Science.gov

Sample records for 2a 2b 2c

  1. Vaccination of dogs with canine parvovirus type 2b (CPV-2b) induces neutralising antibody responses to CPV-2a and CPV-2c.

    PubMed

    Wilson, Stephen; Illambas, Joanna; Siedek, Elisabeth; Stirling, Catrina; Thomas, Anne; Plevová, Edita; Sture, Gordon; Salt, Jeremy

    2014-09-22

    Since the identification of canine parvovirus type 2, three variants have subsequently been observed differing from the historical CPV-2 and each other by 1-2 amino acids only. As a result there has been considerable research into differential diagnostics, with some researchers indicating there is a need for new vaccines containing different strains of CPV-2. In this study we investigated whether vaccination with a CPV-2b containing vaccine would induce cross-reactive antibody responses to the other CPV-2 variants. Two studies where dogs were vaccinated with a multivalent vaccine, subsequently challenged with CPV-2b and sera samples analysed are presented. Six week old pups with defined serological status were vaccinated twice, three weeks apart and challenged either 5 weeks (MDA override study) or one year after vaccination (duration of immunity study). Sera samples were collected before each vaccination and at periods throughout each study. In each study the antibody profiles were very similar; serological responses against CPV-2a, CPV-2b and CPV-2c were higher than those for CPV-2. Nevertheless, responses against CPV-2 were well above levels considered clinically protective. In each study dogs also showed a rapid increase in antibody titres following vaccination, reached a plateau following second vaccination with a slight decline to challenge after which rapid anamnestic responses were seen. Evaluation of the serological responses suggests vaccination with CPV-2b would cross-protect against CPV-2a and CPV-2c, as well as against CPV-2 which is now extinct in the field. In conclusion we have demonstrated that vaccination of minimum aged dogs with a multivalent vaccine containing the CPV-2b variant strain will induce serological responses which are cross-reactive against all currently circulating field strains, CPV-2a and CPV-2c, and the now extinct field strain CPV-2.

  2. Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism?

    PubMed

    Meneses, Alfredo

    2002-12-01

    1. The 5-HT2 receptors subdivision into the 5-HT(2A/2B/2C) subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation. 2. The SB-200646 (a selective 5-HT(2B/2C) receptor antagonist) and LY215840 (a nonselective 5-HT(2/7) receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP). 3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (+/-)-2.5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose. 4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine: while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs. 5. It is suggested that 5-HT(2B/2C) receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time. 6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreasedcholinergic, glutamatergic, and/or serotonergic neurotransmission.

  3. Hofbauer cells of M2a, M2b and M2c polarization may regulate feto-placental angiogenesis.

    PubMed

    Loegl, J; Hiden, U; Nussbaumer, E; Schliefsteiner, C; Cvitic, S; Lang, I; Wadsack, C; Huppertz, B; Desoye, G

    2016-11-01

    The human placenta comprises a special type of tissue macrophages, the Hofbauer cells (HBC), which exhibit M2 macrophage phenotype. Several subtypes of M2-polarized macrophages (M2a, M2b and M2c) exist in almost all tissues. Macrophage polarization depends on the way of macrophage activation and leads to the expression of specific cell surface markers and the acquisition of specific functions, including tissue remodeling and the promotion of angiogenesis. The placenta is a highly vascularized and rapidly growing organ, suggesting a role of HBC in feto-placental angiogenesis. We here aimed to characterize the specific polarization and phenotype of HBC and investigated the role of HBC in feto-placental angiogenesis. Therefore, HBC were isolated from third trimester placentas and their phenotype was determined by the presence of cell surface markers (FACS analysis) and secretion of cytokines (ELISA). HBC conditioned medium (CM) was analyzed for pro-angiogenic factors, and the effect of HBC CM on angiogenesis, proliferation and chemoattraction of isolated primary feto-placental endothelial cells (fpEC) was determined in vitro Our results revealed that isolated HBC possess an M2 polarization, with M2a, M2b and M2c characteristics. HBC secreted the pro-angiogenic molecules VEGF and FGF2. Furthermore, HBC CM stimulated the in vitro angiogenesis of fpEC. However, compared with control medium, chemoattraction of fpEC toward HBC CM was reduced. Proliferation of fpEC was not affected by HBC CM. These findings demonstrate a paracrine regulation of feto-placental angiogenesis by HBC in vitro Based on our collective results, we propose that the changes in HBC number or phenotype may affect feto-placental angiogenesis.

  4. Telecom 2-B and 2-C (TC2B and TC2C)

    NASA Technical Reports Server (NTRS)

    Dulac, J.; Alvarez, H.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for Telecom 2-B and 2-C (TC2B and TC2C) are summarized. These Telecom missions will provide high-speed data link applications, telephone, and television service between France and overseas territories as a follow-on to TC2A. Mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.

  5. PHOX2A and PHOX2B are differentially regulated during retinoic acid-driven differentiation of SK-N-BE(2)C neuroblastoma cell line

    PubMed Central

    Di Lascio, Simona; Saba, Elena; Belperio, Debora; Raimondi, Andrea; Lucchetti, Helen; Fornasari, Diego; Benfante, Roberta

    2016-01-01

    PHOX2B and its paralogue gene PHOX2A are two homeodomain proteins in the network regulating the development of autonomic ganglia that have been associated with the pathogenesis of neuroblastoma (NB), because of their over-expression in different NB cell lines and tumour samples. We used the SK-N-BE(2)C cell line to show that all-trans retinoic acid (ATRA), a drug that is widely used to inhibit growth and induce differentiation in NBs, regulates both PHOX2A and PHOX2B expression, albeit by means of different mechanisms: it up-regulates PHOX2A and down-regulates PHOX2B. Both mechanisms act at transcriptional level, but prolonged ATRA treatment selectively degrades the PHOX2A protein, whereas the corresponding mRNA remains up-regulated. Further, we show that PHOX2A is capable of modulating PHOX2B expression, but this mechanism is not involved in the PHOX2B down-regulation induced by retinoic acid. Our findings demonstrate that PHOX2A expression is finely controlled during retinoic acid differentiation and this, together with PHOX2B down-regulation, reinforces the idea that they may be useful biomarkers for NB staging, prognosis and treatment decision making. PMID:26902400

  6. The relative cellular levels of CP2a and CP2b potentiates erythroid cell-specific expression of the {alpha}-globin gene by regulating the nuclear localization of CP2c

    SciTech Connect

    Chae, Ji Hyung; Kang, Ho Chul; Kim, Chul Geun

    2009-03-20

    CP2b activates {alpha}-globin expression in an erythroid cell-specific manner, through interaction with CP2c and PIAS1. Although CP2a is identical to CP2b except for lacking an exon encoding additional 36 amino acids and has the intrinsic DNA binding and transactivation properties, it does not exert any role in {alpha}-globin expression. Investigation of subcellular localization of exogenous CP2 proteins revealed that CP2a and CP2b were exclusively localized in the cytosol and nucleus, respectively. The CP2b-specific exon was in charge of the nuclear localization of CP2b. Interestingly, subcellular localization of CP2c was either in the nucleus or cytosol depending on the relative level of CP2a and CP2b although CP2c intrinsically localized in the cytosol in the absence of CP2a/CP2b. Finally, dramatic increment of hemoglobin expression was correlated with nuclear translocation of CP2c during MEL cell differentiation. Our data suggest that CP2b potentiate erythroid cell-specific {alpha}-globin expression by recruiting CP2c into the nucleus.

  7. Characterization of Human Disease Phenotypes Associated with Mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1

    PubMed Central

    Crow, Yanick J.; Chase, Diana S.; Schmidt, Johanna Lowenstein; Szynkiewicz, Marcin; Forte, Gabriella M.A.; Gornall, Hannah L.; Oojageer, Anthony; Anderson, Beverley; Pizzino, Amy; Helman, Guy; Abdel-Hamid, Mohamed S.; Abdel-Salam, Ghada M.; Ackroyd, Sam; Aeby, Alec; Agosta, Guillermo; Albin, Catherine; Allon-Shalev, Stavit; Arellano, Montse; Ariaudo, Giada; Aswani, Vijay; Babul-Hirji, Riyana; Baildam, Eileen M.; Bahi-Buisson, Nadia; Bailey, Kathryn M.; Barnerias, Christine; Barth, Magalie; Battini, Roberta; Beresford, Michael W.; Bernard, Geneviève; Bianchi, Marika; de Villemeur, Thierry Billette; Blair, Edward M.; Bloom, Miriam; Burlina, Alberto B.; Carpanelli, Maria Luisa; Carvalho, Daniel R.; Castro-Gago, Manuel; Cavallini, Anna; Cereda, Cristina; Chandler, Kate E.; Chitayat, David A.; Collins, Abigail E.; Corcoles, Concepcion Sierra; Cordeiro, Nuno J.V.; Crichiutti, Giovanni; Dabydeen, Lyvia; Dale, Russell C.; D’Arrigo, Stefano; De Goede, Christian G.E.L.; De Laet, Corinne; De Waele, Liesbeth M.H.; Denzler, Ines; Desguerre, Isabelle; Devriendt, Koenraad; Di Rocco, Maja; Fahey, Michael C.; Fazzi, Elisa; Ferrie, Colin D.; Figueiredo, António; Gener, Blanca; Goizet, Cyril; Gowrinathan, Nirmala R.; Gowrishankar, Kalpana; Hanrahan, Donncha; Isidor, Bertrand; Kara, Bülent; Khan, Nasaim; King, Mary D.; Kirk, Edwin P.; Kumar, Ram; Lagae, Lieven; Landrieu, Pierre; Lauffer, Heinz; Laugel, Vincent; La Piana, Roberta; Lim, Ming J.; Lin, Jean-Pierre S.-M.; Linnankivi, Tarja; Mackay, Mark T.; Marom, Daphna R.; Lourenço, Charles Marques; McKee, Shane A.; Moroni, Isabella; Morton, Jenny E.V.; Moutard, Marie-Laure; Murray, Kevin; Nabbout, Rima; Nampoothiri, Sheela; Nunez-Enamorado, Noemi; Oades, Patrick J.; Olivieri, Ivana; Ostergaard, John R.; Pérez-Dueñas, Belén; Prendiville, Julie S.; Ramesh, Venkateswaran; Rasmussen, Magnhild; Régal, Luc; Ricci, Federica; Rio, Marlène; Rodriguez, Diana; Roubertie, Agathe; Salvatici, Elisabetta; Segers, Karin A.; Sinha, Gyanranjan P.; Soler, Doriette; Spiegel, Ronen; Stödberg, Tommy I.; Straussberg, Rachel; Swoboda, Kathryn J.; Suri, Mohnish; Tacke, Uta; Tan, Tiong Y.; Naude, Johann te Water; Teik, Keng Wee; Thomas, Maya Mary; Till, Marianne; Tonduti, Davide; Valente, Enza Maria; Van Coster, Rudy Noel; van der Knaap, Marjo S.; Vassallo, Grace; Vijzelaar, Raymon; Vogt, Julie; Wallace, Geoffrey B.; Wassmer, Evangeline; Webb, Hannah J.; Whitehouse, William P.; Whitney, Robyn N.; Zaki, Maha S.; Zuberi, Sameer M.; Livingston, John H.; Rozenberg, Flore; Lebon, Pierre; Vanderver, Adeline; Orcesi, Simona; Rice, Gillian I.

    2015-01-01

    Aicardi–Goutières syndrome is an inflammatory disease occurring due to mutations in any of TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR or IFIH1. We report on 374 patients from 299 families with mutations in these seven genes. Most patients conformed to one of two fairly stereotyped clinical profiles; either exhibiting an in utero disease-onset (74 patients; 22.8% of all patients where data were available), or a post-natal presentation, usually within the first year of life (223 patients; 68.6%), characterized by a sub-acute encephalopathy and a loss of previously acquired skills. Other clinically distinct phenotypes were also observed; particularly, bilateral striatal necrosis (13 patients; 3.6%) and non-syndromic spastic paraparesis (12 patients; 3.4%). We recorded 69 deaths (19.3% of patients with follow-up data). Of 285 patients for whom data were available, 210 (73.7%) were profoundly disabled, with no useful motor, speech and intellectual function. Chilblains, glaucoma, hypothyroidism, cardiomyopathy, intracerebral vasculitis, peripheral neuropathy, bowel inflammation and systemic lupus erythematosus were seen frequently enough to be confirmed as real associations with the Aicardi-Goutieres syndrome phenotype. We observed a robust relationship between mutations in all seven genes with increased type I interferon activity in cerebrospinal fluid and serum, and the increased expression of interferon-stimulated gene transcripts in peripheral blood. We recorded a positive correlation between the level of cerebrospinal fluid interferon activity assayed within one year of disease presentation and the degree of subsequent disability. Interferon-stimulated gene transcripts remained high in most patients, indicating an ongoing disease process. On the basis of substantial morbidity and mortality, our data highlight the urgent need to define coherent treatment strategies for the phenotypes associated with mutations in the Aicardi–Goutières syndrome

  8. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1.

    PubMed

    Crow, Yanick J; Chase, Diana S; Lowenstein Schmidt, Johanna; Szynkiewicz, Marcin; Forte, Gabriella M A; Gornall, Hannah L; Oojageer, Anthony; Anderson, Beverley; Pizzino, Amy; Helman, Guy; Abdel-Hamid, Mohamed S; Abdel-Salam, Ghada M; Ackroyd, Sam; Aeby, Alec; Agosta, Guillermo; Albin, Catherine; Allon-Shalev, Stavit; Arellano, Montse; Ariaudo, Giada; Aswani, Vijay; Babul-Hirji, Riyana; Baildam, Eileen M; Bahi-Buisson, Nadia; Bailey, Kathryn M; Barnerias, Christine; Barth, Magalie; Battini, Roberta; Beresford, Michael W; Bernard, Geneviève; Bianchi, Marika; Billette de Villemeur, Thierry; Blair, Edward M; Bloom, Miriam; Burlina, Alberto B; Carpanelli, Maria Luisa; Carvalho, Daniel R; Castro-Gago, Manuel; Cavallini, Anna; Cereda, Cristina; Chandler, Kate E; Chitayat, David A; Collins, Abigail E; Sierra Corcoles, Concepcion; Cordeiro, Nuno J V; Crichiutti, Giovanni; Dabydeen, Lyvia; Dale, Russell C; D'Arrigo, Stefano; De Goede, Christian G E L; De Laet, Corinne; De Waele, Liesbeth M H; Denzler, Ines; Desguerre, Isabelle; Devriendt, Koenraad; Di Rocco, Maja; Fahey, Michael C; Fazzi, Elisa; Ferrie, Colin D; Figueiredo, António; Gener, Blanca; Goizet, Cyril; Gowrinathan, Nirmala R; Gowrishankar, Kalpana; Hanrahan, Donncha; Isidor, Bertrand; Kara, Bülent; Khan, Nasaim; King, Mary D; Kirk, Edwin P; Kumar, Ram; Lagae, Lieven; Landrieu, Pierre; Lauffer, Heinz; Laugel, Vincent; La Piana, Roberta; Lim, Ming J; Lin, Jean-Pierre S-M; Linnankivi, Tarja; Mackay, Mark T; Marom, Daphna R; Marques Lourenço, Charles; McKee, Shane A; Moroni, Isabella; Morton, Jenny E V; Moutard, Marie-Laure; Murray, Kevin; Nabbout, Rima; Nampoothiri, Sheela; Nunez-Enamorado, Noemi; Oades, Patrick J; Olivieri, Ivana; Ostergaard, John R; Pérez-Dueñas, Belén; Prendiville, Julie S; Ramesh, Venkateswaran; Rasmussen, Magnhild; Régal, Luc; Ricci, Federica; Rio, Marlène; Rodriguez, Diana; Roubertie, Agathe; Salvatici, Elisabetta; Segers, Karin A; Sinha, Gyanranjan P; Soler, Doriette; Spiegel, Ronen; Stödberg, Tommy I; Straussberg, Rachel; Swoboda, Kathryn J; Suri, Mohnish; Tacke, Uta; Tan, Tiong Y; te Water Naude, Johann; Wee Teik, Keng; Thomas, Maya Mary; Till, Marianne; Tonduti, Davide; Valente, Enza Maria; Van Coster, Rudy Noel; van der Knaap, Marjo S; Vassallo, Grace; Vijzelaar, Raymon; Vogt, Julie; Wallace, Geoffrey B; Wassmer, Evangeline; Webb, Hannah J; Whitehouse, William P; Whitney, Robyn N; Zaki, Maha S; Zuberi, Sameer M; Livingston, John H; Rozenberg, Flore; Lebon, Pierre; Vanderver, Adeline; Orcesi, Simona; Rice, Gillian I

    2015-02-01

    Aicardi-Goutières syndrome is an inflammatory disease occurring due to mutations in any of TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR or IFIH1. We report on 374 patients from 299 families with mutations in these seven genes. Most patients conformed to one of two fairly stereotyped clinical profiles; either exhibiting an in utero disease-onset (74 patients; 22.8% of all patients where data were available), or a post-natal presentation, usually within the first year of life (223 patients; 68.6%), characterized by a sub-acute encephalopathy and a loss of previously acquired skills. Other clinically distinct phenotypes were also observed; particularly, bilateral striatal necrosis (13 patients; 3.6%) and non-syndromic spastic paraparesis (12 patients; 3.4%). We recorded 69 deaths (19.3% of patients with follow-up data). Of 285 patients for whom data were available, 210 (73.7%) were profoundly disabled, with no useful motor, speech and intellectual function. Chilblains, glaucoma, hypothyroidism, cardiomyopathy, intracerebral vasculitis, peripheral neuropathy, bowel inflammation and systemic lupus erythematosus were seen frequently enough to be confirmed as real associations with the Aicardi-Goutieres syndrome phenotype. We observed a robust relationship between mutations in all seven genes with increased type I interferon activity in cerebrospinal fluid and serum, and the increased expression of interferon-stimulated gene transcripts in peripheral blood. We recorded a positive correlation between the level of cerebrospinal fluid interferon activity assayed within one year of disease presentation and the degree of subsequent disability. Interferon-stimulated gene transcripts remained high in most patients, indicating an ongoing disease process. On the basis of substantial morbidity and mortality, our data highlight the urgent need to define coherent treatment strategies for the phenotypes associated with mutations in the Aicardi-Goutières syndrome-related genes

  9. Co-Circulation of the Rare CPV-2c with Unique Gln370Arg Substitution, New CPV-2b with Unique Thr440Ala Substitution, and New CPV-2a with High Prevalence and Variation in Heilongjiang Province, Northeast China

    PubMed Central

    Geng, Yufei; Guo, Donghua; Li, Chunqiu; Wang, Enyu; Wei, Shan; Wang, Zhihui; Yao, Shuang; Zhao, Xiwen; Su, Mingjun; Wang, Xinyu; Wang, Jianfa; Wu, Rui; Feng, Li; Sun, Dongbo

    2015-01-01

    To trace evolution of canine parvovirus-2 (CPV-2), a total of 201 stool samples were collected from dogs with diarrhea in Heilongjiang province of northeast China from May 2014 to April 2015. The presence of CPV-2 in the samples was determined by PCR amplification of the VP2 gene (568 bp) of CPV-2. The results revealed that 95 samples (47.26%) were positive for CPV-2, and they showed 98.8%–100% nucleotide identity and 97.6%–100% amino acid identity. Of 95 CPV-2-positive samples, types new2a (Ser297Ala), new2b (Ser297Ala), and 2c accounted for 64.21%, 21.05%, and 14.74%, respectively. The positive rate of CPV-2 and the distribution of the new2a, new2b and 2c types exhibited differences among regions, seasons, and ages. Immunized dogs accounted for 48.42% of 95 CPV-2-positive samples. Coinfections with canine coronavirus, canine kobuvirus, and canine bocavirus were identified. Phylogenetic analysis revealed that the identified new2a, new2b, and CPV-2c strains in our study exhibited a close relationship with most of the CPV-2 strains from China; type new2a strains exhibited high variability, forming three subgroups; type new2b and CPV-2c strains formed one group with reference strains from China. Of 95 CPV-2 strains, Tyr324Ile and Thr440Ala substitutions accounted for 100% and 64.21%, respectively; all type new2b strains exhibited the Thr440Ala substitution, while the unique Gln370Arg substitution was found in all type 2c strains. Recombination analysis using entire VP2 gene indicated possible recombination events between the identified CPV-2 strains and reference strains from China. Our data revealed the co-circulation of new CPV-2a, new CPV-2b, and rare CPV-2c, as well as potential recombination events among Chinese CPV-2 strains. PMID:26348721

  10. Meperidine, remifentanil and tramadol but not sufentanil interact with alpha(2)-adrenoceptors in alpha(2A)-, alpha(2B)- and alpha(2C)-adrenoceptor knock out mice brain.

    PubMed

    Höcker, Jan; Weber, Bernd; Tonner, Peter H; Scholz, Jens; Brand, Philipp-Alexander; Ohnesorge, Henning; Bein, Berthold

    2008-03-17

    alpha(2)-adrenoceptor agonists like clonidine or dexmedetomidine increase the sedative and analgesic actions of opioids. Furthermore opioids like meperidine show potent anti-shivering effects like alpha(2)-adrenoceptor agonists. The underlying molecular mechanisms of these effects are still poorly defined. The authors therefore studied the ability of four different opioids (meperidine, remifentanil, sufentanil and tramadol) to interact with different alpha(2)-adrenoceptor subtypes in mice lacking individual alpha(2A)-, alpha(2B)- or alpha(2C)-adrenoceptors (alpha(2)-adrenoceptor knock out (alpha(2)-AR KO) mice)). The interaction of opioids with alpha(2)-adrenoceptors was investigated by quantitative receptor autoradiography in brain slices of alpha(2A)-, alpha(2B)- or alpha(2C)-adrenoceptor deficient mice. Displacement of the radiolabelled alpha(2)-adrenoceptor agonist [(125)I]-paraiodoclonidine ([(125)I]-PIC) from alpha(2)-adrenoceptors in different brain regions by increasing opioid concentrations was measured, and binding affinity of the analysed opioids to alpha(2)-adrenoceptor subtypes in different brain regions was quantified. Meperidine, remifentanil and tramadol but not sufentanil provoked dose dependent displacement of specifically bound [(125)I]-PIC from all alpha(2)-adrenoceptor subtypes in cortex, cerebellum, medulla oblongata, thalamus, hippocampus and pons. Required concentrations of meperidine and remifentanil for [(125)I]-PIC displacement from alpha(2B)- and alpha(2C)-adrenoceptors were lower than from alpha(2A)-adrenoceptors, indicating higher binding affinity for alpha(2B)- and alpha(2C)-adrenoceptors. In contrast, [(125)I]-PIC displacement by tramadol indicated higher binding affinity to alpha(2A)-adrenoceptors than to alpha(2B)- and alpha(2C)-adrenoceptors. Our results indicate that meperidine, remifentanil and tramadol interact with alpha(2)-adrenoceptors in mouse brain showing different affinity for alpha(2A)-, alpha(2B)- and alpha(2C

  11. Effects of anthocyanidins and anthocyanins on the expression and catalytic activities of CYP2A6, CYP2B6, CYP2C9, and CYP3A4 in primary human hepatocytes and human liver microsomes.

    PubMed

    Srovnalova, Alzbeta; Svecarova, Michaela; Zapletalova, Michaela Kopecna; Anzenbacher, Pavel; Bachleda, Petr; Anzenbacherova, Eva; Dvorak, Zdenek

    2014-01-22

    Anthocyanidins and anthocyanins are pharmacologically active constituents of various berry fruits, such as blueberry and cranberry. These compounds are also contained in massively used nutritional supplements based on extracts or dry matter from berry fruits. The current study evaluated the effects of anthocyanidins and anthocyanins on the expression and catalytic activity of major drug-metabolizing enzymes CYP2C9, CYP2A6, CYP2B6, and CYP3A4 in primary cultures of human hepatocytes and human liver microsomes. Expression of mRNA was quantified by qRT-PCR. Expression of proteins was evaluated by Western blotting and immunochemiluminescence. The catalytic activity of CYP enzymes was measured by HPLC using specific enzyme substrates. Tested anthocyanidins (6) and anthocyanins (21) did not induce the expression of mRNA and protein of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 genes in human hepatocytes. Catalytic activities of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 enzymes were inhibited by all anthocyanidins to different extents (e.g., delphinidin inhibits CYP3A4 by >90% at 100 μM with IC50 = 32 μM). Of 21 anthocyanins tested, only cyanidin-3-O-rhamnoside (CYP3A4 by >75% at 100 μM with IC50 = 44 μM) and two glycosides of delphinidin significantly inhibited examined cytochromes P450. It may be concluded that in the ranges of common ingestion of either food or dietary supplement an induction or significant inhibition of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 activity is most probably not expected.

  12. The 23 K superconducting phase YPd 2B 2C

    NASA Astrophysics Data System (ADS)

    Sun, Y. Y.; Rusakova, I.; Meng, R. L.; Cao, Y.; Gautier-Picard, P.; Chu, C. W.

    1994-09-01

    We have carried out a systematic structural, electric, and magnetic study on YPdBC samples with different compositions with emphasis on the as-cast and annealed YPd 5B 3C 0.3 which was first reported to superconduct at ∼ 23 K by Cava et al. We found that the tetragonal body-centered YPd 2B 2C with lattice parameters a=3.71 Å and c=10.81 Å is the phase responsible for the 23 K superconductivity and that YPd 2B 2C is metastable, which is consistent with the suggestion made by Cava et al. [1]: it is not stable at high temperatures nor stabilizable by Ni doping, although its isostructural compound, YNi 2B 2C, exists. Two new phases with Y:Pd ratios of 1:7 and 2:3, respectively, have also bee detected.

  13. Hp-41CV flight performance advisory system (FPAS) for the E-2c, E-2B, and C-2A aircraft. Final technical report Apr-Jun 82

    SciTech Connect

    Ferrell, D.R.

    1982-06-01

    This report describes follow-on work performed under the auspices of AE 4900, Directed Studies in Aeronautical Engineering at the Naval Postgraduate School, to complement the original design of a Flight Performance Advisory System (FPAS) for the E-2C aircraft. The original design fulfilled the requirements of AE 3001, Aircraft Energy Conservation. AE 3001, offered in the Fall Quarter 1981, and conducted by Professor Allen E. Fuhs, was sponsored in part by the Naval Air Development Center (NADC). NADC desired to obtain the input of several fleet experienced aviators in order to design program code for the HP-41CV handheld, programmable calculator that would benefit pilots by providing them with fuel efficiency parameters in flight. Calculators were made available to the participants with the proviso that a completed and operable code for each aircraft be submitted by the end of the academic quarter, September 1981. Upon completion of the E-2C program, attempts were made to use the calculator in flight. One test was conducted informally in an E-2C at RVAW-110, NAS Miramar. Unfortunately, the voltage field induced in the cockpit by the main lobe of the radar passing over the cockpit caused the calculator to cease functioning. The need to devise shielding for the calculator, plus the desire to simplify and improve the existing code lead to this effort.

  14. Direct sequencing and comprehensive screening of genetic polymorphisms on CYP2 family genes (CYP2A6, CYP2B6, CYP2C8, and CYP2E1) in five ethnic populations.

    PubMed

    Kim, Jeong-Hyun; Cheong, Hyun Sub; Park, Byung Lae; Kim, Lyoung Hyo; Shin, Hee Jung; Na, Han Sung; Chung, Myeon Woo; Shin, Hyoung Doo

    2015-01-01

    Recently, CYP2A6, CYP2B6, CYP2C8, and CYP2E1 have been reported to play a role in the metabolic effect of pharmacological and carcinogenic compounds. Moreover, genetic variations of drug metabolism genes have been implicated in the interindividual variation in drug disposition and pharmacological response. To define the distribution of single nucleotide polymorphisms (SNPs) in these four CYP2 family genes and to discover novel SNPs across ethnic groups, 288 DNAs composed of 48 African-Americans, 48 European-Americans, 48 Japanese, 48 Han Chinese, and 96 Koreans were resequenced. A total of 143 SNPs, 26 in CYP2A6, 45 in CYP2B6, 29 in CYP2C8, and 43 in CYP2E1, were identified, including 13 novel variants. Notably, two SNPs in the regulatory regions, a promoter SNP rs2054675 and a nonsynonymous rs3745274 (p.172Q>H) in CYP2B6, showed significantly different minor allele frequencies (MAFs) among ethnic groups (minimum P = 4.30 × 10(-12)). In addition, rs2031920 in the promoter region of CYP2E1 showed a wide range of MAF between different ethnic groups, and even among other various ethnic groups based on public reports. Among 13 newly discovered SNPs in this study, 5 SNPs were estimated to have potential functions in further in silico analyses. Some differences in genetic variations and haplotypes of CYP2A6, CYP2B6, CYP2C8, and CYP2E1 were observed among populations. Our findings could be useful in further researches, such as genetic associations with drug responses.

  15. Heterologous expression of the cloned guinea pig alpha 2A, alpha 2B, and alpha 2C adrenoceptor subtypes. Radioligand binding and functional coupling to a CAMP-responsive reporter gene.

    PubMed

    Svensson, S P; Bailey, T J; Porter, A C; Richman, J G; Regan, J W

    1996-02-09

    Functional studies have shown that 6-chloro-9-[(3-methyl-2-butenyl)oxy]-3-methyl-1H-2,3,4,5-tetrahydro-3- benzazepine (SKF 104078) has very low affinity for prejunctional alpha 2-adrenoceptors (alpha 2-AR) in the guinea pig atrium. In this study, we have cloned guinea pig homologues of the human alpha 2-C10, alpha 2-C4 AR subtypes and have studied them in isolation by heterologous expression in cultured mammalian cells. Oligonucleotide primers, designed from conserved areas of the human alpha 2-ARs were used in a polymerase chain reaction (PCR) with template cDNA synthesized from guinea pig atrial mRNA. Three PCR products were obtained that shared identity with the three human alpha 2-AR subtypes. A guinea pig (gp) genomic library was screened with a cDNA clone encoding a portion of the gp-alpha 2A, and genes containing the complete coding sequences of the guinea pig alpha 2A, alpha 2B, and alpha 2C AR subtypes were obtained. These guinea pig genes were subcloned into a eukaryotic expression plasmid and were expressed transiently in COS-7 cells. The binding of the alpha 2-selective antagonist [3H]MK-912 to membranes prepared from these cells was specific and of high affinity with Kd values of 810 pM for gp-alpha 2A, 2700 pM for gp-alpha 2B and 110 pM for gp-alpha 2C. Competition for the binding of [3H]MK-912 by SKF 104078 indicated that it was of moderately high affinity (approximately 100 nM) but that it was not selective for any of the guinea pig alpha 2-AR subtypes. Co-expression of guinea pig alpha 2-AR subtypes with a cyclicAMP-responsive chloramphenicol acetyltransferase (CAT) reporter gene resulted in agonist-dependent modulation of CAT activity. For the gp-alpha 2 A, a biphasic response was obtained with low concentrations of noradrenaline (NE) decreasing forskolin-stimulated CAT activity and high concentrations causing a reversal. For the gp-alpha 2B, NE produced mostly potentiation of forskolin-stimulated activity, and for the gp-alpha 2C, NE caused

  16. Specific role of α2A - and α2B -, but not α2C -, adrenoceptor subtypes in the inhibition of the vasopressor sympathetic out-flow in diabetic pithed rats.

    PubMed

    Altamirano-Espinoza, Alain H; Manrique-Maldonado, Guadalupe; Marichal-Cancino, Bruno A; Villalón, Carlos M

    2015-07-01

    Several lines of evidence have shown an association of diabetes with a catecholamines' aberrant homeostasis involving a drastic change in the expression of adrenoceptors. This homeostatic alteration includes, among other things, atypical actions of α2 -adrenoceptor agonists within central and peripheral α2 -adrenoceptors (e.g. profound antinociceptive effects in diabetic subjects). Hence, this study investigated the pharmacological profile of the α2 -adrenoceptor subtypes that inhibit the vasopressor sympathetic out-flow in streptozotocin-pre-treated (diabetic) pithed rats. For this purpose, B-HT 933 (up to 30 μg/kg min) was used as a selective α2 -adrenoceptor agonist and rauwolscine as a non-selective α2A/2B/2C -adrenoceptor antagonist; in addition, BRL 44408, imiloxan and JP-1302 were used as subtype-selective α2A -, α2B - and α2C -adrenoceptor antagonists, respectively (all given i.v.). I.v. continuous infusions of B-HT 933 inhibited the vasopressor responses induced by electrical sympathetic stimulation without affecting those by i.v. bolus injections of noradrenaline in both normoglycaemic and diabetic rats. Interestingly, the ED50 for B-HT 933 in diabetic rats (25 μg/kg min) was almost 1-log unit greater than that in normoglycaemic rats (3 μg/kg.min). Moreover, the sympatho-inhibition induced by 10 μg/kg min B-HT 933 in diabetic rats was (i) abolished by 300 μg/kg rauwolscine or 100 and 300 μg/kg BRL 44408; (ii) partially blocked by 1000 μg/kg imiloxan; and (iii) unchanged by 1000 μg/kg JP-1302. Our findings, taken together, suggest that B-HT 933 has a less potent inhibitory effect on the sympathetic vasopressor responses in diabetic (compared to normoglycaemic) rats and that can probably be ascribed to a down-regulation of α2C -adrenoceptors.

  17. Review of magnetic features observed in (A,A')Ni 2B 2C solid solutions

    NASA Astrophysics Data System (ADS)

    Kuznietz, Moshe; Gonçalves, António P.; Almeida, Manuel

    2002-08-01

    The nickel-borocarbides ANi 2B 2C [A=Y, Ln (lanthanide), An(actinide)], crystallizing in the body-centred tetragonal LuNi 2B 2C-type structure, are classified according to the existence or coexistence of superconducting and antiferromagnetic states (AF). The magnetic features observed in polycrystalline (A,A')Ni 2B 2C solid solutions, adopting the same crystal structure, are reviewed and discussed. Published data on the magnetism in (A,Ln)Ni 2B 2C systems (ANi 2B 2C nonmagnetic, A=Y,La,Lu) indicate a gradual rise in the threshold content, x( m), in (Y 1- xLn x)Ni 2B 2C (Ln=Gd,Tb,Dy,Ho,Er) for the establishment of AF states. (A,A')Ni 2B 2C systems with magnetic end compounds show gradual variation in magnetic features when A and A' are both heavy Ln. The behaviour of (A,A')Ni 2B 2C systems of light A (Pr or U) and heavy A' (Dy or Tm) depends on the magnetic structures of the end compounds. In intermediate compositions, incomplete moment compensation in (Pr,Dy)Ni 2B 2C decreases TN, while different moment directions in the end compounds in (U,Dy)Ni 2B 2C lead to a directional frustration of ordered moments. Such a frustration in (U,Tm)Ni 2B 2C is related to different magnetic structures of the end compounds.

  18. Magnetic properties of Y1- xGdxCo2B2C series of borocarbides

    NASA Astrophysics Data System (ADS)

    Bud'ko, S. L.; Giordanengo, B.; Sulpice, A.; Fontes, M. B.; Baggio-Saitovitch, E. M.

    1995-04-01

    Magnetic properties of Y1- xGdxCo2B2C series of compounds were studied. Two magnetically ordered phases were observed for 0.7 ≤ x ≤ 1. Change of the magnetic ordering temperatures T 1 and T 2 with the Gd concentration is argued to be related to the dilution of magnetic Gd by nonmagnetic Y and to the reduction of the distance between ( Y1- xGdx) C planes. However, significant contribution to the changes in T 1 between pure GdNi2B2C and GdCo2B2C samples is suggested to be due to the different 3 d band filling in these compounds.

  19. Gene expression studies of mRNAs encoding the NMDA receptor subunits NMDAR1, NMDAR2A, NMDAR2B, NMDAR2C, and NMDAR2D following long-term treatment with cis-and trans-flupenthixol as a model for understanding the mode of action of schizophrenia drug treatment.

    PubMed

    Chen, A C; McDonald, B; Moss, S J; Gurling, H M

    1998-02-01

    It has been hypothesized that glutamate receptor function is important in both the aetiology and treatment of schizophrenia. In order to understand how specific glutamate receptor genes are involved in the treatment of schizophrenia we have used a multiprobe oligonucleotide solution hybridization (MOSH) technique to examine the regulation of gene express of the NMDAR1, 2A, 2B, 2C, 2D receptor subunits in the left rat brain following treatment with the optical isomers of flupenthixol. cis- and trans-flupenthixol are both present in the commonly used oral and depot treatments for schizophrenia and a controlled trial showed that cis-flupenthixol had a significantly superior ability to ameliorate the positive symptoms of schizophrenia compared to its trans-isomer. At a dose of 0.2 mg/kg/day over a period of 1, 2, 4, 8, 12 and 24 weeks, we found that both isomers down regulated the expression of NMDAR1 mRNA in most regions of the brain. NMDAR2A, 2B and 2C receptor subunits showed a significantly decreased expression from 12 to 24 weeks but after 2 weeks NMDAR2B, 2C, 2D expression was increased in several brain regions. The NMDAR1 receptor subunit immunoreactivity in the right brain following 4 and 24 weeks of drug treatment was also examined by Western blotting. Both trans- and cis-flupenthixol significantly decreased the NR1 immunoreactivity in the right cerebellum after 24 weeks of treatment. These results suggest that NMDA receptor subunits may have a role in the action of antipsychotic drugs. If we assume that the NMDA receptor expression changes reflect a beneficial and significant mechanism in the treatment of schizophrenia, it could be argued that NMDA receptor changes are more related to the negative or non-specific symptoms of schizophrenia.

  20. Effect of the Ni site substitution on superconducting properties of YNi 2B 2C

    NASA Astrophysics Data System (ADS)

    Bud'ko, S. L.; Elmassalami, M.; Fontes, M. B.; Mondragon, J.; Vanoni, W.; Giordanengo, B.; Baggio-Saitovitch, E. M.

    1995-02-01

    Structural and superconducting properties of Y(Ni 1- xM x) 2B 2C compounds with MCo, Fe and Ru have been studied. A fast decrease of Tc with the concentration of the dopants was found. This effect can be attributed to the shift of the Fermi level induced by the dopant concentration with the additional contributions from the chemical-pressure effects and from the decrease of the electronic mean free path.

  1. Direct observation of spontaneous weak ferromagnetism in the superconductor ErNi2B2C.

    PubMed

    Choi, S M; Lynn, J W; Lopez, D; Gammel, P L; Canfield, P C; Bud'ko, S L

    2001-09-03

    Neutron measurements show that superconducting ErNi2B2C (T(C) = 11 K) develops antiferromagnetic spin density wave magnetic order (T(N) = 6 K), which squares up with decreasing temperature yielding a series of higher-order magnetic Bragg peaks with odd harmonics. Below T(WFM) = 2.3 K where magnetization indicates a net moment develops, even-order Bragg peaks develop which low field (approximately 3 Oe) polarized beam measurements show are magnetic in origin. The data directly demonstrate the existence of a net magnetization with a periodicity of 20a, confirming the microscopic coexistence of spontaneous weak ferromagnetism with superconductivity.

  2. Magnetic phase transitions in SmNi 2B 2C

    NASA Astrophysics Data System (ADS)

    El-Hagary, M.; Michor, H.; Hilscher, G.

    2000-07-01

    The magnetic properties of SmNi 2B 2C were studied by specific heat and magnetization measurements. Below the Néel temperature TN=10.2 (1) K a second anomaly in the heat capacity is observed. This may be associated with a spin reorientation transition at T ∗=8.4 - 9.4 K being sensitive to tiny changes of the composition. The strong curvature of the inverse susceptibility is well described by a Curie-Weiss law with μeff≃0.59 μB/f.u. and a temperature-independent Van Vleck susceptibility χ 0≃37×10 -7 cm3/ g.

  3. Anomalous vortex state of superconducting LuNi2B2C

    NASA Astrophysics Data System (ADS)

    Price, A. N.; Miller, R. I.; Kiefl, R. F.; Chakhalian, J. A.; Dunsiger, S. R.; Morris, G. D.; Sonier, J. E.; Canfield, P. C.

    2002-06-01

    Muon spin rotation has been used to investigate the magnetic-field distribution in the vortex state of superconducting LuNi2B2C (Tc~16 K). Data for the magnetic field range 0.06Hc2<~H<~0.23Hc2 are fitted to a nonlocal London model. The temperature dependence of the vortex core radius shows a clear Kramer-Pesch effect due to depopulation of bound states within the cores. Also, the penetration depth and core radius vary substantially with applied magnetic field, suggesting the presence of anomalous field-induced quasiparticles and vortex-vortex interactions.

  4. Directional frustration of magnetic moments in (U 0.50Dy 0.50)Ni 2B 2C

    NASA Astrophysics Data System (ADS)

    Gonçalves, António P.; Pereira, Laura C. J.; Silva, Paulo A. S.; Godinho, Margarida; Almeida, Manuel; Kuznietz, Moshe

    2000-02-01

    Polycrystalline (U 0.50Dy 0.50)Ni 2B 2C solid solution was prepared and found by X-ray diffraction to crystallize in BCT LuNi 2B 2C-type structure (space group I4/mmm) of the end compounds UNi 2B 2C and DyNi 2B 2C. AC susceptibility and magnetization show paramagnetic behavior down to 6.5 K, with the values θ=-5(5) K and μeff=7.7(1) μ B, compatible with those of the end compounds, and indicate possible cooperative phenomena at lower temperatures. The observed paramagnetism, at variance with antiferromagnetic ordering in (Pr 0.50Dy 0.50)Ni 2B 2C, is attributed to a directional frustration of the magnetic moments on the (U,Dy) site.

  5. Rf2a and rf2b transcription factors

    DOEpatents

    Beachy, Roger N.; Petruccelli, Silvana; Dai, Shunhong

    2007-10-02

    A method of activating the rice tungro bacilliform virus (RTBV) promoter in vivo is disclosed. The RTBV promoter is activated by exposure to at least one protein selected from the group consisting of Rf2a and Rf2b.

  6. Synthesis and characterization of new quaternary borocarbides RRh{sub 2}B{sub 2}C (R = rare earth)

    SciTech Connect

    Ye, Jinhua; Matsumoto, Takehiko; Shishido, Toetsu

    1997-10-01

    Arc-melting syntheses of RRh{sub 2}B{sub 2}C were carried out for all lanthanide elements except promethium. X ray diffraction revealed that new compounds exit for R = Y, La-Er (except Eu), and the stability of RRh{sub 2}B{sub 2}C decreases for the smaller lanthanide. The tetragonal a-axis of RRh{sub 2}B{sub 2}C decreases for the smaller lanthanide. The tetragonal a-axis of RRh{sub 2}B{sub 2}C was found to contract as R goes from La to Er. The c-axis, however, expands slightly. In accordance with the lattice parameter change, interatomic distances between Rh atoms decrease significantly from 2.7623 {angstrom} in LaRh{sub 2}B{sub 2}C to 2.6552 {angstrom} in ErRh{sub 2}B{sub 2}C. The reduced stability of the RRh{sub 2}B{sub 2}C phase for the smaller rare earth is explained by the change in the crystallographic parameters with the size of R.

  7. Anisotropic superconducting gaps in YNi2B2C : A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Kawamura, Mitsuaki; Akashi, Ryosuke; Tsuneyuki, Shinji

    2017-02-01

    We calculate superconducting gaps and quasiparticle density of states of YNi2B2C in the framework of the density functional theory for superconductors to investigate the origin of highly anisotropic superconducting gaps in this material. Calculated phonon frequencies, the quasiparticle density of states, and the transition temperature show good agreement with experimental results. From our calculation of superconducting gaps and orbital character analysis, we establish that the orbital character variation of the Fermi surface is the key factor of the anisotropic gap. Since the electronic states that consist of mainly Ni 3 d orbitals couple weakly with phonons, the superconducting gap function is suppressed for the corresponding states, which results in the anisotropy observed in the experiments. These results are hints to increase the transition temperature of materials in the borocarbide family.

  8. A new tetragonal structure type for Li2B2C.

    PubMed

    Pavlyuk, Volodymyr; Milashys, Viktoriya; Dmytriv, Grygoriy; Ehrenberg, Helmut

    2015-01-01

    The ternary dilithium diboron carbide, Li2B2C (tetragonal, space group P-4m2, tP10), crystallizes as a new structure type and consists of structural fragments which are typical for structures of elemental lithium and boron or binary borocarbide B13C2. The symmetries of the occupied sites are .m. and 2mm. for the B and C atoms, and -4m2 and 2mm. for the Li atoms. The coordination polyhedra around the Li atoms are cuboctahedra and 15-vertex distorted pseudo-Frank-Kasper polyhedra. The environment of the B atom is a ten-vertex polyhedron. The nearest neighbours of the C atom are two B atoms, and this group is surrounded by a deformed cuboctahedron with one centred lateral facet. Electronic structure calculations using the TB-LMTO-ASA method reveal strong B...C and B...B interactions.

  9. Allele and genotype frequencies of CYP2B6 and CYP2C19 polymorphisms in Egyptian agricultural workers.

    PubMed

    Ellison, Corie A; Abou El-Ella, Soheir S; Tawfik, Maha; Lein, Pamela J; Olson, James R

    2012-01-01

    Genetic variability in cytochrome P-450 (CYP) has the potential to modify pharmacological and toxicological responses to many chemicals. Both CYP2B6 and CYP2C19 are pharmacologically and toxicologically relevant due to their ability to metabolize multiple drugs and environmental contaminants, including the organophosphorus (OP) pesticide chlorpyrifos. The aim of this study was to determine the prevalence of CYP2B6 and CYP2C19 variants in an indigenous Egyptian population (n = 120) that was shown to be occupationally exposed to chlorpyrifos. Further, the genotyping data was compared for Egyptians with previously studied populations to determine between population differences. Allelic frequencies were CYP2B6 1459C > T (3.8%), CYP2B6 785A > G (30.4%), CYP2B6 516G > T (28.8%), CYP2C19 681G > A (3.8%), and CYP2C19 431G > A (0%). The most prevalent CYP2B6 genotype combinations were CYP2B6 *1/*1 (44%), *1/*6 (38%), *6/*6 (8%), and *1/*5 (6%). The frequency of the CYP2C19 genotype combinations were CYP2C19 *1/*1 (93%), *1/*2 (6%), and *2/*2 (1%). The frequency of the CYP2B6 516G > T and CYP2B6 785A > G polymorphisms in this Egyptian cohort is similar to that found North American and European populations but significantly different from that reported for West African populations, while that of CYP2B6 1459C > T is similar to that found in Africans and African Americans. The observed frequency of CYP2C19 681G > A in Egyptians is similar to that of African pygmies but significantly different from other world populations, while CYP2C19 431 G > A was significantly different from that of African pygmies but similar to other world populations.

  10. Electronic Commerce in Tourism in China: B2B or B2C?

    NASA Astrophysics Data System (ADS)

    Li, Hongxiu; Suomi, Reima

    E-commerce has significantly changed the distribution channels of travel products in the world including China. Online channels are growing important in travel service distribution. In China tourism industry has been developed rapidly with the economic development, more and more international travel service providers are trying to expand their Chinese market through the Internet. This paper sheds lights on the e-commerce development models in China for international travel service providers. It explores the current e-tourism in China from the three different participants in the value chain in tourism industry - consumer, travel agent and travel service provider. The paper also identifies the barriers in B2C arena in international outbound travel market, and discusses the possible approaches for international travel service providers to develop their e-commerce in the huge Chinese market. The results in this study reveal that international travel service providers should focus on B2B model to expand their electronic market in China. B2C development in tourism largely depends on the change of Chinese customers' behavior and the change of international tourism regulations. The findings of the study are expected to assist international travel service providers to understand current e-tourism in China and to support their planning for future e-commerce development in China.

  11. INSAT-2A and 2B development mechanisms

    NASA Technical Reports Server (NTRS)

    Sathyanarayan, M. N.; Rao, M. Nageswara; Nataraju, B. S.; Viswanatha, N.; Chary, M. Laxmana; Balan, K. S.; Murthy, V. Sridhara; Aller, Raju; Kumar, H. N. Suresha

    1994-01-01

    The Indian National Satellite (INSAT) 2A and 2B have deployment mechanisms for deploying the solar array, two C/S band antenna reflectors and a coilable lattice boom with sail. The mechanisms have worked flawlessly on both satellites. The configuration details, precautions taken during the design phase, the test philosophy, and some of the critical analysis activities are discussed.

  12. Effect of CYP2B6*6 and CYP2C19*2 genotype on chlorpyrifos metabolism.

    PubMed

    Crane, Alice L; Klein, Kathrin; Zanger, Ulrich M; Olson, James R

    2012-03-11

    Chlorpyrifos (CPF) is a widely used organophosphorus (OP) pesticide. CPF is bioactivated by cytochrome P450s (CYPs) to the potent cholinesterase inhibitor chlorpyrifos oxon (CPF-O) or detoxified to 3,5,6-trichloro-2-pyridinol (TCPy). Human CYP2B6 has the highest reported Vmax)/Km (intrinsic clearance--CL(int)) for bioactivation while CYP2C19 has the highest reported CL(int) for detoxification of CPF. In this study, 22 human liver microsomes (HLMs) genotyped for common variants of these enzymes (CYP2B6*6 and CYP2C19*2) were incubated with 10 μM and 0.5 μM CPF and assayed for metabolite production. While no differences in metabolite production were observed in homozygous CYP2C19*2 HLMs, homozygous CYP2B6*6 specimens produced significantly less CPF-O than wild-type specimens at 10 μM (mean 144 and 446 pmol/min/mg, respectively). This correlated with reduced expression of CYP2B6 protein (mean 4.86 and 30.1 pmol/mg, for CYP2B6*6 and *1, respectively). Additionally, CYP2B6*1 and CYP2B6*6 were over-expressed in mammalian COS-1 cells to assess for the first time the impact of the CYP2B6*6 variant on the kinetic parameters of CPF bioactivation. The Vmax for CYP2B6*6 (1.05×10⁵ pmol/min/nmol CYP2B6) was significantly higher than that of CYP2B6*1 (4.13×10⁴ pmol/min/nmol CYP2B6) but the K(m) values did not differ (1.97 μM for CYP2B6*6 and 1.84 μM for CYP2B6*1) resulting in CL(int) rates of 53.5 and 22.5 nL/min/nmol CYP2B6 for *6 and *1, respectively. These data suggest that CYP2B6*6 has increased specific activity but reduced capacity to bioactivate CPF in HLMs compared to wild-type due to reduced hepatic protein expression, indicating that individuals with this genotype may be less susceptible to CPF toxicity.

  13. Signatures of spin-glass behaviour in PrIr2B2 and heavy fermion behaviour in PrIr2B2C.

    PubMed

    Anupam; Anand, V K; Hossain, Z; Adroja, D T; Geibel, C

    2011-09-21

    The magnetic and transport properties of PrIr(2)B(2) and PrIr(2)B(2)C have been investigated by dc and ac magnetic susceptibility, specific heat, electrical resistivity and magnetoresistance measurements. PrIr(2)B(2) forms in CaRh(2)B(2)-type orthorhombic crystal structure (space group Fddd). At low fields the dc magnetic susceptibility of PrIr(2)B(2) exhibits a sharp anomaly near 46 K which is followed by an abrupt increase below 10 K with a peak at 6 K, and split-up in ZFC and FC data below 46 K. In contrast, the specific heat exhibits only a broad Schottky type hump near 9 K which indicates that there is no long range magnetic order in this compound. The thermo-remanent magnetization is found to decay very slowly with a mean relaxation time τ = 3917 s. An ac magnetic susceptibility measurement also observes two sharp anomalies; the peak positions strongly depend on the frequency and shift towards high temperature with an increase in frequency, obeying the Vogel-Fulcher law as expected for a canonical spin-glass system. The two spin-glass transitions occur at freezing temperatures T(f1) = 36 K and T(f2) = 3.5 K with shifts in the freezing temperatures per decade of frequency δT(f1) = 0.044 and δT(f2) = 0.09. An analysis of the frequency dependence of the transition temperature with critical slowing down, τ(max)/τ(0) = [(T(f)-T(SG))/T(SG)](-zν), gives τ(0) = 10(-7) s and exponent zν = 8, and the Vogel-Fulcher law gives an activation energy of 84 K for T(f1) and 27.5 K for T(f2). While zν = 8 is typical for spin-glass system, the characteristic relaxation time τ(0) = 10(-7) s is very large and comparable to that of superspin-glass systems. An addition of C in PrIr(2)B(2) leads to PrIr(2)B(2)C which forms in LuNi(2)B(2)C-type tetragonal structure (space group I4/mmm) and remains paramagnetic down to 2 K. The specific heat data show a broad Schottky type anomaly, which could be fairly reproduced with CEF analysis which suggests that the ground state is a

  14. We Need 2C but Not 2B: Developing Serotonin 2C (5-HT2C) Receptor Agonists for the Treatment of CNS Disorders.

    PubMed

    Cheng, Jianjun; Kozikowski, Alan P

    2015-12-01

    The serotonin 2C (5-HT2C ) receptor has been identified as a potential drug target for the treatment of a variety of central nervous system (CNS) disorders, such as obesity, substance abuse, and schizophrenia. In this Viewpoint article, recent progress in developing selective 5-HT2C agonists for use in treating these disorders is summarized, including the work of our group. Challenges in this field and the possible future directions are described. Homology modeling as a method to predict the binding modes of 5-HT2C ligands to the receptor is also discussed. Compared to known ligands, the improved pharmacological profiles of the 2-phenylcyclopropylmethylamine-based 5-HT2C agonists make them preferred candidates for further studies.

  15. We Need 2C but Not 2B: Developing Serotonin 2C (5-HT2C) Receptor Agonists for the Treatment of CNS Disorders

    PubMed Central

    Cheng, Jianjun; Kozikowski, Alan P.

    2016-01-01

    The serotonin 2C (5-HT2C) receptor has been identified as a potential drug target for the treatment of a variety of central nervous system (CNS) disorders, such as obesity, substance abuse, and schizophrenia. In this Viewpoint article, recent progress in developing selective 5-HT2C agonists for use in treating these disorders is summarized, including the work of our group. Challenges in this field and the possible future directions are described. Homology modeling as a method to predict the binding modes of 5-HT2C ligands to the receptor is also discussed. Compared to known ligands, the improved pharmacological profiles of the 2-phenylcyclopropylmethylamine-based 5-HT2C agonists make them preferred candidates for further studies. PMID:26507582

  16. Spatially resolved penetration depth measurements and vortex manipulation in the ferromagnetic superconductor ErNi2B2C

    DOE PAGES

    Wulferding, Dirk; Yang, Ilkyu; Yang, Jinho; ...

    2015-07-31

    We present a local probe study of the magnetic superconductor ErNi2B2C, using magnetic force microscopy at sub-Kelvin temperatures. ErNi2B2C is an ideal system to explore the effects of concomitant superconductivity and ferromagnetism. At 500 mK, far below the transition to a weakly ferromagnetic state, we directly observe a structured magnetic background on the micrometer scale. We determine spatially resolved absolute values of the magnetic penetration depth λ and study its temperature dependence as the system undergoes magnetic phase transitions from paramagnetic to antiferromagnetic, and to weak ferromagnetic, all within the superconducting regime. We estimate the absolute pinning force of Abrikosovmore » vortices, which shows a position dependence and temperature dependence as well, and discuss the possibility of the purported spontaneous vortex formation.« less

  17. Impurity effects on s+g-wave superconductivity in borocarbides Y(Lu)Ni2B2C

    NASA Astrophysics Data System (ADS)

    Yuan, Qingshan; Chen, Hong-Yi; Won, H.; Lee, S.; Maki, K.; Thalmeier, P.; Ting, C. S.

    2003-11-01

    Recently a hybrid s+g-wave pairing was proposed to describe the experimental observation for a nodal structure of the superconducting gap in borocarbide YNi2B2C and possibly LuNi2B2C. In this paper the impurity effects on the s+g-wave superconductivity are studied in both Born and unitarity limits. The quasiparticle density of states and thermodynamics are calculated. It is found that the nodal excitations in the clean system are immediately prohibited by impurity scattering and a finite energy gap increases quickly with the impurity scattering rate. This leads to an activated behavior in the temperature dependence of the specific heat. Qualitative agreement with the experimental results is shown. Comparison with d wave and some anisotropic s waves studied previously is also made.

  18. Role of melatonin, serotonin 2B, and serotonin 2C receptors in modulating the firing activity of rat dopamine neurons.

    PubMed

    Chenu, Franck; Shim, Stacey; El Mansari, Mostafa; Blier, Pierre

    2014-02-01

    Melatonin has been widely used for the management of insomnia, but is devoid of antidepressant effect in the clinic. In contrast, agomelatine which is a potent melatonin receptor agonist is an effective antidepressant. It is, however, a potent serotonin 2B (5-HT(2B)) and serotonin 2C (5-HT(2C)) receptor antagonist as well. The present study was aimed at investigating the in vivo effects of repeated administration of melatonin (40 mg/kg/day), the 5-HT(2C) receptor antagonist SB 242084 (0.5 mg/kg/day), the selective 5-HT(2B) receptor antagonist LY 266097 (0.6 mg/kg/day) and their combination on ventral tegmental area (VTA) dopamine (DA), locus coeruleus (LC) norepinephrine (NE), and dorsal raphe nucleus (DRN) serotonin (5-HT) firing activity. Administration of melatonin twice daily increased the number of spontaneously active DA neurons but left the firing of NE neurons unaltered. Long-term administration of melatonin and SB 242084, by themselves, had no effect on the firing rate and burst parameters of 5-HT and DA neurons. Their combination, however, enhanced only the number of spontaneously active DA neurons, while leaving the firing of 5-HT neurons unchanged. The addition of LY 266097, which by itself is devoid of effect, to the previous regimen increased for DA neurons the number of bursts per minute and the percentage of spikes occurring in bursts. In conclusion, the combination of melatonin receptor activation as well as 5-HT(2C) receptor blockade resulted in a disinhibition of DA neurons. When 5-HT(2B) receptors were also blocked, the firing and the bursting activity of DA neurons were both enhanced, thus reproducing the effect of agomelatine.

  19. Germline and somatic mutations in cyclin-dependent kinase inhibitor genes CDKN1A, CDKN2B, and CDKN2C in sporadic parathyroid adenomas.

    PubMed

    Costa-Guda, Jessica; Soong, Chen-Pang; Parekh, Vaishali I; Agarwal, Sunita K; Arnold, Andrew

    2013-10-01

    The molecular pathogenesis of sporadic parathyroid adenomas is incompletely understood. The possible role of cyclin-dependent kinase inhibitor (CDKI) genes was raised by recognition of cyclin D1 as a parathyroid oncogene, identification of rare germline mutations in CDKI genes in patients with multiple endocrine neoplasia type 1; that in rodents, mutation in Cdkn1b caused parathyroid tumors; and subsequently through identification of rare predisposing germline sequence variants and somatic mutation of CDKN1B, encoding p27(kip1), in sporadic human parathyroid adenoma. We therefore sought to determine whether mutations/variants in the other six CDKI genes CDKN1A, CDKN1C, CDKN2A, CDKN2B, CDKN2C, and CDKN2D, encoding p21, p57, p14(ARF)/p16, p15, p18, and p19, respectively, contribute to the development of typical parathyroid adenomas. In a series of 85 sporadic parathyroid adenomas, direct DNA sequencing identified alterations in five adenomas (6 %): Two contained distinct heterozygous changes in CDKN1A, one germline and one of undetermined germline status; one had a CDKN2B germline alteration, accompanied by loss of the normal allele in the tumor (LOH); two had variants of CDKN2C, one somatic and one germline with LOH. Abnormalities of three of the mutant proteins were readily demonstrable in vitro. Thus, germline mutations/rare variants in CDKN1A, CDKN2B, and CDKN2C likely contribute to the development of a significant subgroup of common sporadic parathyroid adenomas, and somatic mutation in CDKN2C further suggests a direct role for CDKI alteration in conferring a selective growth advantage to parathyroid cells, providing novel support for the concept that multiple CDKIs can play primary roles in human neoplasia.

  20. Experiences and Future Expectations towards Online Courses--An Empirical Study of the B2C-and B2B-Segments

    ERIC Educational Resources Information Center

    Krämer, Andreas; Böhrs, Sandra

    2016-01-01

    This article explores the future potential for the development of online courses. The findings are based on an empirical study with 3 sample groups: (1) B2C segment in Germany, (2) B2C segment in the United States, and (3) B2B segment (international). In the first step the status quo of the use of e-learning in general and online courses in…

  1. Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases.

    PubMed

    Luo, J; Pato, M D; Riordan, J R; Hanrahan, J W

    1998-05-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel activity declines rapidly when excised from transfected Chinese hamster ovary (CHO) or human airway cells because of membrane-associated phosphatase activity. In the present study, we found that CFTR channels usually remained active in patches excised from baby hamster kidney (BHK) cells overexpressing CFTR. Those patches with stable channel activity were used to investigate the regulation of CFTR by exogenous protein phosphatases (PP). Adding PP2A, PP2C, or alkaline phosphatase to excised patches reduced CFTR channel activity by > 90% but did not abolish it completely. PP2B caused weak deactivation, whereas PP1 had no detectable effect on open probability (Po). Interestingly, the time course of deactivation by PP2C was identical to that of the spontaneous rundown observed in some patches after excision. PP2C and PP2A had distinct effects on channel gating Po declined during exposure to exogenous PP2C (and during spontaneous rundown, when it was observed) without any change in mean burst duration. By contrast, deactivation by exogenous PP2A was associated with a dramatic shortening of burst duration similar to that reported previously in patches from cardiac cells during deactivation of CFTR by endogenous phosphatases. Rundown of CFTR-mediated current across intact T84 epithelial cell monolayers was insensitive to toxic levels of the PP2A inhibitor calyculin A. These results demonstrate that exogenous PP2C is a potent regulator of CFTR activity, that its effects on single-channel gating are distinct from those of PP2A but similar to those of endogenous phosphatases in CHO, BHK, and T84 epithelial cells, and that multiple protein phosphatases may be required for complete deactivation of CFTR channels.

  2. Solution structure of the isolated histone H2A-H2B heterodimer

    PubMed Central

    Moriwaki, Yoshihito; Yamane, Tsutomu; Ohtomo, Hideaki; Ikeguchi, Mitsunori; Kurita, Jun-ichi; Sato, Masahiko; Nagadoi, Aritaka; Shimojo, Hideaki; Nishimura, Yoshifumi

    2016-01-01

    During chromatin-regulated processes, the histone H2A-H2B heterodimer functions dynamically in and out of the nucleosome. Although detailed crystal structures of nucleosomes have been established, that of the isolated full-length H2A-H2B heterodimer has remained elusive. Here, we have determined the solution structure of human H2A-H2B by NMR coupled with CS-Rosetta. H2A and H2B each contain a histone fold, comprising four α-helices and two β-strands (α1–β1–α2–β2–α3–αC), together with the long disordered N- and C-terminal H2A tails and the long N-terminal H2B tail. The N-terminal αN helix, C-terminal β3 strand, and 310 helix of H2A observed in the H2A-H2B nucleosome structure are disordered in isolated H2A-H2B. In addition, the H2A α1 and H2B αC helices are not well fixed in the heterodimer, and the H2A and H2B tails are not completely random coils. Comparison of hydrogen-deuterium exchange, fast hydrogen exchange, and {1H}-15N hetero-nuclear NOE data with the CS-Rosetta structure indicates that there is some conformation in the H2A 310 helical and H2B Lys11 regions, while the repression domain of H2B (residues 27–34) exhibits an extended string-like structure. This first structure of the isolated H2A-H2B heterodimer provides insight into its dynamic functions in chromatin. PMID:27181506

  3. Fabrication Report for the AFC-2A and AFC-2B Capsule Irradiations in the ATR

    SciTech Connect

    Timothy A. Hyde

    2007-10-01

    This document provides a general narrative description of the AFC-2A and 2B fuel fabrication processes for the AFC 2A and AFC 2B fuel irradiation experiments fabricated at the Idaho National Laboratory’s Materials and Fuels Complex (MFC) for irradiation in the Advanced Test Reactor (ATR).

  4. Effects of green tea catechins on cytochrome P450 2B6, 2C8, 2C19, 2D6 and 3A activities in human liver and intestinal microsomes.

    PubMed

    Misaka, Shingen; Kawabe, Keisuke; Onoue, Satomi; Werba, José Pablo; Giroli, Monica; Tamaki, Sekihiro; Kan, Toshiyuki; Kimura, Junko; Watanabe, Hiroshi; Yamada, Shizuo

    2013-01-01

    The effects of green tea catechins on the main drug-metabolizing enzymatic system, cytochrome P450 (CYP), have not been fully elucidated. The objective of the present study was to evaluate the effects of green tea extract (GTE, total catechins 86.5%, w/w) and (-)-epigallocatechin-3-gallate (EGCG) on the activities of CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A in vitro, using pooled human liver and intestinal microsomes. Bupropion hydroxylation, amodiaquine N-deethylation, (S)-mephenytoin 4'-hydroxylation, dextromethorphan O-demethylation and midazolam 1'-hydroxylation were assessed in the presence or absence of various concentrations of GTE and EGCG to test their effects on CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A activities, respectively. Each metabolite was quantified using UPLC/ESI-MS, and the inhibition kinetics of GTE and EGCG on CYP enzymes was analyzed. In human liver microsomes, IC50 values of GTE were 5.9, 4.5, 48.7, 25.1 and 13.8 µg/mL, for CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A, respectively. ECGC also inhibited these CYP isoforms with properties similar to those of GTE, and produced competitive inhibitions against CYP2B6 and CYP2C8, and noncompetitive inhibition against CYP3A. In human intestinal microsomes, IC50 values of GTE and EGCG for CYP3A were 18.4 µg/mL and 31.1 µM, respectively. EGCG moderately inhibited CYP3A activity in a noncompetitive manner. These results suggest that green tea catechins cause clinically relevant interactions with substrates for CYP2B6 and CYP2C8 in addition to CYP3A.

  5. Depression of superconducting and antiferromagnetic states in the Dy-rich (U 1- xDy x)Ni 2B 2C solid solutions

    NASA Astrophysics Data System (ADS)

    Gonçalves, António P.; Pereira, Laura C. J.; Kuznietz, Moshe; Almeida, Manuel; Silva, Paulo A. S.; Godinho, Margarida

    2000-06-01

    Polycrystalline Dy-rich (U 1- xDy x)Ni 2B 2C solid solutions ( x=0.97, 0.95, 0.90) were prepared, adopting LuNi 2B 2C-type structure. AC-susceptibility and magnetization studies show that Dy substitution by U (decreasing x) affects the superconducting (SC) and antiferromagnetic (AF) transitions of DyNi 2B 2C [initial magnetic order at 16.3(3) K, AF at 10.4(3) K, SC at ≅6 K], lowering the magnetic transition temperatures, with AF order disappearing for x<0.90. There is no clear evidence for a SC state in the materials down to the lower-temperature limit of 2 K.

  6. Rational Drug Design Leading to the Identification of a Potent 5-HT(2C) Agonist Lacking 5-HT(2B) Activity.

    PubMed

    Chen, Gang; Cho, Sung Jin; Huang, Xi-Ping; Jensen, Niels H; Svennebring, Andreas; Sassano, Maria F; Roth, Bryan L; Kozikowski, Alan P

    2011-12-08

    The 5-HT(2C) receptor is an attractive drug target in the quest for new therapeutics to treat a variety of human disorders. We have previously undertaken a structural optimization campaign that has led to some potent and moderately selective 5-HT(2C) receptor agonists. After expanding our structure-function library, we were able to combine our datasets so as to allow the design of compounds of improved selectivity and potency. We disclose herein the structural optimization of our previously reported 5-HT(2B)/5-HT(2C) agonists, which has led to the identification of a highly selective 5-HT(2C) agonist, (+)-trans-[2-(2-cyclopropylmethoxyphenyl)cyclopropyl]methylamine hydrochloride, with an EC(50) of 55 nM and no detectable agonism at the 5-HT(2B) receptor.

  7. Acid-Sensing Ion Channel 2a (ASIC2a) Promotes Surface Trafficking of ASIC2b via Heteromeric Assembly

    PubMed Central

    Kweon, Hae-Jin; Kim, Dong-Il; Bae, Yeonju; Park, Jae-Yong; Suh, Byung-Chang

    2016-01-01

    Acid-sensing ion channels (ASICs) are proton-activated cation channels that play important roles as typical proton sensors during pathophysiological conditions and normal synaptic activities. Among the ASIC subunits, ASIC2a and ASIC2b are alternative splicing products from the same gene, ACCN1. It has been shown that ASIC2 isoforms have differential subcellular distribution: ASIC2a targets the cell surface by itself, while ASIC2b resides in the ER. However, the underlying mechanism for this differential subcellular localization remained to be further elucidated. By constructing ASIC2 chimeras, we found that the first transmembrane (TM1) domain and the proximal post-TM1 domain (17 amino acids) of ASIC2a are critical for membrane targeting of the proteins. We also observed that replacement of corresponding residues in ASIC2b by those of ASIC2a conferred proton-sensitivity as well as surface expression to ASIC2b. We finally confirmed that ASIC2b is delivered to the cell surface from the ER by forming heteromers with ASIC2a, and that the N-terminal region of ASIC2a is additionally required for the ASIC2a-dependent membrane targeting of ASIC2b. Together, our study supports an important role of ASIC2a in membrane targeting of ASIC2b. PMID:27477936

  8. The interplay between magnetism and superconductivity in RNi 2B 2C (R dbnd Lu, Tm, Er, Ho, Dy, Tb, Gd)

    NASA Astrophysics Data System (ADS)

    El Massalami, M.; Bud'ko, S. L.; Giordanengo, B.; Baggio-Saitovitch, E. M.

    1995-02-01

    The superconducting and magnetic phase diagram (characteristic temperatures versus effective ionic radii) of the RNi 2B 2C (R dbnd Lu, Tm, Er, Ho, Dy, Tb, Gd) compounds are considered. Although the gradual degradation of superconductivity can be scaled to the de Gennes factor, ( g-1) 2J( J + 1), the unique reentrant behavior of the HoNi 2B 2C compound and the abrupt quenching of superconductivity for R lighter than Ho are most probably unaccountable within this scheme. Rather, it is argued that their low- T magnetic and transport properties as well as the main features of the interplay between magnetism and superconductivity can be accounted for if the low- T magnetism of HoNi 2B 2C, as reported by Grigereit et al., is generalized to the other isomorphous R members. Thus the onset of the 4f moments antiferromagnetic state at T1 is accompanied by an oscillatory component, which transforms to a commensurate antiferromagnetic state at T2. For HoNi 2B 2C, the pressure and magnetic-field influence on Tc, T1 and T2 will be discussed.

  9. Project Description Advanced Fuel Cycle Initiative AFC-2A and AFC-2B Experiments

    SciTech Connect

    AFCI AFC-2A and AFC-2B Experiments Project Executi

    2007-03-01

    The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the AFC-1 fuel test series currently in progress in the ATR. This document discusses the experiments and the planned activities that will take place.

  10. Expression and Function of Serotonin 2A and 2B Receptors in the Mammalian Respiratory Network

    PubMed Central

    Koch, Uwe R.; Bischoff, Anna-Maria; Kron, Miriam; Bock, Nathalie; Manzke, Till

    2011-01-01

    Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs) that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT2A, 5-HT2B, and 5-HT2C receptors that are directed towards protein kinase C (PKC). In contrast to 5-HT2ARs, expression and function of 5-HT2BRs within the respiratory network are still unclear. 5-HT2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT2ARs and 5-HT2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation. PMID:21789169

  11. SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other.

    PubMed

    Maures, Travis J; Kurzer, Jason H; Carter-Su, Christin

    2007-01-01

    Src homology 2 (SH2) B adaptor protein 1 (SH2B1; originally named SH2-B) is a member of a family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase (JAK) and receptor tyrosine kinases. Although SH2B1 performs classical adaptor functions, such as recruitment of specific proteins to activated receptors, it also demonstrates a unique ability to enhance the kinase activity of the cytokine receptor-associated tyrosine kinase JAK2, as well as that of several receptor tyrosine kinases. SH2B1 is also among a small number of adaptor proteins shown to undergo nucleocytoplasmic shuttling, although its exact role within the nucleus is not yet clear. Deletion of the SH2B1 gene results in severe obesity and both leptin and insulin resistance, as well as infertility, which might be a consequence of resistance to insulin-like growth factor I. Thus, knockout mice support a role for SH2B1 as a positive regulator of JAK2 signaling pathways initiated by leptin, as well as of pathways initiated by insulin and, potentially, by insulin-like growth factor I.

  12. The effect of a paramagnetic metal ion within a molecule: comparison of the structurally identical paramagnetic [3,3-Fe(1,2-C2B9H11)2]- with the diamagnetic [3,3-Co(1,2-C2B9H11)2]- sandwich complexes.

    PubMed

    Cioran, Ana M; Teixidor, Francesc; Viñas, Clara

    2015-02-14

    Derivatives of the ferrabisdicarbollide [3,3'-Fe(1,2-C(2)B(9)H(11))(2)](-) have been produced starting from the zwitterion [3,3'-Fe(8-(OCH(2)CH(2))(2)-1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))], 1, upon reaction with nucleophiles: alkoxides, halides and hydrosulfide ions HS(-). The result has been the preparation of [3,3'-Fe(8-(OCH(2)CH(2))(2)R/X-1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))] (R = OMe, [2](-); OEt, [3](-); OCH(2)CH(2)OCH(3), [4](-); and X = Cl, [5](-); Br, [6](-); I, [7](-); and SH, [8](-)). The reaction behavior of is comparable to the well-studied cobalt equivalent, [3,3'-Co(8-(OCH(2)CH(2))2-1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))], and the yields and stability of the resulting complexes are similar. These results are relevant taking into account that [3,3'-Fe(1,2-C(2)B(9)H(11))(2))(-) is a paramagnetic anion. Implications of this are observed in the (11)B-, (1)H and (13)C NMR spectra of [3,3'-Co(1,2-C(2)B(9)H(11))(2)](-) and [3,3'-Fe(1,2-C(2)B(9)H(11))(2)](-) that having identical sandwich molecular structures and the same negative charge have absolutely different widths of the NMR field, between 15 and -25 ppm for [3,3'-Co(1,2-C(2)B(9)H(11))(2)](-) and in the range 150 to -550 ppm for [3,3'-Fe(1,2-C(2)B(9)H(11))(2)](-). The sharpness of both spectra is on the other hand comparable, although no B-H couplings are observed in the Fe metallacarborane or its derivatives. Remarkable is the comparative influence vs. [3,3'-Co(1,2-C(2)B(9)H(11))(2)](-) of replacing Co by Fe on the elements of the cluster layer nearest to the metal. The two equivalent C cluster (Cc) atoms are influenced at 36 840 Hz, the two equivalent B atoms that are adjacent to the two Cc are influenced at 38 157 Hz and the single B that is adjacent to the two B atoms is influenced at 44 062 Hz. Remarkable is the similar influence on B and on C, taking into account that the values have been obtained from two distinct NMR spectra of (11)B and (13)C. The {(11)B-(11)B} COSY NMR and {(1)H

  13. Molecular modelling of CYP2B6 based on homology with the CYP2C5 crystal structure: analysis of enzyme-substrate interactions.

    PubMed

    Lewis, David F V; Lake, Brian G; Dickins, Maurice; Goldfarb, Peter S

    2002-01-01

    The results of homology modelling of CYP2B6 based on the CYP2C5 crystal structure is described in terms of substrates and inhibitors binding within the putative active site. In general these results are in agreement with currently available evidence from substrate metabolism, mode of inhibitor action and site-directed mutagenesis experiments within the CYP2B subfamily of enzymes. Consequently, the model based on the CYP2C5 template represents an advance on those models produced from bacterial P450s, such as CYP101 and CYP102. Quantitative Structure-Activity Relationships (QSARs) for substrates binding to CYP2B6 indicate a key role for hydrogen bonding, and lipophilic character, as determined by the log P parameter (where P is the octanol/water partition coefficient), is also of importance for explaining the variation in experimental binding affinity for CYP2B6 substrates. It is possible to estimate the binding energies for typical CYP2B6 substrates based on their properties and interactions with the enzyme, which show good concordance with experimental data in the form of apparent Km values.

  14. Molecular level activation insights from a NR2A/NR2B agonist.

    PubMed

    Ieong Tou, Weng; Chang, Su-Sen; Wu, Dongchuan; Lai, Ted Weita; Wang, Yu Tian; Hsu, Chung Y; Chen, Calvin Yu-Chian

    2014-01-01

    N-methyl D-aspartate receptors (NMDARs), a subclass of glutamate receptors have broad actions in neural transmission for major brain functions. Overactivation of NMDARs leading to "excitotoxicity" is the underlying mechanism of neuronal death in a number of neurological diseases, especially stroke. Much research effort has been directed toward developing pharmacological agents to modulate NMDAR actions for treating neurological diseases, in particular stroke. Here, we report that Alliin, a sulfoxide in fresh garlic, exhibits affinity toward NR2A as well as NR2B receptors based on virtual screening. Biological activities of Alliin on these two receptors were confirmed in electrophysiological studies. Ligand-binding site closure, a structural change precluding ion channel opening, was observed with Alliin during 100 ns molecular dynamics simulation. Alliin interactions with NR2A and NR2B suggest that residues E/A413, H485, T690, and Y730 may play important roles in the conformation shift. Activation of NR2A and NR2B by Alliin can be differentiated from that caused by glutamate, the endogenous neurotransmitter. These characteristic molecular features in NR2A and NR2B activation provide insight into structural requirements for future development of novel drugs with selective interaction with NR2A and NR2B for treating neurological diseases, particularly stroke.

  15. Differential expression of hoxa2a and hoxa2b genes during striped bass embryonic development.

    PubMed

    Scemama, Jean-Luc; Vernon, Jamie L; Stellwag, Edmund J

    2006-10-01

    Here, we report the cloning and expression analysis of two previously uncharacterized paralogs group 2 Hox genes, striped bass hoxa2a and hoxa2b, and the developmental regulatory gene egr2. We demonstrate that both Hox genes are expressed in the rhombomeres of the developing hindbrain and the pharyngeal arches albeit with different spatio-temporal distributions relative to one another. While both hoxa2a and hoxa2b share the r1/r2 anterior boundary of expression characteristic of the hoxa2 paralog genes of other species, hoxa2a gene expression extends throughout the hindbrain, whereas hoxa2b gene expression is restricted to the r2-r5 region. Egr2, which is used in this study as an early developmental marker of rhombomeres 3 and 5, is expressed in two distinct bands with a location and spacing typical for these two rhombomeres in other species. Within the pharyngeal arches, hoxa2a is expressed at higher levels in the second pharyngeal arch, while hoxa2b is more strongly expressed in the posterior arches. Further, hoxa2b expression within the arches becomes undetectable at 60hpf, while hoxa2a expression is maintained at least up until the beginning of chondrogenesis. Comparison of the striped bass HoxA cluster paralog group 2 (PG2) genes to their orthologs and trans-orthologs shows that the striped bass hoxa2a gene expression pattern is similar to the overall expression pattern described for the hoxa2 genes in the lobe-finned fish lineage and for the hoxa2b gene from zebrafish. It is notable that the pharyngeal arch expression pattern of the striped bass hoxa2a gene is more divergent from its sister paralog, hoxa2b, than from the zebrafish hoxa2b gene. Overall, our results suggest that differences in the Hox PG2 gene complement of striped bass and zebrafish affects both their rhombomeric and pharyngeal arch expression patterns and may account for the similarities in pharyngeal arch expression between striped bass hoxa2a and zebrafish hoxa2b.

  16. Effect of maitake (Grifola frondosa) water extract on inhibition of adipocyte conversion of C3H10T1/2B2C1 cells.

    PubMed

    Nakai, R; Masui, H; Horio, H; Ohtsuru, M

    1999-06-01

    We investigated the effect of maitake (Grifola frondosa) water extract on inhibiting the conversion of C3H10T1/2B2C1 cells into adipocytes. Maitake water extract was fractionated by molecular sieve. Heat-labile compounds strongly inhibiting adipocyte conversion proved to occur in fractions of molecular weight of more than 10,000 on the basis of activity measurement of glycerol-3-phosphate dehydrogenase.

  17. Structural, transport, magnetic and superconducting properties of the pseudo-quaternary intermetallic system (Y1-xGdx)Ni2B2C

    NASA Astrophysics Data System (ADS)

    El Massalami, M.; Bud'Ko, S. L.; Giordanengo, B.; Fontes, M. B.; Mondragon, J. C.; Baggio-Saitovitch, E. M.

    1994-12-01

    The superconducting and the magnetic phase diagram (in x-T plane) of the pseudo-quaternary (Y1-xGdx)Ni2B2C series is obtained. Superconductivity is observed to be montonically degraded with Gd- concentration for x < 0.25. For higher x, two magnetic transitions are observed. The nature of these transitions and their influence on the measured physical properties will be discussed.

  18. Structural, transport, magnetic and superconducting properties of the pseudo-quaternary intermetallic system (Y 1-xGd x)Ni 2B 2C

    NASA Astrophysics Data System (ADS)

    Massalami, M. El; Bud'ko, S. L.; Giordanengo, B.; Fontes, M. B.; Mondragon, J. C.; Baggio-Saitovitch, E. M.

    1994-12-01

    The superconducting and the magnetic phase diagram (in x-T plane) of the pseudo-quaternary (Y 1-xGd x)Ni 2B 2C series is obtained. Superconductivity is observed to be montonically degraded with Gd-concentration for x < 0.25. For higher x, two magnetic transitions are observed. The nature of these transitions and their influence on the measured physical properties will be discussed.

  19. Textbook Evaluation: An Analysis of Listening Comprehension Parts in Top Notch 2A & 2B

    ERIC Educational Resources Information Center

    Soori, Afshin; Haghani, Elham

    2015-01-01

    Textbooks are the instruments that assist both teachers and learners in process of second language learning. With respect to the importance of textbooks in a language course, evaluation of course books is a significant issue for most researchers. The present study investigated and analyzed Listening Comprehension parts in Top Notch 2A & 2B 2nd…

  20. Analysis of substrate specificity of pig CYP2B22 and CYP2C49 towards herbicides by transgenic rice plants.

    PubMed

    Kawahigashi, Hiroyuki; Hirose, Sakiko; Ozawa, Kenjirou; Ido, Yoshiko; Kojima, Misaki; Ohkawa, Hideo; Ohkawa, Yasunobu

    2005-12-01

    We introduced two novel types of pig (Sus scrofa) cytochrome P450, CYP2B22 and CYP2C49, into rice plants (Oryza sativa L. cv. 'Nipponbare') to produce herbicide-tolerant plants and to confirm the metabolic activities of the cytochrome P450 species. In germination tests, both types of transgenic plants showed tolerance to various herbicides with different modes of action. CYP2B22 rice plants showed tolerance towards 12 herbicides including chlortoluron (100 microM), amiprofos-methyl (2.5 microM), pendimethalin (10 microM), metolachlor (2.5 microM), and esprocarb (20 microM). CYP2C49 rice plants showed tolerance towards 13 herbicides, including chlortoluron (100 microM), norflurazon (0.5 microM), amiprofos-methyl (2.5 microM), alachlor (0.8 microM), and isoxaben (1 microM). The herbicide tolerance was considered to reflect the substrate specificity of the introduced P450 species. We used (14)C-labeled metolachlor and norflurazon to confirm the P450 activity in the transgenic rice plants. The herbicides were metabolized more quickly in the transgenic rice plants than in the nontransgenic rice plants. Therefore, CYP2B22 and CYP2C49 rice plants became more tolerant to various herbicides than nontransgenic control plants because of accelerated metabolism of the herbicides by the introduced P450 species. Assuming that public and commercial acceptance is forthcoming, these transgenic rice plants may become useful tools for the breeding of herbicide-tolerant crops.

  1. Field angle dependence of the zero-energy density of states in unconventional superconductors: analysis of the borocarbide superconductor YNi2B2C

    NASA Astrophysics Data System (ADS)

    Nagai, Yuki; Hayashi, Nobuhiko; Kato, Yusuke; Yamauchi, Kunihiko; Harima, Hisatomo

    2009-03-01

    We investigate the field-angle-dependent zero-energy density of states for YNi2B2C with using realistic Fermi surfaces obtained by band calculations. Both the 17th and 18th bands are taken into account. For calculating the oscillating density of states, we adopt the Kramer-Pesch approximation, which is found to improve accuracy in the oscillation amplitude. We show that superconducting gap structure determined by analyzing STM experiments is consistent with thermal transport and heat capacity measurements.

  2. Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development

    PubMed Central

    TeSlaa, Jessica J.; Keller, Abigail N.; Nyholm, Molly K.; Grinblat, Yevgenya

    2013-01-01

    Holoprosencephaly (HPE), the most common malformation of the human forebrain, is associated with defects of the craniofacial skeleton. ZIC2, a zinc-finger transcription factor, is strongly linked to HPE and to a characteristic set of dysmorphic facial features in humans. We have previously identified important functions for zebrafish Zic2 in the developing forebrain. Here, we demonstrate that ZIC2 orthologs zic2a and zic2b also regulate the forming zebrafish craniofacial skeleton, including the jaw and neurocranial cartilages, and use the zebrafish to study Zic2-regulated processes that may contribute to the complex etiology of HPE. Using temporally controlled Zic2a overexpression, we show that the developing craniofacial cartilages are sensitive to Zic2 elevation prior to 24hpf. This window of sensitivity overlaps the critical expansion and migration of the neural crest (NC) cells, which migrate from the developing neural tube to populate vertebrate craniofacial structures. We demonstrate that zic2b influences the induction of NC at the neural plate border, while both zic2a and zic2b regulate NC migratory onset and strongly contribute to chromatophore development. Both Zic2 depletion and early ectopic Zic2 expression cause moderate, incompletely penetrant mispatterning of the NC-derived jaw precursors at 24hpf, yet by 2dpf these changes in Zic2 expression result in profoundly mispatterned chondrogenic condensations. We attribute this discrepancy to an additional role for Zic2a and Zic2b in patterning the forebrain primordium, an important signaling source during craniofacial development. This hypothesis is supported by evidence that transplanted Zic2-deficient cells can contribute to craniofacial cartilages in a wild-type background. Collectively, these data suggest that zebrafish Zic2 plays a dual role during craniofacial development, contributing to two disparate aspects of craniofacial morphogenesis: (1) Neural crest induction and migration, and (2) early

  3. Shallow oceanic crust: Full waveform tomographic images of the seismic layer 2A/2B boundary

    NASA Astrophysics Data System (ADS)

    Christeson, Gail L.; Morgan, Joanna V.; Warner, Michael R.

    2012-05-01

    We present results of full-waveform tomographic inversions of four profiles acquired over young intermediate- and fast spreading rate oceanic crust. The mean velocity-depth functions from our study include a 0.25-0.30 km-thick low-velocity, low-gradient region beneath the seafloor overlying a 0.24-0.28-km-thick high-gradient region; together these regions compose seismic layer 2A. Mean layer 2A interval velocities are 3.0-3.2 km/s. The mean depth to the layer 2A/2B boundary is 0.49-0.54 km, and mean velocities within the upper 0.25 km of layer 2B are 4.7-4.9 km/s. Previous velocity analyses of the study areas using 1-D ray tracing underestimate the thickness of the high-gradient region at the base of layer 2A. We observe differences in the waveform inversion velocity models that correspond to imaging of the layer 2A event; regions with a layer 2A event have higher velocity gradients at the base of layer 2A. Intermittent high velocities, which we interpret as massive flows, are observed in the waveform inversion velocity models at 0.05-0.10 km below the seafloor (bsf) over 10-25% of the intermediate-spreading profiles and 20-45% of the fast spreading profiles. The high-gradient region located 0.25-0.54 km bsf at the base of layer 2A may be associated with an increased prevalence of massive flows, the first appearance of dikes (lava-dike transition zone), or with increased crack sealing by hydrothermal products. The upper portion of layer 2B, which begins at 0.49-0.54 km bsf, may correspond to sheeted dikes or the top of the transition zone of lavas and dikes.

  4. Transport and Magnetic Properties of Single-Crystal Lu(Ni_1- xCo_x)_2B_2C (x = 0 - 0.09)

    NASA Astrophysics Data System (ADS)

    Cheon, K. O.; Fisher, I. R.; Kogan, V.; Canfield, P. C.

    1998-03-01

    In fields greater than approximately 1 kG (H_crit), the vortex lattice of LuNi_2B_2C has a four-fold (square) symmetry. Weaker applied fields result in a triangular vortex lattice. Theoretical models of this phase transition involve both the coherence length and the mean free path. Small amounts of cobalt substitution allow for the careful adjustment of both quantities, and provides a practical method for increasing H_crit. Results of resistivity and dc-magnetic susceptibility measurements are presented for single-crystal samples of Lu(Ni_1-xCo_x)_2B_2C (x = 0 - 0.09). Residual resistivities (ρ_0) are a factor of five smaller than values obtained for polycrystalline samples. We find that (ρ_0) increases by 1.5 μΩcm per percent Co. Implications of these results for values of the hex-to-square vortex lattice transition will be discussed. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. W-7405-Eng-82.

  5. Theoretical study of the 2A2-2B2 separation of the alkali superoxides

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Sodupe, Mariona; Partridge, Harry; Langhoff, Stephen R.

    1992-01-01

    The computed 2A2-2B2 separations of the alkali superoxides are in good agreement with those deduced from electron-spin resonance spectra. The calculations definitively show that the ground state of CsO2 is 2A2. The larger than expected separation for CsO2, based on the trend from LiO2 to RbO2, is attributed primarily to the differential effects of core relaxation. The CsO2 dissociation energy is computed to be 42.7 kcal/mol, with an uncertainty conservatively estimated as +/- 4 kcal/mol.

  6. Identification of high-risk Listeria monocytogenes serotypes in lineage I (serotype 1/2a, 1/2c, 3a and 3c) using multiplex PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: Using molecular subtyping techniques, Listeria monocytogenes is divided into three major phylogenetic lineages, and a multiplex PCR method can differentiate five L. monocytogenes subgroups: 1/2a-3a, 1/2c-3c, 1/2b-3b-7, 4b-4d-4e, and 4a-4c. In the current study, we conducted genome comparison...

  7. Recent spreading of a divergent canine parvovirus type 2a (CPV-2a) strain in a CPV-2c homogenous population.

    PubMed

    Pérez, Ruben; Bianchi, Pablo; Calleros, Lucía; Francia, Lourdes; Hernández, Martín; Maya, Leticia; Panzera, Yanina; Sosa, Katia; Zoller, Stephanie

    2012-03-23

    Canine parvovirus type 2 (CPV-2), which causes acute hemorrhagic enteritis in dogs, is comprised of three antigenic variants (2a, 2b, and 2c) that are distributed worldwide with different frequencies. Variant prevalence was analyzed in 150 CPV-2-positive samples collected from the Uruguayan dog population in 2007-2010. Samples were analyzed with polymerase chain reaction, restriction fragment length polymorphism, and sequencing of the coding region for the largest and most variable loop of the VP2 capsid protein. CPV-2c was the only strain detected from 2007 to 2009. Uruguayan CPV-2c showed high homogeneity in both nucleotide and amino acid sequences, indicating a low level of genetic variability. In 2010, an unexpected epidemiological change occurred in Uruguay as a consequence of the appearance of a novel CPV-2a strain. This variant rapidly spread through the Uruguayan dog population and was detected in 20 of the 52 cases (38%) analyzed in 2010. CPV-2a sequences were identical in all field viruses analyzed, and in addition to the characteristic 426Asn residue, the sequences showed amino acid substitutions (267Tyr, 324Ile, and 440Ala) not observed in the Uruguayan CPV-2c. These data and the first detection in April 2010 suggest that the CPV-2a variant recently emerged in Uruguay and underwent clonal expansion. This observation is the first case in which a CPV-2a variant increased its frequency in a dog population where CPV-2c was prevalent. Our results emphasize the dynamic changes in CPV variants and highlight the importance of ongoing surveillance programs to provide a better understanding of virus epidemiology.

  8. Spherical neutron polarimetry of the magnetic structure in HoNi{sub 2}B{sub 2}C: Interplay between magnetic phases and superconductivity

    SciTech Connect

    Schneider, M.; Zaharko, O.; Gasser, U.; Kreyssig, A.; Brown, P. J.; Canfield, P. C.

    2006-09-01

    Spherical neutron polarimetry has been used to answer open questions about different magnetic phases in HoNi{sub 2}B{sub 2}C, which are important in their interplay with superconductivity. We established that the incommensurate a{sup *} structure of k{sub 3}=(0.585 0 0) at 5.4 K in a zero magnetic field is a transverse-amplitude modulated wave with the magnetic moment along the b direction of the tetragonal structure. The depolarization of a neutron beam scattered from the k{sub 2}=(0 0 0.915) reflections reveals a multidomain state but does not allow an unambiguous determination of the spin configuration. Based on present knowledge of borocarbides and other rare-earth systems we give preference to a long-range incommensurate helical structure as the origin of the k{sub 2}=(0 0 0.915) reflections.

  9. Field-induced gapless electron pocket in the superconducting vortex phase of YNi2B2C as probed by magnetoacoustic quantum oscillations

    NASA Astrophysics Data System (ADS)

    Nössler, J.; Seerig, R.; Yasin, S.; Uhlarz, M.; Zherlitsyn, S.; Behr, G.; Drechsler, S.-L.; Fuchs, G.; Rosner, H.; Wosnitza, J.

    2017-01-01

    By use of ultrasound studies we resolved magnetoacoustic quantum oscillation deep into the mixed state of the multiband nonmagnetic superconductor YNi2B2C . Below the upper critical field, only a very weak additional damping appears that can be well explained by the field inhomogeneity caused by the flux-line lattice in the mixed state. This is clear evidence for no or a vanishingly small gap for one of the bands, namely, the spheroidal α band. This contrasts de Haas-van Alphen data obtained by use of torque magnetometry for the same sample, with a rapidly vanishing oscillation signal in the mixed state. This points to a strongly distorted flux-line lattice in the latter case that, in general, can hamper a reliable extraction of gap parameters by use of such techniques.

  10. Phylogenetic relationships of Mongolian Babesia bovis isolates based on the merozoite surface antigen (MSA)-1, MSA-2b, and MSA-2c genes.

    PubMed

    Altangerel, Khukhuu; Sivakumar, Thillaiampalam; Battsetseg, Badgar; Battur, Banzragch; Ueno, Akio; Igarashi, Ikuo; Yokoyama, Naoaki

    2012-03-23

    We conducted a molecular epidemiological study on Babesia bovis in Mongolia. Three hundred blood samples collected from cattle grazed in seven different districts were initially screened using a previously established diagnostic polymerase chain reaction (PCR) assay for the detection of B. bovis-specific DNA. Positive samples were then used to amplify and sequence the hyper-variable regions of three B. bovis genes encoding the merozoite surface antigen (MSA)-1, MSA-2b, and MSA-2c. The diagnostic PCR assay detected B. bovis among cattle populations of all districts surveyed (4.4-26.0%). Sequences of each of the three genes were highly homologous among the Mongolian isolates, and found in a single phylogenetic cluster. In particular, a separate branch was formed only by the Mongolian isolates in the MSA-2b gene-based phylogenetic tree. Our findings indicate that effective preventative and control strategies are essential to control B. bovis infection in Mongolian cattle populations, and suggest that a careful approach must be adopted when using immunization techniques.

  11. Sequential, Divergent and Cooperative Requirements of Foxl2a and Foxl2b in Ovary Development and Maintenance of Zebrafish.

    PubMed

    Yang, Yan-Jing; Wang, Yang; Li, Zhi; Zhou, Li; Gui, Jian-Fang

    2017-02-13

    Foxl2 is essential for mammalian ovary maintenance. Although sexually dimorphic expression of foxl2 was observed in many teleost, its role and regulative mechanism in fish remained largely unclear. In this study, we first identified two transcript variants of foxl2a and its homologous gene foxl2b in zebrafish, and revealed their specific expression in follicular layer cells in a sequential and divergent fashion during ovary differentiation, maturation and maintenance. Then, homozygous foxl2a mutants (foxl2a(-/-)) and foxl2b mutants (foxl2b(-/-)) were constructed, and detailed comparisons, such as sex ratio, gonadal histological structure, transcriptome profiling and dynamic expression of gonadal development-related genes, were carried out. Initial ovarian differentiation and oocyte development occur normally both in foxl2a(-/-) and foxl2b(-/-) mutants, but foxl2a and foxl2b disruptions result in premature ovarian failure and partial sex reversal in adult females respectively. In foxl2a(-/-) female mutants, sox9a-amh/cyp19a1a signaling was up-regulated at 150 day post fertilization (dpf) and subsequently triggers oocyte apoptosis after 180 dpf. In contrast, dmrt1 expression was greater at 105 dpf and increased several hundred fold in foxl2b(-/-) mutated ovaries at 270 dpf, along with other testis-related genes. Finally, homozygous foxl2a(-/-)/foxl2b(-/-) double mutants were constructed, in which complete sex reversal occurs early and testis-differentiation genes robustly increase at 60 dpf. Given mutual compensation between foxl2a and foxl2b in foxl2b(-/-) and foxl2a(-/-) mutants, we proposed a model, in which foxl2a and foxl2b cooperate to regulate zebrafish ovary development and maintenance, with foxl2b potentially having a dominant role in preventing the ovary from differentiating as testis, as compared to foxl2a.

  12. Summary report on the fuel performance modeling of the AFC-2A, 2B irradiation experiments

    SciTech Connect

    Pavel G. Medvedev

    2013-09-01

    The primary objective of this work at the Idaho National Laboratory (INL) is to determine the fuel and cladding temperature history during irradiation of the AFC-2A, 2B transmutation metallic fuel alloy irradiation experiments containing transuranic and rare earth elements. Addition of the rare earth elements intends to simulate potential fission product carry-over from pyro-metallurgical reprocessing. Post irradiation examination of the AFC-2A, 2B rodlets revealed breaches in the rodlets and fuel melting which was attributed to the release of the fission gas into the helium gap between the rodlet cladding and the capsule which houses six individually encapsulated rodlets. This release is not anticipated during nominal operation of the AFC irradiation vehicle that features a double encapsulated design in which sodium bonded metallic fuel is separated from the ATR coolant by the cladding and the capsule walls. The modeling effort is focused on assessing effects of this unanticipated event on the fuel and cladding temperature with an objective to compare calculated results with the temperature limits of the fuel and the cladding.

  13. Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19.

    PubMed

    Kawahigashi, Hiroyuki; Hirose, Sakiko; Ohkawa, Hideo; Ohkawa, Yasunobu

    2006-04-19

    This study evaluated the expression of human cytochrome P450 genes CYP1A1, CYP2B6, and CYP2C19 in rice plants (Oryza sativa cv. Nipponbare) introduced using the plasmid pIKBACH. The transgenic rice plants (pIKBACH rice plants) became more tolerant toward various herbicides than nontransgenic Nipponbare rice plants. Rice plants expressing pIKBACH grown in soil showed tolerance to the herbicides atrazine, metolachlor, and norflurazon and to a mixture of the three herbicides. The degradation of atrazine and metolachlor by pIKBACH rice plants was evaluated to confirm the metabolic activity of the introduced P450s. Although both pIKBACH and nontransgenic Nipponbare rice plants could decrease the amounts of the herbicides in plant tissue and culture medium, pIKBACH rice plants removed greater amounts in greenhouse experiments. The ability of pIKBACH rice plants to remove atrazine and metolachlor from soil was confirmed in large-scale experiments. The metabolism of herbicides by pIKBACH rice plants was enhanced by the introduced P450 species. Assuming that public and commercial acceptance is forthcoming, pIKBACH rice plants may become useful tools for the breeding of herbicide-tolerant crops and for phytoremediation of environmental pollution by organic chemicals.

  14. Cellular localization and effects of ectopically expressed hepatitis A virus proteins 2B, 2C, 3A and their intermediates 2BC, 3AB and 3ABC.

    PubMed

    Seggewiß, Nicole; Kruse, Hedi Verena; Weilandt, Rebecca; Domsgen, Erna; Dotzauer, Andreas; Paulmann, Dajana

    2016-04-01

    In the course of hepatitis A virus (HAV) infections, the seven nonstructural proteins and their intermediates are barely detectable. Therefore, little is known about their functions and mechanisms of action. Ectopic expression of the presumably membrane-associated proteins 2B, 2C, 3A and their intermediates 2BC, 3AB and 3ABC allowed the intracellular localization of these proteins and their possible function during the replication cycle of HAV to be investigated. In this study, we used rhesus monkey kidney cells, which are commonly used for cell culture experiments, and human liver cells, which are the natural target cells. We detected specific associations of these proteins with distinct membrane compartments and the cytoskeleton, different morphological alterations of the respective structures, and specific effects on cellular functions. Besides comparable findings in both cell lines used with regard to localization and effects of the proteins examined, we also found distinct differences. The data obtained identify so far undocumented interactions with and effects of the HAV proteins investigated on cellular components, which may reflect unknown aspects of the interaction of HAV with the host cell, for example the modification of the ERGIC (ER-Golgi intermediate compartment) structure, an interaction with lipid droplets and lysosomes, and inhibition of the classical secretory pathway.

  15. Mass spectrometric approach for characterizing the disordered tail regions of the histone H2A/H2B dimer.

    PubMed

    Saikusa, Kazumi; Nagadoi, Aritaka; Hara, Kana; Fuchigami, Sotaro; Kurumizaka, Hitoshi; Nishimura, Yoshifumi; Akashi, Satoko

    2015-02-17

    The histone H2A/H2B dimer is a component of nucleosome core particles (NCPs). The structure of the dimer at the atomic level has not yet been revealed. A possible reason for this is that the dimer has three intrinsically disordered tail regions: the N- and C-termini of H2A and the N-terminus of H2B. To investigate the role of the tail regions of the H2A/H2B dimer structure, we characterized behaviors of the H2A/H2B mutant dimers, in which these functionally important disordered regions were depleted, using mass spectrometry (MS). After verifying that the acetylation of Lys residues in the tail regions had little effect on the gas-phase conformations of the wild-type dimer, we prepared two histone H2A/H2B dimer mutants: an H2A/H2B dimer depleted of both N-termini (dN-H2A/dN-H2B) and a dimer with the N- and C-termini of H2A and the N-terminus of H2B depleted (dNC-H2A/dN-H2B). We analyzed these mutants using ion mobility-mass spectrometry (IM-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS). With IM-MS, reduced structural diversity was observed for each of the tail-truncated H2A/H2B mutants. In addition, global HDX-MS proved that the dimer mutant dNC-H2A/dN-H2B was susceptible to deuteration, suggesting that its structure in solution was somewhat loosened. A partial relaxation of the mutant's structure was demonstrated also by IM-MS. In this study, we characterized the relationship between the tail lengths and the conformations of the H2A/H2B dimer in solution and gas phases, and demonstrated, using mass spectrometry, that disordered tail regions play an important role in stabilizing the conformation of the core region of the dimer in both phases.

  16. Differential expression of porins OmpP2A and OmpP2B of Haemophilus ducreyi.

    PubMed

    Prather, Derrick T; Bains, Manjeet; Hancock, Robert E W; Filiatrault, Melanie J; Campagnari, Anthony A

    2004-11-01

    Haemophilus ducreyi is a strict human pathogen and the causative agent of the sexually transmitted disease chancroid. The genome of the human-passaged strain of H. ducreyi (35000HP) contains two homologous genes whose protein products have estimated molecular masses of 46 and 43 kDa. A comparative analysis of the deduced amino acid sequences revealed that these proteins share 27 to 33% identity to the outer membrane protein P2 (OmpP2), a major porin of Haemophilus influenzae. Therefore, these proteins have been designated OmpP2A and OmpP2B, respectively. The detection of ompP2A and ompP2B transcripts by reverse transcriptase PCR indicated that these genes were independently transcribed in H. ducreyi 35000HP. Western blot analysis of outer membrane proteins isolated from a geographically diverse collection of H. ducreyi clinical isolates revealed that OmpP2A and OmpP2B were differentially expressed among these strains. Although PCR analysis suggested that ompP2A and ompP2B were conserved among the strains tested, the differential expression observed was due to nucleotide additions and partial gene deletions. Purified OmpP2A and OmpP2B were isolated under nondenaturing conditions, and subsequent analysis demonstrated that these two proteins exhibited porin activity. OmpP2A and OmpP2B are the first porins described for H. ducreyi.

  17. FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs.

    PubMed

    Kemble, David J; McCullough, Laura L; Whitby, Frank G; Formosa, Tim; Hill, Christopher P

    2015-10-15

    FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C termini of each subunit. Mutations throughout these regions affect binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions.

  18. FACT disrupts nucleosome structure by binding H2A-H2B with conserved peptide motifs

    PubMed Central

    Kemble, David J.; McCullough, Laura L.; Whitby, Frank G.; Formosa, Tim; Hill, Christopher P.

    2015-01-01

    SUMMARY FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C-termini of each subunit. Mutations throughout these regions impact binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions. PMID:26455391

  19. The H2A.Z/H2B dimer is unstable compared to the dimer containing the major H2A isoform

    PubMed Central

    Placek, Brandon J.; Harrison, L. Nicole; Villers, Brooke M.; Gloss, Lisa M.

    2005-01-01

    The nucleosome, the basic fundamental repeating unit of chromatin, contains two H2A/H2B dimers and an H3/H4 tetramer. Modulation of the structure and dynamics of the nucleosome is an important regulation mechanism of DNA-based chemistries in the eukaryotic cell, such as transcription and replication. One means of altering the properties of the nucleosome is by incorporation of histone variants. To provide insights into how histone variants may impact the thermodynamics of the nucleosome, the stability of the heterodimer between the H2A.Z variant and H2B was determined by urea-induced denaturation, monitored by far-UV circular dichroism, intrinsic Tyr fluorescence intensity, and anisotropy. In the absence of stabilizing agents, the H2A.Z/H2B dimer is only partially folded. The stabilizing cosolute, trimethylamine-N-oxide (TMAO) was used to promote folding of the unstable heterodimer. The equilibrium stability of the H2A.Z/H2B dimer is compared to that of the H2A/H2B dimer. The equilibrium folding of both histone dimers is highly reversible and best described by a two-state model, with no detectable equilibrium intermediates populated. The free energies of unfolding, in the absence of denaturant, of H2A.Z/H2B and H2A/H2B are 7.3 kcal mol−1 and 15.5 kcal mol−1, respectively, in 1 M TMAO. The H2A.Z/H2B dimer is the least stable histone fold characterized to date, while H2A/H2B appears to be the most stable. It is speculated that this difference in stability may contribute to the different biophysical properties of nucleosomes containing the major H2A and the H2A.Z variant. PMID:15632282

  20. The H2A.Z/H2B dimer is unstable compared to the dimer containing the major H2A isoform.

    PubMed

    Placek, Brandon J; Harrison, L Nicole; Villers, Brooke M; Gloss, Lisa M

    2005-02-01

    The nucleosome, the basic fundamental repeating unit of chromatin, contains two H2A/H2B dimers and an H3/H4 tetramer. Modulation of the structure and dynamics of the nucleosome is an important regulation mechanism of DNA-based chemistries in the eukaryotic cell, such as transcription and replication. One means of altering the properties of the nucleosome is by incorporation of histone variants. To provide insights into how histone variants may impact the thermodynamics of the nucleosome, the stability of the heterodimer between the H2A.Z variant and H2B was determined by urea-induced denaturation, monitored by far-UV circular dichroism, intrinsic Tyr fluorescence intensity, and anisotropy. In the absence of stabilizing agents, the H2A.Z/H2B dimer is only partially folded. The stabilizing cosolute, trimethylamine-N-oxide (TMAO) was used to promote folding of the unstable heterodimer. The equilibrium stability of the H2A.Z/H2B dimer is compared to that of the H2A/H2B dimer. The equilibrium folding of both histone dimers is highly reversible and best described by a two-state model, with no detectable equilibrium intermediates populated. The free energies of unfolding, in the absence of denaturant, of H2A.Z/H2B and H2A/H2B are 7.3 kcal mol(-1) and 15.5 kcal mol(-1), respectively, in 1 M TMAO. The H2A.Z/H2B dimer is the least stable histone fold characterized to date, while H2A/H2B appears to be the most stable. It is speculated that this difference in stability may contribute to the different biophysical properties of nucleosomes containing the major H2A and the H2A.Z variant.

  1. Asymmetric 1,8/13,2,x-M2C2B10 14-vertex metallacarboranes by direct electrophilic insertion reactions; the VCD and BHD methods in critical analysis of cage C atom positions.

    PubMed

    McAnaw, Amelia; Lopez, Maria Elena; Ellis, David; Rosair, Georgina M; Welch, Alan J

    2014-04-07

    The isolation of six isomeric, low-symmetry, dicobaltacarboranes with bicapped hexagonal antiprismatic cage structures, always in low yield, is described from reactions in which 13-vertex cobaltacarborane anions and sources of cobalt-containing cations were present. The vertex-to-centroid distance (VCD) and boron-H distance (BHD) methods are used to locate the correct C atom positions in the cages, thus allowing the compounds to be identified as 1,13-Cp2-1,13,2,10-closo-Co2C2B10H12 (1), 1,8-Cp2-3-OEt-1,8,2,10-closo-Co2C2B10H11 (2), 1,13-Cp2-1,13,2,9-closo-Co2C2B10H12 (3), 1,8-Cp2-1,8,2,4-closo-Co2C2B10H12 (4), 1,13-Cp2-1,13,2,4-closo-Co2C2B10H12 (5) and 1,8-Cp2-1,8,2,5-closo-Co2C2B10H12 (6). It is shown that a common alternative method of cage C atom identification, using refined (as B) U(eq) values, does not work well, at least in these cases. Having identified the correct isomeric forms of the six dicobaltacarboranes, their syntheses are tentatively rationalised in terms of the direct electrophilic insertion of a {CpCo(+)} fragment into [CpCoC2B10](-) anions and it is demonstrated that compounds 1, 4, 5 and 6 can be successfully prepared by deliberately performing such reactions.

  2. The N-terminal tails of the H2A-H2B histones affect dimer structure and stability.

    PubMed

    Placek, Brandon J; Gloss, Lisa M

    2002-12-17

    The histone proteins of the core nucleosome are highly basic and form heterodimers in a "handshake motif." The N-terminal tails of the histones extend beyond the canonical histone fold of the hand-shake motif and are the sites of posttranslational modifications, including lysine acetylations and serine phosphorylations, which influence chromatin structure and activity as well as alter the charge state of the tails. However, it is not well understood if these modifications are signals for recruitment of other cellular factors or if the removal of net positive charge from the N-terminal tail plays a role in the overall structure of chromatin. To elucidate the effects of the N-terminal tails on the structure and stability of histones, the highly charged N-terminal tails were truncated from the H2A and H2B histones. Three mutant dimers were studied: DeltaN-H2A/WT H2B; WT H2A/DeltaN-H2B, and DeltaN-H2A/DeltaN-H2B. The CD spectra, stabilities to urea-denaturation, and the salt-dependent stabilization of the three truncated dimers were compared with those of the wild-type dimer. The data support four conclusions regarding the effects of the N-terminal tails of H2A and H2B: (1) Removal of the N-terminal tails of H2A and H2B enhance the helical structure of the mutant heterodimers. (2) Relative to the full-length WT heterodimer, the DeltaN-H2A/WT H2B dimer is destabilized, while the WT H2A/DeltaN-H2B and DeltaN-H2A/DeltaN-H2B dimers are slightly stabilized. (3) The truncated dimers exhibit decreased m values, relative to the WT dimer, supporting the hypothesis that the N-terminal tails in the isolated dimer adopt a collapsed structure. (4) Electrostatic repulsion in the N-terminal tails decreases the stability of the H2A-H2B dimer.

  3. Co-activation of NR2A and NR2B subunits induces resistance to fear extinction.

    PubMed

    Leaderbrand, Katherine; Corcoran, Kevin A; Radulovic, Jelena

    2014-09-01

    Unpredictable stress is known to profoundly enhance susceptibility to fear and anxiety while reducing the ability to extinguish fear when threat is no longer present. Accordingly, partial aversive reinforcement, via random exposure to footshocks, induces fear that is resistant to extinction. Here we sought to determine the hippocampal mechanisms underlying susceptibility versus resistance to context fear extinction as a result of continuous (CR) and partial (PR) reinforcement, respectively. We focused on N-methyl-D-aspartate receptor (NMDAR) subunits 2A and B (NR2A and NR2B) as well as their downstream signaling effector, extracellular signal-regulated kinase (ERK), based on their critical role in the acquisition and extinction of fear. Pharmacological inactivation of NR2A, but not NR2B, blocked extinction after CR, whereas inactivation of NR2A, NR2B, or both subunits facilitated extinction after PR. The latter finding suggests that co-activation of NR2A and NR2B contributes to persistent fear following PR. In contrast to CR, PR increased membrane levels of ERK and NR2 subunits after the conditioning and extinction sessions, respectively. In parallel, nuclear activation of ERK was significantly reduced after the extinction session. Thus, co-activation and increased surface expression of NR2A and NR2B, possibly mediated by ERK, may cause persistent fear. These findings suggest that patients with post-traumatic stress disorder (PTSD) may benefit from antagonism of specific NR2 subunits.

  4. Pharmacogenetics of CYP2B6, CYP2A6 and UGT2B7 in HIV treatment in African populations: focus on efavirenz and nevirapine.

    PubMed

    Čolić, Antoinette; Alessandrini, Marco; Pepper, Michael S

    2015-05-01

    The CYP450 and UGT enzymes are involved in phase I and phase II metabolism of the majority of clinically prescribed drugs, including the non-nucleoside reverse transcriptase inhibitors, efavirenz and nevirapine, used in the treatment of HIV/AIDS. Variations in the activity of these enzymes due to gene polymorphisms can affect an individual's drug response or may lead to adverse drug reactions. There is an inter-ethnic distribution in the frequency of these polymorphisms, with African populations exhibiting higher genetic diversity compared to other populations. African specific alleles with clinical relevance have also emerged. Given the high prevalence of HIV/AIDS in sub-Saharan Africa, understanding the frequency of pharmacogenetically relevant alleles in populations of African origin, and their impact on efavirenz and nevirapine metabolism, is becoming increasingly critical. This review aims to investigate ethnic variation of CYP2B6, CYP2A6 and UGT2B7, and to understand the pharmacogenetic relevance when comparing frequencies in African populations to other populations worldwide.

  5. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers.

    PubMed

    Shaytan, Alexey K; Landsman, David; Panchenko, Anna R

    2015-06-01

    Nucleosome variability is essential for their functions in compacting the chromatin structure and regulation of transcription, replication and cell reprogramming. The DNA molecule in nucleosomes is wrapped around an octamer composed of four types of core histones (H3, H4, H2A, H2B). Nucleosomes represent dynamic entities and may change their conformation, stability and binding properties by employing different sets of histone variants or by becoming post-translationally modified. There are many variants of histones H2A and H2B. Specific H2A and H2B variants may preferentially associate with each other resulting in different combinations of variants and leading to the increased combinatorial complexity of nucleosomes. In addition, the H2A-H2B dimer can be recognized and substituted by chaperones/remodelers as a distinct unit, can assemble independently and is stable during nucleosome unwinding. In this review we discuss how sequence and structural variations in H2A-H2B dimers may provide necessary complexity and confer the nucleosome functional variability.

  6. Synthesis, structure and reactivity of rare-earth metallacarborane alkyls [η(1):η(5)-O(CH2)2C2B9H9]Ln(σ:η(1)-CH2C6H4-o-NMe2)(THF)2.

    PubMed

    Yang, Jingying; Xie, Zuowei

    2015-04-14

    Rare-earth metallacarborane alkyls can be stabilized by the incorporation of a functional sidearm into both π and σ ligands. Reaction of [Me3NH][7,8-O(CH2)2-7,8-C2B9H10] with one equiv. of Ln(CH2C6H4-o-NMe2)3 gave metallacarborane alkyls [η(1):η(5)-O(CH2)2C2B9H9]Ln(σ:η(1)-CH2C6H4-o-NMe2)(THF)2 (Ln = Y (), Gd (), Er ()) via alkane elimination. They represent the first examples of rare-earth metallacarborane alkyls. Treatment of with RN[double bond, length as m-dash]C[double bond, length as m-dash]NR (R = Cy, (i)Pr) or 2-benzoylpyridine afforded the corresponding mono-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[η(2)-(RN)2C(CH2C6H4-o-NMe2)](DME) (R = Cy (), (i)Pr ()) or [η(1):η(5)-O(CH2)2C2B9H9]Y[C5H4NC(Ph)(CH2C6H4-o-NMe2)O](THF)2 (), respectively. Complex also reacted with ArNCO or ArNC (Ar = 2,6-diisopropylphenyl, 2,6-dimethylphenyl) to give di-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[OC([double bond, length as m-dash]NC6H3Me2)N(C6H3Me2)C(CH2C6H4-o-NMe2)O](THF)2 () or [η(1):η(5)-O(CH2)2C2B9H9]Y[C([double bond, length as m-dash]NC6H3(i)Pr2)C([double bond, length as m-dash]NC6H3(i)Pr2)(CH2C6H4-o-NMe2)](DME) (). These results showed that the reactivity pattern of the Ln-C σ bond in rare-earth metallacarborane alkyls was dependent on the nature of the unsaturated organic molecules. New complexes were characterized by various spectroscopic techniques and elemental analysis. Some were further confirmed by single-crystal X-ray analysis.

  7. Singular PCV2a or PCV2b infection results in apoptosis of hepatocytes in clinically affected gnotobiotic pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine circovirus type 2 (PCV2) which can be further subdivide into two main genotypes, PCV2a and PCV2b, is often clinically associated with respiratory signs, failure-to-thrive, and diarrhea. The precise pathogenesis of PCV2, and in particular its involvement in apoptosis, is controversial. The ob...

  8. Deletion of the α2A2C-adrenoceptors accelerates cutaneous wound healing in mice

    PubMed Central

    Romana-Souza, Bruna; Nascimento, Adriana P; Brum, Patricia C; Monte-Alto-Costa, Andréa

    2014-01-01

    The α2-adrenoceptors regulate the sympathetic nervous system, controlling presynaptic catecholamine release. However, the role of the α2-adrenoceptors in cutaneous wound healing is poorly understood. Mice lacking both the α2A2C-adrenoceptors were used to evaluate the participation of the α2-adrenoceptor during cutaneous wound healing. A full-thickness excisional lesion was performed on the dorsal skin of the α2A2C-adrenoceptor knockout and wild-type mice. Seven or fourteen days later, the animals were euthanized and the lesions were formalin-fixed and paraffin-embedded or frozen. Murine skin fibroblasts were also isolated from α2A2C-adrenoceptor knockout and wild-type mice, and fibroblast activity was evaluated. The in vivo study demonstrated that α2A2C-adrenoceptor depletion accelerated wound contraction and re-epithelialization. A reduction in the number of neutrophils and macrophages was observed in the α2A2C-adrenoceptor knockout mice compared with wild-type mice. In addition, α2A2C-adrenoceptor depletion enhanced the levels of nitrite and hydroxyproline, and the protein expression of transforming growth factor-β and vascular endothelial growth factor. Furthermore, α2A2C-adrenoceptor depletion accelerated blood vessel formation and myofibroblast differentiation. The in vitro study demonstrated that skin fibroblasts isolated from α2A2C-adrenoceptor knockout mice exhibited enhanced cell migration, α-smooth muscle actin _protein expression and collagen deposition compared with wild-type skin fibroblasts. In conclusion, α2A2C-adrenoceptor deletion accelerates cutaneous wound healing in mice. PMID:25186490

  9. Deletion of the α2A2C-adrenoceptors accelerates cutaneous wound healing in mice.

    PubMed

    Romana-Souza, Bruna; Nascimento, Adriana P; Brum, Patricia C; Monte-Alto-Costa, Andréa

    2014-10-01

    The α2-adrenoceptors regulate the sympathetic nervous system, controlling presynaptic catecholamine release. However, the role of the α2-adrenoceptors in cutaneous wound healing is poorly understood. Mice lacking both the α2A2C-adrenoceptors were used to evaluate the participation of the α2-adrenoceptor during cutaneous wound healing. A full-thickness excisional lesion was performed on the dorsal skin of the α2A2C-adrenoceptor knockout and wild-type mice. Seven or fourteen days later, the animals were euthanized and the lesions were formalin-fixed and paraffin-embedded or frozen. Murine skin fibroblasts were also isolated from α2A2C-adrenoceptor knockout and wild-type mice, and fibroblast activity was evaluated. The in vivo study demonstrated that α2A2C-adrenoceptor depletion accelerated wound contraction and re-epithelialization. A reduction in the number of neutrophils and macrophages was observed in the α2A2C-adrenoceptor knockout mice compared with wild-type mice. In addition, α2A2C-adrenoceptor depletion enhanced the levels of nitrite and hydroxyproline, and the protein expression of transforming growth factor-β and vascular endothelial growth factor. Furthermore, α2A2C-adrenoceptor depletion accelerated blood vessel formation and myofibroblast differentiation. The in vitro study demonstrated that skin fibroblasts isolated from α2A2C-adrenoceptor knockout mice exhibited enhanced cell migration, α-smooth muscle actin _protein expression and collagen deposition compared with wild-type skin fibroblasts. In conclusion, α2A2C-adrenoceptor deletion accelerates cutaneous wound healing in mice.

  10. Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break.

    PubMed

    Lee, Cheng-Sheng; Lee, Kihoon; Legube, Gaëlle; Haber, James E

    2014-01-01

    In budding yeast, a single double-strand break (DSB) triggers extensive Tel1 (ATM)- and Mec1 (ATR)-dependent phosphorylation of histone H2A around the DSB, to form γ-H2AX. We describe Mec1- and Tel1-dependent phosphorylation of histone H2B at T129. γ-H2B formation is impaired by γ-H2AX and its binding partner Rad9. High-density microarray analyses show similar γ-H2AX and γ-H2B distributions, but γ-H2B is absent near telomeres. Both γ-H2AX and γ-H2B are strongly diminished over highly transcribed regions. When transcription of GAL7, GAL10 and GAL1 genes is turned off, γ-H2AX is restored within 5 min, in a Mec1-dependent manner; after reinduction of these genes, γ-H2AX is rapidly lost. Moreover, when a DSB is induced near CEN2, γ-H2AX spreads to all other pericentromeric regions, again depending on Mec1. Our data provide new insights in the function and establishment of phosphorylation events occurring on chromatin after DSB induction.

  11. Pharmacological evidence that spinal α(2C)- and, to a lesser extent, α(2A)-adrenoceptors inhibit capsaicin-induced vasodilatation in the canine external carotid circulation.

    PubMed

    Villalón, Carlos M; Galicia-Carreón, Jorge; González-Hernández, Abimael; Marichal-Cancino, Bruno A; Manrique-Maldonado, Guadalupe; Centurión, David

    2012-05-15

    During a migraine attack capsaicin-sensitive trigeminal sensory nerves release calcitonin gene-related peptide (CGRP), producing cranial vasodilatation and central nociception; hence, trigeminal inhibition may prevent this vasodilatation and abort migraine headache. This study investigated the role of spinal α₂-adrenoceptors and their subtypes (i.e. α(2A), α(2B) and/or α(2C)-adrenoceptors) in the inhibition of the canine external carotid vasodilator responses to capsaicin. Anaesthetized vagosympathectomized dogs were prepared to measure arterial blood pressure, heart rate and external carotid conductance. The thyroid artery was cannulated for one-min intracarotid infusions of capsaicin, α-CGRP and acetylcholine. A cannula was inserted intrathecally for spinal (C₁-C₃) administration of 2-amino-6-ethyl-4,5,7,8-tetrahydro-6H-oxazolo-[5,4-d]-azepin-dihydrochloride (B-HT 933; a selective α₂-adrenoceptor agonist) and/or the α₂-adrenoceptor antagonists rauwolscine (α(2A/2B/2C)), 2-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-2,3-dihydro-1-methyl-1H-isoindole maleate (BRL44408; α(2A)), imiloxan (α(2B)) or acridin-9-yl-[4-(4-methylpiperazin-1-yl)-phenyl]amine (JP-1302; α(2C)). Infusions of capsaicin, α-CGRP and acetylcholine dose-dependently increased the external carotid conductance. Intrathecal B-HT 933 (1000 and 3100 μg) inhibited the vasodilator responses to capsaicin, but not those to α-CGRP or acetylcholine. This inhibition, abolished by rauwolscine (310 μg), was: (i) unaffected by 3,100 μg imiloxan; (ii) partially blocked by 310 μg of BRL44408 or 100 μg of JP-1302; and (iii) abolished by 1,000 μg of BRL44408 or 310 μg of JP-1302. Thus, intrathecal B-HT 933 inhibited the external carotid vasodilator responses to capsaicin. This response, mediated by spinal α₂-adrenoceptors unrelated to the α(2B)-adrenoceptor subtype, resembles the pharmacological profile of α(2C)-adrenoceptors and, to a lesser extent, α(2A)-adrenoceptors.

  12. Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system.

    PubMed

    Popoli, Patrizia; Pepponi, Rita

    2012-09-01

    Adenosine A2B and, much more importantly, adenosine A2A receptors modulate many physiological and pathological processes in the brain. In this review, the most recent evidence concerning the role of such receptors and their potential therapeutic relevance is discussed. The low affinity of A2B receptors for adenosine implies that they might represent a good therapeutic target, since they are activated only under pathological conditions (when adenosine levels raise up to micromolar concentrations). The availability of selective ligands for A2B receptors would allow exploration of such an hypothesis. Since adenosine A2A receptors mediate both potentially neuroprotective and potentially neurotoxic effects, their role in neurodegenerative diseases is highly controversial. Nevertheless, A2A receptor antagonists have shown clear antiparkinsonian effects, and a great interest exists on the role of A2A receptors in Alzheimer's disease, brain ischaemia, spinal cord injury, drug addiction and other conditions. In order to establish whether such receptors represent a target for CNS diseases, at least two conditions are needed: the full comprehension of A2A-dependent mechanisms and the availability of ligands capable of discriminating among the different receptor populations.

  13. The effect of salts on the stability of the H2A-H2B histone dimer.

    PubMed

    Gloss, Lisa M; Placek, Brandon J

    2002-12-17

    The core nucleosome, which comprises an H3-H4 tetramer and two H2A-H2B dimers, is not a static DNA packaging structure. The nucleosome is a dynamic protein-DNA complex, and the modulation of its structure is an important component of transcriptional regulation. To begin to understand the molecular details of nucleosome dynamics, we have investigated the stability of the isolated H2A-H2B dimer. The urea-induced equilibrium responses of the heterodimer have been examined by far-UV circular dichroism and intrinsic tyrosine fluorescence. The two spectroscopic probes yielded coincident transitions, and global fitting of the reversible urea-induced unfolding further demonstrated that H2A-H2B unfolds by a two-state equilibrium response. At physiological ionic strengths, the free energy of unfolding in the absence of urea of H2A-H2B is 11.8 +/- 0.3 kcal mol(-)(1), moderate stability for a dimer of 26.4 kDa. The m value, or sensitivity of the unfolding to urea, is 2.9 +/- 0.1 kcal mol(-)(1) M(-)(1). This value is significantly larger than would be predicted for the unfolding of the dimerization motif alone ( approximately 2 kcal mol(-)(1) M(-)(1)), suggesting that the N-terminal tails may adopt a collapsed, solvent-excluding structure that undergoes an unfolding transition. The efficacies of several potassium salts and three chloride salts to stabilize the H2A-H2B dimer were determined. The salt-dependent stabilization of the H2A-H2B dimer shows that the Hofmeister effect is the predominant mode of stabilization. However, studies employing multiple salts suggest that there is a component of stabilization that must arise from screening of electrostatic repulsion in the highly basic heterodimer. The most highly charged regions of the dimer are the N-terminal tails, sites of posttranslational modifications such as acetylation and phosphorylation. These modifications, which alter the charge density of the tails, are involved in regulation of nucleosome dynamics.

  14. Association of concurrent porcine circovirus (PCV) 2a and 2b infection with PCV associated disease in vaccinated pigs.

    PubMed

    Gerber, Priscilla F; Johnson, John; Shen, Huigang; Striegel, Dave; Xiao, Chao-Ting; Halbur, Patrick G; Opriessnig, Tanja

    2013-10-01

    Investigations were performed to characterize porcine circovirus (PCV) 2 infection in 10 week old pigs from a case of apparent vaccine failure. Thirty serum samples were collected from affected or non-affected pigs and tested for anti-PCV2 antibodies and PCV2 DNA. To address potential PCV2 vaccine compliance issues, samples were tested for antibodies against baculovirus and Mycoplasma hyopneumoniae antigens present in the PCV2 vaccine utilized in this herd. Both PCV2a and PCV2b DNA were detected in 76.6% (90% positive for PCV2a, 86.6% positive for PCV2b), anti-PCV2 IgG in 90%, anti-baculovirus IgG in 50%, and anti-M. hyopneumoniae IgG in 43.3% of the samples. Frequency of baculovirus and M. hyopneumoniae seropositive pigs was significantly lower in affected pigs. The finding that only 50% of the pigs developed a detectable immune response to vaccination suggests poor vaccine compliance or efficacy. Concurrent PCV2a and PCV2b infection was common and may have resulted in enhanced PCV2 replication.

  15. Identification of high-risk Listeria monocytogenes serotypes in lineage I(serotype 1/2a, 1/2c,3a, and 3c) using multiplex PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using molecular subtyping techniques, Listeria monocytogenes is divided into three major phylogenetic lineages, and a multiplex PCR method can differentiate five L. monocytogenes subgroups: 1/2a-3a, 1/2c-3c, 1/2b-3b-7, 4b-4d-4e, and 4a-4c. In the current study, we conducted genome comparisons and e...

  16. Preferentially grown nanostructured MgB2C2: A new material for lightening applications

    NASA Astrophysics Data System (ADS)

    Singh, Paviter; Singh, Kulwinder; Kaur, Manpreet; Kaur, Harpreet; Singh, Bikmramjeet; Kaur, Gurpreet; Kaur, Manjot; Kumar, Manjeet; Kaur, Kamalpreet; Bala, Rajni; Kumar, Akshay

    2017-03-01

    Nanostructured MgB2C2 is a promising candidate as functional material. High Temperature synthesis conditions were the limitations for its exploitation in materials research. Present study deals with the synthesis of specifically oriented nanostructured MgB2C2 at relatively low temperature by solvothermal route. The synthesis conditions are modified to grow these nanostructures in least dense plane (002). Optical properties are explored for the first time. XRD analysis confirms the formation of MgB2C2 phase. Morphological analysis (Transmission/Scanning Electron Microscopy) indicated that the synthesized material is in nano range. Photoluminescence study shows that the synthesized material emits light in visible spectrum when excited at 380 nm. The quantum efficiency of synthesized material calculated by De Mello's method is approximately 23% which makes the material efficient enough for lightening applications.

  17. Generation and characterization of a CYP2A13/2B6/2F1-transgenic mouse model.

    PubMed

    Wei, Yuan; Wu, Hong; Li, Lei; Liu, Zhihua; Zhou, Xin; Zhang, Qing-Yu; Weng, Yan; D'Agostino, Jaime; Ling, Guoyu; Zhang, Xiuling; Kluetzman, Kerri; Yao, Yunyi; Ding, Xinxin

    2012-06-01

    CYP2A13, CYP2B6, and CYP2F1, which are encoded by neighboring cytochrome P450 genes on human chromosome 19, are active in the metabolic activation of many drugs, respiratory toxicants, and chemical carcinogens. To facilitate studies on the regulation and function of these human genes, we have generated a CYP2A13/2B6/2F1-transgenic (TG) mouse model (all *1 alleles). Homozygous transgenic mice are normal with respect to gross morphological features, development, and fertility. The tissue distribution of transgenic mRNA expression agreed well with the known respiratory tract-selective expression of CYP2A13 and CYP2F1 and hepatic expression of CYP2B6 in humans. CYP2A13 protein was detected through immunoblot analyses in the nasal mucosa (NM) (∼100 pmol/mg of microsomal protein; similar to the level of mouse CYP2A5) and the lung (∼0.2 pmol/mg of microsomal protein) but not in the liver of the TG mice. CYP2F1 protein, which could not be separated from mouse CYP2F2 in immunoblot analyses, was readily detected in the NM and lung but not the liver of TG/Cyp2f2-null mice, at levels 10- and 40-fold, respectively, lower than that of mouse CYP2F2 in the TG mice. CYP2B6 protein was detected in the liver (∼0.2 pmol/mg of microsomal protein) but not the NM or lung (with a detection limit of 0.04 pmol/mg of microsomal protein) of the TG mice. At least one transgenic protein (CYP2A13) seems to be active, because the NM of the TG mice had greater in vitro and in vivo activities in bioactivation of a CYP2A13 substrate, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (a lung carcinogen), than did the NM of wild-type mice.

  18. A2a and a2b adenosine receptors affect HIF-1α signaling in activated primary microglial cells.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Stefanelli, Angela; Bencivenni, Serena; Castillo, Carlos Alberto; Varani, Katia; Gessi, Stefania

    2015-05-15

    Microglia are central nervous system (CNS)-resident immune cells, that play a crucial role in neuroinflammation. Hypoxia-inducible factor-1 (HIF-1), the main transcription factor of hypoxia-inducible genes, is also involved in the immune response, being regulated in normoxia by inflammatory mediators. Adenosine is an ubiquitous nucleoside that has an influence on many immune properties of microglia through interaction with four receptor subtypes. The aim of this study was to investigate whether adenosine may affect microglia functions by acting on HIF-1α modulation. Primary murine microglia were activated with lipopolysaccharide (LPS) with or without adenosine, adenosine receptor agonists and antagonists and HIF-1α accumulation and downstream genes regulation were determined. Adenosine increased LPS-induced HIF-1α accumulation leading to an increase in HIF-1α target genes involved in cell metabolism [glucose transporter-1 (GLUT-1)] and pathogens killing [inducible nitric-oxide synthase (iNOS)] but did not induce HIF-1α dependent genes related to angiogenesis [vascular endothelial growth factor (VEGF)] and inflammation [tumor necrosis factor-α (TNF-α)]. The stimulatory effect of adenosine on HIF-1α and its target genes was essentially exerted by activation of A2A through p44/42 and A2B subtypes via p38 mitogen-activated protein kinases (MAPKs) and Akt phosphorylation. Furthermore the nucleoside raised VEGF and decreased TNF-α levels, by activating A2B subtypes. In conclusion adenosine increases GLUT-1 and iNOS gene expression in a HIF-1α-dependent way, through A2A and A2B receptors, suggesting their role in the regulation of microglial cells function following injury. However, inhibition of TNF-α adds an important anti-inflammatory effect only for the A2B subtype. GLIA 2015.

  19. Double disruption of α2A- and α2C-adrenoceptors results in sympathetic hyperactivity and high-bone-mass phenotype.

    PubMed

    Fonseca, Tatiana L; Jorgetti, Vanda; Costa, Cristiane C; Capelo, Luciane P; Covarrubias, Ambart E; Moulatlet, Ana C; Teixeira, Marilia B; Hesse, Eric; Morethson, Priscilla; Beber, Eduardo H; Freitas, Fatima R; Wang, Charles C; Nonaka, Keico O; Oliveira, Ricardo; Casarini, Dulce E; Zorn, Telma M; Brum, Patricia C; Gouveia, Cecilia H

    2011-03-01

    Evidence demonstrates that sympathetic nervous system (SNS) activation causes osteopenia via β(2)-adrenoceptor (β2-AR) signaling. Here we show that female mice with chronic sympathetic hyperactivity owing to double knockout of adrenoceptors that negatively regulate norepinephrine release, α(2A)-AR and α(2C)-AR (α(2A) /α(2C)-ARKO), present an unexpected and generalized phenotype of high bone mass with decreased bone resorption and increased formation. In α(2A) /α(2C)-ARKO versus wild-type (WT) mice, micro-computed tomographic (µCT) analysis showed increased, better connected, and more plate-shaped trabeculae in the femur and vertebra and increased cortical thickness in the vertebra, whereas biomechanical analysis showed increased tibial and femoral strength. Tibial mRNA expression of tartrate-resistant acid phosphatase (TRACP) and receptor activator of NF-κB (RANK), which are osteoclast-related factors, was lower in knockout (KO) mice. Plasma leptin and brain mRNA levels of cocaine amphetamine-regulated transcript (CART), which are factors that centrally affect bone turnover, and serum levels of estradiol were similar between mice strains. Tibial β(2)-AR mRNA expression also was similar in KO and WT littermates, whereas α(2A)-, α(2B)- and α(2C)-AR mRNAs were detected in the tibia of WT mice and in osteoblast-like MC3T3-E1 cells. By immunohistochemistry, we detected α(2A)-, α(2B)-, α(2C)- and β(2)-ARs in osteoblasts, osteoclasts, and chondrocytes of 18.5-day-old mouse fetuses and 35-day-old mice. Finally, we showed that isolated osteoclasts in culture are responsive to the selective α(2)-AR agonist clonidine and to the nonspecific α-AR antagonist phentolamine. These findings suggest that β(2)-AR is not the single adrenoceptor involved in bone turnover regulation and show that α(2)-AR signaling also may mediate the SNS actions in the skeleton.

  20. Serotonin-2C and -2A Receptor Co-expression on Cells in the Rat Medial Prefrontal Cortex

    PubMed Central

    Nocjar, Christine; Alex, Katherine D; Sonneborn, Alex; Abbas, Atheir I; Roth, Bryan L; Pehek, Elizabeth A

    2015-01-01

    Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin -2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a

  1. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus).

    PubMed

    Aluru, Neelakanteswar; Karchner, Sibel I; Franks, Diana G; Nacci, Diane; Champlin, Denise; Hahn, Mark E

    2015-01-01

    Understanding molecular mechanisms of toxicity is facilitated by experimental manipulations, such as disruption of function by gene targeting, that are especially challenging in non-standard model species with limited genomic resources. While loss-of-function approaches have included gene knock-down using morpholino-modified oligonucleotides and random mutagenesis using mutagens or retroviruses, more recent approaches include targeted mutagenesis using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. These latter methods provide more accessible opportunities to explore gene function in non-traditional model species. To facilitate evaluation of toxic mechanisms for important categories of aryl hydrocarbon pollutants, whose actions are known to be receptor mediated, we used ZFN and CRISPR-Cas9 approaches to generate aryl hydrocarbon receptor 2a (AHR2a) and AHR2b gene mutations in Atlantic killifish (Fundulus heteroclitus) embryos. This killifish is a particularly valuable non-traditional model, with multiple paralogs of AHR whose functions are not well characterized. In addition, some populations of this species have evolved resistance to toxicants such as halogenated aromatic hydrocarbons. AHR-null killifish will be valuable for characterizing the role of the individual AHR paralogs in evolved resistance, as well as in normal development. We first used five-finger ZFNs targeting exons 1 and 3 of AHR2a. Subsequently, CRISPR-Cas9 guide RNAs were designed to target regions in exon 2 and 3 of AHR2a and AHR2b. We successfully induced frameshift mutations in AHR2a exon 3 with ZFN and CRISPR-Cas9 guide RNAs, with mutation frequencies of 10% and 16%, respectively. In AHR2b, mutations were induced using CRISPR-Cas9 guide RNAs targeting sites in both exon 2 (17%) and exon 3 (63%). We screened AHR2b exon 2 CRISPR-Cas9-injected embryos for off

  2. A long-standing mystery solved: the formation of 3-hydroxydesloratadine is catalyzed by CYP2C8 but prior glucuronidation of desloratadine by UDP-glucuronosyltransferase 2B10 is an obligatory requirement.

    PubMed

    Kazmi, Faraz; Barbara, Joanna E; Yerino, Phyllis; Parkinson, Andrew

    2015-04-01

    Desloratadine (Clarinex), the major active metabolite of loratadine (Claritin), is a nonsedating long-lasting antihistamine that is widely used for the treatment of allergic rhinitis and chronic idiopathic urticaria. For over 20 years, it has remained a mystery as to which enzymes are responsible for the formation of 3-hydroxydesloratadine, the major active human metabolite, largely due to the inability of any in vitro system tested thus far to generate this metabolite. In this study, we demonstrated that cryopreserved human hepatocytes (CHHs) form 3-hydroxydesloratadine and its corresponding O-glucuronide. CHHs catalyzed the formation of 3-hydroxydesloratadine with a Km of 1.6 μM and a Vmax of 1.3 pmol/min per million cells. Chemical inhibition of cytochrome P450 (P450) enzymes in CHHs demonstrated that gemfibrozil glucuronide (CYP2C8 inhibitor) and 1-aminobenzotriazole (general P450 inhibitor) inhibited 3-hydroxydesloratadine formation by 91% and 98%, respectively. Other inhibitors of CYP2C8 (gemfibrozil, montelukast, clopidogrel glucuronide, repaglinide, and cerivastatin) also caused extensive inhibition of 3-hydroxydesloratadine formation (73%-100%). Assessment of desloratadine, amodiaquine, and paclitaxel metabolism by a panel of individual CHHs demonstrated that CYP2C8 marker activity robustly correlated with 3-hydroxydesloratadine formation (r(2) of 0.70-0.90). Detailed mechanistic studies with sonicated or saponin-treated CHHs, human liver microsomes, and S9 fractions showed that both NADPH and UDP-glucuronic acid are required for 3-hydroxydesloratadine formation, and studies with recombinant UDP-glucuronosyltransferase (UGT) and P450 enzymes implicated the specific involvement of UGT2B10 in addition to CYP2C8. Overall, our results demonstrate for the first time that desloratadine glucuronidation by UGT2B10 followed by CYP2C8 oxidation and a deconjugation event are responsible for the formation of 3-hydroxydesloratadine.

  3. Preparations of homeostatic thymus hormone consist predominantly of histones 2A and 2B and suggest additional histone functions.

    PubMed Central

    Reichhart, R; Zeppezauer, M; Jörnvall, H

    1985-01-01

    The two major constituents in preparations of the homeostatic thymus hormone (HTH) were purified. Amino acid sequence analysis showed that the components (HTH alpha and HTH beta) are identical to histones H2A and H2B, suggesting the possibility that histones might have hitherto unrecognized occurrence and functions. If the HTH activities are not ascribed to the two histones in the preparation, they could only be derived from minor constituents present in minimal amounts. Therefore, the histone structures were scrutinized for properties of relevance in relation to hormone activities and for similarities with thymic hormones. Similarities between COOH-terminal regions of histones H2A, H2B, and H3 were noticed, as well as some similarities between NH2-terminal regions of histones and parts of recognized thymus hormones and related proteins. Potential signals, resembling cleavage sites in prohormones, are present in the histone structures, and further correlations with recently discovered ubiquitin functions may explain molecular mechanisms for actions of the HTH preparations. None of the observations is significant by itself, but the combined results suggest the hypothesis of different relationships and functions, including hormone-like activities, for some histones. Images PMID:3860828

  4. GH indirectly enhances the regeneration of transgenic zebrafish fins through IGF2a and IGF2b.

    PubMed

    Nornberg, Bruna Félix; Almeida, Daniela Volcan; Figueiredo, Márcio Azevedo; Marins, Luis Fernando

    2016-10-01

    The somatotropic axis, composed essentially of the growth hormone (GH) and insulin-like growth factors (IGFs), is the main regulator of somatic growth in vertebrates. However, these protein hormones are also involved in various other major physiological processes. Although the importance of IGFs in mechanisms involving tissue regeneration has already been established, little is known regarding the direct effects of GH in these processes. In this study, we used a transgenic zebrafish (Danio rerio) model, which overexpresses GH from the beta-actin constitutive promoter. The regenerative ability of the caudal fin was assessed after repeated amputations, as well as the expression of genes related to the GH/IGF axis. The results revealed that GH overexpression increased the regenerated area of the caudal fin in transgenic fish after the second amputation. Transgenic fish also presented a decrease in gene expression of the GH receptor (ghrb), in opposition to the increased expression of the IGF1 receptors (igf1ra and igf1rb). These results suggest that transgenic fish have a higher sensitivity to IGFs than to GH during fin regeneration. With respect to the different IGFs produced locally, a decrease in igf1a expression and a significant increase in both igf2a and igf2b expression was observed, suggesting that igf1a is not directly involved in fin regeneration. Overall, the results revealed that excess GH enhances fin regeneration in zebrafish through igf2a and igf2b expression, acting indirectly on this major physiological process.

  5. Influence of Antipodally Coupled Iodine and Carbon Atoms on the Cage Structure of 9,12-I2-closo-1,2-C2B10H10: An Electron Diffraction and Computational Study.

    PubMed

    Vishnevskiy, Yury V; Tikhonov, Denis S; Reuter, Christian G; Mitzel, Norbert W; Hnyk, Drahomír; Holub, Josef; Wann, Derek A; Lane, Paul D; Berger, Raphael J F; Hayes, Stuart A

    2015-12-21

    Because of the comparable electron scattering abilities of carbon and boron, the electron diffraction structure of the C2v-symmetric molecule closo-1,2-C2B10H12 (1), one of the building blocks of boron cluster chemistry, is not as accurate as it could be. On that basis, we have prepared the known diiodo derivative of 1, 9,12-I2-closo-1,2-C2B10H10 (2), which has the same point-group symmetry as 1 but in which the presence of iodine atoms, with their much stronger ability to scatter electrons, ensures much better structural characterization of the C2B10 icosahedral core. Furthermore, the influence on the C2B10 geometry in 2 of the antipodally positioned iodine substituents with respect to both carbon atoms has been examined using the concerted application of gas electron diffraction and quantum chemical calculations at the MP2 and density functional theory (DFT) levels. The experimental and computed molecular geometries are in good overall agreement. Molecular dynamics simulations used to obtain vibrational parameters, which are needed for analyzing the electron diffraction data, have been performed for the first time for this class of compound. According to DFT calculations at the ZORA-SO/BP86 level, the (11)B chemical shifts of the boron atoms to which the iodine substituents are bonded are dominated by spin-orbit coupling. Magnetically induced currents within 2 have been calculated and compared to those for [B12H12](2-), the latter adopting a regular icosahedral structure with Ih point-group symmetry. Similar total current strengths are found but with a certain anisotropy, suggesting that spherical aromaticity is present; electron delocalization in the plane of the hetero atoms in 2 is slightly hindered compared to that for [B12H12](2-), presumably because of the departure from ideal icosahedral symmetry.

  6. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    PubMed

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT.

  7. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk

    PubMed Central

    Campa, Daniele; Pastore, Manuela; Gentiluomo, Manuel; Talar-Wojnarowska, Renata; Kupcinskas, Juozas; Malecka-Panas, Ewa; Neoptolemos, John P.; Niesen, Willem; Vodicka, Pavel; Fave, Gianfranco Delle; Bueno-de-Mesquita, H. Bas; Gazouli, Maria; Pacetti, Paola; Di Leo, Milena; Ito, Hidemi; Klüter, Harald; Soucek, Pavel; Corbo, Vincenzo; Yamao, Kenji; Hosono, Satoyo; Kaaks, Rudolf; Vashist, Yogesh; Gioffreda, Domenica; Strobel, Oliver; Shimizu, Yasuhiro; Dijk, Frederike; Andriulli, Angelo; Ivanauskas, Audrius; Bugert, Peter; Tavano, Francesca; Vodickova, Ludmila; Zambon, Carlo Federico; Lovecek, Martin; Landi, Stefano; Key, Timothy J.; Boggi, Ugo; Pezzilli, Raffaele; Jamroziak, Krzysztof; Mohelnikova-Duchonova, Beatrice; Mambrini, Andrea; Bambi, Franco; Busch, Olivier; Pazienza, Valerio; Valente, Roberto; Theodoropoulos, George E.; Hackert, Thilo; Capurso, Gabriele; Cavestro, Giulia Martina; Pasquali, Claudio; Basso, Daniela; Sperti, Cosimo; Matsuo, Keitaro; Büchler, Markus; Khaw, Kay-Tee; Izbicki, Jakob; Costello, Eithne; Katzke, Verena; Michalski, Christoph; Stepien, Anna; Rizzato, Cosmeri; Canzian, Federico

    2016-01-01

    The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk. PMID:27486979

  8. Regiospecific synthesis of 3-substituted imidazo[1,2-a]pyridines, imidazo[1,2-a]pyrimidines, and imidazo[1,2-c]pyrimidine.

    PubMed

    Katritzky, Alan R; Xu, Yong-Jiang; Tu, Hongbin

    2003-06-13

    3-Substituted imidazo[1,2-a]pyridines, imidazo[1,2-a]pyrimidines, and imidazo[1,2-c]pyrimidine were obtained regiospecifically in yields of 35-92% in one pot by reaction of 2-aminopyridines or 2-(or 4-)aminopyrimidines, respectively, with 1,2-bis(benzotriazolyl)-1,2-(dialkylamino)ethanes.

  9. CYP2C19 but not CYP2B6, CYP3A4, CYP3A5, ABCB1, PON1 or P2Y12 genetic polymorphism impacts antiplatelet response after clopidogrel in Koreans.

    PubMed

    Zhang, Hong-Zhe; Kim, Moo Hyun; Guo, Long-Zhe; Serebruany, Victor

    2017-01-01

    Clopidogrel response variability (CRV) is well documented, and may affect clinical outcomes. Impact of genetic polymorphisms is important for assessing and predicting CRV. The extensive evidence indicates the importance of CYP2C19 variants in reducing efficacy of clopidogrel. This study defined the impact of numerous genetic polymorphisms on CRV before and after percutaneous coronary interventions (PCI) exclusively in a Korean cohort assuming less genetic variability noise. One hundred and thirty-six patients of Korean origin undergoing PCI were included. Platelet reactivity was measured by VerifyNow assay before and after PCI. Genetic polymorphism of seven single nucleotides of CYP2B6, CYP2C19, CYP3A4, CYP3A5, ABCB1, PON1, and P2Y12 were evaluated and matched with platelet reactivity. Carriers of at least one CYP2C19*2 or *3 allele uniformly exhibited higher platelet reactivity compared to 0-carrier pre-PCI (odds ratio 3.1, 95% confidence interval 1.4-6.9, P < 0.01) and post-PCI (odds ratio 3.4, 95% confidence interval 1.7-6.8, P < 0.001). The carriers of other gene allele variants lack uniformed impact on CRV. The Korean carriers of CYP2C19*2 or *3 allele are linked to CRV, whereas CYP2B6, CYP3A4, CYP3A5, ABCB1, PON1, and P2Y12 failed to predict CRV. The exact clinical utility of these findings is uncertain, and requires a large randomized national trial for proof of concept.

  10. Sex differences in constitutive mRNA levels of CYP2B22, CYP2C33, CYP2C49, CYP3A22, CYP3A29 and CYP3A46 in the pig liver: Comparison between Meishan and Landrace pigs.

    PubMed

    Kojima, Misaki; Degawa, Masakuni

    2016-06-01

    Breed and sex differences in hepatic mRNA levels of cytochrome P450 (CYP) isoforms (CYP2B22, CYP2C33, CYP2C49, CYP3A22, CYP3A29 and CYP3A46) were examined in 5-month-old Meishan, Landrace, and their crossbred F1 (LM and ML) pigs. Serum testosterone levels in male Meishan, LM, and ML pigs were 2.5-3.5-fold higher than in Landrace pigs. CYP3A46 mRNA was breed-specifically detected only in Landrace, LM, and ML pigs. In Meishan, LM, and ML pigs only, male-predominant expressions of CYP2B22, CYP2C33, CYP2C49 and CYP3A29 mRNAs were observed; CYP3A22 mRNA expression showed the opposite pattern. Male-dominant mRNA expression was also observed in LM and ML pigs for CYP3A46. The sex differences in CYP mRNA levels in Meishan pigs disappeared when males were castrated and were restored by testosterone propionate (TP) administration to the castrated males. In Landrace pigs, TP administration to castrated males and intact females significantly increased the levels of CYP2B22, CYP2C33, and CYP3A46 mRNAs. Immature (1-month-old) pigs showed no breed or sex differences in CYP mRNA expressions. The results demonstrated that androgen is an important determinant of sex-associated expression of several CYPs and suggested that breed differences in sex-associated expression could be caused by differences in serum androgen level and by other genetic traits.

  11. Genetic markers in CYP2C19 and CYP2B6 for prediction of cyclophosphamide's 4‐hydroxylation, efficacy and side effects in Chinese patients with systemic lupus erythematosus

    PubMed Central

    Shu, Wenying; Guan, Su; Yang, Xiuyan; Liang, Liuqin; Li, Jiali; Chen, Zhuojia; Zhang, Yu; Chen, Lingyan

    2015-01-01

    Aims The aim of the study was to investigate the combined impact of genetic polymorphisms in key pharmacokinetic genes on plasma concentrations and clinical outcomes of cyclophosphamide (CPA) in Chinese patients with systemic lupus erythematosus (SLE). Methods One hundred and eighty nine Chinese SLE patients treated with CPA induction therapy (200 mg, every other day) were recruited and adverse reactions were recorded. After 4 weeks induction therapy, 128 lupus nephritis (LN) patients continued to CPA maintenance therapy (200–600 mg week–1) for 6 months, and their clinical outcomes were recorded. Blood samples were collected for CYP2C19, CYP2B6, GST and PXR polymorphism analysis, as well as CPA and its active metabolite (4‐hydroxycyclophosphamide (4‐OH‐CPA)) plasma concentration determination. Results Multiple linear regression analysis revealed that CYP2B6 ‐750 T > C (P < 0.001), −2320 T > C (P < 0.001), 15582C > T (P = 0.017), CYP2C19*2 (P < 0.001) and PXR 66034 T > C (P = 0.028) accounted for 47% of the variation in 4‐OH‐CPA plasma concentration. Among these variants, CYP2B6 ‐750 T > C and CYP2C19*2 were selected as the combination genetic marker because these two SNPs contributed the most to the inter‐individual variability in 4‐OH‐CPA concentration, accounting for 23.6% and 21.5% of the variation, respectively. Extensive metabolizers (EMs) (CYP2B6 ‐750TT, CYP2C19*1*1) had significantly higher median 4‐OH‐CPA plasma concentrations (34.8, 11.0 and 6.6 ng ml‐1 for EMs, intermediate metabolizers (IMs) and poor metabolizers (PMs), P < 0.0001), higher risks of leukocytopenia (OR = 7.538, 95% CI 2.951, 19.256, P < 0.0001) and gastrointestinal toxicity (OR = 7.579, 95% CI 2.934, 19.578, P < 0.0001), as well as shorter median time to achieve complete remission (13.2, 18.3 and 23.3 weeks for EMs, IMs and PMs, respectively, P = 0.026) in LN patients than PMs (CYP2B6 ‐750CC, CYP2C19*2*2) and

  12. The MATROSHKA experiment: results and comparison from extravehicular activity (MTR-1) and intravehicular activity (MTR-2A/2B) exposure.

    PubMed

    Berger, Thomas; Bilski, Paweł; Hajek, Michael; Puchalska, Monika; Reitz, Günther

    2013-12-01

    Astronauts working and living in space are exposed to considerably higher doses and different qualities of ionizing radiation than people on Earth. The multilateral MATROSHKA (MTR) experiment, coordinated by the German Aerospace Center, represents the most comprehensive effort to date in radiation protection dosimetry in space using an anthropomorphic upper-torso phantom used for radiotherapy treatment planning. The anthropomorphic upper-torso phantom maps the radiation distribution as a simulated human body installed outside (MTR-1) and inside different compartments (MTR-2A: Pirs; MTR-2B: Zvezda) of the Russian Segment of the International Space Station. Thermoluminescence dosimeters arranged in a 2.54 cm orthogonal grid, at the site of vital organs and on the surface of the phantom allow for visualization of the absorbed dose distribution with superior spatial resolution. These results should help improve the estimation of radiation risks for long-term human space exploration and support benchmarking of radiation transport codes.

  13. Molecular motor KIF17 is fundamental for memory and learning via differential support of synaptic NR2A/2B levels.

    PubMed

    Yin, Xiling; Takei, Yosuke; Kido, Mizuho A; Hirokawa, Nobutaka

    2011-04-28

    Kinesin superfamily motor protein 17 (KIF17) is a candidate transporter of N-methyl-D-aspartate (NMDA) receptor subunit 2B (NR2B). Disruption of the murine kif17 gene inhibits NR2B transport, accompanied by decreased transcription of nr2b, resulting in a loss of synaptic NR2B. In kif17(-/-) hippocampal neurons, the NR2A level is also decreased because of accelerated ubiquitin-proteasome system-dependent degradation. Accordingly, NMDA receptor-mediated synaptic currents, early and late long-term potentiation, long-term depression, and CREB responses are attenuated in kif17(-/-) neurons, concomitant with a hippocampus-dependent memory impairment in knockout mice. In wild-type neurons, CREB is activated by synaptic inputs, which increase the levels of KIF17 and NR2B. Thus, KIF17 differentially maintains the levels of NR2A and NR2B, and, when synapses are stimulated, the NR2B/KIF17 complex is upregulated on demand through CREB activity. These KIF17-based mechanisms for maintaining NR2A/2B levels could underlie multiple phases of memory processes in vivo.

  14. Role for NKG2-A and NKG2-C surface receptors in chronic CD4+ T-cell responses.

    PubMed

    Ortega, Consuelo; Romero, Pilar; Palma, Agustín; Orta, Teresa; Peña, José; García-Vinuesa, Amaya; Molina, Ignacio J; Santamaría, Manuel

    2004-12-01

    The participation of CD94 and NKG2 gene family members in the function of NK cells and CD8+ cytolytic cells has recently been addressed in detail. However, the role that these molecules play in the key CD4+ regulatory cells remains largely unexplored. This study has examined the expression and regulation of CD94 and NKG2 genes in purified human peripheral CD4+ cells stimulated with several agents. We found a constitutive expression of NKG2-E in CD94-depleted resting peripheral CD4+ cells, whereas inductions of NKG2-A and NKG2-C required chronic cell activation and occurred after expression of CD94. We found that CD3-mediated stimulation induces the expression of CD94 first by day 5 of culture, followed by NKG2-A by day 15 and finally NKG2-C, which is not detected until 20 days after repeated stimulation. This pattern of gene expression differs sharply from that observed in purified CD8+ T cells, where mRNA from all NKG2 gene family members are detected after 5 days of stimulation. Selective activation of TCR V beta 2-bearing cells with toxic shock syndrome toxin-1 superantigen reveals that mRNA induction of NKG2-A and NKG2-C genes is significantly influenced by the presence of cytokines (IL-10 and TGF-beta) and by the restimulation of the cells. In addition, the occupancy of the CD94/NKG2-A receptor expressed on these superantigen-stimulated CD4+ T lymphocytes abrogates TNF-alpha and IFN-gamma production, whereas NKG2-C enhances production of these cytokines. Taken together our results reveal strict gene regulatory mechanisms for CD94 and NKG2 gene expression on CD4+ cells that are different from those governing the expression of these same genes in CD8+ cells. The results suggest that these genes also participate in chronic CD4+ T-cell responses.

  15. Pharmacological profile of the clonidine-induced inhibition of vasodepressor sensory outflow in pithed rats: correlation with α2A/2C-adrenoceptors

    PubMed Central

    Villalón, C M; Albarrán-Juárez, J A; Lozano-Cuenca, J; Pertz, H H; Görnemann, T; Centurión, D

    2008-01-01

    Background and purpose: Resistance blood vessels are innervated by sympathetic and primary sensory nerves, which modulate vascular tone through the release of noradrenaline and calcitonin gene-related peptide (CGRP), respectively. Moreover, electrical stimulation of the perivascular sensory outflow in pithed rats results in vasodepressor responses which are mainly mediated by CGRP release. The present study has investigated the role of α2-adrenoceptors in the inhibition of these vasodepressor responses. Experimental approach: 144 pithed male Wistar rats were pretreated with hexamethonium (2 mg kg−1 min−1) followed by i.v. continuous infusions of either methoxamine (15 and 30 μg kg−1 min−1) or clonidine (3, 10 and 30 μg kg−1 min−1). Under these conditions, electrical stimulation (0.56–5.6 Hz; 50 V and 2 ms) of the spinal cord (T9–T12) resulted in frequency-dependent decreases in diastolic blood pressure. Key results: The infusion of clonidine (10 μg kg−1 min−1), as compared to those of methoxamine (15 or 30 μg kg−1 min−1), inhibited the vasodepressor responses to electrical stimulation without affecting those to i.v. bolus injections of α-CGRP (0.1–1 μg kg−1). This inhibition by clonidine was: (i) antagonized by 300 μg kg−1 rauwolscine (α2A/2B/2C), 300 and 1000 μg kg−1 BRL44408 (α2A), or 10 and 30 μg kg−1 MK912 (α2C); and (ii) unaffected by 1 ml kg−1 saline, 100 μg kg−1 BRL44408, 3000 and 10000 μg kg−1 imiloxan (α2B) or 3 μg kg−1 MK912. Conclusions and implications: The inhibition produced by 10 μg kg−1 min−1 clonidine on the vasodepressor (perivascular) sensory outflow in rats may be mainly mediated by prejunctional α2A2C-adrenoceptors. PMID:18297098

  16. Differential effects of nicotine treatment and ethanol self-administration on CYP2A6, CYP2B6 and nicotine pharmacokinetics in African green monkeys.

    PubMed

    Ferguson, C S; Miksys, S; Palmour, R M; Tyndale, R F

    2012-12-01

    In primates, nicotine is metabolically inactivated in the liver by CYP2A6 and possibly CYP2B6. Changes in the levels of these two enzymes may affect nicotine pharmacokinetics and influence smoking behaviors. This study investigated the independent and combined effects of ethanol self-administration and nicotine treatment (0.5 mg/kg b.i.d. s.c.) on hepatic CYP2A6 and CYP2B6 levels (mRNA, protein, and enzymatic activity), in vitro nicotine metabolism, and in vivo nicotine pharmacokinetics in monkeys. CYP2A6 mRNA and protein levels and in vitro coumarin (selective CYP2A6 substrate) and nicotine metabolism were decreased by nicotine treatment but unaffected by ethanol. CYP2B6 protein levels and in vitro bupropion (selective CYP2B6 substrate) metabolism were increased by ethanol but unaffected by nicotine treatment; CYP2B6 mRNA levels were unaltered by either treatment. Combined ethanol and nicotine exposure decreased CYP2A6 mRNA and protein levels, as well as in vitro coumarin and nicotine metabolism, and increased CYP2B6 protein levels and in vitro bupropion metabolism, with no change in CYP2B6 mRNA levels. Chronic nicotine resulted in higher nicotine plasma levels achieved after nicotine administration, consistent with decreased CYP2A6. Ethanol alone, or combined with nicotine, resulted in lower nicotine plasma levels by a mechanism independent of the change in these enzymes. Thus, nicotine can decrease hepatic CYP2A6, reducing the metabolism of its substrates, including nicotine, whereas ethanol can increase hepatic CYP2B6, increasing the metabolism of CYP2B6 substrates. In vivo nicotine pharmacokinetics are differentially affected by ethanol and nicotine, but when both drugs are used in combination the effect more closely resembles ethanol alone.

  17. The expression of human H2A-H2B histone gene pairs is regulated by multiple sequence elements in their joint promoters.

    PubMed

    Trappe, R; Doenecke, D; Albig, W

    1999-09-03

    The majority of human H2A and H2B histone genes are organized as gene pairs: 14 H2A-H2B gene pairs, one solitary H2A gene and three solitary H2B genes have been described. Two of the H2A genes and two of the H2B genes arranged within gene pairs are pseudogenes. The gene pairs are organized with divergent transcriptional orientation, and the coding regions of the respective H2A and H2B genes are separated by about 320 nucleotide pairs that form overlapping promoter regions. Comparison of promoters of H2A-H2B gene pairs has previously shown that these belong to two different groups (groups I and II) which are characterized by specific patterns of conserved sequence elements. We have constructed a reporter gene vector that allows the simultaneous analysis of both genes regulated by the divergent promoters belonging to group I or II, respectively. Firefly-luciferase and beta-galactosidase genes were taken as reporter genes. Site directed mutagenesis performed at individual promoter elements revealed that individual sequence elements within both groups of promoters functionally depend on each other and may contribute to a coordinate expression of paired H2A and H2B genes through assembly of their joint promoter into a mutually dependent promoter complex. Group II promoters are characterized by the presence of an E2F binding site upstream of the H2A gene-proximal TATA box. Immediately upstream of the E2F element, we have identified a highly conserved octanucleotide CACAGCTT (RT-1) that exists in all human group II H2A-H2B gene promoters. Protein binding studies at the RT-1 element indicate factor binding to this sequence. Site directed mutagenesis indicates that both the E2F element and the RT-1 motif are essential for full promoter activity.

  18. Targeted Segment Transfer from Rye Chromosome 2R to Wheat Chromosomes 2A, 2B, and 7B.

    PubMed

    Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong

    2017-03-10

    Increased chromosome instability was induced by a rye (Secale cereale L.) monosomic 2R chromosome into wheat (Triticum aestivum L.). Centromere breakage and telomere dysfunction result in high rates of chromosome aberrations, including breakages, fissions, fusions, deletions, and translocations. Plants with target traits were sequentially selected to produce a breeding population, from which 3 translocation lines with target traits have been selected. In these lines, wheat chromosomes 2A, 2B, and 7B recombined with segments of the rye chromosome arm 2RL. This was detected by FISH analysis using repeat sequences pSc119.2, pAs1 and genomic DNA of rye together as probes. The translocation chromosomes in these lines were named as 2ASMR, 2BSMR, and 7BSMR. The small segments that were transferred into wheat consisted of pSc119.2 repeats and other chromatin regions that conferred resistance to stripe rust and expressed target traits. These translocation lines were highly resistant to stripe rust, and expressed several typical traits that were associated with chromosome arm 2RL, which are better than those of its wheat parent, disomic addition, and substitution lines that show agronomic characteristics. The integration of molecular methods and conventional techniques to improve wheat breeding schemes are discussed.

  19. Histone Chaperone Nap1 Is a Major Regulator of Histone H2A-H2B Dynamics at the Inducible GAL Locus

    PubMed Central

    Chen, Xu; D'Arcy, Sheena; Radebaugh, Catherine A.; Krzizike, Daniel D.; Giebler, Holli A.; Huang, Liangquan; Nyborg, Jennifer K.; Luger, Karolin

    2016-01-01

    Histone chaperones, like nucleosome assembly protein 1 (Nap1), play a critical role in the maintenance of chromatin architecture. Here, we use the GAL locus in Saccharomyces cerevisiae to investigate the influence of Nap1 on chromatin structure and histone dynamics during distinct transcriptional states. When the GAL locus is not expressed, cells lacking Nap1 show an accumulation of histone H2A-H2B but not histone H3-H4 at this locus. Excess H2A-H2B interacts with the linker DNA between nucleosomes, and the interaction is independent of the inherent DNA-binding affinity of H2A-H2B for these particular sequences as measured in vitro. When the GAL locus is transcribed, excess H2A-H2B is reversed, and levels of all chromatin-bound histones are depleted in cells lacking Nap1. We developed an in vivo system to measure histone exchange at the GAL locus and observed considerable variability in the rate of exchange across the locus in wild-type cells. We recapitulate this variability with in vitro nucleosome reconstitutions, which suggests a contribution of DNA sequence to histone dynamics. We also find that Nap1 is required for transcription-dependent H2A-H2B exchange. Altogether, these results indicate that Nap1 is essential for maintaining proper chromatin composition and modulating the exchange of H2A-H2B in vivo. PMID:26884462

  20. Histone Chaperone Nap1 Is a Major Regulator of Histone H2A-H2B Dynamics at the Inducible GAL Locus.

    PubMed

    Chen, Xu; D'Arcy, Sheena; Radebaugh, Catherine A; Krzizike, Daniel D; Giebler, Holli A; Huang, Liangquan; Nyborg, Jennifer K; Luger, Karolin; Stargell, Laurie A

    2016-04-01

    Histone chaperones, like nucleosome assembly protein 1 (Nap1), play a critical role in the maintenance of chromatin architecture. Here, we use the GAL locus in Saccharomyces cerevisiae to investigate the influence of Nap1 on chromatin structure and histone dynamics during distinct transcriptional states. When the GAL locus is not expressed, cells lacking Nap1 show an accumulation of histone H2A-H2B but not histone H3-H4 at this locus. Excess H2A-H2B interacts with the linker DNA between nucleosomes, and the interaction is independent of the inherent DNA-binding affinity of H2A-H2B for these particular sequences as measured in vitro When the GAL locus is transcribed, excess H2A-H2B is reversed, and levels of all chromatin-bound histones are depleted in cells lacking Nap1. We developed an in vivo system to measure histone exchange at the GAL locus and observed considerable variability in the rate of exchange across the locus in wild-type cells. We recapitulate this variability with in vitro nucleosome reconstitutions, which suggests a contribution of DNA sequence to histone dynamics. We also find that Nap1 is required for transcription-dependent H2A-H2B exchange. Altogether, these results indicate that Nap1 is essential for maintaining proper chromatin composition and modulating the exchange of H2A-H2B in vivo.

  1. KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification

    PubMed Central

    Fournier, Marjorie; Orpinell, Meritxell; Grauffel, Cédric; Scheer, Elisabeth; Garnier, Jean-Marie; Ye, Tao; Chavant, Virginie; Joint, Mathilde; Esashi, Fumiko; Dejaegere, Annick; Gönczy, Pierre; Tora, László

    2016-01-01

    Lysine acetylation is a widespread post-translational modification regulating various biological processes. To characterize cellular functions of the human lysine acetyltransferases KAT2A (GCN5) and KAT2B (PCAF), we determined their acetylome by shotgun proteomics. One of the newly identified KAT2A/2B substrate is polo-like kinase 4 (PLK4), a key regulator of centrosome duplication. We demonstrate that KAT2A/2B acetylate the PLK4 kinase domain on residues K45 and K46. Molecular dynamics modelling suggests that K45/K46 acetylation impairs kinase activity by shifting the kinase to an inactive conformation. Accordingly, PLK4 activity is reduced upon in vitro acetylation of its kinase domain. Moreover, the overexpression of the PLK4 K45R/K46R mutant in cells does not lead to centrosome overamplification, as observed with wild-type PLK4. We also find that impairing KAT2A/2B-acetyltransferase activity results in diminished phosphorylation of PLK4 and in excess centrosome numbers in cells. Overall, our study identifies the global human KAT2A/2B acetylome and uncovers that KAT2A/2B acetylation of PLK4 prevents centrosome amplification. PMID:27796307

  2. Origin and evolution of GATA2a and GATA2b in teleosts: insights from tongue sole, Cynoglossus semilaevis

    PubMed Central

    Liu, Jinxiang; Jiang, Jiajun; Wang, Zhongkai; He, Yan

    2016-01-01

    Background. Following the two rounds of whole-genome duplication that occurred during deuterostome evolution, a third genome duplication occurred in the lineage of teleost fish and is considered to be responsible for much of the biological diversification within the lineage. GATA2, a member of GATA family of transcription factors, is an important regulator of gene expression in hematopoietic cell in mammals, yet the role of this gene or its putative paralogs in ray-finned fishes remains relatively unknown. Methods. In this study, we attempted to identify GATA2 sequences from the transcriptomes and genomes of multiple teleosts using the bioinformatic tools MrBayes, MEME, and PAML. Following identification, comparative analysis of genome structure, molecular evolution rate, and expression by real-time qPCR were used to predict functional divergence of GATA2 paralogs and their relative transcription in organs of female and male tongue soles (Cynoglossus semilaevis). Results. Two teleost GATA2 genes were identified in the transcriptomes of tongue sole and Japanese flounder (Paralichthysolivaceus). Synteny and phylogenetic analysis confirmed that the two genes likely originated from the teleost-specific genome duplication . Additionally, selection pressure analysis predicted these gene duplicates to have undergone purifying selection and possible divergent new functions. This was supported by differential expression pattern of GATA2a and GATA2b observed in organs of female and male tongue soles. Discussion. Our results indicate that two GATA2 genes originating from the first teleost-specific genome duplication have remained transcriptionally active in some fish species and have likely undergone neofunctionalization. This knowledge provides novel insights into the evolution of the teleost GATA2 genes and constituted important groundwork for further research on the GATA gene family. PMID:27019782

  3. Common α2A and α2C adrenergic receptor polymorphisms do not affect plasma membrane trafficking.

    PubMed

    Hurt, Carl M; Sorensen, Matt W; Angelotti, Timothy

    2014-06-01

    Various naturally occurring polymorphic forms of human G protein-coupled receptors (GPCRs) have been identified and linked to diverse pathological diseases, including receptors for vasopressin type 2 (nephrogenic diabetes insipidus) and gonadotropin releasing hormone (hypogonadotropic hypogonadism). In most cases, polymorphic amino acid mutations disrupt protein folding, altering receptor function as well as plasma membrane expression. Other pathological GPCR variants have been found that do not alter receptor function, but instead affect only plasma membrane trafficking (e.g., delta opiate and histamine type 1 receptors). Thus, altered membrane trafficking with retained receptor function may be another mechanism causing polymorphic GPCR dysfunction. Two common human α2A and α2C adrenergic receptor (AR) variants have been identified (α2A N251K and α2C Δ322-325 ARs), but pharmacological analysis of ligand binding and second messenger signaling has not consistently demonstrated altered receptor function. However, possible alterations in plasma membrane trafficking have not been investigated. We utilized a systematic approach previously developed for the study of GPCR trafficking motifs and accessory proteins to assess whether these α2 AR variants affected intracellular trafficking or plasma membrane expression. By combining immunofluorescent microscopy, glycosidic processing analysis, and quantitative fluorescent-activated cell sorting (FACS), we demonstrate that neither variant receptor had altered intracellular localization, glycosylation, nor plasma membrane expression compared to wild-type α2 ARs. Therefore, pathopharmacological properties of α2A N251K and α2C Δ322-325 ARs do not appear to be due to altered receptor pharmacology or plasma membrane trafficking, but may involve interactions with other intracellular signaling cascades or proteins.

  4. The Effect of Adenosine A2A and A2B Antagonists on Tracheal Responsiveness, Serum Levels of Cytokines and Lung Inflammation in Guinea Pig Model of Asthma

    PubMed Central

    Pejman, Laleh; Omrani, Hasan; Mirzamohammadi, Zahra; Shahbazfar, Amir Ali; Khalili, Majid; Keyhanmanesh, Rana

    2014-01-01

    Purpose: Nowadays adenosine is specified as an important factor in the pathophysiology of asthma. For determining the effect of different A2 receptors, in this investigation the effect of single dose of selective adenosine A2A and A2B antagonists (ZM241385 and MRS1706) on different inflammatory parameters; tracheal responsiveness to methacholine and ovalbumin, total and differential cell count in bronchoalveolar lavage (BAL), blood levels of IL-4 and IFN-γ and lung pathology of guinea pig model of asthma were assessed. Methods: All mentioned parameters were evaluated in two sensitized groups of guinea pigs pretreated with A2A and A2B antagonists (S+Anta A2A, S+Anta A2B) compared with sensitized (S) and control (C) groups. Results: The tracheal responsiveness to methacholine and OA, total cell and eosinophil and basophil count in BAL, blood IL-4 level and pathological changes in pre-treated group with MRS1706 (S+Anta A2B) was significantly lower than those of sensitized group (p<0.01 to p<0.05). In pretreated group with Anta A2A(S+Anta A2A), all the above changes were reversed. Conclusion: These results showed a preventive effect of A2B antagonist (MRS1706) on tracheal responsiveness to methacholine and OA, total and differential cell count in bronchoalveolar lavage, blood cytokines and pathological changes. Administration of ZM241385, selective A2A antagonist, deteriorated the induction effect of ovalbumin. PMID:24511476

  5. The Nucleosome Assembly Protein TSPYL2 Regulates the Expression of NMDA Receptor Subunits GluN2A and GluN2B

    PubMed Central

    Tsang, Ka Hing; Lai, Suk King; Li, Qi; Yung, Wing Ho; Liu, Hang; Mak, Priscilla Hoi Shan; Ng, Cypress Chun Pong; McAlonan, Grainne; Chan, Ying Shing; Chan, Siu Yuen

    2014-01-01

    TSPYL2 is an X-linked gene encoding a nucleosome assembly protein. TSPYL2 interacts with calmodulin-associated serine/threonine kinase, which is implicated in X-linked mental retardation. As nucleosome assembly and chromatin remodeling are important in transcriptional regulation and neuronal function, we addressed the importance of TSPYL2 through analyzing Tspyl2 loss-of-function mice. We detected down-regulation of N-methyl-D-aspartate receptor subunits 2A and 2B (GluN2A and GluN2B) in the mutant hippocampus. Evidence from luciferase reporter assays and chromatin immunoprecipitation supported that TSPYL2 regulated the expression of Grin2a and Grin2b, the genes encoding GluN2A and GluN2B. We also detected an interaction between TSPYL2 and CBP, indicating that TSPYL2 may activate gene expression through binding CBP. In terms of functional outcome, Tspyl2 loss-of-function impaired long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, mutant mice showed a deficit in fear learning and memory. We conclude that TSPYL2 contributes to cognitive variability through regulating the expression of Grin2a and Grin2b. PMID:24413569

  6. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5.

    PubMed

    Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2014-01-01

    Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2(-⧸-)) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2(-⧸-) mouse livers were lower than that in wild-type mouse livers. Nrf2(-⧸-) mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.

  7. Structural and Biophysical Characterization of Human Cytochromes P450 2B6 and 2A6 Bound to Volatile Hydrocarbons: Analysis and Comparison

    PubMed Central

    Wilderman, P. Ross; Liu, Jingbao; Jang, Hyun-Hee; Zhang, Qinghai; Stout, C. David; Halpert, James R.

    2015-01-01

    X-ray crystal structures of complexes of cytochromes CYP2B6 and CYP2A6 with the monoterpene sabinene revealed two distinct binding modes in the active sites. In CYP2B6, sabinene positioned itself with the putative oxidation site located closer to the heme iron. In contrast, sabinene was found in an alternate conformation in the more compact CYP2A6, where the larger hydrophobic side chains resulted in a significantly reduced active-site cavity. Furthermore, results from isothermal titration calorimetry indicated a much more substantial contribution of favorable enthalpy to sabinene binding to CYP2B6 as opposed to CYP2A6, consistent with the previous observations with (+)-α-pinene. Structural analysis of CYP2B6 complexes with sabinene and the structurally similar (3)-carene and comparison with previously solved structures revealed how the movement of the F206 side chain influences the volume of the binding pocket. In addition, retrospective analysis of prior structures revealed that ligands containing –Cl and –NH functional groups adopted a distinct orientation in the CYP2B active site compared with other ligands. This binding mode may reflect the formation of Cl-π or NH-π bonds with aromatic rings in the active site, which serve as important contributors to protein-ligand binding affinity and specificity. Overall, the findings from multiple techniques illustrate how drugs metabolizing CYP2B6 and CYP2A6 handle a common hydrocarbon found in the environment. The study also provides insight into the role of specific functional groups of the ligand that may influence the binding to CYP2B6. PMID:25585967

  8. MicroRNA signatures predict dysregulated vitamin D receptor and calcium pathways status in limb girdle muscle dystrophies (LGMD) 2A/2B.

    PubMed

    Aguennouz, M; Lo Giudice, C; Licata, N; Rodolico, C; Musumeci, O; Fanin, M; Migliorato, A; Ragusa, M; Macaione, V; Di Giorgio, R M; Angelini, C; Toscano, A

    2016-08-01

    miRNA expression profile and predicted pathways involved in selected limb-girdle muscular dystrophy (LGMD)2A/2B patients were investigated. A total of 187 miRNAs were dysregulated in all patients, with six miRNAs showing opposite regulation in LGMD2A versus LGMD2B patients. Silico analysis evidence: (1) a cluster of the dysregulated miRNAs resulted primarily involved in inflammation and calcium metabolism, and (2) two genes predicted as controlled by calcium-assigned miRNAs (Vitamin D Receptor gene and Guanine Nucleotide Binding protein beta polypeptide 1gene) showed an evident upregulation in LGMD2B patients, in accordance with miRNA levels. Our data support alterations in calcium pathway status in LGMD 2A/B, suggesting myofibre calcium imbalance as a potential therapeutic target. Copyright © 2016 John Wiley & Sons, Ltd.

  9. M2A and M2C Macrophage Subsets Ameliorate Inflammation and Fibroproliferation in Acute Lung Injury Through Interleukin 10 Pathway.

    PubMed

    Tang, Lunxian; Zhang, Hua; Wang, Chunmei; Li, Hongqiang; Zhang, Qian; Bai, Jianwen

    2016-12-09

    The role of M2 macrophages in the resolution and fibroproliferation of acute lung injury (ALI) is poorly understood. In this study, we investigated the effects of two M2 macrophage subtypes, M2a induced by interleukin (IL)-4/IL-13 and M2c induced by IL-10/transforming growth factor (TGF)-β, on the pathogenesis of ALI. M2a and M2c were adoptively transferred into LPS-induced ALI mice model. Data showed that Vybrant-labeled macrophages appeared in the lungs of ALI mice. Subsequently, we observed that both subsets significantly reduced lung inflammation and injury including a reduction of neutrophil influx into the lung and an augmentation of apoptosis. Interestingly, M2c macrophages more effectively suppressed indices of lung injury than M2a macrophages. M2c macrophages were also more effective than M2a in reduction of lung fibrosis. In addition, we found that M2c but not M2a macrophages increased IL-10 level in lung tissues of the recipient ALI mice partially mediated by activating the JAK1/STAT3/SOCS3 signaling pathway. After blocking IL-10, these superior effects of M2c over M2a were abolished. These data imply that M2c are more potent than M2a macrophages in protecting against lung injury and subsequent fibrosis due to their ability to produce IL-10. Therefore, reprogramming macrophages to M2c subset may be a novel treatment modality with transitional potential.

  10. Characterization of rainbow trout myostatin-2 genes (rtMSTN-2a and -2b): genomic organization, differential expression, and pseudogenization.

    PubMed

    Garikipati, Dilip K; Gahr, Scott A; Roalson, Eric H; Rodgers, Buel D

    2007-05-01

    Myostatin is an extremely potent negative regulator of vertebrate skeletal muscle development. A phylogenetic analysis suggests that salmonids should possess four distinct genes, although only MSTN-1 orthologs have been characterized. Described herein are the rainbow trout (rt) MSTN-2a and -2b genes and subsequence analysis of their promoters and their quantitative expression profiles. Both genes are similarly organized, contain several putative myogenic response elements, and are legitimate MSTN-2 orthologs based on Bayesian analyses. However, rtMSTN-2b contains two in-frame stop codons within the first exon and unspliced variants of both transcripts were expressed in a tissue-specific manner. Complete splicing of rtMSTN-2a occurred only in brain, where expression is highest, whereas rtMSTN-2b transcripts were mostly present in unspliced forms. The presence of stop codons in the rtMSTN-2b open reading frame and the expression of mostly unspliced transcripts indicate that this particular homolog is a pseudogene. These results confirm our previous phylogenetic analysis and suggest that all salmonids likely possess four distinct myostatin genes. The tissue-specific expression and differential processing of both rtMSTN-2 transcripts as well the pseudogenization of rtMSTN-2b may reflect compensatory and adaptive responses to tetraploidization and may help limit rtMSTN-2a's influences primarily to neural tissue.

  11. CYP2A6 and CYP2B6 genetic variation and its association with nicotine metabolism in South Western Alaska Native people

    PubMed Central

    Binnington, Matthew J.; Zhu, Andy Z.X.; Renner, Caroline C.; Lanier, Anne P.; Hatsukami, Dorothy K.; Benowitz, Neal L; Tyndale, Rachel F.

    2012-01-01

    Objectives Alaska Native people (AN) have a high prevalence of tobacco use and associated morbidity and mortality when compared to the general U.S. population. Variation in the CYP2A6 and CYP2B6 genes, encoding enzymes responsible for nicotine metabolic inactivation and procarcinogen activation, has not been characterized in AN and may contribute to the increased risk. Methods AN people (n = 400) residing in the Bristol Bay region of South Western Alaska were recruited for a cross-sectional study on tobacco use. They were genotyped for CYP2A6*1X2A, *1X2B, *1B, *2, *4, *7, *8, *9, *10, *12, *17, *35 and CYP2B6*4, *6, *9 and provided plasma and urine samples for measurement of nicotine and metabolites. Results CYP2A6 and CYP2B6 variant frequencies among the AN Yupik people (n=361) were significantly different from other ethnicities. Nicotine metabolism (as measured by the plasma and urinary ratio of metabolites trans-3’hydroxycotinine to cotinine [(3HC/COT)] was significantly associated with CYP2A6 (P< 0.001) but not CYP2B6 genotype (P = 0.95) when controlling for known covariates. Of note, plasma 3HC/COT ratios were high in the entire Yupik people, and among the Yupik CYP2A6 wild-type participants they were substantially higher than previously characterized racial/ethnic groups (P < 0.001 vs. Caucasians and African Americans). Conclusions Yupik AN people have a unique CYP2A6 genetic profile which associated strongly with in vivo nicotine metabolism. More rapid CYP2A6-mediated nicotine and nitrosamine metabolism in the Yupik people may modulate tobacco-related disease risk. PMID:22569203

  12. Commercial PCV2a-based vaccines are effective in protecting naturally PCV2b-infected finisher pigs against experimental challenge with a 2012 mutant PCV2.

    PubMed

    Opriessnig, Tanja; Gerber, Priscilla F; Xiao, Chao-Ting; Halbur, Patrick G; Matzinger, Shannon R; Meng, Xiang-Jin

    2014-07-23

    Current commercial PCV2 vaccines are all based on PCV2a and have been shown to be effective in reducing PCV2a and PCV2b viremia and PCV2-associated lesions and disease. The recent emergence of novel mutant PCV2 (mPCV2) strains and linkage of mPCV2 with cases of porcine circovirus associated disease (PCVAD) in vaccinated herds have raised concerns over emergence of vaccine-escape mutants and reduced efficacy of PCV2a-based vaccines. The aim of this study was to determine the ability of three commercial PCV2a-based vaccines administered in the presence of an ongoing PCV2b infection and passively-acquired anti-PCV2 antibodies to protect conventional pigs against experimental challenge with mPCV2 at 11 weeks of age. Fifty naturally PCV2b-infected 2-week-old pigs were divided into five treatment groups with 10 pigs each. Pigs were unvaccinated (positive and negative controls) or vaccinated at 3 (VAC-A, VAC-B, VAC-C) and at 5 weeks of age (VAC-C). At 11 weeks of age, all pigs except the negative controls were challenged with a 2012 U.S. strain of mPCV2. The experiment was terminated 21 days after challenge. Under the conditions of this study, vaccinated pigs were protected against PCV2 viremia and lesions whereas non-vaccinated pigs were not. Moreover, concurrent PCV2b and mPCV2 infection was demonstrated in all positive controls and 3/10 had microscopic lesions consistent with PCVAD while negative controls infected with PCV2b alone did not develop PCVAD. The results indicate that concurrent PCV2b/mPCV2 infection can trigger PCVAD development and that commercial vaccines are effective in protecting conventional pigs against emerging mPCV2 strains.

  13. Determination of evolutionary relationships of outbreak-associated Listeria monocytogenes strains of serotypes 1/2a and 1/2b by whole-genome sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used whole-genome sequencing to determine evolutionary relationships among 20 outbreak-associated clinical isolates of Listeria monocytogenes serotypes 1/2a and 1/2b. Isolates from 6 of 11 outbreaks fell outside the clonal groups or “epidemic clones” that have been previously associated with outb...

  14. 77 FR 59670 - Electronic Filing of H-2A and H-2B Labor Certification Applications Through the iCERT Visa Portal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... Through the iCERT Visa Portal System AGENCY: Employment and Training Administration, Department of Labor... under the H-2A and H-2B visa programs through the Department of Labor's (Department) iCERT Visa Portal... Help Desk by sending an email to oflc.portal@dol.gov . Additionally, the Chicago NPC maintains...

  15. Overexpression of RelA/SpoT homologs, PpRSH2a and PpRSH2b, induces the growth suppression of the moss Physcomitrella patens.

    PubMed

    Sato, Michio; Takahashi, Tomohiro; Ochi, Kozo; Matsuura, Hideyuki; Nabeta, Kensuke; Takahashi, Kosaku

    2015-01-01

    Two genes encoding RelA/SpoT homologs, PpRSH2a and PpRSH2b, which are involved in the synthesis of bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp) for the stringent response, were isolated from the moss, Physcomitrella patens. A complementary analysis of PpRSH2a and PpRSH2b in Escherichia coli showed that these genes had ppGpp biosynthetic activity. The recombinant PpRSH2a and PpRSH2b were also shown to synthesize ppGpp in vitro. Both proteins were localized to the chloroplasts of P. patens. Expression of the PpRSH genes was induced upon treatment with abscisic acid or abiotic stresses, such as dehydration and UV irradiation. Overexpression of PpRSH2a and PpRSH2b caused suppression of the growth in response to 1% (w/v) of glucose. The present study suggests the existence of a mechanism to regulate the growth of P. patens, which is governed by plant RSH in chloroplasts.

  16. Expression of OmpP2A and OmpP2B is not required for pustule formation by Haemophilus ducreyi in human volunteers.

    PubMed

    Janowicz, Diane; Luke, Nicole R; Fortney, Kate R; Katz, Barry P; Campagnari, Anthony A; Spinola, Stanley M

    2006-03-01

    Haemophilus ducreyi express two porin proteins, termed OmpP2A and OmpP2B. To test whether expression of OmpP2A and OmpP2B was necessary for virulence in humans, eight volunteers were experimentally infected with the parent (35000HP) in one arm and a double OmpP2A OmpP2B mutant (35000HP::P2AB) in the other arm. The pustule formation rates were 58.3% (95% CI, 33.2-83.5%) for the parent and 41.7% (95% CI, 19.3-64.0%) for the mutant (P=0.25). Biopsy of 35000HP and 35000HP::P2AB-infected sites yielded similar amounts of bacteria in quantitative culture. These results indicate that expression of OmpP2A and OmpP2B is not necessary to initiate disease or to progress to pustule formation in humans.

  17. CT Scans of NASA BSTRA Balls 5f5, f2, f3, sr2c, nb2a, hb2b

    SciTech Connect

    Gross, J; Thompson, R; Perry, R; Schneberk, D

    2004-01-29

    At the request of Jose Hernandez we performed some feasibility DR/CT scanning of BSTRA Balls of different sizes. To this point we have scanned all the specimens on a single system, HECAT. This particular system employs a 9 meV LINAC as the x-ray source and a THALES 12 x 16 inch 14-bit Amorphous Silicon panel as the detector. In this report we describe the system, detail some of its properties, describe the scans performed and present the data. Figure 1 contains a couple of images of the system as fielded in the 9 MeV bay. The LINAC is in the right portion of the picture. The black panels in the blue frame constitute the High Energy collimator developed specifically for High Energy DR/CT scanning (known here as Stonehenge II). The holes in the collimator panels are beveled to match the distribution of the x-rays from the LINAC, and are sized to just subtend the active area of the THALES Amorphous Silicon panel. Consequently the source to detector distance is restricted to a few positions. Nominally our source to detector distance is 6 meters. The part manipulator, part holder fixturing consists of a translate-rotate assembly on a NEWPORT air bearing table. The stages are NEWPORT RV160PP for rotation and NEWPORT IMS400CC for translation. Both are interfaced through an ESP7000 controller, which is connected to our data acquisition computer over USB. The detector holder also resides on this table and includes pitch, roll and yaw adjustments for aligning the panel to the plane of the rotational table and the x-ray beam. The relatively large source to detector distance and LINAC properties (1 mm spot size) conspire to recommend rotation-only scanning. We use a VARIAN LINATRON 3000 with the small spot retrofit implemented. We have measured the source spot size at about 1 mm. Pixel size on the THALES panel is 0.127 um. Consequently we are in a low-cone angle scanning regime which enables rotation-only 3D CT scanning of objects and assemblies with little ''cone-angle'' error.

  18. HP-41CV Flight Performance Advisory System (FPAS) for the E-2C, E-2B, and C-2A Aircraft

    DTIC Science & Technology

    1982-06-01

    Ron generally contains ma- chine dedicated code for use by the ,rocesslng unit . ROB mar also be used to permanently store program code in no -volatle...weight (no wind condltions). Informal tests in,!lcate this A3A to e about 16 units . 21 Each value may be observed by pressing R/S to proceed to the...21 to 22 units anle of attack. The &OA probe, however, is a pressure differential 1device that Ame sures pressure t two positions on the surface of a

  19. Mechanistic Insight into NMDA Receptor Dysregulation by Rare Variants in the GluN2A and GluN2B Agonist Binding Domains.

    PubMed

    Swanger, Sharon A; Chen, Wenjuan; Wells, Gordon; Burger, Pieter B; Tankovic, Anel; Bhattacharya, Subhrajit; Strong, Katie L; Hu, Chun; Kusumoto, Hirofumi; Zhang, Jing; Adams, David R; Millichap, John J; Petrovski, Slavé; Traynelis, Stephen F; Yuan, Hongjie

    2016-12-01

    Epilepsy and intellectual disability are associated with rare variants in the GluN2A and GluN2B (encoded by GRIN2A and GRIN2B) subunits of the N-methyl-D-aspartate receptor (NMDAR), a ligand-gated ion channel with essential roles in brain development and function. By assessing genetic variation across GluN2 domains, we determined that the agonist binding domain, transmembrane domain, and the linker regions between these domains were particularly intolerant to functional variation. Notably, the agonist binding domain of GluN2B exhibited significantly more variation intolerance than that of GluN2A. To understand the ramifications of missense variation in the agonist binding domain, we investigated the mechanisms by which 25 rare variants in the GluN2A and GluN2B agonist binding domains dysregulated NMDAR activity. When introduced into recombinant human NMDARs, these rare variants identified in individuals with neurologic disease had complex, and sometimes opposing, consequences on agonist binding, channel gating, receptor biogenesis, and forward trafficking. Our approach combined quantitative assessments of these effects to estimate the overall impact on synaptic and non-synaptic NMDAR function. Interestingly, similar neurologic diseases were associated with both gain- and loss-of-function variants in the same gene. Most rare variants in GluN2A were associated with epilepsy, whereas GluN2B variants were associated with intellectual disability with or without seizures. Finally, discerning the mechanisms underlying NMDAR dysregulation by these rare variants allowed investigations of pharmacologic strategies to correct NMDAR function.

  20. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease.

    PubMed

    Lu, Junyu; Cao, Qi; Zheng, Dong; Sun, Yan; Wang, Changqi; Yu, Xiao; Wang, Ya; Lee, Vincent W S; Zheng, Guoping; Tan, Thian K; Wang, Xin; Alexander, Stephen I; Harris, David C H; Wang, Yiping

    2013-10-01

    Two types of alternatively activated macrophages, M(2a) induced by IL-4/IL-13 and M(2c) by IL-10/TGF-β, exhibit anti-inflammatory functions in vitro and protect against renal injury in vivo. Since their relative therapeutic efficacy is unclear, we compared the effects of these two macrophage subsets in murine adriamycin nephrosis. Both subsets significantly reduced renal inflammation and renal injury; however, M(2c) macrophages more effectively reduced glomerulosclerosis, tubular atrophy, interstitial expansion, and proteinuria than M(2a) macrophages. The M(2c) macrophages were also more effective than M(2a) in reduction of macrophage and CD4(+) T-cell infiltration in kidney. Moreover, nephrotic mice treated with M(2c) had a greater reduction in renal fibrosis than those treated with M(2a). M(2c) but not M(2a) macrophages induced regulatory T cells (Tregs) from CD4(+)CD25(-) T cells in vitro, and increased Treg numbers in local draining lymph nodes of nephrotic mice. To determine whether the greater protection with M(2c) was due to their capability to induce Tregs, the Tregs were depleted by PC61 antibody in nephrotic mice treated with M(2a) or M(2c). Treg depletion diminished the superior effects of M(2c) compared to M(2a) in protection against renal injury, inflammatory infiltrates, and renal fibrosis. Thus, M(2c) are more potent than M(2a) macrophages in protecting against renal injury due to their ability to induce Tregs.

  1. A mutation in the RET proto-oncogene in Hirschsprung's disease affects the tyrosine kinase activity associated with multiple endocrine neoplasia type 2A and 2B.

    PubMed Central

    Cosma, M P; Panariello, L; Quadro, L; Dathan, N A; Fattoruso, O; Colantuoni, V

    1996-01-01

    We demonstrate that a Hirschsprung (HSCR) mutation in the tyrosine kinase domain of the RET proto-oncogene abolishes in cis the tyrosine-phosphorylation associated with the activating mutation in multiple endocrine neoplasia type 2A (MEN2A) in transiently transfected Cos cells. Yet the double mutant RET2AHS retains the ability to form stable dimers, thus dissociating the dimerization from the phosphorylation potential. Co-transfection experiments with single and double mutants carrying plasmids RET2A and RET2AHS in different ratios drastically reduced the phosphorylation levels of the RET2A protein, suggesting a dominant-negative effect of the HSCR mutation. Also, the phosphorylation associated with the multiple endocrine neoplasia type 2B (MEN2B) allele was affected in experiments with single and double mutants carrying plasmids co-transfected under the same conditions. Finally, analysis of the enzymic activity of MEN2A and MEN2B tumours confirmed the relative levels of tyrosine phosphorylation observed in Cos cells, indicating that this condition, in vivo, may account for the RET transforming potential. PMID:8670046

  2. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza

    PubMed Central

    Zhou, Yangyun; Sun, Wei; Chen, Junfeng; Tan, Hexin; Xiao, Ying; Li, Qing; Ji, Qian; Gao, Shouhong; Chen, Li; Chen, Shilin; Zhang, Lei; Chen, Wansheng

    2016-01-01

    Salvia miltiorrhiza Bunge, which contains tanshinones and phenolic acids as major classes of bioactive components, is one of the most widely used herbs in traditional Chinese medicine. Production of tanshinones and phenolic acids is enhanced by methyl jasmonate (MeJA). Transcription factor MYC2 is the switch of jasmontes signaling in plants. Here, we focused on two novel JA-inducible genes in S. miltiorrhiza, designated as SmMYC2a and SmMYC2b, which were localized in the nucleus. SmMYC2a and SmMYC2b were also discovered to interact with SmJAZ1 and SmJAZ2, implying that the two MYC2s might function as direct targets of JAZ proteins. Ectopic RNA interference (RNAi)-mediated knockdown experiments suggested that SmMYC2a/b affected multiple genes in tanshinone and phenolic acid biosynthetic pathway. Besides, the accumulation of tanshinones and phenolic acids was impaired by the loss of function in SmMYC2a/b. Meanwhile, SmMYC2a could bind with an E-box motif within SmHCT6 and SmCYP98A14 promoters, while SmMYC2b bound with an E-box motif within SmCYP98A14 promoter, through which the regulation of phenolic acid biosynthetic pathway might achieve. Together, these results suggest that SmMYC2a and SmMYC2b are JAZ-interacting transcription factors that positively regulate the biosynthesis of tanshinones and Sal B with similar but irreplaceable effects. PMID:26947390

  3. Role of 5-HT1B, 5-HT2A and 5-HT2C receptors in learning.

    PubMed

    Meneses, A; Hong, E

    1997-08-01

    The effects of post-training (i.p.) injection of TFMPP, mCPP, DOI or 1-NP in the autoshaping learning task was explored. Furthermore, the post-training effects of these agonists after treatment with the antagonists (+/-)-pindolol, (+/-)-propranolol, NAN-190, ketanserin, ritanserin, mesulergine, MDL-72222 or p-chloroamphetamine (5-HT depleter) were studied. Rats were individually trained with a lever-press response (conditioned response; CR) on the autoshaping task and tested 24 h later. The results showed that the injection of TFMPP (1-10 mg/kg), mCPP (1-10 mg/kg), 1-NP (0.1-1.0 mg/kg) or mesulergine (0.4 mg/kg) decreased the rate of CR, while DOI (0.01-0.1 mg/kg) and ritanserin (0.5 mg/kg) and ketanserin (0.001-0.1 mg/kg) increased it. However, the effect induced by TFMPP was reversed by (+/-)-pindolol, ketanserin, ritanserin and PCA; the mCPP-induced effect was antagonized by (+/-)-propranolol, ketanserin, ritanserin and MDL-72222; and the effect produced by 1-NP was reversed by ketanserin, ritanserin and PCA. In addition, the increment in CR provoked by DOI was enhanced by ketanserin, and reversed by ritanserin, mesulergine and PCA. These findings suggest that TFMPP, 1-NP and DOI exerted their effects via stimulation of presynaptic 5-HT receptors. The effects of mCPP most probably reflect activation of postsynaptic receptors. The present data suggest that both 5-HT1B and 5-HT2A-2C receptors play a significant role in the consolidation of learning.

  4. Discovering the mechanisms underlying serotonin (5-HT)2A and 5-HT2C receptor regulation following nicotine withdrawal in rats.

    PubMed

    Zaniewska, Magdalena; Alenina, Natalia; Wydra, Karolina; Fröhler, Sebastian; Kuśmider, Maciej; McCreary, Andrew C; Chen, Wei; Bader, Michael; Filip, Małgorzata

    2015-08-01

    We have previously demonstrated that nicotine withdrawal produces depression-like behavior and that serotonin (5-HT)2A/2C receptor ligands modulate that mood-like state. In the present study we aimed to identify the mechanisms (changes in radioligand binding, transcription or RNA-editing) related to such a behavioral outcome. Rats received vehicle or nicotine (0.4 mg/kg, s.c.) for 5 days in home cages. Brain 5-HT2A/2C receptors were analyzed on day 3 of nicotine withdrawal. Nicotine withdrawal increased [(3)H]ketanserin binding to 5-HT2A receptors in the ventral tegmental area and ventral dentate gyrus, yet decreased binding in the nucleus accumbens shell. Reduction in [(3)H]mesulergine binding to 5-HT2C receptors was seen in the ventral dentate gyrus. Profound decrease in the 5-HT2A receptor transcript level was noted in the hippocampus and ventral tegmental area. Out of five 5-HT2C receptor mRNA editing sites, deep sequencing data showed a reduction in editing at the E site and a trend toward reduction at the C site in the hippocampus. In the ventral tegmental area, a reduction for the frequency of CD 5-HT2C receptor transcript was seen. These results show that the reduction in the 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor density in the hippocampus and ventral tegmental area during nicotine withdrawal, while decreased 5-HT2C receptor mRNA editing may explain the reduction in receptor labeling in the hippocampus. Serotonin (5-HT)2A/2C receptor ligands alleviate depression-like state in nicotine-withdrawn rats. Here, we show that the reduction in 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor number in the hippocampus and ventral tegmental area during nicotine withdrawal, while attenuated 5-HT2C receptor mRNA editing in the hippocampus might explain reduced inverse agonist binding to 5-HT2C receptor and suggest a shift toward a population of more active receptors. 5

  5. Evidence for the 2B1-2A1 electronic transition in chlorine dioxide from resonance Raman depolarization ratios

    NASA Astrophysics Data System (ADS)

    Reid, Philip J.; Esposito, Anthony P.; Foster, Catherine E.; Beckman, Robert A.

    1997-11-01

    The resonance Raman depolarization ratios of chlorine dioxide (OClO) dissolved in cyclohexane are measured and analyzed to establish the existence of a 2A1 excited state that is nearly degenerate with the optically stronger, 2A2 excited state. The depolarization ratio of the symmetric stretch fundamental transition is measured at several excitation wavelengths spanning the lowest-energy electronic transition centered at ˜360 nm. The depolarization ratio of this transition reaches a maximum value of 0.25±0.04 directly on resonance suggesting that scattered intensity is not derived from a single excited state. The depolarization ratios are modeled utilizing the time-dependent formalism for Raman scattering. This analysis demonstrates that the observed Raman depolarization ratios are derived from contributions of two excited states of 2A1 and 2A2 symmetry to the observed scattering. The results presented here support the emerging picture of OClO excited-state reaction dynamics in which photoexcitation to the 2A2 excited state is followed by internal conversion from this state to the 2A1 surface. Both the role of the 2A1 state in the photochemistry of OClO and the importance of this state in modeling resonance Raman intensities are discussed.

  6. Dephosphorylation of distinct sites on microtubule-associated protein MAP1B by protein phosphatases 1, 2A and 2B.

    PubMed

    Ulloa, L; Dombrádi, V; Díaz-Nido, J; Szücs, K; Gergely, P; Friedrich, P; Avila, J

    1993-09-06

    Rat brain microtubule-associated protein MAP1B has been tested as a substrate for Ser/Thr protein phosphatases (PP). The dephosphorylation reactions were followed by specific antibodies recognizing phosphorylated and phosphorylatable epitopes. One set of phosphorylation sites on MAP1B are referred to as mode I sites, and their phosphorylation is presumably catalyzed by proline-directed protein kinases. These mode I sites are efficiently dephosphorylated by PP2B and 2A but not by PP1. Another set of phosphorylation sites on MAP1B are named mode II sites, and their phosphorylation is possibly due to casein kinase II. These mode II sites are dephosphorylated by PP2A and PP1, the PP2B being ineffective. The selectivity of phosphatases for different sites within the same protein indicates the complexity of the dephosphorylation reactions regulating the functionality of MAP1B in neurons.

  7. Neutron scattering studies of the H2a-H2b and (H3-H4)/sub 2/ histone complexes

    SciTech Connect

    Carlson, R.D.

    1982-01-01

    Neutron scattering experiments have shown that both the (H3-H4)/sub 2/ and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4)/sub 2/ tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk, can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. 48 references, 12 figures, 1 table.

  8. Progression into the First Meiotic Division Is Sensitive to Histone H2a-H2b Dimer Concentration in Saccharomyces Cerevisiae

    PubMed Central

    Tsui, K.; Simon, L.; Norris, D.

    1997-01-01

    The yeast Saccharomyces cerevisiae contains two genes for histone H2A and two for histone H2B located in two divergently transcribed gene pairs: HTA1-HTB1 and HTA2-HTB2. Diploid strains lacking HTA1-HTB1 (hta1-htb1Δ/hta1-htb1Δ, HTA2-HTB2/HTA2-HTB2) grow vegetatively, but will not sporulate. This sporulation phenotype results from a partial depletion of H2A-H2B dimers. Since the expression patterns of HTA1-HTB1 and HTA2-HTB2 are similar in mitosis and meiosis, the sporulation pathway is therefore more sensitive than the mitotic cycle to depletion of H2A-H2B dimers. After completing premeiotic DNA replication, commitment to meiotic recombination, and chiasma resolution, the hta1-htb1Δ/hta1-htb1Δ, HTA2-HTB2/HTA2-HTB2 mutant arrests before the first meiotic division. The arrest is not due to any obvious disruptions in spindle pole bodies or microtubules. The meiotic block is not bypassed in backgrounds homozygous for spo13, rad50Δ, or rad9Δ mutations, but is bypassed in the presence of hydroxyurea, a drug known to inhibit DNA chain elongation. We hypothesize that the deposition of H2A-H2B dimers in the mutant is unable to keep pace with the replication fork, thereby leading to a disruption in chromosome structure that interferes with the meiotic divisions. PMID:9055075

  9. Influence of synthetic and natural food dyes on activities of CYP2A6, UGT1A6, and UGT2B7.

    PubMed

    Kuno, Nayumi; Mizutani, Takaharu

    2005-08-27

    Synthetic or natural food dyes are typical xenobiotics, as are drugs and pollutants. After ingestion, part of these dyes may be absorbed and metabolized by phase I and II drug-metabolizing enzymes and excreted by transporters of phase III enzymes. However, there is little information regarding the metabolism of these dyes. It was investigated whether these dyes are substrates for CYP2A6 and UDP-glucuronosyltransferase (UGT). The in vitro inhibition of drug-metabolizing enzymes by these dyes was also examined. The synthetic food dyes studied were amaranth (food red no. 2), erythrosine B (food red no. 3), allura red (food red no. 40), new coccine (food red no. 102), acid red (food red no. 106), tartrazine (food Yellow no. 4), sunset yellow FCF (food yellow no. 5), brilliant blue FCF (food blue no. 1), and indigo carmine (food blue no. 2). The natural additive dyes studied were extracts from purple sweet potato, purple corn, cochineal, monascus, grape skin, elderberry, red beet, gardenia, and curthamus. Data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. Only indigo carmine inhibited CYP2A6 in a noncompetitive manner, while erythrosine B inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). In the natural additive dyes just listed, only monascus inhibited UGT1A6 and UGT2B7.

  10. Histone H2A/H2B chaperones: from molecules to chromatin-based functions in plant growth and development.

    PubMed

    Zhou, Wangbin; Zhu, Yan; Dong, Aiwu; Shen, Wen-Hui

    2015-07-01

    Nucleosomal core histones (H2A, H2B, H3 and H4) must be assembled, replaced or exchanged to preserve or modify chromatin organization and function according to cellular needs. Histone chaperones escort histones, and play key functions during nucleosome assembly/disassembly and in nucleosome structure configuration. Because of their location at the periphery of nucleosome, histone H2A-H2B dimers are remarkably dynamic. Here we focus on plant histone H2A/H2B chaperones, particularly members of the NUCLEOSOME ASSEMBLY PROTEIN-1 (NAP1) and FACILITATES CHROMATIN TRANSCRIPTION (FACT) families, discussing their molecular features, properties, regulation and function. Covalent histone modifications (e.g. ubiquitination, phosphorylation, methylation, acetylation) and H2A variants (H2A.Z, H2A.X and H2A.W) are also discussed in view of their crucial importance in modulating nucleosome organization and function. We further discuss roles of NAP1 and FACT in chromatin-based processes, such as transcription, DNA replication and repair. Specific functions of NAP1 and FACT are evident when their roles are considered with respect to regulation of plant growth and development and in plant responses to environmental stresses. Future major challenges remain in order to define in more detail the overlapping and specific roles of various members of the NAP1 family as well as differences and similarities between NAP1 and FACT family members, and to identify and characterize their partners as well as new families of chaperones to understand histone variant incorporation and chromatin target specificity.

  11. The nucleotide-binding domains of sulfonylurea receptor 2A and 2B play different functional roles in nicorandil-induced activation of ATP-sensitive K+ channels.

    PubMed

    Yamada, Mitsuhiko; Kurachi, Yoshihisa

    2004-05-01

    Nicorandil activates ATP-sensitive K(+) channels composed of Kir6.2 and either sulfonylurea receptor (SUR) 2A or 2B. Although SUR2A and SUR2B differ only in their C-terminal 42 amino acids (C42) and possess identical drug receptors and nucleotide-binding domains (NBDs), nicorandil more potently activates SUR2B/Kir6.2 than SUR2A/Kir6.2 channels. Here, we analyzed the roles of NBDs in these channels' response to nicorandil with the inside-out configuration of the patch-clamp method. Binding and hydrolysis of nucleotides by NBDs were impaired by mutations in the Walker A motif of NBD1 (K708A) and NBD2 (K1349A) and in the Walker B motif of NBD2 (D1470N). Experiments were done with internal ATP (1 mM). In SUR2A/Kir6.2 channels, the K708A mutation abolished, and the K1349A but not D1470N mutation reduced the sensitivity to nicorandil. ADP (100 microM) significantly increased the wild-type channels' sensitivity to nicorandil, which was abolished by the K1349A or D1470N mutation. Thus, the SUR2A/Kir6.2 channels' response to nicorandil critically depends on ATP-NBD1 interaction and is facilitated by interactions of ATP or ADP with NBD2. In SUR2B/Kir6.2 channels, either the K708A or K1349A mutation partially suppressed the response to nicorandil, and double mutations abolished it. The D1470N mutation also significantly impaired the response. ADP did not sensitize the channels. Thus, NBD2 hydrolyzes ATP, and NBD1 and NBD2 equally contribute to the response by interacting with ATP and ADP, accounting for the higher nicorandil sensitivity of SUR2B/Kir6.2 than SUR2A/Kir6.2 channels in the presence of ATP alone. Thus, C42 modulates the interaction of both NBDs with intracellular nucleotides.

  12. A 2A2<--X 2B1 absorption and Raman spectra of the OClO molecule: A three-dimensional time-dependent wave packet study

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Lou, Nanquan; Nyman, Gunnar

    2005-02-01

    Time-dependent wave packet calculations of the (A 2A2←X 2B1) absorption and Raman spectra of the OClO molecule are reported. The Fourier grid Hamiltonian method in three dimensions is employed. The X 2B1 ground state ab initio potential energy surface reported by Peterson [J. Chem. Phys. 109, 8864 (1998)] is used together with his corresponding A 2A2 state surface or the revised surface of the A 2A2 state by Xie and Guo [Chem. Phys. Lett. 307, 109 (1999)]. Radau coordinates are used to describe the vibrations of a nonrotating OClO molecule. The split-operator method combined with fast Fourier transform is applied to propagate the wave function. We find that the ab initio A 2A2 potential energy surface better reproduces the detailed structures of the absorption spectrum at long wavelength, while the revised surface of the A 2A2 state, consistent with the work of Xie and Guo, better reproduces the overall shape and the energies of the vibrational levels. Both surfaces of the A 2A2 state can reasonably reproduce the experimental Raman spectra but neither does so in detail for the numerical model employed in the present work.

  13. Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors

    PubMed Central

    Campa, Daniele; Capurso, Gabriele; Pastore, Manuela; Talar-Wojnarowska, Renata; Milanetto, Anna Caterina; Landoni, Luca; Maiello, Evaristo; Lawlor, Rita T.; Malecka-Panas, Ewa; Funel, Niccola; Gazouli, Maria; De Bonis, Antonio; Klüter, Harald; Rinzivillo, Maria; Delle Fave, Gianfranco; Hackert, Thilo; Landi, Stefano; Bugert, Peter; Bambi, Franco; Archibugi, Livia; Scarpa, Aldo; Katzke, Verena; Dervenis, Christos; Liço, Valbona; Furlanello, Sara; Strobel, Oliver; Tavano, Francesca; Basso, Daniela; Kaaks, Rudolf; Pasquali, Claudio; Gentiluomo, Manuel; Rizzato, Cosmeri; Canzian, Federico

    2016-01-01

    Pancreatic neuroendocrine tumors (PNETs) are heterogeneous neoplasms which represent only 2% of all pancreatic neoplasms by incidence, but 10% by prevalence. Genetic risk factors could have an important role in the disease aetiology, however only a small number of case control studies have been performed yet. To further our knowledge, we genotyped 13 SNPs belonging to the pleiotropic CDKN2A/B gene region in 320 PNET cases and 4436 controls, the largest study on the disease so far. We observed a statistically significant association between the homozygotes for the minor allele of the rs2518719 SNP and an increased risk of developing PNET (ORhom = 2.08, 95% CI 1.05–4.11, p = 0.035). This SNP is in linkage disequilibrium with another polymorphic variant associated with increased risk of several cancer types. In silico analysis suggested that the SNP could alter the sequence recognized by the Neuron-Restrictive Silencer Factor (NRSF), whose deregulation has been associated with the development of several tumors. The mechanistic link between the allele and the disease has not been completely clarified yet but the epidemiologic evidences that link the DNA region to increased cancer risk are convincing. In conclusion, our results suggest rs2518719 as a pleiotropic CDKN2A variant associated with the risk of developing PNETs. PMID:28008994

  14. First detection of canine parvovirus type 2c in Brazil

    PubMed Central

    Streck, André Felipe; de Souza, Carine Kunzler; Gonçalves, Karla Rathje; Zang, Luciana; Pinto, Luciane Dubina; Canal, Cláudio Wageck

    2009-01-01

    The presence of canine parvovirus type 2 (CPV-2), 2a and 2b has been described in Brazil, however, the type 2c had not been reported until now. In the current study, seven out of nine samples from dogs with diarrhea were characterized as CPV-2c, indicating that this virus is already circulating in the Brazilian canine population. PMID:24031389

  15. Neutron scattering studies of the H2a-H2b and (H3-H4)2 histone complexes

    SciTech Connect

    Carlson, R.D.

    1984-01-01

    Neutron scattering experiments have shown that both the (H3-H4)2 and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4)2 tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk of the type proposed by Klug et al. (23), can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. The low resolution data are in good agreement with those calculated for a cylindrical model 64 X 27 A, but other elongated models fit those data almost as well, including one that approximates free N-terminal arms at each end. Free arms are not necessary, but they must extend from the ends if they exist. A contrast matching experiment done with 50% deuterated H2b and undeuterated H2a in the reconstituted dimer showed that these two histones must each be rather elongated within the complex and are not just confined to one end. The amount of scattering contrast between the undeuterated and 50% deuterated histones was sufficient to suggest further experiments using complexes reconstituted from mixtures of undeuterated and partially deuterated histones which will help elucidate their arrangement within the histone complexes and within the octamer core of the nucleosome core particle.

  16. Pulmonary transcription of CAT-2 and CAT-2B but not CAT-1 and CAT-2A were upregulated in hemorrhagic shock rats.

    PubMed

    Huang, Chun-Jen; Tsai, Pei-Shan; Yang, Chen-Hsien; Su, Tsung-Hsien; Stevens, Bruce R; Skimming, Jeffrey W; Pan, Wynn H T

    2004-11-01

    Hemorrhagic shock stimulates nitric oxide (NO) biosynthesis through upregulation of inducible NO synthase (iNOS) expression. Trans-membrane l-arginine transportation mediated by the isozymes of cationic amino acid transporters (e.g. CAT-1, CAT-2, CAT-2A, and CAT-2B) is one crucial regulatory mechanism that regulates iNOS activity. We sought to assess the effects of hemorrhage and resuscitation on the expression of these regulatory enzymes in hemorrhage-stimulated rat lungs. Twenty-four rats were randomized to a sham-instrumented group, a sustained shock group, a shock with blood resuscitation group, or a shock with normal saline resuscitation group. Hemorrhagic shock was induced by withdrawing blood to maintain MAP between 40 and 45mmHg for 60min. Resuscitation by infusing blood/saline mixtures (blood resuscitation group) or saline alone (saline resuscitation group) was then performed. At the end of the experiment (300min after hemorrhage began), rats were sacrificed and enzymes expression as well as pulmonary NO biosynthesis and lung injuries were assayed. Our data revealed that hemorrhage-induced pulmonary iNOS, CAT-2, and CAT-2B transcription which was associated with pulmonary NO overproduction and subsequent lung injury. Resuscitation significantly attenuated the hemorrhage-induced enzyme upregulation, pulmonary NO overproduction, and lung injury. Blood/saline mixtures were superior to saline as a resuscitation solution in treating hemorrhage-induced pulmonary NO overproduction and lung injury. Hemorrhage and/or resuscitation, however, did not affect the expression of pulmonary CAT-1 and CAT-2A. It is, therefore, concluded that the expression of pulmonary iNOS, CAT-2, and CAT-2B is inducible and that of CAT-1 and CAT-2A is constitutive in hemorrhagic shock rat lungs.

  17. [Roles and expressions of the NMDA receptor subunits (NR2A and NR2B) in visual cortex area of kittens with the normal visual development and anisometropic amblyopia].

    PubMed

    Li, Haiwei; Liu, Longqian; Liu, Xuyang

    2011-04-01

    In order to understand the roles of the other subunits, we investigated expression of the NMDA receptor subunits (NR2A and NR2B) in visual cortex of normal and anisometropic amblyopia kittens with different ages in the present study. We examined the expressions of NR2A and NR2B in the visual cortex of the kittens by immunohistochemistry with polyclonal anti-NR2A antibody and anti-NR2B antibody, respectively. Using immunohisto-chemical Streptavidin Perosidase (SP) method, we observed the dynamic changes of NR2A and NR2B with microscope and computer-assisted image analyses. We found that NR2A and NR2B remained low expression after the peak of the critical period of kitten visual development; compared with normal group of the same age, NR2A expresses low. However, the difference is not significant for NR2B before maturation period of visual development. NR2B rises after the maturation period of visual development. According to this, the component of NR2A and NR2B can be affected by anisometropia. This research suggests that the difference of NR2A and NR2B expressions may affect the formation of amblyopia.

  18. Topology prediction of Brucella abortus Omp2b and Omp2a porins after critical assessment of transmembrane beta strands prediction by several secondary structure prediction methods.

    PubMed

    Paquet, J Y; Vinals, C; Wouters, J; Letesson, J J; Depiereux, E

    2000-02-01

    In order to propose a reliable model for Brucella porin topology, several structure prediction methods were evaluated in their ability to predict porin topology. Four porins of known structure were selected as test-cases and their secondary structure delineated. The specificity and sensitivity of 11 methods were separately evaluated. Our critical assessment shows that some secondary structure prediction methods (PHD, Dsc, Sopma) originally designed to predict globular protein structure are useful on porin topology prediction. The overall best prediction is obtained by combining these three "generalist" methods with a transmembrane beta strand prediction technique. This "consensus" method was applied to Brucella porins Omp2b and Omp2a, sharing no sequence homology with any other porin. The predicted topology is a 16-stranded antiparallel beta barrel with Omp2a showing a higher number of negatively charged residue in the exposed loops than Omp2b. Experiments are in progress to validate the proposed topology and the functional hypotheses. The ability of the proposed consensus method to predict topology of complex outer membrane protein is briefly discussed.

  19. PDCD4 functions as a suppressor for pT2a and pT2b stage gastric cancer.

    PubMed

    Guo, Peng-Tao; Yang, Dong; Sun, Zhe; Xu, Hui-Mian

    2013-03-01

    Gastric cancer is one of the leading causes of cancer‑related mortality worldwide. Loss of programmed cell death 4 (PDCD4) expression has been detected in gastric cancer. However, the effects of PDCD4 on pT2 stage gastric cancer remain unclear. The aim of this study was to identify the relationship between PDCD4 expression and clinicopathological features of patients with pT2 stage gastric cancer. In the present study, 122 pT2 stage gastric cancer specimens were subclassified as pT2a and pT2b stage. The levels of PDCD4 mRNA and protein in gastric cancer tissues were lower compared to that in normal tissues as detected by real‑time PCR and western blot analysis, respectively. In addition, both PDCD4 mRNA and protein in pT2b stage gastric cancer were lower when compared to that in pT2a stage gastric cancer. Finally, we used immuno-histochemistry to determine the protein expression and analyzed the relationship between PDCD4 expression and the clinicopathological features of pT2 stage gastric cancer patients. Cumulative survival rate of patients with PDCD4 expression was significantly higher compared to the patients without PDCD4 expression. PDCD4 expression in gastric cancer can be employed to indicate a favorable prognosis for the disease outcome.

  20. Association of FCGR2A p.R131H and CCL2 c.-2518 A>G gene variants with thrombocytopenia in patients with dengue virus infection.

    PubMed

    Alagarasu, Kalichamy; Bachal, Rupali V; Damle, Indraneel; Shah, Paresh S; Cecilia, Dayaraj

    2015-11-01

    FCGR2A and CCL2 gene variants are important in dengue pathogenesis and were investigated in 122 dengue patients (DENs) [89 dengue fever (DF) and 33 dengue hemorrhagic fever (DHF)] and 107 healthy controls (HCs) to find out their association with severity of dengue. Genotype frequencies of FCGR2A p.R131H and CCL2 c.-2518 A > G polymorphisms were not different between DF, DHF and HC. Significantly higher frequency of R/R genotype of FCGR2A p.R131H was observed in DEN cases with thrombocytopenia (TP) while the G/G genotype of CCL2 c.-2518 A > G was observed only in DEN cases with TP (p < 0.005). These results suggest that FCGR2A and CCL2 gene variants were associated with the risk of TP in dengue infections.

  1. Concurrent porcine circovirus type 2a (PCV2a) or PCV2b infection increases the rate of amino acid mutations of porcine reproductive and respiratory syndrome virus (PRRSV) during serial passages in pigs.

    PubMed

    Yin, Shuang-Hui; Xiao, Chao-Ting; Gerber, Priscilla F; Beach, Nathan M; Meng, Xiang-Jin; Halbur, Patrick G; Opriessnig, Tanja

    2013-12-26

    Porcine reproductive and respiratory syndrome virus (PRRSV) has a high degree of genetic and antigenic variability. The purpose of this study was to determine if porcine circovirus type 2 (PCV2) infection increases genetic variability of PRRSV during serial passages in pigs and to determine if there is a difference in the PRRSV mutation rate between pigs concurrently infected with PCV2a or PCV2b. After 8 consecutive passages of PRRSV alone (group 1), PRRSV with PCV2a (group 2), or PCV2b (group 3) in pigs, the sequences of PRRSV structural genes for open reading frame (ORF) 5, ORF6, ORF7 and the partial non-structural protein gene (Nsp) 2 were determined. The total number of identified amino acid mutations in ORF5, ORF6, ORF7 and Nsp2 sequences was 30 for PRRSV infection only, 63 for PRRSV/PCV2a concurrent infection, and 77 for PRRSV/PCV2b concurrent infection when compared with the original VR2385 virus used to infect the passage 1 pigs. Compared to what occurred in pigs infected with PRRSV only, the mutation rates in ORF5 and ORF6 were significantly higher for concurrent PRRSV/PCV2b infected pigs. The PRRSV/PCV2a pigs had a significantly higher mutation rate in ORF7. The results from this study indicated that, besides ORF5 and Nsp2, the PRRSV structural genes ORF6 and ORF7 were shown to mutate at various degrees when the PRRSV was passaged over time in vivo. Furthermore, a significantly higher mutation rate of PRRSV was observed when pigs were co-infected with PCV2 highlighting the importance of concurrent infections on PRRSV evolution and control.

  2. Irradiation of Metallic Fuels with Rare Earth Additions for Actinide Transmutation in the ATR. Experiment Description for AFC-2A and AFC-2B

    SciTech Connect

    S. L. Hayes; D. J. Utterbeck; T. A. Hyde

    2007-03-01

    The U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing metallic transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the metallic fuel test series in progress in the ATR. This report documents the experiment description and test matrix of the proposed experiments and the Post Irradiation Examination (PIE) and fabrication schedule.

  3. Irradiation of Metallic Fuels with Rare Earth Additions for Actinide Transmutation in the Advanced Test Reactor. Experiment Description for AFC-2A and AFC-2B

    SciTech Connect

    Hayes, Steven L.

    2006-12-01

    The U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing metallic transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the metallic fuel test series in progress in the ATR. This report documents the experiment description and test matrix of the proposed experiments and the Post Irradiation Examination (PIE) and fabrication schedule.

  4. Irradiation of Metallic Fuels with Rare Earth Additions for Actinide Transmutation in the ATR. Experiment Description for AFC-2A and AFC-2B

    SciTech Connect

    S. L. Hayes; D. J. Utterbeck; T. A. Hyde

    2006-11-01

    The U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing metallic transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the metallic fuel test series in progress in the ATR. This report documents the experiment description and test matrix of the proposed experiments and the Post Irradiation Examination (PIE) and fabrication schedule.

  5. Biological activity of EDQM CRS for Interferon alfa-2a and Interferon alfa-2b - assessment in two in vitro bioassays.

    PubMed

    Silva, M M C G; Gaines-Das, R E; Jones, C; Robinson, C J

    2007-12-01

    The European Directorate for the Quality of Medicines (EDQM) supplies Chemical Reference Substances (CRS) for Interferon (IFN) alfa-2a (CRS I0320300) and for IFN alfa-2b (CRS I0320301) for specified physicochemical tests. However, no information is provided as to their biological activity. In contrast, the World Health Organization (WHO) provides the 2nd International Standards (IS) for IFN alfa-2a (code 95/650) and for IFN alfa-2b (code 95/566), with activity defined in International Units (IU) for calibration of biological activity of preparations of IFN. We have compared the EDQM CRSs with the WHO ISs in two bioassay systems, one measuring the anti-proliferative activity in the Daudi cell line and the other measuring a reporter gene activation in an A549 cell line. In each of these assay systems, the CRSs gave dose - response relations, which were similar to those for the WHO ISs. Estimates of relative activity for each CRS, in terms of the respective IS, showed specific biological activity for the CRSs of the same order as the nominal specific activity for the ISs. However, the estimates of relative activity were not consistent between the two assays systems, emphasizing the need for calibration within each system, if the CRS were to be used as a working standard for bioassays. For structure-activity studies, both physicochemical and biological activity characterisation are required for the same biopharmaceutical preparation. CRS I0320300 and CRS I0320301 may prove useful as working standards for some bioassay systems.

  6. Mutagenesis of Dengue Virus Protein NS2A Revealed a Novel Domain Responsible for Virus-Induced Cytopathic Effect and Interactions Between NS2A and NS2B Transmembrane Segments.

    PubMed

    Wu, Ren-Huang; Tsai, Ming-Han; Tsai, Kuen-Nan; Tian, Jia Ni; Wu, Jian-Sung; Wu, Su-Ying; Chern, Jyh-Haur; Chen, Chun-Hong; Yueh, Andrew

    2017-04-05

    The NS2A protein of Dengue virus (DENV) has eight predicted transmembrane segments (pTMS1-8) and participates in RNA replication, virion assembly, and host antiviral response. However, the roles of specific amino acid residues within the pTMS regions of NS2A during the viral life cycle are not clear. Here, we explored the function of DENV NS2A by introducing a series of alanine substitutions into the N-terminal half (pTMS1-4) of the protein in the context of a DENV infectious clone or subgenomic replicon. Six NS2A mutants (NM5, 7, 9, and 17-19) around pTMS1-2 displayed a novel phenotype showing a >1000-fold reduction in virus yield, an absence of plaque formation despite wild-type-like replicon activity, and infectious virus-like particle yields. The HEK293 cells infected with those six NS2A mutant viruses failed to cause a virus-induced cytopathic effect (CPE) by MitoCapture staining, cell proliferation, and lactate dehydrogenase release assays. Sequencing analyses of pseudorevertant viruses derived from lethal mutant viruses revealed two consensus reversion mutations, leucine-to-phenylalanine at codon 181 (L181F) within the pTMS7 of NS2A and isoleucine-to-threonine at codon 114 (I114T) within NS2B. The introduction of NS2A-L181F mutation into the lethal (NM15, 16, 25, and 33) and CPE-defective (NM7, 9, and 19) mutants substantially rescued virus infectivity and virus-induced CPE, respectively, whereas NS2B-L114T mutation rescued NM16, 25, and 33 mutants. In conclusion, the results revealed the essential roles of the N-terminal half of NS2A in RNA replication and virus-induced CPE. Intramolecular interactions between pTMSs of NS2A and intermolecular interactions between NS2A and NS2B protein were also implicated.Importance: The characterization of the N-terminal (current study) and C-terminal half of DENV NS2A is the most comprehensive mutagenesis study to date to investigate the function of NS2A during the flaviviral life cycle. A novel region responsible for

  7. Dephosphorylation of Ser-137 in DARPP-32 by protein phosphatases 2A and 2C: different roles in vitro and in striatonigral neurons.

    PubMed Central

    Desdouits, F; Siciliano, J C; Nairn, A C; Greengard, P; Girault, J A

    1998-01-01

    DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, Mr=32000) is highly expressed in striatonigral neurons in which its phosphorylation is regulated by several neurotransmitters including dopamine and glutamate. DARPP-32 becomes a potent inhibitor of protein phosphatase 1 when it is phosphorylated on Thr-34 by cAMP- or cGMP-dependent protein kinases. DARPP-32 is also phosphorylated on Ser-137 by protein kinase CK1 (CK1), in vitro and in vivo. This phosphorylation has an important regulatory role since it inhibits the dephosphorylation of Thr-34 by calcineurin in vitro and in striatonigral neurons. Here, we show that DARPP-32 phosphorylated by CK1 is a substrate in vitro for protein phosphatases 2A and 2C, but not protein phosphatase 1 or calcineurin. However, in substantia nigra slices, dephosphorylation of Ser-137 was markedly sensitive to decreased temperature, and not detectably affected by the presence of okadaic acid under conditions in which dephosphorylation of Thr-34 by protein phosphatase 2A was inhibited. These results suggest that, in neurons, phospho-Ser-137-DARPP-32 is dephosphorylated by protein phosphatase 2C, but not 2A. Thus, DARPP-32 appears to be a component of a regulatory cascade of phosphatases in which dephosphorylation of Ser-136 by protein phosphatase 2C facilitates dephosphorylation of Thr-34 by calcineurin, removing the cyclic nucleotide-induced inhibition of protein phosphatase 1. PMID:9461512

  8. Dephosphorylation of Ser-137 in DARPP-32 by protein phosphatases 2A and 2C: different roles in vitro and in striatonigral neurons.

    PubMed

    Desdouits, F; Siciliano, J C; Nairn, A C; Greengard, P; Girault, J A

    1998-02-15

    DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, Mr=32000) is highly expressed in striatonigral neurons in which its phosphorylation is regulated by several neurotransmitters including dopamine and glutamate. DARPP-32 becomes a potent inhibitor of protein phosphatase 1 when it is phosphorylated on Thr-34 by cAMP- or cGMP-dependent protein kinases. DARPP-32 is also phosphorylated on Ser-137 by protein kinase CK1 (CK1), in vitro and in vivo. This phosphorylation has an important regulatory role since it inhibits the dephosphorylation of Thr-34 by calcineurin in vitro and in striatonigral neurons. Here, we show that DARPP-32 phosphorylated by CK1 is a substrate in vitro for protein phosphatases 2A and 2C, but not protein phosphatase 1 or calcineurin. However, in substantia nigra slices, dephosphorylation of Ser-137 was markedly sensitive to decreased temperature, and not detectably affected by the presence of okadaic acid under conditions in which dephosphorylation of Thr-34 by protein phosphatase 2A was inhibited. These results suggest that, in neurons, phospho-Ser-137-DARPP-32 is dephosphorylated by protein phosphatase 2C, but not 2A. Thus, DARPP-32 appears to be a component of a regulatory cascade of phosphatases in which dephosphorylation of Ser-136 by protein phosphatase 2C facilitates dephosphorylation of Thr-34 by calcineurin, removing the cyclic nucleotide-induced inhibition of protein phosphatase 1.

  9. Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-D-aspartate receptor function and neuronal excitotoxicity.

    PubMed

    Zhou, Xianju; Ding, Qi; Chen, Zhuoyou; Yun, Huifang; Wang, Hongbing

    2013-08-16

    GluN2A and GluN2B are the major subunits of functional NMDA receptors (NMDAR). Previous studies have suggested that GluN2A and GluN2B may differentially mediate NMDAR function at synaptic and extrasynaptic locations and play opposing roles in excitotoxicity, such as neurodegeneration triggered by ischemic stroke and brain injury. By using pharmacological and molecular approaches to suppress or enhance the function of GluN2A and GluN2B in cultured cortical neurons, we examined NMDAR-mediated, bidirectional regulation of prosurvival signaling (i.e. the cAMP response element-binding protein (CREB)-Bdnf cascade) and cell death. Inhibition of GluN2A or GluN2B attenuated the up-regulation of prosurvival signaling triggered by the activation of either synaptic or extrasynaptic NMDAR. Inhibition of GluN2A or GluN2B also attenuated the down-regulation of prosurvival signaling triggered by the coactivation of synaptic and extrasynaptic receptors. The effects of GluN2B on CREB-Bdnf signaling were larger than those of GluN2A. Consistently, compared with suppression of GluN2A, suppression of GluN2B resulted in more reduction of NMDA- and oxygen glucose deprivation-induced excitotoxicity as well as NMDAR-mediated elevation of intracellular calcium. Moreover, excitotoxicity and down-regulation of CREB were exaggerated in neurons overexpressing GluN2A or GluN2B. Together, we found that GluN2A and GluN2B are involved in the function of both synaptic and extrasynaptic NMDAR, demonstrating that they play similar rather than opposing roles in NMDAR-mediated bidirectional regulation of prosurvival signaling and neuronal death.

  10. Repeated adolescent MDMA ("Ecstasy") exposure in rats increases behavioral and neuroendocrine responses to a 5-HT2A/2C agonist.

    PubMed

    Biezonski, Dominik K; Courtemanche, Andrea B; Hong, Sang B; Piper, Brian J; Meyer, Jerrold S

    2009-02-03

    MDMA (3,4-methylenedioxymethamphetamine) is a popular recreational drug among adolescents. The present study aimed to determine the effects of repeated intermittent administration of 10 mg/kg MDMA during adolescence on behavioral (Experiment 1) and neuroendocrine (Experiment 2) responses of rats to the 5-HT(2A/2C) agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and on [(3)H]ketanserin binding to 5-HT(2A) receptors. In the first experiment, MDMA pretreatment increased the frequency of head twitches and back muscle contractions, but not wet-dog shakes, to a high-dose DOI challenge. In the second experiment, both the prolactin and corticosterone responses to DOI were potentiated in MDMA-pretreated animals. No changes were found in 5-HT(2A) receptor binding in the hypothalamus or other forebrain areas that were examined. These results indicate that intermittent adolescent MDMA exposure enhances sensitivity of 5-HT(2A/2C) receptors in the CNS, possibly through changes in downstream signaling mechanisms.

  11. Bulk and mechanical properties of the Paintbrush tuff recovered from boreholes UE25 NRG-2, 2A, 2B, and 3: Data report

    SciTech Connect

    Boyd, P.J.; Martin, R.J.; Noel, J.S.; Price, R.H.

    1996-09-01

    An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada, involves characterization of the in situ rheology for the design and construction of the facility and the emplacement of canisters containing radioactive waste. The data used to model the thermal and mechanical behavior of the repository and surrounding lithologies include dry and saturated bulk densities, average grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensional fracture strengths. In this study, a suite of experiments was performed on cores recovered from boreholes UE25 NRG-2, 2A, 2B, and 3 drilled in support of the Exploratory Studies Facility (ESF) at Yucca Mountain. The holes penetrated the Timber Mountain tuff and two thermal/mechanical units of the Paintbrush tuff. The thermal/mechanical stratigraphy was defined by Ortiz to group rock horizons of similar properties for the purpose of simplifying modeling efforts. The relationship between the geologic stratigraphy and the thermal/mechanical stratigraphy for each borehole is presented. The tuff samples in this study have a wide range of welding characteristics (usually reflected in sample porosity), and a smaller range of mineralogy and petrology characteristics. Generally, the samples are silicic, ash-fall tuffs that exhibit large variability in their elastic and strength properties.

  12. Metaplasticity gated through differential regulation of GluN2A versus GluN2B receptors by Src family kinases

    PubMed Central

    Yang, Kai; Trepanier, Catherine; Sidhu, Bikram; Xie, Yu-Feng; Li, Hongbin; Lei, Gang; Salter, Michael W; Orser, Beverley A; Nakazawa, Takanobu; Yamamoto, Tadashi; Jackson, Michael F; MacDonald, John F

    2012-01-01

    Metaplasticity is a higher form of synaptic plasticity that is essential for learning and memory, but its molecular mechanisms remain poorly understood. Here, we report that metaplasticity of transmission at CA1 synapses in the hippocampus is mediated by Src family kinase regulation of NMDA receptors (NMDARs). We found that stimulation of G-protein-coupled receptors (GPCRs) regulated the absolute contribution of GluN2A-versus GluN2B-containing NMDARs in CA1 neurons: pituitary adenylate cyclase activating peptide 1 receptors (PAC1Rs) selectively recruited Src kinase, phosphorylated GluN2ARs, and enhanced their functional contribution; dopamine 1 receptors (D1Rs) selectively stimulated Fyn kinase, phosphorylated GluN2BRs, and enhanced these currents. Surprisingly, PAC1R lowered the threshold for long-term potentiation while long-term depression was enhanced by D1R. We conclude that metaplasticity is gated by the activity of GPCRs, which selectively target subtypes of NMDARs via Src kinases. PMID:22187052

  13. A 5-HT2A/2C receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, mitigates developmental neurotoxicity of ethanol to serotonergic neurons.

    PubMed

    Ishiguro, Tsukasa; Sakata-Haga, Hiromi; Fukui, Yoshihiro

    2016-07-01

    Prenatal ethanol exposure causes the reduction of serotonergic (5-HTergic) neurons in the midbrain raphe nuclei. In the present study, we examined whether an activation of signaling via 5-HT2A and 5-HT2C receptors during the fetal period is able to prevent the reduction of 5-HTergic neurons induced by prenatal ethanol exposure. Pregnant Sprague-Dawley rats were given a liquid diet containing 2.5 to 5.0% (w/v) ethanol on gestational days (GDs) 10 to 20 (Et). As a pair-fed control, other pregnant rats were fed the same liquid diet except that the ethanol was replaced by isocaloric sucrose (Pf). Each Et and Pf group was subdivided into two groups; one of the groups was treated with 1 mg/kg (i.p.) of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), an agonist for 5-HT2A/2C receptors, during GDs 13 to 19 (Et-DOI or Pf-DOI), and another was injected with saline vehicle only (Et-Sal or Pf-Sal). Their fetuses were removed by cesarean section on GD 19 or 20, and fetal brains were collected. An immunohistological examination of 5-HTergic neurons in the fetuses on embryonic day 20 using an antibody against tryptophan hydroxylase revealed that the number of 5-HTergic neurons in the midbrain raphe nuclei was significantly reduced in the Et-Sal fetuses compared to that of the Pf-Sal and Pf-DOI fetuses, whereas there were no significant differences between Et-DOI and each Pf control. Thus, we concluded that the reduction of 5-HTergic neurons that resulted in prenatal ethanol exposure could be alleviated by the enhancement of signaling via 5-HT2A/2C receptors during the fetal period.

  14. Avionic Sensor Systems and Aerospace Photographic Systems Repair Career Ladders AFSCs 322X2A, 322X2C, and 404X1.

    DTIC Science & Technology

    1984-07-01

    3ABR322X2C is 98 days; and course 3ABR404X1 is 73 days in duration. The A- and C-shred attend a 226-hour G3AQR32020-005 Electronics Principles Course...The 404X1 receive electronics principles incorporated into their regular curriculum for a total of 183 hours. Successful completion of the tech school... Electronics Principles Inventory (EPI) was recently completed which included the 322X2A AFSC. The goal of an EPI is to obtain information on percent

  15. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology

    PubMed Central

    Karthick, Chennakesavan; Periyasamy, Sabapathy; Jayachandran, Kesavan S.; Anusuyadevi, Muthuswamy

    2016-01-01

    Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal

  16. 76 FR 477 - Airworthiness Directives; Bombardier, Inc. Model CL-600-2A12 (CL-601) and CL-600-2B16 (CL-601-3A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ...: Ice and Rain Protection and Pneumatic, respectively. Reason (e) The mandatory continuing airworthiness... applicable Time Limits/ Maintenance Checks manual, whichever occurs first. CL-600-2B16 (CL-604 Variants)...

  17. Phenylephrine preconditioning in embryonic heart H9c2 cells is mediated by up-regulation of SUR2B/Kir6.2: A first evidence for functional role of SUR2B in sarcolemmal KATP channels and cardioprotection.

    PubMed

    Jovanović, Sofija; Ballantyne, Thomas; Du, Qingyou; Blagojević, Miloš; Jovanović, Aleksandar

    2016-01-01

    ATP-sensitive K(+) (KATP) channels were originally described in cardiomyocytes, where physiological levels of intracellular ATP keep them in a closed state. Structurally, these channels are composed of pore-forming inward rectifier, Kir6.1 or Kir6.2, and a regulatory, ATP-binding subunit, SUR1, SUR2A or SUR2B. SUR1 and Kir6.2 form pancreatic type of KATP channels, SUR2A and Kir6.2 form cardiac type of KATP channels, SUR2B and Kir6.1 form vascular smooth muscle type of KATP channels. The presence of SUR2B has been described in cardiomyocytes, but its functional significance and role has remained unknown. Pretreatment with phenylephrine (100nM) for 24h increased mRNA levels of SUR2B and Kir6.2, without affecting those levels of SUR1, SUR2A and Kir6.1 in embryonic heart H9c2 cells. Such increase was associated with increased K(+) current through KATP channels and Kir6.2/SUR2B protein complexes as revealed by whole cell patch clamp electrophysiology and immunoprecipitation/Western blotting respectively. Pretreatment with phenylephrine (100nM) generated a cellular phenotype that acquired resistance to chemical hypoxia induced by 2,4-dinitrophenol (DNP; 10mM), which was accompanied by increased in K(+) current in response to DNP (10mM). Cytoprotection afforded by phenylephrine (100nM) was abolished by infection of H9c2 cells with adenovirus containing Kir6.2AFA, a mutant form of Kir6.2 with largely reduced K(+) conductance. Taking all together, the present findings demonstrate that the activation of α1-adrenoceptors up-regulates SUR2B/Kir6.2 to confer cardioprotection. This is the first account of possible physiological role of SUR2B in cardiomyocytes.

  18. Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis

    PubMed Central

    Na, Jong-Kuk; Kim, Jae-Kwang; Kim, Dool-Yi; Assmann, Sarah M.

    2015-01-01

    The Arabidopsis thaliana genome encodes three RNA-binding proteins (RBPs), UBP1-associated protein 2a (UBA2a), UBA2b, and UBA2c, that contain two RNA-recognition motif (RRM) domains. They play important roles in wounding response and leaf senescence, and are homologs of Vicia faba abscisic-acid-activated protein kinase-interacting protein 1 (VfAKIP1). The potato (Solanum tuberosum) genome encodes at least seven AKIP1-like RBPs. Here, two potato RBPs have been characterized, StUBA2a/b and StUBA2c, that are homologous to VfAKIP1 and Arabidopsis UBA2s. Transient expression of StUBA2s induced a hypersensitive-like cell death phenotype in tobacco leaves, and an RRM-domain deletion assay of StUBA2s revealed that the first RRM domain is crucial for the phenotype. Unlike overexpression of Arabidopsis UBA2s, constitutive expression of StUBA2a/b in Arabidopsis did not cause growth arrest and lethality at the young seedling stage, but induced early leaf senescence. This phenotype was associated with increased expression of defence- and senescence-associated genes, including pathogen-related genes (PR) and a senescence-associated gene (SAG13), and it was aggravated upon flowering and ultimately resulted in a shortened life cycle. Leaf senescence of StUBA2a/b Arabidopsis plants was enhanced under darkness and was accompanied by H2O2 accumulation and altered expression of autophagy-associated genes, which likely cause cellular damage and are proximate causes of the early leaf senescence. Expression of salicylic acid signalling and biosynthetic genes was also upregulated in StUBA2a/b plants. Consistent with the localization of UBA2s-GFPs and VfAKIP1-GFP, soluble-modified GFP-StUBA2s localized in the nucleus within nuclear speckles. StUBA2s potentially can be considered for transgenic approaches to induce potato shoot senescence, which is desirable at harvest. PMID:25944928

  19. Effects of the serotonin 5-HT2A and 5-HT2C receptor ligands on the discriminative stimulus effects of nicotine in rats.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Przegaliński, Edmund; Filip, Malgorzata

    2007-10-01

    The present study tested the hypothesis that serotonergic (5-HT) 5-HT2A or 5-HT2C receptors or their pharmacological stimulation modulated the discriminative stimulus effects of nicotine in male Wistar rats. To this end the selective 5-HT2A receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol (M100,907; 0.5-1 mg/kg, i.p.), the functional 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI; 0.1-1 mg/kg, s.c.), the selective 5-HT2C receptor antagonist 6-chloro-5-methyl-1-{[2-(2-methylpyrid-3-yloxy)pyrid-5-yl]carbamoyl}indoline (SB 242,084; 0.25-1 mg/kg, i.p.) and the 5-HT2C receptor agonists (S)-2-chloro-5-fluoro-indol-1-yl)-1-methylethylamine fumarate (Ro 60-0175; 0.3-1 mg/kg, s.c.) and (7bR, 10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole (WAY 163,909; 0.75-1.5 mg/kg, i.p.) were used. Additionally, the effects of the selective alpha4beta2 nicotinic acetylcholine receptor subtype agonist 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-IA; 0.01 mg/kg, s.c.) were investigated. In rats trained to discriminate (-)-nicotine (0.4 mg/kg, s.c.) from saline in a two-lever, water-reinforced fixed ratio 10 task, substitutions were not observed with 5-HT2 receptor ligands (<32% nicotine-lever responding), conversely 5-IA induced a full substitution (100% nicotine-lever responding). In combination studies, fixed doses of M100,907 (0.5-1 mg/kg) or SB 242,084 (0.25-1 mg/kg) did not alter the dose-response curve of nicotine, while DOI (0.3 mg/kg), Ro 60-0175 (1 mg/kg) and WAY 163,909 (1 and 1.5 mg/kg) attenuated the discriminative stimulus effects of nicotine. The decrease in the expression of the discriminative stimulus effects of nicotine produced by DOI was blocked by M100,907 (1 mg/kg), but not by SB 242,084 (1 mg/kg), while that evoked by Ro 60-0175 or WAY 163,909 was blocked by SB 242,084 (1 mg/kg), but not by M100,907 (1 mg/kg). Further studies showed that

  20. NR2A- and NR2B-Containing NMDA Receptors in the Prelimbic Medial Prefrontal Cortex Differentially Mediate Trace, Delay, and Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Gilmartin, Marieke R.; Kwapis, Janine L.; Helmstetter, Fred J.

    2013-01-01

    Activation of "N"-methyl-D-aspartate receptors (NMDAR) in the prelimbic medial prefrontal cortex (PL mPFC) is necessary for the acquisition of both trace and contextual fear memories, but it is not known how specific NR2 subunits support each association. The NR2B subunit confers unique properties to the NMDAR and may differentially…

  1. Optical Isomers of Atorvastatin, Rosuvastatin and Fluvastatin Enantiospecifically Activate Pregnane X Receptor PXR and Induce CYP2A6, CYP2B6 and CYP3A4 in Human Hepatocytes.

    PubMed

    Korhonova, Martina; Doricakova, Aneta; Dvorak, Zdenek

    2015-01-01

    Atorvastatin, fluvastatin and rosuvastatin are drugs used for treatment of hypercholesterolemia. They cause numerous drug-drug interactions by inhibiting and inducing drug-metabolizing cytochromes P450. These three statins exist in four optical forms, but they are currently used as enantiopure drugs, i.e., only one single enantiomer. There are numerous evidences that efficacy, adverse effects and toxicity of drugs may be enantiospecific. Therefore, we investigated the effects of optical isomers of atorvastatin, fluvastatin and rosuvastatin on the expression of drug-metabolizing P450s in primary human hepatocytes, using western blots and RT-PCR for measurement of proteins and mRNAs, respectively. The activity of P450 transcriptional regulators, including pregnane X receptor (PXR), aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR), was assessed by gene reporter assays and EMSA. Transcriptional activity of AhR was not influenced by any statin tested. Basal transcriptional activity of GR was not affected by tested statins, but dexamethasone-inducible activity of GR was dose-dependently and enantioselectively inhibited by fluvastatin. Basal and ligand-inducible transcriptional activity of PXR was dose-dependently influenced by all tested statins, and the potency and efficacy between individual optical isomers varied depending on statin and optical isomer. The expression of CYP1A1 and CYP1A2 in human hepatocytes was not influenced by tested statins. All statins induced CYP2A6, CYP2B6 and CYP3A4, and the effects on CYP2C9 were rather modulatory. The effects varied between statins and enantiomers and induction potency decreased in order: atorvastatin (RR>RS = SR>SS) > fluvastatin (SR>RS = SS>RR) > rosuvastatin (only RS active). The data presented here might be of toxicological and clinical importance.

  2. Effect of GABAergic ligands on the anxiolytic-like activity of DOI (a 5-HT(2A/2C) agonist) in the four-plate test in mice.

    PubMed

    Massé, Fabienne; Hascoët, Martine; Bourin, Michel

    2007-01-01

    5-HTergic and GABAergic systems are involved in neurobiology of anxiety. Precedent studies have demonstrated that SSRIs possessed an anxiolytic-like effect in the four-plate test (FPT) at doses that did not modify spontaneous locomotor activity. This effect seems to be mediated through the activation of 5-HT(2A) postsynaptic receptors. The purpose of the present study was to examine the implication of GABA system in the anxiolytic-like activity of DOI in the FPT. To achieve this, the co-administration of DOI (5-HT(2A/2C) receptor agonists) with GABA(A) and GABA(B) receptor ligands was evaluated in the FPT. Alprazolam, diazepam and muscimol (for higher dose) potentiated the anxiolytic-like effect of DOI. Bicuculline, picrotoxin and baclofen inhibited the anxiolytic-like effect of DOI. Flumazenil and CGP 35348 had no effect on the anxiolytic-like activity of DOI. These results suggest that the GABA system seems to be strongly implicated in the anxiolytic-like activity of DOI in the FPT.

  3. Effects of a Serotonin 2C Agonist and a 2A Antagonist on Actigraphy-Based Sleep Parameters Disrupted by Methamphetamine Self-Administration in Rhesus Monkeys.

    PubMed

    Perez Diaz, Maylen; Andersen, Monica L; Rice, Kenner C; Howell, Leonard L

    2017-01-18

    Sleep disorders and substance abuse are highly comorbid and we have previously shown that methamphetamine self-administration significantly disrupts activity-based sleep parameters in rhesus monkeys. To the best of our knowledge, no study has evaluated the effectiveness of any pharmacological intervention to attenuate the effects of methamphetamine on nighttime activity under well-controlled conditions in laboratory animals. Thus, we examined the effects of a 5-HT2C receptor agonist, WAY163909, and a 5-HT2A receptor antagonist, M100907, given alone and in combination, on actigraphy-based sleep parameters disrupted by methamphetamine self-administration in non-human primates. Adult male/female rhesus monkeys self-administered methamphetamine (0.03 mg/kg/injection, i.v.) under a fixed-ratio 20 schedule of reinforcement (60-min sessions once a day, 5 days per week). Nighttime activity was evaluated using Actiwatch monitors. WAY163909 (0.1, 0.3, and 1.0 mg/kg), M100907 (0.03, 0.1, and 0.3 mg/kg), and a combination (0.1 mg/kg M100+0.3 mg/kg WAY) were administered i.m. before lights-out. Each dose was given for five consecutive days during which self-administration took place in the morning. Both drugs improved activity-based sleep measures disrupted by methamphetamine by decreasing sleep latency and increasing sleep efficiency compared with vehicle. By combining these drugs, their individual effects were significantly enhanced. Agonists at the 5-HT2C receptor and antagonists at the 5-HT2A receptor show promise as potential treatments for the sleep-disrupting effects of stimulants when used alone and in combination. Combining subthreshold doses of WAY and M100 produced significant improvements in nighttime activity measures while avoiding the general motor-decreasing effects of the high dose of WAY.Neuropsychopharmacology advance online publication, 18 January 2017; doi:10.1038/npp.2016.280.

  4. Amygdala Infusions of an NR2B-Selective or an NR2A-Preferring NMDA Receptor Antagonist Differentially Influence Fear Conditioning and Expression in the Fear-Potentiated Startle Test

    ERIC Educational Resources Information Center

    Walker, David L.; Davis, Michael

    2008-01-01

    Within the amygdala, most N-methyl-D-aspartic acid (NMDA) receptors consist of NR1 subunits in combination with either NR2A or NR2B subunits. Because the particular subunit composition greatly influences the receptors' properties, we investigated the contribution of both subtypes to fear conditioning and expression. To do so, we infused the…

  5. Both NR2A and NR2B Subunits of the NMDA Receptor Are Critical for Long-Term Potentiation and Long-Term Depression in the Lateral Amygdala of Horizontal Slices of Adult Mice

    ERIC Educational Resources Information Center

    Muller, Tobias; Albrecht, Doris; Gebhardt, Christine

    2009-01-01

    The lateral nucleus of the amygdala (LA) is implicated in emotional and social behaviors. We recently showed that in horizontal brain slices, activation of NMDA receptors (NMDARs) is a requirement for persistent synaptic alterations in the LA, such as long-term potentiation (LTP) and long-term depression (LTD). In the LA, NR2A- and NR2B-type NMDRs…

  6. Effect of porcine circovirus type 2a or 2b on infection kinetics and pathogenicity of two genetically divergent strains of porcine reproductive and respiratory syndrome virus in the conventional pig model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to characterize the infection dynamics and pathogenicity of two heterologous type 2 porcine reproductive and respiratory syndrome virus (PRRSV) isolates in a conventional pig model under the influence of concurrent porcine circovirus (PCV) subtype 2a or 2b infection. ...

  7. Clonidine preconditioning alleviated focal cerebral ischemic insult in rats via up-regulating p-NMDAR1 and down-regulating NMDAR2A / p-NMDAR2B.

    PubMed

    Yanli, Li; Xizhou, Zhang; Yan, Wang; Bo, Zhao; Yunhong, Zha; Zicheng, Li; Lingling, Yu; Lingling, Yan; Zhangao, Chen; Min, Zheng; Zhi, He

    2016-12-15

    A brain ischemia rat model was established by middle cerebral artery occlusion (MCAO) for 2h and reperfusion for 4h to investigate the underlying mechanism of the neuroprotection action of clonidine, a classical alpha-2 adrenergic agonist, on cerebral ischemia. Clonidine and yohimbine were intraperitoneally given to the rats each day for a week before ischemia. Neurological deficits evaluations were carried out at 6h after operation. TTC staining method was used to measure the volume of brain infarction. Expression levels of NMDAR1, NMDAR2A, NMDAR2B were assayed by western blotting. Our data demonstrated that clonidine pretreatment significantly improved the neurological deficit scores and reduced the brain infarct volumes of the rats. Furthermore, protein expression level of p-NMDAR2B in cortex was significantly up-regulated whereas that of p-NMDAR1 was decreased when compared with the sham-operated rats. Remarkably, clonidine treatment led to significant down-regulation of p-NMDAR2B and NMDAR2A in addition to enhancement of the expression level of p-NMDAR1 in cortex. This is the first report illustrating the neuroprotective role of clonidine may be mediated through modulation of the expression levels of p-NMDAR2B, NMDAR2A and p-NMDAR1 during cerebral ischemia.

  8. Efficacy, Safety, and Dose of Pafuramidine, a New Oral Drug for Treatment of First Stage Sleeping Sickness, in a Phase 2a Clinical Study and Phase 2b Randomized Clinical Studies

    PubMed Central

    Burri, Christian; Yeramian, Patrick D.; Merolle, Ada; Serge, Kazadi Kyanza; Mpanya, Alain; Lutumba, Pascal; Mesu, Victor Kande Betu Ku; Lubaki, Jean-Pierre Fina; Mpoto, Alfred Mpoo; Thompson, Mark; Munungu, Blaise Fungula; Josenando, Théophilo; Bernhard, Sonja C.; Olson, Carol A.; Blum, Johannes; Tidwell, Richard R.; Pohlig, Gabriele

    2016-01-01

    Background Sleeping sickness (human African trypanosomiasis [HAT]) is caused by protozoan parasites and characterized by a chronic progressive course, which may last up to several years before death. We conducted two Phase 2 studies to determine the efficacy and safety of oral pafuramidine in African patients with first stage HAT. Methods The Phase 2a study was an open-label, non-controlled, proof-of-concept study where 32 patients were treated with 100 mg of pafuramidine orally twice a day (BID) for 5 days at two trypanosomiasis reference centers (Angola and the Democratic Republic of the Congo [DRC]) between August 2001 and November 2004. The Phase 2b study compared pafuramidine in 41 patients versus standard pentamidine therapy in 40 patients. The Phase 2b study was open-label, parallel-group, controlled, randomized, and conducted at two sites in the DRC between April 2003 and February 2007. The Phase 2b study was then amended to add an open-label sequence (Phase 2b-2), where 30 patients received pafuramidine for 10 days. The primary efficacy endpoint was parasitologic cure at 24 hours (Phase 2a) or 3 months (Phase 2b) after treatment completion. The primary safety outcome was the rate of occurrence of World Health Organization Toxicity Scale Grade 3 or higher adverse events. All subjects provided written informed consent. Findings/Conclusion Pafuramidine for the treatment of first stage HAT was comparable in efficacy to pentamidine after 10 days of dosing. The cure rates 3 months post-treatment were 79% in the 5-day pafuramidine, 100% in the 7-day pentamidine, and 93% in the 10-day pafuramidine groups. In Phase 2b, the percentage of patients with at least 1 treatment-emergent adverse event was notably higher after pentamidine treatment (93%) than pafuramidine treatment for 5 days (25%) and 10 days (57%). These results support continuation of the development program for pafuramidine into Phase 3. PMID:26881924

  9. M2b monocytes predominated in peripheral blood of severely burned patients.

    PubMed

    Kobayashi, Makiko; Jeschke, Marc G; Shigematsu, Kenji; Asai, Akira; Yoshida, Shohei; Herndon, David N; Suzuki, Fujio

    2010-12-15

    Severely burned patients were shown to be carriers of M2 monocytes, and all of the monocytes isolated from peripheral blood of severely burned patients (19 of 19 patients) were demonstrated as M2b monocytes (IL-12(-)IL-10(+)CCL1(+) monocytes). Low levels of M2a (IL-12(-)IL-10(+)CCL17(+) monocytes) and M2c monocytes (IL-12(-)IL-10(+)CXCL13(+) monocytes) were demonstrated in peripheral blood of severely burned patients (M2a, 2 of 19 patients; M2c, 5 of 19 patients). M2b, M2a, and M2c monocytes were not detected in peripheral blood of healthy donors. However, M2b monocytes appeared when healthy donor monocytes were cultured in media supplemented with burn patient serum (15%). CCL2 was detected in sera of all burn patients, and M2b monocytes were not generated from healthy donor monocytes cultured with media containing 15% burn patient sera that were previously treated with anti-CCL2 mAb. In addition, M2b monocytes were generated from healthy donor monocytes in cultures supplemented with rCCL2. These results indicate that M2b monocytes are predominant in peripheral blood of severely burned patients who are carriers of CCL2 that functions to stimulate monocyte conversion from resident monocytes to M2b monocytes.

  10. Determination of O2(a1 delta g) and O2(b1 sigma+ g) yields in the reaction O + ClO --> Cl + O2: implications for photochemistry in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Leu, M. T.; Yung, Y. L.

    1987-01-01

    A discharge flow apparatus with chemiluminescence detector has been used to study the reaction O + ClO --> Cl + O2, where O2 = O2(a1 delta g) or O2(b1 sigma+ g). The measured quantum yields for producing O2(a1 delta g) and O2(b1 sigma+ g) in the above reaction are less than 2.5 x 10(-2) and equal to (4.4 +/- 1.1) x 10(-4), respectively. The observed O2(a1 delta g) airglow of Venus cannot be explained in the context of standard photochemistry using our experimental results and those reported in recent literature. The possibility of an alternative source of O atoms derived from SO2 photolysis in the mesosphere of Venus is suggested.

  11. Isoniazid mediates the CYP2B6*6 genotype-dependent interaction between efavirenz and antituberculosis drug therapy through mechanism-based inactivation of CYP2A6.

    PubMed

    Court, Michael H; Almutairi, Fawziah E; Greenblatt, David J; Hazarika, Suwagmani; Sheng, Hongyan; Klein, Kathrin; Zanger, Ulrich M; Bourgea, Joanne; Patten, Christopher J; Kwara, Awewura

    2014-07-01

    Efavirenz is commonly used to treat patients coinfected with human immunodeficiency virus and tuberculosis. Previous clinical studies have observed paradoxically elevated efavirenz plasma concentrations in patients with the CYP2B6*6/*6 genotype (but not the CYP2B6*1/*1 genotype) during coadministration with the commonly used four-drug antituberculosis therapy. This study sought to elucidate the mechanism underlying this genotype-dependent drug-drug interaction. In vitro studies were conducted to determine whether one or more of the antituberculosis drugs (rifampin, isoniazid, pyrazinamide, or ethambutol) potently inhibit efavirenz 8-hydroxylation by CYP2B6 or efavirenz 7-hydroxylation by CYP2A6, the main mechanisms of efavirenz clearance. Time- and concentration-dependent kinetics of inhibition by the antituberculosis drugs were determined using genotyped human liver microsomes (HLMs) and recombinant CYP2A6, CYP2B6.1, and CYP2B6.6 enzymes. Although none of the antituberculosis drugs evaluated at up to 10 times clinical plasma concentrations were found to inhibit efavirenz 8-hydroxylation by HLMs, both rifampin (apparent inhibition constant [Ki] = 368 μM) and pyrazinamide (Ki = 637 μM) showed relatively weak inhibition of efavirenz 7-hydroxylation. Importantly, isoniazid demonstrated potent time-dependent inhibition of efavirenz 7-hydroxylation in both HLMs (inhibitor concentration required for half-maximal inactivation [KI] = 30 μM; maximal rate constant of inactivation [kinact] = 0.023 min(-1)) and recombinant CYP2A6 (KI = 15 μM; kinact = 0.024 min(-1)) and also formed a metabolite intermediate complex consistent with mechanism-based inhibition. Selective inhibition of the CYP2B6.6 allozyme could not be demonstrated for any of the antituberculosis drugs using either recombinant enzymes or CYP2B6*6 genotype HLMs. In conclusion, the results of this study identify isoniazid as the most likely perpetrator of this clinically important drug-drug interaction through

  12. Inhibition of N-methyl-D-aspartate-activated current by bis(7)-tacrine in HEK-293 cells expressing NR1/NR2A or NR1/NR2B receptors.

    PubMed

    Liu, Yuwei; Li, Chaoying

    2012-12-01

    In normal rat forebrain, the NR1/NR2A and NR1/NR2B dimmers are the main constitutional forms of NMDA receptors. The present study was carried out to determine the functional properties of the heteromeric NMDA receptor subunits and their inhibition by bis(7)-tacrine (B7T). Rat NR1, NR2A and NR2B cDNAs were transfected into human embryonic kidney 293 cells (HEK-293). The inhibition of NMDA-activated currents by B7T was detected in HEK-293 cell expressing NR1/NR2A or NR1/NR2B receptors by using whole-cell patch-clamp techniques. The results showed that in HEK-293 cells expressing NR1/NR2A receptor, 1 μmol/L B7T inhibited 30 μmol/L NMDA- and 1000 μmol/L NMDA-activated steady-state currents by 46% and 40%, respectively (P>0.05; n=5), suggesting that the inhibition of B7T on NR1/NR2A receptor doesn't depend on NMDA concentration, which is consistent with a non-competitive mechanism of inhibition. But for the NR1/NR2B receptor, 1 μmol/L B7T inhibited 30 μmol/L NMDA- and 1000 μmol/L NMDA-activated steady-state currents by 61% and 13%, respectively (P<0.05; n=6), showing that B7T appears to be competitive with NMDA. In addition, simultaneous application of 1 μmol/L B7T and 1000 μmol/L NMDA produced a moderate inhibition of peak NMDA-activated current, followed by a gradual decline of the current to a steady state. However, the gradual onset of inhibition produced by B7T applied simultaneously with NMDA was eliminated when B7T was given 5 s before NMDA. These results suggested that B7T inhibition of NMDA current mediated by NR1/NR2B receptor was slow onset, and it did not depend on the presence of the agonist. With holding potentials ranging from -50 to +50 mV, the B7T inhibition rate of NMDA currents didn't change significantly, and neither did the reversal potential. We are led to conclude that the NR1/NR2B recombinant receptor can serve as a very useful model for studying the molecular mechanism of NMDA receptor inhibition by B7T.

  13. Sex dimorphic expression of five dmrt genes identified in the Atlantic cod genome. The fish-specific dmrt2b diverged from dmrt2a before the fish whole-genome duplication.

    PubMed

    Johnsen, Hanne; Andersen, Øivind

    2012-09-01

    The Doublesex and Mab-3 related transcription factors (Dmrt) are characterised by the zinc finger-like DM domain binding similar DNA sequences, but show different spatio-temporal expression patterns and functions throughout ontogenesis. Dmrt1 is the master regulator of sex determination in very distant metazoans, while Dmrt2 and Dmrt4 are of crucial importance in vertebrate somitogenesis and neurogenesis, respectively. To elucidate the evolutionary divergence of the fish dmrt genes, we examined the expression patterns and the chromosomal synteny of the five dmrt genes identified in the Atlantic cod genome. Quantitative PCR analyses of cod dmrt1, dmrt2a, dmrt3, dmrt4 and dmrt5 revealed distinct expression patterns in the embryo and larvae, and indicated conserved extragonadal functions during early development. Several dmrt genes seem to be involved in the sexual differentiation of gonads and brain, but the sex-dimorphic expression patterns differed substantially between teleosts, suggesting functional switch between Dmrt members. The dmrt2a-dmrt3-dmrt1 cluster was found to be located in a conserved syntenic region, and the flanking genes have become duplicated in teleosts and are closely linked in a paralogous region lacking the dmrt cluster. Similarly, the region containing the fish-specific dmrt2b gene was found to have a paralogous region without a dmrt2b duplicate in a separate linkage group in the teleost genomes. We propose that the teleost segments paralogous to the dmrt2a- and dmrt2b regions, respectively, were formed through the fish-specific whole genome duplication (3R), while dmrt2a and dmrt2b originated from the second round (2R) of whole genome duplication of the ancestral dmrt2. The dmrt2b paralog seems to have been lost in Atlantic cod as in tetrapods and may be a pseudogene in pufferfish, while dmrt2a and dmrt2b have acquired different functions in zebrafish. Contrasting with the retained duplicates of dmrt flanking genes, the massive losses of

  14. Albumin Stimulates the Activity of the Human UDP-Glucuronosyltransferases 1A7, 1A8, 1A10, 2A1 and 2B15, but the Effects Are Enzyme and Substrate Dependent

    PubMed Central

    Svaluto-Moreolo, Paolo; Dziedzic, Klaudyna; Yli-Kauhaluoma, Jari; Finel, Moshe

    2013-01-01

    Human UDP-glucuronosyltransferases (UGTs) are important enzymes in metabolic elimination of endo- and xenobiotics. It was recently shown that addition of fatty acid free bovine serum albumin (BSA) significantly enhances in vitro activities of UGTs, a limiting factor in in vitro–in vivo extrapolation. Nevertheless, since only few human UGT enzymes were tested for this phenomenon, we have now performed detailed enzyme kinetic analysis on the BSA effects in six previously untested UGTs, using 2–4 suitable substrates for each enzyme. We also examined some of the previously tested UGTs, but using additional substrates and a lower BSA concentration, only 0.1%. The latter concentration allows the use of important but more lipophilic substrates, such as estradiol and 17-epiestradiol. In five newly tested UGTs, 1A7, 1A8, 1A10, 2A1, and 2B15, the addition of BSA enhanced, to a different degree, the in vitro activity by either decreasing reaction’s Km, increasing its Vmax, or both. In contrast, the activities of UGT2B17, another previously untested enzyme, were almost unaffected. The results of the assays with the previously tested UGTs, 1A1, 1A6, 2B4, and 2B7, were similar to the published BSA only as far as the BSA effects on the reactions’ Km are concerned. In the cases of Vmax values, however, our results differ significantly from the previously published ones, at least with some of the substrates. Hence, the magnitude of the BSA effects appears to be substrate dependent, especially with respect to Vmax increases. Additionally, the BSA effects may be UGT subfamily dependent since Km decreases were observed in members of subfamilies 1A, 2A and 2B, whereas large Vmax increases were only found in several UGT1A members. The results shed new light on the complexity of the BSA effects on the activity and enzyme kinetics of the human UGTs. PMID:23372764

  15. Chronic betahistine co-treatment reverses olanzapine's effects on dopamine D₂ but not 5-HT2A/2C bindings in rat brains.

    PubMed

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2015-01-02

    Olanzapine is widely prescribed for treating schizophrenia and other mental disorders, although it leads to severe body weight gain/obesity. Chronic co-treatment with betahistine has been found to significantly decrease olanzapine-induced weight gain; however, it is not clear whether this co-treatment affects the therapeutic effects of olanzapine. This study investigated the effects of chronic treatment of olanzapine and/or betahistine on the binding density of the serotonergic 5-HT2A (5-HT2AR) and 5-HT2C (5-HT2CR) receptors, 5-HT transporter (5-HTT), and dopaminergic D₂ receptors (D₂R) in the brain regions involved in antipsychotic efficacy, including the prefrontal cortex (PFC), cingulate cortex (Cg), nucleus accumbens (NAc), and caudate putamen (CPu). Rats were treated with olanzapine (1 mg/kg, t.i.d.) or vehicle for 3.5 weeks, and then olanzapine treatment was withdrawn for 19 days. From week 6, the two groups were divided into 4 groups (n=6) for 5 weeks' treatment: (1) olanzapine-only (1 mg/kg, t.i.d.), (2) betahistine-only (9.6 mg/kg, t.i.d.), (3) olanzapine and betahistine co-treatment (O+B), and (4) vehicle. Compared to the control, the olanzapine-only treatment significantly decreased the bindings of 5-HT2AR, 5-HT2CR, and 5-HTT in the PFC, Cg, and NAc. Similar changes were observed in the rats receiving the O+B co-treatment. The olanzapine-only treatment significantly increased the D₂R binding in the Cg, NAc, and CPu, while the betahistine-only treatment reduced D₂R binding. The co-treatment of betahistine reversed the D₂R bindings in the NAc and CPu that were increased by olanzapine. Therefore, chronic O+B co-treatment has similar effects on serotonin transmission as the olanzapine-only treatment, but reverses the D₂R that is up-regulated by chronic olanzapine treatment. The co-treatment maintains the therapeutic effects of olanzapine but decreases/prevents the excess weight gain.

  16. Metal Free Formation of Various 3-Iodo-1H-pyrrolo[3',2':4,5]imidazo-[1,2-a]pyridines and [1,2-b]Pyridazines and Their Further Functionalization.

    PubMed

    Tber, Z; Hiebel, M-A; El Hakmaoui, A; Akssira, M; Guillaumet, G; Berteina-Raboin, S

    2015-07-02

    3-iodo-1H-pyrrolo[3',2':4,5]imidazo-[1,2-a]pyridines and [1,2-b]pyridazines were prepared following Groebke-Blackburn-Bienaymé MCR combined with I2-promoted electrophilic cyclization. The flexibility of the method enables the introduction of diversity in the 2, 5, 6, and 7 positions on the resulting scaffold using commercially available starting materials. Furthermore, subsequent palladium-catalyzed reactions were successfully achieved using our iodinated derivatives.

  17. A functional role of the C-terminal 42 amino acids of SUR2A and SUR2B in the physiology and pharmacology of cardiovascular ATP-sensitive K(+) channels.

    PubMed

    Yamada, Mitsuhiko; Kurachi, Yoshihisa

    2005-07-01

    The ATP-sensitive K(+) (K(ATP)) channel is composed of four pore-forming Kir6.2 subunits and four sulfonylurea receptors (SUR). Intracellular ATP inhibits K(ATP) channels through Kir6.2. SUR is an ABC protein bearing transmembrane domains and two nucleotide-binding domains (NBD1 and NBD2). SUR increases the open probability of K(ATP) channels by interacting with ATP and ADP through NBDs and with K(+) channel openers such as nicorandil through its transmembrane domain. Because NBDs and the drug receptor allosterically interact with each other, nucleotides and drugs probably activate K(ATP) channels by causing the same conformational change of SUR. SUR2A and SUR2B have the identical drug receptor and NBDs and differ only in the C-terminal 42 amino acids (C42). Nonetheless, nicorandil ~100 times more potently activates SUR2B/Kir6.2 than SUR2A/Kir6.2 channels. Based on our allosteric model, we have analyzed the interaction between NBDs and the drug receptor in SUR2A and SUR2B and found that both nucleotide-bound NBD1 and NBD2 more strongly induce the conformational change in SUR2B than SUR2A. Therefore, C42 modulates the function of not only NBD2 which is close to C42 in a primary structure but NBD1 which is more than 630 amino acid N-terminal to C42. This raises the possibility that in the presence of nucleotides, NBD1 and NBD2 dimerize to induce the conformational change and that the dimerization enables C42 to gain access to both NBDs. Modulation of the nucleotide-NBD1 and -NBD2 interactions by C42 would determine the stability of the nucleotide-dependent dimer and thus, the physiological and pharmacological properties of K(ATP) channels.

  18. Preliminary investigation of the contribution of CYP2A6, CYP2B6, and UGT1A9 polymorphisms on artesunate-mefloquine treatment response in Burmese patients with Plasmodium falciparum malaria.

    PubMed

    Phompradit, Papichaya; Muhamad, Poonuch; Cheoymang, Anurak; Na-Bangchang, Kesara

    2014-08-01

    CYP2A6, CYP2B6, and UGT1A9 genetic polymorphisms and treatment response after a three-day course of artesunate-mefloquine was investigated in 71 Burmese patients with uncomplicated Plasmodium falciparum malaria. Results provide evidence for the possible link between CYP2A6 and CYP2B6 polymorphisms and plasma concentrations of artesunate/dihydroartemisinin and treatment response. In one patient who had the CYP2A6*1A/*4C genotype (decreased enzyme activity), plasma concentration of artesunate at one hour appeared to be higher, and the concentration of dihydroartemisinin was lower than for those carrying other genotypes (415 versus 320 ng/mL). The proportion of patients with adequate clinical and parasitologic response who had the CYP2B6*9/*9 genotype (mutant genotype) was significantly lower compared with those with late parasitologic failure (14.0% versus 19.0%). Confirmation through a larger study in various malaria-endemic areas is required before a definite conclusion on the role of genetic polymorphisms of these drug-metabolizing enzymes on treatment response after artesunate-based combination therapy can be made.

  19. Deposition of newly synthesized histones: new histones H2A and H2B do not deposit in the same nucleosome with new Histones H3 and H4

    SciTech Connect

    Jackson, V.

    1987-04-21

    The authors have developed procedures to study histone-histone interactions during the deposition of histones in replicating cells. Cells are labeled for 60 min with dense amino acids, and subsequently, the histones within the nucleosomes are cross-linked into an octameric complex with formaldehyde. These complexes are sedimented to equilibrium in density gradients and octamer and dioctamer complexes separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With reversal of the cross-link, the distribution of the individual density-labeled histones in the octamer is determined. Newly synthesized H3 and H4 deposits as a tetramer and are associated with old H2A and H2B. Newly synthesized H2A and H2B deposit as a dimer associated with old H2A, H2B, H3, and H4. The significance of these results with respect to the dynamics of histone interactions in the nucleus is discussed. Control experiments are presented to test for artifactual formation of these complexes during preparative procedures. In addition, reconstitution experiments were performed to demonstrate that the composition of these octameric complexes can be determined from their distribution of density gradients.

  20. Role of the NR2A/2B subunits of the N-methyl-D-aspartate receptor in glutamate-induced glutamic acid decarboxylase alteration in cortical GABAergic neurons in vitro.

    PubMed

    Monnerie, H; Hsu, F-C; Coulter, D A; Le Roux, P D

    2010-12-29

    The vulnerability of brain neuronal cell subpopulations to neurologic insults varies greatly. Among cells that survive a pathological insult, for example ischemia or brain trauma, some may undergo morphological and/or biochemical changes that may compromise brain function. The present study is a follow-up of our previous studies that investigated the effect of glutamate-induced excitotoxicity on the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67)'s expression in surviving DIV 11 cortical GABAergic neurons in vitro [Monnerie and Le Roux, (2007) Exp Neurol 205:367-382, (2008) Exp Neurol 213:145-153]. An N-methyl-D-aspartate receptor (NMDAR)-mediated decrease in GAD expression was found following glutamate exposure. Here we examined which NMDAR subtype(s) mediated the glutamate-induced change in GAD protein levels. Western blotting techniques on cortical neuron cultures showed that glutamate's effect on GAD proteins was not altered by NR2B-containing diheteromeric (NR1/NR2B) receptor blockade. By contrast, blockade of triheteromeric (NR1/NR2A/NR2B) receptors fully protected against a decrease in GAD protein levels following glutamate exposure. When receptor location on the postsynaptic membrane was examined, extrasynaptic NMDAR stimulation was observed to be sufficient to decrease GAD protein levels similar to that observed after glutamate bath application. Blocking diheteromeric receptors prevented glutamate's effect on GAD proteins after extrasynaptic NMDAR stimulation. Finally, NR2B subunit examination with site-specific antibodies demonstrated a glutamate-induced, calpain-mediated alteration in NR2B expression. These results suggest that glutamate-induced excitotoxic NMDAR stimulation in cultured GABAergic cortical neurons depends upon subunit composition and receptor location (synaptic vs. extrasynaptic) on the neuronal membrane. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered

  1. Determination of O2(a1Delta g) and O2(b1Sigma + g) yields in the reaction O + ClO yields Cl + O2 - Implications for photochemistry in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun; Yung, Yuk L.

    1987-01-01

    A discharge flow apparatus with a chemiluminescence detector was used to investigate the reaction O + ClO yields Cl + O2(asterisk), where O2(asterisk) = O2(a1Delta g) or O2(b1Sigma + g). It is found that the observed O2(a1Delta g) airglow of Venus cannot be explained in the framework of standard photochemistry using the experimental results obtained here and those reported in the recent literature. The possibility of an alternative source of O atoms derived from SO2 photolysis in the Venus mesosphere is suggested.

  2. Mechanisms of immunity to Leishmania major infection in mice: the contribution of DNA vaccines coding for two novel sets of histones (H2A-H2B or H3-H4).

    PubMed

    Carrión, Javier

    2011-09-01

    The immune phenotype conferred by two different sets of histone genes (H2A-H2B or H3-H4) was assessed. BALB/c mice vaccinated with pcDNA3H2AH2B succumbed to progressive cutaneous leishmaniosis (CL), whereas vaccination with pcDNA3H3H4 resulted in partial resistance to Leishmania major challenge associated with the development of mixed T helper 1 (Th1)/Th2-type response and a reduction in parasite-specific Treg cells number at the site of infection. Therefore, the presence of histones H3 and H4 may be considered essential in the development of vaccine strategies against CL based on the Leishmania histones.

  3. Crucial role of the 5-HT2C receptor, but not of the 5-HT2A receptor, in the down regulation of stimulated dopamine release produced by pressure exposure in freely moving rats.

    PubMed

    Kriem, B; Rostain, J C; Abraini, J H

    1998-06-15

    Helium pressure of more than 2 MPa is a well known factor underlying pressure-dependent central neuroexcitatory disorders, referred to as the high-pressure neurological syndrome. This includes an increase in both serotonin (5-HT) and dopamine (DA) release. The relationship between the increase in 5-HT transmission produced by helium pressure and its effect on DA release has been clarified in a recent study, which have first demonstrated that the helium pressure-induced increase in DA release was dependent on some 5-HT receptor activation. In the present study, we examined in freely moving rats the role of 5-HT2A and 5-HT2C receptors in the increase in DA release induced by 8 MPa helium pressure. We used the 5-HT2A receptor antagonist ketanserin and the 5-HT2C receptor agonist m-CPP which have been demonstrated to reduce DA function. Because neither ketanserin is an ideal 5-HT2A receptor antagonist nor m-CPP an ideal 5-HT2C receptor agonist, additional experiments were made at normal pressure to check up on the selectivity of ketanserin and m-CPP for 5-HT2A and 5-HT2C receptors, respectively. Administration of m-CPP reduced both DA basal level and the helium pressure-induced increase in DA release, whereas administration of ketanserin only showed a little effect on the increase in DA release produced by high helium pressure. These results suggest that the 5-HT2C receptor, but not the 5-HT2A receptor, would play a crucial role in the helium pressure-induced increase in DA release. This further suggests that helium pressure may simultaneously induce an increase in 5-HT transmission at the level of 5-HT2A receptors and a decrease in 5-HT transmission at the level of 5-HT2C receptors.

  4. Final report on force key comparison CCM.F-K2.a and CCM.F-K2.b (50 kN and 100 kN)

    NASA Astrophysics Data System (ADS)

    Vincke, William; Zhimin, Zhang; Pusa, Aimo; Averlant, Philippe; Kumme, Rolf; Germak, Alessandro; Ueda, Kazunaga; Park, Yon-Kyu; Torres, Jorge; Burke, Ben; Langmead, Fredrik; Fank, Sinan; Knott, Andy; Bartel, Tom

    2012-01-01

    This report describes CIPM key comparison CCM.F-K2, a comparison between the deadweight force standard machines of fourteen National Measurement Institutes, at generated forces of 50 kN and 100 kN, in the period from 2004 to 2007. Two different measurement schemes were employed, one for machines capable of generating both 50 kN and 100 kN and the other using the single force of 50 kN, for machines of a lower maximum capacity than 100 kN. Multiple transducers were used and the force-time profile was strictly controlled, to minimize effects of creep. Analysis of the results took careful account of the drift of the transducers' sensitivities throughout the comparison period, as this was one of the major uncertainty contributions. The final results suggest that the nominal 50 kN forces generated at four of the fourteen laboratories (and the 100 kN forces at two of them) may be statistically significantly different from the same nominal forces generated at the other laboratories. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Cost-effectiveness analysis of treatment with peginterferon-alfa-2a versus peginterferon-alfa-2b for patients with chronic hepatitis C under the public payer perspective in Brazil

    PubMed Central

    2013-01-01

    Background Chronic hepatitis C affects approximately 170 million people worldwide, and thus being one of the main causes of chronic liver disease. About 20% of patients with chronic hepatitis C will develop cirrhosis over 20 years, and present an increased risk of developing hepatic complications. Sustained virological response (SVR) is associated with a better prognosis compared to untreated patients and treatment failures. The objective of this analysis was to compare treatment costs and outcomes of pegylated interferon-alfa-2a versus pegylated interferon-alfa-2b, both associated with ribavirin, in the therapeutic scheme of 24 weeks and 48 week for hepatitis C genotypes 2/3 and genotype 1, respectively, under the Brazilian Public Health System (SUS) scenario. Methods To project disease progression, a Markov model was built based on clinical stages of chronic disease. A Delphi panel was conducted to evaluate medical resources related to each stage, followed by costing of related materials, services, procedures and pharmaceutical products. The evaluation was made from a public payer perspective. The source used for costing was government reimbursement procedures list (SAI/SIH–SUS). Drug acquisition costs were obtained from the Brazilian Official Gazette and “Banco de Preços em Saúde” (government official source). It was assumed a mean patient weight of 70 kg. Costs were reported in 2011 Brazilian Reais (US$1 ≈ $Brz1.80). A systematic review followed by a meta-analysis of the 7 identified randomized controlled trials (RCTs) which compared pegylated interferons, was conducted for obtaining relative efficacy of both drugs: for genotype 2/3, mean rate of SVR was 79.2% for peginterferon-alfa-2a and 73.8% for peginterferon-alfa-2b. For genotype 1, SVR mean rate was 42.09% versus 33.44% (peginterferon-alfa-2a and peginterferon-alfa-2b respectively). Time horizon considered was lifetime. Discount rate for costs and outcomes was 5%, according to Brazilian

  6. Essential role of GluD1 in dendritic spine development and GluN2B to GluN2A NMDAR subunit switch in the cortex and hippocampus reveals ability of GluN2B inhibition in correcting hyperconnectivity

    PubMed Central

    Gupta, Subhash C.; Yadav, Roopali; Pavuluri, Ratnamala; Morley, Barbara J.; Stairs, Dustin J.; Dravid, Shashank M.

    2015-01-01

    The glutamate delta-1 (GluD1) receptor is highly expressed in the forebrain. We have previously shown that loss of GluD1 leads to social and cognitive deficits in mice, however, its role in synaptic development and neurotransmission remains poorly understood. Here we report that GluD1 is enriched in the medial prefrontal cortex (mPFC) and GluD1 knockout mice exhibit a higher dendritic spine number, greater excitatory neurotransmission as well as higher number of synapses in mPFC. In addition abnormalities in the LIMK1-cofilin signaling, which regulates spine dynamics, and a lower ratio of GluN2A/GluN2B expression was observed in the mPFC in GluD1 knockout mice. Analysis of the GluD1 knockout CA1 hippocampus similarly indicated the presence of higher spine number and synapses and altered LIMK1-cofilin signaling. We found that systemic administration of an N-methyl-d-aspartate (NMDA) receptor partial agonist d-cycloserine (DCS) at a high-dose, but not at a low-dose, and a GluN2B-selective inhibitor Ro-25-6981 partially normalized the abnormalities in LIMK1-cofilin signaling and reduced excess spine number in mPFC. The molecular effects of high-dose DCS and GluN2B inhibitor correlated with their ability to reduce the higher stereotyped behavior and depression-like behavior in GluD1 knockout mice. Together these findings demonstrate a critical requirement for GluD1 in normal spine development in the cortex and hippocampus. Moreover, these results identify inhibition of GluN2Bcontaining receptors as a mechanism for reducing excess dendritic spines and stereotyped behavior which may have therapeutic value in certain neurodevelopmental disorders. PMID:25721396

  7. Predictive In Silico Studies of Human 5-hydroxytryptamine Receptor Subtype 2B (5-HT2B) and Valvular Heart Disease

    PubMed Central

    Reid, Terry-Elinor; Kumar, Krishna

    2014-01-01

    Serotonin (5-HT) receptors are neuromodulator neurotransmitter receptors which when activated generate a signal transduction pathway within cells resulting in cell-cell communication. 5-hydroxytryptamine (serotonin) receptor 2B (5-HT2B) is a subtype of the seven members of 5-hydroxytrytamine (5-HT) family of receptors which is the largest member of the super family of 7-transmembrane G-protein coupled receptors (GPCRs). Not only do 5-HT receptors play physiological roles in the cardiovascular system, gastrointestinal and endocrine function and the central nervous, but they also play a role in behavioral functions. In particular 5-HT2B receptor is wide spread with regards to its distribution throughout bodily tissues and is expressed at high levels in the lungs, peripheral tissues, liver, kidney and prostate just to name a few. Hence 5-HT2B participates in multiple biological functions including CNS regulation, regulation of gastrointestinal motality, cardiovascular regulation and 5-HT transport system regulation. While 5-HT2B is a viable drug target and has therapeutic indications for treating obesity, psychotherapy, Parkinson’s disease etc. there is a growing concern regarding adverse drug reactions, specifically valvulopathy associated with 5-HT2B agonists. Due to the sequence homology experienced by 5-HT2 subtypes there is also a concern regarding the off target effects of 5-HT2A and 5-HT2C agonists. The concept of subtype selectivity is of paramount importance and can be tackled with the aid of in silico studies, specifically cheminformatics, to develop models to predict valvulopathy associated toxicity of drug candidates prior to clinical trials. This review has highlighted three in silico approaches thus far that have been successful in either predicting 5-HT2B toxicity of molecules or identifying important interactions between 5-HT2B and drug molecules that bring about valvulopathy related toxicities. PMID:23675941

  8. Nucleosomal histone proteins of L. donovani: a combination of recombinant H2A, H2B, H3 and H4 proteins were highly immunogenic and offered optimum prophylactic efficacy against Leishmania challenge in hamsters.

    PubMed

    Baharia, Rajendra K; Tandon, Rati; Sahasrabuddhe, Amogh A; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    The present study includes cloning and expression of recombinant Leishmania donovani histone proteins (rLdH2B, rLdH3, rLdH2A and rLdH4), assessment of their immunogenicity in Leishmania infected cured patients/endemic contacts as well as in cured hamsters and finally evaluation of their prophylactic efficacy in hamsters against L. donovani challenge. All recombinant proteins were expressed and purified from the heterologous bacterial host system. Leishmania infected cured patients/endemic contacts as well as cured hamsters exhibited significantly higher proliferative responses to individual recombinant histones and their pooled combination (rLdH2B+rLdH3+rLdH2A+rLdH4) than those of L.donovani infected hosts. The L.donovani soluble antigens (SLD) stimulated PBMCs of cured/exposed and Leishmania patients to produce a mixed Thl/Th2-type cytokine profile, whereas rLdH2B, rLdH3, rLdH2A, rLdH4 and pooled combination (rLdH2-4) stimulated the production of Th1 cytokines IFN-γ, IL-12 and TNF-α but not Th2 cytokines IL-4 or IL-10. The immunogenicity of these histone proteins along with their combination was also checked in cured hamsters where they stimulated higher lymphoproliferation and Nitric oxide production in lymphocytes of cured hamsters than that of infected controls. Moreover, significantly increased IgG2 response, an indicative of cell mediated immunity, was observed in cured hamsters against these individual proteins and their combination as compared to infected hamsters. Further, it was demonstrated that rLdH2B, rLdH3, rLdH2A and rLdH4 and pooled combination were able to provide considerable protection for hamsters against L. donovani challenge. The efficacy was supported by the increased inducible Nitric Oxide Synthase (iNOS) mRNA transcripts and Th1-type cytokines--IFN-γ, IL-12 and TNF-α and down-regulation of IL-4, IL-10 and TGF-β. Hence, it is inferred that pooled rLdH2-4 elicits Thl-type of immune responses exclusively and confer considerable protection

  9. Development and use of a multiplex real-time quantitative polymerase chain reaction assay for detection and differentiation of Porcine circovirus-2 genotypes 2a and 2b in an epidemiological survey.

    PubMed

    Gagnon, Carl A; del Castillo, Jérome R E; Music, Nedzad; Fontaine, Guy; Harel, Josée; Tremblay, Donald

    2008-09-01

    By the end of 2004, the Canadian swine population had experienced a severe increase in the incidence of Porcine circovirus-associated disease (PCVAD), a problem that was associated with the emergence of a new Porcine circovirus-2 genotype (PCV-2b), previously unrecovered in North America. Thus, it became important to develop a diagnostic tool that could differentiate between the old and new circulating genotypes (PCV-2a and PCV-2b, respectively). Consequently, a multiplex real-time quantitative polymerase chain reaction (mrtqPCR) assay that could sensitively and specifically identify and differentiate PCV-2 genotypes was developed. A retrospective epidemiologic survey that used the mrtqPCR assay was performed to determine if cofactors could affect the risk of PCVAD. From 121 PCV-2-positive cases gathered for this study, 4.13%, 92.56%, and 3.31% were positive for PCV-2a, PCV-2b, and both genotypes, respectively. In a data analysis using univariate logistic regressions, the PCVAD-compatible (PCVAD/c) score was significantly associated with the presence of Porcine reproductive and respiratory syndrome virus (PRRSV), PRRSV viral load, PCV-2 viral load, and PCV-2 immunohistochemistry (IHC) results. Polytomous logistic regression analysis revealed that PCVAD/c score was affected by PCV-2 viral load (P = 0.0161) and IHC (P = 0.0128), but not by the PRRSV variables (P > 0.9), which suggests that mrtqPCR in tissue is a reliable alternative to IHC. Logistic regression analyses revealed that PCV-2 increased the odds ratio of isolating 2 major swine pathogens of the respiratory tract, Actinobacillus pleuropneumoniae and Streptococcus suis serotypes 1/2, 1, 2, 3, 4, and 7, which are serotypes commonly associated with clinical diseases.

  10. First identification of Porcine Circovirus Type 2b mutant in pigs from Uruguay.

    PubMed

    Ramos, Natalia; Mirazo, Santiago; Castro, Gustavo; Arbiza, Juan

    2015-07-01

    Porcine Circovirus Type 2 (PCV2) is a worldwide distributed virus and is considered an important emerging pathogen related to several distinct disease syndromes in pigs. PCV2 strains are classified into three genotypes: PCV2a, with five subtypes (2A-2E), PCV2b with three subtypes (1A-1C) and PCV2c, only found in Denmark. Recently, several reports suggested the circulation of newly emerging PCV2b mutants (mPCV2b) isolated from pigs with PCVAD in cases of suspected vaccine failure. In this work, we report for the first time the identification of mPCV2b in pigs from Uruguay, providing an additional evidence of a global circulation. Complete genome characterization and phylogenetic analysis reveal that Uruguayan strains, as well as mPCV2b previously reported are closely related to other sequences already classified as PCV2b-1C. Furthermore, results showed that mPCV2b presented different genetic markers in the capsid protein compared with classical PCV2a/b strains. Further investigation about antigenic shift of the mPCV2b strains including the Uruguayan isolates is needed.

  11. The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family.

    PubMed

    Koh, Cheng-Gee; Tan, E-Jean; Manser, Edward; Lim, Louis

    2002-02-19

    The Rho GTPases are involved in many signaling pathways and cellular functions, including the organization of the actin cytoskeleton, regulation of transcription, cell motility, and cell division. The p21 (Cdc42/Rac)-activated kinase PAK mediates a number of biological effects downstream of these Rho GTPases (reviewed by [1]). The phosphorylation state of mammalian PAK is highly regulated: upon binding of GTPases, PAK is potently activated by autophosphorylation at multiple sites, although the mechanisms of PAK downregulation are not known. We now report two PP2C-like serine/threonine phosphatases (POPX1 and POPX2) that efficiently inactivate PAK. POPX1 was isolated as a binding partner for the PAK interacting guanine nucleotide exchange factor PIX. The dephosphorylating activity of POPX correlates with an ability to block the in vivo effects of active PAK. Consonant with these effects on PAK, POPX can also inhibit actin stress fiber breakdown and morphological changes driven by active Cdc42(V12). The association of the POPX phosphatases with PAK complexes may allow PAK to cycle rapidly between active and inactive states; it represents a unique regulatory component of the signaling pathways of the PAK kinase family.

  12. Label-Free Relative Quantitation of Isobaric and Isomeric Human Histone H2A and H2B Variants by Fourier Transform Ion Cyclotron Resonance Top-Down MS/MS.

    PubMed

    Dang, Xibei; Singh, Amar; Spetman, Brian D; Nolan, Krystal D; Isaacs, Jennifer S; Dennis, Jonathan H; Dalton, Stephen; Marshall, Alan G; Young, Nicolas L

    2016-09-02

    Histone variants are known to play a central role in genome regulation and maintenance. However, many variants are inaccessible by antibody-based methods or bottom-up tandem mass spectrometry due to their highly similar sequences. For many, the only tractable approach is with intact protein top-down tandem mass spectrometry. Here, ultra-high-resolution FT-ICR MS and MS/MS yield quantitative relative abundances of all detected HeLa H2A and H2B isobaric and isomeric variants with a label-free approach. We extend the analysis to identify and relatively quantitate 16 proteoforms from 12 sequence variants of histone H2A and 10 proteoforms of histone H2B from three other cell lines: human embryonic stem cells (WA09), U937, and a prostate cancer cell line LaZ. The top-down MS/MS approach provides a path forward for more extensive elucidation of the biological role of many previously unstudied histone variants and post-translational modifications.

  13. Contribution of a helix 5 locus to selectivity of hallucinogenic and nonhallucinogenic ligands for the human 5-hydroxytryptamine2A and 5-hydroxytryptamine2C receptors: direct and indirect effects on ligand affinity mediated by the same locus.

    PubMed

    Almaula, N; Ebersole, B J; Ballesteros, J A; Weinstein, H; Sealfon, S C

    1996-07-01

    An important determinant of the neurobehavioral responses induced by a drug is its relative receptor selectivity. The molecular basis of ligand selectivity of hallucinogenic and nonhallucinogenic compounds of varying structural classes for the human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors was investigated with the use of reciprocal site-directed mutagenesis. Because these two closely related receptor subtypes differ in the amino acid present at position 5.46 (residues 242 and 222 in the sequences, respectively), the effects of corresponding substitutions in the 5-HT2A[S5.46(242)-->A] and 5-HT2C[A5.46(222)-->S] receptors were studied in tandem. By studying both receptors, the direct and indirect effects of mutations on affinity and selectivity can be distinguished. The ergolines studied, mesulergine (selective for the 5-HT2C receptor) and d-lysergic acid diethylamide (selective for the 5-HT2A receptor), reversed their relative affinity with mutations in each receptor, supporting a direct role of this locus in the selectivity of these ligands. However, interchange mutations in either receptor led to decreased or unchanged affinity for (+/-)-1-)(2,5-dimethoxy-4-iodophenyl)-2-aminopropane and ketanserin, which have higher affinity for the 5-HT2A receptor, consistent with little contribution of this locus to the selectivity of these ligands. The indoleamines studied were affected differently by mutations in each receptor, suggesting that they bind differently to the two receptor subtypes. Mutation of this locus in the 5-HT2A receptor decreased the affinity of all indoleamines, whereas the interchange mutation of the 5-HT2C receptor did not affect indoleamine affinity. These results are consistent with a direct interaction between this side chain and indoleamines for the 5-HT2A receptor but not for the 5-HT2C receptor. Furthermore, this analysis shows that the higher affinity of 5-HT and tryptamine for the 5-HT2C receptor than for the 5-HT2A receptors is not

  14. EPR Spectroscopy of MolB2C2-A Reveals Mechanism of Transport for a Bacterial Type II Molybdate Importer*♦

    PubMed Central

    Rice, Austin J.; Alvarez, Frances J. D.; Schultz, Kathryn M.; Klug, Candice S.; Davidson, Amy L.; Pinkett, Heather W.

    2013-01-01

    In bacteria, ATP-binding cassette (ABC) transporters are vital for the uptake of nutrients and cofactors. Based on differences in structure and activity, ABC importers are divided into two types. Type I transporters have been well studied and employ a tightly regulated alternating access mechanism. Less is known about Type II importers, but much of what we do know has been observed in studies of the vitamin B12 importer BtuC2D2. MolB2C2 (formally known as HI1470/71) is also a Type II importer, but its substrate, molybdate, is ∼10-fold smaller than vitamin B12. To understand mechanistic differences among Type II importers, we focused our studies on MolBC, for which alternative conformations may be required to transport its relatively small substrate. To investigate the mechanism of MolBC, we employed disulfide cross-linking and EPR spectroscopy. From these studies, we found that nucleotide binding is coupled to a conformational shift at the periplasmic gate. Unlike the larger conformational changes in BtuCD-F, this shift in MolBC-A is akin to unlocking a swinging door: allowing just enough space for molybdate to slip into the cell. The lower cytoplasmic gate, identified in BtuCD-F as “gate I,” remains open throughout the MolBC-A mechanism, and cytoplasmic gate II closes in the presence of nucleotide. Combining our results, we propose a peristaltic mechanism for MolBC-A, which gives new insight in the transport of small substrates by a Type II importer. PMID:23709218

  15. Design and Discovery of Functionally Selective Serotonin 2C (5-HT2C) Receptor Agonists.

    PubMed

    Cheng, Jianjun; McCorvy, John D; Giguere, Patrick M; Zhu, Hu; Kenakin, Terry; Roth, Bryan L; Kozikowski, Alan P

    2016-11-10

    On the basis of the structural similarity of our previous 5-HT2C agonists with the melatonin receptor agonist tasimelteon and the putative biological cross-talk between serotonergic and melatonergic systems, a series of new (2,3-dihydro)benzofuran-based compounds were designed and synthesized. The compounds were evaluated for their selectivity toward 5-HT2A, 5-HT2B, and 5-HT2C receptors in the calcium flux assay with the ultimate goal to generate selective 5-HT2C agonists. Selected compounds were studied for their functional selectivity by comparing their transduction efficiency at the G protein signaling pathway versus β-arrestin recruitment. The most functionally selective compound (+)-7e produced weak β-arrestin recruitment and also demonstrated less receptor desensitization compared to serotonin in both calcium flux and phosphoinositide (PI) hydrolysis assays. We report for the first time that selective 5-HT2C agonists possessing weak β-arrestin recruitment can produce distinct receptor desensitization properties.

  16. The Role of GluN2A and GluN2B Subunits on the Effects of NMDA Receptor Antagonists in Modeling Schizophrenia and Treating Refractory Depression

    PubMed Central

    Jiménez-Sánchez, Laura; Campa, Leticia; Auberson, Yves P; Adell, Albert

    2014-01-01

    Paradoxically, N-methyl-D-aspartate (NMDA) receptor antagonists are used to model certain aspects of schizophrenia as well as to treat refractory depression. However, the role of different subunits of the NMDA receptor in both conditions is poorly understood. Here we used biochemical and behavioral readouts to examine the in vivo prefrontal efflux of serotonin and glutamate as well as the stereotypical behavior and the antidepressant-like activity in the forced swim test elicited by antagonists selective for the GluN2A (NVP-AAM077) and GluN2B (Ro 25-6981) subunits. The effects of the non-subunit selective antagonist, MK-801; were also studied for comparison. The administration of MK-801 dose dependently increased the prefrontal efflux of serotonin and glutamate and markedly increased the stereotypy scores. NVP-AAM077 also increased the efflux of serotonin and glutamate, but without the induction of stereotypies. In contrast, Ro 25-6981 did not change any of the biochemical and behavioral parameters tested. Interestingly, the administration of NVP-AAM077 and Ro 25-6981 alone elicited antidepressant-like activity in the forced swim test, in contrast to the combination of both compounds that evoked marked stereotypies. Our interpretation of the results is that both GluN2A and GluN2B subunits are needed to induce stereotypies, which might be suggestive of potential psychotomimetic effects in humans, but the antagonism of only one of these subunits is sufficient to evoke an antidepressant response. We also propose that GluN2A receptor antagonists could have potential antidepressant activity in the absence of potential psychotomimetic effects. PMID:24871546

  17. Repeated 7-Day Treatment with the 5-HT2C Agonist Lorcaserin or the 5-HT2A Antagonist Pimavanserin Alone or in Combination Fails to Reduce Cocaine vs Food Choice in Male Rhesus Monkeys.

    PubMed

    Banks, Matthew L; Negus, S Stevens

    2017-04-01

    Cocaine use disorder is a global public health problem for which there are no Food and Drug Administration-approved pharmacotherapies. Emerging preclinical evidence has implicated both serotonin (5-HT) 2C and 2A receptors as potential mechanisms for mediating serotonergic attenuation of cocaine abuse-related neurochemical and behavioral effects. Therefore, the present study aim was to determine whether repeated 7-day treatment with the 5-HT2C agonist lorcaserin (0.1-1.0 mg/kg per day, intramuscular; 0.032-0.1 mg/kg/h, intravenous) or the 5-HT2A inverse agonist/antagonist pimavanserin (0.32-10 mg/kg per day, intramuscular) attenuated cocaine reinforcement under a concurrent 'choice' schedule of cocaine and food availability in rhesus monkeys. During saline treatment, cocaine maintained a dose-dependent increase in cocaine vs food choice. Repeated pimavanserin (3.2 mg/kg per day) treatments significantly increased small unit cocaine dose choice. Larger lorcaserin (1.0 mg/kg per day and 0.1 mg/kg/h) and pimavanserin (10 mg/kg per day) doses primarily decreased rates of operant behavior. Coadministration of ineffective lorcaserin (0.1 mg/kg per day) and pimavanserin (0.32 mg/kg per day) doses also failed to significantly alter cocaine choice. These results suggest that neither 5-HT2C receptor activation nor 5-HT2A receptor blockade are sufficient to produce a therapeutic-like decrease in cocaine choice and a complementary increase in food choice. Overall, these results do not support the clinical utility of 5-HT2C agonists and 5-HT2A inverse agonists/antagonists alone or in combination as candidate anti-cocaine use disorder pharmacotherapies.

  18. Aryne [3 + 2] cycloaddition with N-sulfonylpyridinium imides and in situ generated N-sulfonylisoquinolinium imides: a potential route to pyrido[1,2-b]indazoles and indazolo[3,2-a]isoquinolines.

    PubMed

    Zhao, Jingjing; Li, Pan; Wu, Chunrui; Chen, Hongli; Ai, Wenying; Sun, Renhong; Ren, Hailong; Larock, Richard C; Shi, Feng

    2012-03-07

    The aryne [3 + 2] cycloaddition process with pyridinium imides breaks the aromaticity of the pyridine ring. By equipping the imide nitrogen with a sulfonyl group, the intermediate readily eliminates a sulfinate anion to restore the aromaticity, leading to the formation of pyrido[1,2-b]indazoles. The scope and limitation of this reaction are discussed. As an extension of this chemistry, N-tosylisoquinolinium imides, generated in situ from N'-(2-alkynylbenzylidene)-tosylhydrazides via an AgOTf-catalyzed 6-endo-dig electrophilic cyclization, readily undergo aryne [3 + 2] cycloaddition to afford indazolo[3,2-a]-isoquinolines in the same pot, offering a highly efficient route to these potential anticancer agents.

  19. Three-state kinetic folding mechanism of the H2A/H2B histone heterodimer: the N-terminal tails affect the transition state between a dimeric intermediate and the native dimer.

    PubMed

    Placek, Brandon J; Gloss, Lisa M

    2005-01-28

    The H2A/H2B heterodimer is a component of the nucleosome core particle, the fundamental repeating unit of chromatin in all eukaryotic cells. The kinetic folding mechanism for the H2A/H2B dimer has been determined from unfolding and refolding kinetics as a function of urea using stopped-flow, circular dichroism and fluorescence methods. The kinetic data are consistent with a three-state mechanism: two unfolded monomers associate to form a dimeric intermediate in the dead-time of the SF instrument (approximately 5 ms); this intermediate is then converted to the native dimer by a slower, first-order reaction. Analysis of the burst-phase amplitudes as a function of denaturant indicates that the dimeric kinetic intermediate possesses approximately 50% of the secondary structure and approximately 60% of the surface area burial of the native dimer. The stability of the dimeric intermediate is approximately 30% of that of the native dimer at the monomer concentrations employed in the SF experiments. Folding-to-unfolding double-jump experiments were performed to monitor the formation of the native dimer as a function of folding delay times. The double-jump data demonstrate that the dimeric intermediate is on-pathway and obligatory. Formation of a transient dimeric burst-phase intermediate has been observed in the kinetic mechanism of other intertwined, segment-swapped, alpha-helical, DNA-binding dimers, such as the H3-H4 histone dimer, Escherichia coli factor for inversion stimulation and E.coli Trp repressor. The common feature of a dimeric intermediate in these folding mechanisms suggests that this intermediate may accelerate protein folding, when compared to the folding of archael histones, which do not populate a transient dimeric species and fold more slowly.

  20. The immunodominant T helper 2 (Th2) response elicited in BALB/c mice by the Leishmania LiP2a and LiP2b acidic ribosomal proteins cannot be reverted by strong Th1 inducers.

    PubMed

    Iborra, S; Abánades, D R; Parody, N; Carrión, J; Risueño, R M; Pineda, M A; Bonay, P; Alonso, C; Soto, M

    2007-11-01

    The search for disease-associated T helper 2 (Th2) Leishmania antigens and the induction of a Th1 immune response to them using defined vaccination protocols is a potential strategy to induce protection against Leishmania infection. Leishmania infantum LiP2a and LiP2b acidic ribosomal protein (P proteins) have been described as prominent antigens during human and canine visceral leishmaniasis. In this study we demonstrate that BALB/c mice infected with Leishmania major develop a Th2-like humoral response against Leishmania LiP2a and LiP2b proteins and that the same response is induced in BALB/c mice when the parasite P proteins are immunized as recombinant molecules without adjuvant. The genetic immunization of BALB/c mice with eukaryotic expression plasmids coding for these proteins was unable to redirect the Th2-like response induced by these antigens, and only the co-administration of the recombinant P proteins with CpG oligodeoxynucleotides (CpG ODN) promoted a mixed Th1/Th2 immune response. According to the preponderance of a Th2 or mixed Th1/Th2 responses elicited by the different regimens of immunization tested, no evidence of protection was observed in mice after challenge with L. major. Although alterations of the clinical outcome were not detected in mice presensitized with the P proteins, the enhanced IgG1 and interleukin (IL)-4 response against total Leishmania antigens in these mice may indicate an exacerbation of the disease.

  1. Effects of the 5-HT2C receptor agonist Ro60-0175 and the 5-HT2A receptor antagonist M100907 on nicotine self-administration and reinstatement.

    PubMed

    Fletcher, Paul J; Rizos, Zoë; Noble, Kevin; Soko, Ashlie D; Silenieks, Leo B; Lê, Anh Dzung; Higgins, Guy A

    2012-06-01

    The reinforcing effects of nicotine are mediated in part by brain dopamine systems. Serotonin, acting via 5-HT(2A) and 5-HT(2C) receptors, modulates dopamine function. In these experiments we examined the effects of the 5-HT(2C) receptor agonist Ro60-0175 and the 5-HT(2A) receptor antagonist (M100907, volinanserin) on nicotine self-administration and reinstatement of nicotine-seeking. Male Long-Evans rats self-administered nicotine (0.03 mg/kg/infusion, IV) on either a FR5 or a progressive ratio schedule of reinforcement. Ro60-0175 reduced responding for nicotine on both schedules. While Ro60-0175 also reduced responding for food reinforcement, response rates under drug treatment were several-fold higher than in animals responding for nicotine. M100907 did not alter responding for nicotine, or food, on either schedule. In tests of reinstatement of nicotine-seeking, rats were first trained to lever press for IV infusions of nicotine; each infusion was also accompanied by a compound cue consisting of a light and tone. This response was then extinguished over multiple sessions. Injecting rats with a nicotine prime (0.15 mg/kg) reinstated responding; reinstatement was also observed when responses were accompanied by the nicotine associated cue. Ro60-0175 attenuated reinstatement of responding induced by nicotine and by the cue. The effects of Ro60-0175 on both forms of reinstatement were blocked by the 5-HT(2C) receptor antagonist SB242084. M100907 also reduced reinstatement induced by either the nicotine prime or by the nicotine associated cue. The results indicate that 5-HT(2C) and 5-HT(2A) receptors may be potential targets for therapies to treat some aspects of nicotine dependence.

  2. A novel D2-A-D1-A-D2-type donor-acceptor conjugated small molecule based on a benzo[1,2-b:4,5-b‧]dithiophene core for solution processed organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Yu, Junting; Zhu, Weiguo; Tan, Hua; Peng, Qing

    2017-01-01

    A novel D2-A-D1-A-D2-type donor-acceptor conjugated small molecule (DTPA-Q-BDT-Q-DTPA) with a benzo[1,2-b:4,5-b‧]dithiophene (BDT) core and two D2-A arms has been synthesized and employed as electron donor for organic solar cells. Solution-processed organic photovoltaic (OPV) devices were fabricated with a configuration of ITO/PEDOT:PSS/DTPA-Q-BDT-Q-DTPA:[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)/LiF/Al. A power conversion efficiency (PCE) of 1.22% with an open-circuit voltage (VOC) of 0.64 V, a short-circuit current (JSC) of 6.10 mA cm-2, and a fill factor (FF) of 31.0% was achieved. The PCE is 2.9 times higher than that in the other devices using D2-A-type small molecule TPA-Q-TPA as donor.

  3. Boeing XF2B-1 (F2B-1)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Boeing XF2B-1 (F2B-1): Serving as the prototype for the F2B-1 shipboard fighter, the XF2B-1 differed visually in having a pointed spinner and an unbalanced rudder. Like many aircraft of its day, the Boeing model 69 was powered by a Pratt & Whitney Wasp radial engine.

  4. Responding for a conditioned reinforcer, and its enhancement by nicotine, is blocked by dopamine receptor antagonists and a 5-HT(2C) receptor agonist but not by a 5-HT(2A) receptor antagonist.

    PubMed

    Guy, Elizabeth Glenn; Fletcher, Paul J

    2014-10-01

    An aspect of nicotine reinforcement that may contribute to tobacco addiction is the effect of nicotine to enhance the motivational properties of reward-associated cues, or conditioned stimuli (CSs). Several studies have now shown that nicotine enhances responding for a stimulus that has been paired with a natural reinforcer. This effect of nicotine to enhance responding for a conditioned reinforcer is likely due to nicotine-induced enhancements in mesolimbic dopaminergic activity, but this has not been directly assessed. In this study, we assessed roles for dopamine (DA) D1 or D2 receptors, and two serotonin (5-HT) receptor subtypes known to modulate DA activity, the 5-HT2C or 5-HT2A subtypes, on nicotine-enhanced responding for a conditioned reinforcer. Water-restricted rats were exposed to Pavlovian conditioning sessions, where a CS was paired with water delivery. Then, in a second phase, animals were required to perform a novel, lever-pressing response for presentations of the CS as a conditioned reinforcer. Nicotine (0.4 mg/kg) enhanced responding for the conditioned reinforcer. To examine potential roles for dopamine (DA) and serotonin (5-HT) receptors in this effect, separate groups of animals were used to assess the impact of administering the D1 receptor antagonist SCH 23390, D2 receptor antagonist eticlopride, 5-HT2C receptor agonist Ro 60-0175, or 5-HT2A receptor antagonist M100907 on nicotine-enhanced responding for conditioned reinforcement. SCH 23390, eticlopride, and Ro 60-0175 all reduced responding for conditioned reinforcement, and the ability of nicotine to enhance this effect. M100907 did not alter this behavior. Together, these studies indicate that DA D1 and D2 receptors, but not 5-HT2A receptors, contribute to the effect of nicotine to enhance responding for a conditioned reinforcer. This effect can also be modulated by 5-HT2C receptor activation.

  5. Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes.

    PubMed

    Janila, Pasupuleti; Pandey, Manish K; Shasidhar, Yaduru; Variath, Murali T; Sriswathi, Manda; Khera, Pawan; Manohar, Surendra S; Nagesh, Patne; Vishwakarma, Manish K; Mishra, Gyan P; Radhakrishnan, T; Manivannan, N; Dobariya, K L; Vasanthi, R P; Varshney, Rajeev K

    2016-01-01

    High oleate peanuts have two marketable benefits, health benefits to consumers and extended shelf life of peanut products. Two mutant alleles present on linkage group a09 (ahFAD2A) and b09 (ahFAD2B) control composition of three major fatty acids, oleic, linoleic and palmitic acids which together determine peanut oil quality. In conventional breeding, selection for fatty acid composition is delayed to advanced generations. However by using DNA markers, breeders can reject large number of plants in early generations and therefore can optimize time and resources. Here, two approaches of molecular breeding namely marker-assisted backcrossing (MABC) and marker-assisted selection (MAS) were employed to transfer two FAD2 mutant alleles from SunOleic 95R into the genetic background of ICGV 06110, ICGV 06142 and ICGV 06420. In summary, 82 MABC and 387 MAS derived introgression lines (ILs) were developed using DNA markers with elevated oleic acid varying from 62 to 83%. Oleic acid increased by 0.5-1.1 folds, with concomitant reduction of linoleic acid by 0.4-1.0 folds and palmitic acid by 0.1-0.6 folds among ILs compared to recurrent parents. Finally, high oleate ILs, 27 with high oil (53-58%), and 28 ILs with low oil content (42-50%) were selected that may be released for cultivation upon further evaluation.

  6. Enhanced phagocytic activity of HIV-specific antibodies correlates with natural production of immunoglobulins with skewed affinity for FcγR2a and FcγR2b.

    PubMed

    Ackerman, Margaret E; Dugast, Anne-Sophie; McAndrew, Elizabeth G; Tsoukas, Stephen; Licht, Anna F; Irvine, Darrell J; Alter, Galit

    2013-05-01

    While development of an HIV vaccine that can induce neutralizing antibodies remains a priority, decades of research have proven that this is a daunting task. However, accumulating evidence suggests that antibodies with the capacity to harness innate immunity may provide some protection. While significant research has focused on the cytolytic properties of antibodies in acquisition and control, less is known about the role of additional effector functions. In this study, we investigated antibody-dependent phagocytosis of HIV immune complexes, and we observed significant differences in the ability of antibodies from infected subjects to mediate this critical effector function. We observed both quantitative differences in the capacity of antibodies to drive phagocytosis and qualitative differences in their FcγR usage profile. We demonstrate that antibodies from controllers and untreated progressors exhibit increased phagocytic activity, altered Fc domain glycosylation, and skewed interactions with FcγR2a and FcγR2b in both bulk plasma and HIV-specific IgG. While increased phagocytic activity may directly influence immune activation via clearance of inflammatory immune complexes, it is also plausible that Fc receptor usage patterns may regulate the immune response by modulating downstream signals following phagocytosis--driving passive degradation of internalized virus, release of immune modulating cytokines and chemokines, or priming of a more effective adaptive immune response.

  7. High EGFR_1 Inside-Out Activated Inflammation-Induced Motility through SLC2A1-CCNB2-HMMR-KIF11-NUSAP1-PRC1-UBE2C.

    PubMed

    Zhou, Huilei; Wang, Lin; Huang, Juxiang; Jiang, Minghu; Zhang, Xiaoyu; Zhang, Liyuan; Wang, Yangming; Jiang, Zhenfu; Zhang, Zhongjie

    2015-01-01

    48 different Pearson mutual-positive-correlation epidermal growth factor receptor (EGFR_1)-activatory molecular feedback, up- and down-stream network was constructed from 171 overlapping of 366 GRNInfer and 223 Pearson under EGFR_1 CC ≥0.25 in high lung adenocarcinoma compared with low human normal adjacent tissues. Our identified EGFR_1 inside-out upstream activated molecular network showed SLC2A1 (solute carrier family 2 (facilitated glucose transporter) member 1), CCNB2 (cyclin B2), HMMR (hyaluronan-mediated motility receptor (RHAMM)), KIF11 (kinesin family member 11), NUSAP1 (nucleolar and spindle associated protein 1), PRC1 (protein regulator of cytokinesis 1), UBE2C (ubiquitin-conjugating enzyme E2C) in high lung adenocarcinoma. EGFR_1 inside-out upstream activated terms network includes intracellular, membrane fraction, cytoplasm, plasma membrane, integral to membrane, basolateral plasma membrane, transmembrane transport, nucleus, cytosol, cell surface; T cell homeostasis, inflammation; microtubule cytoskeleton, embryonic development (sensu Mammalia), cell cycle, mitosis, thymus development, cell division, regulation of cell cycle, Contributed--cellular process--Hs cell cycle KEGG, cytokinesis, M phase, M phase of mitotic cell cycle, estrogen-responsive protein Efp controls cell cycle and breast tumors growth, cell motility, locomotion, locomotory behavior, neoplasm metastasis, spindle pole, spindle microtubule, microtubule motor activity, microtubule-based movement, mitotic spindle organization and biogenesis, mitotic centrosome separation, spindle pole body organization and biogenesis, microtubule-based process, microtubule, cytokinesis after mitosis, mitotic chromosome condensation, establishment of mitotic spindle localization, positive regulation of mitosis, mitotic spindle elongation, spindle organization and biogenesis, positive regulation of exit from mitosis, regulation of cell proliferation, positive regulation of cell proliferation based on

  8. Antibody-mediated targeted gene transfer of helper virus-free HSV-1 vectors to rat neocortical neurons that contain either NMDA receptor 2B or 2A subunits.

    PubMed

    Cao, Haiyan; Zhang, Guo-rong; Geller, Alfred I

    2011-09-30

    Because of the numerous types of neurons in the brain, and particularly the forebrain, neuron type-specific expression will benefit many potential applications of direct gene transfer. The two most promising approaches for achieving neuron type-specific expression are targeted gene transfer to a specific type of neuron and using a neuron type-specific promoter. We previously developed antibody-mediated targeted gene transfer with Herpes Simplex Virus (HSV-1) vectors by modifying glycoprotein C (gC) to replace the heparin binding domain, which mediates the initial binding of HSV-1 particles to many cell types, with the Staphylococcus A protein ZZ domain, which binds immunoglobulin (Ig) G. We showed that a chimeric gC-ZZ protein is incorporated into vector particles and binds IgG. As a proof-of-principle for antibody-mediated targeted gene transfer, we isolated complexes of these vector particles and an anti-NMDA NR1 subunit antibody, and demonstrated targeted gene transfer to neocortical cells that contain NR1 subunits. However, because most forebrain neurons contain NR1, we obtained only a modest increase in the specificity of gene transfer, and this targeting specificity is of limited utility for physiological experiments. Here, we report efficient antibody-mediated targeted gene transfer to NMDA NR2B- or NR2A-containing cells in rat postrhinal cortex, and a neuron-specific promoter further restricted recombinant expression to neurons. Of note, because NR2A-containing neurons are relatively rare, these results show that antibody-mediated targeted gene transfer with HSV-1 vectors containing neuron type-specific promoters can restrict recombinant expression to specific types of forebrain neurons of physiological significance.

  9. Synthesis and biological evaluation of benzo[4,5]imidazo[1,2-c]pyrimidine and benzo[4,5]imidazo[1,2-a]pyrazine derivatives as anaplastic lymphoma kinase inhibitors.

    PubMed

    Tardy, Sébastien; Orsato, Alexandre; Mologni, Luca; Bisson, William H; Donadoni, Carla; Gambacorti-Passerini, Carlo; Scapozza, Leonardo; Gueyrard, David; Goekjian, Peter G

    2014-02-15

    Chromosomal translocations involving anaplastic lymphoma kinase (ALK) are the driving mutations for a range of cancers and ALK is thus considered an attractive therapeutic target. We synthesized a series of functionalized benzo[4,5]imidazo[1,2-c]pyrimidines and benzo[4,5]imidazo[1,2-a]pyrazines by an aza-Graebe-Ullman reaction, followed by palladium-catalyzed cross-coupling reactions. A sequential regioselective cross-coupling route is reported for the synthesis of unsymmetrically disubstituted benzo[4,5]imidazo[1,2-a]pyrazines. The inhibition of ALK was evaluated and compound 19 in particular showed good activity against both the wild type and crizotinib-resistant L1196M mutant in vitro and in ALK-transfected BaF3 cells.

  10. Serotonin 5-HT2A but not 5-HT2C receptor antagonism reduces hyperlocomotor activity induced in dopamine-depleted rats by striatal administration of the D1 agonist SKF 82958.

    PubMed

    Bishop, Christopher; Daut, Gregory S; Walker, Paul D

    2005-09-01

    While recent work has indicated that D1 receptor agonist-induced hyperlocomotion in DA-depleted rats is reduced by striatal 5-HT2 receptor antagonism, the 5-HT receptor(s) subtypes mediating these effects are not yet known. In the present study, we examined the influence(s) of striatal 5-HT2A and 5-HT2C receptors on locomotor behavior induced by D1 agonism in neonatal DA-depleted rats. On postnatal day 3, male Sprague-Dawley rats (n=68) were treated with either vehicle or 6-hydroxydopamine (6-OHDA; 60 microg) which produced >98% DA depletion. Sixty days later, all rats were fitted with bilateral striatal cannulae. A subset of control and 6-OHDA-lesioned rats (n=20) was tested for locomotor responses to striatal infusion of the D1 agonist SKF 82958 (0, 0.1, 1.0, 10 microg/side). The remaining rats (n=48) were tested for locomotor responses to intrastriatal SKF 82958 (2.0 microg/side) alone or in combination with the 5-HT2A- or 5-HT2C-preferring antagonists M100907 or RS102221 (0.1 or 1.0 microg/side), respectively. Intrastriatal SKF 82958 dose-dependently increased measures of motor activity within DA-depleted rats. This hyperlocomotor activity was suppressed by co-infusion of M100907, but not RS102221. These results indicate that DA depletion strengthens striatal 5-HT2A/D1 receptor interactions and suggest that 5-HT2A receptor antagonists may prove useful in reducing D1-related movements.

  11. Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Jacob, Daniel J.; Kim, Patrick S.; Fisher, Jenny A.; Yu, Karen; Travis, Katherine R.; Mickley, Loretta J.; Yantosca, Robert M.; Sulprizio, Melissa P.; De Smedt, Isabelle; González Abad, Gonzalo; Chance, Kelly; Li, Can; Ferrare, Richard; Fried, Alan; Hair, Johnathan W.; Hanisco, Thomas F.; Richter, Dirk; Scarino, Amy Jo; Walega, James; Weibring, Petter; Wolfe, Glenn M.

    2016-11-01

    Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs), but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) campaign over the southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS; for clarification of these and other abbreviations used in the paper, please refer to Appendix A) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the southeast US (r = 0.4-0.8 on a 0.5° × 0.5° grid) and in their day-to-day variability (r = 0.5-0.8). However, all retrievals are biased low in the mean by 20-51 %, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation, and correcting this would eliminate its bias relative to the SEAC4RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.

  12. Support for 5-HT2C receptor functional selectivity in vivo utilizing structurally diverse, selective 5-HT2C receptor ligands and the 2,5-dimethoxy-4-iodoamphetamine elicited head-twitch response model.

    PubMed

    Canal, Clinton E; Booth, Raymond G; Morgan, Drake

    2013-07-01

    There are seemingly conflicting data in the literature regarding the role of serotonin (5-HT) 5-HT2C receptors in the mouse head-twitch response (HTR) elicited by the hallucinogenic 5-HT2A/2B/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI). Namely, both 5-HT2C receptor agonists and antagonists, regarding 5-HT2C receptor-mediated Gq-phospholipase C (PLC) signaling, reportedly attenuate the HTR response. The present experiments tested the hypothesis that both classes of 5-HT2C receptor compounds could attenuate the DOI-elicited-HTR in a single strain of mice, C57Bl/6J. The expected results were considered in accordance with ligand functional selectivity. Commercially-available 5-HT2C agonists (CP 809101, Ro 60-0175, WAY 161503, mCPP, and 1-methylpsilocin), novel 4-phenyl-2-N,N-dimethyl-aminotetralin (PAT)-type 5-HT2C agonists (with 5-HT2A/2B antagonist activity), and antagonists selective for 5-HT2A (M100907), 5-HT2C (SB-242084), and 5-HT2B/2C (SB-206553) receptors attenuated the DOI-elicited-HTR. In contrast, there were differential effects on locomotion across classes of compounds. The 5-HT2C agonists and M100907 decreased locomotion, SB-242084 increased locomotion, SB-206553 resulted in dose-dependent biphasic effects on locomotion, and the PATs did not alter locomotion. In vitro molecular pharmacology studies showed that 5-HT2C agonists potent for attenuating the DOI-elicited-HTR also reduced the efficacy of DOI to activate mouse 5-HT2C receptor-mediated PLC signaling in HEK cells. Although there were differences in affinities of a few compounds at mouse compared to human 5-HT2A or 5-HT2C receptors, all compounds tested retained their selectivity for either receptor, regardless of receptor species. Results indicate that 5-HT2C receptor agonists and antagonists attenuate the DOI-elicited-HTR in C57Bl/6J mice, and suggest that structurally diverse 5-HT2C ligands result in different 5-HT2C receptor signaling outcomes compared to DOI.

  13. Effects of central activation of serotonin 5-HT2A/2C or dopamine D2/3 receptors on the acute and repeated effects of clozapine in the conditioned avoidance response test

    PubMed Central

    Feng, Min; Gao, Jun; Sui, Nan; Li, Ming

    2014-01-01

    Rationale: Acute administration of clozapine (a gold standard of atypical antipsychotics) disrupts avoidance response in rodents, while repeated administration often causes a tolerance effect. Objective: The present study investigated the neuroanatomical basis and receptor mechanisms of acute and repeated effects of clozapine treatment in the conditioned avoidance response test in male Sprague-Dawley rats. Methods: DOI (2,5-dimethoxy-4-iodo-amphetamine, a preferential 5-HT2A/2C agonist) or quinpirole (a preferential dopamine D2/3 agonist) was microinjected into the medial prefrontal cortex (mPFC) or nucleus accumbens shell (NAs), and their effects on the acute and long-term avoidance-disruptive effect of clozapine were tested. Results: Intra-mPFC microinjection of quinpirole enhanced the acute avoidance disruptive effect of clozapine (10 mg/kg, sc), while DOI microinjections reduced it marginally. Repeated administration of clozapine (10 mg/kg, sc) daily for 5 days caused a progressive decrease in its inhibition of avoidance responding, indicating tolerance development. Intra-mPFC microinjection of DOI at 25.0 (but not 5.0) μg/side during this period completely abolished the expression of clozapine tolerance. This was indicated by the finding that clozapine-treated rats centrally infused with 25.0 μg/side DOI did not show higher levels of avoidance responses than the vehicle-treated rats in the clozapine challenge test. Microinjection of DOI into the mPFC immediately before the challenge test also decreased the expression of clozapine tolerance. Conclusions: Acute behavioral effect of clozapine can be enhanced by activation of the D2/3 receptors in the mPFC. Clozapine tolerance expression relies on the neuroplasticity initiated by its antagonist action against 5-HT2A/2C receptors in the mPFC. PMID:25288514

  14. Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory.

    PubMed

    Meneses, Alfredo

    2007-11-22

    In order to determine whether short- (STM) and long-term memory (LTM) function in serial or parallel manner, serotonin (5-hydroxtryptamine, 5-HT) receptor agonists were tested in autoshaping task. Results show that control-vehicle animals were modestly but significantly mastering the autoshaping task as illustrated by memory scores between STM and LTM. Thus, post-training administration of 8-OHDPAT (agonist for 5-HT(1A/7) receptors) only at 0.250 and 0.500 mg/kg impaired both STM and LTM. CGS12066 (agonist for 5-HT(1B)) produced biphasic affects, at 5.0 mg/kg impaired STM but at 1.0 and 10.0 mg/kg, respectively, improved or impaired LTM. DOI (agonist for 5-HT(2A/2C) receptors) dose-dependently impaired STM and, at 10.0 mg/kg only impaired LTM. Both, STM and LTM were impaired by either mCPP (mainly agonist for 5-HT(2C) receptors) or mesulergine (mainly antagonist for 5-HT(2C) receptors) lower dose. The 5-HT(3) agonist mCPBG at 1.0 impaired STM and its higher dose impaired both STM and LTM. RS67333 (partial agonist for 5-HT(4) receptors), at 5.0 and 10.0 mg/kg facilitated both STM and LTM. The higher dose of fluoxetine (a 5-HT uptake inhibitor) improved both STM and LTM. Using as head-pokes during CS as an indirect measure of food-intake showed that of 30 memory changes, 21 of these were unrelated to the former. While some STM or LTM impairments can be attributed to decrements in food-intake, but not memory changes (either increase or decreases) produced by 8-OHDPAT, CGS12066, RS67333 or fluoxetine. Except for animals treated with DOI, mCPBG or fluoxetine, other groups treated with 5-HT agonists 6 h following autoshaping training showed similar LTM and unmodified CS-head-pokes scores.

  15. The Role of 5-HT2A, 5-HT2C and mGlu2 Receptors in the Behavioral Effects of Tryptamine Hallucinogens N,N-Dimethyltryptamine and N,N-Diisopropyltryptamine in Rats and Mice

    PubMed Central

    Carbonaro, Theresa M.; Eshleman, Amy J.; Forster, Michael J.; Cheng, Kejun; Rice, Kenner C.; Gatch, Michael B.

    2014-01-01

    Rationale: Serotonin 5-HT2A and 5-HT2C receptors are thought to be the primary pharmacological mechanisms for serotonin-mediated hallucinogenic drugs, but recently there has been interest in metabotropic glutamate (mGluR2) receptors as contributors to the mechanism of hallucinogens. Objective: The present study assesses the role of these 5-HT and glutamate receptors as molecular targets for two tryptamine hallucinogens, N,N-dimethyltryptamine (DMT) and N,N-diisopropyltryptamine (DiPT). Methods: Drug discrimination, head twitch and radioligand binding assays were used. A 5-HT2AR inverse agonist (MDL100907), 5-HT2CR antagonist (SB242084) and mGluR2/3 agonist (LY379268) were tested for their ability to attenuate the discriminative stimulus effects of DMT and DiPT; an mGluR2/3 antagonist (LY341495) was tested for potentiation. MDL100907 was used to attenuate head twitches induced by DMT and DiPT. Radioligand binding studies and inosital-1-phosphate (IP-1) accumulation were performed at the 5-HT2CR for DiPT. Results: MDL100907 fully blocked the discriminative stimulus effects of DMT, but only partially blocked DiPT. SB242084 partially attenuated the discriminative stimulus effects of DiPT, but produced minimal attenuation of DMT’s effects. LY379268 produced potent, but only partial blockade of the discriminative stimulus effects of DMT. LY341495 facilitated DMT- and DiPT-like effects. Both compounds elicited head twitches (DiPT>DMT) which were blocked by MDL1000907. DiPT was a low potency full agonist at 5-HT2CR in vitro. Conclusions: The 5-HT2AR likely plays a major role in mediating the effects of both compounds. 5-HT2C and mGluR2 receptors likely modulate the discriminative stimulus effects of both compounds to some degree. PMID:24985890

  16. Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle.

    PubMed

    Tan, Pearl Lin; Shavlakadze, Tea; Grounds, Miranda D; Arthur, Peter G

    2015-05-01

    Oxidative stress, caused by excess reactive oxygen species (ROS), has been hypothesized to cause or exacerbate skeletal muscle wasting in a number of diseases and chronic conditions. ROS, such as hydrogen peroxide, have the potential to affect signal transduction pathways such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt pathway that regulates protein synthesis. Previous studies have found contradictory outcomes for the effect of ROS on the PI3K/Akt signaling pathway, where oxidative stress can either enhance or inhibit Akt phosphorylation. The apparent contradictions could reflect differences in experimental cell types or types of ROS treatments. We replicate both effects in myotubes of cultured skeletal muscle C2C12 cells, and show that increased oxidative stress can either inhibit or enhance Akt phosphorylation. This differential response could be explained: thiol oxidation of Akt, but not the phosphatases PTEN or PP2A, caused a decline in Akt phosphorylation; whereas the thiol oxidation of Akt, PTEN and PP2A increased Akt phosphorylation. These observations indicate that a more complete understanding of the effects of oxidative stress on a signal transduction pathway comes not only from identifying the proteins susceptible to thiol oxidation, but also their relative sensitivity to ROS.

  17. Serum from patients with systemic vasculitis induces alternatively activated macrophage M2c polarization.

    PubMed

    Ohlsson, Susanne M; Linge, Carl Petrus; Gullstrand, Birgitta; Lood, Christian; Johansson, Asa; Ohlsson, Sophie; Lundqvist, Andrea; Bengtsson, Anders A; Carlsson, Fredric; Hellmark, Thomas

    2014-01-01

    Anti-neutrophil cytoplasmic antibody associated vasculitides (AAV) are conditions defined by an autoimmune small vessel inflammation. Dying neutrophils are found around the inflamed vessels and the balance between infiltrating neutrophils and macrophages is important to prevent autoimmunity. Here we investigate how sera from AAV patients may regulate macrophage polarization and function. Macrophages from healthy individuals were differentiated into M0, M1, M2a, M2b or M2c macrophages using a standardized protocol, and phenotyped according to their expression surface markers and cytokine production. These phenotypes were compared with those of macrophages stimulated with serum from AAV patients or healthy controls. While the healthy control sera induced a M0 macrophage, AAV serum promoted polarization towards the M2c subtype. No sera induced M1, M2a or M2b macrophages. The M2c subtype showed increased phagocytosis capacity compared with the other subtypes. The M2c polarization found in AAV is consistent with previous reports of increased levels of M2c-associated cytokines.

  18. Powder neutron diffraction of α-UB 2C (α-UB 2C-type)

    NASA Astrophysics Data System (ADS)

    Rogl, Peter; Fischer, Peter

    1991-02-01

    The crystal structure of α-UB 2C (low temperature modification below T = 1675(25)°C) was determined from powder X-ray data (RT) and powder neutron diffraction data (at 29 K) employing the Rietveld-Young-Wiles profile analysis method. α-UB 2C crystallizes in the orthorhombic space group Pmma with a = 0.60338(3), b = 0.35177(2), c = 0.41067(2) nm, V = 0.0872 nm 3, Z = 2. The residuals of the neutron refinement were R1 = 0.032 and RF = 0.043. The crystal structure of α-UB 2C is a new structure type where planar nonregular 6 3-U-metal layers alternate with planar nonmetal layers of the type (B 6C 2) 3. Boron atoms are in a typical triangular prismatic metal surrounding with a tetrakaidekahedral coordination B[U 6B 2C 1], whereas carbon atoms occupy the center points of rectangular bipyramids C[U 4B 2]. The crystal structure of α-UB 2C derives from the high temperature modification β-UB 2C (ThB 2C-type, R overline3m ), which reveals a similar stacking of slightly puckered metal layers 6 3, alternating with planar layers B 6 · (B 6C 3) 2. The phase transition from β-UB 2C to α-UB 2C is thus essentially generated by carbon diffusion within the limit∞2 B 6 · (B 6C 3) 2 layers to form limit∞2 (B 6C 2) 3 layers.

  19. Restricted access to standard or high fat chow alters sensitivity of rats to the 5-HT2A/2C receptor agonist 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM)

    PubMed Central

    Serafine, Katherine M.; France, Charles P.

    2017-01-01

    Feeding conditions can impact sensitivity to drugs acting on dopamine receptors; less is known about the impact of feeding conditions on the effects of drugs acting on serotonin (5-HT) receptors. This study examined the effects of feeding condition on sensitivity to the direct-acting 5-HT2A/2C receptor agonist 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM; 0.1–3.2 mg/kg) and the direct-acting dopamineD3/D2 receptor agonist quinpirole (0.0032–0.32 mg/kg). Male Sprague-Dawley rats had free access (11 weeks) followed by restricted access (6 weeks) to high (34.3%, n = 8) fat or standard (5.7% fat; n = 7) chow. Rats eating high fat chow became insulin resistant and gained more weight than rats eating standard chow. Free access to high fat chow did not alter sensitivity to DOM-induced head twitch but increased sensitivity to quinpirole-induced yawning. Restricting access to high fat or standard chow shifted the DOM-induced head twitch dose-response curve to the right and shifted the quinpirole-induced yawning dose-response curve downward in both groups of rats. Some drugs of abuse and many therapeutic drugs act on 5-HT and dopamine systems; these results demonstrate that feeding condition impacts sensitivity to drugs acting on these systems, thereby possibly impacting vulnerability to abuse as well as therapeutic effectiveness of drugs. PMID:24346289

  20. Optimization of 2-phenylcyclopropylmethylamines as selective serotonin 2C receptor agonists and their evaluation as potential antipsychotic agents.

    PubMed

    Cheng, Jianjun; Giguère, Patrick M; Onajole, Oluseye K; Lv, Wei; Gaisin, Arsen; Gunosewoyo, Hendra; Schmerberg, Claire M; Pogorelov, Vladimir M; Rodriguiz, Ramona M; Vistoli, Giulio; Wetsel, William C; Roth, Bryan L; Kozikowski, Alan P

    2015-02-26

    The discovery of a new series of compounds that are potent, selective 5-HT2C receptor agonists is described herein as we continue our efforts to optimize the 2-phenylcyclopropylmethylamine scaffold. Modifications focused on the alkoxyl substituent present on the aromatic ring led to the identification of improved ligands with better potency at the 5-HT2C receptor and excellent selectivity against the 5-HT2A and 5-HT2B receptors. ADMET studies coupled with a behavioral test using the amphetamine-induced hyperactivity model identified four compounds possessing drug-like profiles and having antipsychotic properties. Compound (+)-16b, which displayed an EC50 of 4.2 nM at 5-HT2C, no activity at 5-HT2B, and an 89-fold selectivity against 5-HT2A, is one of the most potent and selective 5-HT2C agonists reported to date. The likely binding mode of this series of compounds to the 5-HT2C receptor was also investigated in a modeling study, using optimized models incorporating the structures of β2-adrenergic receptor and 5-HT2B receptor.

  1. Synthesis and chemistry of the open-cage cobaltaheteroborane cluster [{(η(5)-C5Me5)Co}2B2H2Se2]: a combined experimental and theoretical study.

    PubMed

    Barik, Subrat Kumar; Dorcet, Vincent; Roisnel, Thierry; Halet, Jean-François; Ghosh, Sundargopal

    2015-08-28

    Reaction of [(η(5)-C5Me5)CoCl]2 with a two-fold excess of [LiBH4·thf] followed by heating with an excess of Se powder produces the dicobaltaselenaborane species [{(η(5)-C5Me5)Co}2B2H2Se2], , in good yield. The geometry of resembles a nido pentagonal [Co2B2Se2] bipyramid with a missing equatorial vertex. It can alternatively be seen as an open cage triple-decker cluster. Isolation of permits its reaction with [Fe2(CO)9] to give heterometallic diselenametallaborane [{(η(5)-C5Me5)Co}Fe(CO)3B2H2Se2], . The geometry of is similar to that of with one of the [(η(5)-C5Me5)Co] groups replaced by the isolobal, two-electron fragment [Fe(CO)3]. Both new compounds have been characterized by mass spectrometry, and by (1)H, (11)B and (13)C NMR spectroscopy. The structural architectures have been unequivocally established by crystallographic analysis. In addition, density functional theory calculations were performed to investigate the bonding and electronic properties. The large HOMO-LUMO gaps computed for both clusters are consistent with their thermodynamic stability. Natural bond order calculations predict the absence of metal-metal bonding interaction.

  2. Pancreatic Cancer Stage 2B

    MedlinePlus

    ... 2B Description: Stage IIB pancreatic cancer; drawing shows cancer in the pancreas and in nearby lymph nodes. Also shown are the bile duct, pancreatic duct, and duodenum. Stage IIB pancreatic cancer. Cancer has spread to nearby lymph nodes and ...

  3. B2B Models for DoD Acquisition

    DTIC Science & Technology

    2007-07-30

    ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - i - k^s^i=mlpqdo^ar^qb=p`elli= Abstract A central vision of B2B e - commerce is that of an electronic...are purchased, pricing mechanisms, the characteristics of the markets, and ownership of marketplace. Keywords: B2B E - Commerce , Internet...interest is in the analysis, design and implementation of computer-based information systems. Specifically, he is interested in B2B and B2C e - commerce

  4. Extending David Horrobin's membrane phospholipid theory of schizophrenia: overactivity of cytosolic phospholipase A(2) in the brain is caused by overdrive of coupled serotonergic 5HT(2A/2C) receptors in response to stress.

    PubMed

    Eggers, Arnold E

    2012-12-01

    David Horrobin's membrane phospholipid theory of schizophrenia has held up well over time because his therapeutic prediction that dietary supplementation with eicosapentaenoic acid (EPA) would have a therapeutic effect has been partially verified and undergoes continued testing. In the final version of his theory, he hypothesized that there was hyperactivity of phosphoslipase A(2) (PLA(2)) or a related enzyme but did not explain how the hyperactivity came about. It is known that serotonergic 5HT(2A/2C) receptors are coupled to PLA(2), which hydrolyzes both arachidonic acid (AA) and EPA from diacylglycerides at the sn-2 position. In this paper, Horrobin's theory is combined with a previously published theory of chronic stress in which it was hypothesized that a disinhibited dorsal raphe nucleus, the principal nucleus of the serotonergic system, can organize the neuropathology of diseases such as migraine, hypertension, and the metabolic syndrome. The new or combined theory is that schizophrenia is a disease of chronic stress in which a disinhibited DRN causes widespread serotonergic overdrive in the cerebral cortex. This in turn causes overdrive of cPLA(2) and both central and peripheral depletion of AA and EPA. Because EPA is present in smaller amounts, it falls below threshold for maintaining an intracellular balance between AA-derived and EPA-derived second messenger cascades, which leads to abnormal patterns of neuronal firing. There are two causes of neuronal dysfunction: the disinhibited DRN and EPA depletion. Schizophrenia is statistically associated with metabolic syndrome, hypertension, and migraine because they form a cluster of diseases with similar pathophysiology. The theory provides an explanation for both the central and peripheral phospholipid abnormalities in schizophrenia. It also explains the role of stress in schizophrenia, elevated serum PLA(2) activity in schizophrenia, the relationship between untreated schizophrenia and metabolic syndrome

  5. K restriction inhibits protein phosphatase 2B (PP2B) and suppression of PP2B decreases ROMK channel activity in the CCD

    PubMed Central

    Zhang, Yan; Lin, Dao-Hong; Wang, Zhi-Jian; Jin, Yan; Yang, Baofeng; Wang, Wen-Hui

    2009-01-01

    We used Western blot analysis to examine the effect of dietary K intake on the expression of serine/threonine protein phosphatase in the kidney. K restriction significantly decreased the expression of catalytic subunit of protein phosphatase (PP)2B but increased the expression of PP2B regulatory subunit in both rat and mouse kidney. However, K depletion did not affect the expression of PP1 and PP2A. Treatment of M-1 cells, mouse cortical collecting duct (CCD) cells, or 293T cells with glucose oxidase (GO), which generates superoxide anions through glucose metabolism, mimicked the effect of K restriction on PP2B expression and significantly decreased expression of PP2B catalytic subunits. However, GO treatment increased expression of regulatory subunit of PP2B and had no effect on expression of PP1, PP2A, and protein tyrosine phosphatase 1D. Moreover, deletion of gp91-containing NADPH oxidase abolished the effect of K depletion on PP2B. Thus superoxide anions or related products may mediate the inhibitory effect of K restriction on the expression of PP2B catalytic subunit. We also used patch-clamp technique to study the effect of inhibiting PP2B on renal outer medullary K (ROMK) channels in the CCD. Application of cyclosporin A or FK506, inhibitors of PP2B, significantly decreased ROMK channels, and the effect of PP2B inhibitors was abolished by blocking p38 mitogen-activated protein kinase (MAPK) and ERK. Furthermore, Western blot demonstrated that inhibition of PP2B with cyclosporin A or small interfering RNA increased the phosphorylation of ERK and p38 MAPK. We conclude that K restriction suppresses the expression of PP2B catalytic subunits and that inhibition of PP2B decreases ROMK channel activity through stimulation of MAPK in the CCD. PMID:18184875

  6. Protein phosphatase 2C (PP2C) is responsible for VP-induced dephosphorylation of AQP2 serine 261.

    PubMed

    Cheung, Pui W; Ueberdiek, Lars; Day, Jack; Bouley, Richard; Brown, Dennis

    2017-04-05

    AQP2 trafficking is regulated by phosphorylation and dephosphorylation of serine residues in the AQP2 c-terminus. Vasopressin (VP) binding to its receptor (V2R) leads to a cascade of events that result in the phosphorylation of serine 256 (S256), S264 and S269, but dephosphorylation of S261. To identify which phosphatase is responsible for VP-induced S261 dephosphorylation, we pretreated cells with different phosphatase inhibitors before VP stimulation. Only sanguinarine, a specific protein phosphatase 2C (PP2C) inhibitor, abolished VP-induced S261 dephosphorylation, but not inhibitors of PP1, PP2A (okadaic acid) or PP2B (cyclosporine). However, both sanguinarine and VP significantly increased phosphorylation of ERK, a kinase that can phosphorylate S261; inhibition of ERK by PD98059 partially decreased baseline S261 phosphorylation. These data support a role of ERK in S261 phosphorylation, but suggest that upon VP treatment, increased phosphatase activity overcomes the increase in ERK activity, resulting in overall dephosphorylation of S261. We also found that sanguinarine abolished VP-induced S261 dephosphorylation in cells expressing mutated AQP2 S256A, suggesting that the phosphorylation state of S261 is independent of S256. Sanguinarine alone did not induce AQP2 membrane trafficking, nor did it inhibit VP-induced AQP2 membrane accumulation in cells and kidney tissues, suggesting that S261 does not play an observable role in acute AQP2 membrane accumulation. In conclusion, PP2C activity is required for S261 AQP2 dephosphorylation upon VP stimulation, and this occurs independent of S256 phosphorylation. Understanding the pathways involved in modulating PP2C will help obtain a deeper understanding of the role of S261 in cellular events involving AQP2.

  7. Phase III Randomized Study of 4 Weeks of High-Dose Interferon-α-2b in Stage T2bNO, T3a-bNO, T4a-bNO, and T1-4N1a-2a (microscopic) Melanoma: A Trial of the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network Cancer Research Group (E1697).

    PubMed

    Agarwala, Sanjiv S; Lee, Sandra J; Yip, Waiki; Rao, Uma N; Tarhini, Ahmad A; Cohen, Gary I; Reintgen, Douglas S; Evans, Terry L; Brell, Joanna M; Albertini, Mark R; Atkins, Michael B; Dakhil, Shaker R; Conry, Robert M; Sosman, Jeffrey A; Flaherty, Lawrence E; Sondak, Vernon K; Carson, William E; Smylie, Michael G; Pappo, Alberto S; Kefford, Richard F; Kirkwood, John M

    2017-03-10

    Purpose To test the efficacy of 4 weeks of intravenous (IV) induction with high-dose interferon (IFN) as part of the Eastern Cooperative Oncology Group regimen compared with observation (OBS) in patients with surgically resected intermediate-risk melanoma. Patients and Methods In this intergroup international trial, eligible patients had surgically resected cutaneous melanoma in the following categories: (1) T2bN0, (2) T3a-bN0, (3) T4a-bN0, and (4) T1-4N1a-2a (microscopic). Patients were randomly assigned to receive IFN α-2b at 20 MU/m(2)/d IV for 5 days (Monday to Friday) every week for 4 weeks (IFN) or OBS. Stratification factors were pathologic lymph node status, lymph node staging procedure, Breslow depth, ulceration of the primary lesion, and disease stage. The primary end point was relapse-free survival. Secondary end points included overall survival, toxicity, and quality of life. Results A total of 1,150 patients were randomly assigned. At a median follow-up of 7 years, the 5-year relapse-free survival rate was 0.70 (95% CI, 0.66 to 0.74) for OBS and 0.70, (95% CI, 0.66 to 0.74) for IFN ( P = .964). The 5-year overall survival rate was 0.83 (95% CI, 0.79 to 0.86) for OBS and 0.83 (95% CI, 0.80 to 0.86) for IFN ( P = .558). Treatment-related grade 3 and higher toxicity was 4.6% versus 57.9% for OBS and IFN, respectively ( P < .001). Quality of life was worse for the treated group. Conclusion Four weeks of IV induction as part of the Eastern Cooperative Oncology Group high-dose IFN regimen is not better than OBS alone for patients with intermediate-risk melanoma as defined in this trial.

  8. Materials Data on Cu2B2C (SG:12) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-09-30

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on GdNi2B2C (SG:139) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. LAMP-2C Inhibits MHC Class II Presentation of Cytoplasmic Antigens by Disrupting Chaperone-Mediated Autophagy.

    PubMed

    Pérez, Liliana; McLetchie, Shawna; Gardiner, Gail J; Deffit, Sarah N; Zhou, Delu; Blum, Janice S

    2016-03-15

    Cells use multiple autophagy pathways to sequester macromolecules, senescent organelles, and pathogens. Several conserved isoforms of the lysosome-associated membrane protein-2 (LAMP-2) regulate these pathways influencing immune recognition and responses. LAMP-2A is required for chaperone-mediated autophagy (CMA), which promotes Ag capture and MHC class II (MHCII) presentation in B cells and signaling in T cells. LAMP-2B regulates lysosome maturation to impact macroautophagy and phagocytosis. Yet, far less is known about LAMP-2C function. Whereas LAMP2A and LAMP2B mRNA were broadly detected in human tissues, LAMP2C expression was more limited. Transcripts for the three LAMP2 isoforms increased with B cell activation, although specific gene induction varied depending on TLR versus BCR engagement. To examine LAMP-2C function in human B cells and specifically its role in Ag presentation, we used ectopic gene expression. Increased LAMP-2C expression in B cells did not alter MHCII expression or invariant chain processing, but did perturb cytoplasmic Ag presentation via CMA. MHCII presentation of epitopes from exogenous and membrane Ags was not affected by LAMP-2C expression in B cells. Similarly, changes in B cell LAMP-2C expression did not impact macroautophagy. The gene expression of other LAMP2 isoforms and proteasome and lysosomal proteases activities were unperturbed by LAMP-2C ectopic expression. LAMP-2C levels modulated the steady-state expression of several cytoplasmic proteins that are targeted for degradation by CMA and diminished peptide translocation via this pathway. Thus, LAMP-2C serves as a natural inhibitor of CMA that can selectively skew MHCII presentation of cytoplasmic Ags.

  11. Is Clinical Stage T2C Prostate Cancer Intermediate or High-Risk Disease?

    PubMed Central

    Klaassen, Zachary; Singh, Abhay A.; Howard, Lauren E.; Feng, Zhaoyong; Trock, Bruce; Terris, Martha K.; Aronson, William J.; Cooperberg, Matthew R.; Amling, Christopher L.; Kane, Christopher J.; Partin, Alan; Han, Misop; Freedland, Stephen J.

    2014-01-01

    Background Clinical stage T2c (cT2c) is an indeterminate factor in prostate cancer (PC) risk stratification. In D’Amico grouping and AUA guidelines, cT2c is high-risk, whereas NCCN and EAU classify cT2c as intermediate-risk. We assessed whether cT2c tumors, without other high-risk factors (cT2c not otherwise specified (cT2c-nos)), behave as intermediate or high-risk by analyzing biochemical recurrence (BCR) after radical prostatectomy. Methods We analyzed 2,759 men from SEARCH and 12,900 men from Johns Hopkins Hospital (JHH) from 1988–2011 and 1982–2012, respectively. Patients were grouped into low (PSA<10ng/mL, Gleason sum≤6, and cT1-T2a), intermediate (PSA 10–20ng/mL, Gleason sum 7, or cT2b) and high-risk PC (PSA>20ng/mL, Gleason sum 8–10, or cT3). Men with cT2c who were not otherwise high-risk (i.e. PSA<20 ng/mL and Gleason sum<8) were placed into a separate category termed cT2c -nos. Associations between cT2c-nos and intermediate-risk, and high-risk patients and BCR were tested using log-rank test and Cox proportional analyses models. Results 99 men (4%) from SEARCH and 202 (2%) from JHH were cT2c-nos. cT2c-nos patients had similar BCR risk as intermediate-risk (SEARCH p=0.27; JHH p=0.23), but significantly lower BCR vs. high-risk (SEARCH p<0.001; JHH p<0.001). When specifically compared to intermediate and high-risk patients, and after adjusting for year and center, cT2c-nos patients had outcomes comparable to intermediate-risk (SEARCH p=0.53; JHH p=0.54), but significantly better than high-risk patients (SEARCH p=0.003; JHH p<0.001). Conclusions Patients with cT2c without other high-risk features had similar outcomes as intermediate-risk and significantly better than high-risk PC. These findings suggest men with cT2c should be considered intermediate-risk. PMID:25492369

  12. Identification and biochemical characterization of Rap2C, a new member of the Rap family of small GTP-binding proteins.

    PubMed

    Paganini, Simona; Guidetti, Gianni Francesco; Catricalà, Silvia; Trionfini, Piera; Panelli, Simona; Balduini, Cesare; Torti, Mauro

    2006-01-01

    The Rap family of small GTP-binding proteins is composed by four different members: Rap1A, Rap1B, Rap2A and Rap2B. In this work we report the identification and characterization of a fifth member of this family of small GTPases. This new protein is highly homologous to Rap2A and Rap2B, binds labeled GTP on nitrocellulose, and is recognized by a specific anti-Rap2 antibody, but not by an anti-Rap1 antibody. The protein has thus been named Rap2C. Binding of GTP to recombinant purified Rap2C was Mg(2+)-dependent. However, accurate comparison of the kinetics of nucleotide binding and release revealed that Rap2C bound GTP less efficiently and possessed slower rate of GDP release compared to the highly homologous Rap2B. Moreover, in the presence of Mg(2+), the relative affinity of Rap2C for GTP was only about twofold higher than that for GDP, while, under the same conditions, Rap2B was able to bind GTP with about sevenfold higher affinity than GDP. When expressed in eukaryotic cells, Rap2C localized at the plasma membrane, as dictated by the presence of a CAAX motif at the C-terminus. We found that Rap2C represented the predominant Rap2 protein expressed in circulating mononuclear leukocytes, but was not present in platelets. Importantly, Rap2C was found to be expressed in human megakaryocytes, suggesting that the protein may be down-regulated during platelets generation. This work demonstrates that Rap2C is a new member of the Rap2 subfamily of proteins, able to bind guanine nucleotides with peculiar properties, and differently expressed by various hematopoietic subsets. This new protein may therefore contribute to the still poorly clarified cellular events regulated by this subfamily of GTP-binding proteins.

  13. Potent inhibition of cytochrome P450 2B6 by sibutramine in human liver microsomes.

    PubMed

    Bae, Soo Hyeon; Kwon, Min Jo; Choi, Eu Jin; Zheng, Yu Fen; Yoon, Kee Dong; Liu, Kwang-Hyeon; Bae, Soo Kyung

    2013-09-05

    The present study was performed to evaluate the potency and specificity of sibutramine as an inhibitor of the activities of nine human CYP isoforms in liver microsomes. Using a cocktail assay, the effects of sibutramine on specific marker reactions of the nine CYP isoforms were measured in human liver microsomes. Sibutramine showed potent inhibition of CYP2B6-mediated bupropion 6-hydroxylation with an IC50 value of 1.61μM and Ki value of 0.466μM in a competitive manner at microsomal protein concentrations of 0.25mg/ml; this was 3.49-fold more potent than the typical CYP2B6 inhibitor thio-TEPA (Ki=1.59μM). In addition, sibutramine slightly inhibited CYP2C19 activity (Ki=16.6μM, noncompetitive inhibition) and CYP2D6 activity (Ki=15.7μM, noncompetitive inhibition). These observations indicated 35.6- and 33.7-fold decreases in inhibition potency, respectively, compared with that of CYP2B6 by sibutramine. However, no inhibition of CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, or CYP2E1 activities was observed. In addition, the CYP2B6 inhibitory potential of sibutramine was enhanced at a lower microsomal protein concentration of 0.05mg/ml. After 30min preincubation of human liver microsomes with sibutramine in the presence of NADPH, no shift in IC50 was observed in terms of inhibition of the activities of the nine CYPs, suggesting that sibutramine is not a time-dependent inactivator. These observations suggest that sibutramine is a selective and potent inhibitor of CYP2B6 in vitro, whereas inhibition of other CYPs is substantially lower. These in vitro data support the use of sibutramine as a well-known inhibitor of CYP2B6 for routine screening of P450 reversible inhibition when human liver microsomes are used as the enzyme source.

  14. Orosomucoid 1 drives opportunistic infections through the polarization of monocytes to the M2b phenotype.

    PubMed

    Nakamura, Kiwamu; Ito, Ichiaki; Kobayashi, Makiko; Herndon, David N; Suzuki, Fujio

    2015-05-01

    Orosomucoid (ORM, composed of two isoforms, ORM1 and ORM2) has been described as an inducer of M2 macrophages, which are cells that decrease host antibacterial innate immunities. However, it is unknown which phenotypes of M2 macrophages are induced by ORM. In this study, healthy donor monocytes stimulated with ORM (ORM-monocytes) were characterized phenotypically and biologically. CCL1 (a biomarker of M2b macrophages) and IL-10 were detected in monocyte cultures supplemented with ORM1; however, CCL17 (a biomarker of M2a macrophages) and CXCL13 (a biomarker of M2c macrophages) were not produced in these cultures. All of these soluble factors were not detected in the culture fluids of monocytes stimulated with ORM2. Monocytes stimulated with ORM1 were characterized as CD64(-)CD209(-)CD163(+)CCL1(+) cells. MRSA and Enterococcus faecalis infections were accelerated in chimeras (NOD/scid IL-2Rγ(null) mice reconstituted with white blood cells) after inoculation with monocytes stimulated with ORM1 or treatment with ORM1; however, the infections were greatly mitigated in both chimeras inoculated with ORM1-stimulated monocytes and treated with ORM1, after an additional treatment with an inhibitor of M2b macrophages (CCL1 antisense ODN). These results indicate that ORM1 stimulates quiescent monocytes to polarize to M2b monocytes. The regulation of M2b macrophages may be beneficial in controlling opportunistic infections in patients with a large amount of plasma ORM1.

  15. Structural Basis for Host Membrane Remodeling Induced by Protein 2B of Hepatitis A Virus

    PubMed Central

    Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa

    2015-01-01

    ABSTRACT The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. IMPORTANCE No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. PMID:25589659

  16. Using msa-2b as a molecular marker for genotyping Mexican isolates of Babesia bovis.

    PubMed

    Genis, Alma D; Perez, Jocelin; Mosqueda, Juan J; Alvarez, Antonio; Camacho, Minerva; Muñoz, Maria de Lourdes; Rojas, Carmen; Figueroa, Julio V

    2009-12-01

    Variable merozoite surface antigens of Babesia bovis are exposed glycoproteins having a role in erythrocyte invasion. Members of this gene family include msa-1 and msa-2 (msa-2c, msa-2a(1), msa-2a(2) and msa-2b). To determine the sequence variation among B. bovis Mexican isolates using msa-2b as a genetic marker, PCR amplicons corresponding to msa-2b were cloned and plasmids carrying the corresponding inserts were purified and sequenced. Comparative analysis of nucleotide and deduced amino acid sequences revealed distinct degrees of variability and identity among the coding gene sequences obtained from 16 geographically different Mexican B. bovis isolates and a reference strain. Clustal-W multiple alignments of the MSA-2b deduced amino acid sequences performed with the 17 B. bovis Mexican isolates, revealed the identification of three genotypes with a distinct set each of amino acid residues present at the variable region: Genotype I represented by the MO7 strain (in vitro culture-derived from the Mexico isolate) as well as RAD, Chiapas-1, Tabasco and Veracruz-3 isolates; Genotype II, represented by the Jalisco, Mexico and Veracruz-2 isolates; and Genotype III comprising the sequences from most of the isolates studied, Tamaulipas-1, Chiapas-2, Guerrero-1, Nayarit, Quintana Roo, Nuevo Leon, Tamaulipas-2, Yucatan and Guerrero-2. Moreover, these three genotypes could be discriminated against each other by using a PCR-RFLP approach. The results suggest that occurrence of indels within the variable region of msa-2b sequences can be useful markers for identifying a particular genotype present in field populations of B. bovis isolated from infected cattle in Mexico.

  17. Structure, functional regulation and signaling properties of Rap2B

    PubMed Central

    QU, DEBAO; HUANG, HUI; DI, JIEHUI; GAO, KEYU; LU, ZHENG; ZHENG, JUNNIAN

    2016-01-01

    The Ras family small guanosine 5′-triphosphate (GTP)-binding protein Rap2B is is a member of the Ras oncogene family and a novel target of p53 that regulates the p53-mediated pro-survival function of cells. The Rap2B protein shares ~90% homology with Rap2A, and its sequence is 70% identical to other members of the Rap family such as RaplA and RaplB. As a result, Rap2B has been theorized to have similar signaling effectors to the GTPase-binding protein Rap, which mediates various biological functions, including the regulation of sterile 20/mitogen-activated proteins. Since its identification in the early 1990s, Rap2B has elicited a considerable interest. Numerous studies indicate that Rap2B exerts specific biological functions, including binding and stimulating phospholipase C-ε and interferon-γ. In addition, downregulation of Rap2B affects the growth of melanoma cells. The present review summarizes the possible effectors and biological functions of Rap2B. Increasing evidence clearly supports the association between Rap2B function and tumor development. Therefore, it is conceivable that anticancer drugs targeting Rap2B may be generated as novel therapies against cancer. PMID:27073477

  18. Selective 5-hydroxytryptamine 2C receptor agonists derived from the lead compound tranylcypromine: identification of drugs with antidepressant-like action.

    PubMed

    Cho, Sung Jin; Jensen, Niels H; Kurome, Toru; Kadari, Sudhakar; Manzano, Michael L; Malberg, Jessica E; Caldarone, Barbara; Roth, Bryan L; Kozikowski, Alan P

    2009-04-09

    We report here the design, synthesis, and pharmacological properties of a series of compounds related to tranylcypromine (9), which itself was discovered as a lead compound in a high-throughput screening campaign. Starting from 9, which shows modest activity as a 5-HT(2C) agonist, a series of 1-aminomethyl-2-phenylcyclopropanes was investigated as 5-HT(2C) agonists through iterative structural modifications. Key pharmacophore feature of this new class of ligands is a 2-aminomethyl-trans-cyclopropyl side chain attached to a substituted benzene ring. Among the tested compounds, several were potent and efficacious 5-HT(2C) receptor agonists with selectivity over both 5-HT(2A) and 5-HT(2B) receptors in functional assays. The most promising compound is 37, with 120- and 14-fold selectivity over 5-HT(2A) and 5-HT(2B), respectively (EC(50) = 585, 65, and 4.8 nM at the 2A, 2B, and 2C subtypes, respectively). In animal studies, compound 37 (10-60 mg/kg) decreased immobility time in the mouse forced swim test.

  19. Selective 5-Hydroxytrytamine 2C Receptor Agonists Derived from the Lead Compound Tranylcypromine – Identification of Drugs with Antidepressant-Like Action

    PubMed Central

    Cho, Sung Jin; Jensen, Niels H.; Kurome, Toru; Kadari, Sudhakar; Manzano, Michael L.; Malberg, Jessica E.; Caldarone, Barbara; Roth, Bryan L.; Kozikowski, Alan P.

    2009-01-01

    We report here the design, synthesis, and pharmacological properties of a series of compounds related to tranylcypromine (9), which itself was discovered as a lead compound in a high-throughput screening campaign. Starting from 9, which shows modest activity as a 5-HT2C agonist, a series of 1-aminomethyl-2-phenylcyclopropanes was investigated as 5-HT2C agonists through iterative structural modifications. Key pharmacophore feature of this new class of ligands is a 2-aminomethyl-trans-cyclopropyl side chain attached to a substituted benzene ring. Among the tested compounds, several were potent and efficacious 5-HT2C receptor agonists with selectivity over both 5-HT2A and 5-HT2B receptors in functional assays. The most promising compound is 37 with 120- and 14-fold selectivity over 5-HT2A and 5-HT2B, respectively (EC50 = 585, 65, and 4.8 nM at the 2A, 2B, and 2C subtypes, respectively). In animal studies, compound 37 (10–60 mg/kg) decreased immobility time in the mouse forced swim test. PMID:19284718

  20. Diabetes susceptibility in Mayas: Evidence for the involvement of polymorphisms in HHEX, HNF4α, KCNJ11, PPARγ, CDKN2A/2B, SLC30A8, CDC123/CAMK1D, TCF7L2, ABCA1 and SLC16A11 genes.

    PubMed

    Lara-Riegos, J C; Ortiz-López, M G; Peña-Espinoza, B I; Montúfar-Robles, I; Peña-Rico, M A; Sánchez-Pozos, K; Granados-Silvestre, M A; Menjivar, M

    2015-07-01

    Association of type 2 diabetes (T2D) with common variants in HHEX, HNF4α, KCNJ11, PPARγ, CDKN2A/2B, SLC30A8, CDC123/CAMK1D, TCF7L2, ABCA1 and SLC16A11 genes have been reported, mainly in populations of European and Asian ancestry and to a lesser extent in Latin Americans. Thus, we aimed to investigate the contribution of rs1111875 (HHEX), rs1800961 (HNF4α), rs5219 (KCNJ11), rs1801282 (PPARγ), rs10811661 (CDKN2A/2B), rs13266634 (SLC30A8), rs12779790 (CDC123/CAMK1D), rs7903146 (TCF7L2), rs9282541 (ABCA1) and rs13342692 (SLC16A11) polymorphisms in the genetic background of Maya population to associate their susceptibility to develop T2D. This is one of the first studies designed specifically to investigate the inherited component of T2D in the indigenous population of Mexico. SNPs were genotyped by allelic discrimination method in 575 unrelated Maya individuals. Two SNPs rs10811661 and rs928254 were significantly associated with T2D after adjusting for BMI; rs10811661 in a recessive and rs9282541 in a dominant model. Additionally, we found phenotypical alterations associated with genetic variants: HDL to rs9282541 and insulin to rs13342692. In conclusion, these findings support an association of genetic polymorphisms to develop T2D in Maya population.

  1. Peginterferon Alfa-2b (PEG-Intron)

    MedlinePlus

    ... alpha-2b is a combination of interferon and polyethylene glycol, which helps the interferon stay active in ... 2b, other alpha interferons, any other medications, or polyethylene glycol (PEG). Ask your doctor if you are ...

  2. Partial VP2 sequencing of canine parvovirus (CPV) strains circulating in the state of Rio de Janeiro, Brazil: detection of the new variant CPV-2c

    PubMed Central

    Castro, T.X.; Costa, E.M; Leite, J.P.G.; Labarthe, N.V.; Cubel Garcia, R.C.N.

    2010-01-01

    Canine parvovirus (CPV) is the most important enteric virus for dogs and it seems to be undergoing continuous evolution, generating new genetic and antigenic variants throughout the world. The aim of this study was to analyze the distribution of CPV variants from 1995 to 2009 and to investigate the circulation of the new variant CPV-2c in Rio de Janeiro, Brazil. In addition, the clinical features of CPV infection were also reported. After CPV laboratorial confirmation by HA/HI and PCR, thirty-two fecal samples were analyzed by sequencing a 583-bp fragment of the VP2 gene. One sample, collected in 2008 was typed as the new type CPV-2c. All samples from 1995 to 2003 were identified as “new CPV-2a”. From 2004 to 2006, both “new CPV-2a” and CPV-2b were observed. From 2006 to 2009, most of the samples were characterized as CPV-2b. The classical signs of CPV enteritis were observed in 16/18 CPV-2a and 5/13 CPV-2b infected puppies. These results show that continuous epidemiological surveillance of CPV strain distribution is essential for studying the patterns of CPV-2a and 2b spread and for determining whether the new variant CPV-2c has become permanently established in Brazilian canine population. PMID:24031592

  3. Pharmacological characterisation of a structurally novel α2C-adrenoceptor antagonist ORM-10921 and its effects in neuropsychiatric models.

    PubMed

    Sallinen, Jukka; Holappa, Johanna; Koivisto, Ari; Kuokkanen, Katja; Chapman, Hugh; Lehtimäki, Jyrki; Piepponen, Petteri; Mijatovic, Jelena; Tanila, Heikki; Virtanen, Raimo; Sirviö, Jouni; Haapalinna, Antti

    2013-10-01

    The α2-adrenoceptors (ARs) are important modulators of a wide array of physiological responses. As only a few selective compounds for the three α2-AR subtypes (α2A , α2B and α2C ) have been available, the pharmacological profile of a new α2C-selective AR antagonist ORM-10921 is reported. Standard in vitro receptor assays and antagonism of α2, and α1-AR agonist-evoked responses in vivo were used to demonstrate the α2C-AR selectivity for ORM-10921 which was tested in established behavioural models related to schizophrenia and cognitive dysfunction with an emphasis on pharmacologically induced hypoglutamatergic state by phencyclidine or MK-801. The Kb values of in vitro α2C-AR antagonism for ORM-10921 varied between 0.078-1.2 nM depending on the applied method. The selectivity ratios compared to α2A-AR subtype and other relevant receptors were 10-100 times in vitro. The in vivo experiments supported its potent α2C-antagonism combined with only a weak α2A-antagonism. In the pharmacodynamic microdialysis study, ORM-10921 was found to increase extracellular dopamine levels in prefrontal cortex in the baseline conditions. In the behavioural tests, ORM-10921 displayed potent antidepressant and antipsychotic-like effects in the forced swimming test and prepulse-inhibition models analogously with the previously reported results with structurally different α2C-selective AR antagonist JP-1302. Our new results also indicate that ORM-10921 alleviated the NMDA-antagonist-induced impairments in social behaviour and watermaze navigation. This study extends and further validates the concept that α2C -AR is a potential therapeutic target in CNS disorders such as schizophrenia or Alzheimer's disease and suggests the potential of α2C-antagonism to treat such disorders.

  4. Neuroprotection Mediated through GluN2C-Containing N-methyl-D-aspartate (NMDA) Receptors Following Ischemia

    PubMed Central

    Chung, Connie; Marson, John D.; Zhang, Quan-Guang; Kim, Jimok; Wu, Wei-Hua; Brann, Darrell W.; Chen, Bo-Shiun

    2016-01-01

    Post-ischemic activation of NMDA receptors (NMDARs) has been linked to NMDAR subunit-specific signaling that mediates pro-survival or pro-death activity. Although extensive studies have been performed to characterize the role of GluN2A and GluN2B following ischemia, there is less understanding regarding the regulation of GluN2C. Here, we show that GluN2C expression is increased in acute hippocampal slices in response to ischemia. Strikingly, GluN2C knockout mice, following global cerebral ischemia, exhibit greater neuronal death in the CA1 area of the hippocampus and reduced spatial working memory compared to wild-type mice. Moreover, we find that GluN2C-expressing hippocampal neurons show marked resistance to NMDA-induced toxicity and reduced calcium influx. Using both in vivo and in vitro experimental models of ischemia, we demonstrate a neuroprotective role of GluN2C, suggesting a mechanism by which GluN2C is upregulated to promote neuronal survival following ischemia. These results may provide insights into development of NMDAR subunit-specific therapeutic strategies to protect neurons from excitotoxicity. PMID:27845401

  5. Inefficient Chronic Activation of Parietal Cells in Ae2a,b−/− Mice

    PubMed Central

    Recalde, Sergio; Muruzábal, Francisco; Looije, Norbert; Kunne, Cindy; Burrell, María A.; Sáez, Elena; Martínez-Ansó, Eduardo; Salas, January T.; Mardones, Pablo; Prieto, Jesús; Medina, Juan F.; Elferink, Ronald P.J. Oude

    2006-01-01

    In parietal cells, basolateral Ae2 Cl−/HCO3− exchanger (Slc4a2) appears to compensate for luminal H+ pumping while providing Cl− for apical secretion. In mouse and rat, mRNA variants Ae2a, Ae2b1, Ae2b2, and Ae2c2 are all found in most tissues (although the latter at very low levels), whereas Ae2c1 is restricted to the stomach. We studied the acid secretory function of gastric mucosa in mice with targeted disruption of Ae2a, Ae2b1, and Ae2b2 (but not Ae2c) isoforms. In the oxyntic mucosa of Ae2a,b−/− mice, total Ae2 protein was nearly undetectable, indicating low gastric expression of the Ae2c isoforms. In Ae2a,b−/− mice basal acid secretion was normal, whereas carbachol/histamine-stimulated acid secretion was impaired by 70%. These animals showed increased serum gastrin levels and hyperplasia of G cells. Immunohistochemistry and electron microscopy revealed baseline activation of parietal cells with fusion of intracellular H+/K+-ATPase-containing vesicles with the apical membrane and degenerative changes (but not substantial apoptosis) in a subpopulation of these cells. Increased expression of proliferating cell nuclear antigen in the oxyntic glands suggested enhanced Ae2a,b−/− parietal cell turnover. These data reveal a critical role of Ae2a-Ae2b1-Ae2b2 isoforms in stimulated gastric acid secretion whereas residual Ae2c isoforms could account to a limited extent for basal acid secretion. PMID:16816370

  6. Protein phosphatase 2C (PP2C) function in higher plants.

    PubMed

    Rodriguez, P L

    1998-12-01

    In the past few years, molecular cloning studies have revealed the primary structure of plant protein serine/threonine phosphatases. Two structurally distinct families, the PP1/PP2A family and the PP2C family, are present in plants as well as in animals. This review will focus on the plant PP2C family of protein phosphatases. Biochemical and molecular genetic studies in Arabidopsis have identified PP2C enzymes as key players in plant signal transduction processes. For instance, the ABI1/ABI2 PP2Cs are central components in abscisic acid (ABA) signal transduction. Arabidopsis mutants containing a single amino acid exchange in ABI1 or ABI2 show a reduced response to ABA. Another member of the PP2C family, kinase-associated protein phosphatase (KAPP), appears to be an important element in some receptor-like kinase (RLK) signalling pathways. Finally, an alfalfa PP2C acts as a negative regulator of a plant mitogen-activated protein kinase (MAPK) pathway. Thus, the plant PP2Cs function as regulators of various signal transduction pathways.

  7. GluN2B-containing NMDA receptors promote glutamate synapse development in hippocampal interneurons.

    PubMed

    Kelsch, Wolfgang; Li, Zhijun; Wieland, Sebastian; Senkov, Oleg; Herb, Anne; Göngrich, Christina; Monyer, Hannah

    2014-11-26

    In postnatal development, GluN2B-containing NMDARs are critical for the functional maturation of glutamatergic synapses. GluN2B-containing NMDARs prevail until the second postnatal week when GluN2A subunits are progressively added, conferring mature properties to NMDARs. In cortical principal neurons, deletion of GluN2B results in an increase in functional AMPAR synapses, suggesting that GluN2B-containing NMDARs set a brake on glutamate synapse maturation. The function of GluN2B in the maturation of glutamatergic inputs to cortical interneurons is not known. To examine the function of GluN2B in interneurons, we generated mutant mice with conditional deletion of GluN2B in interneurons (GluN2B(ΔGAD67)). In GluN2B(ΔGAD67) mice interneurons distributed normally in cortical brain regions. After the second postnatal week, GluN2B(ΔGAD67) mice developed hippocampal seizures and died shortly thereafter. Before the onset of seizures, GluN2B-deficient hippocampal interneurons received fewer glutamatergic synaptic inputs than littermate controls, indicating that GluN2B-containing NMDARs positively regulate the maturation of glutamatergic input synapses in interneurons. These findings suggest that GluN2B-containing NMDARs keep the circuit activity under control by promoting the maturation of excitatory synapses in interneurons.

  8. Investigation of Class 2b Trucks

    SciTech Connect

    Davis, S.C.

    2002-04-03

    The popularity of trucks in the class 2 category--that is, those with a 6,000 to 10,000 pounds (lbs) gross vehicle weight rating (GVWR)--has increased since the late 1970s/early 1980s. The purpose of this research is to identify and examine vehicles in the upper portion of the class 2 weight range (designated as vehicle class 2b) and to assess their impact. Vehicles in class 2b (8,500-10,000 lbs GVWR) include pickup trucks, sport utility vehicles (SUVs), and large vans (i.e., not minivans). Oak Ridge National Laboratory researched each individual truck model to determine which models were class 2b trucks and arrived at four methodologies to derive sales volumes. Two methods--one for calendar year and one for model year sales--were recommended for producing believable and reliable results. The study indicates that 521,000 class 2b trucks were sold in calendar year 1999--6.4% of sales of all trucks under 10,000 lbs. Eighty-two percent of class 2b trucks sold in 1999 were pickups; one third of class 2b trucks sold in 1999 were diesel. There were 5.8 million class 2b trucks on the road in 2000, which amounts to 7.8% of all trucks under 10,000 lbs. Twenty-four percent of the class 2b truck population is diesel. Estimates show that class 2b trucks account for 8% of annual miles traveled by trucks under 10,000 lbs and 9% of fuel use. Data on class 2b trucks are scarce. As the Tier 2 standards, which apply to passenger vehicles in the 8,500-10,000 lb GVWR category, become effective, additional data on class 2b trucks may become available--not only emissions data, but data in all areas. At the moment, distinguishing class 2b trucks from class 2 trucks in general is a substantial task requiring data on an individual model level.

  9. Peginterferon Alfa-2b Injection (Sylatron)

    MedlinePlus

    ... 2b injection is used in people with malignant melanoma (a life-threatening cancer that begins in certain ... is used to reduce the chance that malignant melanoma will come back and must be started within ...

  10. Identification of the N-Methyl-D-aspartate receptor (NMDAR)-related epitope, NR2B, in the normal human ovary: implication for the pathogenesis of anti-NMDAR encephalitis.

    PubMed

    Tachibana, Naoko; Kinoshita, Michiaki; Saito, Yuko; Ikeda, Shu-ichi

    2013-01-01

    N-methyl-D-aspartate receptors (NMDARs) are one type of ionotropic glutamate receptors (GluRs) and are heterotetrametric cation channels composed of NMDAR1 (NR1), NMDAR2 (NR2A, 2B, 2C or 2D) and NMDAR3 (NR3A or NR3B) subunits. The main subunits are NR1 and NR2 and their combinations are classified into several diverse forms including NR1/NR1/NR2A/NR2A, NR1/NR1/NR2B/NR2B and NR1/NR1/NR2A/NR2B. NMDARs are physiologically related to synapse development and synaptic plasticity in the central nervous system. Anti-NMDAR encephalitis is a form of autoimmune limbic encephalitis mainly affecting young women, with various manifestations including initial psychiatric symptoms, subsequent unresponsiveness, intractable generalized seizure, dysautonomia and orofacial dyskinesia. This disorder is often accompanied by ovarian teratoma that is originated from oocytes. Anti-neural antibody for the NR1/NR2 heteromer of NMDAR has been identified as a disease-specific hallmark. It has been emphasized that neural components in ovarian teratoma act as a trigger to produce anti-NMDAR antibodies, although about half of the patients with anti-NMDAR encephalitis are not associated with ovarian teratoma. To identify NMDAR-related epitopes located outside of the brain, we performed immunohistochemical examinations of normal human ovary and testis using specific antibodies against NR1, NR2A and NR2B, respectively, and found expression of the NR2B epitope in the cytoplasm of oocytes. In contrast, the testis showed no immunohistochemical reactivity. Therefore, oocytes contain NMDAR-related epitopes including NR2B. The NMDAR-related epitopes in normal oocytes may cause an antigen-antibody reaction in certain pathological conditions. The presence of NR2B immunoreactivity in oocytes may account for the fact that anti-NMDAR encephalitis predominantly affects young females.

  11. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  12. Drosophila DPP2C1, a novel member of the protein phosphatase 2C (PP2C) family.

    PubMed

    Dick, T; Bahri, S M; Chia, W

    1997-10-15

    We report the molecular cloning, chromosome mapping and developmental transcription pattern of a putative serine/threonine protein phosphatase 2C (PP2C), DPP2C1, from Drosophila melanogaster. The 6-kb transcript of this first Drosophila PP2C gene encodes a 1428-aa deduced protein. The DPP2C1 protein contains a approximately 330-aa PP2C-like catalytic domain flanked by extensive N- and C-terminal sequences showing no similarities to other PP2Cs. The dpp2c1 gene maps to 4E1-2 on the X chromosome, 1.5 kb upstream of the ddlc1 gene. Northern blot analyses showed that dpp2c1 transcription is developmentally regulated, accumulating maximally during early (0-6 h) and late (12-24 h) embryogensis. The presented molecular characterisation provides the basis for a genetic dissection of DPP2C1 function.

  13. Dephosphorylation of phosphopeptides by calcineurin (protein phosphatase 2B).

    PubMed

    Donella-Deana, A; Krinks, M H; Ruzzene, M; Klee, C; Pinna, L A

    1994-01-15

    38 (6-32 residues) enzymically phosphorylated synthetic peptides have been assayed as substrates for calcineurin, a Ca2+/calmodulin-dependent protein phosphatase (PP-2B) belonging to the family of Ser/Thr-specific enzymes but also active on phosphotyrosine residues. Many peptides reproduce, with suitable modifications, naturally occurring phosphoacceptor sites. While protein phosphatases 2A and 2C are also very active on short phosphopeptides, an extended N-terminal stretch appears to be a necessary, albeit not sufficient, condition for an optimal dephosphorylation, comparable to that of protein substrates, of both phosphoseryl and phosphotyrosyl peptides by calcineurin. This finding corroborates the view that higher-order structure is an important determinant for the substrate specificity of calcineurin. However, a number of shorter peptides are also appreciably dephosphorylated by this enzyme, their efficiency as substrates depending on local structural features. All the peptides that are appreciably dephosphorylated by calcineurin contain basic residue(s) on the N-terminal side. A basic residue located at position -3 relative to the phosphorylated residue plays a particularly relevant positive role in determining the dephosphorylation of short phosphopeptides. Acidic residue(s) adjacent to the C-terminal side of the phosphoamino acid are conversely powerful negative determinants, preventing the dephosphorylation of otherwise suitable peptide substrates. However, calcineurin displays an only moderate preference for phosphothreonyl peptides which are conversely strikingly preferred over their phosphoseryl counterparts by the other classes of Ser/Thr-specific protein phosphatases. Moreover calcineurin does not perceive as a strong negative determinant the motif Ser/Thr-Pro in peptides where this motif prevents dephosphorylation by the other classes of Ser/Thr protein phosphatases. Whenever tested on phosphotyrosyl peptides, calcineurin exhibits a specificity which

  14. Scientific core hole Valles caldera No. 2b (VC-2b), New Mexico

    SciTech Connect

    Garner, J.N.; Hulen, J.B.; Lysne, P.; Jacobson, R.; Goff, F.; Nielson, D.L.; Pisto, L.; Criswell, C.W.; Gribble, R.; Utah Univ. Research Inst., Salt Lake City, UT; Sandia National Labs., Albuquerque, NM; Los Alamos National Lab., NM; Utah Univ. Research Inst., Salt Lake City, UT; Tonto Drilling Services, Inc., Salt Lake City, UT; Los Alamo

    1989-01-01

    Research core hole was continuously cored to 1.762 km on the western flank of the caldera's resurgent dome in 1988. Bottom hole temperature is about 295{degree}C within Precambrian (1.5 Ga) quartz monzonite, deep within the liquid-dominated portions of the Sulphur Springs hydrothermal system. VC-2b may be the deepest, hottest, continuously cored hole in North America. Core recovery was 99.2%. The only major drilling problems encountered were when temperatures at the bit exceeded 225{degree}C below depths of about 1000 m. The result of these conditions was loss of viscosity and/or lubricity in the mud, apparently caused by breakdown of the high temperature polymers. Lithologies in caldera-fill indicate the drill site may be proximal to ignimbrite vents and that an intracaldera lake with temperatures approaching boiling formed soon after the caldera itself. Structural correlations between VC-2b and the 528-m-deep companion hole VC-2a indicate the earlier Toledo caldera (1.45 Ma; Otowi Member tuffs) and even older Lower Tuffs caldera experienced no structural resurgence similar to the 1.12 million year old Valles caldera. The hydrothermal system penetrated by these bores, consists of a shallow vapor-rich cap, which has evolved from an earlier 200{degree}C liquid-dominated system, overlying stacked, liquid-dominated zones up to about 300{degree}C. Geochemistry of mud returns collected during drilling suggests chloride-rich geothermal fluids were entering the bore and mixing with the drilling fluids in the fractured lower Paleozoic and Precambrian sections. 23 refs., 5 figs., 1 tab.

  15. 5-Hydroxytryptamine2A/2C receptors of nucleus raphe magnus and gigantocellularis/paragigantocellularis pars α reticular nuclei modulate the unconditioned fear-induced antinociception evoked by electrical stimulation of deep layers of the superior colliculus and dorsal periaqueductal grey matter.

    PubMed

    de Oliveira, Ricardo; de Oliveira, Rithiele Cristina; Falconi-Sobrinho, Luiz Luciano; da Silva Soares, Raimundo; Coimbra, Norberto Cysne

    2017-01-01

    The electrical stimulation of the dorsolateral columns of the periaquedutal grey matter (dlPAG) or deep layers of the superior colliculus (dlSC) evokes defensive behaviours followed by an antinociceptive response. Monoaminergic brainstem reticular nuclei are suggested to comprise the endogenous pain modulatory system. The aim of the present work was to investigate the role played by 5-HT2 subfamily of serotonergic receptors of the nucleus raphe magnus (NRM) and the gigantocellularis/paragigantocellularis pars α reticular nuclei (Gi/PGiα) in the elaboration of instinctive fear-induced antinociception elicited by electrical stimulation of dlPAG or of dlSC. The nociceptive thresholds were measured by the tail-flick test in Wistar rats. The 5-HT2A/2C-serotonergic receptors antagonist ritanserin was microinjected at different concentrations (0.05, 0.5 and 5.0μg/0.2μL) either in Gi/PGiα or in NRM. The blockade of 5-HT2 receptors in both Gi/PGiα and NRM decreased the innate fear-induced antinociception elicited by electrical stimulation of the dlSC or the dlPAG. These findings indicate that serotonin is involved in the hypo-algesia induced by unconditioned fear-induced behavioural responses and the 5-HT2A/2C-serotonergic receptor subfamily in neurons situated in the Gi/PGiα complex and NRM are critically recruited in pain modulation during the panic-like emotional behaviour.

  16. Transition Metal Complexes of Quinolino[3,2-b]benzodiazepine and Quinolino[3,2-b]benzoxazepine: Synthesis, Characterization, and Antimicrobial Studies

    PubMed Central

    Basavaraju, B.; Bhojya Naik, Halehatty S.; Prabhakara, Mustur C.

    2007-01-01

    The synthesis and characterization of title complexes of the ligand Quinolino[3,2-b]benzodiazepine (QBD) and Quinolino[3,2-b]benzoxazepine (QBO) are reported. The complexes have been characterized by elemental analysis, molar conductance, magnetic studies, IR, H1 NMR, and UV-visible studies. They have the stoichiometry [ML2C12], where M=Co(II)/Ni(II), L=QBD/QBO, and [MLC12], where M=Zn(II)/Cd(II), L=QBD/QBO. The antibacterial and antifungal activity of the metal complexes has been investigated. The complexes were found to have higher antimicrobial activity than the parent ligand. PMID:18273383

  17. Finding Quality Geometry Apps: Not as Simple as a[superscript 2] + b[superscript 2] = c[superscript 2

    ERIC Educational Resources Information Center

    Larkin, Kevin

    2016-01-01

    Trying to find quality apps for use in mathematics classes can be time consuming and bewildering. This article outlines a process for evaluating apps and provides teachers with access to comprehensive qualitative evaluations of 53 geometrical apps based on pedagogical, mathematical and cognitive fidelities.

  18. Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease.

    PubMed

    Dunn, Amy R; Stout, Kristen A; Ozawa, Minagi; Lohr, Kelly M; Hoffman, Carlie A; Bernstein, Alison I; Li, Yingjie; Wang, Minzheng; Sgobio, Carmelo; Sastry, Namratha; Cai, Huaibin; Caudle, W Michael; Miller, Gary W

    2017-03-14

    Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.

  19. Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease

    PubMed Central

    Stout, Kristen A.; Ozawa, Minagi; Lohr, Kelly M.; Hoffman, Carlie A.; Bernstein, Alison I.; Li, Yingjie; Wang, Minzheng; Sgobio, Carmelo; Sastry, Namratha; Cai, Huaibin; Caudle, W. Michael

    2017-01-01

    Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction. PMID:28246328

  20. CARDIO-i2b2: integrating arrhythmogenic disease data in i2b2.

    PubMed

    Segagni, Daniele; Tibollo, Valentina; Dagliati, Arianna; Napolitano, Carlo; G Priori, Silvia; Bellazzi, Riccardo

    2012-01-01

    The CARDIO-i2b2 project is an initiative to customize the i2b2 bioinformatics tool with the aim to integrate clinical and research data in order to support translational research in cardiology. In this work we describe the implementation and the customization of i2b2 to manage the data of arrhytmogenic disease patients collected at the Fondazione Salvatore Maugeri of Pavia in a joint project with the NYU Langone Medical Center (New York, USA). The i2b2 clinical research chart data warehouse is populated with the data obtained by the research database called TRIAD. The research infrastructure is extended by the development of new plug-ins for the i2b2 web client application able to properly select and export phenotypic data and to perform data analysis.

  1. Synthesis and structure-activity relationships of new carbonyl guanidine derivatives as novel dual 5-HT2B and 5-HT7 receptor antagonists.

    PubMed

    Moritomo, Ayako; Yamada, Hiroyoshi; Watanabe, Toshihiro; Itahana, Hirotsune; Akuzawa, Shinobu; Okada, Minoru; Ohta, Mitsuaki

    2013-12-15

    To identify potent dual 5-HT2B and 5-HT7 receptor antagonists, we synthesized a series of novel carbonyl guanidine derivatives and examined their structure-activity relationships. Among these compounds, N-(9-hydroxy-9H-fluorene-2-carbonyl)guanidine (10) had a good in vitro profile, that is, potent affinity for human 5-HT2B and 5-HT7 receptor subtypes (Ki=1.8 nM and Ki=17.6 nM, respectively) and high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Compound 10 also showed a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs when orally administered.

  2. The Demethylase JMJD2C Localizes to H3K4me3-Positive Transcription Start Sites and Is Dispensable for Embryonic Development

    PubMed Central

    Pedersen, Marianne Terndrup; Agger, Karl; Laugesen, Anne; Johansen, Jens V.; Cloos, Paul A. C.; Christensen, Jesper

    2014-01-01

    The histone demethylase JMJD2C, also known as KDM4C/GASC1, has activity against methylated H3K9 and H3K36 and is amplified and/or overexpressed in human cancers. By the generation of Jmjd2c knockout mice, we demonstrate that loss of Jmjd2c is compatible with cellular proliferation, embryonic stem cell (ESC) self-renewal, and embryonic development. Moreover, we report that JMJD2C localizes to H3K4me3-positive transcription start sites in both primary cells and in the human carcinoma KYSE150 cell line containing an amplification of the JMJD2C locus. Binding is dependent on the double Tudor domain of JMJD2C, which recognizes H3K4me3 but not H4K20me2/me3 in vitro, showing a binding specificity different from that of the double Tudor domains of JMJD2A and JMJD2B. Depletion of JMJD2C in KYSE150 cells has a modest effect on H3K9me3 and H3K36me3 levels but impairs proliferation and leads to deregulated expression of a subset of target genes involved in cell cycle progression. Taking these findings together, we show that JMJD2C is targeted to H3K4me3-positive transcription start sites, where it can contribute to transcriptional regulation, and report that the putative oncogene JMJD2C generally is not required for cellular proliferation or embryonic development. PMID:24396064

  3. Comprehensive Evaluation for Substrate Selectivity of Cynomolgus Monkey Cytochrome P450 2C9, a New Efavirenz Oxidase.

    PubMed

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-07-01

    Cynomolgus monkeys are widely used as primate models in preclinical studies, because of their evolutionary closeness to humans. In humans, the cytochrome P450 (P450) 2C enzymes are important drug-metabolizing enzymes and highly expressed in livers. The CYP2C enzymes, including CYP2C9, are also expressed abundantly in cynomolgus monkey liver and metabolize some endogenous and exogenous substances like testosterone, S-mephenytoin, and diclofenac. However, comprehensive evaluation regarding substrate specificity of monkey CYP2C9 has not been conducted. In the present study, 89 commercially available drugs were examined to find potential monkey CYP2C9 substrates. Among the compounds screened, 20 drugs were metabolized by monkey CYP2C9 at a relatively high rates. Seventeen of these compounds were substrates or inhibitors of human CYP2C9 or CYP2C19, whereas three drugs were not, indicating that substrate specificity of monkey CYP2C9 resembled those of human CYP2C9 or CYP2C19, with some differences in substrate specificities. Although efavirenz is known as a marker substrate for human CYP2B6, efavirenz was not oxidized by CYP2B6 but by CYP2C9 in monkeys. Liquid chromatography-mass spectrometry analysis revealed that monkey CYP2C9 and human CYP2B6 formed the same mono- and di-oxidized metabolites of efavirenz at 8 and 14 positions. These results suggest that the efavirenz 8-oxidation could be one of the selective markers for cynomolgus monkey CYP2C9 among the major three CYP2C enzymes tested. Therefore, monkey CYP2C9 has the possibility of contributing to limited specific differences in drug oxidative metabolism between cynomolgus monkeys and humans.

  4. Structure-Activity Relationships and Pharmacophore Model of a Non-Competitive Pyrazoline Containing Class of GluN2C/GluN2D Selective Antagonists

    PubMed Central

    Acker, Timothy M.; Khatri, Alpa; Vance, Katie M.; Slabber, Cathryn; Bacsa, John; Snyder, James P.; Traynelis, Stephen F.; Liotta, Dennis C.

    2013-01-01

    Here we describe the synthesis and structure-activity relationship for a class of pyrazoline-containing dihydroquinolone negative allosteric modulators of the NMDA receptor that show strong subunit-selectivity for GluN2C- and GluN2D-containing receptors over GluN2A-and GluN2B-containing receptors. Several members of this class inhibit NMDA receptor responses in the nanomolar range, and are more than 50-fold selective over GluN1/GluN2A and GluN1/GluN2B NMDA receptors, as well as AMPA, kainate, GABA, glycine, nicotinic, serotonin, and purinergic receptors. Analysis of the purified enantiomers of one of the more potent and selective compounds shows that the S-enantiomer is both more potent and more selective than the R-enantiomer. The S-enantiomer had an IC50 value of 0.17–0.22 µM at GluN2D- and GluN2C-containing receptors, respectively, and showed over 70-fold selectivity over other NMDA receptor subunits. The subunit-selectivity of this class of compounds should be useful in defining the role of GluN2C- and GluN2D-containing receptors in specific brain circuits in both physiological and patho-physiological conditions. PMID:23909910

  5. Ginkgolic acids induce neuronal death and activate protein phosphatase type-2C.

    PubMed

    Ahlemeyer, B; Selke, D; Schaper, C; Klumpp, S; Krieglstein, J

    2001-10-26

    The standardized extract from Ginkgo biloba (EGb 761) is used for the treatment of dementia. Because of allergenic and genotoxic effects, ginkgolic acids are restricted in EGb 761 to 5 ppm. The question arises whether ginkgolic acids also have neurotoxic effects. In the present study, ginkgolic acids caused death of cultured chick embryonic neurons in a concentration-dependent manner, in the presence and in the absence of serum. Ginkgolic acids-induced death showed features of apoptosis as we observed chromatin condensation, shrinkage of the nucleus and reduction of the damage by the protein synthesis inhibitor cycloheximide, demonstrating an active type of cell death. However, DNA fragmentation detected by the terminal-transferase-mediated ddUTP-digoxigenin nick-end labeling (TUNEL) assay and caspase-3 activation, which are also considered as hallmarks of apoptosis, were not seen after treatment with 150 microM ginkgolic acids in serum-free medium, a dose which increased the percentage of neurons with chromatin condensation and shrunken nuclei to 88% compared with 25% in serum-deprived, vehicle-treated controls. This suggests that ginkgolic acid-induced death showed signs of apoptosis as well as of necrosis. Ginkgolic acids specifically increased the activity of protein phosphatase type-2C, whereas other protein phosphatases such as protein phosphatases 1A, 2A and 2B, tyrosine phosphatase, and unspecific acid- and alkaline phosphatases were inhibited or remained unchanged, suggesting protein phosphatase 2C to play a role in the neurotoxic effect mediated by ginkgolic acids.

  6. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

    PubMed

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias

    2016-02-01

    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma.

  7. Deliberate and Crisis Action Planning and Execution Segments Increment 2B (DCAPES Inc 2B)

    DTIC Science & Technology

    2016-03-01

    Defense Acquisition Management Information Retrieval (DAMIR) UNCLASSIFIED DCAPES Inc 2B 2016 MAR UNCLASSIFIED 2 Table of Contents Common...M - Millions of Dollars MAIS - Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone...Logistics DCAPES Inc 2B 2016 MAR UNCLASSIFIED 3 Lt Col Christopher Thrower 201 East Moore Drive Building 856, Room 154 Maxwell Air Force Base-Gunter

  8. No major role of common SV2A variation for predisposition or levetiracetam response in epilepsy.

    PubMed

    Lynch, J M; Tate, S K; Kinirons, P; Weale, M E; Cavalleri, G L; Depondt, C; Murphy, K; O'Rourke, D; Doherty, C P; Shianna, K V; Wood, N W; Sander, J W; Delanty, N; Goldstein, D B; Sisodiya, S M

    2009-01-01

    Levetiracetam (LEV), a newer antiepileptic drug (AED) useful for several epilepsy syndromes, binds to SV2A. Identifying genetic variants that influence response to LEV may allow more tailored use of LEV. Obvious candidate genes are SV2A, SV2B and SV2C, which encode the only known binding site, synaptic vesicle protein 2 (SV2), with LEV binding to the SV2A isoform. SV2A is an essential protein as homozygous SV2A knockout mice appear normal at birth but fail to grow, experience severe seizures and die by 3 weeks. We addressed characterising AED response issues in pharmacogenetics and whether variation in these genes associates with response to LEV in two independent cohorts with epilepsy. We also investigated whether variation in these three genes associated with epilepsy predisposition in two larger cohorts of patients with various epilepsy phenotypes. Common genetic variation in SV2A, encoding the actual binding site of LEV, was fully represented in this study whereas SV2B and SV2C were not fully covered. None of the polymorphisms tested in SV2A, SV2B or SV2C influence LEV response or predisposition to epilepsy. We found no association between genetic variation in SV2A, SV2B or SV2C and response to LEV or epilepsy predisposition. We suggest this study design may be used in future pharmacogenetic work examining AED or LEV efficacy. However, different study designs would be needed to examine common variation with minor effect sizes, or rare variation, influencing AED or LEV response or epilepsy predisposition.

  9. Characterization of the postjunctional α2C-adrenoceptor mediating vasoconstriction to UK14304 in porcine pulmonary veins

    PubMed Central

    Görnemann, T; von Wenckstern, H; Kleuser, B; Villalón, C M; Centurión, D; Jähnichen, S; Pertz, H H

    2007-01-01

    Background and purpose: In terms of postjunctional α2-adrenoceptors in the pulmonary circulation, no evidence is available with regard to the receptor subtypes mediating vasoconstriction. Therefore, we characterized the α2-adrenoceptor subtypes mediating contraction in isolated porcine pulmonary veins. Experimental approach: α-adrenoceptor-mediated vasoconstriction was studied using a tissue bath protocol. mRNA profile and relative quantification of α2-adrenoceptor subtypes were determined in porcine pulmonary veins using reverse-transcriptase polymerase chain reaction (RT-PCR) and real-time PCR. Key results: In porcine pulmonary veins, noradrenaline, phenylephrine (α1-adrenoceptor agonist), UK14304 and clonidine (α2-adrenoceptor agonists) caused concentration-dependent contractions. The rank order of agonist potency was: NA≈UK14304≈clonidine > phenylephrine. UK14304 responses were antagonised by MK912 (noncompetitive antagonist parameter pD'2: 10.1), rauwolscine (pKB: 9.5), yohimbine (pKB: 9.1), WB4101 (pKB: 8.7), ARC239 (pKB: 7.5), prazosin (pKB: 7.1) and BRL44408 (pKB: 7.0). Antagonist potencies fitted best with radioligand binding data (pKi) at the human recombinant α2C-adrenoceptor (r2 = 0.96, P = 0.0001). Correlation with α2B-adrenoceptors was lower (r2 = 0.74, P > 0.01) and no correlation was obtained with α2A-adrenoceptors. Moreover, RT-PCR studies in porcine pulmonary veins showed mRNA signals for α2A- and α2C-adrenoceptors, but not for α2B-adrenoceptors, whilst real-time PCR studies indicated a prominent expression of α2C-adrenoceptor mRNA. Conclusions and Implications: Postjunctional α2C-adrenoceptors mediated contraction in porcine pulmonary veins. α1-Adrenoceptors also seem to be present in this tissue. Since α2-adrenoceptor responsiveness is increased when pulmonary vascular tone is elevated, α2C-adrenoceptor antagonists may be beneficial in diseases such as pulmonary hypertension or congestive heart failure. PMID:17375080

  10. Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription

    SciTech Connect

    Davie, J.R.; Murphy, L.C. )

    1990-05-22

    The relationship between transcription and ubiquitination of the histones was investigated. Previous studies have shown that ubiquitinated (u) histone H2B and, to a lesser extend, mono- and polyubiquitinated histone H2A are enriched in transcriptionally active gene-enriched chromatin fractions. Here, the authors show that treatment of T-47D-5 human breast cancer cells with actinomycin D or 5,6-dichloro-1-{beta}-D-ribofuranosylbenzimidazole, inhibitors of heterogeneous nuclear RNA synthesis, selectively reduced the level of uH2B, but not uH2A, uH2A.Z, or polyubiquitinated H2A, in chromatin. Treatment of the cells with low levels of actinomycin D slightly reduced the level of uH2B, suggesting that inhibition of ribosomal RNA synthesis does not have a profound effect on the level of uH2B in chromatin. These results demonstrate that maintenance of the levels of uH2B in chromatin is dependent upon ongoing transcription, particularly the synthesis of hnRNA. Thus, histone H2B would be ubiquitinated when the nucleosome was opened during transcription. Ubiquitination of histone H2B may impede nucleosome refolding, facilitating subsequent rounds of transcription.

  11. Global variation in CYP2C8–CYP2C9 functional haplotypes

    PubMed Central

    Speed, William C; Kang, Soonmo Peter; Tuck, David P; Harris, Lyndsay N; Kidd, Kenneth K

    2009-01-01

    We have studied the global frequency distributions of 10 single nucleotide polymorphisms (SNPs) across 132 kb of CYP2C8 and CYP2C9 in ∼2500 individuals representing 45 populations. Five of the SNPs were in noncoding sequences; the other five involved the more common missense variants (four in CYP2C8, one in CYP2C9) that change amino acids in the gene products. One haplotype containing two CYP2C8 coding variants and one CYP2C9 coding variant reaches an average frequency of 10% in Europe; a set of haplotypes with a different CYP2C8 coding variant reaches 17% in Africa. In both cases these haplotypes are found in other regions of the world at <1%. This considerable geographic variation in haplotype frequencies impacts the interpretation of CYP2C8/CYP2C9 association studies, and has pharmacogenomic implications for drug interactions. PMID:19381162

  12. Differences in Methadone Metabolism by CYP2B6 Variants.

    PubMed

    Gadel, Sarah; Friedel, Christina; Kharasch, Evan D

    2015-07-01

    Methadone is a long-acting opioid with considerable unexplained interindividual variability in clearance. Cytochrome P450 2B6 (CYP2B6) mediates clinical methadone clearance and metabolic inactivation via N-demethylation to 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). Retrospective studies suggest that individuals with the CYP2B6*6 allelic variant have higher methadone plasma concentrations. Catalytic activities of CYP2B6 variants are highly substrate- and expression-system dependent. This investigation evaluated methadone N-demethylation by expressed human CYP2B6 allelic variants in an insect cell coexpression system containing P450 reductase. Additionally, the influence of coexpressing cytochrome b5, whose role in metabolism can be inhibitory or stimulatory depending on the P450 isoform and substrate, on methadone metabolism, was evaluated. EDDP formation from therapeutic (0.25-1 μM) R- and S-methadone concentrations was CYP2B6.4 ≥ CYP2B6.1 ≥ CYP2B6.5 > CYP2B6.9 ≈ CYP2B6.6, and undetectable from CYP2B6.18. Coexpression of b5 had small and variant-specific effects at therapeutic methadone concentrations but at higher concentrations stimulated EDDP formation by CYP2B6.1, CYP2B6.4, CYP2B6.5, and CYP2B6.9 but not CYP2B6.6. In vitro intrinsic clearances were generally CYP2B6.4 ≥ CYP2B6.1 > CYP2B6.5 > CYP2B6.9 ≥ CYP2B6.6. Stereoselective methadone metabolism (S>R) was maintained with all CYP2B6 variants. These results show that methadone N-demethylation by CYP2B6.4 is greater compared with CYP2B6.1, whereas CYP2B6.9 and CYP2B6.6 (which both contain the 516G>T, Q172H polymorphism), are catalytically deficient. The presence or absence of b5 in expression systems may explain previously reported disparate catalytic activities of CYP2B6 variants for specific substrates. Differences in methadone metabolism by CYP2B6 allelic variants provide a mechanistic understanding of pharmacogenetic variability in clinical methadone metabolism and clearance.

  13. The alpha(2C)-adrenergic receptor mediates hyperactivity of coloboma mice, a model of attention deficit hyperactivity disorder.

    PubMed

    Bruno, Kristy J; Hess, Ellen J

    2006-09-01

    Drugs that modify noradrenergic transmission such as atomoxetine and clonidine are increasingly prescribed for the treatment of attention deficit hyperactivity disorder (ADHD). However, the therapeutic targets of these compounds are unknown. Norepinephrine is also implicated in the hyperactivity exhibited by coloboma mice. To identify the receptor subtypes that regulate the hyperactivity, coloboma mice were systematically challenged with adrenergic drugs. The beta-adrenergic receptor antagonist propranolol and the alpha(1)-adrenergic receptor antagonist prazosin each had little effect on the hyperactivity. Conversely, the alpha(2)-adrenergic receptor antagonist yohimbine reduced the activity of coloboma mice but not control mice. Subtype-selective blockade of alpha(2C)-, but not alpha(2A)- or alpha(2B)-adrenergic receptors, ameliorated hyperactivity of coloboma mice without affecting activity of control mice, suggesting that alpha(2C)-adrenergic receptors mediate the hyperactivity. Localized in the basal ganglia, alpha(2C)-adrenergic receptors are in a prime position to impact locomotor activity and are, therefore, potential targets of pharmacotherapy for ADHD.

  14. Enantioselective inhibition of Cytochrome P450-mediated drug metabolism by a novel antithrombotic agent, S002-333: Major effect on CYP2B6.

    PubMed

    Bhateria, Manisha; Ramakrishna, Rachumallu; Puttrevu, Santosh Kumar; Saxena, Anil K; Bhatta, Rabi Sankar

    2016-08-25

    A significant number of new chemical entities (NCEs) fail in drug discovery due to inhibition of Cytochrome P450 (CYP) enzymes. Therefore, to avert costly drug failure at the clinical phase it becomes indispensable to evaluate the CYP inhibition profile of NCEs early in drug discovery. In light of these concerns, we envisioned to investigate the inhibitory effects of S002-333 [2-(4-methoxy-benzenesulfonyl)-2,3,4,9-tetrahydro-1H-b-carboxylic acid amide], a novel and potent antithrombotic agent, on nine major CYP enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4) of human liver microsomes (HLM). S002-333 exists as racemic mixture of S004-1032 (R-isomer) and S007-1558 (S-isomer), consequently, we further examined the enantioselective differences of S002-333 in the inhibition of human CYP enzymes. Of the CYP enzymes tested, CYP2B6-catalyzed bupropion 6-hydroxylation was inhibited by S002-333 (IC50 ∼ 9.25 ± 2.46 μM) in a stereoselective manner with (S)-isomer showing potent inhibition (IC50 ∼ 5.28 ± 1.25 μM) in contrast to (R)-isomer which showed negligible inhibition on CYP2B6 activity (IC50 > 50 μM). S002-333 and its (S)-isomer inhibited CYP2B6 activity in a non-competitive fashion with estimated Ki values of 10.1 ± 3.4 μM and 5.09 ± 1.05 μM, respectively. No shift in the IC50 value was observed for S002-333 and its isomers when preincubated for 30 min in the presence of NADPH suggesting that neither S002-333 nor its enantiomers are time-dependent inhibitors. Thus, the present findings signified that S002-333 is a potent stereoselective inhibitor of CYP2B6, whereas, inhibition for other CYPs was substantially negligible. These in vitro findings would be useful in deciding the development of S002-333 as a single-enantiomer or as a racemic mixture.

  15. Synthesis and Electrochemical Properties of Nano-VO2 (B).

    PubMed

    Yang, Yun; Lu, Yong; Wang, Wei; Feng, Chuanqi; Yang, Shuijin

    2016-03-01

    The nano-VO2 (B) has been self-assembly synthesized by hydrothermal method using different templates, which may give them some interesting properties. The as-prepared samples were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the samples were investigated. The results show that the hexadecyltrimethyl ammonium bromide (CTAB) (soft template) was used to obtain the VO2 (B1) nanobelts. The flake graphite (hard template) was taken to get the VO2 (B2) nanosheets. The VO2 (B1) nanobelts have higher initial capacity to compare with VO2 (B2). But the VO2 (B2) nanosheets showed better cycling performance than that of VO2 (B1) nanobelts. The nano VO2 (B2) is a promising anode material for lithium ion battery application.

  16. [Interferon alpha-2b modified with polyethylene glycol].

    PubMed

    Wu, Yingxin; Zhai, Yanqin; Lei, Jiandu; Ma, Guanghui; Su, Zhiguo

    2008-09-01

    In order to obtain a more stable PEGylated interferon alpha-2b, and prolong its half life, interferon alpha-2b (IFN alpha-2b) was modified with monomethoxy polyethylene glycol propionaldehyde (mPEG-ALD) 20000. It was found that the optimized reaction condition for the maximum bioactivity and highest PEGylation degree of the mono PEGylated interferon alpha-2b was as follows: in 20 mmol/L, pH 6.5, citric acid and sodium dihydrogen phosphate buffer, the concentration of IFN alpha-2b was 4 mg/mL, and the molar ratio of PEG/IFN alpha-2b was 8:1, and the reaction time was 20 h at 4 degrees C. Under the optimized reaction condition, the mono PEGylation degree reached to 55%. Ion exchange chromatography was used to separate and purify mono PEGylated interferon alpha-2b from the reaction mixture. The purity of mono PEGylated interferon alpha-2b was higher than 97% characterized by HPLC. The bioactivity of the mono PEGylated interferon alpha-2b was 13.4% of the native IFN alpha-2b, while its half life in SD rat is much longer than the native IFN alpha-2b. The mono PEGylated interferon alpha-2b is also stable in aqueous.

  17. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  18. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  19. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  20. 7 CFR 301.80-2b - Exempted articles. 1

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Exempted articles. 1 301.80-2b Section 301.80-2b....80-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines. (a) The following articles are exempt from the certification and permit...

  1. 7 CFR 301.80-2b - Exempted articles. 1

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Exempted articles. 1 301.80-2b Section 301.80-2b....80-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines. (a) The following articles are exempt from the certification and permit...

  2. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  3. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  4. 7 CFR 301.80-2b - Exempted articles. 1

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Exempted articles. 1 301.80-2b Section 301.80-2b....80-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines. (a) The following articles are exempt from the certification and permit...

  5. Ultraviolet photoelectron spectra of Ce2@C80 and La2@C80

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takafumi; Okita, Sosuke; Ohta, Tomona; Yagi, Hajime; Sumii, Ryohei; Okimoto, Haruya; Ito, Yasuhiro; Shinohara, Hisanori; Hino, Shojun

    2015-02-01

    Ultraviolet photoelectron spectra (UPS) of C80-Ih cage endohedral fullerenes, La2@C80 and Ce2@C80 were measured using a synchrotron radiation light source. The spectral onset energy of La2@C80 and Ce2@C80 is around 0.8-0.9 eV, which is smaller than that of empty C80-Ih. The UPS of these endohedral fullerenes are almost identical and are discussed with an aid of density functional theory (DFT) calculation. Simulation spectra calculated with using the results of the DFT calculations on an optimized structure starting from D3d geometry reproduces the UPS of La2@C80 and Ce2@C80 very well, which supports the theoretically proposed structure.

  6. 75 FR 12152 - Airworthiness Directives; Bombardier, Inc. Model CL-600-2B19 (Regional Jet Series 100 & 440), CL...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... Part 39 Air transportation, Aircraft, Aviation safety, Incorporation by reference, Safety. The Proposed... TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Bombardier, Inc. Model CL-600-2B19 (Regional Jet Series 100 & 440), CL-600-2C10 (Regional Jet Series 700,...

  7. 75 FR 70109 - Airworthiness Directives; Bombardier, Inc. Model CL-600-2B19 (Regional Jet Series 100 & 440), CL...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... transportation, Aircraft, Aviation safety, Incorporation by reference, Safety. Adoption of the Amendment 0... TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2010-0223; Directorate Identifier..., Inc. Model CL-600-2B19 (Regional Jet Series 100 & 440), CL-600-2C10 (Regional Jet Series 700,...

  8. Structural determinants of D-cycloserine efficacy at the NR1/NR2C NMDA receptors

    PubMed Central

    Dravid, Shashank M.; Burger, Pieter B.; Prakash, Anand; Geballe, Matthew T.; Yadav, Roopali; Le, Phuong; Vellano, Kimberly; Snyder, James P.; Traynelis, Stephen F.

    2010-01-01

    We have studied relative efficacies of NR1 agonists glycine and D-cycloserine (DCS), and found efficacy to be dependent on the NR2 subunit. DCS shows partial agonism at NR1/NR2B but has higher relative efficacy than glycine at NR1/NR2C receptor. Molecular dynamics (MD) simulations of the NR1/NR2B and NR1/NR2C agonist binding domain dimer suggest only subtle differences in the interactions of DCS with NR1 binding site residues relative to glycine. The most pronounced differences were observed in the NR1/NR2C simulation between the orientation of helix F and G of the NR1 subunit. Interestingly, Helix F was previously proposed to influence receptor gating and to adopt an orientation depending on agonist efficacy. MD simulations and site-directed mutagenesis further suggest a role for residues at the agonist binding domain dimer interface in regulating DCS efficacy. To relate the structural rearrangements to receptor gating, we recorded single-channel currents from outside-out patches containing a single active NR1/NR2C receptor. DCS increased the mean open time and open probability of NR1/NR2C receptors in comparison to glycine. Maximum likelihood fitting of a gating model for NR1/NR2C receptor activation to the single channel data suggests that DCS specifically accelerates the rate constant governing a fast gating step and reduces the closing rate. These changes appear to reflect a decreased activation energy for a pregating step and increased stability of the open states. We suggest that the higher efficacy of DCS at NR1/NR2C receptors involves structural rearrangements at the dimer interface and an effect on NR1/NR2C receptor pre-gating conformational changes. PMID:20164358

  9. Methadone N-demethylation by the common CYP2B6 allelic variant CYP2B6.6.

    PubMed

    Gadel, Sarah; Crafford, Amanda; Regina, Karen; Kharasch, Evan D

    2013-04-01

    The long-acting opioid methadone displays considerable unexplained interindividual pharmacokinetic variability. Methadone metabolism clinically occurs primarily by N-demethylation to 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), catalyzed predominantly by CYP2B6. Retrospective studies suggest that the common allele variant CYP2B6*6 may influence methadone plasma concentrations. The catalytic activity of CYP2B6.6, encoded by CYP2B6*6, is highly substrate-dependent. This investigation compared methadone N-demethylation by CYP2B6.6 with that by wild-type CYP2B6.1. Methadone enantiomer and racemate N-demethylation by recombinant-expressed CYP2B6.6 and CYP2B6.1 was determined. At substrate concentrations (0.25-2 µM) approximating plasma concentrations occurring clinically, rates of methadone enantiomer N-demethylation by CYP2B6.6, incubated individually or as the racemate, were one-third to one-fourth those by CYP2B6.1. For methadone individual enantiomers and metabolism by CYP2B6.6 compared with CYP2B6.1, Vmax was diminished, Ks was greater and the in vitro intrinsic clearance was diminished 5- to 6-fold. The intrinsic clearance for R- and S-EDDP formation from racemic methadone was diminished approximately 6-fold and 3-fold for R- and S-methadone, respectively. Both CYP2B6.6 and CYP2B6.1 showed similar stereoselectivity (S>R-methadone). Human liver microsomes with diminished CYP2B6 content due to a CYP2B6*6 allele had lower rates of methadone N-demethylation. Results show that methadone N-demethylation catalyzed by CYP2B6.6, the CYP2B6 variant encoded by the CYP2B6*6 polymorphism, is catalytically deficient compared with wild-type CYP2B6.1. Diminished methadone N-demethylation by CYP2B6.6 may provide a mechanistic explanation for clinical observations of altered methadone disposition in individuals carrying the CYP2B6*6 polymorphism.

  10. Imperatorin is a mechanism-based inactivator of CYP2B6.

    PubMed

    Zheng, Liwei; Cao, Jiaojiao; Lu, Dan; Ji, Lin; Peng, Ying; Zheng, Jiang

    2015-01-01

    Imperatorin (IMP) is the major active ingredient in many common medicinal herbs. We examined the irreversible inhibitory effect of IMP on CYP2B6. IMP produced a time- and concentration-dependent inactivation of CYP2B6. About 70% of activity of CYP2B6 was suppressed after its incubation with 1.5 μM IMP for 9 minutes. KI and kinact were found to be 0.498 μM and 0.079 min(-1), respectively. The loss of CYP2B6 activity required the presence of NADPH. Glutathione and catalase/superoxide dismutase showed little protection against the IMP-induced enzyme inactivation. Ticlopidine, a substrate of CYP2B6, showed protection of the enzyme against the inactivation induced by IMP. The estimated partition ratio of the inactivation was approximately 4. Additionally, a γ-ketoenal intermediate was identified in microsomal incubations with IMP. CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 were found to be involved in bioactivation of IMP. In conclusion, IMP is a mechanism-based inactivator of CYP2B6. The formation of γ-ketoenal intermediate may account for the enzyme inactivation.

  11. CD73-Dependent Generation of Adenosine and Endothelial Adora2b Signaling Attenuate Diabetic Nephropathy

    PubMed Central

    Tak, Eunyoung; Ridyard, Douglas; Kim, Jae-Hwan; Zimmerman, Michael; Werner, Tilmann; Wang, Xiaoxin X.; Shabeka, Uladzimir; Seo, Seong-Wook; Christians, Uwe; Klawitter, Jost; Moldovan, Radu; Garcia, Gabriela; Levi, Moshe; Haase, Volker; Ravid, Katya; Eltzschig, Holger K.

    2014-01-01

    Nucleotide phosphohydrolysis by the ecto-5′-nucleotidase (CD73) is the main source for extracellular generation of adenosine. Extracellular adenosine subsequently signals through four distinct adenosine A receptors (Adora1, Adora2a, Adora2b, or Adora3). Here, we hypothesized a functional role for CD73-dependent generation and concomitant signaling of extracellular adenosine during diabetic nephropathy. CD73 transcript and protein levels were elevated in the kidneys of diabetic mice. Genetic deletion of CD73 was associated with more severe diabetic nephropathy, whereas treatment with soluble nucleotidase was therapeutic. Transcript levels of renal adenosine receptors showed a selective induction of Adora2b during diabetic nephropathy. In a transgenic reporter mouse, Adora2b expression localized to the vasculature and increased after treatment with streptozotocin. Adora2b−/− mice experienced more severe diabetic nephropathy, and studies in mice with tissue-specific deletion of Adora2b in tubular epithelia or vascular endothelia implicated endothelial Adora2b signaling in protection from diabetic nephropathy. Finally, treatment with a selective Adora2b agonist (BAY 60–6583) conveyed potent protection from diabetes-associated kidney disease. Taken together, these findings implicate CD73-dependent production of extracellular adenosine and endothelial Adora2b signaling in kidney protection during diabetic nephropathy. PMID:24262796

  12. 76 FR 40222 - Airworthiness Directives; Turbomeca S.A. ARRIEL 2B and 2B1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    .... ARRIEL 2B and 2B1 Turboshaft Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... service on ARRIEL 2 twin engine applications and recently one on a single engine helicopter. For the case occurring in flight on a single engine helicopter (ARRIEL 2B1 engine), the pilot performed an...

  13. PHOX2B is a suppressor of neuroblastoma metastasis.

    PubMed

    Naftali, Osnat; Maman, Shelly; Meshel, Tsipi; Sagi-Assif, Orit; Ginat, Ravit; Witz, Isaac P

    2016-03-01

    Paired like homeobox 2B (PHOX2B) is a minimal residual disease (MRD) marker of neuroblastoma. The presence of MRD, also referred to as micro-metastases, is a powerful marker of poor prognosis in neuroblastoma. Lung metastasis is considered a terminal event in neuroblastoma. Lung micro-metastatic neuroblastoma (MicroNB) cells show high expression levels of PHOX2B and possess a less malignant and metastatic phenotype than lung macro metastatic neuroblastoma (MacroNB) cells, which hardly express PHOX2B. In vitro assays showed that PHOX2B knockdown in MicroNB cells did not affect cell viability; however it decreased the migratory capacity of the MicroNB-shPHOX2B cells. An orthotopic inoculation of MicroNB-shPHOX2B cells into the adrenal gland of nude mice resulted in significantly larger primary tumors and a heavier micro-metastatic load in the lungs and bone-marrow, than when control cells were inoculated. PHOX2B expression was found to be regulated by methylation. The PHOX2B promoter in MacroNB cells is significantly more methylated than in MicroNB cells. Demethylation assays using 5-azacytidine demonstrated that methylation can indeed inhibit PHOX2B transcription in MacroNB cells. These pre-clinical data strongly suggest that PHOX2B functions as a suppressor of neuroblastoma progression.

  14. Hepatic SH2B1 and SH2B2 regulate liver lipid metabolism and VLDL secretion in mice.

    PubMed

    Sheng, Liang; Liu, Yan; Jiang, Lin; Chen, Zheng; Zhou, Yingjiang; Cho, Kae Won; Rui, Liangyou

    2013-01-01

    SH2B1 is an SH2 and PH domain-containing adaptor protein. Genetic deletion of SH2B1 results in obesity, type 2 diabetes, and fatty liver diseases in mice. Mutations in SH2B1 are linked to obesity in humans. SH2B1 in the brain controls energy balance and body weight at least in part by enhancing leptin sensitivity in the hypothalamus. SH2B1 in peripheral tissues also regulates glucose and lipid metabolism, presumably by enhancing insulin sensitivity in peripheral metabolically-active tissues. However, the function of SH2B1 in individual peripheral tissues is unknown. Here we generated and metabolically characterized hepatocyte-specific SH2B1 knockout (HKO) mice. Blood glucose and plasma insulin levels, glucose tolerance, and insulin tolerance were similar between HKO, albumin-Cre, and SH2B1(f/f) mice fed either a normal chow diet or a high fat diet (HFD). Adult-onset deletion of SH2B1 in the liver either alone or in combination with whole body SH2B2 knockout also did not exacerbate HFD-induced insulin resistance and glucose intolerance. Adult-onset, but not embryonic, deletion of SH2B1 in the liver attenuated HFD-induced hepatic steatosis. In agreement, adult-onset deletion of hepatic SH2B1 decreased the expression of diacylglycerol acyltransferase-2 (DGAT2) and increased the expression of adipose triglyceride lipase (ATGL). Furthermore, deletion of liver SH2B1 in SH2B2 null mice attenuated very low-density lipoprotein (VLDL) secretion. These data indicate that hepatic SH2B1 is not required for the maintenance of normal insulin sensitivity and glucose metabolism; however, it regulates liver triacylglycerol synthesis, lipolysis, and VLDL secretion.

  15. PHOX2B Is Associated with Neuroblastoma Cell Differentiation.

    PubMed

    Yang, Liqun; Ke, Xiao-Xue; Xuan, Fan; Tan, Juan; Hou, Jianbing; Wang, Mei; Cui, Hongjuan; Zhang, Yundong

    2016-03-01

    Neuroblastoma is a common pediatric malignancy that accounts for ∼15% of tumor-related deaths in children. The tumor is generally believed to originate from neural crest cells during early sympathetic neurogenesis. As the degree of neuroblastoma differentiation has been correlated with clinical outcome, clarifying the molecular mechanisms that drive neuroblastoma progression and differentiation is important for increasing the survival of these patients. In a previous study, the authors identified paired-like homeobox 2b (PHOX2B) as a key mediator of neuroblastoma pathogenesis in a TH-MYCN mouse model. In the present study, they aimed to define whether PHOX2B is also associated with proliferation and differentiation of human neuroblastoma cells. PHOX2B expression in neuroblastoma cells was evaluated by immunoblot analyses, and the effects of PHOX2B on the proliferation of neuroblastoma cells in vitro were determined using clonogenic and sphere formation assays. Xenograft experiments in NOD/SCID mice were used to examine the in vivo response to PHOX2B knockdown. Their data demonstrated that PHOX2B acts as a prognostic marker in neuroblastoma and that retinoic acid-induced neuronal differentiation downregulates PHOX2B expression, thereby suppressing the self-renewal capacity of neuroblastoma cells and inhibiting tumorigenicity. These findings confirmed that PHOX2B is a key regulator of neuroblastoma differentiation and stemness maintenance and indicated that PHOX2B might serve as a potential therapeutic target in neuroblastoma patients.

  16. PTK2b function during fertilization of the mouse oocyte

    SciTech Connect

    Luo, Jinping; McGinnis, Lynda K.; Carlton, Carol; Beggs, Hilary E.; Kinsey, William H.

    2014-08-01

    Highlights: • PTK2b is expressed in oocytes and is activated following fertilization. • PTK2b suppression in oocytes prevents fertilization, but not parthenogenetic activation. • PTK2b suppression prevents the oocyte from fusing with or incorporating bound sperm. • PTK2b suppressed oocytes that fail to fertilize do not exhibit calcium oscillations. - Abstract: Fertilization triggers rapid changes in intracellular free calcium that serve to activate multiple signaling events critical to the initiation of successful development. Among the pathways downstream of the fertilization-induced calcium transient is the calcium-calmodulin dependent protein tyrosine kinase PTK2b or PYK2 kinase. PTK2b plays an important role in fertilization of the zebrafish oocyte and the objective of the present study was to establish whether PTK2b also functions in mammalian fertilization. PTK2b was activated during the first few hours after fertilization of the mouse oocyte during the period when anaphase resumption was underway and prior to the pronuclear stage. Suppression of PTK2b kinase activity in oocytes blocked sperm incorporation and egg activation although sperm-oocyte binding was not affected. Oocytes that failed to incorporate sperm after inhibitor treatment showed no evidence of a calcium transient and no evidence of anaphase resumption suggesting that egg activation did not occur. The results indicate that PTK2b functions during the sperm-egg fusion process or during the physical incorporation of sperm into the egg cytoplasm and is therefore critical for successful development.

  17. Characterization of feline cytochrome P450 2B6.

    PubMed

    Okamatsu, Gaku; Komatsu, Tetsuya; Ono, Yuka; Inoue, Hiroki; Uchide, Tsuyoshi; Onaga, Takenori; Endoh, Daiji; Kitazawa, Takio; Hiraga, Takeo; Uno, Yasuhiro; Teraoka, Hiroki

    2017-02-01

    1. Little is known about drug metabolism in carnivores. Although the domestic cat (Felis catus) is an obligate carnivore and is the most common companion animal, usage and dosage of many drugs are determined according to information obtained from humans and dogs. We determined the complete cDNA sequence of CYP2B6 from the feline lung. 2. Feline CYP2B6 consists of 494 deduced amino acids, showing highest identity with the dog CYP2B ortholog, followed by those of horse, pig, primate and human. 3. Feline CYP2B6 transcripts were expressed predominantly in the lung and slightly in the small intestine but not in the liver without significant sex-dependent differences. Western blot analysis with an anti-human CYP2B6 antibody confirmed the presence of CYP2B protein in the lung but not in the liver. 4. Feline CYP2B6 proteins heterologously expressed in Escherichia coli metabolized several substrates specific to human CYP2B6, including 7-ethoxy-4-(trifluoromethyl) coumarin (EFC). The metabolic activity was strongly inhibited by medetomidine and atipamezole, potent inhibitors of canine CYP2B11 (now officially CYP2B6) as well as by ticlopidine and sertraline, inhibitors selective to human CYP2B6. 5. The results suggest that feline CYP2B6 is a functional CYP2B ortholog that plays a role in the local defense mechanism in the cat respiratory system and intestine.

  18. Renoprotective effect of yohimbine on ischaemia/reperfusion-induced acute kidney injury through α2C-adrenoceptors in rats.

    PubMed

    Shimokawa, Takaomi; Tsutsui, Hidenobu; Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki; Takama, Masashi; Yoshida, Shuhei; Tanba, Takao; Tojo, Ayumi; Yamagata, Masayo; Yukimura, Tokihito

    2016-06-15

    Excitation of renal sympathetic nervous activity and the resulting increased levels of renal venous norepinephrine play important roles in renal ischaemia/reperfusion injury in rats. This study examined the effects of yohimbine, a non-selective α2-adrenoceptor antagonist, on renal venous norepinephrine levels and kidney function in acute kidney injury. Acute ischaemia/reperfusion-induced kidney injury was induced in rats by clamping the left renal artery and vein for 45min, followed by reperfusion, 2 weeks after a contralateral nephrectomy. Intravenous injection of yohimbine (0.1mg/kg) 5min prior to ischaemia significantly attenuated kidney injury and decreased the renal venous norepinephrine levels, as compared with vehicle-treated rats. To investigate the involvement of α2-adrenoceptor subtypes, we pre-treated with JP-1302, a selective α2C-adrenoceptor antagonist (1mg/kg). This suppressed renal venous norepinephrine levels and tumour necrosis factor-α and monocyte chemoattractant protein-1 mRNA levels after reperfusion and improved kidney function. Pre-treatment with BRL44408, a selective α2A-adrenoceptor antagonist (1mg/kg), or imiloxan, a selective α2B-adrenoceptor antagonist (1mg/kg) had no effect on renal function or tissue injury. These results suggest that yohimbine prevented ischaemia/reperfusion-induced kidney injury by inhibiting α2C-adrenoceptors and suppressing pro-inflammatory cytokine expression.

  19. Expression of paired-like homeodomain transcription factor 2c (PITX2c) in epidermal keratinocytes

    SciTech Connect

    Shi, Ge; Sohn, Kyung-Cheol; Choi, Tae-Young; Choi, Dae-Kyoung; Lee, Sang-Sin; Ou, Bai-sheng; Kim, Sooil; Lee, Young Ho; Yoon, Tae-Jin; Kim, Seong-Jin; Lee, Young; Seo, Young-Joon; Lee, Jeung-Hoon; Kim, Chang Deok

    2010-11-15

    Paired-like homeodomain transcription factor 2 (PITX2) has been implicated as one of the genes responsible for Rieger syndrome. It has been also shown to play a central role during development. In this study, we investigated the functional role of PITX2 in keratinocyte differentiation. RT-PCR analysis showed that PITX2c isoform was predominantly expressed in a differentiation-dependent manner. Consistent with, immunohistochemical staining showed that PITX2 expression was increased in the upper layer of epidermis. When PITX2c was overexpressed in cultured keratinocytes by a recombinant adenovirus, the differentiation markers such as involucrin and loricrin were significantly increased at both mRNA and protein levels. In addition, PITX2c overexpression led to the decrease of cell growth, concomitantly with the upregulation of cell cycle-related genes p21. To investigate the effect of PITX2c in vivo, we microinjected PITX2c expression vector into zebrafish embryo. Interestingly, overexpression of PITX2c in zebrafish embryo led to the formation of horn-like structure and thickening of epidermis, together with the increase of keratin 8 (K8) expression. These results suggest that PITX2c has a role in proliferation and differentiation of epidermal keratinocytes.

  20. The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues.

    PubMed

    Bork, P; Brown, N P; Hegyi, H; Schultz, J

    1996-07-01

    A thorough sequence analysis of the various members of the eukaryotic protein serine/threonine phosphatase 2C (PP2C) family revealed the conservation of 11 motifs. These motifs could be identified in numerous other sequences, including fungal adenylate cyclases that are predicted to contain a functionally active PP2C domain, and a family of prokaryotic serine/threonine phosphatases including SpoIIE. Phylogenetic analysis of all the proteins indicates a widespread sequence family for which a considerable number of isoenzymes can be inferred.

  1. B2B Models for DoD Acquisition

    DTIC Science & Technology

    2008-01-15

    public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words.) A central vision of B2B e - commerce is that...OF ABSTRACT: UU - ii - THIS PAGE INTENTIONALLY LEFT BLANK - iii - Abstract A central vision of B2B e - commerce is that of...goods and services are purchased, pricing mechanisms, the characteristics of the markets, and ownership of marketplace. Keywords: B2B E - Commerce

  2. Preclinical studies on targeted delivery of multiple IFNα2b to HLA-DR in diverse hematologic cancers

    PubMed Central

    Rossi, Diane L.; Cardillo, Thomas M.; Stein, Rhona; Chang, Chien-Hsing

    2011-01-01

    The short circulating half-life and side effects of IFNα affect its dosing schedule and efficacy. Fusion of IFNα to a tumor-targeting mAb (mAb-IFNα) can enhance potency because of increased tumor localization and improved pharmacokinetics. We used the Dock-and-Lock method to generate C2-2b-2b, a mAb-IFNα comprising tetrameric IFNα2b site-specifically linked to hL243 (humanized anti–HLA-DR). In vitro, C2-2b-2b inhibited various B-cell lymphoma leukemia and myeloma cell lines. In most cases, this immunocytokine was more effective than CD20-targeted mAb-IFNα or a mixture comprising the parental mAb and IFNα. Our findings indicate that responsiveness depends on HLA-DR expression/density and sensitivity to IFNα and hL243. C2-2b-2b induced more potent and longer-lasting IFNα signaling compared with nontargeted IFNα. Phosphorylation of STAT1 was more robust and persistent than that of STAT3, which may promote apoptosis. C2-2b-2b efficiently depleted lymphoma and myeloma cells from whole human blood but also exhibited some toxicity to B cells, monocytes, and dendritic cells. C2-2b-2b showed superior efficacy compared with nontargeting mAb-IFNα, peginterferonalfa-2a, or a combination of hL243 and IFNα, using human lymphoma and myeloma xenografts. These results suggest that C2-2b-2b should be useful in the treatment of various hematopoietic malignancies. PMID:21680794

  3. Multiple endocrine neoplasias type 2B and RET proto-oncogene

    PubMed Central

    2012-01-01

    Multiple Endocrine Neoplasia type 2B (MEN 2B) is an autosomal dominant complex oncologic neurocristopathy including medullary thyroid carcinoma, pheochromocytoma, gastrointestinal disorders, marphanoid face, and mucosal multiple ganglioneuromas. Medullary thyroid carcinoma is the major cause of mortality in MEN 2B syndrome, and it often appears during the first years of life. RET proto-oncogene germline activating mutations are causative for MEN 2B. The 95% of MEN 2B patients are associated with a point mutation in exon 16 (M918/T). A second point mutation at codon 883 has been found in 2%-3% of MEN 2B cases. RET proto-oncogene is also involved in different neoplastic and not neoplastic neurocristopathies. Other RET mutations cause MEN 2A syndrome, familial medullary thyroid carcinoma, or Hirschsprung's disease. RET gene expression is also involved in Neuroblastoma. The main diagnosis standards are the acetylcholinesterase study of rectal mucosa and the molecular analysis of RET. In our protocol the rectal biopsy is, therefore, the first approach. RET mutation detection offers the possibility to diagnose MEN 2B predisposition at a pre-clinical stage in familial cases, and to perform an early total prophylactic thyroidectomy. The surgical treatment of MEN 2B is total thyroidectomy with cervical limphadenectomy of the central compartment of the neck. When possible, this intervention should be performed with prophylactic aim before 1 year of age in patients with molecular genetic diagnosis. Recent advances into the mechanisms of RET proto-oncogene signaling and pathways of RET signal transduction in the development of MEN 2 and MTC will allow new treatment possibilities. PMID:22429913

  4. Disease-specific expression of the serotonin-receptor 5-HT(2C) in natural killer cells in Alzheimer's dementia.

    PubMed

    Martins, Luiza Conceição Amorim; Rocha, Natália Pessoa; Torres, Karen Cecília Lima; Dos Santos, Rodrigo Ribeiro; França, Giselle Sabrina; de Moraes, Edgar Nunes; Mukhamedyarov, Marat Alexandrovich; Zefirov, Andrey Lvovich; Rizvanov, Albert Anatolyevich; Kiyasov, Andrey Pavlovich; Vieira, Luciene Bruno; Guimarães, Melissa Monteiro; Yalvaç, Mehmet Emir; Teixeira, Antônio Lúcio; Bicalho, Maria Aparecida Camargo; Janka, Zoltán; Romano-Silva, Marco Aurélio; Palotás, András; Reis, Helton José

    2012-10-15

    Alzheimer's dementia (AD) is a degenerative brain disorder characterized mainly by cholinergic failure, but other neuro-transmitters are also deficient especially at late stages of the disease. Misfolded β-amyloid peptide has been identified as a causative agent, however inflammatory changes also play a pivotal role. Even though the most prominent pathology is seen in the cognitive functions, specific abnormalities of the central nervous system (CNS) are also reflected in the periphery, particularly in the immune responses of the body. The aim of this study was to characterize the dopaminergic and serotonergic systems in AD, which are also markedly disrupted along with the hallmark acetyl-choline dysfunction. Peripheral blood mono-nuclear cells (PBMCs) from demented patients were judged against comparison groups including individuals with late-onset depression (LOD), as well as non-demented and non-depressed subjects. Cellular sub-populations were evaluated by mono-clonal antibodies against various cell surface receptors: CD4/CD8 (T-lymphocytes), CD19 (B-lymphocytes), CD14 (monocytes), and CD56 (natural-killer (NK)-cells). The expressions of dopamine D(3) and D(4), as well as serotonin 5-HT(1A), 5-HT(2A), 5-HT(2B) and 5-HT(2C) were also assessed. There were no significant differences among the study groups with respect to the frequency of the cellular sub-types, however a unique profound increase in 5-HT(2C) receptor exclusively in NK-cells was observed in AD. The disease-specific expression of 5-HT(2C), as well as the NK-cell cyto-toxicity, has been linked with cognitive derangement in dementia. These changes not only corroborate the existence of bi-directional communication between the immune system and the CNS, but also elucidate the role of inflammatory activity in AD pathology, and may serve as potential biomarkers for less invasive and early diagnostic purposes as well.

  5. In silico analysis of Brucella abortus Omp2b and in vitro expression of SOmp2b

    PubMed Central

    2016-01-01

    Purpose At present, there is no vaccine available for the prevention of human brucellosis. Brucella outer membrane protein 2b (Omp2b) is a 36 kD porin existed in common Brucella pathogens and it is considered as priority antigen for designing a new subunit vaccine. Materials and Methods In the current study, we aimed to predict and analyze the secondary and tertiary structures of the Brucella abortus Omp2b protein, and to predict T-cell and B-cell epitopes with the help of bioinformatics tools. Subsequently, cloning and expression of the short form of Omp2b (SOmp2b) was performed using pET28a expression vector and Escherichia coli BL21 host, respectively. The recombinant SOmp2b (rSOmp2b) was purified with Ni-NTA column. Results The recombinant protein was successfully expressed in E. coli host and purified under denaturation conditions. The yield of the purified rSOmp2b was estimated by Bradford method and found to be 220 µg/mL of the culture. Conclusion Our results indicate that Omp2b protein has a potential to induce both B-cell– and T-cell–mediated immune responses and it can be evaluated as a new subunit vaccine candidate against brucellosis. PMID:26866027

  6. Increased extrasynaptic GluN2B expression is involved in cognitive impairment after isoflurane anesthesia.

    PubMed

    Li, Lunxu; Li, Zhengqian; Cao, Yiyun; Fan, Dongsheng; Chui, Dehua; Guo, Xiangyang

    2016-07-01

    There is increasing concern regarding the postoperative cognitive dysfunction (POCD) in the aging population, and general anesthetics are believed to be involved. Isoflurane exposure induced increased N-methyl-D-aspartic acid receptor (NMDAR) GluN2B subunit expression following anesthesia, which was accompanied by alteration of the cognitive function. However, whether isoflurane affects this expression in different subcellular compartments, and is involved in the development of POCD remains to be elucidated. The aims of the study were to investigate the effects of isoflurane on the expression of the synaptic and extrasynaptic NMDAR subunits, GluN2A and GluN2B, as well as the associated alteration of cognitive function in aged rats. The GluN2B antagonist, Ro25-6981, was given to rats exposed to isoflurane to determine the role of GluN2B in the isoflurane-induced alteration of cognitive function. The results showed that spatial learning and memory tested in the Morris water maze (MWM) was impaired at least 7 days after isoflurane exposure, and was returned to control levels 30 days thereafter. Ro25-6981 treatment can alleviate this impairment. Extrasynaptic GluN2B protein expression, but not synaptic GluN2B or GluN2A, increased significantly after isoflurane exposure compared to non-isoflurane exposure, and returned to control levels approximately 30 days thereafter. The results of the present study indicated that isoflurane induced the prolonged upregulation of extrasynaptic GluN2B expression after anesthesia and is involved in reversible cognitive impairment.

  7. Building Customized University-to-Business (U2B) Partnerships

    ERIC Educational Resources Information Center

    Irvine, George; Verma, Lisa

    2013-01-01

    Continuing education (CE) units throughout the United States have successfully built University-to-Business (U2B) partnerships to provide greater value to their community partners and to increase revenue for the university. Our experience in building U2B partnerships and feedback from our partners--businesses, corporations, state agencies, and…

  8. NR2B subunit of the NMDA glutamate receptor regulates appetite in the parabrachial nucleus.

    PubMed

    Wu, Qi; Zheng, Ruimao; Srisai, Dollada; McKnight, G Stanley; Palmiter, Richard D

    2013-09-03

    Diphtheria toxin-mediated, acute ablation of hypothalamic neurons expressing agouti-related protein (AgRP) in adult mice leads to anorexia and starvation within 7 d that is caused by hyperactivity of neurons within the parabrachial nucleus (PBN). Because NMDA glutamate receptors are involved in various synaptic plasticity-based behavioral modifications, we hypothesized that modulation of the NR2A and NR2B subunits of the NMDA receptor in PBN neurons could contribute to the anorexia phenotype. We observed by Western blot analyses that ablation of AgRP neurons results in enhanced expression of NR2B along with a modest suppression of NR2A. Interestingly, systemic administration of LiCl in a critical time window before AgRP neuron ablation abolished the anorectic response. LiCl treatment suppressed NR2B levels in the PBN and ameliorated the local Fos induction that is associated with anorexia. This protective role of LiCl on feeding was blunted in vagotomized mice. Chronic infusion of RO25-6981, a selective NR2B inhibitor, into the PBN recapitulated the role of LiCl in maintaining feeding after AgRP neuron ablation. We suggest that the accumulation of NR2B subunits in the PBN contributes to aphagia in response to AgRP neuron ablation and may be involved in other forms of anorexia.

  9. Small GTPase Rab2B and Its Specific Binding Protein Golgi-associated Rab2B Interactor-like 4 (GARI-L4) Regulate Golgi Morphology*

    PubMed Central

    Aizawa, Megumi; Fukuda, Mitsunori

    2015-01-01

    Rab small GTPases are crucial regulators of the membrane traffic that maintains organelle identity and morphology. Several Rab isoforms are present in the Golgi, and it has been suggested that they regulate the compacted morphology of the Golgi in mammalian cells. However, the functional relationships among the Golgi-resident Rabs, e.g. whether they are functionally redundant or different, are poorly understood. In this study, we used specific siRNAs to perform genome-wide screening for human Rabs that are involved in Golgi morphology in HeLa-S3 cells. The results showed that knockdown of any one of the six Rab isoforms (Rab1A/1B/2A/2B/6B/8A) induced fragmentation of the Golgi in HeLa-S3 cells and that its phenotype was rescued by re-expression of their respective siRNA-resistant construct. We then performed systematic knockdown-rescue experiments in relation to each of the six Rabs. Interestingly, with the exception of the Rab8A knockdown, the Golgi fragmentation phenotype induced by knockdown of a single Rab isoform, e.g. Rab2B, was efficiently rescued by re-expression of its siRNA-resistant Rab alone, not by any of the other five Rabs, e.g. Rab2A, which is highly homologous to Rab2B, indicating that these Rab isoforms non-redundantly regulate Golgi morphology possibly through interaction with isoform-specific effector molecules. In addition, we identified Golgi-associated Rab2B interactor-like 4 (GARI-L4) as a novel Golgi-resident Rab2B-specific binding protein whose knockdown also induced fragmentation of the Golgi. Our findings suggest that the compacted Golgi morphology of mammalian cells is finely tuned by multiple sets of Rab (or Rab-effector complexes) that for the most part function independently. PMID:26209634

  10. NMDA receptor subunit expression in the supraoptic nucleus of adult rats: Dominance of NR2B and NR2D

    PubMed Central

    Doherty, Faye C; Sladek, Celia D

    2011-01-01

    The supraoptic nucleus (SON) of the hypothalamus contains magnocellular neurosecretory neurons (MNC) which synthesize and release the peptide hormones vasopressin and oxytocin. Glutamate is a prominent excitatory neurotransmitter in the SON and regulates MNC excitability. NMDA receptors (NMDAR), a type of ionotropic glutamate receptor, mediate synaptic plasticity of MNCs and are necessary for characteristic burst firing patterns which serve to maximize hormone release. NMDARs are di- or tri-heteromeric complexes of NR1 and NR2 subunits. Receptor properties depend on NR2 subunit composition and variable splicing of NR1. We investigated the expression profile of NR1 and NR2 subunits in the SON at the mRNA and protein levels, plus protein expression of NR1 splice variants in control and salt-loaded adult rats. There was robust mRNA expression of all subunits, with NR2D levels being the highest. At the protein level, NR1, NR2B and NR2D were robustly expressed, while NR2A was weakly expressed. NR2C protein was not detected with either of two antibodies. All four NR1 splice variant cassettes (N1, C1, C2, C2’) were detected in the SON, though NR1 N1 expression was too low for accurate analysis. Three days of salt-loading did not alter mRNA, protein or splice variant expression of NMDAR subunits in the SON. Robust NR2D protein expression has not been previously shown in MNCs, and is uncommon in the adult brain. Though the functional significance of this unusual expression profile is unknown, it may contribute to important physiological characteristics of SON neurons, such as burst firing and resistance to excitotoxicity. PMID:21397592

  11. Importance of the GluN2B Carboxy-Terminal Domain for Enhancement of Social Memories

    ERIC Educational Resources Information Center

    Jacobs, Stephanie; Wei, Wei; Wang, Deheng; Tsien, Joe Z.

    2015-01-01

    The N-methyl-D-aspartate (NMDA) receptor is known to be necessary for many forms of learning and memory, including social recognition memory. Additionally, the GluN2 subunits are known to modulate multiple forms of memory, with a high GluN2A:GluN2B ratio leading to impairments in long-term memory, while a low GluN2A:GluN2B ratio enhances some…

  12. Regulation of UGT2B4 and UGT2B7 by miRNAs in liver cancer cells.

    PubMed

    Wijayakumara, Dhilushi; Mackenzie, Peter Ian; McKinnon, Ross A; Hu, Dong Gui; Meech, Robyn

    2017-04-07

    The transcriptional regulation of UGT2B4 and UGT2B7 has been well studied using liver cancer cell lines and recently post-transcriptional regulation of these two UGTs by miR-216b-5p was reported. The present study describes novel miRNA-mediated regulation of UGT2B4 and UGT2B7 in liver cancer cells. Bioinformatic analyses identified a putative miR-3664-3p binding site in the UGT2B7 3'-UTR, and binding sites for both miR-135a-5p and miR-410-3p in the UGT2B4 3'-UTR. These sites were functionally characterized using miRNA mimics and reporter constructs. A miR-3664-3p mimic induced repression of a luciferase reporter carrying the UGT2B7 3'-UTR in liver cancer cell lines; mutation of the miR-3664-3p site abrogated the response of the reporter to the mimic. Similarly, mutation of the miR-135a-5p site or miR-410-3p site in a luciferase reporter bearing UGT2B4 3'-UTR abrogated the ability of miR-135a-5p or miR-410-3p mimics to reduce reporter activity. Transfection of miR-3664-3p mimics in HepG2 liver cancer cells significantly reduced mRNA and protein levels of UGT2B7, and this led to reduced enzymatic activity. Transfection of miR-135a-5p or miR-410-3p mimics significantly decreased UGT2B4 mRNA levels in Huh7 liver cancer cells. The expression levels of miR-410-3p were inversely correlated with UGT2B4 mRNA levels in the TCGA cohort of Liver Hepatocellular Carcinoma (370 specimens) and a panel of 9 normal human tissues. Similarly, there was an inverse correlation between miR-135a and UGT2B4 mRNA levels in a panel of 18 normal human liver tissues. Together these data suggest that miR-135a and miR-410 control UGT2B4 and that miR-3664 controls UGT2B7 expression in liver cancer and/or normal liver cells.

  13. [Inducing chromosome translocation and deletions by Chinese Spring-Agilops 2C disomic addition x Chinese Spring-Elytriga 5E disomic addition].

    PubMed

    Li, Ji-Lin; Xu, Xiang-Ling; Xu, Ping; Guo, Chang-Hong

    2003-04-01

    Crossing between two disomic addition lines, Chinese Spring-E. elongata and Chinese Sping with two gametocidal chromosomes 2C (from Ae. cylindric), was carried out to investigate the function of gametocidal chromosome. After scrutinizing the meiosis of pollen mother cells (PMCs) in F1 hybrids, several results were concluded: (1) In seven of the crossing combinations, the number of univalents exceeded the expected and some trivalents and tetravalents appeared also in MI; lagging, breakage and bridge of chromosomes were observed in anaphase and telophase; considerable micronuclei formed in telophase and tetrads. These were mainly caused by the gametocidal chromosome 2C. (2) Chromosomes 6E and 7E were more susceptible to the effect of the gametocidal chromosome 2C. (3) The gametocidal chromosome 2C functioned in prophase viz. the period of forming synaptonemal complex. Four F1 lines, 5-14, 5-37, 5-67 and 5-71, were identified to be T5ES 4AST5EL 2BS, T5EL 3AS, T5ES 5BS translocation respectively by using C-banding and genome in situ hybrydization(GISH) analysis. Deletion was detected in line 5-17 (short arm of chromosome 2A), 5-27(6B), 5-18(4B and 5B), 5-72(4A) and 5-4(4B) by C-banding analysis. The statistic data showed that gametocidal chromosome could induce translocation with a high frequency of 5% and reacted on group B more efficiently than on groups A and D since translocation involving chromosome 4A, 2B, 3A, 5B and deletion involving chromosome 6B, 5B, 4B, 4A 2A according to Endo's work.

  14. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells.

    PubMed

    Wilson, Jeffrey M; Ross, William G; Agbai, Oma N; Frazier, Renea; Figler, Robert A; Rieger, Jayson; Linden, Joel; Ernst, Peter B

    2009-04-15

    The endogenous purine nucleoside adenosine is an important antiinflammatory mediator that contributes to the control of CD4(+) T cell responses. While adenosine clearly has direct effects on CD4(+) T cells, it remains to be determined whether actions on APC such as dendritic cells (DC) are also important. In this report we characterize DC maturation and function in BMDC stimulated with LPS in the presence or absence of the nonselective adenosine receptor agonist NECA (5'-N-ethylcarboxamidoadenosine). We found that NECA inhibited TNF-alpha and IL-12 in a concentration-dependent manner, whereas IL-10 production was increased. NECA-treated BMDC also expressed reduced levels of MHC class II and CD86 and were less effective at stimulating CD4(+) T cell proliferation and IL-2 production compared with BMDC exposed to vehicle control. Based on real-time RT-PCR, the A(2A) adenosine receptor (A(2A)AR) and A(2B)AR were the predominant adenosine receptors expressed in BMDC. Using adenosine receptor subtype selective antagonists and BMDC derived from A(2A)AR(-/-) and A(2B)AR(-/-)mice, it was shown that NECA modulates TNF-alpha, IL-12, IL-10, and CD86 responses predominantly via A(2B)AR. These data indicate that engagement of A(2B)AR modifies murine BMDC maturation and suggest that adenosine regulates CD4(+) T cell responses by selecting for DC with impaired immunogencity.

  15. SH2B1 enhances leptin signaling by both Janus kinase 2 Tyr813 phosphorylation-dependent and -independent mechanisms.

    PubMed

    Li, Zhiqin; Zhou, Yingjiang; Carter-Su, Christin; Myers, Martin G; Rui, Liangyou

    2007-09-01

    Leptin controls body weight by activating its long form receptor (LEPRb). LEPRb binds to Janus kinase 2 (JAK2), a cytoplasmic tyrosine kinase that mediates leptin signaling. We previously reported that genetic deletion of SH2B1 (previously known as SH2-B), a JAK2-binding protein, results in severe leptin-resistant and obese phenotypes, indicating that SH2B1 is a key endogenous positive regulator of leptin sensitivity. Here we show that SH2B1 regulates leptin signaling by multiple mechanisms. In the absence of leptin, SH2B1 constitutively bound, via its non-SH2 domain region(s), to non-tyrosyl-phosphorylated JAK2, and inhibited JAK2. Leptin stimulated JAK2 phosphorylation on Tyr(813), which subsequently bound to the SH2 domain of SH2B1. Binding of the SH2 domain of SH2B1 to phospho-Tyr(813) in JAK2 enhanced leptin induction of JAK2 activity. JAK2 was required for leptin-stimulated phosphorylation of insulin receptor substrate 1 (IRS1), an upstream activator of the phosphatidylinositol 3-kinase pathway. Overexpression of SH2B1 enhanced both JAK2- and JAK2(Y813F)-mediated tyrosine phosphorylation of IRS1 in response to leptin, even though SH2B1 did not enhance JAK2(Y813F) activation. Leptin promoted the interaction of SH2B1 with IRS1. These data suggest that constitutive SH2B1-JAK2 interaction, mediated by the non-SH2 domain region(s) of SH2B1 and the non-Tyr(813) region(s) in JAK2, increases the local concentration of SH2B1 close to JAK2 and inhibits JAK2 activity. Leptin-stimulated SH2B1-JAK2 interaction, mediated by the SH2 domain of SH2B1 and phospho-Tyr(813) in JAK2, promotes JAK2 activation, thus globally enhancing leptin signaling. SH2B1-IRS1 interaction facilitates IRS1 phosphorylation by recruiting IRS1 to JAK2 and/or by protecting IRS1 from dephosphorylation, thus specifically enhancing leptin stimulation of the phosphatidylinositol 3-kinase pathway.

  16. 5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart Failure

    PubMed Central

    Janssen, Wiebke; Schymura, Yves; Novoyatleva, Tatyana; Luitel, Himal; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Weissmann, Norbert; Seeger, Werner; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo

    2015-01-01

    Objective. The serotonin (5-HT) pathway was shown to play a role in pulmonary hypertension (PH), but its functions in right ventricular failure (RVF) remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist) or SB204741 (5-HT2B receptor antagonist) on right heart function and structure upon pulmonary artery banding (PAB) in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid) or SB204741 (5 mg/kg day). Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. Results. Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Conclusion. 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF. PMID:25667920

  17. A novel endogenous PP2C-like phosphatase dephosphorylates casein kinase II-phosphorylated Physarum fragmin.

    PubMed

    Waelkens, E; de Corte, V; Merlevede, W; Vandekerckhove, J; Gettemans, J

    2000-12-20

    Plasmodial fragmin, a Physarum polycephalum F-actin severing and capping protein, is phosphorylated by casein kinase II at Ser(266) (De Corte, V., Gettemans, J., De Ville, Y., Waelkens, E., and Vandekerckchove, J. (1996), Biochemistry 35, 5472-5480). In this study, we report the purification and characterization of the corresponding fragmin phosphatases. One of the enzymes was purified to near homogeneity from a cytosolic extract; it dephosphorylates CKII-phosphorylated fragmin, a peptide encompassing the CKII phosphorylation site of fragmin as well as histone 2A, CKII-phosphorylated casein and the CKII model-peptide substrate: R(3)E(3)S(P)E(3). Its activity was highly stimulated by Mn(2+) and Mg(2+), and based on its lack of sensitivity toward phosphatase effectors we could exclude similarities with PP1, PP2A and PP2B phosphatases. All biochemical properties of the phosphatase point to a PP2C-like enzyme. A second phosphatase dephosphorylating fragmin was identified as a Physarum alkaline phosphatase.

  18. Prenatal stress disturbs hippocampal KIF17 and NR2B in spatial cognition in male offspring.

    PubMed

    Zhao, Depeng; Liu, Dan; Chen, Xueyu; Wang, Kai; Zhang, Ai; Kang, Jiuhong; Zhou, Qian; Duan, Tao

    2013-04-01

    Numerous studies have demonstrated that prenatal stress disturbs the hippocampal-mediated learning and memory processes in offspring. The underlying mechanisms for this effect, however, remain vague. It is well documented that N-methyl-D-aspartate (NMDA) receptors play a pivotal role in learning and memory, which are related to dynamically trafficking and regulating NMDA receptors by their response motor proteins. Over the past few years, increasing numbers of studies have elucidated that hippocampal-mediated learning and memory are regulated by KIF17 (kinesin superfamily motor protein 17), which specifically transports and regulates the NMDA receptor subunit NR2B in hippocampal neurons. The present study shows the influence of prenatal stress on KIF17 and NR2B expression and hippocampal NR2A/NR2B ratio partially reflecting function of KIF17, using mice as models. It was found that prenatal stress significantly decreased the hippocampal KIF17 and NR2B level in offspring at postnatal stages of 3 weeks and 9 weeks. Moreover, hippocampal KIF17 in the prenatally stressed pups continued to be weakened even after serial Morris water maze trainings, but not NR2B. Finally, the synaptic NR2A/NR2B level was upregulated in offspring exposed to prenatal stress, which revealed the dysfunction of KIF17. Thus, we conclude that prenatal stress leads to long-lasting deterioration of the expression and function of hippocampal KIF17 in offspring, which may be related to deficits of spatial cognition caused by prenatal stress. These data underpin the hypotheses that a physiopathology of neurodevelopmental origin in early life leads to defects in learning and memory in later life.

  19. Secretion of human interferon alpha 2b by Streptomyces lividans.

    PubMed

    Pimienta, E; Fando, R; Sánchez, J C; Vallin, C

    2002-02-01

    Biologically active human interferon alpha 2b (HuIFNalpha-2b) was secreted into the culture medium by Streptomyces lividans transformed with recombinant plasmids coding for HuIFNalpha-2b fused to the Streptomyces exfoliatus M11 lipase A signal sequence. Levels were low, 15 or 100 ng/ml, depending on the plasmid used. Neither processed nor unprocessed HuIFNalpha-2b was detected in cell lysates of the transformants secreting the recombinant product. However, the secreted recombinant product was found to partially degrade when cultures reached the stationary phase by the action of an, as yet, unidentified mycelium-associated factor. Experimental evidence suggests that the degrading factor is related to mycelium-associated proteolytic activity.

  20. Functional evidence for a 5-HT2B receptor mediating contraction of longitudinal muscle in human small intestine.

    PubMed Central

    Borman, R A; Burleigh, D E

    1995-01-01

    Application of 5-hydroxytryptamine induces contraction of longitudinal muscle strips from human terminal ileum. The response was resistant to antagonism by ketanserin, ondansetron or DAU6285, but was non-surmountably antagonized by methysergide. The selective 5-HT2B/2C receptor antagonist, SB 200646A evoked a concentration-dependent, parallel and dextral displacement of the concentration-response curve to 5-HT, yielding a pA2 estimate of 7.17. Application of yohimbine, a 5-HT1 and 5-HT2B receptor antagonist, also induced a rightward shift of the response curve to 5-HT, yielding a pA2 estimate of 8.10. In conclusion, it appears that a 5-HT2B receptor mediates the contractile response of the longitudinal muscle of human small intestine to 5-HT. PMID:7599919

  1. Characterization of CYP2B6 in a CYP2B6-humanized mouse model: inducibility in the liver by phenobarbital and dexamethasone and role in nicotine metabolism in vivo.

    PubMed

    Liu, Zhihua; Li, Lei; Wu, Hong; Hu, Jing; Ma, Jun; Zhang, Qing-Yu; Ding, Xinxin

    2015-02-01

    The aim of this study was to further characterize the expression and function of human CYP2B6 in a recently generated CYP2A13/2B6/2F1-transgenic (TG) mouse model, in which CYP2B6 is expressed selectively in the liver. The inducibility of CYP2B6 by phenobarbital (PB) and dexamethasone (DEX), known inducers of CYP2B6 in human liver, was examined in the TG mice, as well as in TG/Cyp2abfgs-null (or "CYP2B6-humanized") mice. Hepatic expression of CYP2B6 mRNA and protein was greatly induced by PB or DEX treatment in both TG and TG/Cyp2abfgs-null mice. Function of the transgenic CYP2B6 was first studied using bupropion as a probe substrate. In PB-treated mice, the rates of hepatic microsomal hydroxybupropion formation (at 50 μM bupropion) were >4-fold higher in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice (for both male and female mice); the rate difference was accompanied by a 5-fold higher catalytic efficiency in the TG/Cyp2abfgs-null mice and was abolished by an antibody to CYP2B6. The ability of CYP2B6 to metabolize nicotine was then examined, both in vitro and in vivo. The rates of hepatic microsomal cotinine formation from nicotine were significantly higher in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice, pretreated with PB or DEX. Furthermore, systemic nicotine metabolism was faster in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice. Thus, the transgenic CYP2B6 was inducible and functional, and, in the absence of mouse CYP2A and CYP2B enzymes, it contributed to nicotine metabolism in vivo. The CYP2B6-humanized mouse will be valuable for studies on in vivo roles of hepatic CYP2B6 in xenobiotic metabolism and toxicity.

  2. Independent Review of AFC 2A, 2B, and 2E ATR Irradiation Tests

    SciTech Connect

    M. Cappiello; R. Hobbins; K. Penny; L. Walters

    2014-01-01

    As part of the Department of Energy Advanced Fuel Cycle program, a series of fuels development irradiation tests have been performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. These tests are providing excellent data for advanced fuels development. The program is focused on the transmutation of higher actinides which best can be accomplished in a sodium-cooled fast reactor. Because a fast test reactor is no longer available in the US, a special test vehicle is used to achieve near-prototypic fast reactor conditions (neutron spectra and temperature) for use in ATR (a water-cooled thermal reactor). As part of the testing program, there were many successful tests of advanced fuels including metals and ceramics. Recently however, there have been three experimental campaigns using metal fuels that experienced failure during irradiation. At the request of the program, an independent review committee was convened to review the post-test analyses performed by the fuels development team, to assess the conclusions of the team for the cause of the failures, to assess the adequacy and completeness of the analyses, to identify issues that were missed, and to make recommendations for improvements in the design and operation of future tests. Although there is some difference of opinion, the review committee largely agreed with the conclusions of the fuel development team regarding the cause of the failures. For the most part, the analyses that support the conclusions are sufficient.

  3. Urocortin1-induced anorexia is regulated by activation of the serotonin 2C receptor in the brain.

    PubMed

    Harada, Yumi; Takayama, Kiyoshige; Ro, Shoki; Ochiai, Mitsuko; Noguchi, Masamichi; Iizuka, Seiichi; Hattori, Tomohisa; Yakabi, Koji

    2014-01-01

    This study was conducted to determine the mechanisms by which serotonin (5-hydroxytryptamine, 5-HT) receptors are involved in the suppression of food intake in a rat stress model and to observe the degree of activation in the areas of the brain involved in feeding. In the stress model, male Sprague-Dawley rats (8 weeks old) were given intracerebroventricular injections of urocortin (UCN) 1. To determine the role of the 5-HT2c receptor (5-HT2cR) in the decreased food intake in UCN1-treated rats, specific 5-HT2cR or 5-HT2b receptor (5-HT2bR) antagonists were administered. Food intake was markedly reduced in UCN1-injected rats compared with phosphate buffered saline treated control rats. Intraperitoneal administration of a 5-HT2cR antagonist, but not a 5-HT2bR antagonist, significantly inhibited the decreased food intake. To assess the involvement of neural activation, we tracked the expression of c-fos mRNA as a neuronal activation marker. Expression of the c-fos mRNA in the arcuate nucleus, ventromedial hypothalamic nucleus (VMH) and rostral ventrolateral medulla (RVLM) in UNC1-injected rats showed significantly higher expression than in the PBS-injected rats. Increased c-fos mRNA was also observed in the paraventricular nucleus (PVN), the nucleus of the solitary tract (NTS), and the amygdala (AMG) after injection of UCN1. Increased 5-HT2cR protein expression was also observed in several areas. However, increased coexpression of 5-HT2cR and c-fos was observed in the PVN, VMH, NTS, RVLM and AMG. Whereas, pro-opiomelanocortin mRNA expression was not changed. In an UNC1-induced stress model, 5-HT2cR expression and activation was found in brain areas involved in feeding control.

  4. SETDB1 HISTONE METHYLTRANSFERASE REGULATES MOOD-RELATED BEHAVIORS AND EXPRESSION OF THE NMDA RECEPTOR SUBUNIT NR2B

    PubMed Central

    Jiang, Yan; Jakovcevski, Mira; Bharadwaj, Rahul; Connor, Caroline; Schroeder, Frederick A.; Lin, Cong L.; Straubhaar, Juerg; Martin, Gilles; Akbarian, Schahram

    2010-01-01

    Histone methyltransferases specific for the histone H3-lysine 9 (H3K9) residue, including Setdb1 (Set domain, bifurcated 1)/Eset/Kmt1e are associated with repressive chromatin remodeling and expressed in adult brain, but potential effects on neuronal function and behavior remain unexplored. Here, we report that transgenic mice with increased Setdb1 expression in adult forebrain neurons show antidepressant-like phenotypes in behavioral paradigms for anhedonia, despair and learned helplessness. Chromatin immunoprecipitation in conjunction with DNA tiling arrays (ChIP-chip) revealed that genomic occupancies of neuronal Setdb1 are limited to less than 1% of annotated genes, which include the NMDA receptor subunit NR2B/Grin2B and other ionotropic glutamate receptor genes. Chromatin conformation capture (“3C”) and Setdb1-ChIP revealed a loop formation tethering the NR2B/Grin2b promoter to the Setdb1 target site positioned 30Kb downstream of the transcription start site. In hippocampus and ventral striatum, two key structures in the neuronal circuitry regulating mood-related behaviors, Setdb1-mediated repressive histone methylation at NR2B/Grin2b was associated with decreased NR2B expression and EPSP insensitivity to pharmacological blockade of NR2B, and accelerated NMDA receptor desensitization consistent with a shift in NR2A/B subunit ratios. In wildtype mice, systemic treatment with the NR2B antagonist, Ro-256981, and hippocampal siRNA-mediated NR2B/Grin2b knockdown, resulted in behavioral changes similar to those elicited by the Setdb1 transgene. Together, these findings point to a role for neuronal Setdb1 in the regulation of affective and motivational behaviors through repressive chromatin remodeling at a select set of target genes, resulting in altered NMDA receptor subunit composition and other molecular adaptations. PMID:20505083

  5. PTK2b function during fertilization of the mouse oocyte.

    PubMed

    Luo, Jinping; McGinnis, Lynda K; Carlton, Carol; Beggs, Hilary E; Kinsey, William H

    2014-08-01

    Fertilization triggers rapid changes in intracellular free calcium that serve to activate multiple signaling events critical to the initiation of successful development. Among the pathways downstream of the fertilization-induced calcium transient is the calcium-calmodulin dependent protein tyrosine kinase PTK2b or PYK2 kinase. PTK2b plays an important role in fertilization of the zebrafish oocyte and the objective of the present study was to establish whether PTK2b also functions in mammalian fertilization. PTK2b was activated during the first few hours after fertilization of the mouse oocyte during the period when anaphase resumption was underway and prior to the pronuclear stage. Suppression of PTK2b kinase activity in oocytes blocked sperm incorporation and egg activation although sperm-oocyte binding was not affected. Oocytes that failed to incorporate sperm after inhibitor treatment showed no evidence of a calcium transient and no evidence of anaphase resumption suggesting that egg activation did not occur. The results indicate that PTK2b functions during the sperm-egg fusion process or during the physical incorporation of sperm into the egg cytoplasm and is therefore critical for successful development.

  6. Human cyclooxygenase-2 cDNA.

    PubMed Central

    Hla, T; Neilson, K

    1992-01-01

    Cyclooxygenase (Cox), also known as prostaglandin (PG) H synthase (EC 1.14.99.1), catalyzes the rate-limiting step in the formation of inflammatory PGs. A major regulatory step in PG biosynthesis is at the level of Cox: growth factors, cytokines, and tumor promoters induce Cox activity. We have cloned the second form of the Cox gene (Cox-2) from human umbilical vein endothelial cells (HUVEC). The cDNA encodes a polypeptide of 604 amino acids that is 61% identical to the previously isolated human Cox-1 polypeptide. In vitro translation of the human (h)Cox-2 transcript in rabbit reticulocyte lysates resulted in the synthesis of a 70-kDa protein that is immunoprecipitated by antiserum to ovine Cox. Expression of the hCox-2 open reading frame in Cos-7 monkey kidney cells results in the elaboration of cyclooxygenase activity. hCox-2 cDNA hybridizes to a 4.5-kilobase mRNA species in HUVEC, whereas the hCox-1 cDNA hybridizes to 3- and 5.3-kilobase species. Both Cox-1 and Cox-2 mRNAs are expressed in HUVEC, vascular smooth muscle cells, monocytes, and fibroblasts. Cox-2 mRNA was preferentially induced by phorbol 12-myristate 13-acetate and lipopolysaccharide in human endothelial cells and monocytes. Together, these data demonstrate that the Cox enzyme is encoded by at least two genes that are expressed and differentially regulated in a variety of cell types. High-level induction of the hCox-2 transcript in mesenchymal-derived inflammatory cells suggests a role in inflammatory conditions. Images PMID:1380156

  7. Genetic and antigenic characterization of a newly emerging porcine circovirus type 2b mutant first isolated in cases of vaccine failure in Korea.

    PubMed

    Seo, Hwi Won; Park, Changhoon; Kang, Ikjae; Choi, Kyuhyung; Jeong, Jiwoon; Park, Su-Jin; Chae, Chanhee

    2014-11-01

    This study describes the genetic and antigenic characterization of a newly emerging porcine circovirus type 2b (PCV2b) mutant first isolated in cases of vaccine failure in Korea. The full genome of the PCV2b isolates (SNUVR130689 and SNUVR140004) is 1,767 base pairs (bp) in length. The size of ORF1 is 945 bp, encoding a protein of 314 amino acids (aa), and the size of ORF2 is 705 bp, encoding a protein of 234 aa, which is 1 aa longer than that of the common PCV2 (233 aa). Korean PCV2b mutant strains had higher levels of nucleotide sequence identity to other PCV2b mutant strains (99.7-99.8 %) than to reference PCV2a (94.5-95.0 %) and PCV2b (95.5-96.1 %) strains. There was no difference in antigenic reactivity among PCV2a, PCV2b and PCV2b mutant strains to the polyclonal and monoclonal PCV2a antibodies. PCV2b mutant strains have distinct genetic characteristics but similar antigenic reactivity when compared to common PCV2a and 2b strains.

  8. Signal Transduction Mechanism for Serotonin 5-HT2B Receptor-Mediated DNA Synthesis and Proliferation in Primary Cultures of Adult Rat Hepatocytes.

    PubMed

    Naito, Kota; Tanaka, Chizuru; Mitsuhashi, Manami; Moteki, Hajime; Kimura, Mitsutoshi; Natsume, Hideshi; Ogihara, Masahiko

    2016-01-01

    The involvement of serotonin (5-hydroxytryptamine; 5-HT) and the 5-HT2 receptor subtypes in the induction of DNA synthesis and proliferation was investigated in primary cultures of adult rat hepatocytes to elucidate the intracellular signal transduction mechanisms. Hepatocyte parenchymal cells maintained in a serum-free, defined medium, synthesized DNA and proliferated in the presence of 5-HT or a selective 5-HT2B receptor agonist, BW723C86, but not in the presence of 5-HT2A, or 5-HT2C receptor agonists (TCB-2 and CP809101, respectively), in a time- and dose-dependent manner. A selective 5-HT2B receptor antagonist, LY272015 (10(-7) M), and a specific phospholipase C (PLC) inhibitor, U-73122 (10(-6) M), as well as specific inhibitors of growth-related signal transducers-including AG1478, LY294002, PD98059, and rapamycin-completely inhibited 5-HT (10(-6) M)- or BW723C86 (10(-6) M)-induced hepatocyte DNA synthesis and proliferation. Both 5-HT and BW723C86 were shown to significantly stimulate the phosphorylation of epidermal growth factor (EGF)/transforming growth factor (TGF)-α receptor tyrosine kinase (p175 kDa) and extracellular signal-regulated kinase (ERK) 2 on Western blot analysis. These results suggest that the proliferative mechanism of activating 5-HT is mediated mainly through 5-HT2B receptor-stimulated Gq/PLC and EGF/TGF-α-receptor/phosphatidylinositol 3-kinase (PI3K)/ERK2/mammalian target of rapamycin (mTOR) signaling pathways in primary cultured hepatocytes.

  9. Identification of SH2B2beta as an inhibitor for SH2B1- and SH2B2alpha-promoted Janus kinase-2 activation and insulin signaling.

    PubMed

    Li, Minghua; Li, Zhiqin; Morris, David L; Rui, Liangyou

    2007-04-01

    The SH2B family has three members (SH2B1, SH2B2, and SH2B3) that contain conserved dimerization (DD), pleckstrin homology, and SH2 domains. The DD domain mediates the formation of homo- and heterodimers between members of the SH2B family. The SH2 domain of SH2B1 (previously named SH2-B) or SH2B2 (previously named APS) binds to phosphorylated tyrosines in a variety of tyrosine kinases, including Janus kinase-2 (JAK2) and the insulin receptor, thereby promoting the activation of JAK2 or the insulin receptor, respectively. JAK2 binds to various members of the cytokine receptor family, including receptors for GH and leptin, to mediate cytokine responses. In mice, SH2B1 regulates energy and glucose homeostasis by enhancing leptin and insulin sensitivity. In this work, we identify SH2B2beta as a new isoform of SH2B2 (designated as SH2B2alpha) derived from the SH2B2 gene by alternative mRNA splicing. SH2B2beta has a DD and pleckstrin homology domain but lacks a SH2 domain. SH2B2beta bound to both SH2B1 and SH2B2alpha, as demonstrated by both the interaction of glutathione S-transferase-SH2B2beta fusion protein with SH2B1 or SH2B2alpha in vitro and coimmunoprecipitation of SH2B2beta with SH2B1 or SH2B2alpha in intact cells. SH2B2beta markedly attenuated the ability of SH2B1 to promote JAK2 activation and subsequent tyrosine phosphorylation of insulin receptor substrate-1 by JAK2. SH2B2beta also significantly inhibited SH2B1- or SH2B2alpha-promoted insulin signaling, including insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1. These data suggest that SH2B2beta is an endogenous inhibitor of SH2B1 and/or SH2B2alpha, negatively regulating insulin signaling and/or JAK2-mediated cellular responses.

  10. Activation of 5-HT(2C) receptors in the dorsal periaqueductal gray increases antinociception in mice exposed to the elevated plus-maze.

    PubMed

    Baptista, Daniela; Nunes-de-Souza, Ricardo Luiz; Canto-de-Souza, Azair

    2012-11-01

    Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT(1A) and 5-HT(2A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT(1A) and 5-HT(2B/2C) receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 μl intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT(1A) receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT(2B/2C) receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAA), mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 μl), a 5-HT(2A/2C) receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAA enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT(2C) receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice.

  11. Neuroprotective effect of estrogen: role of nonsynaptic NR2B-containing NMDA receptors.

    PubMed

    Liu, Shui-bing; Zhao, Ming-gao

    2013-04-01

    Excessive activation of N-methyl-D-aspartate receptors (NMDARs) has been implicated in the pathophysiology of chronic neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Some studies reported that NR2A and NR2B play different roles in the central nervous system (CNS). The NR2A subunit is primarily found in the synapses and is required for glutamate-mediated neuronal survival. On the other hand, the NR2B subunit is primarily found in the extrasynaptic sites and is required for glutamate-mediated neuronal death in both in vitro and in vivo experiments. Estrogen is a steroid hormone well known for its widespread effects such as neuroprotection in the brain. Classically, estrogen can bind to two kinds of nuclear receptors, namely, estrogen receptor α (ERα) and estrogen receptor β (ERβ), and produce physiological and neuroprotective effects. Aside from nuclear receptors, estrogen has one membrane receptor, which can either be G-protein-coupled receptor 30 (GPR30), Gq-mER, or ER-X. NMDA exposure clearly promotes NR2B subunit phosphorylation at Ser-1303 and causes neuronal cell death. GPR30 mediates rapid non-genomic effects to protect neurons against injury by inhibiting p-DAPK1 dephosphorylation, which inhibits NR2B subunit phosphorylation at Ser-1303. In addition, NMDA exposure and global ischemia activate the autophagy pathway and induce cell death, which are markedly blocked by the NR2B antagonist Ro 25-6981. Thus, NR2B signaling, autophagy induction and cell death may be closely related. Ro 25-6981 inhibits the dissociation of the NR2B-Beclin-1 signaling complex and delays autophagy in vivo, thus confirming the link between NR2B signaling and autophagy. In short, ERα, ERβ, and GPR30 are involved in the neuroprotection of estrogen in the CNS. Additional research must be conducted to reveal the mechanism of estrogen action fully and to identify better targets for the development of more effective drugs. This

  12. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing.

    PubMed

    Lurier, Emily B; Dalton, Donald; Dampier, Will; Raman, Pichai; Nassiri, Sina; Ferraro, Nicole M; Rajagopalan, Ramakrishan; Sarmady, Mahdi; Spiller, Kara L

    2017-02-20

    Alternatively activated "M2" macrophages are believed to function during late stages of wound healing, behaving in an anti-inflammatory manner to mediate the resolution of the pro-inflammatory response caused by "M1" macrophages. However, the differences between two main subtypes of M2 macrophages, namely interleukin-4 (IL-4)-stimulated "M2a" macrophages and IL-10-stimulated "M2c" macrophages, are not well understood. M2a macrophages are characterized by their ability to inhibit inflammation and contribute to the stabilization of angiogenesis. However, the role and temporal profile of M2c macrophages in wound healing are not known. Therefore, we performed next generation sequencing (RNA-seq) to identify biological functions and gene expression signatures of macrophages polarized in vitro with IL-10 to the M2c phenotype in comparison to M1 and M2a macrophages and an unactivated control (M0). We then explored the expression of these gene signatures in a publicly available data set of human wound healing. RNA-seq analysis showed that hundreds of genes were upregulated in M2c macrophages compared to the M0 control, with thousands of alternative splicing events. Following validation by Nanostring, 39 genes were found to be upregulated by M2c macrophages compared to the M0 control, and 17 genes were significantly upregulated relative to the M0, M1, and M2a phenotypes (using an adjusted p-value cutoff of 0.05 and fold change cutoff of 1.5). Many of the identified M2c-specific genes are associated with angiogenesis, matrix remodeling, and phagocytosis, including CD163, MMP8, TIMP1, VCAN, SERPINA1, MARCO, PLOD2, PCOCLE2 and F5. Analysis of the macrophage-conditioned media for secretion of matrix-remodeling proteins showed that M2c macrophages secreted higher levels of MMP7, MMP8, and TIMP1 compared to the other phenotypes. Interestingly, temporal gene expression analysis of a publicly available microarray data set of human wound healing showed that M2c-related genes were

  13. Dephosphorylation of human cyclin-dependent kinases by protein phosphatase type 2C alpha and beta 2 isoforms.

    PubMed

    Cheng, A; Kaldis, P; Solomon, M J

    2000-11-03

    We previously reported that the activating phosphorylation on cyclin-dependent kinases in yeast (Cdc28p) and in humans (Cdk2) is removed by type 2C protein phosphatases. In this study, we characterize this PP2C-like activity in HeLa cell extract and determine that it is due to PP2C beta 2, a novel PP2C beta isoform, and to PP2C alpha. PP2C alpha and PP2C beta 2 co-purified with Mg(2+)-dependent Cdk2/Cdk6 phosphatase activity in DEAE-Sepharose, Superdex-200, and Mono Q chromatographies. Moreover, purified recombinant PP2C alpha and PP2C beta 2 proteins efficiently dephosphorylated monomeric Cdk2/Cdk6 in vitro. The dephosphorylation of Cdk2 and Cdk6 by PP2C isoforms was inhibited by the binding of cyclins. We found that the PP2C-like activity in HeLa cell extract, partially purified HeLa PP2C alpha and PP2C beta 2 isoforms, and the recombinant PP2Cs exhibited a comparable substrate preference for a phosphothreonine containing substrate, consistent with the conservation of threonine residues at the site of activating phosphorylation in CDKs.

  14. Antagonistic effects of extracts from Artemisia rupetris L. and Leontopodium leontopodioides to CC chemokine receptor 2b (CCR2b).

    PubMed

    Yu, Qin-Wei; Hu, Jie; Wang, Hao; Chen, Xin; Zhao, Fang; Gao, Peng; Yang, Qiu-Bin; Sun, Dan-Dan; Zhang, Lu-Yong; Yan, Ming

    2016-05-01

    The present study was designed to establish a suitable assay to explore CCR2b receptor antagonists from the natural products of Artemisia rupetris and Leontopodium leontopodioides. An aequorin assay was developed as a cell-based assay suitable for 384-well microplate and used for screening CCR2b receptor antagonists from natural products. Through establishing suitable conditions, the assay was shown to be suitable for screening of CCR2b receptor antagonists. Seven compounds were identified in preliminary screening. Five of them showed evident dose-response relationship in secondary screening. The structure-activity relationship study suggested that 7-position hydroxyl group of flavonoids was necessary, a polar group should be introduced on the 3-position, and the substituents on 2-position benzene ring of flavonoids have little influence on the potentency of the inhibition activity on CCR2b receptor. The ortho-position dihydroxyl structure in quinic acid compounds may be important. In conclusion, Compounds HR-1, 5, 7, and AR-20, 35 showed activity as antagonist of CCR2b receptor, which shed lights on the development of novel drugs as CCR2b receptor antagonists for preventing inflammation related diseases.

  15. Fibrillin-2b regulates endocardial morphogenesis in zebrafish.

    PubMed

    Mellman, Katharine; Huisken, Jan; Dinsmore, Colin; Hoppe, Cornelia; Stainier, Didier Y

    2012-12-01

    scotch tape (sco) is a zebrafish cardiac mutant initially proposed to exhibit a reduced amount of cardiac jelly, the extracellular matrix between the myocardial and endocardial layers. We analyzed sco(te382) mutant hearts in detail using both selective plane illumination microscopy (SPIM) and transmission electron microscopy (TEM), and observed a fascinating endocardial defect. Time-lapse SPIM imaging of wild-type and mutant embryos revealed significant and dynamic gaps between endocardial cells during development. Although these gaps close in wild-type animals, they fail to close in the mutants, ultimately leading to a near complete absence of endocardial cells in the atrial chamber by the heart looping stage. TEM analyses confirm the presence of gaps between endocardial cells in sco mutants, allowing the apparent leakage of cardiac jelly into the lumen. High-resolution mapping places the sco(te382) mutation within the fbn2b locus, which encodes the extracellular matrix protein Fibrillin 2b (OMIM ID: 121050). Complementation and further phenotypic analyses confirm that sco is allelic to puff daddy(gw1) (pfd(gw1)), a null mutant in fbn2b, and that sco(te382) is a hypomorphic allele of fbn2b. fbn2b belongs to a family of genes responsible for the assembly of microfibrils throughout development, and is essential for microfibril structural integrity. In sco(te382) mutants, Fbn2b is disabled by a missense mutation in a highly conserved cbEGF domain, which likely interferes with protein folding. Integrating data obtained from microscopy and molecular biology, we posit that this mutation impacts the rigidity of Fbn2b, imparting a structural defect that weakens endocardial adhesion thereby resulting in perforated endocardium.

  16. Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension

    PubMed Central

    Schroer, Alison K.; Chen, Peter; Ryzhova, Larisa M.; Gladson, Santhi; Shay, Sheila; Hutcheson, Joshua D.; Merryman, W. David

    2016-01-01

    Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice. PMID:26863209

  17. Lithium insertion in nanostructured TiO(2)(B) architectures.

    PubMed

    Dylla, Anthony G; Henkelman, Graeme; Stevenson, Keith J

    2013-05-21

    Electric vehicles and grid storage devices have potentialto become feasible alternatives to current technology, but only if scientists can develop energy storage materials that offer high capacity and high rate capabilities. Chemists have studied anatase, rutile, brookite and TiO2(B) (bronze) in both bulk and nanostructured forms as potential Li-ion battery anodes. In most cases, the specific capacity and rate of lithiation and delithiation increases as the materials are nanostructured. Scientists have explained these enhancements in terms of higher surface areas, shorter Li(+) diffusion paths and different surface energies for nanostructured materials allowing for more facile lithiation and delithiation. Of the most studied polymorphs, nanostructured TiO2(B) has the highest capacity with promising high rate capabilities. TiO2(B) is able to accommodate 1 Li(+) per Ti, giving a capacity of 335 mAh/g for nanotubular and nanoparticulate TiO2(B). The TiO2(B) polymorph, discovered in 1980 by Marchand and co-workers, has been the focus of many recent studies regarding high power and high capacity anode materials with potential applications for electric vehicles and grid storage. This is due to the material's stability over multiple cycles, safer lithiation potential relative to graphite, reasonable capacity, high rate capability, nontoxicity, and low cost (Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem., Int. Ed.2008, 47, 2930-2946). One of the most interesting properties of TiO2(B) is that both bulk and nanostructured forms lithiate and delithiate through a surface redox or pseudocapacitive charging mechanism, giving rise to stable high rate charge/discharge capabilities in the case of nanostructured TiO2(B). When other polymorphs of TiO2 are nanostructured, they still mainly intercalate lithium through a bulk diffusion-controlled mechanism. TiO2(B) has a unique open crystal structure and low energy Li

  18. Management of Type 2B von Willebrand Disease during Pregnancy.

    PubMed

    McLaughlin, David; Kerr, Ron

    2017-01-01

    Type 2B von Willebrand disease is a rare bleeding condition resulting in thrombocytopenia and a reduction in large VWF multimers. It usually has an autosomal dominant pattern of inheritance. We report the management of a patient with type 2B von Willebrand disease, whose diagnosis was confirmed by demonstration of a R1306W mutation, through her first pregnancy. The patient's von Willebrand factor (VWF) antigen and VWF ristocetin cofactor levels rose throughout pregnancy, with an associated drop in the platelet count. The patient was successfully managed through labour to a surgical delivery with VWF concentrate, platelet transfusions and tranexamic acid. The patient delivered a male baby who was found to have inherited type 2B von Willebrand disease and had a significant cephalhaematoma at delivery. The baby was managed with VWF concentrate and platelet transfusions and made a full recovery. There is a lack of evidence to guide the best management of pregnant patients with type 2B von Willebrand disease. We adopted a pragmatic management plan, in keeping with other published case reports. To the best of our knowledge, this is the first case report in which the child was found to have inherited type 2B von Willebrand disease and encountered bleeding problems, making this case unique amongst the published literature.

  19. Human GRIN2B variants in neurodevelopmental disorders

    PubMed Central

    Hu, Chun; Chen, Wenjuan; Myers, Scott J.; Yuan, Hongjie; Traynelis, Stephen F.

    2016-01-01

    The development of whole exome/genome sequencing technologies has given rise to an unprecedented volume of data linking patient genomic variability to brain disorder phenotypes. A surprising number of variants have been found in the N-methyl-D-aspartate receptor (NMDAR) gene family, with the GRIN2B gene encoding the GluN2B subunit being implicated in many cases of neurodevelopmental disorders, which are psychiatric conditions originating in childhood and include language, motor, and learning disorders, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), developmental delay, epilepsy, and schizophrenia. The GRIN2B gene plays a crucial role in normal neuronal development and is important for learning and memory. Mutations in human GRIN2B were distributed throughout the entire gene in a number of patients with various neuropsychiatric and developmental disorders. Studies that provide functional analysis of variants are still lacking, however current analysis of de novo variants that segregate with disease cases such as intellectual disability, developmental delay, ASD or epileptic encephalopathies reveal altered NMDAR function. Here, we summarize the current reports of disease-associated variants in GRIN2B from patients with multiple neurodevelopmental disorders, and discuss implications, highlighting the importance of functional analysis and precision medicine therapies. PMID:27818011

  20. Anisotropic superconducting and normal state magnetic properties of single crystals of RNi*2*B*2*C compounds (R = Y, Gd, Dy, Ho, Er, and Tm)

    SciTech Connect

    Cho, Beongki

    1995-09-26

    The interaction of superconductivity with magnetism has been one of the most interesting and important phenomena in solid state physics since the 1950`s when small amounts of magnetic impurities were incorporated in superconductors. The discovery of the magnetic superconductors RNi2B2C (R = rare earth, Y) offers a new system to study this interaction. The wide ranges of superconducting transition (Tc) and antiferromagnetic (AF) ordering temperatures (TN) (0 K ≤ Tc ≤ 16 K, 0 K ≤ TN ≤ 20 K) give a good opportunity to observe a variety of interesting phenomena. Single crystals of high quality with appropriate size and mass are crucial in examining the anisotropic intrinsic properties. Single crystals have been grown successfully by an unusual high temperature flux method and characterized thoroughly by X-ray, electrical transport, magnetization, neutron scattering, scanning electron microscopy, and other measurements.

  1. Altered megakaryocytopoiesis in von Willebrand type 2B disease.

    PubMed

    Nurden, A T; Federici, A B; Nurden, P

    2009-07-01

    Type 2B von Willebrand disease (VWD2B) is caused by gain-of-function amino acid substitutions in the von Willebrand factor (VWF) A1 domain. These allow facilitated binding of mutated VWF to platelet GPIbalpha with prolonged lifetimes of VWF bonds and enhanced ADAMTS-13 cleavage of large VWF multimers. A bleeding rather than prothrombotic syndrome is due to: (i) decreased large VWF multimers in plasma; (ii) limited thrombus formation; and (iii) thrombocytopenia affecting some but not all patients. Accumulating evidence points to an altered megakaryocytopoiesis in VWD2B with the production of enlarged or giant platelets showing an abnormal ultrastructure and, in a cohort of patients, the presence of circulating platelet agglutinates. In fact, evidence from in vitro cultures and marrow aspirates suggests that the upregulated VWF function can lead to abnormal VWF trafficking in megakaryocytes, a modified platelet production with interacting proplatelets, and the presence or even release of platelet agglutinates in the bone marrow.

  2. Flow Simulation of N2B Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungjin; Liou, Meng-Sing

    2012-01-01

    The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the subsonic fixed wing project. In this study, flow fields around the N2B configuration is simulated using a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by response surfaces of the NPSS thermodynamic engine cycle model. The present flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and nacelle-airframe interference. The N2B configuration can be a good test bed for application of multidisciplinary design optimization technology.

  3. Trends and Variations of Ocean Surface Latent Heat Flux: Results from GSSTF2c Data Set

    NASA Technical Reports Server (NTRS)

    Gao, Si; Chiu, Long S.; Shie, Chung-Lin

    2013-01-01

    Trends and variations of Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) version 2c (GSSTF2c) latent heat flux (LHF) are examined. This version of LHF takes account of the correction in Earth incidence angle. The trend of global mean LHF for GSSTF2c is much reduced relative to GSSTF version 2b Set 1 and Set 2 for the same period 1988-2008. Temporal increase of GSSTF2c LHF in the two decades is 11.0%, in which 3.1%, 5.8%, and 2.1% are attributed to the increase in wind, the increase in sea surface saturated air humidity, and the decrease in near-surface air humidity, respectively. The first empirical orthogonal function of LHF is a conventional El Nino Southern Oscillation (ENSO) mode. However, the trends in LHF are independent of conventional ENSO phenomena. After removing ENSO signal, the pattern of LHF trends is primarily determined by the pattern of air-sea humidity difference trends.

  4. Developmental regulation of N-terminal H2B methylation in Drosophila melanogaster

    PubMed Central

    Villar-Garea, Ana; Forne, Ignasi; Vetter, Irene; Kremmer, Elisabeth; Thomae, Andreas; Imhof, Axel

    2012-01-01

    Histone post-translational modifications play an important role in regulating chromatin structure and gene expression in vivo. Extensive studies investigated the post-translational modifications of the core histones H3 and H4 or the linker histone H1. Much less is known on the regulation of H2A and H2B modifications. Here, we show that a major modification of H2B in Drosophila melanogaster is the methylation of the N-terminal proline, which increases during fly development. Experiments performed in cultured cells revealed higher levels of H2B methylation when cells are dense, regardless of their cell cycle distribution. We identified dNTMT (CG1675) as the enzyme responsible for H2B methylation. We also found that the level of N-terminal methylation is regulated by dART8, an arginine methyltransferase that physically interacts with dNTMT and asymmetrically methylates H3R2. Our results demonstrate the existence of a complex containing two methyltransferases enzymes, which negatively influence each other’s activity. PMID:22053083

  5. Persistent Electrochemical Performance in Epitaxial VO2(B).

    PubMed

    Lee, Shinbuhm; Sun, Xiao-Guang; Lubimtsev, Andrew A; Gao, Xiang; Ganesh, Panchapakesan; Ward, Thomas Z; Eres, Gyula; Chisholm, Matthew F; Dai, Sheng; Lee, Ho Nyung

    2017-04-12

    Discovering high-performance energy storage materials is indispensable for renewable energy, electric vehicle performance, and mobile computing. Owing to the open atomic framework and good room temperature conductivity, bronze-phase vanadium dioxide [VO2(B)] has been regarded as a highly promising electrode material for Li ion batteries. However, previous attempts were unsuccessful to show the desired cycling performance and capacity without chemical modification. Here, we show with epitaxial VO2(B) films that one can accomplish the theoretical limit for capacity with persistent charging-discharging cyclability owing to the high structural stability and unique open pathways for Li ion conduction. Atomic-scale characterization by scanning transmission electron microscopy and density functional theory calculations also reveal that the unique open pathways in VO2(B) provide the most stable sites for Li adsorption and diffusion. Thus, this work ultimately demonstrates that VO2(B) is a highly promising energy storage material and has no intrinsic hindrance in achieving superior cyclability with a very high power and capacity in a Li-ion conductor.

  6. In Vitro Functional Characterisation of Cytochrome P450 (CYP) 2C19 Allelic Variants CYP2C19*23 and CYP2C19*24.

    PubMed

    Lau, Pui Shen; Leong, Kenny Voon Gah; Ong, Chin Eng; Dong, Amelia Nathania Hui Min; Pan, Yan

    2017-02-01

    Cytochrome P450 (CYP) 2C19 is essential for the metabolism of clinically used drugs including omeprazole, proguanil, and S-mephenytoin. This hepatic enzyme exhibits genetic polymorphism with inter-individual variability in catalytic activity. This study aimed to characterise the functional consequences of CYP2C19*23 (271 G>C, 991 A>G) and CYP2C19*24 (991 A>G, 1004 G>A) in vitro. Mutations in CYP2C19 cDNA were introduced by site-directed mutagenesis, and the CYP2C19 wild type (WT) as well as variants proteins were subsequently expressed using Escherichia coli cells. Catalytic activities of CYP2C19 WT and those of variants were determined by high performance liquid chromatography-based essay employing S-mephenytoin and omeprazole as probe substrates. Results showed that the level of S-mephenytoin 4'-hydroxylation activity of CYP2C19*23 (V max 111.5 ± 16.0 pmol/min/mg, K m 158.3 ± 88.0 μM) protein relative to CYP2C19 WT (V max 101.6 + 12.4 pmol/min/mg, K m 123.0 ± 19.2 μM) protein had no significant difference. In contrast, the K m of CYP2C19*24 (270.1 ± 57.2 μM) increased significantly as compared to CYP2C19 WT (123.0 ± 19.2 μM) and V max of CYP2C19*24 (23.6 ± 2.6 pmol/min/mg) protein was significantly lower than that of the WT protein (101.6 ± 12.4 pmol/min/mg). In vitro intrinsic clearance (CLint = V max/K m) for CYP2C19*23 protein was 85.4 % of that of CYP2C19 WT protein. The corresponding CLint value for CYP2C19*24 protein reduced to 11.0 % of that of WT protein. These findings suggested that catalytic activity of CYP2C19 was not affected by the corresponding amino acid substitutions in CYP2C19*23 protein; and the reverse was true for CYP2C19*24 protein. When omeprazole was employed as the substrate, K m of CYP2C19*23 (1911 ± 244.73 μM) was at least 100 times higher than that of CYP2C19 WT (18.37 ± 1.64 μM) and V max of CYP2C19*23 (3.87 ± 0.74 pmol/min/mg) dropped to 13.4 % of the CYP2C19 WT (28.84 ± 0.61

  7. Molecular dissection of N2B cardiac titin's extensibility.

    PubMed Central

    Trombitás, K; Freiburg, A; Centner, T; Labeit, S; Granzier, H

    1999-01-01

    Titin is a giant filamentous polypeptide of multidomain construction spanning between the Z- and M-lines of the cardiac muscle sarcomere. Extension of the I-band segment of titin gives rise to a force that underlies part of the diastolic force of cardiac muscle. Titin's force arises from its extensible I-band region, which consists of two main segment types: serially linked immunoglobulin-like domains (tandem Ig segments) interrupted with a proline (P)-, glutamate (E)-, valine (V)-, and lysine (K)-rich segment called PEVK segment. In addition to these segments, the extensible region of cardiac titin also contains a unique 572-residue sequence that is part of the cardiac-specific N2B element. In this work, immunoelectron microscopy was used to study the molecular origin of the in vivo extensibility of the I-band region of cardiac titin. The extensibility of the tandem Ig segments, the PEVK segment, and that of the unique N2B sequence were studied, using novel antibodies against Ig domains that flank these segments. Results show that only the tandem Igs extend at sarcomere lengths (SLs) below approximately 2.0 microm, and that, at longer SLs, the PEVK and the unique sequence extend as well. At the longest SLs that may be reached under physiological conditions ( approximately 2.3 microm), the PEVK segment length is approximately 50 nm whereas the unique N2B sequence is approximately 80 nm long. Thus, the unique sequence provides additional extensibility to cardiac titins and this may eliminate the necessity for unfolding of Ig domains under physiological conditions. In summary, this work provides direct evidence that the three main molecular subdomains of N2B titin are all extensible and that their contribution to extensibility decreases in the order of tandem Igs, unique N2B sequence, and PEVK segment. PMID:10585940

  8. A chimeric virus created by DNA shuffling of the capsid genes of different subtypes of porcine circovirus type 2 (PCV2) in the backbone of the non-pathogenic PCV1 induces protective immunity against the predominant PCV2b and the emerging PCV2d in pigs.

    PubMed

    Matzinger, Shannon R; Opriessnig, Tanja; Xiao, Chao-Ting; Catanzaro, Nicholas; Beach, Nathan M; Slade, David E; Nitzel, Gregory P; Meng, Xiang-Jin

    2016-11-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). Available commercial vaccines all target PCV2a subtype, although the circulating predominant subtype worldwide is PCV2b, and the emerging PCV2d subtype is also increasingly associated with PCVAD. Here we molecularly bred genetically-divergent strains representing PCV2a, PCV2b, PCV2c, PCV2d, and "divergent PCV2a" subtypes by DNA-shuffling of the capsid genes to produce a chimeric virus representing PCV2 global genetic diversity. When placed in the PCV2a backbone, one chimeric virus (PCV2-3cl14) induced higher neutralizing antibody titers against different PCV2 subtypes. Subsequently, a candidate vaccine (PCV1-3cl14) was produced by cloning the shuffled 3cl14 capsid into the backbone of the non-pathogenic PCV1. A vaccine efficacy study revealed that chimeric virus PCV1-3cl14 induces protective immunity against challenge with PCV2b or PCV2d in pigs. The chimeric PCV1-3cl14 virus is a strong candidate for a novel vaccine in pigs infected with variable PCV2 strains.

  9. Inhibition and induction of cytochrome P450 2B1 in rat liver by promazine and chlorpromazine.

    PubMed

    Murray, M

    1992-09-25

    Phenothiazine tranquilizers have been associated with pharmacokinetic drug interactions in man. In this study the in vivo and in vitro effects of the clinically important phenothiazines promazine (PZ) and chlorpromazine (CPZ) on drug oxidations catalysed by specific cytochrome P450 (P450) enzymes were investigated in the rat. In vitro, the two drugs were relatively ineffective inhibitors of constitutive P450 activities, but were inhibitory toward the principal phenobarbital-inducible P450 2B1 and, to a lesser extent, P450 1A1. Administration of PZ and CPZ to male rats did not markedly influence the total microsomal P450 content of the liver. However, the quantitatively important male-specific P450 2C11 was down-regulated by CPZ and concomitant induction of P450 2B1 and associated 7-pentylresorufin O-depentylase activity were noted. A small increase in the activity of microsomal 7-ethylresorufin O-deethylase was also observed following administration of both drugs to rats, suggesting induction of P450 1A1/2. Considered together, it is apparent that the two phenothiazines are preferential inhibitors and inducers of P450 2B1 in rat liver. Drug interactions in humans involving phenothiazines may reflect a combined effect of induction and inhibition processes as well as down-regulation of other P450s, such as that produced by CPZ on P450 2C11.

  10. Evolution of the metazoan protein phosphatase 2C superfamily.

    PubMed

    Stern, Adi; Privman, Eyal; Rasis, Michal; Lavi, Sara; Pupko, Tal

    2007-01-01

    Members of the protein phosphatase 2C (PP2C) superfamily are Mg(2+)/Mn(2+)-dependent serine/threonine phosphatases, which are essential for regulation of cell cycle and stress signaling pathways in cells. In this study, a comprehensive genomic analysis of all available metazoan PP2C sequences was conducted. The phylogeny of PP2C was reconstructed, revealing the existence of 15 vertebrate families which arose following a series of gene duplication events. Relative dating of these duplications showed that they occurred in two active periods: before the divergence of bilaterians and before vertebrate diversification. PP2C families which duplicated during the first period take part in different signaling pathways, whereas PP2C families which diverged in the second period display tissue expression differences yet participate in similar signaling pathways. These differences were found to involve variation of expression in tissues which show higher complexity in vertebrates, such as skeletal muscle and the nervous system. Further analysis was performed with the aim of identifying the functional domains of PP2C. The conservation pattern across the entire PP2C superfamily revealed an extensive domain of more than 50 amino acids which is highly conserved throughout all PP2C members. Several insertion or deletion events were found which may have led to the specialization of each PP2C family.

  11. Further Advances in Optimizing (2-Phenylcyclopropyl)methylamines as Novel Serotonin 2C Agonists: Effects on Hyperlocomotion, Prepulse Inhibition, and Cognition Models.

    PubMed

    Cheng, Jianjun; Giguere, Patrick M; Schmerberg, Claire M; Pogorelov, Vladimir M; Rodriguiz, Ramona M; Huang, Xi-Ping; Zhu, Hu; McCorvy, John D; Wetsel, William C; Roth, Bryan L; Kozikowski, Alan P

    2016-01-28

    A series of novel compounds with two halogen substituents have been designed and synthesized to further optimize the 2-phenylcyclopropylmethylamine scaffold in the quest for drug-like 5-HT2C agonists. Compound (+)-22a was identified as a potent 5-HT2C receptor agonist, with good selectivity against the 5-HT2B and the 5-HT2A receptors. ADMET assays showed that compound (+)-22a possessed desirable properties in terms of its microsomal stability, and CYP and hERG inhibition, along with an excellent brain penetration profile. Evaluation of (+)-22a in animal models of schizophrenia-related behaviors revealed that it had a desirable activity profile, as it reduced d-amphetamine-stimulated hyperlocomotion in the open field test, it restored d-amphetamine-disrupted prepulse inhibition, it induced cognitive improvements in the novel object recognition memory test in NR1-KD animals, and it produced very little catalepsy relative to haloperidol. These data support the further development of (+)-22a as a drug candidate for the treatment of schizophrenia.

  12. Effects of chronic NMDA-NR2b inhibition in the median eminence of the reproductive senescent female rat.

    PubMed

    Kermath, B A; Riha, P D; Sajjad, A; Gore, A C

    2013-10-01

    Gonadotrophin-releasing hormone (GnRH) neurones of the hypothalamic-pituitary-gonadal (HPG) axis drive reproductive function and undergo age-related decreases in activation during the transition to reproductive senescence. Decreased GnRH secretion from the median eminence (ME) partially arises from attenuated glutamatergic signalling via the NMDA receptor (NMDAR) and may be a result of changing NMDAR stoichiometry to favour NR2b over NR2a subunit expression with ageing. We have previously shown that the systemic inhibition of NR2b-containing receptors with ifenprodil, an NR2b-specific antagonist, stimulates parameters of luteinising hormone (used as a proxy for GnRH) release in both young and middle-aged females. In the present study, we chronically administered ifenprodil, an NR2b-specific antagonist, at the site of GnRH terminals in the ME or at GnRH perikarya in the preoptic area, in reproductively senescent middle-aged female rats, aiming to determine whether NR2b antagonism could restore aspects of reproductive functionality. Effects on oestrous cyclicity, serum hormones, and protein expression of GnRH, NR2b and phosphorylated NR2b (Tyr-1472) in the ME were measured. Chronic ifenprodil treatment in the ME (but not the preoptic area) altered oestrous cyclicity by increasing the percentage of days spent in pro-oestrus. This was accompanied by increased GnRH fluorescence intensity in the external ME zone and a greater proportion of GnRH terminals that co-labelled with pNR2b with treatment. We also observed changes in the relationships between protein immunofluorescence, serum hormone levels and other aspects of reproductive physiology in acyclic females, as revealed by bionetwork analysis. Together, these data support the hypothesis that NMDAR-NR2b expression and phosphorylation state play a role in reproductive senescence and highlight the ME as a major player in reproductive ageing.

  13. Photoelectron spectroscopy of the hydroxymethoxide anion, H2C(OH)O-

    NASA Astrophysics Data System (ADS)

    Oliveira, Allan M.; Lehman, Julia H.; McCoy, Anne B.; Lineberger, W. Carl

    2016-09-01

    We report the negative ion photoelectron spectroscopy of the hydroxymethoxide anion, H2C(OH)O-. The photoelectron spectra show that 3.49 eV photodetachment produces two distinct electronic states of the neutral hydroxymethoxy radical (H2C(OH)Oṡ). The H2C(OH)Oṡ ground state (X ˜ 2A) photoelectron spectrum exhibits a vibrational progression consisting primarily of the OCO symmetric and asymmetric stretches, the OCO bend, as well as combination bands involving these modes with other, lower frequency modes. A high-resolution photoelectron spectrum aids in the assignment of several vibrational frequencies of the neutral H2C(OH)Oṡ radical, including an experimental determination of the H2C(OH)Oṡ 2ν12 overtone of the H-OCO torsional vibration as 220(10) cm-1. The electron affinity of H2C(OH)Oṡ is determined to be 2.220(2) eV. The low-lying A ˜ 2A excited state is also observed, with a spectrum that peaks ˜0.8 eV above the X ˜ 2A state origin. The A ˜ 2A state photoelectron spectrum is a broad, partially resolved band. Quantum chemical calculations and photoelectron simulations aid in the interpretation of the photoelectron spectra. In addition, the gas phase acidity of methanediol is calculated to be 366(2) kcal mol-1, which results in an OH bond dissociation energy, D0(H2C(OH)O-H), of 104(2) kcal mol-1, using the experimentally determined electron affinity of the hydroxymethoxy radical.

  14. Mutations of the human interferon alpha-2b (hIFNα-2b) gene in cancer patients receiving radiotherapy

    PubMed Central

    Shahid, Saman; Chaudhry, Muhammad Nawaz; Mahmood, Nasir

    2015-01-01

    This research aimed to find out the impact of ionizing radiations on the hIFNα-2b gene of radiotherapy treated cancer patients. The gene hIFNα-2b synthesizes a protein which is an important anticancerous and antiviral protein. The cancer patients (breast, lung, thyroid, oral and prostate) who were undergoing a radiotherapy treatment were selected. A molecular analysis was performed for DNA isolation and gene amplification through PCR, to identify gene mutations. Further, by bioinformatics tools we concluded that how mutations identified in gene sequences have led to the alterations in the hINFα-2b protein in radiotherapy receiving cancer patients. The 32% mutations in the hINFα-2b gene were identified and all were frameshift mutations. Radiotherapy can impact the immune system and cancer patients may modulate their immunity. Understaning the mechanisms of radiotherapy-elicited immune response may be helpful in the development of those therapeutic interventions that can enhance the efficacy of radiotherapy. PMID:26396921

  15. 76 FR 9515 - Airworthiness Directives; Turbomeca S.A. ARRIEL 2B and 2B1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... on a single engine helicopter. For the case occurring in flight on a single engine helicopter (ARRIEL 2B1 engine), the pilot performed an emergency autorotation, landing the helicopter without further... twin engine applications and recently one on a single engine helicopter. For the case occurring...

  16. The Nucleosome Acidic Patch Regulates the H2B K123 Monoubiquitylation Cascade and Transcription Elongation in Saccharomyces cerevisiae.

    PubMed

    Cucinotta, Christine E; Young, Alexandria N; Klucevsek, Kristin M; Arndt, Karen M

    2015-08-01

    Eukaryotes regulate gene expression and other nuclear processes through the posttranslational modification of histones. In S. cerevisiae, the mono-ubiquitylation of histone H2B on lysine 123 (H2B K123ub) affects nucleosome stability, broadly influences gene expression and other DNA-templated processes, and is a prerequisite for additional conserved histone modifications that are associated with active transcription, namely the methylation of lysine residues in H3. While the enzymes that promote these chromatin marks are known, regions of the nucleosome required for the recruitment of these enzymes are undefined. To identify histone residues required for H2B K123ub, we exploited a functional interaction between the ubiquitin-protein ligase, Rkr1/Ltn1, and H2B K123ub in S. cerevisiae. Specifically, we performed a synthetic lethal screen with cells lacking RKR1 and a comprehensive library of H2A and H2B residue substitutions, and identified H2A residues that are required for H2B K123ub. Many of these residues map to the nucleosome acidic patch. The substitutions in the acidic patch confer varying histone modification defects downstream of H2B K123ub, indicating that this region contributes differentially to multiple histone modifications. Interestingly, substitutions in the acidic patch result in decreased recruitment of H2B K123ub machinery to active genes and defects in transcription elongation and termination. Together, our findings reveal a role for the nucleosome acidic patch in recruitment of histone modification machinery and maintenance of transcriptional integrity.

  17. Functional characterization of CYP2B6 allelic variants in demethylation of antimalarial artemether.

    PubMed

    Honda, Masashi; Muroi, Yuka; Tamaki, Yuichiro; Saigusa, Daisuke; Suzuki, Naoto; Tomioka, Yoshihisa; Matsubara, Yoichi; Oda, Akifumi; Hirasawa, Noriyasu; Hiratsuka, Masahiro

    2011-10-01

    Artemether (AM) is one of the most effective antimalarial drugs. The elimination half-life of AM is very short, and it shows large interindividual variability in pharmacokinetic parameters. The aim of this study was to identify cytochrome P450 (P450) isozymes responsible for the demethylation of AM and to evaluate functional differences between 26 CYP2B6 allelic variants in vitro. Of 14 recombinant P450s examined in this study, CYP2B6 and CYP3A4 were primarily responsible for production of the desmethyl metabolite dihydroartemisinin. The intrinsic clearance (V(max)/K(m)) of CYP2B6 was 6-fold higher than that of CYP3A4. AM demethylation activity was correlated with CYP2B6 protein levels (P = 0.004); however, it was not correlated with CYP3A4 protein levels (P = 0.27) in human liver microsomes. Wild-type CYP2B6.1 and 25 CYP2B6 allelic variants (CYP2B6.2-CYP2B6.21 and CYP2B6.23-CYP2B6.27) were heterologously expressed in COS-7 cells. In vitro analysis revealed no enzymatic activity in 5 variants (CYP2B6.8, CYP2B6.12, CYP2B6.18, CYP2B6.21, and CYP2B6.24), lower activity in 7 variants (CYP2B6.10, CYP2B6.11, CYP2B6.14, CYP2B6.15, CYP2B6.16, CYP2B6.20, and CYP2B6.27), and higher activity in 4 variants (CYP2B6.2, CYP2B6.4, CYP2B6.6, and CYP2B6.19), compared with that of wild-type CYP2B6.1. In kinetic analysis, 3 variants (CYP2B6.2, CYP2B6.4, and CYP2B6.6) exhibited significantly higher V(max), and 3 variants (CYP2B6.14, CYP2B6.20 and CYP2B6.27) exhibited significantly lower V(max) compared with that of CYP2B6.1. This functional analysis of CYP2B6 variants could provide useful information for individualization of antimalarial drug therapy.

  18. The transcriptional regulation of the human CYP2C genes

    PubMed Central

    Chen, Yuping; Goldstein, Joyce A.

    2010-01-01

    In humans, four members of the CYP2C subfamily (CYP2C8, CYP2C9, CYP2C18, and CYP2C19) metabolize more than 20% of all therapeutic drugs as well as a number of endogenous compounds. The CYP2C enzymes are found predominantly in the liver, where they comprise ∼20% of the total cytochrome P450. A variety of xenobiotics such as phenobarbital, rifampicin, and hyperforin have been shown to induce the transcriptional expression of CYP2C genes in primary human hepatocytes and to increase the metabolism of CYP2C substrates in vivo in man. This induction can result in drug-drug interactions, drug tolerance, and therapeutic failure. Several drug-activated nuclear receptors including CAR, PXR, VDR, and GR recognize drug responsive elements within the 5′ flanking promoter region of CYP2C genes to mediate the transcriptional upregulation of these genes in response to xenobiotics and steroids. Other nuclear receptors and transcriptional factors including HNF4α, HNF3γ, C/EBPα and more recently RORs, have been reported to regulate the constitutive expression of CYP2C genes in liver. The maximum transcriptional induction of CYP2C genes appears to be achieved through a coordinative cross-talk between drug responsive nuclear receptors, hepatic factors, and coactivators. The transcriptional regulatory mechanisms of the expression of CYP2C genes in extrahepatic tissues has received less study, but these may be altered by perturbations from pathological conditions such as ischemia as well as some of the receptors mentioned above. PMID:19702536

  19. D1((2)B2g) to D0((2)Au) Fluorescence from the Matrix-Isolated Perylene Cation Following Laser Excitation into the D5(2)B3g) and D2 ((2)B3g) Electronic States

    NASA Technical Reports Server (NTRS)

    Chillier, Xavier D. F.; Stone, Bradley M.; Joblin, Christine; Salama, Farid; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Fluorescence spectra of the perylene cation, pumped by direct laser excitation via the D(sub 2)((2)B(sub 3g)) (left arrow) D(sub 0)((2)A(sub u)) and D(sub 5)(2)B(sub 3g)) (left arrow) D(sub 0)((2)A(sub u)) transitions, are presented. Direct excitation into the D5 or D2 states is followed by rapid non-radiative relaxation to D1 that, in turn,relaxes radiatively. Excitation spectroscopy across the D(sub 2)((2)B(sub 3g)) (left arrow) D(sub 0)((2)A(sub u)) transition near 730 nm shows that site splitting plays little or no role in determining the spectral substructure in the ion spectra. Tentative assignments for ground state vibrational frequencies are made by comparison of spectral intervals with calculated normal mode frequencies.

  20. An update on type 2B von Willebrand disease.

    PubMed

    Mikhail, Sameh; Aldin, Ehab Saad; Streiff, Michael; Zeidan, Amer

    2014-04-01

    Type 2B von Willebrand disease (VWD) accounts for fewer than 5% of all VWD patients. In this disease, mutations in the A1 domain result in increased von Willebrand factor (VWF) binding to platelet GPIbα receptors, causing increased platelet clearance and preferential loss of high molecular weight VWF multimers. Diagnosis is complicated because of significant clinical variations even among patients with identical mutations. Platelet transfusion often provides suboptimal results since transfused platelets may be aggregated by the patients' abnormal VWF. Desmopressin may cause a transient decrease in platelet count that could lead to an increased risk of bleeding. Replacement therapy with factor VIII/VWF concentrates is the most effective approach to prevention and treatment of bleeding in type 2B VWD.

  1. Chlorpropamide 2-hydroxylation is catalysed by CYP2C9 and CYP2C19 in vitro: chlorpropamide disposition is influenced by CYP2C9, but not by CYP2C19 genetic polymorphism

    PubMed Central

    Shon, Ji-Hong; Yoon, Young-Ran; Kim, Min-Jung; Kim, Kyoung-Ah; Lim, Young-Chae; Liu, Kwang-Hyeon; Shin, Dong-Hoon; Lee, Chung Han; Cha, In-June; Shin, Jae-Gook

    2005-01-01

    Aims We evaluated the involvement of cytochrome P450 (CYP) isoforms 2C9 and 2C19 in chlorpropamide 2-hydroxylation in vitro and in chlorpropamide disposition in vivo. Methods To identify CYP isoforms(s) that catalyse 2-hydroxylation of chlorpropamide, the incubation studies were conducted using human liver microsomes and recombinant CYP isoforms. To evaluate whether genetic polymorphisms of CYP2C9 and/or CYP2C19 influence the disposition of chlorpropamide, a single oral dose of 250 mg chlorpropamide was administered to 21 healthy subjects pregenotyped for CYP2C9 and CYP2C19. Results In human liver microsomal incubation studies, the formation of 2-hydroxychlorpropamide (2-OH-chlorpropamide), a major chlorpropamide metabolite in human, has been best described by a one-enzyme model with estimated Km and Vmax of 121.7 ± 19.9 µm and 16.1 ± 5.0 pmol min−1 mg−1 protein, respectively. In incubation studies using human recombinant CYP isoforms, however, 2-OH-chlorpropamide was formed by both CYP2C9 and CYP2C19 with similar intrinsic clearances (CYP2C9 vs. CYP2C19: 0.26 vs. 0.22 µl min−1 nmol−1 protein). Formation of 2-OH-chlorpropamide in human liver microsomes was significantly inhibited by sulfaphenazole, but not by S-mephenytoin, ketoconazole, quinidine, or furafylline. In in vivo clinical trials, eight subjects with the CYP2C9*1/*3 genotype exhibited significantly lower nonrenal clearance [*1/*3 vs.*1/*1: 1.8 ± 0.2 vs. 2.4 ± 0.1 ml h−1 kg−1, P < 0.05; 95% confidence interval (CI) on the difference 0.2, 1.0] and higher metabolic ratios (of chlorpropamide/2-OH-chlorpropamide in urine: *1/*3 vs. *1/*1: 1.01 ± 0.19 vs. 0.56 ± 0.08, P < 0.05; 95% CI on the difference −0.9, −0.1) than did 13 subjects with CYP2C9*1/*1 genotype. In contrast, no differences in chlorpropamide pharmacokinetics were observed for subjects with the CYP2C19 extensive metabolizer vs. poor metabolizer genotypes. Conclusions These results suggest that chlorpropamide disposition is

  2. CYP2C19 polymorphism influences Helicobacter pylori eradication

    PubMed Central

    Kuo, Chao-Hung; Lu, Chien-Yu; Shih, Hsiang-Yao; Liu, Chung-Jung; Wu, Meng-Chieh; Hu, Huang-Ming; Hsu, Wen-Hung; Yu, Fang-Jung; Wu, Deng-Chyang; Kuo, Fu-Chen

    2014-01-01

    The known factors that have contributed to the decline of Helicobacter pylori (H. pylori) eradication rate include antibiotic resistance, poor compliance, high gastric acidity, high bacterial load, and cytochrome P450 2C19 (CYP2C19) polymorphism. Proton pump inhibitor (PPI) is important in the eradication regimen. The principal enzyme implicated in the metabolism of PPIs is CYP2C19. The effects of PPI depend on metabolic enzyme, cytochrome P450 enzymes, and CYP2C19 with genetic differences in the activity of this enzyme (the homozygous EM, heterozygous EM (HetEM), and poor metabolizer). The frequency of the CYP2C19 polymorphism is highly varied among different ethnic populations. The CYP2C19 genotype is a cardinal factor of H. pylori eradication in patients taking omeprazole- based or lansoprazole-based triple therapies. In contrast, the CYP2C19 polymorphism has no significant effect on the rabeprazole-based or esomeprazole-based triple therapies. The efficacy of levofloxacin-based rescue triple therapy might be also affected by the CYP2C19 polymorphism, but CYP2C19 genotypes did not show obvious impact on other levofloxacin-based rescue therapies. Choice of different PPIs and/or increasing doses of PPIs should be individualized based on the pharmacogenetics background of each patient and pharmacological profile of each drug. Other possible factors influencing gastric acid secretion (e.g., IL-1β- 511 polymorphism) would be also under consideration. PMID:25473155

  3. Nrf2b, Novel Zebrafish Paralog of Oxidant-responsive Transcription Factor NF-E2-related Factor 2 (NRF2)*

    PubMed Central

    Timme-Laragy, Alicia R.; Karchner, Sibel I.; Franks, Diana G.; Jenny, Matthew J.; Harbeitner, Rachel C.; Goldstone, Jared V.; McArthur, Andrew G.; Hahn, Mark E.

    2012-01-01

    NF-E2-related factor 2 (NRF2; also called NFE2L2) and related NRF family members regulate antioxidant defenses by activating gene expression via antioxidant response elements (AREs), but their roles in embryonic development are not well understood. We report here that zebrafish (Danio rerio), an important developmental model species, possesses six nrf genes, including duplicated nrf1 and nrf2 genes. We cloned a novel zebrafish nrf2 paralog, nrf2b. The predicted Nrf2b protein sequence shares several domains with the original Nrf2 (now Nrf2a) but lacks the Neh4 transactivation domain. Zebrafish-human comparisons demonstrate conserved synteny involving nrf2 and hox genes, indicating that nrf2a and nrf2b are co-orthologs of human NRF2. nrf2a and nrf2b displayed distinct patterns of expression during embryonic development; nrf2b was more highly expressed at all stages. Embryos in which Nrf2a expression had been knocked down with morpholino oligonucleotides were more sensitive to tert-butylhydroperoxide but not tert-butylhydroquinone, whereas knockdown of Nrf2b did not affect sensitivity of embryos to either chemical. Gene expression profiling by microarray identified a specific role for Nrf2b as a negative regulator of several genes, including p53, cyclin G1, and heme oxygenase 1, in embryos. Nrf2a and Nrf2b exhibited different mechanisms of cross-talk with the Ahr2 signaling pathway. Together, these results demonstrate distinct roles for nrf2a and nrf2b, consistent with subfunction partitioning, and identify a novel negative regulatory role for Nrf2b during development. The identification of zebrafish nrf2 co-orthologs will facilitate new understanding of the multiple roles of NRF2 in protecting vertebrate embryos from oxidative damage. PMID:22174413

  4. Liver-specific deletion of Ppp2cα enhances glucose metabolism and insulin sensitivity.

    PubMed

    Xian, Li; Hou, Siyuan; Huang, Zan; Tang, An; Shi, Peiliang; Wang, Qinghua; Song, Anying; Jiang, Shujun; Lin, Zhaoyu; Guo, Shiying; Gao, Xiang

    2015-04-01

    Protein phosphatase 2A (PP2A) is a key negative regulator of phosphatidylinositol 3-kinase/Akt pathway. Previous study showed that, in the liver, the catalytic subunit of PP2A (PP2Ac) is closely associated with insulin resistance syndrome, which is characterized by glucose intolerance and dyslipidemia. Here we studied the role of liver PP2Ac in glucose metabolism and evaluated whether PP2Ac is a suitable therapeutic target for treating insulin resistance syndrome. Liver-specific Ppp2cα knockout mice (Ppp2cα(loxp/loxp): Alb) exhibited improved glucose homeostasis compared with littermate controls in both normal and high-fat diet conditions, despite no significant changes in body weight and liver weight under chow diet. Ppp2cα(loxp/loxp): Alb mice showed enhanced glycogen deposition, serum triglyceride, cholesterol, low density lipoprotein and high density lipoprotein, activated insulin signaling, decreased expressions of gluconeogenic genes G6P and PEPCK, and lower liver triglyceride. Liver-specific Ppp2cα knockout mice showed enhanced glucose homeostasis and increased insulin sensitivity by activation of insulin signaling through Akt. These findings suggest that inhibition of hepatic Ppp2cα may be a useful strategy for the treatment of insulin resistance syndrome.

  5. Agent-based services for B2B electronic commerce

    NASA Astrophysics Data System (ADS)

    Fong, Elizabeth; Ivezic, Nenad; Rhodes, Tom; Peng, Yun

    2000-12-01

    The potential of agent-based systems has not been realized yet, in part, because of the lack of understanding of how the agent technology supports industrial needs and emerging standards. The area of business-to-business electronic commerce (b2b e-commerce) is one of the most rapidly developing sectors of industry with huge impact on manufacturing practices. In this paper, we investigate the current state of agent technology and the feasibility of applying agent-based computing to b2b e-commerce in the circuit board manufacturing sector. We identify critical tasks and opportunities in the b2b e-commerce area where agent-based services can best be deployed. We describe an implemented agent-based prototype system to facilitate the bidding process for printed circuit board manufacturing and assembly. These activities are taking place within the Internet Commerce for Manufacturing (ICM) project, the NIST- sponsored project working with industry to create an environment where small manufacturers of mechanical and electronic components may participate competitively in virtual enterprises that manufacture printed circuit assemblies.

  6. Alanine Expansions Associated with Congenital Central Hypoventilation Syndrome Impair PHOX2B Homeodomain-mediated Dimerization and Nuclear Import*

    PubMed Central

    Di Lascio, Simona; Belperio, Debora

    2016-01-01

    Heterozygous mutations of the human PHOX2B gene, a key regulator of autonomic nervous system development, lead to congenital central hypoventilation syndrome (CCHS), a neurodevelopmental disorder characterized by a failure in the autonomic control of breathing. Polyalanine expansions in the 20-residues region of the C terminus of PHOX2B are the major mutations responsible for CCHS. Elongation of the alanine stretch in PHOX2B leads to a protein with altered DNA binding, transcriptional activity, and nuclear localization and the possible formation of cytoplasmic aggregates; furthermore, the findings of various studies support the idea that CCHS is not due to a pure loss of function mechanism but also involves a dominant negative effect and/or toxic gain of function for PHOX2B mutations. Because PHOX2B forms homodimers and heterodimers with its paralogue PHOX2A in vitro, we tested the hypothesis that the dominant negative effects of the mutated proteins are due to non-functional interactions with the wild-type protein or PHOX2A using a co-immunoprecipitation assay and the mammalian two-hybrid system. Our findings show that PHOX2B forms homodimers and heterodimerizes weakly with mutated proteins, exclude the direct involvement of the polyalanine tract in dimer formation, and indicate that mutated proteins retain partial ability to form heterodimers with PHOX2A. Moreover, in this study, we investigated the effects of the longest polyalanine expansions on the homeodomain-mediated nuclear import, and our data clearly show that the expanded C terminus interferes with this process. These results provide novel insights into the effects of the alanine tract expansion on PHOX2B folding and activity. PMID:27129232

  7. The Recently Revived and Produced Goddard Satellite-based Surface Turbulent Fluxes Version-2b (GSSTF2b) Dataset

    NASA Astrophysics Data System (ADS)

    Shie, C.; Chiu, L.; Adler, R. F.; Lin, I. I.; Nelkin, E. J.; Ardizzone, J. V.; Gao, S.

    2009-12-01

    Accurate sea surface flux measurements are crucial to understanding the global water and energy cycles. Remote sensing is a valuable tool for global monitoring of these flux measurements. The GSSTF (Goddard Satellite-based Surface Turbulent Fluxes) algorithm was thus developed and applied to remote sensing research and applications. The subsequently produced daily global (1ox1o) GSSTF2 (Version-2) dataset (July 1987-December 2000) has been widely used by the scientific community for global energy and water cycle research, as well as regional and short period data analyses since its official release in 2001. We have recently been funded by the NASA/MEaSUREs Program to resume processing of the GSSTF with an objective of continually producing an up-to-date uniform and reliable dataset of sea surface turbulent fluxes, derived from improved input remote sensing data and model reanalysis, which would continue to be useful for global energy and water flux research and applications. The daily global (1ox1o) GSSTF2b (Version-2b) dataset (July 1987-December 2007 so far) has been produced very recently using improved input datasets. The upgraded input datasets used for the GSSTF2b production consist of the Special Sensor Microwave Imager (SSM/I) Version-6 (V6) product (including brightness temperature [Tb], total precipitable water [W], and wind speed [U]) and the NCEP/DOE Reanalysis-2 (R2) product (including sea skin temperature [SKT], 2-meter air temperature [T2m], and sea level pressure [SLP]). The input datasets previously used for the GSSTF2 production were the SSM/I Version-4 (V4) product and the NCEP Reanalysis-1 (R1) product. These newly produced GSSTF2b turbulent fluxes, along with their counterparts from GSSTF2, have been validated using available sounding observations obtained from five field experiments. The GSSTF2b product has been found to generally agree better with the sounding observations than its counterpart (GSSTF2) does in all the three flux components

  8. MOLECULAR CHARACTERIZATION OF CYP2B6 SUBSTRATES

    PubMed Central

    Ekins, Sean; Iyer, Manisha; Krasowski, Matthew D.; Kharasch, Evan D.

    2008-01-01

    CYP2B6 has not been as fully characterized at the molecular level as other members of the human cytochrome P450 family. As more widely used in vitro probes for characterizing the involvement of this enzyme in the metabolism of xenobiotics have become available, the number of molecules identified as CYP2B6 substrates has increased. In this study we have analyzed the available kinetic data generated by multiple laboratories with human recombinant expressed CYP2B6 and along with calculated molecular properties derived from the ChemSpider database, we have determined the molecular features that appear to be important for CYP2B6 substrates. In addition we have applied 2D and 3D QSAR methods to generate predictive pharmacophore and 2D models. For 28 molecules with Km data, the molecular weight (mean ± SD) is 253.78±74.03, ACD/logP is 2.68±1.51, LogDpH 5.5 is 1.51±1.43, LogDpH 7.4 is 2.02±1.25, hydrogen bond donor (HBD) count is 0.57 ±0.57, hydrogen bond acceptor (HBA) count is 2.57±1.37, rotatable bonds is 3.50±2.71 and total polar surface area (TPSA) is 27.63±19.42. A second set of 15 molecules without Km data possessed similar mean molecular property values. These properties are comparable to those of a set of 21 molecules used in a previous pharmacophore modeling study (Ekins et al., J Pharmacol Exp Ther 288 (1), 21–29, 1999). Only the LogD and HBD values were statistically significantly different between these different datasets. We have shown that CYP2B6 substrates are generally small hydrophobic molecules that are frequently central nervous system active, which may be important for drug discovery research. PMID:18537573

  9. Medial parabrachial nucleus neurons modulate d-fenfluramine-induced anorexia through 5HT2C receptors.

    PubMed

    Trifunovic, Radmila; Reilly, Steve

    2006-01-05

    We previously reported that lesions of the medial parabrachial nucleus (PBN) enhanced d-fenfluramine (DFEN)-induced anorexia; a finding that suggests these lesions may potentiate the release of serotonin (5HT) or increase the postsynaptic action of 5HT. In the present study, we used SB 206553 (a 5HT2B/2C receptor antagonist) or m-CPP (a 5HT2C/1B receptor agonist) in a standard behavioral procedure (deprivation-induced feeding) to further explore the role of the medial PBN in drug-induced anorexia. In Experiment 1, DFEN (0 or 1.0 mg/kg) was given alone or in combination with SB 206553 (2.0 or 5.0 mg/kg). In Experiment 2, we investigated the food-suppressive effects of m-CPP (0.5, 1.0 or 2.0 mg/kg). The results of Experiment 1 show that SB 206553, while having no influence on the performance of control subjects, attenuated (2.0 mg/kg) or abolished (5 mg/kg) the potentiating effect of the lesions on DFEN-induced anorexia. In Experiment 2, m-CPP induced a suppression of food intake in nonlesioned animals that was significantly potentiated in rats with medial PBN lesions. These results are consistent with the hypothesis that medial PBN neurons mediate anorexia through 5HT2C receptors.

  10. Further Characterization of the Metabolism of Desloratadine and Its Cytochrome P450 and UDP-glucuronosyltransferase Inhibition Potential: Identification of Desloratadine as a Relatively Selective UGT2B10 Inhibitor.

    PubMed

    Kazmi, Faraz; Yerino, Phyllis; Barbara, Joanna E; Parkinson, Andrew

    2015-09-01

    Desloratadine (Clarinex), the major active metabolite of loratadine (Claritin), is a nonsedating antihistamine used for the treatment of seasonal allergies and hives. Previously we reported that the formation of 3-hydroxydesloratadine, the major human metabolite of desloratadine, involves three sequential reactions, namely N-glucuronidation by UGT2B10 followed by 3-hydroxylation by CYP2C8 followed by deconjugation (rapid, nonenzymatic hydrolysis of the N-glucuronide). In this study we assessed the perpetrator potential of desloratadine based on in vitro studies of its inhibitory effects on cytochrome P450 and UDP-glucuronosyltransferase (UGT) enzymes in human liver microsomes (HLM). Desloratadine (10 µM) caused no inhibition (<15%) of CYP1A2, CYP2C8, CYP2C9, or CYP2C19 and weak inhibition (32-48%) of CYP2B6, CYP2D6, and CYP3A4/5. In cryopreserved human hepatocytes (CHH), which can form the CYP2C8 substrate desloratadine N-glucuronide, desloratadine did not inhibit the CYP2C8-dependent metabolism of paclitaxel or amodiaquine. Assessment of UGT inhibition identified desloratadine as a potent and relatively selective competitive inhibitor of UGT2B10 (Ki value of 1.3 μM). Chemical inhibition of UGT enzymes in HLM demonstrated that nicotine (UGT2B10 inhibitor) but not hecogenin (UGT1A4 inhibitor) completely inhibited the conversion of desloratadine (1 µM) to 3-hydroxydesloratadine in HLM fortified with both NADPH and UDP-glucuronic acid. 3-Hydroxydesloratadine formation correlated well with levomedetomidine glucuronidation (UGT2B10 marker activity) with a panel of individual CHH (r(2) = 0.72). Overall, the results of this study confirm the role of UGT2B10 in 3-hydroxydesloratadine formation and identify desloratadine as a relatively selective in vitro inhibitor of UGT2B10.

  11. The ISS 2B PVTCS Ammonia Leak: An Operational History

    NASA Technical Reports Server (NTRS)

    Vareha, Anthony

    2014-01-01

    In 2006, the Photovoltaic Thermal Control System (PVTCS) for the International Space Station's 2B power channel began leaking ammonia at a rate of approximately 1.5lbm/year (out of a starting approximately 53lbm system ammonia mass). Initially, the operations strategy was "feed the leak," a strategy successfully put into action via Extra Vehicular Activity during the STS-134 mission. During this mission the system was topped off with ammonia piped over from a separate thermal control system. This recharge was to have allowed for continued power channel operation into 2014 or 2015, at which point another EVA would have been required. Without these periodic EVAs to refill the 2B coolant system, the channel would eventually leak enough fluid as to risk pump cavitation and system failure, resulting in the loss of the 2B power channel - the most critical of the Space Station's 8 power channels. In mid-2012, the leak rate increased to approximately 5lbm/year. Once discovered, an EVA was planned and executed within a 5 week timeframe to drastically alter the architecture of the PVTCS via connection to a dormant thermal control system not intended to be utilized as anything other than spare components. The purpose of this rerouting of the TCS was to increase system volume and to isolate the photovoltaic radiator, thought to be the likely leak source. This EVA was successfully executed on November 1st, 2012 and left the 2B PVTCS in a configuration where the system was now being adequately cooled via a totally different radiator than what the system was designed to utilize. Unfortunately, data monitoring over the next several months showed that the isolated radiator was not leaking, and the system itself continued to leak steadily until May 9th, 2013. It was on this day that the ISS crew noticed the visible presence of ammonia crystals escaping from the 2B channel's truss segment, signifying a rapid acceleration of the leak from 5lbm/year to 5lbm/day. Within 48 hours of the

  12. Structural, electronic and bonding properties of antifluorite crystals of Be2C, BeMgC and Mg2C

    NASA Astrophysics Data System (ADS)

    Joshi, K. B.; Trivedi, D. K.; Paliwal, U.; Galav, K. L.

    2016-05-01

    Structure prediction methods are coupled with the first-principles linear combination of atomic orbitals method to propose the crystal parameters and bulk modulus of antifluorite BeMgC. The binary antifluorite methanides Be2C, Mg2C are also studied. Electronic structure calculations and Mulliken population analyses (MPA) are performed to unravel bands dispersion and bonding properties. The values of the indirect band gap Γ → X for Be2C, Mg2C and BeMgC, in order, are 2.90, 2.05 and 1.86 eV. The calculated energies of a few occupied bands in Be2C are in very good agreement with the available experimental data. The application of pressure causes change in the band gap of three carbides. The Γ-Γ, Γ-X and Γ-K band gaps exhibit different trends with pressure. Effective charges on the basis of MPA in the three compounds are {(B{e}+1.095)}2{C}-2.19, {(M{g}+1.615)}2{C}-3.23 and B{e}+1.12M{g}+1.682{C}-2.802. It signifies covalent bonding in Be2C, ionic in Mg2C, and intermediate in the BeMgC.

  13. Oral application of freeze-dried yeast particles expressing the PCV2b Cap protein on their surface induce protection to subsequent PCV2b challenge in vivo

    PubMed Central

    Patterson, Robert; Eley, Thomas; Browne, Christopher; Martineau, Henny M.; Werling, Dirk

    2015-01-01

    Porcine circovirus type 2 (PCV2) is now endemic in every major pig producing country, causing PCV-associated disease (PCVAD), linked with large scale economic losses. Current vaccination strategies are based on the capsid protein of the virus and are reasonably successful in preventing PCVAD but fail to induce sterile immunity. Additionally, vaccinating whole herds is expensive and time consuming. In the present study a “proof of concept” vaccine trial was employed to test the effectiveness of powdered freeze-dried recombinant Saccharomyces cerevisiae yeast stably expressing the capsid protein of PCV2b on its surface as an orally applied vaccine. PCV2-free pigs were given 3 doses of vaccine or left un-vaccinated before challenge with a defined PCV2b strain. Rectal temperatures were measured and serum and faeces samples were collected weekly. At the end of the study, pigs were euthanized, tissue samples taken and tested for PCV2b load by qPCR and immunohistochemistry. The peak of viraemia in sera and faeces of unvaccinated pigs was higher than that of vaccinated pigs. Additionally more sIgA was found in faeces of vaccinated pigs than unvaccinated. Vaccination was associated with lower serum concentrations of TNFα and IL-1β but higher concentrations of IFNα and IFNγ in comparison to the unvaccinated animals. At the end of the trial, a higher viral load was found in several lymphatic tissues and the ileum of unvaccinated pigs in comparison to vaccinated pigs. The difference between groups was especially apparent in the ileum. The results presented here demonstrate a possible use for recombinant S. cerevisiae expressing viral proteins as an oral vaccine against PCV2. A powdered freeze-dried recombinant S. cerevisiae used as an oral vaccine could be mixed with feed and may offer a cheap and less labour intensive alternative to inoculation with the additional advantage that no cooling chain would be required for vaccine transport and storage. PMID:26476879

  14. Oral application of freeze-dried yeast particles expressing the PCV2b Cap protein on their surface induce protection to subsequent PCV2b challenge in vivo.

    PubMed

    Patterson, Robert; Eley, Thomas; Browne, Christopher; Martineau, Henny M; Werling, Dirk

    2015-11-17

    Porcine circovirus type 2 (PCV2) is now endemic in every major pig producing country, causing PCV-associated disease (PCVAD), linked with large scale economic losses. Current vaccination strategies are based on the capsid protein of the virus and are reasonably successful in preventing PCVAD but fail to induce sterile immunity. Additionally, vaccinating whole herds is expensive and time consuming. In the present study a "proof of concept" vaccine trial was employed to test the effectiveness of powdered freeze-dried recombinant Saccharomyces cerevisiae yeast stably expressing the capsid protein of PCV2b on its surface as an orally applied vaccine. PCV2-free pigs were given 3 doses of vaccine or left un-vaccinated before challenge with a defined PCV2b strain. Rectal temperatures were measured and serum and faeces samples were collected weekly. At the end of the study, pigs were euthanized, tissue samples taken and tested for PCV2b load by qPCR and immunohistochemistry. The peak of viraemia in sera and faeces of unvaccinated pigs was higher than that of vaccinated pigs. Additionally more sIgA was found in faeces of vaccinated pigs than unvaccinated. Vaccination was associated with lower serum concentrations of TNFα and IL-1β but higher concentrations of IFNα and IFNγ in comparison to the unvaccinated animals. At the end of the trial, a higher viral load was found in several lymphatic tissues and the ileum of unvaccinated pigs in comparison to vaccinated pigs. The difference between groups was especially apparent in the ileum. The results presented here demonstrate a possible use for recombinant S. cerevisiae expressing viral proteins as an oral vaccine against PCV2. A powdered freeze-dried recombinant S. cerevisiae used as an oral vaccine could be mixed with feed and may offer a cheap and less labour intensive alternative to inoculation with the additional advantage that no cooling chain would be required for vaccine transport and storage.

  15. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome.

    PubMed

    Ferreira, Joana S; Schmidt, Jeannette; Rio, Pedro; Águas, Rodolfo; Rooyakkers, Amanda; Li, Ka Wan; Smit, August B; Craig, Ann Marie; Carvalho, Ana Luisa

    2015-06-03

    NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex, GluN1 is combined primarily with GluN2A and GluN2B, which are differentially expressed during development and confer distinct molecular and physiological properties to NMDA receptors. The contribution of each subunit to the synaptic traffic of NMDA receptors and therefore to their role during development and in synaptic plasticity is still controversial. We report a critical role for the GluN2B subunit in regulating NMDA receptor synaptic targeting. In the absence of GluN2B, the synaptic levels of AMPA receptors are increased and accompanied by decreased constitutive endocytosis of GluA1-AMPA receptor. We used quantitative proteomic analysis to identify changes in the composition of postsynaptic densities from GluN2B(-/-) mouse primary neuronal cultures and found altered levels of several ubiquitin proteasome system components, in particular decreased levels of proteasome subunits. Enhancing the proteasome activity with a novel proteasome activator restored the synaptic levels of AMPA receptors in GluN2B(-/-) neurons and their endocytosis, revealing that GluN2B-mediated anchoring of the synaptic proteasome is responsible for fine tuning AMPA receptor synaptic levels under basal conditions.

  16. The role of NR2B containing NMDA receptor in place preference conditioned with morphine and natural reinforcers in rats.

    PubMed

    Ma, Yao-Ying; Guo, Chang-Yong; Yu, Peng; Lee, David Yue-Wei; Han, Ji-Sheng; Cui, Cai-Lian

    2006-08-01

    It has been reported that N-methyl-D-aspartate (NMDA) receptor is implicated in drug addiction and antagonists of the NMDA receptor complex can inhibit the development and expression of conditioned place preference (CPP) induced by several addictive drugs, implying that this class of compounds might be considered as candidate for the treatment of substance abuse. To explore this possibility, it is important to evaluate whether the inhibitory effect of NMDA receptor antagonists would be confined to behaviors produced by drugs of abuse only, but not by natural reinforcers. According to the quantitative changes of NMDA receptor subunits, including NR1, NR2A, and NR2B, induced by diverse types of reinforcers, we chose NR2B subunit as the target of research. Experimental results showed that (1) an augmented expression of NR2B subunit was revealed by Western blotting in the nucleus accumbens (NAc) and the hippocampus in rats with CPP induced by morphine, but not by natural rewards such as food, novel environment and social interaction. (2) Ifenprodil, an antagonist highly selective for NR2B subunit of the NMDA receptor, produced a dose-dependent reduction in CPP induced by morphine and novel environment, but not that by food consumption and social interaction. Taking together, these findings suggested that NR2B containing NMDA receptor may be more involved with morphine reward rather than natural rewards, and that antagonism of NR2B may have a potential for the treatment of morphine abuse.

  17. The A2B adenosine receptor promotes Th17 differentiation via stimulation of dendritic cell IL-6.

    PubMed

    Wilson, Jeffrey M; Kurtz, Courtney C; Black, Steven G; Ross, William G; Alam, Mohammed S; Linden, Joel; Ernst, Peter B

    2011-06-15

    Adenosine is an endogenous metabolite produced during hypoxia or inflammation. Previously implicated as an anti-inflammatory mediator in CD4(+) T cell regulation, we report that adenosine acts via dendritic cell (DC) A(2B) adenosine receptor (A(2B)AR) to promote the development of Th17 cells. Mouse naive CD4(+) T cells cocultured with DCs in the presence of adenosine or the stable adenosine mimetic 5'-(N-ethylcarboximado) adenosine resulted in the differentiation of IL-17- and IL-22-secreting cells and elevation of mRNA that encode signature Th17-associated molecules, such as IL-23R and RORγt. The observed response was similar when DCs were generated from bone marrow or isolated from small intestine lamina propria. Experiments using adenosine receptor antagonists and cells from A(2B)AR(-/-) or A(2A)AR(-/-)/A(2B)AR(-/-) mice indicated that the DC A(2B)AR promoted the effect. IL-6, stimulated in a cAMP-independent manner, is an important mediator in this pathway. Hence, in addition to previously noted direct effects of adenosine receptors on regulatory T cell development and function, these data indicated that adenosine also acts indirectly to modulate CD4(+) T cell differentiation and suggested a mechanism for putative proinflammatory effects of A(2B)AR.

  18. Structural, mechanical, and electronic properties of Rh2B and RhB2: first-principles calculations

    PubMed Central

    Chu, Binhua; Li, Da; Tian, Fubo; Duan, Defang; Sha, Xiaojing; Lv, Yunzhou; Zhang, Huadi; Liu, Bingbing; Cui, Tian

    2015-01-01

    The crystal structures of Rh2B and RhB2 at ambient pressure were explored by using the evolutionary methodology. A monoclinic P21/m structure of Rh2B was predicted and donated as Rh2B-I, which is energetically much superior to the previously experimentally proposed Pnma structure. At the pressure of about 39 GPa, the P21/m phase of Rh2B transforms to the C2/m phases. For RhB2, a new monoclinic P21/m phase was predicted, named as RhB2-II, it has the same structure type with Rh2B. Rh2B-I and RhB2-II are both mechanically and dynamically stable. They are potential low compressible materials. The analysis of electronic density of states and chemical bonding indicates that the formation of strong and directional covalent B-B and Rh-B bonds in these compounds contribute greatly to their stabilities and high incompressibility. PMID:26123399

  19. 27 CFR 21.34 - Formula No. 2-C.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Formula No. 2-C. 21.34... OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specially Denatured Spirits Formulas and Authorized Uses § 21.34 Formula No. 2-C. (a) Formula. To every 100 gallons of alcohol add:...

  20. 27 CFR 21.34 - Formula No. 2-C.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Formula No. 2-C. 21.34... OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specially Denatured Spirits Formulas and Authorized Uses § 21.34 Formula No. 2-C. (a) Formula. To every 100 gallons of alcohol add:...

  1. 27 CFR 21.34 - Formula No. 2-C.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Formula No. 2-C. 21.34... OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specially Denatured Spirits Formulas and Authorized Uses § 21.34 Formula No. 2-C. (a) Formula. To every 100 gallons of alcohol add:...

  2. 27 CFR 21.34 - Formula No. 2-C.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Formula No. 2-C. 21.34... OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specially Denatured Spirits Formulas and Authorized Uses § 21.34 Formula No. 2-C. (a) Formula. To every 100 gallons of alcohol add:...

  3. Serotonin 2B Receptor (5-HT2B R) Signals through Prostacyclin and PPAR-ß/δ in Osteoblasts

    PubMed Central

    Chabbi-Achengli, Yasmine; Launay, Jean-Marie; Maroteaux, Luc; de Vernejoul, Marie Christine; Collet, Corinne

    2013-01-01

    Osteoporosis is due to an imbalance between decreased bone formation by osteoblasts and increased resorption by osteoclasts. Deciphering factors controlling bone formation is therefore of utmost importance for the understanding and the treatment of osteoporosis. Our previous in vivo results showed that bone formation is reduced in the absence of the serotonin receptor 5-HT2B, causing impaired osteoblast proliferation, recruitment, and matrix mineralization. In this study, we investigated the signaling pathways responsible for the osteoblast defect in 5-HT2BR−/− mice. Notably, we investigated the phospholipase A2 pathway and synthesis of eicosanoids in 5-HT2BR−/− compared to wild type (WT) osteoblasts. Compared to control osteoblasts, the lack of 5-HT2B receptors was only associated with a 10-fold over-production of prostacyclin (PGI2). Also, a specific prostacyclin synthase inhibitor (U51605) rescued totally osteoblast aggregation and matrix mineralization in the 5-HT2BR−/− osteoblasts without having any effect on WT osteoblasts. Prostacyclin is the endogenous ligand of the nuclear peroxisome proliferator activated receptor ß/δ (PPAR-ß/δ), and its inhibition in 5-HT2BR−/− cells rescued totally the alkaline phosphatase and osteopontin mRNA levels, cell-cell adhesion, and matrix mineralization. We conclude that the absence of 5-HT2B receptors leads to the overproduction of prostacyclin, inducing reduced osteoblast differentiation due to PPAR-ß/δ -dependent target regulation and defective cell-cell adhesion and matrix mineralization. This study thus reveals a previously unrecognized cell autonomous osteoblast defect in the absence of 5-HT2BR and highlights a new pathway linking 5-HT2B receptors and nuclear PPAR- ß/δ via prostacyclin. PMID:24069449

  4. Interindividual variability of CYP2C19-catalyzed drug metabolism due to differences in gene diplotypes and cytochrome P450 oxidoreductase content.

    PubMed

    Shirasaka, Y; Chaudhry, A S; McDonald, M; Prasad, B; Wong, T; Calamia, J C; Fohner, A; Thornton, T A; Isoherranen, N; Unadkat, J D; Rettie, A E; Schuetz, E G; Thummel, K E

    2016-08-01

    Large interindividual variability has been observed in the metabolism of CYP2C19 substrates in vivo. The study aimed to evaluate sources of this variability in CYP2C19 activity, focusing on CYP2C19 diplotypes and the cytochrome P450 oxidoreductase (POR). CYP2C19 gene analysis was carried out on 347 human liver samples. CYP2C19 activity assayed using human liver microsomes confirmed a significant a priori predicted rank order for (S)-mephenytoin hydroxylase activity of CYP2C19*17/*17 > *1B/*17 > *1B/*1B > *2A/*17 > *1B/*2A > *2A/*2A diplotypes. In a multivariate analysis, the CYP2C19*2A allele and POR protein content were associated with CYP2C19 activity. Further analysis indicated a strong effect of the CYP2C19*2A, but not the *17, allele on both metabolic steps in the conversion of clopidogrel to its active metabolite. The present study demonstrates that interindividual variability in CYP2C19 activity is due to differences in both CYP2C19 protein content associated with gene diplotypes and the POR concentration.The Pharmacogenomics Journal advance online publication, 1 September 2015; doi:10.1038/tpj.2015.58.

  5. Interindividual variability of CYP2C19-catalyzed drug metabolism due to differences in gene diplotypes and cytochrome P450 oxidoreductase content

    PubMed Central

    Shirasaka, Y; Chaudhry, A S; McDonald, M; Prasad, B; Wong, T; Calamia, J C; Fohner, A; Thornton, T A; Isoherranen, N; Unadkat, J D; Rettie, A E; Schuetz, E G; Thummel, K E

    2016-01-01

    Large interindividual variability has been observed in the metabolism of CYP2C19 substrates in vivo. The study aimed to evaluate sources of this variability in CYP2C19 activity, focusing on CYP2C19 diplotypes and the cytochrome P450 oxidoreductase (POR). CYP2C19 gene analysis was carried out on 347 human liver samples. CYP2C19 activity assayed using human liver microsomes confirmed a significant a priori predicted rank order for (S)-mephenytoin hydroxylase activity of CYP2C19*17/*17 > *1B/*17 > *1B/*1B > *2A/*17 > *1B/*2A > *2A/*2A diplotypes. In a multivariate analysis, the CYP2C19*2A allele and POR protein content were associated with CYP2C19 activity. Further analysis indicated a strong effect of the CYP2C19*2A, but not the *17, allele on both metabolic steps in the conversion of clopidogrel to its active metabolite. The present study demonstrates that interindividual variability in CYP2C19 activity is due to differences in both CYP2C19 protein content associated with gene diplotypes and the POR concentration. PMID:26323597

  6. Immunogenicity of a West Nile virus DIII-cholera toxin A2/B chimera after intranasal delivery.

    PubMed

    Tinker, Juliette K; Yan, Jie; Knippel, Reece J; Panayiotou, Panos; Cornell, Kenneth A

    2014-04-22

    West Nile virus (WNV) causes potentially fatal neuroinvasive disease and persists at endemic levels in many parts of the world. Despite advances in our understanding of WNV pathogenesis, there remains a significant need for a human vaccine. The domain III (DIII) region of the WNV envelope protein contains epitopes that are the target of neutralizing antibodies. We have constructed a chimeric fusion of the non-toxic cholera toxin (CT) CTA2/B domains to DIII for investigation as a novel mucosally-delivered WNV vaccine. Purification and assembly of the chimera, as well as receptor-binding and antigen delivery, were verified by western blot, GM1 ELISA and confocal microscopy. Groups of BALB/c mice were immunized intranasally with DIII-CTA2/B, DIII, DIII mixed with CTA2/B, or CTA2/B control, and boosted at 10 days. Analysis of serum IgG after 14 and 45 days revealed that mucosal immunization with DIII-CTA2/B induced significant DIII-specific humoral immunity and drove isotype switching to IgG2a. The DIII-CTA2/B chimera also induced antigen-specific IgM and IgA responses. Bactericidal assays indicate that the DIII-CTA2/B immunized mice produced DIII-specific antibodies that can trigger complement-mediated killing. A dose escalation resulted in increased DIII-specific serum IgG titers on day 45. DIII antigen alone, in the absence of adjuvant, also induced significant systemic responses after intranasal delivery. Our results indicate that the DIII-CTA2/B chimera is immunogenic after intranasal delivery and merits further investigation as a novel WNV vaccine candidate.