Science.gov

Sample records for 29si nmr spectrum

  1. 29Si and 27Al MAS NMR spectra of mullites from different kaolinites.

    PubMed

    He, Hongping; Guo, Jiugao; Zhu, Jianxi; Yuan, Peng; Hu, Cheng

    2004-04-01

    Mullites synthesized from four kaolinites with different random defect densities have been studied by 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) and X-ray diffraction (XRD). All these mullites show the same XRD pattern. However, 29Si and 27Al MAS NMR spectra reveal that the mullites derived from kaolinites with high defect densities, have a sillimanite-type Al/Si ordering scheme and are low in silica, whereas those mullites derived from kaolinites with low defect densities, consist of both sillimanite- and mullite-type Al/Si ordering schemes and are rich in silica. PMID:15084323

  2. 29Si NMR spin-echo decay in YbRh2Si2

    NASA Astrophysics Data System (ADS)

    Kambe, S.; Sakai, H.; Tokunaga, Y.; Hattori, T.; Lapertot, G.; Matsuda, T. D.; Knebel, G.; Flouquet, J.; Walstedt, R. E.

    2016-02-01

    29Si nuclear magnetic resonance (NMR) has been measured in a 29Si-enriched single crystal sample of YbRh2Si2. The spin-echo decay for applied field H ∥, ⊥ the c-axes has been measured at 100 K. A clear spin-echo decay oscillation is observed for both cases, possibly reflecting the Ruderman-Kittel (RK) interaction. Since the observed oscillation frequency depends on the direction of applied magnetic field, anisotropic RK coupling and pseudo-dipolar (PD) interactions may not be negligible in this compound. The origin of spin-echo decay oscillations is discussed.

  3. Solid-state 29Si MAS NMR studies of diatoms: structural characterization of biosilica deposits.

    PubMed

    Bertermann, R; Kröger, N; Tacke, R

    2003-03-01

    Four different diatom species (Chaetoceros debilis, Chaetoceros didymum, Cylindrotheca fusiformis, Nitzschia angularis) were studied by solid-state (29)Si MAS NMR spectroscopy. To determine the Q(2):Q(3):Q(4) ratios in the biosilica deposits of the diatoms, quantitative (29)Si MAS NMR experiments were performed. This analysis did not reveal any differences regarding the molecular architecture of the silica (i.e. the degree of condensation of the SiOH units (2 identical with SiOH --> identical with Si-O-Si identical with + H(2)O)) from the different diatom species. However, complete cells showed significantly smaller Q(4):Q(3) ratios (1.8-1.9) than extracted cell walls (2.5-2.8), indicating the existence of intracellular pools of less condensed silica.

  4. Chiral Magnetism in an Itinerant Helical Magnet, MnSi - An Extended 29Si NMR Study

    NASA Astrophysics Data System (ADS)

    Yasuoka, Hiroshi; Motoya, Kiyoichiro; Majumder, Mayukh; Witt, Sebastian; Krellner, Cornelius; Baenitz, Michael

    2016-07-01

    The microscopic magnetism in the helical, conical and ferromagnetically polarized phases in an itinerant helical magnet, MnSi, has been studied by an extended 29Si NMR at zero field and under external magnetic fields. The temperature dependence of the staggered moment, MQ(T), determined by the 29Si NMR frequency, ν(T), and the nuclear relaxation rate, 1/T1(T), at zero field is in general accord with the SCR theory for weak itinerant ferromagnetic metals and its extension to helical magnets. The external field dependence of resonance frequency, ν(H), follows a vector sum of the contributions from the atomic hyperfine and macroscopic fields with a field induced moment characteristic to itinerant magnets. A discontinuous jump of the resonance frequency at the critical field, Hc, between the conical and the polarized phases has also been found, which suggests a first order like change of the electronic states at Hc.

  5. Magnesium Silicate Dissolution Investigated by 29Si MAS, 1H-29Si CP MAS, 25Mg QCPMG, and 1H-25Mg CP QCPMG NMR

    SciTech Connect

    Davis, Michael C.; Brouwer, William J.; Wesolowski, David J.; Anovitz, Lawrence M.; Lipton, Andrew S.; Mueller, Karl T.

    2009-08-01

    Olivine has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of magnesium with respect to silica during weathering under acidic conditions, which has been correlated to the formation of a silicon rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. In particular, the fate of magnesium in the system is not understood and spectroscopic interrogations through nuclear magnetic resonance can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced spectroscopic techniques (29Si MAS, 1H-29Si CP MAS, 25Mg QCPMG, and 1H-25Mg 2 CP QCPMG NMR) to probe leached layer formation and possible secondary phase precipitation during the dissolution of forsterite at 150 oC.

  6. 29Si NMR study of structural ordering in aluminosilicate geopolymer gels.

    PubMed

    Duxson, Peter; Provis, John L; Lukey, Grant C; Separovic, Frances; van Deventer, Jannie S J

    2005-03-29

    A systematic series of aluminosilicate geopolymer gels was synthesized and then analyzed using 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR) in combination with Gaussian peak deconvolution to characterize the short-range ordering in terms of T-O-T bonds (where T is Al or Si). The effect of nominal Na2O/(Na2O + K2O) and Si/Al ratios on short-range network ordering was quantified by deconvolution of the 29Si MAS NMR spectra into individual Gaussian peaks representing different Q4(mAl) silicon centers. The deconvolution procedure developed in this work is applicable to other aluminosilicate gel systems. The short-range ordering observed here indicates that Loewenstein's Rule of perfect aluminum avoidance may not apply strictly to geopolymeric gels, although further analyses are required to quantify the degree of aluminum avoidance. Potassium geopolymers appeared to exhibit a more random Si/Al distribution compared to that of mixed-alkali and sodium systems. This work provides a quantitative account of the silicon and aluminum ordering in geopolymers, which is essential for extending our understanding of the mechanical strength, chemical and thermal stability, and fundamental structure of these systems.

  7. High resolution solid-state 29Si NMR spectroscopy of silicone gels used to fill breast prostheses.

    PubMed

    Dorne, L; Alikacem, N; Guidoin, R; Auger, M

    1995-10-01

    We have used 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy to study the chemical structure of the silicone gels in virgin and explanted breast prostheses. Despite evidences of alteration in the morphological appearance of the silicone gel inside the breast prosthesis, our results do not reveal changes in the chemical nature and structure of the silicone gels after implantation. In addition to the main 29Si resonance peak at -22.26 ppm that corresponds to the resonance frequency of the D repeat unit of the polysiloxane chains, the high sensitivity of our NMR technique allows the detection of very low concentrations of silicone compounds. Within our experimental detection limit of 0.2%, no signal between -90 ppm and -150 ppm are observed. This indicates that no silica products are present inside the gel of the prostheses. Furthermore, our 29Si NMR spectra indicate differences in the chemical compositions of the silicone gels from different manufacturers.

  8. Hydrolysis and esterification in organically modified alkoxysilanes: A {sup 29}Si NMR investigation of methyltrimethoxysilane

    SciTech Connect

    Alam, T.M.; Assink, R.A.; Loy, D.A.

    1996-09-01

    High-resolution {sup 29}Si NMR was used to investigate the acid-catalyzed hydrolysis and esterification reactions of methyltrimethoxysilane (MTMS) in methanol. The INEPT experiment, adapted for spin systems with multiple heteronuclear coupling constants, was used to assign the closely spaced resonances of the MTMS hydrolysis products. Due to the rapid reaction rates, only the pseudoequilibrium concentration distributions for the resulting hydrolysis products could be determined. Models based on thermodynamically statistical distributions, irreversible hydrolysis reactions, and reversible hydrolysis reactions were nearly equally successful in accounting for the concentration distributions over a wide range of H{sub 2}O/Si ratios (R{sub w}) and temperatures. However, preparation of hydrolyzed MTMS in a nonpseudoequilibrium state unequivocally demonstrated the reversibility of hydrolysis reactions on a short time scale. By measuring the extent of reaction of MTMS systems at high water concentrations, the ratio of the hydrolysis to esterification rate constant was determined to be approximately 100. 36 refs., 7 figs.

  9. Gas-phase NMR measurements, absolute shielding scales, and magnetic dipole moments of 29Si and 73Ge nuclei.

    PubMed

    Makulski, W; Jackowski, K; Antusek, A; Jaszuński, M

    2006-10-12

    New gas-phase NMR measurements of the shielding constants of 29Si, 73Ge, and 1H nuclei in SiH4 and GeH4 are reported. The results, extrapolated to zero density, provide accurate isolated molecule values, best suited for comparison with theoretical calculations. Using the recent ab initio results for these molecules and the measured chemical shifts, we determine the absolute shielding scales for 29Si and 73Ge. This allows us to provide new values of the nuclear magnetic dipole moments for these two nuclei; in addition, we examine the dipole moments of 13C and 119Sn.

  10. Deteriorated hardened cement paste structure analyzed by XPS and {sup 29}Si NMR techniques

    SciTech Connect

    Kurumisawa, Kiyofumi; Nawa, Toyoharu; Owada, Hitoshi; Shibata, Masahito

    2013-10-15

    In this report, X-ray photoelectron spectroscopy (XPS) and {sup 29}Si-MAS-NMR was used for the evaluation of deteriorated hardened cement pastes. The deterioration by ammonium nitrate solution was accompanied by changes in the pore structure as well as by structural changes in the C–S–H in the hardened cement paste. The CaO/SiO{sub 2} ratio of the C–S–H decreased with the progress of deterioration, there was also polymerization of the silicate in the C–S–H. It was confirmed that the degree of polymerization of silicate of the C–S–H in hardened cement paste can be determined by XPS. It was also shown that the polymerization depends on the structure of the C–S–H. -- Highlights: •The polymerization of silicate of the C–S–H in the HCP can be observed by XPS. •The structure of C–S–H changed with the degree of calcium leaching. •The NMR result about silicate in C–S–H was in good agreement with the XPS result.

  11. Investigation of hydrolysis and condensation in organically modified sol-gel systems: {sup 29}Si NMR and the INEPT sequence

    SciTech Connect

    Alam, T.M.; Assink, R.A.; Loy, D.A.

    1996-06-01

    The spectral editing properties of the {sup 29}Si NMR INEPT heteronuclear transfer experiment have been utilized for the identification and characterization of hydrolysis and initial condensation products in methyltrimethoxysilane (MTMS) sol-gel materials. {sup 29}Si NMR assignments in MTMS are complicated by a small spectral dispersion ({approximately} 0.5 ppm) and two different {sup 29}Si-{sup 1}H J couplings. By using analytical expressions for the INEPT signal response with multiple heteronuclear J couplings, unambiguous spectral assignments can be made. For this organomethoxysilane the rate of hydrolysis was found to be very rapid and significantly faster than either the water or alcohol producing condensation reactions. The hydrolysis species of both the MTMS monomer and its initial T{sup 1} condensation products follow statistical distributions that can be directly related to the extent of the hydrolysis reactions. The role of the statistical distribution of hydrolysis products on the production and synthetic control of organically modified sol-gels is discussed.

  12. CaCl 2 -Accelerated Hydration of Tricalcium Silicate: A STXM Study Combined with 29 Si MAS NMR

    DOE PAGES

    Li, Qinfei; Ge, Yong; Geng, Guoqing; Bae, Sungchul; Monteiro, Paulo J. M.

    2015-01-01

    Tmore » he effect of calcium chloride (CaCl 2 ) on tricalcium silicate (C 3 S) hydration was investigated by scanning transmission X-ray microscopy (STXM) with Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra and 29 Si MAS NMR. STXM is demonstrated to be a powerful tool for studying the chemical composition of a cement-based hydration system.he Ca L 3,2 -edge NEXAFS spectra obtained by examining C 3 S hydration in the presence of CaCl 2 showed that this accelerator does not change the coordination of calcium in the calcium silicate hydrate (C-S-H), which is the primary hydration product. O K-edge NEXAFS is also very useful in distinguishing the chemical components in hydrated C 3 S. Based on the Ca L 3,2 -edge spectra and chemical component mapping, we concluded that CaCl 2 prefers to coexist with unhydrated C 3 S instead of C-S-H. In Si K-edge NEXAFS analysis, CaCl 2 increases the degree of silicate polymerization of C-S-H in agreement with the 29 Si CP/MAS NMR results, which show that the presence of CaCl 2 in hydrated C 3 S considerably accelerates the formation of middle groups ( Q 2 ) and branch sites ( Q 3 ) in the silicate chains of C-S-H gel at 1-day hydration.« less

  13. Investigations on the Crystal-Chemical Behavior of Transition-Metal-Bearing Aluminosilicate Garnet Solid Solutions Using 27Al and 29Si NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palke, A. C.; Geiger, C. A.; Stebbins, J. F.

    2015-12-01

    The petrological importance of silicate garnet is derived from the presence of three distinct cation sites of varying size and coordination number. This allows for a wide range of trace, minor, and major element substitutions. However, a full and precise crystal-chemical understanding of the nature of transition metals in garnet is not at hand. Possible mechanisms of various charge-balanced substitutions (e.g. octahedral Ti4+ or tetrahedral Al3+) and the structural state of solid solutions (i.e. short- to long-range ordering) need study. We report on ongoing efforts in these directions using 27Al and 29Si Magic-Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) spectroscopy. Early work on synthetic and natural Fe- and Mn-bearing pyrope- and grossular-rich garnets focused on the effect these paramagnetic transition metals have in measuring and interpreting NMR spectra. These results have been expanded with NMR measurements on synthetic pyrope-rich garnets containing other paramagnetic transition metals including Cr3+, V3+, Co2+, and Ni2+ as well as diamagnetic Ti4+. NMR peaks are severely broadened in the presence of even small concentrations of Cr3+, Mn2+, and Fe3+ leading to a loss of spectral resolution. On the other hand, the spectra of garnet containing V3+, Fe2+, Co2+, and Ni2+ have better resolution and show separate paramagnetically shifted NMR peaks. In some cases, crystal-chemical information can be obtained because of the large frequency separations between the NMR peaks that can be assigned to various local atomic configurations around Al and Si. Furthermore, the 27Al NMR spectrum of a synthetic pyrope garnet with about 2% diamagnetic Ti4+ on the octahedral site showed the absence of any tetrahedral Al3+, which rules out the substitution mechanism VITi + IVAl = VIAl + IVSi in the solid solution. Our NMR investigations on garnet are now being made at the exploratory level. We think that NMR spectra of diamagnetic garnet can provide information on a

  14. The family of ferrocene-stabilized silylium ions: synthesis, 29Si NMR characterization, Lewis acidity, substituent scrambling, and quantum-chemical analyses.

    PubMed

    Müther, Kristine; Hrobárik, Peter; Hrobáriková, Veronika; Kaupp, Martin; Oestreich, Martin

    2013-12-01

    The purpose of this systematic experimental and theoretical study is to deeply understand the unique bonding situation in ferrocene-stabilized silylium ions as a function of the substituents at the silicon atom and to learn about the structure parameters that determine the (29)Si NMR chemical shift and electrophilicity of these strong Lewis acids. For this, ten new members of the family of ferrocene-stabilized silicon cations were prepared by a hydride abstraction reaction from silanes with the trityl cation and characterized by multinuclear (1)H and (29)Si NMR spectroscopy. A closer look at the NMR spectra revealed that additional minor sets of signals were not impurities but silylium ions with substitution patterns different from that of the initially formed cation. Careful assignment of these signals furnished experimental proof that sterically less hindered silylium ions are capable of exchanging substituents with unreacted silane precursors. Density functional theory calculations provided mechanistic insight into that substituent transfer in which the migrating group is exchanged between two silicon fragments in a concerted process involving a ferrocene-bridged intermediate. Moreover, the quantum-chemical analysis of the (29)Si NMR chemical shifts revealed a linear relationship between δ((29)Si) values and the Fe···Si distance for subsets of silicon cations. An electron localization function and electron localizability indicator analysis shows a three-center two-electron bonding attractor between the iron, silicon, and C'(ipso) atoms, clearly distinguishing the silicon cations from the corresponding carbenium ions and boranes. Correlations between (29)Si NMR chemical shifts and Lewis acidity, evaluated in terms of fluoride ion affinities, are seen only for subsets of silylium ions, sometimes with non-intuitive trends, indicating a complicated interplay of steric and electronic effects on the degree of the Fe···Si interaction.

  15. 17O and 29Si NMR parameters of MgSiO3 phases from high-resolution solid-state NMR spectroscopy and first-principles calculations.

    PubMed

    Ashbrook, Sharon E; Berry, Andrew J; Frost, Daniel J; Gregorovic, Alan; Pickard, Chris J; Readman, Jennifer E; Wimperis, Stephen

    2007-10-31

    The 29Si and 17O NMR parameters of six polymorphs of MgSiO3 were determined through a combination of high-resolution solid-state NMR and first-principles gauge including projector augmented wave (GIPAW) formalism calculations using periodic boundary conditions. MgSiO3 is an important component of the Earth's mantle that undergoes structural changes as a function of pressure and temperature. For the lower pressure polymorphs (ortho-, clino-, and protoenstatite), all oxygen species in the 17O high-resolution triple-quantum magic angle spinning (MAS) NMR spectra were resolved and assigned. These assignments differ from those tentatively suggested in previous work on the basis of empirical experimental correlations. The higher pressure polymorphs of MgSiO3 (majorite, akimotoite, and perovskite) are stabilized at pressures corresponding to the Earth's transition zone and lower mantle, with perovskite being the major constituent at depths >660 km. We present the first 17O NMR data for these materials and confirm previous 29Si work in the literature. The use of high-resolution multiple-quantum MAS (MQMAS) and satellite-transition MAS (STMAS) experiments allows us to resolve distinct oxygen species, and full assignments are suggested. The six polymorphs exhibit a wide variety of structure types, providing an ideal opportunity to consider the variation of NMR parameters (both shielding and quadrupolar) with local structure, including changes in coordination number, local geometry (bond distances and angles), and bonding. For example, we find that, although there is a general correlation of increasing 17O chemical shift with increasing Si-O bond length, the shift observed also depends upon the exact coordination environment.

  16. Calculation of 29Si NMR shifts of silicate complexes with carbohydrates, amino acids, and muhicarboxylic acids: potential role in biological silica utilization

    NASA Astrophysics Data System (ADS)

    Sahai, Nita

    2004-01-01

    The existence of ether or ester-like complexes of silicate with organic compounds has long been debated in the literature on biological utilization of silicon. Comparison of theoretically calculated 29Si NMR chemical shifts for such complexes with experimentally measured values in biological systems could provide a diagnostic tool for identifying which, if any of these molecules exist under physiological conditions. Results are presented here for ab initio molecular orbital calculations of 29Si NMR shifts and formation energies of silicate complexes with polyalcohols, sugar-acids, pyranose sugars, amino acids and multicarboxylic acids. The effects of functional group and molecular structure including ligand size, denticity, ring size, silicon polymerization and coordination number on calculated 29Si shifts were considered. The potential role of such compounds in biological silica utilization pathways is discussed. 29Si NMR shifts and energies were calculated at the HF/6-311+G(2d,p)//HF/6-31G* level. The main result is that only five-membered rings containing penta- and hexa-coordinated Si can explain experimentally observed resonances at ˜ -101 and -141 ppm. Further, the heptet observed in 1H- 29Si coupled spectra can only be explained by structures where Si bonds to oxygens atoms in H-C-O-Si linkages with six symmetrically equivalent H atoms. While compounds containing quadra-coordinated silicon may exist in intracellular silicon storage pools within diatoms, calculated reaction energies suggest that the organism has no thermodynamic advantage in taking up extracellular organ-silicate compounds, instead of silicic acid, from the ambient aqueous environment. Hyper-coordinated complexes are deemed unlikely for transport and storage, though they may exist as transient reactive intermediates or activated complexes during enzymatically- catalyzed silica polymerization, as known previously from sol-gel silica synthesis studies.

  17. Solid-state {sup 27}Al and {sup 29}Si NMR characterization of hydrates formed in calcium aluminate-silica fume mixtures

    SciTech Connect

    Pena, P.; Rivas Mercury, J.M.

    2008-08-15

    Partially deuterated Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub y}(OH){sub 12-4y}-Al(OH){sub 3} mixtures, prepared by hydration of Ca{sub 3}Al{sub 2}O{sub 6} (C{sub 3}A), Ca{sub 12}Al{sub 14}O{sub 33} (C{sub 12}A{sub 7}) and CaAl{sub 2}O{sub 4} (CA) phases in the presence of silica fume, have been characterized by {sup 29}Si and {sup 27}Al magic-angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies. NMR spectroscopy was used to characterize anhydrous and fully hydrated samples. In hydrated compounds, Ca{sub 3}Al{sub 2}(OH){sub 12} and Al(OH){sub 3} phases were detected. From the quantitative analysis of {sup 27}Al NMR signals, the Al(OH){sub 3}/Ca{sub 3}Al{sub 2}(OH){sub 12} ratio was deduced. The incorporation of Si into the katoite structure, Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-x}(OH){sub 4x}, was followed by {sup 27}Al and {sup 29}Si NMR spectroscopies. Si/OH ratios were determined from the quantitative analysis of {sup 27}Al MAS-NMR components associated with Al(OH){sub 6} and Al(OSi)(OH){sub 5} environments. The {sup 29}Si NMR spectroscopy was also used to quantify the unreacted silica and amorphous calcium aluminosilicate hydrates formed, C-S-H and C-A-S-H for short. From {sup 29}Si NMR spectra, the amount of Si incorporated into different phases was estimated. Si and Al concentrations, deduced by NMR, transmission electron microscopy, energy dispersive spectrometry, and Rietveld analysis of both X-ray and neutron data, indicate that only a part of available Si is incorporated in katoite structures. - Graphical abstract: Transmission electron micrograph of CaAl{sub 2}O{sub 4}-microsilica mixture hydrated at 90 deg. C for 31 days showing a cubic Ca{sub 3}Al{sub 2.0{+-}}{sub 0.2}(SiO{sub 4}){sub 0.9{+-}}{sub 0.2}(OH){sub 1.8} crystal surrounded by unreacted amorphous silica spheres.

  18. Empirical Calculations of {sup 29}Si NMR Chemical Shielding Tensors: A Partial Charge Model Investigation of Hydrolysis in Organically Modified Alkoxy Silanes

    SciTech Connect

    Alam, Todd M.; Henry, Marc

    1999-08-05

    Organically modified alkoxy silanes play an important role in tailoring different properties of silica produced by the sol-gel method. Changes in the size and functionality of the organic group allows control of both physical and chemical properties of the resulting gel, with the kinetics of the polymerization process playing an important role in the design of new siloxane materials. High resolution {sup 29}Si NMR has proven to be valuable tool for monitoring the polymerization reaction, and has been used to investigate a variety of organically modified alkoxy silane systems.

  19. Atomic structure and dehydration mechanism of amorphous silica: Insights from 29Si and 1H solid-state MAS NMR study of SiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Na; Lee, Sung Keun

    2013-11-01

    Detailed knowledge of the atomic structure of hydrous species on surface of amorphous silica and the effect of temperature and particle size on their atomic configurations are essential to understand the nature of fluids-amorphous silicates interactions and the dehydration processes in the amorphous oxides. Here, we report the 29Si, 1H MAS, and 1H-29Si heteronuclear correlation (HetCor) NMR spectra of 7 nm and 14 nm amorphous silica nanoparticles—a model system for natural amorphous silica—where previously unknown details of changes in their atomic structures with varying dehydration temperature and particle size are revealed. Diverse hydroxyl groups with varying atomic configurations and molecular water apparently show distinct dehydration trends. The dehydration (i.e., removal of water) of amorphous silica nanoparticles mostly results in the increase of isolated silanol by removing water molecules from hydrogen-bonded silanols associated water molecules. With further increase in dehydration temperature, the intensity of isolated silanol peak decreases above ˜873 K, suggesting that the condensation of isolated silanol may occur mainly above ˜873 K. The entire dehydration (and dehydroxylation) process completes at ˜1473 K. Both the water (i.e., physisorbed water and hydrogen-bonded water) and hydrogen-bonded silanol species show a dramatic change in the slope of intensity variation at ˜873 K, indicating that most of silanols is hydrogen-bonded to water rather than to other silanols. The fraction of hydrogen-bonded proton species is also much smaller in 14 nm amorphous silica nanoparticles than in 7 nm amorphous silica nanoparticles mainly due to the presences of larger fractions of water and hydrogen-bonded silanol species. 29Si NMR results show that with increasing dehydration temperature, the fraction of Q4 species apparently increases at the expense of Q2 and Q3 species. The fractions of Q2 and Q3 structures in 7 nm amorphous silica nanoparticles are

  20. Structure and disorder in iron-bearing sodium silicate glasses and melts: High-resolution 29Si and 17O solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lee, S.

    2012-12-01

    Understanding of the effect of iron content on the structure (Si coordination environment and the degree of polymerization) of iron-bearing silicate melts and glasses is essential for studying their macroscopic properties and diverse geological processes in Earth's interior. Although the recent advances in high-resolution solid-state NMR techniques provide detailed structural information of a diverse iron-free oxide glasses with varying composition (e.g., Lee, P. Natl. Acad. Sci. USA., 2011, 108, 6847; Lee and Sung, Chem. Geol., 2008, 256, 326; Park and Lee, Geochim. Cosmochim. Acta, 2012, 80, 125; Lee et al., Phys. Rev., 103, 095501, 2009), their application to iron-bearing silicate glasses has a limited usefulness in resolving atomic configurations due to the effect of paramagnetic cation (i.e., Fe) on the NMR spectra. Here, we report the first ^{29}Si and ^{17}O NMR spectra for sodium-iron silicate glasses with varying iron content (Na_{2}O-Fe_{2}O_{3}-SiO_{2} glasses, up to 34.60 wt% Fe_{2}O_{3}), revealing previously unknown details of iron-induced changes in structure and disorder. While signal intensity decreases and peak width increases exponentially with increasing iron content [=Fe_{2}O_{3}/(Na_{2}O+Fe_{2}O_{3})], ^{29}Si MAS NMR spectra for sodium-iron silicate glasses present the slight peak shift and an asymmetrical peak broadening toward higher Q^{n} species with increasing iron content. This result implies an increase in the degree of polymerization with increasing iron content. Additionally, ^{29}Si spin-relaxation time (T_{1}) for the glasses decreases with increasing of iron content by several orders of magnitude. ^{17}O 3QMAS NMR spectra for the glasses show well-resolved non-bridging oxygen (NBO, Na-O-Si) and bridging oxygen (BO, Si-O-Si) even at relatively high iron content, providing the first direct experimental estimation of the degree of polymerization. In sodium-iron silicate glasses, the fraction of NBO decreases with increasing iron

  1. Metal Carbonation of Forsterite in Supercritical CO2 and H2O Using Solid State 29Si, 13C NMR Spectroscop

    SciTech Connect

    Kwak, Ja Hun; Hu, Jian Z.; Hoyt, David W.; Sears, Jesse A.; Wang, Chong M.; Rosso, Kevin M.; Felmy, Andrew R.

    2010-03-11

    Ex situ solid state NMR was used for the first time to study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration (GCS) using a model silicate mineral forsterite (Mg2SiO4)+supercriticalCO2 with and without H2O. Run conditions were 80 C and 96 atm. 29Si NMR clearly shows that in the absence of CO2, the role of H2O is to hydrolyze surface Mg-O-Si bonds to produce dissolved Mg2+, and mono- and oligomeric hydroxylated silica species. Surface hydrolysis products contain only Q0 (Si(OH)4) and Q1(Si(OH)3OSi) species. An equilibrium between Q0, Q1 and Mg2+ with a saturated concentration equivalent to less than 3.2% of the Mg2SiO4 conversion is obtained at a reaction time of up to 7 days. Using scCO2 without H2O, no reaction is observed within 7 days. Using both scCO2 and H2O, the surface reaction products for silica are mainly Q3 (SiOH(OSi)3) species accompanied by a lesser amount of Q2 (Si(OH)2(OSi)2) and Q4 (Si(OSi)4). However, no Q0 and Q1 were detected, indicating the carbonic acid formation/deprotonation and magnesite (MgCO3) precipitation reactions are faster than the forsterite hydrolysis process. Thus it can be concluded that the Mg2SiO4 hydrolysis process is the rate limiting step of the overall mineral carbonation process. 29Si NMR combined with XRD, TEM, SAED and EDX further reveal that the reaction is a surface reaction with the Mg2SiO4 crystallite in the core and with condensed Q2-Q4 species forming amorphous surface layers. 13C MAS NMR identified a possible reaction intermediate as (MgCO3)4-Mg(OH)2-5H2O. However, at long reaction times only crystallite magnesite MgCO3 products are observed.

  2. Water and magmas: insights about the water solution mechanisms in alkali silicate melts from infrared, Raman, and 29Si solid-state NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Mysen, Bjorn O.; Cody, George D.

    2015-12-01

    Degassing of water during the ascent of hydrous magma in a volcanic edifice produces dramatic changes in the magma density and viscosity. This can profoundly affect the dynamics of volcanic eruptions. The water exsolution history, in turn, is driven by the water solubility and solution mechanisms in the silicate melt. Previous studies pointed to dissolved water in silicate glasses and melts existing as molecules (H2Omol species) and hydroxyl groups, OH. These latter OH groups commonly are considered bonded to Si4+ but may form other bonds, such as with alkali or alkaline-earth cations, for instance. Those forms of bonding influence the structure of hydrous melts in different ways and, therefore, their properties. As a result, exsolution of water from magmas may have different eruptive consequences depending on the initial bonding mechanisms of the dissolved water. However, despite their importance, the solution mechanisms of water in silicate melts are not clear. In particular, how chemical composition of melts affects water solubility and solution mechanism is not well understood. In the present experimental study, components of such information are reported via determination of how water interacts with the cationic network of alkali (Li, Na, and K) silicate quenched melts. Results from 29Si single-pulse magic-angle spinning nuclear magnetic resonance (29Si SP MAS NMR), infrared, and Raman spectroscopies show that decreasing the ionic radius of alkali metal cation in silicate melts results in decreasing fraction of water dissolved as OH groups. The nature of OH bonding also changes as the alkali ionic radius changes. Therefore, as the speciation and bonding of water controls the degree of polymerization of melts, water will have different effects on the transport properties of silicate melts depending on their chemical composition. This conclusion, in turn, may affect volcanic phenomena related to the viscous relaxation of hydrous magmas, such as for instance the

  3. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    SciTech Connect

    Sevelsted, Tine F.; Skibsted, Jørgen

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  4. Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    SciTech Connect

    Lafon, Olivier; Thankamony, Aany S. Lilly; Kokayashi, Takeshi; Carnevale, Diego; Vitzthum, Veronika; Slowing, Igor I.; Kandel, Kapil; Vezin, Herve; Amoureux, Jean-Paul; Bodenhausen, Geoffrey; Pruski, Marek

    2012-12-21

    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of 13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements εon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to εon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated.

  5. 29Si-NMR study of magnetic anisotropy and hyperfine interactions in the uranium-bsed ferromagnet UNiSi2

    SciTech Connect

    Sakai, Hironori; Baek, Seung H; Bauer, Eric D; Ronning, Filip; Thompson, J D

    2009-01-01

    UNiSi{sub 2} orders ferromagnetically below T{sub Curie} = 95 K. This material crystallizes in the orthorhombic CeNiSi{sub 2}-type structure. The uranium atoms form double-layers, which are stacked along the crystallographic b axis (the longest axis). From magnetization measurement the easy (hard) magnetization axis is found to be the c axis (b axis). {sup 29}Si-NMR measurements have been performed in the paramagnetic state. In UNiSi{sub 2}, two crystallographic Si sites exist with orthorhombic local symmetry. The Knight shifts on each Si site have been estimated from the spectra of random and oriented powders. The transferred hyperfine couplings have been also derived. It is found that the transferred hyperfine coupling constants on each Si site are nearly isotropic, and that their Knight shift anisotropy comes from that of the bulk susceptibility. The nuclear-spin lattice relaxation rate 1/T{sub 1} shows temperature-independent behavior, which indicates the existence of localized 5f electron.

  6. (1)H-(13)C-(29)Si triple resonance and REDOR solid-state NMR-A tool to study interactions between biosilica and organic molecules in diatom cell walls.

    PubMed

    Wisser, Dorothea; Brückner, Stephan I; Wisser, Florian M; Althoff-Ospelt, Gerhard; Getzschmann, Jürgen; Kaskel, Stefan; Brunner, Eike

    2015-01-01

    Triple resonance solid-state NMR experiments using the spin combination (1)H-(13)C-(29)Si are still rarely found in the literature. This is due to the low natural abundance of the two heteronuclei. Such experiments are, however, increasingly important to study hybrid materials such as biosilica and others. A suitable model substance, ideally labeled with both (13)C and (29)Si, is thus very useful to optimize the experiments before applying them to studies of more complex samples such as biosilica. Tetraphenoxysilane could be synthesized in an easy, two-step synthesis including double isotope labelling. Using tetraphenoxysilane, we established a (1)H-(13)C-(29)Si double CP-based HETCOR experiment and applied it to diatom biosilica from the diatom species Thalassiosira pseudonana. Furthermore, we carried out (1)H-(13)C{(29)Si} CP-REDOR experiments in order to estimate the distance between the organic matrix and the biosilica. Our experiments on diatom biosilica strongly indicate a close contact between polyamine-containing parts of the organic matrix and the silica. This corroborates the assumption that the organic matrix is essential for the control of the cell wall formation.

  7. Effect of iron content on the structure and disorder of iron-bearing sodium silicate glasses: A high-resolution 29Si and 17O solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Im; Sur, Jung Chul; Lee, Sung Keun

    2016-01-01

    Despite its geochemical importance and implications for the properties of natural magmatic melts, understanding the detailed structure of iron-bearing silicate glasses remains among the outstanding problems in geochemistry. This is mainly because solid-state NMR techniques, one of the most versatile experimental methods to probe the structure of oxide glasses, cannot be fully utilized for exploring the structural details of iron-bearing glasses as the unpaired electrons in Fe induce strong local magnetic fields that mask the original spectroscopic features (i.e., paramagnetic effect). Here, we report high-resolution 29Si and 17O solid-state NMR spectra of iron-bearing sodium silicate glasses (Na2O-Fe2O3-SiO2, Fe3+/ΣFe = 0.89 ± 0.04, thus containing both ferric and ferrous iron) with varying XFe2O3 [=Fe2O3/(Na2O + Fe2O3)], containing up to 22.9 wt% Fe2O3. This compositional series involves Fe-Na substitution at constant SiO2 contents of 66.7 mol% in the glasses. For both nuclides, the NMR spectra exhibit a decrease in the signal intensities and an increase in the peak widths with increasing iron concentration partly because of the paramagnetic effect. Despite the intrinsic difficulties that result from the pronounced paramagnetic effect, the 29Si and 17O NMR results yield structural details regarding the effect of iron content on Q speciation, spatial distribution of iron, and the extent of polymerization in the iron-bearing silicate glasses. The 29Si NMR spectra show an apparent increase in highly polymerized Q species with increasing XFe2O3 , suggesting an increase in the degree of melt polymerization. The 17O 3QMAS NMR spectra exhibit well-resolved non-bridging oxygen (NBO, Na-O-Si) and bridging oxygen (BO, Si-O-Si) peaks with varying iron concentration. By replacing Na2O with Fe2O3 (and thus with increasing iron content), the fraction of Na-O-Si decreases. Quantitative consideration of this effect confirms that the degree of polymerization is likely to

  8. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  9. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites.

  10. Modifier cation effects on 29Si nuclear shielding anisotropies in silicate glasses

    NASA Astrophysics Data System (ADS)

    Baltisberger, Jay H.; Florian, Pierre; Keeler, Eric G.; Phyo, Pyae A.; Sanders, Kevin J.; Grandinetti, Philip J.

    2016-07-01

    We have examined variations in the 29Si nuclear shielding tensor parameters of SiO4 tetrahedra in a series of seven alkali and alkaline earth silicate glass compositions, Cs2O · 4.81 SiO2, Rb2O · 3.96 SiO2, Rb2O · 2.25 SiO2, K2O · 4.48 SiO2, Na2O · 4.74 SiO2, BaO · 2.64 SiO2, and SrO · 2.36 SiO2, using natural abundance 29Si two-dimensional magic-angle flipping (MAF) experiments. Our analyses of these 2D spectra reveal a linear dependence of the 29Si nuclear shielding anisotropy of Q(3) sites on the Si-non-bridging oxygen bond length, which in turn depends on the cation potential and coordination of modifier cations to the non-bridging oxygen. We also demonstrate how a combination of Cu2+ as a paramagnetic dopant combined with echo train acquisition can reduce the total experiment time of 29Si 2D NMR measurements by two orders of magnitude, enabling higher throughput 2D NMR studies of glass structure.

  11. Modifier cation effects on (29)Si nuclear shielding anisotropies in silicate glasses.

    PubMed

    Baltisberger, Jay H; Florian, Pierre; Keeler, Eric G; Phyo, Pyae A; Sanders, Kevin J; Grandinetti, Philip J

    2016-07-01

    We have examined variations in the (29)Si nuclear shielding tensor parameters of SiO4 tetrahedra in a series of seven alkali and alkaline earth silicate glass compositions, Cs2O·4.81 SiO2, Rb2O·3.96 SiO2, Rb2O·2.25 SiO2, K2O·4.48 SiO2, Na2O·4.74 SiO2, BaO·2.64 SiO2, and SrO·2.36 SiO2, using natural abundance (29)Si two-dimensional magic-angle flipping (MAF) experiments. Our analyses of these 2D spectra reveal a linear dependence of the (29)Si nuclear shielding anisotropy of Q((3)) sites on the Si-non-bridging oxygen bond length, which in turn depends on the cation potential and coordination of modifier cations to the non-bridging oxygen. We also demonstrate how a combination of Cu(2+) as a paramagnetic dopant combined with echo train acquisition can reduce the total experiment time of (29)Si 2D NMR measurements by two orders of magnitude, enabling higher throughput 2D NMR studies of glass structure.

  12. Silicon network structure and 29Si spin-lattice relaxation in amorphous hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    Cheung, Man Ken; Petrich, Mark A.

    1992-04-01

    We report a NMR study of amorphous hydrogenated silicon (a-Si:H) that measures the 29Si spin-lattice relaxation time T1. Measurements of 29Si T1 are useful in learning about the silicon network structure and the localized states within the mobility gap. Coupling to paramagnetic dangling bonds is the predominant 29Si spin-lattice relaxation mechanism in a-Si:H. Spin flipping of paramagnetic electrons, caused by coupling to the lattice, produces fluctuating local fields that stimulate nuclear spin-lattice relaxation. By comparing our experimental results with existing theory, we find that dangling bonds are randomly distributed in device-quality materials but are inhomogeneously distributed in non-device-quality materials. We also find that there are two simultaneously occurring dangling-bond spin-lattice relaxation mechanisms: one through the spin-orbit coupling modulated by thermal excitation of ``two-level systems,'' and the other through hopping conduction between localized states near the Fermi level. Simple chemical-shift measurements are also helpful in characterizing a-Si:H. We find that the 29Si resonance shifts upfield with increasing microstructure in the material.

  13. Analgesic effect of the electromagnetic resonant frequencies derived from the NMR spectrum of morphine.

    PubMed

    Verginadis, Ioannis I; Simos, Yannis V; Velalopoulou, Anastasia P; Vadalouca, Athina N; Kalfakakou, Vicky P; Karkabounas, Spyridon Ch; Evangelou, Angelos M

    2012-12-01

    Exposure to various types of electromagnetic fields (EMFs) affects pain specificity (nociception) and pain inhibition (analgesia). Previous study of ours has shown that exposure to the resonant spectra derived from biologically active substances' NMR may induce to live targets the same effects as the substances themselves. The purpose of this study is to investigate the potential analgesic effect of the resonant EMFs derived from the NMR spectrum of morphine. Twenty five Wistar rats were divided into five groups: control group; intraperitoneal administration of morphine 10 mg/kg body wt; exposure of rats to resonant EMFs of morphine; exposure of rats to randomly selected non resonant EMFs; and intraperitoneal administration of naloxone and simultaneous exposure of rats to the resonant EMFs of morphine. Tail Flick and Hot Plate tests were performed for estimation of the latency time. Results showed that rats exposed to NMR spectrum of morphine induced a significant increase in latency time at time points (p < 0.05), while exposure to the non resonant random EMFs exerted no effects. Additionally, naloxone administration inhibited the analgesic effects of the NMR spectrum of morphine. Our results indicate that exposure of rats to the resonant EMFs derived from the NMR spectrum of morphine may exert on animals similar analgesic effects to morphine itself.

  14. A Pipeline Software Architecture for NMR Spectrum Data Translation.

    PubMed

    Ellis, Heidi J C; Weatherby, Gerard; Nowling, Ronald J; Vyas, Jay; Fenwick, Matthew; Gryk, Michael R

    2012-05-01

    The problem of formatting data so that it conforms to the required input for scientific data processing tools pervades scientific computing. The CONNecticut Joint University Research Group (CONNJUR) has developed a data translation tool based on a pipeline architecture that partially solves this problem. The CONNJUR Spectrum Translator supports data format translation for experiments that use Nuclear Magnetic Resonance to determine the structure of large protein molecules. PMID:24634607

  15. A Pipeline Software Architecture for NMR Spectrum Data Translation

    PubMed Central

    Ellis, Heidi J.C.; Weatherby, Gerard; Nowling, Ronald J.; Vyas, Jay; Fenwick, Matthew; Gryk, Michael R.

    2012-01-01

    The problem of formatting data so that it conforms to the required input for scientific data processing tools pervades scientific computing. The CONNecticut Joint University Research Group (CONNJUR) has developed a data translation tool based on a pipeline architecture that partially solves this problem. The CONNJUR Spectrum Translator supports data format translation for experiments that use Nuclear Magnetic Resonance to determine the structure of large protein molecules. PMID:24634607

  16. The iminoproton NMR spectrum of yeast tRNA-Phe predicted from crystal coordinates.

    PubMed Central

    Geerdes, H A; Hilbers, C W

    1977-01-01

    The ring current effects on the base paired iminoprotons in yeast tRNA-Phe have been calculated from crystal coordinates. The results in conjunction with independently determined intrinsic positions of the iminoprotons in various base pairs enable us to predict the low field NMR spectrum of yeast tRNA-Phe. It turns out that the calculated NMR spectra are very sensitive to slight changes in structure. Moreover the crystal and solution structure are identical as far as the present methods go. PMID:325518

  17. Quick re-introduction of selective scalar interactions in a pure-shift NMR spectrum.

    PubMed

    Lokesh, N; Chaudhari, Sachin Rama; Suryaprakash, N

    2014-12-21

    A new 1D NMR experiment cited as 'Quick G-SERF', which re-introduces selective proton-proton scalar interactions in a pure shift spectrum during real time data acquisition, is reported. The method provides information on multiple proton-proton couplings from a single experiment, analogous to the 2D G-SERF technique, while significantly shortening the experimental time by 1-2 orders of magnitude due to reduced dimension and enhanced sensitivity.

  18. CONNJUR spectrum translator: an open source application for reformatting NMR spectral data.

    PubMed

    Nowling, Ronald J; Vyas, Jay; Weatherby, Gerard; Fenwick, Matthew W; Ellis, Heidi J C; Gryk, Michael R

    2011-05-01

    NMR spectroscopists are hindered by the lack of standardization for spectral data among the file formats for various NMR data processing tools. This lack of standardization is cumbersome as researchers must perform their own file conversion in order to switch between processing tools and also restricts the combination of tools employed if no conversion option is available. The CONNJUR Spectrum Translator introduces a new, extensible architecture for spectrum translation and introduces two key algorithmic improvements. This first is translation of NMR spectral data (time and frequency domain) to a single in-memory data model to allow addition of new file formats with two converter modules, a reader and a writer, instead of writing a separate converter to each existing format. Secondly, the use of layout descriptors allows a single fid data translation engine to be used for all formats. For the end user, sophisticated metadata readers allow conversion of the majority of files with minimum user configuration. The open source code is freely available at http://connjur.sourceforge.net for inspection and extension. PMID:21409563

  19. CONNJUR spectrum translator: an open source application for reformatting NMR spectral data.

    PubMed

    Nowling, Ronald J; Vyas, Jay; Weatherby, Gerard; Fenwick, Matthew W; Ellis, Heidi J C; Gryk, Michael R

    2011-05-01

    NMR spectroscopists are hindered by the lack of standardization for spectral data among the file formats for various NMR data processing tools. This lack of standardization is cumbersome as researchers must perform their own file conversion in order to switch between processing tools and also restricts the combination of tools employed if no conversion option is available. The CONNJUR Spectrum Translator introduces a new, extensible architecture for spectrum translation and introduces two key algorithmic improvements. This first is translation of NMR spectral data (time and frequency domain) to a single in-memory data model to allow addition of new file formats with two converter modules, a reader and a writer, instead of writing a separate converter to each existing format. Secondly, the use of layout descriptors allows a single fid data translation engine to be used for all formats. For the end user, sophisticated metadata readers allow conversion of the majority of files with minimum user configuration. The open source code is freely available at http://connjur.sourceforge.net for inspection and extension.

  20. Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum.

    PubMed

    Courtney, Joseph M; Ye, Qing; Nesbitt, Anna E; Tang, Ming; Tuttle, Marcus D; Watt, Eric D; Nuzzio, Kristin M; Sperling, Lindsay J; Comellas, Gemma; Peterson, Joseph R; Morrissey, James H; Rienstra, Chad M

    2015-10-01

    Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins--GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor--and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. PMID:26365800

  1. Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum.

    PubMed

    Courtney, Joseph M; Ye, Qing; Nesbitt, Anna E; Tang, Ming; Tuttle, Marcus D; Watt, Eric D; Nuzzio, Kristin M; Sperling, Lindsay J; Comellas, Gemma; Peterson, Joseph R; Morrissey, James H; Rienstra, Chad M

    2015-10-01

    Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins--GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor--and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure.

  2. The (1) H NMR spectrum of pyrazole in a nematic phase.

    PubMed

    Provasi, Patricio; Jimeno, María Luisa; Alkorta, Ibon; Reviriego, Felipe; Elguero, José; Jokisaari, Jukka

    2016-08-01

    The experimental (1) H nuclear magnetic resonance (NMR) spectrum of 1H-pyrazole was recorded in thermotropic nematic liquid crystal N-(p-ethoxybenzylidene)-p-butylaniline (EBBA) within the temperature range of 299-308 K. Two of three observable dipolar DHH -couplings appeared to be equal at each temperature because of fast prototropic tautomerism. Analysis of the Saupe orientational order parameters using fixed geometry determined by computations and experimental dipolar couplings results in a situation in which the molecular orientation relative to the magnetic field (and the liquid crystal director) can be described exceptionally by a single parameter. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Filtering and parameter estimation of surface-NMR data using singular spectrum analysis

    NASA Astrophysics Data System (ADS)

    Ghanati, Reza; Kazem Hafizi, Mohammad; Mahmoudvand, Rahim; Fallahsafari, Mahdi

    2016-07-01

    Ambient electromagnetic interferences at the site of investigation often degrade the signal quality of the Surface-NMR measurements leading to inaccurate estimation of the signal parameters. This paper proposes a new powerful de-noising method based on singular spectrum analysis (SSA), which is a nonparametric method for analyzing time series. SSA is a relatively simple method and can be understood using basic algebra notations. Singular value decomposition (SVD) plays a crucial role in SSA. As the length of recordings increases, the computational time required for computing SVD raises which restricts the usage of SSA in long-term time series. In order to overcome this drawback, we propose a randomized version of the singular value decomposition to accelerate the decomposition step of the algorithm. To evaluate the performance of the proposed strategy, the method is tested on synthetic signals corrupted by both simulated noise (including Gaussian white noise, spiky events and harmonic noise) and real noise recordings obtained from surface-NMR field surveys and a real data set. Our results show that the proposed algorithm can enhance the signal to noise ratio significantly, and gives an improvement in estimation of the surface-NMR signal parameters.

  4. Chemical Shifts to Metabolic Pathways: Identifying Metabolic Pathways Directly from a Single 2D NMR Spectrum.

    PubMed

    Dubey, Abhinav; Rangarajan, Annapoorni; Pal, Debnath; Atreya, Hanudatta S

    2015-12-15

    Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) [(13)C-(1)H] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a "uniqueness score" and a "coverage score". Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of decluttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMR-based metabolomics data by reducing existing impediments.

  5. Hyperpolarization of 29Si by Resonant Nuclear Spin Transfer from Optically Hyperpolarized 31P Donors

    NASA Astrophysics Data System (ADS)

    Dluhy, Phillip; Salvail, Jeff; Saeedi, Kamyar; Thewalt, Mike; Simons, Stephanie

    2014-03-01

    Recent developments in nanomedicine have allowed nanoparticles of silicon containing hyperpolarized 29Si to be imaged in vivo using magnetic resonance imaging. The extremely long relaxation times and isotropy of the Si lattice make polarized 29Si isotopes ideal for these sorts of imaging methods. However, one of the major difficulties standing in the path of widespread adoption of these techniques is the slow rate at which the 29Si is hyperpolarized and the limited maximum hyperpolarization achievable. In this talk, I will describe an effective method for hyperpolarization of the 29Si isotopes using resonant optical pumping of the donor bound exciton transitions to polarize the 31P donor nuclei, and a choice of static magnetic field that conserves energy during spin flip flops between donor nuclear and 29Si spins to facilitate diffusion of this polarization. Using this method, we are able to polarize greater than 10% of the 29Si centers in 64 hours without seeing saturation of the 29Si polarization.

  6. Assigning the NMR Spectrum of Glycidol: An Advanced Organic Chemistry Exercise

    ERIC Educational Resources Information Center

    Helms, Eric; Arpaia, Nicholas; Widener, Melissa

    2007-01-01

    Various one- and two-dimensional NMR experiments have been found to be extremely useful for assigning the proton and carbon NMR spectra of glycidol. The technique provides extremely valuable information aiding in the complete assignment of the peaks.

  7. Magnesium silicate dissolution investigated by Si-29 MAS, H-1-Si-29 CPMAS, Mg-25 QCPMG NMR.

    SciTech Connect

    Davis, M C; Wesolowski, David J

    2009-09-01

    Olivine-(Mg,Fe){sub 2}SiO{sub 4}-has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of the divalent cation with respect to silicon during weathering under acidic conditions, which has been correlated to the formation of a silicon-rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. The pure magnesium end member of the olivine series (forsterite-Mg{sub 2}SiO{sub 4}) was chosen for detailed investigations in this study because paramagnetic iron hinders NMR investigations by providing an extra mode of relaxation for neighboring nuclei, causing lineshapes to become significantly broadened and unobservable in the NMR spectrum. For reacting forsterite, spectroscopic interrogations using nuclear magnetic resonance (NMR) can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced NMR techniques ({sup 29}Si MAS, {sup 1}H-{sup 29}Si CP MAS, {sup 25}Mg QCPMG, and {sup 1}H-{sup 25}Mg CP QCPMG NMR) to probe leached layer formation and secondary phase precipitation during the dissolution of forsterite at 150 C.

  8. A study of the aging of silicone breast implants using 29Si, 1H relaxation and DSC measurements.

    PubMed

    Birkefeld, Anja Britta; Eckert, Hellmut; Pfleiderer, Bettina

    2004-08-01

    In this study 26 previously implanted silicone breast implants from the same manufacturer (Dow Corning) were investigated with two different analytical methods to characterize potential aging processes such as migration of monomer material from the gel and shell to local and distant sites, chemical alterations of the polymer, and infiltration of body compounds such as lipids. (1)H and (29)Si NMR relaxation measurements (spin-lattice, T1, and spin-spin, T2, relaxation times) were used to study the molecular dynamics of polysiloxane chains, both in gels and in shells. In addition, changes in physical properties were monitored by differential scanning calorimetry (DSC). The results of these measurements indicate that NMR relaxation times are influenced by implant generation, implantation time, shell texture and implant status. (1)H T2 values of shells and gels show a tendency to increase with increasing implantation time, indicating higher mobility and possible disintegration of the polymer network of older implants. Furthermore, the data suggest that aging also involves the migration of low cyclic molecular weight (LMW) silicone and linear chain polymer material from the gels into the shells. The high "bleeding" rate of second-generation (G2) implants (implantation period around 1973-1985), exhibiting thin shells is reflected in reduced relaxation times of these devices, most likely due to a loss of low molecular weight fractions from the gels. Moreover, "gel bleeding" also influences the melting behavior observed in DSC studies. Increased shell rigidity (high Tm and Tg) tends to be correlated with longer (29)Si relaxation times of the corresponding gels, suggesting a reduced transfer of LMW silicones and linear chain polymer from the gel to the shell and to the outside. Remarkably, textured implants seem to be less susceptible to degradation processes than implants with thin shells.

  9. Singular spectrum analysis for an automated solvent artifact removal and baseline correction of 1D NMR spectra

    NASA Astrophysics Data System (ADS)

    De Sanctis, Silvia; Malloni, Wilhelm M.; Kremer, Werner; Tomé, Ana M.; Lang, Elmar W.; Neidig, Klaus-Peter.; Kalbitzer, Hans Robert

    2011-06-01

    NMR spectroscopy in biology and medicine is generally performed in aqueous solutions, thus in 1H NMR spectroscopy, the dominant signal often stems from the partly suppressed solvent and can be many orders of magnitude larger than the resonances of interest. Strong solvent signals lead to a disappearance of weak resonances of interest close to the solvent artifact and to base plane variations all over the spectrum. The AUREMOL-SSA/ALS approach for automated solvent artifact removal and baseline correction has been originally developed for multi-dimensional NMR spectroscopy. Here, we describe the necessary adaptations for an automated application to one-dimensional NMR spectra. Its core algorithm is still based on singular spectrum analysis (SSA) applied on time domain signals (FIDs) and it is still combined with an automated baseline correction (ALS) in the frequency domain. However, both steps (SSA and ALS) have been modified in order to achieve optimal results when dealing with one-dimensional spectra. The performance of the method has been tested on one-dimensional synthetic and experimental spectra including the back-calculated spectrum of HPr protein and an experimental spectrum of a human urine sample. The latter has been recorded with the typically used NOESY-type 1D pulse sequence including water pre-saturation. Furthermore, the fully automated AUREMOL-SSA/ALS procedure includes the managing of oversampled, digitally filtered and zero-filled data and the correction of the frequency domain phase shift caused by the group delay time shift from the digital finite response filtering.

  10. Method and sample spinning apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR apparatus and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus spins the sample about an axis. The angle of the axis is mechanically varied such that the time average of two or more Legendre polynomials are zero.

  11. Method and apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise oreintationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions is zero.

  12. Denoising NMR time-domain signal by singular-value decomposition accelerated by graphics processing units.

    PubMed

    Man, Pascal P; Bonhomme, Christian; Babonneau, Florence

    2014-01-01

    We present a post-processing method that decreases the NMR spectrum noise without line shape distortion. As a result the signal-to-noise (S/N) ratio of a spectrum increases. This method is called Cadzow enhancement procedure that is based on the singular-value decomposition of time-domain signal. We also provide software whose execution duration is a few seconds for typical data when it is executed in modern graphic-processing unit. We tested this procedure not only on low sensitive nucleus (29)Si in hybrid materials but also on low gyromagnetic ratio, quadrupole nucleus (87)Sr in reference sample Sr(NO3)2. Improving the spectrum S/N ratio facilitates the determination of T/Q ratio of hybrid materials. It is also applicable to simulated spectrum, resulting shorter simulation duration for powder averaging. An estimation of the number of singular values needed for denoising is also provided. PMID:24880899

  13. Magnesium silicate dissolution investigated by S1-29 MAS, H-1 Si-29 CPMAS, Mg-25 QCPMG, and H-1 Mg-25 CP QCPMG NMR

    SciTech Connect

    Davis, M C; Brouwer, Piet W; Wesolowski, David J; Anovitz, Lawrence {Larry} M

    2009-07-01

    Olivine-(Mg,Fe){sub 2}SiO{sub 4}-has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of the divalent cation with respect to silicon during weathering under acidic conditions, which has been correlated to the formation of a silicon-rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. The pure magnesium end member of the olivine series (forsterite-Mg2SiO4) was chosen for detailed investigations in this study because paramagnetic iron hinders NMR investigations by providing an extra mode of relaxation for neighboring nuclei, causing lineshapes to become significantly broadened and unobservable in the NMR spectrum. For reacting forsterite, spectroscopic interrogations using nuclear magnetic resonance (NMR) can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced NMR techniques ({sup 29}Si MAS, {sup 1}H-{sup 29}Si CP MAS, {sup 25}Mg QCPMG, and {sup 1}H-{sup 25}Mg CP QCPMG NMR) to probe leached layer formation and secondary phase precipitation during the dissolution of forsterite at 150 C.

  14. The Ratio of Acetate-to-Glucose Oxidation in Astrocytes from a Single 13C NMR Spectrum of Cerebral Cortex

    PubMed Central

    Marin-Valencia, Isaac; Hooshyar, M. Ali; Pichumani, Kumar; Sherry, A. Dean; Malloy, Craig R.

    2014-01-01

    The 13C labeling patterns in glutamate and glutamine from brain tissue are quite different after infusion of a mixture of 13C-enriched glucose and acetate. Two processes contribute to this observation, oxidation of acetate by astrocytes but not neurons, and preferential incorporation of α-ketoglutarate into glutamate in neurons, and incorporation of α-ketoglutarate into glutamine in astrocytes. The acetate:glucose ratio, introduced previously for analysis of a single 13C NMR spectrum, provides a useful index of acetate and glucose oxidation in the brain tissue. However, quantitation of relative substrate oxidation at the cell compartment level has not been reported. A simple mathematical method is presented to quantify the ratio of acetate to glucose oxidation in astrocytes, based on the standard assumption that neurons do not oxidize acetate. Mice were infused with [1,2-13C]acetate and [1,6-13C]glucose, and proton decoupled 13C NMR spectra of cortex extracts were acquired. A fit of those spectra to the model indicated that 13C-labeled acetate and glucose contributed approximately equally to acetyl-CoA (0.96) in astrocytes. Since this method relies on a single 13C NMR spectrum, it can be readily applied to multiple physiologic and pathologic conditions. PMID:25231025

  15. The Synthesis and Proton NMR Spectrum of Methyl 7-Cycloheptatrienylacetate: An Advanced Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Jurch, G. R., Jr.; And Others

    1980-01-01

    Describes an advanced undergraduate laboratory experiment designed to give the senior chemistry student an opportunity to apply several synthetic and purification techniques as well as possibilities for the application of NMR spectroscopy. (CS)

  16. Cation location in microporous zeolite, SSZ-13, probed with xenon adsorption measurement and 129Xe NMR spectrum.

    PubMed

    Shin, Na Ra; Kim, Su Hyun; Shin, Hye Sun; Jang, Ik Jun; Cho, Sung June

    2013-06-01

    The location of metal ion, Ag2+, Ca2+, Cu2+ and Y3+ in the SSZ-13 has been investigated with xenon adsorption measurement and 129Xe NMR spectrum. It was referred that the location of the metal ion varies depending on the corresponding charge. The ion-exchanged Ag ion was located in the alpha-cage to interact directly with xenon. Others multivalent cation contributed little with xenon because these were present near the six membered rings where xenon cannot access. PMID:23862500

  17. A computational investigation of electronic structure as well as 19F and 29Si chemical shielding tensors in the fluorinated silicon fullerenes SinFn (n≤60)

    NASA Astrophysics Data System (ADS)

    Anafcheh, Maryam; Ghafouri, Reza

    2013-02-01

    Density functional theory (DFT) calculations are performed to investigate the electronic features of the structures of fluorinated polysilanes SinFn (n=4, 6, 8, 10, 12, 20, 24, 28, 30, 32, 36, 50, and 60). Among all of these fluorinated polysilanes, Si20F20 has the highest binding energy and, thus, stability. The binding energy then shows a very slow (monotonically) decrease as the size of the fluorinated silicon fullerene n≥20 increases which can be related to an increase in fluorine-fluorine repulsion. Following an irregular pattern, the HOMO-LUMO energy gap strongly depends on the size of the cage. On the other hand, 29Si CS parameters detect equivalent electronic environment for silicon atoms within SinHn polysilanes with n≤20 while 29Si NMR pattern indicates a few separated peaks for SinHn polysilanes with n≥20. Seeking correlation between these peaks and local structures around silicon sites, Siα, Siβ, Siγ observed in these models shows that δiso(Siγ)<δiso(Siβ) <δiso(Siα). Obtaining similar values (458.8-478.7 ppm) of 19F calculated chemical shieldings for all the fluorinated polysilanes means the same tendency of the silicon atoms on the surfaces of all cages for contribution to chemical bonding with fluorine atoms.

  18. 29Si nuclear spins as a resource for donor spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Wolfowicz, Gary; Mortemousque, Pierre-André; Guichard, Roland; Simmons, Stephanie; Thewalt, Mike L. W.; Itoh, Kohei M.; Morton, John J. L.

    2016-02-01

    Nuclear spin registers in the vicinity of electron spins in solid state systems offer a powerful resource to address the challenge of scalability in quantum architectures. We investigate here the properties of 29Si nuclear spins surrounding donor atoms in silicon, and consider the use of such spins, combined with the donor nuclear spin, as a quantum register coupled to the donor electron spin. We find the coherence of the nearby 29Si nuclear spins is effectively protected by the presence of the donor electron spin, leading to coherence times in the second timescale—over two orders of magnitude greater than the coherence times in bulk silicon. We theoretically investigate the use of such a register for quantum error correction (QEC), including methods to protect nuclear spins from the ionisation/neutralisation of the donor, which is necessary for the re-initialisation of the ancillae qubits. This provides a route for multi-round QEC using donors in silicon.

  19. IR and NMR analyses of hardening and maturation of glass-ionomer cement.

    PubMed

    Matsuya, S; Maeda, T; Ohta, M

    1996-12-01

    It has been reported that the silicate phase as well as the cross-linking of the polycarboxylic acid by aluminum and calcium ions played an important role in the hardening of glass-ionomer cement. The objective of this study was to investigate the structural change during hardening of the cements by means of infrared (IR) spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy and to confirm the role of the silica phase in the hardening of the cement. For that purpose, we measured the change in compressive strength of an experimental glass-ionomer cement, two commercial glass-ionomer cements, and a polycarboxylate cement and carried out 29Si and 27Al NMR analyses of the cement samples after the strength measurement. In the IR spectra during hardening, a characteristic band of the silicate network around 1000 cm-1 shifted toward high frequency with time. The spectrum after hardening was similar to that for a hydrated amorphous silica structure. The 27Al NMR analysis showed that Al3+ ion was tetrahedrally coordinated by oxygen in the original glass, but a part of the Al3+ ion was octahedrally coordinated after hardening to form Al polyacrylate gel. The chemical shift of Si in the 29Si NMR spectra also changed during hardening. The variation in the chemical shift reflected the structural change in the silicate network. The initial increase in compressive strength of the cement was mainly caused by polycarboxylate gel formation. However, it was concluded that the reconstruction of the silicate network contributed to the increase in strength with time during the period after the gelation by cross-linking was completed.

  20. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    SciTech Connect

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  1. Synthesis of Long-T1 Silicon Nanoparticles for Hyperpolarized 29Si Magnetic Resonance Imaging

    PubMed Central

    Atkins, Tonya M.; Cassidy, Maja C.; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M.; Kauzlarich, Susan M.

    2013-01-01

    We describe the synthesis, materials characterization and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na4Si4) and silicon tetrachloride (SiCl4) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ~10 nm with long size-adjusted 29Si spin lattice relaxation (T1) times (> 600 s), which are retained after hyperpolarization by low temperature DNP. PMID:23350651

  2. Study of the mechanism of diatom cell division by means of 29Si isotope tracing

    NASA Astrophysics Data System (ADS)

    Audinot, J.-N.; Guignard, C.; Migeon, H.-N.; Hoffmann, L.

    2006-07-01

    Diatoms are delicate unicellular organisms enclosed in a silica frustule, that is made up of two valves. Multiplication of the diatoms occurs by ordinary mitotic cell division. During cell division each cell produces two daughter cells, each of them keeping one of the two valves of the mother cell and producing a new valve by absorbing the silicon present in the environment. The NanoSIMS 50 allows ion imaging to be performed on diatoms in order to determine the site of fixation of silicon. The aim of this study was to observe and compare the mechanism of the construction of the new valve after cell division. To this end, different types of diatoms have been transferred in a culture medium enriched with 29Si and after several days, the distribution of the different isotopes of silicon has been determined by NanoSIMS50 imaging. The construction of new valves has been observed and the isotopic ratio has been determined.

  3. Advanced NMR characterization of zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Welsh, L. B.

    1985-04-01

    The program discussed in this report is a two-year two-phase joint UOP-University of Illinois study of the application of improved high resolution solid state nuclear magnetic resonance (NMR) techniques to the characterization of zeolite catalysts. During the first phase of this program very pure, and in some cases isotopically enriched faujasites will be prepared and studied by magic angle sample spinning NMR (MASS NMR) and variable engine sample spinning NMR (VASS NMR) on 500 and 360 MHz (proton frequency) NMR spectrometers. The NMR techniques that will be emphasized are the measurement and analysis of the (17)O NMR properties, (27)Al NMR intensity quantitation, and (27)Al and (29)Si NMR relaxation rates. During the second phase of this program these NMR techniques will be used to study the effects of impurity concentration, dealumination treatments and cation exchange on the NMR properties of faujasites. The initial emphasis of this program during Phase I is on the preparation and measurement of the NMR properties of (17)O enriched Na-Y faujasties.

  4. Assignment of the sup 1 H NMR spectrum and secondary structure elucidation of the single-stranded DNA binding protein encoded by the filamentous bacteriophage IKe

    SciTech Connect

    van Duynhoven, J.P.M.; Folkers, P.J.M.; Prinse, C.W.J.M.; Harmsen, B.J.M.; Konings, R.N.H.; Hilbers, C.W. )

    1992-02-04

    By means of 2D NMR techniques, all backbone resonances in the {sup 1}H NMR spectrum of the single-stranded DNA binding protein encoded by gene V of the filamentous phage IKe have been assigned sequence specifically. In addition, a major part of the side chain resonances could be assigned as well. Analysis of NOESY data permitted the elucidation of the secondary structure of IKe gene V protein. The major part of the secondary structure is present as an antiparallel {beta}-sheet, i.e., as two {beta}-loops which partly combine into a triple-stranded {beta}-sheet structure, one {beta}-loop and one triple-stranded {beta}-sheet structure. It is shown that a high degree of homology exists with the single-stranded DNA binding protein encoded by gene V of the distantly related filamentous phase M13.

  5. {sup 29}Si solid state NMR investigation of pozzolanic reaction occurring in lime-treated Ca-bentonite

    SciTech Connect

    Pomakhina, Elena; Deneele, Dimitri; Gaillot, Anne-Claire; Paris, Michael; Ouvrard, Guy

    2012-04-15

    Lime is widely used as additive to improve the mechanical properties of natural soil used in earthworks. However, the physico-chemical mechanisms involved are yet not well understood. In order to develop and optimize this treatment method, a better understanding of the interaction between lime and the minerals of the soils, in particular clay minerals, is required. In this study, Ca-bentonite was treated with 2, 5 and 10 wt.% of lime during 1 to 98 days. Modifications in the Si local environment were then monitored by solid state nuclear magnetic resonance to investigate the pozzolanic reaction. All the soil mineral phases contribute to the release of Si and to the pozzolanic reaction, with a rapid and total consumption of Si-polymorph and an exacerbated dissolution of montmorillonite. Mechanism of C-S-H formation, function of the Ca content in the system, was found to match the sorosilicate-tobermorite model described in cement systems.

  6. A Solid-State NMR Investigation of MQ Silicone Copolymers.

    PubMed

    Vasil'ev, Sergey G; Volkov, Vitaly I; Tatarinova, Elena A; Muzafarov, Aziz M

    2013-01-01

    The structure of MQ copolymers of the general chemical formula [(CH3)3SiO0.5]m [SiO2]n was characterized by means of solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The MQ copolymers are highly branched polycyclic compounds (densely cross-linked nanosized networks). MQ copolymers were prepared by hydrolytic polycondensation in active medium. (29)Si NMR spectra were obtained by single pulse excitation (or direct polarization, DP) and cross-polarization (CP) (29)Si{(1)H} techniques in concert with MAS. It was shown that material consist of monofunctional M (≡SiO Si (CH3)3) and two types of tetrafunctional Q units: Q(4) ((≡SiO)4 Si) and Q(3) ((≡SiO)3 SiOH). Spin-lattice relaxation times T 1 measurements of (29)Si nuclei and analysis of (29)Si{(1)H} variable contact time signal intensities allowed us to obtain quantitative data on the relative content of different sites in copolymers. These investigations indicate that MQ copolymers represent dense structure with core and shell. PMID:23914072

  7. Effect of plastic deformation on the magnetic properties and dislocation luminescence of isotopically enriched silicon {sup 29}Si:B

    SciTech Connect

    Koplak, O. V.; Shteynman, E. A.; Tereschenko, A. N.; Morgunov, R. B.

    2015-09-15

    A correlation between the temperature dependences of the D1-line intensity of dislocation luminescence and the magnetic moment of plastically deformed isotopically enriched crystals {sup 29}Si:B is found. It is established that the magnetic susceptibility of the deformed crystals obtained by integration of the spectra of electron spin resonance and the D1-line intensity undergo similar nonmonotonic variations with temperature varying in the range of 20–32 K.

  8. J-Modulation in ID NMR 1H Spectrum of Taurine and Aspartate Using Spin-Echo Technique

    NASA Astrophysics Data System (ADS)

    Oturak, Halil; Sağlam, Adnan; Bahçeli, Semiha

    1999-05-01

    This study reports on a theoretical calculation of Hahn's spin-echo experiment in case of a model A2B2 spin system with a strongly coupling character and gives the experimental results of one-dimension 1H high-resolution NMR spectra of taurine and aspartate. The calculated amplitudes of the spin-echoes for two different proton groups of taurine are given. Using results of our calculations for taurine, the computer simulations of J-modulation are implemented. It is shown that the agreement be-tween the experimental and simulated spectra is good.

  9. Spin dependent recombination; A sup 29 Si hyperfine study of radiation-induced P sub b centers at the Si/SiO sub 2 interface

    SciTech Connect

    Jupina, M.A.; Lenahan, P.M. )

    1990-12-01

    The spin dependent recombination (SDR) technique is used to observe the {sup 29}Si hyperfine spectra of radiation-induced P{sub b} centers at the Si/SiO{sub 2} interface in a MOSFET. The P{sub b} center is a paramagnetic, trivalent silicon defect that is the dominant radiation-induced interface state. The {sup 29}Si hyperfine spectra give detailed atomic scale information about the P{sub b} center. The authors' SDR results show that the {sup 29}Si hyperfine spectra vary with surface potential. This result indicates that differences in the defect's local geometry lead to substantial differences in the defect's energy level. However, the {sup 29}Si hyperfine spectra are found to be relatively independent of the ionizing radiation dosage.

  10. Isotopic tracing (D, 18O and 29Si) to understand the alteration on historic glass

    NASA Astrophysics Data System (ADS)

    Verney-Carron, Aurélie; Saheb, Mandana; Valle, Nathalie; Mangin, Denis; Remusat, Laurent; Loisel, Claudine

    2015-04-01

    In order to better preserve historic glasses, e.g. stained glass windows, the understanding of their alteration mechanisms and of what controls the kinetics corresponding to each process is required. The ancient stained glasses are characterized by thick alteration layers, continuous or as pits, that are cracked or lost. Therefore, if a passivating role of the alteration layer has been proved on some other kinds of glass (such as basaltic or nuclear glass) in aqueous medium, the issue can be addressed for low durable stained glass weathered in varying atmospheric conditions. The mechanism of alteration layer formation was first investigated by performing dynamic and static experiments on model medieval glasses altered with a solution doped in 29Si at different concentrations (or saturation degrees). Solid analyses were carried out by SIMS and solution by HR-ICP-MS. Medieval stained glass has mainly a potash-lime-silica composition with a low content in alumina. The alkaline and alkaline-earth elements have thus a modifier role in the glassy network. This structural difference compared to boro- or alumino-silicate glasses could induce differences in the alteration mechanisms. However, the analysis of the Si isotopic signature of the gel layer highlighted that diffusion, but also hydrolysis/condensation reactions, are also involved in the gel layer formation process, leading to a structural and textural reorganization. The second objective was to determine the kinetic role of the alteration layer, and especially to trace the circulation of water once the altered layer is formed. For that, ancient glasses were exposed to simulated rainfall events / drying periods cycles during 3 months by using a solution doped in D and 18O. NanoSIMS analyses have shown that the transport in the alteration layer is mainly driven by diffusion in the porosity despite the presence of cracks that could have been preferential ways of circulation. This demonstrates also a potential

  11. Solid-state NMR characterization of Mowry Formation shales

    SciTech Connect

    Miknis, F.P.

    1992-04-01

    Solid-state {sup 13}C and {sup 29}Si NMR measurements were carried out on a series of petroleum source rocks from the Mowry Formation of the Powder River Basin in Wyoming. The objectives of this study wereto use CP/MAS {sup 13}C NMR measurements to monitor changes in the carbon structure of the kerogen that result from depth of burial, and to examine the feasibility of {sup 29}Si NMR for studying the thermal alteration of clay minerals during diagenesis. Carbon and silicon NMR measurements were made on a suite of samples covering a present-day depth interval of 3,000 to 11,500 ft.In general, the NMR results endorsed other geochemical analyses that were performed on the source rocks as part of another study to examine pressure compartmentalization in the Mowry Formation. The carbon aromaticity of the kerogen increased with depth of burial, and at depths greater that approximately 10,000 ft the kerogen showed little capacity to generate additional oil because of the small fraction of residual aliphatic carbon. By combining NMR and Rock-Eval measurements, an estimate of the hydrogen budget was obtained. The calculations indicated that approximately 20% of the kerogen was converted to hydrocarbons, and that sufficient hydrogen was liberated from aromatization and condensation reactions to stabilize the generated products. The {sup 29}Si NMR spectra were characterized by a relatively sharp quartz resonance and a broad resonance from the clay minerals. With increasing depth of burial, the clay resonance became broader and shifted slightly downfield. These changes qualitatively support X-ray analysis that shows progressive alteration of illite to smectite with depth of burial.

  12. Solid-state NMR characterization of Mowry Formation shales

    SciTech Connect

    Miknis, F.P.

    1992-04-01

    Solid-state [sup 13]C and [sup 29]Si NMR measurements were carried out on a series of petroleum source rocks from the Mowry Formation of the Powder River Basin in Wyoming. The objectives of this study wereto use CP/MAS [sup 13]C NMR measurements to monitor changes in the carbon structure of the kerogen that result from depth of burial, and to examine the feasibility of [sup 29]Si NMR for studying the thermal alteration of clay minerals during diagenesis. Carbon and silicon NMR measurements were made on a suite of samples covering a present-day depth interval of 3,000 to 11,500 ft.In general, the NMR results endorsed other geochemical analyses that were performed on the source rocks as part of another study to examine pressure compartmentalization in the Mowry Formation. The carbon aromaticity of the kerogen increased with depth of burial, and at depths greater that approximately 10,000 ft the kerogen showed little capacity to generate additional oil because of the small fraction of residual aliphatic carbon. By combining NMR and Rock-Eval measurements, an estimate of the hydrogen budget was obtained. The calculations indicated that approximately 20% of the kerogen was converted to hydrocarbons, and that sufficient hydrogen was liberated from aromatization and condensation reactions to stabilize the generated products. The [sup 29]Si NMR spectra were characterized by a relatively sharp quartz resonance and a broad resonance from the clay minerals. With increasing depth of burial, the clay resonance became broader and shifted slightly downfield. These changes qualitatively support X-ray analysis that shows progressive alteration of illite to smectite with depth of burial.

  13. Probing silicon and aluminium chemical environments in silicate and aluminosilicate glasses by solid state NMR spectroscopy and accurate first-principles calculations

    NASA Astrophysics Data System (ADS)

    Gambuzzi, Elisa; Pedone, Alfonso; Menziani, Maria Cristina; Angeli, Frédéric; Caurant, Daniel; Charpentier, Thibault

    2014-01-01

    Silicon and aluminium chemical environments in silicate and aluminosilicate glasses with compositions 60SiO2·20Na2O·20CaO (CSN), 60SiO2·20Al2O3·20CaO (CAS), 78SiO2·11Al2O3·11Na2O (NAS) and 60SiO2·10Al2O3·10Na2O·20CaO (CASN) have been investigated by 27Al and 29Si solid state magic angle spinning (MAS) and multiple quantum MAS (MQMAS) nuclear magnetic resonance (NMR) experiments. To interpret the NMR data, first-principles calculations using density functional theory were performed on structural models of these glasses. These models were generated by Shell-model molecular dynamics (MD) simulations. The theoretical NMR parameters and spectra were computed using the gauge including projected augmented wave (GIPAW) method and spin-effective Hamiltonians, respectively. This synergetic computational-experimental approach offers a clear structural characterization of these glasses, particularly in terms of network polymerization, chemical disorder (i.e. Si and Al distribution in second coordination sphere) and modifier cation distributions. The relationships between the local structural environments and the 29Si and 27Al NMR parameters are highlighted, and show that: (i) the isotropic chemical shift of both 29Si and 27Al increases of about +5 ppm for each Al added in the second sphere and (ii) both the 27Al and 29Si isotropic chemical shifts linearly decrease with the reduction of the average Si/Al-O-T bond angle. Conversely, 27Al and 29Si NMR parameters are much less sensitive to the connectivity with triple bridging oxygen atoms, precluding their indirect detection from 27Al and 29Si NMR.

  14. Nuclear shell model calculations of neutralino-nucleus cross sections for [sup 29]Si and [sup 73]Ge

    SciTech Connect

    Ressell, M.T.; Aufderheide, M.B.; Bloom, S.D.; Griest, K.; Mathews, G.J.; Resler, D.A. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, Livermore, California 94550 Physics Department, University of California, San Diego, La Jolla, California 92093 N-Division/Physical Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 )

    1993-12-15

    We present the results of detailed nuclear shell model calculations of the spin-dependent elastic cross section for neutralinos scattering from [sup 29]Si and [sup 73]Ge. The calculations were performed in large model spaces which adequately describe the configuration mixing in these two nuclei. As tests of the computed nuclear wave functions we have calculated several nuclear observables and compared them with the measured values and found good agreement. In the limit of zero momentum transfer we find scattering matrix elements in agreement with previous estimates for [sup 29]Si but significantly different than previous work for [sup 73]Ge. A modest quenching, in accord with shell model studies of other heavy nuclei, has been included to bring agreement between the measured and calculated values of the magnetic moment for [sup 73]Ge. Even with this quenching, the calculated scattering rate is roughly a factor of 2 higher than the best previous estimates; without quenching, the rate is a factor of 4 higher. This implies a higher sensitivity for germanium dark matter detectors. We also investigate the role of finite momentum transfer upon the scattering response for both nuclei and find that this can significantly change the expected rates. We close with a brief discussion of the effects of some of the non-nuclear uncertainties upon the matrix elements.

  15. Multinuclear MAS NMR investigation of zeolites reacted with chlorofluorocarbons

    NASA Astrophysics Data System (ADS)

    Hannus, I.; Kónya, Z.; Lentz, P.; Nagy, J. B.; Kiricsi, I.

    1999-05-01

    Multinuclear ( 23Na, 27Al, 29Si, 13C) MAS NMR techniques were used for investigation of surface reaction of Y-type zeolites with CFCs (CCl 4, CCl 3F, CCl 2F 2, CClF 3, CF 4) and HCFC (CHClF 2). The hydrogen containing derivative reacts slowly. Those possessing more than 2 F atoms can be regarded as stable unreactive materials. CCl 4, CCl 3F, CCl 2F 2 react strongly with the zeolites. The reaction of HCFC with zeolites has a different mechanism to the other CFCs tested. On the basis of multinuclear NMR results a mechanism is given for the decomposition of HCFC.

  16. Use of solid waste for chemical stabilization: Adsorption isotherms and {sup 13}C solid-state NMR study of hazardous organic compounds sorbed on coal fly ash

    SciTech Connect

    Netzel, D.A.; Lane, D.C.; Rovani, J.F.; Cox, J.D.; Clark, J.A.; Miknis, F.P.

    1993-09-01

    Adsorption of hazardous organic compounds on the Dave Johnston plant fly ash is described. Fly ash from Dave Johnston and Laramie River power plants were characterized using elemental, x-ray, and {sup 29}Si NMR; the Dave Johnston (DJ) fly ash had higher quartz contents, while the Laramie River fly ash had more monomeric silicate anions. Adsorption data for hydroaromatics and chlorobenzenes indicate that the adsorption capacity of DJ coal fly ash is much less than that of activated carbon by a factor of >3000; but it is needed to confirm that solid-gas and solid-liquid equilibrium isotherms can indeed be compared. However, for pyridine, pentachlorophenol, naphthalene, and 1,1,2,2-tetrachloroethane, the DJ fly ash appears to adsorb these compounds nearly as well as activated carbon. {sup 13}C NMR was used to study the adsorption of hazardous org. cpds on coal fly ash; the nuclear spin relaxation times often were very long, resulting in long experimental times to obtain a spectrum. Using a jumbo probe, low concentrations of some hazardous org. cpds could be detected; for pentachlorophenol adsorbed onto fly ash, the chemical shift of the phenolic carbon was changed. Use of NMR to study the adsorption needs further study.

  17. Sensitivity enhancement of 29Si double-quantum dipolar recoupling spectroscopy by Carr-Purcell-Meiboom-Gill acquisition method

    NASA Astrophysics Data System (ADS)

    Goswami, M.; Madhu, P. K.; Dittmer, J.; Nielsen, N. C.; Ganapathy, S.

    2009-08-01

    An enhancement in the detection sensitivity of dipolar recoupled 29Si double-quantum magic-angle spinning experiment is shown with a Carr-Purcell-Meiboom-Gill (CPMG) train of π pulses during the acquisition period. Symmetry-adapted pulse schemes, such as POST-C7 and SR26411, are used for the double-quantum excitation. Application of POST-C7-CPMG method for framework characterisation is demonstrated in the disordered and catalytically important ZSM-5 molecular sieve. Based on the observed double-quantum dipole-dipole correlations and the known T-site Si connectivities, the assignment of all the signals is made for the orthorhombic phase of the as-synthesised (CN form) material.

  18. Spatially Inhomogeneous Development of Antiferromagnetic Ordering on URu_2Si2 Observed by High Pressure NMR*

    NASA Astrophysics Data System (ADS)

    Kohara, Takao; Matsuda, K.; Kohori, Y.; Kuwahara, K.; Amitsuka, H.

    2002-03-01

    In order to identify the nature of unconventional antiferromagnetic (AF) ordering with a "tiny staggered moment" below T_0=17.5 K in URu_2Si_2, ^29Si NMR has been performed under pressure up to 17.5 kbar. In the pressure range 3.0 kbar to 15 kbar of P_c, we have observed new ^29Si NMR signal arising from the AF region besides the previously reported ^29Si NMR signal, which corresponds to the paramagnetic (PM) region. The AF region increases in volume at the expense of the PM region on cooling, which shows a coexistence of the AF and the PM regions below T_0. The volume fraction is enhanced by applied pressure, whereas the value of internal field (910 Oe) remains constant up to 15 kbar. This gives definite evidence for spatially inhomogeneous development of AF ordering below T_0. Our Si NMR results have shown that the weakness of Bragg peak observed by neutron diffraction originates not from an extremely reduced moment (0.03 μ _B/U) but from the smallness of AF region with an ordered moment of 0.4 μ _B/U in the sample. The temperature dependence of nuclear spin lattice relaxation rates for both signal is also now measured under pressure. * Supported by a Grand-in -Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  19. The quantitative spectrum of inositol phosphate metabolites in avian erythrocytes, analysed by proton n.m.r. and h.p.l.c. with direct isomer detection.

    PubMed Central

    Radenberg, T; Scholz, P; Bergmann, G; Mayr, G W

    1989-01-01

    The spectrum of inositol phosphate isomers present in avian erythrocytes was investigated in qualitative and quantitative terms. Inositol phosphates were isolated in micromolar quantities from turkey blood by anion-exchange chromatography on Q-Sepharose and subjected to proton n.m.r. and h.p.l.c. analysis. We employed a h.p.l.c. technique with a novel, recently described complexometric post-column detection system, called 'metal-dye detection' [Mayr (1988) Biochem. J. 254, 585-591], which enabled us to identify non-radioactively labelled inositol phosphate isomers and to determine their masses. The results indicate that avian erythrocytes contain the same inositol phosphate isomers as mammalian cells. Denoted by the 'lowest-locant rule' [NC-IUB Recommendations (1988) Biochem. J. 258, 1-2] irrespective of true enantiomerism, these are Ins(1,4)P2, Ins(1,6)P2, Ins(1,3,4)P3, Ins(1,4,5)P3, Ins(1,3,4,5)P4, Ins(1,3,4,6)P4, Ins(1,4,5,6)P4, Ins(1,3,4,5,6)P5, and InsP6. Furthermore, we identified two inositol trisphosphate isomers hitherto not described for mammalian cells, namely Ins(1,5,6)P3 and Ins(2,4,5)P3. The possible position of these two isomers in inositol phosphate metabolism and implications resulting from absolute abundances of inositol phosphates are discussed. PMID:2604720

  20. NMR study of crystallization in MgO-CaO-SiO 2-P 2O 5 glass-ceramics

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Lan; Yue, Yong; Ye, Chao-Hui; Guo, Li-Ping; Lei, Jia-Heng

    1998-08-01

    29Si and 31P magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) measurements were employed to investigate crystallization in MgO-CaO-SiO 2-P 2O 5 bioglass-ceramics. The results suggest that wollastonite (β-CaSiO 3) is separated as a new crystalline phase, corresponding to the appearance of a sharp signal in the 29Si MAS NMR spectra, while oxyapatite (Ca 10(PO 4) 6O) forms in the process of the order of the phosphorus-rich phases increasing as a whole, corresponding to the gradual narrowing of 31P MAS NMR spectra. ZnO can make the glass stable and difficult to crystallize at a low temperature, while at a high temperature, ZnO can participate in the crystallization of β-CaSiO 3 and promote it.

  1. Computational prediction and analysis of the (27)Al solid-state NMR spectrum of methylaluminoxane (MAO) at variable temperatures and field strengths.

    PubMed

    Falls, Zackary; Zurek, Eva; Autschbach, Jochen

    2016-09-14

    Calculations of NMR shielding tensors and nuclear quadrupole coupling (NQC) tensors at the Kohn-Sham density functional level are used to simulate (27)Al magic-angle spinning (MAS) NMR spectra of the important olefin polymerization co-catalyst methylaluminoxane (MAO) at 77, 298, 398, and 498 K and spectrometer magnetic field inductions B ranging from 14.1 to 23.5 T. The calculations utilize the temperature (T) dependent distribution of species present in MAO determined recently by Zurek and coworkers from first-principles theory [Macromolecules, 2014, 47, 8556]. The NMR calculations suggest that variable-T and variable-B NMR measurements are able to quantify the ratio of free versus bound trimethyl-aluminum (TMA) in MAO via characteristic spectral features assigned to 3-coordinate and 4-coordinate Al sites in MAO as well as spectral features arising from free TMA or its dimer. The T-dependent distribution of species causes other characteristic features in the NMR spectra to appear/disappear that can be associated with different aluminum environments such as square vs. hexagonal faces in cage and tubular structures. The simulated spectra at 298 K and 19.6 T are in reasonably good agreement with the experimental solid-state NMR (SSNMR) spectra obtained previously for MAO gel. The promise and limitations of solid-state NMR to unravel the enigma surrounding the structure(s) of MAO are discussed. PMID:27526292

  2. Direct observation of zeolite a synthesis by in situ solid-state NMR

    SciTech Connect

    Shi, J.; Anderson, M.W.; Carr, S.W.

    1996-02-01

    This paper describes the use of in situ solid-state NMR and X-ray powder diffraction to study the real-time synthesis of zeolite. In particular {sup 27}Al and {sup 29}Si are used to monitor the growth in situ X-ray diffraction study was used to investigate the development of long range order of the material. Conclusions concerning the mechanism of the formation of zeolite A are proposed. 28 refs., 12 figs., 2 tabs.

  3. Water dissolution in albite melts: - Constraints from ab initio NMR calculations

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Nekvasil, Hanna; Long, Hongbo

    2002-12-01

    Hartree-Fock and B3LYP NMR calculations were performed at the 6-311+G(2df,p) level on cluster models representing albite glasses using B3LYP/6 to 31G* optimized geometries. Calculation results on several well-known crystalline materials, such as low albite and KHSi 2O 5, were used to check the accuracy of the calculation methods. Calculated 29Si-NMR results on clusters that model protonation of Al-O-Si linkages and the replacement of Na + by H + indicate a major increase in Si-O(H) bond length and a 5 ppm difference in δ iso for 29Si compared to that for anhydrous albite glass. The calculated δ iso of 27Al in such linkages agrees with the experimental data, but shows an increase in C q that cannot be fully diminished by H-bonding to additional water molecules. This protonation model is consistent with both experimental 17O NMR data and the major peak of 1H-NMR spectra. It cannot readily explain the existence of the small peak in the experimental 1H spectra around 1.5 ppm. Production of the depolymerized units Al [Q 3]-O-H upon the dissolution of water is not consistent with 27Al, 1H, or 17O NMR experimental results. Production of Si [Q 3]-O-H is consistent with all of the experimental 17O and 1H-NMR data; such units can produce both the major peak at 3.5 ppm and the small peak at 1.5 ppm in 1H spectra, either with or without hydrogen bonding. This species, however, cannot produce the main features of 29Si spectra. It is concluded that although neither protonation nor the production of Si [Q 3]-O-H alone is consistent with the available experimental data, the combination of these two processes is consistent with available experimental NMR data.

  4. Study of aging of silicone rubber biomaterials with NMR.

    PubMed

    Pfleiderer, B; Xu, P; Ackerman, J L; Garrido, L

    1995-09-01

    Multinuclear nuclear magnetic resonance (NMR) spectroscopy (29Si, 13C, 1H) is used to characterize the aging process of silicone rubber-based biomaterials in a rat model. 1H NMR relaxation measurements (spin-lattice, T1, and spin-spin, T2, relaxation times) were performed to better understand the molecular dynamics of polysiloxane chains in implants. After 1 year of implantation in animals, changes in the 1H T2 relaxation times and the NMR spectra were observed in polydimethylsiloxane, Silastic sheets and chin implants, while these measurements remain unchanged in finger joints. Very small amounts of fat were detected in all types of silicone rubber implants at the end of the implantation period. This work shows that free silicone migrates from the implants to adjacent tissues and distant sites, such as spleen or liver, and is chemically modified.

  5. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. PMID:25218584

  6. Inherent interface defects in thermal (211)Si/SiO{sub 2}:{sup 29}Si hyperfine interaction

    SciTech Connect

    Iacovo, Serena E-mail: andre.stesmans@fys.kuleuven.be; Stesmans, Andre E-mail: andre.stesmans@fys.kuleuven.be

    2014-10-21

    Low temperature electron spin resonance (ESR) studies were carried out on ‘higher index’ (211)Si/SiO{sub 2} interfaces thermally grown in the temperature range T{sub ox} = 400–1066°C. The data reveal the presence of two species of a P{sub b}-type interface defect, exhibiting a significant difference in defect density. On the basis of the pertinent ESR parameters and interface symmetry, the basic defect is typified as P{sub b0}{sup (211)}, close to the Pb0 center observed in standard (100)Si/SiO{sub 2}. The dominant type is found to pertain to defected Si atoms at (111)Si-face terraces with the dangling bond along the [111] direction at ∼19.5°C with the interface normal, these sites thus apparently predominantly accounting for interface mismatch adaptation. The total of the P{sub b}-type defect appearance clearly reflects the higher-index nature of the interface. It is found that T{sub ox} = 750°C is required to minimize the P{sub b0}{sup (211)} defect density through relaxation of the oxide (interface). Q-band ESR saturation spectroscopy reveals an anisotropic {sup 29}Si (nuclear spin I=1/2) hyperfine (hf) doublet associated with the central P{sub b0}{sup (211)} Zeeman signal, with hf parameters closest to those of the similar hf structure of the P{sub b0}{sup (110)} defect in thermal (110)Si/SiO{sub 2}, adducing independent support to the P{sub b0}{sup (211)} typification.

  7. Electrostatic interplay: The interaction triangle of polyamines, silicic acid, and phosphate studied through turbidity measurements, silicomolybdic acid test, and 29Si NMR spectroscopy

    PubMed Central

    Jantschke, Anne; Spinde, Katrin

    2014-01-01

    Summary The discovery of long-chain polyamines as biomolecules that are tightly associated to biosilica in diatom cell walls has inspired numerous in vitro studies aiming to characterize polyamine–silica interactions. The determination of these interactions at the molecular level is of fundamental interest on one hand for the understanding of cell wall biogenesis in diatoms and on the other hand for designing bioinspired materials synthesis approaches. The present contribution deals with the influence of amines and polyamines upon the initial self-assembly processes taking place during polyamine-mediated silica formation in solution. The influence of phosphate upon these processes is studied. For this purpose, sodium metasilicate solutions containing additives such as polyallylamine, allylamine and others in the presence/absence of phosphate were investigated. The analyses are based mainly on turbidity measurements yielding information about the early aggregation steps which finally give rise to the formation and precipitation of silica. PMID:25551030

  8. Electrostatic interplay: The interaction triangle of polyamines, silicic acid, and phosphate studied through turbidity measurements, silicomolybdic acid test, and (29)Si NMR spectroscopy.

    PubMed

    Jantschke, Anne; Spinde, Katrin; Brunner, Eike

    2014-01-01

    The discovery of long-chain polyamines as biomolecules that are tightly associated to biosilica in diatom cell walls has inspired numerous in vitro studies aiming to characterize polyamine-silica interactions. The determination of these interactions at the molecular level is of fundamental interest on one hand for the understanding of cell wall biogenesis in diatoms and on the other hand for designing bioinspired materials synthesis approaches. The present contribution deals with the influence of amines and polyamines upon the initial self-assembly processes taking place during polyamine-mediated silica formation in solution. The influence of phosphate upon these processes is studied. For this purpose, sodium metasilicate solutions containing additives such as polyallylamine, allylamine and others in the presence/absence of phosphate were investigated. The analyses are based mainly on turbidity measurements yielding information about the early aggregation steps which finally give rise to the formation and precipitation of silica.

  9. X-ray and MAS NMR characterization of the thermal transformation of Li(Na)-Y zeolite to lithium aluminosilicates

    SciTech Connect

    Subramanian, M.A.; Corbin, D.R.; Farlee, R.D.

    1986-12-01

    The high temperature thermal transformation of Li-exchanged Na-Y zeolite has been investigated by X-ray diffraction and /sup 29/Si MAS NMR studies. At 700/sup 0/C, the zeolite was transformed into an amorphous phase and upon further heating to 800/sup 0/C, formation of lithium aluminosilicate with high-quartz structure, in addition to an amorphous phase, was noted. When heated above 900/sup 0/C, the high-quartz structure was transformed into a ..beta..-spodumene related solid solution. X-ray and MAS NMR studies indicate the ..beta..-spodumene solid solution formed has the composition close to (Li/sub 0.23/Na/sub 0.06/)A iota /sub 0.29/Si/sub 0.71/O/sub 2/, which is in agreement with chemical analysis.

  10. Liquid- and solid-state high-resolution NMR methods for the investigation of aging processes of silicone breast implants.

    PubMed

    Birkefeld, Anja Britta; Bertermann, Rüdiger; Eckert, Hellmut; Pfleiderer, Bettina

    2003-01-01

    To investigate aging processes of silicone gel breast implants, which may include migration of free unreacted material from the gel and rubber to local (e.g. connective tissue capsule) or distant sites in the body, chemical alteration of the polymer and infiltration of body compounds, various approaches of multinuclear nuclear magnetic resonance (NMR) experiments (29Si, 13C, 1H) were evaluated. While 29Si, 13C, and 1H solid-state magic angle spinning (MAS) NMR techniques performed on virgin and explanted envelopes of silicone prostheses provided only limited information, high-resolution liquid-state NMR techniques of CDCl(3) extracts were highly sensitive analytical tools for the detection of aging related changes in the materials. Using 2D 1H, 1H correlation spectroscopy (COSY) and 29Si, 1H heteronuclear multiple bond coherence (HMBC) experiments with gradient selection, it was possible to detect lipids (mainly phospholipids) as well as silicone oligomer species in explanted envelopes and gels. Silicone oligomers were also found in connective tissue capsules, indicating that cyclic polysiloxanes can migrate from intact implants to adjacent and distant sites. Furthermore, lipids can permeate the implant and modify its chemical composition.

  11. Investigations of adsorption sites on oxide surfaces using solid-state NMR and TPD-IGC

    NASA Astrophysics Data System (ADS)

    Golombeck, Rebecca A.

    diameters and thermal histories. The bulk structural features in both compositions of glass fibers were identified using high-resolution 29Si, 27Al, and 11B magic-angle spinning (MAS) NMR spectroscopic measurements. In multi-component glasses, the determination of silicon, aluminum, and boron distributions becomes difficult due to the competitive nature of the network-modifying oxides among the network-forming oxides. In pure silicates, 29Si MAS NMR can often resolve resonances arising from silicate tetrahedron having varying numbers of bridging oxygens. In aluminoborosilicate glasses, aluminum is present in four-, five-, and six- coordination with oxygen as neighbors. The speciation of the aluminum can be determined using 27Al MAS NMR. The fraction of tetrahedral boron species in the glass fibers were measured using 11B MAS NMR, which is typically used to study the short-range structure of borate containing glasses such as alkali borate, borosilicate, and aluminoborosilicate glasses. While solid-state NMR is a powerful tool for elucidating bonding environments and coordination changes in the glass structure, it cannot quantitatively probe low to moderate surface area samples due to insufficient spins. Chemical probes either physisorbed or chemisorbed to the fiber's surface can increase the surface selectivity of NMR for analysis of samples with low surface areas and provide information about the local molecular structure of the reactive surface site. Common chemical probe molecules contain NMR active nuclei such as 19F or may be enriched with 13C. A silyating agent, (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS), reacts with reactive surface hydroxyls, which can be quantified by utilizing the NMR active nucleus (19F) contained in the probe molecule. The observed 19F MAS NMR peak area is integrated and compared against a standard of known fluorine spins (concentration), allowing the number of reactive hydroxyl sites to be quantified. IGC is a method used to study the

  12. Spectroscopy of the {sup 29}Si(p,{gamma}) reaction for E{sub p}=1.00{endash}1.75 MeV

    SciTech Connect

    Vavrina, G.A.; Bybee, C.R.; Mitchell, G.E.; Moore, E.F.; Shriner, J.D.; Bilpuch, E.G.; Wallace, P.M.; Westerfeldt, C.R.; Shriner, J.F. , Jr.

    1997-03-01

    The {sup 29}Si(p,{gamma}) reaction has been studied in the range E{sub p}=1.00{endash}1.75 MeV. Three previously unknown states in {sup 30}P were identified, and one state previously assigned to {sup 30}P was identified as a state in {sup 14}N. Gamma-ray strengths were determined for the three new levels, and branching ratios were measured for 17 resonances. Revised J{sup {pi}};T assignments were made for nine of these states. {copyright} {ital 1997} {ital The American Physical Society}

  13. Achievement of 1020MHz NMR.

    PubMed

    Hashi, Kenjiro; Ohki, Shinobu; Matsumoto, Shinji; Nishijima, Gen; Goto, Atsushi; Deguchi, Kenzo; Yamada, Kazuhiko; Noguchi, Takashi; Sakai, Shuji; Takahashi, Masato; Yanagisawa, Yoshinori; Iguchi, Seiya; Yamazaki, Toshio; Maeda, Hideaki; Tanaka, Ryoji; Nemoto, Takahiro; Suematsu, Hiroto; Miki, Takashi; Saito, Kazuyoshi; Shimizu, Tadashi

    2015-07-01

    We have successfully developed a 1020MHz (24.0T) NMR magnet, establishing the world's highest magnetic field in high resolution NMR superconducting magnets. The magnet is a series connection of LTS (low-Tc superconductors NbTi and Nb3Sn) outer coils and an HTS (high-Tc superconductor, Bi-2223) innermost coil, being operated at superfluid liquid helium temperature such as around 1.8K and in a driven-mode by an external DC power supply. The drift of the magnetic field was initially ±0.8ppm/10h without the (2)H lock operation; it was then stabilized to be less than 1ppb/10h by using an NMR internal lock operation. The full-width at half maximum of a (1)H spectrum taken for 1% CHCl3 in acetone-d6 was as low as 0.7Hz (0.7ppb), which was sufficient for solution NMR. On the contrary, the temporal field stability under the external lock operation for solid-state NMR was 170ppb/10h, sufficient for NMR measurements for quadrupolar nuclei such as (17)O; a (17)O NMR measurement for labeled tri-peptide clearly demonstrated the effect of high magnetic field on solid-state NMR spectra. PMID:25978708

  14. Structural changes in C–S–H gel during dissolution: Small-angle neutron scattering and Si-NMR characterization

    SciTech Connect

    Trapote-Barreira, Ana; Porcar, Lionel; Cama, Jordi; Soler, Josep M.; Allen, Andrew J.

    2015-06-15

    Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10{sup −} {sup 14} to 6.7 × 10{sup −} {sup 12}) mol m{sup −} {sup 2} s{sup −} {sup 1}. The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and {sup 29}Si magic-angle-spinning nuclear magnetic resonance ({sup 29}Si-MAS NMR). The SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The {sup 29}Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution.

  15. Compact orthogonal NMR field sensor

    SciTech Connect

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  16. Solid-State NMR Characterization of Mixed Phosphonic Acid Ligand Binding and Organization on Silica Nanoparticles.

    PubMed

    Davidowski, Stephen K; Holland, Gregory P

    2016-04-01

    As ligand functionalization of nanomaterials becomes more complex, methods to characterize the organization of multiple ligands on surfaces is required. In an effort to further the understanding of ligand-surface interactions, a combination of multinuclear ((1)H, (29)Si, (31)P) and multidimensional solid-state nuclear magnetic resonance (NMR) techniques was utilized to characterize the phosphonic acid functionalization of fumed silica nanoparticles using methylphosphonic acid (MPA) and phenylphosphonic acid (PPA). (1)H → (29)Si cross-polarization (CP)-magic angle spinning (MAS) solid-state NMR was used to selectively detect silicon atoms near hydrogen atoms (primarily surface species); these results indicate that geminal silanols are preferentially depleted during the functionalization with phosphonic acids. (1)H → (31)P CP-MAS solid-state NMR measurements on the functionalized silica nanoparticles show three distinct resonances shifted upfield (lower ppm) and broadened compared to the resonances of the crystalline ligands. Quantitative (31)P MAS solid-state NMR measurements indicate that ligands favor a monodentate binding mode. When fumed silica nanoparticles were functionalized with an equal molar ratio of MPA and PPA, the MPA bound the nanoparticle surface preferentially. Cross-peaks apparent in the 2D (1)H exchange spectroscopy (EXSY) NMR measurements of the multiligand sample at short mixing times indicate that the MPA and PPA are spatially close (≤5 Å) on the surface of the nanostructure. Furthermore, (1)H-(1)H double quantum-single quantum (DQ-SQ) back-to-back (BABA) 2D NMR spectra further confirmed that MPA and PPA are strongly dipolar coupled with observation of DQ intermolecular contacts between the ligands. DQ experimental buildup curves and simulations indicate that the average distance between MPA and PPA is no further than 4.2 ± 0.2 Å. PMID:26914738

  17. Synthesis and solid-state NMR characterization of cubic mesoporous silica SBA-1 functionalized with sulfonic acid groups.

    PubMed

    Tsai, Hui-Hsu Gavin; Chiu, Po-Jui; Jheng, Guang-Liang; Ting, Chun-Chiang; Pan, Yu-Chi; Kao, Hsien-Ming

    2011-07-01

    Well-ordered cubic mesoporous silicas SBA-1 functionalized with sulfonic acid groups have been synthesized through in situ oxidation of mercaptopropyl groups with H(2)O(2) via co-condensation of tetraethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) templated by cetyltriethylammonium bromide (CTEABr) under strong acidic conditions. Various synthesis parameters such as the amounts of H(2)O(2) and MPTMS on the structural ordering of the resultant materials were systematically investigated. The materials thus obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), multinuclear solid-state Nuclear Magnetic Resonance (NMR) spectroscopy, (29)Si{(1)H} 2D HETCOR (heteronuclear correlation) NMR spectroscopy, thermogravimetric analysis (TGA), and nitrogen sorption measurements. By using (13)C CPMAS NMR technique, the status of the incorporated thiol groups and their transformation to sulfonic acid groups can be monitored and, as an extension, to define the optimum conditions to be used for the oxidation reaction to be quantitative. In particular, (29)Si{(1)H} 2D HETCOR NMR revealed that the protons in sulfonic acid groups are in close proximity to the silanol Q(3) species, but not close enough to form a hydrogen bond.

  18. Multinuclear MAS NMR studies of sodalitic framework materials

    SciTech Connect

    Johnson, G.M.; Mead, P.J.; Dann, S.E.; Weller, M.T.

    2000-02-24

    A wide range of sodalite framework materials, M{sub 8}[TT{prime}O{sub 4}]{sub 6}X{sub 2} where T = Al, Ga, Si, T{prime} = Be, Al, Si, Ge, have been characterized using {sup 27}Al, {sup 29}Si, and {sup 71}Ga magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. Structural parameters, such as functions of the framework T{single{underscore}bond}O{single{underscore}bond}T{prime} angle, correlate linearly with the determined chemical shift values and provide relationships, as a function of T{prime}, which will facilitate characterization of more complex zeolitic compounds containing such species. The effects of changing a particular neighboring framework cation on the resonance position is controlled by variations in both framework bond angles/distances and electrostatic effects; these contributions are resolved.

  19. An unprecedented up-field shift in the 13C NMR spectrum of the carboxyl carbons of the lantern-type dinuclear complex TBA[Ru2(O2CCH3)4Cl2] (TBA+ = tetra(n-butyl)ammonium cation).

    PubMed

    Hiraoka, Yuya; Ikeue, Takahisa; Sakiyama, Hiroshi; Guégan, Frédéric; Luneau, Dominique; Gillon, Béatrice; Hiromitsu, Ichiro; Yoshioka, Daisuke; Mikuriya, Masahiro; Kataoka, Yusuke; Handa, Makoto

    2015-08-14

    A large up-field shift (-763 ppm) has been observed for the carboxyl carbons of the dichlorido complex TBA[Ru(2)(O(2)CCH(3))(4)Cl(2)] (TBA(+) = tetra(n-butyl)ammonium cation) in the (13)C NMR spectrum (CD(2)Cl(2) at 25 °C). The DFT calculations showed spin delocalization from the paramagnetic Ru(2)(5+) core to the ligands, in agreement with the large up-field shift.

  20. MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content

    SciTech Connect

    Goswami, Madhumita; Kothiyal, Govind P.; Montagne, Lionel Delevoye, Laurent

    2008-02-15

    Lithium zinc silicate glasses of composition (mol%): 17.5Li{sub 2}O-(72-x)SiO{sub 2}-xZnO-5.1Na{sub 2}O-1.3P{sub 2}O{sub 5}-4.1B{sub 2}O{sub 3}, 5.5{<=}x{<=}17.7, were prepared by conventional melt-quenched technique and converted to glass-ceramic by controlled crystallization process. {sup 29}Si and {sup 31}P MAS-NMR was used to characterize the structure of both glass and glass-ceramic samples. Despite the complex glass composition, Q{sup 2}, Q{sup 3} and Q{sup 4} sites are identified from {sup 29}Si MAS-NMR, which relative intensities are found to vary with the ZnO content, indicating a network depolymerization by ZnO. Moreover, well separated Q{sup 3} and Q{sup 4} resonances for low ZnO content indicates the occurrence of phase separation. From {sup 31}P MAS-NMR, it is seen that phosphorus is mainly present in the form of ortho-(Q{sup 0}) and pyro-phosphate (Q{sup 1}) structural units and variation of ZnO content did not have much effect on these resonances, which provides an additional evidence for phase separation in the glass. On conversion to glass-ceramics, lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), lithium zinc ortho-silicate (Li{sub 3}Zn{sub 0.5}SiO{sub 4}), tridymite (SiO{sub 2}) and cristobalite (SiO{sub 2}) were identified as major silicate crystalline phases. Using {sup 29}Si MAS-NMR, quantification of these silicate crystalline phases is carried out and correlated with the ZnO content in the glass-ceramics samples. In addition, {sup 31}P spectra unambiguously revealed the presence of crystalline Li{sub 3}PO{sub 4} and (Na,Li){sub 3}PO{sub 4} in the glass-ceramics. - Graphical abstract: {sup 29}Si and {sup 31}P MAS-NMR analyses were carried out on multi-component Li{sub 2}O-SiO{sub 2}-ZnO-Na{sub 2}O-P{sub 2}O{sub 5}-B{sub 2}O{sub 3} glasses and glass-ceramics developed for sealing application. Structural data are reported, including phase separation process and quantification of amorphous and crystalline phases.

  1. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  2. A multinuclear static NMR study of geopolymerisation

    SciTech Connect

    Favier, Aurélie; Habert, Guillaume; Roussel, Nicolas; D'Espinose de Lacaillerie, Jean-Baptiste

    2015-09-15

    Geopolymers are inorganic binders obtained by alkali activation of aluminosilicates. While the structure of geopolymers is now well understood, the details of the geopolymerisation reaction and their impact on the rheology of the paste remain uncertain. In this work, we follow the elastic properties of a paste made with metakaolin and sodium silicate solution. After the first sharp increase of elastic modulus occurring a few hundred of seconds after mixing and related to the heterogeneous formation of an alumina–silicate gel with a molar ratio Si/Al < 4 located at the grains boundaries, we focus on the progressive increase in elastic modulus on a period of few hours during the setting of the geopolymer. In this study, we combine the study of rheological properties of the paste with {sup 23}Na, {sup 27}Al and {sup 29}Si static NMR measurement in order to better understand the origin of this second increase in elastic modulus. Our results show that, after a few hours, Al and Na evolution in the liquid phase are concomitant. This suggests the precipitation of an aluminosilicate phase where Al is in tetrahedral position and Na compensates the charge. Furthermore, Si speciation confirms this result and allows us to identify the precipitation of a product, which has a chemical composition close to the final composition of geopolymer. This study provides strong evidence for a heterogeneous formation of an aluminosilicate glass directly from the first gel and the silicate solution without the need for a reorganisation of Gel 1 into Gel 2.

  3. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  4. Environmental Weathering of Aluminosilicate Clay Minerals: Solid-State NMR Studies of Transformations Leading to Radionuclide Sequestration

    SciTech Connect

    Mueller, Karl T.; Crosson, Garry; Chorover, Jon; Choi, Sunkyung

    2004-03-28

    Mobilities of radionuclides (such as 137Cs and 90Sr) are governed by their interactions with natural soil particles in the saturated and unsaturated zones at Department of Energy sites. High surface area aluminosilicate clay minerals are a component of the natural soils beneath the leaking waste tanks at these sites and serve as possible radionuclide sorbents. However, due to the characteristics of the contaminant medium (high pH, high Al and high ionic strength), clay minerals are susceptible to transformations during exposure to tank waste leachates. We are currently studying the transformation of clays under specific chemical conditions that mimic the composition of known contaminant solutions. In these studies, specimen clay samples are reacted for varying time periods (up to one year) with simulated tank waste leachate solutions. Mineral dissolution and transformation are followed with solution analysis, x-ray diffraction and a number of other analytical methods. We report here results from 27Al MAS NMR at variable magnetic field strengths (up to 18.8 T), 29Si MAS NMR and 1H/29Si CPMAS NMR and evaluate these results along with those of other parallel analytic studies.

  5. The crystallization of hectorite clays as monitored by small angle X-ray scattering and NMR

    SciTech Connect

    Carrado, K. A.; Xu, L.; Seifert, S.; Gregory, D.; Song, K.; Botto, R. E.

    1999-12-13

    The authors have probed the 48-hr crystallization of a magnesium silicate clay called hectorite. Small angle X-ray scattering (SAXS) at the Advanced Photon Source using aliquots ex situ has revealed that data is consistent with ex situ XRD, TGA, AFM, and IR data in that all these techniques see clay crystallite beginning to form in the first few hours of reaction. Tetraethylammonium (TEA) ions are used to aid crystallization and become incorporated as the exchange cations within the interlayers. {sup 13}C NMR shows that 80% of the final TEA loading is accomplished in the first 10 hrs. {sup 29}Si NMR displays a visible clay silicate peak after just 1 hr. In addition, the first in situ study of clay crystallization of any kind was performed by in situ SAXS. Results are consistent with the ex situ data as well as showing the sensitivity of SAXS to sol gel reactions occurring on the order of minutes.

  6. Magic-angle-spinning NMR studies of acid sites in zeolite H-ZSM-5

    SciTech Connect

    Brunner, E.; Ernst, H.; Freude, D.; Froehlich, T.; Hunger, M.; Pfeifer, H. )

    1991-01-01

    {sup 1}H, {sup 13}C, {sup 27}Al, and {sup 29}Si magic-angle-spinning (MAS) NMR was used to elucidate the nature of the catalytic activity of zeolite H-ZSM-5. {sup 1}H MAS NMR of sealed samples after mild hydrothermal dealumination shows that the enhanced activity for n-hexane cracking is not due to an enhanced Bronstead acidity. The concentrations of the various OH groups and aluminous species suggest that the reason for the enhanced catalytic activity is the interaction of the n-hexane molecule with a bridging hydroxyl group and with extra-framework aluminium species, which give rise to the enhanced activity, cannot be easily removed from their positions, and are therefore immobilized by the zeolitic framework.

  7. Disentangling scalar coupling patterns by real-time SERF NMR.

    PubMed

    Gubensäk, Nina; Fabian, Walter M F; Zangger, Klaus

    2014-10-21

    Scalar coupling constants and signal splitting patterns in NMR spectra contain a wealth of short-range structural information. The extraction of these parameters from (1)H NMR spectra is often prohibited by simultaneous scalar coupling interactions with several other protons. Here we present a high-resolution NMR experiment where scalar coupling to only one selected signal is visible. All other couplings are removed from the spectrum. This real-time selectively refocused NMR experiment is achieved by spatially selective homonuclear broadband decoupling combined with selective refocusing during acquisition. It allows the unperturbed extraction of scalar coupling constants from the highly resolved acquisition dimension of NMR spectra.

  8. Introducing the gNMR Program in an Introductory NMR Spectrometry Course to Parallel Its Use by Spectroscopists

    ERIC Educational Resources Information Center

    Rummey, Jackie M.; Boyce, Mary C.

    2004-01-01

    An approach that is useful to any introductory nuclear magnetic resonance (NMR) spectroscopy course is developed. This approach to teaching NMR spectrometry includes spectral simulation along with the traditional elements of hands-on instrument use and structure elucidation to demonstrate the connection between simulating a spectrum and structure…

  9. Solid-State NMR Identification and Quantification of Newly Formed Aluminosilicate Phases in Weathered Kaolinite Systems

    SciTech Connect

    Crosson, Garry S.; Choi, Sunkyung; Chorover, Jon; Amistadi, Mary K.; O'Day, Peggy A.; Mueller, Karl T.

    2006-01-19

    The weathering of a specimen kaolinite clay was studied over the course of 369 d via solid-state 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and high-field 27Al MAS NMR. The chosen baseline solution conditions (0.05 mol kg-1 of Al, 2 mol kg-1 of Na+, 1 mol kg-1 of NO3 -, 1 mol kg-1 of OH-, and pH ~13.8) approximate those of solutions leaking from waste tanks at the Hanford Site in Richland, WA. Nonradioactive Cs and Sr cations were added to this synthetic tank waste leachate (STWL) solution at concentrations of 10-3, 10-4, and 10-5 molal (m) to represent their radionuclide counterparts. The transformations of silicon- and aluminum-containing solid phase species were monitored quantitatively by using NMR spectroscopy, with the resulting spectra directly reporting the influence of the initial Cs and Sr on formation and transformation of the neo-formed solids. At the lowest concentration of Cs and Sr employed (10-5 m in each cation) peaks consistent with the formation of zeolite-like minerals were detected via 29Si and 27Al MAS NMR as early as 33 d. At concentrations of 10-3 m in each cation, new silicon species are not detected until 93 d, although neophases containing four-coordinate aluminum were detectable at earlier reaction times via 27Al MAS NMR. At the highest magnetic field strengths employed in this NMR study, deconvolutions of resonances detected in the tetrahedral region of the 27Al MAS spectra yielded multiple components, indicating the existence of at least four new aluminum-containing phases. Two of these phases are identified as sodalite and cancrinite through comparison with diffuse-reflectance infrared (DRIFT) spectra and powder X-ray diffraction (XRD) results, while a third phase may correlate with a previously detected aluminum-rich chabazite phase. All measurable solid reaction products have been quantified via their 27Al MAS resonances acquired at high magnetic field strengths (17.6 T), and the quantitative

  10. NMR characterization of polymers: Review and update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NMR spectroscopy is a major technique for the characterization and analysis of polymers. A large number of methodologies have been developed in both the liquid and the solid state, and the literature has grown considerably (1-5). The field now covers a broad spectrum of activities, including polym...

  11. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  12. Local coordination and dynamics of a protic ammonium based ionic liquid immobilized in nano-porous silica micro-particles probed by Raman and NMR spectroscopy.

    PubMed

    Garaga, Mounesha N; Persson, Michael; Yaghini, Negin; Martinelli, Anna

    2016-03-01

    Room temperature ionic liquids confined in a solid material, for example, nano-porous silica, are particularly propitious for energy related applications. The aim of this study is to probe the molecular interactions established between the protic ionic liquid diethylmethylammonium methanesulfonate (DEMA-OMs) and silica, where the latter consists of nano-porous micro-particles with pores in the size range of 10 nm. The changes in the local coordination and transport properties induced by the nano-confinement of the ionic liquid are investigated by a combination of Raman and solid-state NMR spectroscopy. In particular, one-dimensional (1D) (1)H and (29)Si and two-dimensional (2D) (29)Si{(1)H} HETOCR solid-state NMR are combined to identify the sites of interaction at the silica-ionic liquid interface. Pulsed field gradient (PFG) NMR experiments are performed to estimate the self-diffusion of both bulk and nano-confined DEMA-OMs. Complementary information on the overall coordination and interaction scheme is achieved by Raman spectroscopy. All these advanced experimental techniques are revealed to be crucial to differentiate between ionic liquid molecules residing in the inter- or intra-particle domains.

  13. Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation.

    PubMed

    Cuny, Jérôme; Xie, Yu; Pickard, Chris J; Hassanali, Ali A

    2016-02-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental tools to probe the local atomic order of a wide range of solid-state compounds. However, due to the complexity of the related spectra, in particular for amorphous materials, their interpretation in terms of structural information is often challenging. These difficulties can be overcome by combining molecular dynamics simulations to generate realistic structural models with an ab initio evaluation of the corresponding chemical shift and quadrupolar coupling tensors. However, due to computational constraints, this approach is limited to relatively small system sizes which, for amorphous materials, prevents an adequate statistical sampling of the distribution of the local environments that is required to quantitatively describe the system. In this work, we present an approach to efficiently and accurately predict the NMR parameters of very large systems. This is achieved by using a high-dimensional neural-network representation of NMR parameters that are calculated using an ab initio formalism. To illustrate the potential of this approach, we applied this neural-network NMR (NN-NMR) method on the (17)O and (29)Si quadrupolar coupling and chemical shift parameters of various crystalline silica polymorphs and silica glasses. This approach is, in principal, general and has the potential to be applied to predict the NMR properties of various materials. PMID:26730889

  14. Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation.

    PubMed

    Cuny, Jérôme; Xie, Yu; Pickard, Chris J; Hassanali, Ali A

    2016-02-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental tools to probe the local atomic order of a wide range of solid-state compounds. However, due to the complexity of the related spectra, in particular for amorphous materials, their interpretation in terms of structural information is often challenging. These difficulties can be overcome by combining molecular dynamics simulations to generate realistic structural models with an ab initio evaluation of the corresponding chemical shift and quadrupolar coupling tensors. However, due to computational constraints, this approach is limited to relatively small system sizes which, for amorphous materials, prevents an adequate statistical sampling of the distribution of the local environments that is required to quantitatively describe the system. In this work, we present an approach to efficiently and accurately predict the NMR parameters of very large systems. This is achieved by using a high-dimensional neural-network representation of NMR parameters that are calculated using an ab initio formalism. To illustrate the potential of this approach, we applied this neural-network NMR (NN-NMR) method on the (17)O and (29)Si quadrupolar coupling and chemical shift parameters of various crystalline silica polymorphs and silica glasses. This approach is, in principal, general and has the potential to be applied to predict the NMR properties of various materials.

  15. NMR of fd coat protein.

    PubMed

    Cross, T A; Opella, S J

    1979-01-01

    The conformations of the major coat protein of a filamentous bacteriophage can be described by nuclear magnetic resonance spectroscopy of the protein and the virus. The NMR experiments involve detection of the 13C and 1H nuclei of the coat protein. Both the 13C and 1H nuclear magnetic resonance (NMR) spectra show that regions of the polypeptide chain have substantially more motion than a typical globular protein. The fd coat protein was purified by gel chromatography of the SDA solubilized virus. Natural abundance 13C NMR spectra at 38 MHz resolve all of the nonprotonated aromatic carbons from the three phenylalanines, two tyrosines, and one tryptophan of the coat protein. The alpha carbons of the coat protein show at least two different classes of relaxation behavior, indicative of substantial variation in the motion of the backbone carbons in contrast to the rigidity of the alpha carbons of globular proteins. The 1H spectrum at 360 MHz shows all of the aromatic carbons and many of the amide protons. Titration of a 1H spectra gives the pKas for the tyrosines.

  16. MAS-NMR investigations of the crystallization behaviour of lithium aluminum silicate (LAS) glasses containing P{sub 2}O{sub 5} and TiO{sub 2} nucleants

    SciTech Connect

    Ananthanarayanan, A.; Kothiyal, G.P.; Montagne, L.; Revel, B.

    2010-06-15

    Lithium aluminum silicate (LAS) glass of composition (mol%) 20.4Li{sub 2}O-4.0Al{sub 2}O{sub 3}-68.6SiO{sub 2}-3.0K{sub 2}O-2.6B{sub 2}O{sub 3}-0.5P{sub 2}O{sub 5}-0.9TiO{sub 2} was prepared by melt quenching. The glass was then nucleated and crystallized based on differential thermal analysis (DTA) data and was characterized by {sup 29}Si, {sup 31}P, {sup 11}B and {sup 27}Al MAS-NMR. XRD and {sup 29}Si NMR showed that lithium metasilicate (Li{sub 2}SiO{sub 3}) is the first phase to c form followed by cristobalite (SiO{sub 2}) and lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}). {sup 29}Si MAS-NMR revealed a change in the network structure already for the glasses nucleated at 550 {sup o}C. Since crystalline Li{sub 3}PO{sub 4}, as observed by {sup 31}P MAS-NMR, forms concurrently with the silicate phases, we conclude that crystalline Li{sub 3}PO{sub 4} does not act as a nucleating agent for lithium silicate phases. Moreover, {sup 31}P NMR indicates the formation of M-PO{sub 4} (M=B, Al or Ti) complexes. The presence of BO{sub 3} and BO{sub 4} structural units in all the glass/glass-ceramic samples is revealed through {sup 11}B MAS-NMR. B remains in the residual glass and the crystallization of silicate phases causes a reduction in the number of alkali ions available for charge compensation. As a result, the number of trigonally coordinated B (BO{sub 3}) increases at the expense of tetrahedrally coordinated B (BO{sub 4}). The {sup 27}Al MAS-NMR spectra indicate the presence of tetrahedrally coordinated Al species, which are only slightly perturbed by the crystallization. - Graphical abstract: {sup 11}B MAS-NMR spectra of LAS glass heat treated at different temperatures, showing the evolution of the residual glass matrix during the crystallization treatment. High-field (18.8 T) NMR enables us to record high resolution spectra, from which the glass network modifications could be related to the formation of intermediate lithium silicate crystalline phases.

  17. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear.

  18. NMR phase noise in bitter magnets.

    PubMed

    Sigmund, E E; Calder, E S; Thomas, G W; Mitrović, V F; Bachman, H N; Halperin, W P; Kuhns, P L; Reyes, A P

    2001-02-01

    We have studied the temporal instability of a high field resistive Bitter magnet through nuclear magnetic resonance (NMR). This instability leads to transverse spin decoherence in repeated and accumulated NMR experiments as is normally performed during signal averaging. We demonstrate this effect via Hahn echo and Carr--Purcell--Meiboom--Gill (CPMG) transverse relaxation experiments in a 23-T resistive magnet. Quantitative analysis was found to be consistent with separate measurements of the magnetic field frequency fluctuation spectrum, as well as with independent NMR experiments performed in a magnetic field with a controlled instability. Finally, the CPMG sequence with short pulse delays is shown to be successful in recovering the intrinsic spin--spin relaxation even in the presence of magnetic field temporal instability.

  19. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  20. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  1. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  2. NMR studies of metalloproteins.

    PubMed

    Li, Hongyan; Sun, Hongzhe

    2012-01-01

    Metalloproteins represent a large share of the proteomes, with the intrinsic metal ions providing catalytic, regulatory, and structural roles critical to protein functions. Structural characterization of metalloproteins and identification of metal coordination features including numbers and types of ligands and metal-ligand geometry, and mapping the structural and dynamic changes upon metal binding are significant for understanding biological functions of metalloproteins. NMR spectroscopy has long been used as an invaluable tool for structure and dynamic studies of macromolecules. Here we focus on the application of NMR spectroscopy in characterization of metalloproteins, including structural studies and identification of metal coordination spheres by hetero-/homo-nuclear metal NMR spectroscopy. Paramagnetic NMR as well as (13)C directly detected protonless NMR spectroscopy will also be addressed for application to paramagnetic metalloproteins. Moreover, these techniques offer great potential for studies of other non-metal binding macromolecules.

  3. Elemental and structural analysis of silicon forms in herbal drugs using silicon-29 MAS NMR and WD-XRF spectroscopic methods.

    PubMed

    Pajchel, L; Nykiel, P; Kolodziejski, W

    2011-12-01

    The objective of this work was to study concentration of silicon and its structural forms present in herbal drugs. Equisetum arvense and Urtica dioica L. from teapot bags, dietary supplements (tablets and capsules) containing those herbs, dry extract obtained from a teapot bag of E. arvense, and samples of the latter herb harvested in wild habitat over four months were studied using wavelength dispersive X-ray spectroscopy (WD-XRF) and high-resolution solid-state (29)Si NMR. The highest concentration of Si, ca. 27mg/g, was found in the herbal material from the teapot bags containing E. arvense. The Si content in natural E. arvense (whole plants) increased from May to August by ca. 7mg/g, reaching value 26mg/g. Three different silicon forms were detected in the studied herbal samples: Si(OSi)4 (Q(4)), Si(OH)(OSi)3 (Q(3)) and Si(OH)2(OSi)2 (Q(2)). Those sites were populated in E. arvense in the following order: Q(4)≫Q(3)>Q(2). A dramatic, ca. 50-fold decrease of the Si concentration during the infusion process was observed. The infusion process and the subsequent drying procedure augmented population of the Q(4) sites at the cost of the Q(2) sites. The WD-XRF and (29)Si NMR methods occurred useful and complementary in the study of herbal materials.

  4. NMR methods in combinatorial chemistry.

    PubMed

    Shapiro, M J; Wareing, J R

    1998-06-01

    The use of NMR spectroscopy in combinatorial chemistry has provided a versatile tool for monitoring combinatorial chemistry reactions and for assessing ligand-receptor interactions. The application of magic angle spinning NMR is widespread and has allowed structure determination to be performed on compounds attached to solid supports. A variety of two-dimensional NMR techniques have been applied to enhance the usability of the magic angle spinning NMR data. New developments for solution NMR analysis include high performance liquid chromatography, NMR, mass spectroscopy and flow NMR. NMR based methods currently being investigated may prove valuable as compound screening tools.

  5. Molecular ordering of mixed surfactants in mesoporous silicas: A solid-state NMR study

    SciTech Connect

    Kobayashi, Takeshi; Mao, Kanmi; Wang, Shy-Guey; Lin, Victor S.-Y.; Pruski, Marek

    2011-02-17

    The use of mixed surfactants in the synthesis of mesoporous silica nanoparticles (MSNs) is of importance in the context of adjusting pore structures, sizes and morphologies. In the present study, the arrangement of molecules in micelles produced from a mixture of two surfactants, cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPB) was detailed by solid-state NMR spectroscopy. Proximities of methyl protons in the trimethylammonium headgroup of CTAB and protons in the pyridinium headgroup of CPB were observed under fast magic angle spinning (MAS) by {sup 1}H-{sup 1}H double quantum (DQ) MAS NMR and NOESY. This result suggested that CTAB and CPB co-exist in the pores without forming significant monocomponent domain structures. {sup 1}H-{sup 29}Si heteronuclear correlation (HETCOR) NMR showed that protons in the headgroups of CTAB are in closer proximity to the silica surface than those in the CPB headgroups. The structural information obtained in this investigation leads to better understanding of the mechanisms of self-assembly and their role in determining the structure and morphology of mesoporous materials.

  6. Spectroscopy of the {sup 29}Si({ital p},{gamma}) reaction for {ital E}{sub {ital p}}=1.75{endash}2.51 MeV

    SciTech Connect

    Wallace, P.M.; Bilpuch, E.G.; Bybee, C.R.; Mitchell, G.E.; Moore, E.F.; Shriner, J.D.; Shriner, J.F. Jr.; Vavrina, G.A.; Westerfeldt, C.R. ||

    1996-12-01

    The {sup 29}Si({ital p},{gamma}) reaction has been studied for 30 resonances in the range {ital E}{sub {ital p}}=1.75{endash}2.51 MeV. Branching ratios have been measured for 28 of these resonances. The separation energy {ital S}{sub {ital p}} for {sup 30}P has been determined to be 5594.5{plus_minus}0.5 keV. Improved spin, parity, and isospin assignments have been made to a number of the resonant states. A new level has been identified in {sup 30}P at {ital E}{sub {ital x}}=6006 keV, and its {gamma}-ray branching ratios have been measured. {copyright} {ital 1996 The American Physical Society.}

  7. Molecular conformational changes in articular cartilage using NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Barone, Justin; Schmidt, Walter

    2004-03-01

    NMR spectroscopy is used to study the conformational changes of the collagen and glycosaminoglycan molecules in bovine articular cartilage. Molecular conformation will change with the charge on each molecule. The charge on each molecule varies spatially throughout the cartilage. For a given point in space, the charge on each molecule can be screened by placing the cartilage in an increasingly ionic environment. The conformational changes are noted through changes in the chemical shifts in the NMR spectrum as a function of salt concentration.

  8. Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy.

    PubMed

    Stintzing, Florian C; Conrad, Jürgen; Klaiber, Iris; Beifuss, Uwe; Carle, Reinhold

    2004-02-01

    Four betacyanin pigments were analysed by LC NMR and subjected to extensive NMR characterisation after isolation. Previously, low pH values were applied for NMR investigations of betalains resulting in rapid degradation of the purified substances thus preventing extensive NMR studies. Consequently, up to now only one single (13)C NMR spectrum of a betalain pigment, namely that of neobetanin (=14,15-dehydrobetanin), was available. Because of its sufficient stability under highly acidic conditions otherwise detrimental for betacyanins, this pigment remained an exemption. Since betalains are most stable in the pH range of 5-7, a new solvent system has been developed allowing improved data acquisition through improved pigment stability at near neutral pH. Thus, not only (1)H, but for the first time also partial (13)C data of betanin, isobetanin, phyllocactin and hylocerenin isolated from red-purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose, Cactaceae] could be indirectly obtained by gHSQC- and gHMQC-NMR experiments.

  9. High resolution NMR measurements using a 400MHz NMR with an (RE)Ba2Cu3O7-x high-temperature superconducting inner coil: Towards a compact super-high-field NMR.

    PubMed

    Piao, R; Iguchi, S; Hamada, M; Matsumoto, S; Suematsu, H; Saito, A T; Li, J; Nakagome, H; Takao, T; Takahashi, M; Maeda, H; Yanagisawa, Y

    2016-02-01

    Use of high-temperature superconducting (HTS) inner coils in combination with conventional low-temperature superconducting (LTS) outer coils for an NMR magnet, i.e. a LTS/HTS NMR magnet, is a suitable option to realize a high-resolution NMR spectrometer with operating frequency >1GHz. From the standpoint of creating a compact magnet, (RE: Rare earth) Ba2Cu3O7-x (REBCO) HTS inner coils which can tolerate a strong hoop stress caused by a Lorentz force are preferred. However, in our previous work on a first-generation 400MHz LTS/REBCO NMR magnet, the NMR resolution and sensitivity were about ten times worse than that of a conventional LTS NMR magnet. The result was caused by a large field inhomogeneity in the REBCO coil itself and the shielding effect of a screening current induced in that coil. In the present paper, we describe the operation of a modified 400MHz LTS/REBCO NMR magnet with an advanced field compensation technology using a combination of novel ferromagnetic shimming and an appropriate procedure for NMR spectrum line shape optimization. We succeeded in obtaining a good NMR line shape and 2D NOESY spectrum for a lysozyme aqueous sample. We believe that this technology is indispensable for the realization of a compact super-high-field high-resolution NMR. PMID:26778351

  10. Pure shift NMR.

    PubMed

    Zangger, Klaus

    2015-04-01

    Although scalar-coupling provides important structural information, the resulting signal splittings significantly reduce the resolution of NMR spectra. Limited resolution is a particular problem in proton NMR experiments, resulting in part from the limited proton chemical shift range (∼10 ppm) but even more from the splittings due to scalar coupling to nearby protons. "Pure shift" NMR spectroscopy (also known as broadband homonuclear decoupling) has been developed for disentangling overlapped proton NMR spectra. The resulting spectra are considerably simplified as they consist of single lines, reminiscent of proton-decoupled C-13 spectra at natural abundance, with no multiplet structure. The different approaches to obtaining pure shift spectra are reviewed here and several applications presented. Pure shift spectra are especially useful for highly overlapped proton spectra, as found for example in reaction mixtures, natural products and biomacromolecules.

  11. Explaining the effects of T-O-T bond angles on NMR chemical shifts in aluminosilicates: A natural bonding orbital (NBO) and natural chemical shielding (NCS) analysis.

    PubMed

    Liu, Yun; Nekvasil, Hanna; Tossell, John

    2005-04-01

    It has long been recognized that the 29Si and 27Al NMR chemical shifts for aluminosilicate crystals and glasses correlate to some extent with the T-O-T bond angle (where T is the tetrahedral atom Si or Al). With increasing T-O-T bond angle, the 29Si and 27Al NMR shieldings increase and the shifts thus become more negative. This result has been demonstrated both experimentally and through quantum computations. However, no simple qualitative explanation has ever been given for what appears to be a simple qualitative trend. We here provide such an explanation based upon quantum calculations. We have used high level ab initio NMR shielding calculations, natural bonding orbital (NBO) analysis, and natural chemical shielding (NCS) analysis, performed on model clusters with different T-O-T angles, to obtain an explanation for this trend from an electronic structure point of view. On the basis of both NBO populations and the NCS analysis, the following factors account for the correlation of shift with T-O-T angle: (1) a slight increase in population of the Al-O and Si-O bond orbital electrons and a dramatic change in bond orbital shapes and hybridization (with more s character and less bond bending as the T-O-T angle increases), (2) a movement of one of the lone pairs on O toward the vicinity of the Si or Al as the T-O-T angle increases, and (3) a change in the shielding contribution from the core 2p electrons of Al or Si. The changes in the 17O NMR shift with T-O-T angle are more complex, and the shifts are also more strongly influenced by distant atoms, but some systematic changes in O lone pair contributions can be identified.

  12. Investigations of the structure and "interfacial" surface chemistry of Bioglass (RTM) materials by solid-state multinuclear NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Gautam

    Bioactive materials such as BioglassRTM 45S5 (45% SiO 2, 24.5% CaO, 24.5% Na2O, and 6% P2O5 by weight) are sodium-phosphosilicate glasses containing independent three-dimensional silicate and phosphate networks and Na+ and Ca2+ ions as modifying cations. Due to their bioactivity, these materials are currently used as implants and for other surgical and clinical applications. The bioactivity of BioglassesRTM is due to their unique capability to form chemical bonds to tissues through an octacalciumphosphate (OCP)- and/or hydroxyapatite-like (HA) "interfacial" matrix. The formation of OCP and/or HA is preceded by the formation of a silica-rich surface layer and the subsequent growth of an amorphous calcium phosphate (a-CP) layer. Structural characterization of a series of commercial and synthesized Bioglass materials 45S5 52S, 55S, 60S, and synthesized 17O-labelled "Bioglass materials 45S, 52S, 55S and 60S" have been obtained using solid-state single-pulse magic-angle spinning (SP/MAS) 17O, 23Na, 29Si and 31P NMR. The 17O NMR isotropic chemical shifts and estimates of the quadrupole coupling constants (Cq) [at fixed asymmetry parameter ( hQ ) values of zero] have been obtained from solid-state spin-echo 17O SP/MAS NMR spectra of 17O-labelled "Bioglasses". The simulation results of these spectra reveal the presence of both bridging-oxygens (BO, i.e. ≡ Si-17OSi ≡ ) and non-bridging oxygens (NBO, i.e. ≡ Si-17O-Na+/Ca2+ ) in the silicate networks in these materials. 17O NMR spectra of these Bioglass materials do not show any direct evidence for the presence of BO and NBO atoms in the phosphate units; however, they are expected to be present in small amounts. In vitro reactions of BioglassRTM 45S5, 60S and 77S powders have been used to study the "interfacial" surface chemistry of these materials in simulated body-fluid (SBF, Kyoto or K9 solution) and/or 17O-enriched tris-buffer solution. 29Si and 31P SP/MAS NMR have been used to identify and quantify the extent of

  13. RUBIDIUM, a program for computer-aided assignment of two-dimensional NMR spectra of polypeptides.

    PubMed

    Yu, C; Hwang, J F; Chen, T B; Soo, V W

    1992-01-01

    Taking advantage of the rule-based expert system technology, a program named RUBIDIUM (Rule-Based Identification In 2D NMR Spectrum) was developed to accomplish the automatic 1H NMR resonance assignments of polypeptides. Besides noise elimination and peak selection capabilities, RUBIDIUM detects the cross-peak patterns of amino acid residues in the COSY spectrum, assigning these patterns to amino acid types, performing sequential assignments using combined COSY/NOESY spectra, and finally, achieving the total assignment of the 1H NMR spectrum.

  14. beta-Ureidopropionase deficiency: a novel inborn error of metabolism discovered using NMR spectroscopy on urine.

    PubMed

    Moolenaar, S H; Göhlich-Ratmann, G; Engelke, U F; Spraul, M; Humpfer, E; Dvortsak, P; Voit, T; Hoffmann, G F; Bräutigam, C; van Kuilenburg, A B; van Gennip, A; Vreken, P; Wevers, R A

    2001-11-01

    In this work, NMR investigations that led to the discovery of a new inborn error of metabolism, beta-ureidopropionase (UP) deficiency, are reported. 1D (1)H-NMR experiments were performed using a patient's urine. 3-Ureidopropionic acid was observed in elevated concentrations in the urine spectrum. A 1D (1)H-(1)H total correlation spectroscopy (TOCSY) and two heteronuclear 2D NMR techniques (heteronuclear multiple bond correlation (HMBC) and heteronuclear single-quantum correlation (HSQC)) were used to identify the molecular structure of the compound that caused an unknown doublet resonance at 1.13 ppm. Combining the information from the various NMR spectra, this resonance could be assigned to 3-ureidoisobutyric acid. These observations suggested a deficiency of UP. With 1D (1)H-NMR spectroscopy, UP deficiency can be easily diagnosed. The (1)H-NMR spectrum can also be used to diagnose patients suffering from other inborn errors of metabolism in the pyrimidine degradation pathway.

  15. Zellweger Spectrum

    MedlinePlus

    ... the Zellweger spectrum result from defects in the assembly of a cellular structure called the peroxisome, and ... Zellweger spectrum are caused by defects in the assembly of the peroxisome. There are at least 12 ...

  16. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  17. MAS-NMR studies of lithium aluminum silicate (LAS) glasses and glass-ceramics having different Li{sub 2}O/Al{sub 2}O{sub 3} ratio

    SciTech Connect

    Ananthanarayanan, A.; Kothiyal, G.P.; Montagne, L.; Revel, B.

    2010-01-15

    Emergence of phases in lithium aluminum silicate (LAS) glasses of composition (wt%) xLi{sub 2}O-71.7SiO{sub 2}-(17.7-x)Al{sub 2}O{sub 3}-4.9K{sub 2}O-3.2B{sub 2}O{sub 3}-2.5P{sub 2}O{sub 5} (5.1<=x<=12.6) upon heat treatment were studied. {sup 29}Si, {sup 27}Al, {sup 31}P and {sup 11}B MAS-NMR were employed for structural characterization of both LAS glasses and glass-ceramics. In glass samples, Al is found in tetrahedral coordination, while P exists mainly in the form of orthophosphate units. B exists as BO{sub 3} and BO{sub 4} units. {sup 27}Al NMR spectra show no change with crystallization, ruling out the presence of any Al containing phase. Contrary to X-ray diffraction studies carried out, {sup 11}B (high field 18.8 T) and {sup 29}Si NMR spectra clearly indicate the unexpected crystallization of a borosilicate phase (Li,K)BSi{sub 2}O{sub 6}, whose structure is similar to the aluminosilicate virgilite. Also, lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), lithium metasilicate (Li{sub 2}SiO{sub 3}) and quartz (SiO{sub 2}) were identified in the {sup 29}Si NMR spectra of the glass-ceramics. {sup 31}P NMR spectra of the glass-ceramics revealed the presence of Li{sub 3}PO{sub 4} and a mixed phase (Li,K){sub 3}PO{sub 4} at low alkali concentrations. - Graphical Abstract: The {sup 11}B MAS-NMR spectra of lithium aluminum silicate (LAS) glass-ceramics indicating the formation of Li/KBSiO{sub 6} phase. This phase is isostructural with virgilite and cannot be distinguished in X-ray diffractograms.

  18. The abundance of 28Si32S, 29Si32S, 28Si34S, and 30Si32S in the inner layers of the envelope of IRC+10216

    NASA Astrophysics Data System (ADS)

    Fonfría, J. P.; Cernicharo, J.; Richter, M. J.; Fernández-López, M.; Velilla Prieto, L.; Lacy, J. H.

    2015-10-01

    We present high spectral resolution mid-IR observations of SiS towards the C-rich AGB star IRC+10216 carried out with the Texas Echelon-cross-Echelle Spectrograph mounted on the NASA Infrared Telescope Facility. We have identified 204 ro-vibrational lines of 28Si32S, 26 of 29Si32S, 20 of 28Si34S, and 15 of 30Si32S in the frequency range 720-790 cm-1. These lines belong to bands v = 1-0, 2-1, 3-2, 4-3, and 5-4, and involve rotational levels with Jlow ≲ 90. About 30 per cent of these lines are unblended or weakly blended and can be partially or entirely fitted with a code developed to model the mid-IR emission of a spherically symmetric circumstellar envelope composed of expanding gas and dust. The observed lines trace the envelope at distances to the star ≲35R⋆ (≃0.7 arcsec). The fits are compatible with an expansion velocity of 1 + 2.5(r/R⋆ - 1) km s-1 between 1 and 5R⋆, 11 km s-1 between 5 and 20R⋆, and 14.5 km s-1 outwards. The derived abundance profile of 28Si32S with respect to H2 is 4.9 × 10-6 between the stellar photosphere and 5R⋆, decreasing linearly down to 1.6 × 10-6 at 20R⋆ and to 1.3 × 10-6 at 50R⋆. 28Si32S seems to be rotationally under local thermodynamic equilibrium (LTE) in the region of the envelope probed with our observations and vibrationally out of LTE in most of it. There is a red-shifted emission excess in the 28Si32S lines of band v = 1-0 that cannot be found in the lines of bands v = 2-1, 3-2, 4-3, and 5-4. This excess could be explained by an enhancement of the vibrational temperature around 20R⋆ behind the star. The derived isotopic ratios 28Si/29Si, and 32S/34S are 17 and 14, compatible with previous estimates.

  19. The abundance of 28Si32S, 29Si32S, 28Si34S, and 30Si32S in the inner layers of the envelope of IRC+10216

    PubMed Central

    Fonfría, J. P.; Cernicharo, J.; Richter, M. J.; Fernández-López, M.; Prieto, L. Velilla; Lacy, J. H.

    2016-01-01

    We present high spectral resolution mid-IR observations of SiS towards the C-rich AGB star IRC+10216 carried out with the Texas Echelon-cross-Echelle Spectrograph mounted on the NASA Infrared Telescope Facility. We have identified 204 ro-vibrational lines of 28Si32S, 26 of 29Si32S, 20 of 28Si34S, and 15 of 30Si32S in the frequency range 720 – 790 cm−1. These lines belong to bands v = 1 – 0, 2 – 1, 3 – 2, 4–3, and 5–4, and involve rotational levels with Jlow ≲ 90. About 30 per cent of these lines are unblended or weakly blended and can be partially or entirely fitted with a code developed to model the mid-IR emission of a spherically symmetric circumstellar envelope composed of expanding gas and dust. The observed lines trace the envelope at distances to the star ≲ 35R⋆(≃ 0″.7). The fits are compatible with an expansion velocity of 1+2.5(r/R⋆ −1) km s−1 between 1 and 5R⋆, 11 km s−1 between 5 and 20R⋆, and 14.5 km s−1 outwards. The derived abundance profile of 28Si32S with respect to H2 is 4.9 × 10−6 between the stellar photosphere and 5R⋆, decreasing linearly down to 1.6 × 10−6 at 20R⋆ and to 1.3 × 10−6 at 50R⋆. 28Si32S seems to be rotationally under LTE in the region of the envelope probed with our observations and vibrationally out of LTE in most of it. There is a red-shifted emission excess in the 28Si32S lines of band v = 1 – 0 that cannot be found in the lines of bands v = 2 – 1, 3 – 2, 4 – 3, and 5 – 4. This excess could be explained by an enhancement of the vibrational temperature around 20R⋆ behind the star. The derived isotopic ratios 28Si/29Si, and 32S/34S are 17 and 14, compatible with previous estimates. PMID:26997679

  20. 2D multinuclear NMR, hyperpolarized xenon and gas storage in organosilica nanochannels with crystalline order in the walls.

    PubMed

    Comotti, Angiolina; Bracco, Silvia; Valsesia, Patrizia; Ferretti, Lisa; Sozzani, Piero

    2007-07-11

    The combination of 2D 1H-13C and 1H-29Si solid state NMR, hyperpolarized 129Xe NMR, synchrotron X-ray diffraction, together with adsorption measurements of vapors and gases for environmental and energetic relevance, was used to investigate the structure and the properties of periodic mesoporous hybrid p-phenylenesilica endowed with crystalline order in the walls. The interplay of 1H, 13C, and 29Si in the 2D heteronuclear correlation NMR measurements, together with the application of Lee-Goldburg homonuclear decoupling, revealed the spatial relationships (<5 angstroms) among various spin-active nuclei of the framework. Indeed, the through-space correlations in the 2D experiments evidenced, for the first time, the interfaces of the matrix walls with guest molecules confined in the nanochannels. Organic-inorganic and organic-organic heterogeneous interfaces between the matrix and the guests were identified. The open-pore structure and the easy accessibility of the nanochannels to the gas phase have been demonstrated by highly sensitive hyperpolarized (HP) xenon NMR, under extreme xenon dilution. Two-dimensional exchange experiments showed the exchange time to be as short as 2 ms. Through variable-temperature HP 129Xe NMR experiments we were able to achieve an unprecedented description of the nanochannel space and surface, a physisorption energy of 13.9 kJ mol-1, and the chemical shift value of xenon probing the internal surfaces. These results prompted us to measure the high storage capacity of the matrix towards benzene, hexafluorobenzene, ethanol, and carbon dioxide. Both host-guest, CH...pi, and OH...pi interactions contribute to the stabilization of the aromatic guests (benzene and hexafluorobenzene) on the extended surfaces. The full carbon dioxide loading in the channels could be detected by synchrotron radiation X-ray diffraction experiments. The selective adsorption of carbon dioxide (ca. 90 wt %) vs that of oxygen and hydrogen, together with the permanent

  1. NMR/MS Translator for the Enhanced Simultaneous Analysis of Metabolomics Mixtures by NMR Spectroscopy and Mass Spectrometry: Application to Human Urine.

    PubMed

    Bingol, Kerem; Brüschweiler, Rafael

    2015-06-01

    A novel metabolite identification strategy is presented for the combined NMR/MS analysis of complex metabolite mixtures. The approach first identifies metabolite candidates from 1D or 2D NMR spectra by NMR database query, which is followed by the determination of the masses (m/z) of their possible ions, adducts, fragments, and characteristic isotope distributions. The expected m/z ratios are then compared with the MS(1) spectrum for the direct assignment of those signals of the mass spectrum that contain information about the same metabolites as the NMR spectra. In this way, the mass spectrum can be assigned with very high confidence, and it provides at the same time validation of the NMR-derived metabolites. The method was first demonstrated on a model mixture, and it was then applied to human urine collected from a pool of healthy individuals. A number of metabolites could be detected that had not been reported previously, further extending the list of known urine metabolites. The new analysis approach, which is termed NMR/MS Translator, is fully automated and takes only a few seconds on a computer workstation. NMR/MS Translator synergistically uses the power of NMR and MS, enhancing the accuracy and efficiency of the identification of those metabolites compiled in databases. PMID:25881480

  2. Dual Species NMR Oscillator

    NASA Astrophysics Data System (ADS)

    Weber, Joshua; Korver, Anna; Thrasher, Daniel; Walker, Thad

    2016-05-01

    We present progress towards a dual species nuclear magnetic oscillator using synchronous spin exchange optical pumping. By applying the bias field as a sequence of alkali 2 π pulses, we generate alkali polarization transverse to the bias field. The alkali polarization is then modulated at the noble gas resonance so that through spin exchange collisions the noble gas becomes polarized. This novel method of NMR suppresses the alkali field frequency shift by at least a factor of 2500 as compared to longitudinal NMR. We will present details of the apparatus and measurements of dual species co-magnetometry using this method. Research supported by the NSF and Northrop-Grumman Corp.

  3. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  4. Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory

    ERIC Educational Resources Information Center

    Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.

    2015-01-01

    A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…

  5. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  6. SYNCHROTRON X-RAY MICROTOMOGRAPHY, ELECTRON PROBE MICROANALYSIS, AND NMR OF TOLUENE WASTE IN CEMENT.

    SciTech Connect

    BUTLER,L.G.

    1999-07-22

    Synchrotron X-ray microtomography shows vesicular structures for toluene/cement mixtures, prepared with 1.22 to 3.58 wt% toluene. Three-dimensional imaging of the cured samples shows spherical vesicles, with diameters ranging from 20 to 250 {micro}m; a search with EPMA for vesicles in the range of 1-20 {micro}m proved negative. However, the total vesicle volume, as computed from the microtomography images, accounts for less than 10% of initial toluene. Since the cements were cured in sealed bottles, the larger portion of toluene must be dispersed within the cement matrix. Evidence for toluene in the cement matrix comes from {sup 29}Si MAS NMR spectroscopy, which shows a reduction in chain silicates with added toluene. Also, {sup 2}H NMR of d{sub 8}-toluene/cement samples shows high mobility for all, toluene and thus no toluene/cement binding. A model that accounts for all observations follows: For loadings below about 3 wt%, most toluene is dispersed in the cement matrix, with a small fraction of the initial toluene phase separating from the cement paste and forming vesicular structures that are preserved in the cured cement. Furthermore, at loadings above 3 wt%, the abundance of vesicles formed during toluene/cement paste mixing leads to macroscopic phase separation (most toluene floats to the surface of the cement paste).

  7. Formalism for Hypercomplex Multidimensional NMR Employing Partial-Component Subsampling

    PubMed Central

    Schuyler, Adam D; Maciejewski, Mark W; Stern, Alan S; Hoch, Jeffrey C

    2012-01-01

    Multidimensional NMR spectroscopy typically employs phase-sensitive detection, which results in hypercomplex data (and spectra) when utilized in more than one dimension. Nonuniform sampling approaches have become commonplace in multidimensional NMR, enabling dramatic reductions in experiment time, increases in sensitivity and/or increases in resolution. In order to utilize nonuniform sampling optimally, it is necessary to characterize the relationship between the spectrum of a uniformly sampled data set and the spectrum of a subsampled data set. In this work we construct an algebra of hypercomplex numbers suitable for representing multidimensional NMR data along with partial-component nonuniform sampling (i.e. the hypercomplex components of data points are subsampled). This formalism leads to a modified DFT–convolution relationship involving a partial-component, hypercomplex point-spread function set. The framework presented here is essential for the continued development and appropriate characterization of partial-component nonuniform sampling. PMID:23246651

  8. Software-assisted serum metabolite quantification using NMR.

    PubMed

    Jung, Young-Sang; Hyeon, Jin-Seong; Hwang, Geum-Sook

    2016-08-31

    The goal of metabolomics is to analyze a whole metabolome under a given set of conditions, and accurate and reliable quantitation of metabolites is crucial. Absolute concentration is more valuable than relative concentration; however, the most commonly used method in NMR-based serum metabolic profiling, bin-based and full data point peak quantification, provides relative concentration levels of metabolites and are not reliable when metabolite peaks overlap in a spectrum. In this study, we present the software-assisted serum metabolite quantification (SASMeQ) method, which allows us to identify and quantify metabolites in NMR spectra using Chenomx software. This software uses the ERETIC2 utility from TopSpin to add a digitally synthesized peak to a spectrum. The SASMeQ method will advance NMR-based serum metabolic profiling by providing an accurate and reliable method for absolute quantification that is superior to bin-based quantification. PMID:27506360

  9. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  10. Accurate, Fully-Automated NMR Spectral Profiling for Metabolomics

    PubMed Central

    Ravanbakhsh, Siamak; Liu, Philip; Bjordahl, Trent C.; Mandal, Rupasri; Grant, Jason R.; Wilson, Michael; Eisner, Roman; Sinelnikov, Igor; Hu, Xiaoyu; Luchinat, Claudio; Greiner, Russell; Wishart, David S.

    2015-01-01

    Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites) that appear in a person’s biofluids, which means such diseases can often be readily detected from a person’s “metabolic profile"—i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR) spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person’s metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid), BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the “signatures” of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF), defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error), in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively—with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications

  11. Accurate, fully-automated NMR spectral profiling for metabolomics.

    PubMed

    Ravanbakhsh, Siamak; Liu, Philip; Bjorndahl, Trent C; Bjordahl, Trent C; Mandal, Rupasri; Grant, Jason R; Wilson, Michael; Eisner, Roman; Sinelnikov, Igor; Hu, Xiaoyu; Luchinat, Claudio; Greiner, Russell; Wishart, David S

    2015-01-01

    Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites) that appear in a person's biofluids, which means such diseases can often be readily detected from a person's "metabolic profile"-i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR) spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person's metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid), BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the "signatures" of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF), defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error), in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively-with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of NMR in

  12. Dilute RKKY model for NMR line broadening in the hidden-order state of URu2Si2

    NASA Astrophysics Data System (ADS)

    Walstedt, R. E.; Kambe, S.; Tokunaga, Y.; Sakai, H.

    2016-01-01

    A well-known analytic model for Lorentzian broadening of metallic NMR lines by dilute localized magnetic centers embedded in a lattice has been applied to the case of the twofold-symmetry magnetism in URu2Si2 reported by R. Okazaki et al. [Science 331, 439 (2011), 10.1126/science.1197358]. The observed Lorentzian spectra are accounted for with a simple formula giving the 29Si NMR linewidth in terms of the susceptibility of the magnetic-broadening centers and a Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling parameter. The concentration of such centers is estimated as c ˜0.01 . A numerical simulation of these effects confirms Lorentzian broadening with no measurable NMR shift and a width in reasonable agreement with the analytical model. The simulation shows further that domain effects on these spectra are largely absent. A four-site extended model of the broadening centers gives an estimate of the twofold susceptibility within a factor of 2 of the torque value of the susceptibility. Hypothetical superlattice effects are shown to be easily smoothed over by convolution with background Lorentzian broadening.

  13. Detection of Taurine in Biological Tissues by 33S NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Musio, Roberta; Sciacovelli, Oronzo

    2001-12-01

    The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.

  14. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  15. Live cell NMR.

    PubMed

    Freedberg, Darón I; Selenko, Philipp

    2014-01-01

    Ever since scientists realized that cells are the basic building blocks of all life, they have been developing tools to look inside them to reveal the architectures and mechanisms that define their biological functions. Whereas "looking into cells" is typically said in reference to optical microscopy, high-resolution in-cell and on-cell nuclear magnetic resonance (NMR) spectroscopy is a powerful method that offers exciting new possibilities for structural and functional studies in and on live cells. In contrast to conventional imaging techniques, in- and on-cell NMR methods do not provide spatial information on cellular biomolecules. Instead, they enable atomic-resolution insights into the native cell states of proteins, nucleic acids, glycans, and lipids. Here we review recent advances and developments in both fields and discuss emerging concepts that have been delineated with these methods.

  16. Imaging of complex NMR spectra.

    PubMed

    Harrison, C G; Adams, D F; Kramer, P B

    1985-01-01

    The Point Spread Function (PSF) in NMR imaging is the result of both the line broadening due to magnet field inhomogeneity and the intrinsic spectrum of the nucleus at resonance. In the case of proton imaging, the line broadening dominates the small chemical shifts and the spectral lines are not resolved. This is not generally the case with other nuclei having strong chemical shifts and the PSF then has a complex structure. During imaging, the complex PSF is convolved with the spatial distribution of the nucleus at resonance and this leads to halo artifacts which are dependent on the imaging technique employed. The images due to the ensemble of spectral lines can be separated in principle by deconvolution of the data with the PSF before reconstruction. In the special case where the complex PSF is spatially independent, it can be obtained from the Free Induction Decay (FID) data produced in the absence of a spatially encoding gradient field. This technique has been successfully applied to in-vivo imaging of exogenous perfluorocarbon material. PMID:3988470

  17. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  18. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm). PMID:2266841

  19. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  20. A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol-gel biomaterials.

    PubMed

    Lin, Zhongjie; Jones, Julian R; Hanna, John V; Smith, Mark E

    2015-01-28

    Disordered sol-gel prepared calcium silicate biomaterials show significant, composition dependent ability to bond with bone. Bone bonding is attributed to rapid hydroxycarbonate apatite (HCA) formation on the glass surface after immersion in body fluid (or implantation). Atomic scale details of the development of the structure of (CaO)x(SiO2)1-x (x = 0.2, 0.3 and 0.5) under heat treatment and subsequent dissolution in simulated body fluid (SBF) are revealed through a multinuclear solid state NMR approach using one-dimensional (17)O, (29)Si, (31)P and (1)H. Central to this study is the combination of conventional static and magic angle spinning (MAS) and two-dimensional (2D) triple quantum (3Q) (17)O NMR experiments that can readily distinguish and quantify the bridging (BOs) and non-bridging (NBOs) oxygens in the silicate network. Although soluble calcium is present in the sol, the (17)O NMR results reveal that the sol-gel produced network structure is initially dominated by BOs after gelation, aging and drying (e.g. at 120 °C), indicating a nanoscale mixture of the calcium salt and a predominantly silicate network. Only once the calcium salt is decomposed at elevated temperatures do the Ca(2+) ions become available to break BO. Apatite forming ability in SBF depends strongly on the surface OH and calcium content. The presence of calcium aids HCA formation via promotion of surface hydration and the ready availability of Ca(2+) ions. (17)O NMR shows the rapid loss of NBOs charge balanced by calcium as it is leached into the SBF. The formation of nanocrystalline, partially ordered HCA can be detected via(31)P NMR. This data indicates the importance of achieving the right balance of BO/NBO for optimal biochemical response and network properties.

  1. A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol-gel biomaterials.

    PubMed

    Lin, Zhongjie; Jones, Julian R; Hanna, John V; Smith, Mark E

    2015-01-28

    Disordered sol-gel prepared calcium silicate biomaterials show significant, composition dependent ability to bond with bone. Bone bonding is attributed to rapid hydroxycarbonate apatite (HCA) formation on the glass surface after immersion in body fluid (or implantation). Atomic scale details of the development of the structure of (CaO)x(SiO2)1-x (x = 0.2, 0.3 and 0.5) under heat treatment and subsequent dissolution in simulated body fluid (SBF) are revealed through a multinuclear solid state NMR approach using one-dimensional (17)O, (29)Si, (31)P and (1)H. Central to this study is the combination of conventional static and magic angle spinning (MAS) and two-dimensional (2D) triple quantum (3Q) (17)O NMR experiments that can readily distinguish and quantify the bridging (BOs) and non-bridging (NBOs) oxygens in the silicate network. Although soluble calcium is present in the sol, the (17)O NMR results reveal that the sol-gel produced network structure is initially dominated by BOs after gelation, aging and drying (e.g. at 120 °C), indicating a nanoscale mixture of the calcium salt and a predominantly silicate network. Only once the calcium salt is decomposed at elevated temperatures do the Ca(2+) ions become available to break BO. Apatite forming ability in SBF depends strongly on the surface OH and calcium content. The presence of calcium aids HCA formation via promotion of surface hydration and the ready availability of Ca(2+) ions. (17)O NMR shows the rapid loss of NBOs charge balanced by calcium as it is leached into the SBF. The formation of nanocrystalline, partially ordered HCA can be detected via(31)P NMR. This data indicates the importance of achieving the right balance of BO/NBO for optimal biochemical response and network properties. PMID:25494341

  2. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  3. Quantification of phospholipids in excised tissues by NMR

    SciTech Connect

    Barany, M.; Venkatasubramanian, P.N.

    1986-05-01

    A fraction of the total phospholipids is visible in natural abundance /sup 13/C NMR spectra of diseased human muscle biopsies which have been extracted with isopentane to remove neutral fats. The authors have quantified the visible phospholipids by inserting into the muscle biopsies a dioxane capillary which was calibrated against phospholipid vesicles (with known phosphate concentration) prepared from rat muscle and liver, and against pure palmitic and linolenic acid. The phospholipid content of the human muscles was calculated from the integrated peak area of the dioxane capillary, from the area of the 30.5 and 128.5 ppm peaks in the /sup 13/C spectrum of the muscle, and from the dry weight of the muscle, determined on the same sample which was used for /sup 13/C spectroscopy. The same experiments were carried out with rat muscle, brain, liver, and kidney. Furthermore, after the /sup 13/C spectrum of the tissue was recorded excess halothane was added into the NMR tube, the sample incubated, then the /sup 13/C spectrum re-recorded for quantification of the total phospholipids. Thus, their procedure quantitates both the NMR visible and the total phospholipids of the tissue. The total phospholipid content determined by NMR was in good agreement with that determined by chemical analysis.

  4. The aluminium effect on the structure of silico-phosphate glasses studied by NMR and FTIR

    NASA Astrophysics Data System (ADS)

    Sitarz, Maciej; Fojud, Zbigniew; Olejniczak, Zbigniew

    2009-04-01

    Silico-phosphate glasses of NaCaPO 4-SiO 2 and NaCaPO 4-AlPO 4-SiO 2 system have been the subject of the presented investigations. Glasses of these systems are the basis for the preparation of glassy-crystalline biomaterials [R.D. Rawlings, Clin. Mater. 14 (1993) 155]. Detailed knowledge of the precursor glass structure is necessary for proper design of the glassy-crystalline biomaterials preparation procedure. Since there is no long-range ordering in glasses, spectroscopic methods which make it possible to study the short range ordering should be applied. MIR studies carried out in the work have allowed to establish that the glasses of the systems studied show domain composition [L.L. Hench, R.J. Splinter, T.K. Greenlee, W.C. Allen, J. Biol. Res. Symp. 2 (1971) 117; L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, J. Biol. Res. 5 (1972) 117]. Domain structure is close to that of the corresponding crystalline phases. It has been shown that even small amount of aluminium in the glass (5 mol.% of AlPO 4) significantly influences both, its texture (microscopic and EDX studies) and its structure (spectroscopic studies). 27Al NMR investigations have made it possible to establish unequivocally that aluminium occurs exclusively in tetrahedral coordination, i.e. it is involved in the formation of glass framework. Presence of aluminium results in significant changes in the [SiO 4] 4- and [PO 4] 3- tetrahedra environment which is reflected in 23Na, 31P and 29Si NMR spectra. Changes in the shapes and positions of the bands in the NMR spectra of glasses belonging to the NaCaPO 4-AlPO 4-SiO 2 system confirm great influence of aluminium on silico-phosphate glasses structure.

  5. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  6. Effect of pressure on the carbon speciation in silicate glasses and melts: Insights from multi-nuclear solid-state NMR

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Fei, Y.; Lee, S. K.

    2015-12-01

    The pressure-induced structural changes in carbon-bearing silicate glasses and melts is essential to understand the changes in melt properties in the Earth interior and yield atomistic insights into the deep carbon cycle. Despite the extensive pioneering studies on carbon-bearing silicate glasses, spectroscopic and scattering studies at high pressure above ~4 GPa is limited due to the lack of suitable experimental probes. Here, we report the pressure-induced structural changes around C, Si and Al in albite and Na-trisilicate (Na2O:SiO2=1:3, NS3) glasses with varying pressure up to 8 GPa, using 27Al, 29Si and 13C solid-state high-resolution NMR. 27Al 3QMAS NMR spectra for carbon-bearing albite glasses quenched from melts at high pressure up to 6 GPa show only [4]Al environments. The FWHM of [4]Al in albite glasses increases with increasing pressure, indicating that the overall densification of albite glasses at high pressure is accompanied by an increase in the topological disorder around Al. 29Si MAS NMR spectra for NS3 glasses at high pressure up to 8 GPa show the presence of highly coordinated Si, [5,6]Si, which contributes to an increases in the total configurational disorder in the NS3 glasses with pressure. 13C MAS NMR spectra for carbon-bearing albite glasses show the presence of dominant fraction of CO2, and minor amounts of CO32-, and CO. At least three distinct carbonate species, such as [4]Si(CO3)[4]Si, [4]Si(CO3)[4]Al, and CO32- were observed. Among those species, the increase in the fraction of [4]Si(CO3)[4]Al species is most prevalent. 13C MAS NMR spectra for NS3 glasses show the presence of carbonate species. The peaks position of the carbonate species shifts to lower frequency upon compression, suggesting the pressure-induced structural distortion of CO32- in the glasses above 6 GPa. Spin-lattice (T1) relaxation time for molecular CO2 in carbon-bearing albite glasses increases with increasing pressure. T1 relaxation time for CO2 species at 6 GPa is 3

  7. Heteronuclear NMR studies of cobalamins. 11. sup 15 N NMR studies of the axial nucleotide and amide side chains of cyanocobalamin and dicyanocobamides

    SciTech Connect

    Brown, K.; Brooks, H.B.; Xiang, Zou ); Victor, M.; Ray, A. ); Timkovich, R. )

    1990-11-28

    Spectroscopic and thermodynamic evidence for the structure of cobalamines and dicyanocobalamin (CN){sub 2}Cbl have been previously reported. The structure indicated the occurrence of the so-called tuck-in species. Further observations and characterization of the tuck-in species of (CN){sub 2}Cbl by {sup 15}N NMR spectroscopy are presented herein. These results represent the first observation of the {sup 15}N NMR spectrum of benzimidazole nucleotide of cobalamins. The first NMR observation of the amide protons of cobalamins and their connectivity to the amide nitrogens are also reported. 50 refs., 2 figs., 2 tabs.

  8. Stereoregularity of poly (lactic acid) and their model compounds as studied by NMR and quantum chemical calculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to understand the origin of the tacticity splitting in the NMR spectrum of poly(lactic acid), monomer model compound and dimer model compounds (both isotactic and syndiotactic) were synthesized and their 1H and 13C NMR chemical shifts observed. Two energetically stable conformations were o...

  9. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  10. Recent progress in NMR/MRI in petroleum applications

    NASA Astrophysics Data System (ADS)

    Song, Yi-Qiao

    2007-03-01

    NMR has become an important technique for characterization of porous materials. In particular, its importance in petroleum exploration has been enhanced by the recent progress in NMR well-logging techniques and instruments. Such advanced techniques are increasing being accepted as a valuable service especially in deep-sea exploration. This paper will outline the recent progress of MR techniques at Schlumberger-Doll Research. Well-logging - The second generation NMR well-logging tool and the 2D NMR methods (D-T2, etc) enable measurements at several depths from the well bore allowing a one-dimensional profiling of the fluid. Such data have allowed quantification of fluid invasion during drilling, obtaining the properties of native fluids and identifying oil/gas zones. MRI- Rocks from oil reservoirs are heterogeneous (e.g. large range of pore sizes and porosity variation) due to the complex geological and geochemical histories. The spatial pattern of the heterogeneity has not been well studied. We have developed several NMR techniques to quantify pore length scale previously. In order to predict flow over a large length scale, it is necessary to determine spatial heterogeneity and pore connectivity over the relevant size. We have performed MRI on a series of carbonate rocks and found interesting patterns of the heterogeneity characteristics. Mathematics - It is well known that the Laplace inversion is non-unique and the resulting spectrum can be strongly dependent on the prior constraints, specific algorithm and noise. However, the different spectra can all be solutions consistent with data. It would be useful to have a robust criterion -- independent of algorithms -- to determine the properties of the resulting spectrum. Several methods will be described to examine the statistics of the solutions, uncertainty of the spectrum and its integrals and resolution.

  11. Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons.

    PubMed

    Fredi, André; Nolis, Pau; Cobas, Carlos; Martin, Gary E; Parella, Teodor

    2016-05-01

    The current Pros and Cons of a processing protocol to generate pure chemical shift NMR spectra using Generalized Indirect Covariance are presented and discussed. The transformation of any standard 2D homonuclear and heteronuclear spectrum to its pure shift counterpart by using a reference DIAG spectrum is described. Reconstructed pure shift NMR spectra of NOESY, HSQC, HSQC-TOCSY and HSQMBC experiments are reported for the target molecule strychnine.

  12. Studies of electrolyte penetration in carbon anodes by NMR techniques.

    SciTech Connect

    Sandi, G.

    1998-12-09

    A toroid cavity nuclear magnetic resonance (NMR) detector capable of recording radial concentration profiles, diffusion constants, and displacements of charge carriers was employed to investigate the lithium ion distribution in an electrochemical cell containing a carbonaceous material synthesized from pyrene and pillared clays as inorganic templates. A carbon rod was used in a control experiment to assign the Li{sup +} spectrum and to calibrate the one dimensional radial images.

  13. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  14. NMR at cryogenic temperatures: A {sup 13}C NMR study of ferrocene

    SciTech Connect

    Orendt, A.M.; Facelli, J.C.; Jiang, Y.J.; Grant, D.M.

    1998-09-24

    A new cryogenic apparatus is described that can be used to obtain NMR spectra at temperatures down to 8--10 K. The static solid {sup 13}C NMR spectrum of ferrocene is recorded at that temperature. Spectra recorded at higher temperatures show that ferrocene is still freely rotating about its 5-fold symmetry axis on the {sup 13}C NMR time scale at 45--50 K. A comparison of the principal values of the {sup 13}C chemical-shift tensor obtained from the room- and low-temperature spectra of ferrocene indicates that the lowest frequency chemical shift principal component, {delta}{sub 33}, is tilted off this symmetry axis by approximately 12{degree}. Quantum chemical calculations of the chemical-shift tensor, completed on structures of ferrocene from the literature as well as on optimized structures with the cyclopentadienyl rings locked in both the staggered and eclipsed arrangements, predict the angle between the {delta}{sub 33} direction and the rotation axis to be between 11 and 15{degree}, depending upon the geometry used in the calculation. The calculations also predict the sign of the angular perturbation, information not obtained from the experiment. An explanation of this angular change in the {delta}{sub 33} direction is provided by the composition of the molecular orbitals.

  15. An investigation of catalytic active phase-support interactions by IR, NMR and x-ray absorption spectroscopies. Progress report, January 15, 1991--July 31, 1993

    SciTech Connect

    Haller, G.L.

    1993-07-01

    Active catalytic phases (metal, mixed metals, oxide or mixed oxides) interacting with oxide support can affect percentage exposed, the morphology of supported particles, the degree of reducibility of cations, etc., in a variety of ways. Solid state {sup 29}Si NMR was used to obtain a new correlation between partial charge on the Si which comprises a part of the SiOHAl Br{o}nsted acid structure in amorphous silica-aluminas. We also describe two potential improvements in solid state NMR applied to catalysts and catalysts supports. One is experimental, dynamic angle spinning NMR, a new technique for obtaining high resolution spectra of quadrupolar nuclei, e.g., {sup 27}Al. The second approach is an alternative to the standard fast Fourier transform of the free induction decay to convert from the time to spectral domain, the maximum entropy method. Effect of different methods of preparation of Pd/L-zeolites is described. By comparison to analogous Pt systems, it is the inherent chemistry of the L-zeolite which results in better dispersion when impregnation preparation is used relative to ion exchange preparation. X-ray absorption spectroscopy is used to compare the effect of support (SiO{sub 2} and L-zeolite) on the degree and kind of Pt-Ni interaction. When supported in L-zeolite and promoted with Ni, Pt has improved stability both with regard to self-poisoning and sulfur catalyzed agglomeration.

  16. NMR Study of Strontium Binding by a Micaceous Mineral

    SciTech Connect

    Bowers, Geoffrey M.; Ravella, Ramesh; Komarneni, S.; Mueller, Karl T.

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na4Mg6Al4Si4O20F4. Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 °C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a 1H-87Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by 87Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct 87Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

  17. NMR study of strontium binding by a micaceous mineral.

    PubMed

    Bowers, Geoffrey M; Ravella, Ramesh; Komarneni, Sridhar; Mueller, Karl T

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na(4)Mg(6)Al(4)Si(4)O(20)F(4). Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 degrees C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a (1)H-(87)Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by (87)Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct (87)Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals. PMID:16599480

  18. Extrinsic Proton NMR Studies of Mg(OH)2 and Ca(OH)2

    NASA Astrophysics Data System (ADS)

    Itoh, Yutaka; Isobe, Masahiko

    2016-03-01

    We studied narrow 1H NMR spectra of Mg(OH)2 and Ca(OH)2 powders at 100-355 K and 42-59 MHz using pulsed NMR techniques. The Fourier transformed NMR spectra of the proton free-induction signals show the superposition of broad and narrow components, which can be assigned to immobile protons and extrinsic mobile protons, respectively. We found that a narrow spectrum develops on heating above about Tc = 260 K and widens above a Larmor frequency of about νc = 50 MHz for Mg(OH)2. The temperature-induced NMR spectrum and the characteristic frequency νc of 50 MHz are the noteworthy features of the nuclear spin fluctuation spectra of the extrinsic protons.

  19. Computer aided evaluation of two-dimensional NMR spectra of proteins.

    PubMed

    Neidig, K P; Bodenmueller, H; Kalbitzer, H R

    1984-12-28

    A computer program for the automatic evaluation of two-dimensional NMR spectra of peptides and proteins has been developed. The used strategy is described, the advantages and limits of this approach are discussed. The program was successfully tested on a COSY-spectrum of the neuropeptide Glp-Pro-Pro-Gly-Gly-Ser-Lys-Val-Ile-Leu-Phe from hydra, resulting in a drastic reduction of the time needed for the evaluation of two-dimensional NMR data.

  20. NMR measurements in solutions of dialkylimidazolium haloaluminates

    SciTech Connect

    Takahashi, S.; Saboungi, M.L.; Klingler, R.J.; Chen, M.J.; Rathke, J.W.

    1992-06-01

    {sup 27}Al and {sup 35}Cl NMR spectra of AlCl{sub 3}-1-ethyl-3-methyl imidazolium chloride (EMIC) melts were measured for initial compositions ranging from 50 to 67 mol % AlCl{sub 3} at various temperatures. It was shown by changing the preaquisition delay time (DE value) that the dominant aluminum species are AlCl{sub 4}{sup {minus}} in the melt formed by mixing 50 mol % with EMIC and Al{sub 2}Cl{sub 7}{sup {minus}} in the 67 mol % AlCl{sub 3} melt. In the equimolar mixture, the chemical shift of {sup 27}Al NMR spectrum is 103.28 ppm and the line width is 22.83Hz. In the 67 mol % AlCl{sub 3} mixture, the chemical shift is 103.41 ppm and the line width is 2624Hz. A third species observed at 97 ppm in the {sup 27}Al spectra for the 55 and 60 mol % AlCl{sub 3} mixtures is identified to be a product of the reaction with residual water. The relaxation rates for each species in the melts were determined.

  1. NMR assessment on bone simulated under microgravity

    NASA Astrophysics Data System (ADS)

    Ni, Q.; Qin, Y.

    Introduction Microgravity-induced bone loss has been suggested to be similar to disuse-osteoporosis on Earth which constitutes a challenging public health problem No current non-destructive method can provide the microstructural changes in bone particularly on cortical bone Recently the authors have applied low field nuclear magnetic resonance NMR spin-spin relaxation technique and computational analysis method to determine the porosity pore size distribution and microdamage of cortical bone 1-3 The studies by the authors have shown that this technology can be used to characterize microstructural changes as well as bone water distribution bound and mobile water changes of weightless treated simulating a microgravity condition turkey and mouse cortical bone We further determinate that the NMR spin-spin relaxation time T 2 spectrum derived parameters can be used as descriptions of bone quality e g matrix water distribution and porosity size distributions and alone or in combination with current techniques bone mineral density measurements more accurately predict bone mechanical properties Methods underline Bone sample preparation Two kinds of animal samples were collected and prepared for designed experiments from SUNY Cortical bones of the mid-diaphyses of the ulnae of 1-year-old male turkeys were dissected from freshly slaughtered animals Eight samples were categorized from normal or control and four samples were 4-week disuse treated by functionally isolated osteotomies disuse A total of 12

  2. Photochemical pump and NMR probe: chemically created NMR coherence on a microsecond time scale.

    PubMed

    Torres, Olga; Procacci, Barbara; Halse, Meghan E; Adams, Ralph W; Blazina, Damir; Duckett, Simon B; Eguillor, Beatriz; Green, Richard A; Perutz, Robin N; Williamson, David C

    2014-07-16

    We report pump-probe experiments employing laser-synchronized reactions of para-hydrogen (para-H2) with transition metal dihydride complexes in conjunction with nuclear magnetic resonance (NMR) detection. The pump-probe experiment consists of a single nanosecond laser pump pulse followed, after a precisely defined delay, by a single radio frequency (rf) probe pulse. Laser irradiation eliminates H2 from either Ru(PPh3)3(CO)(H)2 1 or cis-Ru(dppe)2(H)2 2 in C6D6 solution. Reaction with para-H2 then regenerates 1 and 2 in a well-defined nuclear spin state. The rf probe pulse produces a high-resolution, single-scan (1)H NMR spectrum that can be recorded after a pump-probe delay of just 10 μs. The evolution of the spectra can be followed as the pump-probe delay is increased by micro- or millisecond increments. Due to the sensitivity of this para-H2 experiment, the resulting NMR spectra can have hydride signal-to-noise ratios exceeding 750:1. The spectra of 1 oscillate in amplitude with frequency 1101 ± 3 Hz, the chemical shift difference between the chemically inequivalent hydrides. The corresponding hydride signals of 2 oscillate with frequency 83 ± 5 Hz, which matches the difference between couplings of the hydrides to the equatorial (31)P nuclei. We use the product operator formalism to show that this oscillatory behavior arises from a magnetic coherence in the plane orthogonal to the magnetic field that is generated by use of the laser pulse without rf initialization. In addition, we demonstrate how chemical shift imaging can differentiate the region of laser irradiation thereby distinguishing between thermal and photochemical reactivity within the NMR tube.

  3. Access to experimentally infeasible spectra by pure-shift NMR covariance

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments.

  4. Access to experimentally infeasible spectra by pure-shift NMR covariance.

    PubMed

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments.

  5. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  6. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  7. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  8. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  9. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  10. Automated protein NMR resonance assignments.

    PubMed

    Wan, Xiang; Xu, Dong; Slupsky, Carolyn M; Lin, Guohui

    2003-01-01

    NMR resonance peak assignment is one of the key steps in solving an NMR protein structure. The assignment process links resonance peaks to individual residues of the target protein sequence, providing the prerequisite for establishing intra- and inter-residue spatial relationships between atoms. The assignment process is tedious and time-consuming, which could take many weeks. Though there exist a number of computer programs to assist the assignment process, many NMR labs are still doing the assignments manually to ensure quality. This paper presents (1) a new scoring system for mapping spin systems to residues, (2) an automated adjacency information extraction procedure from NMR spectra, and (3) a very fast assignment algorithm based on our previous proposed greedy filtering method and a maximum matching algorithm to automate the assignment process. The computational tests on 70 instances of (pseudo) experimental NMR data of 14 proteins demonstrate that the new score scheme has much better discerning power with the aid of adjacency information between spin systems simulated across various NMR spectra. Typically, with automated extraction of adjacency information, our method achieves nearly complete assignments for most of the proteins. The experiment shows very promising perspective that the fast automated assignment algorithm together with the new score scheme and automated adjacency extraction may be ready for practical use. PMID:16452794

  11. MULTIPLE-QUANTUM NMR IN SOLIDS

    SciTech Connect

    Yen, Y-S.

    1982-11-01

    Time domain multiple-quantum (MQ) nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for spectral simplification and for providing new information on molecular dynamics. In this thesis, applications of MQ NMR are presented and show distinctly the advantages of this method over the conventional single-quantum NMR. Chapter 1 introduces the spin Hamiltonians, the density matrix formalism and some basic concepts of MQ NMR spectroscopy. In chapter 2, {sup 14}N double-quantum coherence is observed with high sensitivity in isotropic solution, using only the magnetization of bound protons. Spin echoes are used to obtain the homogeneous double-quantum spectrum and to suppress a large H{sub 2}O solvent signal. Chapter 3 resolves the main difficulty in observing high MQ transitions in solids. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation and detection of high quantum transitions by normal schemes are thus difficult. To ensure that overlapping lines add constructively and thereby to enhance sensitivity, time-reversal pulse sequences are used to generate all lines in phase. Up to 22-quantum {sup 1}H absorption in solid adamantane is observed. A time dependence study shows an increase in spin correlations as the excitation time increased. In chapter 4, a statistical theory of MQ second moments is developed for coupled spins of spin I = 1/2. The model reveals that the ratio of the average dipolar coupling to the rms value largely determines the dependence of second moments on the number of quanta. The results of this model are checked against computer-calculated and experimental second moments, and show good agreement. A simple scheme is proposed in chapter 5 for sensitivity improvement in a MQ experiment. The scheme involves acquiring all of the signal energy available in the detection period by applying pulsed spinlocking and sampling between pulses. Using this technique on polycrystalline adamantane, a large

  12. Selectively Labeling the Heterologous Protein in Escherichia coli for NMR Studies: A Strategy to Speed Up NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Almeida, F. C. L.; Amorim, G. C.; Moreau, V. H.; Sousa, V. O.; Creazola, A. T.; Américo, T. A.; Pais, A. P. N.; Leite, A.; Netto, L. E. S.; Giordano, R. J.; Valente, A. P.

    2001-01-01

    Nuclear magnetic resonance is an important tool for high-resolution structural studies of proteins. It demands high protein concentration and high purity; however, the expression of proteins at high levels often leads to protein aggregation and the protein purification step can correspond to a high percentage of the overall time in the structural determination process. In the present article we show that the step of sample optimization can be simplified by selective labeling the heterologous protein expressed in Escherichia coli by the use of rifampicin. Yeast thioredoxin and a coix transcription factor Opaque 2 leucine zipper (LZ) were used to show the effectiveness of the protocol. The 1H/15N heteronuclear correlation two-dimensional NMR spectrum (HMQC) of the selective 15N-labeled thioredoxin without any purification is remarkably similar to the spectrum of the purified protein. The method has high yields and a good 1H/15N HMQC spectrum can be obtained with 50 ml of M9 growth medium. Opaque 2 LZ, a difficult protein due to the lower expression level and high hydrophobicity, was also probed. The 15N-edited spectrum of Opaque 2 LZ showed only the resonances of the protein of heterologous expression (Opaque 2 LZ) while the 1H spectrum shows several other resonances from other proteins of the cell lysate. The demand for a fast methodology for structural determination is increasing with the advent of genome/proteome projects. Selective labeling the heterologous protein can speed up NMR structural studies as well as NMR-based drug screening. This methodology is especially effective for difficult proteins such as hydrophobic transcription factors, membrane proteins, and others.

  13. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  14. Intelligent Automated Correction of Baseplane and Systematic Noise in Two-Dimensional NMR Spectra

    NASA Astrophysics Data System (ADS)

    Levy, G. C.; Jeong, G. W.; Yu, J. Q.; Wang, K.

    A computer program useful for 2D NMR data is described that provides automatic two-dimensional baseplane correction and subsequent tl and t2 ridge suppression. The algorithm per forms combined correction of smooth baseplane distortions and sharp ridges in 2D NMR spectra through five steps: (1) identification of resonance peaks and ridges, (2) extraction of initial, putative global baseplane, (3) window filtering of the corresponding time domain, (4) construction of a 2D spectrum free of baseplane distortion, and (5) suppression of ridges, The optimal parameters for baseplane and ridge correction are automatically decided by the program, yielding a greatly improved spectrum, together with more accurate spectral information.

  15. Crystallization of a layered silicate clay as monitored by small- angle x-ray scattering and NMR.

    SciTech Connect

    Carrado, K. A.; Xu, L.; Gregory, D.; Song, K.; Seifert, S.; Botto, R. E.; Chemistry

    2000-10-01

    The 48-h hydrothermal crystallization of a magnesium silicate clay called hectorite has been investigated in detail. Tetraethylammonium (TEA) ions are used to aid crystallization and become incorporated as the exchange cations within the interlayers. Data from small-angle X-ray scattering (SAXS) using aliquots ex situ are consistent with results obtained previously by X-ray powder diffraction (XRD), thermal gravimetric analysis (TGA), atomic force microscopy (AFM), and IR. All these techniques see clay crystallites beginning to form within the first few hours of reaction. {sup 29}Si NMR displays a visible clay silicate peak after just 1 h. Solid-state {sup 13}C NMR shows evidence of TEA-clay formation in as little as 30 min and also that 80% of the final TEA loading is accomplished in the first 10-12 h. Up to 36 h more is needed to incorporate the remaining 20% of TEA, indicating that a slower event is dominating at the later stages of crystallization. Data from {sup 13}C NMR and SAXS are compared to and are consistent with data from earlier AFM experiments. All present a scenario where initial nucleation and crystallization end after about 14 h, after which this occurs to a lesser extent and primarily agglomeration of particles is taking place. The SAXS data show this in progressively increasing power law values, indicating more 'open' structures that condense into more dense structures with time. In addition, the first in situ study of clay crystallization of any kind was performed by in situ SAXS. A possible clay crystallization mechanism is proposed.

  16. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations.

    PubMed

    Zhang, Zhiyong; Smith, Pieter E S; Cai, Shuhui; Zheng, Zhenyao; Lin, Yulan; Chen, Zhong

    2015-12-28

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials' structure and dynamics. Because 2D NMR relies on systematic changes in coherences' phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, "ultrafast" NMR has been developed into an effective and widely applicable methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets. PMID:26723664

  17. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Smith, Pieter E. S.; Cai, Shuhui; Zheng, Zhenyao; Lin, Yulan; Chen, Zhong

    2015-12-01

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials' structure and dynamics. Because 2D NMR relies on systematic changes in coherences' phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, "ultrafast" NMR has been developed into an effective and widely applicable methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.

  18. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    SciTech Connect

    Zhang, Zhiyong; Cai, Shuhui; Zheng, Zhenyao; Lin, Yulan E-mail: lylfj2005@xmu.edu.cn; Chen, Zhong E-mail: lylfj2005@xmu.edu.cn; Smith, Pieter E. S.

    2015-12-28

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials’ structure and dynamics. Because 2D NMR relies on systematic changes in coherences’ phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, “ultrafast” NMR has been developed into an effective and widely applicable methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.

  19. Dynamic NMR study of trans-cyclodecene

    SciTech Connect

    Pawar, D.M.; Noe, E.A.

    1996-12-18

    The slow-exchange {sup 13}C spectrum of trans-cyclodecene at -154.9{degree}C shows eight peaks of the olefinic carbons, and these are interpreted in terms of five conformations. Three of the conformations are of C{sub 1} symmetry, and two are of C{sub 2} symmetry. Further evidence for the number of conformations and their symmetries came from a proton NMR spectrum of the olefinic hydrogens taken at -154.9{degree}C with decoupling the allylic hydrogens. Populations ranged from 3.0% to 37.6% with the least-populated conformation having a free energy of 0.59 kcal/mol, relative to the most stable conformer. The conformations studied by Saunders and Jimenez-Vazquez using Allinger`s MM3 force field are described, and the calculated strain energies and populations are discussed. Energies for six conformations were also obtained from ab initio calculations at the HF/6-311G{sup *} level. 22 refs., 4 figs., 3 tabs.

  20. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  1. NMR characterization of shocked quartz

    SciTech Connect

    Boslough, M.B.; Cygan, R.T.; Assink, R.A.; Kirkpatrick, R.J.

    1994-03-01

    We have characterized experimentally and naturally-shocked quartz (both synthetic and natural samples) by solid state nuclear magnetic resonance (NMR) spectroscopy. Relaxation analysis of experimentally-shocked samples provides a means for quantitative characterization of the amorphous/disordered silica component NMR spectra demonstrate that magnetization in both the amorphous and crystalline components follows power-law behavior as a function of recycle time. This observation is consistent with the relaxation of nuclear spins by paramagnetic impurities. A fractal dimension can be extracted from the power-law exponent associated with each phase, and relative abundances can be extracted from integrated intensities of deconvolved peaks. NMR spectroscopy of naturally-shocked sandstone from Meteor Crater, Arizona (USA) led to the discovery of a new amorphous hydroxylated silica phase. Solid state NMR spectra of both experimentally and naturally shocked quartz were unexpectedly rich in microstructural information, especially when combined with relaxation analysis and cross-polarization studies. We suggest solid state NMR as a potentially useful tool for examining shock-induced microstructural changes in other inorganic compounds, with possible implications for shock processing of structural ceramics.

  2. NMR study of stable radicals in the gas phase

    NASA Astrophysics Data System (ADS)

    Obynochny, A. A.; Maryasov, A. G.; Shakirov, M. M.; Grigoriev, I. A.

    1993-05-01

    The temperature dependence of the NMR spectrum of methyl-substituted nitroxyl radical of the imidazoline series has been studied. The NMR signal induced by radicals in the gas phase has been observed. A shift of the lines of the NMR spectrum in the gas phase according to the Curie law is observed which allows one to determine the value of the hfi constant of the protons of different racial groups. The hfi constant for methyl-substituted radical within experimental accuracy coincides with those measured by other methods in the liquid phase. In the absorbed phase of the samples under study, a substantial contribution is made by the volumetric susceptibility of the liquid film. The diamagnetic contribution to the magnetic susceptibility of the radical in the liquid state has been measured (in the film of 2 × 10 -6). When the thickness of the adsorbed film is small, the molecular exchange between the liquid and gas phases becomes noticeable, causing a corresponding additional shift of the lines. The gas-kinetic cross section for the radical (120 Å 2) has been estimated from the temperature dependence of the line width in the gas phase.

  3. Amplification of Xenon NMR and MRI by remote detection

    SciTech Connect

    Moule, Adam J.; Spence, Megan M.; Han, Song-I.; Seeley, JulietteA.; Pierce, Kimberly L.; Saxena, Sunil; Pines, Alexander

    2003-03-31

    A novel technique is proposed in which a nuclear magneticresonance (NMR) spectrum or magnetic resonance image (MRI) is encoded andstored as spin polarization and is then moved to a different physicallocation to be detected. Remote detection allows the separateoptimization of the encoding and detection steps, permitting theindependent choice of experimental conditions, and excitation anddetection methodologies. In the first experimental demonstration of thistechnique, we show that NMR signal can be amplified by taking diluted129Xe from a porous sample placed inside a large encoding coil, andconcentrating it into a smaller detection coil. In general, the study ofNMR active molecules at low concentration that have low physical fillingfactor is facilitated by remote detection. In the second experiment, MRIinformation encoded in a very low field magnet (4-7mT) is transferred toa high field magnet (4.2 T) in order to be detected under optimizedconditions. Furthermore, remote detection allows the utilization ofultra-sensitive optical or superconducting detection techniques, whichbroadens the horizon of NMR experimentation.

  4. Amplification of xenon NMR and MRI by remote detection

    NASA Astrophysics Data System (ADS)

    Moulé, Adam J.; Spence, Megan M.; Han, Song-I.; Seeley, Juliette A.; Pierce, Kimberly L.; Saxena, Sunil; Pines, Alexander

    2003-08-01

    A technique is proposed in which an NMR spectrum or MRI is encoded and stored as spin polarization and is then moved to a different physical location to be detected. Remote detection allows the separate optimization of the encoding and detection steps, permitting the independent choice of experimental conditions and excitation and detection methodologies. In the initial experimental demonstration of this technique, we show that taking dilute 129Xe from a porous sample placed inside a large encoding coil and concentrating it into a smaller detection coil can amplify NMR signal. In general, the study of NMR active molecules at low concentration that have low physical filling factor is facilitated by remote detection. In the second experimental demonstration, MRI information encoded in a very low-field magnet (4-7 mT) is transferred to a high-field magnet (4.2 T) to be detected under optimized conditions. Furthermore, remote detection allows the utilization of ultrasensitive optical or superconducting quantum interference device detection techniques, which broadens the horizon of NMR experimentation.

  5. Solution NMR conformation of glycosaminoglycans.

    PubMed

    Pomin, Vitor H

    2014-04-01

    Nuclear magnetic resonance (NMR) spectroscopy has been giving a pivotal contribution to the progress of glycomics, mostly by elucidating the structural, dynamical, conformational and intermolecular binding aspects of carbohydrates. Particularly in the field of conformation, NOE resonances, scalar couplings, residual dipolar couplings, and chemical shift anisotropy offsets have been the principal NMR parameters utilized. Molecular dynamics calculations restrained by NMR-data input are usually employed in conjunction to generate glycosidic bond dihedral angles. Glycosaminoglycans (GAGs) are a special class of sulfated polysaccharides extensively studied worldwide. Besides regulating innumerous physiological processes, these glycans are also widely explored in the global market as either clinical or nutraceutical agents. The conformational aspects of GAGs are key regulators to the quality of interactions with the functional proteins involved in biological events. This report discusses the solution conformation of each GAG type analyzed by one or more of the above-mentioned methods.

  6. NMR on beta-emitting fragment [sup 43]Ti

    SciTech Connect

    Matsuta, K.; Ozawa, A.; Nojiri, Y.; Minamisono, T.; Fukuda, M.; Momota, S.; Ohtsubo, T.; Fukuda, S.; Sugimoto, K. . Dept. of Physics); Tanihata, I.; Yoshida, K. ); Omata, K. . Inst. for Nuclear Study); Alonso, J.R.; Krebs, G.F.; Symons, T.J.M. )

    1992-08-01

    NMR has been observed on beta-emitting [sup 43]Ti produced in the 116 AMeV [sup 46]Ti on C collision by means of asymmetric beta decay. The observed spin polarization of [sup 43]Ti showed a reverse tendency in its momentum dependence compared with that observed for fragments produced in the [sup 40]Ca on Au collision. This suggests negative angle deflection of [sup 43]Ti due to the nuclear attractive potential. From the observed NMR spectrum, the magnetic moment of [sup 43]Ti was determined to be [vert bar][mu][vert bar] =(0.85 [plus minus] 0.02)[mu][sub N]. The value is significantly quenched from the single particle value [minus]1.91 [mu][sub N], which shows a strong effect due to meson exchange currents and configuration mixing.

  7. High-resolution solid-state NMR study of the occurrence and thermal transformations of silicon-containing species in biomass materials

    SciTech Connect

    Freitas, J.C.C.; Emmerich, F.G.; Bonagamba, T.J.

    2000-03-01

    The occurrence of silicon in two kinds of biomass (rice hulls and endocarp of babassu coconut) and the thermal transformations taking place in these materials under heat treatments are studied here. The authors report also the production, characterization, and study of carbonaceous materials with high SiC content through the carbothermal reduction of silica, using these natural precursors. X-ray diffraction, scanning electron microscopy, and {sup 13}C and {sup 29}Si room temperature high-resolution solid-state NMR measurements are used in the characterization and study of the materials as well as the process of SiC formation. Important conclusions about the nature of silicon in these types of biomass and the effects of heat treatments on the structure of silicon-containing species are derived from the results presented. It is shown that silicon in these materials occurs in two distinct forms: amorphous hydrated silica and organically bound silicon species. The influence of spin-lattice relaxation dynamics on the NMR spectra is discussed, evidencing the role played by the paramagnetic defects produced in the materials through pyrolysis.

  8. NMR and FTIR Characterization of Sol-Gel Derived Ternary Oxide Glasses in the System BaO-TIO2-SiO2

    NASA Astrophysics Data System (ADS)

    Feike, M.; Meise-Gresch, K.; Chen, Qi; Frischat, G. H.

    1995-09-01

    The annealing history of glasses in the system (20-40) BaO-40TiO2(40-20)SiO2 has been mon­itored by 29Si MAS NMR and FTIR spectroscopy from the dried gel to the final glassy state. Assignment of chemical shifts to specific building units has been facilitated by comparative studies of the limiting less complex binary silicate systems. From the NMR spectra at various compositions appreciable condensation to a three-dimensional network is inferred already at low drying temper­atures. Processes like the pyrolysis of acetate rests of the starting materials and modification of the silicate structure due to Ba2+ cations have been mirrored in the spectra of both methods for samples annealed at intermediate temperatures. The microstructure of the final gel glass of the ternary system has been determined spectroscopically to consist of silicate and titanate species typical of crystalline fresnoite, whereas remaining amounts of TiO2 and SiO2 develop a separate network each. Only small amounts of Si-O-Ti linkages have been recognized in the vibrational absorptions; they vanish at higher annealing stages.

  9. Calculation of the 13C NMR shieldings of the C0 2 complexes of aluminosilicates

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    1995-04-01

    13C NMR shieldings have been calculated using the random-phase-approximation, localized-orbital local-origins version of ab initio coupled Hartree-Fuck perturbation theory for CO 2 and and for several complexes formed by the reaction of CO 2 with molecular models for aluminosilicate glasses, H 3TOT'H3 3-n, T,T' = Si,Al. Two isomeric forms of the CO 2-aluminosilicate complexes have been considered: (1) "CO 2-like" complexes, in which the CO 2 group is bound through carbon to a bridging oxygen and (2) "CO 3-like" complexes, in which two oxygens of a central CO 3 group form bridging bonds to the two TH 3 groups. The CO 2-like isomer of CO 2-H 3SiOSiH 3 is quite weakly bonded and its 13C isotropic NMR shielding is almost identical to that in free CO 2. As Si is progressively replaced by Al in the - H terminated aluminosilicate model, the CO 2-like isomers show increasing distortion from the free CO 2 geometry and their 13C NMR shieldings decrease uniformly. The calculated 13C shielding value for H 3AlO(CO 2)AlH 3-2 is only about 6 ppm larger than that calculated for point charge stabilized CO 3-2. However, for a geometry of H 3SiO(CO 2) AlH 3-1, in which the bridging oxygen to C bond length has been artificially increased to that found in the - OH terminated cluster (OH) 3SiO(CO 2)Al(OH) 3-1, the calculated 13C shielding is almost identical to that for free CO 2. The CO 3-like isomers of the CO 2-aluminosili-cate complexes show carbonate like geometries and 13C NMR shieldings about 4-9 ppm larger than those of carbonate for all T,T' pairs. For the Si,Si tetrahedral atom pair the CO 2-like isomer is more stable energetically, while for the Si,Al and Al,Al cases the CO 3-like isomer is more stable. Addition of Na + ions to the CO 3-2 or H 3AlO(CO 2)AlH 3-2 complexes reduces the 13C NMR shieldings by about 10 ppm. Complexation with either Na + or CO 2 also reduces the 29Si NMR shieldings of the aluminosilicate models, while the changes in 27Al shielding with Na + or CO 2

  10. NMR based investigations of the effects of aging on the motional properties of cellular silicone foams

    SciTech Connect

    Maxwell, R S; Balazs, B

    2000-10-04

    The aging of polymeric composite materials, such as filled polydimethylsiloxane foams, through factors such as thermal and mechanical stresses, environment, radiation, and chemical attack can affect the length of time for which a given material can maintain its engineering performance. Iterative interactions and cumulative reactions may result in the material or device reaching a critical age where its properties fail unexpectedly and catastrophically. The mechanical property changes associated with multi-mechanism aging may be subtle, and may not necessarily change linearly as a function of time in service. Since such linear relationships are often used in lifetime predictions, there is a fundamental need to develop and employ spectroscopic methods to investigate the structural and motional changes that occur in these organic-inorganic materials as a result of aging in chemically, thermally, or radioactively harsh environments. We have used multinuclear nuclear magnetic resonance (NMR) spectroscopy to characterize aging signatures in a series of PDMS based composite materials. Unfortunately, {sup 13}C, {sup 29}Si, and {sup 1}H magic angle spinning NMR spectra remain unchanged with gamma radiation exposure up to 50Mrad. This suggests that the speciation related changes are small and occur at a frequency of less than approximately 1% of the monomer units. As a result, we have shifted focus and have employed relaxation studies to monitor changes in motional properties of the copolymer foams caused by irradiation. We have measured spin-lattice, spin-spin, and rotating frame spin-lattice relaxation times for PDMS model rubbers with variable cross link density and filler content, for M9760 foams irradiated from 0 to 50Mrad, and for dehydrated M9760 foams. Spin-lattice relaxation times, in general, are sensitive to fast molecular motions in the MHz frequency range. Spin-spin and rotating frame relaxation times, on the other hand, are sensitive to changes in slower motion

  11. Prediction of (19)F NMR Chemical Shifts in Labeled Proteins: Computational Protocol and Case Study.

    PubMed

    Isley, William C; Urick, Andrew K; Pomerantz, William C K; Cramer, Christopher J

    2016-07-01

    The structural analysis of ligand complexation in biomolecular systems is important in the design of new medicinal therapeutic agents; however, monitoring subtle structural changes in a protein's microenvironment is a challenging and complex problem. In this regard, the use of protein-based (19)F NMR for screening low-molecular-weight molecules (i.e., fragments) can be an especially powerful tool to aid in drug design. Resonance assignment of the protein's (19)F NMR spectrum is necessary for structural analysis. Here, a quantum chemical method has been developed as an initial approach to facilitate the assignment of a fluorinated protein's (19)F NMR spectrum. The epigenetic "reader" domain of protein Brd4 was taken as a case study to assess the strengths and limitations of the method. The overall modeling protocol predicts chemical shifts for residues in rigid proteins with good accuracy; proper accounting for explicit solvation of fluorinated residues by water is critical. PMID:27218275

  12. 63,65Cu NMR Method in a Local Field for Investigation of Copper Ore Concentrates

    NASA Astrophysics Data System (ADS)

    Gavrilenko, A. N.; Starykh, R. V.; Khabibullin, I. Kh.; Matukhin, V. L.

    2015-01-01

    To choose the most efficient method and ore beneficiation flow diagram, it is important to know physical and chemical properties of ore concentrates. The feasibility of application of the 63,65Cu nuclear magnetic resonance (NMR) method in a local field aimed at studying the properties of copper ore concentrates in the copper-iron-sulfur system is demonstrated. 63,65Cu NMR spectrum is measured in a local field for a copper concentrate sample and relaxation parameters (times T1 and T2) are obtained. The spectrum obtained was used to identify a mineral (chalcopyrite) contained in the concentrate. Based on the experimental data, comparative characteristics of natural chalcopyrite and beneficiated copper concentrate are given. The feasibility of application of the NMR method in a local field to explore mineral deposits is analyzed.

  13. A general algorithm for peak-tracking in multi-dimensional NMR experiments.

    PubMed

    Ravel, P; Kister, G; Malliavin, T E; Delsuc, M A

    2007-04-01

    We present an algorithmic method allowing automatic tracking of NMR peaks in a series of spectra. It consists in a two phase analysis. The first phase is a local modeling of the peak displacement between two consecutive experiments using distance matrices. Then, from the coefficients of these matrices, a value graph containing the a priori set of possible paths used by these peaks is generated. On this set, the minimization under constraint of the target function by a heuristic approach provides a solution to the peak-tracking problem. This approach has been named GAPT, standing for General Algorithm for NMR Peak Tracking. It has been validated in numerous simulations resembling those encountered in NMR spectroscopy. We show the robustness and limits of the method for situations with many peak-picking errors, and presenting a high local density of peaks. It is then applied to the case of a temperature study of the NMR spectrum of the Lipid Transfer Protein (LTP).

  14. 51V-NMR study of the Kagome staircase compound Co3V2O8

    NASA Astrophysics Data System (ADS)

    Ogloblichev, V.; Kumagai, K.; Yakubovsky, A.; Mikhalev, K.; Furukawa, Y.; Verkhovskii, S.; Gerashenko, A.; Barilo, S.; Bychkov, G.; Shiryaev, S.; Korolev, A.

    2009-03-01

    Kagome staircase compound Co3V2O8 (S = 3/2) has a structure very similar to multiferroic compound Ni3V2Og (S = 1), but their magnetic phase diagrams differ noticeably. We present the results of the first NMR study in Co3V2O8 single crystal. From 51V-NMR spectra, the components of electric field gradient (EFG) tensor and of magnetic shifts tensor, Ki, are obtained. The temperature dependences of NMR shifts 51Ki for each main crystal axis direction are well described by a spin contributions in the paramagnetic phase. In ferromagnetic phase the zero field 51V-NMR spectrum is observed in the temperature range of 1.5-6.3 K.

  15. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  16. Push-through Direction Injectin NMR Automation

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  17. Probing the flexibility of internal rotation in silylated phenols with the NMR scalar spin-spin coupling constants.

    PubMed

    Sychrovský, Vladimír; Benda, Ladislav; Prokop, Alexandr; Blechta, Vratislav; Schraml, Jan; Spirko, Vladimír

    2008-06-12

    The rotation of a trimethylsiloxy (TMSO) group in three silylated phenols (with three different ortho substituents -H, -CH3, and -C(CH3)3) was studied with the NMR (n)J(Si,C), n = 2, 3, 4, 5, scalar spin-spin coupling between the (29)Si nucleus of the TMSO group and the (13)C nuclei of the phenyl ring. The internal rotation potential calculated with the B3LYP and MP2 calculation methods including the effect of a solvent environment (gas phase, chloroform, and water) was used for the calculation of the dynamical averages of the scalar coupling constants in the framework of the rigid-bender formalism. Solvent effects, the quality of the rotational potential, and the applicability of the classical molecular dynamic to the problem is discussed. Quantum effects have a sizable impact on scalar couplings, particularly for the internal rotational states well localized within the wells of the potential surfaces for the TMSO group. The overall difference between the experimental and theoretical scalar couplings calculated for the global energy-minima structures (static model) decreases substantially for both model potentials (B3LYP, MP2) when the molecular motion of the TMSO group is taken into account. The calculated data indicate that the inclusion of molecular motion is necessary for the accurate calculation of the scalar coupling constants and their reliable structural interpretation for any system which possesses a large-amplitude motion. PMID:18491850

  18. NMR investigations of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  19. Deuterium Exchange Kinetics by NMR.

    ERIC Educational Resources Information Center

    Roper, G. C.

    1985-01-01

    Describes a physical chemistry experiment which allows such concepts as kinetics, catalysis, isotope shifts, coupling constants, and the use of nuclear magnetic resonance (NMR) for quantitative work to be covered in the same exercise. Background information, experimental procedures used, and typical results obtained are included. (JN)

  20. Petrophysical applications of NMR imaging

    SciTech Connect

    Rothwell, W.P.; Vinegar, H.J.

    1985-12-01

    A system for obtaining high-resolution NMR images of oil field cores is described. Separate proton density and T/sub 2/ relaxation images are obtained to distinguish spatial variations of fluid-filled porosity and the physical nature of the pores. Results are presented for typical sandstones.

  1. Synthesis of stereospecifically deuterated desoxypodophyllotoxins and 1H-nmr assignment of desoxypodophyllotoxin

    NASA Technical Reports Server (NTRS)

    Pullockaran, A. J.; Kingston, D. G.; Lewis, N. G.

    1989-01-01

    [4 beta- 2H1]Desoxypodophyllotoxin [3], [4 alpha- 2H1]desoxypodophyllotoxin [4], and [4, 4- 2 H2]desoxypodophyllotoxin [9] were prepared from podophyllotoxin [1] via its chloride [5]. A complete assignment of the 1H-nmr spectrum of desoxypodophyllotoxin [2] was made on the basis of the spectra of the deuterated compounds [3] and [4].

  2. Use of NMR saturation transfer difference spectroscopy to study ligand binding to membrane proteins.

    PubMed

    Venkitakrishnan, Rani Parvathy; Benard, Outhiriaradjou; Max, Marianna; Markley, John L; Assadi-Porter, Fariba M

    2012-01-01

    Detection of weak ligand binding to membrane-spanning proteins, such as receptor proteins at low physiological concentrations, poses serious experimental challenges. Saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy offers an excellent way to surmount these problems. As the name suggests, magnetization transferred from the receptor to its bound ligand is measured by directly observing NMR signals from the ligand itself. Low-power irradiation is applied to a (1)H NMR spectral region containing protein signals but no ligand signals. This irradiation spreads quickly throughout the membrane protein by the process of spin diffusion and saturates all protein (1)H NMR signals. (1)H NMR signals from a ligand bound transiently to the membrane protein become saturated and, upon dissociation, serve to decrease the intensity of the (1)H NMR signals measured from the pool of free ligand. The experiment is repeated with the irradiation pulse placed outside the spectral region of protein and ligand, a condition that does not lead to saturation transfer to the ligand. The two resulting spectra are subtracted to yield the difference spectrum. As an illustration of the methodology, we review here STD-NMR experiments designed to investigate binding of ligands to the human sweet taste receptor, a member of the large family of G-protein-coupled receptors. Sweetener molecules bind to the sweet receptor with low affinity but high specificity and lead to a variety of physiological responses.

  3. Graphical interpretation of Boolean operators for protein NMR assignments.

    PubMed

    Verdegem, Dries; Dijkstra, Klaas; Hanoulle, Xavier; Lippens, Guy

    2008-09-01

    We have developed a graphics based algorithm for semi-automated protein NMR assignments. Using the basic sequential triple resonance assignment strategy, the method is inspired by the Boolean operators as it applies "AND"-, "OR"- and "NOT"-like operations on planes pulled out of the classical three-dimensional spectra to obtain its functionality. The method's strength lies in the continuous graphical presentation of the spectra, allowing both a semi-automatic peaklist construction and sequential assignment. We demonstrate here its general use for the case of a folded protein with a well-dispersed spectrum, but equally for a natively unfolded protein where spectral resolution is minimal. PMID:18762868

  4. 'Shim pulses' for NMR spectroscopy in inhomogeneous magneticfields

    SciTech Connect

    Topgaard, Daniel; Martin, Rachel W.; Sakellariou, Dimitris; Meriles, Carlos; Pines, Alexander

    2004-05-19

    NMR spectroscopy conveys information about chemical structure through ppm-scale shifts of the resonance frequency depending on the chemical environment. In order to observe these small shifts, magnets with highly homogeneous magnetic field B{sub 0} are used. The high cost and large size of these magnets are a consequence of the requirement for high homogeneity. In this contribution we introduce a new method for recording high-resolution NMR spectra from samples in inhomogeneous B{sub 0}, opening up the possibility of exploiting magnets of lower homogeneity and cost. Instead of using the traditional B{sub 0} ''shim coils'', adiabatic radiofrequency (RF) pulse sequences and modulated B{sub 0} gradients generated by coils in the probe are used to produce ''shim pulses''. A great deal of work has been devoted to finding methods for retrieving chemical shift information even when B{sub 0} is inhomogeneous. One class of methods relies on zero- or multiple quantum coherences which evolve independently of B{sub 0}. These methods are inherently two-dimensional and the high-resolution information is obtained indirectly. In order to minimize experimental time it is desirable to acquire a high-resolution spectrum directly just as for traditional NMR in homogeneous fields. A further advantage with direct acquisition is that modification of already existing multidimensional NMR techniques is facilitated. A fundamentally different approach utilizes inhomogeneity of the RF magnetic field to periodically refocus the phase dispersion from the inhomogeneous B{sub 0}. With this technique a high-resolution spectrum can indeed be acquired in a single shot. The main drawback is the requirement for spatial matching between the RF and B{sub 0} inhomogeneities. Based on this latter technique we propose the use of ''shim pulses'', i.e. modulated, spatially constant, B{sub 0} gradient pulses together with spatially homogeneous adiabatic frequency sweeps to induce non-linear phase shifts in

  5. Autism Spectrum Disorder

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Autism Spectrum Disorder Information Page Condensed from Autism Spectrum ... en Español Additional resources from MedlinePlus What is Autism Spectrum Disorder? Autistic disorder (sometimes called autism or ...

  6. Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy

    ERIC Educational Resources Information Center

    Ruhayel, Rasha A.; Berners-Price, Susan J.

    2010-01-01

    2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…

  7. SEnD NMR: Sensitivity Enhanced n-Dimensional NMR

    PubMed Central

    Gledhill, John M.; Wand, A. Joshua

    2009-01-01

    Sparse sampling offers tremendous potential for overcoming the time limitations imposed by traditional Cartesian sampling of indirectly detected dimensions of multidimensional NMR data. However, in many instances sensitivity rather than time remains of foremost importance when collecting data on protein samples. Here we explore how to optimize the collection of radial sampled multidimensional NMR data to achieve maximal signal-to-noise. A method is presented that exploits a rigorous definition of the minimal set of radial sampling angles required to resolve all peaks of interest in combination with a fundamental statistical property of radial sampled data. The approach appears general and can achieve a substantial sensitivity advantage over Cartesian sampling for the same total data acquisition time. Termed Sensitivity Enhanced n-Dimensional or SEnD NMR, the method involves three basic steps. First, data collection is optimized using routines to determine a minimal set of radial sampling angles required to resolve frequencies in the radially sampled chemical shift evolution dimensions. Second, appropriate combinations of experimental parameters (transients and increments) are defined by simple statistical considerations in order to optimize signal-to-noise in single angle frequency domain spectra. Finally, the data is processed with a direct multidimensional Fourier transform and a statistical artifact and noise removal step is employed. PMID:20004602

  8. Proton zero-quantum 2D NMR of 2-propenenitrile aligned by an electric field. Determination of the 2H and 14N quadrupole coupling constants

    NASA Astrophysics Data System (ADS)

    Ruessink, B. H.; De Kanter, F. J. J.; MaClean, C.

    Zero-quantum NMR, selectively detected by 2D NMR, is applied to observe small 1H- 1H dipolar couplings in a polar liquid partially oriented by a strong electric field. The normal (single-quantum) 1H spectrum is severely broadened, which prevents the observation of small couplings. The results from the zero-quantum proton spectrum are used to calculate the 2H and 14N quadrupole coupling constants of 2-deutero-2-propenenitrile from the 2H and 14N NMR spectra.

  9. Metabolic engineering applications of in vivo sup 31 P and sup 13 C NMR studies of Saccharomyces cerevisiae

    SciTech Connect

    Shanks, J.V.

    1989-01-01

    With intent to quantify NMR measurements as much as possible, analysis techniques of the in vivo {sup 31}P NMR spectrum are developed. A systematic procedure is formulated for estimating the relative intracellular concentrations of the sugar phosphates in S. cerevisiae from the {sup 31}P NMR spectrum. In addition, in vivo correlation of inorganic phosphate chemical shift with the chemical shifts of 3-phosphoglycerate, {beta}-fructose 1,6-diphosphate, fructose 6-phosphate, and glucose 6-phosphate are determined. Also, a method was developed for elucidation of the cytoplasmic and vacuolar components of inorganic phosphate in the {sup 31}P NMR spectrum of S. cerevisiae. An in vivo correlation relating the inorganic phosphate chemical shift of the vacuole with the chemical shift of the resonance for pyrophosphate and the terminal phosphate of polyphosphate (PP{sub 1}) is established. Transient measurements provided by {sup 31}P NMR are applied to reg1 mutant and standard strains. {sup 31}P and {sup 13}C NMR measurements are used to analyze the performance of recombinant strains in which the glucose phosphorylation step had been altered.

  10. REDOR NMR for Drug Discovery

    PubMed Central

    Cegelski, Lynette

    2014-01-01

    Rotational-Echo DOuble-Resonance (REDOR) NMR is a powerful and versatile solid-state NMR measurement that has been recruited to elucidate drug modes of action and to drive the design of new therapeutics. REDOR has been implemented to examine composition, structure, and dynamics in diverse macromolecular and whole-cell systems, including taxol-bound microtubules, enzyme-cofactor-inhibitor ternary complexes, and antibiotic-whole-cell complexes. The REDOR approach involves the integrated design of specific isotopic labeling strategies and the selection of appropriate REDOR experiments. By way of example, this digest illustrates the versatility of the REDOR approach, with an emphasis on the practical considerations of experimental design and data interpretation. PMID:24035486

  11. The Doppler effect in NMR spectroscopy.

    PubMed

    Guéron, Maurice

    2003-02-01

    An NMR sample may be subject to motions, such as those due to sample spinning or to liquid flow. Is the spectrum of such a sample affected by the Doppler effect? The question arises because, instrumental dimensions being much shorter than the wavelength, it is the near-field of the precessing magnetic moment which couples to the receiver coil, rather than the radiated far-field. We expand the near-field into plane propagating waves. For each such wave there is another one with the same amplitude, propagating in the opposite direction. The Doppler shifts are therefore equal and opposite. In the model case of a small fluid sample moving with constant velocity, this leads to a distribution of Doppler shifts which is symmetrical with respect to the unshifted frequency: there is no net spectral shift. We examine the possibility of observing the Doppler distribution in this case. We also consider the case of thermal motion of a gas. We draw attention to the resolved Doppler splitting of molecular rotational transitions in a supersonic burst as observed in a microwave resonator. We also mention briefly the Doppler effect in molecular beam spectroscopy.

  12. NMR Evidence for Complexing of Na+ in Muscle, Kidney, and Brain, and by Actomyosin. The Relation of Cellular Complexing of Na+ to Water Structure and to Transport Kinetics

    PubMed Central

    Cope, Freeman W.

    1967-01-01

    The nuclear magnetic resonance (NMR) spectrum of Na+ is suitable for qualitative and quantitative analysis of Na+ in tissues. The width of the NMR spectrum is dependent upon the environment surrounding the individual Na+ ion. NMR spectra of fresh muscle compared with spectra of the same samples after ashing show that approximately 70% of total muscle Na+ gives no detectable NMR spectrum. This is probably due to complexation of Na+ with macromolecules, which causes the NMR spectrum to be broadened beyond detection. A similar effect has been observed when Na+ interacts with ion exchange resin. NMR also indicates that about 60% of Na+ of kidney and brain is complexed. Destruction of cell structure of muscle by homogenization little alters the per cent complexing of Na+. NMR studies show that Na+ is complexed by actomyosin, which may be the molecular site of complexation of some Na+ in muscle. The same studies indicate that the solubility of Na+ in the interstitial water of actomyosin gel is markedly reduced compared with its solubility in liquid water, which suggests that the water in the gel is organized into an icelike state by the nearby actomyosin molecules. If a major fraction of intracellular Na+ exists in a complexed state, then major revisions in most theoretical treatments of equilibria, diffusion, and transport of cellular Na+ become appropriate. PMID:6033590

  13. NMR Hyperpolarization Techniques for Biomedicine

    PubMed Central

    Nikolaou, Panayiotis; Goodson, Boyd M.

    2015-01-01

    Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities—ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. PMID:25470566

  14. Interpreting C-13 NMR spectra of technical lignins based on ionization chemical shifts

    SciTech Connect

    Akim, L.G.; Fedulina, T.G.; Shevchenko, S.M.

    1996-10-01

    Newly developed technique of C-13 NMR spectroscopy of ionized lignins in aqueous alkali has been applied to analysis of the chemical structure of technical lignins. Ionization of phenolic and carboxylic hydroxyl groups has a strong effect on the electronic structure of lignin and leads to significant changes in C-13 NMR spectra of the polymer. Comparative analysis of the spectra of organosolv and alkali lignins in neutral organic and aqueous alkaline media based on the data obtained for lignin model compounds demonstrated the usefulness and scope of applicability of the method. This method was especially useful when applied to a highly degraded alkaline lignin, enhancing our ability to analyze the poorly resolved spectrum. A technique is developed that permits the user to analyze a lignin spectrum in an aqueous alkaline solution without the accompanying spectrum in an organic solution. The research described was made possible by Grant No. NWFOOO from the International Science Foundation.

  15. NMR Measures of Heterogeneity Length

    NASA Astrophysics Data System (ADS)

    Spiess, Hans W.

    2002-03-01

    Advanced solid state NMR spectroscopy provides a wealth of information about structure and dynamics of complex systems. On a local scale, multidimensional solid state NMR has elucidated the geometry and the time scale of segmental motions at the glass transition. The higher order correlation functions which are provided by this technique led to the notion of dynamic heterogeneities, which have been characterized in detail with respect to their rate memory and length scale. In polymeric and low molar mass glass formers of different fragility, length scales in the range 2 to 4 nm are observed. In polymeric systems, incompatibility of backbone and side groups as in polyalkylmethacrylates leads to heteogeneities on the nm scale, which manifest themselves in unusual chain dynamics at the glass transition involving extended chain conformations. References: K. Schmidt-Rohr and H.W. Spiess, Multidimensional Solid-State NMR and Polymers,Academic Press, London (1994). U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 81, 2727 (1998). S.A. Reinsberg, X.H. Qiu, M. Wilhelm, M.D. Ediger, H.W. Spiess, J.Chem.Phys. 114, 7299 (2001). S.A. Reinsberg, A. Heuer, B. Doliwa, H. Zimmermann, H.W. Spiess, J. Non-Crystal. Solids, in press (2002)

  16. NMR-Based Milk Metabolomics

    PubMed Central

    Sundekilde, Ulrik K.; Larsen, Lotte B.; Bertram, Hanne C.

    2013-01-01

    Milk is a key component in infant nutrition worldwide and, in the Western parts of the world, also in adult nutrition. Milk of bovine origin is both consumed fresh and processed into a variety of dairy products including cheese, fermented milk products, and infant formula. The nutritional quality and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking the milk metabolite profiling with nutritional aspects, and applications which aim to link the milk metabolite profile to various technological qualities of milk. The metabolite profiling studies encompass the identification of novel metabolites, which potentially can be used as biomarkers or as bioactive compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining a better understanding of how milk composition is linked to nutritional or quality traits. PMID:24957988

  17. In-cell NMR spectroscopy.

    PubMed

    Serber, Zach; Corsini, Lorenzo; Durst, Florian; Dötsch, Volker

    2005-01-01

    The role of a protein inside a cell is determined by both its location and its conformational state. Although fluorescence techniques are widely used to determine the cellular localization of proteins in vivo, these approaches cannot provide detailed information about a protein's three-dimensional state. This gap, however, can be filled by NMR spectroscopy, which can be used to investigate both the conformation as well as the dynamics of proteins inside living cells. In this chapter we describe technical aspects of these "in-cell NMR" experiments. In particular, we show that in the case of (15)N-labeling schemes the background caused by labeling all cellular components is negligible, while (13)C-based experiments suffer from high background levels and require selective labeling schemes. A correlation between the signal-to-noise ratio of in-cell NMR experiments with the overexpression level of the protein shows that the current detection limit is 150-200 muM (intracellular concentration). We also discuss experiments that demonstrate that the intracellular viscosity is not a limiting factor since the intracellular rotational correlation time is only approximately two times longer than the correlation time in water. Furthermore, we describe applications of the technique and discuss its limitations. PMID:15808216

  18. (1) H NMR analysis of O-methyl-inositol isomers: a joint experimental and theoretical study.

    PubMed

    De Almeida, Mauro V; Couri, Mara Rubia C; De Assis, João Vitor; Anconi, Cleber P A; Dos Santos, Hélio F; De Almeida, Wagner B

    2012-09-01

    Density functional theory (DFT) calculations of (1) H NMR chemical shifts for l-quebrachitol isomers were performed using the B3LYP functional employing the 6-31G(d,p) and 6-311 + G(2d,p) basis sets. The effect of the solvent on the B3LYP-calculated NMR spectrum was accounted for using the polarizable continuum model. Comparison is made with experimental (1) H NMR spectroscopic data, which shed light on the average uncertainty present in DFT calculations of chemical shifts and showed that the best match between experimental and theoretical B3LYP (1) H NMR profiles is a good strategy to assign the molecular structure present in the sample handled in the experimental measurements. Among four plausible O-methyl-inositol isomers, the l-quebrachitol 2a structure was unambiguously assigned based only on the comparative analysis of experimental and theoretical (1) H NMR chemical shift data. The B3LYP infrared (IR) spectrum was also calculated for the four isomers and compared with the experimental data, with analysis of the theoretical IR profiles corroborating assignment of the 2a structure. Therefore, it is confirmed in this study that a combined experimental/DFT spectroscopic investigation is a powerful tool in structural/conformational analysis studies. PMID:22865668

  19. Identification of 4-deoxythreonic acid present in human urine by combining HPLC and NMR techniques

    PubMed Central

    Appiah-Amponsah, Emmanuel; Shanaiah, Narasimhamurthy; Nagana Gowda, G. A.; Owusu-Sarfo, Kwadwo; Ye, Tao; Raftery, Daniel

    2010-01-01

    The 1H NMR spectrum of urine exhibits a large number of detectable and quantifiable metabolites and hence urine metabolite profiling is potentially useful for the study of systems biology and the discovery of biomarkers for drug development or clinical applications. While a number of metabolites (50–100) are readily detectable in urine by NMR, a much larger number is potentially available if lower concentration species can be detected unambiguously. Lower concentration metabolites are thought to be more specific to certain disease states and thus it is important to detect these metabolites with certainty. We report the identification of 4-deoxythreonic acid, a relatively low concentration endogenous metabolite that has not been previously identified in the 1H NMR spectrum of human urine. The complimentary use of HPLC and NMR spectroscopy facilitated the unequivocal and non-invasive identification of the molecule in urine which is complicated by extensive peak overlap and multiple, similar resonances from other metabolites such as 3-hydroxybutanoic acid. High-resolution detection and good sensitivity were achieved by the combination of multiple chromatographic fraction collection, sample pre-concentration, and the use of a cryogenically cooled NMR probe. PMID:19615840

  20. (1) H NMR analysis of O-methyl-inositol isomers: a joint experimental and theoretical study.

    PubMed

    De Almeida, Mauro V; Couri, Mara Rubia C; De Assis, João Vitor; Anconi, Cleber P A; Dos Santos, Hélio F; De Almeida, Wagner B

    2012-09-01

    Density functional theory (DFT) calculations of (1) H NMR chemical shifts for l-quebrachitol isomers were performed using the B3LYP functional employing the 6-31G(d,p) and 6-311 + G(2d,p) basis sets. The effect of the solvent on the B3LYP-calculated NMR spectrum was accounted for using the polarizable continuum model. Comparison is made with experimental (1) H NMR spectroscopic data, which shed light on the average uncertainty present in DFT calculations of chemical shifts and showed that the best match between experimental and theoretical B3LYP (1) H NMR profiles is a good strategy to assign the molecular structure present in the sample handled in the experimental measurements. Among four plausible O-methyl-inositol isomers, the l-quebrachitol 2a structure was unambiguously assigned based only on the comparative analysis of experimental and theoretical (1) H NMR chemical shift data. The B3LYP infrared (IR) spectrum was also calculated for the four isomers and compared with the experimental data, with analysis of the theoretical IR profiles corroborating assignment of the 2a structure. Therefore, it is confirmed in this study that a combined experimental/DFT spectroscopic investigation is a powerful tool in structural/conformational analysis studies.

  1. Natural-abundance 17O NMR of monosaccharides

    NASA Astrophysics Data System (ADS)

    Gerothanassis, Ioannis P.; Lauterwein, Jürgen; Sheppard, Norman

    Natural-abundance "high-resolution" 17O NMR spectra of D-glucose, D-mannose, D-galactose, and some methoxy derivatives of D-glucose were recorded in aqueous solution. The sensitivity and spectral resolution was improved by optimizing the accumulation and manipulation of data. The water solvent peak was suppressed through use of 17O-depleted water or displaced by addition of paramagnetic shift reagents. With Dy 3+ the 17O NMR spectrum of D-glucose remained unaltered; however, the water peak was shifted outside the carbohydrate spectral region. The 17O NMR resonances were assigned from earlier data for some specifically 17O-enriched monosaccharide derivatives. The anomeric hydroxyl resonances could also be located because of their exchange with the 17O-depleted water. Although the chemical shifts of the monosacharides generally parallel the sequence of chemical shifts for simple primary and secondary alcohols and substituted ethers, several exceptions were found and discussed in terms of steric and electrostatic repulsive forces between oxygens.

  2. Na/Ca Intermixing around Silicate and Phosphate Groups in Bioactive Phosphosilicate Glasses Revealed by Heteronuclear Solid-State NMR and Molecular Dynamics Simulations.

    PubMed

    Mathew, Renny; Stevensson, Baltzar; Edén, Mattias

    2015-04-30

    We characterize the intermixing of network-modifying Na(+)/Ca(2+) ions around the silicate (QSi(n)) and phosphate (QP(n)) tetrahedra in a series of 16 Na2O–CaO–SiO2–P2O5 glasses, whose P content and silicate network connectivity were varied independently. The set includes both bioactive and bioinactive compositions and also encompasses two soda-lime-silicate members devoid of P, as well as two CaO–SiO2 glasses and one Na2O–SiO2–P2O5 glass. The various Si/P↔Na/Ca contacts were probed by molecular dynamics (MD) simulations together with heteronuclear magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) experimentation utilizing (23)Na{(31)P} and (23)Na{(29)Si} REDOR, as well as (31)P{ (23)Na} and (29)Si{(23)Na} REAPDOR. We introduce an approach for quantifying the extent of Na(+)/Ca(2+) ordering around a given QP(n) or QSi(n) group, encoded by the preference factor 0⩽ PM ⩽ 1 conveying the relative weights of a random cation intermixing (PM = 0) and complete preference/ordering (PM = 1) for one of the species M, which represents either Na(+) or Ca(2+). The MD-derived preference factors reveal phosphate and silicate species surrounded by Na(+)/Ca(2+) ions intermixed nearly randomly (PM ≲ 0.15), except for the QSi(4) and QSi(1) groups, which manifest more significant cation ordering with preference for Na+ and Ca2+, respectively. The overall weak preferences are essentially independent of the Si and P contents of the glass, whereas PM primarily correlates with the total amount of network modifiers: as the latter is increased, the Na/Ca distribution around the {QP(0), QSi(1), QSi(2)} groups with preference for Ca2(+ )tend to randomize (i.e., PCa decreases), while the PNa-values grow slightly for the {QP(1), QSi(3), QSi(4)} species already preferring coordination of Na. The set of experimental preference factors {PCa} for the orthophosphate (QP(0)) groups extracted from (31)P{(23)Na} REAPDOR NMR-derived M2(P–Na) dipolar second moments agrees

  3. Cathodoluminescence Spectrum Imaging Software

    2011-04-07

    The software developed for spectrum imaging is applied to the analysis of the spectrum series generated by our cathodoluminescence instrumentation. This software provides advanced processing capabilities s such: reconstruction of photon intensity (resolved in energy) and photon energy maps, extraction of the spectrum from selected areas, quantitative imaging mode, pixel-to-pixel correlation spectrum line scans, ASCII, output, filling routines, drift correction, etc.

  4. Scalable NMR spectroscopy with semiconductor chips.

    PubMed

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-08-19

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm(2) silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  5. Advanced NMR technology for bioscience and biotechnology

    SciTech Connect

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J.; Boumenthal, D.K.; Kennedy, M.A.; Moore, G.J.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  6. Direct observation of the active center for methane dehydroaromatization using an ultrahigh field 95Mo NMR spectroscopy.

    PubMed

    Zheng, Heng; Ma, Ding; Bao, Xinhe; Hu, Jian Zhi; Kwak, Ja Hun; Wang, Yong; Peden, Charles H F

    2008-03-26

    The use of an ultrahigh magnetic field spectrometer and 95Mo isotope enrichment facilitate the direct observation of the local structure of Mo species on Mo/zeolite catalysts by 95Mo NMR. Top trace: The experimental 95Mo NMR spectrum of 6Mo/HZSM-5. Bottom traces: The simulated overall spectrum (orange), the spectral component corresponding to MoO3 (purple), and the component corresponding to the exchanged Mo species (green). The exchanged Mo species proved to be the active center for the methane dehydroaromatization (MDA) reaction.

  7. Composite materials with improved properties in compression. Appendix 4. Addition of difluorocarbene to poly(1-methyl-1-phenyl-1-sila-cis-pent-3-ene). Characterization of microstructures by sup 1 H, sup 13 C, and sup 19 F and sup 29 Si NMR. Interim report

    SciTech Connect

    Lee, H.S.; Weber, W.P.

    1990-05-09

    There is considerable interest in the chemical modification of polymers (1-3). Dichloro (4-7) and difluorocarbene (8) add stereospecifically to the C-C double bonds of cis and trans-1,4-polybutadiene.

  8. Fast multi-dimensional NMR acquisition and processing using the sparse FFT.

    PubMed

    Hassanieh, Haitham; Mayzel, Maxim; Shi, Lixin; Katabi, Dina; Orekhov, Vladislav Yu

    2015-09-01

    Increasing the dimensionality of NMR experiments strongly enhances the spectral resolution and provides invaluable direct information about atomic interactions. However, the price tag is high: long measurement times and heavy requirements on the computation power and data storage. We introduce sparse fast Fourier transform as a new method of NMR signal collection and processing, which is capable of reconstructing high quality spectra of large size and dimensionality with short measurement times, faster computations than the fast Fourier transform, and minimal storage for processing and handling of sparse spectra. The new algorithm is described and demonstrated for a 4D BEST-HNCOCA spectrum. PMID:26123316

  9. Fruit juice authentication by 1H NMR spectroscopy in combination with different chemometrics tools.

    PubMed

    Cuny, M; Vigneau, E; Le Gall, G; Colquhoun, I; Lees, M; Rutledge, D N

    2008-01-01

    To discriminate orange juice from grapefruit juice in a context of fraud prevention, (1)H NMR data were submitted to different treatments to extract informative variables which were then analysed using multivariate techniques. Averaging contiguous data points of the spectrum followed by logarithmic transformation improved the results of the data analysis. Moreover, supervised variable selection methods gave better rates of classification of the juices into the correct groups. Last, independent-component analysis gave better classification results than principal-component analysis. Hence, ICA may be an efficient chemometric tool to detect differences in the (1)H NMR spectra of similar samples, and so may be useful for authentication of foods.

  10. Photosensitized Peroxidation of Lipids: An Experiment Using 1H-NMR

    NASA Astrophysics Data System (ADS)

    Smith, Marion W.; Brown, Renee; Smullin, Steven; Eager, Jon

    1997-12-01

    The photoperoxidation of methyl linoleate, using 5,10,15,20-tetraphenyl porphyrin as photosensitizer, was monitored by 60 MHz 1H-NMR. Samples were irradiated for 10-24 hours in front of a 15 W fluorescent light, and NMR signals in the 5-6 ppm and 10-11 ppm region of the spectrum indicated peroxidation products were formed. The absorption of oxygen from the air was measured by attaching the sample tube to a gas burette. When vitamin E was added to the mixture the extent of peroxidation was reduced, showing the protective effect of the antioxidant. These experiments are appropriate for students of biochemistry

  11. Image-selected in Vivo spectroscopy (ISIS). A new technique for spatially selective nmr spectroscopy

    NASA Astrophysics Data System (ADS)

    Ordidge, R. J.; Connelly, A.; Lohman, J. A. B.

    A method of spatial localization is described which is particularly suitable for the in vivo spectroscopic investigation of biological and medical samples. The technique overcomes most of the technical problems associated with localized NMR spectroscopy and allows the spectrum to be investigated from a cube which can be positioned by reference to an NMR image. The cube can be reduced or enlarged, and can be rapidly moved in space to investigate further volumes of interest within the sample. The first experimental results from a phantom and the human leg are presented.

  12. A new algorithm for reliable and general NMR resonance assignment.

    PubMed

    Schmidt, Elena; Güntert, Peter

    2012-08-01

    The new FLYA automated resonance assignment algorithm determines NMR chemical shift assignments on the basis of peak lists from any combination of multidimensional through-bond or through-space NMR experiments for proteins. Backbone and side-chain assignments can be determined. All experimental data are used simultaneously, thereby exploiting optimally the redundancy present in the input peak lists and circumventing potential pitfalls of assignment strategies in which results obtained in a given step remain fixed input data for subsequent steps. Instead of prescribing a specific assignment strategy, the FLYA resonance assignment algorithm requires only experimental peak lists and the primary structure of the protein, from which the peaks expected in a given spectrum can be generated by applying a set of rules, defined in a straightforward way by specifying through-bond or through-space magnetization transfer pathways. The algorithm determines the resonance assignment by finding an optimal mapping between the set of expected peaks that are assigned by definition but have unknown positions and the set of measured peaks in the input peak lists that are initially unassigned but have a known position in the spectrum. Using peak lists obtained by purely automated peak picking from the experimental spectra of three proteins, FLYA assigned correctly 96-99% of the backbone and 90-91% of all resonances that could be assigned manually. Systematic studies quantified the impact of various factors on the assignment accuracy, namely the extent of missing real peaks and the amount of additional artifact peaks in the input peak lists, as well as the accuracy of the peak positions. Comparing the resonance assignments from FLYA with those obtained from two other existing algorithms showed that using identical experimental input data these other algorithms yielded significantly (40-142%) more erroneous assignments than FLYA. The FLYA resonance assignment algorithm thus has the

  13. The Use of Dodecylphosphocholine Micelles in Solution NMR

    NASA Astrophysics Data System (ADS)

    Kallick, D. A.; Tessmer, M. R.; Watts, C. R.; Li, C. Y.

    Dodecylphosphocholine (DPC) micelles are useful as a model membrane system for solution NMR. Several new observations on dodecylphosphocholine micelles and their interactions with opioid peptides are described. The optimal lipid concentration has been investigated for small peptide NMR studies in DPC micelles for two opioid peptides, a 5-mer and a 17-mer. In contrast to reports in the literature, identical 2D spectra have been observed at low and high lipid concentrations. The chemical shift of resolved peptide proton resonances has been followed as a function of added lipid and indicates that there are changes in the chemical shifts above the critical micelle concentration and up to a ratio of 7:1 (lipid:peptide) for the 17-mer, and 9.6:1 for the 5-mer. These results suggest that conformational changes occur in the peptide significantly above the critical micelle concentration, up to a lipid:peptide ratio which is dependent upon the peptide, here ranging from 7:1 to 9.6:1. To address the stoichiometry more directly, the diffusion coefficients of the lipid alone and the lipid with peptide have been measured using pulsed-field gradient spin-echo NMR experiments. These data have been used to calculate the hydrodynamic radius and the aggregation number of the micelle with and without peptide and show that the aggregation number of the peptide-lipid complex increases at high lipid concentrations without a concomitant change in the peptide conformation. Last, several protonated impurities have been observed in the commercial preparation of DPC which resonate in the amide proton region of the NMR spectrum. These results are significant for researchers using DPC micelles and illustrate that both care in sample preparation and the stoichiometry are important issues with the use of DPC as a model membrane.

  14. NMR provides checklist of generic properties for atomic-scale models of periodic mesoporous silicas.

    PubMed

    Shenderovich, Ilja G; Mauder, Daniel; Akcakayiran, Dilek; Buntkowsky, Gerd; Limbach, Hans-Heinrich; Findenegg, Gerhard H

    2007-10-25

    MCM-41 and SBA-15 silicas were studied by (29)Si solid-state NMR and (15)N NMR in the presence of (15)N-pyridine with the aim to formulate generic structural parameters that may be used as a checklist for atomic-scale structural models of this class of ordered mesoporous materials. High-quality MCM-41 silica constitutes quasi-ideal arrays of uniform-size pores with thin pore walls, while SBA-15 silica has thicker pore walls with framework and surface defects. The numbers of silanol (Q(3)) and silicate (Q(4)) groups were found to be in the ratio of about 1:3 for MCM-41 and about 1:4 for our SBA-15 materials. Combined with the earlier finding that the density of surface silanol groups is about three per nm(2) in MCM-41 (Shenderovich, et al. J. Phys. Chem. B 2003, 107, 11924) this allows us to discriminate between different atomic-scale models of these materials. Neither tridymite nor edingtonite meet both of these requirements. On the basis of the hexagonal pore shape model, the experimental Q(3):Q(4) ratio yields a wall thickness of about 0.95 nm for MCM-41 silica, corresponding to the width of ca. four silica tetrahedra. The arrangement of Q(3) groups at the silica surfaces was analyzed using postsynthesis surface functionalization. It was found that the number of covalent bonds to the surface formed by the functional reagents is affected by the surface morphology. It is concluded that for high-quality MCM-41 silicas the distance between neighboring surface silanol groups is greater than 0.5 nm. As a result, di- and tripodical reagents like (CH(3))(2)Si(OH)(2) and CH(3)Si(OH)(3) can form only one covalent bond to the surface. The residual hydroxyl groups of surface-bonded functional reagents either remain free or interact with other reagent molecules. Accordingly, the number of surface silanol groups at a given MCM-41 or SBA-15 silica may not decrease but increase after treatment with CH(3)Si(OH)(3) reagent. On the other hand, nearly all surface silanol groups

  15. High-resolution solid-state 2H NMR spectroscopy of polymorphs of glycine.

    PubMed

    Aliev, Abil E; Mann, Sam E; Rahman, Aisha S; McMillan, Paul F; Corà, Furio; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-11-10

    High-resolution solid-state (2)H MAS NMR studies of the α and γ polymorphs of fully deuterated glycine (glycine-d(5)) are reported. Analysis of spinning sideband patterns is used to determine the (2)H quadrupole interaction parameters, and is shown to yield good agreement with the corresponding parameters determined from single-crystal (2)H NMR measurements (the maximum deviation in quadrupole coupling constants determined from these two approaches is only 1%). From analysis of simulated (2)H MAS NMR sideband patterns as a function of reorientational jump frequency (κ) for the -N(+)D(3) group in glycine-d(5), the experimentally observed differences in the (2)H MAS NMR spectrum for the -N(+)D(3) deutrons in the α and γ polymorphs is attributed to differences in the rate of reorientation of the -N(+)D(3) group. These simulations show severe broadening of the (2)H MAS NMR signal in the intermediate motion regime, suggesting that deuterons undergoing reorientational motions at rates in the range κ ≈ 10(4)-10(6) s(-1) are likely to be undetectable in (2)H MAS NMR measurements for materials with natural isotopic abundances. The (1)H NMR chemical shifts for the α and γ polymorphs of glycine have been determined from the (2)H MAS NMR results, taking into account the known second-order shift. Further quantum mechanical calculations of (2)H quadrupole interaction parameters and (1)H chemical shifts reveal the structural dependence of these parameters in the two polymorphs and suggest that the existence of two short intermolecular C-H···O contacts for one of the H atoms of the >CH(2) group in the α polymorph have a significant influence on the (2)H quadrupole coupling and (1)H chemical shift for this site. PMID:21939265

  16. Fourier Analysis and Structure Determination. Part II: Pulse NMR and NMR Imaging.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Uses simple pulse NMR experiments to discuss Fourier transforms. Studies the generation of spin echoes used in the imaging procedure. Shows that pulse NMR experiments give signals that are additions of sinusoids of differing amplitudes, frequencies, and phases. (MVL)

  17. Hyphenated low-field NMR techniques: combining NMR with NIR, GPC/SEC and rheometry.

    PubMed

    Räntzsch, Volker; Wilhelm, Manfred; Guthausen, Gisela

    2016-06-01

    Hyphenated low-field NMR techniques are promising characterization methods for online process analytics and comprehensive offline studies of soft materials. By combining different analytical methods with low-field NMR, information on chemical and physical properties can be correlated with molecular dynamics and complementary chemical information. In this review, we present three hyphenated low-field NMR techniques: a combination of near-infrared spectroscopy and time-domain NMR (TD-NMR) relaxometry, online (1) H-NMR spectroscopy measured directly after size exclusion chromatographic (SEC, also known as GPC) separation and a combination of rheometry and TD-NMR relaxometry for highly viscous materials. Case studies are reviewed that underline the possibilities and challenges of the different hyphenated low-field NMR methods. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  19. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  20. Application of INEPT nitrogen-15 and silicon-29 nuclear magnetic resonance spectrometry to derivatized fulvic acids

    USGS Publications Warehouse

    Thorn, K.A.; Folan, D.W.; Arterburn, J.B.; Mikita, M.A.; MacCarthy, P.

    1989-01-01

    Use of the INEPT experiment has been examined in two derivatization studies of the Suwannee River fulvic acid. In the first study, the fulvic acid was derivatized with 15N enriched hydroxylamine. The quantitative 15N NMR spectrum, acquired with a 45° pulse angle, 2.0 second pulse delay and inverse gated decoupling, showed that oximes (390-340 ppm) were the major derivatives, followed by nitriles (270-240 ppm), hydroxamic acids (170-160 ppm), secondary amides (150-115 ppm), and lactams (115-90 ppm). The INEPT 15N NMR spectrum was acquired using refocussing delays and polarization transfer times optimized for signal enhancement of singly protonated nitrogens. INEPT greatly enhanced the amide and lactam resonances, and showed that resonances downfield of 180 ppm in the quantitative spectrum represented nonprotonated nitrogens. In the second study, the fulvic acid was first methylated with diazomethane and then silylated with hexamethyldisilazane. The 29Si NMR spectra exhibited two major peaks, from approximately 33 to 22 ppm, representing silyl esters of carboxylic acids, and from 22 to 13 ppm, representing silyl ethers of alcohols and phenols. The INEPT 29Si NMR spectrum was virtually identical to the quantitative 29Si spectrum, acquired with a 90° pulse angle, 5.0 second pulse delay, inverse gated decoupling, and relaxation reagent. INEPT therefore can be used for quantitative analysis of trimethylsilyl derivatives of the fulvic acid, saving spectrometer time and eliminating the need for relaxation reagents.

  1. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R. ); Wind, Robert A. )

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  2. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  3. Picoliter 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Wind, Robert A.

    2002-02-01

    In this study, a 267-μm-diameter solenoid transceiver is used to acquire localized 1H NMR spectra and the measured signal-to-noise ratio (SNR) at 500 MHz is shown to be within 20-30% of theoretical limits formulated by considering only its resistive losses. This is illustrated using a 100-μm-diameter globule of triacylglycerols (∼900 mM) that may be an oocyte precursor in young Xenopus laevis frogs and a water sample containing choline at a concentration often found in live mammalian cells (∼33 mM). In chemical shift imaging (CSI) experiments performed using a few thousand total scans, the choline methyl line is shown to have an acceptable SNR in resolved volume elements containing only 50 pL of sample, and localized spectra are resolved from just 5 pL in the Xenopus globule. These findings demonstrate the feasibility of performing 1H NMR on picoliter-scale sample volumes in biological cells and tissues and illustrate how the achieved SNR in spectroscopic images can be predicted with reasonable accuracy at microscopic spatial resolutions.

  4. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  5. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which spectral…

  6. Fully resolved NMR correlation spectroscopy.

    PubMed

    Pitoux, Daisy; Plainchont, Bertrand; Merlet, Denis; Hu, Zhaoyu; Bonnaffé, David; Farjon, Jonathan; Giraud, Nicolas

    2015-06-15

    A new correlation experiment cited as "push-G-SERF" is reported. In the resulting phased 2D spectrum, the chemical shift information is selected along the direct dimension, whereas scalar couplings involving a selected proton nucleus are edited in the indirect domain. The robustness of this pulse sequence is demonstrated on compounds with increasing structural and spectral complexity, using state-of-the-art spectrometers. It allows for full resolution of both dimensions of the spectrum, yielding a straightforward assignment and measurement of the coupling network around a given proton in the molecule. This experiment is intended for chemists who want to address efficiently the structural analysis of molecules with an overcrowded spectrum.

  7. Enzyme dynamics from NMR spectroscopy.

    PubMed

    Palmer, Arthur G

    2015-02-17

    CONSPECTUS: Biological activities of enzymes, including regulation or coordination of mechanistic stages preceding or following the chemical step, may depend upon kinetic or equilibrium changes in protein conformations. Exchange of more open or flexible conformational states with more closed or constrained states can influence inhibition, allosteric regulation, substrate recognition, formation of the Michaelis complex, side reactions, and product release. NMR spectroscopy has long been applied to the study of conformational dynamic processes in enzymes because these phenomena can be characterized over multiple time scales with atomic site resolution. Laboratory-frame spin-relaxation measurements, sensitive to reorientational motions on picosecond-nanosecond time scales, and rotating-frame relaxation-dispersion measurements, sensitive to chemical exchange processes on microsecond-millisecond time scales, provide information on both conformational distributions and kinetics. This Account reviews NMR spin relaxation studies of the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations of the bacterial ribonuclease H enzymes show that the handle region, one of three loop regions that interact with substrates, interconverts between two conformations. Comparison of these conformations with the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed state is inhibitory to binding. The large population of the closed conformation in T. thermophilus ribonuclease H contributes to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized a

  8. Enzyme Dynamics from NMR Spectroscopy

    PubMed Central

    2016-01-01

    Conspectus Biological activities of enzymes, including regulation or coordination of mechanistic stages preceding or following the chemical step, may depend upon kinetic or equilibrium changes in protein conformations. Exchange of more open or flexible conformational states with more closed or constrained states can influence inhibition, allosteric regulation, substrate recognition, formation of the Michaelis complex, side reactions, and product release. NMR spectroscopy has long been applied to the study of conformational dynamic processes in enzymes because these phenomena can be characterized over multiple time scales with atomic site resolution. Laboratory-frame spin-relaxation measurements, sensitive to reorientational motions on picosecond–nanosecond time scales, and rotating-frame relaxation-dispersion measurements, sensitive to chemical exchange processes on microsecond–millisecond time scales, provide information on both conformational distributions and kinetics. This Account reviews NMR spin relaxation studies of the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations of the bacterial ribonuclease H enzymes show that the handle region, one of three loop regions that interact with substrates, interconverts between two conformations. Comparison of these conformations with the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed state is inhibitory to binding. The large population of the closed conformation in T. thermophilus ribonuclease H contributes to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized a

  9. Verwey transition of nano-sized magnetite crystals investigated by 57Fe NMR

    NASA Astrophysics Data System (ADS)

    Lim, Sumin; Choi, Baek Soon; Lee, Soon Chil; Hong, Jaeyoung; Lee, Jisoo; Hyeon, Taeghwan; Kim, Taehun; Jeong, Jaehong; Park, Je-Geun

    It is well known that magnetite crystals undergo a metal-insulator transition at the Verwey transition temperature, TV = 123 K. In this work, we studied the Verwey transition of nano-sized crystals with 57Fe NMR. In the metallic state above Tv, the NMR spectrum shows a single sharp peak, which broadens below TV indicating the Verwey transition. We measured the spectra of the nano-crystals with radii of 16 nm, 25 nm, and 40 nm and compared with that of a bulk. The transition temperature obtained from the NMR spectra depends on both the crystal size and crystallinity. When the crystal size decreases from bulk to 16 nm, the transition temperature drops from 123 K to 100 K. The transition temperature of the samples kept dry air decrease due to aging.

  10. Improved Carbohydrate Structure Generalization Scheme for (1)H and (13)C NMR Simulations.

    PubMed

    Kapaev, Roman R; Toukach, Philip V

    2015-07-21

    The improved Carbohydrate Structure Generalization Scheme has been developed for the simulation of (13)C and (1)H NMR spectra of oligo- and polysaccharides and their derivatives, including those containing noncarbohydrate constituents found in natural glycans. Besides adding the (1)H NMR calculations, we improved the accuracy and performance of prediction and optimized the mathematical model of the precision estimation. This new approach outperformed other methods of chemical shift simulation, including database-driven, neural net-based, and purely empirical methods and quantum-mechanical calculations at high theory levels. It can process structures with rarely occurring and noncarbohydrate constituents unsupported by the other methods. The algorithm is transparent to users and allows tracking used reference NMR data to original publications. It was implemented in the Glycan-Optimized Dual Empirical Spectrum Simulation (GODESS) web service, which is freely available at the platform of the Carbohydrate Structure Database (CSDB) project ( http://csdb.glycoscience.ru). PMID:26087011

  11. Magnetic field dependence of spatial frequency encoding NMR as probed on an oligosaccharide.

    PubMed

    Pitoux, D; Hu, Z; Plainchont, B; Merlet, D; Farjon, J; Bonnaffé, D; Giraud, N

    2015-10-01

    The magnetic field dependence of spatial frequency encoding NMR techniques is addressed through a detailed analysis of (1)H NMR spectra acquired under spatial frequency encoding on an oligomeric saccharide sample. In particular, the influence of the strength of the static magnetic field on spectral and spatial resolutions that are key features of this method is investigated. For this purpose, we report the acquisition of correlation experiments implementing broadband homodecoupling or J-edited spin evolutions, and we discuss the resolution enhancements that are provided by these techniques at two different magnetic fields. We show that performing these experiments at higher field improves the performance of high resolution NMR techniques based on a spatial frequency encoding. The significant resolution enhancements observed on the correlation spectra acquired at very high field make them valuable analytical tools that are suitable for the assignment of (1)H chemical shifts and scalar couplings in molecules with highly crowded spectrum such as carbohydrates.

  12. Wideband digital spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Morris, G. A., Jr.; Wilck, H. C.

    1979-01-01

    Modular spectrum analyzer consisting of RF receiver, fast fourier transform spectrum analyzer, and data processor samples stochastic signals in 220 channels. Construction reduces design and fabrication costs of assembled unit.

  13. Autism Spectrum Disorder (ASD)

    MedlinePlus

    ... spectrum disorder (ASD) is a group of developmental disabilities that can cause significant social, communication and behavioral ... for autism spectrum disorder (ASD) and other developmental disabilities. More E-mail Your Friends "Children with autism ...

  14. NMR Spectroscopy and Its Value: A Primer

    ERIC Educational Resources Information Center

    Veeraraghavan, Sudha

    2008-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six…

  15. An Inversion Recovery NMR Kinetics Experiment

    ERIC Educational Resources Information Center

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  16. Using Cloud Storage for NMR Data Distribution

    ERIC Educational Resources Information Center

    Soulsby, David

    2012-01-01

    An approach using Google Groups as method for distributing student-acquired NMR data has been implemented. We describe how to configure NMR spectrometer software so that data is uploaded to a laboratory section specific Google Group, thereby removing bottlenecks associated with printing and processing at the spectrometer workstation. Outside of…

  17. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  18. Simplified Digital Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Cole, Steven W.

    1992-01-01

    Spectrum analyzer computes approximate cross-correlations between noisy input signal and reference signal of known frequency, yielding measure of amplitude of sinusoidal component of input. Complexity and power consumed less than other digital spectrum analyzers. Performs no multiplications, and because processes data on each frequency independently, focuses on narrow spectral range without processing data on rest of spectrum.

  19. NMR and MRI apparatus and method

    DOEpatents

    Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas

    2007-03-06

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  20. Preprocessing of NMR metabolomics data.

    PubMed

    Euceda, Leslie R; Giskeødegård, Guro F; Bathen, Tone F

    2015-05-01

    Metabolomics involves the large scale analysis of metabolites and thus, provides information regarding cellular processes in a biological sample. Independently of the analytical technique used, a vast amount of data is always acquired when carrying out metabolomics studies; this results in complex datasets with large amounts of variables. This type of data requires multivariate statistical analysis for its proper biological interpretation. Prior to multivariate analysis, preprocessing of the data must be carried out to remove unwanted variation such as instrumental or experimental artifacts. This review aims to outline the steps in the preprocessing of NMR metabolomics data and describe some of the methods to perform these. Since using different preprocessing methods may produce different results, it is important that an appropriate pipeline exists for the selection of the optimal combination of methods in the preprocessing workflow.

  1. Solid-state /sup 13/C NMR and X-ray diffraction of dermatan sulfate

    SciTech Connect

    Winter, W.T.; Taylor, M.G.; Stevens, E.S.; Morris, E.R.; Rees, D.A.

    1986-05-29

    Dermatan sulfate in the solid state has been studied by /sup 13/C CP/MAS nmr and X-ray diffraction in order to establish the ring conformation of the L-iduronate moiety. The solid state nmr spectrum is similar to the solution spectrum obtained previously, indicating that a ring conformation at least approximating to /sup 1/C/sub 4/ predominates in the solid state. X-ray powder diffraction data from the same sample indicate the presence of the 8-fold helix form previously observed by fiber diffraction, and interpreted in terms of a /sup 4/C/sub 1/ ring form. A likely explanation of the results is that a distorted /sup 1/C/sub 4/ L-iduronate ring conformation, not considered in the initial X-ray analysis, may emerge to provide a satisfactory interpretation of all available physical-chemical data.

  2. Total (1)H NMR assignment of 3β-acetoxypregna-5,16-dien-20-one.

    PubMed

    Becerra-Martinez, Elvia; Ramírez-Gualito, Karla E; Pérez-Hernández, Nury; Joseph-Nathan, Pedro

    2015-12-01

    This work describes the total and unambiguous assignment of the 750 MHz (1)H NMR spectrum of 3β-acetoxypregna-5,16-dien-20-one or 16-DPA (1), the well-known intermediate utilized in the synthesis of biological important commercial steroids. The task was accomplished by extracting the coupling constant values in the overlapped spectrum region by HSQC, and using these values in the (1)H iterative full spin analysis integrated in the PERCH NMR software. Comparison of the experimental vicinal coupling constants of 1 with the values calculated using Altona provides an excellent correlation. The same procedure, when applied to the published data of progesterone (2) and testosterone (3), afforded an acceptable correlation for 2 and a poor correlation for 3. In the last case, this suggested the reassignment of all four vicinal coupling constants for the methylene signals at the C-15 and C-16 positions, demonstrating the utility of this methodology. PMID:26476187

  3. Measurements of heavy-atom isotope effects using 1H NMR spectroscopy.

    PubMed

    Pabis, Anna; Kamiński, Rafał; Ciepielowski, Grzegorz; Jankowski, Stefan; Paneth, Piotr

    2011-10-01

    A novel method for measuring heavy-atom KIEs for magnetically active isotopes using (1)H NMR is presented. It takes advantage of the resonance split of the protons coupled with the heavy atom in the (1)H spectrum. The method is validated by the example of the (13)C-KIE on the hydroamination of styrene with aniline, catalyzed by phosphine-ligated palladium triflates.

  4. Milli-tesla NMR and spectrophotometry of liquids hyperpolarized by dissolution dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Chen, Chia-Hsiu; Wilson, Zechariah; Savukov, Igor; Hilty, Christian

    2016-09-01

    Hyperpolarization methods offer a unique means of improving low signal strength obtained in low-field NMR. Here, simultaneous measurements of NMR at a field of 0.7 mT and laser optical absorption from samples hyperpolarized by dissolution dynamic nuclear polarization (D-DNP) are reported. The NMR measurement field closely corresponds to a typical field encountered during sample injection in a D-DNP experiment. The optical spectroscopy allows determination of the concentration of the free radical required for DNP. Correlation of radical concentration to NMR measurement of spin polarization and spin-lattice relaxation time allows determination of relaxivity and can be used for optimization of the D-DNP process. Further, the observation of the nuclear Overhauser effect originating from hyperpolarized spins is demonstrated. Signals from 1H and 19F in a mixture of trifluoroethanol and water are detected in a single spectrum, while different atoms of the same type are distinguished by J-coupling patterns. The resulting signal changes of individual peaks are indicative of molecular contact, suggesting a new application area of hyperpolarized low-field NMR for the determination of intermolecular interactions.

  5. Studies of magnetism using nuclear orientation and related NMR techniques

    NASA Astrophysics Data System (ADS)

    Pond, James F.

    2001-09-01

    Nuclear Orientation and related NMR techniques have been used to study three magnetic insulators: Mn(COOCH3)2·4H2O, MnCl2·4H2O and CoCl2·6H 2O. Continuous wave NMR thermally detected by Nuclear Orientation has been used to investigate the magnetic properties and spin dynamics of the quasi-2-dimensional ferromagnet 54Mn-Mn(COOCH3)2·4H 2O. The system exhibits a frequency pulling effect due to the indirect Suhl-Nakamura interaction between nuclear spins and the electronic spin excitation spectrum is related to the coupling strength of the nuclear spins. The temperature dependence of the frequency pulling effect was measured for the two crystalline sublattices Mn1 and Mn2 in low magnetic field. The spectra show a structure not predicted theoretically. The current theory is valid only for I = 1/2 with uniaxial crystalline anisotropy fields. The theory of frequency pulling has been extended here to the case of I ≥ 1/2 and non-uniaxial crystalline anisotropy fields and the resonant frequencies and linewidths have been calculated as a function of temperature. The new theory and data agree well in terms of the magnitude and temperature dependence of the frequency pulling. Discrepancies are likely due to simplifying assumptions when calculating the electronic magnon spectrum. Classical and quantum numerical simulations confirm qualitatively the predictions of the model. The first Low Temperature Nuclear Orientation experiments on isotopes implanted into insulators is reported. Radioactive 56Mn ions have been implanted into insulating, antiferromagnetic crystals of MnCl 2·4H2O and CoCl2·6H2O. In MnCl2·4H2O, comparison of the gamma-ray anisotropy of the 56Mn nuclei with that of 54Mn, doped into the sample during growth, showed that both the 56Mn and 54Mn spins felt a very similar hyperfine field. The site occupancy factor in a simple, two site model was deduced to be 0.96+0.04-0.07 . In CoCl2·6H2O, the average hyperfine field for the implanted 56Mn was significantly

  6. An introduction to biological NMR spectroscopy.

    PubMed

    Marion, Dominique

    2013-11-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP).

  7. An Introduction to Biological NMR Spectroscopy*

    PubMed Central

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  8. Saturation transfer difference NMR for fragment screening.

    PubMed

    Begley, Darren W; Moen, Spencer O; Pierce, Phillip G; Zartler, Edward R

    2013-01-01

    Fragment screening by saturation transfer difference nuclear magnetic resonance (STD-NMR) is a robust method for identifying small molecule binders and is well suited to a broad set of biological targets. STD-NMR is exquisitely sensitive for detecting weakly binding compounds (a common characteristic of fragments), which is a crucial step in finding promising compounds for a fragment-based drug discovery campaign. This protocol describes the development of a library suitable for STD-NMR fragment screening, as well as preparation of protein samples, optimization of experimental conditions, and procedures for data collection and analysis. PMID:24391096

  9. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  10. Probing porous media with gas diffusion NMR.

    PubMed

    Mair, R W; Wong, G P; Hoffmann, D; Hurlimann, M D; Patz, S; Schwartz, L M; Walsworth, R L

    1999-10-18

    We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks. PMID:11543587

  11. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  12. Probing porous media with gas diffusion NMR

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Wong, G. P.; Hoffmann, D.; Hurlimann, M. D.; Patz, S.; Schwartz, L. M.; Walsworth, R. L.

    1999-01-01

    We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks.

  13. NMR mechanisms in gel dosimetry

    NASA Astrophysics Data System (ADS)

    Schreiner, L. J.

    2009-05-01

    Nuclear magnetic resonance was critical to the development of gel dosimetry, as it established the potential for three dimensional dosimetry with chemical dosimeter systems through magnetic resonance imaging [1]. In the last two decades MRI has served as the gold standard for imaging, while NMR relaxometry has played an important role in the development and understanding of the behaviour of new gel dosimetry systems. Therefore, an appreciation of the relaxation mechanisms determining the NMR behaviour of irradiated gel dosimeters is important for a full comprehension of a considerable component of the literature on gel dosimetry. A number of excellent papers have presented this important theory, this brief review will highlight some of the salient points made previously [1-5]. The spin relaxation of gel dosimeters (which determines the dose dependence in most conventional MR imaging) is determined principally by the protons on water molecules in the system. These water protons exist in different environments, or groups (see Figure 1): on bulk water, on water hydrating the chemical species that are being modified under irradiation, and on water hydrating the gel matrix used to spatially stabilize the dosimeter (e.g., gelatin, agarose, etc). The spin relaxation depends on the inherent relaxation rate of each spin group, that is, on the relaxation rate which would be observed for the specific group if it were isolated. Also, the different water environments are not isolated from each other, and the observed relaxation rate also depends on the rate of exchange of magnetization between the groups, and on the fraction of protons in each group. In fact, the water exchanges quickly between the environments, so that relaxation is in what is usually termed the fast exchange regime. In the limit of fast exchange, the relaxation of the water protons is well characterized by a single exponential and hence by a single apparent relaxation rate. In irradiated gel dosimeters this

  14. 55 Mn NMR for Antiferromagnetic α- Mn2 O 3

    NASA Astrophysics Data System (ADS)

    Jo, Euna; Kim, Changsoo; Lee, Soonchil

    2011-03-01

    The zero-field 55 Mn NMR spectrum for antiferromagnetic α - Mn 2 O3 was measured at low temperatures. Manganese sesquioxide (Mn 2 O3) is used in combustion catalysis, a method of reducing the emissions of organic compounds and nitrous oxide from waste gas, as an environmentally - friendly and inexpensive catalyzer instead of Pt and Pd. The magnetic moment estimated from the resonance frequency was 2.6 μB per Mn 3+ ion. The temperature dependence of the sublattice magnetization fits not Bloch's T2 law well but the exponential form applicable because there is an initial energy gap in the dispersion relation of the spin wave. From the fitting, an energy gap of 1.82 meV and an anisotropy energy of 0.22 meV were obtained. The spin-spin relaxation rate was measured as a function of the frequency and the Suhl-Nakamura interaction is suppressed by this energy gap.

  15. How to tickle spins with a fourier transform NMR spectrometer.

    PubMed

    Segawa, Takuya F; Carnevale, Diego; Bodenhausen, Geoffrey

    2013-02-01

    In the long bygone days of continuous-wave nuclear magnetic resonance (NMR) spectroscopy, a selected transition within a multiplet of a high-resolution spectrum could be irradiated by a highly selective continuous-wave (CW) radio-frequency (rf) field with a very weak amplitude ω(2)/(2π)≤J. This causes splittings of connected transitions, allowing one to map the connectivities of all transitions within the energy-level diagram of the spin system. Such "tickling" experiments stimulated the invention of two-dimensional spectroscopy, but seem to have been forgotten for nearly 50 years. We show that tickling can readily be achieved in homonuclear systems with Fourier transform spectrometers by applying short pulses in the intervals between the sampling points. Extensions to heteronuclear systems are even more straightforward since they can be carried out using very weak CW rf fields.

  16. Structural elucidation of b-(Y,Sc){sub 2}Si{sub 2}O{sub 7} : combined use of {sub 89}Y MAS NMR and powder diffraction.

    SciTech Connect

    Allix, M.; Alba, M. D.; Florian, P.; Fernandez-Carrion, A. J.; Suchomel, M. R.; Escudero, A.; Suard, E.; Becerro, A. I.

    2011-08-01

    Although the structures of pure Sc{sub 2}Si{sub 2}O{sub 7} and {beta}-Y{sub 2}Si{sub 2}O{sub 7} have been described in the literature using the C2/m space group, {sup 29}Si magic angle spinning (MAS) NMR measurements of the intermediate members of the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system indicate a lowering of the symmetry to the C2 space group. Indeed, these compositions exhibit a unique Si crystallographic site and an Si-O-Si angle lower than 180{sup o}, incompatible with the C2/m space group. C2 is the only possible alternative. Space group Cm can be discarded with regard to its two different Si sites per unit cell. Moreover, {sup 89}Y MAS NMR data have revealed the existence of two different Y sites in the structure of the intermediate members of the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system, confirming the lowering of the symmetry to the C2 space group. The viability of the C2 model has therefore been tested and confirmed by refinement of synchrotron and neutron powder diffraction data for the different members of the system. The structural evolutions across the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system are discussed.

  17. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment.

    PubMed

    Jang, Richard; Wang, Yan; Xue, Zhidong; Zhang, Yang

    2015-08-01

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement.

  18. Accelerating Spectrum Sharing Technologies

    SciTech Connect

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  19. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2012-01-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from laboratory experiments of terpenes photo-oxidation. The second NMR

  20. A nanoliter volume nuclear magnetic resonance (NMR) system using tunneling magneto-resistive (TMR) sensors to recognize biomolecules

    NASA Astrophysics Data System (ADS)

    Gomez, Pablo

    The need to incorporate advanced engineering tools in biology, biochemistry and medicine is in great demand. Many of the existing instruments and tools are usually expensive and require special facilities. With the advent of nanotechnology in the past decade, new approaches to develop devices and tools have been generated by academia and industry. One such technology, NMR spectroscopy, has been used by biochemists for more than 2 decades to study the molecular structure of chemical compounds. However, NMR spectrometers are very expensive and require special laboratory rooms for their proper operation. High magnetic fields with strengths in the order of several Tesla make these instruments unaffordable to most research groups. This doctoral research proposes a new technology to develop NMR spectrometers that can operate at field strengths of less than 0.5 Tesla using an inexpensive permanent magnet and spin dependent nanoscale magnetic devices. This portable NMR system is intended to analyze samples as small as a few nanoliters. The main problem to resolve when downscaling the variables is to obtain an NMR signal with high Signal-To-Noise-Ratio (SNR). A special Tunneling Magneto-Resistive (TMR) sensor design was developed to achieve this goal. The minimum specifications for each component of the proposed NMR system were established. A complete NMR system was designed based on these minimum requirements. The goat was always to find cost effective realistic components. The novel design of the NMR system uses technologies such as Direct Digital Synthesis (DDS), Digital Signal Processing (DSP) and a special Backpropagation Neural Network that finds the best match of the NMR spectrum. The system was designed, calculated and simulated with excellent results. In addition, a general method to design TMR Sensors was developed. The technique was automated and a computer program was written to help the designer perform this task interactively.

  1. Two dimensional NMR of liquids and oriented molecules

    SciTech Connect

    Gochin, M.

    1987-02-01

    Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of /sup 13/C and /sup 1/H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface.

  2. Quantum Spread Spectrum Communication

    SciTech Connect

    Humble, Travis S

    2011-01-01

    We show that communication of single-photon quantum states in a multi-user environment is improved by using spread spectrum communication techniques. We describe a framework for spreading, transmitting, despreading, and detecting single-photon spectral states that mimics conventional spread spectrum techniques. We show in the cases of inadvertent detection, unintentional interference, and multi-user management, that quantum spread spectrum communications may minimize receiver errors by managing quantum channel access.

  3. Autism spectrum disorder

    MedlinePlus

    Autism; Autistic disorder; Asperger syndrome; Childhood disintegrative disorder; Pervasive developmental disorder ... to better diagnosis and newer definitions of ASD. Autism spectrum disorder now includes syndromes that used to ...

  4. Ionospheric wave spectrum measurements

    NASA Technical Reports Server (NTRS)

    Harker, K. J.; Ilic, D. B.; Crawford, F. W.

    1979-01-01

    The local spectrum S(k, omega) of either potential or electron-density fluctuations can be used to determine macroscopic-plasma characteristics such as the local density and temperature, transport coefficients, and drift current. This local spectrum can be determined by measuring the cross-power spectrum. The paper examines the practicality of using the cross-power spectrum analyzer on the Space Shuttle to measure ionospheric parameters. Particular attention is given to investigating the integration time required to measure the cross-power spectral density to a desired accuracy.

  5. NMR-Assisted Molecular Docking Methodologies.

    PubMed

    Sturlese, Mattia; Bellanda, Massimo; Moro, Stefano

    2015-08-01

    Nuclear magnetic resonance (NMR) spectroscopy and molecular docking are regularly being employed as helpful tools of drug discovery research. Molecular docking is an extremely rapid method to evaluate possible binders from a large chemical library in a fast and cheap manner. NMR techniques can directly detect a protein-ligand interaction, can determine the corresponding association constant, and can consistently identify the ligand binding cavity. Consequently, molecular docking and NMR techniques are naturally complementary techniques where the combination of the two has the potential to improve the overall efficiency of drug discovery process. In this review, we would like to summarize the state of the art of docking methods which have been recently bridged to NMR experiments to identify novel and effective therapeutic drug candidates.

  6. A New Microcell Technique for NMR Analysis.

    ERIC Educational Resources Information Center

    Yu, Sophia J.

    1987-01-01

    Describes a new laboratory technique for working with small samples of compounds used in nuclear magnetic resonance (NMR) analysis. Demonstrates how microcells can be constructed for each experiment and samples can be recycled. (TW)

  7. NMR-Assisted Molecular Docking Methodologies.

    PubMed

    Sturlese, Mattia; Bellanda, Massimo; Moro, Stefano

    2015-08-01

    Nuclear magnetic resonance (NMR) spectroscopy and molecular docking are regularly being employed as helpful tools of drug discovery research. Molecular docking is an extremely rapid method to evaluate possible binders from a large chemical library in a fast and cheap manner. NMR techniques can directly detect a protein-ligand interaction, can determine the corresponding association constant, and can consistently identify the ligand binding cavity. Consequently, molecular docking and NMR techniques are naturally complementary techniques where the combination of the two has the potential to improve the overall efficiency of drug discovery process. In this review, we would like to summarize the state of the art of docking methods which have been recently bridged to NMR experiments to identify novel and effective therapeutic drug candidates. PMID:27490497

  8. NMR studies of borates and borides

    NASA Astrophysics Data System (ADS)

    Bray, P. J.

    1986-04-01

    Nuclear magnetic resonance (NMR) has been employed for some 25 years to study the structure of boron-containing compounds.1-3 The earliest works employed the 11B nuclear isotope in a study of glasses containing boron oxide. Many additional NMR studies3-10 of boron-containing glasses have utilized both the 11B and 10B isotopes. Crystalline materials were also studied2,3 at an early date, with particular attention given to borides and boron carbide. After a discussion of the features of NMR spectroscopy particularly pertinent for the study of boron-containing compounds, highlights of the early work and more recent studies will be summarized to indicate the usefulness of 10B and 11B NMR for structural studies.

  9. Solvent signal as an NMR concentration reference.

    PubMed

    Mo, Huaping; Raftery, Daniel

    2008-12-15

    We propose that the NMR solvent signal be utilized as a universal concentration reference because most solvents can be observed by NMR and solvent concentrations can be readily calculated or determined independently. In particular, a highly protonated solvent such as water can serve as a primary concentration standard for its stability, availability, and ease of observation. The potential problems of radiation damping associated with a strong NMR signal can be alleviated by small pulse angle excitation. The solvent signal then can be detected by the NMR receiver with the same efficiency as a dilute analyte. We demonstrated that the analyte's proton concentration can be accurately determined from 4 microM to more than 100 M, referenced by solvent (water) protons of concentrations more than 10 M. The proposed method is robust and indifferent to probe tuning and does not require any additional concentration standard.

  10. Frontiers of NMR in Molecular Biology

    SciTech Connect

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  11. NMR of Membrane Proteins: Beyond Crystals.

    PubMed

    Rajesh, Sundaresan; Overduin, Michael; Bonev, Boyan B

    2016-01-01

    Membrane proteins are essential for the flow of signals, nutrients and energy between cells and between compartments of the cell. Their mechanisms can only be fully understood once the precise structures, dynamics and interactions involved are defined at atomic resolution. Through advances in solution and solid state NMR spectroscopy, this information is now available, as demonstrated by recent studies of stable peripheral and transmembrane proteins. Here we highlight recent cases of G-protein coupled receptors, outer membrane proteins, such as VDAC, phosphoinositide sensors, such as the FAPP-1 pleckstrin homology domain, and enzymes including the metalloproteinase MMP-12. The studies highlighted have resulted in the determination of the 3D structures, dynamical properties and interaction surfaces for membrane-associated proteins using advanced isotope labelling strategies, solubilisation systems and NMR experiments designed for very high field magnets. Solid state NMR offers further insights into the structure and multimeric assembly of membrane proteins in lipid bilayers, as well as into interactions with ligands and targets. Remaining challenges for wider application of NMR to membrane structural biology include the need for overexpression and purification systems for the production of isotope-labelled proteins with fragile folds, and the availability of only a few expensive perdeuterated detergents.Step changes that may transform the field include polymers, such as styrene maleic acid, which obviate the need for detergent altogether, and allow direct high yield purification from cells or membranes. Broader demand for NMR may be facilitated by MODA software, which instantly predicts membrane interactive residues that can subsequently be validated by NMR. In addition, recent developments in dynamic nuclear polarization NMR instrumentation offer a remarkable sensitivity enhancement from low molarity samples and cell surfaces. These advances illustrate the current

  12. NMR studies of multiphase flows II

    SciTech Connect

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  13. NMR of Membrane Proteins: Beyond Crystals.

    PubMed

    Rajesh, Sundaresan; Overduin, Michael; Bonev, Boyan B

    2016-01-01

    Membrane proteins are essential for the flow of signals, nutrients and energy between cells and between compartments of the cell. Their mechanisms can only be fully understood once the precise structures, dynamics and interactions involved are defined at atomic resolution. Through advances in solution and solid state NMR spectroscopy, this information is now available, as demonstrated by recent studies of stable peripheral and transmembrane proteins. Here we highlight recent cases of G-protein coupled receptors, outer membrane proteins, such as VDAC, phosphoinositide sensors, such as the FAPP-1 pleckstrin homology domain, and enzymes including the metalloproteinase MMP-12. The studies highlighted have resulted in the determination of the 3D structures, dynamical properties and interaction surfaces for membrane-associated proteins using advanced isotope labelling strategies, solubilisation systems and NMR experiments designed for very high field magnets. Solid state NMR offers further insights into the structure and multimeric assembly of membrane proteins in lipid bilayers, as well as into interactions with ligands and targets. Remaining challenges for wider application of NMR to membrane structural biology include the need for overexpression and purification systems for the production of isotope-labelled proteins with fragile folds, and the availability of only a few expensive perdeuterated detergents.Step changes that may transform the field include polymers, such as styrene maleic acid, which obviate the need for detergent altogether, and allow direct high yield purification from cells or membranes. Broader demand for NMR may be facilitated by MODA software, which instantly predicts membrane interactive residues that can subsequently be validated by NMR. In addition, recent developments in dynamic nuclear polarization NMR instrumentation offer a remarkable sensitivity enhancement from low molarity samples and cell surfaces. These advances illustrate the current

  14. Chromium liquid waste inertization in an inorganic alkali activated matrix: leaching and NMR multinuclear approach.

    PubMed

    Ponzoni, Chiara; Lancellotti, Isabella; Barbieri, Luisa; Spinella, Alberto; Saladino, Maria Luisa; Martino, Delia Chillura; Caponetti, Eugenio; Armetta, Francesco; Leonelli, Cristina

    2015-04-01

    A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈ 2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process--from the precursor dissolution to the final geopolymer matrix hardening--of different geopolymers containing a waste amount ranging from 3 to 20%wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of TOT bonds (where T is Al or Si) by (29)Si and (27)Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for geopolymers containing high amounts of waste (10-20%wt). The results show the formation of a stable matrix after only 15 days independently on the waste amount introduced; the longer curing times increase the matrices stabilities and their ability to immobilize chromium cations. The maximum amount of waste that can be inertized is around 10 wt% after a curing time of 28 days.

  15. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    PubMed

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  16. A unified NMR strategy for high-throughput determination of backbone fold of small proteins.

    PubMed

    Kumar, Dinesh; Gautam, Anmol; Hosur, Ramakrishna V

    2012-12-01

    An efficient semi-automated strategy called PFBD (i.e. Protein Fold from Backbone Data only) has been presented for rapid backbone fold determination of small proteins. It makes use of NMR parameters involving backbone atoms only. These include chemical shifts, amide-amide NOEs and H-bonds. The backbone chemical shifts are obtained in an automated manner from the orthogonal 2D projections of variants of HNN and HN(C)N experiments (Kumar et al., in Magn Reson Chem 50(5):357-363, 2012) using AUTOBA (Borkar et al. in J Biomol NMR 50(3):285-297, 2011); backbone H-bonds are manually derived from constant time long-range 2D-HnCO spectrum (Cordier and Grzesiek in J Am Chem Soc 121:1601-1602, 1999); and amide-amide NOEs are derived from 3D HNCO NOESY experiment which provides NOEs along the direct (1)H dimension that has maximum resolution (Lohr and Ruterjans in J Biomol NMR 9(1):371-388, 1997). All the experiments needed for the execution of PFBD can be recorded and analyzed in about 24-48 h depending upon the concentration of the protein and dispersion of amide cross-peaks in the (1)H-(15)N correlation spectrum. Thus, we believe that the strategy, because of its speed and simplicity will be very valuable in Biomolecular NMR community for high-throughput structural proteomics of small folded proteins of MW < 10-12 kDa, the regime where NMR is generally preferred over X-ray crystallography. The strategy has been validated and demonstrated here on two small globular proteins: human ubiquitin (76 aa) and chicken SH3 domain (62 aa). PMID:23054485

  17. In-situ NMR study of molecular and ionic processes inside carbon nanopores

    NASA Astrophysics Data System (ADS)

    Luo, Zhixiang

    Interactions of simple ions with water and interfaces play critical roles in many electrochemical and biological processes. They are especially significant in nanoconfined regions and have a profound impact in many applications, for instance nanofluidics and supercapacitors. This dissertation employs a nuclear magnetic resonance (NMR) technique to study their influence on the ionic processes inside carbon nanopores. To characterize the carbon micropore structure, a convenient NMR method is established by taking a 1H magic angle spinning (MAS) spectrum of the adsorbed water. A density functional theory (DFT) computation of the nucleus-independent chemical shift (NICS) yields a quantitative relationship between the NICS values and the micropore sizes. The carbon micropore size and distribution are derived from the chemical shift and the spectrum lineshape. For aqueous electrolytes inside uncharged carbon nanopores, the measurement of ion concentrations reveals a substantial electroneutrality breakdown. The specific ion effects and ion-ion correlations are shown to play crucial roles in determining the degree of electroneutrality breakdown. The importance of those interactions is further revealed by the asymmetric and nonlinear responses of ion concentrations to the charging of the confining carbon walls. Such information is obtained with a carbon supercapacitor built into the NMR probe. The NMR observations are validated by a numerical calculation of the ion distribution in the nanopores using the generalized Poisson-Boltzmann (PB) equation, demonstrating that the nonelectrostatic interfacial interactions can indeed dominate the electrostatic interactions and lead to the breakdown of electroneutrality inside nanoconfined regions. Interfacial ion hydration is an essential part of the specific ion effects. Using in-situ 23Na and 19F NMR on carbon supercapacitors with different carbon pore sizes, I provide a molecular-scale understanding of the permeation and

  18. Multidimensional NMR spectroscopy in a single scan.

    PubMed

    Gal, Maayan; Frydman, Lucio

    2015-11-01

    Multidimensional NMR has become one of the most widespread spectroscopic tools available to study diverse structural and functional aspects of organic and biomolecules. A main feature of multidimensional NMR is the relatively long acquisition times that these experiments demand. For decades, scientists have been working on a variety of alternatives that would enable NMR to overcome this limitation, and deliver its data in shorter acquisition times. Counting among these methodologies is the so-called ultrafast (UF) NMR approach, which in principle allows one to collect arbitrary multidimensional correlations in a single sub-second transient. By contrast to conventional acquisitions, a main feature of UF NMR is a spatiotemporal manipulation of the spins that imprints the chemical shift and/or J-coupling evolutions being sought, into a spatial pattern. Subsequent gradient-based manipulations enable the reading out of this information and its multidimensional correlation into patterns that are identical to those afforded by conventional techniques. The current review focuses on the fundamental principles of this spatiotemporal UF NMR manipulation, and on a few of the methodological extensions that this form of spectroscopy has undergone during the years. PMID:26249041

  19. Observation by flow sup 1 H NMR and dimerization kinetics and products of reactive ortho-quinodimethanes and benzocyclobutadiene

    SciTech Connect

    Fischer, D.

    1990-09-21

    The reactive o-quinodimethanes, 1,2-dimethylene-1,2-dihydronaphthalene (9) and o-xylylene (1) were observed by flow {sup 1}H NMR spectroscopy at room temperature. The {sup 1}H NMR spectrum of 9 was obtained in the absence of precursor and dimers. However, the {sup 1}H NMR spectrum of the more reactive 1, generated in a similar manner from (o-((trimethylsilyl)methyl)benzyl)trimethylammonium iodide (5.) could be obtained only in the presence of its stable (4 + 2) and (4 + 4) dimers. The dimerization kinetics of 3-methyl- (5{prime}), 3,6-dimethyl- (11), 3-isopropyl- (12), and 3,6-diisoproply-1,2-xylylene (13) in acetonitrile (CH{sub 3}CN) were studied by stopped-flow UV-visible spectroscopy. Fluoride ion induced 1,2-elimination from 2-elimination from 2-trimethylsilylbenzocyclobutenyl-1 mesylate (26) was used to generate the reactive molecule benzocyclobutadiene (1{prime}) in CD{sub 3}CN, which was observed by flow {sup 1}H NMR spectroscopy at room temperature. The {sup 1}H NMR spectrum (in CD{sub 3}CN) of 1,2-dimethylene-1,2-dihydrothiophene (1{double prime}), obtained by fluoride ion induced 1,4-elimination from 3-(trimethylammoniummethyl)-2-(trimethylsilylmethyl)thiophene iodine was observed by flow {sup 1}H NMR spectroscopy at room temperature. The dimerization rate of 1{double prime} in CH{sub 3}CN, generated in the same manner, was measured by UV-visible spectroscopy. 166 refs., 7 figs., 7 tabs.

  20. Fission Spectrum Related Uncertainties

    SciTech Connect

    G. Aliberti; I. Kodeli; G. Palmiotti; M. Salvatores

    2007-10-01

    The paper presents a preliminary uncertainty analysis related to potential uncertainties on the fission spectrum data. Consistent results are shown for a reference fast reactor design configuration and for experimental thermal configurations. However the results obtained indicate the need for further analysis, in particular in terms of fission spectrum uncertainty data assessment.

  1. Radiation detector spectrum simulator

    DOEpatents

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  2. Radiation detector spectrum simulator

    DOEpatents

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  3. Fetal Alcohol Spectrum Disorder

    ERIC Educational Resources Information Center

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.

    2005-01-01

    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  4. The CMBR spectrum

    SciTech Connect

    Stebbins, A.

    1997-05-01

    Here we give an introduction to the observed spectrum of the Cosmic Microwave Background Radiation (CMBR) and discuss what can be learned about it. Particular attention will be given to how Compton scattering can distort the spectrum of the CMBR. An incomplete bibliography of relevant papers is also provided.

  5. 33S NMR cryogenic probe for taurine detection

    NASA Astrophysics Data System (ADS)

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a S33 nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the S33 NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 μM taurine solutions, which is the level of sensitivity necessary for biological samples.

  6. Achievement of a 920-MHz High Resolution NMR

    NASA Astrophysics Data System (ADS)

    Hashi, Kenjiro; Shimizu, Tadashi; Goto, Atsushi; Kiyoshi, Tsukasa; Matsumoto, Shinji; Wada, Hitoshi; Fujito, Teruaki; Hasegawa, Ken-ichi; Yoshikawa, Masatoshi; Miki, Takashi; Ito, Satoshi; Hamada, Mamoru; Hayashi, Seiji

    2002-06-01

    We have developed a 920-MHz NMR system and performed the proton NMR measurement of H 2O and ethylbenzene using the superconducting magnet operating at 21.6 T (920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high resolution NMR.

  7. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  8. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.

    PubMed

    van der Schot, Gijs; Bonvin, Alexandre M J J

    2015-08-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution. PMID:25982706

  9. The determination of reactor neutron spectrum-averaged cross-sections in miniature neutron source reactor facility.

    PubMed

    Jonah, S A; Ibrahim, Y V; Akaho, E H K

    2008-10-01

    A comparator method based on the resonance integral of (197)Au(n,gamma)(198)Au reaction has been used to determine fast neutron spectrum-averaged cross-section data of some dosimetry reactions in a miniature neutron source reactor (MNSR) facility. Target materials of low- and medium-mass nuclei, which are of interest in reactor dosimetry and NAA were investigated. Irradiation was performed under Cd cover in an inner irradiation channel of the Nigeria Research Reactor-1 (NIRR-1) currently fueled with highly enriched uranium (HEU). Spectrum-averaged cross-section data were calculated on the basis of the epithermal neutron flux monitored by the Al-0.1%Au foil irradiated along with the target materials. Results of (n,p) reaction on (27)Al, (28)Si, (29)Si, (46)Ti, (47)Ti, (56)Fe, (58)Ni, and (n,alpha) reaction on (30)Si were found to be in good agreement with recommended data within standard deviation. However, data obtained for the (27)Al(n,alpha) (24)Na and (64)Zn (n,p) (64)Cu reactions using the Al-0.1%Au foil as the flux monitor for both the comparator approach and the conventional method are higher than recommended data from the literature by over 25%.

  10. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  11. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    SciTech Connect

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; Carroll, Susan A.

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectly predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.

  12. BOOK REVIEW: NMR Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2003-09-01

    Magnetic resonance imaging (MRI) of materials is a field of increasing importance. Applications extend from fundamental science like the characterization of fluid transport in porous rock, catalyst pellets and hemodialysers into various fields of engineering for process optimization and product quality control. While the results of MRI imaging are being appreciated by a growing community, the methods of imaging are far more diverse for materials applications than for medical imaging of human beings. Blümich has delivered the first book in this field. It was published in hardback three years ago and is now offered as a paperback for nearly half the price. The text provides an introduction to MRI imaging of materials covering solid-state NMR spectroscopy, imaging methods for liquid and solid samples, and unusual MRI in terms of specialized approaches to spatial resolution such as an MRI surface scanner. The book represents an excellent and thorough treatment which will help to grow research in materials MRI. Blümich developed the treatise over many years for his research students, graduates in chemistry, physics and engineering. But it may also be useful for medical students looking for a less formal discussion of solid-state NMR spectroscopy. The structure of this book is easy to perceive. The first three chapters cover an introduction, the fundamentals and methods of solid-state NMR spectroscopy. The book starts at the ground level where no previous knowledge about NMR is assumed. Chapter 4 discusses a wide variety of transformations beyond the Fourier transformation. In particular, the Hadamard transformation and the 'wavelet' transformation are missing from most related books. This chapter also includes a description of noise-correlation spectroscopy, which promises the imaging of large objects without the need for extremely powerful radio-frequency transmitters. Chapters 5 and 6 cover basic imaging methods. The following chapter about the use of relaxation and

  13. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  14. NMR methodologies in the analysis of blueberries.

    PubMed

    Capitani, Donatella; Sobolev, Anatoly P; Delfini, Maurizio; Vista, Silvia; Antiochia, Riccarda; Proietti, Noemi; Bubici, Salvatore; Ferrante, Gianni; Carradori, Simone; De Salvador, Flavio Roberto; Mannina, Luisa

    2014-06-01

    An NMR analytical protocol based on complementary high and low field measurements is proposed for blueberry characterization. Untargeted NMR metabolite profiling of blueberries aqueous and organic extracts as well as targeted NMR analysis focused on anthocyanins and other phenols are reported. Bligh-Dyer and microwave-assisted extractions were carried out and compared showing a better recovery of lipidic fraction in the case of microwave procedure. Water-soluble metabolites belonging to different classes such as sugars, amino acids, organic acids, and phenolic compounds, as well as metabolites soluble in organic solvent such as triglycerides, sterols, and fatty acids, were identified. Five anthocyanins (malvidin-3-glucoside, malvidin-3-galactoside, delphinidin-3-glucoside, delphinidin-3-galactoside, and petunidin-3-glucoside) and 3-O-α-l-rhamnopyranosyl quercetin were identified in solid phase extract. The water status of fresh and withered blueberries was monitored by portable NMR and fast-field cycling NMR. (1) H depth profiles, T2 transverse relaxation times and dispersion profiles were found to be sensitive to the withering.

  15. Communication: Molecular dynamics and 1H NMR of n-hexane in liquid crystals

    NASA Astrophysics Data System (ADS)

    Weber, Adrian C. J.; Burnell, E. Elliott; Meerts, W. Leo; de Lange, Cornelis A.; Dong, Ronald Y.; Muccioli, Luca; Pizzirusso, Antonio; Zannoni, Claudio

    2015-07-01

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  16. Communication: Molecular dynamics and {sup 1}H NMR of n-hexane in liquid crystals

    SciTech Connect

    Weber, Adrian C. J.; Burnell, E. Elliott; Meerts, W. Leo; Lange, Cornelis A. de; Dong, Ronald Y.; Muccioli, Luca Pizzirusso, Antonio Zannoni, Claudio

    2015-07-07

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  17. 60 MHz (1)H NMR spectroscopy for the analysis of edible oils.

    PubMed

    Parker, T; Limer, E; Watson, A D; Defernez, M; Williamson, D; Kemsley, E Kate

    2014-05-01

    We report the first results from a new 60 MHz (1)H nuclear magnetic resonance (NMR) bench-top spectrometer, Pulsar, in a study simulating the adulteration of olive oil with hazelnut oil. There were qualitative differences between spectra from the two oil types. A single internal ratio of two isolated groups of peaks could detect hazelnut oil in olive oil at the level of ∼13%w/w, whereas a whole-spectrum chemometric approach brought the limit of detection down to 11.2%w/w for a set of independent test samples. The Pulsar's performance was compared to that of Fourier transform infrared (FTIR) spectroscopy. The Pulsar delivered comparable sensitivity and improved specificity, making it a superior screening tool. We also mapped NMR onto FTIR spectra using a correlation-matrix approach. Interpretation of this heat-map combined with the established annotations of the NMR spectra suggested a hitherto undocumented feature in the IR spectrum at ∼1130 cm(-1), attributable to a double-bond vibration. PMID:24850979

  18. Solid-state and unilateral NMR study of deterioration of a Dead Sea Scroll fragment.

    PubMed

    Masic, A; Chierotti, M R; Gobetto, R; Martra, G; Rabin, I; Coluccia, S

    2012-02-01

    Unilateral and solid-state nuclear magnetic resonance (NMR) analyses were performed on a parchment fragment of the Dead Sea Scroll (DSS). The analyzed sample belongs to the collection of non-inscribed and nontreated fragments of known archaeological provenance from the John Rylands University Library in Manchester. Therefore, it can be considered as original DSS material free from any contamination related to the post-discovery period. Considering the paramount significance of the DSS, noninvasive approaches and portable in situ nondestructive methods are of fundamental importance for the determination of composition, structure, and chemical-physical properties of the materials under study. NMR studies reveal low amounts of water content associated with very short proton relaxation times, T(1), indicating a high level of deterioration of collagen molecules within scroll fragments. In addition, (13)C cross-polarization magic-angle-spinning (CPMAS) NMR spectroscopy shows characteristic peaks of lipids whose presence we attribute to the production technology that did not involve liming. Extraction with chloroform led to the reduction of both lipid and protein signals in the (13)C CPMAS spectrum indicating probable involvement of lipids in parchment degradation processes. NMR absorption and relaxation measurements provide nondestructive, discriminative, and sensitive tools for studying the deterioration effects on the organization and properties of water and collagen within ancient manuscripts.

  19. Structure-Correlation NMR Spectroscopy for Macromolecules Using Repeated Bidirectional Photoisomerization of Azobenzene.

    PubMed

    Nagashima, Toshio; Ueda, Keisuke; Nishimura, Chiaki; Yamazaki, Toshio

    2015-11-17

    Control over macromolecular structure offers bright potentials for manipulation of macromolecular functions. We here present structure-correlation NMR spectroscopy to analyze the correlation between polymorphic macromolecular structures driven by photoisomerization of azobenzene. The structural conversion of azobenzene was induced within the mixing time of a NOESY experiment using a colored light source, and the reverse structural conversion was induced during the relaxation delay using a light source of another color. The correlation spectrum between trans- and cis-azobenzene was then obtained. To maximize the efficiency of the bidirectional photoisomerization of azobenzene-containing macromolecules, we developed a novel light-irradiation NMR sample tube and method for irradiating target molecules in an NMR radio frequency (rf) coil. When this sample tube was used for photoisomerization of an azobenzene derivative at a concentration of 0.2 mM, data collection with reasonable sensitivity applicable to macromolecules was achieved. We performed isomerization of an azobenzene-cross-linked peptide within the mixing time of a NOESY experiment that produced cross-peaks between helix and random-coil forms of the peptide. Thus, these results indicate that macromolecular structure manipulation can be incorporated into an NMR pulse sequence using an azobenzene derivative and irradiation with light of two types of wavelengths, providing a new method for structural analysis of metastable states of macromolecules. PMID:26479462

  20. Li NMR study of heavy-fermion LiV2O4 containing magnetic defects

    SciTech Connect

    Zong, X.; Das, S.; Borsa, F.; Vannette, M.; Prozorov, R.; Schmalian, J.; Johnston, D.

    2008-04-21

    We present a systematic study of the variations of the {sup 7}Li NMR properties versus magnetic defect concentration up to 0.83 mol% within the spinel structure of polycrystalline powder samples and a collection of small single crystals of LiV2O4 in the temperature range from 0.5 to 4.2 K. We also report static magnetization measurements and ac magnetic susceptibility measurements at 14 MHz on the samples at low temperatures. Both the NMR spectrum and nuclear spin-lattice relaxation rate are inhomogeneous in the presence of the magnetic defects. The NMR data for the powders are well explained by assuming that (i) there is a random distribution of magnetic point defects, (ii) the same heavy Fermi liquid is present in the samples containing the magnetic defects as in magnetically pure LiV2O4, and (iii) the influences of the magnetic defects and of the Fermi liquid on the magnetization and NMR properties are separable. In the single crystals, somewhat different behaviors are observed. Remarkably, the magnetic defects in the powder samples show evidence of spin freezing below T {approx} 1.0 K, whereas in the single crystals with similar magnetic defect concentration no spin freezing was found down to 0.5 K. Thus different types of magnetic defects and/or interactions between them appear to arise in the powders versus the crystals, possibly due to the substantially different synthesis conditions of the powders and crystals.

  1. Automated analysis of protein NMR assignments using methods from artificial intelligence.

    PubMed

    Zimmerman, D E; Kulikowski, C A; Huang, Y; Feng, W; Tashiro, M; Shimotakahara, S; Chien, C; Powers, R; Montelione, G T

    1997-06-20

    An expert system for determining resonance assignments from NMR spectra of proteins is described. Given the amino acid sequence, a two-dimensional 15N-1H heteronuclear correlation spectrum and seven to eight three-dimensional triple-resonance NMR spectra for seven proteins, AUTOASSIGN obtained an average of 98% of sequence-specific spin-system assignments with an error rate of less than 0.5%. Execution times on a Sparc 10 workstation varied from 16 seconds for smaller proteins with simple spectra to one to nine minutes for medium size proteins exhibiting numerous extra spin systems attributed to conformational isomerization. AUTOASSIGN combines symbolic constraint satisfaction methods with a domain-specific knowledge base to exploit the logical structure of the sequential assignment problem, the specific features of the various NMR experiments, and the expected chemical shift frequencies of different amino acids. The current implementation specializes in the analysis of data derived from the most sensitive of the currently available triple-resonance experiments. Potential extensions of the system for analysis of additional types of protein NMR data are also discussed.

  2. Structure-Correlation NMR Spectroscopy for Macromolecules Using Repeated Bidirectional Photoisomerization of Azobenzene.

    PubMed

    Nagashima, Toshio; Ueda, Keisuke; Nishimura, Chiaki; Yamazaki, Toshio

    2015-11-17

    Control over macromolecular structure offers bright potentials for manipulation of macromolecular functions. We here present structure-correlation NMR spectroscopy to analyze the correlation between polymorphic macromolecular structures driven by photoisomerization of azobenzene. The structural conversion of azobenzene was induced within the mixing time of a NOESY experiment using a colored light source, and the reverse structural conversion was induced during the relaxation delay using a light source of another color. The correlation spectrum between trans- and cis-azobenzene was then obtained. To maximize the efficiency of the bidirectional photoisomerization of azobenzene-containing macromolecules, we developed a novel light-irradiation NMR sample tube and method for irradiating target molecules in an NMR radio frequency (rf) coil. When this sample tube was used for photoisomerization of an azobenzene derivative at a concentration of 0.2 mM, data collection with reasonable sensitivity applicable to macromolecules was achieved. We performed isomerization of an azobenzene-cross-linked peptide within the mixing time of a NOESY experiment that produced cross-peaks between helix and random-coil forms of the peptide. Thus, these results indicate that macromolecular structure manipulation can be incorporated into an NMR pulse sequence using an azobenzene derivative and irradiation with light of two types of wavelengths, providing a new method for structural analysis of metastable states of macromolecules.

  3. Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN.

    PubMed

    Hao, Jie; Liebeke, Manuel; Astle, William; De Iorio, Maria; Bundy, Jacob G; Ebbels, Timothy M D

    2014-01-01

    Data processing for 1D NMR spectra is a key bottleneck for metabolomic and other complex-mixture studies, particularly where quantitative data on individual metabolites are required. We present a protocol for automated metabolite deconvolution and quantification from complex NMR spectra by using the Bayesian automated metabolite analyzer for NMR (BATMAN) R package. BATMAN models resonances on the basis of a user-controllable set of templates, each of which specifies the chemical shifts, J-couplings and relative peak intensities for a single metabolite. Peaks are allowed to shift position slightly between spectra, and peak widths are allowed to vary by user-specified amounts. NMR signals not captured by the templates are modeled non-parametrically by using wavelets. The protocol covers setting up user template libraries, optimizing algorithmic input parameters, improving prior information on peak positions, quality control and evaluation of outputs. The outputs include relative concentration estimates for named metabolites together with associated Bayesian uncertainty estimates, as well as the fit of the remainder of the spectrum using wavelets. Graphical diagnostics allow the user to examine the quality of the fit for multiple spectra simultaneously. This approach offers a workflow to analyze large numbers of spectra and is expected to be useful in a wide range of metabolomics studies.

  4. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGES

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurementmore » of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  5. NMR imaging and spectroscopy of the mammalian central nervous system after heavy ion radiation

    SciTech Connect

    Richards, T.

    1984-09-01

    NMR imaging, NMR spectroscopic, and histopathologic techniques were used to study the proton relaxation time and related biochemical changes in the central nervous system after helium beam in vivo irradiation of the rodent brain. The spectroscopic observations reported in this dissertation were made possible by development of methods for measuring the NMR parameters of the rodent brain in vivo and in vitro. The methods include (1) depth selective spectroscopy using an optimization of rf pulse energy based on a priori knowledge of N-acetyl aspartate and lipid spectra of the normal brain, (2) phase-encoded proton spectroscopy of the living rodent using a surface coil, and (3) dual aqueous and organic tissue extraction technique for spectroscopy. Radiation induced increases were observed in lipid and p-choline peaks of the proton spectrum, in vivo. Proton NMR spectroscopy measurements on brain extracts (aqueous and organic solvents) were made to observe chemical changes that could not be seen in vivo. Radiation-induced changes were observed in lactate, GABA, glutamate, and p-choline peak areas of the aqueous fraction spectra. In the organic fraction, decreases were observed in peak area ratios of the terminal-methyl peaks, the N-methyl groups of choline, and at a peak at 2.84 ppM (phosphatidyl ethanolamine and phosphatidyl serine resonances) relative to TMS. With histology and Evans blue injections, blood-brain barrier alternations were seen as early as 4 days after irradiation. 83 references, 53 figures.

  6. Review of advances in coupling electrochemistry and liquid state NMR.

    PubMed

    Bussy, Ugo; Boujtita, Mohammed

    2015-05-01

    The coupling of electrochemistry and NMR spectroscopy (EC-NMR) may present an interesting approach in the environmental oxidative degradation or metabolism studies. This review presents experimental advances in the field of EC-NMR and highlights the main advantages and drawbacks of in situ and on line of NMR spectroelectrochemistry. The analysis of NMR spectra recorded in situ or on line EC-NMR permits to elucidate the reaction pathway of the electrochemical oxidation reactions and could constitute a fast way for monitoring unstable species as for instance quinone and quinone imine structures without using any coupling agents. The use of 1D and 2D NMR coupled with electrochemistry may leads to the elucidation of the major species produced from the electrochemical oxidation process. The present review gives an overview about the development of the electrochemical cells which can operate on line or in situ with NMR measurements. Future developments and potential applications of EC-NMR are also discussed.

  7. NMR techniques in the study of cardiovascular structure and functions

    SciTech Connect

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy. NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance.

  8. Fetal Alcohol Spectrum Disorders

    MedlinePlus

    ... alcohol can cause a group of conditions called fetal alcohol spectrum disorders (FASDs). Effects can include physical and behavioral problems such ... alcohol syndrome is the most serious type of FASD. People with fetal alcohol syndrome have facial abnormalities, ...

  9. IRIS Spectrum Line Plot

    NASA Video Gallery

    This video shows a line plot of the spectrum. The spectra here are shown for various locations on the Sun. The changes in the movie are caused by differing physical conditions in the locations. Cre...

  10. Quantum Spread Spectrum Communication

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We demonstrate that spectral teleportation can coherently dilate the spectral probability amplitude of a single photon. In preserving the encoded quantum information, this variant of teleportation subsequently enables a form of quantum spread spectrum communication.

  11. Spectrum (pl: spectra)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    In general terms, the distribution of intensity of electromagnetic radiation with wavelength. Thus when we examine the spectrum of star we are looking at a map of this brightness distribution. In the context of visible light, the visible spectrum is the band of colors produced when white light is passed through a glass prism, which has the effect of spreading out light according to wavelength. Fr...

  12. Conformational NMR Study of Bistriazolyl Anion Receptors.

    PubMed

    Makuc, Damjan; Merckx, Tamara; Dehaen, Wim; Plavec, Janez

    2016-01-01

    Conformational features of pyridine- and pyrimidine-based bistriazolyl anion receptors dissolved in acetonitrile-d3 were assessed by multidimensional, heteronuclear NMR spectroscopy. NOESY correlation signals suggested preorganization of both host molecules in solution in the absence of anions. In addition, only a single set of signals was observed in the 1H NMR spectra, which suggested a symmetrical conformation of anion receptors or their conformational exchange that is fast on the NMR time-scale. Furthermore, the predominant conformations of the pyridine- and pyrimidine-based anion receptors are preserved upon addition of chloride, bromide, and acetate anions. Chemical shift changes observed upon addition of anions showed that the NH (thio)urea and triazole protons are involved in anion-receptor interactions through hydrogen bonding. PMID:27640375

  13. Review of NMR characterization of pyrolysis oils

    DOE PAGES

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  14. NMR Spectroscopy: Processing Strategies (by Peter Bigler)

    NASA Astrophysics Data System (ADS)

    Mills, Nancy S.

    1998-06-01

    Peter Bigler. VCH: New York, 1997. 249 pp. ISBN 3-527-28812-0. $99.00. This book, part of a four-volume series planned to deal with all aspects of a standard NMR experiment, is almost the exact book I have been hoping to find. My department has acquired, as have hundreds of other undergraduate institutions, high-field NMR instrumentation and the capability of doing extremely sophisticated experiments. However, the training is often a one- or two-day experience in which the material retained by the faculty trained is garbled and filled with holes, not unlike the information our students seem to retain. This text, and the accompanying exercises based on data contained on a CD-ROM, goes a long way to fill in the gaps and clarify misunderstandings about NMR processing.

  15. A modularized pulse programmer for NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Wenping; Bao, Qingjia; Yang, Liang; Chen, Yiqun; Liu, Chaoyang; Qiu, Jianqing; Ye, Chaohui

    2011-02-01

    A modularized pulse programmer for a NMR spectrometer is described. It consists of a networked PCI-104 single-board computer and a field programmable gate array (FPGA). The PCI-104 is dedicated to translate the pulse sequence elements from the host computer into 48-bit binary words and download these words to the FPGA, while the FPGA functions as a sequencer to execute these binary words. High-resolution NMR spectra obtained on a home-built spectrometer with four pulse programmers working concurrently demonstrate the effectiveness of the pulse programmer. Advantages of the module include (1) once designed it can be duplicated and used to construct a scalable NMR/MRI system with multiple transmitter and receiver channels, (2) it is a totally programmable system in which all specific applications are determined by software, and (3) it provides enough reserve for possible new pulse sequences.

  16. An NMR Study of Microvoids in Polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattrix, Larry

    1996-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is most crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally not be found naturally in polymer or in NMR probe materials. There are two NMR active Xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb and Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe-129-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts in Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of Xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A series of spectra were obtained interspersed with applications of vacuum and heating to drive out the adsorbed Xe and determine the role of Xe-Xe interactions in the observed chemical shift.

  17. The Quiet Renaissance of Protein NMR

    PubMed Central

    Barrett, Paul J.; Chen, Jiang; Cho, Min-Kyu; Kim, Ji-Hun; Lu, Zhenwei; Mathew, Sijo; Peng, Dungeng; Song, Yuanli; Van Horn, Wade D.; Zhuang, Tiandi; Sönnichsen, Frank D.; Sanders, Charles R.

    2013-01-01

    From roughly 1985 through the start of the new millennium, the cutting edge of solution protein nuclear magnetic resonance (NMR) spectroscopy was to a significant extent driven by the aspiration to determine structures. Here we survey recent advances in protein NMR that herald a renaissance in which a number of its most important applications reflect the broad problem-solving capability displayed by this method during its classical era during the 1970s and early 80s. “Without receivers fitted and kept in order, the air may tingle and thrill with the message, but it will not reach my spirit and consciousness.” Mary Slessor, Calabar, circa 1910 PMID:23368985

  18. Tritiation methods and tritium NMR spectroscopy

    SciTech Connect

    Jaiswal, D.K.; Morimoto, H.; Salijoughian, M.; Williams, P.G.

    1991-09-01

    We have used a simple process for the production of highly tritiated water and characterized the product species by {sup 1}H and {sup 3}H NMR spectroscopy. The water is readily manipulated and used in subsequent reactions either as T{sub 2}O, CH{sub 3}COOT or CF{sub 3}COOT. Development of tritiated diimide has progressed to the point where cis-hydrogenated products at 1-20 Ci/mmole S.A. are possible. Tri-n-butyl tin tritide has been produced at >95% tritium content and well characterized by multinuclear NMR techniques. 27 refs., 3 figs.

  19. NMR investigation of the quantum pigeonhole effect

    NASA Astrophysics Data System (ADS)

    V. S., Anjusha; Hegde, Swathi S.; Mahesh, T. S.

    2016-02-01

    NMR quantum simulators have been used for studying various quantum phenomena. Here, using a four-qubit NMR quantum simulator, we investigate the recently postulated quantum pigeonhole effect. In this phenomenon, a set of three particles in a two-path interferometer often appears to be in such a superposition that no two particles can be assigned a single path, thus exhibiting the nonclassical behavior. In our experiments, quantum pigeons are emulated by three nuclear qubits whose states are probed jointly and noninvasively by an ancillary spin. The experimental results are in good agreement with quantum theoretical predictions.

  20. Magic angle spinning NMR of viruses.

    PubMed

    Quinn, Caitlin M; Lu, Manman; Suiter, Christopher L; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  1. Magic Angle Spinning NMR of Viruses

    PubMed Central

    Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-01-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  2. NMR spectra of androstane analogs of brassinosteroids

    NASA Astrophysics Data System (ADS)

    Baranovskii, A. V.; Litvinovskaya, R. P.; Aver'kova, M. A.; Khripach, N. B.; Khripach, V. A.

    2007-09-01

    We have used two-dimensional NMR spectroscopy to make a complete assignment of signals from the nuclei of hydrogen and carbon atoms in the spectra of brassinosteroids in the androstane series. We have confirmed the stereochemistry of the chiral centers and the structure of the molecules. We have studied the effect of the configuration of the 2,3-diol groups in the A ring of the steroids on the chemical shift of adjacent atoms in the 13C and 1H NMR spectra.

  3. NMR Microscopy - Micron-Level Resolution.

    NASA Astrophysics Data System (ADS)

    Kwok, Wing-Chi Edmund

    1990-01-01

    Nuclear Magnetic Resonance Imaging (MRI) has been developed into a powerful and widely used diagnostic tool since the invention of techniques using linear magnetic field gradients in 1973. The variety of imaging contrasts obtainable in MRI, such as spin density, relaxation times and flow rate, gives MRI a significant advantage over other imaging techniques. For common diagnostic applications, image resolutions have been in the order of millimeters with slice thicknesses in centimeters. For many research applications, however, resolutions in the order of tens of microns or smaller are needed. NMR Imaging in these high resolution disciplines is known as NMR microscopy. Compared with conventional microscopy, NMR microscopy has the advantage of being non-invasive and non-destructive. The major obstacles of NMR microscopy are low signal-to-noise ratio and effects due to spin diffusion. To overcome these difficulties, more sensitive RF probes and very high magnetic field gradients have to be used. The most effective way to increase sensitivity is to build smaller probes. Microscope probes of different designs have been built and evaluated. Magnetic field gradient coils that can produce linear field gradients up to 450 Gauss/cm were also assembled. In addition, since microscope probes often employ remote capacitors for RF tuning, the associated signal loss in the transmission line was studied. Imaging experiments have been carried out in a 2.1 Tesla small bore superconducting magnet using the typical two-dimensional spin warp imaging technique. Images have been acquired for both biological and non-biological samples. The highest resolution was obtained in an image of a nerve bundle from the spinal cord of a racoon and has an in-plane resolution of 4 microns. These experiments have demonstrated the potential application of NMR microscopy to pathological research, nervous system study and non -destructive testings of materials. One way to further improve NMR microscopy is

  4. PIC microcontroller based external fast analog to digital converter to acquire wide-lined solid NMR spectra by BRUKER DRX and Avance-I spectrometers.

    PubMed

    Koczor, Bálint; Rohonczy, János

    2015-01-01

    Concerning many former liquid or hybrid liquid/solid NMR consoles, the built in Analog-to-Digital Converters (ADCs) are incapable of digitizing the fids at sampling rates in the MHz range. Regarding both strong anisotropic interactions in the solid state and wide chemical shift dispersion nuclei in solution phase such as (195)Pt, (119)Sn, (207)Pb etc., the spectrum range of interest might be in the MHz range. As determining the informative tensor components of anisotropic NMR interactions requires nonlinear fitting over the whole spectrum including the asymptotic baseline, it is prohibited by low sampling rates of the ADCs. Wide spectrum width is also useful in solution NMR, since windowing of wide chemical shift ranges is avoidable. We built an external analog to digital converter with 10 MHz maximal sampling rate, which can work simultaneously with the built in ADC of the spectrometer. The ADC was tested on both Bruker DRX and Avance-I NMR consoles. In addition to the analog channels it only requires three external digital lines of the NMR console. The ADC sends data to PC via USB. The whole process is controlled by software written in JAVA which is implemented under TopSpin.

  5. DNP enhanced NMR using a high-power 94 GHz microwave source: a study of the TEMPOL radical in toluene.

    PubMed

    Kryukov, Eugeny V; Newton, Mark E; Pike, Kevin J; Bolton, David R; Kowalczyk, Radoslaw M; Howes, Andrew P; Smith, Mark E; Dupree, Ray

    2010-06-14

    DNP enhanced (1)H NMR at 143 MHz in toluene is investigated using an NMR spectrometer coupled with a modified EPR spectrometer operating at 94 GHz and TEMPOL as the polarisation agent. A 100 W microwave amplifier was incorporated into the output stage of the EPR instrument so that high microwave powers could be delivered to the probe in either CW or pulsed mode. The maximum enhancement for the ring protons increases from approximately -16 for a 5 mM TEMPOL solution to approximately -50 for a 20 mM solution at a microwave power of approximately 480 mW. The temperature dependence of the enhancement, the NMR relaxation rates and the ESR spectrum of TEMPOL were also studied in an effort to obtain information on the dynamics of the system.

  6. NMR Spectra Transformed by Electron-Nuclear Coupling as Indicator of Structural Peculiarities of Magnetically Active Molecular Systems.

    PubMed

    Voronov, Vladimir K

    2016-09-01

    The peculiarities of nuclear spin relaxation in the paramagnetic systems have been analyzed taking into account the exchange processes. The analysis is based on the modified Solomon-Bloembergen equations. In this line, the conditions of detecting of the NMR signals of samples are discussed depending on resonance frequency of the NMR spectrometer and characteristic relaxation time. On this basis, (1)H NMR spectra of cobalt semiquinolate complex have been analyzed. It has been shown that the satellite signals observed in the spectrum are caused by hyperfine coupling of the tert-butyl group protons with α and β states (localized on pz orbital of the aromatic carbon) of unpaired electron spin. The relaxation process of the resonance protons is controlled by paramagnetic dipole-dipole coupling. The contact hyperfine coupling does not contribute to the paramagnetic broadening. A mechanism involving paramagnetic molecular structures, which are responsible for intramolecular exchange processes in the cobalt semiquinolate complex, is given. PMID:27513208

  7. 1H and 13C NMR assignments for two anthraquinones and two xanthones from the mangrove fungus (ZSUH-36).

    PubMed

    Shao, Changlun; She, Zhigang; Guo, Zhiyong; Peng, Hong; Cai, Xiaoling; Zhou, Shining; Gu, Yucheng; Lin, Yongcheng

    2007-05-01

    We report the unambiguous assignments of the (1)H and (13)C NMR spectra of one new natural product, namely, 6,8-di-O-methyl versiconol (1) together with one known anthraquinone aversin (2) and two xanthones 5-methoxysterigmatocystin (3) and sterigmatocystin (4). These compounds were all isolated from the mangrove endophytic fungus ZSUH-36 from the South China Sea. 1D and 2D NMR experiments including COSY, HMQC and HMBC were used to elucidate the structures. Variations in the (1)H NMR spectrum of 6,8-di-O-methyl versiconol (1) were also observed in the temperature range 25-75 degrees C. In addition, the plausible biogenetic path from 1 to 2 is discussed.

  8. NMR Stark Spectroscopy: New Methods to Calibrate NMR Sensitivity to Electric Fields

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.

    The influence of electrostatics on NMR parameters is well accepted. Thus, NMR is a promising route to probe electrical features within molecules and materials. However, applications of NMR Stark effects (E-field induced changes in spin energy levels) have been elusive. I have developed new approaches to resolve NMR Stark effects from an applied E field. This calibrates nuclear probes whose spectral response might later be used to evaluate internal E fields that are critical to function, such as those due to local charge distributions or sample structure. I will present two novel experimental approaches for direct calibration of NMR quadrupolar Stark effects (QSEs). In the first, steady-state (few-second) excitation by an E field at twice the NMR frequency (2ω 0) is used to saturate spin magnetization. The extent of saturation vs. E-field amplitude calibrates the QSE response rate, while measurements vs sample orientation determine tensorial character. The second method instead synchronizes short (few µs) pulses of the 2ω0 E field with a multiple-pulse NMR sequence. This, “POWER” (Perturbations Observed With Enhanced Resolution) approach enables more accurate measure of small QSEs (i.e. few Hz spectral changes). A 2nd key advantage is the ability to define tensorial response without reorienting the sample, but instead varying the phase of the 2ω0 field. I will describe these experiments and my home-built NMR “Stark probe”, employed on a conventional wide-bore solid-state NMR system. Results with GaAs demonstrate each method, while extensions to a wider array of molecular and material systems may now be possible using these methods.

  9. NMR Detection Using Laser-Polarized Xenon as a DipolarSensor

    SciTech Connect

    Granwehr, Josef; Urban, Jeffry T.; Trabesinger, Andreas H.; Pines, Alexander

    2005-02-28

    Hyperpolarized Xe-129 can be used as a sensor to indirectly detect NMR spectra of heteronuclei that are neither covalently bound nor necessarily in direct contact with the Xe atoms, but coupled through long-range intermolecular dipolar couplings. In order to reintroduce long-range dipolar couplings the sample symmetry has to be broken. This can be done either by an asymmetric sample arrangement, or by breaking the symmetry of the spin magnetization with field gradient pulses. Experiments are performed where only a small fraction of the available Xe-129 magnetization is used for each point, so that a single batch of xenon suffices for the point-by-point acquisition of a heteronuclear NMR spectrum. Examples with H-1 as analyte nucleus show that these methods have the potential to obtain spectra with a resolution that is high enough to determine homonuclear J couplings. The applicability of this technique with remote detection is discussed.

  10. 13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines

    NASA Technical Reports Server (NTRS)

    Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.

    1983-01-01

    The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.

  11. Equilibrium exchange of dimethyl methylphosphonate across the human red cell membrane measured using NMR spin transfer

    NASA Astrophysics Data System (ADS)

    Kirk, Kiaran; Kuchel, Philip W.

    The 31P NMR spectrum of dimethyl methylphosphonate, in a suspension of human erythrocytes in a hypertonic medium, is characterized by separate intra- and extracellular resonances. The compound crosses the red cell membrane too rapidly for its transport to be monitored using conventional NMR time-course techniques. In the present work we adapted the saturation transfer method to measure the unidirectional flux of dimethyl methylphosphonate into the cell at equilibrium and thereby gained an estimate of its permeability coefficient. Repeated measurements on low hematocrit cell suspensions showed no significant variation in the permeability coefficients for cells from five different donors. Saturation transfer measurements conducted over a range of hematocrits demonstrated the hematocrit dependence of the unidirectional rate constant for dimethyl methylphosphonate influx. The calculated permeability coefficient was independent of hematocrit.

  12. Exact NMR simulation of protein-size spin systems using tensor train formalism

    NASA Astrophysics Data System (ADS)

    Savostyanov, D. V.; Dolgov, S. V.; Werner, J. M.; Kuprov, Ilya

    2014-08-01

    We introduce a new method, based on alternating optimization, for compact representation of spin Hamiltonians and solution of linear systems of algebraic equations in the tensor train format. We demonstrate the method's utility by simulating, without approximations, a N15 NMR spectrum of ubiquitin—a protein containing several hundred interacting nuclear spins. Existing simulation algorithms for the spin system and the NMR experiment in question either require significant approximations or scale exponentially with the spin system size. We compare the proposed method to the Spinach package that uses heuristic restricted state space techniques to achieve polynomial complexity scaling. When the spin system topology is close to a linear chain (e.g., for the backbone of a protein), the tensor train representation is more compact and can be computed faster than the sparse representation using restricted state spaces.

  13. Practical aspects of NMR signal assignment in larger and challenging proteins

    PubMed Central

    Frueh, Dominique P.

    2014-01-01

    NMR has matured into a technique routinely employed for studying proteins in near physiological conditions. However, applications to larger proteins are impeded by the complexity of the various correlation maps necessary to assign NMR signals. This article reviews the data analysis techniques traditionally employed for resonance assignment and describes alternative protocols necessary for overcoming challenges in large protein spectra. In particular, simultaneous analysis of multiple spectra may help overcome ambiguities or may reveal correlations in an indirect manner. Similarly, visualization of orthogonal planes in a multidimensional spectrum can provide alternative assignment procedures. We describe examples of such strategies for assignment of backbone, methyl, and nOe resonances. We describe experimental aspects of data acquisition for the related experiments and provide guidelines for preliminary studies. Focus is placed on large folded monomeric proteins and examples are provided for 37, 48, 53, and 81 kDa proteins. PMID:24534088

  14. The Initial State of Optically Polarized 8Li+ from the β-NMR in Bismuth

    NASA Astrophysics Data System (ADS)

    MacFarlane, W. A.; Levy, C. D. P.; Pearson, M. R.; Buck, T.; Chow, K. H.; Hariwal, A. N.; Kiefl, R. F.; McGee, F. H.; Morris, G. D.; Wang, D.

    2014-12-01

    Unlike the positive muon, β-NMR probe nuclei must be actively polarized. At the TRIUMF ISAC facility this is accomplished by in-flight collinear optical pumping with resonant circularly polarized laser light. This reliably produces a high degree of polarization, but the detailed state populations in the beam emerging from the optical polarizer are not well known. These populations are significant as they represent the initial state of the ensemble of probe spins implanted in a β-NMR experiment. Here we use the well-resolved quadrupolar split spectrum of 8Li+ in a high purity single crystal of bismuth to extract the sublevel populations under typical polarizer operating conditions, accounting for the spin relaxation in this semimetal.

  15. REDOR NMR of stable-isotope-labeled protein binding sites

    SciTech Connect

    Schaefer, J.

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  16. Molecular Mechanics and Variable-Temperature 1H NMR Studies on N,N-Diethyl-m-toluamide. An Undergraduate NMR and Molecular Modeling Experiment

    NASA Astrophysics Data System (ADS)

    Jensen, Bruce L.; Fort, Raymond C., Jr.

    2001-04-01

    A combination of molecular modeling and variable-temperature NMR experiments is used to analyze the barrier to rotation about the amide bond of N,N-diethyl-m-toluamide (DEET). This approach utilizes the ability of computers to calculate the potential energy of a set of conformations obtained from a dihedral drive around the N-CO bond. The results of this experiment demonstrate a substantial barrier of 15.9 kcal/mol. These data are applied to a set of 1H NMR spectra taken over a range of temperatures from 9 to 85 °C. At very low temperatures the conformation is "locked" and the spectrum displays two sets of triplets and two sets of quartets for the two nonequivalent ethyl groups. However, at high temperature the rapid rotation about the amide linkage produces only one quartet and one triplet, characteristic of two indistinguishable ethyl groups. The experiment offers students hands-on experience with two important laboratory instruments and allows for both qualitative and quantitative analysis of the data. This experiment is scheduled to coincide with lecture discussion of NMR spectroscopy, after the fundamentals of bond rotation have been presented.

  17. Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations.

    PubMed

    Toukach, Filip V; Ananikov, Valentine P

    2013-11-01

    All living systems are comprised of four fundamental classes of macromolecules--nucleic acids, proteins, lipids, and carbohydrates (glycans). Glycans play a unique role of joining three principal hierarchical levels of the living world: (1) the molecular level (pathogenic agents and vaccine recognition by the immune system, metabolic pathways involving saccharides that provide cells with energy, and energy accumulation via photosynthesis); (2) the nanoscale level (cell membrane mechanics, structural support of biomolecules, and the glycosylation of macromolecules); (3) the microscale and macroscale levels (polymeric materials, such as cellulose, starch, glycogen, and biomass). NMR spectroscopy is the most powerful research approach for getting insight into the solution structure and function of carbohydrates at all hierarchical levels, from monosaccharides to oligo- and polysaccharides. Recent progress in computational procedures has opened up novel opportunities to reveal the structural information available in the NMR spectra of saccharides and to advance our understanding of the corresponding biochemical processes. The ability to predict the molecular geometry and NMR parameters is crucial for the elucidation of carbohydrate structures. In the present paper, we review the major NMR spectrum simulation techniques with regard to chemical shifts, coupling constants, relaxation rates and nuclear Overhauser effect prediction applied to the three levels of glycomics. Outstanding development in the related fields of genomics and proteomics has clearly shown that it is the advancement of research tools (automated spectrum analysis, structure elucidation, synthesis, sequencing and amplification) that drives the large challenges in modern science. Combining NMR spectroscopy and the computational analysis of structural information encoded in the NMR spectra reveals a way to the automated elucidation of the structure of carbohydrates.

  18. Identification of fucans from four species of sea cucumber by high temperature 1H NMR

    NASA Astrophysics Data System (ADS)

    Wu, Nian; Chen, Shiguo; Ye, Xingqian; Li, Guoyun; Yin, Li'ang; Xue, Changhu

    2014-10-01

    Acidic polysaccharide, which has various biological activities, is one of the most important components of sea cucumber. In the present study, crude polysaccharide was extracted from four species of sea cucumber from three different geographical zones, Pearsonothuria graeffei ( Pg) from Indo-Pacific, Holothuria vagabunda ( Hv) from Norwegian Coast, Stichopus tremulu ( St) from Western Indian Ocean, and Isostichopus badionotu ( Ib) from Western Atlantic. The polysaccharide extract was separated and purified with a cellulose DEAE anion-exchange column to obtain corresponding sea cucumber fucans (SC-Fucs). The chemical property of these SC-Fucs, including molecular weight, monosaccharide composition and sulfate content, was determined. Their structure was compared simply with fourier infrared spectrum analyzer and identified with high temperature 1H nuclear magnetic resonance spectrum analyzer (NMR) and room temperature 13C NMR. The results indicated that Fuc- Pg obtained from the torrid zone mainly contained 2,4-O-disulfated and non-sulfated fucose residue, whereas Fuc- Ib from the temperate zone contained non-, 2-O- and 2,4-O-disulfated fucose residue; Fuc- St from the frigid zone and Fuc- Hv from the torrid zone contained mainly non-sulfated fucose residue. The proton of SC-Fucs was better resolved via high temperature 1H NMR than via room temperature 1H NMR. The fingerprint of sea cucumber in different sea regions was established based on the index of anomer hydrogen signal in SC-Fucs. Further work will help to understand whether there exists a close relationship between the geographical area of sea cucumber and the sulfation pattern of SC-Fucs.

  19. HYDROGEN AND DEUTERIUM NMR OF SOLIDS BY MAGIC ANGLE SPINNING

    SciTech Connect

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large spectral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. For example, the homonuclear dipolar broadening, HD, for hydrogen is usually several tens of kilohertz. For deuterium, HD is relatively small; however, the quadrupole interaction causes a broadening which can be hundreds of kilohertz in polycrystalline or amorphous solids. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, {beta}{sub m} = Arccos(3{sup -1/2}), with respect to the direction of the external magnetic field. Two approaches have been developed for each nucleus. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of {beta}. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H{sub D} was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal

  20. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  1. An approach to the simultaneous quantitative analysis of metabolites in table wines by (1)H NMR self-constructed three-dimensional spectra.

    PubMed

    Li, Bao Qiong; Xu, Min Li; Wang, Xue; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2017-02-01

    Wine consists of several hundred components with different concentrations, including water, ethanol, glycerol, organic acids and sugars. Accurate quantification of target compounds in such complex samples is a difficult task based on conventional (1)H NMR spectra due to some challenges. In this paper, the three-dimensional spectrum was constructed firstly by simply repeating (1)H NMR spectrum itself so as to extract the features of target compounds by Tchebichef moment method. A proof-of-concept model system, the determination of five metabolites in wines was utilized to evaluate the performance of the proposed strategy. The results indicate that the proposed approach can provide accurate and reliable concentration predictions, probably the best results ever achieved using PLS and interval-PLS methods. Our novel strategy has not only good performance but also does not require laborious multi-step and subjective pretreatments. Therefore, it is expected that the proposed method could extend the application of conventional (1)H NMR. PMID:27596391

  2. Characterization of Devonian oil shales by hydrogen pulse NMR. Project report for 1983-84

    SciTech Connect

    Harrell, J.W. Jr.

    1984-09-01

    NMR and ESR measurements have been used to characterize eastern and western United States oil shales. T/sub 1/ measurements which were made at 90 MHz as a function of temperature, together with previously reported 36 MHz results, suggest that paramagnetic centers contribute strongly to the relaxation in some of the shales. A careful study of the ESR spectrum at both X-band and K-band frequencies suggests that a part of the spectrum may be due to naturally irradiated silicates in the shales. Laboratory irradiation experiments suggest a method for determining the age of the oil shale deposits. A new technique has been developed for measuring second moments of the NMR power spectrum. Measurements made on a Colorado shale show a rapid decrease with increasing temperature in the vicinity of a previously reported T/sub 1r/ minimum. Unpaired electron spin concentrations and room temperature T/sub 1/ values were measured in 60 oil shale samples from north Alabama and south Tennessee. No correlation between spin concentration and oil Fischer assay was observed except for samples from a 100 ft bore hole in Etowah Co., AL, where a linear correlation was observed. Room temperature T/sub 1/'s were found to approximately increase with increasing spin concentration, supporting the contention that relaxation due to interactions with paramagnetic centers is important. 11 references, 14 figures.

  3. Intracellular pH and inorganic phosphate content of heart in vivo: A sup 31 P-NMR study

    SciTech Connect

    Katz, L.A.; Swain, J.A.; Portman, M.A.; Balaban, R.S. )

    1988-07-01

    Studies were performed to determine the contribution of red blood cells to the {sup 31}P-nuclear magnetic resonance (NMR) spectrum of the canine heart in vivo and the feasibility of measuring myocardial intracellular phosphate and pH. This was accomplished by replacing whole blood with a perfluorochemical perfusion emulsion blood substitute, Oxypherol, and noting the difference in the {sup 31}P-NMR spectrum of the heart. NMR data were collected with a NMR transmitter-receiver coil on the surface of the distal portion of the left ventricle. These studies demonstrated that a small contribution from 2,3-diphosphoglycerate (2,3-DPG) and phosphodiesters in the blood could be detected. The magnitude and shift of these blood-borne signals permitted the relative quantification of intracellular inorganic phosphate (P{sub i}) content as well as intracellular pH. Under resting conditions, the intracellular ATP/P{sub i} was 7.0 {plus minus} 0.08. This corresponds to a free intracellular P{sub 1} content of {approx} 0.8 {mu}mol./g wet wt. The intracellular pH was 7.10 {plus minus} 0.01. Acute respiratory alkalosis and acidosis, with the arterial pH ranging from {approximately}7.0 to 7.7, resulted in only small changes in the intracellular pH. These latter results demonstrate an effective myocardial intracellular proton-buffering mechanism in vivo.

  4. Characterization and quantification of microstructures of a fluorinated terpolymer by both homonuclear and heteronuclear two-dimensional NMR spectroscopy.

    PubMed

    Ok, Salim

    2015-02-01

    Fluoropolymers are usually insoluble in organic solvents. Insolubility of fluoropolymers limits basic characterization such as microstructural investigations. In the family of fluoropolymers, terpolymer of tetrafluorethylene (TFE), hexafluoropropylene (HFP), and vinylidene fluoride (VDF), named THV is one of the newest members. There are nine grades of THV available. Among the nine grades, THV-221 G is an ideal model polymer for basic characterization purposes. THV-221 G is soluble in solvents such as acetone and ethyl acetate. In the current report, both homonuclear and heteronuclear 2D NMR experiments were employed in solution on THV-221 G. The homonuclear gradient correlation spectroscopy NMR measurement revealed that THV has two adjacent TFE units in addition to TFE-HFP sequence orders. The fraction of the microstructures is quantified by the analysis of 1D solution (19)F NMR spectrum. Further, the gradient heteronuclear single quantum coherence experiment helped with the clarification of chemical environments of the units TFE, HFP, and VDF. The 1D solution (13)C NMR spectrum was helpful in clarifying sequence assignments of VDF. It is concluded that THV is a random polymer with a limited fraction of TFE-TFE and TFE-HFP sequence orders in addition to head-to-tail polymerization of VDF unit.

  5. NMR blood vessel imaging method and apparatus

    SciTech Connect

    Riederer, S.J.

    1988-04-26

    A high speed method of forming computed images of blood vessels based on measurements of characteristics of a body is described comprising the steps of: subjecting a predetermined body area containing blood vessels of interest to, successively, applications of a short repetition time (TR) NMR pulse sequence during the period of high blood velocity and then to corresponding applications during the period of low blood velocity for successive heart beat cycles; weighting the collected imaging data from each application of the NMR pulse sequence according to whether the data was acquired during the period of high blood velocity or a period of low blood velocity of the corresponding heart beat cycle; accumulating weighted imaging data from a plurality of NMR pulse sequences corresponding to high blood velocity periods and from a plurality of NMR pulse sequences corresponding to low blood velocity periods; subtracting the weighted imaging data corresponding to each specific phase encoding acquired during the high blood velocity periods from the weighted imaging data for the same phase encoding corresponding to low blood velocity periods in order to compute blood vessel imaging data; and forming an image of the blood vessels of interest from the blood vessel imaging data.

  6. Solid-state NMR imaging system

    SciTech Connect

    Gopalsami, N.; Dieckman, S.L.; Ellingson, W.A.

    1990-01-01

    An accessory for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  7. Structural Studies of Biological Solids Using NMR

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  8. Advanced Laboratory NMR Spectrometer with Applications.

    ERIC Educational Resources Information Center

    Biscegli, Clovis; And Others

    1982-01-01

    A description is given of an inexpensive nuclear magnetic resonance (NMR) spectrometer suitable for use in advanced laboratory courses. Applications to the nondestructive analysis of the oil content in corn seeds and in monitoring the crystallization of polymers are presented. (SK)

  9. NMR in a Diamond Anvil Pressure Cell

    NASA Astrophysics Data System (ADS)

    Lawson, Matthew; Dioguardi, Adam; Weir, Samuel; Bush, Blaine; Dunuwille, Mihindra; Deemyad, Shanti; Curro, Nichlas

    We present recent advances in the use of diamond anvil pressure cells in nuclear magnetic resonance measurements. This technique allows access to new regions of the phase diagrams of iron pnictide and heavy fermion materials, and promises to allow NMR experiments under pressures not previously accessible.

  10. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra. PMID:26789115

  11. A Primer of Fourier Transform NMR.

    ERIC Educational Resources Information Center

    Macomber, Roger S.

    1985-01-01

    Fourier transform nuclear magnetic resonance (NMR) is a new spectroscopic technique that is often omitted from undergraduate curricula because of lack of instructional materials. Therefore, information is provided to introduce students to the technique of data collection and transformation into the frequency domain. (JN)

  12. Hyperpolarized NMR Probes for Biological Assays

    PubMed Central

    Meier, Sebastian; Jensen, Pernille R.; Karlsson, Magnus; Lerche, Mathilde H.

    2014-01-01

    During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments. PMID:24441771

  13. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra.

  14. Hyperpolarized NMR probes for biological assays.

    PubMed

    Meier, Sebastian; Jensen, Pernille R; Karlsson, Magnus; Lerche, Mathilde H

    2014-01-16

    During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  15. NMR analysis of a fluorocarbon copolymer

    SciTech Connect

    Smith, R.E.; Smith, C.H.

    1987-10-01

    Vinylidene fluoride (VF/sub 2/) can be copolymerized with chlorotrifluoroethylene (CTFE) in an aqueous emulsion using a peroxide chain initiator. The physical properties of the resulting fluorocarbon polymer depend on the ratio of VF/sub 2/ to CTFE and the randomness of the copolymerization. When CTFE and VF are polymerized in an approximately 3:1 mole ratio, the resulting polymer is soluble in acetone (and other solvents) at room temperature. Using proton and fluorine-19 NMR, the mole ratio of CTFE to VF/sub 2/, the emulsifier (perfluorodecanoate) concentration, and the randomness of copolymerization can be determined. A trifluorotoluene internal standard is added to a d/sub 6/-acetone solution of the fluoropolymer. Proton NMR is used to determine the amount of VF/sub 2/. Fluorine-19 NMR is used to measure the amount of emulsifier and the randomness of copolymerization. Each analysis requires about 5 minutes, and is quite precise, with relative standard deviations from 3 to 10% (10 replicates analyzed). In addition, the results from NMR analyses agree well with wet chemical analyses. 4 refs., 3 figs., 3 tabs.

  16. RNA Secondary Structure Determination by NMR.

    PubMed

    Chen, Jonathan L; Bellaousov, Stanislav; Turner, Douglas H

    2016-01-01

    Dynamic programming methods for predicting RNA secondary structure often use thermodynamics and experimental restraints and/or constraints to limit folding space. Chemical mapping results typically restrain certain nucleotides not to be in AU or GC pairs. Two-dimensional nuclear magnetic resonance (NMR) spectra can reveal the order of AU, GC, and GU pairs in double helixes. This chapter describes a program, NMR-assisted prediction of secondary structure and chemical shifts (NAPSS-CS), that constrains possible secondary structures on the basis of the NMR determined order and 5'-3' direction of AU, GC, and GU pairs in helixes. NAPSS-CS minimally requires input of the order of base pairs as determined from nuclear Overhauser effect spectroscopy (NOESY) of imino protons. The program deduces the 5'-3' direction of the base pairs if certain chemical shifts are also input. Secondary structures predicted by the program provide assignments of input chemical shifts to particular nucleotides in the sequence, thus facilitating an important step for determination of the three dimensional structure by NMR. The method is particularly useful for revealing pseudoknots and an example is provided. The method may also allow determination of secondary structures when a sequence folds into two structures that exchange slowly. PMID:27665599

  17. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by {sup 31}P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G.

    1992-11-01

    In this study, Iowa State University researchers used {sub 31}P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850{degrees}F{sup +} distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.{sup 31}P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different {sup 31}P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a {sup 31}P-tagged reagent (ClPOCMe{sub 2}CMe{sub 2}O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  18. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by [sup 31]P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G. )

    1992-11-01

    In this study, Iowa State University researchers used [sub 31]P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850[degrees]F[sup +] distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.[sup 31]P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different [sup 31]P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a [sup 31]P-tagged reagent (ClPOCMe[sub 2]CMe[sub 2]O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  19. An NMR study of microvoids in polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattix, Larry

    1995-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally be found naturally in polymer or in NMR probe materials. There are two NMR active xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb the Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe(129)-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts line Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A single Xe-129 line at 83.003498 Mhz (with protons at 300 Mhz) was observed for the gas. With the xenon charged PMR-15 samples, a second broader line is observed 190 ppm downfield from the gas line (also observed). The width of the NMR line from the Xe-129 absorbed in the polymer is at least partially due to the distribution of microvoid sizes. From the chemical shift (relative to the gas line) and the line width, we estimate the average void sizes to be 2.74 +/- 0.20 angstroms. Since Xe-129 has such a large chemical shift range (approximately 5000 ppm), we expect the chemical shift anisotropy to contribute to the

  20. Dynamic nuclear polarization surface enhanced NMR spectroscopy.

    PubMed

    Rossini, Aaron J; Zagdoun, Alexandre; Lelli, Moreno; Lesage, Anne; Copéret, Christophe; Emsley, Lyndon

    2013-09-17

    Many of the functions and applications of advanced materials result from their interfacial structures and properties. However, the difficulty in characterizing the surface structure of these materials at an atomic level can often slow their further development. Solid-state NMR can probe surface structure and complement established surface science techniques, but its low sensitivity often limits its application. Many materials have low surface areas and/or low concentrations of active/surface sites. Dynamic nuclear polarization (DNP) is one intriguing method to enhance the sensitivity of solid-state NMR experiments by several orders of magnitude. In a DNP experiment, the large polarization of unpaired electrons is transferred to surrounding nuclei, which provides a maximum theoretical DNP enhancement of ∼658 for (1)H NMR. In this Account, we discuss the application of DNP to enhance surface NMR signals, an approach known as DNP surface enhanced NMR spectroscopy (DNP SENS). Enabling DNP for these systems requires bringing an exogeneous radical solution into contact with surfaces without diluting the sample. We proposed the incipient wetness impregnation technique (IWI), a well-known method in materials science, to impregnate porous and particulate materials with just enough radical containing solution to fill the porous volume. IWI offers several advantages: it is extremely simple, provides a uniform wetting of the surface, and does not increase the sample volume or substantially reduce the concentration of the sample. This Account describes the basic principles behind DNP SENS through results obtained for mesoporous and nanoparticulate samples impregnated with radical solutions. We also discuss the quantification of the overall sensitivity enhancements obtained with DNP SENS and compare that with ordinary room temperature NMR spectroscopy. We then review the development of radicals and solvents that give the best possible enhancements today. With the best

  1. Broad spectrum solar cell

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man; Wu, Junqiao; Schaff, William J.

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  2. NMR in High Fields and Field Gradients up to 42 T

    NASA Astrophysics Data System (ADS)

    Sigmund, Eric E.

    2002-03-01

    We describe nuclear magnetic resonance (NMR) experiments performed in fields as high as 42 T. This work was done at Northwestern University and the National High Magnetic Field Laboratory (NHMFL) with superconducting magnets, resistive Bitter-style electromagnets, and a superconducting-resistive hybrid magnet. After reviewing crucial probe and spectrometer design features, we describe the scientific and technical advantages that high field provides for two experiments. First, we studied the mixed state of the high-temperature superconductor YBa_2Cu_3O_7-x through ^17O NMR.[1] The NMR spectrum gives the field distribution associated with vortices which we use to selectively inspect regions inside and outside the vortex core. We use the spin-lattice relaxation rate (T_1-1) to probe the electronic density-of-states in this spatially resolved fashion. Second, we have studied ultraslow diffusion in glass-forming liquids such as glycerol. These studies use the high magnetic field gradient at the edge of the solenoid, which can exceed 200 T/m for the resistive magnets at the NHMFL. We employed a 4 K inductive shield to stabilize the fluctuations in the resistive magnets' applied field over the necessarily long timescales of a slow diffusion NMR experiment. We have also made use of fast frequency jumping to enhance signal-to-noise by circumventing the finite spatial excitation bandwidth imposed by the large gradient. We show NMR experiments of slow diffusion in glass-formers up to high field (H0 = 21 T, G = 220 T/m) that have resolved diffusivities as low as 10-10 cm^2/s. [1] V. F. Mitrovic et.al., Nature 413, 501-504 (2001).

  3. A mobile one-sided NMR sensor with a homogeneous magnetic field: the NMR-MOLE.

    PubMed

    Manz, B; Coy, A; Dykstra, R; Eccles, C D; Hunter, M W; Parkinson, B J; Callaghan, P T

    2006-11-01

    A new portable NMR sensor with a novel one-sided access magnet design, termed NMR-MOLE (MObile Lateral Explorer), has been characterised in terms of sensitivity and depth penetration. The magnet has been designed to be portable and create a volume with a relatively homogeneous magnetic field, 15,000 ppm over a region from 4 to 16 mm away from the probe, with maximum sensitivity at a depth of 10 mm. The proton NMR frequency is 3.3 MHz. We have demonstrated that with this approach a highly sensitive, portable, unilateral NMR sensor can be built. Such a design is especially suited for the characterisation of liquids in situations where unilateral or portable access is required.

  4. Using NMR to study full intact wine bottles

    NASA Astrophysics Data System (ADS)

    Weekley, A. J.; Bruins, P.; Sisto, M.; Augustine, M. P.

    2003-03-01

    A nuclear magnetic resonance (NMR) probe and spectrometer capable of investigating full intact wine bottles is described and used to study a series of Cabernet Sauvignons with high resolution 1H NMR spectroscopy. Selected examples of full bottle 13C NMR spectra are also provided. The application of this full bottle NMR method to the measurement of acetic acid content, the detection of complex sugars, phenols, and trace elements in wine is discussed.

  5. Solid-state NMR studies of supercapacitors.

    PubMed

    Griffin, John M; Forse, Alexander C; Grey, Clare P

    2016-01-01

    Electrochemical double-layer capacitors, or 'supercapacitors' are attracting increasing attention as high-power energy storage devices for a wide range of technological applications. These devices store charge through electrostatic interactions between liquid electrolyte ions and the surfaces of porous carbon electrodes. However, many aspects of the fundamental mechanism of supercapacitance are still not well understood, and there is a lack of experimental techniques which are capable of studying working devices. Recently, solid-state NMR has emerged as a powerful tool for studying the local environments and behaviour of electrolyte ions in supercapacitor electrodes. In this Trends article, we review these recent developments and applications. We first discuss the basic principles underlying the mechanism of supercapacitance, as well as the key NMR observables that are relevant to the study of supercapacitor electrodes. We then review some practical aspects of the study of working devices using ex situ and in situ methodologies and explain the key advances that these techniques have allowed on the study of supercapacitor charging mechanisms. NMR experiments have revealed that the pores of the carbon electrodes contain a significant number of electrolyte ions in the absence of any charging potential. This has important implications for the molecular mechanisms of supercapacitance, as charge can be stored by different ion adsorption/desorption processes. Crucially, we show how in situ NMR experiments can be used to quantitatively study and characterise the charging mechanism, with the experiments providing the most detailed picture of charge storage to date, offering the opportunity to design enhanced devices. Finally, an outlook for future directions for solid-state NMR in supercapacitor research is offered. PMID:26974032

  6. Solid-state NMR studies of supercapacitors.

    PubMed

    Griffin, John M; Forse, Alexander C; Grey, Clare P

    2016-01-01

    Electrochemical double-layer capacitors, or 'supercapacitors' are attracting increasing attention as high-power energy storage devices for a wide range of technological applications. These devices store charge through electrostatic interactions between liquid electrolyte ions and the surfaces of porous carbon electrodes. However, many aspects of the fundamental mechanism of supercapacitance are still not well understood, and there is a lack of experimental techniques which are capable of studying working devices. Recently, solid-state NMR has emerged as a powerful tool for studying the local environments and behaviour of electrolyte ions in supercapacitor electrodes. In this Trends article, we review these recent developments and applications. We first discuss the basic principles underlying the mechanism of supercapacitance, as well as the key NMR observables that are relevant to the study of supercapacitor electrodes. We then review some practical aspects of the study of working devices using ex situ and in situ methodologies and explain the key advances that these techniques have allowed on the study of supercapacitor charging mechanisms. NMR experiments have revealed that the pores of the carbon electrodes contain a significant number of electrolyte ions in the absence of any charging potential. This has important implications for the molecular mechanisms of supercapacitance, as charge can be stored by different ion adsorption/desorption processes. Crucially, we show how in situ NMR experiments can be used to quantitatively study and characterise the charging mechanism, with the experiments providing the most detailed picture of charge storage to date, offering the opportunity to design enhanced devices. Finally, an outlook for future directions for solid-state NMR in supercapacitor research is offered.

  7. NREL Spectrum of Innovation

    ScienceCinema

    None

    2016-07-12

    There are many voices calling for a future of abundant clean energy. The choices are difficult and the challenges daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation including fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. The innovation process at NREL is interdependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

  8. Quantitative determination of lead in mixtures of lead(II) halidesusing solid-state 207pb nmr spectroscopy

    SciTech Connect

    Glatfelter, Alicia; Stephenson, Nicole; Bai, Shi; Dybowski,Cecil; Perry, Dale L.

    2006-11-01

    A multi-spectrum technique for facile, quantitativedetermination of lead in solid materials using solid-state 207Pb NMR thatavoids the major problem of uniform excitation across a wide spectralrange has been demonstrated. The method can be employed without chemicalseparation or other chemical manipulations and without any prior samplepreparation, resulting in a non-destructive analysis, and producingresults that are in agreement with gravimetric analyses of mixed samplesof the lead halides.

  9. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  10. NMR Constraints Analyser: a web-server for the graphical analysis of NMR experimental constraints.

    PubMed

    Heller, Davide Martin; Giorgetti, Alejandro

    2010-07-01

    Nuclear magnetic resonance (NMR) spectroscopy together with X-ray crystallography, are the main techniques used for the determination of high-resolution 3D structures of biological molecules. The output of an NMR experiment includes a set of lower and upper limits for the distances (constraints) between pairs of atoms. If the number of constraints is high enough, there will be a finite number of possible conformations (models) of the macromolecule satisfying the data. Thus, the more constraints are measured, the better defined these structures will be. The availability of a user-friendly tool able to help in the analysis and interpretation of the number of experimental constraints per residue, is thus of valuable importance when assessing the levels of structure definition of NMR solved biological macromolecules, in particular, when high-quality structures are needed in techniques such as, computational biology approaches, site-directed mutagenesis experiments and/or drug design. Here, we present a free publicly available web-server, i.e. NMR Constraints Analyser, which is aimed at providing an automatic graphical analysis of the NMR experimental constraints atom by atom. The NMR Constraints Analyser server is available from the web-page http://molsim.sci.univr.it/constraint.

  11. OPENCORE NMR: Open-source core modules for implementing an integrated FPGA-based NMR spectrometer

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuyuki

    2008-06-01

    A tool kit for implementing an integrated FPGA-based NMR spectrometer [K. Takeda, A highly integrated FPGA-based nuclear magnetic resonance spectrometer, Rev. Sci. Instrum. 78 (2007) 033103], referred to as the OPENCORE NMR spectrometer, is open to public. The system is composed of an FPGA chip and several peripheral boards for USB communication, direct-digital synthesis (DDS), RF transmission, signal acquisition, etc. Inside the FPGA chip have been implemented a number of digital modules including three pulse programmers, the digital part of DDS, a digital quadrature demodulator, dual digital low-pass filters, and a PC interface. These FPGA core modules are written in VHDL, and their source codes are available on our website. This work aims at providing sufficient information with which one can, given some facility in circuit board manufacturing, reproduce the OPENCORE NMR spectrometer presented here. Also, the users are encouraged to modify the design of spectrometer according to their own specific needs. A home-built NMR spectrometer can serve complementary roles to a sophisticated commercial spectrometer, should one comes across such new ideas that require heavy modification to hardware inside the spectrometer. This work can lower the barrier of building a handmade NMR spectrometer in the laboratory, and promote novel and exciting NMR experiments.

  12. Enantiomeric differentiation of acyclic terpenes by 13C NMR spectroscopy using a chiral lanthanide shift reagent.

    PubMed

    Blanc, Marie-Cécile; Bradesi, Pascale; Casanova, Joseph

    2005-02-01

    The 13C NMR behaviour of ten acyclic terpene alcohols was examined in the presence of a chiral lanthanide shift reagent (CLSR). For each alcohol, we measured the lanthanide-induced shift (LIS) on the signals of the carbons and the splitting of some signals, which allowed the enantiomeric differentiation. As expected, the LIS decreased with the number of bonds between the binding function and the considered carbon. The enantiomeric splitting is observed for several signals in the spectrum of each compound. The influence of the hindrance of the binding function (primary, secondary or tertiary alcohol) and that of the stereochemistry of the double bonds is discussed.

  13. Sinclair ZX Spectrum.

    ERIC Educational Resources Information Center

    Rodwell, Peter

    1982-01-01

    Describes and evaluates the hardware, software, peripheral devices, performance capabilities, and programing capacity of the Sinclair ZX Spectrum microcomputer. The computer's display system, its version of the BASIC programing language, its graphics capabilities, and the unique features of its data entry keyboard are discussed. (JL)

  14. Charging for Spectrum Use.

    ERIC Educational Resources Information Center

    Geller, Henry; Lampert, Donna

    This paper, the third in a series exploring future options for public policy in the communications and information arenas, argues that the communications spectrum--e.g., public mobile service, private radio, and domestic satellites--is a valuable but limited resource that should benefit all Americans. After a background discussion, it is…

  15. Stellar Spectrum Synthesizer

    ERIC Educational Resources Information Center

    Landegren, G. F.

    1975-01-01

    Describes a device which employs two diffraction gratings and three or four simple lenses to produce arbitrary absorption or emission spectra that may be doppler shifted and spectroscopically examined by students some distance away. It may be regarded as a sort of artificial star whose spectrum may be analyzed as an undergraduate laboratory…

  16. Toward a Rational Design of Bioactive Glasses with Optimal Structural Features: Composition–Structure Correlations Unveiled by Solid-State NMR and MD Simulations

    PubMed Central

    2013-01-01

    The physiological responses of silicate-based bioactive glasses (BGs) are known to depend critically on both the P content (nP) of the glass and its silicate network connectivity (N̅BOSi). However, while the bioactivity generally displays a nonmonotonic dependence on nP itself, recent work suggest that it is merely the net orthophosphate content that directly links to the bioactivity. We exploit molecular dynamics (MD) simulations combined with 31P and 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy to explore the quantitative relationships between N̅BOSi, nP, and the silicate and phosphate speciations in a series of Na2O–CaO–SiO2–P2O5 glasses spanning 2.1 ≤ N̅BOSi ≤ 2.9 and variable P2O5 contents up to 6.0 mol %. The fractional population of the orthophosphate groups remains independent of nP at a fixed N̅BOSi-value, but is reduced slightly as N̅BOSi increases. Nevertheless, P remains predominantly as readily released orthophosphate ions, whose content may be altered essentially independently of the network connectivity, thereby offering a route to optimize the glass bioactivity. We discuss the observed composition-structure links in relation to known composition-bioactivity correlations, and define how Na2O–CaO–SiO2–P2O5 compositions exhibiting an optimal bioactivity can be designed by simultaneously altering three key parameters: the silicate network connectivity, the (ortho)phosphate content, and the nNa/nCa molar ratio. PMID:24364818

  17. Study of the ferroelastic phase transition in the tetraethylammonium compound [N(C2H5)4]2ZnBr4 by magic-angle spinning and static NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-03-01

    The ferroelastic phase transition of tetraethylammonium compound [N(C2H5)4]2ZnBr4 at the phase transition temperature (TC) = 283 K was characterized by magic-angle spinning (MAS) and static nuclear magnetic resonance (NMR), and confirmed by optical polarizing spectroscopy. The structural geometry near TC was studied in terms of the chemical shifts and the spin-lattice relaxation times T1ρ in the rotating frame for 1H MAS NMR and 13C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups were distinguishable in the 13C NMR spectrum, and the T1ρ results indicate that they undergo tumbling motion above TC in a coupled manner. From the 14N NMR results, the two nitrogen nuclei in the N(C2H5)4+ ions were distinguishable above TC, and the splitting in the spectra below TC was related to the ferroelastic domains with different orientations.

  18. NMR CHARACTERIZATIONS OF PROPERTIES OF HETEROGENEOUS MEDIA

    SciTech Connect

    C.T. Philip Chang; Changho Choi; Jeromy T. Hollenshead; Rudi Michalak; Jack Phan; Ramon Saavedra; John C. Slattery; Jinsoo Uh; Randi Valestrand; A. Ted Watson; Song Xue

    2005-01-01

    A critical and long-standing need within the petroleum industry is the specification of suitable petrophysical properties for mathematical simulation of fluid flow in petroleum reservoirs (i.e., reservoir characterization). The development of accurate reservoir characterizations is extremely challenging. Property variations may be described on many scales, and the information available from measurements reflect different scales. In fact, experiments on laboratory core samples, well-log data, well-test data, and reservoir-production data all represent information potentially valuable to reservoir characterization, yet they all reflect information about spatial variations of properties at different scales. Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) provide enormous potential for developing new descriptions and understandings of heterogeneous media. NMR has the rare capability to probe permeable media non-invasively, with spatial resolution, and it provides unique information about molecular motions and interactions that are sensitive to morphology. NMR well-logging provides the best opportunity ever to resolve permeability distributions within petroleum reservoirs. We develop MRI methods to determine, for the first time, spatially resolved distributions of porosity and permeability within permeable media samples that approach the intrinsic scale: the finest resolution of these macroscopic properties possible. To our knowledge, this is the first time that the permeability is actually resolved at a scale smaller than the sample. In order to do this, we have developed a robust method to determine of relaxation distributions from NMR experiments and a novel implementation and analysis of MRI experiments to determine the amount of fluid corresponding to imaging regions, which are in turn used to determine porosity and saturation distributions. We have developed a novel MRI experiment to determine velocity distributions within flowing experiments, and

  19. Multinuclear NMR studies of relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zhou, Donghua

    Multinuclear NMR of 93Nb, 45Sc, and 207Pb has been carried out to study the structure, disorder, and dynamics of a series of important solid solutions: perovskite relaxor ferroelectric materials (1-x) Pb(Mg1/3Nb 2/3)O3-x Pb(Sc1/2Nb1/2)O 3 (PMN-PSN). 93Nb NMR investigations of the local structure and cation order/disorder are presented as a function of PSN concentration, x. The superb fidelity and accuracy of 3QMAS allows us to make clear and consistent assignments of spectral intensities to the 28 possible nearest B-site neighbor (nBn) configurations, (NMg, NSc, NNb), where each number ranges from 0 to 6 and their sum is 6. For most of the 28 possible nBn configurations, isotropic chemical shifts and quadrupole product constants have been extracted from the data. The seven configurations with only larger cations, Mg 2+ and Sc3+ (and no Nb5+) are assigned to the seven observed narrow peaks, whose deconvoluted intensities facilitate quantitative evaluation of, and differentiation between, different models of B-site (chemical) disorder. The "completely random" model is ruled out and the "random site" model is shown to be in qualitative agreement with the NMR experiments. To obtain quantitative agreement with observed NMR intensities, the random site model is slightly modified by including unlike-pair interaction energies. To date, 45Sc studies have not been as fruitful as 93Nb NMR because the resolution is lower in the 45Sc spectra. The lower resolution of 45Sc spectra is due to a smaller span of isotropic chemical shift (40 ppm for 45Sc vs. 82 ppm for 93Nb) and to the lack of a fortuitous mechanism that simplifies the 93Nb spectra; for 93Nb the overlap of the isotropic chemical shifts of 6-Sc and 6-Nb configurations results in the alignment of all the 28 configurations along only seven quadrupole distribution axes. Finally we present variable temperature 207Pb static, MAS, and 2D-PASS NMR studies. Strong linear correlations between isotropic and anisotropic chemical

  20. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  1. SQUID detected NMR and MRI at ultralow fields

    SciTech Connect

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-10-03

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  2. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-05-30

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  3. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2007-05-15

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  4. Squid detected NMR and MRI at ultralow fields

    SciTech Connect

    Clarke, John; Pines, Alexander; McDermott, Robert F.; Trabesinger, Andreas H.

    2008-12-16

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  5. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  6. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by AMS and NMR measurements

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2011-08-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line air mass concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50 % of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component showed features consistent with less oxygenated aerosols and was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated to the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from

  7. Nuclear spin noise in NMR revisited

    SciTech Connect

    Ferrand, Guillaume; Luong, Michel

    2015-09-07

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  8. NMR studies of nucleic acid dynamics

    PubMed Central

    Al-Hashimi, Hashim M.

    2014-01-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner. PMID:24149218

  9. High Resolution non-Markovianity in NMR

    PubMed Central

    Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.

    2016-01-01

    Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts. PMID:27669652

  10. NMR spectral analysis using prior knowledge

    NASA Astrophysics Data System (ADS)

    Kasai, Takuma; Nagata, Kenji; Okada, Masato; Kigawa, Takanori

    2016-03-01

    Signal assignment is a fundamental step for analyses of protein structure and dynamics with nuclear magnetic resonance (NMR). Main-chain signal assignment is achieved with a sequential assignment method and/or an amino-acid selective stable isotope labeling (AASIL) method. Combinatorial selective labeling (CSL) methods, as well as our labeling strategy, stable isotope encoding (SiCode), were developed to reduce the required number of labeled samples, since one of the drawbacks of AASIL is that many samples are needed. Signal overlapping in NMR spectra interferes with amino-acid determination by CSL and SiCode. Since spectral deconvolution by peak fitting with a gradient method cannot resolve closely overlapped signals, we developed a new method to perform both peak fitting and amino acid determination simultaneously, with a replica exchange Monte Carlo method, incorporating prior knowledge of stable-isotope labeling ratios and the amino-acid sequence of the protein.

  11. NMR-based diffusion lattice imaging

    NASA Astrophysics Data System (ADS)

    Laun, Frederik Bernd; Müller, Lars; Kuder, Tristan Anselm

    2016-03-01

    Nuclear magnetic resonance (NMR) diffusion experiments are widely employed as they yield information about structures hindering the diffusion process, e.g., about cell membranes. While it has been shown in recent articles that these experiments can be used to determine the shape of closed pores averaged over a volume of interest, it is still an open question how much information can be gained in open well-connected systems. In this theoretical work, it is shown that the full structure information of connected periodic systems is accessible. To this end, the so-called "SEquential Rephasing by Pulsed field-gradient Encoding N Time intervals" (SERPENT) sequence is used, which employs several diffusion encoding gradient pulses with different amplitudes. Two two-dimensional solid matrices that are surrounded by an NMR-visible medium are considered: a hexagonal lattice of cylinders and a rectangular lattice of isosceles triangles.

  12. Using radial NMR profiles to characterize pore size distributions

    NASA Astrophysics Data System (ADS)

    Deriche, Rachid; Treilhard, John

    2012-02-01

    Extracting information about axon diameter distributions in the brain is a challenging task which provides useful information for medical purposes; for example, the ability to characterize and monitor axon diameters would be useful in diagnosing and investigating diseases like amyotrophic lateral sclerosis (ALS)1 or autism.2 Three families of operators are defined by Ozarslan,3 whose action upon an NMR attenuation signal extracts the moments of the pore size distribution of the ensemble under consideration; also a numerical method is proposed to continuously reconstruct a discretely sampled attenuation profile using the eigenfunctions of the simple harmonic oscillator Hamiltonian: the SHORE basis. The work presented here extends Ozarlan's method to other bases that can offer a better description of attenuation signal behaviour; in particular, we propose the use of the radial Spherical Polar Fourier (SPF) basis. Testing is performed to contrast the efficacy of the radial SPF basis and SHORE basis in practical attenuation signal reconstruction. The robustness of the method to additive noise is tested and analysed. We demonstrate that a low-order attenuation signal reconstruction outperforms a higher-order reconstruction in subsequent moment estimation under noisy conditions. We propose the simulated annealing algorithm for basis function scale parameter estimation. Finally, analytic expressions are derived and presented for the action of the operators on the radial SPF basis (obviating the need for numerical integration, thus avoiding a spectrum of possible sources of error).

  13. Structural analysis of sulfated fucans by high-field NMR.

    PubMed

    Mulloy, B; Ribeiro, A C; Vieira, R P; Mourão, P A

    1994-02-01

    The structures of several sulfated polysaccharides isolated from marine organisms have been determined by a combination of degradative and spectroscopic techniques. For two sulphated fucans, one isolated from the sea cucumber L. grisea, and one from the sea urchin L. variegatus, a novel type of polysaccharide structure is proposed based on the analysis of one- and two-dimensional nuclear magnetic resonance (NMR) spectra. Both polysaccharides are linear, 1-->3 linked alpha-L-fucans in which a four-residue repeating unit is defined by specific patterns of sulfation at the 2- and 4-positions. The four residues give rise to spin systems which may be identified by 2-dimensional 1H-1H correlated spectroscopy (COSY), and the sequence of the residues is deduced from inter-residue nuclear Overhauser enhancements which produce cross-peaks in the NOESY spectrum. To the best of our knowledge, these are the first polysaccharides for which a regular repeating unit is defined by the pattern of sulfate substitution alone.

  14. Quantitative calibration of radiofrequency NMR Stark effects

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.; Kempf, James G.

    2011-10-01

    Nuclear magnetic resonance (NMR) Stark responses can occur in quadrupolar nuclei for an electric field oscillating at twice the usual NMR frequency (2ω0). Calibration of responses to an applied E field is needed to establish nuclear spins as probes of native E fields within material and molecular systems. We present an improved approach and apparatus for accurate measurement of quadrupolar Stark effects. Updated values of C14 (the response parameter in cubic crystals) were obtained for both 69Ga and 75As in GaAs. Keys to improvement include a modified implementation of voltage dividers to assess the 2ω0 amplitude, |E|, and the stabilization of divider response by reduction of stray couplings in 2ω0 circuitry. Finally, accuracy was enhanced by filtering sets of |E| through a linear response function that we established for the radiofrequency amplifier. Our approach is verified by two types of spectral results. Steady-state 2ω0 excitation to presaturate NMR spectra yielded C14 = (2.59 ± 0.06) × 1012 m-1 for 69Ga at room-temperature and 14.1 T. For 75As, we obtained (3.1 ± 0.1) × 1012 m-1. Both values reconcile with earlier results from 77 K and below 1 T, whereas current experiments are at room temperature and 14.1 T. Finally, we present results where few-microsecond pulses of the 2ω0 field induced small (tens of Hz) changes in high-resolution NMR line shapes. There too, spectra collected vs |E| agree with the model for response, further establishing the validity of our protocols to specify |E|.

  15. Water absorption in mortar determined by NMR.

    PubMed

    Pel, L; Hazrati, K; Kopinga, K; Marchand, J

    1998-01-01

    Nuclear magnetic resonance (NMR) offers the possibility to determine moisture profiles in porous building materials. Moreover, the relaxation of the nuclear magnetic resonance signal can provide additional information on the water distribution in the microstructure. For mortar, it is shown that the transverse relaxation yields information on the distribution of water in the gel pores and capillary pores. Moisture profiles and relaxation were measured during water absorption. The effect of the drying treatment on the microstructure and the water absorption was investigated.

  16. Protein NMR structures refined without NOE data.

    PubMed

    Ryu, Hyojung; Kim, Tae-Rae; Ahn, SeonJoo; Ji, Sunyoung; Lee, Jinhyuk

    2014-01-01

    The refinement of low-quality structures is an important challenge in protein structure prediction. Many studies have been conducted on protein structure refinement; the refinement of structures derived from NMR spectroscopy has been especially intensively studied. In this study, we generated flat-bottom distance potential instead of NOE data because NOE data have ambiguity and uncertainty. The potential was derived from distance information from given structures and prevented structural dislocation during the refinement process. A simulated annealing protocol was used to minimize the potential energy of the structure. The protocol was tested on 134 NMR structures in the Protein Data Bank (PDB) that also have X-ray structures. Among them, 50 structures were used as a training set to find the optimal "width" parameter in the flat-bottom distance potential functions. In the validation set (the other 84 structures), most of the 12 quality assessment scores of the refined structures were significantly improved (total score increased from 1.215 to 2.044). Moreover, the secondary structure similarity of the refined structure was improved over that of the original structure. Finally, we demonstrate that the combination of two energy potentials, statistical torsion angle potential (STAP) and the flat-bottom distance potential, can drive the refinement of NMR structures.

  17. NMR Studies of Cartilage Dynamics, Diffusion, Degradation

    NASA Astrophysics Data System (ADS)

    Huster, Daniel; Schiller, Jurgen; Naji, Lama; Kaufmann Jorn; Arnold, Klaus

    An increasing number of people is suffering from rheumatic diseases, and, therefore, methods of early diagnosis of joint degeneration are urgently required. For their establishment, however, an improved knowledge about the molecular organisation of cartilage would be helpful. Cartilage consists of three main components: Water, collagen and chondroitin sulfate (CS) that is (together with further polysaccharides and proteins) a major constituent of the proteoglycans of cartilage. 1H and 13C MAS (magic-angle spinning) NMR (nuclear magnetic resonance) opened new perspectives for the study of the macromolecular components in cartilage. We have primarily studied the mobilities of CS and collagen in bovine nasal and pig articular cartilage (that differ significantly in their collagen/polysaccharide content) by measuring 13C NMR relaxation times as well as the corresponding 13C CP (cross polarisation) MAS NMR spectra. These data clearly indicate that the mobility of cartilage macromolecules is broadly distributed from almost completely rigid (collagen) to highly mobile (polysaccharides), which lends cartilage its mechanical strength and shock-absorbing properties.

  18. NMR Studies of Dynamic Biomolecular Conformational Ensembles

    PubMed Central

    Torchia, Dennis A.

    2015-01-01

    Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: “Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?” This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA. PMID:25669739

  19. Discrete analysis of stochastic NMR.II

    NASA Astrophysics Data System (ADS)

    Wong, S. T. S.; Rods, M. S.; Newmark, R. D.; Budinger, T. F.

    Stochastic NMR is an efficient technique for high-field in vivo imaging and spectroscopic studies where the peak RF power required may be prohibitively high for conventional pulsed NMR techniques. A stochastic NMR experiment excites the spin system with a sequence of RF pulses where the flip angles or the phases of the pulses are samples of a discrete stochastic process. In a previous paper the stochastic experiment was analyzed and analytic expressions for the input-output cross-correlations, average signal power, and signal spectral density were obtained for a general stochastic RF excitation. In this paper specific cases of excitation with random phase, fixed flip angle, and excitation with two random components in quadrature are analyzed. The input-output cross-correlation for these two types of excitations is shown to be Lorentzian. Line broadening is the only spectral distortion as the RF excitation power is increased. The systematic noise power is inversely proportional to the number of data points N used in the spectral reconstruction. The use of a complete maximum length sequence (MLS) may improve the signal-to-systematic-noise ratio by 20 dB relative to random binary excitation, but peculiar features in the higher-order autocorrelations of MLS cause noise-like distortion in the reconstructed spectra when the excitation power is high. The amount of noise-like distortion depends on the choice of the MLS generator.

  20. From a Simple Liquid to a Polymer Melt: NMR Relaxometry Study of Polybutadiene

    NASA Astrophysics Data System (ADS)

    Kariyo, S.; Gainaru, C.; Schick, H.; Brodin, A.; Novikov, V. N.; Rössler, E. A.

    2006-11-01

    We utilize NMR field cycling relaxometry to study the crossover from glassy dynamics (t≳τα) through Rouse to reptation behavior in a series of monodisperse polybutadienes with molecular weights M=355 to 817000g/mol. We separate characteristic polymer dynamics from the total spectrum dominated by glassy dynamics. The polymer dynamics show typical Rouse relaxation features that grow with M and saturate at high M. Comparing to Rouse theory, we determine the Rouse unit size MR≃500 and entanglement weight Me≃2000; the Rouse spectrum saturates at Mmax⁡≃4000. The local order parameter S≈0.11 is relatively large, indicating noticeable local packing already in the Rouse regime. The M dependence of the glass transition temperature Tg, obtained from dielectric relaxation spectra, shows distinctive kinks at MR and Me.

  1. Determination of orientational order parameters from 2H NMR spectra of magnetically partially oriented lipid bilayers.

    PubMed Central

    Schäfer, H; Mädler, B; Sternin, E

    1998-01-01

    The partial orientation of multilamellar vesicles (MLVs) in high magnetic fields is known to affect the shape of 2H NMR spectra. There are numerical methods for extracting either the orientational order parameters of lipid molecules for a random distribution of domain orientations in the sample, or the distribution of orientations for a known set of spectral anisotropies. A first attempt at determining the orientational order parameters in the presence of an unknown nonrandom distribution of orientations is presented. The numerical method is based on the Tikhonov regularization algorithm. It is tested using simulated partially oriented spectra. An experimental spectrum of a phospholipid-ether mixture in water is analyzed as an example. The experimental spectrum is consistent with an ellipsoidal shape of MLVs with a ratio of semiaxes of approximately 3.4. PMID:9533713

  2. Spread spectrum image steganography.

    PubMed

    Marvel, L M; Boncelet, C R; Retter, C T

    1999-01-01

    In this paper, we present a new method of digital steganography, entitled spread spectrum image steganography (SSIS). Steganography, which means "covered writing" in Greek, is the science of communicating in a hidden manner. Following a discussion of steganographic communication theory and review of existing techniques, the new method, SSIS, is introduced. This system hides and recovers a message of substantial length within digital imagery while maintaining the original image size and dynamic range. The hidden message can be recovered using appropriate keys without any knowledge of the original image. Image restoration, error-control coding, and techniques similar to spread spectrum are described, and the performance of the system is illustrated. A message embedded by this method can be in the form of text, imagery, or any other digital signal. Applications for such a data-hiding scheme include in-band captioning, covert communication, image tamperproofing, authentication, embedded control, and revision tracking.

  3. Sensors across the Spectrum

    NASA Astrophysics Data System (ADS)

    Neese, Christopher F.; De Lucia, Frank C.; Medvedev, Ivan R.

    2011-06-01

    A resurgence of interest in spectroscopic sensors has been fueled by increases in performance made possible by technological advancements and applications in medicine, environmental monitoring, and national security. Often this research is technology driven, without enough consideration of the spectroscopic signatures available to be probed. We will compare several current spectroscopic sensors across the electromagnetic spectrum, with an eye towards the fundamental spectroscopic considerations important at each wavelength.

  4. The marine diversity spectrum.

    PubMed

    Reuman, Daniel C; Gislason, Henrik; Barnes, Carolyn; Mélin, Frédéric; Jennings, Simon

    2014-07-01

    Distributions of species body sizes within a taxonomic group, for example, mammals, are widely studied and important because they help illuminate the evolutionary processes that produced these distributions. Distributions of the sizes of species within an assemblage delineated by geography instead of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts the form of the 'diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0.5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0.5 and -0.1. Slopes of -0.5 and -0.1 represent markedly different communities: a slope of -0.5 depicts a 10-fold reduction in diversity for every 100-fold increase in asymptotic mass; a slope of -0.1 depicts a 1.6-fold reduction. Steeper slopes are predicted for larger or colder regions, meaning fewer large species per small species for such regions. Predictions were largely validated by a global empirical analysis. Results explain for the first time a new and widespread phenomenon of biodiversity. Results have implications for estimating numbers of species of small asymptotic mass, where taxonomic inventories are far from complete. Results show that the relationship between diversity and body mass can be explained from the dependence of predation behaviour, dispersal, and life history on

  5. The marine diversity spectrum.

    PubMed

    Reuman, Daniel C; Gislason, Henrik; Barnes, Carolyn; Mélin, Frédéric; Jennings, Simon

    2014-07-01

    Distributions of species body sizes within a taxonomic group, for example, mammals, are widely studied and important because they help illuminate the evolutionary processes that produced these distributions. Distributions of the sizes of species within an assemblage delineated by geography instead of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts the form of the 'diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0.5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0.5 and -0.1. Slopes of -0.5 and -0.1 represent markedly different communities: a slope of -0.5 depicts a 10-fold reduction in diversity for every 100-fold increase in asymptotic mass; a slope of -0.1 depicts a 1.6-fold reduction. Steeper slopes are predicted for larger or colder regions, meaning fewer large species per small species for such regions. Predictions were largely validated by a global empirical analysis. Results explain for the first time a new and widespread phenomenon of biodiversity. Results have implications for estimating numbers of species of small asymptotic mass, where taxonomic inventories are far from complete. Results show that the relationship between diversity and body mass can be explained from the dependence of predation behaviour, dispersal, and life history on

  6. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    DOE PAGES

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; Carroll, Susan A.

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectlymore » predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.« less

  7. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score.

    PubMed

    Huang, Yuanpeng Janet; Mao, Binchen; Xu, Fei; Montelione, Gaetano T

    2015-08-01

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD-NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases (15)N-(1)H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD-NMR data. These algorithmic improvements include (1) using a global metric of structural accuracy, the discriminating power score, for guiding model selection during the iterative NOE interpretation process, and (2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta. PMID:26081575

  8. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    SciTech Connect

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  9. UV spectrum of Enceladus

    NASA Astrophysics Data System (ADS)

    Zastrow, Mark; Clarke, John T.; Hendrix, Amanda R.; Noll, Keith S.

    2012-07-01

    We present a far ultraviolet (FUV) spectrum of Saturn’s moon Enceladus from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST). We have put upper limits on emission from C, N, and O lines in Enceladus’ atmosphere and column densities for the C lines assuming solar resonance scattering. We find these upper limits to be relatively low-on the order of tens to thousands of Rayleighs and with C column densities on the order of 108-1015 cm-2, depending on the assumed source size. We also present a segment of a reflectance spectrum in the FUV from ∼1900-2130 Å. This region was sensitive to the different ice mixtures in the model spectra reported by Hendrix et al. (Hendrix, A.R., Hansen, C.J., Holsclaw, G.M. [2010]. Icarus, 206, 608). We find the spectrum brightens quickly longward of ∼1900 Å, constraining the absorption band observed by Hendrix et al. from ∼170 to 190 nm. We find our data is consistent with the suggestion of Hendrix et al. of the presence of ammonia ice (or ammonia hydrate) to darken that region, and also possibly tholins to darken the mid-UV, as reported by Verbiscer et al. (Verbiscer, A.J., French, R.G., McGhee, C.A. [2005]. Icarus, 173, 66).

  10. A practical implementation of cross-spectrum in protein backbone resonance assignment.

    PubMed

    Chen, Kang; Delaglio, Frank; Tjandra, Nico

    2010-04-01

    The concept of cross-spectrum is applied in protein NMR spectroscopy to assist in the backbone sequential resonance assignment. Cross-spectrum analysis is used routinely to reveal correlations in frequency domains as a means to reveal common features contained in multiple time series. Here the cross-spectrum between related NMR spectra, for example HNCO and HN(CA)CO, can be calculated with point-by-point multiplications along their common C' carbon axis. In the resulting higher order cross-spectrum, an enhanced correlation signal occurs at every common i-1 carbon frequency allowing the amide proton H(N) (and nitrogen N) resonances from residues i and i-1 to be identified. The cross-spectrum approach is demonstrated using 2D spectra H(N)CO, H(NCA)CO, H(NCO)CACB, and H(N)CACB measured on a 15N/13C double-labeled Ubiquitin sample. These 2D spectra are used to calculate two pseudo-3D cross-spectra, H(i)-H(i)(-1)-C'(i)(-1) and H(i)-H(i)(-1)-CA(i)(-1)CB(i)(-1). We show using this approach, backbone resonances of H, C', CA, and CB can be fully assigned without ambiguity. The cross-spectrum principle is expected to offer an easy, practical, and more quantitative approach for heteronuclear backbone resonance assignment. PMID:20053573

  11. Shape-changing magnetic assemblies as high-sensitivity NMR-readable nanoprobes

    NASA Astrophysics Data System (ADS)

    Zabow, G.; Dodd, S. J.; Koretsky, A. P.

    2015-04-01

    Fluorescent and plasmonic labels and sensors have revolutionized molecular biology, helping visualize cellular and biomolecular processes. Increasingly, such probes are now being designed to respond to wavelengths in the near-infrared region, where reduced tissue autofluorescence and photon attenuation enable subsurface in vivo sensing. But even in the near-infrared region, optical resolution and sensitivity decrease rapidly with increasing depth. Here we present a sensor design that obviates the need for optical addressability by operating in the nuclear magnetic resonance (NMR) radio-frequency spectrum, where signal attenuation and distortion by tissue and biological media are negligible, where background interferences vanish, and where sensors can be spatially located using standard magnetic resonance imaging (MRI) equipment. The radio-frequency-addressable sensor assemblies presented here comprise pairs of magnetic disks spaced by swellable hydrogel material; they reversibly reconfigure in rapid response to chosen stimuli, to give geometry-dependent, dynamic NMR spectral signatures. The sensors can be made from biocompatible materials, are themselves detectable down to low concentrations, and offer potential responsive NMR spectral shifts that are close to a million times greater than those of traditional magnetic resonance spectroscopies. Inherent adaptability should allow such shape-changing systems to measure numerous different environmental and physiological indicators, thus providing broadly generalizable, MRI-compatible, radio-frequency analogues to optically based probes for use in basic chemical, biological, medical and engineering research.

  12. Three Structural Roles for Water in Bone Observed by Solid-State NMR

    PubMed Central

    Wilson, Erin E.; Awonusi, Ayorinde; Morris, Michael D.; Kohn, David H.; Tecklenburg, Mary M. J.; Beck, Larry W.

    2006-01-01

    Hydrogen-bearing species in the bone mineral environment were investigated using solid-state NMR spectroscopy of powdered bone, deproteinated bone, and B-type carbonated apatite. Using magic-angle spinning and cross-polarization techniques three types of structurally-bound water were observed in these materials. Two of these water types occupy vacancies within the apatitic mineral crystal in synthetic carbonated apatite and deproteinated bone and serve to stabilize these defect-containing crystals. The third water was observed at the mineral surface in unmodified bone but not in deproteinated bone, suggesting a role for this water in mediating mineral-organic matrix interactions. Direct evidence of monohydrogen phosphate in a 1H NMR spectrum of unmodified bone is presented for the first time. We obtained clear evidence for the presence of hydroxide ion in deproteinated bone by 1H MAS NMR. A 1H-31P heteronuclear correlation experiment provided unambiguous evidence for hydroxide ion in unmodified bone as well. Hydroxide ion in both unmodified and deproteinated bone mineral was found to participate in hydrogen bonding with neighboring water molecules and ions. In unmodified bone mineral hydroxide ion was found, through a 1H-31P heteronuclear correlation experiment, to be confined to a small portion of the mineral crystal, probably the internal portion. PMID:16500963

  13. Shape-changing magnetic assemblies as high-sensitivity NMR-readable nanoprobes

    PubMed Central

    Zabow, G.; Dodd, S. J.; Koretsky, A. P.

    2015-01-01

    Fluorescent and plasmonic labels and sensors have revolutionized molecular biology, helping visualize in vitro cellular and biomolecular processes1–3. Increasingly, such probes are now designed to respond to wavelengths in the near infrared region, where reduced tissue autofluorescence and photon attenuation enable subsurface in vivo sensing4. But even in the near infrared, optical resolution and sensitivity decrease rapidly with increasing depth. Here we present a sensor design that obviates the need for optical addressability by operating in the NMR radio-frequency (RF) spectrum, where signal attenuation and distortion by tissue and biological media are negligible, where background interferences vanish, and where sensors can be spatially located using standard magnetic resonance imaging (MRI) equipment. The RF-addressable sensor assemblies presented here are comprised of pairs of magnetic disks spaced by swellable hydrogel material; they reversibly reconfigure in rapid response to chosen stimuli, to give geometry-dependent, dynamic NMR spectral signatures. Sensors can be made from biocompatible materials, are detectable down to low concentrations, and offer potential responsive NMR spectral shifts approaching a million times those of traditional magnetic resonance spectroscopies. Inherent adaptability should allow such shape-changing systems to measure numerous different environmental and physiological indicators, affording broadly generalizable, MRI-compatible, RF analogues to optically-based probes for use in basic chemical, biological and medical research. PMID:25778701

  14. LARGE SCALE PRODUCTION, PURIFICATION, AND 65CU SOLID STATE NMR OF AZURIN

    SciTech Connect

    Gao, A.; Heck, R.W.

    2008-01-01

    This paper details a way to produce azurin with an effi ciency over 10 times greater than previously described and demonstrates the fi rst solid state nuclear magnetic resonance spectrum of 65Cu(I) in a metalloprotein. A synthetic gene for azurin based upon the DNA sequence from Pseudomonas aeruginosa including the periplasmic targeting sequence was subcloned into a T7 overexpression vector to create the plasmid pGS-azurin, which was transformed into BL21 (DE3) competent cells. The leader sequence on the expressed protein causes it to be exported to the periplasmic space of Escherichia coli. Bacteria grown in a fermentation unit were induced to overexpress the azurin, which was subsequently purifi ed through an endosmotic shock procedure followed by high performance liquid chromatography (HPLC). 1,500 mg of azurin were purifi ed per liter of culture. 65Cu(II) was added to apo-azurin and then reduced. The 65Cu metal cofactor in azurin was observed with solid state nuclear magnetic resonance (NMR) to determine any structural variations that accompanied copper reduction. This is the fi rst solid state NMR spectra of a copper(I) metalloprotein. Analysis of the NMR spectra is being used to complement hypotheses set forth by x-ray diffraction and computational calculations of electron transfer mechanisms in azurin.

  15. Solid-State NMR/Dynamic Nuclear Polarization of Polypeptides in Planar Supported Lipid Bilayers.

    PubMed

    Salnikov, Evgeniy S; Sarrouj, Hiba; Reiter, Christian; Aisenbrey, Christopher; Purea, Armin; Aussenac, Fabien; Ouari, Olivier; Tordo, Paul; Fedotenko, Illya; Engelke, Frank; Bechinger, Burkhard

    2015-11-19

    Dynamic nuclear polarization has been developed to overcome the limitations of the inherently low signal intensity of NMR spectroscopy. This technique promises to be particularly useful for solid-state NMR spectroscopy where the signals are broadened over a larger frequency range and most investigations rely on recording low gamma nuclei. To extend the range of possible investigations, a triple-resonance flat-coil solid-state NMR probe is presented with microwave irradiation capacities allowing the investigation of static samples at temperatures of 100 K, including supported lipid bilayers. The probe performance allows for two-dimensional separated local field experiments with high-power Lee-Goldberg decoupling and cross-polarization under simultaneous irradiation from a gyrotron microwave generator. Efficient cooling of the sample turned out to be essential for best enhancements and line shape and necessitated the development of a dedicated cooling chamber. Furthermore, a new membrane-anchored biradical is presented, and the geometry of supported membranes was optimized not only for good membrane alignment, handling, stability, and filling factor of the coil but also for heat and microwave dissipation. Enhancement factors of 17-fold were obtained, and a two-dimensional PISEMA spectrum of a transmembrane helical peptide was obtained in less than 2 h. PMID:26487390

  16. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR.

    PubMed

    Mobli, Mehdi; Hoch, Jeffrey C

    2014-11-01

    Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records using the DFT were already well understood, however. Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of non-Fourier methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. The first part of this review discusses the many approaches to data sampling in multidimensional NMR, the second part highlights commonly used methods for signal processing of such data, and the review concludes with a discussion of other approaches to speeding up data acquisition in NMR.

  17. Radiation induced structural and motional changes occurring in silica filled silicone polymer foams as probed by multinuclear NMR

    SciTech Connect

    Maxwell, R.S.; Balazs, B.; Chien, A.; LeMay, J.

    1999-10-14

    insight into the processes that are contributing to mechanical failure of silica filled polydimethylsiloxane (PDMS) based cushions. The studies so far have concentrated on (A) {sup 1}H, {sup 13}C, and {sup 29}Si Magic Angle Spinning (MAS) measurements of chemical speciation from chemical shifts, and (B) {sup 1}H relaxation measurements.

  18. High-Speed Frequency Modulation of a 460-GHz Gyrotron for Enhancement of 700-MHz DNP-NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Idehara, T.; Khutoryan, E. M.; Tatematsu, Y.; Yamaguchi, Y.; Kuleshov, A. N.; Dumbrajs, O.; Matsuki, Y.; Fujiwara, T.

    2015-09-01

    The high-speed frequency modulation of a 460-GHz Gyrotron FU CW GVI (the official name in Osaka University is Gyrotron FU CW GOI) was achieved by modulation of acceleration voltage of beam electrons. The modulation speed f m can be increased up to 10 kHz without decreasing the modulation amplitude δ f of frequency. The amplitude δ f was increased almost linearly with the modulation amplitude of acceleration voltage Δ V a. At the Δ V a = 1 kV, frequency spectrum width df was 50 MHz in the case of f m < 10 kHz. The frequency modulation was observed as both the variation of the IF frequency in the heterodyne detection system measured by a high-speed oscilloscope and the widths of frequency spectra df measured on a frequency spectrum analyzer. Both results well agree reasonably. When f m exceeds 10 kHz, the amplitude δ f is decreased gradually with increasing f m because of the degradation of the used amplifier in response for high-speed modulation. The experiment was performed successfully for both a sinusoidal wave and triangle wave modulations. We can use the high-speed frequency modulation for increasing the enhancement factor of the dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy, which is one of effective and attractive methods for the high-frequency DNP-NMR spectroscopy, for example, at 700 MHz. Because the sensitivity of NMR is inversely proportional to the frequency, high-speed frequency modulation can compensate the decreasing the enhancement factor in the high-frequency DNP-NMR spectroscopy and keep the factor at high value. In addition, the high-speed frequency modulation is useful for frequency stabilization by a PID control of an acceleration voltage by feeding back of the fluctuation of frequency. The frequency stabilization in long time is also useful for application of a DNP-NMR spectroscopy to the analysis of complicated protein molecules.

  19. NMR spectroscopy of experimentally shocked single crystal quartz: A reexamination of the NMR shock barometer

    NASA Technical Reports Server (NTRS)

    Fiske, P. S.; Gratz, A. J.; Nellis, W. J.

    1993-01-01

    Cygan and others report a broadening of the Si-29 nuclear magnetic resonance (NMR) peak for synthetic quartz powders with increasing shock pressure which they propose as a shock wave barometer for natural systems. These results are expanded by studying single crystal quartz shocked to 12 and 33 GPa using the 6.5 m two-stage light-gas gun at Lawrence Livermore National Laboratories. Our NMR results differ substantially from those of Cygan and others and suggest that the proposed shock wave barometer may require refinement. The difference in results between this study and that of Cygan and others is most likely caused by different starting materials (single crystal vs. powder) and different shock loading histories. NMR results from single crystal studies may be more applicable to natural systems.

  20. On the role of experimental imperfections in constructing (1)H spin diffusion NMR plots for domain size measurements.

    PubMed

    Nieuwendaal, Ryan C

    2016-01-01

    We discuss the precision of 1D chemical-shift-based (1)H spin diffusion NMR experiments as well as straightforward experimental protocols for reducing errors. The (1)H spin diffusion NMR experiments described herein are useful for samples that contain components with significant spectral overlap in the (1)H NMR spectrum and also for samples of small mass (<1mg). We show that even in samples that display little spectral contrast, domain sizes can be determined to a relatively high degree of certainty if common experimental variability is accounted for and known. In particular, one should (1) measure flip angles to high precision (≈±1° flip angle), (2) establish a metric for phase transients to ensure their repeatability, (3) establish a reliable spectral deconvolution procedure to ascertain the deconvolved spectra of the neat components in the composite or blend spin diffusion spectrum, and (4) when possible, perform 1D chemical-shift-based (1)H spin diffusion experiments with zero total integral to partially correct for errors and uncertainties if these requirements cannot fully be implemented. We show that minimizing the degree of phase transients is not a requirement for reliable domain size measurement, but their repeatability is essential, as is knowing their contribution to the spectral offset (i.e. the J1 coefficient). When performing experiments with zero total integral in the spin diffusion NMR spectrum with carefully measured flip angles and known phase transient effects, the largest contribution to error arises from an uncertainty in the component lineshapes which can be as high as 7%. This uncertainty can be reduced considerably if the component lineshapes deconvolved from the composite or blend spin diffusion spectra adequately match previously acquired pure component spectra. PMID:27039203

  1. Protein Structure Determination Using Protein Threading and Sparse NMR Data

    SciTech Connect

    Crawford, O.H.; Einstein, J.R.; Xu, D.; Xu, Y.

    1999-11-14

    It is well known that the NMR method for protein structure determination applies to small proteins and that its effectiveness decreases very rapidly as the molecular weight increases beyond about 30 kD. We have recently developed a method for protein structure determination that can fully utilize partial NMR data as calculation constraints. The core of the method is a threading algorithm that guarantees to find a globally optimal alignment between a query sequence and a template structure, under distance constraints specified by NMR/NOE data. Our preliminary tests have demonstrated that a small number of NMR/NOE distance restraints can significantly improve threading performance in both fold recognition and threading-alignment accuracy, and can possibly extend threading's scope of applicability from structural homologs to structural analogs. An accurate backbone structure generated by NMR-constrained threading can then provide a significant amount of structural information, equivalent to that provided by the NMR method with many NMR/NOE restraints; and hence can greatly reduce the amount of NMR data typically required for accurate structure determination. Our preliminary study suggests that a small number of NMR/NOE restraints may suffice to determine adequately the all-atom structure when those restraints are incorporated in a procedure combining threading, modeling of loops and sidechains, and molecular dynamics simulation. Potentially, this new technique can expand NMR's capability to larger proteins.

  2. Reducing seed dependent variability of non-uniformly sampled multidimensional NMR data.

    PubMed

    Mobli, Mehdi

    2015-07-01

    The application of NMR spectroscopy to study the structure, dynamics and function of macromolecules requires the acquisition of several multidimensional spectra. The one-dimensional NMR time-response from the spectrometer is extended to additional dimensions by introducing incremented delays in the experiment that cause oscillation of the signal along "indirect" dimensions. For a given dimension the delay is incremented at twice the rate of the maximum frequency (Nyquist rate). To achieve high-resolution requires acquisition of long data records sampled at the Nyquist rate. This is typically a prohibitive step due to time constraints, resulting in sub-optimal data records to the detriment of subsequent analyses. The multidimensional NMR spectrum itself is typically sparse, and it has been shown that in such cases it is possible to use non-Fourier methods to reconstruct a high-resolution multidimensional spectrum from a random subset of non-uniformly sampled (NUS) data. For a given acquisition time, NUS has the potential to improve the sensitivity and resolution of a multidimensional spectrum, compared to traditional uniform sampling. The improvements in sensitivity and/or resolution achieved by NUS are heavily dependent on the distribution of points in the random subset acquired. Typically, random points are selected from a probability density function (PDF) weighted according to the NMR signal envelope. In extreme cases as little as 1% of the data is subsampled. The heavy under-sampling can result in poor reproducibility, i.e. when two experiments are carried out where the same number of random samples is selected from the same PDF but using different random seeds. Here, a jittered sampling approach is introduced that is shown to improve random seed dependent reproducibility of multidimensional spectra generated from NUS data, compared to commonly applied NUS methods. It is shown that this is achieved due to the low variability of the inherent sensitivity of the

  3. Reducing seed dependent variability of non-uniformly sampled multidimensional NMR data

    NASA Astrophysics Data System (ADS)

    Mobli, Mehdi

    2015-07-01

    The application of NMR spectroscopy to study the structure, dynamics and function of macromolecules requires the acquisition of several multidimensional spectra. The one-dimensional NMR time-response from the spectrometer is extended to additional dimensions by introducing incremented delays in the experiment that cause oscillation of the signal along "indirect" dimensions. For a given dimension the delay is incremented at twice the rate of the maximum frequency (Nyquist rate). To achieve high-resolution requires acquisition of long data records sampled at the Nyquist rate. This is typically a prohibitive step due to time constraints, resulting in sub-optimal data records to the detriment of subsequent analyses. The multidimensional NMR spectrum itself is typically sparse, and it has been shown that in such cases it is possible to use non-Fourier methods to reconstruct a high-resolution multidimensional spectrum from a random subset of non-uniformly sampled (NUS) data. For a given acquisition time, NUS has the potential to improve the sensitivity and resolution of a multidimensional spectrum, compared to traditional uniform sampling. The improvements in sensitivity and/or resolution achieved by NUS are heavily dependent on the distribution of points in the random subset acquired. Typically, random points are selected from a probability density function (PDF) weighted according to the NMR signal envelope. In extreme cases as little as 1% of the data is subsampled. The heavy under-sampling can result in poor reproducibility, i.e. when two experiments are carried out where the same number of random samples is selected from the same PDF but using different random seeds. Here, a jittered sampling approach is introduced that is shown to improve random seed dependent reproducibility of multidimensional spectra generated from NUS data, compared to commonly applied NUS methods. It is shown that this is achieved due to the low variability of the inherent sensitivity of the

  4. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  5. Two-dimensional proton J-resolved NMR spectroscopy of neomycin B

    SciTech Connect

    Botto, R.E.; Coxon, B.

    1984-01-01

    The /sup 1/H NMR spectrum of a solution of neomycin B free base (Structure 1) in D/sub 2/O has been assigned completely by two-dimensional, homonuclear J-resolved NMR spectroscopy and spin decoupling at 400 MHz. Proton chemical shifts and proton-proton couplings are reported for all glycoside residues in neomycin B along with their computer simulated spectra. The /sup 4/C/sub 1/ chair conformation has been assigned to the 2,6-diamino-2,6-dideoxy-..beta..-L-idopyranosyl (ring D) portion of the antibiotic (1b) by analysis of the proton coupling constants and chemical shifts. The ..beta..-furanose form of the ribosyl portion (ring C) has been assigned. Vicinal proton couplings for the 2-deoxystreptaminyl group (ring B) are consistent with a chair conformation in which all ring substituents are equatorial, and proton chemical shift assignments are based on protonation studies. A computer simulated composite of the individual calculated spectra is presented for comparison with the experimental spectrum of neomycin B. 30 references, 5 figures, 3 tables.

  6. Flavodoxin from Anabaena 7120: uniform N-15 enrichment and one- and two-dimensional NMR investigations

    SciTech Connect

    Stockman, B.J.; Westler, W.M.; Mooberry, E.S.; Markley, J.L.

    1987-05-01

    The flavodoxin isolated from Anabaena 7120 grown under iron-limiting conditions has been studied in its oxidized form. Flavodoxin 95%+ enriched in VN was obtained by growing the cyanobacterium with 98% VN nitrate as the sole nitrogen source. A one-dimensional H NMR (500 MHz) spectrum has been collected, as well as a double-quantum-filtered COSY spectrum in D2O. One-dimensional VN NMR (50.68 MHz) spectra have been obtained by observing nitrogen directly and by using the INEPT pulse sequence. Results of a two-dimensional H-detected VN experiment allowed the correlation of VN and H resonances of VN-/sup I/H groups. The four nitrogen resonance of the FMN cofactor have been assigned: N(1), 188.0 ppm; N(3), 162.5 ppm; N(5) 335.0 ppm; and N(10), 163.5 ppm. The resonance assigned to N(3) is coupled to a proton at 10.9 ppm. Shifts in the positions of these VN resonances, compared to corresponding ones in free FMN, suggest that these positions are strongly hydrogen-bonded in the oxidized state as has been observed with lower molecular weight flavodoxins.

  7. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use. PMID:24091140

  8. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  9. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  10. Identifying critical unrecognized sugar-protein interactions in GH10 xylanases from Geobacillus stearothermophilus using STD NMR.

    PubMed

    Balazs, Yael S; Lisitsin, Elina; Carmiel, Oshrat; Shoham, Gil; Shoham, Yuval; Schmidt, Asher

    2013-09-01

    (1)H solution NMR spectroscopy is used synergistically with 3D crystallographic structures to map experimentally significant hydrophobic interactions upon substrate binding in solution under thermodynamic equilibrium. Using saturation transfer difference spectroscopy (STD NMR), a comparison is made between wild-type xylanase XT6 and its acid/base catalytic mutant E159Q--a non-active, single-heteroatom alteration that has been previously utilized to measure binding thermodynamics across a series of xylooligosaccharide-xylanase complexes [Zolotnitsky et al. (2004) Proc Natl Acad Sci USA 101, 11275-11280). In this study, performing STD NMR of one substrate screens binding interactions to two proteins, avoiding many disadvantages inherent to the technique and clearly revealing subtle changes in binding induced upon mutation of the catalytic Glu. To visualize and compare the binding epitopes of xylobiose-xylanase complexes, a 'SASSY' plot (saturation difference transfer spectroscopy) is used. Two extraordinarily strong, but previously unrecognized, non-covalent interactions with H2-5 of xylobiose were observed in the wild-type enzyme but not in the E159Q mutant. Based on the crystal structure, these interactions were assigned to tryptophan residues at the -1 subsite. The mutant selectively binds only the β-xylobiose anomer. The (1)H solution NMR spectrum of a xylotriose-E159Q complex displays non-uniform broadening of the NMR signals. Differential broadening provides a unique subsite assignment tool based on structural knowledge of face-to-face stacking with a conserved tyrosine residue at the +1 subsite. The results obtained herein by substrate-observed NMR spectroscopy are discussed further in terms of methodological contributions and mechanistic understanding of substrate-binding adjustments upon a charge change in the E159Q construct. PMID:23863045

  11. Interaction of melittin with mixed phospholipid membranes composed of dimyristoylphosphatidylcholine and dimyristoylphosphatidylserine studied by deuterium NMR

    SciTech Connect

    Dempsey, C.; Bitbol, M.; Watts, A. )

    1989-08-08

    The interaction of bee venom melittin with mixed phospholipid bilayers composed of dimyristoylphosphatidylcholine deuterated in the {alpha}- and {beta}-methylenes of the choline head group (DMPC-d{sub 4}) and dimyristoylphosphatidylserine deuterated in the {alpha}-methylene and {beta}-CH positions of the serine head group (DMPS-d{sub 3}) was studied in ternary mixtures by using deuterium NMR spectroscopy. The changes in the deuterium quadrupole splittings of the head-group deuteriomethylenes of DMPC-d{sub 4} induced by DMPS in binary mixtures were systematically reversed by increasing concentrations of melittin, so that at a melittin concentration of 4 mol % relative to total lipid the deuterium NMR spectrum from DMPC-d{sub 4} in the ternary mixture was similar to the spectrum from pure DMPC-d{sub 4} bilayers. The absence of deuterium NMR signals arising from melittin-bound DMPS in ternary mixtures containing DMPS-d{sub 3} indicates that the reversal by melittin of the effects of DMPS on the quadrupole splittings of DMPC-d{sub 4} results from the response of the choline head group to the net surface charge rather than from phase separation of melittin-DMPS complexes. The similarity in the effects of the two cationic but otherwise dissimilar peptides indicates that the DMPS head group responds to the surface charge resulting from the presence in the bilayer of charged amphiphiles, in a manner analogous to the response of the choline head group of phosphatidylcholine to the bilayer surface charge. The presence of DMPS greatly stabilized DMPC bilayers with respect to melittin-induced micellization, indicating that the latter effect of melittin may not be important for the hemolytic activity of the peptide.

  12. Double cross polarization /sup 13/C-NMR experiment in solid fossil fuel structure analysis

    SciTech Connect

    Hagaman, E.W.; Woody, M.C.

    1988-01-01

    The Double Cross Polarization /sup 13/C-MAS/NMR experiment has been used to derive a new operational classification of solid fossil fuels based on chemical reactivity. The method requires labeling reactive sites in the organic matrix with a magnetically active isotope not present in the precursor material, and using the local, isolated dipole-dipole interaction between this nucleus and nearby /sup 13/C nuclei to detect via cross polarization the carbon centers in the vicinity of the label. The technique is a marriage of chemistry and spectroscopy and the information content of the DCP spectra is defined by both partners. /sup 1/H-/sup 13/C-/sup 31/P DCP/MAS /sup 13/C-NMR spectroscopy has been used to statistically describe phenolic ortho-substitution patterns of coals via their aryl phosphinate or phosphate derivatives. In these applications of DCP NMR the new, detailed structure and/or reactivity information is realized by detection of carbon resonances one or more bonds removed from the reaction center, but in a volume element of intramolecular dimensions. To the extent that intermolecular contributions to the spectrum are detected, and not recognized as such, the structure/reactivity correlation is weakened. Direct substitution of phosphorus on the aromatic rings in the organic matrix of the coal is not readily accomplished. This environment potentially can be labeled with fluorine in a selective fashion using newly developed reagents. The possibility of determining the changes in average ring substitution patterns as a function of chemical treatment or coal diagenesis emerges. Recent developments in the field of DCP /sup 13/C NMR are presented.

  13. Mobility and Diffusion-Ordered Two-Dimensional NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Morris, Kevin Freeman

    Mobility and diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy experiments have been developed for the analysis of mixtures. In the mobility -ordered experiments, the full range of positive and negative electrophoretic mobilities is displayed in one dimension and chemical shifts are displayed in the other. A concentric cylindrical tube electrophoresis chamber was designed to reduce the effective pathlength for current and to provide unidirectional flow for ions of interest. Techniques based upon the reverse precession method were also implemented to recover the signs of the mobilities and improved resolution in the mobility dimension was obtained by replacing Fourier transformation of truncated data sets with a linear prediction analysis. In the diffusion-ordered two-dimensional NMR experiments, the conventional chemical shift spectrum is resolved in one dimension and spectra of diffusion rates or molecular radii are resolved in the other. Diffusion dependent pulsed field gradient NMR data sets were inverted by means of the computer programs SPLMOD or DISCRETE, when discrete diffusion coefficients were present, and CONTIN when continuous distributions were present. Since the inversion is ill -conditioned, it was necessary to introduce additional information to limit the range of the solutions. In addition to prior knowledge of the decay kernels and non-negativity of amplitudes and damping constants, a set of rejection criteria was constructed for the discrete analysis case that took into account physical limits on diffusion coefficients, experimentally accessible values, and variations in effective decay kernels resulting from instrumental non-linearities. Examples of analyses of simulated data and experimental data for mixtures are presented as well as two-dimensional spectra generated by CONTIN for polydisperse polymer samples. Also, resolution in the diffusion dimension was increased by performing experiments on hydrophobic molecules in

  14. Acoustooptical spectrum analysis modeling

    NASA Astrophysics Data System (ADS)

    Carmody, M. J.

    1981-06-01

    A summary of Bragg deflection theory and various approaches to direct detection acoustooptic spectrum analysis (AOSA) modeling is presented. A suitable model is chosen and extended to include the effects of diffraction efficiency, transducer efficiency, irradiance profiles of incident laser illumination, aperture size of the Bragg cell, and the acoustic attenuation experienced by the acoustic wavetrain generated by the input r-f signal. A FORTRAN program is developed to model the AOSA and predict the output image plane intensity profiles. A second version of the program includes a time variable permitting dynamic simulation of the system response.

  15. Direct Comparison of (19)F qNMR and (1)H qNMR by Characterizing Atorvastatin Calcium Content.

    PubMed

    Liu, Yang; Liu, Zhaoxia; Yang, Huaxin; He, Lan

    2016-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR ((1)H qNMR) and only a few fluorine qNMR ((19)F qNMR) were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both (19)F and (1)H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that (19)F qNMR has similar precision and sensitivity to (1)H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from (19)F qNMR is that the analyte signal is with less or no interference from impurities. (19)F qNMR is an excellent approach to quantify fluorine-containing analytes. PMID:27688925

  16. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    PubMed Central

    Liu, Yang; Liu, Zhaoxia; Yang, Huaxin

    2016-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR) and only a few fluorine qNMR (19F qNMR) were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes. PMID:27688925

  17. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    PubMed Central

    Liu, Yang; Liu, Zhaoxia; Yang, Huaxin

    2016-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR) and only a few fluorine qNMR (19F qNMR) were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes.

  18. NMR study of magnetism and superparamagnetism

    NASA Astrophysics Data System (ADS)

    Yuan, Shaojie

    The research described in this dissertation is concerned with two different types of magnetic materials. Both types of systems involve competing interactions between transition metal ions. New approaches involving magnetic resonance in the large hyperfine fields at nuclear sites have been developed. The interactions responsible for the properties that have been investigated in the materials studied are geometric frustration in an insulator and ferromagnetic and antiferromagnetic interactions in a metal alloy. Further details are given below. The extended kagome frustrated system YBaCo4O7 has 2D kagome and triangular lattices of Co ions stacked along the c-axis. Antiferromagnetic (AF) ordering accompanied by a structural transition has been reported in the literature. From a zero field (ZF) NMR single crystal rotation experiment, we have obtained the Co spin configurations for both the kagome and triangular layers. A 'spin-flop' configuration between the spins on the kagome layer and the spins on the triangular layer is indicated by our results. Our NMR findings are compared with neutron scattering results for this intriguing frustrated AF spin system. The non-stoichiometric oxygenated sister compound YBaCo4O7.1 has application potential for oxygen storage. While, its' magnetic properties are quite different from those of the stoichiometric compound, in spite of their similar structures of alternating kagome and triangular Co layers. Various techniques, including ZF NMR have been used to investigate the spin dynamics and spin configuration in a single crystal of YBaCo4O7.1. A magnetic transition at 80 K is observed, which is interpreted as the freezing out of spins in the triangular layers. At low temperatures (below 50 K), the spin dynamics persists and a fraction of spins in the kagome layers form a viscous spin liquid. Below 10 K, a glass-like spin structure forms and a large distribution of spin correlation times are suggested by nuclear spin lattice relaxation

  19. Lithium Polymer Electrolytes and Solid State NMR

    NASA Technical Reports Server (NTRS)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for

  20. Isotope labeling for NMR studies of macromolecular structure and interactions

    SciTech Connect

    Wright, P.E.

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  1. Carbon-13 NMR of glycogen: Hydration response studied by using solids methods

    SciTech Connect

    Jackson, C.L.; Bryant, R.G. )

    1989-06-13

    The carbon-13 NMR spectra of glycogen are reported by using the methods of magic-angle sample spinning and high-power proton decoupling to provide a dynamic report on the glucose monomer behavior as a function of hydration. Although the glycogen behaves as a typical polymer in the dry state, addition of water makes a significant difference in the spectral appearance. Water addition decreases the carbon spin-lattice relaxation times by 2 orders of magnitude over the range from 7% to 70% water by weight. The proton-carbon dipole-dipole coupling, which broadens the carbon spectrum and permits cross-polarization spectroscopy, is lost with increasing hydration over this range. By 60% water by weight, scalar decoupling methods are sufficient to achieve a reasonably high-resolution spectrum. Further, at this concentration, the carbon spin-lattice relaxation times are near their minimum values at a resonance frequency of 50.3 MHz, making acquisition of carbon spectra relatively insensitive to intensity distortions associated with saturation effects. Though motional averaging places the spectrum in the solution phase limit, the static spectrum shows a residual broader component that would not necessarily be detected readily by using high-resolution liquid-state experiments.

  2. Characterization of active phosphorus surface sites at synthetic carbonate-free fluorapatite using single-pulse 1H, 31P, and 31P CP MAS NMR.

    PubMed

    Jarlbring, Mathias; Sandström, Dan E; Antzutkin, Oleg N; Forsling, Willis

    2006-05-01

    The chemically active phosphorus surface sites defined as PO(x), PO(x)H, and PO(x)H2, where x = 1, 2, or 3, and the bulk phosphorus groups of PO4(3-) at synthetic carbonate-free fluorapatite (Ca5(PO4)3F) have been studied by means of single-pulse 1H,31P, and 31P CP MAS NMR. The changes in composition and relative amounts of each surface species are evaluated as a function of pH. By combining spectra from single-pulse 1H and 31P MAS NMR and data from 31P CP MAS NMR experiments at varying contact times in the range 0.2-3.0 ms, it has been possible to distinguish between resonance lines in the NMR spectra originating from active surface sites and bulk phosphorus groups and also to assign the peaks in the NMR spectra to the specific phosphorus species. In the 31P CP MAS NMR experiments, the spinning frequency was set to 4.2 kHz; in the single-pulse 1H MAS NMR experiments, the spinning frequency was 10 kHz. The 31P CP MAS NMR spectrum of fluorapatite at pH 5.9 showed one dominating resonance line at 2.9 ppm assigned to originate from PO4(3-) groups and two weaker shoulder peaks at 5.4 and 0.8 ppm which were assigned to the unprotonated PO(x) (PO, PO2-, and PO3(2-)) and protonated PO(x)H (PO2H and PO3H-) surface sites. At pH 12.7, the intensity of the peak representing unprotonated PO(x) surface sites has increased 1.7% relative to the bulk peak, while the intensity of the peaks of the protonated species PO(x)H have decreased 1.4% relative to the bulk peak. At pH 3.5, a resonance peak at -4.5 ppm has appeared in the 31P CP MAS NMR spectrum assigned to the surface species PO(x)H2 (PO3H2). The results from the 1H MAS and 31P CP MAS NMR measurements indicated that H+, OH-, and physisorbed H2O at the surface were released during the drying process at 200 degrees C.

  3. Multinuclear high-resolution NMR study of compounds from the ternary system NaF-CaF2-AlF3: from determination to modeling of NMR parameters.

    PubMed

    Martineau, C; Body, M; Legein, C; Silly, G; Buzaré, J-Y; Fayon, F

    2006-12-11

    27Al and 23Na NMR satellite transition spectroscopy and 3Q magic-angle-spinning spectra are recorded for three compounds from the ternary NaF-CaF2-AlF3 system. The quadrupolar frequency nuQ, asymmetry parameter etaQ, and isotropic chemical shift deltaiso are extracted from the spectrum reconstructions for five aluminum and four sodium sites. The quadrupolar parameters are calculated using the LAPW-based ab initio code WIEN2k. It is necessary to perform a structure optimization of all compounds to ensure a fine agreement between experimental and calculated parameters. By a comparison of experimental and calculated values, an attribution of all of the 27Al and 23Na NMR lines to the crystallographic sites is achieved. High-speed 19F NMR MAS spectra are recorded and reconstructed for the same compounds, leading to the determination of 18 isotropic chemical shifts. The superposition model developed by Bureau et al. is used, allowing a bijective assignment of the 19F NMR lines to the crystallographic sites. PMID:17140229

  4. Measurement of vorticity diffusion by NMR microscopy.

    PubMed

    Brown, Jennifer R; Callaghan, Paul T

    2010-05-01

    In a Newtonian fluid, vorticity diffuses at a rate determined by the kinematic viscosity. Here we use rapid NMR velocimetry, based on a RARE sequence, to image the time-dependent velocity field on startup of a fluid-filled cylinder and therefore measure the diffusion of vorticity. The results are consistent with the solution to the vorticity diffusion equation where the angular velocity on the outside surface of the fluid, at the cylinder's rotating wall, is fixed. This method is a means of measuring kinematic viscosity for low viscosity fluids without the need to measure stress. PMID:20189854

  5. Quenched Hydrogen Exchange NMR of Amyloid Fibrils.

    PubMed

    Alexandrescu, Andrei T

    2016-01-01

    Amyloid fibrils are associated with a number of human diseases. These aggregatively misfolded intermolecular β-sheet assemblies constitute some of the most challenging targets in structural biology because to their complexity, size, and insolubility. Here, protocols and controls are described for experiments designed to study hydrogen-bonding in amyloid fibrils indirectly, by transferring information about amide proton occupancy in the fibrils to the dimethyl sulfoxide-denatured state. Since the denatured state is amenable to solution NMR spectroscopy, the method can provide residue-level-resolution data on hydrogen exchange for the monomers that make up the fibrils. PMID:26453215

  6. Quenched Hydrogen Exchange NMR of Amyloid Fibrils.

    PubMed

    Alexandrescu, Andrei T

    2016-01-01

    Amyloid fibrils are associated with a number of human diseases. These aggregatively misfolded intermolecular β-sheet assemblies constitute some of the most challenging targets in structural biology because to their complexity, size, and insolubility. Here, protocols and controls are described for experiments designed to study hydrogen-bonding in amyloid fibrils indirectly, by transferring information about amide proton occupancy in the fibrils to the dimethyl sulfoxide-denatured state. Since the denatured state is amenable to solution NMR spectroscopy, the method can provide residue-level-resolution data on hydrogen exchange for the monomers that make up the fibrils.

  7. NMR measurements of intracellular ions in hypertension

    NASA Astrophysics Data System (ADS)

    Veniero, Joseph C.; Gupta, R. K.

    1993-08-01

    The NMR methods for the measurement of intracellular free Na+, K+, Mg2+, Ca2+, and H+ are introduced. The recent literature is then presented showing applications of these methods to cells and tissues from hypertensive animal model systems, and humans with essential hypertension. The results support the hypothesis of consistent derangement of the intracellular ionic environment in hypertension. The theory that this derangement may be a common link in the disease states of high blood pressure and abnormal insulin and glucose metabolism, which are often associated clinically, is discussed.

  8. A NMR characterisation of a banded sandstone.

    PubMed

    Bolam, A C; Packer, K J

    1998-01-01

    1H-nuclear magnetic resonance (NMR) measurements have been carried out on a banded sandstone to investigate the effects of structural inhomogeneities on the fluid dynamics of the sample as a whole. The results obtained from average propagator measurements (the probability of a displacement z in a time delta or P delta (z)) using pulsed-field-gradient techniques have been compared to those obtained from a study of a homogeneous sandstone. Relaxation has been used to derive the pore sizes for the differing bands and have been found to correlate with flow velocities within the bands.

  9. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  10. On the sensitivity of running-fluid NMR magnetometers

    NASA Astrophysics Data System (ADS)

    Davydov, V. V.; Dudkin, V. I.; Petrov, A. A.; Myazin, N. S.

    2016-07-01

    A new procedure for determining the sensitivity of running-fluid NMR magnetometers is considered. The procedure is based on mathematical processing of experimental data that are related to measuring the gradient of a nutation-line slope at the point at which an inverted NMR signal crosses zero. The procedure allows one to determine the sensitivity of running-fluid NMR magnetometers for resonance frequencies of magnetic-field measurements within a range of 0.5 Hz to 840 MHz.

  11. Autistic spectrum disorders.

    PubMed

    Singhania, Rajeshree

    2005-04-01

    Autistic spectrum disorders is a complex developmental disorder with social and communication dysfunction at its core. It has a wide clinical spectrum with a common triad of impairments -- social communication, social interaction and social imagination. Even mild or subtle difficulties can have a profound and devastating impact on the child. To be able to provide suitable treatments and interventions the distinctive way of thinking and learning of autistic children has to be understood. The core areas of social, emotional, communication and language deficits have to be addressed at all levels of functioning. The important goals of assessment include a categorical diagnosis of autism that looks at differential diagnosis, a refined precise documentation of the child's functioning in various developmental domains and ascertaining presence of co-morbid conditions. The interventions have to be adapted to the individual's chronological age, developmental phase and level of functioning. The strategies of curriculum delivery and teaching the child with autism is distinctive and includes presence of structure to increase predictability and strategies to reduce arousal of anxiety.

  12. Touch NMR: An NMR Data Processing Application for the iPad

    ERIC Educational Resources Information Center

    Li, Qiyue; Chen, Zhiwei; Yan, Zhiping; Wang, Cheng; Chen, Zhong

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has become one of the most powerful technologies to aid research in numerous scientific disciplines. With the development of consumer electronics, mobile devices have played increasingly important roles in our daily life. However, there is currently no application available for mobile devices able to…

  13. NMR-based dynamics of free glycosaminoglycans in solution.

    PubMed

    Pomin, Vitor H

    2014-08-01

    Glycosaminoglycans (GAGs) comprise a special class of complex carbohydrates endowed with numerous biological functions. Most of these functions are regulated by conformational arrangements or dynamical properties of GAGs in solution. Nuclear magnetic resonance (NMR) is a powerful technique used for dynamic analyses. Spin relaxation, scalar couplings, chemical shifts and nuclear Overhauser effect resonances are the commonest NMR parameters utilized in such analyses. Computational molecular dynamics are also very often employed in conjunction with, or restrained by, the NMR dataset. This report aims at describing the major NMR-based information available so far concerning the dynamical properties of free GAGs in solution.

  14. Rotational Doppler Effect and Barnett Field in Spinning NMR

    NASA Astrophysics Data System (ADS)

    Chudo, Hiroyuki; Harii, Kazuya; Matsuo, Mamoru; Ieda, Jun'ichi; Ono, Masao; Maekawa, Sadamichi; Saitoh, Eiji

    2015-04-01

    We report the observation of the rotational Doppler effect using nuclear magnetic resonance (NMR). We have developed a coil-spinning technique that enables measurements by rotating a detector and fixing a sample. We found that the rotational Doppler effect gives rise to NMR frequency shifts equal to the rotation frequency. We formulate the rotational Doppler effect and the Barnett field using a vector model for the nuclear magnetic moment. This formulation reveals that, with just the sample rotating, both effects cancel each other, thereby explaining the absence of an NMR frequency shift in conventional sample-spinning NMR measurements.

  15. A closer look at the nitrogen next door: 1H-15N NMR methods for glycosaminoglycan structural characterization

    NASA Astrophysics Data System (ADS)

    Langeslay, Derek J.; Beni, Szabolcs; Larive, Cynthia K.

    2012-03-01

    Recently, experimental conditions were presented for the detection of the N-sulfoglucosamine (GlcNS) NHSO3- or sulfamate 1H and 15N NMR resonances of the pharmaceutically and biologically important glycosaminoglycan (GAG) heparin in aqueous solution. In the present work, we explore further the applicability of nitrogen-bound proton detection to provide structural information for GAGs. Compared to the detection of 15N chemical shifts of aminosugars through long-range couplings using the IMPACT-HNMBC pulse sequence, the more sensitive two-dimensional 1H-15N HSQC-TOCSY experiments provided additional structural data. The IMPACT-HNMBC experiment remains a powerful tool as demonstrated by the spectrum measured for the unsubstituted amine of 3-O-sulfoglucosamine (GlcN(3S)), which cannot be observed with the 1H-15N HSQC-TOCSY experiment due to the fast exchange of the amino group protons with solvent. The 1H-15N HSQC-TOCSY NMR spectrum reported for the mixture of model compounds GlcNS and N-acetylglucosamine (GlcNAc) demonstrate the broad utility of this approach. Measurements for the synthetic pentasaccharide drug Arixtra® (Fondaparinux sodium) in aqueous solution illustrate the power of this NMR pulse sequence for structural characterization of highly similar N-sulfoglucosamine residues in GAG-derived oligosaccharides.

  16. Tannin fingerprinting in vegetable tanned leather by solid state NMR spectroscopy and comparison with leathers tanned by other processes.

    PubMed

    Romer, Frederik H; Underwood, Andrew P; Senekal, Nadine D; Bonnet, Susan L; Duer, Melinda J; Reid, David G; van der Westhuizen, Jan H

    2011-01-28

    Solid state ¹³C-NMR spectra of pure tannin powders from four different sources--mimosa, quebracho, chestnut and tara--are readily distinguishable from each other, both in pure commercial powder form, and in leather which they have been used to tan. Groups of signals indicative of the source, and type (condensed vs. hydrolyzable) of tannin used in the manufacture are well resolved in the spectra of the finished leathers. These fingerprints are compared with those arising from leathers tanned with other common tanning agents. Paramagnetic chromium (III) tanning causes widespread but selective disappearance of signals from the spectrum of leather collagen, including resonances from acidic aspartyl and glutamyl residues, likely bound to Cr (III) structures. Aluminium (III) and glutaraldehyde tanning both cause considerable leather collagen signal sharpening suggesting some increase in molecular structural ordering. The ²⁷Al-NMR signal from the former material is consistent with an octahedral coordination by oxygen ligands. Solid state NMR thus provides easily recognisable reagent specific spectral fingerprints of the products of vegetable and some other common tanning processes. Because spectra are related to molecular properties, NMR is potentially a powerful tool in leather process enhancement and quality or provenance assurance.

  17. Tannin fingerprinting in vegetable tanned leather by solid state NMR spectroscopy and comparison with leathers tanned by other processes.

    PubMed

    Romer, Frederik H; Underwood, Andrew P; Senekal, Nadine D; Bonnet, Susan L; Duer, Melinda J; Reid, David G; van der Westhuizen, Jan H

    2011-01-01

    Solid state ¹³C-NMR spectra of pure tannin powders from four different sources--mimosa, quebracho, chestnut and tara--are readily distinguishable from each other, both in pure commercial powder form, and in leather which they have been used to tan. Groups of signals indicative of the source, and type (condensed vs. hydrolyzable) of tannin used in the manufacture are well resolved in the spectra of the finished leathers. These fingerprints are compared with those arising from leathers tanned with other common tanning agents. Paramagnetic chromium (III) tanning causes widespread but selective disappearance of signals from the spectrum of leather collagen, including resonances from acidic aspartyl and glutamyl residues, likely bound to Cr (III) structures. Aluminium (III) and glutaraldehyde tanning both cause considerable leather collagen signal sharpening suggesting some increase in molecular structural ordering. The ²⁷Al-NMR signal from the former material is consistent with an octahedral coordination by oxygen ligands. Solid state NMR thus provides easily recognisable reagent specific spectral fingerprints of the products of vegetable and some other common tanning processes. Because spectra are related to molecular properties, NMR is potentially a powerful tool in leather process enhancement and quality or provenance assurance. PMID:21278677

  18. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    SciTech Connect

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurement of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.

  19. Ethanol contamination of cerebrospinal fluid during standardized sampling and its effect on (1)H-NMR metabolomics.

    PubMed

    van der Sar, Sonia A; Zielman, Ronald; Terwindt, Gisela M; van den Maagdenberg, Arn M J M; Deelder, André M; Mayboroda, Oleg A; Meissner, Axel; Ferrari, Michel D

    2015-06-01

    Standardization of body fluid sampling, processing and storage procedures is pivotal to ensure data quality in metabolomics studies. Yet, despite strict adherence to standard sampling guidelines, we detected variable levels of ethanol in the (1)H-NMR spectra of human cerebrospinal fluid (CSF) samples (range 9.2 × 10(-3)-10.0 mM). The presence of ethanol in all samples and the wide range of concentrations clearly indicated contamination of the samples of some sort, which affected the (1)H-NMR spectra quality and the interpretation. To determine where in the sampling protocol the ethanol contamination occurs, we performed a CSF sampling protocol simulation with 0.9 % NaCl (saline) instead of CSF and detected ethanol in all simulation samples. Ethanol diffusion through air during sampling and preparation stages appeared the only logical explanation. With a bench study, we showed that ethanol easily diffuses into ex vivo CSF samples via air transmission. Ethanol originated from routinely used skin disinfectants containing ethanol and from laboratory procedures. Ethanol affected the CSF sample matrix at concentrations above ~9.4 mM and obscured a significant part of the (1)H-NMR spectrum. CSF sample preparation for (1)H-NMR-based metabolomics analyses should therefore be carried out in a well-ventilated atmosphere with laminar flow, and use of ethanol should be avoided.

  20. Spin-echo sup 1 H NMR studies of differential mobility in gizzard myosin and its subfragments

    SciTech Connect

    Sommervile, L.E. ); Henry, G.D.; Sykes, B.D. ); Harshorne, D.J. )

    1990-12-01

    The unexpectedly narrow resonances in the {sup 1}H NMR spectra of gizzard myosin, heavy meromyosin, and subfragment 1 were examined by spin-echo NMR spectroscopy. These resonances originated predominantly in the myosin heads, or subfragment 1 units. Smooth muscle myosin undergoes a dramatic change in hydrodynamic properties and can exist either as a folded (10S) or as an extended (6S) species. Factors that influence this transition, namely, ionic strength and phosphorylation (or thiophosphorylation), were varied in the NMR experiments. T{sub 2} relaxation experiments on dephosphorylated myosin indicated several components of different relaxation times that were not influenced by changes in ionic strength. The experiments focused on the components with longer relaxation times, i.e., corresponding to nuclei with more mobility, and these were observed selectively in a spin-echo experiment. With dephosphorylated myosin and HMM, increases in ionic strength caused an increased intensity in several of the narrower resonances. The ionic strength dependence of these changes paralleled that for the 10S and 6S transition. With thiophosphorylated myosin and HMM, changes in ionic strength also influenced the intensities of the narrower resonances, and in addition changes in the {sup 1}H NMR spectrum due to thiophosphorylation were observed. These results suggest that a fraction of the {sup 1}H resonances in smooth muscle myosin and its fragments originates from both aliphatic and aromatic residues of increased mobility compared to the mobility expected from hydrodynamic properties of these proteins.