K. N.; Novikov, V. G.; Oleinik, G. M.; Samokhin, A. A.; Smirnov, V. P.; Tolstikhina, I. Yu.; Frolov, I. N.; Yakushev, O. F.

    2016-03-01

    The effect of induced transparency of thin Al foils radiatively heated by intense extreme ultraviolet (EVU) radiation has been observed. The radiation of the plasma of Z-pinches appearing under the compression of tungsten liners at the Angara-5-1 facility has been used as the radiation that heats the Al foil (peak illumination on the foil ~0.55 TW/cm2) and is transmitted through it. The photoabsorption has been studied in the formed aluminum plasma at temperatures of ~10-30 eV in the density range of ~1-20 mg/cm3 in the wavelength range of ~5-24 nm. Absorption lines of Al4+...7+ ions have been identified in the experimental spectrum. In addition, radiative gas-dynamic simulations of the foil heating and expansion have been performed taking into account radiation transfer processes.

  13. Application of the laser diode with central wavelength 975 nm for the therapy of neurofibroma and hemangiomas

    NASA Astrophysics Data System (ADS)

    Szymańczyk, Jacek; Sawczak, Mirosław; Cenian, Witold; Karpienko, Katarzyna; Jędrzejewska-Szczerska, Małgorzata; Cenian, Adam

    2017-01-01

    This paper presents a newly developed dermatological laser (with a central wavelength 975 nm) for application in therapies requiring deep penetration of tissue, e.g., cutaneous (dermal) neurofibroma (von Recklinghausen disease) and hemangiomas. This laser can work either in pulses or continues wave mode. Laser radiation is transmitted toward the application region by optical fiber with a diameter of 0.6 mm. The compact design of the laser facilitates its transport and increases the comfort of use.

  14. Optical fibres for high radiation dose environments

    NASA Astrophysics Data System (ADS)

    Henschel, H.; Kohn, O.; Schmidt, H. U.; Bawirzanski, E.; Landers, A.

    1994-06-01

    A variety of modern single mode (SM) and graded index (GI) fibres as well as a new pure silica multimode step index (MMSI) fibre with high OH content were irradiated at a Co-60 gamma ray source with a dose rate of approximately = 1.5Gy/s up to a total dose of 10(exp 6)Gy. The radiation-induced loss of all fibres was measured continuously during and after irradiation at discrete wavelengths (approximately = 850, approximately = 1070, approximately = 1300, approximately = 1550nm). With one SM fibre type also the 'breaking stress' before and after irradiation was determined. Radiation-induced losses of approximately less than 5dB/50m (at approximately = 1300nm) were found with some of the SM fibres, whereas the MMSI fibre showed a final induced loss of only 0.5dB/50m at 1070nm wavelength. The breaking stress of the SM fibre increased by about 10%.

  15. Cs 728 nm Laser Spectroscopy and Faraday Atomic Filter

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Zheng; Tao, Zhi-Ming; Jiang, Zhao-Jie; Chen, Jing-Biao

    2014-12-01

    We mainly present the 728 nm laser spectroscopy and Faraday atomic filter of Cs atoms with 650 MHz linewidth and 2.6% transmission based on an electrodeless discharge vapor lamp, compared with Rb 728 nm laser spectroscopy. Accidentally, this remarkably strong Cs 728 nm transition from the 6F7/2 state to the 5D5/2 state is only about 2.5 GHz away from the Rb 728 nm transition of the future potential four-level active optical clock, once laser cooled and trapped from the 7S1/2 state to the 5P1/2 state, as we proposed previously. A Faraday atomic filter stabilized 728 nm laser using a Cs electrodeless discharge vapor lamp with a power of 10mW will provide a frequency reference to evaluate the performance of the potential Rb four-level active optical clock at 728 nm with power less than 1 nW by 2.5 GHz heterodyne measurements.

  16. Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm.

    PubMed

    Gün, Teoman; Metz, Philip; Huber, Günter

    2011-03-15

    We report efficient cw laser operation of laser diode pumped Pr(3+)-doped LiYF4 crystals in the visible spectral region. Using two InGaN laser diodes emitting at λ(P)=443.9 nm with maximum output power of 1 W each and a 2.9-mm-long crystal with a doping concentration of 0.5%, output powers of 938 mW, 418 mW, 384 mW, and 773 mW were achieved for the laser wavelengths 639.5 nm, 607.2 nm, 545.9 nm, and 522.6 nm, respectively. The maximum absorbed pump powers were approximately 1.5 W, resulting in slope efficiencies of 63.6%, 32.0%, 52.1%, and 61.5%, as well as electro-optical efficiencies of 9.4%, 4.2%, 3.8%, and 7.7%, respectively. Within these experiments, laser diode-pumped laser action at 545.9 nm was demonstrated for what is believed to be the first time.

  17. Trends in nanosecond melanosome microcavitation up to 1540 nm

    NASA Astrophysics Data System (ADS)

    Schmidt, Morgan S.; Kennedy, Paul K.; Noojin, Gary D.; Vincelette, Rebecca L.; Thomas, Robert J.; Rockwell, Benjamin A.

    2015-09-01

    Thresholds for microcavitation of bovine and porcine melanosomes were previously reported, using single nanosecond (ns) laser pulses in the visible (532 nm) and the near-infrared (NIR) from 1000 to 1319 nm. Here, we report average radiant exposure thresholds for bovine melanosome microcavitation at additional NIR wavelengths up to 1540 nm, which range from ˜0.159 J/cm2 at 800 nm to 4.5 J/cm2 at 1540 nm. Melanosome absorption coefficients were also estimated, and decreased with increasing wavelength. These values were compared to retinal pigment epithelium coefficients, and to water absorption, over the same wavelength range. Corneal total intraocular energy retinal damage threshold values were estimated and compared to the previous (2007) and recently changed (2014) maximum permissible exposure (MPE) safe levels. Results provide additional data that support the recent changes to the MPE levels, as well as the first microcavitation data at 1540 nm, a wavelength for which melanosome microcavitation may be an ns-pulse skin damage mechanism.

  18. Magneto-optical trap for metastable helium at 389 nm

    SciTech Connect

    Koelemeij, J.C.J.; Stas, R.J.W.; Hogervorst, W.; Vassen, W.

    2003-05-01

    We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 {sup 3}S{sub 1}{yields}3 {sup 3}P{sub 2} line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning {delta}=-41 MHz) typically contains few times 10{sup 7} atoms at a relatively high ({approx}10{sup 9} cm{sup -3}) density, which is a consequence of the large momentum transfer per photon at 389 nm and a small two-body loss rate coefficient (2x10{sup -10} cm{sup 3}/s<{beta}<1.0x10{sup -9} cm{sup 3}/s). The two-body loss rate is more than five times smaller than in a MOT on the commonly used 2 {sup 3}S{sub 1}{yields}2 {sup 3}P{sub 2} line at 1083 nm. Furthermore, laser cooling at 389 nm results in temperatures somewhat lower than those achieved using 1083 nm. The 389-nm MOT exhibits small losses due to two-photon ionization, which have been investigated as well.

  19. Risk Factors: Radiation

    Cancer.gov

    Radiation of certain wavelengths, called ionizing radiation, has enough energy to damage DNA and cause cancer. Ionizing radiation includes radon, x-rays, gamma rays, and other forms of high-energy radiation.

  20. Radiation Engineering for Designers

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2015-01-01

    This tutorial provides an overview of the natural space radiation environment, an introduction to radiation effect types, an overview of EEE parts selection, scrubbing, and radiation mitigation, and an introduction to radiation testing.

  1. Method for increased sensitivity of radiation detection and measurement

    DOEpatents

    Miller, Steven D.

    1994-01-01

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. Reduced background is accomplished by more thorough annealing and enhanced radiation induced luminescence is obtained by treating the crystalline material to coalesce primary damage centers into secondary damage centers.

  2. The Spectrum of Th-Ar Hollow Cathode Lamps in the 691nm to 5804nm region Database

    National Institute of Standards and Technology Data Gateway

    SRD 161 The Spectrum of Th-Ar Hollow Cathode Lamps in the 691nm to 5804nm region Database (Web, free access)   This atlas presents observations of the infra-red (IR) spectrum of a low current Th-Ar hollow cathode lamp with the 2-m Fourier transform spectrometer (FTS) at NIST. These observations establish more than 2400 lines that are suitable for use as wavelength standards in the range 691 nm to 5804 nm. The observations were made in collaboration with the European Southern Observatory (ESO), in order to provide calibration reference data for new high-resolution Echelle spectrographs, such as the Cryogenic High-Resolution IR Echelle Spectrograph ([CRIRES]), ESO's new IR spectrograph at the Very Large Telescope in Chile.

  3. 750 nm 1.5 W frequency-doubled semiconductor disk laser with a 44 nm tuning range.

    PubMed

    Saarinen, Esa J; Lyytikäinen, Jari; Ranta, Sanna; Rantamäki, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Okhotnikov, Oleg G

    2015-10-01

    We demonstrate 1.5 W of output power at the wavelength of 750 nm by intracavity frequency doubling a wafer-fused semiconductor disk laser diode-pumped at 980 nm. An optical-to-optical efficiency of 8.3% was achieved using a bismuth borate crystal. The wavelength of the doubled emission could be tuned from 720 to 764 nm with an intracavity birefringent plate. The beam quality parameter M2 of the laser output was measured to be below 1.5 at all pump powers. The laser is a promising tool for biomedical applications that can take advantage of the large penetration depth of light in tissue in the 700-800 nm spectral range.

  4. Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm.

    PubMed

    Huang, Y P; Cho, C Y; Huang, Y J; Chen, Y F

    2012-02-27

    A comparison between the fluorescence spectra of the Nd-doped vanadate crystals (Nd:YVO4, Nd:GdVO4, Nd:LuVO4) for the 4F3/2 → 4I11/2 transition is studied. We numerically analyze the condition of gain-to-loss balance via an uncoated intracavity etalon to achieve the dual-wavelength operation. We further experimentally demonstrate the orthogonally polarized dual-wavelength laser with a single Nd:LuVO4 crystal. The simultaneous dual-wavelength Nd:LuVO4 laser at 1085.7 nm in σ polarization and 1088.5 nm in π polarization is realized. At an incident pump power of 12 W, the average output power obtained at 1085.7 nm and 1088.5 nm is 0.4 W and 1.7 W, respectively.

  5. Compact Fiber Laser for 589nm Laser Guide Star Generation

    NASA Astrophysics Data System (ADS)

    Pennington, D.; Drobshoff, D.; Mitchell, S.; Brown, A.

    Laser guide stars are crucial to the broad use of astronomical adaptive optics, because they facilitate access to a large fraction of possible locations on the sky. Lasers tuned to the 589 nm atomic sodium resonance can create an artificial beacon at altitudes of 95-105 km, thus coming close to reproducing the light path of starlight. The deployment of multiconjugate adaptive optics on large aperture telescopes world-wide will require the use of three to nine sodium laser guide stars in order to achieve uniform correction over the aperture with a high Strehl value. Current estimates place the minimum required laser power at > 10 W per laser for a continuous wave source, though a pulsed format, nominally 6?s in length at ~ 16.7 kHz, is currently preferred as it would enable tracking the laser through the Na layer to mitigate spot elongation. The lasers also need to be compact, efficient, robust and turnkey. We are developing an all-fiber laser system for generating a 589 nm source for laser-guided adaptive optics. Fiber lasers are more compact and insensitive to alignment than their bulk laser counterparts, and the heat-dissipation characteristics of fibers, coupled with the high efficiencies demonstrated and excellent spatial mode characteristics, make them a preferred candidate for many high power applications. Our design is based on sum-frequency mixing an Er/Yb:doped fiber laser operating at 1583 nm with a 938 nm Nd:silica fiber laser in a periodically poled crystal to generate 589 nm. We have demonstrated 14 W at 1583 nm with an Er/Yb:doped fiber laser, based on a Koheras single frequency fiber oscillator amplified in an IPG Photonics fiber amplifier. The Nd:silica fiber laser is a somewhat more novel device, since the Nd3+ ions must operate on the resonance transition (i.e. 4F3/2-4I9/2), while suppressing ASE losses at the more conventional 1088 nm transition. Optimization of the ratio of the fiber core and cladding permits operation of the laser at room

  6. A self-Q-switched all-fiber erbium laser at 1530 nm using an auxiliary 1570-nm erbium laser.

    PubMed

    Tsai, Tzong-Yow; Fang, Yen-Cheng

    2009-11-23

    We demonstrate a self-Q-switched, all-fiber, tunable, erbium laser at 1530 nm with high pulse repetition rates of 0.9-10 kHz. Through the use of an auxiliary 10-mW, 1570 nm laser that shortened the relaxation time of erbium, sequentially Q-switched pulses with pulse energies between 4 and 6 microJ and pulse widths of 40 ns were steadily achieved. A peak pulse power of 165 W was obtained.

  7. Imaging performance and challenges of 10nm and 7nm logic nodes with 0.33 NA EUV

    NASA Astrophysics Data System (ADS)

    van Setten, Eelco; Schiffelers, Guido; Psara, Eleni; Oorschot, Dorothe; Davydova, Natalia; Finders, Jo; Depre, Laurent; Farys, Vincent

    2014-10-01

    The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33 and is positioned at a resolution of 22nm, which can be extended down to 18nm and below with off-axis illumination at full transmission. Multiple systems have been qualified and installed at customers. The NXE:3300B succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. It is expected that EUV will be adopted first for critical Logic layers at 10nm and 7nm nodes, such as Metal-1, to avoid the complexity of triple patterning schemes using ArF immersion. In this paper we will evaluate the imaging performance of (sub-)10nm node Logic M1 on the NXE:3300B EUV scanner. We will show the line-end performance of tip-to-tip and tip-to-space test features for various pitches and illumination settings and the performance enhancement obtained by means of a 1st round of OPC. We will also show the magnitude of local variations. The Logic M1 cell is evaluated at various critical features to identify hot spots. A 2nd round OPC model was calibrated of which we will show the model accuracy and ability to predict hot spots in the Logic M1 cell. The calibrated OPC model is used to predict the expected performance at 7nm node Logic using off-axis illumination at 16nm minimum half pitch. Initial results of L/S exposed on the NXE:3300B at 7nm node resolutions will be shown. An outlook is given to future 0.33 NA systems on the ASML roadmap with enhanced illuminator capabilities to further improve performance and process window.

  8. Research of the Additional Losses Occurring in Optical Fiber at its Multiple Bends in the Range Waves 1310nm, 1550nm and 1625nm Long

    NASA Astrophysics Data System (ADS)

    Yurchenko, A. V.; Gorlov, N. I.; Alkina, A. D.; Mekhtiev, A. D.; Kovtun, A. A.

    2016-01-01

    Article is devoted to research of the additional losses occurring in the optical fiber at its multiple bends in the range waves of 1310 nanometers, 1550 nanometers and 1625 nanometers long. Article is directed on creation of the external factors methods which allow to estimate and eliminate negative influence. The automated way of calculation of losses at a bend is developed. Results of scientific researches are used by engineers of “Kazaktelekom” AS for practical definition of losses service conditions. For modeling the Wolfram|Alpha environment — the knowledge base and a set of computing algorithms was chosen. The greatest losses are noted on wavelength 1310nm and 1625nm. All dependences are nonlinear. Losses with each following excess are multiplicative.

  9. High-brightness 800nm fiber-coupled laser diodes

    NASA Astrophysics Data System (ADS)

    Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior

    2014-03-01

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.

  10. Analysis of Cervical Supernatant Samples Luminescence Using 355 nm Laser

    NASA Astrophysics Data System (ADS)

    Vaitkuviene, A.; Gegzna, V.; Kurtinaitiene, R.; Stanikunas, R.; Rimiene, J.; Vaitkus, J.

    2010-05-01

    The biomarker discovery for accurate detection and diagnosis of cervical carcinoma and its malignant precursors represents one of the current challenges in clinical medicine. Laser induced autofluorescence spectra in cervical smear content were fitted to predict the cervical epithelium diagnosis as a lab off "optical biopsy" method. Liquid PAP supernatant sediment dried on Quartz plate spectroscopy was performed by 355 nm Nd YAG microlaser STA-1 (Standa, Ltd). For comparison a liquid supernatant spectroscopy was formed by laboratory "Perkin Elmer LS 50B spetrometer at 290, 300, 310 nm excitations. Analysis of spectrum was performed by approximation using the multi-peaks program with Lorentz functions for the liquid samples and with Gaussian functions for the dry samples. Ratio of spectral components area to the area under whole experimental curve (SPP) was calculated. The spectral components were compared by averages of SPP using Mann-Whitney U-test in histology groups. Results. Differentiation of Normal and HSIL/CIN2+ cases in whole supernatant could be performed by stationary laboratory lamp spectroscopy at excitation 290 nm and emission >379 nm with accuracy AUC 0,69, Sens 0,72, Spec 0,65. Differentiation Normal versus HSIL/CIN2+ groups in dried enriched supernatant could be performed by 355 nm microlaser excitation at emission 405-424 nm with accuracy (AUC 0,96, Sens 0,91, Spec 1.00). Diagnostic algorithm could be created for all histology groups differentiation under 355 nm excitation. Microlaser induced "optical biopsy "looks promising method for cervical screening at the point of care.

  11. Magnetoelastically induced magnetic anisotropy transition in [CoO5nm/CoPt7nm]5 multilayer films

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Harumoto, Takashi; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji

    2016-06-01

    The magnetic anisotropy transition of [CoO5nm/CoPt7nm]5 multilayer film with respect to post-annealing has been studied systematically. It undergoes a smooth transition from longitudinal magnetic anisotropy (LMA) to perpendicular magnetic anisotropy (PMA) upon annealing and returns backward to LMA at high temperature of 550 °C. The strongest PMA of [CoO5nm/CoPt7nm]5 is achieved after post-annealing at 300 °C and the tolerable post-annealing temperature with strong PMA is up to 400 °C, which indicates this multilayer film could be a potential candidate for the PMA application at middle-high-temperature-region between 300 °C and 400 °C. The mechanism responsible for the transition of magnetic anisotropy has been investigated by analyzing CoO/CoPt interface and CoPt layer internal stress. It is found the effective PMA energy is proportional to the in-plane tensile stress of CoPt layer but is inversely proportional to the roughness of CoO/CoPt interface. Finally, by means of low temperature experiment we demonstrate the magnetic anisotropy transition observed in [CoO5nm/CoPt7nm]5 multilayer film is mainly attributed to the change of CoPt layer in-plane tensile stress.

  12. Optical coherence tomography based imaging of dental demineralisation and cavity restoration in 840 nm and 1310 nm wavelength regions

    NASA Astrophysics Data System (ADS)

    Damodaran, Vani; Rao, Suresh Ranga; Vasa, Nilesh J.

    2016-08-01

    In this paper, a study of in-house built optical coherence tomography (OCT) system with a wavelength of 840 nm for imaging of dental caries, progress in demineralisation and cavity restoration is presented. The caries when imaged with the 840 nm OCT system showed minute demineralisation in the order of 5 μm. The OCT system was also proposed to study the growth of lesion and this was demonstrated by artificially inducing caries with a demineralisation solution of pH 4.8. The progress of carious lesion to a depth of about 50-60 μm after 60 hours of demineralisation was clearly observed with the 840 nm OCT system. The tooth samples were subjected to accelerated demineralisation condition at pH of approximately 2.3 to study the adverse effects and the onset of cavity formation was clearly observed. The restoration of cavity was also studied by employing different restorative materials (filled and unfilled). In the case of restoration without filler material (unfilled), the restoration boundaries were clearly observed. Overall, results were comparable with that of the widely used 1310 nm OCT system. In the case of restoration with filler material, the 1310 nm OCT imaging displayed better imaging capacity due to lower scattering than 840 nm imaging.

  13. Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection.

    PubMed

    Yanagi, Itaru; Akahori, Rena; Hatano, Toshiyuki; Takeda, Ken-ichi

    2014-05-21

    To date, solid-state nanopores have been fabricated primarily through a focused-electronic beam via TEM. For mass production, however, a TEM beam is not suitable and an alternative fabrication method is required. Recently, a simple method for fabricating solid-state nanopores was reported by Kwok, H. et al. and used to fabricate a nanopore (down to 2 nm in size) in a membrane via dielectric breakdown. In the present study, to fabricate smaller nanopores stably--specifically with a diameter of 1 to 2 nm (which is an essential size for identifying each nucleotide)--via dielectric breakdown, a technique called "multilevel pulse-voltage injection" (MPVI) is proposed and evaluated. MPVI can generate nanopores with diameters of sub-1 nm in a 10-nm-thick Si3N4 membrane with a probability of 90%. The generated nanopores can be widened to the desired size (as high as 3 nm in diameter) with sub-nanometre precision, and the mean effective thickness of the fabricated nanopores was 3.7 nm.

  14. Continuous-wave violet generation at 373.5 nm by frequency-doubled power-scaled near-infrared emitting Pr:YAlO3 laser

    NASA Astrophysics Data System (ADS)

    Fibrich, Martin; Jelínková, Helena

    2013-10-01

    We report on a continuous-wave Pr:YAlO3 laser operating at a wavelength of 373.5 nm in a power-scaled resonator arrangement. Violet light generation has been achieved by intracavity frequency doubling of the near-infrared emitting Pr:YAP laser at a fundamental wavelength of 747 nm. For active medium pumping, two GaN laser diodes providing up to 1 W of output power each at 448 nm were used. By employing BBO crystal as a nonlinear medium, more than 46 mW of violet radiation has been obtained.

  15. Observation of Quiet Limb in He I 1083.0 nm, H Paschen alpha1281.8 nm and H Brackett gamma 2166.1 nm lines

    NASA Astrophysics Data System (ADS)

    Prasad Choudhary, Debi

    2016-05-01

    In this paper, we shall present the results of an observational study of the quiet solar limb in the near infrared lines using the New IR Array Camera (NAC) and the vertical spectrograph at the focal plane of McMath-Pierce telescope. The NAC, at the exit port of the spectrograph, was used to record the limb spectrum in HeI 1083.0 nm, Hydrogen Paschen 1281.8 nm and Brackett 2165.5 nm wavelength regions. The NAC is a 1024x1024 InSb Alladin III Detector operating over 1-5 micron range with high density sampling at 0.018 arc second/pixel. The all-reflective optical train minimizes number of surfaces and eliminates ghosts leading to low scatter, ghost-free optics. The close-cycle cryogenic provides a stable cooling environment over six hour period with an accuracy of 0.01K leading to low dark current. The low read out noise combined with low scattered light and dark current makes NAC an ideal detector for making high quality infrared spectral observations of solar limb. The limb spectrums were obtained by placing the spectrograph slit perpendicular to the limb at an interval of 10 degrees around the solar disk. We shall report the intensity profile, line-of-sight velocity and line width distribution around the sun derived from the spectra along the slit.

  16. Temperature dependence of the dielectric function of laser deposited YBCO thin film at 3392nm

    SciTech Connect

    Walmsley, D.G.; Bade, T.; McCafferty, P.G.; Rea, C.; Dawson, P.; Wallace, R.J.; Bowman, R.M.

    1996-12-31

    The authors have excited surface plasmons in an YBCO thin film at different temperatures using attenuated total reflection of light. The 300nm thick c-axis film was fabricated using pulsed laser deposition onto an MgO (100) substrate with 248nm KrF excimer radiation. Critical temperature of the film was 89.6K and its roughness, as shown by atomic force microscopy, 20nm rms, without droplets over areas of 10 {micro}m x 10{micro}m. The sample was mounted in Otto geometry on a cooled stage which allowed the temperature to be varied between 300K and 70K. An infrared HeNe laser at 3,392nm was used to excite the surface plasmons. The dielectric function of the film was determined between room temperature and 80K. The imaginary part of the dielectric function decreased substantially with reduction in temperature. Results obtained were: {var_epsilon}{sub r} = {minus}24.1 + 0.0013T and {var_epsilon}{sub i} = 7.7 + 0.067T where T is the temperature in kelvin. The ratio {var_epsilon}{sub i}{sup 300}/{var_epsilon}{sub i}{sup 80} at 2.13 is less than the resistance ratio R{sup 300}/R{sup 80} at 2.81. An explanation is offered in terms of two temperature independent mechanisms operative at optical frequencies: enhanced Rayleigh scattering of surface plasmons at grain boundaries and intraband/interband transitions. The real part of the dielectric function, {var_epsilon}{sub r}, was found to be only slightly temperature dependent. It was, however, highly sample dependent when comparison was made with the results of other films, a feature attributed to surface and grain boundary contamination.

  17. Shortwave Radiation

    NASA Technical Reports Server (NTRS)

    Klassen, Steve; Bugbee, Bruce

    2005-01-01

    Accurate shortwave radiation data is critical to evapotranspiration (ET) models used for developing irrigation schedules to optimize crop production while saving water, minimizing fertilizer, herbicide, and pesticide applications, reducing soil erosion, and protecting surface and ground water quality. Low cost silicon cell pyranometers have proven to be sufficiently accurate and robust for widespread use in agricultural applications under unobstructed daylight conditions. More expensive thermopile pyranometers are required for use as calibration standards and measurements under light with unique spectral properties (electric lights, under vegetation, in greenhouses and growth chambers). Routine cleaning, leveling, and annual calibration checks will help to ensure the integrity of long-term data.

  18. Inhibition of semiconservative DNA synthesis in ICR 2A frog cells exposed to monochromatic uv wavelengths (252-313 nm) and photoreactivating light

    SciTech Connect

    Rosenstein, B.S.

    1982-06-01

    Exposure of ICR 2A frog cells to monochromatic uv wavelengths in the range 252-313 nm caused an inhibition of semiconservative DNA synthesis which was partially relieved in cells receiving a post irradiation treatment with photoreactivating light (>350 nm). Hence pyrimidine dimers acted as lesions blocking DNA synthesis in uv-irradiated cells based upon the specificity of photoreactivating enzyme for the light-dependent monomerization of dimers in DNA. Compared with the shorter wavelengths tested, however, this recovery of DNA synthesis was not as great in cells exposed to 302-nm radiation and was nearly absent in 313-nm-irradiated cells up to 12 hr after treatment. These results suggest that nondimer photoproducts also play an important role in causing DNA synthesis inhibition in cells exposed to wavelengths greater than 300 nm.

  19. Taking the X Architecture to the 65-nm technology node

    NASA Astrophysics Data System (ADS)

    Sarma, Robin C.; Smayling, Michael C.; Arora, Narain; Nagata, Toshiyuki; Duane, Michael P.; Shah, Santosh; Keston, Harris J.; Oemardani, Shiany

    2004-05-01

    The X Architecture is a new way of orienting the interconnect on an integrated circuit using diagonal pathways, as well as the traditional right-angle, or Manhattan, configuration. By enabling designs with significantly less wire and fewer vias, the X Architecture can provide substantial improvements in chip performance, power consumption and cost. Members of the X Initiative semiconductor supply chain consortium have demonstrated the production worthiness of the X Architecture at the 130-nm and 90-nm process technology nodes. This paper presents an assessment of the manufacturing readiness of the X Architecture for the 65-nm technology node. The extent to which current production capabilities in mask writing, lithography, wafer processing, inspection and metrology can be used is discussed using the results from a 65-nm test chip. The project was a collaborative effort amongst a number of companies in the IC fabrication supply chain. Applied Materials fabricated the 65-nm X Architecture test chip at its Maydan Technology Center and leveraged the technology of other X Initiative members. Cadence Design Systems provided the test structure design and chip validation tools, Dai Nippon Printing produced the masks and Canon"s imaging system was employed for the photolithography.

  20. Imaging CIN(3) photodissociation from 234 to 280 nm.

    PubMed

    Samartzis, Peter C; Hansen, Nils; Wodtke, Alec M

    2006-07-07

    We report Cl((2)P(3/2)) and Cl*((2)P(1/2)) fragment images following ClN(3) photolysis in the 234-280 nm region measured by velocity map imaging. Kinetic energy distributions change shape with photolysis wavelength from bimodal at 234 and 240 nm to single peak at 266 and 280 nm. Where two peaks exist, their ratio is significantly different for Cl and Cl* fragments. The single peak of 266 and 280 nm and the faster peak at 234 and 240 nm are assigned to a Cl + linear-N(3) dissociation channel, in agreement with previous work. The slow peak in the bimodal distributions is assigned to the formation of a high energy form (HEF) of N(3). Candidates for the identity of HEF-N(3) are discussed. Combining our data with photofragmentation translational spectroscopy results, we determined the threshold for the appearance of HEF-N(3) at 4.83 +/- 0.17 eV photolysis energy. This threshold behavior is similar to recently reported results on the wavelength dependence of HN(3) photolysis, where the threshold was associated with a ring closed isomer of HN(3) on the S(1) potential energy surface. We also note that the HEF-N(3) formation threshold observed for ClN(3) occurs where the energy available to the products equals the isomerization barrier from linear to cyclic-N(3).

  1. Process liability evaluation for beyond 22nm node using EUVL

    NASA Astrophysics Data System (ADS)

    Tawarayama, Kazuo; Aoyama, Hajime; Matsunaga, Kentaro; Arisawa, Yukiyasu; Uno, Taiga; Magoshi, Shunko; Kyoh, Suigen; Nakajima, Yumi; Inanami, Ryoichi; Tanaka, Satoshi; Kobiki, Ayumi; Kikuchi, Yukiko; Kawamura, Daisuke; Takai, Kosuke; Murano, Koji; Hayashi, Yumi; Mori, Ichiro

    2010-04-01

    Extreme ultraviolet lithography (EUVL) is the most promising candidate for the manufacture of devices with a half pitch of 32 nm and beyond. We are now evaluating the process liability of EUVL in view of the current status of lithography technology development. In a previous study, we demonstrated the feasibility of manufacturing 32-nm-node devices by means of a wafer process that employed the EUV1, a full-field step-and-scan exposure tool. To evaluate yield, a test pattern was drawn on a multilayer resist and exposed. After development, the pattern was replicated in SiO2 film by etching, and metal wires were formed by a damascene process. Resolution enhancement is needed to advance to the 22- nm node and beyond, and a practical solution is off-axis illumination (OAI). This paper presents the results of a study on yield improvement that used a 32-nm-node test chip, and also clarifies a critical issue in the use of EUVL in a wafer process for device manufacture at the 22-nm node and beyond.

  2. Mutagenic effects of solar UV-radiation on DNA

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Horneck, G.

    2001-08-01

    A decrease of the stratospheric ozone layer will result in an increase of shorter wavelengths of the solar radiation reaching in earth. To investigate the biological efficiency, especially the mutagenic specificity, of ranges of polychromatic UVA and UBV irradiations with wavelengths between 280 nm and 400 nm, the plasmid DNA pUC19 and its E. coli host strain JM83 were used as a model system. Different ranges of solar UV radiation were simulated with the SOL 2 sun simulator (Dr. Hönle) and a variety of cut-off filters (Schott). Three wavelength bands were investigated: 280 - 400 nm (simulating UV-range under a stratospheric ozone layer depletion), 300-400 nm (simulating the UV-range today) and 315-400 nm to examine the effects induced by UVA alone.

  3. Future directions in 980-nm pump lasers: submarine deployment to low-cost watt-class terrestrial pumps

    NASA Astrophysics Data System (ADS)

    Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai

    1999-09-01

    The demands of global bandwidth and distribution are rising rapidly as Internet usage grows. This fundamentally means that more photons are flowing within optical cables. While transmitting sources launches some optical power, the majority of the optical power that is present within modern telecommunication systems originates from optical amplifiers. In addition, modern optical amplifiers offer flat optical gain over broad wavelength bands, thus making possible dense wavelength de-multiplexing (DWDM) systems. Optical amplifier performance, and by extension the performance of the laser pumps that drive them, is central to the future growth of both optical transmission and distribution systems. Erbium-doped amplifiers currently dominate optical amplifier usage. These amplifiers absorb pump light at 980 nm and/or 1480 nm, and achieve gain at wavelengths around 1550 nm. 980 nm pumps achieve better noise figures and are therefore used for the amplification of small signals. Due to the quantum defect, 1480 nm lasers deliver more signal photon per incident photon. In addition, 1480 nm lasers are less expensive than 980 nm lasers. Thus, 1480 nm pump lasers are used for amplification in situations where noise is not critical. The combination of these traits leads to the situation where many amplifiers contain 980 nm lasers to pump the input section of the Er- doped fiber with 1480 nm lasers being used to pump the latter section of Er fiber. This can be thought of as using 980 nm lasers to power an optical pre-amplifier with the power amplification function being pump with 1480 nm radiation. This paper will focus on 980 nm pump lasers and the impact that advances in 980 nm pump technology will have on optical amplification systems. Currently, 980 nm technology is rapidly advancing in two areas, power and reliability. Improving reliability is becoming increasingly important as amplifiers move towards employing more pump lasers and using these pump lasers without redundancy

  4. Modelling spectral and broadband UV-B (290--325 nm) irradiance for Canada

    NASA Astrophysics Data System (ADS)

    Binyamin, Jacqueline

    This is a study concerning the modeling of UV-B irradiance at the earth's surface. It is timely because stratospheric ozone depletion has occurred globally as a result of increasing chlorofluorocarbons in the stratosphere. This reduction allows more UV-B irradiance (290--325 nm) to reach the earth's surface and cause detrimental biological effects. Presently there are few spectral UV-B radiation measurements. Therefore, irradiance models are useful tools for estimating UV-B irradiances in areas where measurements are not made. A numerical model to calculate spectral and broadband irradiances for all sky conditions is described and the results are validated with measurements for nine Canadian stations (Alert, Resolute Bay, Churchill, Edmonton, Regina, Winnipeg, Montreal, Halifax and Toronto). The model uses either the discrete ordinate radiative transfer (DISORT) or the delta-Eddington algorithms to solve the radiative transfer equation for a 49-layer, vertically inhomogeneous, plane-parallel atmosphere, with cloud inserted between the 2 and 3 km heights. Spectral calculations are made at 1 nm intervals. The model uses extraterrestrial spectral irradiance, spectral optical properties for each atmospheric layer for ozone, air molecules, and aerosol and surface albedo. Cloud optical depths tau c were calculated separately for overcast irradiance measurements for nine stations from 26 years of data. The delta-Eddington method performed well for producing tauc and overcast broadband irradiances. A fixed tauc value of 18.7 was found to be accurate for calculating cloudy sky irradiances at all stations except in the arctic. Twenty-six station years of irradiance measurements and model estimates are compared. Comparisons are made both for daily totals and for monthly averaged spectral and broadband irradiances. It is shown that the delta-Eddington method is not suitable for calculating spectral irradiances under clear skies, at short wavelengths (<305 nm), where absorption

  5. A study of regional aerosol radiative properties and effects on ultraviolet-B radiation

    NASA Astrophysics Data System (ADS)

    Wenny, B. N.; Schafer, J. S.; Deluisi, J. J.; Saxena, V. K.; Barnard, W. F.; Petropavlovskikh, I. V.; Vergamini, A. J.

    1998-07-01

    A field experiment was conducted in western North Carolina to investigate the relationship between aerosol optical properties and atmospheric transmission. Two research measurement sites in close horizontal proximity but at different altitudes were established to measure the transmission of UV radiation through a slab of atmosphere. An identical set of radiation sensing instruments, including a broadband UV-B radiometer, a direct Sun pyrheliometer, a shadowband radiometer, and a spectral photometer, was placed at both sites, a mountaintop site (Mount Gibbes 35.78°N, 82.29°W, 2004 m elevation) and a valley site (Black Mountain, North Carolina 35.66°N, 82.38°N, 951 m elevation). Aerosol size distribution sampling equipment was located at the valley site. Broadband solar pseudo-optical depth and aerosol optical depths at 415 nm, 500 nm, and 673 nm were measured for the lowest 1-km layer of the troposphere. The measurements exhibited variations based on an air mass source region as determined by back trajectory analysis. Broadband UV-B transmission through the layer also displayed variations relating to air mass source region. Spectral UV transmission revealed a dependence upon wavelength, with decreased transmission in the UV-B region (300-320 nm) versus UV-A region (320-363.5 nm). UV-B transmission was found to be negatively correlated with aerosol optical depth. Empirical relations were developed to allow prediction of solar noon UV-B transmission if aerosol optical depth at two visible wavelengths (415 and 500 nm) is known. A new method was developed for determining aerosol optical properties from the radiation and aerosol size distribution measurements. The aerosol albedo of single scatter was found to range from 0.75 to 0.93 and the asymmetry factor ranged from 0.63 to 0.76 at 312 nm, which is close to the peak response of human skin to UV radiation.

  6. High Power 938nm Cladding Pumped Fiber Laser

    SciTech Connect

    Dawson, J; Beach, R; Brobshoff, A; Liao, Z; Payne, S; Pennington, D; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-12-26

    We have developed a Nd:doped cladding pumped fiber amplifier, which operates at 938nm with greater than 2W of output power. The core co-dopants were specifically chosen to enhance emission at 938nm. The fiber was liquid nitrogen cooled in order to achieve four-level laser operation on a laser transition that is normally three level at room temperature, thus permitting efficient cladding pumping of the amplifier. Wavelength selective attenuation was induced by bending the fiber around a mandrel, which permitted near complete suppression of amplified spontaneous emission at 1088nm. We are presently seeking to scale the output of this laser to 10W. We will discuss the fiber and laser design issues involved in scaling the laser to the 10W power level and present our most recent results.

  7. Incoherent magnetization reversal in 30-nm Ni particles

    NASA Astrophysics Data System (ADS)

    Ross, C. A.; Chantrell, R.; Hwang, M.; Farhoud, M.; Savas, T. A.; Hao, Y.; Smith, Henry I.; Ross, F. M.; Redjdal, M.; Humphrey, F. B.

    2000-12-01

    The magnetic properties of a 100-nm-period large-area array of regular, 30-nm polycrystalline nickel particles have been studied. The particles are found to reverse incoherently, and their hysteresis behavior has been compared with a computational model over a range of temperatures. Excellent agreement with the model is obtained, indicating that switching of the particles is dominated by the reversal of approximately 10-nm-diameter volumes within each particle. These switching volumes are identified with the columnar grains in the polycrystalline nickel, showing that the microstructure determines the magnetic behavior of the particles. This explains the anisotropy distribution and the onset of superparamagnetism in the sample. Incoherent reversal occurs even though the particles are only 1.5 times the exchange length in nickel, a size at which nearly uniform rotation is expected to occur if the particles were homogeneous.

  8. Interaction between Nm23 and the tumor suppressor VHL.

    PubMed

    Lin, Chih-Hung; Dammai, Vincent; Adryan, Boris; Hsu, Tien

    2015-02-01

    Among the anti-tumor genes (tumor suppressors and metastasis suppressors), the von-Hippel Lindau gene and the Nm23 family of genes are among the more intriguing ones. Both are small (long and short forms of VHL are 30 and 19 kD, respectively, and Nm23 is ~17 kD), and both possess diverse molecular and cellular functions. Despite extensive studies, the entire spectra of functions and the molecular function-phenotype correlation of these two proteins have not been completely elucidated. In this report, we present data showing these two proteins interact physically. We also summarize and confirm the previous studies that demonstrated the endocytic function of these two genes and further show that the endocytic function of VHL is mediated through the activity of Nm23. These functional and molecular interactions are evolutionarily conserved from Drosophila to human.

  9. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability.

  10. Absorption of infrared radiation by human dental hard substances

    NASA Astrophysics Data System (ADS)

    Roth, Klaus K.; Duczynski, Edwin W.; von der Heide, Hans-Joachim; Struve, Bert

    1993-12-01

    Absorption spectra of enamel, dentin, synthetic hydroxyapatite and deionized water were taken in the wavelength band 500 to 3000 nm. It could be shown that infrared radiation is mainly absorbed in the aqueous components of dental hard tissues. Because of their decreased water content extinctions measured are slightly lower than those of deionized water. Furthermore, mineral absorptions could be detected in the range of 2760 to 2840 nm with a maximum at 2800 nm in enamel and a smaller one at 2500 nm in dentin.

  11. Lens transmission measurement for an absolute radiation thermometer

    SciTech Connect

    Hao, X.; Yuan, Z.; Lu, X.

    2013-09-11

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.3×10{sup −3} at 633 nm and 900 nm, respectively.

  12. 32 nm imprint masks using variable shape beam pattern generators

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; Schmid, Gerard; Stacey, Nick; Perez, Joseph; Maltabes, John; Resnick, Douglas J.; Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-05-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL ®) is a unique method that has been designed from the beginning to enable precise overlay for creating multilevel devices. A photocurable low viscosity monomer is dispensed dropwise to meet the pattern density requirements of the device, thus enabling imprint patterning with a uniform residual layer across a field and across entire wafers. Further, S-FIL provides sub-100 nm feature resolution without the significant expense of multi-element, high quality projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of templates. For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x templates with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub 32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the template is discussed and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  13. Full-field imprinting of sub-40 nm patterns

    NASA Astrophysics Data System (ADS)

    Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-03-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL (R)) is a unique patterning method that has been designed from the beginning to enable precise overlay to enable multilevel device fabrication. A photocurable low viscosity resist is dispensed dropwise to match the pattern density requirements of the device, thus enabling patterning with a uniform residual layer thickness across a field and across multiple wafers. Further, S-FIL provides sub-50 nm feature resolution without the significant expense of multi-element projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of imprint masks (templates). For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x imprint masks with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub-32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the imprint mask and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  14. 3D Time Dependent Stokes Vector Radiative Transfer in an Atmosphere-Ocean System Including a Stochastic Interface

    DTIC Science & Technology

    2011-09-30

    1 m 440 nm (b) 488 nm (c) 0.0 0.2 0.4 0.6 0.8 1.0 510 nm D oL P (d) 532 nm (e) 555 nm (f) -90 -45 0 45 90 135 0.0 0.2 0.4 0.6 0.8 1.0 650 nm (g) -90...1 m 440 nm (b) 488 nm (c) -90 -45 0 45 90 510 nm A oL P (d) 532 nm (e) 555 nm (f) -90 -45 0 45 90 135 -90 -45 0 45 90 650 nm (g) -90 -45 0 45 90 135...47-56, (1991) 3. A. Sánchez, T.F. Smith, and W. F. Krajewski “A three-dimensional atmospheric radiative transfer model based on the discrete

  15. Low-loss arrayed waveguide grating at 760 nm.

    PubMed

    Stanton, E J; Spott, A; Davenport, M L; Volet, N; Bowers, J E

    2016-04-15

    An arrayed waveguide grating (AWG) at 760 nm is demonstrated with an insertion loss smaller than 0.5 dB. Interface roughness and waveguide length errors contribute much more to scattering loss and phase errors at 760 nm than at longer wavelengths, thus requiring improved design and fabrication. This Letter details how this is achieved by minimizing interfacial scattering, grating side-order excitation, and phase errors in the AWG. With silicon nitride core and silicon dioxide clad waveguides on silicon, this AWG is compatible with heterogeneously integrated lasers for on-chip spectral beam combining.

  16. Cost-effective tunable 1310nm DWDM transmitter

    NASA Astrophysics Data System (ADS)

    Chorchos, Łukasz; Turkiewicz, Jarosław P.

    2015-09-01

    The growing demand for higher data rate transmissions in local and metropolitan area networks is main reason of developing effective and inexpensive transmission systems. In this paper, study about the possibility to realize 1310 nm tunable DWDM transmitter using commercially available low-cost DFB lasers is presented. Extensive DFB lasers characterization has been performed which led to establish relationships between laser current, operational temperature, emitted wavelength and power. An algorithm to find the laser settings for a desired wavelength grid has been proposed and tested. Generation of the 1310nm DWDM channels with frequency spacing between 120 and 240GHz has been demonstrated.

  17. First results from simultaneous 527 nm and 351 nm probe beam interactions in a long scalelength plasma

    NASA Astrophysics Data System (ADS)

    Moody, J. D.; MacKinnon, A.; Glenzer, S. H.; Froula, D.; Gregori, G.; Berger, R. L.; Campbell, K.; Divol, L.; Dixit, S.; Suter, L. J.; Williams, E. A.; Bahr, R.; Seka, W.

    2002-11-01

    We investigate the stimulated Raman and Brillouin backscattered light from simultaneous 527 nm and 351 nm probe beams incident on a long scalelength ignition-like plasma. These experiments are important for both determining backscattering physics mechanisms and for evaluating laser power loss expected in planned ignition experiments. The plasma is formed using 18 kJ of 351 nm light from the Omega laser in a 1 ns pulse incident on a gas-filled balloon target. The two probe beams, which are delayed 0.5 ns relative to the plasma forming beams, are separated by 42^rc, have vacuum intensity of <= 7 × 10^14 W/cm^2 and may or may not intersect in the plasma. Self-Thomson scattered light from the 527 nm beam is used to determine the plasma temperatures. We find that in a CH plasma, beam intersection leads to about a factor of 2 increase in the SRS from the 351 nm beam compared to no intersection. Beam intersection does not change the SBS backscattering level studied with a CO2 plasma. We describe the experimental results and simulations using the LASNEX hydrodynamic code and the pF3D laser-plasma wave propagation code. Work performed under the auspicies of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W--7405--ENG--48.

  18. Performance of a high-NA dual-stage 193-nm TWINSCAN Step and Scan system for 80-nm applications

    NASA Astrophysics Data System (ADS)

    de Klerk, Jos; Jorritsma, Louis; van Setten, Eelco; Droste, Richard; du Croo de Jongh, Richard; Hansen, Steven G.; Smith, Dan; van de Kerkhof, Mark A.; van de Mast, Frank; Graeupner, Paul; Rohe, Thomas; Kornitzer, Klaus

    2003-06-01

    As the semiconductor industry looks into the near future to extend manufacturing beyond 100nm, a new optical lithography system was developed by ASML. To achieve the aggressive industry roadmap and enable high volume manufacturing of sub 100nm resolutions at low k1 requires a number of challenges to be overcome. This paper reviews the design, system performance and measurements of a High NA, Dual stage 193nm TWINSCAN system planned for high volume manufacturing for 80nm applications. The overall system capability to effectively measure and control to a high precision the various attributes upon process control necessary for adequate CD control, in the low k1 regime will be shown. This paper will discuss the needed imaging control and the requirement for an extremely stable and matured platform. The system's dynamic, focus, leveling and dose delivery performance will be shown. Additionally, the automated control features of the optical system will be shown that enable the use of the various resolution enhancement techniques (RET) currently under development. The ability to optimize imaging performance with the control and flexibility in the pupil formation optics will be discussed. Finally, experimental results of an in-situ measurement technique with automated feedback control to optimize projection lens aberrations, which has a direct impact to imaging fidelity, will be shown. In summary, the lithographic system functionality and performance needed to achieve 80nm volume manufacturing will be presented.

  19. Extension of 193 nm dry lithography to 45-nm half-pitch node: double exposure and double processing technique

    NASA Astrophysics Data System (ADS)

    Biswas, Abani M.; Li, Jianliang; Hiserote, Jay A.; Melvin, Lawrence S., III

    2006-10-01

    Immersion lithography and multiple exposure techniques are the most promising methods to extend lithography manufacturing to the 45nm node. Although immersion lithography has attracted much attention recently as a promising optical lithography extension, it will not solve all the problems at the 45-nm node. The 'dry' option, (i.e. double exposure/etch) which can be realized with standard processing practice, will extend 193-nm lithography to the end of the current industry roadmap. Double exposure/etch lithography is expensive in terms of cost, throughput time, and overlay registration accuracy. However, it is less challenging compared to other possible alternatives and has the ability to break through the κ I barrier (0.25). This process, in combination with attenuated PSM (att-PSM) mask, is a good imaging solution that can reach, and most likely go beyond, the 45-nm node. Mask making requirements in a double exposure scheme will be reduced significantly. This can be appreciated by the fact that the separation of tightly-pitched mask into two less demanding pitch patterns will reduce the stringent specifications for each mask. In this study, modeling of double exposure lithography (DEL) with att-PSM masks to target 45-nm node is described. In addition, mask separation and implementation issues of optical proximity corrections (OPC) to improve process window are studied. To understand the impact of OPC on the process window, Fourier analysis of the masks has been carried out as well.

  20. A new multichannel UV spectroradiometer for field measurements in harsh environments

    NASA Astrophysics Data System (ADS)

    Tueg, H.; Hanken, Th.; Schrems, O.

    2003-04-01

    Longterm trend measurements of solar UV radiation from 280 to 400 nm are an important task of environmental research in particular in polar regions. In order to be able to carry out UV measurements under the extreme climatical and logistical conditions at high latitudes we developed a new type of UV spectroradiometer, which fulfils the requirements necessary for field measurements in harsh environments. One of the most important features is the stable and automatic operation in the field for longer time periods without the necessity for maintenance and calibration. Since the UV spectroradiometers have to be shipped to remote areas, they have to be shock-prove, resistant against motion during operation, e.g. aboard ships or under water. Another leading point is that one needs spectroradiometers with a high time resolution to be able to investigate radiative transfer processes under fast changing inhomogeneous cloud conditions. The design of our none-scanning UV spectroradiomter is based on a multichannel detection system. Due to the much higher dynamics of the UV spectrum below 320 nm the wavelength ranges 280-320 nm and 320-400 nm are handled separately. For the shorter wavelengths a Bentham DM 150 double monochromator is being used with a low-resistance microchannel-plate photomultiplier-tube providing 32 detection channels working in a single photon counting mode. To measure above 320 nm a single monochromator is sufficient, combined with a photodiode array with 256 detection channels . The whole system is mounted in a weatherproof and temperature controlled housing with separate entrance optics for both wavelength ranges. The maximum time resolution is 1 spectrum per second allowing to measure even under fast changing conditions.

  1. Perfluorinated polymer optical fiber for gamma radiation monitoring

    NASA Astrophysics Data System (ADS)

    Stajanca, P.; Mihai, L.; Sporea, D.; Negut, D.; Krebber, K.

    2016-05-01

    The sensitivity of low-loss perfluorinated polymer optical fiber (PF-POF) to gamma radiation is investigated for on-line radiation monitoring purposes. The radiation-induced attenuation (RIA) of a commercial PF-POF based on Cytop material is measured in the visible spectral region. The fiber RIA shows strong wavelength dependence with rapid increase towards the blue side of the spectrum. The wide range of radiation sensitivities is available via careful selection of appropriate monitoring wavelength. The accessible sensitivities span from 1.6 +/- 0.2 dBm-1/kGy measured at 750 nm to 18.3 +/- 0.7 dBm-1/kGy measured at 420 nm. The fairly high radiation sensitivity as well as its wide tunability makes the fiber a promising candidate for a broad range of applications.

  2. RADIATION DOSIMETER

    DOEpatents

    Balkwell, W.R. Jr.; Adams, G.D. Jr.

    1960-05-10

    An improvement was made in the determination of amounts of ionizing radiation, particularly low-energy beta particles of less than 1000 rad total dose by means of fluid-phase dosimeter employing a stabilized-- sensitized ferrous-ferric colorimetric system in a sulphuric acid medium. The improvement in the dosimeter consists of adding to the ferrous-ferric system in concentrations of 10/sub -2/ to 10/sup -4/M an organic compound having one or more carboxylic or equivalent groups, such compounds being capable of chelating or complexing the iron ions in the solution. Suitable sensitizing and stabilizing agents are benzoic, phthalic, salicylic, malonic, lactic, maleic, oxalic, citric, succinic, phenolic tartaric, acetic, and adipic acid, as well as other compounds which are added to the solution alone or in certain combinations. As in conventional fluid-phase dosimeters, the absorbed dosage is correlated with a corresponding change in optical density at particular wavelengths of the solution.

  3. Radiation dosimeters

    DOEpatents

    Hoelsher, James W.; Hegland, Joel E.; Braunlich, Peter F.; Tetzlaff, Wolfgang

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  4. Radiation Insulation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Apollo and subsequent spacecraft have had highly effective radiation barriers; made of aluminized polymer film, they bar or let in heat to maintain consistent temperatures inside. Tech 2000, formerly Quantum International Corporation used the NASA technology in its insulating materials, Super "Q" Radiant Barrier, for home, industry and mobile applications. The insulation combines industrial aluminum foil overlaid around a core of another material, usually propylene or mylar. The outer layer reflects up to 97 percent of heat; the central layer creates a thermal break in the structure and thus allows low radiant energy emission. The Quantum Cool Wall, used in cars and trucks, takes up little space while providing superior insulation, thus reducing spoilage and costs. The panels can also dampen sound and engine, exhaust and solar heat.

  5. RADIATION COUNTER

    DOEpatents

    Goldsworthy, W.W.

    1958-02-01

    This patent relates to a radiation counter, and more particularly, to a scintillation counter having high uniform sensitivity over a wide area and capable of measuring alpha, beta, and gamma contamination over wide energy ranges, for use in quickly checking the contami-nation of personnel. Several photomultiplier tubes are disposed in parallel relationship with a light tight housing behind a wall of scintillation material. Mounted within the housing with the photomultipliers are circuit means for producing an audible sound for each pulse detected, and a range selector developing a voltage proportional to the repetition rate of the detected pulses and automatically altering its time constant when the voltage reaches a predetermined value, so that manual range adjustment of associated metering means is not required.

  6. Radiative opacities

    NASA Astrophysics Data System (ADS)

    Seaton, M. J.

    1993-01-01

    An overview of opacity calculations performed during the past decade is presented. Attention is given to envelopes and interiors, equations of state, atomic data, line profiles, and mesh points. Results for a Cepheid model are presented. The solar radiative interior, solar abundances, hydrogen and helium, and contributions from the different elements are discussed. Work over the past decade has led to major revisions in envelope opacities, by factors as large as 3 or 4. There are also some revisions in results for deeper layers, which are important but not so pronounced. A comparison of the work of two opacity research groups, OPAL from the Lawrence Livermore National Laboratory and the international OP project, is given.

  7. Imaging challenges in 20nm and 14nm logic nodes: hot spots performance in Metal1 layer

    NASA Astrophysics Data System (ADS)

    Timoshkov, V.; Rio, D.; Liu, H.; Gillijns, W.; Wang, J.; Wong, P.; Van Den Heuvel, D.; Wiaux, V.; Nikolsky, P.; Finders, J.

    2013-10-01

    The 20nm Metal1 layer, based on ARM standard cells, has a 2D design with minimum pitch of 64nm. This 2D design requires a Litho-Etch-Litho-Etch (LELE) double patterning. The whole design is divided in 2 splits: Me1A and Me1B. But solution of splitting conflicts needs stitching at some locations, what requires good Critical Dimension (CD) and overlay control to provide reliable contact between 2 stitched line ends. ASML Immersion NXT tools are aimed at 20 and 14nm logic production nodes. Focus control requirements become tighter, as existing 20nm production logic layouts, based on ARM, have about 50-60nm focus latitude and tight CD Uniformity (CDU) specifications, especially for line ends. IMEC inspected 20nm production Metal1 ARM standard cells with a Negative Tone Development (NTD) process using the Process Window Qualification-like technique experimentally and by Brion Tachyon LMC by simulations. Stronger defects were found thru process variations. A calibrated Tachyon model proved a good overall predictability capability for this process. Selected defects are likely to be transferred to hard mask during etch. Further, CDU inspection was performed for these critical features. Hot spots showed worse CD uniformity than specifications. Intra-field CDU contribution is significant in overall CDU budget, where reticle has major impact due to high MEEF of hot spots. Tip-to-Tip and tip-to-line hot spots have high MEEF and its variation over the field. Best focus variation range was determined by best focus offsets between hot spots and its variation within the field.

  8. Coherent 455 nm beam production in a cesium vapor.

    PubMed

    Schultz, J T; Abend, S; Döring, D; Debs, J E; Altin, P A; White, J D; Robins, N P; Close, J D

    2009-08-01

    We observe coherent, cw, 455 nm blue-beam production via frequency upconversion in cesium vapor. Two IR lasers induce strong double excitation in a heated cesium vapor cell, allowing the atoms to undergo a double cascade and produce a coherent, collimated, blue beam copropagating with the two IR pump lasers.

  9. 77 FR 62481 - Radio Broadcasting Services; Crownpoint, NM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Crownpoint, NM AGENCY: Federal Communications....415 and 1.420. List of Subjects in 47 CFR Part 73 Radio, Radio broadcasting. Federal Communications... preamble, the Federal Communications Commission proposes to amend 47 CFR Part 73 as follows: PART...

  10. 78 FR 72141 - New Mexico Disaster Number NM-00037

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... ADMINISTRATION New Mexico Disaster Number NM-00037 AGENCY: U.S. Small Business Administration. ACTION: Amendment... Assistance Only for the State of New Mexico (FEMA-4148-DR), dated 09/30/2013. Incident: Severe Storms and... Private Non-Profit organizations in the State of New Mexico, dated 09/30/2013, is hereby amended...

  11. 77 FR 55523 - New Mexico Disaster #NM-00029

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00029 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 4079-DR), dated 08/24/2012. Incident: Flooding. Incident Period:...

  12. 78 FR 61999 - New Mexico Disaster #NM-00037

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-10

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00037 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 4148-DR), dated 09/30/2013. Incident: Severe Storms and Flooding....

  13. 75 FR 57538 - New Mexico Disaster # NM-00016

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00016 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 1936-DR), dated 09/13/2010. Incident: Severe Storms and Flooding....

  14. 76 FR 81553 - New Mexico Disaster Number NM-00024

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... ADMINISTRATION New Mexico Disaster Number NM-00024 AGENCY: U.S. Small Business Administration. ACTION: Amendment... Assistance Only for the State of New Mexico (FEMA-4047-DR), dated 11/23/2011. Incident: Flooding. Incident... Non-Profit organizations in the State of New Mexico, dated 11/23/2011, is hereby amended to...

  15. 77 FR 63409 - New Mexico Disaster Number NM-00029

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... ADMINISTRATION New Mexico Disaster Number NM-00029 AGENCY: U.S. Small Business Administration. ACTION: Amendment... Assistance Only for the State of New Mexico (FEMA-4079-DR), dated 08/24/2012. Incident: Flooding. Incident... Non-Profit organizations in the State of NEW MEXICO, dated 08/24/2012, is hereby amended to...

  16. 78 FR 73581 - New Mexico Disaster Number NM-00035

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... ADMINISTRATION New Mexico Disaster Number NM-00035 AGENCY: U.S. Small Business Administration. ACTION: Amendment... Assistance Only for the State of New Mexico (FEMA-4152-DR), dated 10/29/2013. Incident: Severe Storms... disaster declaration for Private Non-Profit organizations in the State of New Mexico, dated 10/29/2013,...

  17. 76 FR 2431 - New Mexico Disaster #NM-00016

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... ADMINISTRATION New Mexico Disaster NM-00016 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1... Only for the State of New Mexico (FEMA-1936-DR), dated 09/13/2010. Incident: Severe Storms and Flooding... Private Non-Profit organizations in the State of NEW MEXICO, dated 09/13/2010, is hereby amended...

  18. 76 FR 18289 - New Mexico Disaster #NM-00020

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00020 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 1962-DR), dated 03/24/2011. Incident: Severe Winter Storm and Extreme...

  19. 78 FR 66982 - New Mexico Disaster #NM-00035

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00035 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 4152-DR), dated 10/29/2013. Incident: Severe storms, flooding, and...

  20. 77 FR 41874 - New Mexico Disaster #NM-00025

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... ADMINISTRATION New Mexico Disaster NM-00025 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of New Mexico dated 07/09/2012. Incident: Little Bear Fire. Incident Period: 06/04/2012 and continuing. Effective Date:...

  1. 77 FR 47907 - New Mexico Disaster #NM-00025

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... ADMINISTRATION New Mexico Disaster NM-00025 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1. SUMMARY: This is an amendment of the Administrative declaration of a disaster for the State of NEW MEXICO, dated 07/09/2012. Incident: Little Bear Fire. Incident Period: 06/04/2012 through 07/30/2012....

  2. EUV optical design for 100 nm CD imaging system

    SciTech Connect

    Sweeney, D.W.; Hudyma, R.; Chapman, H.B.; Shafer, D.

    1998-04-09

    The imaging specifications for extreme ultraviolet lithography (EUVL) projection optics parallel those of other optical lithographies. Specifications are scaled to reflect the 100 nm critical dimension for the first generation EUVL systems. The design being fabricated for the Engineering Test Stand, an EUVL alpha tool, consists of a condenser with six channels to provide an effective partial coherence factor of 0.7. The camera contains four mirrors; three of the mirrors are aspheres and the fourth is spherical. The design of the optical package has been constrained so that the angles of incidence and the variations in the angle of incidence of all rays allow for uniform multilayer coatings. The multilayers introduce a slight shift in image position and magnification. We have shown that a system aligned with visible light is also aligned at 13.4 nm. Each mirror must be fabricated with an RMS figure error of less than 0.25 nm and better than 0.2 nm RMS roughness. Optical surfaces that exceed each of these specifications individually have been fabricated. The success of EUVL requires that these specifications be met simultaneously.

  3. Microstructure of 100 nm damascene copper overburden and lines

    NASA Astrophysics Data System (ADS)

    Geiss, R. H.; Read, D. T.

    2007-09-01

    A detailed understanding of the crystallography of metallic conductors in modern interconnect systems is essential if we are to understand the influence of processing parameters on performance and reliability. In particular we must be able to evaluate the grain size, crystallographic orientation and residual elastic stress for interconnect lines having widths of tens of nm. Transmission electron microscopy might be the obvious choice, but sample preparation and small sample size make this technique unattractive. On the other hand, electron backscatter diffraction, EBSD, in a scanning electron microscope provides a very attractive tool. Sample preparation can be relatively simple, especially if one investigates the structures immediately after CMP; whole wafers may be measured if desired. One limitation to EBSD is that good diffraction patterns are obtained only from free surfaces and from a limited depth, say a few hundred nm in copper. Here EBSD will be used to compare structures for the pads and 100-nm lines in two variants of a commercial copper damascene interconnect structure. EBSD data collection will be discussed as optimized for characterizing differences in the texture, which were attributed to differences in the processing. By a unique approach to EBSD mapping we found that neither the texture nor the grain size of the overburden, as represented by the contact pads, propagated into the 100 nm lines, though they did propagate into some wider lines.

  4. The Photochemistry of Cyano and Dicyanoacetylene at 193 nm.

    DTIC Science & Technology

    1987-07-28

    Halpern, L. Petway , R. Lu, W.M. Jackson, and V.R. McCrary and W. Nottingham Prepared for submission to the Journal of Chemical Physics Department of...CYANO- AND DICYANOACETYLENE AT 193 NM By J. B. Halpern% L. Petway , R. Lu W. M. Jackson , and V. R. McCrary Department of Chemistry Howard University

  5. 78 FR 66982 - Santa Clara Pueblo Disaster #NM-00039

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... ADMINISTRATION Santa Clara Pueblo Disaster NM-00039 AGENCY: U.S. Small Business Administration. ACTION: Notice... for the Santa Clara Pueblo (FEMA- 4151-DR), dated 10/29/2013. Incident: Severe Storms and Flooding... disaster: Primary Areas: Santa Clara Pueblo. The Interest Rates are: Percent For Physical Damage:...

  6. High average power, narrow band 248 nm alexandrite laser system

    SciTech Connect

    Kuper, J.W.; Chin, T.C.; Papanestor, P.A.

    1994-12-31

    A compact line-narrowed 248 nm solid state laser source operating at 15 mJ {at} 100 Hz PRF was demonstrated. Constraints due to thermal loading of components were addressed. Tradeoffs between pulse energy and repetition rate were investigated. A method for overcoming thermal dephasing in the THG material was achieved by scanning a slab shaped crystal.

  7. Holographic voltage profiling on 75 nm gate architecture CMOS devices.

    PubMed

    Thesen, Alexander E; Frost, Bernhard G; Joy, David C

    2003-04-01

    Voltage profiles of the source-drain region of a CMOS transistor with 75nm gate architecture taken from an off-the-shelf Intel PIII processor are presented. The sample preparation using a dual beam system is discussed as well as details of the electron optical setup of the microscope. Special attention is given to the analysis of the reconstructed holograms.

  8. A novel double patterning approach for 30nm dense holes

    NASA Astrophysics Data System (ADS)

    Hsu, Dennis Shu-Hao; Wang, Walter; Hsieh, Wei-Hsien; Huang, Chun-Yen; Wu, Wen-Bin; Shih, Chiang-Lin; Shih, Steven

    2011-04-01

    Double Patterning Technology (DPT) was commonly accepted as the major workhorse beyond water immersion lithography for sub-38nm half-pitch line patterning before the EUV production. For dense hole patterning, classical DPT employs self-aligned spacer deposition and uses the intersection of horizontal and vertical lines to define the desired hole patterns. However, the increase in manufacturing cost and process complexity is tremendous. Several innovative approaches have been proposed and experimented to address the manufacturing and technical challenges. A novel process of double patterned pillars combined image reverse will be proposed for the realization of low cost dense holes in 30nm node DRAM. The nature of pillar formation lithography provides much better optical contrast compared to the counterpart hole patterning with similar CD requirements. By the utilization of a reliable freezing process, double patterned pillars can be readily implemented. A novel image reverse process at the last stage defines the hole patterns with high fidelity. In this paper, several freezing processes for the construction of the double patterned pillars were tested and compared, and 30nm double patterning pillars were demonstrated successfully. A variety of different image reverse processes will be investigated and discussed for their pros and cons. An economic approach with the optimized lithography performance will be proposed for the application of 30nm DRAM node.

  9. Gain measurements at 5 nm in nickel-like ytterbium

    SciTech Connect

    MacGowan, B.J.; Bourgade, J.L.; Combis, P.; Keane, C.J.; Louis-Jacquet, M.; Matthews, D.L.; Naccache, D.; Stone, G.; Thiell, G.; Whelan, D.A.

    1988-03-01

    Soft x-ray gain has been demonstrated at 5.03 nm within a laser produced plasma of Ni-like ytterbium. Experiments will also be described with higher Z Ni-like ions which can produce even shorter wavelength x-ray laser transition. 3 refs.

  10. 78 FR 67210 - Santa Clara Pueblo Disaster #NM-00038

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Santa Clara Pueblo Disaster NM-00038 AGENCY: U.S. Small Business Administration. ACTION: Notice...: Submit completed loan applications to: U.S. Small Business Administration, Processing and...

  11. EPA Sparks Local Business in Las Cruces, N.M.

    EPA Pesticide Factsheets

    DALLAS - (Feb. 29, 2016) The U.S. Environmental Protection Agency (EPA) is awarding a $300,000 small business contract to Vista Photonics, Inc. in Las Cruces, N.M. The company plans to develop an inexpensive, high-performance, portable air pollution

  12. Blue light (470 nm) effectively inhibits bacterial and fungal growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The activity of blue light (470nm) alone on (1) bacterial viability, and (2) with a food grade photosensitizer on filamentous fungal viability, was studied. Suspensions of the bacteria Leuconostoc mesenteroides (LM), Bacillus atrophaeus (BA), and Pseudomonas aeruginosa (PA) were prepared and aliquo...

  13. Pushing EUV lithography development beyond 22-nm half pitch

    SciTech Connect

    Naulleau, Patrick; Anderson, Christopher N.; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Goldstein, Michael; Hoef, Brian; Jones, Gideon; Koh, Chawon; La Fontaine, Bruno; Montogomery, Warren; Wallow, Tom

    2009-06-30

    Microfield exposure tools (METs) have and continue to play a dominant role in the development of extreme ultraviolet (EUV) resists and masks. One of these tools is the SEMATECH Berkeley 0.3 numerical aperture (NA) MET. Here we investigate the possibilities and limitations of using the 0.3-NA MET for sub-22-nm half-pitch development. We consider mask resolution limitations and present a method unique to the centrally obscured MET allowing these mask limitations to be overcome. We also explore projection optics resolution limits and describe various illumination schemes allowing resolution enhancement. At 0.3-NA, the 0.5 k1 factor resolution limit is 22.5 nm meaning that conventional illumination is of limited utility for sub-22-nm development. In general resolution enhancing illumination encompasses increased coherence. We study the effect of this increased coherence on line-edge roughness, which along with resolution is another crucial factor in sub-22-nm resist development.

  14. 76 FR 22015 - Amendment of Class E Airspace; Raton, NM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Municipal Airport/Crews Field, Raton, NM. The FAA is taking this action to enhance the safety and management... additional controlled airspace at Raton Municipal Airport/ Crews Field (76 FR 5305) Docket No. FAA-2010-1239... accommodate new RNAV standard instrument approach procedures at Raton Municipal Airport/Crews Field, Raton,...

  15. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  16. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  17. Center and limb solar spectrum in high spectral resolution 225.2 nm to 319.6 nm

    NASA Technical Reports Server (NTRS)

    Kohl, J. L.; Parkinson, W. H.; Kurucz, R. L.

    1978-01-01

    The atlas has been designed to fulfill the need in solar and stellar astronomy, in aeronomy, and in space science for a convenient reference source that provides a detailed and accurate record of the measured solar ultraviolet spectrum in high spectral resolution for the wavelength range from 225.2 nm to 319.6 nm. The atlas also contains a preliminary synthetic solar spectrum with a legend for identifying and describing the features of the synthetic spectrum. Attention is given to aspects of instrumentation, the radiometric calibration, the wavelength scale, background noise random fluctuations and data filtering, intermittent noise, the observational conditions, the experimental uncertainty, the atlas format, references, tables, and plots.

  18. Injection locking of a low cost high power laser diode at 461 nm.

    PubMed

    Pagett, C J H; Moriya, P H; Celistrino Teixeira, R; Shiozaki, R F; Hemmerling, M; Courteille, Ph W

    2016-05-01

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.

  19. Injection locking of a low cost high power laser diode at 461 nm

    NASA Astrophysics Data System (ADS)

    Pagett, C. J. H.; Moriya, P. H.; Celistrino Teixeira, R.; Shiozaki, R. F.; Hemmerling, M.; Courteille, Ph. W.

    2016-05-01

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.

  20. Matrices of 960-nm vertical-cavity surface-emitting lasers

    SciTech Connect

    Maleev, N. A.; Kuzmenkov, A. G.; Shulenkov, A. S.; Blokhin, S. A.; Kulagina, M. M.; Zadiranov, Yu. M.; Tikhomirov, V. G.; Gladyshev, A. G.; Nadtochiy, A. M.; Nikitina, E. V.; Lott, J. A.; Svede-Shvets, V. N.; Ledentsov, N. N.; Ustinov, V. M.

    2011-06-15

    Matrices of vertical-cavity surface-emitting lasers with individual addressing of elements and radiation output through a gallium arsenide substrate are implemented. Individual laser emitters with a current aperture diameter of 6-7 {mu}m exhibit continuous-wave room-temperature lasing at a wavelength of 958-962 nm with threshold currents of 1.1-1.3 mA, differential efficiency of 0.5-0.8 mW/mA, and a maximum output power of 7.5-9 mW. The parameter variation of individual emitters within a matrix chip containing 5 Multiplication-Sign 7 elements does not exceed {+-}20%.