Science.gov

Sample records for 2a 2b 3a

  1. 76 FR 477 - Airworthiness Directives; Bombardier, Inc. Model CL-600-2A12 (CL-601) and CL-600-2B16 (CL-601-3A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ...: Ice and Rain Protection and Pneumatic, respectively. Reason (e) The mandatory continuing airworthiness... applicable Time Limits/ Maintenance Checks manual, whichever occurs first. CL-600-2B16 (CL-604 Variants)...

  2. Effects of anthocyanidins and anthocyanins on the expression and catalytic activities of CYP2A6, CYP2B6, CYP2C9, and CYP3A4 in primary human hepatocytes and human liver microsomes.

    PubMed

    Srovnalova, Alzbeta; Svecarova, Michaela; Zapletalova, Michaela Kopecna; Anzenbacher, Pavel; Bachleda, Petr; Anzenbacherova, Eva; Dvorak, Zdenek

    2014-01-22

    Anthocyanidins and anthocyanins are pharmacologically active constituents of various berry fruits, such as blueberry and cranberry. These compounds are also contained in massively used nutritional supplements based on extracts or dry matter from berry fruits. The current study evaluated the effects of anthocyanidins and anthocyanins on the expression and catalytic activity of major drug-metabolizing enzymes CYP2C9, CYP2A6, CYP2B6, and CYP3A4 in primary cultures of human hepatocytes and human liver microsomes. Expression of mRNA was quantified by qRT-PCR. Expression of proteins was evaluated by Western blotting and immunochemiluminescence. The catalytic activity of CYP enzymes was measured by HPLC using specific enzyme substrates. Tested anthocyanidins (6) and anthocyanins (21) did not induce the expression of mRNA and protein of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 genes in human hepatocytes. Catalytic activities of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 enzymes were inhibited by all anthocyanidins to different extents (e.g., delphinidin inhibits CYP3A4 by >90% at 100 μM with IC50 = 32 μM). Of 21 anthocyanins tested, only cyanidin-3-O-rhamnoside (CYP3A4 by >75% at 100 μM with IC50 = 44 μM) and two glycosides of delphinidin significantly inhibited examined cytochromes P450. It may be concluded that in the ranges of common ingestion of either food or dietary supplement an induction or significant inhibition of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 activity is most probably not expected.

  3. Rf2a and rf2b transcription factors

    DOEpatents

    Beachy, Roger N.; Petruccelli, Silvana; Dai, Shunhong

    2007-10-02

    A method of activating the rice tungro bacilliform virus (RTBV) promoter in vivo is disclosed. The RTBV promoter is activated by exposure to at least one protein selected from the group consisting of Rf2a and Rf2b.

  4. Optical Isomers of Atorvastatin, Rosuvastatin and Fluvastatin Enantiospecifically Activate Pregnane X Receptor PXR and Induce CYP2A6, CYP2B6 and CYP3A4 in Human Hepatocytes.

    PubMed

    Korhonova, Martina; Doricakova, Aneta; Dvorak, Zdenek

    2015-01-01

    Atorvastatin, fluvastatin and rosuvastatin are drugs used for treatment of hypercholesterolemia. They cause numerous drug-drug interactions by inhibiting and inducing drug-metabolizing cytochromes P450. These three statins exist in four optical forms, but they are currently used as enantiopure drugs, i.e., only one single enantiomer. There are numerous evidences that efficacy, adverse effects and toxicity of drugs may be enantiospecific. Therefore, we investigated the effects of optical isomers of atorvastatin, fluvastatin and rosuvastatin on the expression of drug-metabolizing P450s in primary human hepatocytes, using western blots and RT-PCR for measurement of proteins and mRNAs, respectively. The activity of P450 transcriptional regulators, including pregnane X receptor (PXR), aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR), was assessed by gene reporter assays and EMSA. Transcriptional activity of AhR was not influenced by any statin tested. Basal transcriptional activity of GR was not affected by tested statins, but dexamethasone-inducible activity of GR was dose-dependently and enantioselectively inhibited by fluvastatin. Basal and ligand-inducible transcriptional activity of PXR was dose-dependently influenced by all tested statins, and the potency and efficacy between individual optical isomers varied depending on statin and optical isomer. The expression of CYP1A1 and CYP1A2 in human hepatocytes was not influenced by tested statins. All statins induced CYP2A6, CYP2B6 and CYP3A4, and the effects on CYP2C9 were rather modulatory. The effects varied between statins and enantiomers and induction potency decreased in order: atorvastatin (RR>RS = SR>SS) > fluvastatin (SR>RS = SS>RR) > rosuvastatin (only RS active). The data presented here might be of toxicological and clinical importance.

  5. INSAT-2A and 2B development mechanisms

    NASA Technical Reports Server (NTRS)

    Sathyanarayan, M. N.; Rao, M. Nageswara; Nataraju, B. S.; Viswanatha, N.; Chary, M. Laxmana; Balan, K. S.; Murthy, V. Sridhara; Aller, Raju; Kumar, H. N. Suresha

    1994-01-01

    The Indian National Satellite (INSAT) 2A and 2B have deployment mechanisms for deploying the solar array, two C/S band antenna reflectors and a coilable lattice boom with sail. The mechanisms have worked flawlessly on both satellites. The configuration details, precautions taken during the design phase, the test philosophy, and some of the critical analysis activities are discussed.

  6. Phase III Randomized Study of 4 Weeks of High-Dose Interferon-α-2b in Stage T2bNO, T3a-bNO, T4a-bNO, and T1-4N1a-2a (microscopic) Melanoma: A Trial of the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network Cancer Research Group (E1697).

    PubMed

    Agarwala, Sanjiv S; Lee, Sandra J; Yip, Waiki; Rao, Uma N; Tarhini, Ahmad A; Cohen, Gary I; Reintgen, Douglas S; Evans, Terry L; Brell, Joanna M; Albertini, Mark R; Atkins, Michael B; Dakhil, Shaker R; Conry, Robert M; Sosman, Jeffrey A; Flaherty, Lawrence E; Sondak, Vernon K; Carson, William E; Smylie, Michael G; Pappo, Alberto S; Kefford, Richard F; Kirkwood, John M

    2017-03-10

    Purpose To test the efficacy of 4 weeks of intravenous (IV) induction with high-dose interferon (IFN) as part of the Eastern Cooperative Oncology Group regimen compared with observation (OBS) in patients with surgically resected intermediate-risk melanoma. Patients and Methods In this intergroup international trial, eligible patients had surgically resected cutaneous melanoma in the following categories: (1) T2bN0, (2) T3a-bN0, (3) T4a-bN0, and (4) T1-4N1a-2a (microscopic). Patients were randomly assigned to receive IFN α-2b at 20 MU/m(2)/d IV for 5 days (Monday to Friday) every week for 4 weeks (IFN) or OBS. Stratification factors were pathologic lymph node status, lymph node staging procedure, Breslow depth, ulceration of the primary lesion, and disease stage. The primary end point was relapse-free survival. Secondary end points included overall survival, toxicity, and quality of life. Results A total of 1,150 patients were randomly assigned. At a median follow-up of 7 years, the 5-year relapse-free survival rate was 0.70 (95% CI, 0.66 to 0.74) for OBS and 0.70, (95% CI, 0.66 to 0.74) for IFN ( P = .964). The 5-year overall survival rate was 0.83 (95% CI, 0.79 to 0.86) for OBS and 0.83 (95% CI, 0.80 to 0.86) for IFN ( P = .558). Treatment-related grade 3 and higher toxicity was 4.6% versus 57.9% for OBS and IFN, respectively ( P < .001). Quality of life was worse for the treated group. Conclusion Four weeks of IV induction as part of the Eastern Cooperative Oncology Group high-dose IFN regimen is not better than OBS alone for patients with intermediate-risk melanoma as defined in this trial.

  7. Solution structure of the isolated histone H2A-H2B heterodimer

    PubMed Central

    Moriwaki, Yoshihito; Yamane, Tsutomu; Ohtomo, Hideaki; Ikeguchi, Mitsunori; Kurita, Jun-ichi; Sato, Masahiko; Nagadoi, Aritaka; Shimojo, Hideaki; Nishimura, Yoshifumi

    2016-01-01

    During chromatin-regulated processes, the histone H2A-H2B heterodimer functions dynamically in and out of the nucleosome. Although detailed crystal structures of nucleosomes have been established, that of the isolated full-length H2A-H2B heterodimer has remained elusive. Here, we have determined the solution structure of human H2A-H2B by NMR coupled with CS-Rosetta. H2A and H2B each contain a histone fold, comprising four α-helices and two β-strands (α1–β1–α2–β2–α3–αC), together with the long disordered N- and C-terminal H2A tails and the long N-terminal H2B tail. The N-terminal αN helix, C-terminal β3 strand, and 310 helix of H2A observed in the H2A-H2B nucleosome structure are disordered in isolated H2A-H2B. In addition, the H2A α1 and H2B αC helices are not well fixed in the heterodimer, and the H2A and H2B tails are not completely random coils. Comparison of hydrogen-deuterium exchange, fast hydrogen exchange, and {1H}-15N hetero-nuclear NOE data with the CS-Rosetta structure indicates that there is some conformation in the H2A 310 helical and H2B Lys11 regions, while the repression domain of H2B (residues 27–34) exhibits an extended string-like structure. This first structure of the isolated H2A-H2B heterodimer provides insight into its dynamic functions in chromatin. PMID:27181506

  8. Fabrication Report for the AFC-2A and AFC-2B Capsule Irradiations in the ATR

    SciTech Connect

    Timothy A. Hyde

    2007-10-01

    This document provides a general narrative description of the AFC-2A and 2B fuel fabrication processes for the AFC 2A and AFC 2B fuel irradiation experiments fabricated at the Idaho National Laboratory’s Materials and Fuels Complex (MFC) for irradiation in the Advanced Test Reactor (ATR).

  9. Acid-Sensing Ion Channel 2a (ASIC2a) Promotes Surface Trafficking of ASIC2b via Heteromeric Assembly

    PubMed Central

    Kweon, Hae-Jin; Kim, Dong-Il; Bae, Yeonju; Park, Jae-Yong; Suh, Byung-Chang

    2016-01-01

    Acid-sensing ion channels (ASICs) are proton-activated cation channels that play important roles as typical proton sensors during pathophysiological conditions and normal synaptic activities. Among the ASIC subunits, ASIC2a and ASIC2b are alternative splicing products from the same gene, ACCN1. It has been shown that ASIC2 isoforms have differential subcellular distribution: ASIC2a targets the cell surface by itself, while ASIC2b resides in the ER. However, the underlying mechanism for this differential subcellular localization remained to be further elucidated. By constructing ASIC2 chimeras, we found that the first transmembrane (TM1) domain and the proximal post-TM1 domain (17 amino acids) of ASIC2a are critical for membrane targeting of the proteins. We also observed that replacement of corresponding residues in ASIC2b by those of ASIC2a conferred proton-sensitivity as well as surface expression to ASIC2b. We finally confirmed that ASIC2b is delivered to the cell surface from the ER by forming heteromers with ASIC2a, and that the N-terminal region of ASIC2a is additionally required for the ASIC2a-dependent membrane targeting of ASIC2b. Together, our study supports an important role of ASIC2a in membrane targeting of ASIC2b. PMID:27477936

  10. Project Description Advanced Fuel Cycle Initiative AFC-2A and AFC-2B Experiments

    SciTech Connect

    AFCI AFC-2A and AFC-2B Experiments Project Executi

    2007-03-01

    The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the AFC-1 fuel test series currently in progress in the ATR. This document discusses the experiments and the planned activities that will take place.

  11. Phylogeography of Y-chromosome haplogroup O3a2b2-N6 reveals patrilineal traces of Austronesian populations on the eastern coastal regions of Asia.

    PubMed

    Wei, Lan-Hai; Yan, Shi; Teo, Yik-Ying; Huang, Yun-Zhi; Wang, Ling-Xiang; Yu, Ge; Saw, Woei-Yuh; Ong, Rick Twee-Hee; Lu, Yan; Zhang, Chao; Xu, Shu-Hua; Jin, Li; Li, Hui

    2017-01-01

    Austronesian diffusion is considered one of the greatest dispersals in human history; it led to the peopling of an extremely vast region, ranging from Madagascar in the Indian Ocean to Easter Island in Remote Oceania. The Y-chromosome haplogroup O3a2b*-P164(xM134), a predominant paternal lineage of Austronesian populations, is found at high frequencies in Polynesian populations. However, the internal phylogeny of this haplogroup remains poorly investigated. In this study, we analyzed -seventeen Y-chromosome sequences of haplogroup O3a2b*-P164(xM134) and generated a revised phylogenetic tree of this lineage based on 310 non-private Y-chromosome polymorphisms. We discovered that all available O3a2b*-P164(xM134) samples belong to the newly defined haplogroup O3a2b2-N6 and samples from Austronesian populations belong to the sublineage O3a2b2a2-F706. Additionally, we genotyped a series of Y-chromosome polymorphisms in a large collection of samples from China. We confirmed that the sublineage O3a2b2a2b-B451 is unique to Austronesian populations. We found that O3a2b2-N6 samples are widely distributed on the eastern coastal regions of Asia, from Korea to Vietnam. Furthermore, we propose- that the O3a2b2a2b-B451 lineage represents a genetic connection between ancestors of Austronesian populations and ancient populations in North China, where foxtail millet was domesticated about 11,000 years ago. The large number of newly defined Y-chromosome polymorphisms and the revised phylogenetic tree of O3a2b2-N6 will be helpful to explore the origin of proto-Austronesians and the early diffusion process of Austronesian populations.

  12. SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other.

    PubMed

    Maures, Travis J; Kurzer, Jason H; Carter-Su, Christin

    2007-01-01

    Src homology 2 (SH2) B adaptor protein 1 (SH2B1; originally named SH2-B) is a member of a family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase (JAK) and receptor tyrosine kinases. Although SH2B1 performs classical adaptor functions, such as recruitment of specific proteins to activated receptors, it also demonstrates a unique ability to enhance the kinase activity of the cytokine receptor-associated tyrosine kinase JAK2, as well as that of several receptor tyrosine kinases. SH2B1 is also among a small number of adaptor proteins shown to undergo nucleocytoplasmic shuttling, although its exact role within the nucleus is not yet clear. Deletion of the SH2B1 gene results in severe obesity and both leptin and insulin resistance, as well as infertility, which might be a consequence of resistance to insulin-like growth factor I. Thus, knockout mice support a role for SH2B1 as a positive regulator of JAK2 signaling pathways initiated by leptin, as well as of pathways initiated by insulin and, potentially, by insulin-like growth factor I.

  13. Molecular level activation insights from a NR2A/NR2B agonist.

    PubMed

    Ieong Tou, Weng; Chang, Su-Sen; Wu, Dongchuan; Lai, Ted Weita; Wang, Yu Tian; Hsu, Chung Y; Chen, Calvin Yu-Chian

    2014-01-01

    N-methyl D-aspartate receptors (NMDARs), a subclass of glutamate receptors have broad actions in neural transmission for major brain functions. Overactivation of NMDARs leading to "excitotoxicity" is the underlying mechanism of neuronal death in a number of neurological diseases, especially stroke. Much research effort has been directed toward developing pharmacological agents to modulate NMDAR actions for treating neurological diseases, in particular stroke. Here, we report that Alliin, a sulfoxide in fresh garlic, exhibits affinity toward NR2A as well as NR2B receptors based on virtual screening. Biological activities of Alliin on these two receptors were confirmed in electrophysiological studies. Ligand-binding site closure, a structural change precluding ion channel opening, was observed with Alliin during 100 ns molecular dynamics simulation. Alliin interactions with NR2A and NR2B suggest that residues E/A413, H485, T690, and Y730 may play important roles in the conformation shift. Activation of NR2A and NR2B by Alliin can be differentiated from that caused by glutamate, the endogenous neurotransmitter. These characteristic molecular features in NR2A and NR2B activation provide insight into structural requirements for future development of novel drugs with selective interaction with NR2A and NR2B for treating neurological diseases, particularly stroke.

  14. Differential expression of hoxa2a and hoxa2b genes during striped bass embryonic development.

    PubMed

    Scemama, Jean-Luc; Vernon, Jamie L; Stellwag, Edmund J

    2006-10-01

    Here, we report the cloning and expression analysis of two previously uncharacterized paralogs group 2 Hox genes, striped bass hoxa2a and hoxa2b, and the developmental regulatory gene egr2. We demonstrate that both Hox genes are expressed in the rhombomeres of the developing hindbrain and the pharyngeal arches albeit with different spatio-temporal distributions relative to one another. While both hoxa2a and hoxa2b share the r1/r2 anterior boundary of expression characteristic of the hoxa2 paralog genes of other species, hoxa2a gene expression extends throughout the hindbrain, whereas hoxa2b gene expression is restricted to the r2-r5 region. Egr2, which is used in this study as an early developmental marker of rhombomeres 3 and 5, is expressed in two distinct bands with a location and spacing typical for these two rhombomeres in other species. Within the pharyngeal arches, hoxa2a is expressed at higher levels in the second pharyngeal arch, while hoxa2b is more strongly expressed in the posterior arches. Further, hoxa2b expression within the arches becomes undetectable at 60hpf, while hoxa2a expression is maintained at least up until the beginning of chondrogenesis. Comparison of the striped bass HoxA cluster paralog group 2 (PG2) genes to their orthologs and trans-orthologs shows that the striped bass hoxa2a gene expression pattern is similar to the overall expression pattern described for the hoxa2 genes in the lobe-finned fish lineage and for the hoxa2b gene from zebrafish. It is notable that the pharyngeal arch expression pattern of the striped bass hoxa2a gene is more divergent from its sister paralog, hoxa2b, than from the zebrafish hoxa2b gene. Overall, our results suggest that differences in the Hox PG2 gene complement of striped bass and zebrafish affects both their rhombomeric and pharyngeal arch expression patterns and may account for the similarities in pharyngeal arch expression between striped bass hoxa2a and zebrafish hoxa2b.

  15. Textbook Evaluation: An Analysis of Listening Comprehension Parts in Top Notch 2A & 2B

    ERIC Educational Resources Information Center

    Soori, Afshin; Haghani, Elham

    2015-01-01

    Textbooks are the instruments that assist both teachers and learners in process of second language learning. With respect to the importance of textbooks in a language course, evaluation of course books is a significant issue for most researchers. The present study investigated and analyzed Listening Comprehension parts in Top Notch 2A & 2B 2nd…

  16. Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development

    PubMed Central

    TeSlaa, Jessica J.; Keller, Abigail N.; Nyholm, Molly K.; Grinblat, Yevgenya

    2013-01-01

    Holoprosencephaly (HPE), the most common malformation of the human forebrain, is associated with defects of the craniofacial skeleton. ZIC2, a zinc-finger transcription factor, is strongly linked to HPE and to a characteristic set of dysmorphic facial features in humans. We have previously identified important functions for zebrafish Zic2 in the developing forebrain. Here, we demonstrate that ZIC2 orthologs zic2a and zic2b also regulate the forming zebrafish craniofacial skeleton, including the jaw and neurocranial cartilages, and use the zebrafish to study Zic2-regulated processes that may contribute to the complex etiology of HPE. Using temporally controlled Zic2a overexpression, we show that the developing craniofacial cartilages are sensitive to Zic2 elevation prior to 24hpf. This window of sensitivity overlaps the critical expansion and migration of the neural crest (NC) cells, which migrate from the developing neural tube to populate vertebrate craniofacial structures. We demonstrate that zic2b influences the induction of NC at the neural plate border, while both zic2a and zic2b regulate NC migratory onset and strongly contribute to chromatophore development. Both Zic2 depletion and early ectopic Zic2 expression cause moderate, incompletely penetrant mispatterning of the NC-derived jaw precursors at 24hpf, yet by 2dpf these changes in Zic2 expression result in profoundly mispatterned chondrogenic condensations. We attribute this discrepancy to an additional role for Zic2a and Zic2b in patterning the forebrain primordium, an important signaling source during craniofacial development. This hypothesis is supported by evidence that transplanted Zic2-deficient cells can contribute to craniofacial cartilages in a wild-type background. Collectively, these data suggest that zebrafish Zic2 plays a dual role during craniofacial development, contributing to two disparate aspects of craniofacial morphogenesis: (1) Neural crest induction and migration, and (2) early

  17. Shallow oceanic crust: Full waveform tomographic images of the seismic layer 2A/2B boundary

    NASA Astrophysics Data System (ADS)

    Christeson, Gail L.; Morgan, Joanna V.; Warner, Michael R.

    2012-05-01

    We present results of full-waveform tomographic inversions of four profiles acquired over young intermediate- and fast spreading rate oceanic crust. The mean velocity-depth functions from our study include a 0.25-0.30 km-thick low-velocity, low-gradient region beneath the seafloor overlying a 0.24-0.28-km-thick high-gradient region; together these regions compose seismic layer 2A. Mean layer 2A interval velocities are 3.0-3.2 km/s. The mean depth to the layer 2A/2B boundary is 0.49-0.54 km, and mean velocities within the upper 0.25 km of layer 2B are 4.7-4.9 km/s. Previous velocity analyses of the study areas using 1-D ray tracing underestimate the thickness of the high-gradient region at the base of layer 2A. We observe differences in the waveform inversion velocity models that correspond to imaging of the layer 2A event; regions with a layer 2A event have higher velocity gradients at the base of layer 2A. Intermittent high velocities, which we interpret as massive flows, are observed in the waveform inversion velocity models at 0.05-0.10 km below the seafloor (bsf) over 10-25% of the intermediate-spreading profiles and 20-45% of the fast spreading profiles. The high-gradient region located 0.25-0.54 km bsf at the base of layer 2A may be associated with an increased prevalence of massive flows, the first appearance of dikes (lava-dike transition zone), or with increased crack sealing by hydrothermal products. The upper portion of layer 2B, which begins at 0.49-0.54 km bsf, may correspond to sheeted dikes or the top of the transition zone of lavas and dikes.

  18. Theoretical study of the 2A2-2B2 separation of the alkali superoxides

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Sodupe, Mariona; Partridge, Harry; Langhoff, Stephen R.

    1992-01-01

    The computed 2A2-2B2 separations of the alkali superoxides are in good agreement with those deduced from electron-spin resonance spectra. The calculations definitively show that the ground state of CsO2 is 2A2. The larger than expected separation for CsO2, based on the trend from LiO2 to RbO2, is attributed primarily to the differential effects of core relaxation. The CsO2 dissociation energy is computed to be 42.7 kcal/mol, with an uncertainty conservatively estimated as +/- 4 kcal/mol.

  19. Sequential, Divergent and Cooperative Requirements of Foxl2a and Foxl2b in Ovary Development and Maintenance of Zebrafish.

    PubMed

    Yang, Yan-Jing; Wang, Yang; Li, Zhi; Zhou, Li; Gui, Jian-Fang

    2017-02-13

    Foxl2 is essential for mammalian ovary maintenance. Although sexually dimorphic expression of foxl2 was observed in many teleost, its role and regulative mechanism in fish remained largely unclear. In this study, we first identified two transcript variants of foxl2a and its homologous gene foxl2b in zebrafish, and revealed their specific expression in follicular layer cells in a sequential and divergent fashion during ovary differentiation, maturation and maintenance. Then, homozygous foxl2a mutants (foxl2a(-/-)) and foxl2b mutants (foxl2b(-/-)) were constructed, and detailed comparisons, such as sex ratio, gonadal histological structure, transcriptome profiling and dynamic expression of gonadal development-related genes, were carried out. Initial ovarian differentiation and oocyte development occur normally both in foxl2a(-/-) and foxl2b(-/-) mutants, but foxl2a and foxl2b disruptions result in premature ovarian failure and partial sex reversal in adult females respectively. In foxl2a(-/-) female mutants, sox9a-amh/cyp19a1a signaling was up-regulated at 150 day post fertilization (dpf) and subsequently triggers oocyte apoptosis after 180 dpf. In contrast, dmrt1 expression was greater at 105 dpf and increased several hundred fold in foxl2b(-/-) mutated ovaries at 270 dpf, along with other testis-related genes. Finally, homozygous foxl2a(-/-)/foxl2b(-/-) double mutants were constructed, in which complete sex reversal occurs early and testis-differentiation genes robustly increase at 60 dpf. Given mutual compensation between foxl2a and foxl2b in foxl2b(-/-) and foxl2a(-/-) mutants, we proposed a model, in which foxl2a and foxl2b cooperate to regulate zebrafish ovary development and maintenance, with foxl2b potentially having a dominant role in preventing the ovary from differentiating as testis, as compared to foxl2a.

  20. Summary report on the fuel performance modeling of the AFC-2A, 2B irradiation experiments

    SciTech Connect

    Pavel G. Medvedev

    2013-09-01

    The primary objective of this work at the Idaho National Laboratory (INL) is to determine the fuel and cladding temperature history during irradiation of the AFC-2A, 2B transmutation metallic fuel alloy irradiation experiments containing transuranic and rare earth elements. Addition of the rare earth elements intends to simulate potential fission product carry-over from pyro-metallurgical reprocessing. Post irradiation examination of the AFC-2A, 2B rodlets revealed breaches in the rodlets and fuel melting which was attributed to the release of the fission gas into the helium gap between the rodlet cladding and the capsule which houses six individually encapsulated rodlets. This release is not anticipated during nominal operation of the AFC irradiation vehicle that features a double encapsulated design in which sodium bonded metallic fuel is separated from the ATR coolant by the cladding and the capsule walls. The modeling effort is focused on assessing effects of this unanticipated event on the fuel and cladding temperature with an objective to compare calculated results with the temperature limits of the fuel and the cladding.

  1. Vaccination of dogs with canine parvovirus type 2b (CPV-2b) induces neutralising antibody responses to CPV-2a and CPV-2c.

    PubMed

    Wilson, Stephen; Illambas, Joanna; Siedek, Elisabeth; Stirling, Catrina; Thomas, Anne; Plevová, Edita; Sture, Gordon; Salt, Jeremy

    2014-09-22

    Since the identification of canine parvovirus type 2, three variants have subsequently been observed differing from the historical CPV-2 and each other by 1-2 amino acids only. As a result there has been considerable research into differential diagnostics, with some researchers indicating there is a need for new vaccines containing different strains of CPV-2. In this study we investigated whether vaccination with a CPV-2b containing vaccine would induce cross-reactive antibody responses to the other CPV-2 variants. Two studies where dogs were vaccinated with a multivalent vaccine, subsequently challenged with CPV-2b and sera samples analysed are presented. Six week old pups with defined serological status were vaccinated twice, three weeks apart and challenged either 5 weeks (MDA override study) or one year after vaccination (duration of immunity study). Sera samples were collected before each vaccination and at periods throughout each study. In each study the antibody profiles were very similar; serological responses against CPV-2a, CPV-2b and CPV-2c were higher than those for CPV-2. Nevertheless, responses against CPV-2 were well above levels considered clinically protective. In each study dogs also showed a rapid increase in antibody titres following vaccination, reached a plateau following second vaccination with a slight decline to challenge after which rapid anamnestic responses were seen. Evaluation of the serological responses suggests vaccination with CPV-2b would cross-protect against CPV-2a and CPV-2c, as well as against CPV-2 which is now extinct in the field. In conclusion we have demonstrated that vaccination of minimum aged dogs with a multivalent vaccine containing the CPV-2b variant strain will induce serological responses which are cross-reactive against all currently circulating field strains, CPV-2a and CPV-2c, and the now extinct field strain CPV-2.

  2. Mass spectrometric approach for characterizing the disordered tail regions of the histone H2A/H2B dimer.

    PubMed

    Saikusa, Kazumi; Nagadoi, Aritaka; Hara, Kana; Fuchigami, Sotaro; Kurumizaka, Hitoshi; Nishimura, Yoshifumi; Akashi, Satoko

    2015-02-17

    The histone H2A/H2B dimer is a component of nucleosome core particles (NCPs). The structure of the dimer at the atomic level has not yet been revealed. A possible reason for this is that the dimer has three intrinsically disordered tail regions: the N- and C-termini of H2A and the N-terminus of H2B. To investigate the role of the tail regions of the H2A/H2B dimer structure, we characterized behaviors of the H2A/H2B mutant dimers, in which these functionally important disordered regions were depleted, using mass spectrometry (MS). After verifying that the acetylation of Lys residues in the tail regions had little effect on the gas-phase conformations of the wild-type dimer, we prepared two histone H2A/H2B dimer mutants: an H2A/H2B dimer depleted of both N-termini (dN-H2A/dN-H2B) and a dimer with the N- and C-termini of H2A and the N-terminus of H2B depleted (dNC-H2A/dN-H2B). We analyzed these mutants using ion mobility-mass spectrometry (IM-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS). With IM-MS, reduced structural diversity was observed for each of the tail-truncated H2A/H2B mutants. In addition, global HDX-MS proved that the dimer mutant dNC-H2A/dN-H2B was susceptible to deuteration, suggesting that its structure in solution was somewhat loosened. A partial relaxation of the mutant's structure was demonstrated also by IM-MS. In this study, we characterized the relationship between the tail lengths and the conformations of the H2A/H2B dimer in solution and gas phases, and demonstrated, using mass spectrometry, that disordered tail regions play an important role in stabilizing the conformation of the core region of the dimer in both phases.

  3. Differential expression of porins OmpP2A and OmpP2B of Haemophilus ducreyi.

    PubMed

    Prather, Derrick T; Bains, Manjeet; Hancock, Robert E W; Filiatrault, Melanie J; Campagnari, Anthony A

    2004-11-01

    Haemophilus ducreyi is a strict human pathogen and the causative agent of the sexually transmitted disease chancroid. The genome of the human-passaged strain of H. ducreyi (35000HP) contains two homologous genes whose protein products have estimated molecular masses of 46 and 43 kDa. A comparative analysis of the deduced amino acid sequences revealed that these proteins share 27 to 33% identity to the outer membrane protein P2 (OmpP2), a major porin of Haemophilus influenzae. Therefore, these proteins have been designated OmpP2A and OmpP2B, respectively. The detection of ompP2A and ompP2B transcripts by reverse transcriptase PCR indicated that these genes were independently transcribed in H. ducreyi 35000HP. Western blot analysis of outer membrane proteins isolated from a geographically diverse collection of H. ducreyi clinical isolates revealed that OmpP2A and OmpP2B were differentially expressed among these strains. Although PCR analysis suggested that ompP2A and ompP2B were conserved among the strains tested, the differential expression observed was due to nucleotide additions and partial gene deletions. Purified OmpP2A and OmpP2B were isolated under nondenaturing conditions, and subsequent analysis demonstrated that these two proteins exhibited porin activity. OmpP2A and OmpP2B are the first porins described for H. ducreyi.

  4. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor

    SciTech Connect

    Casabar, Richard C.T.; Das, Parikshit C.; DeKrey, Gregory K.; Gardiner, Catherine S.; Cao Yan; Rose, Randy L.; Wallace, Andrew D.

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 {mu}M. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 {mu}M. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 {mu}M, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 {mu}M and 10 {mu}M, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5 mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates.

  5. Expression and Function of Serotonin 2A and 2B Receptors in the Mammalian Respiratory Network

    PubMed Central

    Koch, Uwe R.; Bischoff, Anna-Maria; Kron, Miriam; Bock, Nathalie; Manzke, Till

    2011-01-01

    Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs) that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT2A, 5-HT2B, and 5-HT2C receptors that are directed towards protein kinase C (PKC). In contrast to 5-HT2ARs, expression and function of 5-HT2BRs within the respiratory network are still unclear. 5-HT2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT2ARs and 5-HT2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation. PMID:21789169

  6. FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs.

    PubMed

    Kemble, David J; McCullough, Laura L; Whitby, Frank G; Formosa, Tim; Hill, Christopher P

    2015-10-15

    FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C termini of each subunit. Mutations throughout these regions affect binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions.

  7. FACT disrupts nucleosome structure by binding H2A-H2B with conserved peptide motifs

    PubMed Central

    Kemble, David J.; McCullough, Laura L.; Whitby, Frank G.; Formosa, Tim; Hill, Christopher P.

    2015-01-01

    SUMMARY FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C-termini of each subunit. Mutations throughout these regions impact binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions. PMID:26455391

  8. The H2A.Z/H2B dimer is unstable compared to the dimer containing the major H2A isoform

    PubMed Central

    Placek, Brandon J.; Harrison, L. Nicole; Villers, Brooke M.; Gloss, Lisa M.

    2005-01-01

    The nucleosome, the basic fundamental repeating unit of chromatin, contains two H2A/H2B dimers and an H3/H4 tetramer. Modulation of the structure and dynamics of the nucleosome is an important regulation mechanism of DNA-based chemistries in the eukaryotic cell, such as transcription and replication. One means of altering the properties of the nucleosome is by incorporation of histone variants. To provide insights into how histone variants may impact the thermodynamics of the nucleosome, the stability of the heterodimer between the H2A.Z variant and H2B was determined by urea-induced denaturation, monitored by far-UV circular dichroism, intrinsic Tyr fluorescence intensity, and anisotropy. In the absence of stabilizing agents, the H2A.Z/H2B dimer is only partially folded. The stabilizing cosolute, trimethylamine-N-oxide (TMAO) was used to promote folding of the unstable heterodimer. The equilibrium stability of the H2A.Z/H2B dimer is compared to that of the H2A/H2B dimer. The equilibrium folding of both histone dimers is highly reversible and best described by a two-state model, with no detectable equilibrium intermediates populated. The free energies of unfolding, in the absence of denaturant, of H2A.Z/H2B and H2A/H2B are 7.3 kcal mol−1 and 15.5 kcal mol−1, respectively, in 1 M TMAO. The H2A.Z/H2B dimer is the least stable histone fold characterized to date, while H2A/H2B appears to be the most stable. It is speculated that this difference in stability may contribute to the different biophysical properties of nucleosomes containing the major H2A and the H2A.Z variant. PMID:15632282

  9. The H2A.Z/H2B dimer is unstable compared to the dimer containing the major H2A isoform.

    PubMed

    Placek, Brandon J; Harrison, L Nicole; Villers, Brooke M; Gloss, Lisa M

    2005-02-01

    The nucleosome, the basic fundamental repeating unit of chromatin, contains two H2A/H2B dimers and an H3/H4 tetramer. Modulation of the structure and dynamics of the nucleosome is an important regulation mechanism of DNA-based chemistries in the eukaryotic cell, such as transcription and replication. One means of altering the properties of the nucleosome is by incorporation of histone variants. To provide insights into how histone variants may impact the thermodynamics of the nucleosome, the stability of the heterodimer between the H2A.Z variant and H2B was determined by urea-induced denaturation, monitored by far-UV circular dichroism, intrinsic Tyr fluorescence intensity, and anisotropy. In the absence of stabilizing agents, the H2A.Z/H2B dimer is only partially folded. The stabilizing cosolute, trimethylamine-N-oxide (TMAO) was used to promote folding of the unstable heterodimer. The equilibrium stability of the H2A.Z/H2B dimer is compared to that of the H2A/H2B dimer. The equilibrium folding of both histone dimers is highly reversible and best described by a two-state model, with no detectable equilibrium intermediates populated. The free energies of unfolding, in the absence of denaturant, of H2A.Z/H2B and H2A/H2B are 7.3 kcal mol(-1) and 15.5 kcal mol(-1), respectively, in 1 M TMAO. The H2A.Z/H2B dimer is the least stable histone fold characterized to date, while H2A/H2B appears to be the most stable. It is speculated that this difference in stability may contribute to the different biophysical properties of nucleosomes containing the major H2A and the H2A.Z variant.

  10. The N-terminal tails of the H2A-H2B histones affect dimer structure and stability.

    PubMed

    Placek, Brandon J; Gloss, Lisa M

    2002-12-17

    The histone proteins of the core nucleosome are highly basic and form heterodimers in a "handshake motif." The N-terminal tails of the histones extend beyond the canonical histone fold of the hand-shake motif and are the sites of posttranslational modifications, including lysine acetylations and serine phosphorylations, which influence chromatin structure and activity as well as alter the charge state of the tails. However, it is not well understood if these modifications are signals for recruitment of other cellular factors or if the removal of net positive charge from the N-terminal tail plays a role in the overall structure of chromatin. To elucidate the effects of the N-terminal tails on the structure and stability of histones, the highly charged N-terminal tails were truncated from the H2A and H2B histones. Three mutant dimers were studied: DeltaN-H2A/WT H2B; WT H2A/DeltaN-H2B, and DeltaN-H2A/DeltaN-H2B. The CD spectra, stabilities to urea-denaturation, and the salt-dependent stabilization of the three truncated dimers were compared with those of the wild-type dimer. The data support four conclusions regarding the effects of the N-terminal tails of H2A and H2B: (1) Removal of the N-terminal tails of H2A and H2B enhance the helical structure of the mutant heterodimers. (2) Relative to the full-length WT heterodimer, the DeltaN-H2A/WT H2B dimer is destabilized, while the WT H2A/DeltaN-H2B and DeltaN-H2A/DeltaN-H2B dimers are slightly stabilized. (3) The truncated dimers exhibit decreased m values, relative to the WT dimer, supporting the hypothesis that the N-terminal tails in the isolated dimer adopt a collapsed structure. (4) Electrostatic repulsion in the N-terminal tails decreases the stability of the H2A-H2B dimer.

  11. Co-activation of NR2A and NR2B subunits induces resistance to fear extinction.

    PubMed

    Leaderbrand, Katherine; Corcoran, Kevin A; Radulovic, Jelena

    2014-09-01

    Unpredictable stress is known to profoundly enhance susceptibility to fear and anxiety while reducing the ability to extinguish fear when threat is no longer present. Accordingly, partial aversive reinforcement, via random exposure to footshocks, induces fear that is resistant to extinction. Here we sought to determine the hippocampal mechanisms underlying susceptibility versus resistance to context fear extinction as a result of continuous (CR) and partial (PR) reinforcement, respectively. We focused on N-methyl-D-aspartate receptor (NMDAR) subunits 2A and B (NR2A and NR2B) as well as their downstream signaling effector, extracellular signal-regulated kinase (ERK), based on their critical role in the acquisition and extinction of fear. Pharmacological inactivation of NR2A, but not NR2B, blocked extinction after CR, whereas inactivation of NR2A, NR2B, or both subunits facilitated extinction after PR. The latter finding suggests that co-activation of NR2A and NR2B contributes to persistent fear following PR. In contrast to CR, PR increased membrane levels of ERK and NR2 subunits after the conditioning and extinction sessions, respectively. In parallel, nuclear activation of ERK was significantly reduced after the extinction session. Thus, co-activation and increased surface expression of NR2A and NR2B, possibly mediated by ERK, may cause persistent fear. These findings suggest that patients with post-traumatic stress disorder (PTSD) may benefit from antagonism of specific NR2 subunits.

  12. Pharmacogenetics of CYP2B6, CYP2A6 and UGT2B7 in HIV treatment in African populations: focus on efavirenz and nevirapine.

    PubMed

    Čolić, Antoinette; Alessandrini, Marco; Pepper, Michael S

    2015-05-01

    The CYP450 and UGT enzymes are involved in phase I and phase II metabolism of the majority of clinically prescribed drugs, including the non-nucleoside reverse transcriptase inhibitors, efavirenz and nevirapine, used in the treatment of HIV/AIDS. Variations in the activity of these enzymes due to gene polymorphisms can affect an individual's drug response or may lead to adverse drug reactions. There is an inter-ethnic distribution in the frequency of these polymorphisms, with African populations exhibiting higher genetic diversity compared to other populations. African specific alleles with clinical relevance have also emerged. Given the high prevalence of HIV/AIDS in sub-Saharan Africa, understanding the frequency of pharmacogenetically relevant alleles in populations of African origin, and their impact on efavirenz and nevirapine metabolism, is becoming increasingly critical. This review aims to investigate ethnic variation of CYP2B6, CYP2A6 and UGT2B7, and to understand the pharmacogenetic relevance when comparing frequencies in African populations to other populations worldwide.

  13. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers.

    PubMed

    Shaytan, Alexey K; Landsman, David; Panchenko, Anna R

    2015-06-01

    Nucleosome variability is essential for their functions in compacting the chromatin structure and regulation of transcription, replication and cell reprogramming. The DNA molecule in nucleosomes is wrapped around an octamer composed of four types of core histones (H3, H4, H2A, H2B). Nucleosomes represent dynamic entities and may change their conformation, stability and binding properties by employing different sets of histone variants or by becoming post-translationally modified. There are many variants of histones H2A and H2B. Specific H2A and H2B variants may preferentially associate with each other resulting in different combinations of variants and leading to the increased combinatorial complexity of nucleosomes. In addition, the H2A-H2B dimer can be recognized and substituted by chaperones/remodelers as a distinct unit, can assemble independently and is stable during nucleosome unwinding. In this review we discuss how sequence and structural variations in H2A-H2B dimers may provide necessary complexity and confer the nucleosome functional variability.

  14. Epstein-Barr virus nuclear antigen 3A protein regulates CDKN2B transcription via interaction with MIZ-1.

    PubMed

    Bazot, Quentin; Deschamps, Thibaut; Tafforeau, Lionel; Siouda, Maha; Leblanc, Pascal; Harth-Hertle, Marie L; Rabourdin-Combe, Chantal; Lotteau, Vincent; Kempkes, Bettina; Tommasino, Massimo; Gruffat, Henri; Manet, Evelyne

    2014-09-01

    The Epstein-Barr virus (EBV) nuclear antigen 3 family of protein is critical for the EBV-induced primary B-cell growth transformation process. Using a yeast two-hybrid screen we identified 22 novel cellular partners of the EBNA3s. Most importantly, among the newly identified partners, five are known to play direct and important roles in transcriptional regulation. Of these, the Myc-interacting zinc finger protein-1 (MIZ-1) is a transcription factor initially characterized as a binding partner of MYC. MIZ-1 activates the transcription of a number of target genes including the cell cycle inhibitor CDKN2B. Focusing on the EBNA3A/MIZ-1 interaction we demonstrate that binding occurs in EBV-infected cells expressing both proteins at endogenous physiological levels and that in the presence of EBNA3A, a significant fraction of MIZ-1 translocates from the cytoplasm to the nucleus. Moreover, we show that a trimeric complex composed of a MIZ-1 recognition DNA element, MIZ-1 and EBNA3A can be formed, and that interaction of MIZ-1 with nucleophosmin (NPM), one of its coactivator, is prevented by EBNA3A. Finally, we show that, in the presence of EBNA3A, expression of the MIZ-1 target gene, CDKN2B, is downregulated and repressive H3K27 marks are established on its promoter region suggesting that EBNA3A directly counteracts the growth inhibitory action of MIZ-1.

  15. Epstein–Barr virus nuclear antigen 3A protein regulates CDKN2B transcription via interaction with MIZ-1

    PubMed Central

    Bazot, Quentin; Deschamps, Thibaut; Tafforeau, Lionel; Siouda, Maha; Leblanc, Pascal; Harth-Hertle, Marie L.; Rabourdin-Combe, Chantal; Lotteau, Vincent; Kempkes, Bettina; Tommasino, Massimo; Gruffat, Henri; Manet, Evelyne

    2014-01-01

    The Epstein–Barr virus (EBV) nuclear antigen 3 family of protein is critical for the EBV-induced primary B-cell growth transformation process. Using a yeast two-hybrid screen we identified 22 novel cellular partners of the EBNA3s. Most importantly, among the newly identified partners, five are known to play direct and important roles in transcriptional regulation. Of these, the Myc-interacting zinc finger protein-1 (MIZ-1) is a transcription factor initially characterized as a binding partner of MYC. MIZ-1 activates the transcription of a number of target genes including the cell cycle inhibitor CDKN2B. Focusing on the EBNA3A/MIZ-1 interaction we demonstrate that binding occurs in EBV-infected cells expressing both proteins at endogenous physiological levels and that in the presence of EBNA3A, a significant fraction of MIZ-1 translocates from the cytoplasm to the nucleus. Moreover, we show that a trimeric complex composed of a MIZ-1 recognition DNA element, MIZ-1 and EBNA3A can be formed, and that interaction of MIZ-1 with nucleophosmin (NPM), one of its coactivator, is prevented by EBNA3A. Finally, we show that, in the presence of EBNA3A, expression of the MIZ-1 target gene, CDKN2B, is downregulated and repressive H3K27 marks are established on its promoter region suggesting that EBNA3A directly counteracts the growth inhibitory action of MIZ-1. PMID:25092922

  16. Singular PCV2a or PCV2b infection results in apoptosis of hepatocytes in clinically affected gnotobiotic pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine circovirus type 2 (PCV2) which can be further subdivide into two main genotypes, PCV2a and PCV2b, is often clinically associated with respiratory signs, failure-to-thrive, and diarrhea. The precise pathogenesis of PCV2, and in particular its involvement in apoptosis, is controversial. The ob...

  17. Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break.

    PubMed

    Lee, Cheng-Sheng; Lee, Kihoon; Legube, Gaëlle; Haber, James E

    2014-01-01

    In budding yeast, a single double-strand break (DSB) triggers extensive Tel1 (ATM)- and Mec1 (ATR)-dependent phosphorylation of histone H2A around the DSB, to form γ-H2AX. We describe Mec1- and Tel1-dependent phosphorylation of histone H2B at T129. γ-H2B formation is impaired by γ-H2AX and its binding partner Rad9. High-density microarray analyses show similar γ-H2AX and γ-H2B distributions, but γ-H2B is absent near telomeres. Both γ-H2AX and γ-H2B are strongly diminished over highly transcribed regions. When transcription of GAL7, GAL10 and GAL1 genes is turned off, γ-H2AX is restored within 5 min, in a Mec1-dependent manner; after reinduction of these genes, γ-H2AX is rapidly lost. Moreover, when a DSB is induced near CEN2, γ-H2AX spreads to all other pericentromeric regions, again depending on Mec1. Our data provide new insights in the function and establishment of phosphorylation events occurring on chromatin after DSB induction.

  18. Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system.

    PubMed

    Popoli, Patrizia; Pepponi, Rita

    2012-09-01

    Adenosine A2B and, much more importantly, adenosine A2A receptors modulate many physiological and pathological processes in the brain. In this review, the most recent evidence concerning the role of such receptors and their potential therapeutic relevance is discussed. The low affinity of A2B receptors for adenosine implies that they might represent a good therapeutic target, since they are activated only under pathological conditions (when adenosine levels raise up to micromolar concentrations). The availability of selective ligands for A2B receptors would allow exploration of such an hypothesis. Since adenosine A2A receptors mediate both potentially neuroprotective and potentially neurotoxic effects, their role in neurodegenerative diseases is highly controversial. Nevertheless, A2A receptor antagonists have shown clear antiparkinsonian effects, and a great interest exists on the role of A2A receptors in Alzheimer's disease, brain ischaemia, spinal cord injury, drug addiction and other conditions. In order to establish whether such receptors represent a target for CNS diseases, at least two conditions are needed: the full comprehension of A2A-dependent mechanisms and the availability of ligands capable of discriminating among the different receptor populations.

  19. The effect of salts on the stability of the H2A-H2B histone dimer.

    PubMed

    Gloss, Lisa M; Placek, Brandon J

    2002-12-17

    The core nucleosome, which comprises an H3-H4 tetramer and two H2A-H2B dimers, is not a static DNA packaging structure. The nucleosome is a dynamic protein-DNA complex, and the modulation of its structure is an important component of transcriptional regulation. To begin to understand the molecular details of nucleosome dynamics, we have investigated the stability of the isolated H2A-H2B dimer. The urea-induced equilibrium responses of the heterodimer have been examined by far-UV circular dichroism and intrinsic tyrosine fluorescence. The two spectroscopic probes yielded coincident transitions, and global fitting of the reversible urea-induced unfolding further demonstrated that H2A-H2B unfolds by a two-state equilibrium response. At physiological ionic strengths, the free energy of unfolding in the absence of urea of H2A-H2B is 11.8 +/- 0.3 kcal mol(-)(1), moderate stability for a dimer of 26.4 kDa. The m value, or sensitivity of the unfolding to urea, is 2.9 +/- 0.1 kcal mol(-)(1) M(-)(1). This value is significantly larger than would be predicted for the unfolding of the dimerization motif alone ( approximately 2 kcal mol(-)(1) M(-)(1)), suggesting that the N-terminal tails may adopt a collapsed, solvent-excluding structure that undergoes an unfolding transition. The efficacies of several potassium salts and three chloride salts to stabilize the H2A-H2B dimer were determined. The salt-dependent stabilization of the H2A-H2B dimer shows that the Hofmeister effect is the predominant mode of stabilization. However, studies employing multiple salts suggest that there is a component of stabilization that must arise from screening of electrostatic repulsion in the highly basic heterodimer. The most highly charged regions of the dimer are the N-terminal tails, sites of posttranslational modifications such as acetylation and phosphorylation. These modifications, which alter the charge density of the tails, are involved in regulation of nucleosome dynamics.

  20. Sex difference in induction of hepatic CYP2B and CYP3A subfamily enzymes by nicardipine and nifedipine in rats.

    PubMed

    Konno, Yoshihiro; Sekimoto, Masashi; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-04-01

    Male and female of F344 rats were treated per os with nicardipine (Nic) and nifedipine (Nif), and changes in the levels of mRNA and protein of hepatic cytochrome P450 (P450) enzymes, CYP2B1, CYP2B2, CYP3A1, CYP3A2, CYP3A9, and CYP3A18 were examined. Furthermore, hepatic microsomal activities for pentoxyresorufin O-dealkylation (PROD) and nifedipine oxidation, which are mainly mediated by CYP2B and CYP3A subfamily enzymes, respectively, were measured. Analyses of RT-PCR and Western blotting revealed that Nic and Nif induced predominantly CYP3A and CYP2B enzymes, respectively. As for the gene activation of CYP2B enzymes, especially CYP2B1, Nif showed high capacity in both sexes of rats, whereas Nic did a definite capacity in the males but little in the females. Gene activations of CYP3A1, CYP3A2, and CYP3A18 by Nic occurred in both sexes of rats, although that of CYP3A9 did only in the male rats. Although gene activations of CYP3A1 and CYP3A2 by Nif were observed in both sexes of rats, a slight activation of the CYP3A9 gene occurred only in female rats, and the CYP3A18 gene activation, in neither male nor female rats. Thus, changes in levels of the mRNA or protein of CYP2B and CYP3A enzymes, especially CYP2B1 and CYP3A2, were closely correlated with those in hepatic PROD and nifedipine oxidation activities, respectively. The present findings demonstrate for the first time the sex difference in the Nic- and Nif-mediated induction of hepatic P450 enzymes in rats and further indicate that Nic and Nif show different specificities and sex dependencies in the induction of hepatic P450 enzymes.

  1. Regioselective Versatility of Monooxygenase Reactions Catalyzed by CYP2B6 and CYP3A4: Examples with Single Substrates.

    PubMed

    Erratico, Claudio A; Deo, Anand K; Bandiera, Stelvio M

    2015-01-01

    Hepatic microsomal cytochrome P450 (CYP) enzymes have broad and overlapping substrate specificity and catalyze a variety of monooxygenase reactions, including aliphatic and aromatic hydroxylations, N-hydroxylations, oxygenations of heteroatoms (N, S, P and I), alkene and arene epoxidations, dehalogenations, dehydrogenations and N-, O- and S-dealkylations. Individual CYP enzymes typically catalyze the oxidative metabolism of a common substrate in a regioselective and stereoselective manner. In addition, different CYP enzymes often utilize different monooxygenase reactions when oxidizing a common substrate. This review examines various oxidative reactions catalyzed by a CYP enzyme acting on a single substrate. In the first example, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a halogenated aromatic environmental contaminant, was oxidatively biotransformed by human CYP2B6. Nine different metabolites of BDE-47 were produced by CYP2B6 via monooxygenase reactions that included aromatic hydroxylation, with and without an NIH-shift, dealkylation and debromination. In the second example, lithocholic acid (3α-hydroxy-5β-cholan-24-oic acid), an endogenous bile acid, served as a substrate for human CYP3A4 and yielded five different metabolites via aliphatic hydroxylation and dehydrogenation reactions.

  2. Association of concurrent porcine circovirus (PCV) 2a and 2b infection with PCV associated disease in vaccinated pigs.

    PubMed

    Gerber, Priscilla F; Johnson, John; Shen, Huigang; Striegel, Dave; Xiao, Chao-Ting; Halbur, Patrick G; Opriessnig, Tanja

    2013-10-01

    Investigations were performed to characterize porcine circovirus (PCV) 2 infection in 10 week old pigs from a case of apparent vaccine failure. Thirty serum samples were collected from affected or non-affected pigs and tested for anti-PCV2 antibodies and PCV2 DNA. To address potential PCV2 vaccine compliance issues, samples were tested for antibodies against baculovirus and Mycoplasma hyopneumoniae antigens present in the PCV2 vaccine utilized in this herd. Both PCV2a and PCV2b DNA were detected in 76.6% (90% positive for PCV2a, 86.6% positive for PCV2b), anti-PCV2 IgG in 90%, anti-baculovirus IgG in 50%, and anti-M. hyopneumoniae IgG in 43.3% of the samples. Frequency of baculovirus and M. hyopneumoniae seropositive pigs was significantly lower in affected pigs. The finding that only 50% of the pigs developed a detectable immune response to vaccination suggests poor vaccine compliance or efficacy. Concurrent PCV2a and PCV2b infection was common and may have resulted in enhanced PCV2 replication.

  3. Generation and characterization of a CYP2A13/2B6/2F1-transgenic mouse model.

    PubMed

    Wei, Yuan; Wu, Hong; Li, Lei; Liu, Zhihua; Zhou, Xin; Zhang, Qing-Yu; Weng, Yan; D'Agostino, Jaime; Ling, Guoyu; Zhang, Xiuling; Kluetzman, Kerri; Yao, Yunyi; Ding, Xinxin

    2012-06-01

    CYP2A13, CYP2B6, and CYP2F1, which are encoded by neighboring cytochrome P450 genes on human chromosome 19, are active in the metabolic activation of many drugs, respiratory toxicants, and chemical carcinogens. To facilitate studies on the regulation and function of these human genes, we have generated a CYP2A13/2B6/2F1-transgenic (TG) mouse model (all *1 alleles). Homozygous transgenic mice are normal with respect to gross morphological features, development, and fertility. The tissue distribution of transgenic mRNA expression agreed well with the known respiratory tract-selective expression of CYP2A13 and CYP2F1 and hepatic expression of CYP2B6 in humans. CYP2A13 protein was detected through immunoblot analyses in the nasal mucosa (NM) (∼100 pmol/mg of microsomal protein; similar to the level of mouse CYP2A5) and the lung (∼0.2 pmol/mg of microsomal protein) but not in the liver of the TG mice. CYP2F1 protein, which could not be separated from mouse CYP2F2 in immunoblot analyses, was readily detected in the NM and lung but not the liver of TG/Cyp2f2-null mice, at levels 10- and 40-fold, respectively, lower than that of mouse CYP2F2 in the TG mice. CYP2B6 protein was detected in the liver (∼0.2 pmol/mg of microsomal protein) but not the NM or lung (with a detection limit of 0.04 pmol/mg of microsomal protein) of the TG mice. At least one transgenic protein (CYP2A13) seems to be active, because the NM of the TG mice had greater in vitro and in vivo activities in bioactivation of a CYP2A13 substrate, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (a lung carcinogen), than did the NM of wild-type mice.

  4. A2a and a2b adenosine receptors affect HIF-1α signaling in activated primary microglial cells.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Stefanelli, Angela; Bencivenni, Serena; Castillo, Carlos Alberto; Varani, Katia; Gessi, Stefania

    2015-05-15

    Microglia are central nervous system (CNS)-resident immune cells, that play a crucial role in neuroinflammation. Hypoxia-inducible factor-1 (HIF-1), the main transcription factor of hypoxia-inducible genes, is also involved in the immune response, being regulated in normoxia by inflammatory mediators. Adenosine is an ubiquitous nucleoside that has an influence on many immune properties of microglia through interaction with four receptor subtypes. The aim of this study was to investigate whether adenosine may affect microglia functions by acting on HIF-1α modulation. Primary murine microglia were activated with lipopolysaccharide (LPS) with or without adenosine, adenosine receptor agonists and antagonists and HIF-1α accumulation and downstream genes regulation were determined. Adenosine increased LPS-induced HIF-1α accumulation leading to an increase in HIF-1α target genes involved in cell metabolism [glucose transporter-1 (GLUT-1)] and pathogens killing [inducible nitric-oxide synthase (iNOS)] but did not induce HIF-1α dependent genes related to angiogenesis [vascular endothelial growth factor (VEGF)] and inflammation [tumor necrosis factor-α (TNF-α)]. The stimulatory effect of adenosine on HIF-1α and its target genes was essentially exerted by activation of A2A through p44/42 and A2B subtypes via p38 mitogen-activated protein kinases (MAPKs) and Akt phosphorylation. Furthermore the nucleoside raised VEGF and decreased TNF-α levels, by activating A2B subtypes. In conclusion adenosine increases GLUT-1 and iNOS gene expression in a HIF-1α-dependent way, through A2A and A2B receptors, suggesting their role in the regulation of microglial cells function following injury. However, inhibition of TNF-α adds an important anti-inflammatory effect only for the A2B subtype. GLIA 2015.

  5. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus).

    PubMed

    Aluru, Neelakanteswar; Karchner, Sibel I; Franks, Diana G; Nacci, Diane; Champlin, Denise; Hahn, Mark E

    2015-01-01

    Understanding molecular mechanisms of toxicity is facilitated by experimental manipulations, such as disruption of function by gene targeting, that are especially challenging in non-standard model species with limited genomic resources. While loss-of-function approaches have included gene knock-down using morpholino-modified oligonucleotides and random mutagenesis using mutagens or retroviruses, more recent approaches include targeted mutagenesis using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. These latter methods provide more accessible opportunities to explore gene function in non-traditional model species. To facilitate evaluation of toxic mechanisms for important categories of aryl hydrocarbon pollutants, whose actions are known to be receptor mediated, we used ZFN and CRISPR-Cas9 approaches to generate aryl hydrocarbon receptor 2a (AHR2a) and AHR2b gene mutations in Atlantic killifish (Fundulus heteroclitus) embryos. This killifish is a particularly valuable non-traditional model, with multiple paralogs of AHR whose functions are not well characterized. In addition, some populations of this species have evolved resistance to toxicants such as halogenated aromatic hydrocarbons. AHR-null killifish will be valuable for characterizing the role of the individual AHR paralogs in evolved resistance, as well as in normal development. We first used five-finger ZFNs targeting exons 1 and 3 of AHR2a. Subsequently, CRISPR-Cas9 guide RNAs were designed to target regions in exon 2 and 3 of AHR2a and AHR2b. We successfully induced frameshift mutations in AHR2a exon 3 with ZFN and CRISPR-Cas9 guide RNAs, with mutation frequencies of 10% and 16%, respectively. In AHR2b, mutations were induced using CRISPR-Cas9 guide RNAs targeting sites in both exon 2 (17%) and exon 3 (63%). We screened AHR2b exon 2 CRISPR-Cas9-injected embryos for off

  6. Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism?

    PubMed

    Meneses, Alfredo

    2002-12-01

    1. The 5-HT2 receptors subdivision into the 5-HT(2A/2B/2C) subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation. 2. The SB-200646 (a selective 5-HT(2B/2C) receptor antagonist) and LY215840 (a nonselective 5-HT(2/7) receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP). 3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (+/-)-2.5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose. 4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine: while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs. 5. It is suggested that 5-HT(2B/2C) receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time. 6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreasedcholinergic, glutamatergic, and/or serotonergic neurotransmission.

  7. Differential regulation of hepatic CYP2B6 and CYP3A4 genes by constitutive androstane receptor but not pregnane X receptor.

    PubMed

    Faucette, Stephanie R; Sueyoshi, Tatsuya; Smith, Cornelia M; Negishi, Masahiko; Lecluyse, Edward L; Wang, Hongbing

    2006-06-01

    Accumulated evidence suggests that cross-talk between the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) results in shared transcriptional activation of CYP2B and CYP3A genes. Although most data imply symmetrical cross-regulation of these genes by rodent PXR and CAR, the actual selectivities of the corresponding human receptors are unknown. The objective of this study was to evaluate the symmetry of human (h) PXR and hCAR cross-talk by comparing the selectivities of these receptors for CYP2B6 and CYP3A4. Human hepatocyte studies revealed nonselective induction of both CYP2B6 and CYP3A4 by hPXR activation but marked preferential induction of CYP2B6 by selective hCAR activation. Gel shift assays demonstrated that hPXR exhibited strong and relatively equal binding to all functional response elements in both CYP2B6 and CYP3A4 genes, whereas hCAR displayed significantly weak binding to the CYP3A4 proximal ER6 motif. In cell-based transfection assays, hCAR displayed greater activation of CYP2B6 reporter gene expression compared with CYP3A4 with constructs containing both proximal and distal regulatory elements. Furthermore, in agreement with binding observations, transfection assays using promoter constructs containing repeats of CYP2B6 DR4 and CYP3A4 ER6 motifs revealed an even greater difference in reporter activation by hCAR. In contrast, hPXR activation resulted in less discernible differences between CYP2B6 and CYP3A4 reporter gene expression. These results suggest asymmetrical cross-regulation of CYP2B6 and CYP3A4 by hCAR but not hPXR in that hCAR exhibits preferential induction of CYP2B6 relative to CYP3A4 because of its weak binding and functional activation of the CYP3A4 ER6.

  8. Preparations of homeostatic thymus hormone consist predominantly of histones 2A and 2B and suggest additional histone functions.

    PubMed Central

    Reichhart, R; Zeppezauer, M; Jörnvall, H

    1985-01-01

    The two major constituents in preparations of the homeostatic thymus hormone (HTH) were purified. Amino acid sequence analysis showed that the components (HTH alpha and HTH beta) are identical to histones H2A and H2B, suggesting the possibility that histones might have hitherto unrecognized occurrence and functions. If the HTH activities are not ascribed to the two histones in the preparation, they could only be derived from minor constituents present in minimal amounts. Therefore, the histone structures were scrutinized for properties of relevance in relation to hormone activities and for similarities with thymic hormones. Similarities between COOH-terminal regions of histones H2A, H2B, and H3 were noticed, as well as some similarities between NH2-terminal regions of histones and parts of recognized thymus hormones and related proteins. Potential signals, resembling cleavage sites in prohormones, are present in the histone structures, and further correlations with recently discovered ubiquitin functions may explain molecular mechanisms for actions of the HTH preparations. None of the observations is significant by itself, but the combined results suggest the hypothesis of different relationships and functions, including hormone-like activities, for some histones. Images PMID:3860828

  9. GH indirectly enhances the regeneration of transgenic zebrafish fins through IGF2a and IGF2b.

    PubMed

    Nornberg, Bruna Félix; Almeida, Daniela Volcan; Figueiredo, Márcio Azevedo; Marins, Luis Fernando

    2016-10-01

    The somatotropic axis, composed essentially of the growth hormone (GH) and insulin-like growth factors (IGFs), is the main regulator of somatic growth in vertebrates. However, these protein hormones are also involved in various other major physiological processes. Although the importance of IGFs in mechanisms involving tissue regeneration has already been established, little is known regarding the direct effects of GH in these processes. In this study, we used a transgenic zebrafish (Danio rerio) model, which overexpresses GH from the beta-actin constitutive promoter. The regenerative ability of the caudal fin was assessed after repeated amputations, as well as the expression of genes related to the GH/IGF axis. The results revealed that GH overexpression increased the regenerated area of the caudal fin in transgenic fish after the second amputation. Transgenic fish also presented a decrease in gene expression of the GH receptor (ghrb), in opposition to the increased expression of the IGF1 receptors (igf1ra and igf1rb). These results suggest that transgenic fish have a higher sensitivity to IGFs than to GH during fin regeneration. With respect to the different IGFs produced locally, a decrease in igf1a expression and a significant increase in both igf2a and igf2b expression was observed, suggesting that igf1a is not directly involved in fin regeneration. Overall, the results revealed that excess GH enhances fin regeneration in zebrafish through igf2a and igf2b expression, acting indirectly on this major physiological process.

  10. A Gain-of-Function Mutation in Tnni2 Impeded Bone Development through Increasing Hif3a Expression in DA2B Mice

    PubMed Central

    Zhao, Yanyang; Yang, Peng; Chen, Jun; Sun, Hanzi; Liu, Lei; Li, Wenjun; Pan, Lin; Guo, Yanru; Kou, Zhaohui; Zhang, Yu; Zhou, Cheng; He, Jiang; Zhang, Xue; Li, Jianxin; Han, Weitian; Li, Jian; Liu, Guanghui; Gao, Shaorong; Yang, Ze

    2014-01-01

    Distal arthrogryposis type 2B (DA2B) is an important genetic disorder in humans. However, the mechanisms governing this disease are not clearly understood. In this study, we generated knock-in mice carrying a DA2B mutation (K175del) in troponin I type 2 (skeletal, fast) (TNNI2), which encodes a fast-twitch skeletal muscle protein. Tnni2K175del mice (referred to as DA2B mice) showed typical DA2B phenotypes, including limb abnormality and small body size. However, the current knowledge concerning TNNI2 could not explain the small body phenotype of DA2B mice. We found that Tnni2 was expressed in the osteoblasts and chondrocytes of long bone growth plates. Expression profile analysis using radii and ulnae demonstrated that Hif3a expression was significantly increased in the Tnni2K175del mice. Chromatin immunoprecipitation assays indicated that both wild-type and mutant tnni2 protein can bind to the Hif3a promoter using mouse primary osteoblasts. Moreover, we showed that the mutant tnni2 protein had a higher capacity to transactivate Hif3a than the wild-type protein. The increased amount of hif3a resulted in impairment of angiogenesis, delay in endochondral ossification, and decrease in chondrocyte differentiation and osteoblast proliferation, suggesting that hif3a counteracted hif1a-induced Vegf expression in DA2B mice. Together, our data indicated that Tnni2K175del mutation led to abnormally increased hif3a and decreased vegf in bone, which explain, at least in part, the small body size of Tnni2K175del mice. Furthermore, our findings revealed a new function of tnni2 in the regulation of bone development, and the study of gain-of-function mutation in Tnni2 in transgenic mice opens a new avenue to understand the pathological mechanism of human DA2B disorder. PMID:25340332

  11. Establishment of In Silico Prediction Models for CYP3A4 and CYP2B6 Induction in Human Hepatocytes by Multiple Regression Analysis Using Azole Compounds.

    PubMed

    Nagai, Mika; Konno, Yoshihiro; Satsukawa, Masahiro; Yamashita, Shinji; Yoshinari, Kouichi

    2016-08-01

    Drug-drug interactions (DDIs) via cytochrome P450 (P450) induction are one clinical problem leading to increased risk of adverse effects and the need for dosage adjustments and additional therapeutic monitoring. In silico models for predicting P450 induction are useful for avoiding DDI risk. In this study, we have established regression models for CYP3A4 and CYP2B6 induction in human hepatocytes using several physicochemical parameters for a set of azole compounds with different P450 induction as characteristics as model compounds. To obtain a well-correlated regression model, the compounds for CYP3A4 or CYP2B6 induction were independently selected from the tested azole compounds using principal component analysis with fold-induction data. Both of the multiple linear regression models obtained for CYP3A4 and CYP2B6 induction are represented by different sets of physicochemical parameters. The adjusted coefficients of determination for these models were of 0.8 and 0.9, respectively. The fold-induction of the validation compounds, another set of 12 azole-containing compounds, were predicted within twofold limits for both CYP3A4 and CYP2B6. The concordance for the prediction of CYP3A4 induction was 87% with another validation set, 23 marketed drugs. However, the prediction of CYP2B6 induction tended to be overestimated for these marketed drugs. The regression models show that lipophilicity mostly contributes to CYP3A4 induction, whereas not only the lipophilicity but also the molecular polarity is important for CYP2B6 induction. Our regression models, especially that for CYP3A4 induction, might provide useful methods to avoid potent CYP3A4 or CYP2B6 inducers during the lead optimization stage without performing induction assays in human hepatocytes.

  12. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk

    PubMed Central

    Campa, Daniele; Pastore, Manuela; Gentiluomo, Manuel; Talar-Wojnarowska, Renata; Kupcinskas, Juozas; Malecka-Panas, Ewa; Neoptolemos, John P.; Niesen, Willem; Vodicka, Pavel; Fave, Gianfranco Delle; Bueno-de-Mesquita, H. Bas; Gazouli, Maria; Pacetti, Paola; Di Leo, Milena; Ito, Hidemi; Klüter, Harald; Soucek, Pavel; Corbo, Vincenzo; Yamao, Kenji; Hosono, Satoyo; Kaaks, Rudolf; Vashist, Yogesh; Gioffreda, Domenica; Strobel, Oliver; Shimizu, Yasuhiro; Dijk, Frederike; Andriulli, Angelo; Ivanauskas, Audrius; Bugert, Peter; Tavano, Francesca; Vodickova, Ludmila; Zambon, Carlo Federico; Lovecek, Martin; Landi, Stefano; Key, Timothy J.; Boggi, Ugo; Pezzilli, Raffaele; Jamroziak, Krzysztof; Mohelnikova-Duchonova, Beatrice; Mambrini, Andrea; Bambi, Franco; Busch, Olivier; Pazienza, Valerio; Valente, Roberto; Theodoropoulos, George E.; Hackert, Thilo; Capurso, Gabriele; Cavestro, Giulia Martina; Pasquali, Claudio; Basso, Daniela; Sperti, Cosimo; Matsuo, Keitaro; Büchler, Markus; Khaw, Kay-Tee; Izbicki, Jakob; Costello, Eithne; Katzke, Verena; Michalski, Christoph; Stepien, Anna; Rizzato, Cosmeri; Canzian, Federico

    2016-01-01

    The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk. PMID:27486979

  13. Confirmation of Y haplogroup tree topologies with newly suggested Y-SNPs for the C2, O2b and O3a subhaplogroups.

    PubMed

    Kwon, So Yeun; Lee, Hwan Young; Lee, Eun Young; Yang, Woo Ick; Shin, Kyoung-Jin

    2015-11-01

    Y chromosome single nucleotide polymorphisms (Y-SNPs) are useful markers for reconstructing male lineages through hierarchically arranged allelic sets known as haplogroups, and are thereby widely used in the fields such as human evolution, anthropology and forensic genetics. The Y haplogroup tree was recently revised with newly suggested Y-SNP markers for designation of several subgroups of haplogroups C2, O2b and O3a, which are predominant in Koreans. Therefore, herein we analyzed these newly suggested Y-SNPs in 545 unrelated Korean males who belong to the haplogroups C2, O2b or O3a, and investigated the reconstructed topology of the Y haplogroup tree. We were able to confirm that markers L1373, Z1338/JST002613-27, Z1300, CTS2657, Z8440 and F845 define the C2 subhaplogroups, C2b, C2e, C2e1, C2e1a, C2e1b and C2e2, respectively, and that markers F3356, L682, F11, F238/F449 and F444 define the O subhaplogroups O2b1, O2b1b, O3a1c1, O3a1c2 and O3a2c1c, respectively. Among six C2 subhaplogroups (C2b, C2e, C2e1*, C2e1a, C2e1b and C2e2), the C2e haplogroup and its subhaplogroups were found to be predominant, and among the four O2b subhaplogroups (O2b*, O2b1*, O2b1a and O2b1b), O2b1b was most frequently observed. Among the O3a subhaplogroups, O3a2c1 was predominant and it was further divided into the subhaplogroups O3a2c1a and O3a2c1c with a newly suggested marker. However, the JST002613-27 marker, which had been known to define the haplogroup C2f, was found to be an ancestral marker of the C2e haplogroup, as is the Z1338 marker. Also, the M312 marker for the O2b1 haplogroup designation was replaced by F3356, because all of the O2b1 haplotypes showed a nucleotide change at F3356, but not at M312. In addition, the F238 marker was always observed to be phylogenetically equivalent to F449, while both of the markers were assigned to the O3a1c2 haplogroup. The confirmed phylogenetic tree of this study with the newly suggested Y-SNPs could be valuable for anthropological and

  14. The MATROSHKA experiment: results and comparison from extravehicular activity (MTR-1) and intravehicular activity (MTR-2A/2B) exposure.

    PubMed

    Berger, Thomas; Bilski, Paweł; Hajek, Michael; Puchalska, Monika; Reitz, Günther

    2013-12-01

    Astronauts working and living in space are exposed to considerably higher doses and different qualities of ionizing radiation than people on Earth. The multilateral MATROSHKA (MTR) experiment, coordinated by the German Aerospace Center, represents the most comprehensive effort to date in radiation protection dosimetry in space using an anthropomorphic upper-torso phantom used for radiotherapy treatment planning. The anthropomorphic upper-torso phantom maps the radiation distribution as a simulated human body installed outside (MTR-1) and inside different compartments (MTR-2A: Pirs; MTR-2B: Zvezda) of the Russian Segment of the International Space Station. Thermoluminescence dosimeters arranged in a 2.54 cm orthogonal grid, at the site of vital organs and on the surface of the phantom allow for visualization of the absorbed dose distribution with superior spatial resolution. These results should help improve the estimation of radiation risks for long-term human space exploration and support benchmarking of radiation transport codes.

  15. Hofbauer cells of M2a, M2b and M2c polarization may regulate feto-placental angiogenesis.

    PubMed

    Loegl, J; Hiden, U; Nussbaumer, E; Schliefsteiner, C; Cvitic, S; Lang, I; Wadsack, C; Huppertz, B; Desoye, G

    2016-11-01

    The human placenta comprises a special type of tissue macrophages, the Hofbauer cells (HBC), which exhibit M2 macrophage phenotype. Several subtypes of M2-polarized macrophages (M2a, M2b and M2c) exist in almost all tissues. Macrophage polarization depends on the way of macrophage activation and leads to the expression of specific cell surface markers and the acquisition of specific functions, including tissue remodeling and the promotion of angiogenesis. The placenta is a highly vascularized and rapidly growing organ, suggesting a role of HBC in feto-placental angiogenesis. We here aimed to characterize the specific polarization and phenotype of HBC and investigated the role of HBC in feto-placental angiogenesis. Therefore, HBC were isolated from third trimester placentas and their phenotype was determined by the presence of cell surface markers (FACS analysis) and secretion of cytokines (ELISA). HBC conditioned medium (CM) was analyzed for pro-angiogenic factors, and the effect of HBC CM on angiogenesis, proliferation and chemoattraction of isolated primary feto-placental endothelial cells (fpEC) was determined in vitro Our results revealed that isolated HBC possess an M2 polarization, with M2a, M2b and M2c characteristics. HBC secreted the pro-angiogenic molecules VEGF and FGF2. Furthermore, HBC CM stimulated the in vitro angiogenesis of fpEC. However, compared with control medium, chemoattraction of fpEC toward HBC CM was reduced. Proliferation of fpEC was not affected by HBC CM. These findings demonstrate a paracrine regulation of feto-placental angiogenesis by HBC in vitro Based on our collective results, we propose that the changes in HBC number or phenotype may affect feto-placental angiogenesis.

  16. Molecular motor KIF17 is fundamental for memory and learning via differential support of synaptic NR2A/2B levels.

    PubMed

    Yin, Xiling; Takei, Yosuke; Kido, Mizuho A; Hirokawa, Nobutaka

    2011-04-28

    Kinesin superfamily motor protein 17 (KIF17) is a candidate transporter of N-methyl-D-aspartate (NMDA) receptor subunit 2B (NR2B). Disruption of the murine kif17 gene inhibits NR2B transport, accompanied by decreased transcription of nr2b, resulting in a loss of synaptic NR2B. In kif17(-/-) hippocampal neurons, the NR2A level is also decreased because of accelerated ubiquitin-proteasome system-dependent degradation. Accordingly, NMDA receptor-mediated synaptic currents, early and late long-term potentiation, long-term depression, and CREB responses are attenuated in kif17(-/-) neurons, concomitant with a hippocampus-dependent memory impairment in knockout mice. In wild-type neurons, CREB is activated by synaptic inputs, which increase the levels of KIF17 and NR2B. Thus, KIF17 differentially maintains the levels of NR2A and NR2B, and, when synapses are stimulated, the NR2B/KIF17 complex is upregulated on demand through CREB activity. These KIF17-based mechanisms for maintaining NR2A/2B levels could underlie multiple phases of memory processes in vivo.

  17. The effect of ritonavir on human CYP2B6 catalytic activity: heme modification contributes to the mechanism-based inactivation of CYP2B6 and CYP3A4 by ritonavir.

    PubMed

    Lin, Hsia-lien; D'Agostino, Jaime; Kenaan, Cesar; Calinski, Diane; Hollenberg, Paul F

    2013-10-01

    The mechanism-based inactivation of human CYP2B6 by ritonavir (RTV) in a reconstituted system was investigated. The inactivation is time, concentration, and NADPH dependent and exhibits a K(I) of 0.9 μM, a k(inact) of 0.05 min⁻¹, and a partition ratio of approximately 3. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the protonated molecular ion of RTV exhibits an m/z at 721 and its two major metabolites are an oxidation product with MH⁺ at m/z 737 and a deacylated product with MH⁺ at m/z 580. Inactivation of CYP2B6 by incubation with 10 μM RTV for 10 min resulted in an approximately 50% loss of catalytic activity and native heme, but no modification of the apoprotein was observed. RTV was found to be a potent mixed-type reversible inhibitor (K(i) = 0.33 μM) and a type II ligand (spectral dissociation constant-K(s) = 0.85 μM) of CYP2B6. Although previous studies have demonstrated that RTV is a potent mechanism-based inactivator of CYP3A4, the molecular mechanism responsible for the inactivation has not been determined. Here, we provide evidence that RTV inactivation of CYP3A4 is due to heme destruction with the formation of a heme-protein adduct. Similar to CYP2B6, there is no significant modification of the apoprotein. Furthermore, LC-MS/MS analysis revealed that both CYP3A4 and human liver microsomes form an RTV-glutathione conjugate having a MH⁺ at m/z 858 during metabolism of RTV, suggesting the formation of an isocyanate intermediate leading to formation of the conjugate.

  18. Differential effects of nicotine treatment and ethanol self-administration on CYP2A6, CYP2B6 and nicotine pharmacokinetics in African green monkeys.

    PubMed

    Ferguson, C S; Miksys, S; Palmour, R M; Tyndale, R F

    2012-12-01

    In primates, nicotine is metabolically inactivated in the liver by CYP2A6 and possibly CYP2B6. Changes in the levels of these two enzymes may affect nicotine pharmacokinetics and influence smoking behaviors. This study investigated the independent and combined effects of ethanol self-administration and nicotine treatment (0.5 mg/kg b.i.d. s.c.) on hepatic CYP2A6 and CYP2B6 levels (mRNA, protein, and enzymatic activity), in vitro nicotine metabolism, and in vivo nicotine pharmacokinetics in monkeys. CYP2A6 mRNA and protein levels and in vitro coumarin (selective CYP2A6 substrate) and nicotine metabolism were decreased by nicotine treatment but unaffected by ethanol. CYP2B6 protein levels and in vitro bupropion (selective CYP2B6 substrate) metabolism were increased by ethanol but unaffected by nicotine treatment; CYP2B6 mRNA levels were unaltered by either treatment. Combined ethanol and nicotine exposure decreased CYP2A6 mRNA and protein levels, as well as in vitro coumarin and nicotine metabolism, and increased CYP2B6 protein levels and in vitro bupropion metabolism, with no change in CYP2B6 mRNA levels. Chronic nicotine resulted in higher nicotine plasma levels achieved after nicotine administration, consistent with decreased CYP2A6. Ethanol alone, or combined with nicotine, resulted in lower nicotine plasma levels by a mechanism independent of the change in these enzymes. Thus, nicotine can decrease hepatic CYP2A6, reducing the metabolism of its substrates, including nicotine, whereas ethanol can increase hepatic CYP2B6, increasing the metabolism of CYP2B6 substrates. In vivo nicotine pharmacokinetics are differentially affected by ethanol and nicotine, but when both drugs are used in combination the effect more closely resembles ethanol alone.

  19. The expression of human H2A-H2B histone gene pairs is regulated by multiple sequence elements in their joint promoters.

    PubMed

    Trappe, R; Doenecke, D; Albig, W

    1999-09-03

    The majority of human H2A and H2B histone genes are organized as gene pairs: 14 H2A-H2B gene pairs, one solitary H2A gene and three solitary H2B genes have been described. Two of the H2A genes and two of the H2B genes arranged within gene pairs are pseudogenes. The gene pairs are organized with divergent transcriptional orientation, and the coding regions of the respective H2A and H2B genes are separated by about 320 nucleotide pairs that form overlapping promoter regions. Comparison of promoters of H2A-H2B gene pairs has previously shown that these belong to two different groups (groups I and II) which are characterized by specific patterns of conserved sequence elements. We have constructed a reporter gene vector that allows the simultaneous analysis of both genes regulated by the divergent promoters belonging to group I or II, respectively. Firefly-luciferase and beta-galactosidase genes were taken as reporter genes. Site directed mutagenesis performed at individual promoter elements revealed that individual sequence elements within both groups of promoters functionally depend on each other and may contribute to a coordinate expression of paired H2A and H2B genes through assembly of their joint promoter into a mutually dependent promoter complex. Group II promoters are characterized by the presence of an E2F binding site upstream of the H2A gene-proximal TATA box. Immediately upstream of the E2F element, we have identified a highly conserved octanucleotide CACAGCTT (RT-1) that exists in all human group II H2A-H2B gene promoters. Protein binding studies at the RT-1 element indicate factor binding to this sequence. Site directed mutagenesis indicates that both the E2F element and the RT-1 motif are essential for full promoter activity.

  20. Targeted Segment Transfer from Rye Chromosome 2R to Wheat Chromosomes 2A, 2B, and 7B.

    PubMed

    Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong

    2017-03-10

    Increased chromosome instability was induced by a rye (Secale cereale L.) monosomic 2R chromosome into wheat (Triticum aestivum L.). Centromere breakage and telomere dysfunction result in high rates of chromosome aberrations, including breakages, fissions, fusions, deletions, and translocations. Plants with target traits were sequentially selected to produce a breeding population, from which 3 translocation lines with target traits have been selected. In these lines, wheat chromosomes 2A, 2B, and 7B recombined with segments of the rye chromosome arm 2RL. This was detected by FISH analysis using repeat sequences pSc119.2, pAs1 and genomic DNA of rye together as probes. The translocation chromosomes in these lines were named as 2ASMR, 2BSMR, and 7BSMR. The small segments that were transferred into wheat consisted of pSc119.2 repeats and other chromatin regions that conferred resistance to stripe rust and expressed target traits. These translocation lines were highly resistant to stripe rust, and expressed several typical traits that were associated with chromosome arm 2RL, which are better than those of its wheat parent, disomic addition, and substitution lines that show agronomic characteristics. The integration of molecular methods and conventional techniques to improve wheat breeding schemes are discussed.

  1. Histone Chaperone Nap1 Is a Major Regulator of Histone H2A-H2B Dynamics at the Inducible GAL Locus

    PubMed Central

    Chen, Xu; D'Arcy, Sheena; Radebaugh, Catherine A.; Krzizike, Daniel D.; Giebler, Holli A.; Huang, Liangquan; Nyborg, Jennifer K.; Luger, Karolin

    2016-01-01

    Histone chaperones, like nucleosome assembly protein 1 (Nap1), play a critical role in the maintenance of chromatin architecture. Here, we use the GAL locus in Saccharomyces cerevisiae to investigate the influence of Nap1 on chromatin structure and histone dynamics during distinct transcriptional states. When the GAL locus is not expressed, cells lacking Nap1 show an accumulation of histone H2A-H2B but not histone H3-H4 at this locus. Excess H2A-H2B interacts with the linker DNA between nucleosomes, and the interaction is independent of the inherent DNA-binding affinity of H2A-H2B for these particular sequences as measured in vitro. When the GAL locus is transcribed, excess H2A-H2B is reversed, and levels of all chromatin-bound histones are depleted in cells lacking Nap1. We developed an in vivo system to measure histone exchange at the GAL locus and observed considerable variability in the rate of exchange across the locus in wild-type cells. We recapitulate this variability with in vitro nucleosome reconstitutions, which suggests a contribution of DNA sequence to histone dynamics. We also find that Nap1 is required for transcription-dependent H2A-H2B exchange. Altogether, these results indicate that Nap1 is essential for maintaining proper chromatin composition and modulating the exchange of H2A-H2B in vivo. PMID:26884462

  2. Histone Chaperone Nap1 Is a Major Regulator of Histone H2A-H2B Dynamics at the Inducible GAL Locus.

    PubMed

    Chen, Xu; D'Arcy, Sheena; Radebaugh, Catherine A; Krzizike, Daniel D; Giebler, Holli A; Huang, Liangquan; Nyborg, Jennifer K; Luger, Karolin; Stargell, Laurie A

    2016-04-01

    Histone chaperones, like nucleosome assembly protein 1 (Nap1), play a critical role in the maintenance of chromatin architecture. Here, we use the GAL locus in Saccharomyces cerevisiae to investigate the influence of Nap1 on chromatin structure and histone dynamics during distinct transcriptional states. When the GAL locus is not expressed, cells lacking Nap1 show an accumulation of histone H2A-H2B but not histone H3-H4 at this locus. Excess H2A-H2B interacts with the linker DNA between nucleosomes, and the interaction is independent of the inherent DNA-binding affinity of H2A-H2B for these particular sequences as measured in vitro When the GAL locus is transcribed, excess H2A-H2B is reversed, and levels of all chromatin-bound histones are depleted in cells lacking Nap1. We developed an in vivo system to measure histone exchange at the GAL locus and observed considerable variability in the rate of exchange across the locus in wild-type cells. We recapitulate this variability with in vitro nucleosome reconstitutions, which suggests a contribution of DNA sequence to histone dynamics. We also find that Nap1 is required for transcription-dependent H2A-H2B exchange. Altogether, these results indicate that Nap1 is essential for maintaining proper chromatin composition and modulating the exchange of H2A-H2B in vivo.

  3. KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification

    PubMed Central

    Fournier, Marjorie; Orpinell, Meritxell; Grauffel, Cédric; Scheer, Elisabeth; Garnier, Jean-Marie; Ye, Tao; Chavant, Virginie; Joint, Mathilde; Esashi, Fumiko; Dejaegere, Annick; Gönczy, Pierre; Tora, László

    2016-01-01

    Lysine acetylation is a widespread post-translational modification regulating various biological processes. To characterize cellular functions of the human lysine acetyltransferases KAT2A (GCN5) and KAT2B (PCAF), we determined their acetylome by shotgun proteomics. One of the newly identified KAT2A/2B substrate is polo-like kinase 4 (PLK4), a key regulator of centrosome duplication. We demonstrate that KAT2A/2B acetylate the PLK4 kinase domain on residues K45 and K46. Molecular dynamics modelling suggests that K45/K46 acetylation impairs kinase activity by shifting the kinase to an inactive conformation. Accordingly, PLK4 activity is reduced upon in vitro acetylation of its kinase domain. Moreover, the overexpression of the PLK4 K45R/K46R mutant in cells does not lead to centrosome overamplification, as observed with wild-type PLK4. We also find that impairing KAT2A/2B-acetyltransferase activity results in diminished phosphorylation of PLK4 and in excess centrosome numbers in cells. Overall, our study identifies the global human KAT2A/2B acetylome and uncovers that KAT2A/2B acetylation of PLK4 prevents centrosome amplification. PMID:27796307

  4. PHOX2A and PHOX2B are differentially regulated during retinoic acid-driven differentiation of SK-N-BE(2)C neuroblastoma cell line

    PubMed Central

    Di Lascio, Simona; Saba, Elena; Belperio, Debora; Raimondi, Andrea; Lucchetti, Helen; Fornasari, Diego; Benfante, Roberta

    2016-01-01

    PHOX2B and its paralogue gene PHOX2A are two homeodomain proteins in the network regulating the development of autonomic ganglia that have been associated with the pathogenesis of neuroblastoma (NB), because of their over-expression in different NB cell lines and tumour samples. We used the SK-N-BE(2)C cell line to show that all-trans retinoic acid (ATRA), a drug that is widely used to inhibit growth and induce differentiation in NBs, regulates both PHOX2A and PHOX2B expression, albeit by means of different mechanisms: it up-regulates PHOX2A and down-regulates PHOX2B. Both mechanisms act at transcriptional level, but prolonged ATRA treatment selectively degrades the PHOX2A protein, whereas the corresponding mRNA remains up-regulated. Further, we show that PHOX2A is capable of modulating PHOX2B expression, but this mechanism is not involved in the PHOX2B down-regulation induced by retinoic acid. Our findings demonstrate that PHOX2A expression is finely controlled during retinoic acid differentiation and this, together with PHOX2B down-regulation, reinforces the idea that they may be useful biomarkers for NB staging, prognosis and treatment decision making. PMID:26902400

  5. Origin and evolution of GATA2a and GATA2b in teleosts: insights from tongue sole, Cynoglossus semilaevis

    PubMed Central

    Liu, Jinxiang; Jiang, Jiajun; Wang, Zhongkai; He, Yan

    2016-01-01

    Background. Following the two rounds of whole-genome duplication that occurred during deuterostome evolution, a third genome duplication occurred in the lineage of teleost fish and is considered to be responsible for much of the biological diversification within the lineage. GATA2, a member of GATA family of transcription factors, is an important regulator of gene expression in hematopoietic cell in mammals, yet the role of this gene or its putative paralogs in ray-finned fishes remains relatively unknown. Methods. In this study, we attempted to identify GATA2 sequences from the transcriptomes and genomes of multiple teleosts using the bioinformatic tools MrBayes, MEME, and PAML. Following identification, comparative analysis of genome structure, molecular evolution rate, and expression by real-time qPCR were used to predict functional divergence of GATA2 paralogs and their relative transcription in organs of female and male tongue soles (Cynoglossus semilaevis). Results. Two teleost GATA2 genes were identified in the transcriptomes of tongue sole and Japanese flounder (Paralichthysolivaceus). Synteny and phylogenetic analysis confirmed that the two genes likely originated from the teleost-specific genome duplication . Additionally, selection pressure analysis predicted these gene duplicates to have undergone purifying selection and possible divergent new functions. This was supported by differential expression pattern of GATA2a and GATA2b observed in organs of female and male tongue soles. Discussion. Our results indicate that two GATA2 genes originating from the first teleost-specific genome duplication have remained transcriptionally active in some fish species and have likely undergone neofunctionalization. This knowledge provides novel insights into the evolution of the teleost GATA2 genes and constituted important groundwork for further research on the GATA gene family. PMID:27019782

  6. Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice

    PubMed Central

    Kumar, Ramiya; Mota, Linda C.; Litoff, Elizabeth J.; Rooney, John P.; Boswell, W. Tyler; Courter, Elliott; Henderson, Charles M.; Hernandez, Juan P.; Corton, J. Christopher; Moore, David D.

    2017-01-01

    Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we investigated changes in transcript levels, protein expression, and steroid hydroxylation of several xenobiotic detoxifying CYPs in constitutive androstane receptor (CAR)-null and two CYP-null mouse models that have subfamily members regulated by CAR; the Cyp3a-null and a newly described Cyp2b9/10/13-null mouse model. Compensatory changes in CYP expression that occur in these models may also occur in polymorphic humans, or may complicate interpretation of ADME studies performed using these models. The loss of CAR causes significant changes in several CYPs probably due to loss of CAR-mediated constitutive regulation of these CYPs. Expression and activity changes include significant repression of Cyp2a and Cyp2b members with corresponding drops in 6α- and 16β-testosterone hydroxylase activity. Further, the ratio of 6α-/15α-hydroxylase activity, a biomarker of sexual dimorphism in the liver, indicates masculinization of female CAR-null mice, suggesting a role for CAR in the regulation of sexually dimorphic liver CYP profiles. The loss of Cyp3a causes fewer changes than CAR. Nevertheless, there are compensatory changes including gender-specific increases in Cyp2a and Cyp2b. Cyp2a and Cyp2b were down-regulated in CAR-null mice, suggesting activation of CAR and potentially PXR following loss of the Cyp3a members. However, the loss of Cyp2b causes few changes in hepatic CYP transcript levels and almost no significant compensatory changes in protein expression or activity with the possible exception of 6α-hydroxylase activity. This lack of a compensatory response in the Cyp2b9/10/13-null mice is probably due to low CYP2B hepatic expression, especially in male mice. Overall, compensatory and

  7. Influence of Various Polymorphic Variants of Cytochrome P450 Oxidoreductase (POR) on Drug Metabolic Activity of CYP3A4 and CYP2B6

    PubMed Central

    Naranmandura, Hua; Zeng, Su; Chen, Shu Qing

    2012-01-01

    Cytochrome P450 oxidoreductase (POR) is known as the sole electron donor in the metabolism of drugs by cytochrome P450 (CYP) enzymes in human. However, little is known about the effect of polymorphic variants of POR on drug metabolic activities of CYP3A4 and CYP2B6. In order to better understand the mechanism of the activity of CYPs affected by polymorphic variants of POR, six full-length mutants of POR (e.g., Y181D, A287P, K49N, A115V, S244C and G413S) were designed and then co-expressed with CYP3A4 and CYP2B6 in the baculovirus-Sf9 insect cells to determine their kinetic parameters. Surprisingly, both mutants, Y181D and A287P in POR completely inhibited the CYP3A4 activity with testosterone, while the catalytic activity of CYP2B6 with bupropion was reduced to approximately ∼70% of wild-type activity by Y181D and A287P mutations. In addition, the mutant K49N of POR increased the CLint (Vmax/Km) of CYP3A4 up to more than 31% of wild-type, while it reduced the catalytic efficiency of CYP2B6 to 74% of wild-type. Moreover, CLint values of CYP3A4-POR (A115V, G413S) were increased up to 36% and 65% of wild-type respectively. However, there were no appreciable effects observed by the remaining two mutants of POR (i.e., A115V and G413S) on activities of CYP2B6. In conclusion, the extent to which the catalytic activities of CYP were altered did not only depend on the specific POR mutations but also on the isoforms of different CYP redox partners. Thereby, we proposed that the POR-mutant patients should be carefully monitored for the activity of CYP3A4 and CYP2B6 on the prescribed medication. PMID:22719896

  8. The Effect of Adenosine A2A and A2B Antagonists on Tracheal Responsiveness, Serum Levels of Cytokines and Lung Inflammation in Guinea Pig Model of Asthma

    PubMed Central

    Pejman, Laleh; Omrani, Hasan; Mirzamohammadi, Zahra; Shahbazfar, Amir Ali; Khalili, Majid; Keyhanmanesh, Rana

    2014-01-01

    Purpose: Nowadays adenosine is specified as an important factor in the pathophysiology of asthma. For determining the effect of different A2 receptors, in this investigation the effect of single dose of selective adenosine A2A and A2B antagonists (ZM241385 and MRS1706) on different inflammatory parameters; tracheal responsiveness to methacholine and ovalbumin, total and differential cell count in bronchoalveolar lavage (BAL), blood levels of IL-4 and IFN-γ and lung pathology of guinea pig model of asthma were assessed. Methods: All mentioned parameters were evaluated in two sensitized groups of guinea pigs pretreated with A2A and A2B antagonists (S+Anta A2A, S+Anta A2B) compared with sensitized (S) and control (C) groups. Results: The tracheal responsiveness to methacholine and OA, total cell and eosinophil and basophil count in BAL, blood IL-4 level and pathological changes in pre-treated group with MRS1706 (S+Anta A2B) was significantly lower than those of sensitized group (p<0.01 to p<0.05). In pretreated group with Anta A2A(S+Anta A2A), all the above changes were reversed. Conclusion: These results showed a preventive effect of A2B antagonist (MRS1706) on tracheal responsiveness to methacholine and OA, total and differential cell count in bronchoalveolar lavage, blood cytokines and pathological changes. Administration of ZM241385, selective A2A antagonist, deteriorated the induction effect of ovalbumin. PMID:24511476

  9. Interactions of endosulfan and methoxychlor involving CYP3A4 and CYP2B6 in human HepaRG cells.

    PubMed

    Savary, Camille C; Jossé, Rozenn; Bruyère, Arnaud; Guillet, Fabrice; Robin, Marie-Anne; Guillouzo, André

    2014-08-01

    Humans are usually exposed to several pesticides simultaneously; consequently, combined actions between pesticides themselves or between pesticides and other chemicals need to be addressed in the risk assessment. Many pesticides are efficient activators of pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR), two major nuclear receptors that are also activated by other substrates. In the present work, we searched for interactions between endosulfan and methoxychlor, two organochlorine pesticides whose major routes of metabolism involve CAR- and PXR-regulated CYP3A4 and CYP2B6, and whose mechanisms of action in humans remain poorly understood. For this purpose, HepaRG cells were treated with both pesticides separately or in mixture for 24 hours or 2 weeks at concentrations relevant to human exposure levels. In combination they exerted synergistic cytotoxic effects. Whatever the duration of treatment, both compounds increased CYP3A4 and CYP2B6 mRNA levels while differently affecting their corresponding activities. Endosulfan exerted a direct reversible inhibition of CYP3A4 activity that was confirmed in human liver microsomes. By contrast, methoxychlor induced this activity. The effects of the mixture on CYP3A4 activity were equal to the sum of those of each individual compound, suggesting an additive effect of each pesticide. Despite CYP2B6 activity being unchanged and increased with endosulfan and methoxychlor, respectively, no change was observed with their mixture, supporting an antagonistic effect. Altogether, our data suggest that CAR and PXR activators endosulfan and methoxychlor can interact together and with other exogenous substrates in human hepatocytes. Their effects on CYP3A4 and CYP2B6 activities could have important consequences if extrapolated to the in vivo situation.

  10. The Nucleosome Assembly Protein TSPYL2 Regulates the Expression of NMDA Receptor Subunits GluN2A and GluN2B

    PubMed Central

    Tsang, Ka Hing; Lai, Suk King; Li, Qi; Yung, Wing Ho; Liu, Hang; Mak, Priscilla Hoi Shan; Ng, Cypress Chun Pong; McAlonan, Grainne; Chan, Ying Shing; Chan, Siu Yuen

    2014-01-01

    TSPYL2 is an X-linked gene encoding a nucleosome assembly protein. TSPYL2 interacts with calmodulin-associated serine/threonine kinase, which is implicated in X-linked mental retardation. As nucleosome assembly and chromatin remodeling are important in transcriptional regulation and neuronal function, we addressed the importance of TSPYL2 through analyzing Tspyl2 loss-of-function mice. We detected down-regulation of N-methyl-D-aspartate receptor subunits 2A and 2B (GluN2A and GluN2B) in the mutant hippocampus. Evidence from luciferase reporter assays and chromatin immunoprecipitation supported that TSPYL2 regulated the expression of Grin2a and Grin2b, the genes encoding GluN2A and GluN2B. We also detected an interaction between TSPYL2 and CBP, indicating that TSPYL2 may activate gene expression through binding CBP. In terms of functional outcome, Tspyl2 loss-of-function impaired long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, mutant mice showed a deficit in fear learning and memory. We conclude that TSPYL2 contributes to cognitive variability through regulating the expression of Grin2a and Grin2b. PMID:24413569

  11. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5.

    PubMed

    Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2014-01-01

    Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2(-⧸-)) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2(-⧸-) mouse livers were lower than that in wild-type mouse livers. Nrf2(-⧸-) mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.

  12. Structural and Biophysical Characterization of Human Cytochromes P450 2B6 and 2A6 Bound to Volatile Hydrocarbons: Analysis and Comparison

    PubMed Central

    Wilderman, P. Ross; Liu, Jingbao; Jang, Hyun-Hee; Zhang, Qinghai; Stout, C. David; Halpert, James R.

    2015-01-01

    X-ray crystal structures of complexes of cytochromes CYP2B6 and CYP2A6 with the monoterpene sabinene revealed two distinct binding modes in the active sites. In CYP2B6, sabinene positioned itself with the putative oxidation site located closer to the heme iron. In contrast, sabinene was found in an alternate conformation in the more compact CYP2A6, where the larger hydrophobic side chains resulted in a significantly reduced active-site cavity. Furthermore, results from isothermal titration calorimetry indicated a much more substantial contribution of favorable enthalpy to sabinene binding to CYP2B6 as opposed to CYP2A6, consistent with the previous observations with (+)-α-pinene. Structural analysis of CYP2B6 complexes with sabinene and the structurally similar (3)-carene and comparison with previously solved structures revealed how the movement of the F206 side chain influences the volume of the binding pocket. In addition, retrospective analysis of prior structures revealed that ligands containing –Cl and –NH functional groups adopted a distinct orientation in the CYP2B active site compared with other ligands. This binding mode may reflect the formation of Cl-π or NH-π bonds with aromatic rings in the active site, which serve as important contributors to protein-ligand binding affinity and specificity. Overall, the findings from multiple techniques illustrate how drugs metabolizing CYP2B6 and CYP2A6 handle a common hydrocarbon found in the environment. The study also provides insight into the role of specific functional groups of the ligand that may influence the binding to CYP2B6. PMID:25585967

  13. MicroRNA signatures predict dysregulated vitamin D receptor and calcium pathways status in limb girdle muscle dystrophies (LGMD) 2A/2B.

    PubMed

    Aguennouz, M; Lo Giudice, C; Licata, N; Rodolico, C; Musumeci, O; Fanin, M; Migliorato, A; Ragusa, M; Macaione, V; Di Giorgio, R M; Angelini, C; Toscano, A

    2016-08-01

    miRNA expression profile and predicted pathways involved in selected limb-girdle muscular dystrophy (LGMD)2A/2B patients were investigated. A total of 187 miRNAs were dysregulated in all patients, with six miRNAs showing opposite regulation in LGMD2A versus LGMD2B patients. Silico analysis evidence: (1) a cluster of the dysregulated miRNAs resulted primarily involved in inflammation and calcium metabolism, and (2) two genes predicted as controlled by calcium-assigned miRNAs (Vitamin D Receptor gene and Guanine Nucleotide Binding protein beta polypeptide 1gene) showed an evident upregulation in LGMD2B patients, in accordance with miRNA levels. Our data support alterations in calcium pathway status in LGMD 2A/B, suggesting myofibre calcium imbalance as a potential therapeutic target. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Characterization of rainbow trout myostatin-2 genes (rtMSTN-2a and -2b): genomic organization, differential expression, and pseudogenization.

    PubMed

    Garikipati, Dilip K; Gahr, Scott A; Roalson, Eric H; Rodgers, Buel D

    2007-05-01

    Myostatin is an extremely potent negative regulator of vertebrate skeletal muscle development. A phylogenetic analysis suggests that salmonids should possess four distinct genes, although only MSTN-1 orthologs have been characterized. Described herein are the rainbow trout (rt) MSTN-2a and -2b genes and subsequence analysis of their promoters and their quantitative expression profiles. Both genes are similarly organized, contain several putative myogenic response elements, and are legitimate MSTN-2 orthologs based on Bayesian analyses. However, rtMSTN-2b contains two in-frame stop codons within the first exon and unspliced variants of both transcripts were expressed in a tissue-specific manner. Complete splicing of rtMSTN-2a occurred only in brain, where expression is highest, whereas rtMSTN-2b transcripts were mostly present in unspliced forms. The presence of stop codons in the rtMSTN-2b open reading frame and the expression of mostly unspliced transcripts indicate that this particular homolog is a pseudogene. These results confirm our previous phylogenetic analysis and suggest that all salmonids likely possess four distinct myostatin genes. The tissue-specific expression and differential processing of both rtMSTN-2 transcripts as well the pseudogenization of rtMSTN-2b may reflect compensatory and adaptive responses to tetraploidization and may help limit rtMSTN-2a's influences primarily to neural tissue.

  15. CYP2A6 and CYP2B6 genetic variation and its association with nicotine metabolism in South Western Alaska Native people

    PubMed Central

    Binnington, Matthew J.; Zhu, Andy Z.X.; Renner, Caroline C.; Lanier, Anne P.; Hatsukami, Dorothy K.; Benowitz, Neal L; Tyndale, Rachel F.

    2012-01-01

    Objectives Alaska Native people (AN) have a high prevalence of tobacco use and associated morbidity and mortality when compared to the general U.S. population. Variation in the CYP2A6 and CYP2B6 genes, encoding enzymes responsible for nicotine metabolic inactivation and procarcinogen activation, has not been characterized in AN and may contribute to the increased risk. Methods AN people (n = 400) residing in the Bristol Bay region of South Western Alaska were recruited for a cross-sectional study on tobacco use. They were genotyped for CYP2A6*1X2A, *1X2B, *1B, *2, *4, *7, *8, *9, *10, *12, *17, *35 and CYP2B6*4, *6, *9 and provided plasma and urine samples for measurement of nicotine and metabolites. Results CYP2A6 and CYP2B6 variant frequencies among the AN Yupik people (n=361) were significantly different from other ethnicities. Nicotine metabolism (as measured by the plasma and urinary ratio of metabolites trans-3’hydroxycotinine to cotinine [(3HC/COT)] was significantly associated with CYP2A6 (P< 0.001) but not CYP2B6 genotype (P = 0.95) when controlling for known covariates. Of note, plasma 3HC/COT ratios were high in the entire Yupik people, and among the Yupik CYP2A6 wild-type participants they were substantially higher than previously characterized racial/ethnic groups (P < 0.001 vs. Caucasians and African Americans). Conclusions Yupik AN people have a unique CYP2A6 genetic profile which associated strongly with in vivo nicotine metabolism. More rapid CYP2A6-mediated nicotine and nitrosamine metabolism in the Yupik people may modulate tobacco-related disease risk. PMID:22569203

  16. Vestigial-like-2b (VITO-1b) and Tead-3a (Tef-5a) expression in zebrafish skeletal muscle, brain and notochord.

    PubMed

    Mann, Christopher J; Osborn, Daniel P S; Hughes, Simon M

    2007-10-01

    The vestigial gene has been shown to control skeletal muscle formation in Drosophila and the related Vestigial-like 2 (Vgl-2) protein plays a similar role in mice. Vgl-family proteins are thought to regulate tissue-specific gene expression by binding to members of the broadly expressed Scalloped/Tef/TEAD transcription factor family. Zebrafish have at least four Vgl genes, including two Vgl-2s, and at least three TEAD genes, including two Tead3s. We describe the cloning and expression of one member from each family in the zebrafish. A novel gene, vgl-2b, with closest homology to mouse and human vgl-2, is expressed transiently in nascent notochord and in muscle fibres as they undergo terminal differentiation during somitogenesis. Muscle cells also express a TEAD-3 homologue, a possible partner of Vgl-2b, during myoblast differentiation and early fibre assembly. Tead-3a is also expressed in rhombomeres, eye and epiphysis regions.

  17. Li{sub 2}B{sub 3}O{sub 4}F{sub 3}, a new lithium-rich fluorooxoborate

    SciTech Connect

    Pilz, Thomas; Nuss, Hanne; Jansen, Martin

    2012-02-15

    The new lithium fluorooxoborate, Li{sub 2}B{sub 3}O{sub 4}F{sub 3}, is obtained by a solid state reaction from LiBO{sub 2} and LiBF{sub 4} at 553 K and crystallizes in the acentric orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} (no. 19) with the cell parameters a=4.8915(9), b=8.734(2), and c=12.301(2) A. Chains of fluorinated boroxine rings along the b axis consists of BO{sub 3} triangles and BO{sub 2}F{sub 2} as well as BO{sub 3}F tetrahedra. Mobile lithium ions are compensating the negative charge of the anionic chain, in which the fourfold coordinated boron atoms bear a negative formal charge. Annealing Li{sub 2}B{sub 3}O{sub 4}F{sub 3} at temperatures above 573 K leads to conversion into Li{sub 2}B{sub 6}O{sub 9}F{sub 2}. The title compound is an ionic conductor with the highest ion conductivity among the hitherto know lithium fluorooxoborates, with conductivities of 1.6 Multiplication-Sign 10{sup -9} and 1.8 Multiplication-Sign 10{sup -8} S cm{sup -1} at 473 and 523 K, respectively. - Graphical abstract: Repetition unit of Li{sub 2}B{sub 3}O{sub 4}F{sub 3}. Highlights: Black-Right-Pointing-Pointer Li{sub 2}B{sub 3}O{sub 4}F{sub 3} is the third member within the family of lithium fluorooxoborates. Black-Right-Pointing-Pointer It shows the highest lithium ion conductivity among them. Black-Right-Pointing-Pointer Chains of interconnected fluorinated boroxine rings run along the b axis. Black-Right-Pointing-Pointer Acentric space group meets the requirement for second harmonic generation.

  18. Commercial PCV2a-based vaccines are effective in protecting naturally PCV2b-infected finisher pigs against experimental challenge with a 2012 mutant PCV2.

    PubMed

    Opriessnig, Tanja; Gerber, Priscilla F; Xiao, Chao-Ting; Halbur, Patrick G; Matzinger, Shannon R; Meng, Xiang-Jin

    2014-07-23

    Current commercial PCV2 vaccines are all based on PCV2a and have been shown to be effective in reducing PCV2a and PCV2b viremia and PCV2-associated lesions and disease. The recent emergence of novel mutant PCV2 (mPCV2) strains and linkage of mPCV2 with cases of porcine circovirus associated disease (PCVAD) in vaccinated herds have raised concerns over emergence of vaccine-escape mutants and reduced efficacy of PCV2a-based vaccines. The aim of this study was to determine the ability of three commercial PCV2a-based vaccines administered in the presence of an ongoing PCV2b infection and passively-acquired anti-PCV2 antibodies to protect conventional pigs against experimental challenge with mPCV2 at 11 weeks of age. Fifty naturally PCV2b-infected 2-week-old pigs were divided into five treatment groups with 10 pigs each. Pigs were unvaccinated (positive and negative controls) or vaccinated at 3 (VAC-A, VAC-B, VAC-C) and at 5 weeks of age (VAC-C). At 11 weeks of age, all pigs except the negative controls were challenged with a 2012 U.S. strain of mPCV2. The experiment was terminated 21 days after challenge. Under the conditions of this study, vaccinated pigs were protected against PCV2 viremia and lesions whereas non-vaccinated pigs were not. Moreover, concurrent PCV2b and mPCV2 infection was demonstrated in all positive controls and 3/10 had microscopic lesions consistent with PCVAD while negative controls infected with PCV2b alone did not develop PCVAD. The results indicate that concurrent PCV2b/mPCV2 infection can trigger PCVAD development and that commercial vaccines are effective in protecting conventional pigs against emerging mPCV2 strains.

  19. Determination of evolutionary relationships of outbreak-associated Listeria monocytogenes strains of serotypes 1/2a and 1/2b by whole-genome sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used whole-genome sequencing to determine evolutionary relationships among 20 outbreak-associated clinical isolates of Listeria monocytogenes serotypes 1/2a and 1/2b. Isolates from 6 of 11 outbreaks fell outside the clonal groups or “epidemic clones” that have been previously associated with outb...

  20. 77 FR 59670 - Electronic Filing of H-2A and H-2B Labor Certification Applications Through the iCERT Visa Portal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... Through the iCERT Visa Portal System AGENCY: Employment and Training Administration, Department of Labor... under the H-2A and H-2B visa programs through the Department of Labor's (Department) iCERT Visa Portal... Help Desk by sending an email to oflc.portal@dol.gov . Additionally, the Chicago NPC maintains...

  1. Overexpression of RelA/SpoT homologs, PpRSH2a and PpRSH2b, induces the growth suppression of the moss Physcomitrella patens.

    PubMed

    Sato, Michio; Takahashi, Tomohiro; Ochi, Kozo; Matsuura, Hideyuki; Nabeta, Kensuke; Takahashi, Kosaku

    2015-01-01

    Two genes encoding RelA/SpoT homologs, PpRSH2a and PpRSH2b, which are involved in the synthesis of bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp) for the stringent response, were isolated from the moss, Physcomitrella patens. A complementary analysis of PpRSH2a and PpRSH2b in Escherichia coli showed that these genes had ppGpp biosynthetic activity. The recombinant PpRSH2a and PpRSH2b were also shown to synthesize ppGpp in vitro. Both proteins were localized to the chloroplasts of P. patens. Expression of the PpRSH genes was induced upon treatment with abscisic acid or abiotic stresses, such as dehydration and UV irradiation. Overexpression of PpRSH2a and PpRSH2b caused suppression of the growth in response to 1% (w/v) of glucose. The present study suggests the existence of a mechanism to regulate the growth of P. patens, which is governed by plant RSH in chloroplasts.

  2. Expression of OmpP2A and OmpP2B is not required for pustule formation by Haemophilus ducreyi in human volunteers.

    PubMed

    Janowicz, Diane; Luke, Nicole R; Fortney, Kate R; Katz, Barry P; Campagnari, Anthony A; Spinola, Stanley M

    2006-03-01

    Haemophilus ducreyi express two porin proteins, termed OmpP2A and OmpP2B. To test whether expression of OmpP2A and OmpP2B was necessary for virulence in humans, eight volunteers were experimentally infected with the parent (35000HP) in one arm and a double OmpP2A OmpP2B mutant (35000HP::P2AB) in the other arm. The pustule formation rates were 58.3% (95% CI, 33.2-83.5%) for the parent and 41.7% (95% CI, 19.3-64.0%) for the mutant (P=0.25). Biopsy of 35000HP and 35000HP::P2AB-infected sites yielded similar amounts of bacteria in quantitative culture. These results indicate that expression of OmpP2A and OmpP2B is not necessary to initiate disease or to progress to pustule formation in humans.

  3. Mechanistic Insight into NMDA Receptor Dysregulation by Rare Variants in the GluN2A and GluN2B Agonist Binding Domains.

    PubMed

    Swanger, Sharon A; Chen, Wenjuan; Wells, Gordon; Burger, Pieter B; Tankovic, Anel; Bhattacharya, Subhrajit; Strong, Katie L; Hu, Chun; Kusumoto, Hirofumi; Zhang, Jing; Adams, David R; Millichap, John J; Petrovski, Slavé; Traynelis, Stephen F; Yuan, Hongjie

    2016-12-01

    Epilepsy and intellectual disability are associated with rare variants in the GluN2A and GluN2B (encoded by GRIN2A and GRIN2B) subunits of the N-methyl-D-aspartate receptor (NMDAR), a ligand-gated ion channel with essential roles in brain development and function. By assessing genetic variation across GluN2 domains, we determined that the agonist binding domain, transmembrane domain, and the linker regions between these domains were particularly intolerant to functional variation. Notably, the agonist binding domain of GluN2B exhibited significantly more variation intolerance than that of GluN2A. To understand the ramifications of missense variation in the agonist binding domain, we investigated the mechanisms by which 25 rare variants in the GluN2A and GluN2B agonist binding domains dysregulated NMDAR activity. When introduced into recombinant human NMDARs, these rare variants identified in individuals with neurologic disease had complex, and sometimes opposing, consequences on agonist binding, channel gating, receptor biogenesis, and forward trafficking. Our approach combined quantitative assessments of these effects to estimate the overall impact on synaptic and non-synaptic NMDAR function. Interestingly, similar neurologic diseases were associated with both gain- and loss-of-function variants in the same gene. Most rare variants in GluN2A were associated with epilepsy, whereas GluN2B variants were associated with intellectual disability with or without seizures. Finally, discerning the mechanisms underlying NMDAR dysregulation by these rare variants allowed investigations of pharmacologic strategies to correct NMDAR function.

  4. A mutation in the RET proto-oncogene in Hirschsprung's disease affects the tyrosine kinase activity associated with multiple endocrine neoplasia type 2A and 2B.

    PubMed Central

    Cosma, M P; Panariello, L; Quadro, L; Dathan, N A; Fattoruso, O; Colantuoni, V

    1996-01-01

    We demonstrate that a Hirschsprung (HSCR) mutation in the tyrosine kinase domain of the RET proto-oncogene abolishes in cis the tyrosine-phosphorylation associated with the activating mutation in multiple endocrine neoplasia type 2A (MEN2A) in transiently transfected Cos cells. Yet the double mutant RET2AHS retains the ability to form stable dimers, thus dissociating the dimerization from the phosphorylation potential. Co-transfection experiments with single and double mutants carrying plasmids RET2A and RET2AHS in different ratios drastically reduced the phosphorylation levels of the RET2A protein, suggesting a dominant-negative effect of the HSCR mutation. Also, the phosphorylation associated with the multiple endocrine neoplasia type 2B (MEN2B) allele was affected in experiments with single and double mutants carrying plasmids co-transfected under the same conditions. Finally, analysis of the enzymic activity of MEN2A and MEN2B tumours confirmed the relative levels of tyrosine phosphorylation observed in Cos cells, indicating that this condition, in vivo, may account for the RET transforming potential. PMID:8670046

  5. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza

    PubMed Central

    Zhou, Yangyun; Sun, Wei; Chen, Junfeng; Tan, Hexin; Xiao, Ying; Li, Qing; Ji, Qian; Gao, Shouhong; Chen, Li; Chen, Shilin; Zhang, Lei; Chen, Wansheng

    2016-01-01

    Salvia miltiorrhiza Bunge, which contains tanshinones and phenolic acids as major classes of bioactive components, is one of the most widely used herbs in traditional Chinese medicine. Production of tanshinones and phenolic acids is enhanced by methyl jasmonate (MeJA). Transcription factor MYC2 is the switch of jasmontes signaling in plants. Here, we focused on two novel JA-inducible genes in S. miltiorrhiza, designated as SmMYC2a and SmMYC2b, which were localized in the nucleus. SmMYC2a and SmMYC2b were also discovered to interact with SmJAZ1 and SmJAZ2, implying that the two MYC2s might function as direct targets of JAZ proteins. Ectopic RNA interference (RNAi)-mediated knockdown experiments suggested that SmMYC2a/b affected multiple genes in tanshinone and phenolic acid biosynthetic pathway. Besides, the accumulation of tanshinones and phenolic acids was impaired by the loss of function in SmMYC2a/b. Meanwhile, SmMYC2a could bind with an E-box motif within SmHCT6 and SmCYP98A14 promoters, while SmMYC2b bound with an E-box motif within SmCYP98A14 promoter, through which the regulation of phenolic acid biosynthetic pathway might achieve. Together, these results suggest that SmMYC2a and SmMYC2b are JAZ-interacting transcription factors that positively regulate the biosynthesis of tanshinones and Sal B with similar but irreplaceable effects. PMID:26947390

  6. Evidence for the 2B1-2A1 electronic transition in chlorine dioxide from resonance Raman depolarization ratios

    NASA Astrophysics Data System (ADS)

    Reid, Philip J.; Esposito, Anthony P.; Foster, Catherine E.; Beckman, Robert A.

    1997-11-01

    The resonance Raman depolarization ratios of chlorine dioxide (OClO) dissolved in cyclohexane are measured and analyzed to establish the existence of a 2A1 excited state that is nearly degenerate with the optically stronger, 2A2 excited state. The depolarization ratio of the symmetric stretch fundamental transition is measured at several excitation wavelengths spanning the lowest-energy electronic transition centered at ˜360 nm. The depolarization ratio of this transition reaches a maximum value of 0.25±0.04 directly on resonance suggesting that scattered intensity is not derived from a single excited state. The depolarization ratios are modeled utilizing the time-dependent formalism for Raman scattering. This analysis demonstrates that the observed Raman depolarization ratios are derived from contributions of two excited states of 2A1 and 2A2 symmetry to the observed scattering. The results presented here support the emerging picture of OClO excited-state reaction dynamics in which photoexcitation to the 2A2 excited state is followed by internal conversion from this state to the 2A1 surface. Both the role of the 2A1 state in the photochemistry of OClO and the importance of this state in modeling resonance Raman intensities are discussed.

  7. Dephosphorylation of distinct sites on microtubule-associated protein MAP1B by protein phosphatases 1, 2A and 2B.

    PubMed

    Ulloa, L; Dombrádi, V; Díaz-Nido, J; Szücs, K; Gergely, P; Friedrich, P; Avila, J

    1993-09-06

    Rat brain microtubule-associated protein MAP1B has been tested as a substrate for Ser/Thr protein phosphatases (PP). The dephosphorylation reactions were followed by specific antibodies recognizing phosphorylated and phosphorylatable epitopes. One set of phosphorylation sites on MAP1B are referred to as mode I sites, and their phosphorylation is presumably catalyzed by proline-directed protein kinases. These mode I sites are efficiently dephosphorylated by PP2B and 2A but not by PP1. Another set of phosphorylation sites on MAP1B are named mode II sites, and their phosphorylation is possibly due to casein kinase II. These mode II sites are dephosphorylated by PP2A and PP1, the PP2B being ineffective. The selectivity of phosphatases for different sites within the same protein indicates the complexity of the dephosphorylation reactions regulating the functionality of MAP1B in neurons.

  8. Neutron scattering studies of the H2a-H2b and (H3-H4)/sub 2/ histone complexes

    SciTech Connect

    Carlson, R.D.

    1982-01-01

    Neutron scattering experiments have shown that both the (H3-H4)/sub 2/ and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4)/sub 2/ tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk, can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. 48 references, 12 figures, 1 table.

  9. Dnmt3a2: a hub for enhancing cognitive functions.

    PubMed

    Oliveira, A M M; Hemstedt, T J; Freitag, H E; Bading, H

    2016-08-01

    The mechanisms responsible for fear memory formation and extinction are far from being understood. Uncovering the molecules and mechanisms regulating these processes is vital for identifying molecular targets for the development of novel therapeutic strategies for anxiety and fear disorders. Cognitive abilities require the activation of gene expression necessary to the consolidation of lasting changes in neuronal function. In this study we established a key role for an epigenetic factor, the de novo DNA methyltransferase, Dnmt3a2, in memory formation and extinction. We found that Dnmt3a2 overexpression in the hippocampus of young adult mice induced memory enhancements in a variety of situations; it converted a weak learning experience into long-term memory, enhanced fear memory formation and facilitated fear memory extinction. Dnmt3a2 overexpression was also associated with the increased expression of plasticity-related genes. Furthermore, the knockdown of Dnmt3a2 expression impaired the animals' ability to extinguish memories, identifying Dnmt3a2 as a key player in extinction. Thus, Dnmt3a2 is at the core of memory processes and represents a novel target for cognition-enhancing therapies to ameliorate anxiety and fear disorders and boost memory consolidation.

  10. Progression into the First Meiotic Division Is Sensitive to Histone H2a-H2b Dimer Concentration in Saccharomyces Cerevisiae

    PubMed Central

    Tsui, K.; Simon, L.; Norris, D.

    1997-01-01

    The yeast Saccharomyces cerevisiae contains two genes for histone H2A and two for histone H2B located in two divergently transcribed gene pairs: HTA1-HTB1 and HTA2-HTB2. Diploid strains lacking HTA1-HTB1 (hta1-htb1Δ/hta1-htb1Δ, HTA2-HTB2/HTA2-HTB2) grow vegetatively, but will not sporulate. This sporulation phenotype results from a partial depletion of H2A-H2B dimers. Since the expression patterns of HTA1-HTB1 and HTA2-HTB2 are similar in mitosis and meiosis, the sporulation pathway is therefore more sensitive than the mitotic cycle to depletion of H2A-H2B dimers. After completing premeiotic DNA replication, commitment to meiotic recombination, and chiasma resolution, the hta1-htb1Δ/hta1-htb1Δ, HTA2-HTB2/HTA2-HTB2 mutant arrests before the first meiotic division. The arrest is not due to any obvious disruptions in spindle pole bodies or microtubules. The meiotic block is not bypassed in backgrounds homozygous for spo13, rad50Δ, or rad9Δ mutations, but is bypassed in the presence of hydroxyurea, a drug known to inhibit DNA chain elongation. We hypothesize that the deposition of H2A-H2B dimers in the mutant is unable to keep pace with the replication fork, thereby leading to a disruption in chromosome structure that interferes with the meiotic divisions. PMID:9055075

  11. Draft Genome Sequences of Candida glabrata Isolates 1A, 1B, 2A, 2B, 3A, and 3B

    PubMed Central

    Håvelsrud, Othilde Elise

    2017-01-01

    ABSTRACT Here, we report the draft genome sequences of six Candida glabrata isolates. The isolates were taken from blood samples from patients after recurrent C. glabrata infection. Two isolates were taken from each of three patients a minimum 3 months apart. PMID:28280017

  12. Influence of synthetic and natural food dyes on activities of CYP2A6, UGT1A6, and UGT2B7.

    PubMed

    Kuno, Nayumi; Mizutani, Takaharu

    2005-08-27

    Synthetic or natural food dyes are typical xenobiotics, as are drugs and pollutants. After ingestion, part of these dyes may be absorbed and metabolized by phase I and II drug-metabolizing enzymes and excreted by transporters of phase III enzymes. However, there is little information regarding the metabolism of these dyes. It was investigated whether these dyes are substrates for CYP2A6 and UDP-glucuronosyltransferase (UGT). The in vitro inhibition of drug-metabolizing enzymes by these dyes was also examined. The synthetic food dyes studied were amaranth (food red no. 2), erythrosine B (food red no. 3), allura red (food red no. 40), new coccine (food red no. 102), acid red (food red no. 106), tartrazine (food Yellow no. 4), sunset yellow FCF (food yellow no. 5), brilliant blue FCF (food blue no. 1), and indigo carmine (food blue no. 2). The natural additive dyes studied were extracts from purple sweet potato, purple corn, cochineal, monascus, grape skin, elderberry, red beet, gardenia, and curthamus. Data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. Only indigo carmine inhibited CYP2A6 in a noncompetitive manner, while erythrosine B inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). In the natural additive dyes just listed, only monascus inhibited UGT1A6 and UGT2B7.

  13. Histone H2A/H2B chaperones: from molecules to chromatin-based functions in plant growth and development.

    PubMed

    Zhou, Wangbin; Zhu, Yan; Dong, Aiwu; Shen, Wen-Hui

    2015-07-01

    Nucleosomal core histones (H2A, H2B, H3 and H4) must be assembled, replaced or exchanged to preserve or modify chromatin organization and function according to cellular needs. Histone chaperones escort histones, and play key functions during nucleosome assembly/disassembly and in nucleosome structure configuration. Because of their location at the periphery of nucleosome, histone H2A-H2B dimers are remarkably dynamic. Here we focus on plant histone H2A/H2B chaperones, particularly members of the NUCLEOSOME ASSEMBLY PROTEIN-1 (NAP1) and FACILITATES CHROMATIN TRANSCRIPTION (FACT) families, discussing their molecular features, properties, regulation and function. Covalent histone modifications (e.g. ubiquitination, phosphorylation, methylation, acetylation) and H2A variants (H2A.Z, H2A.X and H2A.W) are also discussed in view of their crucial importance in modulating nucleosome organization and function. We further discuss roles of NAP1 and FACT in chromatin-based processes, such as transcription, DNA replication and repair. Specific functions of NAP1 and FACT are evident when their roles are considered with respect to regulation of plant growth and development and in plant responses to environmental stresses. Future major challenges remain in order to define in more detail the overlapping and specific roles of various members of the NAP1 family as well as differences and similarities between NAP1 and FACT family members, and to identify and characterize their partners as well as new families of chaperones to understand histone variant incorporation and chromatin target specificity.

  14. The nucleotide-binding domains of sulfonylurea receptor 2A and 2B play different functional roles in nicorandil-induced activation of ATP-sensitive K+ channels.

    PubMed

    Yamada, Mitsuhiko; Kurachi, Yoshihisa

    2004-05-01

    Nicorandil activates ATP-sensitive K(+) channels composed of Kir6.2 and either sulfonylurea receptor (SUR) 2A or 2B. Although SUR2A and SUR2B differ only in their C-terminal 42 amino acids (C42) and possess identical drug receptors and nucleotide-binding domains (NBDs), nicorandil more potently activates SUR2B/Kir6.2 than SUR2A/Kir6.2 channels. Here, we analyzed the roles of NBDs in these channels' response to nicorandil with the inside-out configuration of the patch-clamp method. Binding and hydrolysis of nucleotides by NBDs were impaired by mutations in the Walker A motif of NBD1 (K708A) and NBD2 (K1349A) and in the Walker B motif of NBD2 (D1470N). Experiments were done with internal ATP (1 mM). In SUR2A/Kir6.2 channels, the K708A mutation abolished, and the K1349A but not D1470N mutation reduced the sensitivity to nicorandil. ADP (100 microM) significantly increased the wild-type channels' sensitivity to nicorandil, which was abolished by the K1349A or D1470N mutation. Thus, the SUR2A/Kir6.2 channels' response to nicorandil critically depends on ATP-NBD1 interaction and is facilitated by interactions of ATP or ADP with NBD2. In SUR2B/Kir6.2 channels, either the K708A or K1349A mutation partially suppressed the response to nicorandil, and double mutations abolished it. The D1470N mutation also significantly impaired the response. ADP did not sensitize the channels. Thus, NBD2 hydrolyzes ATP, and NBD1 and NBD2 equally contribute to the response by interacting with ATP and ADP, accounting for the higher nicorandil sensitivity of SUR2B/Kir6.2 than SUR2A/Kir6.2 channels in the presence of ATP alone. Thus, C42 modulates the interaction of both NBDs with intracellular nucleotides.

  15. A 2A2<--X 2B1 absorption and Raman spectra of the OClO molecule: A three-dimensional time-dependent wave packet study

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Lou, Nanquan; Nyman, Gunnar

    2005-02-01

    Time-dependent wave packet calculations of the (A 2A2←X 2B1) absorption and Raman spectra of the OClO molecule are reported. The Fourier grid Hamiltonian method in three dimensions is employed. The X 2B1 ground state ab initio potential energy surface reported by Peterson [J. Chem. Phys. 109, 8864 (1998)] is used together with his corresponding A 2A2 state surface or the revised surface of the A 2A2 state by Xie and Guo [Chem. Phys. Lett. 307, 109 (1999)]. Radau coordinates are used to describe the vibrations of a nonrotating OClO molecule. The split-operator method combined with fast Fourier transform is applied to propagate the wave function. We find that the ab initio A 2A2 potential energy surface better reproduces the detailed structures of the absorption spectrum at long wavelength, while the revised surface of the A 2A2 state, consistent with the work of Xie and Guo, better reproduces the overall shape and the energies of the vibrational levels. Both surfaces of the A 2A2 state can reasonably reproduce the experimental Raman spectra but neither does so in detail for the numerical model employed in the present work.

  16. Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors

    PubMed Central

    Campa, Daniele; Capurso, Gabriele; Pastore, Manuela; Talar-Wojnarowska, Renata; Milanetto, Anna Caterina; Landoni, Luca; Maiello, Evaristo; Lawlor, Rita T.; Malecka-Panas, Ewa; Funel, Niccola; Gazouli, Maria; De Bonis, Antonio; Klüter, Harald; Rinzivillo, Maria; Delle Fave, Gianfranco; Hackert, Thilo; Landi, Stefano; Bugert, Peter; Bambi, Franco; Archibugi, Livia; Scarpa, Aldo; Katzke, Verena; Dervenis, Christos; Liço, Valbona; Furlanello, Sara; Strobel, Oliver; Tavano, Francesca; Basso, Daniela; Kaaks, Rudolf; Pasquali, Claudio; Gentiluomo, Manuel; Rizzato, Cosmeri; Canzian, Federico

    2016-01-01

    Pancreatic neuroendocrine tumors (PNETs) are heterogeneous neoplasms which represent only 2% of all pancreatic neoplasms by incidence, but 10% by prevalence. Genetic risk factors could have an important role in the disease aetiology, however only a small number of case control studies have been performed yet. To further our knowledge, we genotyped 13 SNPs belonging to the pleiotropic CDKN2A/B gene region in 320 PNET cases and 4436 controls, the largest study on the disease so far. We observed a statistically significant association between the homozygotes for the minor allele of the rs2518719 SNP and an increased risk of developing PNET (ORhom = 2.08, 95% CI 1.05–4.11, p = 0.035). This SNP is in linkage disequilibrium with another polymorphic variant associated with increased risk of several cancer types. In silico analysis suggested that the SNP could alter the sequence recognized by the Neuron-Restrictive Silencer Factor (NRSF), whose deregulation has been associated with the development of several tumors. The mechanistic link between the allele and the disease has not been completely clarified yet but the epidemiologic evidences that link the DNA region to increased cancer risk are convincing. In conclusion, our results suggest rs2518719 as a pleiotropic CDKN2A variant associated with the risk of developing PNETs. PMID:28008994

  17. Neutron scattering studies of the H2a-H2b and (H3-H4)2 histone complexes

    SciTech Connect

    Carlson, R.D.

    1984-01-01

    Neutron scattering experiments have shown that both the (H3-H4)2 and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4)2 tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk of the type proposed by Klug et al. (23), can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. The low resolution data are in good agreement with those calculated for a cylindrical model 64 X 27 A, but other elongated models fit those data almost as well, including one that approximates free N-terminal arms at each end. Free arms are not necessary, but they must extend from the ends if they exist. A contrast matching experiment done with 50% deuterated H2b and undeuterated H2a in the reconstituted dimer showed that these two histones must each be rather elongated within the complex and are not just confined to one end. The amount of scattering contrast between the undeuterated and 50% deuterated histones was sufficient to suggest further experiments using complexes reconstituted from mixtures of undeuterated and partially deuterated histones which will help elucidate their arrangement within the histone complexes and within the octamer core of the nucleosome core particle.

  18. Pulmonary transcription of CAT-2 and CAT-2B but not CAT-1 and CAT-2A were upregulated in hemorrhagic shock rats.

    PubMed

    Huang, Chun-Jen; Tsai, Pei-Shan; Yang, Chen-Hsien; Su, Tsung-Hsien; Stevens, Bruce R; Skimming, Jeffrey W; Pan, Wynn H T

    2004-11-01

    Hemorrhagic shock stimulates nitric oxide (NO) biosynthesis through upregulation of inducible NO synthase (iNOS) expression. Trans-membrane l-arginine transportation mediated by the isozymes of cationic amino acid transporters (e.g. CAT-1, CAT-2, CAT-2A, and CAT-2B) is one crucial regulatory mechanism that regulates iNOS activity. We sought to assess the effects of hemorrhage and resuscitation on the expression of these regulatory enzymes in hemorrhage-stimulated rat lungs. Twenty-four rats were randomized to a sham-instrumented group, a sustained shock group, a shock with blood resuscitation group, or a shock with normal saline resuscitation group. Hemorrhagic shock was induced by withdrawing blood to maintain MAP between 40 and 45mmHg for 60min. Resuscitation by infusing blood/saline mixtures (blood resuscitation group) or saline alone (saline resuscitation group) was then performed. At the end of the experiment (300min after hemorrhage began), rats were sacrificed and enzymes expression as well as pulmonary NO biosynthesis and lung injuries were assayed. Our data revealed that hemorrhage-induced pulmonary iNOS, CAT-2, and CAT-2B transcription which was associated with pulmonary NO overproduction and subsequent lung injury. Resuscitation significantly attenuated the hemorrhage-induced enzyme upregulation, pulmonary NO overproduction, and lung injury. Blood/saline mixtures were superior to saline as a resuscitation solution in treating hemorrhage-induced pulmonary NO overproduction and lung injury. Hemorrhage and/or resuscitation, however, did not affect the expression of pulmonary CAT-1 and CAT-2A. It is, therefore, concluded that the expression of pulmonary iNOS, CAT-2, and CAT-2B is inducible and that of CAT-1 and CAT-2A is constitutive in hemorrhagic shock rat lungs.

  19. [Roles and expressions of the NMDA receptor subunits (NR2A and NR2B) in visual cortex area of kittens with the normal visual development and anisometropic amblyopia].

    PubMed

    Li, Haiwei; Liu, Longqian; Liu, Xuyang

    2011-04-01

    In order to understand the roles of the other subunits, we investigated expression of the NMDA receptor subunits (NR2A and NR2B) in visual cortex of normal and anisometropic amblyopia kittens with different ages in the present study. We examined the expressions of NR2A and NR2B in the visual cortex of the kittens by immunohistochemistry with polyclonal anti-NR2A antibody and anti-NR2B antibody, respectively. Using immunohisto-chemical Streptavidin Perosidase (SP) method, we observed the dynamic changes of NR2A and NR2B with microscope and computer-assisted image analyses. We found that NR2A and NR2B remained low expression after the peak of the critical period of kitten visual development; compared with normal group of the same age, NR2A expresses low. However, the difference is not significant for NR2B before maturation period of visual development. NR2B rises after the maturation period of visual development. According to this, the component of NR2A and NR2B can be affected by anisometropia. This research suggests that the difference of NR2A and NR2B expressions may affect the formation of amblyopia.

  20. Cellular localization and effects of ectopically expressed hepatitis A virus proteins 2B, 2C, 3A and their intermediates 2BC, 3AB and 3ABC.

    PubMed

    Seggewiß, Nicole; Kruse, Hedi Verena; Weilandt, Rebecca; Domsgen, Erna; Dotzauer, Andreas; Paulmann, Dajana

    2016-04-01

    In the course of hepatitis A virus (HAV) infections, the seven nonstructural proteins and their intermediates are barely detectable. Therefore, little is known about their functions and mechanisms of action. Ectopic expression of the presumably membrane-associated proteins 2B, 2C, 3A and their intermediates 2BC, 3AB and 3ABC allowed the intracellular localization of these proteins and their possible function during the replication cycle of HAV to be investigated. In this study, we used rhesus monkey kidney cells, which are commonly used for cell culture experiments, and human liver cells, which are the natural target cells. We detected specific associations of these proteins with distinct membrane compartments and the cytoskeleton, different morphological alterations of the respective structures, and specific effects on cellular functions. Besides comparable findings in both cell lines used with regard to localization and effects of the proteins examined, we also found distinct differences. The data obtained identify so far undocumented interactions with and effects of the HAV proteins investigated on cellular components, which may reflect unknown aspects of the interaction of HAV with the host cell, for example the modification of the ERGIC (ER-Golgi intermediate compartment) structure, an interaction with lipid droplets and lysosomes, and inhibition of the classical secretory pathway.

  1. CYP2C19 but not CYP2B6, CYP3A4, CYP3A5, ABCB1, PON1 or P2Y12 genetic polymorphism impacts antiplatelet response after clopidogrel in Koreans.

    PubMed

    Zhang, Hong-Zhe; Kim, Moo Hyun; Guo, Long-Zhe; Serebruany, Victor

    2017-01-01

    Clopidogrel response variability (CRV) is well documented, and may affect clinical outcomes. Impact of genetic polymorphisms is important for assessing and predicting CRV. The extensive evidence indicates the importance of CYP2C19 variants in reducing efficacy of clopidogrel. This study defined the impact of numerous genetic polymorphisms on CRV before and after percutaneous coronary interventions (PCI) exclusively in a Korean cohort assuming less genetic variability noise. One hundred and thirty-six patients of Korean origin undergoing PCI were included. Platelet reactivity was measured by VerifyNow assay before and after PCI. Genetic polymorphism of seven single nucleotides of CYP2B6, CYP2C19, CYP3A4, CYP3A5, ABCB1, PON1, and P2Y12 were evaluated and matched with platelet reactivity. Carriers of at least one CYP2C19*2 or *3 allele uniformly exhibited higher platelet reactivity compared to 0-carrier pre-PCI (odds ratio 3.1, 95% confidence interval 1.4-6.9, P < 0.01) and post-PCI (odds ratio 3.4, 95% confidence interval 1.7-6.8, P < 0.001). The carriers of other gene allele variants lack uniformed impact on CRV. The Korean carriers of CYP2C19*2 or *3 allele are linked to CRV, whereas CYP2B6, CYP3A4, CYP3A5, ABCB1, PON1, and P2Y12 failed to predict CRV. The exact clinical utility of these findings is uncertain, and requires a large randomized national trial for proof of concept.

  2. Topology prediction of Brucella abortus Omp2b and Omp2a porins after critical assessment of transmembrane beta strands prediction by several secondary structure prediction methods.

    PubMed

    Paquet, J Y; Vinals, C; Wouters, J; Letesson, J J; Depiereux, E

    2000-02-01

    In order to propose a reliable model for Brucella porin topology, several structure prediction methods were evaluated in their ability to predict porin topology. Four porins of known structure were selected as test-cases and their secondary structure delineated. The specificity and sensitivity of 11 methods were separately evaluated. Our critical assessment shows that some secondary structure prediction methods (PHD, Dsc, Sopma) originally designed to predict globular protein structure are useful on porin topology prediction. The overall best prediction is obtained by combining these three "generalist" methods with a transmembrane beta strand prediction technique. This "consensus" method was applied to Brucella porins Omp2b and Omp2a, sharing no sequence homology with any other porin. The predicted topology is a 16-stranded antiparallel beta barrel with Omp2a showing a higher number of negatively charged residue in the exposed loops than Omp2b. Experiments are in progress to validate the proposed topology and the functional hypotheses. The ability of the proposed consensus method to predict topology of complex outer membrane protein is briefly discussed.

  3. PDCD4 functions as a suppressor for pT2a and pT2b stage gastric cancer.

    PubMed

    Guo, Peng-Tao; Yang, Dong; Sun, Zhe; Xu, Hui-Mian

    2013-03-01

    Gastric cancer is one of the leading causes of cancer‑related mortality worldwide. Loss of programmed cell death 4 (PDCD4) expression has been detected in gastric cancer. However, the effects of PDCD4 on pT2 stage gastric cancer remain unclear. The aim of this study was to identify the relationship between PDCD4 expression and clinicopathological features of patients with pT2 stage gastric cancer. In the present study, 122 pT2 stage gastric cancer specimens were subclassified as pT2a and pT2b stage. The levels of PDCD4 mRNA and protein in gastric cancer tissues were lower compared to that in normal tissues as detected by real‑time PCR and western blot analysis, respectively. In addition, both PDCD4 mRNA and protein in pT2b stage gastric cancer were lower when compared to that in pT2a stage gastric cancer. Finally, we used immuno-histochemistry to determine the protein expression and analyzed the relationship between PDCD4 expression and the clinicopathological features of pT2 stage gastric cancer patients. Cumulative survival rate of patients with PDCD4 expression was significantly higher compared to the patients without PDCD4 expression. PDCD4 expression in gastric cancer can be employed to indicate a favorable prognosis for the disease outcome.

  4. Concurrent porcine circovirus type 2a (PCV2a) or PCV2b infection increases the rate of amino acid mutations of porcine reproductive and respiratory syndrome virus (PRRSV) during serial passages in pigs.

    PubMed

    Yin, Shuang-Hui; Xiao, Chao-Ting; Gerber, Priscilla F; Beach, Nathan M; Meng, Xiang-Jin; Halbur, Patrick G; Opriessnig, Tanja

    2013-12-26

    Porcine reproductive and respiratory syndrome virus (PRRSV) has a high degree of genetic and antigenic variability. The purpose of this study was to determine if porcine circovirus type 2 (PCV2) infection increases genetic variability of PRRSV during serial passages in pigs and to determine if there is a difference in the PRRSV mutation rate between pigs concurrently infected with PCV2a or PCV2b. After 8 consecutive passages of PRRSV alone (group 1), PRRSV with PCV2a (group 2), or PCV2b (group 3) in pigs, the sequences of PRRSV structural genes for open reading frame (ORF) 5, ORF6, ORF7 and the partial non-structural protein gene (Nsp) 2 were determined. The total number of identified amino acid mutations in ORF5, ORF6, ORF7 and Nsp2 sequences was 30 for PRRSV infection only, 63 for PRRSV/PCV2a concurrent infection, and 77 for PRRSV/PCV2b concurrent infection when compared with the original VR2385 virus used to infect the passage 1 pigs. Compared to what occurred in pigs infected with PRRSV only, the mutation rates in ORF5 and ORF6 were significantly higher for concurrent PRRSV/PCV2b infected pigs. The PRRSV/PCV2a pigs had a significantly higher mutation rate in ORF7. The results from this study indicated that, besides ORF5 and Nsp2, the PRRSV structural genes ORF6 and ORF7 were shown to mutate at various degrees when the PRRSV was passaged over time in vivo. Furthermore, a significantly higher mutation rate of PRRSV was observed when pigs were co-infected with PCV2 highlighting the importance of concurrent infections on PRRSV evolution and control.

  5. Irradiation of Metallic Fuels with Rare Earth Additions for Actinide Transmutation in the ATR. Experiment Description for AFC-2A and AFC-2B

    SciTech Connect

    S. L. Hayes; D. J. Utterbeck; T. A. Hyde

    2007-03-01

    The U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing metallic transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the metallic fuel test series in progress in the ATR. This report documents the experiment description and test matrix of the proposed experiments and the Post Irradiation Examination (PIE) and fabrication schedule.

  6. Irradiation of Metallic Fuels with Rare Earth Additions for Actinide Transmutation in the Advanced Test Reactor. Experiment Description for AFC-2A and AFC-2B

    SciTech Connect

    Hayes, Steven L.

    2006-12-01

    The U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing metallic transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the metallic fuel test series in progress in the ATR. This report documents the experiment description and test matrix of the proposed experiments and the Post Irradiation Examination (PIE) and fabrication schedule.

  7. Irradiation of Metallic Fuels with Rare Earth Additions for Actinide Transmutation in the ATR. Experiment Description for AFC-2A and AFC-2B

    SciTech Connect

    S. L. Hayes; D. J. Utterbeck; T. A. Hyde

    2006-11-01

    The U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing metallic transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the metallic fuel test series in progress in the ATR. This report documents the experiment description and test matrix of the proposed experiments and the Post Irradiation Examination (PIE) and fabrication schedule.

  8. Identification of high-risk Listeria monocytogenes serotypes in lineage I (serotype 1/2a, 1/2c, 3a and 3c) using multiplex PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: Using molecular subtyping techniques, Listeria monocytogenes is divided into three major phylogenetic lineages, and a multiplex PCR method can differentiate five L. monocytogenes subgroups: 1/2a-3a, 1/2c-3c, 1/2b-3b-7, 4b-4d-4e, and 4a-4c. In the current study, we conducted genome comparison...

  9. Biological activity of EDQM CRS for Interferon alfa-2a and Interferon alfa-2b - assessment in two in vitro bioassays.

    PubMed

    Silva, M M C G; Gaines-Das, R E; Jones, C; Robinson, C J

    2007-12-01

    The European Directorate for the Quality of Medicines (EDQM) supplies Chemical Reference Substances (CRS) for Interferon (IFN) alfa-2a (CRS I0320300) and for IFN alfa-2b (CRS I0320301) for specified physicochemical tests. However, no information is provided as to their biological activity. In contrast, the World Health Organization (WHO) provides the 2nd International Standards (IS) for IFN alfa-2a (code 95/650) and for IFN alfa-2b (code 95/566), with activity defined in International Units (IU) for calibration of biological activity of preparations of IFN. We have compared the EDQM CRSs with the WHO ISs in two bioassay systems, one measuring the anti-proliferative activity in the Daudi cell line and the other measuring a reporter gene activation in an A549 cell line. In each of these assay systems, the CRSs gave dose - response relations, which were similar to those for the WHO ISs. Estimates of relative activity for each CRS, in terms of the respective IS, showed specific biological activity for the CRSs of the same order as the nominal specific activity for the ISs. However, the estimates of relative activity were not consistent between the two assays systems, emphasizing the need for calibration within each system, if the CRS were to be used as a working standard for bioassays. For structure-activity studies, both physicochemical and biological activity characterisation are required for the same biopharmaceutical preparation. CRS I0320300 and CRS I0320301 may prove useful as working standards for some bioassay systems.

  10. Mutagenesis of Dengue Virus Protein NS2A Revealed a Novel Domain Responsible for Virus-Induced Cytopathic Effect and Interactions Between NS2A and NS2B Transmembrane Segments.

    PubMed

    Wu, Ren-Huang; Tsai, Ming-Han; Tsai, Kuen-Nan; Tian, Jia Ni; Wu, Jian-Sung; Wu, Su-Ying; Chern, Jyh-Haur; Chen, Chun-Hong; Yueh, Andrew

    2017-04-05

    The NS2A protein of Dengue virus (DENV) has eight predicted transmembrane segments (pTMS1-8) and participates in RNA replication, virion assembly, and host antiviral response. However, the roles of specific amino acid residues within the pTMS regions of NS2A during the viral life cycle are not clear. Here, we explored the function of DENV NS2A by introducing a series of alanine substitutions into the N-terminal half (pTMS1-4) of the protein in the context of a DENV infectious clone or subgenomic replicon. Six NS2A mutants (NM5, 7, 9, and 17-19) around pTMS1-2 displayed a novel phenotype showing a >1000-fold reduction in virus yield, an absence of plaque formation despite wild-type-like replicon activity, and infectious virus-like particle yields. The HEK293 cells infected with those six NS2A mutant viruses failed to cause a virus-induced cytopathic effect (CPE) by MitoCapture staining, cell proliferation, and lactate dehydrogenase release assays. Sequencing analyses of pseudorevertant viruses derived from lethal mutant viruses revealed two consensus reversion mutations, leucine-to-phenylalanine at codon 181 (L181F) within the pTMS7 of NS2A and isoleucine-to-threonine at codon 114 (I114T) within NS2B. The introduction of NS2A-L181F mutation into the lethal (NM15, 16, 25, and 33) and CPE-defective (NM7, 9, and 19) mutants substantially rescued virus infectivity and virus-induced CPE, respectively, whereas NS2B-L114T mutation rescued NM16, 25, and 33 mutants. In conclusion, the results revealed the essential roles of the N-terminal half of NS2A in RNA replication and virus-induced CPE. Intramolecular interactions between pTMSs of NS2A and intermolecular interactions between NS2A and NS2B protein were also implicated.Importance: The characterization of the N-terminal (current study) and C-terminal half of DENV NS2A is the most comprehensive mutagenesis study to date to investigate the function of NS2A during the flaviviral life cycle. A novel region responsible for

  11. Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-D-aspartate receptor function and neuronal excitotoxicity.

    PubMed

    Zhou, Xianju; Ding, Qi; Chen, Zhuoyou; Yun, Huifang; Wang, Hongbing

    2013-08-16

    GluN2A and GluN2B are the major subunits of functional NMDA receptors (NMDAR). Previous studies have suggested that GluN2A and GluN2B may differentially mediate NMDAR function at synaptic and extrasynaptic locations and play opposing roles in excitotoxicity, such as neurodegeneration triggered by ischemic stroke and brain injury. By using pharmacological and molecular approaches to suppress or enhance the function of GluN2A and GluN2B in cultured cortical neurons, we examined NMDAR-mediated, bidirectional regulation of prosurvival signaling (i.e. the cAMP response element-binding protein (CREB)-Bdnf cascade) and cell death. Inhibition of GluN2A or GluN2B attenuated the up-regulation of prosurvival signaling triggered by the activation of either synaptic or extrasynaptic NMDAR. Inhibition of GluN2A or GluN2B also attenuated the down-regulation of prosurvival signaling triggered by the coactivation of synaptic and extrasynaptic receptors. The effects of GluN2B on CREB-Bdnf signaling were larger than those of GluN2A. Consistently, compared with suppression of GluN2A, suppression of GluN2B resulted in more reduction of NMDA- and oxygen glucose deprivation-induced excitotoxicity as well as NMDAR-mediated elevation of intracellular calcium. Moreover, excitotoxicity and down-regulation of CREB were exaggerated in neurons overexpressing GluN2A or GluN2B. Together, we found that GluN2A and GluN2B are involved in the function of both synaptic and extrasynaptic NMDAR, demonstrating that they play similar rather than opposing roles in NMDAR-mediated bidirectional regulation of prosurvival signaling and neuronal death.

  12. The relative cellular levels of CP2a and CP2b potentiates erythroid cell-specific expression of the {alpha}-globin gene by regulating the nuclear localization of CP2c

    SciTech Connect

    Chae, Ji Hyung; Kang, Ho Chul; Kim, Chul Geun

    2009-03-20

    CP2b activates {alpha}-globin expression in an erythroid cell-specific manner, through interaction with CP2c and PIAS1. Although CP2a is identical to CP2b except for lacking an exon encoding additional 36 amino acids and has the intrinsic DNA binding and transactivation properties, it does not exert any role in {alpha}-globin expression. Investigation of subcellular localization of exogenous CP2 proteins revealed that CP2a and CP2b were exclusively localized in the cytosol and nucleus, respectively. The CP2b-specific exon was in charge of the nuclear localization of CP2b. Interestingly, subcellular localization of CP2c was either in the nucleus or cytosol depending on the relative level of CP2a and CP2b although CP2c intrinsically localized in the cytosol in the absence of CP2a/CP2b. Finally, dramatic increment of hemoglobin expression was correlated with nuclear translocation of CP2c during MEL cell differentiation. Our data suggest that CP2b potentiate erythroid cell-specific {alpha}-globin expression by recruiting CP2c into the nucleus.

  13. Effects of green tea catechins on cytochrome P450 2B6, 2C8, 2C19, 2D6 and 3A activities in human liver and intestinal microsomes.

    PubMed

    Misaka, Shingen; Kawabe, Keisuke; Onoue, Satomi; Werba, José Pablo; Giroli, Monica; Tamaki, Sekihiro; Kan, Toshiyuki; Kimura, Junko; Watanabe, Hiroshi; Yamada, Shizuo

    2013-01-01

    The effects of green tea catechins on the main drug-metabolizing enzymatic system, cytochrome P450 (CYP), have not been fully elucidated. The objective of the present study was to evaluate the effects of green tea extract (GTE, total catechins 86.5%, w/w) and (-)-epigallocatechin-3-gallate (EGCG) on the activities of CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A in vitro, using pooled human liver and intestinal microsomes. Bupropion hydroxylation, amodiaquine N-deethylation, (S)-mephenytoin 4'-hydroxylation, dextromethorphan O-demethylation and midazolam 1'-hydroxylation were assessed in the presence or absence of various concentrations of GTE and EGCG to test their effects on CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A activities, respectively. Each metabolite was quantified using UPLC/ESI-MS, and the inhibition kinetics of GTE and EGCG on CYP enzymes was analyzed. In human liver microsomes, IC50 values of GTE were 5.9, 4.5, 48.7, 25.1 and 13.8 µg/mL, for CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A, respectively. ECGC also inhibited these CYP isoforms with properties similar to those of GTE, and produced competitive inhibitions against CYP2B6 and CYP2C8, and noncompetitive inhibition against CYP3A. In human intestinal microsomes, IC50 values of GTE and EGCG for CYP3A were 18.4 µg/mL and 31.1 µM, respectively. EGCG moderately inhibited CYP3A activity in a noncompetitive manner. These results suggest that green tea catechins cause clinically relevant interactions with substrates for CYP2B6 and CYP2C8 in addition to CYP3A.

  14. Bulk and mechanical properties of the Paintbrush tuff recovered from boreholes UE25 NRG-2, 2A, 2B, and 3: Data report

    SciTech Connect

    Boyd, P.J.; Martin, R.J.; Noel, J.S.; Price, R.H.

    1996-09-01

    An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada, involves characterization of the in situ rheology for the design and construction of the facility and the emplacement of canisters containing radioactive waste. The data used to model the thermal and mechanical behavior of the repository and surrounding lithologies include dry and saturated bulk densities, average grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensional fracture strengths. In this study, a suite of experiments was performed on cores recovered from boreholes UE25 NRG-2, 2A, 2B, and 3 drilled in support of the Exploratory Studies Facility (ESF) at Yucca Mountain. The holes penetrated the Timber Mountain tuff and two thermal/mechanical units of the Paintbrush tuff. The thermal/mechanical stratigraphy was defined by Ortiz to group rock horizons of similar properties for the purpose of simplifying modeling efforts. The relationship between the geologic stratigraphy and the thermal/mechanical stratigraphy for each borehole is presented. The tuff samples in this study have a wide range of welding characteristics (usually reflected in sample porosity), and a smaller range of mineralogy and petrology characteristics. Generally, the samples are silicic, ash-fall tuffs that exhibit large variability in their elastic and strength properties.

  15. Metaplasticity gated through differential regulation of GluN2A versus GluN2B receptors by Src family kinases

    PubMed Central

    Yang, Kai; Trepanier, Catherine; Sidhu, Bikram; Xie, Yu-Feng; Li, Hongbin; Lei, Gang; Salter, Michael W; Orser, Beverley A; Nakazawa, Takanobu; Yamamoto, Tadashi; Jackson, Michael F; MacDonald, John F

    2012-01-01

    Metaplasticity is a higher form of synaptic plasticity that is essential for learning and memory, but its molecular mechanisms remain poorly understood. Here, we report that metaplasticity of transmission at CA1 synapses in the hippocampus is mediated by Src family kinase regulation of NMDA receptors (NMDARs). We found that stimulation of G-protein-coupled receptors (GPCRs) regulated the absolute contribution of GluN2A-versus GluN2B-containing NMDARs in CA1 neurons: pituitary adenylate cyclase activating peptide 1 receptors (PAC1Rs) selectively recruited Src kinase, phosphorylated GluN2ARs, and enhanced their functional contribution; dopamine 1 receptors (D1Rs) selectively stimulated Fyn kinase, phosphorylated GluN2BRs, and enhanced these currents. Surprisingly, PAC1R lowered the threshold for long-term potentiation while long-term depression was enhanced by D1R. We conclude that metaplasticity is gated by the activity of GPCRs, which selectively target subtypes of NMDARs via Src kinases. PMID:22187052

  16. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology

    PubMed Central

    Karthick, Chennakesavan; Periyasamy, Sabapathy; Jayachandran, Kesavan S.; Anusuyadevi, Muthuswamy

    2016-01-01

    Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal

  17. Evaluation of 309 molecules as inducers of CYP3A4, CYP2B6, CYP1A2, OATP1B1, OCT1, MDR1, MRP2, MRP3 and BCRP in cryopreserved human hepatocytes in sandwich culture.

    PubMed

    Badolo, Lassina; Jensen, Bente; Säll, Carolina; Norinder, Ulf; Kallunki, Pekka; Montanari, Dino

    2015-02-01

    1. Regulation of hepatic metabolism or transport may lead to increase in drug clearance and compromise efficacy or safety. In this study, cryopreserved human hepatocytes were used to assess the effect of 309 compounds on the activity and mRNA expression (using qPCR techniques) of CYP1A2, CYP2B6 and CYP3A4, as well as mRNA expression of six hepatic transport proteins: OATP1B1 (SCLO1B1), OCT1 (SLC22A1), MDR1 (ABCB1), MRP2 (ABCC2), MRP3 (ABCC3) and BCRP (ABCG2). 2. The results showed that 6% of compounds induced CYP1A2 activity (1.5-fold increase); 30% induced CYP2B6 while 23% induced CYP3A4. qPCR data identified 16, 33 or 32% inducers of CYP1A2, CYP2B6 or CYP3A4, respectively. MRP2 was induced by 27 compounds followed by MDR1 (16)>BCRP (9)>OCT1 (8)>OATP1B1 (5)>MRP3 (2). 3. CYP3A4 appeared to be down-regulated (≥2-fold decrease in mRNA expression) by 53 compounds, 10 for CYP2B6, 6 for OCT1, 4 for BCRP, 2 for CYP1A2 and OATP1B1 and 1 for MDR1 and MRP2. 4. Structure-activity relationship analysis showed that CYP2B6 and CYP3A4 inducers are bulky lipophilic molecules with a higher number of heavy atoms and a lower number of hydrogen bond donors. Finally, a strategy for testing CYP inducers in drug discovery is proposed.

  18. Phenylephrine preconditioning in embryonic heart H9c2 cells is mediated by up-regulation of SUR2B/Kir6.2: A first evidence for functional role of SUR2B in sarcolemmal KATP channels and cardioprotection.

    PubMed

    Jovanović, Sofija; Ballantyne, Thomas; Du, Qingyou; Blagojević, Miloš; Jovanović, Aleksandar

    2016-01-01

    ATP-sensitive K(+) (KATP) channels were originally described in cardiomyocytes, where physiological levels of intracellular ATP keep them in a closed state. Structurally, these channels are composed of pore-forming inward rectifier, Kir6.1 or Kir6.2, and a regulatory, ATP-binding subunit, SUR1, SUR2A or SUR2B. SUR1 and Kir6.2 form pancreatic type of KATP channels, SUR2A and Kir6.2 form cardiac type of KATP channels, SUR2B and Kir6.1 form vascular smooth muscle type of KATP channels. The presence of SUR2B has been described in cardiomyocytes, but its functional significance and role has remained unknown. Pretreatment with phenylephrine (100nM) for 24h increased mRNA levels of SUR2B and Kir6.2, without affecting those levels of SUR1, SUR2A and Kir6.1 in embryonic heart H9c2 cells. Such increase was associated with increased K(+) current through KATP channels and Kir6.2/SUR2B protein complexes as revealed by whole cell patch clamp electrophysiology and immunoprecipitation/Western blotting respectively. Pretreatment with phenylephrine (100nM) generated a cellular phenotype that acquired resistance to chemical hypoxia induced by 2,4-dinitrophenol (DNP; 10mM), which was accompanied by increased in K(+) current in response to DNP (10mM). Cytoprotection afforded by phenylephrine (100nM) was abolished by infection of H9c2 cells with adenovirus containing Kir6.2AFA, a mutant form of Kir6.2 with largely reduced K(+) conductance. Taking all together, the present findings demonstrate that the activation of α1-adrenoceptors up-regulates SUR2B/Kir6.2 to confer cardioprotection. This is the first account of possible physiological role of SUR2B in cardiomyocytes.

  19. Sex differences in constitutive mRNA levels of CYP2B22, CYP2C33, CYP2C49, CYP3A22, CYP3A29 and CYP3A46 in the pig liver: Comparison between Meishan and Landrace pigs.

    PubMed

    Kojima, Misaki; Degawa, Masakuni

    2016-06-01

    Breed and sex differences in hepatic mRNA levels of cytochrome P450 (CYP) isoforms (CYP2B22, CYP2C33, CYP2C49, CYP3A22, CYP3A29 and CYP3A46) were examined in 5-month-old Meishan, Landrace, and their crossbred F1 (LM and ML) pigs. Serum testosterone levels in male Meishan, LM, and ML pigs were 2.5-3.5-fold higher than in Landrace pigs. CYP3A46 mRNA was breed-specifically detected only in Landrace, LM, and ML pigs. In Meishan, LM, and ML pigs only, male-predominant expressions of CYP2B22, CYP2C33, CYP2C49 and CYP3A29 mRNAs were observed; CYP3A22 mRNA expression showed the opposite pattern. Male-dominant mRNA expression was also observed in LM and ML pigs for CYP3A46. The sex differences in CYP mRNA levels in Meishan pigs disappeared when males were castrated and were restored by testosterone propionate (TP) administration to the castrated males. In Landrace pigs, TP administration to castrated males and intact females significantly increased the levels of CYP2B22, CYP2C33, and CYP3A46 mRNAs. Immature (1-month-old) pigs showed no breed or sex differences in CYP mRNA expressions. The results demonstrated that androgen is an important determinant of sex-associated expression of several CYPs and suggested that breed differences in sex-associated expression could be caused by differences in serum androgen level and by other genetic traits.

  20. Characterization of Human Disease Phenotypes Associated with Mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1

    PubMed Central

    Crow, Yanick J.; Chase, Diana S.; Schmidt, Johanna Lowenstein; Szynkiewicz, Marcin; Forte, Gabriella M.A.; Gornall, Hannah L.; Oojageer, Anthony; Anderson, Beverley; Pizzino, Amy; Helman, Guy; Abdel-Hamid, Mohamed S.; Abdel-Salam, Ghada M.; Ackroyd, Sam; Aeby, Alec; Agosta, Guillermo; Albin, Catherine; Allon-Shalev, Stavit; Arellano, Montse; Ariaudo, Giada; Aswani, Vijay; Babul-Hirji, Riyana; Baildam, Eileen M.; Bahi-Buisson, Nadia; Bailey, Kathryn M.; Barnerias, Christine; Barth, Magalie; Battini, Roberta; Beresford, Michael W.; Bernard, Geneviève; Bianchi, Marika; de Villemeur, Thierry Billette; Blair, Edward M.; Bloom, Miriam; Burlina, Alberto B.; Carpanelli, Maria Luisa; Carvalho, Daniel R.; Castro-Gago, Manuel; Cavallini, Anna; Cereda, Cristina; Chandler, Kate E.; Chitayat, David A.; Collins, Abigail E.; Corcoles, Concepcion Sierra; Cordeiro, Nuno J.V.; Crichiutti, Giovanni; Dabydeen, Lyvia; Dale, Russell C.; D’Arrigo, Stefano; De Goede, Christian G.E.L.; De Laet, Corinne; De Waele, Liesbeth M.H.; Denzler, Ines; Desguerre, Isabelle; Devriendt, Koenraad; Di Rocco, Maja; Fahey, Michael C.; Fazzi, Elisa; Ferrie, Colin D.; Figueiredo, António; Gener, Blanca; Goizet, Cyril; Gowrinathan, Nirmala R.; Gowrishankar, Kalpana; Hanrahan, Donncha; Isidor, Bertrand; Kara, Bülent; Khan, Nasaim; King, Mary D.; Kirk, Edwin P.; Kumar, Ram; Lagae, Lieven; Landrieu, Pierre; Lauffer, Heinz; Laugel, Vincent; La Piana, Roberta; Lim, Ming J.; Lin, Jean-Pierre S.-M.; Linnankivi, Tarja; Mackay, Mark T.; Marom, Daphna R.; Lourenço, Charles Marques; McKee, Shane A.; Moroni, Isabella; Morton, Jenny E.V.; Moutard, Marie-Laure; Murray, Kevin; Nabbout, Rima; Nampoothiri, Sheela; Nunez-Enamorado, Noemi; Oades, Patrick J.; Olivieri, Ivana; Ostergaard, John R.; Pérez-Dueñas, Belén; Prendiville, Julie S.; Ramesh, Venkateswaran; Rasmussen, Magnhild; Régal, Luc; Ricci, Federica; Rio, Marlène; Rodriguez, Diana; Roubertie, Agathe; Salvatici, Elisabetta; Segers, Karin A.; Sinha, Gyanranjan P.; Soler, Doriette; Spiegel, Ronen; Stödberg, Tommy I.; Straussberg, Rachel; Swoboda, Kathryn J.; Suri, Mohnish; Tacke, Uta; Tan, Tiong Y.; Naude, Johann te Water; Teik, Keng Wee; Thomas, Maya Mary; Till, Marianne; Tonduti, Davide; Valente, Enza Maria; Van Coster, Rudy Noel; van der Knaap, Marjo S.; Vassallo, Grace; Vijzelaar, Raymon; Vogt, Julie; Wallace, Geoffrey B.; Wassmer, Evangeline; Webb, Hannah J.; Whitehouse, William P.; Whitney, Robyn N.; Zaki, Maha S.; Zuberi, Sameer M.; Livingston, John H.; Rozenberg, Flore; Lebon, Pierre; Vanderver, Adeline; Orcesi, Simona; Rice, Gillian I.

    2015-01-01

    Aicardi–Goutières syndrome is an inflammatory disease occurring due to mutations in any of TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR or IFIH1. We report on 374 patients from 299 families with mutations in these seven genes. Most patients conformed to one of two fairly stereotyped clinical profiles; either exhibiting an in utero disease-onset (74 patients; 22.8% of all patients where data were available), or a post-natal presentation, usually within the first year of life (223 patients; 68.6%), characterized by a sub-acute encephalopathy and a loss of previously acquired skills. Other clinically distinct phenotypes were also observed; particularly, bilateral striatal necrosis (13 patients; 3.6%) and non-syndromic spastic paraparesis (12 patients; 3.4%). We recorded 69 deaths (19.3% of patients with follow-up data). Of 285 patients for whom data were available, 210 (73.7%) were profoundly disabled, with no useful motor, speech and intellectual function. Chilblains, glaucoma, hypothyroidism, cardiomyopathy, intracerebral vasculitis, peripheral neuropathy, bowel inflammation and systemic lupus erythematosus were seen frequently enough to be confirmed as real associations with the Aicardi-Goutieres syndrome phenotype. We observed a robust relationship between mutations in all seven genes with increased type I interferon activity in cerebrospinal fluid and serum, and the increased expression of interferon-stimulated gene transcripts in peripheral blood. We recorded a positive correlation between the level of cerebrospinal fluid interferon activity assayed within one year of disease presentation and the degree of subsequent disability. Interferon-stimulated gene transcripts remained high in most patients, indicating an ongoing disease process. On the basis of substantial morbidity and mortality, our data highlight the urgent need to define coherent treatment strategies for the phenotypes associated with mutations in the Aicardi–Goutières syndrome

  1. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1.

    PubMed

    Crow, Yanick J; Chase, Diana S; Lowenstein Schmidt, Johanna; Szynkiewicz, Marcin; Forte, Gabriella M A; Gornall, Hannah L; Oojageer, Anthony; Anderson, Beverley; Pizzino, Amy; Helman, Guy; Abdel-Hamid, Mohamed S; Abdel-Salam, Ghada M; Ackroyd, Sam; Aeby, Alec; Agosta, Guillermo; Albin, Catherine; Allon-Shalev, Stavit; Arellano, Montse; Ariaudo, Giada; Aswani, Vijay; Babul-Hirji, Riyana; Baildam, Eileen M; Bahi-Buisson, Nadia; Bailey, Kathryn M; Barnerias, Christine; Barth, Magalie; Battini, Roberta; Beresford, Michael W; Bernard, Geneviève; Bianchi, Marika; Billette de Villemeur, Thierry; Blair, Edward M; Bloom, Miriam; Burlina, Alberto B; Carpanelli, Maria Luisa; Carvalho, Daniel R; Castro-Gago, Manuel; Cavallini, Anna; Cereda, Cristina; Chandler, Kate E; Chitayat, David A; Collins, Abigail E; Sierra Corcoles, Concepcion; Cordeiro, Nuno J V; Crichiutti, Giovanni; Dabydeen, Lyvia; Dale, Russell C; D'Arrigo, Stefano; De Goede, Christian G E L; De Laet, Corinne; De Waele, Liesbeth M H; Denzler, Ines; Desguerre, Isabelle; Devriendt, Koenraad; Di Rocco, Maja; Fahey, Michael C; Fazzi, Elisa; Ferrie, Colin D; Figueiredo, António; Gener, Blanca; Goizet, Cyril; Gowrinathan, Nirmala R; Gowrishankar, Kalpana; Hanrahan, Donncha; Isidor, Bertrand; Kara, Bülent; Khan, Nasaim; King, Mary D; Kirk, Edwin P; Kumar, Ram; Lagae, Lieven; Landrieu, Pierre; Lauffer, Heinz; Laugel, Vincent; La Piana, Roberta; Lim, Ming J; Lin, Jean-Pierre S-M; Linnankivi, Tarja; Mackay, Mark T; Marom, Daphna R; Marques Lourenço, Charles; McKee, Shane A; Moroni, Isabella; Morton, Jenny E V; Moutard, Marie-Laure; Murray, Kevin; Nabbout, Rima; Nampoothiri, Sheela; Nunez-Enamorado, Noemi; Oades, Patrick J; Olivieri, Ivana; Ostergaard, John R; Pérez-Dueñas, Belén; Prendiville, Julie S; Ramesh, Venkateswaran; Rasmussen, Magnhild; Régal, Luc; Ricci, Federica; Rio, Marlène; Rodriguez, Diana; Roubertie, Agathe; Salvatici, Elisabetta; Segers, Karin A; Sinha, Gyanranjan P; Soler, Doriette; Spiegel, Ronen; Stödberg, Tommy I; Straussberg, Rachel; Swoboda, Kathryn J; Suri, Mohnish; Tacke, Uta; Tan, Tiong Y; te Water Naude, Johann; Wee Teik, Keng; Thomas, Maya Mary; Till, Marianne; Tonduti, Davide; Valente, Enza Maria; Van Coster, Rudy Noel; van der Knaap, Marjo S; Vassallo, Grace; Vijzelaar, Raymon; Vogt, Julie; Wallace, Geoffrey B; Wassmer, Evangeline; Webb, Hannah J; Whitehouse, William P; Whitney, Robyn N; Zaki, Maha S; Zuberi, Sameer M; Livingston, John H; Rozenberg, Flore; Lebon, Pierre; Vanderver, Adeline; Orcesi, Simona; Rice, Gillian I

    2015-02-01

    Aicardi-Goutières syndrome is an inflammatory disease occurring due to mutations in any of TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR or IFIH1. We report on 374 patients from 299 families with mutations in these seven genes. Most patients conformed to one of two fairly stereotyped clinical profiles; either exhibiting an in utero disease-onset (74 patients; 22.8% of all patients where data were available), or a post-natal presentation, usually within the first year of life (223 patients; 68.6%), characterized by a sub-acute encephalopathy and a loss of previously acquired skills. Other clinically distinct phenotypes were also observed; particularly, bilateral striatal necrosis (13 patients; 3.6%) and non-syndromic spastic paraparesis (12 patients; 3.4%). We recorded 69 deaths (19.3% of patients with follow-up data). Of 285 patients for whom data were available, 210 (73.7%) were profoundly disabled, with no useful motor, speech and intellectual function. Chilblains, glaucoma, hypothyroidism, cardiomyopathy, intracerebral vasculitis, peripheral neuropathy, bowel inflammation and systemic lupus erythematosus were seen frequently enough to be confirmed as real associations with the Aicardi-Goutieres syndrome phenotype. We observed a robust relationship between mutations in all seven genes with increased type I interferon activity in cerebrospinal fluid and serum, and the increased expression of interferon-stimulated gene transcripts in peripheral blood. We recorded a positive correlation between the level of cerebrospinal fluid interferon activity assayed within one year of disease presentation and the degree of subsequent disability. Interferon-stimulated gene transcripts remained high in most patients, indicating an ongoing disease process. On the basis of substantial morbidity and mortality, our data highlight the urgent need to define coherent treatment strategies for the phenotypes associated with mutations in the Aicardi-Goutières syndrome-related genes

  2. NR2A- and NR2B-Containing NMDA Receptors in the Prelimbic Medial Prefrontal Cortex Differentially Mediate Trace, Delay, and Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Gilmartin, Marieke R.; Kwapis, Janine L.; Helmstetter, Fred J.

    2013-01-01

    Activation of "N"-methyl-D-aspartate receptors (NMDAR) in the prelimbic medial prefrontal cortex (PL mPFC) is necessary for the acquisition of both trace and contextual fear memories, but it is not known how specific NR2 subunits support each association. The NR2B subunit confers unique properties to the NMDAR and may differentially…

  3. Studies on the induction of rat hepatic CYP1A, CYP2B, CYP3A and CYP4A subfamily form mRNAs in vivo and in vitro using precision-cut rat liver slices.

    PubMed

    Meredith, C; Scott, M P; Renwick, A B; Price, R J; Lake, B G

    2003-05-01

    1. Real-time quantitative reverse transcription-polymerase chain reaction methodology (TaqMan(R)) was used to examine the induction of some selected rat hepatic cyto-chrome P450 (CYP) forms in vivo and in vitro using cultured precision-cut liver slices. 2. TaqMan primers and probe sets were developed for rat CYP1A1, CYP1A2, CYP2B1, CYP2B1/2, CYP3A1, CYP3A2 and CYP4A1 mRNAs. 3. To characterize the responsiveness of the rat CYP mRNA TaqMan primers and probe sets, rats were treated in vivo with a single intraperitoneal dose of 500 mg kg(-1) Aroclor 1254 (ARO) and with four daily oral doses of either 50 mg kg(-1) day(-1) dexamethasone (DEX) or 75 mg kg(-1) day(-1) methylclofenapate (MCP). Treatment with ARO produced 22 600-, 5480-, 648-, 52-, 47- and 9-fold increases in levels of CYP1A1, CYP2B1, CYP2B1/2, CYP1A2, CYP3A1 and CYP3A2 mRNA, respectively. DEX treatment produced 97-, 24-, 8- and 4-fold increases, respectively, in CYP3A1, CYP2B1, CYP2B1/2 and CYP3A2 mRNA levels, and MCP produced 339-, 126- and 25-fold increases, respectively, in CYP4A1, CYP2B1 and CYP2B1/2 mRNA levels. All three CYP inducers also increased microsomal CYP content and produced corresponding increases in CYP1A, CYP2B, CYP3A and CYP4A form marker enzyme activities. 4. Rat liver slices were cultured for 6 and 24 h in medium containing 0.1 micro M insulin and 0.1 micro M DEX, and also for 24 h in medium containing only 0.1 micro M insulin (DEX-free medium). Liver slices were cultured in control medium or in medium containing either 10 micro M beta-naphthoflavone (BNF), 10 micro g ml(-1) ARO, 500 micro M sodium phenobarbitone (NaPB), 20 micro M pregnenolone-16alpha -carbonitrile (PCN), 50 micro M Wy-14,643 (WY) or 50 micro M MCP. 5. With the exception of the effect of BNF on CYP1A1 mRNA levels, the induction of all the CYP mRNAs studied was greater after 24- than after 6-h treatment. Generally, the magnitude of induction of CYP mRNA levels was greater after 24 h in liver slices cultured in DEX

  4. Amygdala Infusions of an NR2B-Selective or an NR2A-Preferring NMDA Receptor Antagonist Differentially Influence Fear Conditioning and Expression in the Fear-Potentiated Startle Test

    ERIC Educational Resources Information Center

    Walker, David L.; Davis, Michael

    2008-01-01

    Within the amygdala, most N-methyl-D-aspartic acid (NMDA) receptors consist of NR1 subunits in combination with either NR2A or NR2B subunits. Because the particular subunit composition greatly influences the receptors' properties, we investigated the contribution of both subtypes to fear conditioning and expression. To do so, we infused the…

  5. Both NR2A and NR2B Subunits of the NMDA Receptor Are Critical for Long-Term Potentiation and Long-Term Depression in the Lateral Amygdala of Horizontal Slices of Adult Mice

    ERIC Educational Resources Information Center

    Muller, Tobias; Albrecht, Doris; Gebhardt, Christine

    2009-01-01

    The lateral nucleus of the amygdala (LA) is implicated in emotional and social behaviors. We recently showed that in horizontal brain slices, activation of NMDA receptors (NMDARs) is a requirement for persistent synaptic alterations in the LA, such as long-term potentiation (LTP) and long-term depression (LTD). In the LA, NR2A- and NR2B-type NMDRs…

  6. Effect of porcine circovirus type 2a or 2b on infection kinetics and pathogenicity of two genetically divergent strains of porcine reproductive and respiratory syndrome virus in the conventional pig model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to characterize the infection dynamics and pathogenicity of two heterologous type 2 porcine reproductive and respiratory syndrome virus (PRRSV) isolates in a conventional pig model under the influence of concurrent porcine circovirus (PCV) subtype 2a or 2b infection. ...

  7. Clonidine preconditioning alleviated focal cerebral ischemic insult in rats via up-regulating p-NMDAR1 and down-regulating NMDAR2A / p-NMDAR2B.

    PubMed

    Yanli, Li; Xizhou, Zhang; Yan, Wang; Bo, Zhao; Yunhong, Zha; Zicheng, Li; Lingling, Yu; Lingling, Yan; Zhangao, Chen; Min, Zheng; Zhi, He

    2016-12-15

    A brain ischemia rat model was established by middle cerebral artery occlusion (MCAO) for 2h and reperfusion for 4h to investigate the underlying mechanism of the neuroprotection action of clonidine, a classical alpha-2 adrenergic agonist, on cerebral ischemia. Clonidine and yohimbine were intraperitoneally given to the rats each day for a week before ischemia. Neurological deficits evaluations were carried out at 6h after operation. TTC staining method was used to measure the volume of brain infarction. Expression levels of NMDAR1, NMDAR2A, NMDAR2B were assayed by western blotting. Our data demonstrated that clonidine pretreatment significantly improved the neurological deficit scores and reduced the brain infarct volumes of the rats. Furthermore, protein expression level of p-NMDAR2B in cortex was significantly up-regulated whereas that of p-NMDAR1 was decreased when compared with the sham-operated rats. Remarkably, clonidine treatment led to significant down-regulation of p-NMDAR2B and NMDAR2A in addition to enhancement of the expression level of p-NMDAR1 in cortex. This is the first report illustrating the neuroprotective role of clonidine may be mediated through modulation of the expression levels of p-NMDAR2B, NMDAR2A and p-NMDAR1 during cerebral ischemia.

  8. Efficacy, Safety, and Dose of Pafuramidine, a New Oral Drug for Treatment of First Stage Sleeping Sickness, in a Phase 2a Clinical Study and Phase 2b Randomized Clinical Studies

    PubMed Central

    Burri, Christian; Yeramian, Patrick D.; Merolle, Ada; Serge, Kazadi Kyanza; Mpanya, Alain; Lutumba, Pascal; Mesu, Victor Kande Betu Ku; Lubaki, Jean-Pierre Fina; Mpoto, Alfred Mpoo; Thompson, Mark; Munungu, Blaise Fungula; Josenando, Théophilo; Bernhard, Sonja C.; Olson, Carol A.; Blum, Johannes; Tidwell, Richard R.; Pohlig, Gabriele

    2016-01-01

    Background Sleeping sickness (human African trypanosomiasis [HAT]) is caused by protozoan parasites and characterized by a chronic progressive course, which may last up to several years before death. We conducted two Phase 2 studies to determine the efficacy and safety of oral pafuramidine in African patients with first stage HAT. Methods The Phase 2a study was an open-label, non-controlled, proof-of-concept study where 32 patients were treated with 100 mg of pafuramidine orally twice a day (BID) for 5 days at two trypanosomiasis reference centers (Angola and the Democratic Republic of the Congo [DRC]) between August 2001 and November 2004. The Phase 2b study compared pafuramidine in 41 patients versus standard pentamidine therapy in 40 patients. The Phase 2b study was open-label, parallel-group, controlled, randomized, and conducted at two sites in the DRC between April 2003 and February 2007. The Phase 2b study was then amended to add an open-label sequence (Phase 2b-2), where 30 patients received pafuramidine for 10 days. The primary efficacy endpoint was parasitologic cure at 24 hours (Phase 2a) or 3 months (Phase 2b) after treatment completion. The primary safety outcome was the rate of occurrence of World Health Organization Toxicity Scale Grade 3 or higher adverse events. All subjects provided written informed consent. Findings/Conclusion Pafuramidine for the treatment of first stage HAT was comparable in efficacy to pentamidine after 10 days of dosing. The cure rates 3 months post-treatment were 79% in the 5-day pafuramidine, 100% in the 7-day pentamidine, and 93% in the 10-day pafuramidine groups. In Phase 2b, the percentage of patients with at least 1 treatment-emergent adverse event was notably higher after pentamidine treatment (93%) than pafuramidine treatment for 5 days (25%) and 10 days (57%). These results support continuation of the development program for pafuramidine into Phase 3. PMID:26881924

  9. Determination of O2(a1 delta g) and O2(b1 sigma+ g) yields in the reaction O + ClO --> Cl + O2: implications for photochemistry in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Leu, M. T.; Yung, Y. L.

    1987-01-01

    A discharge flow apparatus with chemiluminescence detector has been used to study the reaction O + ClO --> Cl + O2, where O2 = O2(a1 delta g) or O2(b1 sigma+ g). The measured quantum yields for producing O2(a1 delta g) and O2(b1 sigma+ g) in the above reaction are less than 2.5 x 10(-2) and equal to (4.4 +/- 1.1) x 10(-4), respectively. The observed O2(a1 delta g) airglow of Venus cannot be explained in the context of standard photochemistry using our experimental results and those reported in recent literature. The possibility of an alternative source of O atoms derived from SO2 photolysis in the mesosphere of Venus is suggested.

  10. Isoniazid mediates the CYP2B6*6 genotype-dependent interaction between efavirenz and antituberculosis drug therapy through mechanism-based inactivation of CYP2A6.

    PubMed

    Court, Michael H; Almutairi, Fawziah E; Greenblatt, David J; Hazarika, Suwagmani; Sheng, Hongyan; Klein, Kathrin; Zanger, Ulrich M; Bourgea, Joanne; Patten, Christopher J; Kwara, Awewura

    2014-07-01

    Efavirenz is commonly used to treat patients coinfected with human immunodeficiency virus and tuberculosis. Previous clinical studies have observed paradoxically elevated efavirenz plasma concentrations in patients with the CYP2B6*6/*6 genotype (but not the CYP2B6*1/*1 genotype) during coadministration with the commonly used four-drug antituberculosis therapy. This study sought to elucidate the mechanism underlying this genotype-dependent drug-drug interaction. In vitro studies were conducted to determine whether one or more of the antituberculosis drugs (rifampin, isoniazid, pyrazinamide, or ethambutol) potently inhibit efavirenz 8-hydroxylation by CYP2B6 or efavirenz 7-hydroxylation by CYP2A6, the main mechanisms of efavirenz clearance. Time- and concentration-dependent kinetics of inhibition by the antituberculosis drugs were determined using genotyped human liver microsomes (HLMs) and recombinant CYP2A6, CYP2B6.1, and CYP2B6.6 enzymes. Although none of the antituberculosis drugs evaluated at up to 10 times clinical plasma concentrations were found to inhibit efavirenz 8-hydroxylation by HLMs, both rifampin (apparent inhibition constant [Ki] = 368 μM) and pyrazinamide (Ki = 637 μM) showed relatively weak inhibition of efavirenz 7-hydroxylation. Importantly, isoniazid demonstrated potent time-dependent inhibition of efavirenz 7-hydroxylation in both HLMs (inhibitor concentration required for half-maximal inactivation [KI] = 30 μM; maximal rate constant of inactivation [kinact] = 0.023 min(-1)) and recombinant CYP2A6 (KI = 15 μM; kinact = 0.024 min(-1)) and also formed a metabolite intermediate complex consistent with mechanism-based inhibition. Selective inhibition of the CYP2B6.6 allozyme could not be demonstrated for any of the antituberculosis drugs using either recombinant enzymes or CYP2B6*6 genotype HLMs. In conclusion, the results of this study identify isoniazid as the most likely perpetrator of this clinically important drug-drug interaction through

  11. Co-Circulation of the Rare CPV-2c with Unique Gln370Arg Substitution, New CPV-2b with Unique Thr440Ala Substitution, and New CPV-2a with High Prevalence and Variation in Heilongjiang Province, Northeast China

    PubMed Central

    Geng, Yufei; Guo, Donghua; Li, Chunqiu; Wang, Enyu; Wei, Shan; Wang, Zhihui; Yao, Shuang; Zhao, Xiwen; Su, Mingjun; Wang, Xinyu; Wang, Jianfa; Wu, Rui; Feng, Li; Sun, Dongbo

    2015-01-01

    To trace evolution of canine parvovirus-2 (CPV-2), a total of 201 stool samples were collected from dogs with diarrhea in Heilongjiang province of northeast China from May 2014 to April 2015. The presence of CPV-2 in the samples was determined by PCR amplification of the VP2 gene (568 bp) of CPV-2. The results revealed that 95 samples (47.26%) were positive for CPV-2, and they showed 98.8%–100% nucleotide identity and 97.6%–100% amino acid identity. Of 95 CPV-2-positive samples, types new2a (Ser297Ala), new2b (Ser297Ala), and 2c accounted for 64.21%, 21.05%, and 14.74%, respectively. The positive rate of CPV-2 and the distribution of the new2a, new2b and 2c types exhibited differences among regions, seasons, and ages. Immunized dogs accounted for 48.42% of 95 CPV-2-positive samples. Coinfections with canine coronavirus, canine kobuvirus, and canine bocavirus were identified. Phylogenetic analysis revealed that the identified new2a, new2b, and CPV-2c strains in our study exhibited a close relationship with most of the CPV-2 strains from China; type new2a strains exhibited high variability, forming three subgroups; type new2b and CPV-2c strains formed one group with reference strains from China. Of 95 CPV-2 strains, Tyr324Ile and Thr440Ala substitutions accounted for 100% and 64.21%, respectively; all type new2b strains exhibited the Thr440Ala substitution, while the unique Gln370Arg substitution was found in all type 2c strains. Recombination analysis using entire VP2 gene indicated possible recombination events between the identified CPV-2 strains and reference strains from China. Our data revealed the co-circulation of new CPV-2a, new CPV-2b, and rare CPV-2c, as well as potential recombination events among Chinese CPV-2 strains. PMID:26348721

  12. Meperidine, remifentanil and tramadol but not sufentanil interact with alpha(2)-adrenoceptors in alpha(2A)-, alpha(2B)- and alpha(2C)-adrenoceptor knock out mice brain.

    PubMed

    Höcker, Jan; Weber, Bernd; Tonner, Peter H; Scholz, Jens; Brand, Philipp-Alexander; Ohnesorge, Henning; Bein, Berthold

    2008-03-17

    alpha(2)-adrenoceptor agonists like clonidine or dexmedetomidine increase the sedative and analgesic actions of opioids. Furthermore opioids like meperidine show potent anti-shivering effects like alpha(2)-adrenoceptor agonists. The underlying molecular mechanisms of these effects are still poorly defined. The authors therefore studied the ability of four different opioids (meperidine, remifentanil, sufentanil and tramadol) to interact with different alpha(2)-adrenoceptor subtypes in mice lacking individual alpha(2A)-, alpha(2B)- or alpha(2C)-adrenoceptors (alpha(2)-adrenoceptor knock out (alpha(2)-AR KO) mice)). The interaction of opioids with alpha(2)-adrenoceptors was investigated by quantitative receptor autoradiography in brain slices of alpha(2A)-, alpha(2B)- or alpha(2C)-adrenoceptor deficient mice. Displacement of the radiolabelled alpha(2)-adrenoceptor agonist [(125)I]-paraiodoclonidine ([(125)I]-PIC) from alpha(2)-adrenoceptors in different brain regions by increasing opioid concentrations was measured, and binding affinity of the analysed opioids to alpha(2)-adrenoceptor subtypes in different brain regions was quantified. Meperidine, remifentanil and tramadol but not sufentanil provoked dose dependent displacement of specifically bound [(125)I]-PIC from all alpha(2)-adrenoceptor subtypes in cortex, cerebellum, medulla oblongata, thalamus, hippocampus and pons. Required concentrations of meperidine and remifentanil for [(125)I]-PIC displacement from alpha(2B)- and alpha(2C)-adrenoceptors were lower than from alpha(2A)-adrenoceptors, indicating higher binding affinity for alpha(2B)- and alpha(2C)-adrenoceptors. In contrast, [(125)I]-PIC displacement by tramadol indicated higher binding affinity to alpha(2A)-adrenoceptors than to alpha(2B)- and alpha(2C)-adrenoceptors. Our results indicate that meperidine, remifentanil and tramadol interact with alpha(2)-adrenoceptors in mouse brain showing different affinity for alpha(2A)-, alpha(2B)- and alpha(2C

  13. Inhibition of N-methyl-D-aspartate-activated current by bis(7)-tacrine in HEK-293 cells expressing NR1/NR2A or NR1/NR2B receptors.

    PubMed

    Liu, Yuwei; Li, Chaoying

    2012-12-01

    In normal rat forebrain, the NR1/NR2A and NR1/NR2B dimmers are the main constitutional forms of NMDA receptors. The present study was carried out to determine the functional properties of the heteromeric NMDA receptor subunits and their inhibition by bis(7)-tacrine (B7T). Rat NR1, NR2A and NR2B cDNAs were transfected into human embryonic kidney 293 cells (HEK-293). The inhibition of NMDA-activated currents by B7T was detected in HEK-293 cell expressing NR1/NR2A or NR1/NR2B receptors by using whole-cell patch-clamp techniques. The results showed that in HEK-293 cells expressing NR1/NR2A receptor, 1 μmol/L B7T inhibited 30 μmol/L NMDA- and 1000 μmol/L NMDA-activated steady-state currents by 46% and 40%, respectively (P>0.05; n=5), suggesting that the inhibition of B7T on NR1/NR2A receptor doesn't depend on NMDA concentration, which is consistent with a non-competitive mechanism of inhibition. But for the NR1/NR2B receptor, 1 μmol/L B7T inhibited 30 μmol/L NMDA- and 1000 μmol/L NMDA-activated steady-state currents by 61% and 13%, respectively (P<0.05; n=6), showing that B7T appears to be competitive with NMDA. In addition, simultaneous application of 1 μmol/L B7T and 1000 μmol/L NMDA produced a moderate inhibition of peak NMDA-activated current, followed by a gradual decline of the current to a steady state. However, the gradual onset of inhibition produced by B7T applied simultaneously with NMDA was eliminated when B7T was given 5 s before NMDA. These results suggested that B7T inhibition of NMDA current mediated by NR1/NR2B receptor was slow onset, and it did not depend on the presence of the agonist. With holding potentials ranging from -50 to +50 mV, the B7T inhibition rate of NMDA currents didn't change significantly, and neither did the reversal potential. We are led to conclude that the NR1/NR2B recombinant receptor can serve as a very useful model for studying the molecular mechanism of NMDA receptor inhibition by B7T.

  14. Sex dimorphic expression of five dmrt genes identified in the Atlantic cod genome. The fish-specific dmrt2b diverged from dmrt2a before the fish whole-genome duplication.

    PubMed

    Johnsen, Hanne; Andersen, Øivind

    2012-09-01

    The Doublesex and Mab-3 related transcription factors (Dmrt) are characterised by the zinc finger-like DM domain binding similar DNA sequences, but show different spatio-temporal expression patterns and functions throughout ontogenesis. Dmrt1 is the master regulator of sex determination in very distant metazoans, while Dmrt2 and Dmrt4 are of crucial importance in vertebrate somitogenesis and neurogenesis, respectively. To elucidate the evolutionary divergence of the fish dmrt genes, we examined the expression patterns and the chromosomal synteny of the five dmrt genes identified in the Atlantic cod genome. Quantitative PCR analyses of cod dmrt1, dmrt2a, dmrt3, dmrt4 and dmrt5 revealed distinct expression patterns in the embryo and larvae, and indicated conserved extragonadal functions during early development. Several dmrt genes seem to be involved in the sexual differentiation of gonads and brain, but the sex-dimorphic expression patterns differed substantially between teleosts, suggesting functional switch between Dmrt members. The dmrt2a-dmrt3-dmrt1 cluster was found to be located in a conserved syntenic region, and the flanking genes have become duplicated in teleosts and are closely linked in a paralogous region lacking the dmrt cluster. Similarly, the region containing the fish-specific dmrt2b gene was found to have a paralogous region without a dmrt2b duplicate in a separate linkage group in the teleost genomes. We propose that the teleost segments paralogous to the dmrt2a- and dmrt2b regions, respectively, were formed through the fish-specific whole genome duplication (3R), while dmrt2a and dmrt2b originated from the second round (2R) of whole genome duplication of the ancestral dmrt2. The dmrt2b paralog seems to have been lost in Atlantic cod as in tetrapods and may be a pseudogene in pufferfish, while dmrt2a and dmrt2b have acquired different functions in zebrafish. Contrasting with the retained duplicates of dmrt flanking genes, the massive losses of

  15. Albumin Stimulates the Activity of the Human UDP-Glucuronosyltransferases 1A7, 1A8, 1A10, 2A1 and 2B15, but the Effects Are Enzyme and Substrate Dependent

    PubMed Central

    Svaluto-Moreolo, Paolo; Dziedzic, Klaudyna; Yli-Kauhaluoma, Jari; Finel, Moshe

    2013-01-01

    Human UDP-glucuronosyltransferases (UGTs) are important enzymes in metabolic elimination of endo- and xenobiotics. It was recently shown that addition of fatty acid free bovine serum albumin (BSA) significantly enhances in vitro activities of UGTs, a limiting factor in in vitro–in vivo extrapolation. Nevertheless, since only few human UGT enzymes were tested for this phenomenon, we have now performed detailed enzyme kinetic analysis on the BSA effects in six previously untested UGTs, using 2–4 suitable substrates for each enzyme. We also examined some of the previously tested UGTs, but using additional substrates and a lower BSA concentration, only 0.1%. The latter concentration allows the use of important but more lipophilic substrates, such as estradiol and 17-epiestradiol. In five newly tested UGTs, 1A7, 1A8, 1A10, 2A1, and 2B15, the addition of BSA enhanced, to a different degree, the in vitro activity by either decreasing reaction’s Km, increasing its Vmax, or both. In contrast, the activities of UGT2B17, another previously untested enzyme, were almost unaffected. The results of the assays with the previously tested UGTs, 1A1, 1A6, 2B4, and 2B7, were similar to the published BSA only as far as the BSA effects on the reactions’ Km are concerned. In the cases of Vmax values, however, our results differ significantly from the previously published ones, at least with some of the substrates. Hence, the magnitude of the BSA effects appears to be substrate dependent, especially with respect to Vmax increases. Additionally, the BSA effects may be UGT subfamily dependent since Km decreases were observed in members of subfamilies 1A, 2A and 2B, whereas large Vmax increases were only found in several UGT1A members. The results shed new light on the complexity of the BSA effects on the activity and enzyme kinetics of the human UGTs. PMID:23372764

  16. Metal Free Formation of Various 3-Iodo-1H-pyrrolo[3',2':4,5]imidazo-[1,2-a]pyridines and [1,2-b]Pyridazines and Their Further Functionalization.

    PubMed

    Tber, Z; Hiebel, M-A; El Hakmaoui, A; Akssira, M; Guillaumet, G; Berteina-Raboin, S

    2015-07-02

    3-iodo-1H-pyrrolo[3',2':4,5]imidazo-[1,2-a]pyridines and [1,2-b]pyridazines were prepared following Groebke-Blackburn-Bienaymé MCR combined with I2-promoted electrophilic cyclization. The flexibility of the method enables the introduction of diversity in the 2, 5, 6, and 7 positions on the resulting scaffold using commercially available starting materials. Furthermore, subsequent palladium-catalyzed reactions were successfully achieved using our iodinated derivatives.

  17. A functional role of the C-terminal 42 amino acids of SUR2A and SUR2B in the physiology and pharmacology of cardiovascular ATP-sensitive K(+) channels.

    PubMed

    Yamada, Mitsuhiko; Kurachi, Yoshihisa

    2005-07-01

    The ATP-sensitive K(+) (K(ATP)) channel is composed of four pore-forming Kir6.2 subunits and four sulfonylurea receptors (SUR). Intracellular ATP inhibits K(ATP) channels through Kir6.2. SUR is an ABC protein bearing transmembrane domains and two nucleotide-binding domains (NBD1 and NBD2). SUR increases the open probability of K(ATP) channels by interacting with ATP and ADP through NBDs and with K(+) channel openers such as nicorandil through its transmembrane domain. Because NBDs and the drug receptor allosterically interact with each other, nucleotides and drugs probably activate K(ATP) channels by causing the same conformational change of SUR. SUR2A and SUR2B have the identical drug receptor and NBDs and differ only in the C-terminal 42 amino acids (C42). Nonetheless, nicorandil ~100 times more potently activates SUR2B/Kir6.2 than SUR2A/Kir6.2 channels. Based on our allosteric model, we have analyzed the interaction between NBDs and the drug receptor in SUR2A and SUR2B and found that both nucleotide-bound NBD1 and NBD2 more strongly induce the conformational change in SUR2B than SUR2A. Therefore, C42 modulates the function of not only NBD2 which is close to C42 in a primary structure but NBD1 which is more than 630 amino acid N-terminal to C42. This raises the possibility that in the presence of nucleotides, NBD1 and NBD2 dimerize to induce the conformational change and that the dimerization enables C42 to gain access to both NBDs. Modulation of the nucleotide-NBD1 and -NBD2 interactions by C42 would determine the stability of the nucleotide-dependent dimer and thus, the physiological and pharmacological properties of K(ATP) channels.

  18. Preliminary investigation of the contribution of CYP2A6, CYP2B6, and UGT1A9 polymorphisms on artesunate-mefloquine treatment response in Burmese patients with Plasmodium falciparum malaria.

    PubMed

    Phompradit, Papichaya; Muhamad, Poonuch; Cheoymang, Anurak; Na-Bangchang, Kesara

    2014-08-01

    CYP2A6, CYP2B6, and UGT1A9 genetic polymorphisms and treatment response after a three-day course of artesunate-mefloquine was investigated in 71 Burmese patients with uncomplicated Plasmodium falciparum malaria. Results provide evidence for the possible link between CYP2A6 and CYP2B6 polymorphisms and plasma concentrations of artesunate/dihydroartemisinin and treatment response. In one patient who had the CYP2A6*1A/*4C genotype (decreased enzyme activity), plasma concentration of artesunate at one hour appeared to be higher, and the concentration of dihydroartemisinin was lower than for those carrying other genotypes (415 versus 320 ng/mL). The proportion of patients with adequate clinical and parasitologic response who had the CYP2B6*9/*9 genotype (mutant genotype) was significantly lower compared with those with late parasitologic failure (14.0% versus 19.0%). Confirmation through a larger study in various malaria-endemic areas is required before a definite conclusion on the role of genetic polymorphisms of these drug-metabolizing enzymes on treatment response after artesunate-based combination therapy can be made.

  19. Deposition of newly synthesized histones: new histones H2A and H2B do not deposit in the same nucleosome with new Histones H3 and H4

    SciTech Connect

    Jackson, V.

    1987-04-21

    The authors have developed procedures to study histone-histone interactions during the deposition of histones in replicating cells. Cells are labeled for 60 min with dense amino acids, and subsequently, the histones within the nucleosomes are cross-linked into an octameric complex with formaldehyde. These complexes are sedimented to equilibrium in density gradients and octamer and dioctamer complexes separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With reversal of the cross-link, the distribution of the individual density-labeled histones in the octamer is determined. Newly synthesized H3 and H4 deposits as a tetramer and are associated with old H2A and H2B. Newly synthesized H2A and H2B deposit as a dimer associated with old H2A, H2B, H3, and H4. The significance of these results with respect to the dynamics of histone interactions in the nucleus is discussed. Control experiments are presented to test for artifactual formation of these complexes during preparative procedures. In addition, reconstitution experiments were performed to demonstrate that the composition of these octameric complexes can be determined from their distribution of density gradients.

  20. 76 FR 41653 - Airworthiness Directives; Bombardier, Inc. Model CL-600-2A12 (CL-601) and CL-600-2B16 (CL-601-3A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... condition as: During flight-testing of a wing anti-ice piccolo tube containing a deliberate small breach, it was determined that the wing leading edge thermal switches were not detecting the consequent bleed leak at the design threshold. As a result, new ] Airworthiness Limitation tasks, consisting of...

  1. 76 FR 46597 - Airworthiness Directives; Bombardier, Inc. Model CL-600-2A12 (CL-601) and CL-600-2B16 (CL-601-3A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... accumulation of 6,400 after the effective through 5665 inclusive. Anti-Ice Duct Piccolo- total flight hours... the Wing accumulation of 6,400 after the effective and subsequent. Anti-Ice Duct Piccolo- total...

  2. Direct sequencing and comprehensive screening of genetic polymorphisms on CYP2 family genes (CYP2A6, CYP2B6, CYP2C8, and CYP2E1) in five ethnic populations.

    PubMed

    Kim, Jeong-Hyun; Cheong, Hyun Sub; Park, Byung Lae; Kim, Lyoung Hyo; Shin, Hee Jung; Na, Han Sung; Chung, Myeon Woo; Shin, Hyoung Doo

    2015-01-01

    Recently, CYP2A6, CYP2B6, CYP2C8, and CYP2E1 have been reported to play a role in the metabolic effect of pharmacological and carcinogenic compounds. Moreover, genetic variations of drug metabolism genes have been implicated in the interindividual variation in drug disposition and pharmacological response. To define the distribution of single nucleotide polymorphisms (SNPs) in these four CYP2 family genes and to discover novel SNPs across ethnic groups, 288 DNAs composed of 48 African-Americans, 48 European-Americans, 48 Japanese, 48 Han Chinese, and 96 Koreans were resequenced. A total of 143 SNPs, 26 in CYP2A6, 45 in CYP2B6, 29 in CYP2C8, and 43 in CYP2E1, were identified, including 13 novel variants. Notably, two SNPs in the regulatory regions, a promoter SNP rs2054675 and a nonsynonymous rs3745274 (p.172Q>H) in CYP2B6, showed significantly different minor allele frequencies (MAFs) among ethnic groups (minimum P = 4.30 × 10(-12)). In addition, rs2031920 in the promoter region of CYP2E1 showed a wide range of MAF between different ethnic groups, and even among other various ethnic groups based on public reports. Among 13 newly discovered SNPs in this study, 5 SNPs were estimated to have potential functions in further in silico analyses. Some differences in genetic variations and haplotypes of CYP2A6, CYP2B6, CYP2C8, and CYP2E1 were observed among populations. Our findings could be useful in further researches, such as genetic associations with drug responses.

  3. Identification of high-risk Listeria monocytogenes serotypes in lineage I(serotype 1/2a, 1/2c,3a, and 3c) using multiplex PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using molecular subtyping techniques, Listeria monocytogenes is divided into three major phylogenetic lineages, and a multiplex PCR method can differentiate five L. monocytogenes subgroups: 1/2a-3a, 1/2c-3c, 1/2b-3b-7, 4b-4d-4e, and 4a-4c. In the current study, we conducted genome comparisons and e...

  4. Role of the NR2A/2B subunits of the N-methyl-D-aspartate receptor in glutamate-induced glutamic acid decarboxylase alteration in cortical GABAergic neurons in vitro.

    PubMed

    Monnerie, H; Hsu, F-C; Coulter, D A; Le Roux, P D

    2010-12-29

    The vulnerability of brain neuronal cell subpopulations to neurologic insults varies greatly. Among cells that survive a pathological insult, for example ischemia or brain trauma, some may undergo morphological and/or biochemical changes that may compromise brain function. The present study is a follow-up of our previous studies that investigated the effect of glutamate-induced excitotoxicity on the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67)'s expression in surviving DIV 11 cortical GABAergic neurons in vitro [Monnerie and Le Roux, (2007) Exp Neurol 205:367-382, (2008) Exp Neurol 213:145-153]. An N-methyl-D-aspartate receptor (NMDAR)-mediated decrease in GAD expression was found following glutamate exposure. Here we examined which NMDAR subtype(s) mediated the glutamate-induced change in GAD protein levels. Western blotting techniques on cortical neuron cultures showed that glutamate's effect on GAD proteins was not altered by NR2B-containing diheteromeric (NR1/NR2B) receptor blockade. By contrast, blockade of triheteromeric (NR1/NR2A/NR2B) receptors fully protected against a decrease in GAD protein levels following glutamate exposure. When receptor location on the postsynaptic membrane was examined, extrasynaptic NMDAR stimulation was observed to be sufficient to decrease GAD protein levels similar to that observed after glutamate bath application. Blocking diheteromeric receptors prevented glutamate's effect on GAD proteins after extrasynaptic NMDAR stimulation. Finally, NR2B subunit examination with site-specific antibodies demonstrated a glutamate-induced, calpain-mediated alteration in NR2B expression. These results suggest that glutamate-induced excitotoxic NMDAR stimulation in cultured GABAergic cortical neurons depends upon subunit composition and receptor location (synaptic vs. extrasynaptic) on the neuronal membrane. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered

  5. HP-41CV Flight Performance Advisory System (FPAS) for the E-2C, E-2B, and C-2A Aircraft

    DTIC Science & Technology

    1982-06-01

    Ron generally contains ma- chine dedicated code for use by the ,rocesslng unit . ROB mar also be used to permanently store program code in no -volatle...weight (no wind condltions). Informal tests in,!lcate this A3A to e about 16 units . 21 Each value may be observed by pressing R/S to proceed to the...21 to 22 units anle of attack. The &OA probe, however, is a pressure differential 1device that Ame sures pressure t two positions on the surface of a

  6. Determination of O2(a1Delta g) and O2(b1Sigma + g) yields in the reaction O + ClO yields Cl + O2 - Implications for photochemistry in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun; Yung, Yuk L.

    1987-01-01

    A discharge flow apparatus with a chemiluminescence detector was used to investigate the reaction O + ClO yields Cl + O2(asterisk), where O2(asterisk) = O2(a1Delta g) or O2(b1Sigma + g). It is found that the observed O2(a1Delta g) airglow of Venus cannot be explained in the framework of standard photochemistry using the experimental results obtained here and those reported in the recent literature. The possibility of an alternative source of O atoms derived from SO2 photolysis in the Venus mesosphere is suggested.

  7. Mechanisms of immunity to Leishmania major infection in mice: the contribution of DNA vaccines coding for two novel sets of histones (H2A-H2B or H3-H4).

    PubMed

    Carrión, Javier

    2011-09-01

    The immune phenotype conferred by two different sets of histone genes (H2A-H2B or H3-H4) was assessed. BALB/c mice vaccinated with pcDNA3H2AH2B succumbed to progressive cutaneous leishmaniosis (CL), whereas vaccination with pcDNA3H3H4 resulted in partial resistance to Leishmania major challenge associated with the development of mixed T helper 1 (Th1)/Th2-type response and a reduction in parasite-specific Treg cells number at the site of infection. Therefore, the presence of histones H3 and H4 may be considered essential in the development of vaccine strategies against CL based on the Leishmania histones.

  8. Enhanced FCGR2A and FCGR3A signaling by HIV viremic controller IgG

    PubMed Central

    Alvarez, Raymond A.; Maestre, Ana M.; Durham, Natasha D.; Barria, Maria Ines; Ishii-Watabe, Akiko; Tada, Minoru; Hotta, Mathew T.; Rodriguez-Caprio, Gabriela; Fierer, Daniel S.; Fernandez-Sesma, Ana; Simon, Viviana; Chen, Benjamin K.

    2017-01-01

    HIV-1 viremic controllers (VC) spontaneously control infection without antiretroviral treatment. Several studies indicate that IgG Abs from VCs induce enhanced responses from immune effector cells. Since signaling through Fc-γ receptors (FCGRs) modulate these Ab-driven responses, here we examine if enhanced FCGR activation is a common feature of IgG from VCs. Using an infected cell–based system, we observed that VC IgG stimulated greater FCGR2A and FCGR3A activation as compared with noncontrollers, independent of the magnitude of HIV-specific Ab binding or virus neutralization activities. Multivariate regression analysis showed that enhanced FCGR signaling was a significant predictor of VC status as compared with chronically infected patients (CIP) on highly active antiretroviral therapy (HAART). Unsupervised hierarchical clustering of patient IgG functions primarily grouped VC IgG profiles by enhanced FCGR2A, FCGR3A, or dual signaling activity. Our findings demonstrate that enhanced FCGR signaling is a common and significant predictive feature of VC IgG, with VCs displaying a distinct spectrum of FCGR activation profiles. Thus, profiling FCGR activation may provide a useful method for screening and distinguishing protective anti-HIV IgG responses in HIV-infected patients and in monitoring HIV vaccination regimens. PMID:28239647

  9. Anti-CD28 monoclonal antibody-stimulated cytokines released from blood suppress CYP1A2, CYP2B6, and CYP3A4 in human hepatocytes in vitro.

    PubMed

    Czerwiński, Maciej; Kazmi, Faraz; Parkinson, Andrew; Buckley, David B

    2015-01-01

    Like most infections and certain inflammatory diseases, some therapeutic proteins cause a cytokine-mediated suppression of hepatic drug-metabolizing enzymes, which may lead to pharmacokinetic interactions with small-molecule drugs. We propose a new in vitro method to evaluate the whole blood-mediated effects of therapeutic proteins on drug-metabolizing enzymes in human hepatocytes cocultured with Kupffer cells. The traditional method involves treating hepatocyte cocultures with the therapeutic protein, which detects hepatocyte- and macrophage-mediated suppression of cytochrome P450 (P450). The new method involves treating whole human blood with a therapeutic protein to stimulate the release of cytokines from peripheral blood mononuclear cells (PBMCs), after which plasma is prepared and added to the hepatocyte coculture to evaluate P450 enzyme expression. In this study, human blood was treated for 24 hours at 37°C with bacterial lipopolysaccharide (LPS) or ANC28.1, an antibody against human T-cell receptor CD28. Cytokines were measured in plasma by sandwich immunoassay with electrochemiluminescense detection. Treatment of human hepatocyte cocultures with LPS or with plasma from LPS-treated blood markedly reduced the expression of CYP1A2, CYP2B6, and CYP3A4. However, treatment of hepatocyte cocultures with ANC28.1 did not suppress P450 expression, but treatment with plasma from ANC28.1-treated blood suppressed CYP1A2, CYP2B6, and CYP3A4 activity and mRNA levels. The results demonstrated that applying plasma from human blood treated with a therapeutic protein to hepatocytes cocultured with Kupffer cells is a suitable method to identify those therapeutic proteins that suppress P450 expression by an indirect mechanism-namely, the release of cytokines from PBMCs.

  10. Oral Morphine Pharmacokinetic in Obesity: The Role of P-Glycoprotein, MRP2, MRP3, UGT2B7, and CYP3A4 Jejunal Contents and Obesity-Associated Biomarkers.

    PubMed

    Lloret-Linares, Célia; Miyauchi, Eisuke; Luo, Huilong; Labat, Laurence; Bouillot, Jean-Luc; Poitou, Christine; Oppert, Jean-Michel; Laplanche, Jean-Louis; Mouly, Stéphane; Scherrmann, Jean-Michel; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya; Bergmann, Jean-François; Declèves, Xavier

    2016-03-07

    The objective of our work was to study the association between the jejunal expression levels of P-gp, MRP2, MRP3, UGT2B7, CYP3A4, the ABCB1 c.3435C > T polymorphism, and several obesity-associated biomarkers, as well as oral morphine and glucuronides pharmacokinetics in a population of morbidly obese subjects. The pharmacokinetics of oral morphine (30 mg) and its glucuronides was performed in obese patients candidate to bariatric surgery. A fragment of jejunal mucosa was preserved during surgery. Subjects were genotyped for the ABCB1 single nucleotide polymorphism (SNP) c.3435C > T. The subjects were 6 males and 23 females, with a mean body mass index of 44.8 (35.4-61.9) kg/m(2). The metabolic ratios AUC0-inf M3G/morphine and AUC0-inf M6G/morphine were highly correlated (rs = 0.8, p < 0.0001) and were 73.2 ± 24.6 (34.7-137.7) and 10.9 ± 4.1 (3.8-20.6). The pharmacokinetic parameters of morphine and its glucuronides were not associated with the jejunal contents of P-gp, CYP3A4, MRP2, and MRP3. The jejunal content of UGT2B7 was positively associated with morphine AUC0-inf (rs = 0.4, p = 0.03). Adiponectin was inversely correlated with morphine Cmax (rs = -0.44, p = 0.03). None of the factors studied was associated with morphine metabolic ratios. The interindividual variability in the jejunal content of drug transporters and metabolizing enzymes, the ABCB1 gene polymorphism, and the low-grade inflammation did not explain the variability in morphine and glucuronide exposure. High morphine metabolic ratio argued for an increased morphine glucuronidation in morbidly obese patients.

  11. Final report on force key comparison CCM.F-K2.a and CCM.F-K2.b (50 kN and 100 kN)

    NASA Astrophysics Data System (ADS)

    Vincke, William; Zhimin, Zhang; Pusa, Aimo; Averlant, Philippe; Kumme, Rolf; Germak, Alessandro; Ueda, Kazunaga; Park, Yon-Kyu; Torres, Jorge; Burke, Ben; Langmead, Fredrik; Fank, Sinan; Knott, Andy; Bartel, Tom

    2012-01-01

    This report describes CIPM key comparison CCM.F-K2, a comparison between the deadweight force standard machines of fourteen National Measurement Institutes, at generated forces of 50 kN and 100 kN, in the period from 2004 to 2007. Two different measurement schemes were employed, one for machines capable of generating both 50 kN and 100 kN and the other using the single force of 50 kN, for machines of a lower maximum capacity than 100 kN. Multiple transducers were used and the force-time profile was strictly controlled, to minimize effects of creep. Analysis of the results took careful account of the drift of the transducers' sensitivities throughout the comparison period, as this was one of the major uncertainty contributions. The final results suggest that the nominal 50 kN forces generated at four of the fourteen laboratories (and the 100 kN forces at two of them) may be statistically significantly different from the same nominal forces generated at the other laboratories. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  12. Cost-effectiveness analysis of treatment with peginterferon-alfa-2a versus peginterferon-alfa-2b for patients with chronic hepatitis C under the public payer perspective in Brazil

    PubMed Central

    2013-01-01

    Background Chronic hepatitis C affects approximately 170 million people worldwide, and thus being one of the main causes of chronic liver disease. About 20% of patients with chronic hepatitis C will develop cirrhosis over 20 years, and present an increased risk of developing hepatic complications. Sustained virological response (SVR) is associated with a better prognosis compared to untreated patients and treatment failures. The objective of this analysis was to compare treatment costs and outcomes of pegylated interferon-alfa-2a versus pegylated interferon-alfa-2b, both associated with ribavirin, in the therapeutic scheme of 24 weeks and 48 week for hepatitis C genotypes 2/3 and genotype 1, respectively, under the Brazilian Public Health System (SUS) scenario. Methods To project disease progression, a Markov model was built based on clinical stages of chronic disease. A Delphi panel was conducted to evaluate medical resources related to each stage, followed by costing of related materials, services, procedures and pharmaceutical products. The evaluation was made from a public payer perspective. The source used for costing was government reimbursement procedures list (SAI/SIH–SUS). Drug acquisition costs were obtained from the Brazilian Official Gazette and “Banco de Preços em Saúde” (government official source). It was assumed a mean patient weight of 70 kg. Costs were reported in 2011 Brazilian Reais (US$1 ≈ $Brz1.80). A systematic review followed by a meta-analysis of the 7 identified randomized controlled trials (RCTs) which compared pegylated interferons, was conducted for obtaining relative efficacy of both drugs: for genotype 2/3, mean rate of SVR was 79.2% for peginterferon-alfa-2a and 73.8% for peginterferon-alfa-2b. For genotype 1, SVR mean rate was 42.09% versus 33.44% (peginterferon-alfa-2a and peginterferon-alfa-2b respectively). Time horizon considered was lifetime. Discount rate for costs and outcomes was 5%, according to Brazilian

  13. Essential role of GluD1 in dendritic spine development and GluN2B to GluN2A NMDAR subunit switch in the cortex and hippocampus reveals ability of GluN2B inhibition in correcting hyperconnectivity

    PubMed Central

    Gupta, Subhash C.; Yadav, Roopali; Pavuluri, Ratnamala; Morley, Barbara J.; Stairs, Dustin J.; Dravid, Shashank M.

    2015-01-01

    The glutamate delta-1 (GluD1) receptor is highly expressed in the forebrain. We have previously shown that loss of GluD1 leads to social and cognitive deficits in mice, however, its role in synaptic development and neurotransmission remains poorly understood. Here we report that GluD1 is enriched in the medial prefrontal cortex (mPFC) and GluD1 knockout mice exhibit a higher dendritic spine number, greater excitatory neurotransmission as well as higher number of synapses in mPFC. In addition abnormalities in the LIMK1-cofilin signaling, which regulates spine dynamics, and a lower ratio of GluN2A/GluN2B expression was observed in the mPFC in GluD1 knockout mice. Analysis of the GluD1 knockout CA1 hippocampus similarly indicated the presence of higher spine number and synapses and altered LIMK1-cofilin signaling. We found that systemic administration of an N-methyl-d-aspartate (NMDA) receptor partial agonist d-cycloserine (DCS) at a high-dose, but not at a low-dose, and a GluN2B-selective inhibitor Ro-25-6981 partially normalized the abnormalities in LIMK1-cofilin signaling and reduced excess spine number in mPFC. The molecular effects of high-dose DCS and GluN2B inhibitor correlated with their ability to reduce the higher stereotyped behavior and depression-like behavior in GluD1 knockout mice. Together these findings demonstrate a critical requirement for GluD1 in normal spine development in the cortex and hippocampus. Moreover, these results identify inhibition of GluN2Bcontaining receptors as a mechanism for reducing excess dendritic spines and stereotyped behavior which may have therapeutic value in certain neurodevelopmental disorders. PMID:25721396

  14. Nucleosomal histone proteins of L. donovani: a combination of recombinant H2A, H2B, H3 and H4 proteins were highly immunogenic and offered optimum prophylactic efficacy against Leishmania challenge in hamsters.

    PubMed

    Baharia, Rajendra K; Tandon, Rati; Sahasrabuddhe, Amogh A; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    The present study includes cloning and expression of recombinant Leishmania donovani histone proteins (rLdH2B, rLdH3, rLdH2A and rLdH4), assessment of their immunogenicity in Leishmania infected cured patients/endemic contacts as well as in cured hamsters and finally evaluation of their prophylactic efficacy in hamsters against L. donovani challenge. All recombinant proteins were expressed and purified from the heterologous bacterial host system. Leishmania infected cured patients/endemic contacts as well as cured hamsters exhibited significantly higher proliferative responses to individual recombinant histones and their pooled combination (rLdH2B+rLdH3+rLdH2A+rLdH4) than those of L.donovani infected hosts. The L.donovani soluble antigens (SLD) stimulated PBMCs of cured/exposed and Leishmania patients to produce a mixed Thl/Th2-type cytokine profile, whereas rLdH2B, rLdH3, rLdH2A, rLdH4 and pooled combination (rLdH2-4) stimulated the production of Th1 cytokines IFN-γ, IL-12 and TNF-α but not Th2 cytokines IL-4 or IL-10. The immunogenicity of these histone proteins along with their combination was also checked in cured hamsters where they stimulated higher lymphoproliferation and Nitric oxide production in lymphocytes of cured hamsters than that of infected controls. Moreover, significantly increased IgG2 response, an indicative of cell mediated immunity, was observed in cured hamsters against these individual proteins and their combination as compared to infected hamsters. Further, it was demonstrated that rLdH2B, rLdH3, rLdH2A and rLdH4 and pooled combination were able to provide considerable protection for hamsters against L. donovani challenge. The efficacy was supported by the increased inducible Nitric Oxide Synthase (iNOS) mRNA transcripts and Th1-type cytokines--IFN-γ, IL-12 and TNF-α and down-regulation of IL-4, IL-10 and TGF-β. Hence, it is inferred that pooled rLdH2-4 elicits Thl-type of immune responses exclusively and confer considerable protection

  15. Development and use of a multiplex real-time quantitative polymerase chain reaction assay for detection and differentiation of Porcine circovirus-2 genotypes 2a and 2b in an epidemiological survey.

    PubMed

    Gagnon, Carl A; del Castillo, Jérome R E; Music, Nedzad; Fontaine, Guy; Harel, Josée; Tremblay, Donald

    2008-09-01

    By the end of 2004, the Canadian swine population had experienced a severe increase in the incidence of Porcine circovirus-associated disease (PCVAD), a problem that was associated with the emergence of a new Porcine circovirus-2 genotype (PCV-2b), previously unrecovered in North America. Thus, it became important to develop a diagnostic tool that could differentiate between the old and new circulating genotypes (PCV-2a and PCV-2b, respectively). Consequently, a multiplex real-time quantitative polymerase chain reaction (mrtqPCR) assay that could sensitively and specifically identify and differentiate PCV-2 genotypes was developed. A retrospective epidemiologic survey that used the mrtqPCR assay was performed to determine if cofactors could affect the risk of PCVAD. From 121 PCV-2-positive cases gathered for this study, 4.13%, 92.56%, and 3.31% were positive for PCV-2a, PCV-2b, and both genotypes, respectively. In a data analysis using univariate logistic regressions, the PCVAD-compatible (PCVAD/c) score was significantly associated with the presence of Porcine reproductive and respiratory syndrome virus (PRRSV), PRRSV viral load, PCV-2 viral load, and PCV-2 immunohistochemistry (IHC) results. Polytomous logistic regression analysis revealed that PCVAD/c score was affected by PCV-2 viral load (P = 0.0161) and IHC (P = 0.0128), but not by the PRRSV variables (P > 0.9), which suggests that mrtqPCR in tissue is a reliable alternative to IHC. Logistic regression analyses revealed that PCV-2 increased the odds ratio of isolating 2 major swine pathogens of the respiratory tract, Actinobacillus pleuropneumoniae and Streptococcus suis serotypes 1/2, 1, 2, 3, 4, and 7, which are serotypes commonly associated with clinical diseases.

  16. Label-Free Relative Quantitation of Isobaric and Isomeric Human Histone H2A and H2B Variants by Fourier Transform Ion Cyclotron Resonance Top-Down MS/MS.

    PubMed

    Dang, Xibei; Singh, Amar; Spetman, Brian D; Nolan, Krystal D; Isaacs, Jennifer S; Dennis, Jonathan H; Dalton, Stephen; Marshall, Alan G; Young, Nicolas L

    2016-09-02

    Histone variants are known to play a central role in genome regulation and maintenance. However, many variants are inaccessible by antibody-based methods or bottom-up tandem mass spectrometry due to their highly similar sequences. For many, the only tractable approach is with intact protein top-down tandem mass spectrometry. Here, ultra-high-resolution FT-ICR MS and MS/MS yield quantitative relative abundances of all detected HeLa H2A and H2B isobaric and isomeric variants with a label-free approach. We extend the analysis to identify and relatively quantitate 16 proteoforms from 12 sequence variants of histone H2A and 10 proteoforms of histone H2B from three other cell lines: human embryonic stem cells (WA09), U937, and a prostate cancer cell line LaZ. The top-down MS/MS approach provides a path forward for more extensive elucidation of the biological role of many previously unstudied histone variants and post-translational modifications.

  17. Heterologous expression of the cloned guinea pig alpha 2A, alpha 2B, and alpha 2C adrenoceptor subtypes. Radioligand binding and functional coupling to a CAMP-responsive reporter gene.

    PubMed

    Svensson, S P; Bailey, T J; Porter, A C; Richman, J G; Regan, J W

    1996-02-09

    Functional studies have shown that 6-chloro-9-[(3-methyl-2-butenyl)oxy]-3-methyl-1H-2,3,4,5-tetrahydro-3- benzazepine (SKF 104078) has very low affinity for prejunctional alpha 2-adrenoceptors (alpha 2-AR) in the guinea pig atrium. In this study, we have cloned guinea pig homologues of the human alpha 2-C10, alpha 2-C4 AR subtypes and have studied them in isolation by heterologous expression in cultured mammalian cells. Oligonucleotide primers, designed from conserved areas of the human alpha 2-ARs were used in a polymerase chain reaction (PCR) with template cDNA synthesized from guinea pig atrial mRNA. Three PCR products were obtained that shared identity with the three human alpha 2-AR subtypes. A guinea pig (gp) genomic library was screened with a cDNA clone encoding a portion of the gp-alpha 2A, and genes containing the complete coding sequences of the guinea pig alpha 2A, alpha 2B, and alpha 2C AR subtypes were obtained. These guinea pig genes were subcloned into a eukaryotic expression plasmid and were expressed transiently in COS-7 cells. The binding of the alpha 2-selective antagonist [3H]MK-912 to membranes prepared from these cells was specific and of high affinity with Kd values of 810 pM for gp-alpha 2A, 2700 pM for gp-alpha 2B and 110 pM for gp-alpha 2C. Competition for the binding of [3H]MK-912 by SKF 104078 indicated that it was of moderately high affinity (approximately 100 nM) but that it was not selective for any of the guinea pig alpha 2-AR subtypes. Co-expression of guinea pig alpha 2-AR subtypes with a cyclicAMP-responsive chloramphenicol acetyltransferase (CAT) reporter gene resulted in agonist-dependent modulation of CAT activity. For the gp-alpha 2 A, a biphasic response was obtained with low concentrations of noradrenaline (NE) decreasing forskolin-stimulated CAT activity and high concentrations causing a reversal. For the gp-alpha 2B, NE produced mostly potentiation of forskolin-stimulated activity, and for the gp-alpha 2C, NE caused

  18. The Role of GluN2A and GluN2B Subunits on the Effects of NMDA Receptor Antagonists in Modeling Schizophrenia and Treating Refractory Depression

    PubMed Central

    Jiménez-Sánchez, Laura; Campa, Leticia; Auberson, Yves P; Adell, Albert

    2014-01-01

    Paradoxically, N-methyl-D-aspartate (NMDA) receptor antagonists are used to model certain aspects of schizophrenia as well as to treat refractory depression. However, the role of different subunits of the NMDA receptor in both conditions is poorly understood. Here we used biochemical and behavioral readouts to examine the in vivo prefrontal efflux of serotonin and glutamate as well as the stereotypical behavior and the antidepressant-like activity in the forced swim test elicited by antagonists selective for the GluN2A (NVP-AAM077) and GluN2B (Ro 25-6981) subunits. The effects of the non-subunit selective antagonist, MK-801; were also studied for comparison. The administration of MK-801 dose dependently increased the prefrontal efflux of serotonin and glutamate and markedly increased the stereotypy scores. NVP-AAM077 also increased the efflux of serotonin and glutamate, but without the induction of stereotypies. In contrast, Ro 25-6981 did not change any of the biochemical and behavioral parameters tested. Interestingly, the administration of NVP-AAM077 and Ro 25-6981 alone elicited antidepressant-like activity in the forced swim test, in contrast to the combination of both compounds that evoked marked stereotypies. Our interpretation of the results is that both GluN2A and GluN2B subunits are needed to induce stereotypies, which might be suggestive of potential psychotomimetic effects in humans, but the antagonism of only one of these subunits is sufficient to evoke an antidepressant response. We also propose that GluN2A receptor antagonists could have potential antidepressant activity in the absence of potential psychotomimetic effects. PMID:24871546

  19. Aryne [3 + 2] cycloaddition with N-sulfonylpyridinium imides and in situ generated N-sulfonylisoquinolinium imides: a potential route to pyrido[1,2-b]indazoles and indazolo[3,2-a]isoquinolines.

    PubMed

    Zhao, Jingjing; Li, Pan; Wu, Chunrui; Chen, Hongli; Ai, Wenying; Sun, Renhong; Ren, Hailong; Larock, Richard C; Shi, Feng

    2012-03-07

    The aryne [3 + 2] cycloaddition process with pyridinium imides breaks the aromaticity of the pyridine ring. By equipping the imide nitrogen with a sulfonyl group, the intermediate readily eliminates a sulfinate anion to restore the aromaticity, leading to the formation of pyrido[1,2-b]indazoles. The scope and limitation of this reaction are discussed. As an extension of this chemistry, N-tosylisoquinolinium imides, generated in situ from N'-(2-alkynylbenzylidene)-tosylhydrazides via an AgOTf-catalyzed 6-endo-dig electrophilic cyclization, readily undergo aryne [3 + 2] cycloaddition to afford indazolo[3,2-a]-isoquinolines in the same pot, offering a highly efficient route to these potential anticancer agents.

  20. Three-state kinetic folding mechanism of the H2A/H2B histone heterodimer: the N-terminal tails affect the transition state between a dimeric intermediate and the native dimer.

    PubMed

    Placek, Brandon J; Gloss, Lisa M

    2005-01-28

    The H2A/H2B heterodimer is a component of the nucleosome core particle, the fundamental repeating unit of chromatin in all eukaryotic cells. The kinetic folding mechanism for the H2A/H2B dimer has been determined from unfolding and refolding kinetics as a function of urea using stopped-flow, circular dichroism and fluorescence methods. The kinetic data are consistent with a three-state mechanism: two unfolded monomers associate to form a dimeric intermediate in the dead-time of the SF instrument (approximately 5 ms); this intermediate is then converted to the native dimer by a slower, first-order reaction. Analysis of the burst-phase amplitudes as a function of denaturant indicates that the dimeric kinetic intermediate possesses approximately 50% of the secondary structure and approximately 60% of the surface area burial of the native dimer. The stability of the dimeric intermediate is approximately 30% of that of the native dimer at the monomer concentrations employed in the SF experiments. Folding-to-unfolding double-jump experiments were performed to monitor the formation of the native dimer as a function of folding delay times. The double-jump data demonstrate that the dimeric intermediate is on-pathway and obligatory. Formation of a transient dimeric burst-phase intermediate has been observed in the kinetic mechanism of other intertwined, segment-swapped, alpha-helical, DNA-binding dimers, such as the H3-H4 histone dimer, Escherichia coli factor for inversion stimulation and E.coli Trp repressor. The common feature of a dimeric intermediate in these folding mechanisms suggests that this intermediate may accelerate protein folding, when compared to the folding of archael histones, which do not populate a transient dimeric species and fold more slowly.

  1. Specific role of α2A - and α2B -, but not α2C -, adrenoceptor subtypes in the inhibition of the vasopressor sympathetic out-flow in diabetic pithed rats.

    PubMed

    Altamirano-Espinoza, Alain H; Manrique-Maldonado, Guadalupe; Marichal-Cancino, Bruno A; Villalón, Carlos M

    2015-07-01

    Several lines of evidence have shown an association of diabetes with a catecholamines' aberrant homeostasis involving a drastic change in the expression of adrenoceptors. This homeostatic alteration includes, among other things, atypical actions of α2 -adrenoceptor agonists within central and peripheral α2 -adrenoceptors (e.g. profound antinociceptive effects in diabetic subjects). Hence, this study investigated the pharmacological profile of the α2 -adrenoceptor subtypes that inhibit the vasopressor sympathetic out-flow in streptozotocin-pre-treated (diabetic) pithed rats. For this purpose, B-HT 933 (up to 30 μg/kg min) was used as a selective α2 -adrenoceptor agonist and rauwolscine as a non-selective α2A/2B/2C -adrenoceptor antagonist; in addition, BRL 44408, imiloxan and JP-1302 were used as subtype-selective α2A -, α2B - and α2C -adrenoceptor antagonists, respectively (all given i.v.). I.v. continuous infusions of B-HT 933 inhibited the vasopressor responses induced by electrical sympathetic stimulation without affecting those by i.v. bolus injections of noradrenaline in both normoglycaemic and diabetic rats. Interestingly, the ED50 for B-HT 933 in diabetic rats (25 μg/kg min) was almost 1-log unit greater than that in normoglycaemic rats (3 μg/kg.min). Moreover, the sympatho-inhibition induced by 10 μg/kg min B-HT 933 in diabetic rats was (i) abolished by 300 μg/kg rauwolscine or 100 and 300 μg/kg BRL 44408; (ii) partially blocked by 1000 μg/kg imiloxan; and (iii) unchanged by 1000 μg/kg JP-1302. Our findings, taken together, suggest that B-HT 933 has a less potent inhibitory effect on the sympathetic vasopressor responses in diabetic (compared to normoglycaemic) rats and that can probably be ascribed to a down-regulation of α2C -adrenoceptors.

  2. The immunodominant T helper 2 (Th2) response elicited in BALB/c mice by the Leishmania LiP2a and LiP2b acidic ribosomal proteins cannot be reverted by strong Th1 inducers.

    PubMed

    Iborra, S; Abánades, D R; Parody, N; Carrión, J; Risueño, R M; Pineda, M A; Bonay, P; Alonso, C; Soto, M

    2007-11-01

    The search for disease-associated T helper 2 (Th2) Leishmania antigens and the induction of a Th1 immune response to them using defined vaccination protocols is a potential strategy to induce protection against Leishmania infection. Leishmania infantum LiP2a and LiP2b acidic ribosomal protein (P proteins) have been described as prominent antigens during human and canine visceral leishmaniasis. In this study we demonstrate that BALB/c mice infected with Leishmania major develop a Th2-like humoral response against Leishmania LiP2a and LiP2b proteins and that the same response is induced in BALB/c mice when the parasite P proteins are immunized as recombinant molecules without adjuvant. The genetic immunization of BALB/c mice with eukaryotic expression plasmids coding for these proteins was unable to redirect the Th2-like response induced by these antigens, and only the co-administration of the recombinant P proteins with CpG oligodeoxynucleotides (CpG ODN) promoted a mixed Th1/Th2 immune response. According to the preponderance of a Th2 or mixed Th1/Th2 responses elicited by the different regimens of immunization tested, no evidence of protection was observed in mice after challenge with L. major. Although alterations of the clinical outcome were not detected in mice presensitized with the P proteins, the enhanced IgG1 and interleukin (IL)-4 response against total Leishmania antigens in these mice may indicate an exacerbation of the disease.

  3. A novel D2-A-D1-A-D2-type donor-acceptor conjugated small molecule based on a benzo[1,2-b:4,5-b‧]dithiophene core for solution processed organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Yu, Junting; Zhu, Weiguo; Tan, Hua; Peng, Qing

    2017-01-01

    A novel D2-A-D1-A-D2-type donor-acceptor conjugated small molecule (DTPA-Q-BDT-Q-DTPA) with a benzo[1,2-b:4,5-b‧]dithiophene (BDT) core and two D2-A arms has been synthesized and employed as electron donor for organic solar cells. Solution-processed organic photovoltaic (OPV) devices were fabricated with a configuration of ITO/PEDOT:PSS/DTPA-Q-BDT-Q-DTPA:[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)/LiF/Al. A power conversion efficiency (PCE) of 1.22% with an open-circuit voltage (VOC) of 0.64 V, a short-circuit current (JSC) of 6.10 mA cm-2, and a fill factor (FF) of 31.0% was achieved. The PCE is 2.9 times higher than that in the other devices using D2-A-type small molecule TPA-Q-TPA as donor.

  4. Protein Phosphatase 2A Reactivates FOXO3a through a Dynamic Interplay with 14-3-3 and AKT

    PubMed Central

    Singh, Amrik; Ye, Min; Bucur, Octavian; Zhu, Shudong; Tanya Santos, Maria; Rabinovitz, Isaac; Wei, Wenyi; Gao, Daming; Hahn, William C.

    2010-01-01

    Forkhead box transcription factor FOXO3a, a key regulator of cell survival, is regulated by reversible phosphorylation and subcellular localization. Although the kinases regulating FOXO3a activity have been characterized, the role of protein phosphatases (PP) in the control of FOXO3a subcellular localization and function is unknown. In this study, we detected a robust interaction between FOXO3a and PP2A. We further demonstrate that 14-3-3, while not impeding the interaction between PP2A and FOXO3a, restrains its activity toward AKT phosphorylation sites T32/S253. Disruption of PP2A function revealed that after AKT inhibition, PP2A-mediated dephosphorylation of T32/S253 is required for dissociation of 14-3-3, nuclear translocation, and transcriptional activation of FOXO3a. Our findings reveal that distinct phosphatases dephosphorylate conserved AKT motifs within the FOXO family and that PP2A is entwined in a dynamic interplay with AKT and 14-3-3 to directly regulate FOXO3a subcellular localization and transcriptional activation. PMID:20110348

  5. Boeing XF2B-1 (F2B-1)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Boeing XF2B-1 (F2B-1): Serving as the prototype for the F2B-1 shipboard fighter, the XF2B-1 differed visually in having a pointed spinner and an unbalanced rudder. Like many aircraft of its day, the Boeing model 69 was powered by a Pratt & Whitney Wasp radial engine.

  6. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 3A

    SciTech Connect

    Not Available

    1994-03-01

    Objective of this document is to provide descriptions of all WRAP 2A feed streams, including physical and chemical attributes, and describe the pathway that was used to select data for volume estimates. WRAP 2A is being designed for nonthermal treatment of contact-handled mixed low-level waste Category 1 and 3. It is based on immobilization and encapsulation treatment using grout or polymer.

  7. Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes.

    PubMed

    Janila, Pasupuleti; Pandey, Manish K; Shasidhar, Yaduru; Variath, Murali T; Sriswathi, Manda; Khera, Pawan; Manohar, Surendra S; Nagesh, Patne; Vishwakarma, Manish K; Mishra, Gyan P; Radhakrishnan, T; Manivannan, N; Dobariya, K L; Vasanthi, R P; Varshney, Rajeev K

    2016-01-01

    High oleate peanuts have two marketable benefits, health benefits to consumers and extended shelf life of peanut products. Two mutant alleles present on linkage group a09 (ahFAD2A) and b09 (ahFAD2B) control composition of three major fatty acids, oleic, linoleic and palmitic acids which together determine peanut oil quality. In conventional breeding, selection for fatty acid composition is delayed to advanced generations. However by using DNA markers, breeders can reject large number of plants in early generations and therefore can optimize time and resources. Here, two approaches of molecular breeding namely marker-assisted backcrossing (MABC) and marker-assisted selection (MAS) were employed to transfer two FAD2 mutant alleles from SunOleic 95R into the genetic background of ICGV 06110, ICGV 06142 and ICGV 06420. In summary, 82 MABC and 387 MAS derived introgression lines (ILs) were developed using DNA markers with elevated oleic acid varying from 62 to 83%. Oleic acid increased by 0.5-1.1 folds, with concomitant reduction of linoleic acid by 0.4-1.0 folds and palmitic acid by 0.1-0.6 folds among ILs compared to recurrent parents. Finally, high oleate ILs, 27 with high oil (53-58%), and 28 ILs with low oil content (42-50%) were selected that may be released for cultivation upon further evaluation.

  8. Enhanced phagocytic activity of HIV-specific antibodies correlates with natural production of immunoglobulins with skewed affinity for FcγR2a and FcγR2b.

    PubMed

    Ackerman, Margaret E; Dugast, Anne-Sophie; McAndrew, Elizabeth G; Tsoukas, Stephen; Licht, Anna F; Irvine, Darrell J; Alter, Galit

    2013-05-01

    While development of an HIV vaccine that can induce neutralizing antibodies remains a priority, decades of research have proven that this is a daunting task. However, accumulating evidence suggests that antibodies with the capacity to harness innate immunity may provide some protection. While significant research has focused on the cytolytic properties of antibodies in acquisition and control, less is known about the role of additional effector functions. In this study, we investigated antibody-dependent phagocytosis of HIV immune complexes, and we observed significant differences in the ability of antibodies from infected subjects to mediate this critical effector function. We observed both quantitative differences in the capacity of antibodies to drive phagocytosis and qualitative differences in their FcγR usage profile. We demonstrate that antibodies from controllers and untreated progressors exhibit increased phagocytic activity, altered Fc domain glycosylation, and skewed interactions with FcγR2a and FcγR2b in both bulk plasma and HIV-specific IgG. While increased phagocytic activity may directly influence immune activation via clearance of inflammatory immune complexes, it is also plausible that Fc receptor usage patterns may regulate the immune response by modulating downstream signals following phagocytosis--driving passive degradation of internalized virus, release of immune modulating cytokines and chemokines, or priming of a more effective adaptive immune response.

  9. Antibody-mediated targeted gene transfer of helper virus-free HSV-1 vectors to rat neocortical neurons that contain either NMDA receptor 2B or 2A subunits.

    PubMed

    Cao, Haiyan; Zhang, Guo-rong; Geller, Alfred I

    2011-09-30

    Because of the numerous types of neurons in the brain, and particularly the forebrain, neuron type-specific expression will benefit many potential applications of direct gene transfer. The two most promising approaches for achieving neuron type-specific expression are targeted gene transfer to a specific type of neuron and using a neuron type-specific promoter. We previously developed antibody-mediated targeted gene transfer with Herpes Simplex Virus (HSV-1) vectors by modifying glycoprotein C (gC) to replace the heparin binding domain, which mediates the initial binding of HSV-1 particles to many cell types, with the Staphylococcus A protein ZZ domain, which binds immunoglobulin (Ig) G. We showed that a chimeric gC-ZZ protein is incorporated into vector particles and binds IgG. As a proof-of-principle for antibody-mediated targeted gene transfer, we isolated complexes of these vector particles and an anti-NMDA NR1 subunit antibody, and demonstrated targeted gene transfer to neocortical cells that contain NR1 subunits. However, because most forebrain neurons contain NR1, we obtained only a modest increase in the specificity of gene transfer, and this targeting specificity is of limited utility for physiological experiments. Here, we report efficient antibody-mediated targeted gene transfer to NMDA NR2B- or NR2A-containing cells in rat postrhinal cortex, and a neuron-specific promoter further restricted recombinant expression to neurons. Of note, because NR2A-containing neurons are relatively rare, these results show that antibody-mediated targeted gene transfer with HSV-1 vectors containing neuron type-specific promoters can restrict recombinant expression to specific types of forebrain neurons of physiological significance.

  10. Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Jacob, Daniel J.; Kim, Patrick S.; Fisher, Jenny A.; Yu, Karen; Travis, Katherine R.; Mickley, Loretta J.; Yantosca, Robert M.; Sulprizio, Melissa P.; De Smedt, Isabelle; González Abad, Gonzalo; Chance, Kelly; Li, Can; Ferrare, Richard; Fried, Alan; Hair, Johnathan W.; Hanisco, Thomas F.; Richter, Dirk; Scarino, Amy Jo; Walega, James; Weibring, Petter; Wolfe, Glenn M.

    2016-11-01

    Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs), but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) campaign over the southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS; for clarification of these and other abbreviations used in the paper, please refer to Appendix A) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the southeast US (r = 0.4-0.8 on a 0.5° × 0.5° grid) and in their day-to-day variability (r = 0.5-0.8). However, all retrievals are biased low in the mean by 20-51 %, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation, and correcting this would eliminate its bias relative to the SEAC4RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.

  11. Neonatal seizures alter NMDA glutamate receptor GluN2A and 3A subunit expression and function in hippocampal CA1 neurons

    PubMed Central

    Zhou, Chengwen; Sun, Hongyu; Klein, Peter M.; Jensen, Frances E.

    2015-01-01

    Neonatal seizures are commonly caused by hypoxic and/or ischemic injury during birth and can lead to long-term epilepsy and cognitive deficits. In a rodent hypoxic seizure (HS) model, we have previously demonstrated a critical role for seizure-induced enhancement of the AMPA subtype of glutamate receptor (GluA) in epileptogenesis and cognitive consequences, in part due to GluA maturational upregulation of expression. Similarly, as the expression and function of the N-Methyl-D-aspartate (NMDA) subtype of glutamate receptor (GluN) is also developmentally controlled, we examined how early life seizures during the critical period of synaptogenesis could modify GluN development and function. In a postnatal day (P)10 rat model of neonatal seizures, we found that seizures could alter GluN2/3 subunit composition of GluNs and physiological function of synaptic GluNs. In hippocampal slices removed from rats within 48–96 h following seizures, the amplitudes of synaptic GluN-mediated evoked excitatory postsynaptic currents (eEPSCs) were elevated in CA1 pyramidal neurons. Moreover, GluN eEPSCs showed a decreased sensitivity to GluN2B selective antagonists and decreased Mg2+ sensitivity at negative holding potentials, indicating a higher proportion of GluN2A and GluN3A subunit function, respectively. These physiological findings were accompanied by a concurrent increase in GluN2A phosphorylation and GluN3A protein. These results suggest that altered GluN function and expression could potentially contribute to future epileptogenesis following neonatal seizures, and may represent potential therapeutic targets for the blockade of future epileptogenesis in the developing brain. PMID:26441533

  12. Imperatorin is a mechanism-based inactivator of CYP2B6.

    PubMed

    Zheng, Liwei; Cao, Jiaojiao; Lu, Dan; Ji, Lin; Peng, Ying; Zheng, Jiang

    2015-01-01

    Imperatorin (IMP) is the major active ingredient in many common medicinal herbs. We examined the irreversible inhibitory effect of IMP on CYP2B6. IMP produced a time- and concentration-dependent inactivation of CYP2B6. About 70% of activity of CYP2B6 was suppressed after its incubation with 1.5 μM IMP for 9 minutes. KI and kinact were found to be 0.498 μM and 0.079 min(-1), respectively. The loss of CYP2B6 activity required the presence of NADPH. Glutathione and catalase/superoxide dismutase showed little protection against the IMP-induced enzyme inactivation. Ticlopidine, a substrate of CYP2B6, showed protection of the enzyme against the inactivation induced by IMP. The estimated partition ratio of the inactivation was approximately 4. Additionally, a γ-ketoenal intermediate was identified in microsomal incubations with IMP. CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 were found to be involved in bioactivation of IMP. In conclusion, IMP is a mechanism-based inactivator of CYP2B6. The formation of γ-ketoenal intermediate may account for the enzyme inactivation.

  13. Fc gamma receptor 3A and 2A polymorphisms do not predict response to rituximab in follicular lymphoma

    PubMed Central

    Kenkre, Vaishalee P.; Hong, Fangxin; Cerhan, James R.; Lewis, Marcia; Sullivan, Leslie; Williams, Michael E.; Gascoyne, Randy D.; Horning, Sandra J.; Kahl, Brad S.

    2015-01-01

    Purpose Pre-clinical studies suggest that single nucleotide polymorphisms (SNPs) in the Fcγ receptor (FCGR) genes influence response to rituximab, but the clinical relevance of this is uncertain. Experimental Design We prospectively obtained specimens for genotyping in the RESORT study, where 408 previously untreated, low tumor burden follicular lymphoma (FL) patients were treated with single agent rituximab. Patients received rituximab in 4 weekly doses and responders were randomized to rituximab re-treatment (RR) upon progression versus maintenance rituximab (MR). SNP genotyping was performed in 321 consenting patients. Results Response rates to initial therapy and response duration were correlated with the FCGR3A SNP at position 158 (rs396991) and the FCGR2A SNP at position 131 (rs1801274). The response rate to initial rituximab was 71%. No FCGR genotypes or grouping of genotypes were predictive of initial response. 289 patients were randomized to RR (n = 143) or to MR (n = 146). With a median follow up of 5.5 years, the 3-yr response duration in the RR arm and the MR arm was 50% and 78%, respectively. Genotyping was available in 235 of 289 randomized patients. In patients receiving RR (n = 115) or MR (n =120), response duration was not associated with any FCGR genotypes or genotype combinations. Conclusions Based on this analysis of treatment-naïve, low tumor burden FL, we conclude that the FCGR3A and FCGR2A SNPs do not confer differential responsiveness to rituximab. PMID:26510856

  14. Synthesis and chemistry of the open-cage cobaltaheteroborane cluster [{(η(5)-C5Me5)Co}2B2H2Se2]: a combined experimental and theoretical study.

    PubMed

    Barik, Subrat Kumar; Dorcet, Vincent; Roisnel, Thierry; Halet, Jean-François; Ghosh, Sundargopal

    2015-08-28

    Reaction of [(η(5)-C5Me5)CoCl]2 with a two-fold excess of [LiBH4·thf] followed by heating with an excess of Se powder produces the dicobaltaselenaborane species [{(η(5)-C5Me5)Co}2B2H2Se2], , in good yield. The geometry of resembles a nido pentagonal [Co2B2Se2] bipyramid with a missing equatorial vertex. It can alternatively be seen as an open cage triple-decker cluster. Isolation of permits its reaction with [Fe2(CO)9] to give heterometallic diselenametallaborane [{(η(5)-C5Me5)Co}Fe(CO)3B2H2Se2], . The geometry of is similar to that of with one of the [(η(5)-C5Me5)Co] groups replaced by the isolobal, two-electron fragment [Fe(CO)3]. Both new compounds have been characterized by mass spectrometry, and by (1)H, (11)B and (13)C NMR spectroscopy. The structural architectures have been unequivocally established by crystallographic analysis. In addition, density functional theory calculations were performed to investigate the bonding and electronic properties. The large HOMO-LUMO gaps computed for both clusters are consistent with their thermodynamic stability. Natural bond order calculations predict the absence of metal-metal bonding interaction.

  15. Pancreatic Cancer Stage 2B

    MedlinePlus

    ... 2B Description: Stage IIB pancreatic cancer; drawing shows cancer in the pancreas and in nearby lymph nodes. Also shown are the bile duct, pancreatic duct, and duodenum. Stage IIB pancreatic cancer. Cancer has spread to nearby lymph nodes and ...

  16. K restriction inhibits protein phosphatase 2B (PP2B) and suppression of PP2B decreases ROMK channel activity in the CCD

    PubMed Central

    Zhang, Yan; Lin, Dao-Hong; Wang, Zhi-Jian; Jin, Yan; Yang, Baofeng; Wang, Wen-Hui

    2009-01-01

    We used Western blot analysis to examine the effect of dietary K intake on the expression of serine/threonine protein phosphatase in the kidney. K restriction significantly decreased the expression of catalytic subunit of protein phosphatase (PP)2B but increased the expression of PP2B regulatory subunit in both rat and mouse kidney. However, K depletion did not affect the expression of PP1 and PP2A. Treatment of M-1 cells, mouse cortical collecting duct (CCD) cells, or 293T cells with glucose oxidase (GO), which generates superoxide anions through glucose metabolism, mimicked the effect of K restriction on PP2B expression and significantly decreased expression of PP2B catalytic subunits. However, GO treatment increased expression of regulatory subunit of PP2B and had no effect on expression of PP1, PP2A, and protein tyrosine phosphatase 1D. Moreover, deletion of gp91-containing NADPH oxidase abolished the effect of K depletion on PP2B. Thus superoxide anions or related products may mediate the inhibitory effect of K restriction on the expression of PP2B catalytic subunit. We also used patch-clamp technique to study the effect of inhibiting PP2B on renal outer medullary K (ROMK) channels in the CCD. Application of cyclosporin A or FK506, inhibitors of PP2B, significantly decreased ROMK channels, and the effect of PP2B inhibitors was abolished by blocking p38 mitogen-activated protein kinase (MAPK) and ERK. Furthermore, Western blot demonstrated that inhibition of PP2B with cyclosporin A or small interfering RNA increased the phosphorylation of ERK and p38 MAPK. We conclude that K restriction suppresses the expression of PP2B catalytic subunits and that inhibition of PP2B decreases ROMK channel activity through stimulation of MAPK in the CCD. PMID:18184875

  17. Functional characterization of CYP2B6 allelic variants in demethylation of antimalarial artemether.

    PubMed

    Honda, Masashi; Muroi, Yuka; Tamaki, Yuichiro; Saigusa, Daisuke; Suzuki, Naoto; Tomioka, Yoshihisa; Matsubara, Yoichi; Oda, Akifumi; Hirasawa, Noriyasu; Hiratsuka, Masahiro

    2011-10-01

    Artemether (AM) is one of the most effective antimalarial drugs. The elimination half-life of AM is very short, and it shows large interindividual variability in pharmacokinetic parameters. The aim of this study was to identify cytochrome P450 (P450) isozymes responsible for the demethylation of AM and to evaluate functional differences between 26 CYP2B6 allelic variants in vitro. Of 14 recombinant P450s examined in this study, CYP2B6 and CYP3A4 were primarily responsible for production of the desmethyl metabolite dihydroartemisinin. The intrinsic clearance (V(max)/K(m)) of CYP2B6 was 6-fold higher than that of CYP3A4. AM demethylation activity was correlated with CYP2B6 protein levels (P = 0.004); however, it was not correlated with CYP3A4 protein levels (P = 0.27) in human liver microsomes. Wild-type CYP2B6.1 and 25 CYP2B6 allelic variants (CYP2B6.2-CYP2B6.21 and CYP2B6.23-CYP2B6.27) were heterologously expressed in COS-7 cells. In vitro analysis revealed no enzymatic activity in 5 variants (CYP2B6.8, CYP2B6.12, CYP2B6.18, CYP2B6.21, and CYP2B6.24), lower activity in 7 variants (CYP2B6.10, CYP2B6.11, CYP2B6.14, CYP2B6.15, CYP2B6.16, CYP2B6.20, and CYP2B6.27), and higher activity in 4 variants (CYP2B6.2, CYP2B6.4, CYP2B6.6, and CYP2B6.19), compared with that of wild-type CYP2B6.1. In kinetic analysis, 3 variants (CYP2B6.2, CYP2B6.4, and CYP2B6.6) exhibited significantly higher V(max), and 3 variants (CYP2B6.14, CYP2B6.20 and CYP2B6.27) exhibited significantly lower V(max) compared with that of CYP2B6.1. This functional analysis of CYP2B6 variants could provide useful information for individualization of antimalarial drug therapy.

  18. Telecom 2-B and 2-C (TC2B and TC2C)

    NASA Technical Reports Server (NTRS)

    Dulac, J.; Alvarez, H.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for Telecom 2-B and 2-C (TC2B and TC2C) are summarized. These Telecom missions will provide high-speed data link applications, telephone, and television service between France and overseas territories as a follow-on to TC2A. Mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.

  19. Structure, functional regulation and signaling properties of Rap2B

    PubMed Central

    QU, DEBAO; HUANG, HUI; DI, JIEHUI; GAO, KEYU; LU, ZHENG; ZHENG, JUNNIAN

    2016-01-01

    The Ras family small guanosine 5′-triphosphate (GTP)-binding protein Rap2B is is a member of the Ras oncogene family and a novel target of p53 that regulates the p53-mediated pro-survival function of cells. The Rap2B protein shares ~90% homology with Rap2A, and its sequence is 70% identical to other members of the Rap family such as RaplA and RaplB. As a result, Rap2B has been theorized to have similar signaling effectors to the GTPase-binding protein Rap, which mediates various biological functions, including the regulation of sterile 20/mitogen-activated proteins. Since its identification in the early 1990s, Rap2B has elicited a considerable interest. Numerous studies indicate that Rap2B exerts specific biological functions, including binding and stimulating phospholipase C-ε and interferon-γ. In addition, downregulation of Rap2B affects the growth of melanoma cells. The present review summarizes the possible effectors and biological functions of Rap2B. Increasing evidence clearly supports the association between Rap2B function and tumor development. Therefore, it is conceivable that anticancer drugs targeting Rap2B may be generated as novel therapies against cancer. PMID:27073477

  20. Gene expression studies of mRNAs encoding the NMDA receptor subunits NMDAR1, NMDAR2A, NMDAR2B, NMDAR2C, and NMDAR2D following long-term treatment with cis-and trans-flupenthixol as a model for understanding the mode of action of schizophrenia drug treatment.

    PubMed

    Chen, A C; McDonald, B; Moss, S J; Gurling, H M

    1998-02-01

    It has been hypothesized that glutamate receptor function is important in both the aetiology and treatment of schizophrenia. In order to understand how specific glutamate receptor genes are involved in the treatment of schizophrenia we have used a multiprobe oligonucleotide solution hybridization (MOSH) technique to examine the regulation of gene express of the NMDAR1, 2A, 2B, 2C, 2D receptor subunits in the left rat brain following treatment with the optical isomers of flupenthixol. cis- and trans-flupenthixol are both present in the commonly used oral and depot treatments for schizophrenia and a controlled trial showed that cis-flupenthixol had a significantly superior ability to ameliorate the positive symptoms of schizophrenia compared to its trans-isomer. At a dose of 0.2 mg/kg/day over a period of 1, 2, 4, 8, 12 and 24 weeks, we found that both isomers down regulated the expression of NMDAR1 mRNA in most regions of the brain. NMDAR2A, 2B and 2C receptor subunits showed a significantly decreased expression from 12 to 24 weeks but after 2 weeks NMDAR2B, 2C, 2D expression was increased in several brain regions. The NMDAR1 receptor subunit immunoreactivity in the right brain following 4 and 24 weeks of drug treatment was also examined by Western blotting. Both trans- and cis-flupenthixol significantly decreased the NR1 immunoreactivity in the right cerebellum after 24 weeks of treatment. These results suggest that NMDA receptor subunits may have a role in the action of antipsychotic drugs. If we assume that the NMDA receptor expression changes reflect a beneficial and significant mechanism in the treatment of schizophrenia, it could be argued that NMDA receptor changes are more related to the negative or non-specific symptoms of schizophrenia.

  1. Diabetes susceptibility in Mayas: Evidence for the involvement of polymorphisms in HHEX, HNF4α, KCNJ11, PPARγ, CDKN2A/2B, SLC30A8, CDC123/CAMK1D, TCF7L2, ABCA1 and SLC16A11 genes.

    PubMed

    Lara-Riegos, J C; Ortiz-López, M G; Peña-Espinoza, B I; Montúfar-Robles, I; Peña-Rico, M A; Sánchez-Pozos, K; Granados-Silvestre, M A; Menjivar, M

    2015-07-01

    Association of type 2 diabetes (T2D) with common variants in HHEX, HNF4α, KCNJ11, PPARγ, CDKN2A/2B, SLC30A8, CDC123/CAMK1D, TCF7L2, ABCA1 and SLC16A11 genes have been reported, mainly in populations of European and Asian ancestry and to a lesser extent in Latin Americans. Thus, we aimed to investigate the contribution of rs1111875 (HHEX), rs1800961 (HNF4α), rs5219 (KCNJ11), rs1801282 (PPARγ), rs10811661 (CDKN2A/2B), rs13266634 (SLC30A8), rs12779790 (CDC123/CAMK1D), rs7903146 (TCF7L2), rs9282541 (ABCA1) and rs13342692 (SLC16A11) polymorphisms in the genetic background of Maya population to associate their susceptibility to develop T2D. This is one of the first studies designed specifically to investigate the inherited component of T2D in the indigenous population of Mexico. SNPs were genotyped by allelic discrimination method in 575 unrelated Maya individuals. Two SNPs rs10811661 and rs928254 were significantly associated with T2D after adjusting for BMI; rs10811661 in a recessive and rs9282541 in a dominant model. Additionally, we found phenotypical alterations associated with genetic variants: HDL to rs9282541 and insulin to rs13342692. In conclusion, these findings support an association of genetic polymorphisms to develop T2D in Maya population.

  2. Peginterferon Alfa-2b (PEG-Intron)

    MedlinePlus

    ... alpha-2b is a combination of interferon and polyethylene glycol, which helps the interferon stay active in ... 2b, other alpha interferons, any other medications, or polyethylene glycol (PEG). Ask your doctor if you are ...

  3. Isolation, sequence identification and expression profile of three novel genes Rab2A, Rab3A and Rab7A from Black-boned sheep (Ovis aries).

    PubMed

    He, Y D; Liu, D D; Xi, D M; Yang, L Y; Tan, Y W; Liu, Q; Mao, H M; Deng, W D

    2010-01-01

    Complete coding sequences of three Black-boned sheep (Ovis aries) genes Rab2A, Rab3A and Rab7A were amplified using reverse transcription polymerase chain reaction (RT-PCR) based on the conserved sequence information of cattle or other mammals known to be highly homologous to sheep ESTs. The Black-boned sheep Rab2A gene encodes a protein of 226 amino acids which contains the conserved putative RabL2 domain and is highly homologous to the Rab2A proteins of seven other species--cattle (96%), human (83%), Sumatran orangutan (82%), rat (81%), mouse (80%), African clawed frog (72%) and zebrafish (71%). The Black-boned sheep Rab3A gene encodes a protein of 220 amino acids that contains the conserved putative Rab3 domain and is very similar to the Rab3A proteins of four species--cattle (99%), African clawed frog (99%), Western clawed frog (98%) and zebrafish (95%). And the Black-boned sheep Rab7A gene encodes a protein of 207 amino acids that contains the conserved putative Rab7 domain and has high homology with the Rab7A proteins of six other species--human (99%), dog (99%), Sumatran orangutan (99%), zebrafish (97%), rabbit (97%) and African clawed frog (96%). Analysis of the phylogenetic tree has demonstrated that the Black-boned sheep Rab2A, Rab3A and Rab7A proteins share a common ancestor and the tissue expression analysis has shown that the corresponding genes are expressed in a range of tissues including leg muscle, kidney, skin, longissimus dorsi muscle, spleen, heart and liver. Our experiment is the first to provide the primary foundation for a further insight into these three sheep genes.

  4. Structural Basis for Host Membrane Remodeling Induced by Protein 2B of Hepatitis A Virus

    PubMed Central

    Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa

    2015-01-01

    ABSTRACT The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. IMPORTANCE No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. PMID:25589659

  5. Predictive In Silico Studies of Human 5-hydroxytryptamine Receptor Subtype 2B (5-HT2B) and Valvular Heart Disease

    PubMed Central

    Reid, Terry-Elinor; Kumar, Krishna

    2014-01-01

    Serotonin (5-HT) receptors are neuromodulator neurotransmitter receptors which when activated generate a signal transduction pathway within cells resulting in cell-cell communication. 5-hydroxytryptamine (serotonin) receptor 2B (5-HT2B) is a subtype of the seven members of 5-hydroxytrytamine (5-HT) family of receptors which is the largest member of the super family of 7-transmembrane G-protein coupled receptors (GPCRs). Not only do 5-HT receptors play physiological roles in the cardiovascular system, gastrointestinal and endocrine function and the central nervous, but they also play a role in behavioral functions. In particular 5-HT2B receptor is wide spread with regards to its distribution throughout bodily tissues and is expressed at high levels in the lungs, peripheral tissues, liver, kidney and prostate just to name a few. Hence 5-HT2B participates in multiple biological functions including CNS regulation, regulation of gastrointestinal motality, cardiovascular regulation and 5-HT transport system regulation. While 5-HT2B is a viable drug target and has therapeutic indications for treating obesity, psychotherapy, Parkinson’s disease etc. there is a growing concern regarding adverse drug reactions, specifically valvulopathy associated with 5-HT2B agonists. Due to the sequence homology experienced by 5-HT2 subtypes there is also a concern regarding the off target effects of 5-HT2A and 5-HT2C agonists. The concept of subtype selectivity is of paramount importance and can be tackled with the aid of in silico studies, specifically cheminformatics, to develop models to predict valvulopathy associated toxicity of drug candidates prior to clinical trials. This review has highlighted three in silico approaches thus far that have been successful in either predicting 5-HT2B toxicity of molecules or identifying important interactions between 5-HT2B and drug molecules that bring about valvulopathy related toxicities. PMID:23675941

  6. GluN2B-containing NMDA receptors promote glutamate synapse development in hippocampal interneurons.

    PubMed

    Kelsch, Wolfgang; Li, Zhijun; Wieland, Sebastian; Senkov, Oleg; Herb, Anne; Göngrich, Christina; Monyer, Hannah

    2014-11-26

    In postnatal development, GluN2B-containing NMDARs are critical for the functional maturation of glutamatergic synapses. GluN2B-containing NMDARs prevail until the second postnatal week when GluN2A subunits are progressively added, conferring mature properties to NMDARs. In cortical principal neurons, deletion of GluN2B results in an increase in functional AMPAR synapses, suggesting that GluN2B-containing NMDARs set a brake on glutamate synapse maturation. The function of GluN2B in the maturation of glutamatergic inputs to cortical interneurons is not known. To examine the function of GluN2B in interneurons, we generated mutant mice with conditional deletion of GluN2B in interneurons (GluN2B(ΔGAD67)). In GluN2B(ΔGAD67) mice interneurons distributed normally in cortical brain regions. After the second postnatal week, GluN2B(ΔGAD67) mice developed hippocampal seizures and died shortly thereafter. Before the onset of seizures, GluN2B-deficient hippocampal interneurons received fewer glutamatergic synaptic inputs than littermate controls, indicating that GluN2B-containing NMDARs positively regulate the maturation of glutamatergic input synapses in interneurons. These findings suggest that GluN2B-containing NMDARs keep the circuit activity under control by promoting the maturation of excitatory synapses in interneurons.

  7. Investigation of Class 2b Trucks

    SciTech Connect

    Davis, S.C.

    2002-04-03

    The popularity of trucks in the class 2 category--that is, those with a 6,000 to 10,000 pounds (lbs) gross vehicle weight rating (GVWR)--has increased since the late 1970s/early 1980s. The purpose of this research is to identify and examine vehicles in the upper portion of the class 2 weight range (designated as vehicle class 2b) and to assess their impact. Vehicles in class 2b (8,500-10,000 lbs GVWR) include pickup trucks, sport utility vehicles (SUVs), and large vans (i.e., not minivans). Oak Ridge National Laboratory researched each individual truck model to determine which models were class 2b trucks and arrived at four methodologies to derive sales volumes. Two methods--one for calendar year and one for model year sales--were recommended for producing believable and reliable results. The study indicates that 521,000 class 2b trucks were sold in calendar year 1999--6.4% of sales of all trucks under 10,000 lbs. Eighty-two percent of class 2b trucks sold in 1999 were pickups; one third of class 2b trucks sold in 1999 were diesel. There were 5.8 million class 2b trucks on the road in 2000, which amounts to 7.8% of all trucks under 10,000 lbs. Twenty-four percent of the class 2b truck population is diesel. Estimates show that class 2b trucks account for 8% of annual miles traveled by trucks under 10,000 lbs and 9% of fuel use. Data on class 2b trucks are scarce. As the Tier 2 standards, which apply to passenger vehicles in the 8,500-10,000 lb GVWR category, become effective, additional data on class 2b trucks may become available--not only emissions data, but data in all areas. At the moment, distinguishing class 2b trucks from class 2 trucks in general is a substantial task requiring data on an individual model level.

  8. Peginterferon Alfa-2b Injection (Sylatron)

    MedlinePlus

    ... 2b injection is used in people with malignant melanoma (a life-threatening cancer that begins in certain ... is used to reduce the chance that malignant melanoma will come back and must be started within ...

  9. Combination treatment with hepatitis C virus protease and NS5A inhibitors is effective against recombinant genotype 1a, 2a, and 3a viruses.

    PubMed

    Gottwein, Judith M; Jensen, Sanne B; Li, Yi-Ping; Ghanem, Lubna; Scheel, Troels K H; Serre, Stéphanie B N; Mikkelsen, Lotte; Bukh, Jens

    2013-03-01

    With the development of directly acting antivirals, hepatitis C virus (HCV) therapy entered a new era. However, rapid selection of resistance mutations necessitates combination therapy. To study combination therapy in infectious culture systems, we aimed at developing HCV semi-full-length (semi-FL) recombinants relying only on the JFH1 NS3 helicase, NS5B, and the 3' untranslated region. With identified adaptive mutations, semi-FL recombinants of genotypes(isolates) 1a(TN) and 3a(S52) produced supernatant infectivity titers of ~4 log(10) focus-forming units/ml in Huh7.5 cells. Genotype 1a(TN) adaptive mutations allowed generation of 1a(H77) semi-FL virus. Concentration-response profiles revealed the higher efficacy of the NS3 protease inhibitor asunaprevir (BMS-650032) and the NS5A inhibitor daclatasvir (BMS-790052) against 1a(TN and H77) than 3a(S52) viruses. Asunaprevir had intermediate efficacy against previously developed 2a recombinants J6/JFH1 and J6cc. Daclatasvir had intermediate efficacy against J6/JFH1, while low sensitivity was confirmed against J6cc. Using a cross-titration scheme, infected cultures were treated until viral escape or on-treatment virologic suppression occurred. Compared to single-drug treatment, combination treatment with relatively low concentrations of asunaprevir and daclatasvir suppressed infection with all five recombinants. Escaped viruses primarily had substitutions at amino acids in the NS3 protease and NS5A domain I reported to be genotype 1 resistance mutations. Inhibitors showed synergism at drug concentrations reported in vivo. In summary, semi-FL HCV recombinants, including the most advanced reported genotype 3a infectious culture system, permitted genotype-specific analysis of combination treatment in the context of the complete viral life cycle. Despite differential sensitivity to lead compound NS3 protease and NS5A inhibitors, genotype 1a, 2a, and 3a viruses were suppressed by combination treatment with relatively low

  10. Scientific core hole Valles caldera No. 2b (VC-2b), New Mexico

    SciTech Connect

    Garner, J.N.; Hulen, J.B.; Lysne, P.; Jacobson, R.; Goff, F.; Nielson, D.L.; Pisto, L.; Criswell, C.W.; Gribble, R.; Utah Univ. Research Inst., Salt Lake City, UT; Sandia National Labs., Albuquerque, NM; Los Alamos National Lab., NM; Utah Univ. Research Inst., Salt Lake City, UT; Tonto Drilling Services, Inc., Salt Lake City, UT; Los Alamo

    1989-01-01

    Research core hole was continuously cored to 1.762 km on the western flank of the caldera's resurgent dome in 1988. Bottom hole temperature is about 295{degree}C within Precambrian (1.5 Ga) quartz monzonite, deep within the liquid-dominated portions of the Sulphur Springs hydrothermal system. VC-2b may be the deepest, hottest, continuously cored hole in North America. Core recovery was 99.2%. The only major drilling problems encountered were when temperatures at the bit exceeded 225{degree}C below depths of about 1000 m. The result of these conditions was loss of viscosity and/or lubricity in the mud, apparently caused by breakdown of the high temperature polymers. Lithologies in caldera-fill indicate the drill site may be proximal to ignimbrite vents and that an intracaldera lake with temperatures approaching boiling formed soon after the caldera itself. Structural correlations between VC-2b and the 528-m-deep companion hole VC-2a indicate the earlier Toledo caldera (1.45 Ma; Otowi Member tuffs) and even older Lower Tuffs caldera experienced no structural resurgence similar to the 1.12 million year old Valles caldera. The hydrothermal system penetrated by these bores, consists of a shallow vapor-rich cap, which has evolved from an earlier 200{degree}C liquid-dominated system, overlying stacked, liquid-dominated zones up to about 300{degree}C. Geochemistry of mud returns collected during drilling suggests chloride-rich geothermal fluids were entering the bore and mixing with the drilling fluids in the fractured lower Paleozoic and Precambrian sections. 23 refs., 5 figs., 1 tab.

  11. NR2B receptor blockade inhibits pain-related sensitization of amygdala neurons.

    PubMed

    Ji, Guangchen; Horváth, Csilla; Neugebauer, Volker

    2009-04-28

    Pain-related sensitization and synaptic plasticity in the central nucleus of the amygdala (CeA) depend on the endogenous activation of NMDA receptors and phosphorylation of the NR1 subunit through a PKA-dependent mechanism. Functional NMDA receptors are heteromeric assemblies of NR1 with NR2A-D or NR3A, B subunits. NMDA receptors composed of NR1 and NR2B subunits have been implicated in neuroplasticity and are present in the CeA. Here we used a selective NR2B antagonist (Ro-256981) to determine the contribution of NR2B-containing NMDA receptors to pain-related sensitization of CeA neurons. Extracellular single-unit recordings were made from CeA neurons in anesthetized adult male rats before and during the development of an acute arthritis. Arthritis was induced in one knee joint by intraarticular injections of kaolin and carrageenan. Brief (15 s) mechanical stimuli of innocuous (100-500 g/30 mm2) and noxious (1000-2000 g/30 mm2) intensity were applied to the knee and other parts of the body. In agreement with our previous studies, all CeA neurons developed increased background and evoked activity after arthritis induction. Ro-256981 (1, 10 and 100 muM; 15 min each) was administered into the CeA by microdialysis 5-6 h postinduction of arthritis. Ro-256981 concentration-dependently decreased evoked responses, but not background activity. This pattern of effect is different from that of an NMDA receptor antagonist (AP5) in our previous studies. AP5 (100 microM - 5 mM) inhibited background activity and evoked responses. The differential effects of AP5 and Ro-256981 may suggest that NMDA receptors containing the NR2B subunit are important but not sole contributors to pain-related changes of CeA neurons.

  12. CARDIO-i2b2: integrating arrhythmogenic disease data in i2b2.

    PubMed

    Segagni, Daniele; Tibollo, Valentina; Dagliati, Arianna; Napolitano, Carlo; G Priori, Silvia; Bellazzi, Riccardo

    2012-01-01

    The CARDIO-i2b2 project is an initiative to customize the i2b2 bioinformatics tool with the aim to integrate clinical and research data in order to support translational research in cardiology. In this work we describe the implementation and the customization of i2b2 to manage the data of arrhytmogenic disease patients collected at the Fondazione Salvatore Maugeri of Pavia in a joint project with the NYU Langone Medical Center (New York, USA). The i2b2 clinical research chart data warehouse is populated with the data obtained by the research database called TRIAD. The research infrastructure is extended by the development of new plug-ins for the i2b2 web client application able to properly select and export phenotypic data and to perform data analysis.

  13. First identification of Porcine Circovirus Type 2b mutant in pigs from Uruguay.

    PubMed

    Ramos, Natalia; Mirazo, Santiago; Castro, Gustavo; Arbiza, Juan

    2015-07-01

    Porcine Circovirus Type 2 (PCV2) is a worldwide distributed virus and is considered an important emerging pathogen related to several distinct disease syndromes in pigs. PCV2 strains are classified into three genotypes: PCV2a, with five subtypes (2A-2E), PCV2b with three subtypes (1A-1C) and PCV2c, only found in Denmark. Recently, several reports suggested the circulation of newly emerging PCV2b mutants (mPCV2b) isolated from pigs with PCVAD in cases of suspected vaccine failure. In this work, we report for the first time the identification of mPCV2b in pigs from Uruguay, providing an additional evidence of a global circulation. Complete genome characterization and phylogenetic analysis reveal that Uruguayan strains, as well as mPCV2b previously reported are closely related to other sequences already classified as PCV2b-1C. Furthermore, results showed that mPCV2b presented different genetic markers in the capsid protein compared with classical PCV2a/b strains. Further investigation about antigenic shift of the mPCV2b strains including the Uruguayan isolates is needed.

  14. Deliberate and Crisis Action Planning and Execution Segments Increment 2B (DCAPES Inc 2B)

    DTIC Science & Technology

    2016-03-01

    Defense Acquisition Management Information Retrieval (DAMIR) UNCLASSIFIED DCAPES Inc 2B 2016 MAR UNCLASSIFIED 2 Table of Contents Common...M - Millions of Dollars MAIS - Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone...Logistics DCAPES Inc 2B 2016 MAR UNCLASSIFIED 3 Lt Col Christopher Thrower 201 East Moore Drive Building 856, Room 154 Maxwell Air Force Base-Gunter

  15. Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription

    SciTech Connect

    Davie, J.R.; Murphy, L.C. )

    1990-05-22

    The relationship between transcription and ubiquitination of the histones was investigated. Previous studies have shown that ubiquitinated (u) histone H2B and, to a lesser extend, mono- and polyubiquitinated histone H2A are enriched in transcriptionally active gene-enriched chromatin fractions. Here, the authors show that treatment of T-47D-5 human breast cancer cells with actinomycin D or 5,6-dichloro-1-{beta}-D-ribofuranosylbenzimidazole, inhibitors of heterogeneous nuclear RNA synthesis, selectively reduced the level of uH2B, but not uH2A, uH2A.Z, or polyubiquitinated H2A, in chromatin. Treatment of the cells with low levels of actinomycin D slightly reduced the level of uH2B, suggesting that inhibition of ribosomal RNA synthesis does not have a profound effect on the level of uH2B in chromatin. These results demonstrate that maintenance of the levels of uH2B in chromatin is dependent upon ongoing transcription, particularly the synthesis of hnRNA. Thus, histone H2B would be ubiquitinated when the nucleosome was opened during transcription. Ubiquitination of histone H2B may impede nucleosome refolding, facilitating subsequent rounds of transcription.

  16. Differences in Methadone Metabolism by CYP2B6 Variants.

    PubMed

    Gadel, Sarah; Friedel, Christina; Kharasch, Evan D

    2015-07-01

    Methadone is a long-acting opioid with considerable unexplained interindividual variability in clearance. Cytochrome P450 2B6 (CYP2B6) mediates clinical methadone clearance and metabolic inactivation via N-demethylation to 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). Retrospective studies suggest that individuals with the CYP2B6*6 allelic variant have higher methadone plasma concentrations. Catalytic activities of CYP2B6 variants are highly substrate- and expression-system dependent. This investigation evaluated methadone N-demethylation by expressed human CYP2B6 allelic variants in an insect cell coexpression system containing P450 reductase. Additionally, the influence of coexpressing cytochrome b5, whose role in metabolism can be inhibitory or stimulatory depending on the P450 isoform and substrate, on methadone metabolism, was evaluated. EDDP formation from therapeutic (0.25-1 μM) R- and S-methadone concentrations was CYP2B6.4 ≥ CYP2B6.1 ≥ CYP2B6.5 > CYP2B6.9 ≈ CYP2B6.6, and undetectable from CYP2B6.18. Coexpression of b5 had small and variant-specific effects at therapeutic methadone concentrations but at higher concentrations stimulated EDDP formation by CYP2B6.1, CYP2B6.4, CYP2B6.5, and CYP2B6.9 but not CYP2B6.6. In vitro intrinsic clearances were generally CYP2B6.4 ≥ CYP2B6.1 > CYP2B6.5 > CYP2B6.9 ≥ CYP2B6.6. Stereoselective methadone metabolism (S>R) was maintained with all CYP2B6 variants. These results show that methadone N-demethylation by CYP2B6.4 is greater compared with CYP2B6.1, whereas CYP2B6.9 and CYP2B6.6 (which both contain the 516G>T, Q172H polymorphism), are catalytically deficient. The presence or absence of b5 in expression systems may explain previously reported disparate catalytic activities of CYP2B6 variants for specific substrates. Differences in methadone metabolism by CYP2B6 allelic variants provide a mechanistic understanding of pharmacogenetic variability in clinical methadone metabolism and clearance.

  17. Identification of the N-Methyl-D-aspartate receptor (NMDAR)-related epitope, NR2B, in the normal human ovary: implication for the pathogenesis of anti-NMDAR encephalitis.

    PubMed

    Tachibana, Naoko; Kinoshita, Michiaki; Saito, Yuko; Ikeda, Shu-ichi

    2013-01-01

    N-methyl-D-aspartate receptors (NMDARs) are one type of ionotropic glutamate receptors (GluRs) and are heterotetrametric cation channels composed of NMDAR1 (NR1), NMDAR2 (NR2A, 2B, 2C or 2D) and NMDAR3 (NR3A or NR3B) subunits. The main subunits are NR1 and NR2 and their combinations are classified into several diverse forms including NR1/NR1/NR2A/NR2A, NR1/NR1/NR2B/NR2B and NR1/NR1/NR2A/NR2B. NMDARs are physiologically related to synapse development and synaptic plasticity in the central nervous system. Anti-NMDAR encephalitis is a form of autoimmune limbic encephalitis mainly affecting young women, with various manifestations including initial psychiatric symptoms, subsequent unresponsiveness, intractable generalized seizure, dysautonomia and orofacial dyskinesia. This disorder is often accompanied by ovarian teratoma that is originated from oocytes. Anti-neural antibody for the NR1/NR2 heteromer of NMDAR has been identified as a disease-specific hallmark. It has been emphasized that neural components in ovarian teratoma act as a trigger to produce anti-NMDAR antibodies, although about half of the patients with anti-NMDAR encephalitis are not associated with ovarian teratoma. To identify NMDAR-related epitopes located outside of the brain, we performed immunohistochemical examinations of normal human ovary and testis using specific antibodies against NR1, NR2A and NR2B, respectively, and found expression of the NR2B epitope in the cytoplasm of oocytes. In contrast, the testis showed no immunohistochemical reactivity. Therefore, oocytes contain NMDAR-related epitopes including NR2B. The NMDAR-related epitopes in normal oocytes may cause an antigen-antibody reaction in certain pathological conditions. The presence of NR2B immunoreactivity in oocytes may account for the fact that anti-NMDAR encephalitis predominantly affects young females.

  18. M2b monocytes predominated in peripheral blood of severely burned patients.

    PubMed

    Kobayashi, Makiko; Jeschke, Marc G; Shigematsu, Kenji; Asai, Akira; Yoshida, Shohei; Herndon, David N; Suzuki, Fujio

    2010-12-15

    Severely burned patients were shown to be carriers of M2 monocytes, and all of the monocytes isolated from peripheral blood of severely burned patients (19 of 19 patients) were demonstrated as M2b monocytes (IL-12(-)IL-10(+)CCL1(+) monocytes). Low levels of M2a (IL-12(-)IL-10(+)CCL17(+) monocytes) and M2c monocytes (IL-12(-)IL-10(+)CXCL13(+) monocytes) were demonstrated in peripheral blood of severely burned patients (M2a, 2 of 19 patients; M2c, 5 of 19 patients). M2b, M2a, and M2c monocytes were not detected in peripheral blood of healthy donors. However, M2b monocytes appeared when healthy donor monocytes were cultured in media supplemented with burn patient serum (15%). CCL2 was detected in sera of all burn patients, and M2b monocytes were not generated from healthy donor monocytes cultured with media containing 15% burn patient sera that were previously treated with anti-CCL2 mAb. In addition, M2b monocytes were generated from healthy donor monocytes in cultures supplemented with rCCL2. These results indicate that M2b monocytes are predominant in peripheral blood of severely burned patients who are carriers of CCL2 that functions to stimulate monocyte conversion from resident monocytes to M2b monocytes.

  19. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial

    PubMed Central

    Trimble, Cornelia L; Morrow, Matthew P; Kraynyak, Kimberly A; Shen, Xuefei; Dallas, Michael; Yan, Jian; Edwards, Lance; Parker, R Lamar; Denny, Lynette; Giffear, Mary; Brown, Ami Shah; Marcozzi-Pierce, Kathleen; Shah, Divya; Slager, Anna M; Sylvester, Albert J; Khan, Amir; Broderick, Kate E; Juba, Robert J; Herring, Timothy A; Boyer, Jean; Lee, Jessica; Sardesai, Niranjan Y; Weiner, David B; Bagarazzi, Mark L

    2016-01-01

    Summary Background Despite preventive vaccines for oncogenic human papillomaviruses (HPVs), cervical intraepithelial neoplasia (CIN) is common, and current treatments are ablative and can lead to long-term reproductive morbidity. We assessed whether VGX-3100, synthetic plasmids targeting HPV-16 and HPV-18 E6 and E7 proteins, delivered by electroporation, would cause histopathological regression in women with CIN2/3. Methods Efficacy, safety, and immunogenicity of VGX-3100 were assessed in CIN2/3 associated with HPV-16 and HPV-18, in a randomised, double-blind, placebo-controlled phase 2b study. Patients from 36 academic and private gynaecology practices in seven countries were randomised (3:1) to receive 6 mg VGX-3100 or placebo (1 mL), given intramuscularly at 0, 4, and 12 weeks. Randomisation was stratified by age (<25 vs ≥25 years) and CIN2 versus CIN3 by computer-generated allocation sequence (block size 4). Funder and site personnel, participants, and pathologists were masked to treatment. The primary efficacy endpoint was regression to CIN1 or normal pathology 36 weeks after the first dose. Per-protocol and modified intention-to-treat analyses were based on patients receiving three doses without protocol violations, and on patients receiving at least one dose, respectively. The safety population included all patients who received at least one dose. The trial is registered at ClinicalTrials.gov (number NCT01304524) and EudraCT (number 2012-001334-33). Findings Between Oct 19, 2011, and July 30, 2013, 167 patients received either VGX-3100 (n=125) or placebo (n=42). In the per-protocol analysis 53 (49.5%) of 107 VGX-3100 recipients and 11 (30.6%) of 36 placebo recipients had histopathological regression (percentage point difference 19.0 [95% CI 1.4–36.6]; p=0.034). In the modified intention-to-treat analysis 55 (48.2%) of 114 VGX-3100 recipients and 12 (30.0%) of 40 placebo recipients had histopathological regression (percentage point difference 18.2 [95% CI

  20. The CYP2B6*6 allele significantly alters the N-demethylation of ketamine enantiomers in vitro.

    PubMed

    Li, Yibai; Coller, Janet K; Hutchinson, Mark R; Klein, Kathrin; Zanger, Ulrich M; Stanley, Nathan J; Abell, Andrew D; Somogyi, Andrew A

    2013-06-01

    Ketamine is primarily metabolized to norketamine by hepatic CYP2B6 and CYP3A4-mediated N-demethylation. However, the relative contribution from each enzyme remains controversial. The CYP2B6*6 allele is associated with reduced enzyme expression and activity that may lead to interindividual variability in ketamine metabolism. We examined the N-demethylation of individual ketamine enantiomers using human liver microsomes (HLMs) genotyped for the CYP2B6*6 allele, insect cell-expressed recombinant CYP2B6 and CYP3A4 enzymes, and COS-1 cell-expressed recombinant CYP2B6.1 and CYP2B6.6 protein variant. Effects of CYP-selective inhibitors on norketamine formation were also determined in HLMs. The two-enzyme Michaelis-Menten model best fitted the HLM kinetic data. The Michaelis-Menten constants (K(m)) for the high-affinity enzyme and the low-affinity enzyme were similar to those for the expressed CYP2B6 and CYP3A4, respectively. The intrinsic clearance for both ketamine enantiomers by the high-affinity enzyme in HLMs with CYP2B6*1/*1 genotype were at least 2-fold and 6-fold higher, respectively, than those for CYP2B6*1/*6 genotype and CYP2B6*6/*6 genotype. The V(max) and K(m) values for CYP2B6.1 were approximately 160 and 70% of those for CYP2B6.6, respectively. N,N'N'-triethylenethiophosphoramide (thioTEPA) (CYP2B6 inhibitor, 25 μM) and the monoclonal antibody against CYP2B6 but not troleandomycin (CYP3A4 inhibitor, 25 μM) or the monoclonal antibody against CYP3A4 inhibited ketamine N-demethylation at clinically relevant concentrations. The degree of inhibition was significantly reduced in HLMs with the CYP2B6*6 allele (gene-dose P < 0.05). These results indicate a major role of CYP2B6 in ketamine N-demethylation in vitro and a significant impact of the CYP2B6*6 allele on enzyme-ketamine binding and catalytic activity.

  1. Synthesis and Electrochemical Properties of Nano-VO2 (B).

    PubMed

    Yang, Yun; Lu, Yong; Wang, Wei; Feng, Chuanqi; Yang, Shuijin

    2016-03-01

    The nano-VO2 (B) has been self-assembly synthesized by hydrothermal method using different templates, which may give them some interesting properties. The as-prepared samples were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the samples were investigated. The results show that the hexadecyltrimethyl ammonium bromide (CTAB) (soft template) was used to obtain the VO2 (B1) nanobelts. The flake graphite (hard template) was taken to get the VO2 (B2) nanosheets. The VO2 (B1) nanobelts have higher initial capacity to compare with VO2 (B2). But the VO2 (B2) nanosheets showed better cycling performance than that of VO2 (B1) nanobelts. The nano VO2 (B2) is a promising anode material for lithium ion battery application.

  2. [Interferon alpha-2b modified with polyethylene glycol].

    PubMed

    Wu, Yingxin; Zhai, Yanqin; Lei, Jiandu; Ma, Guanghui; Su, Zhiguo

    2008-09-01

    In order to obtain a more stable PEGylated interferon alpha-2b, and prolong its half life, interferon alpha-2b (IFN alpha-2b) was modified with monomethoxy polyethylene glycol propionaldehyde (mPEG-ALD) 20000. It was found that the optimized reaction condition for the maximum bioactivity and highest PEGylation degree of the mono PEGylated interferon alpha-2b was as follows: in 20 mmol/L, pH 6.5, citric acid and sodium dihydrogen phosphate buffer, the concentration of IFN alpha-2b was 4 mg/mL, and the molar ratio of PEG/IFN alpha-2b was 8:1, and the reaction time was 20 h at 4 degrees C. Under the optimized reaction condition, the mono PEGylation degree reached to 55%. Ion exchange chromatography was used to separate and purify mono PEGylated interferon alpha-2b from the reaction mixture. The purity of mono PEGylated interferon alpha-2b was higher than 97% characterized by HPLC. The bioactivity of the mono PEGylated interferon alpha-2b was 13.4% of the native IFN alpha-2b, while its half life in SD rat is much longer than the native IFN alpha-2b. The mono PEGylated interferon alpha-2b is also stable in aqueous.

  3. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  4. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  5. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  6. 7 CFR 301.80-2b - Exempted articles. 1

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Exempted articles. 1 301.80-2b Section 301.80-2b....80-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines. (a) The following articles are exempt from the certification and permit...

  7. 7 CFR 301.80-2b - Exempted articles. 1

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Exempted articles. 1 301.80-2b Section 301.80-2b....80-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines. (a) The following articles are exempt from the certification and permit...

  8. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  9. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  10. 7 CFR 301.80-2b - Exempted articles. 1

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Exempted articles. 1 301.80-2b Section 301.80-2b....80-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines. (a) The following articles are exempt from the certification and permit...

  11. Methadone N-demethylation by the common CYP2B6 allelic variant CYP2B6.6.

    PubMed

    Gadel, Sarah; Crafford, Amanda; Regina, Karen; Kharasch, Evan D

    2013-04-01

    The long-acting opioid methadone displays considerable unexplained interindividual pharmacokinetic variability. Methadone metabolism clinically occurs primarily by N-demethylation to 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), catalyzed predominantly by CYP2B6. Retrospective studies suggest that the common allele variant CYP2B6*6 may influence methadone plasma concentrations. The catalytic activity of CYP2B6.6, encoded by CYP2B6*6, is highly substrate-dependent. This investigation compared methadone N-demethylation by CYP2B6.6 with that by wild-type CYP2B6.1. Methadone enantiomer and racemate N-demethylation by recombinant-expressed CYP2B6.6 and CYP2B6.1 was determined. At substrate concentrations (0.25-2 µM) approximating plasma concentrations occurring clinically, rates of methadone enantiomer N-demethylation by CYP2B6.6, incubated individually or as the racemate, were one-third to one-fourth those by CYP2B6.1. For methadone individual enantiomers and metabolism by CYP2B6.6 compared with CYP2B6.1, Vmax was diminished, Ks was greater and the in vitro intrinsic clearance was diminished 5- to 6-fold. The intrinsic clearance for R- and S-EDDP formation from racemic methadone was diminished approximately 6-fold and 3-fold for R- and S-methadone, respectively. Both CYP2B6.6 and CYP2B6.1 showed similar stereoselectivity (S>R-methadone). Human liver microsomes with diminished CYP2B6 content due to a CYP2B6*6 allele had lower rates of methadone N-demethylation. Results show that methadone N-demethylation catalyzed by CYP2B6.6, the CYP2B6 variant encoded by the CYP2B6*6 polymorphism, is catalytically deficient compared with wild-type CYP2B6.1. Diminished methadone N-demethylation by CYP2B6.6 may provide a mechanistic explanation for clinical observations of altered methadone disposition in individuals carrying the CYP2B6*6 polymorphism.

  12. CD73-Dependent Generation of Adenosine and Endothelial Adora2b Signaling Attenuate Diabetic Nephropathy

    PubMed Central

    Tak, Eunyoung; Ridyard, Douglas; Kim, Jae-Hwan; Zimmerman, Michael; Werner, Tilmann; Wang, Xiaoxin X.; Shabeka, Uladzimir; Seo, Seong-Wook; Christians, Uwe; Klawitter, Jost; Moldovan, Radu; Garcia, Gabriela; Levi, Moshe; Haase, Volker; Ravid, Katya; Eltzschig, Holger K.

    2014-01-01

    Nucleotide phosphohydrolysis by the ecto-5′-nucleotidase (CD73) is the main source for extracellular generation of adenosine. Extracellular adenosine subsequently signals through four distinct adenosine A receptors (Adora1, Adora2a, Adora2b, or Adora3). Here, we hypothesized a functional role for CD73-dependent generation and concomitant signaling of extracellular adenosine during diabetic nephropathy. CD73 transcript and protein levels were elevated in the kidneys of diabetic mice. Genetic deletion of CD73 was associated with more severe diabetic nephropathy, whereas treatment with soluble nucleotidase was therapeutic. Transcript levels of renal adenosine receptors showed a selective induction of Adora2b during diabetic nephropathy. In a transgenic reporter mouse, Adora2b expression localized to the vasculature and increased after treatment with streptozotocin. Adora2b−/− mice experienced more severe diabetic nephropathy, and studies in mice with tissue-specific deletion of Adora2b in tubular epithelia or vascular endothelia implicated endothelial Adora2b signaling in protection from diabetic nephropathy. Finally, treatment with a selective Adora2b agonist (BAY 60–6583) conveyed potent protection from diabetes-associated kidney disease. Taken together, these findings implicate CD73-dependent production of extracellular adenosine and endothelial Adora2b signaling in kidney protection during diabetic nephropathy. PMID:24262796

  13. 76 FR 40222 - Airworthiness Directives; Turbomeca S.A. ARRIEL 2B and 2B1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    .... ARRIEL 2B and 2B1 Turboshaft Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... service on ARRIEL 2 twin engine applications and recently one on a single engine helicopter. For the case occurring in flight on a single engine helicopter (ARRIEL 2B1 engine), the pilot performed an...

  14. PHOX2B is a suppressor of neuroblastoma metastasis.

    PubMed

    Naftali, Osnat; Maman, Shelly; Meshel, Tsipi; Sagi-Assif, Orit; Ginat, Ravit; Witz, Isaac P

    2016-03-01

    Paired like homeobox 2B (PHOX2B) is a minimal residual disease (MRD) marker of neuroblastoma. The presence of MRD, also referred to as micro-metastases, is a powerful marker of poor prognosis in neuroblastoma. Lung metastasis is considered a terminal event in neuroblastoma. Lung micro-metastatic neuroblastoma (MicroNB) cells show high expression levels of PHOX2B and possess a less malignant and metastatic phenotype than lung macro metastatic neuroblastoma (MacroNB) cells, which hardly express PHOX2B. In vitro assays showed that PHOX2B knockdown in MicroNB cells did not affect cell viability; however it decreased the migratory capacity of the MicroNB-shPHOX2B cells. An orthotopic inoculation of MicroNB-shPHOX2B cells into the adrenal gland of nude mice resulted in significantly larger primary tumors and a heavier micro-metastatic load in the lungs and bone-marrow, than when control cells were inoculated. PHOX2B expression was found to be regulated by methylation. The PHOX2B promoter in MacroNB cells is significantly more methylated than in MicroNB cells. Demethylation assays using 5-azacytidine demonstrated that methylation can indeed inhibit PHOX2B transcription in MacroNB cells. These pre-clinical data strongly suggest that PHOX2B functions as a suppressor of neuroblastoma progression.

  15. Hepatic SH2B1 and SH2B2 regulate liver lipid metabolism and VLDL secretion in mice.

    PubMed

    Sheng, Liang; Liu, Yan; Jiang, Lin; Chen, Zheng; Zhou, Yingjiang; Cho, Kae Won; Rui, Liangyou

    2013-01-01

    SH2B1 is an SH2 and PH domain-containing adaptor protein. Genetic deletion of SH2B1 results in obesity, type 2 diabetes, and fatty liver diseases in mice. Mutations in SH2B1 are linked to obesity in humans. SH2B1 in the brain controls energy balance and body weight at least in part by enhancing leptin sensitivity in the hypothalamus. SH2B1 in peripheral tissues also regulates glucose and lipid metabolism, presumably by enhancing insulin sensitivity in peripheral metabolically-active tissues. However, the function of SH2B1 in individual peripheral tissues is unknown. Here we generated and metabolically characterized hepatocyte-specific SH2B1 knockout (HKO) mice. Blood glucose and plasma insulin levels, glucose tolerance, and insulin tolerance were similar between HKO, albumin-Cre, and SH2B1(f/f) mice fed either a normal chow diet or a high fat diet (HFD). Adult-onset deletion of SH2B1 in the liver either alone or in combination with whole body SH2B2 knockout also did not exacerbate HFD-induced insulin resistance and glucose intolerance. Adult-onset, but not embryonic, deletion of SH2B1 in the liver attenuated HFD-induced hepatic steatosis. In agreement, adult-onset deletion of hepatic SH2B1 decreased the expression of diacylglycerol acyltransferase-2 (DGAT2) and increased the expression of adipose triglyceride lipase (ATGL). Furthermore, deletion of liver SH2B1 in SH2B2 null mice attenuated very low-density lipoprotein (VLDL) secretion. These data indicate that hepatic SH2B1 is not required for the maintenance of normal insulin sensitivity and glucose metabolism; however, it regulates liver triacylglycerol synthesis, lipolysis, and VLDL secretion.

  16. PHOX2B Is Associated with Neuroblastoma Cell Differentiation.

    PubMed

    Yang, Liqun; Ke, Xiao-Xue; Xuan, Fan; Tan, Juan; Hou, Jianbing; Wang, Mei; Cui, Hongjuan; Zhang, Yundong

    2016-03-01

    Neuroblastoma is a common pediatric malignancy that accounts for ∼15% of tumor-related deaths in children. The tumor is generally believed to originate from neural crest cells during early sympathetic neurogenesis. As the degree of neuroblastoma differentiation has been correlated with clinical outcome, clarifying the molecular mechanisms that drive neuroblastoma progression and differentiation is important for increasing the survival of these patients. In a previous study, the authors identified paired-like homeobox 2b (PHOX2B) as a key mediator of neuroblastoma pathogenesis in a TH-MYCN mouse model. In the present study, they aimed to define whether PHOX2B is also associated with proliferation and differentiation of human neuroblastoma cells. PHOX2B expression in neuroblastoma cells was evaluated by immunoblot analyses, and the effects of PHOX2B on the proliferation of neuroblastoma cells in vitro were determined using clonogenic and sphere formation assays. Xenograft experiments in NOD/SCID mice were used to examine the in vivo response to PHOX2B knockdown. Their data demonstrated that PHOX2B acts as a prognostic marker in neuroblastoma and that retinoic acid-induced neuronal differentiation downregulates PHOX2B expression, thereby suppressing the self-renewal capacity of neuroblastoma cells and inhibiting tumorigenicity. These findings confirmed that PHOX2B is a key regulator of neuroblastoma differentiation and stemness maintenance and indicated that PHOX2B might serve as a potential therapeutic target in neuroblastoma patients.

  17. PTK2b function during fertilization of the mouse oocyte

    SciTech Connect

    Luo, Jinping; McGinnis, Lynda K.; Carlton, Carol; Beggs, Hilary E.; Kinsey, William H.

    2014-08-01

    Highlights: • PTK2b is expressed in oocytes and is activated following fertilization. • PTK2b suppression in oocytes prevents fertilization, but not parthenogenetic activation. • PTK2b suppression prevents the oocyte from fusing with or incorporating bound sperm. • PTK2b suppressed oocytes that fail to fertilize do not exhibit calcium oscillations. - Abstract: Fertilization triggers rapid changes in intracellular free calcium that serve to activate multiple signaling events critical to the initiation of successful development. Among the pathways downstream of the fertilization-induced calcium transient is the calcium-calmodulin dependent protein tyrosine kinase PTK2b or PYK2 kinase. PTK2b plays an important role in fertilization of the zebrafish oocyte and the objective of the present study was to establish whether PTK2b also functions in mammalian fertilization. PTK2b was activated during the first few hours after fertilization of the mouse oocyte during the period when anaphase resumption was underway and prior to the pronuclear stage. Suppression of PTK2b kinase activity in oocytes blocked sperm incorporation and egg activation although sperm-oocyte binding was not affected. Oocytes that failed to incorporate sperm after inhibitor treatment showed no evidence of a calcium transient and no evidence of anaphase resumption suggesting that egg activation did not occur. The results indicate that PTK2b functions during the sperm-egg fusion process or during the physical incorporation of sperm into the egg cytoplasm and is therefore critical for successful development.

  18. Characterization of feline cytochrome P450 2B6.

    PubMed

    Okamatsu, Gaku; Komatsu, Tetsuya; Ono, Yuka; Inoue, Hiroki; Uchide, Tsuyoshi; Onaga, Takenori; Endoh, Daiji; Kitazawa, Takio; Hiraga, Takeo; Uno, Yasuhiro; Teraoka, Hiroki

    2017-02-01

    1. Little is known about drug metabolism in carnivores. Although the domestic cat (Felis catus) is an obligate carnivore and is the most common companion animal, usage and dosage of many drugs are determined according to information obtained from humans and dogs. We determined the complete cDNA sequence of CYP2B6 from the feline lung. 2. Feline CYP2B6 consists of 494 deduced amino acids, showing highest identity with the dog CYP2B ortholog, followed by those of horse, pig, primate and human. 3. Feline CYP2B6 transcripts were expressed predominantly in the lung and slightly in the small intestine but not in the liver without significant sex-dependent differences. Western blot analysis with an anti-human CYP2B6 antibody confirmed the presence of CYP2B protein in the lung but not in the liver. 4. Feline CYP2B6 proteins heterologously expressed in Escherichia coli metabolized several substrates specific to human CYP2B6, including 7-ethoxy-4-(trifluoromethyl) coumarin (EFC). The metabolic activity was strongly inhibited by medetomidine and atipamezole, potent inhibitors of canine CYP2B11 (now officially CYP2B6) as well as by ticlopidine and sertraline, inhibitors selective to human CYP2B6. 5. The results suggest that feline CYP2B6 is a functional CYP2B ortholog that plays a role in the local defense mechanism in the cat respiratory system and intestine.

  19. B2B Models for DoD Acquisition

    DTIC Science & Technology

    2008-01-15

    public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words.) A central vision of B2B e - commerce is that...OF ABSTRACT: UU - ii - THIS PAGE INTENTIONALLY LEFT BLANK - iii - Abstract A central vision of B2B e - commerce is that of...goods and services are purchased, pricing mechanisms, the characteristics of the markets, and ownership of marketplace. Keywords: B2B E - Commerce

  20. Preclinical studies on targeted delivery of multiple IFNα2b to HLA-DR in diverse hematologic cancers

    PubMed Central

    Rossi, Diane L.; Cardillo, Thomas M.; Stein, Rhona; Chang, Chien-Hsing

    2011-01-01

    The short circulating half-life and side effects of IFNα affect its dosing schedule and efficacy. Fusion of IFNα to a tumor-targeting mAb (mAb-IFNα) can enhance potency because of increased tumor localization and improved pharmacokinetics. We used the Dock-and-Lock method to generate C2-2b-2b, a mAb-IFNα comprising tetrameric IFNα2b site-specifically linked to hL243 (humanized anti–HLA-DR). In vitro, C2-2b-2b inhibited various B-cell lymphoma leukemia and myeloma cell lines. In most cases, this immunocytokine was more effective than CD20-targeted mAb-IFNα or a mixture comprising the parental mAb and IFNα. Our findings indicate that responsiveness depends on HLA-DR expression/density and sensitivity to IFNα and hL243. C2-2b-2b induced more potent and longer-lasting IFNα signaling compared with nontargeted IFNα. Phosphorylation of STAT1 was more robust and persistent than that of STAT3, which may promote apoptosis. C2-2b-2b efficiently depleted lymphoma and myeloma cells from whole human blood but also exhibited some toxicity to B cells, monocytes, and dendritic cells. C2-2b-2b showed superior efficacy compared with nontargeting mAb-IFNα, peginterferonalfa-2a, or a combination of hL243 and IFNα, using human lymphoma and myeloma xenografts. These results suggest that C2-2b-2b should be useful in the treatment of various hematopoietic malignancies. PMID:21680794

  1. Multiple endocrine neoplasias type 2B and RET proto-oncogene

    PubMed Central

    2012-01-01

    Multiple Endocrine Neoplasia type 2B (MEN 2B) is an autosomal dominant complex oncologic neurocristopathy including medullary thyroid carcinoma, pheochromocytoma, gastrointestinal disorders, marphanoid face, and mucosal multiple ganglioneuromas. Medullary thyroid carcinoma is the major cause of mortality in MEN 2B syndrome, and it often appears during the first years of life. RET proto-oncogene germline activating mutations are causative for MEN 2B. The 95% of MEN 2B patients are associated with a point mutation in exon 16 (M918/T). A second point mutation at codon 883 has been found in 2%-3% of MEN 2B cases. RET proto-oncogene is also involved in different neoplastic and not neoplastic neurocristopathies. Other RET mutations cause MEN 2A syndrome, familial medullary thyroid carcinoma, or Hirschsprung's disease. RET gene expression is also involved in Neuroblastoma. The main diagnosis standards are the acetylcholinesterase study of rectal mucosa and the molecular analysis of RET. In our protocol the rectal biopsy is, therefore, the first approach. RET mutation detection offers the possibility to diagnose MEN 2B predisposition at a pre-clinical stage in familial cases, and to perform an early total prophylactic thyroidectomy. The surgical treatment of MEN 2B is total thyroidectomy with cervical limphadenectomy of the central compartment of the neck. When possible, this intervention should be performed with prophylactic aim before 1 year of age in patients with molecular genetic diagnosis. Recent advances into the mechanisms of RET proto-oncogene signaling and pathways of RET signal transduction in the development of MEN 2 and MTC will allow new treatment possibilities. PMID:22429913

  2. In silico analysis of Brucella abortus Omp2b and in vitro expression of SOmp2b

    PubMed Central

    2016-01-01

    Purpose At present, there is no vaccine available for the prevention of human brucellosis. Brucella outer membrane protein 2b (Omp2b) is a 36 kD porin existed in common Brucella pathogens and it is considered as priority antigen for designing a new subunit vaccine. Materials and Methods In the current study, we aimed to predict and analyze the secondary and tertiary structures of the Brucella abortus Omp2b protein, and to predict T-cell and B-cell epitopes with the help of bioinformatics tools. Subsequently, cloning and expression of the short form of Omp2b (SOmp2b) was performed using pET28a expression vector and Escherichia coli BL21 host, respectively. The recombinant SOmp2b (rSOmp2b) was purified with Ni-NTA column. Results The recombinant protein was successfully expressed in E. coli host and purified under denaturation conditions. The yield of the purified rSOmp2b was estimated by Bradford method and found to be 220 µg/mL of the culture. Conclusion Our results indicate that Omp2b protein has a potential to induce both B-cell– and T-cell–mediated immune responses and it can be evaluated as a new subunit vaccine candidate against brucellosis. PMID:26866027

  3. Increased extrasynaptic GluN2B expression is involved in cognitive impairment after isoflurane anesthesia.

    PubMed

    Li, Lunxu; Li, Zhengqian; Cao, Yiyun; Fan, Dongsheng; Chui, Dehua; Guo, Xiangyang

    2016-07-01

    There is increasing concern regarding the postoperative cognitive dysfunction (POCD) in the aging population, and general anesthetics are believed to be involved. Isoflurane exposure induced increased N-methyl-D-aspartic acid receptor (NMDAR) GluN2B subunit expression following anesthesia, which was accompanied by alteration of the cognitive function. However, whether isoflurane affects this expression in different subcellular compartments, and is involved in the development of POCD remains to be elucidated. The aims of the study were to investigate the effects of isoflurane on the expression of the synaptic and extrasynaptic NMDAR subunits, GluN2A and GluN2B, as well as the associated alteration of cognitive function in aged rats. The GluN2B antagonist, Ro25-6981, was given to rats exposed to isoflurane to determine the role of GluN2B in the isoflurane-induced alteration of cognitive function. The results showed that spatial learning and memory tested in the Morris water maze (MWM) was impaired at least 7 days after isoflurane exposure, and was returned to control levels 30 days thereafter. Ro25-6981 treatment can alleviate this impairment. Extrasynaptic GluN2B protein expression, but not synaptic GluN2B or GluN2A, increased significantly after isoflurane exposure compared to non-isoflurane exposure, and returned to control levels approximately 30 days thereafter. The results of the present study indicated that isoflurane induced the prolonged upregulation of extrasynaptic GluN2B expression after anesthesia and is involved in reversible cognitive impairment.

  4. Building Customized University-to-Business (U2B) Partnerships

    ERIC Educational Resources Information Center

    Irvine, George; Verma, Lisa

    2013-01-01

    Continuing education (CE) units throughout the United States have successfully built University-to-Business (U2B) partnerships to provide greater value to their community partners and to increase revenue for the university. Our experience in building U2B partnerships and feedback from our partners--businesses, corporations, state agencies, and…

  5. NR2B subunit of the NMDA glutamate receptor regulates appetite in the parabrachial nucleus.

    PubMed

    Wu, Qi; Zheng, Ruimao; Srisai, Dollada; McKnight, G Stanley; Palmiter, Richard D

    2013-09-03

    Diphtheria toxin-mediated, acute ablation of hypothalamic neurons expressing agouti-related protein (AgRP) in adult mice leads to anorexia and starvation within 7 d that is caused by hyperactivity of neurons within the parabrachial nucleus (PBN). Because NMDA glutamate receptors are involved in various synaptic plasticity-based behavioral modifications, we hypothesized that modulation of the NR2A and NR2B subunits of the NMDA receptor in PBN neurons could contribute to the anorexia phenotype. We observed by Western blot analyses that ablation of AgRP neurons results in enhanced expression of NR2B along with a modest suppression of NR2A. Interestingly, systemic administration of LiCl in a critical time window before AgRP neuron ablation abolished the anorectic response. LiCl treatment suppressed NR2B levels in the PBN and ameliorated the local Fos induction that is associated with anorexia. This protective role of LiCl on feeding was blunted in vagotomized mice. Chronic infusion of RO25-6981, a selective NR2B inhibitor, into the PBN recapitulated the role of LiCl in maintaining feeding after AgRP neuron ablation. We suggest that the accumulation of NR2B subunits in the PBN contributes to aphagia in response to AgRP neuron ablation and may be involved in other forms of anorexia.

  6. Small GTPase Rab2B and Its Specific Binding Protein Golgi-associated Rab2B Interactor-like 4 (GARI-L4) Regulate Golgi Morphology*

    PubMed Central

    Aizawa, Megumi; Fukuda, Mitsunori

    2015-01-01

    Rab small GTPases are crucial regulators of the membrane traffic that maintains organelle identity and morphology. Several Rab isoforms are present in the Golgi, and it has been suggested that they regulate the compacted morphology of the Golgi in mammalian cells. However, the functional relationships among the Golgi-resident Rabs, e.g. whether they are functionally redundant or different, are poorly understood. In this study, we used specific siRNAs to perform genome-wide screening for human Rabs that are involved in Golgi morphology in HeLa-S3 cells. The results showed that knockdown of any one of the six Rab isoforms (Rab1A/1B/2A/2B/6B/8A) induced fragmentation of the Golgi in HeLa-S3 cells and that its phenotype was rescued by re-expression of their respective siRNA-resistant construct. We then performed systematic knockdown-rescue experiments in relation to each of the six Rabs. Interestingly, with the exception of the Rab8A knockdown, the Golgi fragmentation phenotype induced by knockdown of a single Rab isoform, e.g. Rab2B, was efficiently rescued by re-expression of its siRNA-resistant Rab alone, not by any of the other five Rabs, e.g. Rab2A, which is highly homologous to Rab2B, indicating that these Rab isoforms non-redundantly regulate Golgi morphology possibly through interaction with isoform-specific effector molecules. In addition, we identified Golgi-associated Rab2B interactor-like 4 (GARI-L4) as a novel Golgi-resident Rab2B-specific binding protein whose knockdown also induced fragmentation of the Golgi. Our findings suggest that the compacted Golgi morphology of mammalian cells is finely tuned by multiple sets of Rab (or Rab-effector complexes) that for the most part function independently. PMID:26209634

  7. Importance of the GluN2B Carboxy-Terminal Domain for Enhancement of Social Memories

    ERIC Educational Resources Information Center

    Jacobs, Stephanie; Wei, Wei; Wang, Deheng; Tsien, Joe Z.

    2015-01-01

    The N-methyl-D-aspartate (NMDA) receptor is known to be necessary for many forms of learning and memory, including social recognition memory. Additionally, the GluN2 subunits are known to modulate multiple forms of memory, with a high GluN2A:GluN2B ratio leading to impairments in long-term memory, while a low GluN2A:GluN2B ratio enhances some…

  8. Regulation of UGT2B4 and UGT2B7 by miRNAs in liver cancer cells.

    PubMed

    Wijayakumara, Dhilushi; Mackenzie, Peter Ian; McKinnon, Ross A; Hu, Dong Gui; Meech, Robyn

    2017-04-07

    The transcriptional regulation of UGT2B4 and UGT2B7 has been well studied using liver cancer cell lines and recently post-transcriptional regulation of these two UGTs by miR-216b-5p was reported. The present study describes novel miRNA-mediated regulation of UGT2B4 and UGT2B7 in liver cancer cells. Bioinformatic analyses identified a putative miR-3664-3p binding site in the UGT2B7 3'-UTR, and binding sites for both miR-135a-5p and miR-410-3p in the UGT2B4 3'-UTR. These sites were functionally characterized using miRNA mimics and reporter constructs. A miR-3664-3p mimic induced repression of a luciferase reporter carrying the UGT2B7 3'-UTR in liver cancer cell lines; mutation of the miR-3664-3p site abrogated the response of the reporter to the mimic. Similarly, mutation of the miR-135a-5p site or miR-410-3p site in a luciferase reporter bearing UGT2B4 3'-UTR abrogated the ability of miR-135a-5p or miR-410-3p mimics to reduce reporter activity. Transfection of miR-3664-3p mimics in HepG2 liver cancer cells significantly reduced mRNA and protein levels of UGT2B7, and this led to reduced enzymatic activity. Transfection of miR-135a-5p or miR-410-3p mimics significantly decreased UGT2B4 mRNA levels in Huh7 liver cancer cells. The expression levels of miR-410-3p were inversely correlated with UGT2B4 mRNA levels in the TCGA cohort of Liver Hepatocellular Carcinoma (370 specimens) and a panel of 9 normal human tissues. Similarly, there was an inverse correlation between miR-135a and UGT2B4 mRNA levels in a panel of 18 normal human liver tissues. Together these data suggest that miR-135a and miR-410 control UGT2B4 and that miR-3664 controls UGT2B7 expression in liver cancer and/or normal liver cells.

  9. B2B Models for DoD Acquisition

    DTIC Science & Technology

    2007-07-30

    ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - i - k^s^i=mlpqdo^ar^qb=p`elli= Abstract A central vision of B2B e - commerce is that of an electronic...are purchased, pricing mechanisms, the characteristics of the markets, and ownership of marketplace. Keywords: B2B E - Commerce , Internet...interest is in the analysis, design and implementation of computer-based information systems. Specifically, he is interested in B2B and B2C e - commerce

  10. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells.

    PubMed

    Wilson, Jeffrey M; Ross, William G; Agbai, Oma N; Frazier, Renea; Figler, Robert A; Rieger, Jayson; Linden, Joel; Ernst, Peter B

    2009-04-15

    The endogenous purine nucleoside adenosine is an important antiinflammatory mediator that contributes to the control of CD4(+) T cell responses. While adenosine clearly has direct effects on CD4(+) T cells, it remains to be determined whether actions on APC such as dendritic cells (DC) are also important. In this report we characterize DC maturation and function in BMDC stimulated with LPS in the presence or absence of the nonselective adenosine receptor agonist NECA (5'-N-ethylcarboxamidoadenosine). We found that NECA inhibited TNF-alpha and IL-12 in a concentration-dependent manner, whereas IL-10 production was increased. NECA-treated BMDC also expressed reduced levels of MHC class II and CD86 and were less effective at stimulating CD4(+) T cell proliferation and IL-2 production compared with BMDC exposed to vehicle control. Based on real-time RT-PCR, the A(2A) adenosine receptor (A(2A)AR) and A(2B)AR were the predominant adenosine receptors expressed in BMDC. Using adenosine receptor subtype selective antagonists and BMDC derived from A(2A)AR(-/-) and A(2B)AR(-/-)mice, it was shown that NECA modulates TNF-alpha, IL-12, IL-10, and CD86 responses predominantly via A(2B)AR. These data indicate that engagement of A(2B)AR modifies murine BMDC maturation and suggest that adenosine regulates CD4(+) T cell responses by selecting for DC with impaired immunogencity.

  11. SH2B1 enhances leptin signaling by both Janus kinase 2 Tyr813 phosphorylation-dependent and -independent mechanisms.

    PubMed

    Li, Zhiqin; Zhou, Yingjiang; Carter-Su, Christin; Myers, Martin G; Rui, Liangyou

    2007-09-01

    Leptin controls body weight by activating its long form receptor (LEPRb). LEPRb binds to Janus kinase 2 (JAK2), a cytoplasmic tyrosine kinase that mediates leptin signaling. We previously reported that genetic deletion of SH2B1 (previously known as SH2-B), a JAK2-binding protein, results in severe leptin-resistant and obese phenotypes, indicating that SH2B1 is a key endogenous positive regulator of leptin sensitivity. Here we show that SH2B1 regulates leptin signaling by multiple mechanisms. In the absence of leptin, SH2B1 constitutively bound, via its non-SH2 domain region(s), to non-tyrosyl-phosphorylated JAK2, and inhibited JAK2. Leptin stimulated JAK2 phosphorylation on Tyr(813), which subsequently bound to the SH2 domain of SH2B1. Binding of the SH2 domain of SH2B1 to phospho-Tyr(813) in JAK2 enhanced leptin induction of JAK2 activity. JAK2 was required for leptin-stimulated phosphorylation of insulin receptor substrate 1 (IRS1), an upstream activator of the phosphatidylinositol 3-kinase pathway. Overexpression of SH2B1 enhanced both JAK2- and JAK2(Y813F)-mediated tyrosine phosphorylation of IRS1 in response to leptin, even though SH2B1 did not enhance JAK2(Y813F) activation. Leptin promoted the interaction of SH2B1 with IRS1. These data suggest that constitutive SH2B1-JAK2 interaction, mediated by the non-SH2 domain region(s) of SH2B1 and the non-Tyr(813) region(s) in JAK2, increases the local concentration of SH2B1 close to JAK2 and inhibits JAK2 activity. Leptin-stimulated SH2B1-JAK2 interaction, mediated by the SH2 domain of SH2B1 and phospho-Tyr(813) in JAK2, promotes JAK2 activation, thus globally enhancing leptin signaling. SH2B1-IRS1 interaction facilitates IRS1 phosphorylation by recruiting IRS1 to JAK2 and/or by protecting IRS1 from dephosphorylation, thus specifically enhancing leptin stimulation of the phosphatidylinositol 3-kinase pathway.

  12. Rapid detection of HCV genotyping 1a, 1b, 2a, 3a, 3b and 6a in a single reaction using two-melting temperature codes by a real-time PCR-based assay.

    PubMed

    Athar, Muhammad Ammar; Xu, Ye; Xie, Xiaoting; Xu, Zhenxing; Ahmad, Vakil; Hayder, Zulfiqar; Hussain, Syed Sajid; Liao, Yiqun; Li, Qingge

    2015-09-15

    The genotype of the hepatitis C virus (HCV) is an important indicator for antiviral therapeutic response. We hereby described development of a rapid HCV genotyping approach that enabled the identification of the six most common HCV subtypes of Asia, i.e., 1a, 1b, 2a, 3a, 3b, and 6a, in a single reaction. Using two dual-labeled, self-quenched probes that target the core region of the HCV genome, the exact subtype could be accurately identified by two-melting temperature codes determined from the two respective probes in a real-time PCR assay. Analytical sensitivity studies using armored RNA samples representing each of the six HCV subtypes showed that 5 copies/reaction of HCV RNA could be detected. The assay was evaluated using 244 HCV-positive serum samples and the results were compared with sequencing analysis. Of the 224 samples, subtype 3a (127, 52.3%) was the dominant, followed by 1b (51, 20.9%), 3b (47, 19.3%), 2a (8, 3.3%), 6a (4, 1.6%) and the least was subtype 1a (1, 0.4%). Moreover, 6 (2.5%) mixed infection samples were also detected. These results were fully concordant with sequencing analysis. We concluded that this real-time PCR-based assay could provide a rapid and reliable tool for routine HCV genotyping in most Asian countries.

  13. 5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart Failure

    PubMed Central

    Janssen, Wiebke; Schymura, Yves; Novoyatleva, Tatyana; Luitel, Himal; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Weissmann, Norbert; Seeger, Werner; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo

    2015-01-01

    Objective. The serotonin (5-HT) pathway was shown to play a role in pulmonary hypertension (PH), but its functions in right ventricular failure (RVF) remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist) or SB204741 (5-HT2B receptor antagonist) on right heart function and structure upon pulmonary artery banding (PAB) in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid) or SB204741 (5 mg/kg day). Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. Results. Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Conclusion. 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF. PMID:25667920

  14. Prenatal stress disturbs hippocampal KIF17 and NR2B in spatial cognition in male offspring.

    PubMed

    Zhao, Depeng; Liu, Dan; Chen, Xueyu; Wang, Kai; Zhang, Ai; Kang, Jiuhong; Zhou, Qian; Duan, Tao

    2013-04-01

    Numerous studies have demonstrated that prenatal stress disturbs the hippocampal-mediated learning and memory processes in offspring. The underlying mechanisms for this effect, however, remain vague. It is well documented that N-methyl-D-aspartate (NMDA) receptors play a pivotal role in learning and memory, which are related to dynamically trafficking and regulating NMDA receptors by their response motor proteins. Over the past few years, increasing numbers of studies have elucidated that hippocampal-mediated learning and memory are regulated by KIF17 (kinesin superfamily motor protein 17), which specifically transports and regulates the NMDA receptor subunit NR2B in hippocampal neurons. The present study shows the influence of prenatal stress on KIF17 and NR2B expression and hippocampal NR2A/NR2B ratio partially reflecting function of KIF17, using mice as models. It was found that prenatal stress significantly decreased the hippocampal KIF17 and NR2B level in offspring at postnatal stages of 3 weeks and 9 weeks. Moreover, hippocampal KIF17 in the prenatally stressed pups continued to be weakened even after serial Morris water maze trainings, but not NR2B. Finally, the synaptic NR2A/NR2B level was upregulated in offspring exposed to prenatal stress, which revealed the dysfunction of KIF17. Thus, we conclude that prenatal stress leads to long-lasting deterioration of the expression and function of hippocampal KIF17 in offspring, which may be related to deficits of spatial cognition caused by prenatal stress. These data underpin the hypotheses that a physiopathology of neurodevelopmental origin in early life leads to defects in learning and memory in later life.

  15. Secretion of human interferon alpha 2b by Streptomyces lividans.

    PubMed

    Pimienta, E; Fando, R; Sánchez, J C; Vallin, C

    2002-02-01

    Biologically active human interferon alpha 2b (HuIFNalpha-2b) was secreted into the culture medium by Streptomyces lividans transformed with recombinant plasmids coding for HuIFNalpha-2b fused to the Streptomyces exfoliatus M11 lipase A signal sequence. Levels were low, 15 or 100 ng/ml, depending on the plasmid used. Neither processed nor unprocessed HuIFNalpha-2b was detected in cell lysates of the transformants secreting the recombinant product. However, the secreted recombinant product was found to partially degrade when cultures reached the stationary phase by the action of an, as yet, unidentified mycelium-associated factor. Experimental evidence suggests that the degrading factor is related to mycelium-associated proteolytic activity.

  16. Suppression of CYP2B Induction by Alendronate-Mediated Farnesyl Diphosphate Synthase Inhibition in Primary Cultured Rat Hepatocytes

    PubMed Central

    Jackson, Nancy M.; Kocarek, Thomas A.

    2008-01-01

    We previously reported that squalestatin 1-mediated induction of CYP2B expression is attributable to squalene synthase inhibition and accumulation of an endogenous isoprenoid(s) that is capable of activating the constitutive androstane receptor. To determine whether squalestatin 1-mediated CYP2B induction is strictly dependent upon the biosynthesis of farnesyl pyrophosphate (FPP), the substrate for squalene synthase, the effects of alendronate, a nitrogen-containing bisphosphonate inhibitor of farnesyl diphosphate synthase, were determined on basal, squalestatin 1-inducible, and phenobarbital-inducible CYP2B expression in primary cultured rat hepatocytes. Alendronate treatment alone had no effect on CYP2B or CYP3A mRNA expression in the hepatocyte cultures, but alendronate co-treatment completely suppressed squalestatin 1-mediated CYP2B mRNA induction at concentrations (60 and 100 μM) that effectively inhibited cellular farnesyl diphosphate synthase activity, as assessed by reductions of squalestatin 1-mediated FPP accumulation, and that were not toxic to the cells, as indicated by a lack of effect on MTT activity. Alendronate co-treatment also partially suppressed phenobarbital-inducible CYP2B expression, and this suppressive effect was attenuated by additional co-treatment with the upstream pathway inhibitor, pravastatin. These findings demonstrate that squalestatin 1-mediated CYP2B induction cannot occur in the absence of FPP biosynthesis, but also indicate that one or more upstream isoprenoids, possibly isopentenyl pyrophosphate and/or dimethylallyl pyrophosphate, function to antagonize the CYP2B induction process. PMID:18617600

  17. Characterization of CYP2B6 in a CYP2B6-humanized mouse model: inducibility in the liver by phenobarbital and dexamethasone and role in nicotine metabolism in vivo.

    PubMed

    Liu, Zhihua; Li, Lei; Wu, Hong; Hu, Jing; Ma, Jun; Zhang, Qing-Yu; Ding, Xinxin

    2015-02-01

    The aim of this study was to further characterize the expression and function of human CYP2B6 in a recently generated CYP2A13/2B6/2F1-transgenic (TG) mouse model, in which CYP2B6 is expressed selectively in the liver. The inducibility of CYP2B6 by phenobarbital (PB) and dexamethasone (DEX), known inducers of CYP2B6 in human liver, was examined in the TG mice, as well as in TG/Cyp2abfgs-null (or "CYP2B6-humanized") mice. Hepatic expression of CYP2B6 mRNA and protein was greatly induced by PB or DEX treatment in both TG and TG/Cyp2abfgs-null mice. Function of the transgenic CYP2B6 was first studied using bupropion as a probe substrate. In PB-treated mice, the rates of hepatic microsomal hydroxybupropion formation (at 50 μM bupropion) were >4-fold higher in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice (for both male and female mice); the rate difference was accompanied by a 5-fold higher catalytic efficiency in the TG/Cyp2abfgs-null mice and was abolished by an antibody to CYP2B6. The ability of CYP2B6 to metabolize nicotine was then examined, both in vitro and in vivo. The rates of hepatic microsomal cotinine formation from nicotine were significantly higher in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice, pretreated with PB or DEX. Furthermore, systemic nicotine metabolism was faster in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice. Thus, the transgenic CYP2B6 was inducible and functional, and, in the absence of mouse CYP2A and CYP2B enzymes, it contributed to nicotine metabolism in vivo. The CYP2B6-humanized mouse will be valuable for studies on in vivo roles of hepatic CYP2B6 in xenobiotic metabolism and toxicity.

  18. Independent Review of AFC 2A, 2B, and 2E ATR Irradiation Tests

    SciTech Connect

    M. Cappiello; R. Hobbins; K. Penny; L. Walters

    2014-01-01

    As part of the Department of Energy Advanced Fuel Cycle program, a series of fuels development irradiation tests have been performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. These tests are providing excellent data for advanced fuels development. The program is focused on the transmutation of higher actinides which best can be accomplished in a sodium-cooled fast reactor. Because a fast test reactor is no longer available in the US, a special test vehicle is used to achieve near-prototypic fast reactor conditions (neutron spectra and temperature) for use in ATR (a water-cooled thermal reactor). As part of the testing program, there were many successful tests of advanced fuels including metals and ceramics. Recently however, there have been three experimental campaigns using metal fuels that experienced failure during irradiation. At the request of the program, an independent review committee was convened to review the post-test analyses performed by the fuels development team, to assess the conclusions of the team for the cause of the failures, to assess the adequacy and completeness of the analyses, to identify issues that were missed, and to make recommendations for improvements in the design and operation of future tests. Although there is some difference of opinion, the review committee largely agreed with the conclusions of the fuel development team regarding the cause of the failures. For the most part, the analyses that support the conclusions are sufficient.

  19. SETDB1 HISTONE METHYLTRANSFERASE REGULATES MOOD-RELATED BEHAVIORS AND EXPRESSION OF THE NMDA RECEPTOR SUBUNIT NR2B

    PubMed Central

    Jiang, Yan; Jakovcevski, Mira; Bharadwaj, Rahul; Connor, Caroline; Schroeder, Frederick A.; Lin, Cong L.; Straubhaar, Juerg; Martin, Gilles; Akbarian, Schahram

    2010-01-01

    Histone methyltransferases specific for the histone H3-lysine 9 (H3K9) residue, including Setdb1 (Set domain, bifurcated 1)/Eset/Kmt1e are associated with repressive chromatin remodeling and expressed in adult brain, but potential effects on neuronal function and behavior remain unexplored. Here, we report that transgenic mice with increased Setdb1 expression in adult forebrain neurons show antidepressant-like phenotypes in behavioral paradigms for anhedonia, despair and learned helplessness. Chromatin immunoprecipitation in conjunction with DNA tiling arrays (ChIP-chip) revealed that genomic occupancies of neuronal Setdb1 are limited to less than 1% of annotated genes, which include the NMDA receptor subunit NR2B/Grin2B and other ionotropic glutamate receptor genes. Chromatin conformation capture (“3C”) and Setdb1-ChIP revealed a loop formation tethering the NR2B/Grin2b promoter to the Setdb1 target site positioned 30Kb downstream of the transcription start site. In hippocampus and ventral striatum, two key structures in the neuronal circuitry regulating mood-related behaviors, Setdb1-mediated repressive histone methylation at NR2B/Grin2b was associated with decreased NR2B expression and EPSP insensitivity to pharmacological blockade of NR2B, and accelerated NMDA receptor desensitization consistent with a shift in NR2A/B subunit ratios. In wildtype mice, systemic treatment with the NR2B antagonist, Ro-256981, and hippocampal siRNA-mediated NR2B/Grin2b knockdown, resulted in behavioral changes similar to those elicited by the Setdb1 transgene. Together, these findings point to a role for neuronal Setdb1 in the regulation of affective and motivational behaviors through repressive chromatin remodeling at a select set of target genes, resulting in altered NMDA receptor subunit composition and other molecular adaptations. PMID:20505083

  20. PTK2b function during fertilization of the mouse oocyte.

    PubMed

    Luo, Jinping; McGinnis, Lynda K; Carlton, Carol; Beggs, Hilary E; Kinsey, William H

    2014-08-01

    Fertilization triggers rapid changes in intracellular free calcium that serve to activate multiple signaling events critical to the initiation of successful development. Among the pathways downstream of the fertilization-induced calcium transient is the calcium-calmodulin dependent protein tyrosine kinase PTK2b or PYK2 kinase. PTK2b plays an important role in fertilization of the zebrafish oocyte and the objective of the present study was to establish whether PTK2b also functions in mammalian fertilization. PTK2b was activated during the first few hours after fertilization of the mouse oocyte during the period when anaphase resumption was underway and prior to the pronuclear stage. Suppression of PTK2b kinase activity in oocytes blocked sperm incorporation and egg activation although sperm-oocyte binding was not affected. Oocytes that failed to incorporate sperm after inhibitor treatment showed no evidence of a calcium transient and no evidence of anaphase resumption suggesting that egg activation did not occur. The results indicate that PTK2b functions during the sperm-egg fusion process or during the physical incorporation of sperm into the egg cytoplasm and is therefore critical for successful development.

  1. Genetic and antigenic characterization of a newly emerging porcine circovirus type 2b mutant first isolated in cases of vaccine failure in Korea.

    PubMed

    Seo, Hwi Won; Park, Changhoon; Kang, Ikjae; Choi, Kyuhyung; Jeong, Jiwoon; Park, Su-Jin; Chae, Chanhee

    2014-11-01

    This study describes the genetic and antigenic characterization of a newly emerging porcine circovirus type 2b (PCV2b) mutant first isolated in cases of vaccine failure in Korea. The full genome of the PCV2b isolates (SNUVR130689 and SNUVR140004) is 1,767 base pairs (bp) in length. The size of ORF1 is 945 bp, encoding a protein of 314 amino acids (aa), and the size of ORF2 is 705 bp, encoding a protein of 234 aa, which is 1 aa longer than that of the common PCV2 (233 aa). Korean PCV2b mutant strains had higher levels of nucleotide sequence identity to other PCV2b mutant strains (99.7-99.8 %) than to reference PCV2a (94.5-95.0 %) and PCV2b (95.5-96.1 %) strains. There was no difference in antigenic reactivity among PCV2a, PCV2b and PCV2b mutant strains to the polyclonal and monoclonal PCV2a antibodies. PCV2b mutant strains have distinct genetic characteristics but similar antigenic reactivity when compared to common PCV2a and 2b strains.

  2. Identification of SH2B2beta as an inhibitor for SH2B1- and SH2B2alpha-promoted Janus kinase-2 activation and insulin signaling.

    PubMed

    Li, Minghua; Li, Zhiqin; Morris, David L; Rui, Liangyou

    2007-04-01

    The SH2B family has three members (SH2B1, SH2B2, and SH2B3) that contain conserved dimerization (DD), pleckstrin homology, and SH2 domains. The DD domain mediates the formation of homo- and heterodimers between members of the SH2B family. The SH2 domain of SH2B1 (previously named SH2-B) or SH2B2 (previously named APS) binds to phosphorylated tyrosines in a variety of tyrosine kinases, including Janus kinase-2 (JAK2) and the insulin receptor, thereby promoting the activation of JAK2 or the insulin receptor, respectively. JAK2 binds to various members of the cytokine receptor family, including receptors for GH and leptin, to mediate cytokine responses. In mice, SH2B1 regulates energy and glucose homeostasis by enhancing leptin and insulin sensitivity. In this work, we identify SH2B2beta as a new isoform of SH2B2 (designated as SH2B2alpha) derived from the SH2B2 gene by alternative mRNA splicing. SH2B2beta has a DD and pleckstrin homology domain but lacks a SH2 domain. SH2B2beta bound to both SH2B1 and SH2B2alpha, as demonstrated by both the interaction of glutathione S-transferase-SH2B2beta fusion protein with SH2B1 or SH2B2alpha in vitro and coimmunoprecipitation of SH2B2beta with SH2B1 or SH2B2alpha in intact cells. SH2B2beta markedly attenuated the ability of SH2B1 to promote JAK2 activation and subsequent tyrosine phosphorylation of insulin receptor substrate-1 by JAK2. SH2B2beta also significantly inhibited SH2B1- or SH2B2alpha-promoted insulin signaling, including insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1. These data suggest that SH2B2beta is an endogenous inhibitor of SH2B1 and/or SH2B2alpha, negatively regulating insulin signaling and/or JAK2-mediated cellular responses.

  3. Neuroprotective effect of estrogen: role of nonsynaptic NR2B-containing NMDA receptors.

    PubMed

    Liu, Shui-bing; Zhao, Ming-gao

    2013-04-01

    Excessive activation of N-methyl-D-aspartate receptors (NMDARs) has been implicated in the pathophysiology of chronic neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Some studies reported that NR2A and NR2B play different roles in the central nervous system (CNS). The NR2A subunit is primarily found in the synapses and is required for glutamate-mediated neuronal survival. On the other hand, the NR2B subunit is primarily found in the extrasynaptic sites and is required for glutamate-mediated neuronal death in both in vitro and in vivo experiments. Estrogen is a steroid hormone well known for its widespread effects such as neuroprotection in the brain. Classically, estrogen can bind to two kinds of nuclear receptors, namely, estrogen receptor α (ERα) and estrogen receptor β (ERβ), and produce physiological and neuroprotective effects. Aside from nuclear receptors, estrogen has one membrane receptor, which can either be G-protein-coupled receptor 30 (GPR30), Gq-mER, or ER-X. NMDA exposure clearly promotes NR2B subunit phosphorylation at Ser-1303 and causes neuronal cell death. GPR30 mediates rapid non-genomic effects to protect neurons against injury by inhibiting p-DAPK1 dephosphorylation, which inhibits NR2B subunit phosphorylation at Ser-1303. In addition, NMDA exposure and global ischemia activate the autophagy pathway and induce cell death, which are markedly blocked by the NR2B antagonist Ro 25-6981. Thus, NR2B signaling, autophagy induction and cell death may be closely related. Ro 25-6981 inhibits the dissociation of the NR2B-Beclin-1 signaling complex and delays autophagy in vivo, thus confirming the link between NR2B signaling and autophagy. In short, ERα, ERβ, and GPR30 are involved in the neuroprotection of estrogen in the CNS. Additional research must be conducted to reveal the mechanism of estrogen action fully and to identify better targets for the development of more effective drugs. This

  4. Antagonistic effects of extracts from Artemisia rupetris L. and Leontopodium leontopodioides to CC chemokine receptor 2b (CCR2b).

    PubMed

    Yu, Qin-Wei; Hu, Jie; Wang, Hao; Chen, Xin; Zhao, Fang; Gao, Peng; Yang, Qiu-Bin; Sun, Dan-Dan; Zhang, Lu-Yong; Yan, Ming

    2016-05-01

    The present study was designed to establish a suitable assay to explore CCR2b receptor antagonists from the natural products of Artemisia rupetris and Leontopodium leontopodioides. An aequorin assay was developed as a cell-based assay suitable for 384-well microplate and used for screening CCR2b receptor antagonists from natural products. Through establishing suitable conditions, the assay was shown to be suitable for screening of CCR2b receptor antagonists. Seven compounds were identified in preliminary screening. Five of them showed evident dose-response relationship in secondary screening. The structure-activity relationship study suggested that 7-position hydroxyl group of flavonoids was necessary, a polar group should be introduced on the 3-position, and the substituents on 2-position benzene ring of flavonoids have little influence on the potentency of the inhibition activity on CCR2b receptor. The ortho-position dihydroxyl structure in quinic acid compounds may be important. In conclusion, Compounds HR-1, 5, 7, and AR-20, 35 showed activity as antagonist of CCR2b receptor, which shed lights on the development of novel drugs as CCR2b receptor antagonists for preventing inflammation related diseases.

  5. Fibrillin-2b regulates endocardial morphogenesis in zebrafish.

    PubMed

    Mellman, Katharine; Huisken, Jan; Dinsmore, Colin; Hoppe, Cornelia; Stainier, Didier Y

    2012-12-01

    scotch tape (sco) is a zebrafish cardiac mutant initially proposed to exhibit a reduced amount of cardiac jelly, the extracellular matrix between the myocardial and endocardial layers. We analyzed sco(te382) mutant hearts in detail using both selective plane illumination microscopy (SPIM) and transmission electron microscopy (TEM), and observed a fascinating endocardial defect. Time-lapse SPIM imaging of wild-type and mutant embryos revealed significant and dynamic gaps between endocardial cells during development. Although these gaps close in wild-type animals, they fail to close in the mutants, ultimately leading to a near complete absence of endocardial cells in the atrial chamber by the heart looping stage. TEM analyses confirm the presence of gaps between endocardial cells in sco mutants, allowing the apparent leakage of cardiac jelly into the lumen. High-resolution mapping places the sco(te382) mutation within the fbn2b locus, which encodes the extracellular matrix protein Fibrillin 2b (OMIM ID: 121050). Complementation and further phenotypic analyses confirm that sco is allelic to puff daddy(gw1) (pfd(gw1)), a null mutant in fbn2b, and that sco(te382) is a hypomorphic allele of fbn2b. fbn2b belongs to a family of genes responsible for the assembly of microfibrils throughout development, and is essential for microfibril structural integrity. In sco(te382) mutants, Fbn2b is disabled by a missense mutation in a highly conserved cbEGF domain, which likely interferes with protein folding. Integrating data obtained from microscopy and molecular biology, we posit that this mutation impacts the rigidity of Fbn2b, imparting a structural defect that weakens endocardial adhesion thereby resulting in perforated endocardium.

  6. Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension

    PubMed Central

    Schroer, Alison K.; Chen, Peter; Ryzhova, Larisa M.; Gladson, Santhi; Shay, Sheila; Hutcheson, Joshua D.; Merryman, W. David

    2016-01-01

    Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice. PMID:26863209

  7. Prototropic μ-H(8,9) and μ-H(9,10) Tautomers Derived from the [nido-5,6-C2B8H11](-) Anion.

    PubMed

    Tok, Oleg L; Růžičková, Zdenka; Růžička, Aleš; Hnyk, Drahomír; Štíbr, Bohumil

    2016-10-17

    Reported is an unusual tautomeric behavior within the [nido-5,6-C2B8H11](-) (1a(-)) cage that has no precedence in the whole area of carborane chemistry. Isolated were two skeletal tautomers, anions [6-Ph-nido-5,6-C2B8H10-μ(8,9)](-) (2d(-)) and [5,6-Me2-nido-5,6-C2B8H9-μ(9,10)](-) (3b(-)), which differ in the positioning of the open-face hydrogen bridge. Their structures have been determined by X-ray diffraction analyses. The 3b(-)structure is stabilized by intermolecular interaction involving Et3NH(+) and B8-B9 and H8 atoms in the solid phase; however, its dissolution in CD3CN causes instant conversion to the more stable [5,6-Me2-nido-5,6-C2B8H9-μ(8,9)](-) (2b(-)) tautomer. The dynamic electron-correlation-based MP2/6-31G* computations suggest that the parent [nido-5,6-C2B8H11-μ(8,9)](-) (2a(-)) tautomer is 3.9 kcal·mol(-1) more stable than the [nido-5,6-C2B8H11-μ(9,10)](-) (3a(-)) counterpart and the μ(8,9) structure 2(-) is therefore the most stable tautomeric form in the solution, as was also demonstrated by multinuclear ((1)H, (11)B, and (13)C) NMR measurements on the whole series of C-substituted compounds.

  8. Lithium insertion in nanostructured TiO(2)(B) architectures.

    PubMed

    Dylla, Anthony G; Henkelman, Graeme; Stevenson, Keith J

    2013-05-21

    Electric vehicles and grid storage devices have potentialto become feasible alternatives to current technology, but only if scientists can develop energy storage materials that offer high capacity and high rate capabilities. Chemists have studied anatase, rutile, brookite and TiO2(B) (bronze) in both bulk and nanostructured forms as potential Li-ion battery anodes. In most cases, the specific capacity and rate of lithiation and delithiation increases as the materials are nanostructured. Scientists have explained these enhancements in terms of higher surface areas, shorter Li(+) diffusion paths and different surface energies for nanostructured materials allowing for more facile lithiation and delithiation. Of the most studied polymorphs, nanostructured TiO2(B) has the highest capacity with promising high rate capabilities. TiO2(B) is able to accommodate 1 Li(+) per Ti, giving a capacity of 335 mAh/g for nanotubular and nanoparticulate TiO2(B). The TiO2(B) polymorph, discovered in 1980 by Marchand and co-workers, has been the focus of many recent studies regarding high power and high capacity anode materials with potential applications for electric vehicles and grid storage. This is due to the material's stability over multiple cycles, safer lithiation potential relative to graphite, reasonable capacity, high rate capability, nontoxicity, and low cost (Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem., Int. Ed.2008, 47, 2930-2946). One of the most interesting properties of TiO2(B) is that both bulk and nanostructured forms lithiate and delithiate through a surface redox or pseudocapacitive charging mechanism, giving rise to stable high rate charge/discharge capabilities in the case of nanostructured TiO2(B). When other polymorphs of TiO2 are nanostructured, they still mainly intercalate lithium through a bulk diffusion-controlled mechanism. TiO2(B) has a unique open crystal structure and low energy Li

  9. Management of Type 2B von Willebrand Disease during Pregnancy.

    PubMed

    McLaughlin, David; Kerr, Ron

    2017-01-01

    Type 2B von Willebrand disease is a rare bleeding condition resulting in thrombocytopenia and a reduction in large VWF multimers. It usually has an autosomal dominant pattern of inheritance. We report the management of a patient with type 2B von Willebrand disease, whose diagnosis was confirmed by demonstration of a R1306W mutation, through her first pregnancy. The patient's von Willebrand factor (VWF) antigen and VWF ristocetin cofactor levels rose throughout pregnancy, with an associated drop in the platelet count. The patient was successfully managed through labour to a surgical delivery with VWF concentrate, platelet transfusions and tranexamic acid. The patient delivered a male baby who was found to have inherited type 2B von Willebrand disease and had a significant cephalhaematoma at delivery. The baby was managed with VWF concentrate and platelet transfusions and made a full recovery. There is a lack of evidence to guide the best management of pregnant patients with type 2B von Willebrand disease. We adopted a pragmatic management plan, in keeping with other published case reports. To the best of our knowledge, this is the first case report in which the child was found to have inherited type 2B von Willebrand disease and encountered bleeding problems, making this case unique amongst the published literature.

  10. Human GRIN2B variants in neurodevelopmental disorders

    PubMed Central

    Hu, Chun; Chen, Wenjuan; Myers, Scott J.; Yuan, Hongjie; Traynelis, Stephen F.

    2016-01-01

    The development of whole exome/genome sequencing technologies has given rise to an unprecedented volume of data linking patient genomic variability to brain disorder phenotypes. A surprising number of variants have been found in the N-methyl-D-aspartate receptor (NMDAR) gene family, with the GRIN2B gene encoding the GluN2B subunit being implicated in many cases of neurodevelopmental disorders, which are psychiatric conditions originating in childhood and include language, motor, and learning disorders, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), developmental delay, epilepsy, and schizophrenia. The GRIN2B gene plays a crucial role in normal neuronal development and is important for learning and memory. Mutations in human GRIN2B were distributed throughout the entire gene in a number of patients with various neuropsychiatric and developmental disorders. Studies that provide functional analysis of variants are still lacking, however current analysis of de novo variants that segregate with disease cases such as intellectual disability, developmental delay, ASD or epileptic encephalopathies reveal altered NMDAR function. Here, we summarize the current reports of disease-associated variants in GRIN2B from patients with multiple neurodevelopmental disorders, and discuss implications, highlighting the importance of functional analysis and precision medicine therapies. PMID:27818011

  11. Altered megakaryocytopoiesis in von Willebrand type 2B disease.

    PubMed

    Nurden, A T; Federici, A B; Nurden, P

    2009-07-01

    Type 2B von Willebrand disease (VWD2B) is caused by gain-of-function amino acid substitutions in the von Willebrand factor (VWF) A1 domain. These allow facilitated binding of mutated VWF to platelet GPIbalpha with prolonged lifetimes of VWF bonds and enhanced ADAMTS-13 cleavage of large VWF multimers. A bleeding rather than prothrombotic syndrome is due to: (i) decreased large VWF multimers in plasma; (ii) limited thrombus formation; and (iii) thrombocytopenia affecting some but not all patients. Accumulating evidence points to an altered megakaryocytopoiesis in VWD2B with the production of enlarged or giant platelets showing an abnormal ultrastructure and, in a cohort of patients, the presence of circulating platelet agglutinates. In fact, evidence from in vitro cultures and marrow aspirates suggests that the upregulated VWF function can lead to abnormal VWF trafficking in megakaryocytes, a modified platelet production with interacting proplatelets, and the presence or even release of platelet agglutinates in the bone marrow.

  12. The 23 K superconducting phase YPd 2B 2C

    NASA Astrophysics Data System (ADS)

    Sun, Y. Y.; Rusakova, I.; Meng, R. L.; Cao, Y.; Gautier-Picard, P.; Chu, C. W.

    1994-09-01

    We have carried out a systematic structural, electric, and magnetic study on YPdBC samples with different compositions with emphasis on the as-cast and annealed YPd 5B 3C 0.3 which was first reported to superconduct at ∼ 23 K by Cava et al. We found that the tetragonal body-centered YPd 2B 2C with lattice parameters a=3.71 Å and c=10.81 Å is the phase responsible for the 23 K superconductivity and that YPd 2B 2C is metastable, which is consistent with the suggestion made by Cava et al. [1]: it is not stable at high temperatures nor stabilizable by Ni doping, although its isostructural compound, YNi 2B 2C, exists. Two new phases with Y:Pd ratios of 1:7 and 2:3, respectively, have also bee detected.

  13. Flow Simulation of N2B Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungjin; Liou, Meng-Sing

    2012-01-01

    The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the subsonic fixed wing project. In this study, flow fields around the N2B configuration is simulated using a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by response surfaces of the NPSS thermodynamic engine cycle model. The present flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and nacelle-airframe interference. The N2B configuration can be a good test bed for application of multidisciplinary design optimization technology.

  14. IN VITRO GLUCURONIDATION OF APREPITANT: A MODERATE INHIBITOR OF UGT2B7

    PubMed Central

    House, Larry; Ramirez, Jacqueline; Seminerio, Michael; Mirkov, Snezana; Ratain, Mark J.

    2016-01-01

    Aprepitant, an oral antiemetic, commonly used in the prevention of chemotherapy-induced nausea and vomiting, is primarily metabolized by CYP3A4. Aprepitant glucuronidation has yet to be evaluated in humans. The contribution of human UDP-glucuronosyltransferase (UGT) isoforms to the metabolism of aprepitant was investigated by performing kinetic studies, inhibition studies, and correlation analyses. In addition, aprepitant was evaluated as an inhibitor of UGTs.Glucuronidation of aprepitant was catalyzed by UGT1A4 (82%), UGT1A3 (12%), and UGT1A8 (6%) and Kms were 161.6 ± 15.6 µM, 69.4 ± 1.9 µM, and 197.1 ± 28.2 µM, respectively. Aprepitant glucuronidation was significantly correlated with both UGT1A4 substrates anastrazole and imipramine (rs = 0.77, P < 0.0001 for both substrates; n = 44), and with the UGT1A3 substrate thyroxine (rs = 0.58, P < 0.0001; n = 44).We found aprepitant to be a moderate inhibitor of UGT2B7 with a Ki of ~10 µM for 4-MU, morphine, and zidovudine. Our results suggest aprepitant can alter clearance of drugs primarily eliminated by UGT2B7. Given the likelihood for first-pass metabolism by intestinal UGT2B7, this is of particular concern for oral aprepitant co-administered with oral substrates of UGT2B7, such as zidovudine and morphine. PMID:26053558

  15. Using msa-2b as a molecular marker for genotyping Mexican isolates of Babesia bovis.

    PubMed

    Genis, Alma D; Perez, Jocelin; Mosqueda, Juan J; Alvarez, Antonio; Camacho, Minerva; Muñoz, Maria de Lourdes; Rojas, Carmen; Figueroa, Julio V

    2009-12-01

    Variable merozoite surface antigens of Babesia bovis are exposed glycoproteins having a role in erythrocyte invasion. Members of this gene family include msa-1 and msa-2 (msa-2c, msa-2a(1), msa-2a(2) and msa-2b). To determine the sequence variation among B. bovis Mexican isolates using msa-2b as a genetic marker, PCR amplicons corresponding to msa-2b were cloned and plasmids carrying the corresponding inserts were purified and sequenced. Comparative analysis of nucleotide and deduced amino acid sequences revealed distinct degrees of variability and identity among the coding gene sequences obtained from 16 geographically different Mexican B. bovis isolates and a reference strain. Clustal-W multiple alignments of the MSA-2b deduced amino acid sequences performed with the 17 B. bovis Mexican isolates, revealed the identification of three genotypes with a distinct set each of amino acid residues present at the variable region: Genotype I represented by the MO7 strain (in vitro culture-derived from the Mexico isolate) as well as RAD, Chiapas-1, Tabasco and Veracruz-3 isolates; Genotype II, represented by the Jalisco, Mexico and Veracruz-2 isolates; and Genotype III comprising the sequences from most of the isolates studied, Tamaulipas-1, Chiapas-2, Guerrero-1, Nayarit, Quintana Roo, Nuevo Leon, Tamaulipas-2, Yucatan and Guerrero-2. Moreover, these three genotypes could be discriminated against each other by using a PCR-RFLP approach. The results suggest that occurrence of indels within the variable region of msa-2b sequences can be useful markers for identifying a particular genotype present in field populations of B. bovis isolated from infected cattle in Mexico.

  16. Evaluation of CYP2B6 Induction and Prediction of Clinical Drug-Drug Interactions: Considerations from the IQ Consortium Induction Working Group-An Industry Perspective.

    PubMed

    Fahmi, Odette A; Shebley, Mohamad; Palamanda, Jairam; Sinz, Michael W; Ramsden, Diane; Einolf, Heidi J; Chen, Liangfu; Wang, Hongbing

    2016-10-01

    Drug-drug interactions (DDIs) due to CYP2B6 induction have recently gained prominence and clinical induction risk assessment is recommended by regulatory agencies. This work aimed to evaluate the potency of CYP2B6 versus CYP3A4 induction in vitro and from clinical studies and to assess the predictability of efavirenz versus bupropion as clinical probe substrates of CYP2B6 induction. The analysis indicates that the magnitude of CYP3A4 induction was higher than CYP2B6 both in vitro and in vivo. The magnitude of DDIs caused by induction could not be predicted for bupropion with static or dynamic models. On the other hand, the relative induction score, net effect, and physiologically based pharmacokinetics SimCYP models using efavirenz resulted in improved DDI predictions. Although bupropion and efavirenz have been used and are recommended by regulatory agencies as clinical CYP2B6 probe substrates for DDI studies, CYP3A4 contributes to the metabolism of both probes and is induced by all reference CYP2B6 inducers. Therefore, caution must be taken when interpreting clinical induction results because of the lack of selectivity of these probes. Although in vitro-in vivo extrapolation for efavirenz performed better than bupropion, interpretation of the clinical change in exposure is confounded by the coinduction of CYP2B6 and CYP3A4, as well as the increased contribution of CYP3A4 to efavirenz metabolism under induced conditions. Current methods and probe substrates preclude accurate prediction of CYP2B6 induction. Identification of a sensitive and selective clinical substrate for CYP2B6 (fraction metabolized > 0.9) is needed to improve in vitro-in vivo extrapolation for characterizing the potential for CYP2B6-mediated DDIs. Alternative strategies and a framework for evaluating the CYP2B6 induction risk are proposed.

  17. Orosomucoid 1 drives opportunistic infections through the polarization of monocytes to the M2b phenotype.

    PubMed

    Nakamura, Kiwamu; Ito, Ichiaki; Kobayashi, Makiko; Herndon, David N; Suzuki, Fujio

    2015-05-01

    Orosomucoid (ORM, composed of two isoforms, ORM1 and ORM2) has been described as an inducer of M2 macrophages, which are cells that decrease host antibacterial innate immunities. However, it is unknown which phenotypes of M2 macrophages are induced by ORM. In this study, healthy donor monocytes stimulated with ORM (ORM-monocytes) were characterized phenotypically and biologically. CCL1 (a biomarker of M2b macrophages) and IL-10 were detected in monocyte cultures supplemented with ORM1; however, CCL17 (a biomarker of M2a macrophages) and CXCL13 (a biomarker of M2c macrophages) were not produced in these cultures. All of these soluble factors were not detected in the culture fluids of monocytes stimulated with ORM2. Monocytes stimulated with ORM1 were characterized as CD64(-)CD209(-)CD163(+)CCL1(+) cells. MRSA and Enterococcus faecalis infections were accelerated in chimeras (NOD/scid IL-2Rγ(null) mice reconstituted with white blood cells) after inoculation with monocytes stimulated with ORM1 or treatment with ORM1; however, the infections were greatly mitigated in both chimeras inoculated with ORM1-stimulated monocytes and treated with ORM1, after an additional treatment with an inhibitor of M2b macrophages (CCL1 antisense ODN). These results indicate that ORM1 stimulates quiescent monocytes to polarize to M2b monocytes. The regulation of M2b macrophages may be beneficial in controlling opportunistic infections in patients with a large amount of plasma ORM1.

  18. Developmental regulation of N-terminal H2B methylation in Drosophila melanogaster

    PubMed Central

    Villar-Garea, Ana; Forne, Ignasi; Vetter, Irene; Kremmer, Elisabeth; Thomae, Andreas; Imhof, Axel

    2012-01-01

    Histone post-translational modifications play an important role in regulating chromatin structure and gene expression in vivo. Extensive studies investigated the post-translational modifications of the core histones H3 and H4 or the linker histone H1. Much less is known on the regulation of H2A and H2B modifications. Here, we show that a major modification of H2B in Drosophila melanogaster is the methylation of the N-terminal proline, which increases during fly development. Experiments performed in cultured cells revealed higher levels of H2B methylation when cells are dense, regardless of their cell cycle distribution. We identified dNTMT (CG1675) as the enzyme responsible for H2B methylation. We also found that the level of N-terminal methylation is regulated by dART8, an arginine methyltransferase that physically interacts with dNTMT and asymmetrically methylates H3R2. Our results demonstrate the existence of a complex containing two methyltransferases enzymes, which negatively influence each other’s activity. PMID:22053083

  19. Dephosphorylation of phosphopeptides by calcineurin (protein phosphatase 2B).

    PubMed

    Donella-Deana, A; Krinks, M H; Ruzzene, M; Klee, C; Pinna, L A

    1994-01-15

    38 (6-32 residues) enzymically phosphorylated synthetic peptides have been assayed as substrates for calcineurin, a Ca2+/calmodulin-dependent protein phosphatase (PP-2B) belonging to the family of Ser/Thr-specific enzymes but also active on phosphotyrosine residues. Many peptides reproduce, with suitable modifications, naturally occurring phosphoacceptor sites. While protein phosphatases 2A and 2C are also very active on short phosphopeptides, an extended N-terminal stretch appears to be a necessary, albeit not sufficient, condition for an optimal dephosphorylation, comparable to that of protein substrates, of both phosphoseryl and phosphotyrosyl peptides by calcineurin. This finding corroborates the view that higher-order structure is an important determinant for the substrate specificity of calcineurin. However, a number of shorter peptides are also appreciably dephosphorylated by this enzyme, their efficiency as substrates depending on local structural features. All the peptides that are appreciably dephosphorylated by calcineurin contain basic residue(s) on the N-terminal side. A basic residue located at position -3 relative to the phosphorylated residue plays a particularly relevant positive role in determining the dephosphorylation of short phosphopeptides. Acidic residue(s) adjacent to the C-terminal side of the phosphoamino acid are conversely powerful negative determinants, preventing the dephosphorylation of otherwise suitable peptide substrates. However, calcineurin displays an only moderate preference for phosphothreonyl peptides which are conversely strikingly preferred over their phosphoseryl counterparts by the other classes of Ser/Thr-specific protein phosphatases. Moreover calcineurin does not perceive as a strong negative determinant the motif Ser/Thr-Pro in peptides where this motif prevents dephosphorylation by the other classes of Ser/Thr protein phosphatases. Whenever tested on phosphotyrosyl peptides, calcineurin exhibits a specificity which

  20. Persistent Electrochemical Performance in Epitaxial VO2(B).

    PubMed

    Lee, Shinbuhm; Sun, Xiao-Guang; Lubimtsev, Andrew A; Gao, Xiang; Ganesh, Panchapakesan; Ward, Thomas Z; Eres, Gyula; Chisholm, Matthew F; Dai, Sheng; Lee, Ho Nyung

    2017-04-12

    Discovering high-performance energy storage materials is indispensable for renewable energy, electric vehicle performance, and mobile computing. Owing to the open atomic framework and good room temperature conductivity, bronze-phase vanadium dioxide [VO2(B)] has been regarded as a highly promising electrode material for Li ion batteries. However, previous attempts were unsuccessful to show the desired cycling performance and capacity without chemical modification. Here, we show with epitaxial VO2(B) films that one can accomplish the theoretical limit for capacity with persistent charging-discharging cyclability owing to the high structural stability and unique open pathways for Li ion conduction. Atomic-scale characterization by scanning transmission electron microscopy and density functional theory calculations also reveal that the unique open pathways in VO2(B) provide the most stable sites for Li adsorption and diffusion. Thus, this work ultimately demonstrates that VO2(B) is a highly promising energy storage material and has no intrinsic hindrance in achieving superior cyclability with a very high power and capacity in a Li-ion conductor.

  1. Molecular dissection of N2B cardiac titin's extensibility.

    PubMed Central

    Trombitás, K; Freiburg, A; Centner, T; Labeit, S; Granzier, H

    1999-01-01

    Titin is a giant filamentous polypeptide of multidomain construction spanning between the Z- and M-lines of the cardiac muscle sarcomere. Extension of the I-band segment of titin gives rise to a force that underlies part of the diastolic force of cardiac muscle. Titin's force arises from its extensible I-band region, which consists of two main segment types: serially linked immunoglobulin-like domains (tandem Ig segments) interrupted with a proline (P)-, glutamate (E)-, valine (V)-, and lysine (K)-rich segment called PEVK segment. In addition to these segments, the extensible region of cardiac titin also contains a unique 572-residue sequence that is part of the cardiac-specific N2B element. In this work, immunoelectron microscopy was used to study the molecular origin of the in vivo extensibility of the I-band region of cardiac titin. The extensibility of the tandem Ig segments, the PEVK segment, and that of the unique N2B sequence were studied, using novel antibodies against Ig domains that flank these segments. Results show that only the tandem Igs extend at sarcomere lengths (SLs) below approximately 2.0 microm, and that, at longer SLs, the PEVK and the unique sequence extend as well. At the longest SLs that may be reached under physiological conditions ( approximately 2.3 microm), the PEVK segment length is approximately 50 nm whereas the unique N2B sequence is approximately 80 nm long. Thus, the unique sequence provides additional extensibility to cardiac titins and this may eliminate the necessity for unfolding of Ig domains under physiological conditions. In summary, this work provides direct evidence that the three main molecular subdomains of N2B titin are all extensible and that their contribution to extensibility decreases in the order of tandem Igs, unique N2B sequence, and PEVK segment. PMID:10585940

  2. Effects of chronic NMDA-NR2b inhibition in the median eminence of the reproductive senescent female rat.

    PubMed

    Kermath, B A; Riha, P D; Sajjad, A; Gore, A C

    2013-10-01

    Gonadotrophin-releasing hormone (GnRH) neurones of the hypothalamic-pituitary-gonadal (HPG) axis drive reproductive function and undergo age-related decreases in activation during the transition to reproductive senescence. Decreased GnRH secretion from the median eminence (ME) partially arises from attenuated glutamatergic signalling via the NMDA receptor (NMDAR) and may be a result of changing NMDAR stoichiometry to favour NR2b over NR2a subunit expression with ageing. We have previously shown that the systemic inhibition of NR2b-containing receptors with ifenprodil, an NR2b-specific antagonist, stimulates parameters of luteinising hormone (used as a proxy for GnRH) release in both young and middle-aged females. In the present study, we chronically administered ifenprodil, an NR2b-specific antagonist, at the site of GnRH terminals in the ME or at GnRH perikarya in the preoptic area, in reproductively senescent middle-aged female rats, aiming to determine whether NR2b antagonism could restore aspects of reproductive functionality. Effects on oestrous cyclicity, serum hormones, and protein expression of GnRH, NR2b and phosphorylated NR2b (Tyr-1472) in the ME were measured. Chronic ifenprodil treatment in the ME (but not the preoptic area) altered oestrous cyclicity by increasing the percentage of days spent in pro-oestrus. This was accompanied by increased GnRH fluorescence intensity in the external ME zone and a greater proportion of GnRH terminals that co-labelled with pNR2b with treatment. We also observed changes in the relationships between protein immunofluorescence, serum hormone levels and other aspects of reproductive physiology in acyclic females, as revealed by bionetwork analysis. Together, these data support the hypothesis that NMDAR-NR2b expression and phosphorylation state play a role in reproductive senescence and highlight the ME as a major player in reproductive ageing.

  3. Mutations of the human interferon alpha-2b (hIFNα-2b) gene in cancer patients receiving radiotherapy

    PubMed Central

    Shahid, Saman; Chaudhry, Muhammad Nawaz; Mahmood, Nasir

    2015-01-01

    This research aimed to find out the impact of ionizing radiations on the hIFNα-2b gene of radiotherapy treated cancer patients. The gene hIFNα-2b synthesizes a protein which is an important anticancerous and antiviral protein. The cancer patients (breast, lung, thyroid, oral and prostate) who were undergoing a radiotherapy treatment were selected. A molecular analysis was performed for DNA isolation and gene amplification through PCR, to identify gene mutations. Further, by bioinformatics tools we concluded that how mutations identified in gene sequences have led to the alterations in the hINFα-2b protein in radiotherapy receiving cancer patients. The 32% mutations in the hINFα-2b gene were identified and all were frameshift mutations. Radiotherapy can impact the immune system and cancer patients may modulate their immunity. Understaning the mechanisms of radiotherapy-elicited immune response may be helpful in the development of those therapeutic interventions that can enhance the efficacy of radiotherapy. PMID:26396921

  4. 76 FR 9515 - Airworthiness Directives; Turbomeca S.A. ARRIEL 2B and 2B1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... on a single engine helicopter. For the case occurring in flight on a single engine helicopter (ARRIEL 2B1 engine), the pilot performed an emergency autorotation, landing the helicopter without further... twin engine applications and recently one on a single engine helicopter. For the case occurring...

  5. The Nucleosome Acidic Patch Regulates the H2B K123 Monoubiquitylation Cascade and Transcription Elongation in Saccharomyces cerevisiae.

    PubMed

    Cucinotta, Christine E; Young, Alexandria N; Klucevsek, Kristin M; Arndt, Karen M

    2015-08-01

    Eukaryotes regulate gene expression and other nuclear processes through the posttranslational modification of histones. In S. cerevisiae, the mono-ubiquitylation of histone H2B on lysine 123 (H2B K123ub) affects nucleosome stability, broadly influences gene expression and other DNA-templated processes, and is a prerequisite for additional conserved histone modifications that are associated with active transcription, namely the methylation of lysine residues in H3. While the enzymes that promote these chromatin marks are known, regions of the nucleosome required for the recruitment of these enzymes are undefined. To identify histone residues required for H2B K123ub, we exploited a functional interaction between the ubiquitin-protein ligase, Rkr1/Ltn1, and H2B K123ub in S. cerevisiae. Specifically, we performed a synthetic lethal screen with cells lacking RKR1 and a comprehensive library of H2A and H2B residue substitutions, and identified H2A residues that are required for H2B K123ub. Many of these residues map to the nucleosome acidic patch. The substitutions in the acidic patch confer varying histone modification defects downstream of H2B K123ub, indicating that this region contributes differentially to multiple histone modifications. Interestingly, substitutions in the acidic patch result in decreased recruitment of H2B K123ub machinery to active genes and defects in transcription elongation and termination. Together, our findings reveal a role for the nucleosome acidic patch in recruitment of histone modification machinery and maintenance of transcriptional integrity.

  6. D1((2)B2g) to D0((2)Au) Fluorescence from the Matrix-Isolated Perylene Cation Following Laser Excitation into the D5(2)B3g) and D2 ((2)B3g) Electronic States

    NASA Technical Reports Server (NTRS)

    Chillier, Xavier D. F.; Stone, Bradley M.; Joblin, Christine; Salama, Farid; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Fluorescence spectra of the perylene cation, pumped by direct laser excitation via the D(sub 2)((2)B(sub 3g)) (left arrow) D(sub 0)((2)A(sub u)) and D(sub 5)(2)B(sub 3g)) (left arrow) D(sub 0)((2)A(sub u)) transitions, are presented. Direct excitation into the D5 or D2 states is followed by rapid non-radiative relaxation to D1 that, in turn,relaxes radiatively. Excitation spectroscopy across the D(sub 2)((2)B(sub 3g)) (left arrow) D(sub 0)((2)A(sub u)) transition near 730 nm shows that site splitting plays little or no role in determining the spectral substructure in the ion spectra. Tentative assignments for ground state vibrational frequencies are made by comparison of spectral intervals with calculated normal mode frequencies.

  7. An update on type 2B von Willebrand disease.

    PubMed

    Mikhail, Sameh; Aldin, Ehab Saad; Streiff, Michael; Zeidan, Amer

    2014-04-01

    Type 2B von Willebrand disease (VWD) accounts for fewer than 5% of all VWD patients. In this disease, mutations in the A1 domain result in increased von Willebrand factor (VWF) binding to platelet GPIbα receptors, causing increased platelet clearance and preferential loss of high molecular weight VWF multimers. Diagnosis is complicated because of significant clinical variations even among patients with identical mutations. Platelet transfusion often provides suboptimal results since transfused platelets may be aggregated by the patients' abnormal VWF. Desmopressin may cause a transient decrease in platelet count that could lead to an increased risk of bleeding. Replacement therapy with factor VIII/VWF concentrates is the most effective approach to prevention and treatment of bleeding in type 2B VWD.

  8. Nrf2b, Novel Zebrafish Paralog of Oxidant-responsive Transcription Factor NF-E2-related Factor 2 (NRF2)*

    PubMed Central

    Timme-Laragy, Alicia R.; Karchner, Sibel I.; Franks, Diana G.; Jenny, Matthew J.; Harbeitner, Rachel C.; Goldstone, Jared V.; McArthur, Andrew G.; Hahn, Mark E.

    2012-01-01

    NF-E2-related factor 2 (NRF2; also called NFE2L2) and related NRF family members regulate antioxidant defenses by activating gene expression via antioxidant response elements (AREs), but their roles in embryonic development are not well understood. We report here that zebrafish (Danio rerio), an important developmental model species, possesses six nrf genes, including duplicated nrf1 and nrf2 genes. We cloned a novel zebrafish nrf2 paralog, nrf2b. The predicted Nrf2b protein sequence shares several domains with the original Nrf2 (now Nrf2a) but lacks the Neh4 transactivation domain. Zebrafish-human comparisons demonstrate conserved synteny involving nrf2 and hox genes, indicating that nrf2a and nrf2b are co-orthologs of human NRF2. nrf2a and nrf2b displayed distinct patterns of expression during embryonic development; nrf2b was more highly expressed at all stages. Embryos in which Nrf2a expression had been knocked down with morpholino oligonucleotides were more sensitive to tert-butylhydroperoxide but not tert-butylhydroquinone, whereas knockdown of Nrf2b did not affect sensitivity of embryos to either chemical. Gene expression profiling by microarray identified a specific role for Nrf2b as a negative regulator of several genes, including p53, cyclin G1, and heme oxygenase 1, in embryos. Nrf2a and Nrf2b exhibited different mechanisms of cross-talk with the Ahr2 signaling pathway. Together, these results demonstrate distinct roles for nrf2a and nrf2b, consistent with subfunction partitioning, and identify a novel negative regulatory role for Nrf2b during development. The identification of zebrafish nrf2 co-orthologs will facilitate new understanding of the multiple roles of NRF2 in protecting vertebrate embryos from oxidative damage. PMID:22174413

  9. Agent-based services for B2B electronic commerce

    NASA Astrophysics Data System (ADS)

    Fong, Elizabeth; Ivezic, Nenad; Rhodes, Tom; Peng, Yun

    2000-12-01

    The potential of agent-based systems has not been realized yet, in part, because of the lack of understanding of how the agent technology supports industrial needs and emerging standards. The area of business-to-business electronic commerce (b2b e-commerce) is one of the most rapidly developing sectors of industry with huge impact on manufacturing practices. In this paper, we investigate the current state of agent technology and the feasibility of applying agent-based computing to b2b e-commerce in the circuit board manufacturing sector. We identify critical tasks and opportunities in the b2b e-commerce area where agent-based services can best be deployed. We describe an implemented agent-based prototype system to facilitate the bidding process for printed circuit board manufacturing and assembly. These activities are taking place within the Internet Commerce for Manufacturing (ICM) project, the NIST- sponsored project working with industry to create an environment where small manufacturers of mechanical and electronic components may participate competitively in virtual enterprises that manufacture printed circuit assemblies.

  10. Alanine Expansions Associated with Congenital Central Hypoventilation Syndrome Impair PHOX2B Homeodomain-mediated Dimerization and Nuclear Import*

    PubMed Central

    Di Lascio, Simona; Belperio, Debora

    2016-01-01

    Heterozygous mutations of the human PHOX2B gene, a key regulator of autonomic nervous system development, lead to congenital central hypoventilation syndrome (CCHS), a neurodevelopmental disorder characterized by a failure in the autonomic control of breathing. Polyalanine expansions in the 20-residues region of the C terminus of PHOX2B are the major mutations responsible for CCHS. Elongation of the alanine stretch in PHOX2B leads to a protein with altered DNA binding, transcriptional activity, and nuclear localization and the possible formation of cytoplasmic aggregates; furthermore, the findings of various studies support the idea that CCHS is not due to a pure loss of function mechanism but also involves a dominant negative effect and/or toxic gain of function for PHOX2B mutations. Because PHOX2B forms homodimers and heterodimers with its paralogue PHOX2A in vitro, we tested the hypothesis that the dominant negative effects of the mutated proteins are due to non-functional interactions with the wild-type protein or PHOX2A using a co-immunoprecipitation assay and the mammalian two-hybrid system. Our findings show that PHOX2B forms homodimers and heterodimerizes weakly with mutated proteins, exclude the direct involvement of the polyalanine tract in dimer formation, and indicate that mutated proteins retain partial ability to form heterodimers with PHOX2A. Moreover, in this study, we investigated the effects of the longest polyalanine expansions on the homeodomain-mediated nuclear import, and our data clearly show that the expanded C terminus interferes with this process. These results provide novel insights into the effects of the alanine tract expansion on PHOX2B folding and activity. PMID:27129232

  11. The Recently Revived and Produced Goddard Satellite-based Surface Turbulent Fluxes Version-2b (GSSTF2b) Dataset

    NASA Astrophysics Data System (ADS)

    Shie, C.; Chiu, L.; Adler, R. F.; Lin, I. I.; Nelkin, E. J.; Ardizzone, J. V.; Gao, S.

    2009-12-01

    Accurate sea surface flux measurements are crucial to understanding the global water and energy cycles. Remote sensing is a valuable tool for global monitoring of these flux measurements. The GSSTF (Goddard Satellite-based Surface Turbulent Fluxes) algorithm was thus developed and applied to remote sensing research and applications. The subsequently produced daily global (1ox1o) GSSTF2 (Version-2) dataset (July 1987-December 2000) has been widely used by the scientific community for global energy and water cycle research, as well as regional and short period data analyses since its official release in 2001. We have recently been funded by the NASA/MEaSUREs Program to resume processing of the GSSTF with an objective of continually producing an up-to-date uniform and reliable dataset of sea surface turbulent fluxes, derived from improved input remote sensing data and model reanalysis, which would continue to be useful for global energy and water flux research and applications. The daily global (1ox1o) GSSTF2b (Version-2b) dataset (July 1987-December 2007 so far) has been produced very recently using improved input datasets. The upgraded input datasets used for the GSSTF2b production consist of the Special Sensor Microwave Imager (SSM/I) Version-6 (V6) product (including brightness temperature [Tb], total precipitable water [W], and wind speed [U]) and the NCEP/DOE Reanalysis-2 (R2) product (including sea skin temperature [SKT], 2-meter air temperature [T2m], and sea level pressure [SLP]). The input datasets previously used for the GSSTF2 production were the SSM/I Version-4 (V4) product and the NCEP Reanalysis-1 (R1) product. These newly produced GSSTF2b turbulent fluxes, along with their counterparts from GSSTF2, have been validated using available sounding observations obtained from five field experiments. The GSSTF2b product has been found to generally agree better with the sounding observations than its counterpart (GSSTF2) does in all the three flux components

  12. Mechanism-Based Inactivation of Cytochrome P450 2B6 by Methadone through Destruction of Prosthetic Heme

    PubMed Central

    Amunugama, Hemali T.; Zhang, Haoming

    2012-01-01

    Methadone is a μ-opioid receptor agonist widely used in the treatment of narcotic addiction and chronic pain conditions. Methadone is metabolized predominantly in the liver by cytochromes P450 to its pharmacologically inactive primary metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine. Initial in vitro data suggested that CYP3A4 is the major isoform responsible for the in vivo clearance of methadone in humans. However, recent clinical data have indicated that CYP2B6 is actually the major isoform responsible for methadone metabolism and clearance in vivo. In this study, methadone was shown to act as a mechanism-based inactivator of CYP2B6. Methadone inactivates CYP2B6 in a time-, concentration-, and NADPH-dependent manner with a KI = 10.0 μM and kinact = 0.027 min−1. The loss of CYP2B6 activity in the presence of methadone and NADPH occurred with concomitant loss of the reduced CO spectrum of the P450. Moreover, there was good correlation between the loss of CYP2B6 activity and the loss of the CO-binding spectrum. High-performance liquid chromatography analysis of the native heme of the inactivated CYP2B6 demonstrated that approximately 75% loss of heme was accompanied by comparable inactivation of CYP2B6. Liquid chromatography-mass spectrometry analysis did not reveal the formation of a protein adduct during the inactivation. The evidence strongly suggests that destruction of prosthetic heme is the underlying mechanism leading to the inactivation of CYP2B6 by methadone. PMID:22685215

  13. Mechanism-based inactivation of cytochrome P450 2B6 by methadone through destruction of prosthetic heme.

    PubMed

    Amunugama, Hemali T; Zhang, Haoming; Hollenberg, Paul F

    2012-09-01

    Methadone is a μ-opioid receptor agonist widely used in the treatment of narcotic addiction and chronic pain conditions. Methadone is metabolized predominantly in the liver by cytochromes P450 to its pharmacologically inactive primary metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine. Initial in vitro data suggested that CYP3A4 is the major isoform responsible for the in vivo clearance of methadone in humans. However, recent clinical data have indicated that CYP2B6 is actually the major isoform responsible for methadone metabolism and clearance in vivo. In this study, methadone was shown to act as a mechanism-based inactivator of CYP2B6. Methadone inactivates CYP2B6 in a time-, concentration-, and NADPH-dependent manner with a K(I) = 10.0 μM and k(inact) = 0.027 min⁻¹. The loss of CYP2B6 activity in the presence of methadone and NADPH occurred with concomitant loss of the reduced CO spectrum of the P450. Moreover, there was good correlation between the loss of CYP2B6 activity and the loss of the CO-binding spectrum. High-performance liquid chromatography analysis of the native heme of the inactivated CYP2B6 demonstrated that approximately 75% loss of heme was accompanied by comparable inactivation of CYP2B6. Liquid chromatography-mass spectrometry analysis did not reveal the formation of a protein adduct during the inactivation. The evidence strongly suggests that destruction of prosthetic heme is the underlying mechanism leading to the inactivation of CYP2B6 by methadone.

  14. MOLECULAR CHARACTERIZATION OF CYP2B6 SUBSTRATES

    PubMed Central

    Ekins, Sean; Iyer, Manisha; Krasowski, Matthew D.; Kharasch, Evan D.

    2008-01-01

    CYP2B6 has not been as fully characterized at the molecular level as other members of the human cytochrome P450 family. As more widely used in vitro probes for characterizing the involvement of this enzyme in the metabolism of xenobiotics have become available, the number of molecules identified as CYP2B6 substrates has increased. In this study we have analyzed the available kinetic data generated by multiple laboratories with human recombinant expressed CYP2B6 and along with calculated molecular properties derived from the ChemSpider database, we have determined the molecular features that appear to be important for CYP2B6 substrates. In addition we have applied 2D and 3D QSAR methods to generate predictive pharmacophore and 2D models. For 28 molecules with Km data, the molecular weight (mean ± SD) is 253.78±74.03, ACD/logP is 2.68±1.51, LogDpH 5.5 is 1.51±1.43, LogDpH 7.4 is 2.02±1.25, hydrogen bond donor (HBD) count is 0.57 ±0.57, hydrogen bond acceptor (HBA) count is 2.57±1.37, rotatable bonds is 3.50±2.71 and total polar surface area (TPSA) is 27.63±19.42. A second set of 15 molecules without Km data possessed similar mean molecular property values. These properties are comparable to those of a set of 21 molecules used in a previous pharmacophore modeling study (Ekins et al., J Pharmacol Exp Ther 288 (1), 21–29, 1999). Only the LogD and HBD values were statistically significantly different between these different datasets. We have shown that CYP2B6 substrates are generally small hydrophobic molecules that are frequently central nervous system active, which may be important for drug discovery research. PMID:18537573

  15. The ISS 2B PVTCS Ammonia Leak: An Operational History

    NASA Technical Reports Server (NTRS)

    Vareha, Anthony

    2014-01-01

    In 2006, the Photovoltaic Thermal Control System (PVTCS) for the International Space Station's 2B power channel began leaking ammonia at a rate of approximately 1.5lbm/year (out of a starting approximately 53lbm system ammonia mass). Initially, the operations strategy was "feed the leak," a strategy successfully put into action via Extra Vehicular Activity during the STS-134 mission. During this mission the system was topped off with ammonia piped over from a separate thermal control system. This recharge was to have allowed for continued power channel operation into 2014 or 2015, at which point another EVA would have been required. Without these periodic EVAs to refill the 2B coolant system, the channel would eventually leak enough fluid as to risk pump cavitation and system failure, resulting in the loss of the 2B power channel - the most critical of the Space Station's 8 power channels. In mid-2012, the leak rate increased to approximately 5lbm/year. Once discovered, an EVA was planned and executed within a 5 week timeframe to drastically alter the architecture of the PVTCS via connection to a dormant thermal control system not intended to be utilized as anything other than spare components. The purpose of this rerouting of the TCS was to increase system volume and to isolate the photovoltaic radiator, thought to be the likely leak source. This EVA was successfully executed on November 1st, 2012 and left the 2B PVTCS in a configuration where the system was now being adequately cooled via a totally different radiator than what the system was designed to utilize. Unfortunately, data monitoring over the next several months showed that the isolated radiator was not leaking, and the system itself continued to leak steadily until May 9th, 2013. It was on this day that the ISS crew noticed the visible presence of ammonia crystals escaping from the 2B channel's truss segment, signifying a rapid acceleration of the leak from 5lbm/year to 5lbm/day. Within 48 hours of the

  16. Oral application of freeze-dried yeast particles expressing the PCV2b Cap protein on their surface induce protection to subsequent PCV2b challenge in vivo

    PubMed Central

    Patterson, Robert; Eley, Thomas; Browne, Christopher; Martineau, Henny M.; Werling, Dirk

    2015-01-01

    Porcine circovirus type 2 (PCV2) is now endemic in every major pig producing country, causing PCV-associated disease (PCVAD), linked with large scale economic losses. Current vaccination strategies are based on the capsid protein of the virus and are reasonably successful in preventing PCVAD but fail to induce sterile immunity. Additionally, vaccinating whole herds is expensive and time consuming. In the present study a “proof of concept” vaccine trial was employed to test the effectiveness of powdered freeze-dried recombinant Saccharomyces cerevisiae yeast stably expressing the capsid protein of PCV2b on its surface as an orally applied vaccine. PCV2-free pigs were given 3 doses of vaccine or left un-vaccinated before challenge with a defined PCV2b strain. Rectal temperatures were measured and serum and faeces samples were collected weekly. At the end of the study, pigs were euthanized, tissue samples taken and tested for PCV2b load by qPCR and immunohistochemistry. The peak of viraemia in sera and faeces of unvaccinated pigs was higher than that of vaccinated pigs. Additionally more sIgA was found in faeces of vaccinated pigs than unvaccinated. Vaccination was associated with lower serum concentrations of TNFα and IL-1β but higher concentrations of IFNα and IFNγ in comparison to the unvaccinated animals. At the end of the trial, a higher viral load was found in several lymphatic tissues and the ileum of unvaccinated pigs in comparison to vaccinated pigs. The difference between groups was especially apparent in the ileum. The results presented here demonstrate a possible use for recombinant S. cerevisiae expressing viral proteins as an oral vaccine against PCV2. A powdered freeze-dried recombinant S. cerevisiae used as an oral vaccine could be mixed with feed and may offer a cheap and less labour intensive alternative to inoculation with the additional advantage that no cooling chain would be required for vaccine transport and storage. PMID:26476879

  17. Oral application of freeze-dried yeast particles expressing the PCV2b Cap protein on their surface induce protection to subsequent PCV2b challenge in vivo.

    PubMed

    Patterson, Robert; Eley, Thomas; Browne, Christopher; Martineau, Henny M; Werling, Dirk

    2015-11-17

    Porcine circovirus type 2 (PCV2) is now endemic in every major pig producing country, causing PCV-associated disease (PCVAD), linked with large scale economic losses. Current vaccination strategies are based on the capsid protein of the virus and are reasonably successful in preventing PCVAD but fail to induce sterile immunity. Additionally, vaccinating whole herds is expensive and time consuming. In the present study a "proof of concept" vaccine trial was employed to test the effectiveness of powdered freeze-dried recombinant Saccharomyces cerevisiae yeast stably expressing the capsid protein of PCV2b on its surface as an orally applied vaccine. PCV2-free pigs were given 3 doses of vaccine or left un-vaccinated before challenge with a defined PCV2b strain. Rectal temperatures were measured and serum and faeces samples were collected weekly. At the end of the study, pigs were euthanized, tissue samples taken and tested for PCV2b load by qPCR and immunohistochemistry. The peak of viraemia in sera and faeces of unvaccinated pigs was higher than that of vaccinated pigs. Additionally more sIgA was found in faeces of vaccinated pigs than unvaccinated. Vaccination was associated with lower serum concentrations of TNFα and IL-1β but higher concentrations of IFNα and IFNγ in comparison to the unvaccinated animals. At the end of the trial, a higher viral load was found in several lymphatic tissues and the ileum of unvaccinated pigs in comparison to vaccinated pigs. The difference between groups was especially apparent in the ileum. The results presented here demonstrate a possible use for recombinant S. cerevisiae expressing viral proteins as an oral vaccine against PCV2. A powdered freeze-dried recombinant S. cerevisiae used as an oral vaccine could be mixed with feed and may offer a cheap and less labour intensive alternative to inoculation with the additional advantage that no cooling chain would be required for vaccine transport and storage.

  18. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome.

    PubMed

    Ferreira, Joana S; Schmidt, Jeannette; Rio, Pedro; Águas, Rodolfo; Rooyakkers, Amanda; Li, Ka Wan; Smit, August B; Craig, Ann Marie; Carvalho, Ana Luisa

    2015-06-03

    NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex, GluN1 is combined primarily with GluN2A and GluN2B, which are differentially expressed during development and confer distinct molecular and physiological properties to NMDA receptors. The contribution of each subunit to the synaptic traffic of NMDA receptors and therefore to their role during development and in synaptic plasticity is still controversial. We report a critical role for the GluN2B subunit in regulating NMDA receptor synaptic targeting. In the absence of GluN2B, the synaptic levels of AMPA receptors are increased and accompanied by decreased constitutive endocytosis of GluA1-AMPA receptor. We used quantitative proteomic analysis to identify changes in the composition of postsynaptic densities from GluN2B(-/-) mouse primary neuronal cultures and found altered levels of several ubiquitin proteasome system components, in particular decreased levels of proteasome subunits. Enhancing the proteasome activity with a novel proteasome activator restored the synaptic levels of AMPA receptors in GluN2B(-/-) neurons and their endocytosis, revealing that GluN2B-mediated anchoring of the synaptic proteasome is responsible for fine tuning AMPA receptor synaptic levels under basal conditions.

  19. The role of NR2B containing NMDA receptor in place preference conditioned with morphine and natural reinforcers in rats.

    PubMed

    Ma, Yao-Ying; Guo, Chang-Yong; Yu, Peng; Lee, David Yue-Wei; Han, Ji-Sheng; Cui, Cai-Lian

    2006-08-01

    It has been reported that N-methyl-D-aspartate (NMDA) receptor is implicated in drug addiction and antagonists of the NMDA receptor complex can inhibit the development and expression of conditioned place preference (CPP) induced by several addictive drugs, implying that this class of compounds might be considered as candidate for the treatment of substance abuse. To explore this possibility, it is important to evaluate whether the inhibitory effect of NMDA receptor antagonists would be confined to behaviors produced by drugs of abuse only, but not by natural reinforcers. According to the quantitative changes of NMDA receptor subunits, including NR1, NR2A, and NR2B, induced by diverse types of reinforcers, we chose NR2B subunit as the target of research. Experimental results showed that (1) an augmented expression of NR2B subunit was revealed by Western blotting in the nucleus accumbens (NAc) and the hippocampus in rats with CPP induced by morphine, but not by natural rewards such as food, novel environment and social interaction. (2) Ifenprodil, an antagonist highly selective for NR2B subunit of the NMDA receptor, produced a dose-dependent reduction in CPP induced by morphine and novel environment, but not that by food consumption and social interaction. Taking together, these findings suggested that NR2B containing NMDA receptor may be more involved with morphine reward rather than natural rewards, and that antagonism of NR2B may have a potential for the treatment of morphine abuse.

  20. The A2B adenosine receptor promotes Th17 differentiation via stimulation of dendritic cell IL-6.

    PubMed

    Wilson, Jeffrey M; Kurtz, Courtney C; Black, Steven G; Ross, William G; Alam, Mohammed S; Linden, Joel; Ernst, Peter B

    2011-06-15

    Adenosine is an endogenous metabolite produced during hypoxia or inflammation. Previously implicated as an anti-inflammatory mediator in CD4(+) T cell regulation, we report that adenosine acts via dendritic cell (DC) A(2B) adenosine receptor (A(2B)AR) to promote the development of Th17 cells. Mouse naive CD4(+) T cells cocultured with DCs in the presence of adenosine or the stable adenosine mimetic 5'-(N-ethylcarboximado) adenosine resulted in the differentiation of IL-17- and IL-22-secreting cells and elevation of mRNA that encode signature Th17-associated molecules, such as IL-23R and RORγt. The observed response was similar when DCs were generated from bone marrow or isolated from small intestine lamina propria. Experiments using adenosine receptor antagonists and cells from A(2B)AR(-/-) or A(2A)AR(-/-)/A(2B)AR(-/-) mice indicated that the DC A(2B)AR promoted the effect. IL-6, stimulated in a cAMP-independent manner, is an important mediator in this pathway. Hence, in addition to previously noted direct effects of adenosine receptors on regulatory T cell development and function, these data indicated that adenosine also acts indirectly to modulate CD4(+) T cell differentiation and suggested a mechanism for putative proinflammatory effects of A(2B)AR.

  1. Structural, mechanical, and electronic properties of Rh2B and RhB2: first-principles calculations

    PubMed Central

    Chu, Binhua; Li, Da; Tian, Fubo; Duan, Defang; Sha, Xiaojing; Lv, Yunzhou; Zhang, Huadi; Liu, Bingbing; Cui, Tian

    2015-01-01

    The crystal structures of Rh2B and RhB2 at ambient pressure were explored by using the evolutionary methodology. A monoclinic P21/m structure of Rh2B was predicted and donated as Rh2B-I, which is energetically much superior to the previously experimentally proposed Pnma structure. At the pressure of about 39 GPa, the P21/m phase of Rh2B transforms to the C2/m phases. For RhB2, a new monoclinic P21/m phase was predicted, named as RhB2-II, it has the same structure type with Rh2B. Rh2B-I and RhB2-II are both mechanically and dynamically stable. They are potential low compressible materials. The analysis of electronic density of states and chemical bonding indicates that the formation of strong and directional covalent B-B and Rh-B bonds in these compounds contribute greatly to their stabilities and high incompressibility. PMID:26123399

  2. Serotonin 2B Receptor (5-HT2B R) Signals through Prostacyclin and PPAR-ß/δ in Osteoblasts

    PubMed Central

    Chabbi-Achengli, Yasmine; Launay, Jean-Marie; Maroteaux, Luc; de Vernejoul, Marie Christine; Collet, Corinne

    2013-01-01

    Osteoporosis is due to an imbalance between decreased bone formation by osteoblasts and increased resorption by osteoclasts. Deciphering factors controlling bone formation is therefore of utmost importance for the understanding and the treatment of osteoporosis. Our previous in vivo results showed that bone formation is reduced in the absence of the serotonin receptor 5-HT2B, causing impaired osteoblast proliferation, recruitment, and matrix mineralization. In this study, we investigated the signaling pathways responsible for the osteoblast defect in 5-HT2BR−/− mice. Notably, we investigated the phospholipase A2 pathway and synthesis of eicosanoids in 5-HT2BR−/− compared to wild type (WT) osteoblasts. Compared to control osteoblasts, the lack of 5-HT2B receptors was only associated with a 10-fold over-production of prostacyclin (PGI2). Also, a specific prostacyclin synthase inhibitor (U51605) rescued totally osteoblast aggregation and matrix mineralization in the 5-HT2BR−/− osteoblasts without having any effect on WT osteoblasts. Prostacyclin is the endogenous ligand of the nuclear peroxisome proliferator activated receptor ß/δ (PPAR-ß/δ), and its inhibition in 5-HT2BR−/− cells rescued totally the alkaline phosphatase and osteopontin mRNA levels, cell-cell adhesion, and matrix mineralization. We conclude that the absence of 5-HT2B receptors leads to the overproduction of prostacyclin, inducing reduced osteoblast differentiation due to PPAR-ß/δ -dependent target regulation and defective cell-cell adhesion and matrix mineralization. This study thus reveals a previously unrecognized cell autonomous osteoblast defect in the absence of 5-HT2BR and highlights a new pathway linking 5-HT2B receptors and nuclear PPAR- ß/δ via prostacyclin. PMID:24069449

  3. Immunogenicity of a West Nile virus DIII-cholera toxin A2/B chimera after intranasal delivery.

    PubMed

    Tinker, Juliette K; Yan, Jie; Knippel, Reece J; Panayiotou, Panos; Cornell, Kenneth A

    2014-04-22

    West Nile virus (WNV) causes potentially fatal neuroinvasive disease and persists at endemic levels in many parts of the world. Despite advances in our understanding of WNV pathogenesis, there remains a significant need for a human vaccine. The domain III (DIII) region of the WNV envelope protein contains epitopes that are the target of neutralizing antibodies. We have constructed a chimeric fusion of the non-toxic cholera toxin (CT) CTA2/B domains to DIII for investigation as a novel mucosally-delivered WNV vaccine. Purification and assembly of the chimera, as well as receptor-binding and antigen delivery, were verified by western blot, GM1 ELISA and confocal microscopy. Groups of BALB/c mice were immunized intranasally with DIII-CTA2/B, DIII, DIII mixed with CTA2/B, or CTA2/B control, and boosted at 10 days. Analysis of serum IgG after 14 and 45 days revealed that mucosal immunization with DIII-CTA2/B induced significant DIII-specific humoral immunity and drove isotype switching to IgG2a. The DIII-CTA2/B chimera also induced antigen-specific IgM and IgA responses. Bactericidal assays indicate that the DIII-CTA2/B immunized mice produced DIII-specific antibodies that can trigger complement-mediated killing. A dose escalation resulted in increased DIII-specific serum IgG titers on day 45. DIII antigen alone, in the absence of adjuvant, also induced significant systemic responses after intranasal delivery. Our results indicate that the DIII-CTA2/B chimera is immunogenic after intranasal delivery and merits further investigation as a novel WNV vaccine candidate.

  4. Potent inhibition of cytochrome P450 2B6 by sibutramine in human liver microsomes.

    PubMed

    Bae, Soo Hyeon; Kwon, Min Jo; Choi, Eu Jin; Zheng, Yu Fen; Yoon, Kee Dong; Liu, Kwang-Hyeon; Bae, Soo Kyung

    2013-09-05

    The present study was performed to evaluate the potency and specificity of sibutramine as an inhibitor of the activities of nine human CYP isoforms in liver microsomes. Using a cocktail assay, the effects of sibutramine on specific marker reactions of the nine CYP isoforms were measured in human liver microsomes. Sibutramine showed potent inhibition of CYP2B6-mediated bupropion 6-hydroxylation with an IC50 value of 1.61μM and Ki value of 0.466μM in a competitive manner at microsomal protein concentrations of 0.25mg/ml; this was 3.49-fold more potent than the typical CYP2B6 inhibitor thio-TEPA (Ki=1.59μM). In addition, sibutramine slightly inhibited CYP2C19 activity (Ki=16.6μM, noncompetitive inhibition) and CYP2D6 activity (Ki=15.7μM, noncompetitive inhibition). These observations indicated 35.6- and 33.7-fold decreases in inhibition potency, respectively, compared with that of CYP2B6 by sibutramine. However, no inhibition of CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, or CYP2E1 activities was observed. In addition, the CYP2B6 inhibitory potential of sibutramine was enhanced at a lower microsomal protein concentration of 0.05mg/ml. After 30min preincubation of human liver microsomes with sibutramine in the presence of NADPH, no shift in IC50 was observed in terms of inhibition of the activities of the nine CYPs, suggesting that sibutramine is not a time-dependent inactivator. These observations suggest that sibutramine is a selective and potent inhibitor of CYP2B6 in vitro, whereas inhibition of other CYPs is substantially lower. These in vitro data support the use of sibutramine as a well-known inhibitor of CYP2B6 for routine screening of P450 reversible inhibition when human liver microsomes are used as the enzyme source.

  5. Inosine attenuates spontaneous activity in the rat neurogenic bladder through an A2B pathway

    PubMed Central

    Doyle, Claire; Cristofaro, Vivian; Sack, Bryan S.; Lukianov, Stefan N.; Schäfer, Mattias; Chung, Yeun Goo; Sullivan, Maryrose P.; Adam, Rosalyn M.

    2017-01-01

    Neurogenic detrusor overactivity (NDO) is among the most challenging complications of spinal cord injury (SCI). A recent report by us demonstrated an improvement in NDO in SCI rats following chronic systemic treatment with the purine nucleoside inosine. The objective of this study was to investigate the mechanism of action of inosine underlying improvement of NDO. Male Sprague-Dawley rats underwent complete spinal cord transection at T8. Inosine (1 mM) delivered intravesically to SCI rats during conscious cystometry significantly decreased the frequency of spontaneous non-voiding contractions. In isolated tissue assays, inosine (1 mM) significantly decreased the amplitude of spontaneous activity (SA) in SCI bladder muscle strips. This effect was prevented by a pan-adenosine receptor antagonist CGS15943, but not by A1 or A3 receptor antagonists. The A2A antagonist ZM241385 and A2B antagonist PSB603 prevented the effect of inosine. The effect of inosine was mimicked by the adenosine receptor agonist NECA and the A2B receptor agonist BAY60-6583. The inhibition of SA by inosine was not observed in the presence of the BK antagonist, iberiotoxin, but persisted in the presence of KATP and SK antagonists. These findings demonstrate that inosine acts via an A2B receptor-mediated pathway that impinges on specific potassium channel effectors. PMID:28294142

  6. Mutation of SH2B3 (LNK), a genome-wide association study candidate for hypertension, attenuates Dahl salt-sensitive hypertension via inflammatory modulation.

    PubMed

    Rudemiller, Nathan P; Lund, Hayley; Priestley, Jessica R C; Endres, Bradley T; Prokop, Jeremy W; Jacob, Howard J; Geurts, Aron M; Cohen, Eric P; Mattson, David L

    2015-05-01

    Human genome-wide association studies have linked SH2B adaptor protein 3 (SH2B3, LNK) to hypertension and renal disease, although little experimental investigation has been performed to verify a role for SH2B3 in these pathologies. SH2B3, a member of the SH2B adaptor protein family, is an intracellular adaptor protein that functions as a negative regulator in many signaling pathways, including inflammatory signaling processes. To explore a mechanistic link between SH2B3 and hypertension, we targeted the SH2B3 gene for mutation on the Dahl salt-sensitive (SS) rat genetic background with zinc-finger nucleases. The resulting mutation was a 6-bp, in-frame deletion within a highly conserved region of the Src homology 2 (SH2) domain of SH2B3. This mutation significantly attenuated Dahl SS hypertension and renal disease. Also, infiltration of leukocytes into the kidneys, a key mediator of Dahl SS pathology, was significantly blunted in the Sh2b3(em1Mcwi) mutant rats. To determine whether this was because of differences in immune signaling, bone marrow transplant studies were performed in which Dahl SS and Sh2b3(em1Mcwi) mutants underwent total body irradiation and were then transplanted with Dahl SS or Sh2b3(em1Mcwi) mutant bone marrow. Rats that received Sh2b3(em1Mcwi) mutant bone marrow had a significant reduction in mean arterial pressure and kidney injury when placed on a high salt diet (4% NaCl). These data further support a role for the immune system as a modulator of disease severity in the pathogenesis of hypertension and provide insight into inflammatory mechanisms at play in human hypertension and renal disease.

  7. PSD95 suppresses dendritic arbor development in mature hippocampal neurons by occluding the clustering of NR2B-NMDA receptors.

    PubMed

    Bustos, Fernando J; Varela-Nallar, Lorena; Campos, Matias; Henriquez, Berta; Phillips, Marnie; Opazo, Carlos; Aguayo, Luis G; Montecino, Martin; Constantine-Paton, Martha; Inestrosa, Nibaldo C; van Zundert, Brigitte

    2014-01-01

    Considerable evidence indicates that the NMDA receptor (NMDAR) subunits NR2A and NR2B are critical mediators of synaptic plasticity and dendritogenesis; however, how they differentially regulate these processes is unclear. Here we investigate the roles of the NR2A and NR2B subunits, and of their scaffolding proteins PSD-95 and SAP102, in remodeling the dendritic architecture of developing hippocampal neurons (2-25 DIV). Analysis of the dendritic architecture and the temporal and spatial expression patterns of the NMDARs and anchoring proteins in immature cultures revealed a strong positive correlation between synaptic expression of the NR2B subunit and dendritogenesis. With maturation, the pruning of dendritic branches was paralleled by a strong reduction in overall and synaptic expression of NR2B, and a significant elevation in synaptic expression of NR2A and PSD95. Using constructs that alter the synaptic composition, we found that either over-expression of NR2B or knock-down of PSD95 by shRNA-PSD95 augmented dendritogenesis in immature neurons. Reactivation of dendritogenesis could also be achieved in mature cultured neurons, but required both manipulations simultaneously, and was accompanied by increased dendritic clustering of NR2B. Our results indicate that the developmental increase in synaptic expression of PSD95 obstructs the synaptic clustering of NR2B-NMDARs, and thereby restricts reactivation of dendritic branching. Experiments with shRNA-PSD95 and chimeric NR2A/NR2B constructs further revealed that C-terminus of the NR2B subunit (tail) was sufficient to induce robust dendritic branching in mature hippocampal neurons, and suggest that the NR2B tail is important in recruiting calcium-dependent signaling proteins and scaffolding proteins necessary for dendritogenesis.

  8. Enantioselective inhibition of Cytochrome P450-mediated drug metabolism by a novel antithrombotic agent, S002-333: Major effect on CYP2B6.

    PubMed

    Bhateria, Manisha; Ramakrishna, Rachumallu; Puttrevu, Santosh Kumar; Saxena, Anil K; Bhatta, Rabi Sankar

    2016-08-25

    A significant number of new chemical entities (NCEs) fail in drug discovery due to inhibition of Cytochrome P450 (CYP) enzymes. Therefore, to avert costly drug failure at the clinical phase it becomes indispensable to evaluate the CYP inhibition profile of NCEs early in drug discovery. In light of these concerns, we envisioned to investigate the inhibitory effects of S002-333 [2-(4-methoxy-benzenesulfonyl)-2,3,4,9-tetrahydro-1H-b-carboxylic acid amide], a novel and potent antithrombotic agent, on nine major CYP enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4) of human liver microsomes (HLM). S002-333 exists as racemic mixture of S004-1032 (R-isomer) and S007-1558 (S-isomer), consequently, we further examined the enantioselective differences of S002-333 in the inhibition of human CYP enzymes. Of the CYP enzymes tested, CYP2B6-catalyzed bupropion 6-hydroxylation was inhibited by S002-333 (IC50 ∼ 9.25 ± 2.46 μM) in a stereoselective manner with (S)-isomer showing potent inhibition (IC50 ∼ 5.28 ± 1.25 μM) in contrast to (R)-isomer which showed negligible inhibition on CYP2B6 activity (IC50 > 50 μM). S002-333 and its (S)-isomer inhibited CYP2B6 activity in a non-competitive fashion with estimated Ki values of 10.1 ± 3.4 μM and 5.09 ± 1.05 μM, respectively. No shift in the IC50 value was observed for S002-333 and its isomers when preincubated for 30 min in the presence of NADPH suggesting that neither S002-333 nor its enantiomers are time-dependent inhibitors. Thus, the present findings signified that S002-333 is a potent stereoselective inhibitor of CYP2B6, whereas, inhibition for other CYPs was substantially negligible. These in vitro findings would be useful in deciding the development of S002-333 as a single-enantiomer or as a racemic mixture.

  9. Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high oleic:linoleic acid ratio (O/L) in peanut (Arachis hypogaea L.) seeds is controlled primarily by two recessive genes, ahFAD2A and ahFAD2B (ol1 and ol2). Marker-assisted breeding for high O/L could become routine provided that user-friendly and economical markers could be developed that would...

  10. Magnetospheric Multiscale Mission (MMS) Phase 2B Navigation Performance

    NASA Technical Reports Server (NTRS)

    Scaperoth, Paige Thomas; Long, Anne; Carpenter, Russell

    2009-01-01

    The Magnetospheric Multiscale (MMS) formation flying mission, which consists of four spacecraft flying in a tetrahedral formation, has challenging navigation requirements associated with determining and maintaining the relative separations required to meet the science requirements. The baseline navigation concept for MMS is for each spacecraft to independently estimate its position, velocity and clock states using GPS pseudorange data provided by the Goddard Space Flight Center-developed Navigator receiver and maneuver acceleration measurements provided by the spacecraft's attitude control subsystem. State estimation is performed onboard in real-time using the Goddard Enhanced Onboard Navigation System flight software, which is embedded in the Navigator receiver. The current concept of operations for formation maintenance consists of a sequence of two maintenance maneuvers that is performed every 2 weeks. Phase 2b of the MMS mission, in which the spacecraft are in 1.2 x 25 Earth radii orbits with nominal separations at apogee ranging from 30 km to 400 km, has the most challenging navigation requirements because, during this phase, GPS signal acquisition is restricted to less than one day of the 2.8-day orbit. This paper summarizes the results from high-fidelity simulations to determine if the MMS navigation requirements can be met between and immediately following the maintenance maneuver sequence in Phase 2b.

  11. The Amazon Boundary-Layer Experiment (ABLE 2B) - A meteorological perspective

    NASA Technical Reports Server (NTRS)

    Garstang, Michael; Greco, Steven; Scala, John; Swap, Robert; Ulanski, Stanley; Fitzjarrald, David; Martin, David; Browell, Edward; Shipman, Mark; Connors, Vickie

    1990-01-01

    The Amazon Boundary-Layer Experiments (ABLE) 2A and 2B, which were performed near Manaus, Brazil in July-August, 1985, and April-May, 1987 are discussed. The experiments were performed to study the sources, sinks, concentrations, and transports of trace gases and aerosols in rain forest soils, wetlands, and vegetation. Consideration is given the design and preliminary results of the experiment, focusing on the relationships between meteorological scales of motion and the flux, transports, and reactions of chemical species and aerosols embedded in the atmospheric fluid. Meteorological results are presented and the role of the meteorological results in the atmospheric chemistry experiment is examined.

  12. Impact assessment of draft DOE Order 5820.2B. Radioactive Waste Technical Support Program

    SciTech Connect

    1995-04-01

    The Department of Energy (DOE) has prepared a revision to DOE Order 5820.2A, entitled ``Radioactive Waste Management.`` DOE issued DOE Order 5820.2A in September 1988 and, as the title implies, it covered only radioactive waste forms. The proposed draft order, entitled ``Waste Management,`` addresses the management of both radioactive and nonradioactive waste forms. It also includes spent nuclear fuel, which DOE does not consider a waste. Waste forms covered include hazardous waste, high-level waste, transuranic (TRU) waste, low-level radioactive waste, uranium and thorium mill tailings, mixed waste, and sanitary waste. The Radioactive Waste Technical Support Program (TSP) of Leached Idaho Technologies Company (LITCO) is facilitating the revision of this order. The EM Regulatory Compliance Division (EM-331) has requested that TSP estimate the impacts and costs of compliance with the revised order. TSP requested Dames & Moore to aid in this assessment by comparing requirements in Draft Order 5820.2B to ones in DOE Order 5820.2A and other DOE orders and Federal regulations. The assessment started with a draft version of 5820.2B dated January 14, 1994. DOE has released three updated versions of the draft order since then (dated May 20, 1994; August 26, 1994; and January 23, 1995). Each time DOE revised the order, Dames and Moore updated the assessment work to reflect the text changes. This report reflects the January 23, 1995 version of the draft order.

  13. Characterization of Streptokinases from Group A Streptococci Reveals a Strong Functional Relationship That Supports the Coinheritance of Plasminogen-binding M Protein and Cluster 2b Streptokinase*

    PubMed Central

    Zhang, Yueling; Liang, Zhong; Hsueh, Hsing-Tse; Ploplis, Victoria A.; Castellino, Francis J.

    2012-01-01

    Group A streptococcus (GAS) strains secrete the protein streptokinase (SK), which functions by activating host human plasminogen (hPg) to plasmin (hPm), thus providing a proteolytic framework for invasive GAS strains. The types of SK secreted by GAS have been grouped into two clusters (SK1 and SK2) and one subcluster (SK2a and SK2b). SKs from cluster 1 (SK1) and cluster 2b (SK2b) display significant evolutionary and functional differences, and attempts to relate these properties to GAS skin or pharynx tropism and invasiveness are of great interest. In this study, using four purified SKs from each cluster, new relationships between plasminogen-binding group A streptococcal M (PAM) protein and SK2b have been revealed. All SK1 proteins efficiently activated hPg, whereas all subclass SK2b proteins only weakly activated hPg in the absence of PAM. Surface plasmon resonance studies revealed that the lower affinity of SK2b to hPg served as the basis for the attenuated activation of hPg by SK2b. Binding of hPg to either human fibrinogen (hFg) or PAM greatly enhanced activation of hPg by SK2b but minimally influenced the already effective activation of hPg by SK1. Activation of hPg in the presence of GAS cells containing PAM demonstrated that PAM is the only factor on the surface of SK2b-expressing cells that enabled the direct activation of hPg by SK2b. As the binding of hPg to PAM is necessary for hPg activation by SK2b, this dependence explains the coinherant relationship between PAM and SK2b and the ability of these particular strains to generate the proteolytic activity that disrupts the innate barriers that limit invasiveness. PMID:23086939

  14. 2b or Not 2b: Experimental Evolution of Functional Exogenous Sequences in a Plant RNA Virus

    PubMed Central

    Zwart, Mark P.; Ambrós, Silvia; Carrasco, José L.; Elena, Santiago F.

    2017-01-01

    Horizontal gene transfer (HGT) is pervasive in viruses and thought to be a key mechanism in their evolution. On the other hand, strong selective constraints against increasing genome size are an impediment for HGT, rapidly purging horizontally transferred sequences and thereby potentially hindering evolutionary innovation. Here, we explore experimentally the evolutionary fate of viruses with simulated HGT events, using the plant RNA virus Tobacco etch virus (TEV), by separately introducing two functional, exogenous sequences to its genome. One of the events simulates the acquisition of a new function though HGT of a conserved AlkB domain, responsible for the repair of alkylation or methylation damage in many organisms. The other event simulates the acquisition of a sequence that duplicates an existing function, through HGT of the 2b RNA silencing suppressor from Cucumber mosaic virus. We then evolved these two viruses, tracked the maintenance of the horizontally transferred sequences over time, and for the final virus populations, sequenced their genome and measured viral fitness. We found that the AlkB domain was rapidly purged from the TEV genome, restoring fitness to wild-type levels. Conversely, the 2b gene was stably maintained and did not have a major impact on viral fitness. Moreover, we found that 2b is functional in TEV, as it provides a replicative advantage when the RNA silencing suppression domain of HC-Pro is mutated. These observations suggest a potentially interesting role for HGT of short functional sequences in ameliorating evolutionary constraints on viruses, through the duplication of functions. PMID:28137747

  15. 2b or not 2b: Experimental evolution of functional exogenous sequences in a plant RNA virus.

    PubMed

    Willemsen, Anouk; Zwart, Mark P; Ambrós, Silvia; Carrasco, José L; Elena, Santiago F

    2017-01-30

    Horizontal gene transfer (HGT) is pervasive in viruses, and thought to be a key mechanism in their evolution. On the other hand, strong selective constraints against increasing genome size are an impediment for HGT, rapidly purging horizontally transferred sequences and thereby potentially hindering evolutionary innovation. Here we explore experimentally the evolutionary fate of viruses with simulated HGT events, using the plant RNA virus Tobacco etch virus (TEV), by separately introducing two functional, exogenous sequences to its genome. One of the events simulates the acquisition of a new function though HGT of a conserved AlkB domain, responsible for the repair of alkylation or methylation damage in many organisms. The other event simulates the acquisition of a sequence that duplicates an existing function, through HGT of the 2b RNA silencing suppressor from Cucumber mosaic virus (CMV). We then evolved these two viruses, tracked the maintenance of the horizontally transferred sequences over time, and for the final virus populations, sequenced their genome and measured viral fitness. We found that the AlkB domain was rapidly purged from the TEV genome, restoring fitness to wild-type levels. Conversely, the 2b gene was stably maintained and did not have a major impact on viral fitness. Moreover, we found that 2b is functional in TEV, as it provides a replicative advantage when the RNA silencing suppression domain of HC-Pro is mutated. These observations suggest a potentially interesting role for HGT of short functional sequences in ameliorating evolutionary constraints on viruses, through the duplication of functions.

  16. Comparative pharmacodynamics of CYP2B induction by DDT, DDE, and DDD in male rat liver and cultured rat hepatocytes.

    PubMed

    Nims, R W; Lubet, R A; Fox, S D; Jones, C R; Thomas, P E; Reddy, A B; Kocarek, T A

    1998-03-27

    In this study the pharmacodynamics were characterized of rat hepatic cytochrome P-450 2B (CYP2B) induction by the pesticide DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] and its metabolites DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene], which is bioretained, and DDD [1,1-dichloro-2,2-bis(p-chlorophenyl)ethane], which is metabolized further and therefore less prone to bioaccumulate. DDT, DDE, and DDD were each found to be pure phenobarbital-type cytochrome P-450 inducers in the male F344/NCr rat, causing induction of hepatic CYP2B and CYP3A, but not CYP1A. The ED50 values for CYP2B induction (benzyloxyresorufin O-dealkylation) by DDT, DDE, and DDD were, respectively, 103, 88, and > or = 620 ppm in diet (14 d of exposure). The efficacies (Emax values) for induction of benzyloxyresorufin O-dealkylation by DDT, DDE, and DDD were 24-, 22-, and > or = 1-fold, respectively, compared to control values. The potencies of the three congeners for CYP2B induction appeared also to be similar, with EC50 values (based on total serum DDT equivalents) of 1.5, 1.8, and > or = 0.51 microM, respectively. The EC50 values based on DDT equivalents in hepatic tissue were 15, 16, and > or = 5.9 micromol/kg liver tissue, respectively. In primary cultures of adult rat hepatocytes, DDT, DDE, and DDD each displayed ability to induce total cellular RNA coding for CYP2B (ED50 values of 0.98, 0.83, and > or = 2.7 microM, respectively). These results suggest that DDT, DDE, and DDD each possess a high degree of intrinsic CYP2B-inducing ability for rat liver, despite marked differences in bioretention among the congeners.

  17. 75 FR 30687 - Airworthiness Directives; Turbomeca Arriel 2B1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... 2B1 Turboshaft Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY..., Engine Certification Office, FAA, Engine & Propeller Directorate, 12 New England Executive Park... Information The MCAI applies to the ARRIEL 2B1 and 2B1A engines. The ARRIEL 2B1A engine is not...

  18. 75 FR 71353 - Airworthiness Directives; Mitsubishi Heavy Industries, Ltd. Various Models MU-2B Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... Industries, Ltd. Various Models MU-2B Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... September 24, 1986, of the MU-2B-60 airplane flight manual (AFM) in table 3 of the Compliance section (e)(1... certain MHI various Models MU-2B airplanes. As published, table 3 specific to the MHI MU-2B-60...

  19. Genetics Home Reference: RRM2B-related mitochondrial DNA depletion syndrome, encephalomyopathic form with renal ...

    MedlinePlus

    ... Home Health Conditions RRM2B-MDS RRM2B-related mitochondrial DNA depletion syndrome, encephalomyopathic form with renal tubulopathy Enable ... Open All Close All Description RRM2B -related mitochondrial DNA depletion syndrome, encephalomyopathic form with renal tubulopathy ( RRM2B - ...

  20. Rational Engineering of Cytochromes P450 2B6 and 2B11 for Enhanced Stability: Insights Into Structural Importance of Residue 334

    PubMed Central

    Talakad, Jyothi C.; Wilderman, P. Ross; Davydov, Dmitri R.; Kumar, Santosh; Halpert, James R.

    2009-01-01

    Rational mutagenesis was used to improve the thermal stability of human cytochrome P450 2B6 and canine P450 2B11. Comparison of the amino acid sequences revealed seven sites that are conserved between the stable 2B1 and 2B4 but different from those found in the less stable 2B6 and 2B11. P334S was the only mutant that showed increased heterologous expression levels and thermal stability in both 2B6 and 2B11. The mechanism of this effect was explored with pressure-perturbation spectroscopy. Compressibility of the heme pocket in variants of all four CYP2B enzymes containing proline at position 334 are characterized by lower compressibility than their more stable serine 334 counterpart. Therefore, the stabilizing effect of P334S is associated with increased conformational flexibility in the region of the heme pocket. Improved stability of P334S 2B6 and 2B11 may facilitate the studies of these enzymes by X-ray crystallography and biophysical techniques. PMID:19944064

  1. The influence of sex, ethnicity, and CYP2B6 genotype on bupropion metabolism as an index of hepatic CYP2B6 activity in humans.

    PubMed

    Ilic, Katarina; Hawke, Roy L; Thirumaran, Ranjit K; Schuetz, Erin G; Hull, J Heyward; Kashuba, Angela D M; Stewart, Paul W; Lindley, Celeste M; Chen, Mei-Ling

    2013-03-01

    The effects of sex, ethnicity, and genetic polymorphism on hepatic CYP2B6 (cytochrome P450 2B6) expression and activity were previously demonstrated in vitro. Race/ethnic differences in CYP2B6 genotype and phenotype were observed only in women. To identify important covariates associated with interindividual variation in CYP2B6 activity in vivo, we evaluated these effects in healthy volunteers using bupropion (Wellbutrin SR GlaxoSmithKline, Research Triangle Park, NC) as a CYP2B6 probe substrate. A fixed 150-mg oral sustained-release dose of bupropion was administered to 100 healthy volunteers comprising four sex/ethnicity cohorts (n = 25 each): Caucasian men and Caucasian, African American, and Hispanic women. Blood samples were obtained at 0 and 6 hours postdose for the measurement of serum bupropion (BU) and hydroxybupropion (HB) concentrations. Whole blood was obtained at baseline for CYP2B6 genotyping. To characterize the relationship between CYP2B6 activity and ethnicity, sex, and genotype when accounting for serum BU concentrations (dose-adjusted log(10)-transformed), analysis of covariance model was fitted in which the dependent variable was CYP2B6 activity represented as the log(10)-transformed, metabolic ratio of HB to BU concentrations. Several CYP2B6 polymorphisms were associated with CYP2B6 activity. Evidence of dependence of CYP2B6 activity on ethnicity or genotype-by-ethnicity interactions was not detected in women. These results suggest that CYP2B6 genotype is the most important patient variable for predicting the level of CYP2B6 activity in women, when measured by the metabolism of bupropion. The bupropion metabolic ratio appears to detect known differences in CYP2B6 activity associated with genetic polymorphism, across different ethnic groups. Prospective studies will be needed to validate the use of bupropion as a probe substrate for clinical use.

  2. Integrated Product and Process Data for B2B Collaboration

    SciTech Connect

    Kulvatunyou, Boonserm; Ivezic, Nenad; Jones, Albert; Wysk, Richard A.

    2003-09-01

    Collaborative development of engineered products in a business-to-business (B2B) environment will require more than just the selection of components from an on-line catalogue. It will involve the electronic exchange of product, process, and production engineering information during both design and manufacturing. While the state-of-the-practice does include a variety of ways to exchange product data electronically, it does not extend to the exchange of manufacturing process data. The reason is simple; process data is usually tied to specific manufacturing resources. These resources are not known typically at product development time. This paper proposes an approach, called an Integrated Product and Process Data (IPPD), where manufacturing process data is considered during product development. This approach replaces traditional process plans, which are resource specific, with a resource-independent process representation. Such a representation will allow a much wider collaboration among business partners and provide the necessary base for collaborative product development.

  3. Semantic ETL into i2b2 with Eureka!

    PubMed

    Post, Andrew R; Krc, Tahsin; Rathod, Himanshu; Agravat, Sanjay; Mansour, Michel; Torian, William; Saltz, Joel H

    2013-01-01

    Clinical phenotyping is an emerging research information systems capability. Research uses of electronic health record (EHR) data may require the ability to identify clinical co-morbidities and complications. Such phenotypes may not be represented directly as discrete data elements, but rather as frequency, sequential and temporal patterns in billing and clinical data. These patterns' complexity suggests the need for a robust yet flexible extract, transform and load (ETL) process that can compute them. This capability should be accessible to investigators with limited ability to engage an IT department in data management. We have developed such a system, Eureka! Clinical Analytics. It extracts data from an Excel spreadsheet, computes a broad set of phenotypes of common interest, and loads both raw and computed data into an i2b2 project. A web-based user interface allows executing and monitoring ETL processes. Eureka! is deployed at our institution and is available for deployment in the cloud.

  4. Semantic ETL into i2b2 with Eureka!

    PubMed Central

    Post, Andrew R.; Krc, Tahsin; Rathod, Himanshu; Agravat, Sanjay; Mansour, Michel; Torian, William; Saltz, Joel H.

    Clinical phenotyping is an emerging research information systems capability. Research uses of electronic health record (EHR) data may require the ability to identify clinical co-morbidities and complications. Such phenotypes may not be represented directly as discrete data elements, but rather as frequency, sequential and temporal patterns in billing and clinical data. These patterns’ complexity suggests the need for a robust yet flexible extract, transform and load (ETL) process that can compute them. This capability should be accessible to investigators with limited ability to engage an IT department in data management. We have developed such a system, Eureka! Clinical Analytics. It extracts data from an Excel spreadsheet, computes a broad set of phenotypes of common interest, and loads both raw and computed data into an i2b2 project. A web-based user interface allows executing and monitoring ETL processes. Eureka! is deployed at our institution and is available for deployment in the cloud. PMID:24303265

  5. The cyclotron energization through auroral wave experiments (CENTAUR 2B)

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.

    1992-01-01

    The CENTAUR 2B mission, a dual payload program, is in many aspects the same as the previous missions from Cape Perry and Norway in 1985. It was planned that these payloads would be launched from Andoya, Norway, Nov. 1989 from the Universal II launcher. The payloads are identical, but would have been launched at different azimuths as far north and as far west as possible. Particle experiments include the angular resolving energy analyzer (AREA), the fast ion mass spectrometer (FIMS), the spectrographic particle images (SPI), and finally, the differential ion flux probe (DIFP). SwRI was responsible for the scientific payload, which includes the power supplies, the power supply interfacing, the manipulating of the data from the instruments to format it for the telemetry system, all mechanical structure and restraint mechanisms, and the payload subskin. The status of the various components of this program is given.

  6. SH2B regulation of growth, metabolism, and longevity in both insects and mammals.

    PubMed

    Song, Wei; Ren, Decheng; Li, Wenjun; Jiang, Lin; Cho, Kae Won; Huang, Ping; Fan, Chen; Song, Yiyun; Liu, Yong; Rui, Liangyou

    2010-05-05

    SH2B1 is a key regulator of body weight in mammals. Here, we identified dSH2B as the Drosophila homolog of SH2B1. dSH2B bound to Chico and directly promoted insulin-like signaling. Disruption of dSH2B decreased insulin-like signaling and somatic growth in flies. dSH2B deficiency also increased hemolymph carbohydrate levels, whole-body lipid levels, life span, and resistance to starvation and oxidative stress. Systemic overexpression of dSH2B resulted in opposite phenotypes. dSH2B overexpression in fat body decreased lipid and glucose levels, whereas neuron-specific overexpression of dSH2B decreased oxidative resistance and life span. Genetic deletion of SH2B1 also resulted in growth retardation, obesity, and type 2 diabetes in mice; surprisingly, life span and oxidative resistance were reduced in SH2B1 null mice. These data suggest that dSH2B regulation of insulin-like signaling, growth, and metabolism is conserved in SH2B1, whereas dSH2B regulation of oxidative stress and longevity may be conserved in other SH2B family members.

  7. SH2B Regulation of Growth, Metabolism and Longevity in Both Insects and Mammals

    PubMed Central

    Song, Wei; Ren, Decheng; Li, Wenjun; Jiang, Lin; Cho, Kae Won; Huang, Ping; Fan, Chen; Song, Yiyun; Liu, Yong; Rui, Liangyou

    2010-01-01

    Summary SH2B1 is a key regulator of body weight in mammals. Here we identified dSH2B as the Drosophila homolog of SH2B1. dSH2B bound to Chico and directly promoted insulin-like signaling. Disruption of dSH2B decreased insulin-like signaling and somatic growth in flies. dSH2B deficiency also increased hemolymph carbohydrate levels, whole body lipid levels, lifespan, and resistance to starvation and oxidative stress. Systemic overexpression of dSH2B resulted in opposite phenotypes. dSH2B overexpression in fat body decreased lipid and glucose levels, whereas neuron-specific overexpression of dSH2B decreased oxidative resistance and lifespan. Genetic deletion of SH2B1 also resulted in growth retardation, obesity, and type 2 diabetes in mice; surprisingly, lifespan and oxidative resistance were reduced in SH2B1 null mice. These data suggest that dSH2B regulation of insulin-like signaling, growth, and metabolism is conserved in SH2B1, whereas dSH2B regulation of oxidative stress and longevity may be conserved in other SH2B family members. PMID:20417156

  8. Structure of human nucleosome containing the testis-specific histone variant TSH2B

    SciTech Connect

    Urahama, Takashi; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2014-03-25

    The crystal structure of human nucleosome containing the testis-specific TSH2B variant has been determined. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, and induces a local structural difference between TSH2B and H2B in nucleosomes. The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue. In contrast, the other TSH2B-specific amino-acid residues did not induce any significant local structural changes in the TSH2B nucleosome. These findings may provide important information for understanding how testis-specific histone variants form nucleosomes during spermatogenesis.

  9. Dynamics of the reaction of C{sub 3}(a{sup 3}Π{sub u}) radicals with C{sub 2}H{sub 2}: A new source for the formation of C{sub 5}H

    SciTech Connect

    Huang, Wen-Jian; Sun, Yi-Lun; Chin, Chih-Hao; Lee, Shih-Huang

    2014-09-28

    The reaction C{sub 3}(a{sup 3}Π{sub u}) + C{sub 2}H{sub 2} → C{sub 5}H + H was investigated at collision energy 10.9 kcal mol{sup −1} that is less than the enthalpy of ground-state reaction C{sub 3}(X{sup 1}Σ{sub g}{sup +}) + C{sub 2}H{sub 2} → C{sub 5}H + H. C{sub 3}(a{sup 3}Π{sub u}) radicals were synthesized from 1% C{sub 4}F{sub 6}/He by pulsed high-voltage discharge. The title reaction was conducted in a crossed molecular-beam apparatus equipped with a quadrupole-mass filter. Product C{sub 5}H was interrogated with time-of-flight spectroscopy and synchrotron vacuum-ultraviolet ionization. Reactant C{sub 3}(a{sup 3}Π{sub u}) and product C{sub 5}H were identified using photoionization spectroscopy. The ionization thresholds of C{sub 3}(X{sup 1}Σ{sub g}{sup +}) and C{sub 3}(a{sup 3}Π{sub u}) are determined as 11.6 ± 0.2 eV and 10.0 ± 0.2 eV, respectively. The C{sub 5}H product is identified as linear pentynylidyne that has an ionization energy 8.4 ± 0.2 eV. The title reaction releases translational energy 10.6 kcal mol{sup −1} in average and has an isotropic product angular distribution. The quantum-chemical calculation indicates that the C{sub 3}(a{sup 3}Π{sub u}) radical attacks one of the carbon atoms of C{sub 2}H{sub 2} and subsequently a hydrogen atom is ejected to form C{sub 5}H + H, in good agreement with the experimental observation. As far as we are aware, the C{sub 3}(a{sup 3}Π{sub u}) + C{sub 2}H{sub 2} reaction is investigated for the first time. This work gives an implication for the formation of C{sub 5}H from the C{sub 3}(a{sup 3}Π{sub u}) + C{sub 2}H{sub 2} reaction occurring in a combustion or discharge process of C{sub 2}H{sub 2}.

  10. Early chronic blockade of NR2B subunits and transient activation of NMDA receptors modulate LTP in mouse auditory cortex.

    PubMed

    Mao, Yuting; Zang, Shaoyun; Zhang, Jiping; Sun, Xinde

    2006-02-16

    In the auditory cortex, the properties of NMDA receptors depend primarily on the ratio of NR2A and NR2B subunits. NR2B subunit expression is high at the beginning of critical period and lower in adulthood. Because NMDA receptors are crucial in triggering long-term potentiation (LTP) and long-term depression, developmental or experience-dependent modification of NMDAR subunit composition is likely to influence synaptic plasticity. To examine how NMDA subunit change during postnatal development affect the adult synaptic plasticity, we employed chronic ifenprodil blockade of NR2B subunits and analyzed evoked field potentials in adult C57BL/6 mice auditory cortex (AC). We found that chronic loss of NR2B activity led to a decline in LTP magnitude in the AC of adult mice. Adding NMDA to the artificial cerebrospinal fluid (ACSF) in blocked mice had the opposite effect, producing LTP magnitudes at or exceeding those found in treated or untreated animals. These results suggest that, even in adulthood when NR2B expression is downregulated, these receptor subunits play an important role in experience-dependent plasticity of mouse auditory cortex. Blockade from P60 did not result in any decrease of LTP amplitude, suggesting that chronic block in postnatal period may permanently affect cortical circuits so that they cannot produce significant LTP in adulthood.

  11. Neural Cell Adhesion Molecule-Associated Polysialic Acid Regulates Synaptic Plasticity and Learning by Restraining the Signaling through GluN2B-Containing NMDA Receptors

    PubMed Central

    Kochlamazashvili, Gaga; Senkov, Oleg; Grebenyuk, Sergei; Robinson, Catrina; Xiao, Mei-Fang; Stummeyer, Katharina; Gerardy-Schahn, Rita; Engel, Andreas K.; Feig, Larry; Semyanov, Alexey; Suppiramaniam, Vishnu; Schachner, Melitta; Dityatev, Alexander

    2017-01-01

    The neural cell adhesion molecule (NCAM) is the predominant carrier of α2,8 polysialic acid (PSA) in the mammalian brain. Abnormalities in PSA and NCAM expression are associated with schizophrenia in humans and cause deficits in hippocampal synaptic plasticity and contextual fear conditioning in mice. Here, we show that PSA inhibits opening of recombinant NMDA receptors composed of GluN1/2B (NR1/NR2B) or GluN1/2A/2B (NR1/NR2A/NR2B) but not of GluN1/2A (NR1/NR2A) subunits. Deficits in NCAM/PSA increase GluN2B-mediated transmission and Ca2+ transients in the CA1 region of the hippocampus. In line with elevation of GluN2B-mediated transmission, defects in long-term potentiation in the CA1 region and contextual fear memory in NCAM/PSA-deficient mice are abrogated by application of a GluN2B-selective antagonist. Furthermore, treatment with the glutamate scavenger glutamic-pyruvic transaminase, ablation of Ras-GRF1 (a mediator of GluN2B signaling to p38 MAPK), or direct inhibition of hyperactive p38 MAPK can restore impaired synaptic plasticity in brain slices lacking PSA/NCAM. Thus, PSA carried by NCAM regulates plasticity and learning by inhibition of the GluN2B-Ras-GRF1-p38 MAPK signaling pathway. These findings implicate carbohydrates carried by adhesion molecules in modulating NMDA receptor signaling in the brain and demonstrate reversibility of cognitive deficits associated with ablation of a schizophrenia-related adhesion molecule. PMID:20237287

  12. ANKS1B Gene Product AIDA-1 Controls Hippocampal Synaptic Transmission by Regulating GluN2B Subunit Localization.

    PubMed

    Tindi, Jaafar O; Chávez, Andrés E; Cvejic, Svetlana; Calvo-Ochoa, Erika; Castillo, Pablo E; Jordan, Bryen A

    2015-06-17

    NMDA receptors (NMDARs) are key mediators of glutamatergic transmission and synaptic plasticity, and their dysregulation has been linked to diverse neuropsychiatric and neurodegenerative disorders. While normal NMDAR function requires regulated expression and trafficking of its different subunits, the molecular mechanisms underlying these processes are not fully understood. Here we report that the amyloid precursor protein intracellular domain associated-1 protein (AIDA-1), which associates with NMDARs and is encoded by ANKS1B, a gene recently linked to schizophrenia, regulates synaptic NMDAR subunit composition. Forebrain-specific AIDA-1 conditional knock-out (cKO) mice exhibit reduced GluN2B-mediated and increased GluN2A-mediated synaptic transmission, and biochemical analyses show AIDA-1 cKO mice have low GluN2B and high GluN2A protein levels at isolated hippocampal synaptic junctions compared with controls. These results are corroborated by immunocytochemical and electrophysiological analyses in primary neuronal cultures following acute lentiviral shRNA-mediated knockdown of AIDA-1. Moreover, hippocampal NMDAR-dependent but not metabotropic glutamate receptor-dependent plasticity is impaired in AIDA-1 cKO mice, further supporting a role for AIDA-1 in synaptic NMDAR function. We also demonstrate that AIDA-1 preferentially associates with GluN2B and with the adaptor protein Ca(2+)/calmodulin-dependent serine protein kinase and kinesin KIF17, which regulate the transport of GluN2B-containing NMDARs from the endoplasmic reticulum (ER) to synapses. Consistent with this function, GluN2B accumulates in ER-enriched fractions in AIDA-1 cKO mice. These findings suggest that AIDA-1 regulates NMDAR subunit composition at synapses by facilitating transport of GluN2B from the ER to synapses, which is critical for NMDAR plasticity. Our work provides an explanation for how AIDA-1 dysfunction might contribute to neuropsychiatric conditions, such as schizophrenia.

  13. UGT2B gene expression analysis in multiple tobacco carcinogen-targeted tissues.

    PubMed

    Jones, Nathan R; Lazarus, Philip

    2014-04-01

    The UDP-glucuronosyltransferase (UGT) 2B subfamily of enzymes plays an important role in the metabolism of numerous endogenous and exogenous compounds, including various carcinogens present in tobacco smoke. The goal of the present study was to examine the levels of expression of individual UGT2B genes in various tissues that are targets for tobacco carcinogenesis. Using MT-ATP6 as the experimentally validated housekeeping gene, the highest extrahepatic expression of UGT2B genes was observed in human tonsil, with UGT2B expression levels similar to that observed in human liver. UGT2B17 exhibited high relative expression in most tissues examined, including lung, most tissues of the aerodigestive tract, and pancreas. UGT2B7 expression was highest in pancreas but low or undetectable in most other tissues examined. UGT2B10 expression was high in both tonsil and tongue. There was wide variability between individuals in the magnitude of expression in each tissue site, and there were strong correlations between UGT2B expression levels in different individuals within many of the tissue sites, suggesting coordinated regulation of UGT2B gene expression in extrahepatic tissues. In the liver, UGTs 2B4, 2B7, 2B10, and 2B15 were significantly correlated with each other (all r(2) > 0.70, P < 0.0001). In all examined tissues of the aerodigestive tract, UGTs 2B10, 2B11, and 2B17 exhibited a strong correlation with each other (all r(2) > 0.75, P < 0.05). UGTs 2B7 and 2B10 exhibited a strong inverse correlation in the pancreas (r(2) = -0.95, P < 0.01). These data suggest that specific UGT2B enzymes important in tobacco carcinogen metabolism are expressed and coordinately regulated in various target sites for tobacco-related cancers.

  14. Fast sodium ionic conduction in Na2B10H10-Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery

    NASA Astrophysics Data System (ADS)

    Yoshida, Koji; Sato, Toyoto; Unemoto, Atsushi; Matsuo, Motoaki; Ikeshoji, Tamio; Udovic, Terrence J.; Orimo, Shin-ichi

    2017-03-01

    In the present work, we developed highly sodium-ion conductive Na2B10H10-Na2B12H12 pseudo-binary complex hydride via mechanically ball-milling admixtures of the pure Na2B10H10 and Na2B12H12 components. Both of these components show a monoclinic phase at room temperature, but ball-milled mixtures partially stabilized highly ion-conductive, disordered cubic phases, whose fraction and favored structural symmetry (body-centered cubic or face-centered cubic) depended on the conditions of mechanical ball-milling and molar ratio of the component compounds. First-principles molecular-dynamics simulations demonstrated that the total energy of the closo-borane mixtures and pure materials is quite close, helping to explain the observed stabilization of the mixed compounds. The ionic conductivity of the closo-borane mixtures appeared to be correlated with the fraction of the body-centered-cubic phase, exhibiting a maximum at a molar ratio of Na2B10H10:Na2B12H12 = 1:3. A conductivity as high as log(σ/S cm-1) = -3.5 was observed for the above ratio at 303 K, being approximately 2-3 orders of magnitude higher than that of either pure material. A bulk-type all-solid-state sodium-ion battery with a closo-borane-mixture electrolyte, sodium-metal negative-electrode, and TiS2 positive-electrode demonstrated a high specific capacity, close to the theoretical value of NaTiS2 formation and a stable discharge/charge cycling for at least eleven cycles, with a high discharge capacity retention ratio above 91% from the second cycle.

  15. Inhibition of CYP3A4 and CYP1A2 b Aegle marmelos and its constituents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aegle marmelos (bael) is a popular tree in India and other Southeast Asian countries. The fruit is usually consumed as dried, fresh or juice and is reported to have a high nutritional value and many perceived health benefits. Despite of the edible nature and therapeutic properties of A. marmelos, no...

  16. Thieno[3,2-b]- and thieno[2,3-b]pyrrole bioisosteric analogues of the hallucinogen and serotonin agonist N,N-dimethyltryptamine.

    PubMed

    Blair, J B; Marona-Lewicka, D; Kanthasamy, A; Lucaites, V L; Nelson, D L; Nichols, D E

    1999-03-25

    The synthesis and biological activity of 6-[2-(N, N-dimethylamino)ethyl]-4H-thieno[3,2-b]pyrrole (3a) and 4-[2-(N, N-dimethylamino)ethyl]-6H-thieno[2,3-b]pyrrole (3b), thienopyrroles as potential bioisosteres of N,N-dimethyltryptamine (1a), are reported. Hallucinogen-like activity was evaluated in the two-lever drug discrimination paradigm using LSD- and DOI-trained rats. Neither 3a nor 3b substituted for LSD or DOI up to doses of 50 micromol/kg. By comparison, 1a fully substituted in LSD-trained rats. However, 3a and 3b fully substituted for the 5-HT1A agonist LY293284 ((-)-(4R)-6-acetyl-4-(di-n-propylamino)-1,3,4, 5-tetrahydrobenz[c,d]indole). Both 3a and 3b induced a brief "serotonin syndrome" and salivation, an indication of 5-HT1A receptor activation. At the cloned human 5-HT2A receptor 3b had about twice the affinity of 3a. At the cloned human 5-HT2B and 5-HT2C receptors, however, 3a had about twice the affinity of 3b. Therefore, thiophene lacks equivalence as a replacement for the phenyl ring in the indole nucleus of tryptamines that bind to 5-HT2 receptor subtypes and possess LSD-like behavioral effects. Whereas both of the thienopyrroles had lower affinity than the corresponding 1a at 5-HT2 receptors, 3a and 3b had significantly greater affinity than 1a at the 5-HT1A receptor. Thus, thienopyrrole does appear to serve as a potent bioisostere for the indole nucleus in compounds that bind to the serotonin 5-HT1A receptor. These differences in biological activity suggest that serotonin receptor isoforms are very sensitive to subtle changes in the electronic character of the aromatic systems of indole compounds.

  17. SH2B1 regulation of energy balance, body weight, and glucose metabolism.

    PubMed

    Rui, Liangyou

    2014-08-15

    The Src homology 2B (SH2B) family members (SH2B1, SH2B2 and SH2B3) are adaptor signaling proteins containing characteristic SH2 and PH domains. SH2B1 (also called SH2-B and PSM) and SH2B2 (also called APS) are able to form homo- or hetero-dimers via their N-terminal dimerization domains. Their C-terminal SH2 domains bind to tyrosyl phosphorylated proteins, including Janus kinase 2 (JAK2), TrkA, insulin receptors, insulin-like growth factor-1 receptors, insulin receptor substrate-1 (IRS1), and IRS2. SH2B1 enhances leptin signaling by both stimulating JAK2 activity and assembling a JAK2/IRS1/2 signaling complex. SH2B1 promotes insulin signaling by both enhancing insulin receptor catalytic activity and protecting against dephosphorylation of IRS proteins. Accordingly, genetic deletion of SH2B1 results in severe leptin resistance, insulin resistance, hyperphagia, obesity, and type 2 diabetes in mice. Neuron-specific overexpression of SH2B1β transgenes protects against diet-induced obesity and insulin resistance. SH2B1 in pancreatic β cells promotes β cell expansion and insulin secretion to counteract insulin resistance in obesity. Moreover, numerous SH2B1 mutations are genetically linked to leptin resistance, insulin resistance, obesity, and type 2 diabetes in humans. Unlike SH2B1, SH2B2 and SH2B3 are not required for the maintenance of normal energy and glucose homeostasis. The metabolic function of the SH2B family is conserved from insects to humans.

  18. Neuronal SH2B1 is essential for controlling energy and glucose homeostasis.

    PubMed

    Ren, Decheng; Zhou, Yingjiang; Morris, David; Li, Minghua; Li, Zhiqin; Rui, Liangyou

    2007-02-01

    SH2B1 (previously named SH2-B), a cytoplasmic adaptor protein, binds via its Src homology 2 (SH2) domain to a variety of protein tyrosine kinases, including JAK2 and the insulin receptor. SH2B1-deficient mice are obese and diabetic. Here we demonstrated that multiple isoforms of SH2B1 (alpha, beta, gamma, and/or delta) were expressed in numerous tissues, including the brain, hypothalamus, liver, muscle, adipose tissue, heart, and pancreas. Rat SH2B1beta was specifically expressed in neural tissue in SH2B1-transgenic (SH2B1(Tg)) mice. SH2B1(Tg) mice were crossed with SH2B1-knockout (SH2B1(KO)) mice to generate SH2B1(TgKO) mice expressing SH2B1 only in neural tissue but not in other tissues. Systemic deletion of the SH2B1 gene resulted in metabolic disorders in SH2B1(KO) mice, including hyperlipidemia, leptin resistance, hyperphagia, obesity, hyperglycemia, insulin resistance, and glucose intolerance. Neuron-specific restoration of SH2B1beta not only corrected the metabolic disorders in SH2B1(TgKO) mice, but also improved JAK2-mediated leptin signaling and leptin regulation of orexigenic neuropeptide expression in the hypothalamus. Moreover, neuron-specific overexpression of SH2B1 dose-dependently protected against high-fat diet-induced leptin resistance and obesity. These observations suggest that neuronal SH2B1 regulates energy balance, body weight, peripheral insulin sensitivity, and glucose homeostasis at least in part by enhancing hypothalamic leptin sensitivity.

  19. Synthesis, structure, and properties of the noncentrosymmetric hydrated borate Na(2)B(5)O(8)(OH).2H(2)O.

    PubMed

    Wang, Yongjiang; Pan, Shilie; Tian, Xuelin; Zhou, Zhongxiang; Liu, Gang; Wang, Jide; Jia, Dianzeng

    2009-08-17

    Single crystal of hydrated sodium borate Na(2)B(5)O(8)(OH).2H(2)O has been grown with sizes up to 5 x 5 x 3 mm(3) under mild hydrothermal conditions at 180 degrees C. The structure is determined by single-crystal X-ray diffraction and further characterized by IR and TG analyses. It crystallizes in the orthorhombic space group Pna2(1), with a = 11.967(2) A, b = 6.5320(13) A, c = 11.126(2) A, Z = 4, R1 = 0.0183, and wR2 = 0.0483. The crystal structure of Na(2)B(5)O(8)(OH).2H(2)O is made up of Na-O polyhedra, and [B(5)O(8)(OH)](2-) polyborate anions. Transmittance spectrum is performed on the Na(2)B(5)O(8)(OH).2H(2)O crystal, which shows an absorption edge less than 190 nm in the UV region. The powder second-harmonic generation intensity measured by the Kurtz-Perry method indicates that Na(2)B(5)O(8)(OH).2H(2)O is about half that of KH(2)PO(4) (KDP).

  20. Remission of liver fibrosis by interferon-alpha 2b.

    PubMed

    Moreno, M G; Muriel, P

    1995-08-08

    Fibrosis is a dynamic process associated with the continuous deposition and resorption of connective tissue, mainly collagen. Therapeutic strategies are emerging by which this dynamic process can be modulated. Since interferons are known to inhibit collagen production, the aim of this study was to investigate if the administration of interferon-alpha 2b (IFN-alpha) can restore the normal hepatic content of collagen in rats with established fibrosis. Fibrosis was induced by prolonged bile duct ligation. IFN-alpha (100,000 IU/rat/day; s.c.) was administered to fibrotic rats for 15 days. Bile duct ligation increased liver collagen content 6-fold. In addition, serum and liver markers of hepatic injury increased significantly; liver histology showed an increase in collagen deposition, and the normal architecture was lost, with large zones of necrosis being observed frequently. IFN-alpha administration reversed to normal the values of all the biochemical markers measured and restored the normal architecture of the liver. Our results demonstrated that IFN-alpha is useful in reversing fibrosis and liver damage induced by biliary obstruction in the rat. However, further investigations are required to evaluate the therapeutic relevance of interferons on non-viral fibrosis and cholestasis.

  1. Molecular characterization of an. alpha. sub 2B -adrenergic receptor

    SciTech Connect

    Harrison, J.K.; Dewan Zeng; D'Angelo, D.D.; Tucker, A.L.; Zhihong Lu; Barber, C.M.; Lynch, K.R. )

    1990-02-26

    {alpha}{sub 2}-Adrenergic receptors comprise a heterogeneous population based on pharmacologic and molecular evidence. The authors have isolated a cDNA clone (pRNG{alpha}2) encoding a previously undescribed third subtype of an {alpha}{sub 2}-adrenergic receptor from a rat kidney cDNA library. The library was screened with an oligonucleotide encoding a highly conserved region found in all biogenic amine receptors described to date. The deduced amino acid sequence displays many features of G-protein coupled receptors with exception of the absence of the consensus N-linked glycosylation site at the amino terminus. Membranes prepared from COS-1 cells transfected with pRNG{alpha}2 display high affinity and saturable binding to {sup 3}H-rauwolscine (K{sub d}=2 nM).Competition curve data analysis shows that pRNG{alpha}2 protein binds to a variety of adrenergic drugs with the following rank order of potency: yohimbine {ge} cholorpromazine > prazosin {ge} clonidine > norepinephrine {ge} oxymetazoline. pRNG{alpha}2 RNA accumulates in both adult rat kidney and rat neonatal lung (predominant species is 4.0 kb). They conclude that pRNG{alpha}2 likely represents a cDNA for the {alpha}{sub 2B}-adrenergic receptor.

  2. LNK (SH2B3): paradoxical effects in ovarian cancer

    PubMed Central

    Ding, Ling-Wen; Sun, Qiao-Yang; Lin, De-Chen; Chien, Wenwen; Hattori, Norimichi; Dong, Xue-Ming; Gery, Sigal; Garg, Manoj; Doan, Ngan B.; Said, Jonathan W.; Xiao, Jin-Fen; Yang, Henry; Liu, Li-Zhen; Meng, Xuan; Huang, Ruby Yun-Ju; Tang, Kai; Koeffler, H Phillip

    2014-01-01

    LNK (SH2B3) is an adaptor protein studied extensively in normal and malignant hematopoietic cells. In these cells, it down-regulates activated tyrosine kinases at the cell surface resulting in an antiproliferative effect. To date, no studies have examined activities of LNK in solid tumors. In this study, we found by in silico analysis and staining tissue arrays that the levels of LNK expression were elevated in high grade ovarian cancer. To test the functional importance of this observation, LNK was either overexpressed or silenced in several ovarian cancer cell lines. Remarkably, overexpression of LNK rendered the cells resistant to death induced by either serum starvation or nutrient deprivation, and generated larger tumors using a murine xenograft model. In contrast, silencing of LNK decreased ovarian cancer cell growth in vitro and in vivo. Western blot studies indicated that overexpression of LNK upregulated and extended the transduction of the mitogenic signal, whereas silencing of the LNK produced the opposite effects. Furthermore, forced expression of LNK reduced cell size, inhibited cell migration and markedly enhanced cell adhesion. LC-MS identified 14-3-3 as one of the LNK binding partners. Our results suggest that in contrast to the findings in hematologic malignancies, the adaptor protein LNK acts as a positive signal transduction modulator in ovarian cancers. PMID:24704825

  3. Natural releases from contaminated groundwater, Example Reference Biosphere 2B.

    PubMed

    Simón, I; Naito, M; Thorne, M C; Walke, R

    2005-01-01

    Safety assessment is a tool which, by means of an iterative procedure, allows the evaluation of the performance of a disposal system and its potential impact on human health and the environment. Radionuclides from a deep geological disposal facility may not reach the surface environment until many tens of thousands of years after closure of the facility. The BIOMASS Programme on BIOsphere Modelling and ASSessment developed Examples of "Reference Biospheres" to illustrate the use of the methodology and to demonstrate how biosphere models can be developed and justified as being fit for purpose. The practical examples are also intended to be useful in their own right. The Example Reference Biosphere 2B presented here involves the consideration of alternative types of geosphere-biosphere interfaces and calculation of doses to members of hypothetical exposure groups arising from a wide range of exposure pathways within agricultural and semi-natural environments, but without allowing for evolution of the corresponding biosphere system. The example presented can be used as a generic analysis in some situations although it was developed around a relatively specific conceptual model. It should be a useful practical example, but the above numerical results are not intended to be understood as prescribed biosphere 'conversion factors'.

  4. Upregulation of UGT2B4 Expression by 3′-Phosphoadenosine-5′-Phosphosulfate Synthase Knockdown: Implications for Coordinated Control of Bile Acid Conjugation

    PubMed Central

    Barrett, Kathleen G.; Fang, Hailin; Cukovic, Daniela; Dombkowski, Alan A.; Kocarek, Thomas A.

    2015-01-01

    During cholestasis, the bile acid–conjugating enzymes, SULT2A1 and UGT2B4, work in concert to prevent the accumulation of toxic bile acids. To understand the impact of sulfotransferase deficiency on human hepatic gene expression, we knocked down 3′-phosphoadenosine-5′-phosphosulfate synthases (PAPSS) 1 and 2, which catalyze synthesis of the obligate sulfotransferase cofactor, in HepG2 cells. PAPSS knockdown caused no change in SULT2A1 expression; however, UGT2B4 expression increased markedly (∼41-fold increase in UGT2B4 mRNA content). Knockdown of SULT2A1 in HepG2 cells also increased UGT2B4 expression. To investigate the underlying mechanism, we transfected PAPSS-deficient HepG2 cells with a luciferase reporter plasmid containing ∼2 Kb of the UGT2B4 5′-flanking region, which included a response element for the bile acid–sensing nuclear receptor, farnesoid X receptor (FXR). FXR activation or overexpression increased UGT2B4 promoter activity; however, knocking down FXR or mutating or deleting the FXR response element did not significantly decrease UGT2B4 promoter activity. Further evaluation of the UGT2B4 5′-flanking region indicated the presence of distal regulatory elements between nucleotides −10090 and −10037 that negatively and positively regulated UGT2B4 transcription. Pulse-chase analysis showed that increased UGT2B4 expression in PAPSS-deficient cells was attributable to both increased mRNA synthesis and stability. Transfection analysis demonstrated that the UGT2B4 3′-untranslated region decreased luciferase reporter expression less in PAPSS-deficient cells than in control cells. These data indicate that knocking down PAPSS increases UGT2B4 transcription and mRNA stability as a compensatory response to the loss of SULT2A1 activity, presumably to maintain bile acid–conjugating activity. PMID:25948711

  5. CYP2B6 SNPs are associated with methadone dose required for effective treatment of opioid addiction.

    PubMed

    Levran, Orna; Peles, Einat; Hamon, Sara; Randesi, Matthew; Adelson, Miriam; Kreek, Mary Jeanne

    2013-07-01

    Adequate methadone dosing in methadone maintenance treatment (MMT) for opioid addiction is critical for therapeutic success. One of the challenges in dose determination is the inter-individual variability in dose-response. Methadone metabolism is attributed primarily to cytochrome P450 enzymes CYP3A4, CYP2B6 and CYP2D6. The CYP2B6*6 allele [single nucleotide polymorphisms (SNPs) 785A>G (rs2279343) and 516G>T (rs3745274)] was associated with slow methadone metabolism. To explore the effects of CYP2B6*6 allele on methadone dose requirement, it was genotyped in a well-characterized sample of 74 Israeli former heroin addicts in MMT. The sample is primarily of Middle Eastern/European ancestry, based on ancestry informative markers (AIMs). Only patients with no major co-medication that may affect methadone metabolism were included. The stabilizing daily methadone dose in this sample ranges between 13 and 260mg (mean 140±52mg). The mean methadone doses required by subjects homozygous for the variant alleles of the CYP2B6 SNPs 785A>G and 516G>T (88, 96mg, respectively) were significantly lower than those of the heterozygotes (133, 129mg, respectively) and the non-carriers (150, 151mg, respectively) (nominal P=0.012, 0.048, respectively). The results remain significant after controlling for age, sex and the ABCB1 SNP 1236C>T (rs1128503), which was previously shown to be associated with high methadone dose requirement in this population (P=0.006, 0.030, respectively). An additional 77 CYP2B6, CYP3A4 and CYP2D6 SNPs were genotyped. Of these, 24 SNPs were polymorphic and none showed significant association with methadone dose. Further studies are necessary to replicate these preliminary findings in additional subjects and other populations.

  6. Phytoremediation of metolachlor by transgenic rice plants expressing human CYP2B6.

    PubMed

    Kawahigashi, Hiroyuki; Hirose, Sakiko; Ohkawa, Hideo; Ohkawa, Yasunobu

    2005-11-16

    We introduced the human cytochrome P450 gene CYP2B6 into rice plants (Oryza sativa L. cv. Nipponbare), and the CYP2B6-expressing rice plants became more tolerant to various herbicides than nontransgenic Nipponbare rice plants. In particular, CYP2B6 rice plants grown in soil showed tolerance to the chloroacetanilide herbicides alachlor and metolachlor. We evaluated the degradation of metolachlor by CYP2B6 rice plants to confirm the metabolic activity of the introduced CYP2B6. Although both CYP2B6 and nontransgenic Nipponbare rice plants could decrease the amount of metolachlor in plant tissue and culture medium, CYP2B6 rice plants could remove much greater amounts. In a greenhouse, the ability of CYP2B6 rice plants to remove metolachlor was confirmed in large-scale experiments, in which these plants appeared able to decrease residual quantities of metolachlor in water and soil.

  7. 75 FR 13451 - Airworthiness Directives; Turbomeca Arriel 2B1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... 2B1 Turboshaft Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Arriel 2B1 turboshaft engines. This proposed AD results from mandatory continuing airworthiness...-2251. FOR FURTHER INFORMATION CONTACT: Kevin Dickert, Aerospace Engineer, Engine Certification...

  8. The impact of adenosine and A(2B) receptors on glucose homoeostasis.

    PubMed

    Rüsing, D; Müller, C E; Verspohl, E J

    2006-12-01

    Adenosine and adenosine receptor antagonists are involved in glucose homoeostasis. The participating receptors are not known, mainly due to a lack of specific agonists and antagonists, but are reasonable targets for anti-diabetic therapy. The stable, albeit nonselective, adenosine analogue NECA (5'-N-ethylcarboxamidoadenosine) (10 microM) reduced glucose-stimulated insulin release from INS-1 cells. This was mimicked by A(1)-(CHA), A(2A)-(CGS-21680) and A(3)-receptor agonists (Cl-IB-MECA). Two newly synthesized A(2B)-receptor antagonists, PSB-53 and PSB-1115, counteracted the inhibitory effect of NECA. These in-vitro effects were mirrored by in-vivo data with respect to CHA, CGS and Cl-IB-MECA. Distinct concentrations of either PSB-53 or PSB-1115 reversed the decrease in plasma insulin induced by NECA. This was not mimicked by a corresponding change in blood glucose. The effect of PSB-1115 was also obvious in diabetic GotoKakizaki rats: plasma insulin was increased whereas blood glucose was unchanged. During most experiments the effects on blood glucose were not impressive probably because of the physiologically necessary homoeostasis. The adenosine levels were not different in normal Wistar rats and in diabetic GotoKakzaki rats. Altogether the A(2B)-receptor antagonists showed an anti-diabetic potential mainly by increasing plasma insulin levels under conditions when the adenosine tonus was elevated in-vivo and increased insulin release in-vitro.

  9. Isl2b regulates anterior second heart field development in zebrafish

    PubMed Central

    Witzel, Hagen R.; Cheedipudi, Sirisha; Gao, Rui; Stainier, Didier Y. R.; Dobreva, Gergana D.

    2017-01-01

    After initial formation, the heart tube grows by addition of second heart field progenitor cells to its poles. The transcription factor Isl1 is expressed in the entire second heart field in mouse, and Isl1-deficient mouse embryos show defects in arterial and venous pole development. The expression of Isl1 is conserved in zebrafish cardiac progenitors; however, Isl1 is required for cardiomyocyte differentiation only at the venous pole. Here we show that Isl1 homologues are expressed in specific patterns in the developing zebrafish heart and play distinct roles during cardiac morphogenesis. In zebrafish, isl2a mutants show defects in cardiac looping, whereas isl2b is required for arterial pole development. Moreover, Isl2b controls the expression of key cardiac transcription factors including mef2ca, mef2cb, hand2 and tbx20. The specific roles of individual Islet family members in the development of distinct regions of the zebrafish heart renders this system particularly well-suited for dissecting Islet-dependent gene regulatory networks controlling the behavior and function of second heart field progenitors in distinct steps of cardiac development. PMID:28106108

  10. Isl2b regulates anterior second heart field development in zebrafish.

    PubMed

    Witzel, Hagen R; Cheedipudi, Sirisha; Gao, Rui; Stainier, Didier Y R; Dobreva, Gergana D

    2017-01-20

    After initial formation, the heart tube grows by addition of second heart field progenitor cells to its poles. The transcription factor Isl1 is expressed in the entire second heart field in mouse, and Isl1-deficient mouse embryos show defects in arterial and venous pole development. The expression of Isl1 is conserved in zebrafish cardiac progenitors; however, Isl1 is required for cardiomyocyte differentiation only at the venous pole. Here we show that Isl1 homologues are expressed in specific patterns in the developing zebrafish heart and play distinct roles during cardiac morphogenesis. In zebrafish, isl2a mutants show defects in cardiac looping, whereas isl2b is required for arterial pole development. Moreover, Isl2b controls the expression of key cardiac transcription factors including mef2ca, mef2cb, hand2 and tbx20. The specific roles of individual Islet family members in the development of distinct regions of the zebrafish heart renders this system particularly well-suited for dissecting Islet-dependent gene regulatory networks controlling the behavior and function of second heart field progenitors in distinct steps of cardiac development.

  11. Beyond the exchange--the future of B2B.

    PubMed

    Wise, R; Morrison, D

    2000-01-01

    Using the Internet to facilitate business-to-business commerce promises many benefits, such as dramatic cost reductions and greater access to buyers and sellers. Yet little is known about how B2B e-commerce will evolve. The authors argue that changes in the financial services industry over the past two decades provide important clues. Exchanges, they say, are not the primary source of value in information-intensive markets; value tends to accumulate among a diverse group of specialists that focus on such tasks as packaging, standard setting, arbitrage, and information management. Because scale and liquidity are vitally important to efficient trading, today's exchanges will consolidate into a relatively small set of mega-exchanges. Originators will handle the origination and aggregation of complex transactions before sending them on to mega-exchanges for execution. E-speculators, seeking to capitalize on an abundance of market information, will tend to concentrate where relatively standardized products can be transferred easily among a large group of buyers. In many markets, a handful of independent solution providers with well-known brand names and solid reputations will thrive alongside mega-exchanges. Sell-side asset exchanges will create the networks and provide the tools to allow suppliers to trade orders among themselves, sometimes after initial transactions with customers are made on the mega-exchanges. For many companies, traditional skills in such areas as product development, manufacturing, and marketing may become relatively less important, while the ability to understand and capitalize on market dynamics may become considerably more important.

  12. Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida

    PubMed Central

    Wilderman, P. Ross; Jang, Hyun-Hee; Malenke, Jael R.; Salib, Mariam; Angermeier, Elizabeth; Lamime, Sonia; Dearing, M. Denise; Halpert, James R.

    2014-01-01

    Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in E. coli each of the woodrat proteins gave the characteristic maximum at 450 nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-α-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalytic and one ligand-binding assay are sufficient to distinguish among CYP2B35, 2B36, and 2B37. Differences in functional profiles between 2B36 and 2B37 are partially explained by changes in substrate recognition site residue 114, but not 480. The results advance our understanding of the mechanisms of detoxification in wild mammalian herbivores and highlight the complexity of this system. PMID:24361551

  13. 20 CFR 655.11 - Registration of H-2B employers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Saturday, Sunday or Federal holiday. (g) Request for information (RFI). If the CO determines the H-2B... response to the RFI, the CO will review the H-2B Registration as well as any supplemental information and... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Registration of H-2B employers....

  14. Expression of eight distinct MHC isoforms in bovine striated muscles: evidence for MHC-2B presence only in extraocular muscles.

    PubMed

    Toniolo, L; Maccatrozzo, L; Patruno, M; Caliaro, F; Mascarello, F; Reggiani, C

    2005-11-01

    This study aimed to analyse the expression of myosin heavy chain (MHC) isoforms in bovine muscles, with particular attention to the MHC-2B gene. Diaphragm, longissimus dorsi, masseter, several laryngeal muscles and two extraocular muscles (rectus lateralis and retractor bulbi) were sampled in adult male Bos taurus (age 18-24 months, mass 400-500 kg) and analysed by RT-PCR, gel electrophoresis and immunohistochemistry. Transcripts and proteins corresponding to eight MHC isoforms were identified: MHC-alpha and MHC-beta/slow (or MHC-1), two developmental isoforms (MHC-embryonic and MHC-neonatal), three adult fast isoforms (MHC-2A, MHC-2X and MHC-2B) and the extraocular isoform MHC-Eo. All eight MHC isoforms were found to be co-expressed in extrinsic eye muscles, retractor bulbi and rectus lateralis, four (beta/slow, 2A, 2X, neonatal) in laryngeal muscles, three (beta/slow, 2A and 2X) in trunk and limb muscles and two (beta/slow and alpha) in masseter. The expression of MHC-2B and MHC-Eo was restricted to extraocular muscles. Developmental MHC isoforms (neonatal and embryonic) were only found in specialized muscles in the larynx and in the eye. MHC-alpha was only found in extraocular and masseter muscle. Single fibres dissected from masseter, diaphragm and longissimus were classified into five groups (expressing, respectively, beta/slow, alpha, slow and 2A, 2A and 2X) on the basis of MHC isoform electrophoretical separation, and their contractile properties [maximum shortening velocity (v(0)) and isometric tension (P(0))] were determined. v(0) increased progressively from slow to fast 2A and fast 2X, whereas hybrid 1-2A fibres and fibres containing MHC-alpha were intermediate between slow and fast 2A.

  15. Potential Contribution of Cytochrome P450 2B6 to Hepatic 4-Hydroxycyclophosphamide Formation In Vitro and In VivoS⃞

    PubMed Central

    Raccor, Brianne S.; Claessens, Adam J.; Dinh, Jean C.; Park, Julie R.; Hawkins, Douglas S.; Thomas, Sushma S.; Makar, Karen W.; McCune, Jeannine S.

    2012-01-01

    Results from retrospective studies on the relationship between cytochrome P450 (P450) 2B6 (CYP2B6) genotype and cyclophosphamide (CY) efficacy and toxicity in adult cancer patients have been conflicting. We evaluated this relationship in children, who have faster CY clearance and receive different CY-based regimens than adults. These factors may influence the P450s metabolizing CY to 4-hydroxycyclophosphamide (4HCY), the principal precursor to CY's cytotoxic metabolite. Therefore, we sought to characterize the in vitro and in vivo roles of hepatic CYP2B6 and its main allelic variants in 4HCY formation. CYP2B6 is the major isozyme responsible for 4HCY formation in recombinant P450 Supersomes. In human liver microsomes (HLM), 4HCY formation correlated with known phenotypic markers of CYP2B6 activity, specifically formation of (S)-2-ethyl-1,5-dimethyl-3,3-diphenyl pyrrolidine and hydroxybupropion. However, in HLM, CYP3A4/5 also contributes to 4HCY formation at the CY concentrations similar to plasma concentrations achieved in children (0.1 mM). 4HCY formation was not associated with CYP2B6 genotype at low (0.1 mM) or high (1 mM) CY concentrations potentially because CYP3A4/5 and other isozymes also form 4HCY. To remove this confounder, 4HCY formation was evaluated in recombinant CYP2B6 enzymes, which demonstrated that 4HCY formation was lower for CYP2B6.4 and CYP2B6.5 compared with CYP2B6.1. In vivo, CYP2B6 genotype was not directly related to CY clearance or ratio of 4HCY/CY areas under the curve in 51 children receiving CY-based regimens. Concomitant chemotherapy agents did not influence 4HCY formation in vitro. We conclude that CYP2B6 genotype is not consistently related to 4HCY formation in vitro or in vivo. PMID:21976622

  16. Adenosine receptors and diabetes: Focus on the A(2B) adenosine receptor subtype.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Gessi, Stefania

    2015-09-01

    Over the last two decades, diabetes mellitus has become one of the most challenging health problems worldwide. Diabetes mellitus, classified as type I and II, is a pathology concerning blood glucose level in the body. The nucleoside adenosine has long been known to affect insulin secretion, glucose homeostasis and lipid metabolism, through activation of four G protein coupled adenosine receptors (ARs), named A1, A2A, A2B and A3. Currently, the novel promising subtype to develop new drugs for diabetes treatment is the A2BAR subtype. The use of selective agonists and antagonists for A2BAR subtype in various diabetic animal models allowed us to identify several effects of A2BAR signaling in cell metabolism. In particular, the focus of this review is to summarize the studies on purinergic signaling associated with diabetes through A2BARs modulation.

  17. SILEN-C3, a Phase 2 Randomized Trial with Faldaprevir plus Pegylated Interferon α-2a and Ribavirin in Treatment-Naive Hepatitis C Virus Genotype 1-Infected Patients

    PubMed Central

    Asselah, Tarik; Guyader, Dominique; Berg, Thomas; Schuchmann, Marcus; Mauss, Stefan; Ratziu, Vlad; Ferenci, Peter; Larrey, Dominique; Maieron, Andreas; Stern, Jerry O.; Ozan, Melek; Datsenko, Yakov; Böcher, Wulf Otto; Steinmann, Gerhard

    2014-01-01

    Faldaprevir is an investigational hepatitis C virus (HCV) NS3/4A protease inhibitor which, when administered for 24 weeks in combination with pegylated interferon α-2a and ribavirin (PegIFN/RBV) in treatment-naive patients in a prior study (SILEN-C1; M. S. Sulkowski et al., Hepatology 57:2143–2154, 2013, doi:10.1002/hep.26276), achieved sustained virologic response (SVR) rates of 72 to 84%. The current randomized, open-label, parallel-group study compared the efficacy and safety of 12 versus 24 weeks of 120 mg faldaprevir administered once daily, combined with 24 or 48 weeks of PegIFN/RBV, in 160 treatment-naive HCV genotype 1 patients. Patients with maintained rapid virologic response (HCV RNA of <25 IU/ml at week 4 and undetectable at weeks 8 and 12) stopped all treatment at week 24, otherwise they continued PegIFN/RBV to week 48. SVR was achieved by 67% and 74% of patients in the 12-week and 24-week groups, respectively. Virologic response rates were lower in the 12-week group from weeks 2 to 12, during which both groups received identical treatment. SVR rates were similar in both groups for patients achieving undetectable HCV RNA. Most adverse events were mild or moderate, and 6% of patients in each treatment group discontinued treatment due to adverse events. Once-daily faldaprevir at 120 mg for 12 or 24 weeks with PegIFN/RBV resulted in high SVR rates, and the regimen was well tolerated. Differences in the overall SVR rates between the 12-week and 24-week groups were not statistically significant and possibly were due to IL28B genotype imbalances; IL28B genotype was not tested, as its significance was not known at the time of the study. These results supported phase 3 evaluation. (This study has been registered at ClinicalTrials.gov under registration no. NCT00984620). PMID:24709256

  18. A 12p13 GRIN2B deletion is associated with developmental delay and macrocephaly

    PubMed Central

    Morisada, Naoya; Ioroi, Tomoaki; Taniguchi-Ikeda, Mariko; Juan Ye, Ming; Okamoto, Nobuhiko; Yamamoto, Toshiyuki; Iijima, Kazumoto

    2016-01-01

    N-methyl D-aspartate receptor subtype 2B (GluN2B), encoded by GRIN2B, is one of the components of the N-methyl D-aspartate receptor protein. Aberrations in GRIN2B have been reported to be responsible for various types of neurodevelopmental disorders. We report a Japanese boy with an ~2 Mb interstitial deletion in 12p13 involving the entire GRIN2B gene, who presented with intellectual disability, motor developmental delay and marked macrocephaly. PMID:27656287

  19. Role of adenosine A2b receptor overexpression in tumor progression.

    PubMed

    Sepúlveda, Cesar; Palomo, Iván; Fuentes, Eduardo

    2016-12-01

    The adenosine A2b receptor is a G-protein coupled receptor. Its activation occurs with high extracellular adenosine concentration, for example in inflammation or hypoxia. These conditions are generated in the tumor environment. Studies show that A2b receptor is overexpressed in various tumor lines and biopsies from patients with different cancers. This suggests that A2b receptor can be used by tumor cells to promote progression. Thus A2b participates in different events, such as angiogenesis and metastasis, besides exerting immunomodulatory effects that protect tumor cells. Therefore, adenosine A2b receptor appears as an interesting therapeutic target for cancer treatment.

  20. Trafficking of the NMDAR2B Receptor Subunit Distal Cytoplasmic Tail from Endoplasmic Reticulum to the Synapse

    PubMed Central

    Standley, Steve; Petralia, Ronald S.; Hamilton, Rebecca; Wang, Ya-Xian; Schubert, Manfred

    2012-01-01

    NMDA receptor NR2A/B subunits have PDZ-binding domains on their extreme C-termini that are known to interact with the PSD-95 family and other PDZ proteins. We explore the interactions between PSD-95 family proteins and the NR2A/B cytoplasmic tails, and the consequences of these interactions, from the endoplasmic reticulum (ER) through delivery to the synapse in primary rat hippocampal and cortical cultured neurons. We find that the NR2A/B cytoplasmic tails cluster very early in the secretory pathway and interact serially with SAP102 beginning at the intermediate compartment, and then PSD-95. We further establish that colocalization of the distal C-terminus of NR2B and PSD-95 begins at the trans-Golgi Network (TGN). Formation of NR2B/PSD-95/SAP102 complexes is dependent on the PDZ binding domain of NR2B subunits, but association with SAP102 and PSD-95 plays no distinguishable role in cluster pre-formation or initial targeting to the vicinity of the synapse. Instead the PDZ binding domain plays a role in restricting cell-surface clusters to postsynaptic targets. PMID:22761831

  1. miR-143 inhibits cell proliferation by targeting autophagy-related 2B in non-small cell lung cancer H1299 cells.

    PubMed

    Wei, Jiali; Ma, Zhongliang; Li, Yanli; Zhao, Botao; Wang, Detao; Jin, Yan; Jin, Youxin

    2015-01-01

    microRNAs (miRNAs) are small, non‑coding RNAs involved in multiple biological pathways by regulating post-transcriptional gene expression. Previously, autophagy has been reported to suppress the progression of non-small cell lung cancer (NSCLC). However, how miRNAs regulate autophagy in NSCLC remains to be elucidated. In the present study, the autophagy gene, autophagy-related 2B (ATG2B), was identified as a novel target of miR-143. The overexpression of miR-143 was able to downregulate the expression of atg2b at the transcriptional and translational levels by direct binding to its 3' untranslated region. Cell proliferation was significantly inhibited by the ectopic expression of miR-143 in H1299 cells. Knockdown of ATG2B resulted in a similar phenotype, with the overexpression of miR-143 in NSCLC cells. Furthermore, knockdown of ATG2B and hexokinase 2, a key enzyme in glycolysis and another target of miR-143, co-ordinated to inhibit the proliferation of H1299 cells. The results of the present study demonstrated that miR-143 was a novel and important regulator of autophagy by targeting ATG2B and repression of gene expression in autophagy and high glycolysis had a coordinate effect in H1299 cells. These results suggested that ATG2B may be a new potential therapeutic target for NSCLC. Furthermore, it was implied that interrupting autophagy and glycolysis improves NSCLC therapy.

  2. Homo- and hetero-dimerization of human UDP-glucuronosyltransferase 2B7 (UGT2B7) wild type and its allelic variants affect zidovudine glucuronidation activity.

    PubMed

    Yuan, Lingmin; Qian, Sainan; Xiao, Yongsheng; Sun, Hongying; Zeng, Su

    2015-05-01

    Most human UDP-glucuronosyltransferase (UGT; EC 2.4.1.17) genes contain non-synonymous single nucleotide polymorphisms (nsSNPs) which cause amino acid substitutions. Allelic variants caused by nsSNPs may exhibit absent or reduced enzyme activity. UGT2B7 is one of the most important UGTs that glucuronidates abundant endobiotics and xenobiotics, such as estriol, morphine, and anticancer drugs. Three nsSNPs, UGT2B7*71S (211G>T), UGT2B7*2 (802C>T) and UGT2B7*5 (1192G>A) are observed in the UGT2B7 gene, and they code for allozymes UGT2B7*71S (A71S), UGT2B7*2 (H268Y), and UGT2B7*5 (D398N). UGT2B7 has been observed to form oligomers that affect its enzymatic activity and in this study, we investigated protein-protein interactions among UGT2B7 allozymes wild type (WT), A71S, H268Y and D398N, by performing a systematic quantitative fluorescence resonance energy transfer (FRET) analysis in combination with co-immunoprecipitation assay. Quantitative FRET analysis revealed that UGT2B7 allozymes formed homo- and hetero-dimers and showed distinct features in donor-acceptor distances. Both codon 71 and codon 268 in the N-terminal domain were involved in the dimeric interaction. Co-immunoprecipitation experiments also proved that UGT2B7 allozymes formed stable dimers. The glucuronidation activities of homo- and hetero-dimers were further tested with zidovudine as the substrate. An increase in activity was observed when WT hetero-dimerized with A71S compared with homo-dimers, while both H268Y and D398N impaired the activity of WT and A71S by forming hetero-dimers. In addition, zidovudine glucuronidation activity is associated with FRET distance. These findings provide insights into the consequences of amino acid substitution in UGT2B7 on zidovudine glucuronidation and the association between protein-protein interaction and glucuronidation activity.

  3. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells

    PubMed Central

    Frenkel, Deborah; Guirnalda, Patrick; Haynes, Carole; Bockstal, Viki; Magez, Stefan; Black, Samuel J.

    2016-01-01

    After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/-) retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK) cell-mediated cytotoxicity: i) B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/-) and FcγRIIIa deficient (CD16-/-) C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii) administration of NK1.1 specific IgG2a (mAb PK136) but not irrelevant IgG2a (myeloma M9144) prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii) splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv) purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v) adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi) degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei infected mice

  4. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells.

    PubMed

    Frenkel, Deborah; Zhang, Fengqiu; Guirnalda, Patrick; Haynes, Carole; Bockstal, Viki; Radwanska, Magdalena; Magez, Stefan; Black, Samuel J

    2016-07-01

    After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/-) retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK) cell-mediated cytotoxicity: i) B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/-) and FcγRIIIa deficient (CD16-/-) C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii) administration of NK1.1 specific IgG2a (mAb PK136) but not irrelevant IgG2a (myeloma M9144) prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii) splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv) purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v) adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi) degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei infected mice

  5. SH2B1 and IRSp53 proteins promote the formation of dendrites and dendritic branches.

    PubMed

    Chen, Chien-Jen; Shih, Chien-Hung; Chang, Yu-Jung; Hong, Shao-Jing; Li, Tian-Neng; Wang, Lily Hui-Ching; Chen, Linyi

    2015-03-06

    SH2B1 is an adaptor protein known to enhance neurite outgrowth. In this study, we provide evidence suggesting that the SH2B1 level is increased during in vitro culture of hippocampal neurons, and the β isoform (SH2B1β) is the predominant isoform. The fact that formation of filopodia is prerequisite for neurite initiation suggests that SH2B1 may regulate filopodium formation and thus neurite initiation. To investigate whether SH2B1 may regulate filopodium formation, the effect of SH2B1 and a membrane and actin regulator, IRSp53 (insulin receptor tyrosine kinase substrate p53), is investigated. Overexpressing both SH2B1β and IRSp53 significantly enhances filopodium formation, neurite outgrowth, and branching. Both in vivo and in vitro data show that SH2B1 interacts with IRSp53 in hippocampal neurons. This interaction depends on the N-terminal proline-rich domains of SH2B1. In addition, SH2B1 and IRSp53 co-localize at the plasma membrane, and their levels increase in the Triton X-100-insoluble fraction of developing neurons. These findings suggest that SH2B1-IRSp53 complexes promote the formation of filopodia, neurite initiation, and neuronal branching.

  6. SH2B1 and IRSp53 Proteins Promote the Formation of Dendrites and Dendritic Branches*

    PubMed Central

    Chen, Chien-Jen; Shih, Chien-Hung; Chang, Yu-Jung; Hong, Shao-Jing; Li, Tian-Neng; Wang, Lily Hui-Ching; Chen, Linyi

    2015-01-01

    SH2B1 is an adaptor protein known to enhance neurite outgrowth. In this study, we provide evidence suggesting that the SH2B1 level is increased during in vitro culture of hippocampal neurons, and the β isoform (SH2B1β) is the predominant isoform. The fact that formation of filopodia is prerequisite for neurite initiation suggests that SH2B1 may regulate filopodium formation and thus neurite initiation. To investigate whether SH2B1 may regulate filopodium formation, the effect of SH2B1 and a membrane and actin regulator, IRSp53 (insulin receptor tyrosine kinase substrate p53), is investigated. Overexpressing both SH2B1β and IRSp53 significantly enhances filopodium formation, neurite outgrowth, and branching. Both in vivo and in vitro data show that SH2B1 interacts with IRSp53 in hippocampal neurons. This interaction depends on the N-terminal proline-rich domains of SH2B1. In addition, SH2B1 and IRSp53 co-localize at the plasma membrane, and their levels increase in the Triton X-100-insoluble fraction of developing neurons. These findings suggest that SH2B1-IRSp53 complexes promote the formation of filopodia, neurite initiation, and neuronal branching. PMID:25586189

  7. Structure of human nucleosome containing the testis-specific histone variant TSH2B.

    PubMed

    Urahama, Takashi; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2014-04-01

    The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue. In contrast, the other TSH2B-specific amino-acid residues did not induce any significant local structural changes in the TSH2B nucleosome. These findings may provide important information for understanding how testis-specific histone variants form nucleosomes during spermatogenesis.

  8. The Macrophage A2b Adenosine Receptor Regulates Tissue Insulin Sensitivity

    PubMed Central

    Koupenova, Milka; Carroll, Shannon; Ravid, Katya

    2014-01-01

    High fat diet (HFD)-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR), an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice. PMID:24892847

  9. Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida

    SciTech Connect

    Wilderman, P. Ross; Jang, Hyun-Hee; Malenke, Jael R.; Salib, Mariam; Angermeier, Elisabeth; Lamime, Sonia; Dearing, M. Denise; Halpert, James R.

    2014-02-01

    Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in Escherichia coli each of the woodrat proteins gave the characteristic maximum at 450 nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-α-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalytic and one ligand-binding assay are sufficient to distinguish among CYP2B35, 2B36, and 2B37. Differences in functional profiles between 2B36 and 2B37 are partially explained by changes in substrate recognition site residue 114, but not 480. The results advance our understanding of the mechanisms of detoxification in wild mammalian herbivores and highlight the complexity of this system. - Highlights: • Three CYP2B enzymes from Neotoma lepida were cloned, engineered, and expressed. • A mix of catalytic and binding assays yields unique results for each enzyme. • Mutational analysis indicates CYP{sub 2}B substrate recognition remains to be clarified. • Reported N. lepida gene

  10. NR2B antagonist CP-101,606 inhibits NR2B phosphorylation at tyrosine-1472 and its interactions with Fyn in levodopa-induced dyskinesia rat model.

    PubMed

    Kong, Min; Ba, Maowen; Liu, Chuanyu; Zhang, Yanxiang; Zhang, Hongli; Qiu, Haiyan

    2015-04-01

    The augmented tyrosine phosphorylation of NR2B subunit of N-methyl-d-aspartate receptors (NMDAR) dependent on Fyn kinase has been associated with levodopa (l-dopa)-induced dyskinesia (LID). CP-101,606, one selective NR2B subunit antagonist, can improve dyskinesia. Yet, the accurate action mechanism is less well understood. In the present study, the evidences were investigated. Valid 6-hydroxydopamine-lesioned parkinsonian rats were treated with l-dopa intraperitoneally for 22 days to induce LID rat model. On day 23, rats received either CP-101,606 (0.5mg/kg) or vehicle with each l-dopa dose. On the day of 1, 8, 15, 22, and 23 during l-dopa treatment, we determined abnormal involuntary movements (AIMs) in rats. The levels of NR2B phosphorylation at tyrosine-1472 (pNR2B-Tyr1472) and interactions of NR2B with Fyn in LID rat model were detected by immunoblotting and immunoprecipitation. Results showed that CP-101,606 attenuated l-dopa-induced AIMs. In agreement with behavioral analysis, CP-101,606 reduced the augmented pNR2B-Tyr1472 and its interactions with Fyn triggered during the l-dopa administration in the lesioned striatum of parkinsonian rats. Moreover, CP-101,606 also decreased the level of Ca(2+)/calmodulin-dependent protein kinase II at threonine-286 hyperphosphorylation (pCaMKII-Thr286), which was the downstream signaling amplification molecule of NMDAR overactivation and closely associated with LID. However, the protein level of NR2B and Fyn had no difference under the above conditions. These data indicate that the inhibition of the interactions of NR2B with Fyn and NR2B tyrosine phosphorylation may contribute to the CP-101,606-induced downregulation of NMDAR function and provide benefit for the therapy of LID.

  11. The structure of C2b, a fragment of complement component C2 produced during C3 convertase formation

    SciTech Connect

    Krishnan, Vengadesan; Xu, Yuanyuan; Macon, Kevin; Volanakis, John E.; Narayana, Sthanam V. L.

    2009-03-01

    The crystal structure of C2b has been determined at 1.8 Å resolution, which reveals the arrangement of its three complement control protein (CCP) modules. A model for complement component C2 is presented and its conformational changes during the C3-convertase formation are also discussed. The second component of complement (C2) is a multi-domain serine protease that provides catalytic activity for the C3 and C5 convertases of the classical and lectin pathways of human complement. The formation of these convertases requires the Mg{sup 2+}-dependent binding of C2 to C4b and the subsequent cleavage of C2 by C1s or MASP2, respectively. The crystal structure of full-length C2 is not yet available, although the structure of its C-terminal catalytic segment C2a has been determined. The crystal structure of the N-terminal segment C2b of C2 determined to 1.8 Å resolution presented here reveals the arrangement of its three CCP domains. The domains are arranged differently compared with most other CCP-domain assemblies, but their arrangement is similar to that found in the Ba part of the full-length factor B structure. The crystal structures of C2a, C2b and full-length factor B are used to generate a model for C2 and a discussion of the domain association and possible interactions with C4b during formation of the C4b–C2 complex is presented. The results of this study also suggest that upon cleavage by C1s, C2a domains undergo conformational rotation while bound to C4b and the released C2b domains may remain folded together similar to as observed in the intact protein.

  12. Lateral Diffusion of Proteins on Supported Lipid Bilayers: Additive Friction of Synaptotagmin 7 C2A–C2B Tandem Domains

    PubMed Central

    2015-01-01

    The synaptotagmin (Syt) family of proteins contains tandem C2 domains, C2A and C2B, which bind membranes in the presence of Ca2+ to trigger vesicle fusion during exocytosis. Despite recent progress, the role and extent of interdomain interactions between C2A and C2B in membrane binding remain unclear. To test whether the two domains interact on a planar lipid bilayer (i.e., experience thermodynamic interdomain contacts), diffusion of fluorescent-tagged C2A, C2B, and C2AB domains from human Syt7 was measured using total internal reflection fluorescence microscopy with single-particle tracking. The C2AB tandem exhibits a lateral diffusion constant approximately half the value of the isolated single domains and does not change when additional residues are engineered into the C2A–C2B linker. This is the expected result if C2A and C2B are separated when membrane-bound; theory predicts that C2AB diffusion would be faster if the two domains were close enough together to have interdomain contact. Stopped-flow measurements of membrane dissociation kinetics further support an absence of interdomain interactions, as dissociation kinetics of the C2AB tandem remain unchanged when rigid or flexible linker extensions are included. Together, the results suggest that the two C2 domains of Syt7 bind independently to planar membranes, in contrast to reported interdomain cooperativity in Syt1. PMID:25437758

  13. Adenosine Signaling Increases Proinflammatory and Profibrotic Mediators through Activation of a Functional Adenosine 2B Receptor in Renal Fibroblasts.

    PubMed

    Wilkinson, Patrick F; Farrell, Francis X; Morel, Diane; Law, William; Murphy, Suzanne

    2016-07-01

    Interstitial renal fibrosis is a major pathophysiological manifestation of patients diagnosed with Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN) and other inflammatory diseases. Adenosine signaling is an innate autocrine and paracrine cellular signaling pathway involving several key mediators that are elevated in the blood and kidneys of patients with DN. In these studies, we hypothesized that extracellular adenosine signals through one or more functional adenosine GPCRs on renal fibroblasts which increases profibrotic and proinflammatory mediators by inducing an activated fibroblast phenotype. Utilizing the renal fibroblast cell line NRK-49F, the presence and relative abundance of adenosine receptors (AR) A1, A2A, A2B, and A3 were quantified by RT-PCR. Under normal homeostatic conditions, only AR1 and AR2B were detected. The functionality of each receptor was then assessed by receptor specific pharmacological agonism and antagonism and assessed for modulation of the GPCR associated secondary messenger molecule, cyclic adenosine monophosphate (cAMP). Agonism of the AR2B receptor resulted in increased intracellular cAMP while agonism of the AR1 receptor inhibited cAMP modulation. Upon direct agonism of the AR2B receptor, transcripts for profibrotic and inflammatory mediators including SMA-α, IL-6, TGF-β, CTGF, and fibronectin were elevated between 2-4 fold. These data indicate that renal fibroblasts express a functional AR1 receptor that inhibits cAMP upon stimulation, leading to a functional AR2B receptor that increases cAMP upon stimulation and also induces an activated fibroblast phenotype resulting in increased fibrotic and inflammatory mediators.

  14. Stress-induced co-expression of two alternative oxidase (VuAox1 and 2b) genes in Vigna unguiculata.

    PubMed

    Costa, José Hélio; Mota, Erika Freitas; Cambursano, Mariana Virginia; Lauxmann, Martin Alexander; de Oliveira, Luciana Maia Nogueira; Silva Lima, Maria da Guia; Orellano, Elena Graciela; Fernandes de Melo, Dirce

    2010-05-01

    Cowpea (Vigna unguiculata) alternative oxidase is encoded by a small multigene family (Aox1, 2a and 2b) that is orthologous to the soybean Aox family. Like most of the identified Aox genes in plants, VuAox1 and VuAox2 consist of 4 exons interrupted by 3 introns. Alignment of the orthologous Aox genes revealed high identity of exons and intron variability, which is more prevalent in Aox1. In order to determine Aox gene expression in V. unguiculata, a steady-state analysis of transcripts involved in seed development (flowers, pods and dry seeds) and germination (soaked seeds) was performed and systemic co-expression of VuAox1 and VuAox2b was observed during germination. The analysis of Aox transcripts in leaves from seedlings under different stress conditions (cold, PEG, salicylate and H2O2 revealed stress-induced co-expression of both VuAox genes. Transcripts of VuAox2a and 2b were detected in all control seedlings, which was not the case for VuAox1 mRNA. Estimation of the primary transcript lengths of V. unguiculata and soybean Aox genes showed an intron length reduction for VuAox1 and 2b, suggesting that the two genes have converged in transcribed sequence length. Indeed, a bioinformatics analysis of VuAox1 and 2b promoters revealed a conserved region related to a cis-element that is responsive to oxidative stress. Taken together, the data provide evidence for co-expression of Aox1 and Aox2b in response to stress and also during the early phase of seed germination. The dual nature of VuAox2b expression (constitutive and induced) suggests that the constitutive Aox2b gene of V. unguiculata has acquired inducible regulatory elements.

  15. A Phox2b::FLPo transgenic mouse line suitable for intersectional genetics

    PubMed Central

    Hirsch, Marie-Rose; d’Autréaux, Fabien; Dymecki, Susan M.; Brunet, Jean-François; Goridis, Christo

    2014-01-01

    Phox2b is a transcription factor expressed in the central and peripheral neurons that control cardiovascular, respiratory and digestive functions and essential for their development. Several populations known or suspected to regulate visceral functions express Phox2b in the developing hindbrain. Extensive cell migration and lack of suitable markers have greatly hampered studying their development. Reasoning that intersectional fate mapping may help to overcome these impediments, we have generated a BAC transgenic mouse line, P2b::FLPo, which expresses codon-optimized FLP recombinase in Phox2b expressing cells. By partnering the P2b::FLPo with the FLP-responsive RC::Fela allele, we show that FLP recombination switches on lineage tracers in the cells that express or have expressed Phox2b, permanently marking them for study across development. Taking advantage of the dualrecombinase feature of RC::Fela, we further show that the P2b::FLPo transgene can be partnered with Lbx1Cre as Cre driver to generate triple transgenics in which neurons having a history of both Phox2b and Lbx1 expression are specifically labelled. Hence, the P2b::FLPo line when partnered with a suitable Cre driver provides a tool for tracking and accessing genetically subsets of Phox2b-expressing neuronal populations, which has not been possible by Cremediated recombination alone. PMID:23592597

  16. CYP2B6*6 is associated with increased breast cancer risk.

    PubMed

    Justenhoven, Christina; Pentimalli, Daniela; Rabstein, Sylvia; Harth, Volker; Lotz, Anne; Pesch, Beate; Brüning, Thomas; Dörk, Thilo; Schürmann, Peter; Bogdanova, Natalia; Park-Simon, Tjoung-Won; Couch, Fergus J; Olson, Janet E; Fasching, Peter A; Beckmann, Matthias W; Häberle, Lothar; Ekici, Arif; Hall, Per; Czene, Kamilla; Liu, Janjun; Li, Jingmei; Baisch, Christian; Hamann, Ute; Ko, Yon-Dschun; Brauch, Hiltrud

    2014-01-15

    The cytochrome P450 2B6 (CYP2B6) is involved in the metabolism of testosterone. Functional changes in this enzyme may influence endogenous hormone exposure, which has been associated with risk of breast cancer. To assess potential associations between two functional polymorphisms CYP2B6_516_G>T (rs3745274) and CYP2B6_785_A>G (rs2279343) and breast cancer risk, we established a specific matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay. The GENICA breast cancer case-control study showed associations between the variant genotypes CYP2B6_516_TT and CYP2B6_785_GG and breast cancer risk with odds ratios (ORs) of 1.34 (p = 0.001) and 1.31 (p = 0.002), respectively. A similar effect was observed for carriers of the CYP2B6_516_T allele in a validation study including four independent studies from Germany, Sweden and USA. In a pooled analysis of all five studies involving 4,638 breast cancer cases and 3,594 controls of European ancestry, carriers of the CYP2B6_516_G and the CYP2B6_785_G variant had an increased breast cancer risk with ORs of 1.10 (p = 0.027) and 1.10 (p = 0.031), respectively. We conclude that the genetic variants CYP2B6_516_G and CYP2B6_785_G (designated CYP2B6*6), which are known to decrease activity of the CYP2B6 enzyme, contribute to an increased breast cancer risk.

  17. ISS Flight 2A.2B (STS-106): Commercial Generic Bioprocessing Apparatus (CGBA) Payload BioServe Space Technologies

    NASA Technical Reports Server (NTRS)

    Stodieck, Louis; Klaus, David

    2001-01-01

    The two experiments housed in the Commercial Generic Bioprocessing Apparatus (CGBA) during STS-106 were designed to explore how biological processes are affected by microgravity. The first was a developmental study into the effects of microgravity on motor-neuronal growth in the fruit fly species Drosophila melanogaster and the second study was designed to characterize changes in kidney cell gene expression. The objective of the primary experiment, called NIH-B1, was to determine how gravity affects neuronal development of the D. melanogaster embryo and larvae in microgravity, specifically observing the neural connections to muscle fibers.

  18. Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients.

    PubMed

    Romero-Lorca, Alicia; Novillo, Apolonia; Gaibar, María; Bandrés, Fernando; Fernández-Santander, Ana

    2015-01-01

    Tamoxifen is used to prevent and treat estrogen-dependent breast cancer. It is described as a prodrug since most of its antiestrogen effects are exerted through its hydroxylated metabolites 4-OH-tamoxifen and endoxifen. In prior work, we correlated optimal plasma levels of these metabolites with certain genotypes of CYP2D6 and SULT1A2. This descriptive study examines correlations between concentrations of tamoxifen's glucuronide metabolites and genotypes UGT1A4 Pro24Thr, UGT1A4 Leu48Val, UGT2B7 His268Tyr, UGT2B15 Asp85YTyr UGT2B15 Lys523Thr and UGT2B17del in 132 patients with estrogen receptor-positive breast cancer under treatment with tamoxifen. Patients were genotyped by real-time and conventional PCR-RFLP. The glucuronides 4-OH-tamoxifen-N-glucuronide, 4-OH-tamoxifen-O-glucuronide and endoxifen-O-glucuronide were isolated from blood plasma and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Individuals who were homozygous for UGT1A448VAL showed significantly lower mean concentrations of both glucuronide metabolites compared to subjects genotyped as wt/wt plus wt/48Val (p=0.037 and p=0.031, respectively). Women homozygous for UGT2B7268Tyr also showed mean substrate/product ratios of 4-OH-tamoxifen/4-OH-tamoxifen-O-glucuronide and 4-OH-tamoxifen/4-OH-tamoxifen-N-glucuronide indicative of reduced glucuronidase activity compared to wt homozygotes or to heterozygotes for the polymorphism (p=0.005 and p=0.003, respectively). In contrast, UGT2B15 Lys523Thr and UGT2B17del were associated with possibly increased enzyme activity. Patients with at least one variant allele UGT2B15523Thr showed significantly higher 4-OH-tamoxifen-O-glucuronide and endoxifen-glucuronide levels (p=0.023 and p=0.025, respectively) indicating a variant gene-dose effect. Higher 4-OH-tamoxifen-N-glucuronide levels observed in UGT2B17del genotypes (p=0.042) could be attributed to a mechanism that compensates for the greater expression of other genes in UGT2B

  19. Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients

    PubMed Central

    Romero-Lorca, Alicia; Novillo, Apolonia; Gaibar, María; Bandrés, Fernando; Fernández-Santander, Ana

    2015-01-01

    Tamoxifen is used to prevent and treat estrogen-dependent breast cancer. It is described as a prodrug since most of its antiestrogen effects are exerted through its hydroxylated metabolites 4-OH-tamoxifen and endoxifen. In prior work, we correlated optimal plasma levels of these metabolites with certain genotypes of CYP2D6 and SULT1A2. This descriptive study examines correlations between concentrations of tamoxifen's glucuronide metabolites and genotypes UGT1A4 Pro24Thr, UGT1A4 Leu48Val, UGT2B7 His268Tyr, UGT2B15 Asp85YTyr UGT2B15 Lys523Thr and UGT2B17del in 132 patients with estrogen receptor-positive breast cancer under treatment with tamoxifen. Patients were genotyped by real-time and conventional PCR-RFLP. The glucuronides 4-OH-tamoxifen-N-glucuronide, 4-OH-tamoxifen-O-glucuronide and endoxifen-O-glucuronide were isolated from blood plasma and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Individuals who were homozygous for UGT1A448VAL showed significantly lower mean concentrations of both glucuronide metabolites compared to subjects genotyped as wt/wt plus wt/48Val (p=0.037 and p=0.031, respectively). Women homozygous for UGT2B7268Tyr also showed mean substrate/product ratios of 4-OH-tamoxifen/4-OH-tamoxifen-O-glucuronide and 4-OH-tamoxifen/4-OH-tamoxifen-N-glucuronide indicative of reduced glucuronidase activity compared to wt homozygotes or to heterozygotes for the polymorphism (p=0.005 and p=0.003, respectively). In contrast, UGT2B15 Lys523Thr and UGT2B17del were associated with possibly increased enzyme activity. Patients with at least one variant allele UGT2B15523Thr showed significantly higher 4-OH-tamoxifen-O-glucuronide and endoxifen-glucuronide levels (p=0.023 and p=0.025, respectively) indicating a variant gene-dose effect. Higher 4-OH-tamoxifen-N-glucuronide levels observed in UGT2B17del genotypes (p=0.042) could be attributed to a mechanism that compensates for the greater expression of other genes in UGT2B

  20. Expression of NR2B in different brain regions and effect of NR2B antagonism on learning deficits after experimental subarachnoid hemorrhage.

    PubMed

    Chen, G; Li, Q; Feng, D; Hu, T; Fang, Q; Wang, Z

    2013-02-12

    Approximately 50% of patients who survived after aneurysmal subarachnoid hemorrhage (SAH) have cognitive or neurobehavioral dysfunction. The mechanisms are not known. NR2B, one of the subunits of N-methyl-d-aspartate (NMDA) receptors, has been proved to be an important factor for synapse function and behavior cognition. Experiment 1 aimed to investigate the timecourse of the NR2B expression in the cortex, hippocampus, and cerebellum after SAH in rats. In experiment 2, we assessed the effect of Ro 25-6981 (a specific NR2B antagonist) on regulation of learning deficits and behavioral activity following SAH. All SAH animals were subjected to injection of autologous blood into the prechiasmatic cistern once on day 0. NR2B was assessed by Western blot analysis and immunohistochemistry. Cognitive and memory changes were investigated in the Morris water maze. As a result, the expression of NR2B was decreased remarkably in SAH groups compared with the control group and the low ebb was on days 1-3. The immunohistochemical staining demonstrated expression of NR2B was present mainly in the neurons in all of the three different regions, such as the cortex, hippocampus, and cerebellum. After Ro 25-6981 intraperitoneal administration, learning deficits induced by SAH was markedly aggravated and clinical behavior scale was also significantly decreased. Our results suggest that NR2B expression is down-regulated in the brain after experimental SAH and NR2B antagonism resulted in augmentation of the development of cognitive dysfunction after SAH.

  1. Rapid hydrothermal synthesis of VO2 (B) and its conversion to thermochromic VO2 (M1).

    PubMed

    Popuri, Srinivasa Rao; Miclau, Marinela; Artemenko, Alla; Labrugere, Christine; Villesuzanne, Antoine; Pollet, Michaël

    2013-05-06

    The present study provides a rapid way to obtain VO2 (B) under economical and environmentally friendly conditions. VO2 (B) is one of the well-known polymorphs of vanadium dioxide and is a promising cathode material for aqueous lithium ion batteries. VO2 (B) was successfully synthesized by rapid single-step hydrothermal process using V2O5 and citric acid as precursors. The present study shows that phase-pure VO2 (B) polytype can be easily obtained at 180 °C for 2 h and 220 °C for 1 h, that is, the lowest combination of temperature and duration reported so far. The obtained VO2 (B) is characterized by X-ray powder diffraction, high-resolution scanning electron microscopy, and Fourier transform infrared spectroscopy. In addition, we present an indirect way to obtain VO2 (M1) by annealing VO2 (B) under vacuum for 1 h.

  2. Pilot study of CYP2B6 genetic variation to explore the contribution of nitrosamine activation to lung carcinogenesis.

    PubMed

    Wassenaar, Catherine A; Dong, Qiong; Amos, Christopher I; Spitz, Margaret R; Tyndale, Rachel F

    2013-04-16

    We explored the contribution of nitrosamine metabolism to lung cancer in a pilot investigation of genetic variation in CYP2B6, a high-affinity enzymatic activator of tobacco-specific nitrosamines with a negligible role in nicotine metabolism. Previously we found that variation in CYP2A6 and CHRNA5-CHRNA3-CHRNB4 combined to increase lung cancer risk in a case-control study in European American ever-smokers (n = 860). However, these genes are involved in the pharmacology of both nicotine, through which they alter smoking behaviours, and carcinogenic nitrosamines. Herein, we separated participants by CYP2B6 genotype into a high- vs. low-risk group (*1/*1 + *1/*6 vs. *6/*6). Odds ratios estimated through logistic regression modeling were 1.25 (95% CI 0.68-2.30), 1.27 (95% CI 0.89-1.79) and 1.56 (95% CI 1.04-2.31) for CYP2B6, CYP2A6 and CHRNA5-CHRNA3-CHRNB4, respectively, with negligible differences when all genes were evaluated concurrently. Modeling the combined impact of high-risk genotypes yielded odds ratios that rose from 2.05 (95% CI 0.39-10.9) to 2.43 (95% CI 0.47-12.7) to 3.94 (95% CI 0.72-21.5) for those with 1, 2 and 3 vs. 0 high-risk genotypes, respectively. Findings from this pilot point to genetic variation in CYP2B6 as a lung cancer risk factor supporting a role for nitrosamine metabolic activation in the molecular mechanism of lung carcinogenesis.

  3. NMDA receptor subunits and associated signaling molecules mediating antidepressant-related effects of NMDA-GluN2B antagonism

    PubMed Central

    Kiselycznyk, Carly; Jury, Nicholas; Halladay, Lindsay; Nakazawa, Kazu; Mishina, Masayoshi; Sprengel, Rolf; Grant, Seth G.N.; Svenningsson, Per; Holmes, Andrew

    2015-01-01

    Drugs targeting the glutamate N-methyl-D-aspartate receptor (NMDAR) may be efficacious for treating mood disorders, as exemplified by the rapid antidepressant effects produced by single administration of the NMDAR antagonist ketamine. Though the precise mechanisms underlying the antidepressant-related effects of NMDAR antagonism remain unclear, recent studies implicate specific NMDAR subunits, including GluN2A and GluN2B, as well as the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) subunit glutamate receptor interacting molecule, PSD-95. Here, integrating mutant and pharmacological in mice, we investigated the contribution of these subunits and molecules to antidepressant-related behaviors and the antidepressant-related effects of the GluN2B blocker, Ro 25-6981. We found that global deletion of GluA1 or PSD-95 reduced forced swim test (FST) immobility, mimicking the antidepressant-related effect produced by systemically administered Ro 25-6981 in C57BL/6J mice. Moreover, the FST antidepressant-like effects of systemic Ro 25-6981 were intact in mutants with global GluA1 deletion or GluN1 deletion in forebrain interneurons, but were absent in mutants constitutively lacking GluN2A or PSD-95. Next, we found that microinfusing Ro 25-6981 into the medial prefrontal cortex (mPFC), but not basolateral amygdala, of C57BL/6J mice was sufficient to produce an antidepressant-like effect. Together, these findings extend and refine current understanding of the mechanisms mediating antidepressant-like effects produced by NMDAR-GluN2B antagonists, and may inform the development of a novel class of medications for treating depression that target the GluN2B subtype of NMDAR. PMID:25800971

  4. Allele and genotype frequencies of CYP2B6 in a Turkish population.

    PubMed

    Yuce-Artun, Nazan; Kose, Gulcin; Suzen, H Sinan

    2014-06-01

    Increasing interest in cytochrome P450 2B6 (CYP2B6) genetic polymorphism was stimulated by revelations of a specific CYP2B6 genotype significantly affecting the metabolism of various drugs in common clinical use in terms of increasing drug efficacy and avoiding adverse drug reactions. The present study aimed to determine the frequencies of CYP2B6*4 CYP2B6*5, CYP2B6*6, CYP2B6*7 and CYP2B6*9 alleles in healthy Turkish individuals (n = 172). Frequencies of three single nucleotide polymorphisms were 516G>T (28%), 785A>G (33%), and 1459C>T (12%). The frequencies of CYP2B6*1, *4, *5, *6, *7, and *9 alleles were 54.3 (95% CI 49.04-59.56), 6.4% (95% CI 3.81-8.99), 11% (95% CI 7.69-14.31), 25.3% (95% CI 20.71-29.89), 0.87% (95% CI -0.11-1.85) and 2.0% (95% CI 0.52-3.48), respectively. Allele *6 was more frequent (25.3%) than the other variant alleles in Turkish subjects. The frequencies of CYP2B6*4, *5, *6, *7, and *9 alleles were similar to European populations but significantly different from that reported for Asian populations. This is the first study to document the frequencies of the CYP2B6*4, *5, *6, *7, *9 alleles in the healthy Turkish individuals and our results could provide clinically useful information on drug metabolism by CYP2B6 in Turkish population.

  5. Detection and characterization of ubiquitylated H2B in mammalian cells.

    PubMed

    Shema, Efrat; Oren, Moshe; Minsky, Neri

    2011-07-01

    Histone H2B ubiquitylation was shown to be associated with actively transcribed genes in mammalian cells and has been suggested to be involved in transcriptional regulation. Despite the limited applicability of genetic tools to analyze H2B ubiquitylation in mammals, several biochemical and immunological approaches have been successfully implemented to study this modification. Here we describe several techniques to detect ubiquitylated H2B in mammalian cells and to dissect its genomic localization.

  6. 77 FR 28764 - Temporary Non-agricultural Employment of H-2B Aliens in the United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... H-2B Aliens in the United States AGENCY: Employment and Training Administration, Labor. ] ACTION... Aliens in the United States, published February 21, 2012 (the 2012 H-2B Final Rule). The 2012 H-2B...

  7. SCN2B in the Rat Trigeminal Ganglion and Trigeminal Sensory Nuclei.

    PubMed

    Shimada, Yusuke; Sato, Tadasu; Yajima, Takehiro; Fujita, Masatoshi; Hashimoto, Naoya; Shoji, Noriaki; Sasano, Takashi; Ichikawa, Hiroyuki

    2016-11-01

    The beta-2 subunit of the mammalian brain voltage-gated sodium channel (SCN2B) was examined in the rat trigeminal ganglion (TG) and trigeminal sensory nuclei. In the TG, 42.6 % of sensory neurons were immunoreactive (IR) for SCN2B. These neurons had various cell body sizes. In facial skins and oral mucosae, corpuscular nerve endings contained SCN2B-immunoreactivity. SCN2B-IR nerve fibers formed nerve plexuses beneath taste buds in the tongue and incisive papilla. However, SCN2B-IR free nerve endings were rare in cutaneous and mucosal epithelia. Tooth pulps, muscle spindles and major salivary glands were also innervated by SCN2B-IR nerve fibers. A double immunofluorescence method revealed that about 40 % of SCN2B-IR neurons exhibited calcitonin gene-related peptide (CGRP)-immunoreactivity. However, distributions of SCN2B- and CGRP-IR nerve fibers were mostly different in facial, oral and cranial structures. By retrograde tracing method, 60.4 and 85.3 % of TG neurons innervating the facial skin and tooth pulp, respectively, showed SCN2B-immunoreactivity. CGRP-immunoreactivity was co-localized by about 40 % of SCN2B-IR cutaneous and tooth pulp TG neurons. In trigeminal sensory nuclei of the brainstem, SCN2B-IR neuronal cell bodies were common in deep laminae of the subnucleus caudalis, and the subnuclei interpolaris and oralis. In the mesencephalic trigeminal tract nucleus, primary sensory neurons also exhibited SCN2B-immunoreactivity. In other regions of trigeminal sensory nuclei, SCN2B-IR cells were very infrequent. SCN2B-IR neuropil was detected in deep laminae of the subnucleus caudalis as well as in the subnuclei interpolaris, oralis and principalis. These findings suggest that SCN2B is expressed by various types of sensory neurons in the TG. There appears to be SCN2B-containing pathway in the TG and trigeminal sensory nuclei.

  8. Mechanism-Based Inactivation of Human Cytochrome P450 2B6 by Chlorpyrifos.

    PubMed

    D'Agostino, Jaime; Zhang, Haoming; Kenaan, Cesar; Hollenberg, Paul F

    2015-07-20

    Chlorpyrifos (CPS) is a commonly used pesticide which is metabolized by P450s into the toxic metabolite chlorpyrifos-oxon (CPO). Metabolism also results in the release of sulfur, which has been suggested to be involved in mechanism-based inactivation (MBI) of P450s. CYP2B6 was previously determined to have the greatest catalytic efficiency for CPO formation in vitro. Therefore, we characterized the MBI of CYP2B6 by CPS. CPS inactivated CYP2B6 in a time- and concentration-dependent manner with a kinact of 1.97 min(-1), a KI of 0.47 μM, and a partition ratio of 17.7. We further evaluated the ability of other organophosphate pesticides including chorpyrifos-methyl, diazinon, parathion-methyl, and azinophos-methyl to inactivate CYP2B6. These organophosphate pesticides were also potent MBIs of CYP2B6 characterized by similar kinact and KI values. The inactivation of CYP2B6 by CPS was accompanied by the loss of P450 detectable in the CO reduced spectrum and loss of detectable heme. High molecular weight aggregates were observed when inactivated CYP2B6 was run on SDS-PAGE gels indicating protein aggregation. Interestingly, we found that the rat homologue of CYP2B6, CYP2B1, was not inactivated by CPS despite forming CPO to a similar extent. On the basis of the locations of the Cys residues in the two proteins which could react with released sulfur during the metabolism of CPS, we investigated whether the C475 in CYP2B6, which is not conserved in CYP2B1, was the critical residue for inactivation by mutating it to a Ser. CYP2B6 C475S was inactivated to a similar extent as wild type CYP2B6 indicating that C475 is not likely the key difference between CYP2B1 and CYP2B6 with respect to inactivation. These results indicate that CPS and other organophosphate pesticides are potent MBIs of CYP2B6 which may have implications for the toxicity of these pesticides as well as the potential for pesticide-drug interactions.

  9. Mechano-Sensitive PPAP2B Regulates Endothelial Responses to Athero-Relevant Hemodynamic Forces

    PubMed Central

    Kuo, Cheng-Hsiang; Kumar, Sandeep; Kim, Chan Woo; Lin, Yen-Chen; Chen, Yen-Ju; Birukova, Anna; Birukov, Konstantin G.; Dulin, Nickolai O.; Civelek, Mete; Lusis, Aldons J.; Loyer, Xavier; Tedgui, Alain; Dai, Guohao; Jo, Hanjoong; Fang, Yun

    2015-01-01

    Rationale PhosPhatidic-Acid-Phosphatase-type-2B (PPAP2B), an integral membrane protein that inactivates lysophosphatidic acid, was implicated in coronary artery disease (CAD) by genome-wide-association-studies (GWAS). However, it is unclear whether GWAS-identified CAD genes including PPAP2B participate in mechanotransduction mechanisms by which vascular endothelia respond to local athero-relevant hemodynamics that contribute to the regional nature of atherosclerosis. Objective To establish the critical role of PPAP2B in endothelial responses to hemodynamics. Methods and Results Reduced PPAP2B was detected in vivo in mouse and swine aortic arch endothelia exposed to chronic disturbed flow, and in mouse carotid artery endothelia subjected to surgically-induced acute disturbed flow. In humans, PPAP2B was reduced in the downstream part of carotid plaques where low shear stress prevails. In culture, reduced PPAP2B was measured in human aortic endothelial cells (HAEC) under athero-susceptible waveform mimicking flow in human carotid sinus. Flow-sensitive microRNA-92a and transcription factor KLF2 were identified as upstream inhibitor and activator of endothelial PPAP2B, respectively. PPAP2B suppression abrogated athero-protection of unidirectional flow; Inhibition of lysophosphatidic acid receptor 1 (LPAR1) restored the flow-dependent, anti-inflammatory phenotype in PPAP2B-deficient cells. PPAP2B inhibition resulted in myosin-light-chain phosphorylation and intercellular gaps, which were abolished by LPAR1/2 inhibition. Expression-quantitative-trait-locus-mapping demonstrated PPAP2B CAD risk allele is not linked to PPAP2B expression in various human tissues but significantly associated with reduced PPAP2B in HAEC. Conclusions Athero-relevant flows dynamically modulate endothelial PPAP2B expression through miR-92a and KLF2. Mechano-sensitive PPAP2B plays a critical role in promoting anti-inflammatory phenotype and maintaining vascular integrity of endothelial monolayer

  10. Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain.

    PubMed

    Miksys, Sharon; Lerman, Caryn; Shields, Peter G; Mash, Deborah C; Tyndale, Rachel F

    2003-07-01

    CYP2B6 metabolizes drugs such as nicotine and bupropion, and many toxins and carcinogens. Nicotine induces CYP2B1 in rat brain and in humans polymorphic variation in CYP2B6 affects smoking cessation rates. The aim of this study was to compare CYP2B6 expression in brains of human smokers and non-smokers and alcoholics and non-alcoholics (n=26). CYP2B6 expression was brain region-specific, and was observed in both neurons and astrocytes. CYP2B6 levels were higher in brains of smokers and alcoholics, particularly in cerebellar Purkinje cells and hippocampal pyramidal neurons, cells known to be damaged in alcoholics. Significantly more (p<0.05) CYP2B6 protein was seen in four brain regions of smoking alcoholics compared to non-smoking non-alcoholics: hippocampus (5.8-fold), caudate nucleus (3.3-fold), putamen (3.0-fold) and cerebellar hemisphere (1.6-fold). The genetic variant C1459T (R487C) has been associated with reduced hepatic enzyme levels, stability and activity. Preliminary genotyping of this small sample (n=24) suggested that individuals with the CC genotype had higher brain CYP2B6 than those with the CT or TT genotype. Higher brain CYP2B6 activity in smokers and alcoholics may cause altered sensitivity to centrally acting drugs, increased susceptibility to neurotoxins and carcinogenic xenobiotics and contribute to central tolerance to nicotine.

  11. Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending-dependent manner.

    PubMed

    Yu, Haijia; Rathore, Shailendra S; Davis, Eric M; Ouyang, Yan; Shen, Jingshi

    2013-04-01

    The glucose transporter GLUT4 plays a central role in maintaining body glucose homeostasis. On insulin stimulation, GLUT4-containing vesicles fuse with the plasma membrane, relocating GLUT4 from intracellular reservoirs to the cell surface to uptake excess blood glucose. The GLUT4 vesicle fusion reaction requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) as the core fusion engine and a group of regulatory proteins. In particular, the soluble C2-domain factor Doc2b plays a key role in GLUT4 vesicle fusion, but its molecular mechanism has been unclear. Here we reconstituted the SNARE-dependent GLUT4 vesicle fusion in a defined proteoliposome fusion system. We observed that Doc2b binds to GLUT4 exocytic SNAREs and potently accelerates the fusion kinetics in the presence of Ca(2+). The stimulatory activity of Doc2b requires intact Ca(2+)-binding sites on both the C2A and C2B domains. Using electron microscopy, we observed that Doc2b strongly bends the membrane bilayer, and this membrane-bending activity is essential to the stimulatory function of Doc2b in fusion. These results demonstrate that Doc2b promotes GLUT4 exocytosis by accelerating the SNARE-dependent fusion reaction by a Ca(2+)- and membrane bending-dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic neurotransmitter release, suggesting that exocytic Ca(2+) sensors may possess divergent mechanisms in regulating vesicle fusion.

  12. Glutamatergic stimulation induces GluN2B translation by the nitric oxide-Heme-Regulated eIF2α kinase in cortical neurons

    PubMed Central

    ILL-Raga, Gerard; Vargas, Lina; Busquets-García, Arnau; Bosch-Morató, Mònica; Guivernau, Biuse; Valls-Comamala, Victòria; Gomis, Maria; Grau, Cristina; Fandos, César; Rosen, Mark D.; Rabinowitz, Michael H.; Inestrosa, Nibaldo; Maldonado, Rafael; Altafaj, Xavier; Ozaita, Andrés; Alvarez, Alejandra; Vicente, Rubén; Valverde, Miguel A.; Muñoz, Francisco J.

    2016-01-01

    The activation of N-Methyl D-Aspartate Receptor (NMDAR) by glutamate is crucial in the nervous system function, particularly in memory and learning. NMDAR is composed by two GluN1 and two GluN2 subunits. GluN2B has been reported to participate in the prevalent NMDAR subtype at synapses, the GluN1/2A/2B. Here we studied the regulation of GluN2B expression in cortical neurons finding that glutamate up-regulates GluN2B translation through the action of nitric oxide (NO), which induces the phosphorylation of the eukaryotic translation initiation factor 2 α (eIF2α). It is a process mediated by the NO-heme-regulated eIF2α kinase (HRI), as the effect was avoided when a specific HRI inhibitor or a HRI small interfering RNA (siHRI) were used. We found that the expressed GluN2B co-localizes with PSD-95 at the postsynaptic ending, which strengthen the physiological relevance of the proposed mechanism. Moreover the receptors bearing GluN2B subunits upon NO stimulation are functional as high Ca2+ entry was measured and increases the co-localization between GluN2B and GluN1 subunits. In addition, the injection of the specific HRI inhibitor in mice produces a decrease in memory retrieval as tested by the Novel Object Recognition performance. Summarizing our data suggests that glutamatergic stimulation induces HRI activation by NO to trigger GluN2B expression and this process would be relevant to maintain postsynaptic activity in cortical neurons. PMID:27557499

  13. Production and Purification of a Polyclonal Antibody Against Purified Mouse IgG2b in Rabbits Towards Designing Mouse Monoclonal Isotyping Kits

    PubMed Central

    Eivazi, Sadeq; Majidi, Jafar; Aghebati Maleki, leili; Abdolalizadeh, Jalal; Yousefi, Mehdi; Ahmadi, Majid; Dadashi, Somayeh; Moradi, Zahra; Zolali, Elmira

    2015-01-01

    Purpose: Mouse IgG subclasses containing IgG1, IgG2a, IgG2b and IgG3 have been defined and described both physiochemically and immunologically. Methods: Sepharose beads conjugated with protein A affinity chromatography was used for purification of mouse IgG2b. Sodium citrate buffer (0.1 M, pH: 3.5) was used for separation of mouse IgG2b. Verification of the purified fractions was monitored by SDS-PAGE (polyacrylamide gel electrophoresis) in reducing condition. Immunized rabbit serum was collected and precipitated at the final concentration of 50% ammonium sulfate. After dialysis against tris-phosphate buffer (pH: 8.1) ion exchange chromatography column was used for purification of rabbit anti-mouse IgG2b. The periodate method was performed for conjugation with some variations. After conjugation, direct ELISA was used to determine the titer of HRP conjugated rabbit IgG against mouse IgG2b. Results: The titer of rabbit anti-mouse IgG2b that determined by ELISA was 32000. The purity of rabbit anti-mouse IgG2b was about 95%. The optimum dilution of prepared HRP conjugated IgG was 1:10000. This study showed that ion-exchange chromatography and affinity chromatography could be appropriate techniques for purification of mouse IgG and IgG subclasses respectively. Conclusion: This study showed that affinity chromatography could be an appropriate method for purification of IgG2b antibodies. PMID:25789227

  14. Regulation of PI-2b Pilus Expression in Hypervirulent Streptococcus agalactiae ST-17 BM110

    PubMed Central

    du Merle, Laurence; Rosinski-Chupin, Isabelle; Gominet, Myriam; Bellais, Samuel; Poyart, Claire; Trieu-Cuot, Patrick

    2017-01-01

    The widely spread Streptococcus agalactiae (also known as Group B Streptococcus, GBS) “hypervirulent” ST17 clone is strongly associated with neonatal meningitis. The PI-2b locus is mainly found in ST17 strains but is also present in a few non ST17 human isolates such as the ST-7 prototype strain A909. Here, we analysed the expression of the PI-2b pilus in the ST17 strain BM110 as compared to the non ST17 A909. Comparative genome analyses revealed the presence of a 43-base pair (bp) hairpin-like structure in the upstream region of PI-2b operon in all 26 ST17 genomes, which was absent in the 8 non-ST17 strains carrying the PI-2b locus. Deletion of this 43-bp sequence in strain BM110 resulted in a 3- to 5-fold increased transcription of PI-2b. Characterization of PI-2b promoter region in A909 and BM110 strains was carried out by RNAseq, primer extension, qRT-PCR and transcriptional fusions with gfp as reporter gene. Our results indicate the presence of a single promoter (Ppi2b) with a transcriptional start site (TSS) mapped 37 bases upstream of the start codon of the first PI-2b gene. The large operon of 16 genes located upstream of PI-2b codes for the group B carbohydrate (also known as antigen B), a major constituent of the bacterial cell wall. We showed that the hairpin sequence located between antigen B and PI-2b operons is a transcriptional terminator. In A909, increased expression of PI-2b probably results from read-through transcription from antigen B operon. In addition, we showed that an extended 5’ promoter region is required for maximal transcription of gfp as a reporter gene in S. agalactiae from Ppi2b promoter. Gene reporter assays performed in Lactococcus lactis strain NZ9000, a related non-pathogenic Gram-positive species, revealed that GBS-specific regulatory factors are required to drive PI-2b transcription. PI-2b expression is up-regulated in the BM110ΔcovR mutant as compared to the parental BM110 strain, but this effect is probably indirect

  15. Regulation of PI-2b Pilus Expression in Hypervirulent Streptococcus agalactiae ST-17 BM110.

    PubMed

    Périchon, Bruno; Szili, Noémi; du Merle, Laurence; Rosinski-Chupin, Isabelle; Gominet, Myriam; Bellais, Samuel; Poyart, Claire; Trieu-Cuot, Patrick; Dramsi, Shaynoor

    2017-01-01

    The widely spread Streptococcus agalactiae (also known as Group B Streptococcus, GBS) "hypervirulent" ST17 clone is strongly associated with neonatal meningitis. The PI-2b locus is mainly found in ST17 strains but is also present in a few non ST17 human isolates such as the ST-7 prototype strain A909. Here, we analysed the expression of the PI-2b pilus in the ST17 strain BM110 as compared to the non ST17 A909. Comparative genome analyses revealed the presence of a 43-base pair (bp) hairpin-like structure in the upstream region of PI-2b operon in all 26 ST17 genomes, which was absent in the 8 non-ST17 strains carrying the PI-2b locus. Deletion of this 43-bp sequence in strain BM110 resulted in a 3- to 5-fold increased transcription of PI-2b. Characterization of PI-2b promoter region in A909 and BM110 strains was carried out by RNAseq, primer extension, qRT-PCR and transcriptional fusions with gfp as reporter gene. Our results indicate the presence of a single promoter (Ppi2b) with a transcriptional start site (TSS) mapped 37 bases upstream of the start codon of the first PI-2b gene. The large operon of 16 genes located upstream of PI-2b codes for the group B carbohydrate (also known as antigen B), a major constituent of the bacterial cell wall. We showed that the hairpin sequence located between antigen B and PI-2b operons is a transcriptional terminator. In A909, increased expression of PI-2b probably results from read-through transcription from antigen B operon. In addition, we showed that an extended 5' promoter region is required for maximal transcription of gfp as a reporter gene in S. agalactiae from Ppi2b promoter. Gene reporter assays performed in Lactococcus lactis strain NZ9000, a related non-pathogenic Gram-positive species, revealed that GBS-specific regulatory factors are required to drive PI-2b transcription. PI-2b expression is up-regulated in the BM110ΔcovR mutant as compared to the parental BM110 strain, but this effect is probably indirect

  16. SH2B1 in β-cells promotes insulin expression and glucose metabolism in mice.

    PubMed

    Chen, Zheng; Morris, David L; Jiang, Lin; Liu, Yong; Rui, Liangyou

    2014-05-01

    Insulin deficiency drives the progression of both type 1 and type 2 diabetes. Pancreatic β-cell insulin expression and secretion are tightly regulated by nutrients and hormones; however, intracellular signaling proteins that mediate nutrient and hormonal regulation of insulin synthesis and secretion are not fully understood. SH2B1 is an SH2 domain-containing adaptor protein. It enhances the activation of the Janus tyrosine kinase 2 (JAK2)/signal transducer and activator of transcription and the phosphatidylinositol 3-kinase pathways in response to a verity of hormones, growth factors, and cytokines. Here we identify SH2B1 as a new regulator of insulin expression. In rat INS-1 832/13 β-cells, SH2B1 knockdown decreased, whereas SH2B1 overexpression increased, both insulin expression and glucose-stimulated insulin secretion. SH2B1-deficent islets also had reduced insulin expression, insulin content, and glucose-stimulated insulin secretion. Heterozygous deletion of SH2B1 decreased pancreatic insulin content and plasma insulin levels in leptin-deficient ob/ob mice, thus exacerbating hyperglycemia and glucose intolerance. In addition, overexpression of JAK2 increased insulin promoter activity, and SH2B1 enhanced the ability of JAK2 to activate the insulin promoter. Overexpression of SH2B1 also increased the expression of Pdx1 and the recruitment of Pdx1 to the insulin promoter in INS-1 832/13 cells, whereas silencing of SH2B1 had the opposite effects. Consistently, Pdx1 expression was lower in SH2B1-deficient islets. These data suggest that the SH2B1 in β-cells promotes insulin synthesis and secretion at least in part by enhancing activation of JAK2 and/or Pdx1 pathways in response to hormonal and nutritional signals.

  17. Field production and functional evaluation of chloroplast-derived interferon-α2b

    PubMed Central

    Arlen, Philip A.; Falconer, Regina; Cherukumilli, Sri; Cole, Amy; Cole, Alexander M.; Oishi, Karen K.; Daniell, Henry

    2008-01-01

    Summary Type I interferons (IFNs) inhibit viral replication and cell growth and enhance the immune response, and therefore have many clinical applications. IFN-α2b ranks third in world market use for a biopharmaceutical, behind only insulin and erythropoietin. The average annual cost of IFN-α2b for the treatment of hepatitis C infection is $26 000, and is therefore unavailable to the majority of patients in developing countries. Therefore, we expressed IFN-α2b in tobacco chloroplasts, and transgenic lines were grown in the field after obtaining United States Department of Agriculture Animal and Plant Health Inspection Service (USDA-APHIS) approval. Stable, site-specific integration of transgenes into chloroplast genomes and homoplasmy through several generations were confirmed. IFN-α2b levels reached up to 20% of total soluble protein, or 3 mg per gram of leaf (fresh weight). Transgenic IFN-α2b had similar in vitro biological activity to commercially produced PEG-Intron™ when tested for its ability to protect cells against cytopathic viral replication in the vesicular stomatitis virus cytopathic effect (VSV CPE) assay and to inhibit early-stage human immunodeficiency virus (HIV) infection. The antitumour and immunomodulating properties of IFN-α2b were also seen in vivo . Chloroplast-derived IFN-α2b increased the expression of major histocompatibility complex class I (MHC I) on splenocytes and the total number of natural killer (NK) cells. Finally, IFN-α2b purified from chloroplast transgenic lines (cpIFN-α2b) protected mice from a highly metastatic tumour line. This demonstration of high levels of expression of IFN-α2b, transgene containment and biological activity akin to that of commercial preparations of IFN-α2b facilitated the first field production of a plant-derived human blood protein, a critical step towards human clinical trials and commercialization. PMID:17490449

  18. Review of magnetic features observed in (A,A')Ni 2B 2C solid solutions

    NASA Astrophysics Data System (ADS)

    Kuznietz, Moshe; Gonçalves, António P.; Almeida, Manuel

    2002-08-01

    The nickel-borocarbides ANi 2B 2C [A=Y, Ln (lanthanide), An(actinide)], crystallizing in the body-centred tetragonal LuNi 2B 2C-type structure, are classified according to the existence or coexistence of superconducting and antiferromagnetic states (AF). The magnetic features observed in polycrystalline (A,A')Ni 2B 2C solid solutions, adopting the same crystal structure, are reviewed and discussed. Published data on the magnetism in (A,Ln)Ni 2B 2C systems (ANi 2B 2C nonmagnetic, A=Y,La,Lu) indicate a gradual rise in the threshold content, x( m), in (Y 1- xLn x)Ni 2B 2C (Ln=Gd,Tb,Dy,Ho,Er) for the establishment of AF states. (A,A')Ni 2B 2C systems with magnetic end compounds show gradual variation in magnetic features when A and A' are both heavy Ln. The behaviour of (A,A')Ni 2B 2C systems of light A (Pr or U) and heavy A' (Dy or Tm) depends on the magnetic structures of the end compounds. In intermediate compositions, incomplete moment compensation in (Pr,Dy)Ni 2B 2C decreases TN, while different moment directions in the end compounds in (U,Dy)Ni 2B 2C lead to a directional frustration of ordered moments. Such a frustration in (U,Tm)Ni 2B 2C is related to different magnetic structures of the end compounds.

  19. Metformin represses drug-induced expression of CYP2B6 by modulating the constitutive androstane receptor signaling.

    PubMed

    Yang, Hui; Garzel, Brandy; Heyward, Scott; Moeller, Timothy; Shapiro, Paul; Wang, Hongbing

    2014-02-01

    Metformin is currently the most widely used drug for the treatment of type 2 diabetes. Mechanistically, metformin interacts with many protein kinases and transcription factors that alter the expression of numerous downstream target genes governing lipid metabolism, cell proliferation, and drug metabolism. The constitutive androstane receptor (CAR, NR1i3), a known xenobiotic sensor, has recently been recognized as a novel signaling molecule, in that its activation could be regulated by protein kinases in addition to the traditional ligand binding. We show that metformin could suppress drug-induced expression of CYP2B6 (a typical target gene of CAR) by modulating the phosphorylation status of CAR. In human hepatocytes, metformin robustly suppressed the expression of CYP2B6 induced by both indirect (phenobarbital) and direct CITCO [6-(4-chlorophenyl)imidazo[2,1-b]1,3thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime] activators of human CAR. Mechanistic investigation revealed that metformin specifically enhanced the phosphorylation of threonine-38 of CAR, which blocks CAR nuclear translocation and activation. Moreover, we showed that phosphorylation of CAR by metformin was primarily an AMP-activated protein kinase- and extracellular signal-regulated kinase 1/2-dependent event. Additional two-hybrid and coimmunoprecipitation assays demonstrated that metformin could also disrupt CITCO-mediated interaction between CAR and the steroid receptor coactivator 1 or the glucocorticoid receptor-interacting protein 1. Our results suggest that metformin is a potent repressor of drug-induced CYP2B6 expression through specific inhibition of human CAR activation. Thus, metformin may affect the metabolism and clearance of drugs that are CYP2B6 substrates.

  20. Ropeginterferon alfa-2b, a novel IFNα-2b, induces high response rates with low toxicity in patients with polycythemia vera.

    PubMed

    Gisslinger, Heinz; Zagrijtschuk, Oleh; Buxhofer-Ausch, Veronika; Thaler, Josef; Schloegl, Ernst; Gastl, Guenther A; Wolf, Dominik; Kralovics, Robert; Gisslinger, Bettina; Strecker, Karin; Egle, Alexander; Melchardt, Thomas; Burgstaller, Sonja; Willenbacher, Ella; Schalling, Martin; Them, Nicole C; Kadlecova, Pavla; Klade, Christoph; Greil, Richard

    2015-10-08

    In this prospective, open-label, multicenter phase 1/2 dose escalation study, we used a next-generation, mono-pegylated interferon (IFN) α-2b isoform, ropeginterferon alfa-2b. The unique feature of ropeginterferon alfa-2b is a longer elimination half-life, which allows administration every 2 weeks. We present data from 51 polycythemia vera patients. The main goal was to define the maximum tolerated dose and to assess safety and efficacy. A dose range of 50 to 540 µg was tested without the appearance of dose-limiting toxicities. All drug-related adverse events were known toxicities associated with IFN-α. The cumulative overall response rate was 90%, comprising complete response in 47% and partial response in 43% of patients; the best individual molecular response level was a complete response in 21% of patients and partial response in 47%. Notably, we did not observe any correlation between the dose level and the response rate or response duration, suggesting that already low levels of ropeginterferon alfa-2b are sufficient to induce significant hematologic and molecular responses. These data suggest promising efficacy and safety of ropeginterferon alfa-2b and support the development of the drug in a randomized phase 3 clinical trial. The study was disclosed at www.clinicaltrials.gov as #NCT01193699 before including the first patient.

  1. Mutations of the human interferon alpha-2b (hIFN-α2b) gene in occupationally protracted low dose radiation exposed personnel.

    PubMed

    Shahid, Saman; Mahmood, Nasir; Chaudhry, Muhammad Nawaz; Sheikh, Shaharyar; Ahmad, Nauman

    2015-05-01

    Ionizing radiations impact human tissues by affecting the DNA bases which constitute genes. Human interferon alpha 2b gene synthesizes a protein which is an important anticancerous, immunomodulatory, anti-proliferative and antiviral protein. This study was aimed to identify interferon alpha-2b mutations as a consequence of the use of occupational chronic low dose radiation by hospital radiation exposed workers. A molecular analysis was done in which DNAs were extracted from blood samples from radiology, radiotherapy and nuclear medicine workers. The gene was amplified through polymerase chain reaction and further genetic data from sequencing results analyzed by bioinformatics tools in order to determine as to how mutations in interferon alpha 2b sequences will lead to changes in human interferon alpha-2b protein. A total of 41% gene mutations was detected among all radiation exposed workers in which higher percentage (5.4%) of base insertion mutations and 14% frameshift mutations were found in radiology workers. The chronic use of low dose of radiations by occupational workers has a significant correlation with mutational effects on interferon alpha 2b gene, further evident by depressed interferon alpha levels in serum. This can lead to depressed immunity in radiation exposed workers. Hematological profiling of this group also showed hyperimmune response in the form of lymphocytosis.

  2. Cost effectiveness of peginterferon α-2b plus ribavirin versus interferon α-2b plus ribavirin for initial treatment of chronic hepatitis C

    PubMed Central

    Siebert, U; Sroczynski, G; Rossol, S; Wasem, J; Ravens-Sieberer, U; Kurth, B M; Manns, M P; McHutchison, J G; Wong, J B

    2003-01-01

    Background: Peginterferon α-2b plus ribavirin therapy in previously untreated patients with chronic hepatitis C yields the highest sustained virological response rates of any treatment strategy but is expensive. Aims: To estimate the cost effectiveness of treatment with peginterferon α-2b plus ribavirin compared with interferon α-2b plus ribavirin for initial treatment of patients with chronic hepatitis C. Methods: Individual patient level data from a randomised clinical trial with peginterferon plus ribavirin were applied to a previously published and validated Markov model to project lifelong clinical outcomes. Quality of life and economic estimates were based on German patient data. We used a societal perspective and applied a 3% annual discount rate. Results: Compared with no antiviral therapy, peginterferon plus fixed or weight based dosing of ribavirin increased life expectancy by 4.2 and 4.7 years, respectively. Compared with standard interferon α-2b plus ribavirin, peginterferon plus fixed or weight based dosing of ribavirin increased life expectancy by 0.5 and by 1.0 years with incremental cost effectiveness ratios of €11 800 and €6600 per quality adjusted life year (QALY), respectively. Subgroup analyses by genotype, viral load, sex, and histology showed that peginterferon plus weight based ribavirin remained cost effective compared with other well accepted medical treatments. Conclusions: Peginterferon α-2b plus ribavirin should reduce the incidence of liver complications, prolong life, improve quality of life, and be cost effective for the initial treatment of chronic hepatitis C. PMID:12584228

  3. Phosphorylation-dependent Changes in Nucleotide Binding, Conformation, and Dynamics of the First Nucleotide Binding Domain (NBD1) of the Sulfonylurea Receptor 2B (SUR2B)*

    PubMed Central

    de Araujo, Elvin D.; Alvarez, Claudia P.; López-Alonso, Jorge P.; Sooklal, Clarissa R.; Stagljar, Marijana; Kanelis, Voula

    2015-01-01

    The sulfonylurea receptor 2B (SUR2B) forms the regulatory subunit of ATP-sensitive potassium (KATP) channels in vascular smooth muscle. Phosphorylation of the SUR2B nucleotide binding domains (NBD1 and NBD2) by protein kinase A results in increased channel open probability. Here, we investigate the effects of phosphorylation on the structure and nucleotide binding properties of NBD1. Phosphorylation sites in SUR2B NBD1 are located in an N-terminal tail that is disordered. Nuclear magnetic resonance (NMR) data indicate that phosphorylation of the N-terminal tail affects multiple residues in NBD1, including residues in the NBD2-binding site, and results in altered conformation and dynamics of NBD1. NMR spectra of NBD1 lacking the N-terminal tail, NBD1-ΔN, suggest that phosphorylation disrupts interactions of the N-terminal tail with the core of NBD1, a model supported by dynamic light scattering. Increased nucleotide binding of phosphorylated NBD1 and NBD1-ΔN, compared with non-phosphorylated NBD1, suggests that by disrupting the interaction of the NBD core with the N-terminal tail, phosphorylation also exposes the MgATP-binding site on NBD1. These data provide insights into the molecular basis by which phosphorylation of SUR2B NBD1 activates KATP channels. PMID:26198630

  4. N-methyl-D-aspartate receptor NR2B subunit involved in depression-like behaviours in lithium chloride-pilocarpine chronic rat epilepsy model.

    PubMed

    Peng, Wei-Feng; Ding, Jing; Li, Xin; Fan, Fan; Zhang, Qian-Qian; Wang, Xin

    2016-01-01

    Depression is a common comorbidity in patients with epilepsy with unclear mechanisms. This study is to explore the role of glutamate N-methyl-D-aspartate (NMDA) receptor NR1, NR2A and NR2B subunits in epilepsy-associated depression. Lithium chloride (Licl)-pilocarpine chronic rat epilepsy model was established and rats were divided into epilepsy with depression (EWD) and epilepsy without depression (EWND) subgroups based on forced swim test. Expression of NMDA receptor NR1, NR2A and NR2B subunits was measured by western blot and immunofluorescence methods. The immobility time (IMT) was significantly greater in Licl-pilocarpine model group than in Control group, which was also greater in EWD group than in EWND group. No differences of spontaneous recurrent seizure (SRS) counts over two weeks and latency were found between EWD and EWND groups. The number of NeuN positive cells was significantly less in Licl-pilocarpine model group than in Control group, but had no difference between EWD and EWND groups. The ratios of phosphorylated NR1 (p-NR1)/NR1 and p-NR2B/NR2B were significantly greater in the hippocampus in EWD group than in EWND group. Moreover, the expression of p-NR1 and p-NR2B in the CA1 subfield of hippocampus were both greater in Licl-pilocarpine model group than Control group. Selective blockage of NR2B subunit with ifenprodil could alleviate depression-like behaviours of Licl-pilocarpine rat epilepsy model. In conclusion, glutamate NMDA receptor NR2B subunit was involved in promoting depression-like behaviours in the Licl-pilocarpine chronic rat epilepsy model and might be a target for treating epilepsy-associated depression.

  5. NR2B-NMDA receptor mediated modulation of the tyrosine phosphatase STEP regulates glutamate induced neuronal cell death

    PubMed Central

    Poddar, Ranjana; Deb, Ishani; Mukherjee, Saibal; Paul, Surojit

    2011-01-01

    The present study examines the role of a neuron-specific tyrosine phosphatase (STEP) in excitotoxic cell death. Our findings demonstrate that p38 MAPK, a stress-activated kinase that is known to play a role in the etiology of excitotoxic cell death is a substrate of STEP. Glutamate-mediated NMDA receptor stimulation leads to rapid but transient activation of p38 MAPK, which is primarily dependent on NR2A-NMDA receptor activation. Conversely, activation of NR2B-NMDA receptors leads to dephosphorylation and subsequent activation of STEP, which in turn leads to inactivation of p38 MAPK. Thus during transient NMDA receptor stimulation, increases in STEP activity appears to limit the duration of activation of p38 MAPK and improves neuronal survival. However, if NR2B-NMDA receptor stimulation is sustained, protective effects of STEP activation are lost, as these stimuli cause significant degradation of active STEP, leading to secondary activation of p38 MAP kinase. Consistent with this observation, a cell transducible TAT-STEP peptide that constitutively binds to p38 MAPK attenuated neuronal cell death caused by sustained NMDA receptor stimulation. The findings imply that the activation and levels of STEP are dependent on the duration and magnitude of NR2B-NMDA receptor stimulation and STEP serves as a modulator of NMDA receptor dependent neuronal injury, through its regulation of p38 MAPK. PMID:21029094

  6. The CYP2B2 5' flank contains a complex glucocorticoid response unit.

    PubMed

    Audet-Walsh, Etienne; Lachaud, Antoine Amaury; Anderson, Alan

    2008-11-15

    Rat CYP2B1 and CYP2B2 and mouse CYP2B10 are dramatically induced by phenobarbital (PB) in liver. PB responsiveness requires the constitutive androstane receptor (CAR). However, dexamethasone treatment can also induce CYP2B genes in both rat and mouse liver. Three regions have been shown to be involved in conferring dexamethasone responsiveness on CYP2B2 reporter constructs. They are the PB response unit, a functional glucocorticoid response element at -1.3kb in the 5' flank and a weak element in the basal promoter. We report here the identification, by deletion analysis of the CYP2B2 5' flank, of new glucocorticoid response elements or accessory factor sites. Moreover, we show that CAR acts as an accessory factor in the dexamethasone response in vivo of CYP2B10 protein in mice, by increasing both the basal and induced levels. We propose a model to explain the dexamethasone responsiveness of the CYP2B2 gene in which induction is mediated by a complex glucocorticoid response unit.

  7. Enhanced anti-melanoma efficacy of interferon alfa-2b via inhibition of Shp2.

    PubMed

    Win-Piazza, Hla; Schneeberger, Valentina E; Chen, Liwei; Pernazza, Daniele; Lawrence, Harshani R; Sebti, Said M; Lawrence, Nicholas J; Wu, Jie

    2012-07-01

    Interferon-α2b (IFN-α2b) is used to treat melanoma but there is a need to improve its efficacy. IFN-α2b signaling requires STAT1/STAT2 tyrosine phosphorylation and is subject to negative regulation by phosphatases. In this study, we determined whether inhibition of the protein tyrosine phosphatase Shp2 could enhance IFN-α2b responses in human melanoma cells. Shp2 knockdown increased IFN-α2b-stimulated STAT1 Tyr-701 phosphorylation and ISRE-luciferase activity even though it did not affect STAT2 Tyr-690 phosphorylation in A375 cells. In A375 tumor xenografts, Shp2 knockdown enhanced the anti-melanoma effect of IFN-α2b. Furthermore, the Shp2 inhibitor SPI-112Me increased the IFN-α2b-induced STAT1 activation and anti-proliferative response in A375 and SK-MEL-2 cells. These results demonstrate that inhibition of Shp2 can enhance the anti-melanoma activity of IFN-α2b.

  8. 75 FR 34349 - Airworthiness Directives; Mitsubishi Heavy Industries, Ltd. Various Models MU-2B Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... airplanes. An FAA MU-2B safety evaluation resulted in the standardization of the MU-2B specific training and... evaluation had no regulatory basis and were locally produced. This resulted in a lack of standardization for... standardization for critical operating procedures in training and in the FAA-accepted pilot operating...

  9. 50 CFR Table 2b to Part 679 - Species Codes: FMP Prohibited Species and CR Crab

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CR Crab 2b Table 2b to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... CR Crab Species Description Code CR Crab Groundfish PSC CRAB Box Lopholithodes mandtii 900 ✓ Dungeness Cancer magister 910 ✓ King, blue Paralithodes platypus 922 ✓ ✓ King, golden (brown)...

  10. 50 CFR Table 2b to Part 679 - Species Codes: FMP Prohibited Species and CR Crab

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CR Crab 2b Table 2b to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... CR Crab Species Description Code CR Crab Groundfish PSC CRAB Box Lopholithodes mandtii 900 ✓ Dungeness Cancer magister 910 ✓ King, blue Paralithodes platypus 922 ✓ ✓ King, golden (brown)...

  11. 50 CFR Table 2b to Part 679 - Species Codes: FMP Prohibited Species and CR Crab

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CR Crab 2b Table 2b to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... CR Crab Species Description Code CR Crab Groundfish PSC CRAB Box Lopholithodes mandtii 900 ✓ Dungeness Cancer magister 910 ✓ King, blue Paralithodes platypus 922 ✓ ✓ King, golden (brown)...

  12. 50 CFR Table 2b to Part 679 - Species Codes: FMP Prohibited Species and CR Crab

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CR Crab 2b Table 2b to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... CR Crab Species Description Code CR Crab Groundfish PSC CRAB Box Lopholithodes mandtii 900 ✓ Dungeness Cancer magister 910 ✓ King, blue Paralithodes platypus 922 ✓ ✓ King, golden (brown)...

  13. 50 CFR Table 2b to Part 679 - Species Codes: FMP Prohibited Species and CR Crab

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CR Crab 2b Table 2b to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... CR Crab Species Description Code CR Crab Groundfish PSC CRAB Box Lopholithodes mandtii 900 ✓ Dungeness Cancer magister 910 ✓ King, blue Paralithodes platypus 922 ✓ ✓ King, golden (brown)...

  14. SRC Inhibition Reduces NR2B Surface Expression and Synaptic Plasticity in the Amygdala

    ERIC Educational Resources Information Center

    Sinai, Laleh; Duffy, Steven; Roder, John C.

    2010-01-01

    The Src protein tyrosine kinase plays a central role in the regulation of N-methyl-d-aspartate receptor (NMDAR) activity by regulating NMDAR subunit 2B (NR2B) surface expression. In the amygdala, NMDA-dependent synaptic plasticity resulting from convergent somatosensory and auditory inputs contributes to emotional memory; however, the role of Src…

  15. A Decompositional Approach to Executing Quality Data Model Algorithms on the i2b2 Platform

    PubMed Central

    Mo, Huan; Jiang, Guoqian; Pacheco, Jennifer A.; Kiefer, Richard; Rasmussen, Luke V.; Pathak, Jyotishman; Denny, Joshua C.; Thompson, William K.

    2016-01-01

    The Quality Data Model (QDM) is an established standard for representing electronic clinical quality measures on electronic health record (EHR) repositories. The Informatics for Integrated Biology and the Bedside (i2b2) is a widely used platform for implementing clinical data repositories. However, translation from QDM to i2b2 is challenging, since QDM allows for complex queries beyond the capability of single i2b2 messages. We have developed an approach to decompose complex QDM algorithms into workflows of single i2b2 messages, and execute them on the KNIME data analytics platform. Each workflow operation module is composed of parameter lists, a template for the i2b2 message, an mechanism to create parameter updates, and a web service call to i2b2. The communication between workflow modules relies on passing keys ofi2b2 result sets. As a demonstration of validity, we describe the implementation and execution of a type 2 diabetes mellitus phenotype algorithm against an i2b2 data repository. PMID:27570665

  16. The electronic structure of Li2B4O7(110) and Li2B4O7(100)

    NASA Astrophysics Data System (ADS)

    Wooten, D.; Ketsman, I.; Xiao, J.; Losovyj, Ya. B.; Petrosky, J.; McClory, J.; Burak, Ya. V.; Adamiv, V. T.; Brown, J. M.; Dowben, P. A.

    2010-12-01

    The band structure of Li2B4O7(100) and Li2B4O7(110) was experimentally determined using a combination of angle-resolved photoemission and angle-resolved inverse photoemission spectroscopies. The experimental band gap depends on crystallographic direction but exceeds 8.8 eV, while the bulk band gap is believed to be in the vicinity of 9.8 eV, in qualitative agreement with expectations. The occupied bulk band structure indicates relatively large values for the hole mass; with the hole mass as significantly larger than that of the electron mass derived from the unoccupied band structure. The Li2B4O7(110) surface is characterized by a very light mass image potential state and a surface state that falls within the band gap of the projected bulk band structure.

  17. Polymorphic variants of cytochrome P450 2B6 (CYP2B6.4-CYP2B6.9) exhibit altered rates of metabolism for bupropion and efavirenz: a charge-reversal mutation in the K139E variant (CYP2B6.8) impairs formation of a functional cytochrome p450-reductase complex.

    PubMed

    Zhang, Haoming; Sridar, Chitra; Kenaan, Cesar; Amunugama, Hemali; Ballou, David P; Hollenberg, Paul F

    2011-09-01

    In this study, metabolism of bupropion, efavirenz, and 7-ethoxy-4-trifluoromethylcoumarin (7-EFC) by CYP2B6 wild type (CYP2B6.1) and six polymorphic variants (CYP2B6.4 to CYP2B6.9) was investigated in a reconstituted system to gain a better understanding of the effects of the mutations on the catalytic properties of these naturally occurring variants. All six variants were successfully overexpressed in Escherichia coli, including CYP2B6.8 (the K139E variant), which previously could not be overexpressed in mammalian COS-1 cells (J Pharmacol Exp Ther 311:34-43, 2004). The steady-state turnover rates for the hydroxylation of bupropion and efavirenz and the O-deethylation of 7-EFC showed that these mutations significantly alter the catalytic activities of CYP2B6. It was found that CYP2B6.6 exhibits 4- and 27-fold increases in the K(m) values for the hydroxylation of bupropion and efavirenz, respectively, and CYP2B6.8 completely loses its ability to metabolize any of the substrates under normal turnover conditions. However, compared with CYP2B6.1, CYP2B6.8 retains 77% of its 7-EFC O-deethylase activity in the presence of tert-butyl hydroperoxide as an alternative oxidant, indicating that the heme and the active site are catalytically competent. Presteady-state measurements of the rate of electron transfer from NADPH-dependent cytochrome P450 reductase (CPR) to CYP2B6.8 using stopped-flow spectrophotometry revealed that CYP2B6.8 is incapable of accepting electrons from CPR. These observations provide conclusive evidence suggesting that the charge-reversal mutation in the K139E variant prevents CYP2B6.8 from forming a functional complex with CPR. Results from this work provide further insights to better understand the genotype-phenotype correlation regarding CYP2B6 polymorphisms and drug metabolism.

  18. Human SH2B1 mutations are associated with maladaptive behaviors and obesity.

    PubMed

    Doche, Michael E; Bochukova, Elena G; Su, Hsiao-Wen; Pearce, Laura R; Keogh, Julia M; Henning, Elana; Cline, Joel M; Saeed, Sadia; Dale, Anne; Cheetham, Tim; Barroso, Inês; Argetsinger, Lawrence S; O'Rahilly, Stephen; Rui, Liangyou; Carter-Su, Christin; Farooqi, I Sadaf

    2012-12-01

    Src homology 2 B adapter protein 1 (SH2B1) modulates signaling by a variety of ligands that bind to receptor tyrosine kinases or JAK-associated cytokine receptors, including leptin, insulin, growth hormone (GH), and nerve growth factor (NGF). Targeted deletion of Sh2b1 in mice results in increased food intake, obesity, and insulin resistance, with an intermediate phenotype seen in heterozygous null mice on a high-fat diet. We identified SH2B1 loss-of-function mutations in a large cohort of patients with severe early-onset obesity. Mutation carriers exhibited hyperphagia, childhood-onset obesity, disproportionate insulin resistance, and reduced final height as adults. Unexpectedly, mutation carriers exhibited a spectrum of behavioral abnormalities that were not reported in controls, including social isolation and aggression. We conclude that SH2B1 plays a critical role in the control of human food intake and body weight and is implicated in maladaptive human behavior.

  19. i2b2t2: Unlocking Visualization for Clinical Research

    PubMed Central

    Harris, Daniel R.; Henderson, Darren W.

    2016-01-01

    We introduce a tool that extracts clinical data sets and provides visualizations from clinical data warehouses that use the Informatics for Integrating Biology and the Bedside (i2b2) query tool. Our tool, i2b2t2 (i2b2 to Tableau), can extract and visualize any i2b2 query into a portable format that researchers can easily explore without needing a highly technical or statistical background. This user-friendly format provides a quick visual summary of the queried population and is easily extendable to develop more intricate and robust visualizations. Extraction and visualization can be provided as a service by clinical data warehouses to expedite the release of data sets for research. i2b2t2 also encourages visualization as a self-service; a motivated researcher can develop custom visualizations for exploration or publication. PMID:27570658

  20. Parent-of-origin effects in multiple endocrine neoplasia Type 2B

    SciTech Connect

    Carlson, K.M.; Bracamontes, J.; Wells, S.A. Jr.; Goodfellow, P.J.; Jackson, C.E.; Clark, R.; Lacroix, A.

    1994-12-01

    Multiple endocrine neoplasia type 2B (MEN 2B) is characterized by medullary thyroid carcinoma, pheochromocytomas, mucosal neuromas, ganglioneuromas, and skeletal and ophthalmic abnormalities. It is observed as both inherited and sporadic disease, with an estimated 50% of cases arising de novo. A single point mutation in the catalytic core region of the receptor tyrosine kinase, RET, has been observed in germ-line DNA of MEN 2B patients. The authors have analyzed 25 cases of de novo disease in order to determine the parental origin of the mutated RET allele. In all cases the new mutation was of paternal origin. We observe a distortion of the sex ratio in both de novo MEN 2B patients and the affected offspring of MEN 2B transmitting males. These results suggest a differential susceptibility of RET to mutation in paternally and maternally derived DNA and a possible role for imprinting of RET during development.

  1. Regulation of the phosphatase PP2B by protein–protein interactions

    PubMed Central

    Nygren, Patrick J.; Scott, John D.

    2016-01-01

    Protein dephosphorylation is important for regulating cellular signaling in a variety of contexts. Protein phosphatase-2B (PP2B), or calcineurin, is a widely expressed serine/threonine phosphatase that acts on a large cross section of potential protein substrates when activated by increased levels of intracellular calcium in concert with calmodulin. PxIxIT and LxVP targeting motifs are important for maintaining specificity in response to elevated calcium. In the present study, we describe the mechanism of PP2B activation, discuss its targeting by conserved binding motifs and review recent advances in the understanding of an A-kinase anchoring protein 79/PP2B/protein kinase A complex’s role in synaptic long-term depression. Finally, we discuss potential for targeting PP2B anchoring motifs for therapeutic benefit. PMID:27911714

  2. Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion

    PubMed Central

    Wang, Shen; Li, Yun; Ma, Cong

    2016-01-01

    Synaptotagmin-1 (Syt1) acts as a Ca2+ sensor for neurotransmitter release through its C2 domains. It has been proposed that Syt1 promotes SNARE-dependent fusion mainly through its C2B domain, but the underlying mechanism is poorly understood. In this study, we show that the C2B domain interacts simultaneously with acidic membranes and SNARE complexes via the top Ca2+-binding loops, the side polybasic patch, and the bottom face in response to Ca2+. Disruption of the simultaneous interactions completely abrogates the triggering activity of the C2B domain in liposome fusion. We hypothesize that the simultaneous interactions endow the C2B domain with an ability to deform local membranes, and this membrane-deformation activity might underlie the functional significance of the Syt1 C2B domain in vivo. DOI: http://dx.doi.org/10.7554/eLife.14211.001 PMID:27083046