Science.gov

Sample records for 2a catalytic subunit

  1. Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development

    PubMed Central

    Beier, Anna; Krisp, Christoph; Wolters, Dirk A.

    2016-01-01

    ABSTRACT The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora. Fruiting body development is controlled by subunits of the highly conserved striatin-interacting phosphatase and kinase (STRIPAK) complex, which has been described in organisms ranging from yeasts to humans. The highly conserved heterotrimeric protein phosphatase PP2A is a subunit of STRIPAK. Here, catalytic subunit 1 of PP2A was functionally characterized. The Δpp2Ac1 strain is sterile, unable to undergo hyphal fusion, and devoid of ascogonial septation. Further, PP2Ac1, together with STRIPAK subunit PRO22, governs vegetative and stress-related growth. We revealed in vitro catalytic activity of wild-type PP2Ac1, and our in vivo analysis showed that inactive PP2Ac1 blocks the complementation of the sterile deletion strain. Tandem affinity purification, followed by mass spectrometry and yeast two-hybrid analysis, verified that PP2Ac1 is a subunit of STRIPAK. Further, these data indicate links between the STRIPAK complex and other developmental signaling pathways, implying the presence of a large interconnected signaling network that controls eukaryotic developmental processes. The insights gained in our study can be transferred to higher eukaryotes and will be important for understanding eukaryotic cellular development in general. PMID:27329756

  2. Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus.

    PubMed Central

    Ruediger, R; Roeckel, D; Fait, J; Bergqvist, A; Magnusson, G; Walter, G

    1992-01-01

    Protein phosphatase 2A is composed of three subunits: the catalytic subunit C and two regulatory subunits, A and B. The A subunit consists of 15 nonidentical repeats and has a rodlike shape. It is associated with the B and C subunits as well as with the simian virus 40 small T, polyomavirus small T, and polyomavirus medium T tumor antigens. We determined the binding sites on subunit A for subunit C and tumor antigens by site-directed mutagenesis of A. Twenty-four N- and C-terminal truncations and internal deletions of A were assayed by coimmunoprecipitation for their ability to bind C and tumor antigens. It was found that C binds to repeats 11 to 15 at the C terminus of A, whereas T antigens bind to overlapping but distinct regions of the N terminus. Simian virus 40 small T binds to repeats 3 to 6, and polyomavirus small T and medium T bind to repeats 2 to 8. The data suggest cooperativity between C and T antigens in binding to A. This is most apparent for medium T antigen, which can only bind to those A subunit molecules that provide the entire binding region for the C subunit. We infer from our results that B also binds to N-terminal repeats. A model of the small T/medium T/B-A-C complexes is presented. Images PMID:1328865

  3. Gene targeting of CK2 catalytic subunits

    PubMed Central

    Lou, David Y.; Toselli, Paul; Landesman-Bollag, Esther; Dominguez, Isabel

    2013-01-01

    Protein kinase CK2 is a highly conserved and ubiquitous serine–threonine kinase. It is a tetrameric enzyme that is made up of two regulatory CK2β subunits and two catalytic subunits, either CK2α/CK2α, CK2α/ CK2α′, or CK2α′/CK2α′. Although the two catalytic subunits diverge in their C termini, their enzymatic activities are similar. To identify the specific function of the two catalytic subunits in development, we have deleted them individually from the mouse genome by homologous recombination. We have previously reported that CK2α′is essential for male germ cell development, and we now demonstrate that CK2α has an essential role in embryogenesis, as mice lacking CK2α die in mid-embryogenesis, with cardiac and neural tube defects. PMID:18594950

  4. A protein phosphatase 2A catalytic subunit modulates blue light-induced chloroplast avoidance movements through regulating actin cytoskeleton in Arabidopsis.

    PubMed

    Wen, Feng; Wang, Jinqian; Xing, Da

    2012-08-01

    Chloroplast avoidance movements mediated by phototropin 2 (phot2) are one of most important physiological events in the response to high-fluence blue light (BL), which reduces damage to the photosynthetic machinery under excess light. Protein phosphatase 2A-2 (PP2A-2) is an isoform of the catalytic subunit of PP2A, which regulates a number of developmental processes. To investigate whether PP2A-2 was involved in high-fluence BL-induced chloroplast avoidance movements, we first analyzed chloroplast migration in the leaves of the pp2a-2 mutant in response to BL. The data showed that PP2A-2 might act as a positive regulator in phot2-mediated chloroplast avoidance movements, but not in phot1-mediated chloroplast accumulation movements. Then, the effect of okadaic acid (OA) and cantharidin (selective PP2A inhibitors) on high-fluence BL response was further investigated in Arabidopsis thaliana mesophyll cells. Within a certain concentration range, exogenously applied OA or cantharidin inhibited the high-fluence BL-induced chloroplast movements in a concentration-dependent manner. Actin depolymerizing factor (ADF)/cofilin phosphorylation assays demonstrated that PP2A-2 can activate/dephosphorylate ADF/cofilin, an actin-binding protein, in Arabidopsis mesophyll cells. Consistent with this observation, the experiments showed that OA could inhibit ADF1 binding to the actin and suppress the reorganization of the actin cytoskeleton after high-fluence BL irradiation. The adf1 and adf3 mutants also exhibited reduced high-fluence BL-induced chloroplast avoidance movements. In conclusion, we identified that PP2A-2 regulated the activation of ADF/cofilin, which, in turn, regulated actin cytoskeleton remodeling and was involved in phot2-mediated chloroplast avoidance movements.

  5. The eukaryotic RNA exosome: same scaffold but variable catalytic subunits.

    PubMed

    Lykke-Andersen, Søren; Tomecki, Rafal; Jensen, Torben Heick; Dziembowski, Andrzej

    2011-01-01

    The RNA exosome is a versatile ribonucleolytic protein complex that participates in a multitude of cellular RNA processing and degradation events. It consists of an invariable nine-subunit core that associates with a variety of enzymatically active subunits and co-factors. These contribute to or even provide the catalytic activity and substrate specificity of the complex. The S. cerevisiae exosome has been intensively studied since its discovery in 1997 and thus serves as the archetype of eukaryotic exosomes. Notably, its catalytic potential, derived exclusively from associated subunits, differs between the nuclear and cytoplasmic versions of the complex. The same holds true for other eukaryotes, however, recent discoveries from various laboratories including our own have revealed that there are variations on this theme. Here, we review the latest findings concerning catalytic subunits of eukaryotic exosomes, and we discuss the apparent need for differential composition and subcellular distribution of exosome variants.

  6. Functional Diversification of Maize RNA Polymerase IV and V subtypes via Alternative Catalytic Subunits

    SciTech Connect

    Haag, Jeremy R.; Brower-Toland, Brent; Krieger, Elysia K.; Sidorenko, Lyudmila; Nicora, Carrie D.; Norbeck, Angela D.; Irsigler, Andre; LaRue, Huachun; Brzeski, Jan; Mcginnis, Karen A.; Ivashuta, Sergey; Pasa-Tolic, Ljiljana; Chandler, Vicki L.; Pikaard, Craig S.

    2014-10-01

    Unlike nuclear multisubunit RNA polymerases I, II, and III, whose subunit compositions are conserved throughout eukaryotes, plant RNA polymerases IV and V are nonessential, Pol II-related enzymes whose subunit compositions are still evolving. Whereas Arabidopsis Pols IV and V differ from Pol II in four or five of their 12 subunits, respectively, and differ from one another in three subunits, proteomic ana- lyses show that maize Pols IV and V differ from Pol II in six subunits but differ from each other only in their largest subunits. Use of alternative catalytic second subunits, which are nonredundant for development and paramutation, yields at least two sub- types of Pol IV and three subtypes of Pol V in maize. Pol IV/Pol V associations with MOP1, RMR1, AGO121, Zm_DRD1/CHR127, SHH2a, and SHH2b extend parallels between paramutation in maize and the RNA-directed DNA methylation pathway in Arabidopsis.

  7. Expression, purification, and characterization of a biologically active bovine enterokinase catalytic subunit in Escherichia coli.

    PubMed

    Yuan, Liu-Di; Hua, Zi-Chun

    2002-07-01

    Enterokinase (EC 3.4.21.9) is a serine proteinase in the duodenum that exhibits specificity for the sequence (Asp)(4)-Lys. It converts trypsinogen to trypsin. Its high specificity for the recognition site makes enterokinase (EK) a useful tool for in vitro cleavage of fusion proteins. cDNA encoding the catalytic chain of Chinese bovine enterokinase was cloned and its encoding amino acid sequence is identical to the previously reported sequence although there are two one-base mutations which do not change the encoded amino acid. The EK catalytic subunit cDNA was cloned into plasmid pET32a, and fused downstream to the fusion partner thioredoxin (Trx) and the following DDDDK enterokinase recognition sequence. The recombinant bovine enterokinase catalytic subunit was expressed in Escherichia coli BL21(DE3), and most products existed in soluble form. After an in vivo autocatalytic cleavage of the recombinant Trx-EK catalytic domain fusion protein, intact, biologically active EK catalytic subunit was released from the fusion protein. The recombinant intact EK catalytic subunit was purified to homogeneity with a specific activity of 720 AUs/mg protein through ammonium sulfate precipitation, DEAE chromatography, and gel filtration. The purified intact EK catalytic subunit has a K(m) of 0.17 mM, and K(cat) is 20.8s(-1). From 100 ml flask culture, 4.3 mg pure active EK catalytic subunits were obtained.

  8. The A1 Subunit of Shiga Toxin 2 Has Higher Affinity for Ribosomes and Higher Catalytic Activity than the A1 Subunit of Shiga Toxin 1

    PubMed Central

    Basu, Debaleena; Li, Xiao-Ping; Kahn, Jennifer N.; May, Kerrie L.; Kahn, Peter C.

    2015-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) infections can lead to life-threatening complications, including hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS), which is the most common cause of acute renal failure in children in the United States. Stx1 and Stx2 are AB5 toxins consisting of an enzymatically active A subunit associated with a pentamer of receptor binding B subunits. Epidemiological evidence suggests that Stx2-producing E. coli strains are more frequently associated with HUS than Stx1-producing strains. Several studies suggest that the B subunit plays a role in mediating toxicity. However, the role of the A subunits in the increased potency of Stx2 has not been fully investigated. Here, using purified A1 subunits, we show that Stx2A1 has a higher affinity for yeast and mammalian ribosomes than Stx1A1. Biacore analysis indicated that Stx2A1 has faster association and dissociation with ribosomes than Stx1A1. Analysis of ribosome depurination kinetics demonstrated that Stx2A1 depurinates yeast and mammalian ribosomes and an RNA stem-loop mimic of the sarcin/ricin loop (SRL) at a higher catalytic rate and is a more efficient enzyme than Stx1A1. Stx2A1 depurinated ribosomes at a higher level in vivo and was more cytotoxic than Stx1A1 in Saccharomyces cerevisiae. Stx2A1 depurinated ribosomes and inhibited translation at a significantly higher level than Stx1A1 in human cells. These results provide the first direct evidence that the higher affinity for ribosomes in combination with higher catalytic activity toward the SRL allows Stx2A1 to depurinate ribosomes, inhibit translation, and exhibit cytotoxicity at a significantly higher level than Stx1A1. PMID:26483409

  9. The A1 Subunit of Shiga Toxin 2 Has Higher Affinity for Ribosomes and Higher Catalytic Activity than the A1 Subunit of Shiga Toxin 1.

    PubMed

    Basu, Debaleena; Li, Xiao-Ping; Kahn, Jennifer N; May, Kerrie L; Kahn, Peter C; Tumer, Nilgun E

    2015-10-19

    Shiga toxin (Stx)-producing Escherichia coli (STEC) infections can lead to life-threatening complications, including hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS), which is the most common cause of acute renal failure in children in the United States. Stx1 and Stx2 are AB5 toxins consisting of an enzymatically active A subunit associated with a pentamer of receptor binding B subunits. Epidemiological evidence suggests that Stx2-producing E. coli strains are more frequently associated with HUS than Stx1-producing strains. Several studies suggest that the B subunit plays a role in mediating toxicity. However, the role of the A subunits in the increased potency of Stx2 has not been fully investigated. Here, using purified A1 subunits, we show that Stx2A1 has a higher affinity for yeast and mammalian ribosomes than Stx1A1. Biacore analysis indicated that Stx2A1 has faster association and dissociation with ribosomes than Stx1A1. Analysis of ribosome depurination kinetics demonstrated that Stx2A1 depurinates yeast and mammalian ribosomes and an RNA stem-loop mimic of the sarcin/ricin loop (SRL) at a higher catalytic rate and is a more efficient enzyme than Stx1A1. Stx2A1 depurinated ribosomes at a higher level in vivo and was more cytotoxic than Stx1A1 in Saccharomyces cerevisiae. Stx2A1 depurinated ribosomes and inhibited translation at a significantly higher level than Stx1A1 in human cells. These results provide the first direct evidence that the higher affinity for ribosomes in combination with higher catalytic activity toward the SRL allows Stx2A1 to depurinate ribosomes, inhibit translation, and exhibit cytotoxicity at a significantly higher level than Stx1A1.

  10. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo

    NASA Technical Reports Server (NTRS)

    Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.

  11. Functional analysis of the catalytic subunit of Dictyostelium PKA in vivo.

    PubMed

    Dammann, H; Traincard, F; Anjard, C; van Bemmelen, M X; Reymond, C; Véron, M

    1998-03-01

    The catalytic subunit of the cAMP-dependent protein kinase (PKA) from Dictyostelium discoideum contains several domains, including an unusually long N-terminal extension preceding a highly conserved catalytic core. We transformed the aggregationless PkaC-null strain with several deletion constructs of both domains. Strains transformed with genes expressing catalytically-inactive polypeptides could not rescue development. Cotransformation with constructs encoding the N-terminal extension and the catalytic core, both unable to rescue development by themselves, yielded transformants able to proceed to late development. A 27-amino acid long hydrophobic region, immediately upstream of the catalytic core, was found indispensable for PKA function. A putative role of this sequence in the acquisition of the active conformation of the protein is discussed.

  12. Structural Characterization of the Catalytic Subunit of a Novel RNA Splicing Endonuclease

    SciTech Connect

    Calvin, Kate; Hall, Michelle D.; Xu, Fangmin; Xue, Song; Li, Hong

    2010-07-13

    The RNA splicing endonuclease is responsible for recognition and excision of nuclear tRNA and all archaeal introns. Despite the conserved RNA cleavage chemistry and a similar enzyme assembly, currently known splicing endonuclease families have limited RNA specificity. Different from previously characterized splicing endonucleases in Archaea, the splicing endonuclease from archaeum Sulfolobus solfataricus was found to contain two different subunits and accept a broader range of substrates. Here, we report a crystal structure of the catalytic subunit of the S. solfataricus endonuclease at 3.1 {angstrom} resolution. The structure, together with analytical ultracentrifugation analysis, identifies the catalytic subunit as an inactive but stable homodimer, thus suggesting the possibility of two modes of functional assembly for the active enzyme.

  13. In situ structure of trypanosomal ATP synthase dimer reveals a unique arrangement of catalytic subunits

    PubMed Central

    Mühleip, Alexander W.; Dewar, Caroline E.; Schnaufer, Achim; Kühlbrandt, Werner; Davies, Karen M.

    2017-01-01

    We used electron cryotomography and subtomogram averaging to determine the in situ structures of mitochondrial ATP synthase dimers from two organisms belonging to the phylum euglenozoa: Trypanosoma brucei, a lethal human parasite, and Euglena gracilis, a photosynthetic protist. At a resolution of 32.5 Å and 27.5 Å, respectively, the two structures clearly exhibit a noncanonical F1 head, in which the catalytic (αβ)3 assembly forms a triangular pyramid rather than the pseudo-sixfold ring arrangement typical of all other ATP synthases investigated so far. Fitting of known X-ray structures reveals that this unusual geometry results from a phylum-specific cleavage of the α subunit, in which the C-terminal αC fragments are displaced by ∼20 Å and rotated by ∼30° from their expected positions. In this location, the αC fragment is unable to form the conserved catalytic interface that was thought to be essential for ATP synthesis, and cannot convert γ-subunit rotation into the conformational changes implicit in rotary catalysis. The new arrangement of catalytic subunits suggests that the mechanism of ATP generation by rotary ATPases is less strictly conserved than has been generally assumed. The ATP synthases of these organisms present a unique model system for discerning the individual contributions of the α and β subunits to the fundamental process of ATP synthesis. PMID:28096380

  14. In situ structure of trypanosomal ATP synthase dimer reveals a unique arrangement of catalytic subunits.

    PubMed

    Mühleip, Alexander W; Dewar, Caroline E; Schnaufer, Achim; Kühlbrandt, Werner; Davies, Karen M

    2017-01-31

    We used electron cryotomography and subtomogram averaging to determine the in situ structures of mitochondrial ATP synthase dimers from two organisms belonging to the phylum euglenozoa: Trypanosoma brucei, a lethal human parasite, and Euglena gracilis, a photosynthetic protist. At a resolution of 32.5 Å and 27.5 Å, respectively, the two structures clearly exhibit a noncanonical F1 head, in which the catalytic (αβ)3 assembly forms a triangular pyramid rather than the pseudo-sixfold ring arrangement typical of all other ATP synthases investigated so far. Fitting of known X-ray structures reveals that this unusual geometry results from a phylum-specific cleavage of the α subunit, in which the C-terminal αC fragments are displaced by ∼20 Å and rotated by ∼30° from their expected positions. In this location, the αC fragment is unable to form the conserved catalytic interface that was thought to be essential for ATP synthesis, and cannot convert γ-subunit rotation into the conformational changes implicit in rotary catalysis. The new arrangement of catalytic subunits suggests that the mechanism of ATP generation by rotary ATPases is less strictly conserved than has been generally assumed. The ATP synthases of these organisms present a unique model system for discerning the individual contributions of the α and β subunits to the fundamental process of ATP synthesis.

  15. The Alpha Catalytic Subunit of Protein Kinase CK2 Is Required for Mouse Embryonic Development▿

    PubMed Central

    Lou, David Y.; Dominguez, Isabel; Toselli, Paul; Landesman-Bollag, Esther; O'Brien, Conor; Seldin, David C.

    2008-01-01

    Protein kinase CK2 (formerly casein kinase II) is a highly conserved and ubiquitous serine/threonine kinase that is composed of two catalytic subunits (CK2α and/or CK2α′) and two CK2β regulatory subunits. CK2 has many substrates in cells, and key roles in yeast cell physiology have been uncovered by introducing subunit mutations. Gene-targeting experiments have demonstrated that in mice, the CK2β gene is required for early embryonic development, while the CK2α′ subunit appears to be essential only for normal spermatogenesis. We have used homologous recombination to disrupt the CK2α gene in the mouse germ line. Embryos lacking CK2α have a marked reduction in CK2 activity in spite of the presence of the CK2α′ subunit. CK2α−/− embryos die in mid-gestation, with abnormalities including open neural tubes and reductions in the branchial arches. Defects in the formation of the heart lead to hydrops fetalis and are likely the cause of embryonic lethality. Thus, CK2α appears to play an essential and uncompensated role in mammalian development. PMID:17954558

  16. Calmodulin-dependent protein phosphatase from Neurospora crassa. Molecular cloning and expression of recombinant catalytic subunit.

    PubMed

    Higuchi, S; Tamura, J; Giri, P R; Polli, J W; Kincaid, R L

    1991-09-25

    A cDNA for the catalytic subunit of a calmodulin (CaM)-dependent protein phosphatase was cloned from Neurospora crassa. The open reading frame of 1557 base pairs encoded a protein of Mr approximately 59,580 and was followed by a 3'-untranslated region of 363 base pairs including the poly(A) tail. Based on primer extension analysis, the mRNA transcript in vivo was 2403 base pairs. Expression of this CaM-protein phosphatase mRNA was developmentally regulated, being highest during early mycelial growth; production of the corresponding protein followed mRNA with a time lag of 8-12 h. Polymerase chain reaction amplification of genomic DNA revealed three small introns, the positions of which coincided with those in the mouse gene, indicating evolutionary conservation of these structures. The deduced sequence showed approximately 75% identity with the mammalian homologue, calcineurin, in aligned regions. A region of 40 amino acids preceding the CaM-binding domain was essentially unchanged, suggesting conservation of a crucial interaction site. Three small segments in the carboxyl half of the protein were unrelated to the mammalian gene and may constitute "variable regions" that confer substrate specificity to the enzyme. An active recombinant catalytic subunit was expressed in bacteria and purified by CaM-Sepharose chromatography. This preparation was stimulated 2- 3-fold by CaM and showed a p-nitrophenol phosphatase activity equal to that of the bovine brain holoenzyme, although its dephosphorylation of phosphoprotein substrates was markedly different. These findings demonstrate that the catalytic subunit of this phosphatase can exhibit high activity in the absence of its intrinsic Ca(2+)-binding subunit.

  17. Structural and biochemical characterization of human PR70 in isolation and in complex with the scaffolding subunit of protein phosphatase 2A.

    PubMed

    Dovega, Rebecca; Tsutakawa, Susan; Quistgaard, Esben M; Anandapadamanaban, Madhanagopal; Löw, Christian; Nordlund, Pär

    2014-01-01

    Protein Phosphatase 2A (PP2A) is a major Ser/Thr phosphatase involved in the regulation of various cellular processes. PP2A assembles into diverse trimeric holoenzymes, which consist of a scaffolding (A) subunit, a catalytic (C) subunit and various regulatory (B) subunits. Here we report a 2.0 Å crystal structure of the free B''/PR70 subunit and a SAXS model of an A/PR70 complex. The crystal structure of B''/PR70 reveals a two domain elongated structure with two Ca2+ binding EF-hands. Furthermore, we have characterized the interaction of both binding partner and their calcium dependency using biophysical techniques. Ca2+ biophysical studies with Circular Dichroism showed that the two EF-hands display different affinities to Ca2+. In the absence of the catalytic C-subunit, the scaffolding A-subunit remains highly mobile and flexible even in the presence of the B''/PR70 subunit as judged by SAXS. Isothermal Titration Calorimetry studies and SAXS data support that PR70 and the A-subunit have high affinity to each other. This study provides additional knowledge about the structural basis for the function of B'' containing holoenzymes.

  18. Structural and Biochemical Characterization of Human PR70 in Isolation and in Complex with the Scaffolding Subunit of Protein Phosphatase 2A

    PubMed Central

    Dovega, Rebecca; Tsutakawa, Susan; Quistgaard, Esben M.; Anandapadamanaban, Madhanagopal; Löw, Christian; Nordlund, Pär

    2014-01-01

    Protein Phosphatase 2A (PP2A) is a major Ser/Thr phosphatase involved in the regulation of various cellular processes. PP2A assembles into diverse trimeric holoenzymes, which consist of a scaffolding (A) subunit, a catalytic (C) subunit and various regulatory (B) subunits. Here we report a 2.0 Å crystal structure of the free B’’/PR70 subunit and a SAXS model of an A/PR70 complex. The crystal structure of B’’/PR70 reveals a two domain elongated structure with two Ca2+ binding EF-hands. Furthermore, we have characterized the interaction of both binding partner and their calcium dependency using biophysical techniques. Ca2+ biophysical studies with Circular Dichroism showed that the two EF-hands display different affinities to Ca2+. In the absence of the catalytic C-subunit, the scaffolding A-subunit remains highly mobile and flexible even in the presence of the B’’/PR70 subunit as judged by SAXS. Isothermal Titration Calorimetry studies and SAXS data support that PR70 and the A-subunit have high affinity to each other. This study provides additional knowledge about the structural basis for the function of B’’ containing holoenzymes. PMID:25007185

  19. Catalytic turnover triggers exchange of subunits of the magnesium chelatase AAA+ motor unit.

    PubMed

    Lundqvist, Joakim; Braumann, Ilka; Kurowska, Marzena; Müller, André H; Hansson, Mats

    2013-08-16

    The ATP-dependent insertion of Mg(2+) into protoporphyrin IX is the first committed step in the chlorophyll biosynthetic pathway. The reaction is catalyzed by magnesium chelatase, which consists of three gene products: BchI, BchD, and BchH. The BchI and BchD subunits belong to the family of AAA+ proteins (ATPases associated with various cellular activities) and form a two-ring complex with six BchI subunits in one layer and six BchD subunits in the other layer. This BchID complex is a two-layered trimer of dimers with the ATP binding site located at the interface between two neighboring BchI subunits. ATP hydrolysis by the BchID motor unit fuels the insertion of Mg(2+) into the porphyrin by the BchH subunit. In the present study, we explored mutations that were originally identified in semidominant barley (Hordeum vulgare L.) mutants. The resulting recombinant BchI proteins have marginal ATPase activity and cannot contribute to magnesium chelatase activity although they apparently form structurally correct complexes with BchD. Mixing experiments with modified and wild-type BchI in various combinations showed that an exchange of BchI subunits in magnesium chelatase occurs during the catalytic cycle, which indicates that dissociation of the complex may be part of the reaction mechanism related to product release. Mixing experiments also showed that more than three functional interfaces in the BchI ring structure are required for magnesium chelatase activity.

  20. Cloning and expression of the gene encoding catalytic subunit of thermostable glucose dehydrogenase from Burkholderia cepacia in Escherichia coli.

    PubMed

    Inose, Ken; Fujikawa, Masako; Yamazaki, Tomohiko; Kojima, Katsuhiro; Sode, Koji

    2003-02-21

    We have cloned a 1620-nucleotide gene encoding the catalytic subunit (alpha subunit) of a thermostable glucose dehydrogenase (GDH) from Burkholderia cepacia. The FAD binding motif was found in the N-terminal region of the alpha subunit. The deduced primary structure of the alpha subunit showed about 48% identity to the catalytic subunits of sorbitol dehydrogenase (SDH) from Gluconobacter oxydans and 2-keto-D-gluconate dehydrogenases (2KGDH) from Erwinia herbicola and Pantoea citrea. The alpha subunit of B. cepacia was expressed in Escherichia coli in its active water-soluble form, showing maximum dye-mediated GDH activity at 70 degrees C, retaining high thermal stability. A putative open reading frame (ORF) of 507 nucleotides was also found upstream of the alpha subunit encoding an 18-kDa peptide, designated as gamma subunit. The deduced primary structure of gamma subunit showed about 30% identity to the small subunits of the SDH from G. oxydans and 2KGDHs from E. herbicola and P. citrea.

  1. Involvement of the catalytic subunit of protein kinase A and of HA95 in pre-mRNA splicing

    SciTech Connect

    Kvissel, Anne-Katrine . E-mail: a.k.kvissel@basalmed.uio.no; Orstavik, Sigurd; Eikvar, Sissel; Brede, Gaute; Jahnsen, Tore; Collas, Philippe; Akusjaervi, Goeran; Skalhegg, Bjorn Steen

    2007-08-01

    Protein kinase A (PKA) is a holoenzyme consisting of two catalytic (C) subunits bound to a regulatory (R) subunit dimer. Stimulation by cAMP dissociates the holoenzyme and causes translocation to the nucleus of a fraction of the C subunit. Apart from transcription regulation, little is known about the function of the C subunit in the nucleus. In the present report, we show that both C{alpha} and C{beta} are localized to spots in the mammalian nucleus. Double immunofluorescence analysis of splicing factor SC35 with the C subunit indicated that these spots are splicing factor compartments (SFCs). Using the E1A in vivo splicing assay, we found that catalytically active C subunits regulate alternative splicing and phosphorylate several members of the SR-protein family of splicing factors in vitro. Furthermore, nuclear C subunits co-localize with the C subunit-binding protein homologous to AKAP95, HA95. HA95 also regulates E1A alternative splicing in vivo, apparently through its N-terminal domain. Localization of the C subunit to SFCs and the E1A splicing pattern were unaffected by cAMP stimulation. Our findings demonstrate that the nuclear PKA C subunit co-locates with HA95 in SFCs and regulates pre-mRNA splicing, possibly through a cAMP-independent mechanism.

  2. Structural Basis for Telomerase Catalytic Subunit TERT Binding to RNA Template and Telomeric DNA

    SciTech Connect

    Mitchell, M.; Gillis, A; Futahashi, M; Fujiwara, H; Skordalakes, E

    2010-01-01

    Telomerase is a specialized DNA polymerase that extends the 3{prime} ends of eukaryotic linear chromosomes, a process required for genomic stability and cell viability. Here we present the crystal structure of the active Tribolium castaneum telomerase catalytic subunit, TERT, bound to an RNA-DNA hairpin designed to resemble the putative RNA-templating region and telomeric DNA. The RNA-DNA hybrid adopts a helical structure, docked in the interior cavity of the TERT ring. Contacts between the RNA template and motifs 2 and B{prime} position the solvent-accessible RNA bases close to the enzyme active site for nucleotide binding and selectivity. Nucleic acid binding induces rigid TERT conformational changes to form a tight catalytic complex. Overall, TERT-RNA template and TERT-telomeric DNA associations are remarkably similar to those observed for retroviral reverse transcriptases, suggesting common mechanistic aspects of DNA replication between the two families of enzymes.

  3. Dissecting structural basis of the unique substrate selectivity of human enteropeptidase catalytic subunit.

    PubMed

    Ostapchenko, Valeriy G; Gasparian, Marine E; Kosinsky, Yurij A; Efremov, Roman G; Dolgikh, Dmitry A; Kirpichnikov, Mikhail P

    2012-01-01

    Enteropeptidase is a key enzyme in the digestion system of higher animals. It initiates enzymatic cascade cleaving trypsinogen activation peptide after a unique sequence DDDDK. Recently, we have found specific activity of human enteropeptidase catalytic subunit (L-HEP) being significantly higher than that of its bovine ortholog (L-BEP). Moreover, we have discovered that L-HEP hydrolyzed several nonspecific peptidic substrates. In this work, we aimed to further characterize species-specific enteropeptidase activities and to reveal their structural basis. First, we compared hydrolysis of peptides and proteins lacking DDDDK sequence by L-HEP and L-BEP. In each case human enzyme was more efficient, with the highest hydrolysis rate observed for substrates with a large hydrophobic residue in P2-position. Computer modeling suggested enzyme exosite residues 96 (Arg in L-HEP, Lys in L-BEP) and 219 (Lys in L-HEP, Gln in L-BEP) to be responsible for these differences in enteropeptidase catalytic activity. Indeed, human-to-bovine mutations Arg96Lys, Lys219Gln shifted catalytic properties of L-HEP toward those of L-BEP. This effect was amplified in case of the double mutation Arg96Lys/Lys219Gln, but still did not cover the full difference in catalytic activities of human and bovine enzymes. To find a missing link, we studied monopeptide benzyl-arginine-β-naphthylamide hydrolysis. L-HEP catalyzed it with an order lower K (m) than L-BEP, suggesting the monopeptide-binding S1 site input into catalytic distinction between two enteropeptidase species. Together, our findings suggest structural basis of the unique catalytic properties of human enteropeptidase and instigate further studies of its tentative physiological and pathological roles.

  4. Activity, Expression and Function of a Second Drosophila Protein Kinase a Catalytic Subunit Gene

    PubMed Central

    Melendez, A.; Li, W.; Kalderon, D.

    1995-01-01

    The DC2 gene was isolated previously on the basis of sequence similarity to DCO, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 did not affect the viability or phenotype of imaginal disc cells lacking DC0 activity or embryonic hatching of animals with reduced DC0 activity. Furthermore, transgenes expressing DC2 from a DC0 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development. PMID:8601490

  5. Activity, expression and function of a second Drosophila protein kinase a catalytic subunit gene

    SciTech Connect

    Melendez, A.; Li, W.; Kalderon, D.

    1995-12-01

    The DC2 was isolated previously on the basis of sequence similarity to DC0, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development. 62 refs., 10 figs., 2 tabs.

  6. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity

    PubMed Central

    Viollet, Benoit; Andreelli, Fabrizio; Jørgensen, Sebastian B.; Perrin, Christophe; Geloen, Alain; Flamez, Daisy; Mu, James; Lenzner, Claudia; Baud, Olivier; Bennoun, Myriam; Gomas, Emmanuel; Nicolas, Gaël; Wojtaszewski, Jørgen F.P.; Kahn, Axel; Carling, David; Schuit, Frans C.; Birnbaum, Morris J.; Richter, Erik A.; Burcelin, Rémy; Vaulont, Sophie

    2003-01-01

    AMP-activated protein kinase (AMPK) is viewed as a fuel sensor for glucose and lipid metabolism. To better understand the physiological role of AMPK, we generated a knockout mouse model in which the AMPKα2 catalytic subunit gene was inactivated. AMPKα2–/– mice presented high glucose levels in the fed period and during an oral glucose challenge associated with low insulin plasma levels. However, in isolated AMPKα2–/– pancreatic islets, glucose- and L-arginine–stimulated insulin secretion were not affected. AMPKα2–/– mice have reduced insulin-stimulated whole-body glucose utilization and muscle glycogen synthesis rates assessed in vivo by the hyperinsulinemic euglycemic clamp technique. Surprisingly, both parameters were not altered in mice expressing a dominant-negative mutant of AMPK in skeletal muscle. Furthermore, glucose transport was normal in incubated isolated AMPKα2–/– muscles. These data indicate that AMPKα2 in tissues other than skeletal muscles regulates insulin action. Concordantly, we found an increased daily urinary catecholamine excretion in AMPKα2–/– mice, suggesting altered function of the autonomic nervous system that could explain both the impaired insulin secretion and insulin sensitivity observed in vivo. Therefore, extramuscular AMPKα2 catalytic subunit is important for whole-body insulin action in vivo, probably through modulation of sympathetic nervous activity. PMID:12511592

  7. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity.

    PubMed

    Viollet, Benoit; Andreelli, Fabrizio; Jørgensen, Sebastian B; Perrin, Christophe; Geloen, Alain; Flamez, Daisy; Mu, James; Lenzner, Claudia; Baud, Olivier; Bennoun, Myriam; Gomas, Emmanuel; Nicolas, Gaël; Wojtaszewski, Jørgen F P; Kahn, Axel; Carling, David; Schuit, Frans C; Birnbaum, Morris J; Richter, Erik A; Burcelin, Rémy; Vaulont, Sophie

    2003-01-01

    AMP-activated protein kinase (AMPK) is viewed as a fuel sensor for glucose and lipid metabolism. To better understand the physiological role of AMPK, we generated a knockout mouse model in which the AMPKalpha2 catalytic subunit gene was inactivated. AMPKalpha2(-/-) mice presented high glucose levels in the fed period and during an oral glucose challenge associated with low insulin plasma levels. However, in isolated AMPKalpha2(-/-) pancreatic islets, glucose- and L-arginine-stimulated insulin secretion were not affected. AMPKalpha2(-/-) mice have reduced insulin-stimulated whole-body glucose utilization and muscle glycogen synthesis rates assessed in vivo by the hyperinsulinemic euglycemic clamp technique. Surprisingly, both parameters were not altered in mice expressing a dominant-negative mutant of AMPK in skeletal muscle. Furthermore, glucose transport was normal in incubated isolated AMPKalpha2(-/-) muscles. These data indicate that AMPKalpha2 in tissues other than skeletal muscles regulates insulin action. Concordantly, we found an increased daily urinary catecholamine excretion in AMPKalpha2(-/-) mice, suggesting altered function of the autonomic nervous system that could explain both the impaired insulin secretion and insulin sensitivity observed in vivo. Therefore, extramuscular AMPKalpha2 catalytic subunit is important for whole-body insulin action in vivo, probably through modulation of sympathetic nervous activity.

  8. Inhibition of the catalytic subunit of cAMP-dependent protein kinase by dicyclohexylcarbodiimide

    SciTech Connect

    Toner-Webb, J.; Taylor, S.S.

    1987-11-17

    The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) has been shown to inhibit the catalytic (C) subunit of adenosine cyclic 3',5'-phosphate dependent protein kinase in a time-dependent, irreversible manner. The rate of inactivation was first order and showed saturation kinetics with an apparent K/sub i/ of 60 ..mu..M. Magnesium adenosine 5'-triphosphate (MgATP) was capable of protecting against this inhibition, whereas neither a synthetic peptide substrate nor histone afforded protection. Mg alone afforded some protection. When the catalytic subunit was aggregated with the regulatory subunit in the holoenzyme complex, no inhibition was observed. The inhibition was enhanced at low pH, suggesting that a carboxylic acid group was the target for interaction with DCCD. On the basis of the protection studies, it is most likely that this carboxylic acid group is associated with the MgATP binding site, perhaps serving as a ligand for the metal. Efforts to identify the site that was modified by DCCD were made. In no case was radioactivity incorporated into the protein, suggesting that the irreversible inhibition was due to an intramolecular cross-link between a reactive carboxylic acid group and a nearby amino group. Differential peptide mapping identified a single peptide that was consistently lost as a consequence of DCCD inhibition. This peptide (residues 166-189) contained four carboxylic acid residues as well as an internal Lys. Two of these carboxyl groups, Asp-166 and Asp-184, are conserved in all protein kinases, including oncogene transforming proteins and growth factor receptors, and thus are likely to play an essential role.

  9. PRKACA: the catalytic subunit of protein kinase A and adrenocortical tumors

    PubMed Central

    Berthon, Annabel S.; Szarek, Eva; Stratakis, Constantine A.

    2015-01-01

    Cyclic-AMP (cAMP)-dependent protein kinase (PKA) is the main effector of cAMP signaling in all tissues. Inactivating mutations of the PRKAR1A gene, coding for the type 1A regulatory subunit of PKA, are responsible for Carney complex and primary pigmented nodular adrenocortical disease (PPNAD). PRKAR1A inactivation and PKA dysregulation have been implicated in various types of adrenocortical pathologies associated with ACTH-independent Cushing syndrome (AICS) from PPNAD to adrenocortical adenomas and cancer, and other forms of bilateral adrenocortical hyperplasias (BAH). More recently, mutations of PRKACA, the gene coding for the catalytic subunit C alpha (Cα), were also identified in the pathogenesis of adrenocortical tumors. PRKACA copy number gain was found in the germline of several patients with cortisol-producing BAH, whereas the somatic Leu206Arg (c.617A>C) recurrent PRKACA mutation was found in as many as half of all adrenocortical adenomas associated with AICS. In vitro analysis demonstrated that this mutation led to constitutive Cα activity, unregulated by its main partners, the PKA regulatory subunits. In this review, we summarize the current understanding of the involvement of PRKACA in adrenocortical tumorigenesis, and our understanding of PKA's role in adrenocortical lesions. We also discuss potential therapeutic advances that can be made through targeting of PRKACA and the PKA pathway. PMID:26042218

  10. Phosphoryl transfer reaction snapshots in crystals: Insights into the mechanism of protein kinase a catalytic subunit

    DOE PAGES

    Das, Amit; Gerlits, Oksana O.; Heller, William T.; ...

    2015-06-19

    To study the catalytic mechanism of phosphorylation catalyzed by cAMP-dependent protein kinase (PKA) a structure of the enzyme-substrate complex representing the Michaelis complex is of specific interest as it can shed light on the structure of the transition state. However, all previous crystal structures of the Michaelis complex mimics of the PKA catalytic subunit (PKAc) were obtained with either peptide inhibitors or ATP analogs. Here we utilized Ca2+ ions and sulfur in place of the nucleophilic oxygen in a 20-residue pseudo-substrate peptide (CP20) and ATP to produce a close mimic of the Michaelis complex. In the ternary reactant complex, themore » thiol group of Cys-21 of the peptide is facing Asp-166 and the sulfur atom is positioned for an in-line phosphoryl transfer. Replacement of Ca2+ cations with Mg2+ ions resulted in a complex with trapped products of ATP hydrolysis: phosphate ion and ADP. As a result, the present structural results in combination with the previously reported structures of the transition state mimic and phosphorylated product complexes complete the snapshots of the phosphoryl transfer reaction by PKAc, providing us with the most thorough picture of the catalytic mechanism to date.« less

  11. Phosphoryl transfer reaction snapshots in crystals: Insights into the mechanism of protein kinase a catalytic subunit

    SciTech Connect

    Das, Amit; Gerlits, Oksana O.; Heller, William T.; Kovalevskyi, Andrii Y.; Langan, Paul; Tian, Jianhui

    2015-06-19

    To study the catalytic mechanism of phosphorylation catalyzed by cAMP-dependent protein kinase (PKA) a structure of the enzyme-substrate complex representing the Michaelis complex is of specific interest as it can shed light on the structure of the transition state. However, all previous crystal structures of the Michaelis complex mimics of the PKA catalytic subunit (PKAc) were obtained with either peptide inhibitors or ATP analogs. Here we utilized Ca2+ ions and sulfur in place of the nucleophilic oxygen in a 20-residue pseudo-substrate peptide (CP20) and ATP to produce a close mimic of the Michaelis complex. In the ternary reactant complex, the thiol group of Cys-21 of the peptide is facing Asp-166 and the sulfur atom is positioned for an in-line phosphoryl transfer. Replacement of Ca2+ cations with Mg2+ ions resulted in a complex with trapped products of ATP hydrolysis: phosphate ion and ADP. As a result, the present structural results in combination with the previously reported structures of the transition state mimic and phosphorylated product complexes complete the snapshots of the phosphoryl transfer reaction by PKAc, providing us with the most thorough picture of the catalytic mechanism to date.

  12. Phosphoryl Transfer Reaction Snapshots in Crystals: INSIGHTS INTO THE MECHANISM OF PROTEIN KINASE A CATALYTIC SUBUNIT.

    PubMed

    Gerlits, Oksana; Tian, Jianhui; Das, Amit; Langan, Paul; Heller, William T; Kovalevsky, Andrey

    2015-06-19

    To study the catalytic mechanism of phosphorylation catalyzed by cAMP-dependent protein kinase (PKA) a structure of the enzyme-substrate complex representing the Michaelis complex is of specific interest as it can shed light on the structure of the transition state. However, all previous crystal structures of the Michaelis complex mimics of the PKA catalytic subunit (PKAc) were obtained with either peptide inhibitors or ATP analogs. Here we utilized Ca(2+) ions and sulfur in place of the nucleophilic oxygen in a 20-residue pseudo-substrate peptide (CP20) and ATP to produce a close mimic of the Michaelis complex. In the ternary reactant complex, the thiol group of Cys-21 of the peptide is facing Asp-166 and the sulfur atom is positioned for an in-line phosphoryl transfer. Replacement of Ca(2+) cations with Mg(2+) ions resulted in a complex with trapped products of ATP hydrolysis: phosphate ion and ADP. The present structural results in combination with the previously reported structures of the transition state mimic and phosphorylated product complexes complete the snapshots of the phosphoryl transfer reaction by PKAc, providing us with the most thorough picture of the catalytic mechanism to date.

  13. The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells

    SciTech Connect

    Watanabe, Kanako; Kanno, Takeshi; Oshima, Tadayuki; Miwa, Hiroto; Tashiro, Chikara; Nishizaki, Tomoyuki

    2008-03-07

    The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-D-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression of the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G{sub 1} phase of cell cycling and decreased the proportion in the S/G{sub 2} phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G{sub 1} phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.

  14. Stable interactions between DNA polymerase δ catalytic and structural subunits are essential for efficient DNA repair.

    PubMed

    Brocas, Clémentine; Charbonnier, Jean-Baptiste; Dhérin, Claudine; Gangloff, Serge; Maloisel, Laurent

    2010-10-05

    Eukaryotic DNA polymerase δ (Pol δ) activity is crucial for chromosome replication and DNA repair and thus, plays an essential role in genome stability. In Saccharomyces cerevisiae, Pol δ is a heterotrimeric complex composed of the catalytic subunit Pol3, the structural B subunit Pol31, and Pol32, an additional auxiliary subunit. Pol3 interacts with Pol31 thanks to its C-terminal domain (CTD) and this interaction is of functional importance both in DNA replication and DNA repair. Interestingly, deletion of the last four C-terminal Pol3 residues, LSKW, in the pol3-ct mutant does not affect DNA replication but leads to defects in homologous recombination and in break-induced replication (BIR) repair pathways. The defect associated with pol3-ct could result from a defective interaction between Pol δ and a protein involved in recombination. However, we show that the LSKW motif is required for the interaction between Pol3 C-terminal end and Pol31. This loss of interaction is relevant in vivo since we found that pol3-ct confers HU sensitivity on its own and synthetic lethality with a POL32 deletion. Moreover, pol3-ct shows genetic interactions, both suppression and synthetic lethality, with POL31 mutant alleles. Structural analyses indicate that the B subunit of Pol δ displays a major conserved region at its surface and that pol31 alleles interacting with pol3-ct, correspond to substitutions of Pol31 amino acids that are situated in this particular region. Superimposition of our Pol31 model on the 3D architecture of the phylogenetically related DNA polymerase α (Pol α) suggests that Pol3 CTD interacts with the conserved region of Pol31, thus providing a molecular basis to understand the defects associated with pol3-ct. Taken together, our data highlight a stringent dependence on Pol δ complex stability in DNA repair.

  15. Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1

    PubMed Central

    Echalier, Aude; Pan, Yunbao; Birol, Melissa; Tavernier, Nicolas; Pintard, Lionel; Hoh, François; Ebel, Christine; Galophe, Nathalie; Claret, François X.; Dumas, Christian

    2013-01-01

    The COP9 (Constitutive photomorphogenesis 9) signalosome (CSN), a large multiprotein complex that resembles the 19S lid of the 26S proteasome, plays a central role in the regulation of the E3-cullin RING ubiquitin ligases (CRLs). The catalytic activity of the CSN complex, carried by subunit 5 (CSN5/Jab1), resides in the deneddylation of the CRLs that is the hydrolysis of the cullin-neural precursor cell expressed developmentally downregulated gene 8 (Nedd8)isopeptide bond. Whereas CSN-dependent CSN5 displays isopeptidase activity, it is intrinsically inactive in other physiologically relevant forms. Here we analyze the crystal structure of CSN5 in its catalytically inactive form to illuminate the molecular basis for its activation state. We show that CSN5 presents a catalytic domain that brings essential elements to understand its activity control. Although the CSN5 active site is catalytically competent and compatible with di-isopeptide binding, the Ins-1 segment obstructs access to its substrate-binding site, and structural rearrangements are necessary for the Nedd8-binding pocket formation. Detailed study of CSN5 by molecular dynamics unveils signs of flexibility and plasticity of the Ins-1 segment. These analyses led to the identification of a molecular trigger implicated in the active/inactive switch that is sufficient to impose on CSN5 an active isopeptidase state. We show that a single mutation in the Ins-1 segment restores biologically relevant deneddylase activity. This study presents detailed insights into CSN5 regulation. Additionally, a dynamic monomer-dimer equilibrium exists both in vitro and in vivo and may be functionally relevant. PMID:23288897

  16. Expression of catalytic subunit of bovine enterokinase in the filamentous fungus Aspergillus niger.

    PubMed

    Svetina, M; Krasevec, N; Gaberc-Porekar, V; Komel, R

    2000-01-21

    The cDNA encoding for catalytic subunit of bovine enterokinase (EK(L)), to which the sequence for Kex2 protease cleavage site was inserted, was expressed in the protease deficient filamentous fungus Aspergillus niger AB1.13. Fungal transformants were obtained in which expression of the glucoamylase fusion gene resulted in secretion of the protein into growth medium. Fusion polypeptide was processed to mature EK(L) by endogenous Kex-2 like protease cleavage during secretory pathway. The highest quantity of EK(L), up to 5 mg l(-1), was obtained in soya milk medium. The secreted EK(L) was easily purified from other proteins found in A. niger culture supernatant, using ion exchange and affinity chromatography. The yield of the purified and highly active EK(L) was 1.9 mg l(-1) of culture.

  17. Isolation of the catalytically competent small subunit of ribulose bisphosphate carboxylase/oxygenase from spinach under an extremely alkaline condition.

    PubMed

    Incharoensakdi, A; Takabe, T; Takabe, T; Akazawa, T

    1986-07-16

    A method for isolating the small subunit (B) of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from spinach leaf using an alkaline buffer (pH 11.2) in combination with sucrose gradient centrifugation is described. Although the yield of isolated subunit B (ca. 20%) was comparable to that previously described (ca. 25%) using the acid precipitation method [Andrews, T.J. and Lorimer, G.H. (1985) J. Biol. Chem. 260: 4632-4636], the isolated subunit B in this report suffered less denaturation (ca. 30%) as estimated from kinetic analysis of its reassembly with large subunit (A) derived from Aphanothece halophytica. Studies on the kinetic properties of the reassembled enzyme molecules suggested that spinach subunit B does not influence the affinity of the enzyme for substrate CO2. The catalytic core (A8) of spinach RuBisCO could not be isolated in the native form.

  18. The CDC2-related kinase PITALRE is the catalytic subunit of active multimeric protein complexes.

    PubMed Central

    Garriga, J; Mayol, X; Graña, X

    1996-01-01

    PITALRE is a human protein kinase identified by means of its partial sequence identity to the cell division cycle regulatory kinase CDC2. Immunopurified PITALRE protein complexes exhibit an in vitro kinase activity that phosphorylates the retinoblastoma protein, suggesting that PITALRE catalyses this phosphorylation reaction. However, the presence of other kinases in the immunopurified complex could not be ruled out. In the present work, an inactive mutant of the PITALRE kinase has been used to demonstrate that PITALRE is the catalytic subunit responsible for the PITALRE-complex-associated kinase activity, Ectopic overexpression of PITALRE did not increase the total PITALRE kinase activity in the cell, suggesting that PITALRE is regulated by limiting cellular factor(s). Characterization of the PITALRE-containing protein complexes indicated that most of the cellular PITALRE protein exists as a subunit in at least two different active multimeric complexes. Although monomeric PITALRE is also active in vitro, PITALRE present in multimeric complexes exhibits several-fold higher activity than monomeric PITALRE. In addition, overexpression of PITALRE demonstrated the existence of two new associated proteins of approx. 48 and 98 kDa. Altogether these results suggest that, in contrast to the situation with cyclin-dependent kinases, monomeric PITALRE is active, and that association with other proteins modulates its activity and/or its ability to recognize substrates in vivo. PMID:8870681

  19. Functional characterisation of the regulatory subunit of cyclic AMP-dependent protein kinase A homologue of Giardia lamblia: Differential expression of the regulatory and catalytic subunits during encystation.

    PubMed

    Gibson, Candace; Schanen, Brian; Chakrabarti, Debopam; Chakrabarti, Ratna

    2006-06-01

    To understand the functional roles of protein kinase A (PKA) during vegetative and differentiating states of Giardia parasites, we studied the structural and functional characteristics of the regulatory subunit of PKA (gPKAr) and its involvement in the giardial encystment process. Molecular cloning and characterisation showed that gPKAr contains two tandem 3'5'-cyclic adenosine monphosphate (cyclic AMP) binding domains at the C-terminal end and the interaction domain for the catalytic subunit. A number of consensus residues including in vivo phosphorylation site for PKAc and dimerisation/docking domain are present in gPKAr. The regulatory subunit physically interacts with the catalytic subunit and inhibits its kinase activity in the absence of cyclic AMP, which could be partially restored upon addition of cyclic AMP. Western blot analysis showed a marked reduction in the endogenous gPKAr concentration during differentiation of Giardia into cysts. An increased activity of gPKAc was also detected during encystation without any significant change in the protein concentration. Distinct localisations of gPKAc to the anterior flagella, basal bodies and caudal flagella as noted in trophozoites were absent in encysting cells at later stages. Instead, PKAc staining was punctate and located mostly to the cell periphery. Our study indicates possible enrichment of the active gPKAc during late stages of encystation, which may have implications in completion of the encystment process or priming of cysts for efficient excystation.

  20. Novel PAMs Targeting NMDAR GluN2A Subunit.

    PubMed

    Xiang, Zixiu; Conn, P Jeffrey

    2016-03-02

    In this issue of Neuron, Hackos et al. (2016) report the discovery of novel positive allosteric modulators that are highly selective for GluN2A-containing NMDA receptors. This novel class of PAMs shows distinct effects on synaptic plasticity.

  1. PR55α, a Regulatory Subunit of PP2A, Specifically Regulates PP2A-mediated β-Catenin Dephosphorylation

    PubMed Central

    Zhang, Wen; Yang, Jun; Liu, Yajuan; Chen, Xi; Yu, Tianxin; Jia, Jianhang; Liu, Chunming

    2009-01-01

    A central question in Wnt signaling is the regulation of β-catenin phosphorylation and degradation. Multiple kinases, including CKIα and GSK3, are involved in β-catenin phosphorylation. Protein phosphatases such as PP2A and PP1 have been implicated in the regulation of β-catenin. However, which phosphatase dephosphorylates β-catenin in vivo and how the specificity of β-catenin dephosphorylation is regulated are not clear. In this study, we show that PP2A regulates β-catenin phosphorylation and degradation in vivo. We demonstrate that PP2A is required for Wnt/β-catenin signaling in Drosophila. Moreover, we have identified PR55α as the regulatory subunit of PP2A that controls β-catenin phosphorylation and degradation. PR55α, but not the catalytic subunit, PP2Ac, directly interacts with β-catenin. RNA interference knockdown of PR55α elevates β-catenin phosphorylation and decreases Wnt signaling, whereas overexpressing PR55α enhances Wnt signaling. Taken together, our results suggest that PR55α specifically regulates PP2A-mediated β-catenin dephosphorylation and plays an essential role in Wnt signaling. PMID:19556239

  2. Expression of recombinant chinese bovine enterokinase catalytic subunit in P. pastoris and its purification and characterization.

    PubMed

    Fang, Lei; Sun, Qi-Ming; Hua, Zi-Chun

    2004-07-01

    Enterokinase is a tool protease widely utilized in the cleavage of recombinant fusion proteins. cDNA encoding the catalytic subunit of Chinese bovine enterokinase (EKL) was amplified by PCR and then fused to the 3' end of prepro secretion signal peptide gene of alpha-mating factor from Saccharomyces cerevisiae to get the alpha-MF signal-EKL-His6 encoding gene by PCR. Then the whole coding sequence was cloned into the integrative plasmid pAO815 under the control of a methanol-inducible promoter and transformed GS115 methylotrophic strain of Pichia pastoris. Secreted expression of recombinant EKL-His6 was attained by methanol induction and its molecular weight is 43 kD. Because of the existence of His6-tag, EKL-His6 was easily purified from P. pastoris fermentation supernatant by using Ni2+ affinity chromatography and the yield is 5.4 mg per liter of fermentation culture. This purified EKL-His6 demonstrates excellent cleavage activity towards fusion protein containing EK cleavage site.

  3. Protein Kinase A Catalytic Subunit Primed for Action: Time-Lapse Crystallography of Michaelis Complex Formation.

    PubMed

    Das, Amit; Gerlits, Oksana; Parks, Jerry M; Langan, Paul; Kovalevsky, Andrey; Heller, William T

    2015-12-01

    The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg(2+) binds first to the M1 site as a complex with ATP and is followed by Mg(2+) binding to the M2 site. Concurrently, the target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. Lastly, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer.

  4. The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements.

    PubMed

    Vander Kooi, Beth T; Onuma, Hiroshi; Oeser, James K; Svitek, Christina A; Allen, Shelley R; Vander Kooi, Craig W; Chazin, Walter J; O'Brien, Richard M

    2005-12-01

    Glucose-6-phosphatase catalyzes the final step in the gluconeogenic and glycogenolytic pathways. Glucocorticoids stimulate glucose-6-phosphatase catalytic subunit (G6Pase) gene transcription and studies performed in H4IIE hepatoma cells demonstrate the presence of a glucocorticoid response unit (GRU) in the proximal G6Pase promoter. In vitro deoxyribonuclease I footprinting analyses show that the glucocorticoid receptor binds to three glucocorticoid response elements (GREs) in the -231 to -129 promoter region and transfection results indicate all three contribute to glucocorticoid induction of G6Pase gene transcription. Furthermore, binding sites for hepatocyte nuclear factor-1 and -4, CRE binding factors, and FKHR (FOXO1a) are required for the full glucocorticoid response. Chromatin immunoprecipitation assays show that dexamethasone treatment stimulates glucocorticoid receptor and FKHR binding to the endogenous G6Pase promoter. Surprisingly, although glucocorticoids stimulate G6Pase gene transcription, deoxyribonuclease I footprinting and transfection analyses demonstrate the presence of a negative GRE and an associated negative accessory factor element in the -271 to -225 promoter region, which inhibit the glucocorticoid response. This appears to be the first report of a promoter that contains both positive and negative GREs, which function within the same cellular environment. We hypothesize that targeted signaling to the negative accessory element within the GRU may provide tight regulation of the glucocorticoid stimulation.

  5. Sampling the conformational space of the catalytic subunit of human γ-secretase

    PubMed Central

    Bai, Xiao-chen; Rajendra, Eeson; Yang, Guanghui; Shi, Yigong; Scheres, Sjors HW

    2015-01-01

    Human γ-secretase is an intra-membrane protease that cleaves many different substrates. Aberrant cleavage of Notch is implicated in cancer, while abnormalities in cutting amyloid precursor protein lead to Alzheimer's disease. Our previous cryo-EM structure of γ-secretase revealed considerable disorder in its catalytic subunit presenilin. Here, we describe an image classification procedure that characterizes molecular plasticity at the secondary structure level, and apply this method to identify three distinct conformations in our previous sample. In one of these conformations, an additional transmembrane helix is visible that cannot be attributed to the known components of γ-secretase. In addition, we present a γ-secretase structure in complex with the dipeptidic inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). Our results reveal how conformational mobility in the second and sixth transmembrane helices of presenilin is greatly reduced upon binding of DAPT or the additional helix, and form the basis for a new model of how substrate enters the transmembrane domain. DOI: http://dx.doi.org/10.7554/eLife.11182.001 PMID:26623517

  6. Dictyostelium discoideum protein phosphatase-1 catalytic subunit exhibits distinct biochemical properties.

    PubMed Central

    Andrioli, Luiz P M; Zaini, Paulo A; Viviani, Wladia; Da Silva, Aline M

    2003-01-01

    Protein phosphatase-1 (PP1) is expressed ubiquitously and is involved in many eukaryotic cellular functions, although PP1 enzyme activity could not be detected in the social amoeba Dictyostelium discoideum cell extracts. In the present paper, we show that D. discoideum has a single copy gene that codes for the catalytic subunit of PP1 (DdPP1c). DdPP1c is expressed throughout the D. discoideum life cycle with constant levels of mRNA, and its protein and amino acid sequence show a mean identity of 80% with other PP1c enzymes. However, it has a distinctive difference: the substitution of a phenylalanine residue (Phe(269) in the DdPP1c) for a highly conserved cysteine residue (Cys(273) in rabbit PP1c) in a region that was shown to have a critical role in the interaction of rabbit PP1c with toxin inhibitors. Wild-type DdPP1c and an engineered mutant form in which Phe(269) was replaced by a cysteine residue were expressed in Escherichia coli. Both recombinant activities were similarly inhibited by okadaic acid, tautomycin and microcystin. However, the Phe(269)-->Cys mutation resulted in a large increase in enzyme activity towards phosphorylase a and a higher sensitivity to calyculin A. These results, together with the molecular modelling of DdPP1c structure, indicate that the Phe(269) residue, which occurs naturally in D. discoideum, confers distinct biochemical properties on this enzyme. PMID:12737629

  7. Evaluation of variation in the phosphoinositide-3-kinase catalytic subunit alpha oncogene and breast cancer risk

    PubMed Central

    Stevens, K N; Garcia-Closas, M; Fredericksen, Z; Kosel, M; Pankratz, V S; Hopper, J L; Dite, G S; Apicella, C; Southey, M C; Schmidt, M K; Broeks, A; Van ‘t Veer, L J; Tollenaar, R A E M; Fasching, P A; Beckmann, M W; Hein, A; Ekici, A B; Johnson, N; Peto, J; dos Santos Silva, I; Gibson, L; Sawyer, E; Tomlinson, I; Kerin, M J; Chanock, S; Lissowska, J; Hunter, D J; Hoover, R N; Thomas, G D; Milne, R L; Pérez, JI Arias; González-Neira, A; Benítez, J; Burwinkel, B; Meindl, A; Schmutzler, R K; Bartrar, C R; Hamann, U; Ko, Y D; Brüning, T; Chang-Claude, J; Hein, R; Wang-Gohrke, S; Dörk, T; Schürmann, P; Bremer, M; Hillemanns, P; Bogdanova, N; Zalutsky, J V; Rogov, Y I; Antonenkova, N; Lindblom, A; Margolin, S; Mannermaa, A; Kataja, V; Kosma, V-M; Hartikainen, J; Chenevix-Trench, G; Chen, X; Peterlongo, P; Bonanni, B; Bernard, L; Manoukian, S; Wang, X; Cerhan, J; Vachon, C M; Olson, J; Giles, G G; Baglietto, L; McLean, C A; Severi, G; John, E M; Miron, A; Winqvist, R; Pylkäs, K; Jukkola-Vuorinen, A; Grip, M; Andrulis, I; Knight, J A; Glendon, G; Mulligan, A M; Cox, A; Brock, I W; Elliott, G; Cross, S S; Pharoah, P P; Dunning, A M; Pooley, K A; Humphreys, M K; Wang, J; Kang, D; Yoo, K-Y; Noh, D-Y; Sangrajrang, S; Gabrieau, V; Brennan, P; McKay, J; Anton-Culver, H; Ziogas, A; Couch, F J; Easton, D F

    2011-01-01

    Background: Somatic mutations in phosphoinositide-3-kinase catalytic subunit alpha (PIK3CA) are frequent in breast tumours and have been associated with oestrogen receptor (ER) expression, human epidermal growth factor receptor-2 overexpression, lymph node metastasis and poor survival. The goal of this study was to evaluate the association between inherited variation in this oncogene and risk of breast cancer. Methods: A single-nucleotide polymorphism from the PIK3CA locus that was associated with breast cancer in a study of Caucasian breast cancer cases and controls from the Mayo Clinic (MCBCS) was genotyped in 5436 cases and 5280 controls from the Cancer Genetic Markers of Susceptibility (CGEMS) study and in 30 949 cases and 29 788 controls from the Breast Cancer Association Consortium (BCAC). Results: Rs1607237 was significantly associated with a decreased risk of breast cancer in MCBCS, CGEMS and all studies of white Europeans combined (odds ratio (OR)=0.97, 95% confidence interval (CI) 0.95–0.99, P=4.6 × 10−3), but did not reach significance in the BCAC replication study alone (OR=0.98, 95% CI 0.96–1.01, P=0.139). Conclusion: Common germline variation in PIK3CA does not have a strong influence on the risk of breast cancer PMID:22033276

  8. Impaired Discrimination Learning in Mice Lacking the NMDA Receptor NR2A Subunit

    ERIC Educational Resources Information Center

    Brigman, Jonathan L.; Feyder, Michael; Saksida, Lisa M.; Bussey, Timothy J.; Mishina, Masayoshi; Holmes, Andrew

    2008-01-01

    N-Methyl-D-aspartate receptors (NMDARs) mediate certain forms of synaptic plasticity and learning. We used a touchscreen system to assess NR2A subunit knockout mice (KO) for (1) pairwise visual discrimination and reversal learning and (2) acquisition and extinction of an instrumental response requiring no pairwise discrimination. NR2A KO mice…

  9. Expression, purification, and characterization of human enteropeptidase catalytic subunit in Escherichia coli.

    PubMed

    Gasparian, Marine E; Ostapchenko, Valeriy G; Schulga, Alexey A; Dolgikh, Dmitry A; Kirpichnikov, Mikhail P

    2003-09-01

    Enteropeptidase (synonym:enterokinase, EC 3.4.21.9) is a heterodimeric serine protease of the intestinal brush border that activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the sequence (Asp)(4)-Lys. The DNA sequence encoding the light chain (catalytic subunit) of human enteropeptidase (GenBank Accession No. U09860) was synthesized from 26 oligonucleotides by polymerase chain reaction and cloned into plasmid pET-32a downstream to the gene of fusion partner thioredoxin immediately after the DNA sequence encoding enteropeptidase recognition site. The fusion protein thioredoxin/human enteropeptidase light chain was expressed in Escherichia coli BL21(DE3) strain in both soluble and insoluble forms. The soluble recombinant fusion protein failed to undergo autocatalytic cleavage and activation; however, autocatalytic cleavage and activation of recombinant human enteropeptidase light chain (L-HEP) were achieved by solubilization and renaturation of the fusion protein from inclusion bodies and the active L-HEP was purified on agarose-linked soybean trypsin inhibitor. The purified L-HEP cleaved the synthetic peptide substrate Gly-Asp-Asp-Asp-Asp-Lys-beta-naphthylamide with kinetic parameters K(m)=0.16 mM and k(cat)=115 s(-1) and small ester Z-Lys-SBzl with K(m)=140 microM, k(cat)=133 s(-1). L-HEP associated with soybean trypsin inhibitor slowly and small ester Z-Lys-SBzl cleavage was inhibited with K(i)(*)=2.3 nM. L-HEP digested thioredoxin/human epidermal growth factor fusion protein five times faster than equal activity units of bovine recombinant light chain (EKMax, Invitrogen) at the same conditions.

  10. A Cytoplasmic New Catalytic Subunit of Calcineurin in Trypanosoma cruzi and Its Molecular and Functional Characterization

    PubMed Central

    Orrego, Patricio R.; Olivares, Héctor; Cordero, Esteban M.; Bressan, Albert; Cortez, Mauro; Sagua, Hernán; Neira, Ivan; González, Jorge; da Silveira, José Franco; Yoshida, Nobuko; Araya, Jorge E.

    2014-01-01

    Parasitological cure for Chagas disease is considered extremely difficult to achieve because of the lack of effective chemotherapeutic agents against Trypanosoma cruzi at different stages of infection. There are currently only two drugs available. These have several limitations and can produce serious side effects. Thus, new chemotherapeutic targets are much sought after. Among T. cruzi components involved in key processes such as parasite proliferation and host cell invasion, Ca2+-dependent molecules play an important role. Calcineurin (CaN) is one such molecule. In this study, we cloned a new isoform of the gene coding for CL strain catalytic subunit CaNA (TcCaNA2) and characterized it molecularly and functionally. There is one copy of the TcCaNA2 gene per haploid genome. It is constitutively transcribed in all T. cruzi developmental forms and is localized predominantly in the cytosol. In the parasite, TcCaNA2 is associated with CaNB. The recombinant protein TcCaNA2 has phosphatase activity that is enhanced by Mn2+/Ni2+. The participation of TcCaNA2 in target cell invasion by metacyclic trypomastigotes was also demonstrated. Metacyclic forms with reduced TcCaNA2 expression following treatment with morpholino antisense oligonucleotides targeted to TcCaNA2 invaded HeLa cells at a lower rate than control parasites treated with morpholino sense oligonucleotides. Similarly, the decreased expression of TcCaNA2 following treatment with antisense morpholino oligonucleotides partially affected the replication of epimastigotes, although to a lesser extent than the decrease in expression following treatment with calcineurin inhibitors. Our findings suggest that the calcineurin activities of TcCaNA2/CaNB and TcCaNA/CaNB, which have distinct cellular localizations (the cytoplasm and the nucleus, respectively), may play a critical role at different stages of T. cruzi development, the former in host cell invasion and the latter in parasite multiplication. PMID:24498455

  11. Isoliensinine induces dephosphorylation of NF-κB p65 subunit at Ser536 via a PP2A-dependent mechanism in hepatocellular carcinoma cells: roles of impairing PP2A/I2PP2A interaction

    PubMed Central

    Shu, Guangwen; Zhang, Lang; Jiang, Shanqing; Cheng, Zhuo; Wang, Guan; Huang, Xu; Yang, Xinzhou

    2016-01-01

    Our previous study discovered that isoliensinine (isolie) triggers hepatocellular carcinoma (HCC) cell apoptosis via inducing p65 dephosphorylation at Ser536 and inhibition of NF-κB. Here, we showed that isolie promoted p65/PP2A interaction in vitro and in vivo. Repression of PP2A activity or knockdown of the expression of PP2A-C (the catalytic subunit of PP2A) abrogated isolie-provoked p65 dephosphorylation. I2PP2A is an endogenous PP2A inhibitor. Isolie directly impaired PP2A/I2PP2A interaction. Knockdown of I2PP2A boosted p65/PP2A association and p65 dephosphorylation. Overexpression of I2PP2A restrained isolie-induced p65 dephosphorylation. Untransformed hepatocytes were insensitive to isolie-induced NF-κB inhibition and cell apoptosis. In these cells, basal levels of I2PP2A and p65 phosphorylation at Ser536 were lower than in HCC cells. These findings collectively indicated that isolie suppresses NF-κB in HCC cells through impairing PP2A/I2PP2A interaction and stimulating PP2A-dependent p65 dephosphorylation at Ser536. PMID:27244888

  12. Isoliensinine induces dephosphorylation of NF-kB p65 subunit at Ser536 via a PP2A-dependent mechanism in hepatocellular carcinoma cells: roles of impairing PP2A/I2PP2A interaction.

    PubMed

    Shu, Guangwen; Zhang, Lang; Jiang, Shanqing; Cheng, Zhuo; Wang, Guan; Huang, Xu; Yang, Xinzhou

    2016-06-28

    Our previous study discovered that isoliensinine (isolie) triggers hepatocellular carcinoma (HCC) cell apoptosis via inducing p65 dephosphorylation at Ser536 and inhibition of NF-κB. Here, we showed that isolie promoted p65/PP2A interaction in vitro and in vivo. Repression of PP2A activity or knockdown of the expression of PP2A-C (the catalytic subunit of PP2A) abrogated isolie-provoked p65 dephosphorylation. I2PP2A is an endogenous PP2A inhibitor. Isolie directly impaired PP2A/I2PP2A interaction. Knockdown of I2PP2A boosted p65/PP2A association and p65 dephosphorylation. Overexpression of I2PP2A restrained isolie-induced p65 dephosphorylation. Untransformed hepatocytes were insensitive to isolie-induced NF-κB inhibition and cell apoptosis. In these cells, basal levels of I2PP2A and p65 phosphorylation at Ser536 were lower than in HCC cells. These findings collectively indicated that isolie suppresses NF-κB in HCC cells through impairing PP2A/I2PP2A interaction and stimulating PP2A-dependent p65 dephosphorylation at Ser536.

  13. Vacuolar H[sup +]-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton (Gossypium hirsutum) ovules

    SciTech Connect

    Wilkins, T.A. )

    1993-06-01

    This study investigates the molecular events of vacuole ontogeny in rapidly elongated cotton plant cells. Within the DNA coding region, the cotton and carrot cDNA clones exhibit 82.2% nucleotide sequence homology; at the amino acid level cotton and carrot catalytic subunits exhibited 95.7% identity and 2.1% amino acid similarity. When aligned with the analogous sequences from yeast, the cotton protein shared only 60.5% amino acid identity and 12.7% similarity. 10 refs., 1 tab.

  14. A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase ζ

    PubMed Central

    Gibbs, Peter E. M.; McGregor, W. Glenn; Maher, Veronica M.; Nisson, Paul; Lawrence, Christopher W.

    1998-01-01

    To get a better understanding of mutagenic mechanisms in humans, we have cloned and sequenced the human homolog of the Saccharomyces cerevisiae REV3 gene. The yeast gene encodes the catalytic subunit of DNA polymerase ζ, a nonessential enzyme that is thought to carry out translesion replication and is responsible for virtually all DNA damage-induced mutagenesis and the majority of spontaneous mutagenesis. The human gene encodes an expected protein of 3,130 residues, about twice the size of the yeast protein (1,504 aa). The two proteins are 29% identical in an amino-terminal region of ≈340 residues, 39% identical in a carboxyl-terminal region of ≈850 residues, and 29% identical in a 55-residue region in the middle of the two genes. The sequence of the expected protein strongly predicts that it is the catalytic subunit of a DNA polymerase of the pol ζ type; the carboxyl-terminal domain possesses, in the right order, the six motifs characteristic of eukaryotic DNA polymerases, most closely resembles yeast pol ζ among all polymerases in the GenBank database, and is different from the human α, δ, and ɛ enzymes. Human cells expressing high levels of an hsREV3 antisense RNA fragment grow normally, but show little or no UV-induced mutagenesis and are slightly more sensitive to killing by UV. The human gene therefore appears to carry out a function similar to that of its yeast counterpart. PMID:9618506

  15. PP2A binds to the LIM domains of lipoma-preferred partner through its PR130/B″ subunit to regulate cell adhesion and migration

    PubMed Central

    Janssens, Veerle; Zwaenepoel, Karen; Rossé, Carine; Petit, Marleen M. R.; Goris, Jozef; Parker, Peter J.

    2017-01-01

    Here, we identify the LIM protein lipoma-preferred partner (LPP) as a binding partner of a specific protein phosphatase 2A (PP2A) heterotrimer that is characterised by the regulatory PR130/B″α1 subunit (encoded by PPP2R3A). The PR130 subunit interacts with the LIM domains of LPP through a conserved Zn2+-finger-like motif in the differentially spliced N-terminus of PR130. Isolated LPP-associated PP2A complexes are catalytically active. PR130 colocalises with LPP at multiple locations within cells, including focal contacts, but is specifically excluded from mature focal adhesions, where LPP is still present. An LPP–PR130 fusion protein only localises to focal adhesions upon deletion of the domain of PR130 that binds to the PP2A catalytic subunit (PP2A/C), suggesting that PR130–LPP complex formation is dynamic and that permanent recruitment of PP2A activity might be unfavourable for focal adhesion maturation. Accordingly, siRNA-mediated knockdown of PR130 increases adhesion of HT1080 fibrosarcoma cells onto collagen I and decreases their migration in scratch wound and Transwell assays. Complex formation with LPP is mandatory for these PR130-PP2A functions, as neither phenotype can be rescued by re-expression of a PR130 mutant that no longer binds to LPP. Our data highlight the importance of specific, locally recruited PP2A complexes in cell adhesion and migration dynamics. PMID:26945059

  16. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots

    PubMed Central

    Kovács, Judit; Poór, Péter; Kaschani, Farnusch; Chandrasekar, Balakumaran; Hong, Tram N.; Misas-Villamil, Johana C.; Xin, Bo T.; Kaiser, Markus; Overkleeft, Herman S.; Tari, Irma; van der Hoorn, Renier A. L.

    2017-01-01

    The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress. PMID:28217134

  17. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots.

    PubMed

    Kovács, Judit; Poór, Péter; Kaschani, Farnusch; Chandrasekar, Balakumaran; Hong, Tram N; Misas-Villamil, Johana C; Xin, Bo T; Kaiser, Markus; Overkleeft, Herman S; Tari, Irma; van der Hoorn, Renier A L

    2017-01-01

    The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress.

  18. Crystal Structure of the Human Pol α B Subunit in Complex with the C-terminal Domain of the Catalytic Subunit.

    PubMed

    Suwa, Yoshiaki; Gu, Jianyou; Baranovskiy, Andrey G; Babayeva, Nigar D; Pavlov, Youri I; Tahirov, Tahir H

    2015-06-05

    In eukaryotic DNA replication, short RNA-DNA hybrid primers synthesized by primase-DNA polymerase α (Prim-Pol α) are needed to start DNA replication by the replicative DNA polymerases, Pol δ and Pol ϵ. The C terminus of the Pol α catalytic subunit (p180C) in complex with the B subunit (p70) regulates the RNA priming and DNA polymerizing activities of Prim-Pol α. It tethers Pol α and primase, facilitating RNA primer handover from primase to Pol α. To understand these regulatory mechanisms and to reveal the details of human Pol α organization, we determined the crystal structure of p70 in complex with p180C. The structured portion of p70 includes a phosphodiesterase (PDE) domain and an oligonucleotide/oligosaccharide binding (OB) domain. The N-terminal domain and the linker connecting it to the PDE domain are disordered in the reported crystal structure. The p180C adopts an elongated asymmetric saddle shape, with a three-helix bundle in the middle and zinc-binding modules (Zn1 and Zn2) on each side. The extensive p180C-p70 interactions involve 20 hydrogen bonds and a number of hydrophobic interactions resulting in an extended buried surface of 4080 Å(2). Importantly, in the structure of the p180C-p70 complex with full-length p70, the residues from the N-terminal to the OB domain contribute to interactions with p180C. The comparative structural analysis revealed both the conserved features and the differences between the human and yeast Pol α complexes.

  19. Proteolysis of the proofreading subunit controls the assembly of Escherichia coli DNA polymerase III catalytic core.

    PubMed

    Bressanin, Daniela; Stefan, Alessandra; Piaz, Fabrizio Dal; Cianchetta, Stefano; Reggiani, Luca; Hochkoeppler, Alejandro

    2009-11-01

    The C-terminal region of the proofreading subunit (epsilon) of Escherichia coli DNA polymerase III is shown here to be labile and to contain the residues (identified between F187 and R213) responsible for association with the polymerase subunit (alpha). We also identify two alpha-helices of the polymerase subunit (comprising the residues E311-M335 and G339-D353, respectively) as the determinants of binding to epsilon. The C-terminal region of epsilon is degraded by the ClpP protease assisted by the GroL molecular chaperone, while other factors control the overall concentration in vivo of epsilon. Among these factors, the chaperone DnaK is of primary importance for preserving the integrity of epsilon. Remarkably, inactivation of DnaK confers to Escherichia coli inviable phenotype at 42 degrees C, and viability can be restored over-expressing epsilon. Altogether, our observations indicate that the association between epsilon and alpha subunits of DNA polymerase III depends on small portions of both proteins, the association of which is controlled by proteolysis of epsilon. Accordingly, the factors catalysing (ClpP, GroL) or preventing (DnaK) this proteolysis exert a crucial checkpoint of the assembly of Escherichia coli DNA polymerase III core.

  20. Molecular cloning, expression and functional analysis of three subunits of protein phosphatase 2A (PP2A) from black tiger shrimps (Penaeus monodon).

    PubMed

    Zhao, Chao; Wang, Yan; Fu, Mingjun; Yang, Keng; Qiu, Lihua

    2017-02-01

    Protein phosphatase 2A (PP2A) is a cellular serine-threonine (Ser/Thr) phosphatase that plays a crucial role in regulating most cellular functions. In the present study, the full-length cDNAs of three subunits of PmPP2A (PmPP2A-A, PP2A-B and PP2A-C) were cloned from Penaeus monodon, which are the first available for shrimps. Sequence analysis showed that PmPP2A-A, PmPP2A-B and PmPP2A-C encoded polypeptides of 591, 443, and 324 amino acids, respectively. The mRNAs of three subunits of PmPP2A were expressed constitutively in all tissues examined, and predominantly in the ovaries. In ovarian maturation stages, the three subunits of PmPP2A were continuously but differentially expressed. Dopamine and 5-hydroxytryptamine injection experiments were conducted to study the expression profile of three subunits of PmPP2A, and the results indicated that PmPP2A played a negative regulatory role in the process of ovarian maturation. In addition, the recombinant proteins of three subunits of PmPP2A were successfully obtained, and the phosphatase activity of PmPP2A was tested in vitro. The results of this study will advance our understanding about the molecular mechanisms of PmPP2A in Penaeus monodon.

  1. The catalytic subunit of Dictyostelium cAMP-dependent protein kinase -- role of the N-terminal domain and of the C-terminal residues in catalytic activity and stability.

    PubMed

    Etchebehere, L C; Van Bemmelen, M X; Anjard, C; Traincard, F; Assemat, K; Reymond, C; Véron, M

    1997-09-15

    The C subunit of Dictyostelium cAMP-dependent protein kinase (PKA) is unusually large (73 kDa) due to the presence of 330 amino acids N-terminal to the conserved catalytic core. The sequence following the core, including a C-terminal -Phe-Xaa-Xaa-Phe-COOH motif, is highly conserved. We have characterized the catalytic activity and stability of C subunits mutated in sequences outside the catalytic core and we have analyzed their ability to interact with the R subunit and with the heat-stable protein-kinase inhibitor PKI. Mutants carrying deletions in the N-terminal domain displayed little difference in their kinetic properties and retained their capacity to be inhibited by R subunit and by PKI. In contrast, the mutation of one or both of the phenylalanine residues in the C-terminal motif resulted in a decrease of catalytic activity and stability of the proteins. Inhibition by the R subunit or by PKI were however unaffected. Sequence-comparison analysis of other protein kinases revealed that a -Phe-Xaa-Xaa-Phe- motif is present in many Ser/Thr protein kinases, although its location at the very end of the polypeptide is a particular feature of the PKA family. We propose that the presence of this motif may serve to identify isoforms of protein kinases.

  2. Intracellular Targeting Signals and Lipid Specificity Determinants of the ALA/ALIS P4-ATPase Complex Reside in the Catalytic ALA α-Subunit

    PubMed Central

    Poulsen, Lisbeth R.; Hanisch, Susanne; Meffert, Katharina; Buch-Pedersen, Morten J.; Jakobsen, Mia K.; Pomorski, Thomas Günther; Palmgren, Michael G.

    2010-01-01

    Members of the P4 subfamily of P-type ATPases are believed to catalyze flipping of phospholipids across cellular membranes, in this way contributing to vesicle biogenesis in the secretory and endocytic pathways. P4-ATPases form heteromeric complexes with Cdc50-like proteins, and it has been suggested that these act as β-subunits in the P4-ATPase transport machinery. In this work, we investigated the role of Cdc50-like β-subunits of P4-ATPases for targeting and function of P4-ATPase catalytic α-subunits. We show that the Arabidopsis P4-ATPases ALA2 and ALA3 gain functionality when coexpressed with any of three different ALIS Cdc50-like β-subunits. However, the final cellular destination of P4-ATPases as well as their lipid substrate specificity are independent of the nature of the ALIS β-subunit they were allowed to interact with. PMID:20053675

  3. Kinetics of the phosphotransferase reaction of the catalytic subunit of the tick salivary gland cAMP-dependent protein kinase

    SciTech Connect

    Mane, S.D.; Essenberg, R.C.; Sauer, J.R.

    1986-05-01

    The catalytic subunit of the cAMP dependent protein kinase was purified 100-fold from tick salivary glands. The enzyme mechanism of the phosphotransferase reaction catalyzed by this subunit was investigated. Highly purified enzyme did not show ATP-ase activity in the absence of protein substrates. Initial velocities were measured using histone H-1 or a synthetic heptapeptide, Kemptide, as P/sub i/ acceptors and (..gamma..-/sup 32/P) ATP as a phosphodonor. Patterns were consistent with a sequential, but not a ping pong mechanism. At high concentration (>2Km), histone showed substrate inhibition which was noncompetitive versus ATP. Product inhibition by Mg.ADP was competitive versus ATP and noncompetitive with respect to H-1. Phosphohistone on the other hand was noncompetitive with respect to H-1, but gave parabolic competitive inhibition against ATP. Dead-end inhibition by AMP-PNP, an analogue of ATP, was competitive and noncompetitive against ATP and H-1, respectively. The inhibitory of cAMP dependent protein kinase was noncompetitive with ATP and competitive with histone. These studies strongly suggest that the tick salivary gland protein kinase has a sequential mechanism with primarily ordered addition of ATP followed by protein substrate and ordered release of phosphoprotein and ADP, but some random character.

  4. Cellulose synthase catalytic subunit (CesA) genes associated with primary or secondary wall biosynthesis in developing cotton fibers (Gossypium hirsutum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers are unicellular seed trichomes and consist of almost pure cellulose. During the transition from elongation growth to secondary wall thickening, the rate of cellulose biosynthesis in fibers rises nearly 100-fold. Although the first two cellulose synthase catalytic subunits (CesAs) wer...

  5. Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human maltase-glucoamylase (MGAM) is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. MGAM is anchored to the small-intestinal brush-border epithelial cells and contains two homologous glycosyl hydrolase family 31 catalytic subunits: an N-termina...

  6. Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase

    PubMed Central

    Axe, Jennifer M; O'Rourke, Kathleen F; Kerstetter, Nicole E; Yezdimer, Eric M; Chan, Yan M; Chasin, Alexander; Boehr, David D

    2015-01-01

    Conformational changes in the β2α2 and β6α6 loops in the alpha subunit of tryptophan synthase (αTS) are important for enzyme catalysis and coordinating substrate channeling with the beta subunit (βTS). It was previously shown that disrupting the hydrogen bond interactions between these loops through the T183V substitution on the β6α6 loop decreases catalytic efficiency and impairs substrate channeling. Results presented here also indicate that the T183V substitution decreases catalytic efficiency in Escherchia coli αTS in the absence of the βTS subunit. Nuclear magnetic resonance (NMR) experiments indicate that the T183V substitution leads to local changes in the structural dynamics of the β2α2 and β6α6 loops. We have also used NMR chemical shift covariance analyses (CHESCA) to map amino acid networks in the presence and absence of the T183V substitution. Under conditions of active catalytic turnover, the T183V substitution disrupts long-range networks connecting the catalytic residue Glu49 to the αTS-βTS binding interface, which might be important in the coordination of catalytic activities in the tryptophan synthase complex. The approach that we have developed here will likely find general utility in understanding long-range impacts on protein structure and dynamics of amino acid substitutions generated through protein engineering and directed evolution approaches, and provide insight into disease and drug-resistance mutations. PMID:25377949

  7. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    SciTech Connect

    Sung, Uhna; Jennings, Jennifer L.; Link, Andrew J.; Blakely, Randy D.; E-mail: andy.blakely@vanderbilt.edu

    2005-08-05

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH{sub 2}-terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking.

  8. Structure of a catalytic dimer of the α- and β-subunits of the F-ATPase from Paracoccus denitrificans at 2.3 Å resolution

    SciTech Connect

    Morales-Ríos, Edgar; Montgomery, Martin G.; Leslie, Andrew G. W.; García-Trejo, José J.; Walker, John E.

    2015-09-23

    The structure of the αβ heterodimer of the F-ATPase from the α-proteobacterium P. denitrificans has been determined at 2.3 Å resolution. It corresponds to the ‘open’ or ‘empty’ catalytic interface found in other F-ATPases. The structures of F-ATPases have predominantly been determined from mitochondrial enzymes, and those of the enzymes in eubacteria have been less studied. Paracoccus denitrificans is a member of the α-proteobacteria and is related to the extinct protomitochondrion that became engulfed by the ancestor of eukaryotic cells. The P. denitrificans F-ATPase is an example of a eubacterial F-ATPase that can carry out ATP synthesis only, whereas many others can catalyse both the synthesis and the hydrolysis of ATP. Inhibition of the ATP hydrolytic activity of the P. denitrificans F-ATPase involves the ζ inhibitor protein, an α-helical protein that binds to the catalytic F{sub 1} domain of the enzyme. This domain is a complex of three α-subunits and three β-subunits, and one copy of each of the γ-, δ- and ∊-subunits. Attempts to crystallize the F{sub 1}–ζ inhibitor complex yielded crystals of a subcomplex of the catalytic domain containing the α- and β-subunits only. Its structure was determined to 2.3 Å resolution and consists of a heterodimer of one α-subunit and one β-subunit. It has no bound nucleotides, and it corresponds to the ‘open’ or ‘empty’ catalytic interface found in other F-ATPases. The main significance of this structure is that it aids in the determination of the structure of the intact membrane-bound F-ATPase, which has been crystallized.

  9. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  10. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis.

    PubMed Central

    Garbers, C; DeLong, A; Deruére, J; Bernasconi, P; Söll, D

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis. Images PMID:8641277

  11. Evolutionary Analysis of the B56 Gene Family of PP2A Regulatory Subunits

    PubMed Central

    Sommer, Lauren M.; Cho, Hyuk; Choudhary, Madhusudan; Seeling, Joni M.

    2015-01-01

    Protein phosphatase 2A (PP2A) is an abundant serine/threonine phosphatase that functions as a tumor suppressor in numerous cell-cell signaling pathways, including Wnt, myc, and ras. The B56 subunit of PP2A regulates its activity, and is encoded by five genes in humans. B56 proteins share a central core domain, but have divergent amino- and carboxy-termini, which are thought to provide isoform specificity. We performed phylogenetic analyses to better understand the evolution of the B56 gene family. We found that B56 was present as a single gene in eukaryotes prior to the divergence of animals, fungi, protists, and plants, and that B56 gene duplication prior to the divergence of protostomes and deuterostomes led to the origin of two B56 subfamilies, B56αβε and B56γδ. Further duplications led to three B56αβε genes and two B56γδ in vertebrates. Several nonvertebrate B56 gene names are based on distinct vertebrate isoform names, and would best be renamed. B56 subfamily genes lack significant divergence within primitive chordates, but each became distinct in complex vertebrates. Two vertebrate lineages have undergone B56 gene loss, Xenopus and Aves. In Xenopus, B56δ function may be compensated for by an alternatively spliced transcript, B56δ/γ, encoding a B56δ-like amino-terminal region and a B56γ core. PMID:25950761

  12. Structural organization and splice variants of the POLE1 gene encoding the catalytic subunit of human DNA polymerase epsilon.

    PubMed Central

    Huang, D; Pospiech, H; Kesti, T; Syväoja, J E

    1999-01-01

    The catalytic subunit of human DNA polymerase epsilon, an enzyme involved in nuclear DNA replication and repair, is encoded by the POLE1 gene. This gene is composed of 51 exons spanning at least 97 kb of genomic DNA. It was found to encode three alternative mRNA splice variants that differ in their 5'-terminal sequences and in the N-termini of the predicted proteins. A CpG island covers the promoter region for the major transcript in HeLa cells. This promoter is TATA-less and contains several putative binding sites for transcription factors typical of S-phase-up-regulated and serum-responsive promoters. Potential promoter regions were also identified for the two other alternative transcripts. Interestingly, no nuclear polyadenylation signal sequence was detected in the 3'-untranslated region, although a poly(A) tail was present. These results suggest a complicated regulatory machinery for the expression of the human POLE1 gene, including three alternative transcripts expressed from three promoters. PMID:10215605

  13. Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit-related protein.

    PubMed

    Arden, S D; Zahn, T; Steegers, S; Webb, S; Bergman, B; O'Brien, R M; Hutton, J C

    1999-03-01

    A pancreatic islet-specific glucose-6-phosphatase-related protein (IGRP) was cloned using a subtractive cDNA expression cloning procedure from mouse insulinoma tissue. Two alternatively spliced variants that differed by the presence or absence of a 118-bp exon (exon IV) were detected in normal balb/c mice, diabetic ob/ob mice, and insulinoma tissue. The longer, 1901-bp full-length cDNA encoded a 355-amino acid protein (molecular weight 40,684) structurally related (50% overall identity) to the liver glucose-6-phosphatase and exhibited similar predicted transmembrane topology, conservation of catalytically important residues, and the presence of an endoplasmic reticulum retention signal. The shorter transcript encoded two possible open reading frames (ORFs), neither of which possessed His174, a residue thought to be the phosphoryl acceptor (Pan CJ, Lei KJ, Annabi B, Hemrika W, Chou JY: Transmembrane topology of glucose-6-phosphatase. J Biol Chem 273:6144-6148, 1998). Northern blot and reverse transcription-polymerase chain reaction analysis showed that the mRNA was highly expressed in pancreatic islets and expressed more in beta-cell lines than in an alpha-cell line. It was notably absent in tissues and cell lines of non-islet neuroendocrine origin, and no other major tissue source of the mRNA was found. During development, it was expressed in parallel with insulin mRNA. The mRNA was efficiently translated and glycosylated in an in vitro translation/membrane translocation system and readily transcribed into COS 1, HIT, and CHO cells using cytomegalovirus or Rous sarcoma virus promoters. Whereas the liver glucose-6-phosphatase showed activity in these transfection systems, the IGRP failed to show glucose phosphotransferase or phosphatase activity with p-nitrophenol phosphate, inorganic pyrophosphate, or a range of sugar phosphates hydrolyzed by the liver enzyme. While the metabolic function of the enzyme is not resolved, its remarkable tissue-specific expression

  14. Co-activation of NR2A and NR2B subunits induces resistance to fear extinction.

    PubMed

    Leaderbrand, Katherine; Corcoran, Kevin A; Radulovic, Jelena

    2014-09-01

    Unpredictable stress is known to profoundly enhance susceptibility to fear and anxiety while reducing the ability to extinguish fear when threat is no longer present. Accordingly, partial aversive reinforcement, via random exposure to footshocks, induces fear that is resistant to extinction. Here we sought to determine the hippocampal mechanisms underlying susceptibility versus resistance to context fear extinction as a result of continuous (CR) and partial (PR) reinforcement, respectively. We focused on N-methyl-D-aspartate receptor (NMDAR) subunits 2A and B (NR2A and NR2B) as well as their downstream signaling effector, extracellular signal-regulated kinase (ERK), based on their critical role in the acquisition and extinction of fear. Pharmacological inactivation of NR2A, but not NR2B, blocked extinction after CR, whereas inactivation of NR2A, NR2B, or both subunits facilitated extinction after PR. The latter finding suggests that co-activation of NR2A and NR2B contributes to persistent fear following PR. In contrast to CR, PR increased membrane levels of ERK and NR2 subunits after the conditioning and extinction sessions, respectively. In parallel, nuclear activation of ERK was significantly reduced after the extinction session. Thus, co-activation and increased surface expression of NR2A and NR2B, possibly mediated by ERK, may cause persistent fear. These findings suggest that patients with post-traumatic stress disorder (PTSD) may benefit from antagonism of specific NR2 subunits.

  15. Stabilization of the Escherichia coli DNA polymerase III ε subunit by the θ subunit favors in vivo assembly of the Pol III catalytic core

    PubMed Central

    Conte, Emanuele; Vincelli, Gabriele; Schaaper, Roel M.; Bressanin, Daniela; Stefan, Alessandra; Dal Piaz, Fabrizio; Hochkoeppler, Alejandro

    2012-01-01

    Escherichia coli DNA polymerase III holoenzyme (HE) contains a core polymerase consisting of three subunits: α(polymerase), ε(3′-5′ exonuclease), and θ. Genetic experiments suggested that θ subunit stabilizes the intrinsically labile ε subunit and, furthermore, that θ might affect the cellular amounts of Pol III core and HE. Here, we provide biochemical evidence supporting this model by analyzing the amounts of the relevant proteins. First, we show that a ΔholE strain (lacking θ subunit) displays reduced amounts of free ε. We also demonstrate the existence of a dimer of ε, which may be involved in the stabilization of the protein. Second, θ, when overexpressed, dissociates the ε dimer and significantly increases the amount of Pol III core. The stability of ε also depends on cellular chaperones, including DnaK. Here, we report that: (i) temperature shift-up of ΔdnaK strains leads to rapid depletion of ε, and (ii) overproduction of θ overcomes both the depletion of ε and the temperature sensitivity of the strain. Overall, our data suggest that ε is a critical factor in the assembly of Pol III core, and that this is role is strongly influenced by the θ subunit through its prevention of ε degradation. PMID:22546509

  16. Direct cytochemical localization of catalytic subunits dissociated from cAMP-dependent protein kinase in Reuber H-35 hepatoma cells. II. Temporal and spatial kinetics

    PubMed Central

    1982-01-01

    The activation of cyclic AMP-dependent protein kinase has been found to be the predominant mode by which cyclic AMP (cAMP) leads to alterations of a large variety of cellular functions. The activation of the kinase results in the release of the catalytic subunit which as the free enzyme possesses phosphotransferase activity for a variety of specific protein substrates. Using a sensitive and specific cytofluorometric technique we monitored the appearance of free catalytic subunit in Reuber H35 hepatoma cells in culture after incubation with N6-1'-O- dibutyryl-cyclic AMP (DBcAMP), 8-bromoadenosine-3':5'-cyclic monophosphate (8-BrcAMP), and glucagon. The cytochemical method employs the heat-stable inhibitor of the free catalytic subunit which has been conjugated to fluorescein isothiocyanate (F:PKI) and was validated as described in the companion paper (Fletcher and Byus. 1982. J. Cell Biol. 93:719-726). Here we studied the temporal and spatial kinetics of the free catalytic subunit following activation of cAMP-dependent protein kinase by increasing concentrations of DBcAMP,8-BrcAMP, and glucagon. Under similar conditions protein kinase activation was also assessed biochemically in H35 cell supernatants by assaying the protein kinase activity ratio. Incubation of the hepatoma cells with DBcAMP (0.1 mM) led to an increase in the activity ratio from 0.2 in control cultures to a value of nearly 1.0 within a 1- to 2-h period. During this same period using the F:PKI probe, a significant increase in cytoplasmic and nucleolar fluorescence indicative of the release of the free catalytic subunit was coincidentally observed. In contrast to the rapid appearance of catalytic subunit in the cytoplasm and nucleolus of the cell within 5-15 min of the addition of DBcAMP, discernible nucleoplasmic fluorescence did not occur until after 1 h. H35 cell cultures incubated with 8-BrcAMP (0.01-1.0 mM) exhibited a more rapid activation of the protein kinase measured cytochemically compared

  17. The over-expression of the β2 catalytic subunit of the proteasome decreases homologous recombination and impairs DNA double-strand break repair in human cells.

    PubMed

    Collavoli, Anita; Comelli, Laura; Cervelli, Tiziana; Galli, Alvaro

    2011-01-01

    By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.

  18. The Over-expression of the β2 Catalytic Subunit of the Proteasome Decreases Homologous Recombination and Impairs DNA Double-Strand Break Repair in Human Cells

    PubMed Central

    Collavoli, Anita; Comelli, Laura; Cervelli, Tiziana; Galli, Alvaro

    2011-01-01

    By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p. PMID:21660142

  19. Site-specific cleavage by metal ion cofactors and inhibitors of M1 RNA, the catalytic subunit of RNase P from Escherichia coli.

    PubMed Central

    Kazakov, S; Altman, S

    1991-01-01

    The location of phosphate residues involved in specific centers for binding of metal ions in M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, was determined by analysis of induction of cleavage of RNA by metal ions. At pH 9.5, Mg2+ catalyzes cleavage of M1 RNA at five principal sites. Under certain conditions, Mn2+ and Ca2+ can each replace Mg2+ as the cofactor in the processing of precursor tRNAs by M1 RNA and P RNA, the RNA subunit of RNase P from Bacillus subtilis. These cations, as well as various metal ion inhibitors of the catalytic activity of M1 RNA, also promote cleavage of M1 RNA in a specific manner. Certain conditions that affect the catalytic activity of M1 RNA also alter the rate of metal ion-induced cleavage at the various sites. From these results and a comparison of cleavage of M1 RNA with that of a deletion mutant of M1 RNA and of P RNA, we have identified two different centers for binding of metal ions in M1 RNA that are important for the processing of the precursor to tRNA(Tyr) from E. coli. There is also a center for the binding of metal ions in the substrate, close to the site of cleavage by M1 RNA. Images PMID:1718000

  20. New NCI-N87-derived human gastric epithelial line after human telomerase catalytic subunit over-expression

    PubMed Central

    Saraiva-Pava, Kathy; Navabi, Nazanin; Skoog, Emma C; Lindén, Sara K; Oleastro, Mónica; Roxo-Rosa, Mónica

    2015-01-01

    AIM: To establish a cellular model correctly mimicking the gastric epithelium to overcome the limitation in the study of Helicobacter pylori (H. pylori) infection. METHODS: Aiming to overcome this limitation, clones of the heterogenic cancer-derived NCI-N87 cell line were isolated, by stably-transducing it with the human telomerase reverse-transcriptase (hTERT) catalytic subunit gene. The clones were first characterized regarding their cell growth pattern and phenotype. For that we measured the clones’ adherence properties, expression of cell-cell junctions’ markers (ZO-1 and E-cadherin) and ability to generate a sustained transepithelial electrical resistance. The gastric properties of the clones, concerning expression of mucins, zymogens and glycan contents, were then evaluated by haematoxylin and eosin staining, Periodic acid Schiff (PAS) and PAS/Alcian Blue-staining, immunocytochemistry and Western blot. In addition, we assessed the usefulness of the hTERT-expressing gastric cell line for H. pylori research, by performing co-culture assays and measuring the IL-8 secretion, by ELISA, upon infection with two H. pylori strains differing in virulence. RESULTS: Compared with the parental cell line, the most promising NCI-hTERT-derived clones (CL5 and CL6) were composed of cells with homogenous phenotype, presented higher relative telomerase activities, better adhesion properties, ability to be maintained in culture for longer periods after confluency, and were more efficient in PAS-reactive mucins secretion. Both clones were shown to produce high amounts of MUC1, MUC2 and MUC13. NCI-hTERT-CL5 mucins were shown to be decorated with blood group H type 2 (BG-H), Lewis-x (Lex), Ley and Lea and, in a less extent, with BG-A antigens, but the former two antigens were not detected in the NCI-hTERT-CL6. None of the clones exhibited detectable levels of MUC6 nor sialylated Lex and Lea glycans. Entailing good gastric properties, both NCI-hTERT-clones were found to produce

  1. GluN2A Subunit-Containing NMDA Receptors Are the Preferential Neuronal Targets of Homocysteine

    PubMed Central

    Sibarov, Dmitry A.; Abushik, Polina A.; Giniatullin, Rashid; Antonov, Sergei M.

    2016-01-01

    Homocysteine (HCY) is an endogenous redox active amino acid, best known as contributor to various neurodegenerative disorders. Although it is known that HCY can activate NMDA receptors (NMDARs), the mechanisms of its action on receptors composed of different NMDA receptor subunits remains almost unknown. In this study, using imaging and patch clamp technique in cultured cortical neurons and heterologous expression in HEK293T cells we tested the agonist activity of HCY on NMDARs composed of GluN1 and GluN2A subunits (GluN1/2A receptors) and GluN1 and GluN2B subunits (GluN1/2B receptors). We demonstrate that the time courses of Ca2+ transients and membrane currents activated by HCY and NMDA in cortical neurons are drastically different. Application of HCY to cortical neurons induced responses, which in contrast to currents induced by NMDA (both in the presence of glycine) considerably decreased to steady state of small amplitude. In contrast to NMDA, HCY-activated currents at steady state were resistant to the selective GluN2B subunit inhibitor ifenprodil. In calcium-free external solution the decrease of NMDA evoked currents was abolished, suggesting the Ca2+-dependent NMDAR desensitization. Under these conditions HCY evoked currents still declined almost to the baseline suggesting Ca2+-independent desensitization. In HEK293T cells HCY activated NMDARs of GluN1/2A and GluN1/2B subunit compositions with EC50s of 9.7 ± 1.8 and 61.8 ± 8.9 μM, respectively. Recombinant GluN1/2A receptors, however, did not desensitize by HCY, whereas GluN1/2B receptors were almost fully desensitized by HCY. Thus, HCY is a high affinity agonist of NMDARs preferring the GluN1/2A subunit composition. Our data suggest that HCY induced native NMDAR currents in neurons are mainly mediated by the “synaptic type” GluN1/2A NMDARs. This implies that in hyperhomocysteinemia, a disorder with enlarged level of HCY in plasma, HCY may persistently contribute to post-synaptic responses mediated

  2. Bacterial-type Phosphoenolpyruvate Carboxylase (PEPC) Functions as a Catalytic and Regulatory Subunit of the Novel Class-2 PEPC Complex of Vascular Plants*

    PubMed Central

    O'Leary, Brendan; Rao, Srinath K.; Kim, Julia; Plaxton, William C.

    2009-01-01

    Phosphoenolpyruvate carboxylase (PEPC) is a tightly regulated anaplerotic enzyme situated at a major branch point of the plant C metabolism. Two distinct oligomeric classes of PEPC occur in the triglyceride-rich endosperm of developing castor oil seeds (COS). Class-1 PEPC is a typical homotetramer composed of identical 107-kDa plant-type PEPC (PTPC) subunits (encoded by RcPpc3), whereas the novel Class-2 PEPC 910-kDa hetero-octameric complex arises from a tight interaction between Class-1 PEPC and distantly related 118-kDa bacterial-type PEPC (BTPC) polypeptides (encoded by RcPpc4). Here, COS BTPC was expressed from full-length RcPpc4 cDNA in Escherichia coli as an active PEPC that exhibited unusual properties relative to PTPCs, including a tendency to form large aggregates, enhanced thermal stability, a high Km(PEP), and insensitivity to metabolite effectors. A chimeric 900-kDa Class-2 PEPC hetero-octamer having a 1:1 stoichiometry of BTPC:PTPC subunits was isolated from a mixture of clarified extracts containing recombinant RcPPC4 and an Arabidopsis thaliana Class-1 PEPC (the PTPC, AtPPC3). The purified Class-2 PEPC exhibited biphasic PEP saturation kinetics with high and low affinity sites attributed to its AtPPC3 and RcPPC4 subunits, respectively. The RcPPC4 subunits: (i) catalyzed the majority of the Class-2 PEPC Vmax, particularly in the presence of the inhibitor l-malate, and (ii) also functioned as Class-2 PEPC regulatory subunits by modulating PEP binding and catalytic potential of its AtPPC3 subunits. BTPCs appear to associate with PTPCs to form stable Class-2 PEPC complexes in vivo that are hypothesized to maintain high flux from PEP under physiological conditions that would otherwise inhibit Class-1 PEPCs. PMID:19605358

  3. Bacterial-type phosphoenolpyruvate carboxylase (PEPC) functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants.

    PubMed

    O'Leary, Brendan; Rao, Srinath K; Kim, Julia; Plaxton, William C

    2009-09-11

    Phosphoenolpyruvate carboxylase (PEPC) is a tightly regulated anaplerotic enzyme situated at a major branch point of the plant C metabolism. Two distinct oligomeric classes of PEPC occur in the triglyceride-rich endosperm of developing castor oil seeds (COS). Class-1 PEPC is a typical homotetramer composed of identical 107-kDa plant-type PEPC (PTPC) subunits (encoded by RcPpc3), whereas the novel Class-2 PEPC 910-kDa hetero-octameric complex arises from a tight interaction between Class-1 PEPC and distantly related 118-kDa bacterial-type PEPC (BTPC) polypeptides (encoded by RcPpc4). Here, COS BTPC was expressed from full-length RcPpc4 cDNA in Escherichia coli as an active PEPC that exhibited unusual properties relative to PTPCs, including a tendency to form large aggregates, enhanced thermal stability, a high K(m)((PEP)), and insensitivity to metabolite effectors. A chimeric 900-kDa Class-2 PEPC hetero-octamer having a 1:1 stoichiometry of BTPC:PTPC subunits was isolated from a mixture of clarified extracts containing recombinant RcPPC4 and an Arabidopsis thaliana Class-1 PEPC (the PTPC, AtPPC3). The purified Class-2 PEPC exhibited biphasic PEP saturation kinetics with high and low affinity sites attributed to its AtPPC3 and RcPPC4 subunits, respectively. The RcPPC4 subunits: (i) catalyzed the majority of the Class-2 PEPC V(max), particularly in the presence of the inhibitor l-malate, and (ii) also functioned as Class-2 PEPC regulatory subunits by modulating PEP binding and catalytic potential of its AtPPC3 subunits. BTPCs appear to associate with PTPCs to form stable Class-2 PEPC complexes in vivo that are hypothesized to maintain high flux from PEP under physiological conditions that would otherwise inhibit Class-1 PEPCs.

  4. Uncovering the stoichiometry of Pyrococcus furiosus RNase P, a multi-subunit catalytic ribonucleoprotein complex, by surface-induced dissociation and ion mobility mass spectrometry.

    PubMed

    Ma, Xin; Lai, Lien B; Lai, Stella M; Tanimoto, Akiko; Foster, Mark P; Wysocki, Vicki H; Gopalan, Venkat

    2014-10-20

    We demonstrate that surface-induced dissociation (SID) coupled with ion mobility mass spectrometry (IM-MS) is a powerful tool for determining the stoichiometry of a multi-subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg(2+). We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5' maturation. Previous step-wise, Mg(2+)-dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21⋅RPP29 and POP5⋅RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21⋅RPP29 and (POP5⋅RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM-MS in resolving conformational heterogeneity and yielding insights on RNP assembly.

  5. The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits

    NASA Technical Reports Server (NTRS)

    Hilario, E.; Gogarten, J. P.

    1998-01-01

    Changes in the primary and quarternary structure of vacuolar and archaeal type ATPases that accompany the prokaryote-to-eukaryote transition are analyzed. The gene encoding the vacuolar-type proteolipid of the V-ATPase from Giardia lamblia is reported. Giardia has a typical vacuolar ATPase as observed from the common motifs shared between its proteolipid subunit and other eukaryotic vacuolar ATPases, suggesting that the former enzyme works as a hydrolase in this primitive eukaryote. The phylogenetic analyses of the V-ATPase catalytic subunit and the front and back halves of the proteolipid subunit placed Giardia as the deepest branch within the eukaryotes. Our phylogenetic analysis indicated that at least two independent duplication and fusion events gave rise to the larger proteolipid type found in eukaryotes and in Methanococcus. The spatial distribution of the conserved residues among the vacuolar-type proteolipids suggest a zipper-type interaction among the transmembrane helices and surrounding subunits of the V-ATPase complex. Important residues involved in the function of the F-ATP synthase proteolipid have been replaced during evolution in the V-proteolipid, but in some cases retained in the archaeal A-ATPase. Their possible implication in the evolution of V/F/A-ATPases is discussed.

  6. PSMB9 codon 60 polymorphisms have no impact on the activity of the immunoproteasome catalytic subunit B1i expressed in multiple types of solid cancer.

    PubMed

    Park, Ji Eun; Ao, Lin; Miller, Zachary; Kim, Kyungbo; Wu, Ying; Jang, Eun Ryoung; Lee, Eun Young; Kim, Kyung Bo; Lee, Wooin

    2013-01-01

    The proteasome is a key regulator of cellular protein homeostasis and is a clinically validated anticancer target. The immunoproteasome, a subtype of proteasome expressed mainly in hematopoietic cells, was initially recognized for its role in antigen presentation during the immune response. Recently, the immunoproteasome has been implicated in several disease conditions including cancer and autoimmune disorders, but many of the factors contributing to these pathological processes remain unknown. In particular, the codon 60 polymorphism of the PSMB9 gene encoding the β1i immunoproteasome catalytic subunit has been investigated in the context of a variety of diseases. Despite this, previous studies have so far reported inconsistent findings regarding the impact of this polymorphism on proteasome activity. Thus, we set out to investigate the impact of the PSMB9 codon 60 polymorphism on the expression and activity of the β1i immunoproteasome subunit in a panel of human cancer cell lines. The β1i-selective fluorogenic substrate Acetyl-Pro-Ala-Leu-7-amino-4-methylcoumarin was used to specifically measure β1i catalytic activity. Our results indicate that the codon 60 Arg/His polymorphism does not significantly alter the expression and activity of β1i among the cell lines tested. Additionally, we also examined the expression of β1i in clinical samples from colon and pancreatic cancer patients. Our immunohistochemical analyses showed that ≈ 70% of clinical colon cancer samples and ≈ 53% of pancreatic cancer samples have detectable β1i expression. Taken together, our results indicate that the β1i subunit of the immunoproteasome is frequently expressed in colon and pancreatic cancers but that the codon 60 genetic variants of β1i display similar catalytic activities and are unlikely to contribute to the significant inter-cell-line and inter-individual variabilities in the immunoproteasome activity.

  7. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway.

    PubMed

    Ahn, Chang Sook; Ahn, Hee-Kyung; Pai, Hyun-Sook

    2015-02-01

    Tap46, a regulatory subunit of protein phosphatase 2A (PP2A), plays an essential role in plant growth and development through a functional link with the Target of Rapamycin (TOR) signalling pathway. Here, we have characterized the molecular mechanisms behind a gain-of-function phenotype of Tap46 and its relationship with TOR to gain further insights into Tap46 function in plants. Constitutive overexpression of Tap46 in Arabidopsis resulted in overall growth stimulation with enlarged organs, such as leaves and siliques. Kinematic analysis of leaf growth revealed that increased cell size was mainly responsible for the leaf enlargement. Tap46 overexpression also enhanced seed size and viability under accelerated ageing conditions. Enhanced plant growth was also observed in dexamethasone (DEX)-inducible Tap46 overexpression Arabidopsis lines, accompanied by increased cellular activities of nitrate-assimilating enzymes. DEX-induced Tap46 overexpression and Tap46 RNAi resulted in increased and decreased phosphorylation of S6 kinase (S6K), respectively, which is a sensitive indicator of endogenous TOR activity, and Tap46 interacted with S6K in planta based on bimolecular fluorescence complementation and co-immunoprecipitation. Furthermore, inactivation of TOR by estradiol-inducible RNAi or rapamycin treatment decreased Tap46 protein levels, but increased PP2A catalytic subunit levels. Real-time quantitative PCR analysis revealed that Tap46 overexpression induced transcriptional modulation of genes involved in nitrogen metabolism, ribosome biogenesis, and lignin biosynthesis. These findings suggest that Tap46 modulates plant growth as a positive effector of the TOR signalling pathway and Tap46/PP2Ac protein abundance is regulated by TOR activity.

  8. Direct interaction between the catalytic subunit of the calmodulin-sensitive adenylate cyclase from bovine brain with /sup 125/I-labeled wheat germ agglutinin and /sup 125/I-labeled calmodulin

    SciTech Connect

    Minocherhomjee, A.M.; Selfe, S.; Flowers, N.J.; Storm, D.R.

    1987-07-14

    A calmodulin-sensitive adenylate cyclase has been purified to apparent homogeneity from bovine cerebral cortex using calmodulin-Sepharose followed by forskolin-Sepharose and wheat germ agglutinin-Sepharose. The final product appeared as one major polypeptide of approximately 135,000 daltons on sodium dodecyl sulfate-polyacrylamide gels. This polypeptide was a major component of the protein purified through calmodulin-Sepharose. The catalytic subunit was stimulated 3-4-fold by calmodulin (CaM) with a turnover number greater than 1000 min/sup -1/ and was directly inhibited by adenosine. The catalytic subunit of the enzyme interacted directly with /sup 125/I-CaM on a sodium dodecyl sulfate-polyacrylamide gel overlay system, and this interaction was Ca/sup 2 +/ concentration dependent. In addition, the catalytic subunit was shown to directly bind /sup 125/I-labeled wheat germ agglutinin using a sodium dodecyl sulfate-polyacrylamide gel overlay technique, and N-acetylglucosamine inhibited binding of the lectin to the catalytic subunit. Calmodulin did not inhibit binding of wheat germ agglutinin to the catalytic subunit, and the binding of calmodulin was unaffected by wheat germ agglutinin. These data illustrate that the catalytic subunit of the calmodulin-sensitive adenylate cyclase is a glycoprotein which interacts directly with calmodulin and that adenosine can inhibit the enzyme without intervening receptors or G coupling proteins. It is concluded that the catalytic subunit of adenylate cyclase is a transmembrane protein with a domain accessible from the outer surface of the cell.

  9. Molecular characterisation of cAMP-dependent protein kinase (PK-A) catalytic subunit isoforms in the male tick, Amblyomma hebraeum.

    PubMed

    Tabish, Mohammad; Clegg, Roger A; Turner, Philip C; Jonczy, Jan; Rees, Huw H; Fisher, Michael J

    2006-12-01

    The cAMP-dependent protein kinase (protein kinase A, PK-A) plays a central role in the regulation of diverse aspects of cellular activity. Specifically, PK-A appears to play a key controlling role in the maturation of spermatids. Using a PCR-based approach, with degenerate primers from the highly conserved regions of the PK-A catalytic (C) subunit in combination with 5' and 3' RACE, we have cloned three cDNAs for the PK-A C-subunit of the male tick, Amblyomma hebraeum. The three cDNAs have open reading frames of 1059, 1275 and 1404bp which encode proteins of 40.6, 48.2 and 52.5kDa, respectively. These transcripts appear to arise from 5' alternative splicing of RNA derived from a single gene for the PK-A C-subunit. One isoform (AH-PK-A C1), in common with PK-A C-subunits from a range of species, contains a consensus sequence for N-myristoylation. RT-PCR and Western blot experiments suggest that the three splice variants are expressed ubiquitously; however, expression of the myristoylatable AH-PK-A C1 isoform is predominant in all investigated tissues (accessory gland, midgut, Malpighian tubules, salivary gland, testis and immature spermatids). There is no evidence for a sperm-specific PK-A C-subunit (Cs) in tick sperm; however, tyrosine protein phosphorylation, previously shown to be modulated by PK-A activity during mammalian sperm maturation, was observed in tick sperm.

  10. Elevated breast cancer risk in irradiated BALB/c mice associates with unique functional polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene

    NASA Technical Reports Server (NTRS)

    Yu, Y.; Okayasu, R.; Weil, M. M.; Silver, A.; McCarthy, M.; Zabriskie, R.; Long, S.; Cox, R.; Ullrich, R. L.

    2001-01-01

    Female BALB/c mice are unusually radiosensitive and more susceptible than C57BL/6 and other tested inbred mice to ionizing radiation (IR)-induced mammary tumors. This breast cancer susceptibility is correlated with elevated susceptibility for mammary cell transformation and genomic instability following irradiation. In this study, we report the identification of two BALB/c strain-specific polymorphisms in the coding region of Prkdc, the gene encoding the DNA-dependent protein kinase catalytic subunit, which is known to be involved in DNA double-stranded break repair and post-IR signal transduction. First, we identified an A --> G transition at base 11530 resulting in a Met --> Val conversion at codon 3844 (M3844V) in the phosphatidylinositol 3-kinase domain upstream of the scid mutation (Y4046X). Second, we identified a C --> T transition at base 6418 resulting in an Arg --> Cys conversion at codon 2140 (R2140C) downstream of the putative leucine zipper domain. This unique PrkdcBALB variant gene is shown to be associated with decreased DNA-dependent protein kinase catalytic subunit activity and with increased susceptibility to IR-induced genomic instability in primary mammary epithelial cells. The data provide the first evidence that naturally arising allelic variation in a mouse DNA damage response gene may associate with IR response and breast cancer risk.

  11. Silencing of SlFTR-c, the catalytic subunit of ferredoxin:thioredoxin reductase, induces pathogenesis-related genes and pathogen resistance in tomato plants.

    PubMed

    Lim, Chan Ju; Kim, Woong Bom; Lee, Bok-Sim; Lee, Ha Youn; Kwon, Tae-Ho; Park, Jeong Mee; Kwon, Suk-Yoon

    2010-09-03

    As a heterodimeric protein, ferredoxin:thioredoxin reductase (FTR) catalyses the light-dependant activation of several photosynthetic enzymes. The active site of the catalytic subunit of FTR contains a redox-active disulfide and a [4Fe-4S] center. We isolated the catalytic subunit gene of FTR, designated SlFTR-c, from tomato (Solanum lycopersicum L.). SlFTR-c transcripts were detected in all tissues examined, including roots, leaves, flowers, fruits, and seeds. Interestingly, virus-induced gene silencing (VIGS) of SlFTR-c resulted in necrotic lesions with typical cell death symptoms and reactive oxygen species (ROS) production in tomato leaves. Moreover, these SlFTR-c-silenced plants displayed enhanced disease resistance against bacterial pathogens, specifically Pseudomonas syringae pv. tomato DC3000, by the induction of defense-related genes (SlPR-1, SlPR-2, SlPR-5, SlGlucA, SlChi3, and SlChi9). Taken together, it seems that SlFTR-c works as a regulator of programmed cell death (PCD) and pathogen resistance in tomato plants.

  12. Heterologous desensitization of adenylate cyclase from pigeon erythrocytes under the action of the catalytic subunit of cAMP-dependent protein kinase

    SciTech Connect

    Popov, K.M.; Bulargina, T.V.; Severin, E.S.

    1985-09-20

    Preincubation of the plasma membranes from pigeon erythrocytes with the catalytic subunit of cAMP-dependent protein kinase leads to desensitization of adenylate cyclase of the erythrocytes. The adenylate cyclase activity, measured in the presence of 10 ..mu..M isoproterenol and 50 ..mu..M GTP-..gamma..-S, is decreased by 40% in 10 min of incubation, while the activity in the presence of 50 ..mu..M GTP-..gamma..-S is decreased by 35% in 20 min. The decrease in the adenylate cyclase activity is due to an increase in the lag phase of activation of the enzyme in the presence of a GTP analog stable to hydrolysis and a decrease in the activity in the steady-state phase of activation. Heterologous desensitization of adenylate cyclase under the action of cAMP-dependent protein kinase is coupled with a decrease in the number of ..beta..-adrenoreceptors capable of passing into a state of high affinity for antagonists in the absence of guanylic nucleotides. The influence of the catalytic subunit on adenylate cyclase entirely models the process of desensitization of the enzyme absorbed in the influence of isoproterenol or cAMP on erythrocytes.

  13. Inhibition of p85, the non-catalytic subunit of phosphatidylinositol 3-kinase, exerts potent antitumor activity in human breast cancer cells

    PubMed Central

    Folgiero, V; Di Carlo, S E; Bon, G; Spugnini, E P; Di Benedetto, A; Germoni, S; Pia Gentileschi, M; Accardo, A; Milella, M; Morelli, G; Bossi, G; Mottolese, M; Falcioni, R

    2012-01-01

    The phosphoinositide 3-kinases (PI3Ks) are heterodimers consisting of the catalytic subunit p110 and the regulatory subunit p85. The PI3K/Akt pathway is strongly deregulated in breast cancer (BC) representing one of the mechanisms of resistance to therapies. Therefore, the identification of inhibitors of PI3K components represents one of the main goals to produce therapeutic agents. Here, we evaluated the efficacy of a phosphopeptide 1257 (P-1257) that targeting p85 strongly inhibits PI3K activity. We tested the effects of P-1257 administration in vitro and in vivo using BC cells expressing different levels of ErbB-2 and resistant or responsive to Trastuzumab. We demonstrated that inhibition of p85 activity by P-1257 induces cell death and sensitizes JIMT-1 and KPL-4 ErbB-2-overexpressing BC cells to Trastuzumab treatment. It is noteworthy that P-1257 delivery in vivo by electroporation or liposomes significantly inhibits the proliferation of tumor cells engrafted at subcutaneous and visceral sites. Overall, our data indicate that the p85 subunit is a valid target for therapeutic approaches and suggest that the structure of the peptide used in our study could be utilized for the development of novel drugs to apply in combination with therapies that fail to cure BCs with high PI3K activity. PMID:23222510

  14. Ref2, a regulatory subunit of the yeast protein phosphatase 1, is a novel component of cation homoeostasis.

    PubMed

    Ferrer-Dalmau, Jofre; González, Asier; Platara, Maria; Navarrete, Clara; Martínez, José L; Barreto, Lina; Ramos, José; Ariño, Joaquín; Casamayor, Antonio

    2010-02-24

    Maintenance of cation homoeostasis is a key process for any living organism. Specific mutations in Glc7, the essential catalytic subunit of yeast protein phosphatase 1, result in salt and alkaline pH sensitivity, suggesting a role for this protein in cation homoeostasis. We screened a collection of Glc7 regulatory subunit mutants for altered tolerance to diverse cations (sodium, lithium and calcium) and alkaline pH. Among 18 candidates, only deletion of REF2 (RNA end formation 2) yielded increased sensitivity to these conditions, as well as to diverse organic toxic cations. The Ref2F374A mutation, which renders it unable to bind Glc7, did not rescue the salt-related phenotypes of the ref2 strain, suggesting that Ref2 function in cation homoeostasis is mediated by Glc7. The ref2 deletion mutant displays a marked decrease in lithium efflux, which can be explained by the inability of these cells to fully induce the Na+-ATPase ENA1 gene. The effect of lack of Ref2 is additive to that of blockage of the calcineurin pathway and might disrupt multiple mechanisms controlling ENA1 expression. ref2 cells display a striking defect in vacuolar morphogenesis, which probably accounts for the increased calcium levels observed under standard growth conditions and the strong calcium sensitivity of this mutant. Remarkably, the evidence collected indicates that the role of Ref2 in cation homoeostasis may be unrelated to its previously identified function in the formation of mRNA via the APT (for associated with Pta1) complex.

  15. Role of α-Subunit VISIT-DG Sequence Residues Ser-347 and Gly-351 in the Catalytic Sites of Escherichia coli ATP Synthase*

    PubMed Central

    Li, Wenzong; Brudecki, Laura E.; Senior, Alan E.; Ahmad, Zulfiqar

    2009-01-01

    This paper describes the role of α-subunit VISIT-DG sequence residues αSer-347 and αGly-351 in catalytic sites of Escherichia coli F1Fo ATP synthase. X-ray structures show the very highly conserved α-subunit VISIT-DG sequence in close proximity to the conserved phosphate-binding residues αArg-376, βArg-182, βLys-155, and βArg-246 in the phosphate-binding subdomain. Mutations αS347Q and αG351Q caused loss of oxidative phosphorylation and reduced ATPase activity of F1Fo in membranes by 100- and 150-fold, respectively, whereas αS347A mutation showed only a 13-fold loss of activity and also retained some oxidative phosphorylation activity. The ATPase of αS347Q mutant was not inhibited, and the αS347A mutant was slightly inhibited by MgADP-azide, MgADP-fluoroaluminate, or MgADP-fluoroscandium, in contrast to wild type and αG351Q mutant. Whereas 7-chloro-4-nitrobenzo-2-oxa-1, 3-diazole (NBD-Cl) inhibited wild type and αG351Q mutant ATPase essentially completely, ATPase in αS347A or αS347Q mutant was inhibited maximally by ∼80–90%, although reaction still occurred at residue βTyr-297, proximal to the α-subunit VISIT-DG sequence, near the phosphate-binding pocket. Inhibition characteristics supported the conclusion that NBD-Cl reacts inβE (empty) catalytic sites, as shown previously by x-ray structure analysis. Phosphate protected against NBD-Cl inhibition in wild type and αG351Q mutant but not in αS347Q or αS347A mutant. The results demonstrate that αSer-347 is an additional residue involved in phosphate-binding and transition state stabilization in ATP synthase catalytic sites. In contrast, αGly-351, although strongly conserved and clearly important for function, appears not to play a direct role. PMID:19240022

  16. Metallothionein 2A affects the cell respiration by suppressing the expression of mitochondrial protein cytochrome c oxidase subunit II.

    PubMed

    Bragina, Olga; Gurjanova, Karina; Krishtal, Jekaterina; Kulp, Maria; Karro, Niina; Tõugu, Vello; Palumaa, Peep

    2015-06-01

    Metallothioneins (MT) are involved in a broad range of cellular processes and play a major role in protection of cells towards various stressors. Two functions of MTs, namely the maintaining of the homeostasis of transition metal ions and the redox balance, are directly linked to the functioning of mitochondria. Dyshomeostasis of MTs is often related with malfunctioning of mitochondria; however, the mechanism by which MTs affect the mitochondrial respiratory chain is still unknown. We demonstrated that overexpression of MT-2A in HEK cell line decreased the oxidative phosphorylation capacity of the cells. HEK cells overexpressing MT-2A demonstrated reduced oxygen consumption and lower cellular ATP levels. MT-2A did not affect the number of mitochondria, but reduced specifically the level of cytochrome c oxidase subunit II protein, which resulted in lower activity of the complex IV.

  17. Differential photoaffinity labeling of catalytic subunits of NaK-ATPase with carrier-free /sup 125/I-cardiac glycosides

    SciTech Connect

    Lowndes, J.; Hokin-Neaverson, M.; Ruoho, A.

    1986-05-01

    The authors have obtained evidence for structural differences in the cardiac glycoside binding site between the ..cap alpha.. and ..cap alpha..(+) forms of the catalytic subunit of NaK-ATPase, using three closely related photoaffinity derivatives of the cardiotonic steroid, digitoxigenin. (/sup 125/I)N-(p-azido-m-iodo-o-hydroxybenzoyl)-4-amino-4,6-dideoxy-galactosyl digitoxigenin (IA-GaD), (/sup 125/I)N-(3-(p-azido-m-iodophenyl)-propionyl)-4-amino-4,6-dideoxy-ga-lactosyl digitoxigenin (AIPP-GaD) and (/sup 125/I)N-(3-(p-azido-m-iodophenyl)-propionyl)-4-amino-4,6-dideoxy-glucosyl digitoxi-genin (AIPP-GluD) were synthesized. AIPP-GaD and AIPP-GluD are stereoisomers. Eel electroplax and dog kidney NaK-ATPase (..cap alpha.. form) and rat brain synaptosomes (rich in ..cap alpha..(+) form) were photolabelled and then analyzed by SDS-PAGE and autoradiography. Photolysis with either carrier-free IA-GaD or AIPP-GluD gave ouabain-protectable labelling of NaK-ATPase catalytic subunit from all three tissues. However, photolysis with AIPP-GaD showed protectable labelling of the enzyme from eel and kidney but not from brain. This suggests a structural difference in the ..cap alpha..(+) form which results in either an inability to bind AIPP-GaD, or, perhaps more likely, an absence of a photoinsertion site in the correct location in the ..cap alpha..(+) form, as compared with the ..cap alpha.. form. It is of interest that the labelling pattern of the enzyme in the human erythrocyte resembles that of the brain enzyme.

  18. Cloning and sequence analysis of a full-length cDNA of SmPP1cb encoding turbot protein phosphatase 1 beta catalytic subunit

    NASA Astrophysics Data System (ADS)

    Qi, Fei; Guo, Huarong; Wang, Jian

    2008-02-01

    Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is an important and versatile mechanism by which eukaryotic cells regulate almost all the signaling processes. Protein phosphatase 1 (PP1) is the first and well-characterized member of the protein serine/threonine phosphatase family. In the present study, a full-length cDNA encoding the beta isoform of the catalytic subunit of protein phosphatase 1(PP1cb), was for the first time isolated and sequenced from the skin tissue of flatfish turbot Scophthalmus maximus, designated SmPP1cb, by the rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of SmPP1cb we obtained contains a 984 bp open reading frame (ORF), flanked by a complete 39 bp 5' untranslated region and 462 bp 3' untranslated region. The ORF encodes a putative 327 amino acid protein, and the N-terminal section of this protein is highly acidic, Met-Ala-Glu-Gly-Glu-Leu-Asp-Val-Asp, a common feature for PP1 catalytic subunit but absent in protein phosphatase 2B (PP2B). And its calculated molecular mass is 37 193 Da and pI 5.8. Sequence analysis indicated that, SmPP1cb is extremely conserved in both amino acid and nucleotide acid levels compared with the PP1cb of other vertebrates and invertebrates, and its Kozak motif contained in the 5'UTR around ATG start codon is GXXAXXGXX ATGG, which is different from mammalian in two positions A-6 and G-3, indicating the possibility of different initiation of translation in turbot, and also the 3'UTR of SmPP1cb is highly diverse in the sequence similarity and length compared with other animals, especially zebrafish. The cloning and sequencing of SmPP1cb gene lays a good foundation for the future work on the biological functions of PP1 in the flatfish turbot.

  19. Mapping of a conformational epitope on the cashew allergen Ana o 2: a discontinuous large subunit epitope dependent upon homologous or heterologous small subunit association.

    PubMed

    Xia, Lixin; Willison, LeAnna N; Porter, Lauren; Robotham, Jason M; Teuber, Suzanne S; Sathe, Shridhar K; Roux, Kenneth H

    2010-05-01

    The 11S globulins are members of the cupin protein superfamily and represent an important class of tree nut allergens for which a number of linear epitopes have been mapped. However, specific conformational epitopes for these allergens have yet to be described. We have recently reported a cashew Ana o 2 conformational epitope defined by murine mAb 2B5 and competitively inhibited by a subset of patient IgE antibodies. The 2B5 epitope appears to reside on the large (acidic) subunit, is dependent upon small (basic) subunit association for expression, and is highly susceptible to denaturation. Here we fine map the epitope using a combination of recombinant chimeric cashew Ana o 2-soybean Gly m 6 chimeras, deletion and point mutations, molecular modeling, and electron microscopy of 2B5-Ana o 2 immune complexes. Key residues appear confined to a 24 amino acid segment near the N-terminus of the large subunit peptide, a portion of which makes direct contact with the small subunit. These data provide an explanation for both the small subunit dependence and the structurally labile nature of the epitope.

  20. Nonstructural protein 3 of hepatitis C virus blocks the distribution of the free catalytic subunit of cyclic AMP-dependent protein kinase.

    PubMed Central

    Borowski, P; Oehlmann, K; Heiland, M; Laufs, R

    1997-01-01

    Chronic hepatitis resulting from hepatitis C virus (HCV) infection develops into cirrhosis in at least half of infected patients and increases the risk of hepatocellular carcinoma. The pathogenic effects of a number of viruses result from the disturbance of intracellular signal cascades caused by viral antigens. Therefore, we investigated the interaction of nonstructural protein 3 (NS3) of HCV with the cyclic AMP-dependent signal pathway. We found a similarity between the HCV sequence Arg-Arg-Gly-Arg-Thr-Gly-Arg-Gly-Arg-Arg-Gly-Ile-Tyr-Arg localized in NS3 and the general consensus sequence of protein kinase A (PKA). Consequently, the catalytic (C) subunit of PKA bound to a bacterially expressed fragment of HCV polyprotein containing amino acid residues 1189 to 1525. When this fragment was introduced into cells, it inhibited the translocation of the C subunit into the nucleus after stimulation with forskolin. The result of this inhibition was significantly reduced histone phosphorylation. Therefore, the presence of NS3 in the cytoplasm of infected cells may affect a wide range of PKA functions and contribute to the pathogenesis of the diseases caused by HCV. PMID:9060639

  1. Self-assembly Is Prerequisite for Catalysis of Fe(II) Oxidation by Catalytically Active Subunits of Ferritin*

    PubMed Central

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2015-01-01

    Fe(III) storage by ferritin is an essential process of the iron homeostasis machinery. It begins by translocation of Fe(II) from outside the hollow spherical shape structure of the protein, which is formed as the result of self-assembly of 24 subunits, to a di-iron binding site, the ferroxidase center, buried in the middle of each active subunit. The pathway of Fe(II) to the ferroxidase center has remained elusive, and the importance of self-assembly for the functioning of the ferroxidase center has not been investigated. Here we report spectroscopic and metal ion binding studies with a mutant of ferritin from Pyrococcus furiosus (PfFtn) in which self-assembly was abolished by a single amino acid substitution. We show that in this mutant metal ion binding to the ferroxidase center and Fe(II) oxidation at this site was obliterated. However, metal ion binding to a conserved third site (site C), which is located in the inner surface of each subunit in the vicinity of the ferroxidase center and is believed to be the path for Fe(II) to the ferroxidase center, was not disrupted. These results are the basis of a new model for Fe(II) translocation to the ferroxidase center: self-assembly creates channels that guide the Fe(II) ions toward the ferroxidase center directly through the protein shell and not via the internal cavity and site C. The results may be of significance for understanding the molecular basis of ferritin-related disorders such as neuroferritinopathy in which the 24-meric structure with 432 symmetry is distorted. PMID:26370076

  2. Functional changes in the properties of the. beta. -adrenoreceptors of pigeon erythrocytes under the action of the catalytic subunit of cAMP-dependent protein kinase

    SciTech Connect

    Popov, K.M.; Bulargina, T.V.; Severin, E.S.

    1986-03-20

    The ..beta..-adrenoreceptors were solubilized from the plasma membranes of pigeon erythrocytes, treated with N-ethylmaleimide, using deoxycholate. The removal of the deoxycholate leads to incorporation of receptors into phospholipid vesicles and a restoration of their biological activity. After fusion of vesicles containing reconstituted receptors with vesicles containing the N/sub s/-protein and the catalytic component, a restoration of the hormonal activity of the enzyme was observed. If vesicles containing ..beta..-adrenoreceptors were incubated before fusion with the catalytic subunit of cAMP-dependent protein kinase, the hormonal activity of the preparation obtained was lowered by 45-50%. The decrease in activity occurred on account of an increase in the lag phase of activation of the enzyme in the presence of isoproterenol and GPP(NH)p, as well as on account of a decrease in the activity in the stationary phase of activation. Phosphorylation of the ..beta..-adrenoreceptors leads to a decrease in the content of the ternary isoproterenol-receptor-N/sub s/-protein complex, participating in the activation of adenylate cyclase. Thus, phosphorylation of the receptors leads to disruptions of the mechanism of transmission of the hormonal signal, analogous to those observed in the desensitization of adenylate cyclase.

  3. MUSCLE-SPECIFIC OVEREXPRESSION OF THE CATALYTIC SUBUNIT OF DNA POLYMERASE γ INDUCES PUPAL LETHALITY IN Drosophila melanogaster

    PubMed Central

    Martínez-Azorín, Francisco; Calleja, Manuel; Hernández-Sierra, Rosana; Farr, Carol L.; Kaguni, Laurie S.; Garesse, Rafael

    2015-01-01

    We show the physiological effects and molecular characterization of overexpression of the catalytic core of mitochondrial DNA (mtDNA) polymerase (pol γ-α) in muscle of Drosophila melanogaster. Muscle-specific overexpression of pol γ-α using the UAS/GAL4 (where UAS is upstream activation sequence) system produced more than 90% of lethality at the end of pupal stage at 25°C, and the survivor adult flies showed a significant reduction in life span. The survivor flies displayed a decreased mtDNA level that is accompanied by a corresponding decrease in the levels of the nucleoid-binding protein mitochondrial transcription factor A (mtTFA). Furthermore, an increase in apoptosis is detected in larvae and adults overexpressing pol γ-α. We suggest that the pupal lethality and reduced life span of survivor adult flies are both caused mainly by massive apoptosis of muscle cells induced by mtDNA depletion. PMID:23729397

  4. E6-Associated Protein Dependent Estrogen Receptor Regulation of Protein Kinase A Regulatory Subunit R2A Expression in Neuroblastoma.

    PubMed

    Obeid, Jean-Pierre; Zeidan, Youssef H; Zafar, Nawal; El Hokayem, Jimmy

    2017-02-18

    E6ap is a known transcriptional coregulator for estrogen receptor alpha (Er, Erα) in the presence of estrogen. Protein kinase A (PKA) contains two regulatory subunits derived from four genes. Recent evidence demonstrates that PKA regulates E6ap activity. Data generated in our lab indicated estrogen dependent regulation of Pkar2a levels. Our project sets to investigate a possible feedback mechanism constituting of Erα and E6ap transcriptional regulation of Pkar2a expression. Western blot evaluated protein regulation correlations with E2 in mouse neuroblastoma lines. Bioinformatics detected estrogen response element (ERE) sequences. quantitative polymerase chain reaction (qPCR) validated the western blot results. ERE oligonucleotides were synthesized. Reporter gene transcriptional activity was evaluated via Luciferase assay output. Electromobility shift assay (EMSA) assessed direct binding between Erα relevant sequences. Chromatin immunoprecipitation (ChIP) and Re-ChIP were conducted in quantifying protein complex recruitment levels. Pkar2a protein expression directly correlated with E2, and four putative ERE sequences were identified. Pkar2a mRNA expression reverted to baseline with either E2 or E6ap absent. In the presence of E2, ERE-1 and ERE-4 possessed Luciferase reporter gene transcriptional capabilities. ERE-1 portrayed band shifts, representing direct binding to Erα with E2 supplementation. With E2, ERE-1 significantly enhanced Erα and E6ap recruitment levels to the Pkar2a promoter. Pkar2a is directly regulated by Erα and E6ap in the presence of estrogen stimulus. This work indicates a feedback mechanism in the interplay between PKA and E6ap, which may prove crucial for the role of both proteins in cancers and neurogenetic diseases like Angelman syndrome.

  5. The Brassinosteroid-Activated BRI1 Receptor Kinase Is Switched off by Dephosphorylation Mediated by Cytoplasm-Localized PP2A B' Subunits.

    PubMed

    Wang, Ruiju; Liu, Mengmeng; Yuan, Min; Oses-Prieto, Juan A; Cai, Xingbo; Sun, Ying; Burlingame, Alma L; Wang, Zhi-Yong; Tang, Wenqiang

    2016-01-04

    Brassinosteroid (BR) binding activates the receptor kinase BRI1 by inducing heterodimerization with its co-receptor kinase BAK1; however, the mechanisms that reversibly inactivate BRI1 remain unclear. Here we show that cytoplasm-localized protein phosphatase 2A (PP2A) B' regulatory subunits interact with BRI1 to mediate its dephosphorylation and inactivation. Loss-of-function and overexpression experiments showed that a group of PP2A B' regulatory subunits, represented by B'η, negatively regulate BR signaling by decreasing BRI1 phosphorylation. BR increases the expression levels of these B' subunits, and B'η interacts preferentially with phosphorylated BRI1, suggesting that the dynamics of BR signaling are modulated by the PP2A-mediated feedback inactivation of BRI1. Compared with PP2A B'α and B'β, which promote BR responses by dephosphorylating the downstream transcription factor BZR1, the BRI1-inactivating B' subunits showed similar binding to BRI1 and BZR1 but distinct subcellular localization. Alteration of the nuclear/cytoplasmic localization of the B' subunits revealed that cytoplasmic PP2A dephosphorylates BRI1 and inhibits the BR response, whereas nuclear PP2A dephosphorylates BZR1 and activates the BR response. Our findings not only identify the PP2A regulatory B subunits that mediate the binding and dephosphorylation of BRI1, but also demonstrate that the subcellular localization of PP2A specifies its substrate selection and distinct effects on BR signaling.

  6. Rev3, the catalytic subunit of Polζ, is required for maintaining fragile site stability in human cells

    PubMed Central

    Bhat, Audesh; Qin, Zhoushuai; Xiao, Wei

    2013-01-01

    It has been long speculated that mammalian Rev3 plays an important, yet unknown role(s) during mammalian development, as deletion of Rev3 causes embryonic lethality in mice, whereas no other translesion DNA synthesis polymerases studied to date are required for mouse embryo development. Here, we report that both subunits of Polζ (Rev3 and Rev7) show an unexpected increase in expression during G2/M phase, but they localize independently in mitotic cells. Experimental depletion of Rev3 results in a significant increase in anaphase bridges, chromosomal breaks/gaps and common fragile site (CFS) expression, whereas Rev7 depletion primarily causes lagging chromosome defect with no sign of CFS expression. The genomic instability induced by Rev3 depletion seems to be related to replication stress, as it is further enhanced on aphidicolin treatment and results in increased metaphase-specific Fanconi anemia complementation group D type 2 (FANCD2) foci formation, as well as FANCD2-positive anaphase bridges. Indeed, a long-term depletion of Rev3 in cultured human cells results in massive genomic instability and severe cell cycle arrest. The aforementioned observations collectively support a notion that Rev3 is required for the efficient replication of CFSs during G2/M phase, and that the resulting fragile site instability in Rev3 knockout mice may trigger cell death during embryonic development. PMID:23303771

  7. Evasion of the Innate Immune Response: the Old World Alphavirus nsP2 Protein Induces Rapid Degradation of Rpb1, a Catalytic Subunit of RNA Polymerase II

    PubMed Central

    Akhrymuk, Ivan; Kulemzin, Sergey V.

    2012-01-01

    The Old World alphaviruses are emerging human pathogens with an ability to cause widespread epidemics. The latest epidemic of Chikungunya virus, from 2005 to 2007, affected over 40 countries in Africa, Asia, and Europe. The Old World alphaviruses are highly cytopathic and known to evade the cellular antiviral response by inducing global inhibition of transcription in vertebrate cells. This function was shown to be mediated by their nonstructural nsP2 protein; however, the detailed mechanism of this phenomenon has remained unknown. Here, we report that nsP2 proteins of Sindbis, Semliki Forest, and Chikungunya viruses inhibit cellular transcription by inducing rapid degradation of Rpb1, a catalytic subunit of the RNAPII complex. This degradation of Rpb1 is independent of the nsP2-associated protease activity, but, instead, it proceeds through nsP2-mediated Rpb1 ubiquitination. This function of nsP2 depends on the integrity of the helicase and S-adenosylmethionine (SAM)-dependent methyltransferase-like domains, and point mutations in either of these domains abolish Rpb1 degradation. We go on to show that complete degradation of Rpb1 in alphavirus-infected cells occurs within 6 h postinfection, before other previously described virus-induced changes in cell physiology, such as apoptosis, autophagy, and inhibition of STAT1 phosphorylation, are detected. Since Rpb1 is a subunit that catalyzes the polymerase reaction during RNA transcription, degradation of Rpb1 plays an indispensable role in blocking the activation of cellular genes and downregulating cellular antiviral response. This indicates that the nsP2-induced degradation of Rpb1 is a critical mechanism utilized by the Old World alphaviruses to subvert the cellular antiviral response. PMID:22514352

  8. Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II.

    PubMed

    Akhrymuk, Ivan; Kulemzin, Sergey V; Frolova, Elena I

    2012-07-01

    The Old World alphaviruses are emerging human pathogens with an ability to cause widespread epidemics. The latest epidemic of Chikungunya virus, from 2005 to 2007, affected over 40 countries in Africa, Asia, and Europe. The Old World alphaviruses are highly cytopathic and known to evade the cellular antiviral response by inducing global inhibition of transcription in vertebrate cells. This function was shown to be mediated by their nonstructural nsP2 protein; however, the detailed mechanism of this phenomenon has remained unknown. Here, we report that nsP2 proteins of Sindbis, Semliki Forest, and Chikungunya viruses inhibit cellular transcription by inducing rapid degradation of Rpb1, a catalytic subunit of the RNAPII complex. This degradation of Rpb1 is independent of the nsP2-associated protease activity, but, instead, it proceeds through nsP2-mediated Rpb1 ubiquitination. This function of nsP2 depends on the integrity of the helicase and S-adenosylmethionine (SAM)-dependent methyltransferase-like domains, and point mutations in either of these domains abolish Rpb1 degradation. We go on to show that complete degradation of Rpb1 in alphavirus-infected cells occurs within 6 h postinfection, before other previously described virus-induced changes in cell physiology, such as apoptosis, autophagy, and inhibition of STAT1 phosphorylation, are detected. Since Rpb1 is a subunit that catalyzes the polymerase reaction during RNA transcription, degradation of Rpb1 plays an indispensable role in blocking the activation of cellular genes and downregulating cellular antiviral response. This indicates that the nsP2-induced degradation of Rpb1 is a critical mechanism utilized by the Old World alphaviruses to subvert the cellular antiviral response.

  9. Catalytic unit-independent phosphorylation and dephosphorylation of type II regulatory subunit of cyclic AMP-dependent protein kinase in rat liver plasma membranes.

    PubMed Central

    Kiss, Z; Luo, Y; Vereb, G

    1986-01-01

    Rat liver plasma membranes contain a 55 kDa protein which proved to be identical with type II regulatory subunit (RII) of the cyclic AMP-dependent protein kinase (kinase A) by several criteria (gel electrophoretic behaviour, peptide map, position of the autophosphorylated site). Analysis of phosphopeptide maps revealed that the membrane-bound RII was phosphorylated by a kinase which is unrelated to the catalytic unit (C) of kinase A. Dephosphorylation of the membrane-bound RII by an endogenous phosphatase was stimulated by both cyclic AMP and fluoride. Addition of C did not stimulate dephosphorylation even in the presence of ADP; moreover, protein inhibitor of C did not modify the effects of cyclic AMP or fluoride. The effects of both cyclic AMP and fluoride were, however, inhibited by C. Results indicate that rat liver plasma membranes contain a phosphorylation-dephosphorylation system for which RII is a relatively specific substrate. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3010951

  10. The catalytic subunit of protein kinase A triggers activation of the type V cyclic GMP-specific phosphodiesterase from guinea-pig lung.

    PubMed Central

    Burns, F; Rodger, I W; Pyne, N J

    1992-01-01

    The type V cyclic GMP phosphodiesterase was partially purified from the high-speed supernatant of guinea-pig lung. The isoenzyme displayed linear kinetics for cyclic GMP hydrolysis, with Km = 2.2 +/- 0.2 microM and Vmax. = 1.2 +/- 0.08 nmol/min per mg. The selective type V phosphodiesterase inhibitor Zaprinast inhibited cyclic GMP hydrolysis with IC50 (concn. giving 50% inhibition) = 0.45 +/- 0.08 microM. Isobutylmethylxanthine promoted a 3-fold increase in the binding of cyclic GMP to the isoenzyme. The addition of the catalytic subunit of protein kinase A to an activation cocktail containing the partially purified type V phosphodiesterase resulted in a marked increase in Vmax. for cyclic GMP hydrolysis (approximately 10-fold at 40 units of protein kinase A). We have suggested that protein kinase A triggers phosphorylation of the phosphodiesterase, which results in activation of phosphodiesterase activity. In addition, the sensitivity to inhibition by Zaprinast is severely decreased (the IC50 for inhibition is 7.5 +/- 1.1 microM), suggesting that the potency of phosphodiesterase inhibitors is effected by phosphorylation of the enzyme. PMID:1315515

  11. Mutations in the Non-Catalytic Subunit Dpb2 of DNA Polymerase Epsilon Affect the Nrm1 Branch of the DNA Replication Checkpoint

    PubMed Central

    Rudzka, Justyna; Campbell, Judith L.; Jonczyk, Piotr; Fijałkowska, Iwona J.

    2017-01-01

    To preserve genome integrity, the S-phase checkpoint senses damaged DNA or nucleotide depletion and when necessary, arrests replication progression and delays cell division. Previous studies, based on two pol2 mutants have suggested the involvement of DNA polymerase epsilon (Pol ε) in sensing DNA replication accuracy in Saccharomyces cerevisiae. Here we have studied the involvement of Pol ε in sensing proper progression of DNA replication, using a mutant in DPB2, the gene coding for a non-catalytic subunit of Pol ε. Under genotoxic conditions, the dpb2-103 cells progress through S phase faster than wild-type cells. Moreover, the Nrm1-dependent branch of the checkpoint, which regulates the expression of many replication checkpoint genes, is impaired in dpb2-103 cells. Finally, deletion of DDC1 in the dpb2-103 mutant is lethal supporting a model of strand-specific activation of the replication checkpoint. This lethality is suppressed by NRM1 deletion. We postulate that improper activation of the Nrm1-branch may explain inefficient replication checkpoint activation in Pol ε mutants. PMID:28107343

  12. Expression of gp91phox and p22phox, catalytic subunits of NADPH oxidase, on microglia in Nasu-Hakola disease brains

    PubMed Central

    Satoh, Jun-ichi; Kino, Yoshihiro; Yanaizu, Motoaki; Tosaki, Youhei; Sakai, Kenji; Ishida, Tusyoshi; Saito, Yuko

    2016-01-01

    Summary The superoxide-producing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex of phagocytes (phox) plays a key role in production of reactive oxygen species (ROS) by microglia. The catalytic subunits of the NADPH oxidase are composed of p22phox and gp91phox. Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder caused by a loss-of-function mutation of either TYROBP (DAP12) or TREM2. Pathologically, the brains of NHD patients exhibit extensive demyelination designated leukoencephalopathy, astrogliosis, accumulation of axonal spheroids, and remarkable activation of microglia predominantly in the white matter of frontal and temporal lobes. However, a pathological role of the gp91phox-p22phox complex in generation of leukoencephalopathy in NHD remains unknown. We clarified the expression of gp91phox and p22phox in the white matter of the frontal cortex derived from five NHD and eight control subjects. We identified the expression of p22phox and gp91phox immunoreactivity almost exclusively on microglia. Microglia overexpressed gp91phox in NHD brains and p22phox in myotonic dystrophy (MD) brains, when compared with non-neurological control (NC) brains. These results suggest that the enhanced expression of gp91phox by microglia might contribute to overproduction of ROS highly toxic to myelinating oligodendrocytes, resulting in oligodendrocyte cell death that induces leukoencephalopathy in NHD brains. PMID:27904823

  13. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit.

    PubMed

    Boylan, Joan M; Salomon, Arthur R; Tantravahi, Umadevi; Gruppuso, Philip A

    2015-07-15

    Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders.

  14. miR-502 inhibits cell proliferation and tumor growth in hepatocellular carcinoma through suppressing phosphoinositide 3-kinase catalytic subunit gamma

    SciTech Connect

    Chen, Suling; Li, Fang; Chai, Haiyun; Tao, Xin; Wang, Haili; Ji, Aifang

    2015-08-21

    MicroRNAs (miRNAs) play a key role in carcinogenesis and tumor progression in hepatocellular carcinoma (HCC). In the present study, we demonstrated that miR-502 significantly inhibits HCC cell proliferation in vitro and tumor growth in vivo. G1/S cell cycle arrest and apoptosis of HCC cells were induced by miR-502. Phosphoinositide 3-kinase catalytic subunit gamma (PIK3CG) was identified as a direct downstream target of miR-502 in HCC cells. Notably, overexpression of PIK3CG reversed the inhibitory effects of miR-502 in HCC cells. Our findings suggest that miR-502 functions as a tumor suppressor in HCC via inhibition of PI3KCG, supporting its utility as a promising therapeutic gene target for this tumor type. - Highlights: • miR-502 suppresses HCC cell proliferation in vitro and tumorigenicity in vivo. • miR-502 regulates cell cycle and apoptosis in HCC cells. • PIK3CG is a direct target of miR-502. • miR-502 and PIK3CG expression patterns are inversely correlated in HCC tissues.

  15. Mapping of the glutamate-cysteine ligase catalytic subunit gene (GLCLC) to human chromosome 6p12 and mouse chromosome 9D-E and of the regulatory subunit gene (GLCLR) to human chromosome 1p21-p22 and mouse chromosome 3H1-3

    SciTech Connect

    Tsuchiya, K.; Disteche, C.M.; Reid, L.L.

    1995-12-10

    Glutamate-cysteine ligase (EC 6.3.2.2, GLCL), formerly called {gamma}-glutamylcysteine synthetase (GCS), is the rate-limiting enzyme in the de novo synthesis of the antioxidant tripeptide glutathione. GLCL consists of a heavy subunit, which possesses catalytic activity and is the site of glutathione feedback inhibition, and a light subunit, which has a regulatory function. Glutathione is ubiquitous in mammalian tissues and performs a variety of functions, including protection from reactive oxygen species through antioxidant properties; detoxification of xenobiotics, organic peroxides, and heavy metals; and maintenance of sulfhydryl groups of other molecules. Increased intracellular levels of glutathione have also been found in tumor cells resistant to chemotherapeutic agents. Increased expression of GLCL in melphalan-resistant myeloma and prostate carcinoma cells and cisplatinum-resistant ovarian carcinoma cells suggests that this enzyme may be involved in glutathione-associated drug resistance. Moreover, GLCL has been shown to be induced by phenolic antioxidants and heavy metals. Recently, Mulcahy and Gipp have shown that the GLCL catalytic subunit gene (GLCLC) contains a putative antioxidant regulatory element, which may explain the responsiveness of this gene to agents that induce oxidative stress. To further our understanding of GLCL, which is linked to such a wide variety of metabolic and physiological functions through its role in glutathione synthesis, we have mapped both the catalytic and regulatory subunit genes (GLCLC and GLCLR) to human and mouse chromosomes by fluorescence in situ hybridization (FISH). 16 refs., 1 fig.

  16. The regulatory subunit of Escherichia coli aspartate carbamoyltransferase may influence homotropic cooperativity and heterotropic interactions by a direct interaction with the loop containing residues 230-245 of the catalytic chain.

    PubMed Central

    Newton, C J; Kantrowitz, E R

    1990-01-01

    A recent x-ray structure of aspartate carbamoyltransferase (carbamoyl-phosphate: L-aspartate carbamoyl-transferase, EC 2.1.3.2) with phosphonoacetamide bound [Gouaux, J. E. & Lipscomb, W. N. (1990) Biochemistry 29, 389-402] shows an interaction between Asp-236 of the catalytic chain and Lys-143 of the regulatory chain. Asp-236 is part of the loop containing residues 230-245 (240s) of the catalytic chain that undergoes a significant conformational change between the tight and the relaxed states of the enzyme. Furthermore, side-chain interactions between the 240s loop and other portions of the enzyme have been shown to be important for the low activity and low affinity of the tight state and the high activity and high affinity of the relaxed state. To determine whether the intersubunit link between Lys-143 of the regulatory chain and Asp-236 of the catalytic chain is important for either homotropic cooperativity and/or the heterotropic interactions in aspartate carbamoyltransferase, site-specific mutagenesis was used to replace Asp-236 with alanine. The mutant enzyme exhibits full activity and a loss of both homotropic cooperativity and heterotropic interactions. Furthermore, the aspartate concentration at half the maximal observed specific activity is reduced by approximately 8-fold. The mutant enzyme exhibits normal thermal stability but drastically altered reactivity toward p-hydroxymercuribenzoate. The catalytic subunit of the mutant and wild-type enzymes have very similar properties. These results, in conjunction with previous experiments, suggest that the intersubunit link involving Asp-236 is involved in the stabilization of the 240s loop in its tight-state position and that the regulatory subunits exert their effect on the catalytic subunits by influencing the position of the 240s loop. PMID:2179954

  17. [Beta]-Adrenergic Receptor Activation Rescues Theta Frequency Stimulation-Induced LTP Deficits in Mice Expressing C-Terminally Truncated NMDA Receptor GluN2A Subunits

    ERIC Educational Resources Information Center

    Moody, Teena D.; Watabe, Ayako M.; Indersmitten, Tim; Komiyama, Noboru H.; Grant, Seth G. N.; O'Dell, Thomas J.

    2011-01-01

    Through protein interactions mediated by their cytoplasmic C termini the GluN2A and GluN2B subunits of NMDA receptors (NMDARs) have a key role in the formation of NMDAR signaling complexes at excitatory synapses. Although these signaling complexes are thought to have a crucial role in NMDAR-dependent forms of synaptic plasticity such as long-term…

  18. Inhibition of hepatitis C virus by an M1GS ribozyme derived from the catalytic RNA subunit of Escherichia coli RNase P

    PubMed Central

    2014-01-01

    Background Hepatitis C virus (HCV) is a human pathogen causing chronic liver disease in about 200 million people worldwide. However, HCV resistance to interferon treatment is one of the important clinical implications, suggesting the necessity to seek new therapies. It has already been shown that some forms of the catalytic RNA moiety from E. coli RNase P, M1 RNA, can be introduced into the cytoplasm of mammalian cells for the purpose of carrying out targeted cleavage of mRNA molecules. Our study is to use an engineering M1 RNA (i.e. M1GS) for inhibiting HCV replication and demonstrates the utility of this ribozyme for antiviral applications. Results By analyzing the sequence and structure of the 5′ untranslated region of HCV RNA, a putative cleavage site (C67-G68) was selected for ribozyme designing. Based on the flanking sequence of this site, a targeting M1GS ribozyme (M1GS-HCV/C67) was constructed by linking a custom guide sequence (GS) to the 3′ termini of catalytic RNA subunit (M1 RNA) of RNase P from Escherichia coli through an 88 nt-long bridge sequence. In vitro cleavage assays confirmed that the engineered M1GS ribozyme cleaved the targeted RNA specifically. Moreover, ~85% reduction in the expression levels of HCV proteins and >1000-fold reduction in viral growth were observed in supernatant of cultured cells that transfected the functional ribozyme. In contrast, the HCV core expression and viral growth were not significantly affected by a “disabled” ribozyme (i.e. M1GS-HCV/C67*). Moreover, cholesterol-conjugated M1GS ribozyme (i.e. Chol-M1GS-HCV/C67) showed almost the same bioactivities with M1GS-HCV/C67, demonstrating the potential to improve in vivo pharmacokinetic properties of M1GS-based RNA therapeutics. Conclusion Our results provide direct evidence that the M1GS ribozyme can function as an antiviral agent and effectively inhibit gene expression and multiplication of HCV. PMID:24885776

  19. Foxa2 and MafA Regulate Islet-specific Glucose-6-Phosphatase Catalytic Subunit-Related Protein (IGRP/G6PC2) Gene Expression

    PubMed Central

    Martin, Cyrus C.; Flemming, Brian P.; Wang, Yingda; Oeser, James K.; O’Brien, Richard M.

    2008-01-01

    Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP/G6PC2) is a major autoantigen in both mouse and human type 1 diabetes. IGRP is selectively expressed in islet beta cells and polymorphisms in the IGRP gene have recently been associated with variations in fasting blood glucose levels and cardiovascular-associated mortality in humans. Chromatin immunoprecipitation (ChIP) assays have shown that the IGRP promoter binds the islet-enriched transcription factors Pax-6 and BETA2. We show here, again using ChIP assays, that the IGRP promoter also binds the islet-enriched transcription factors MafA and Foxa2. Single binding sites for these factors were identified in the proximal IGRP promoter, mutation of which resulted in decreased IGRP fusion gene expression in βTC-3, HIT and Min6 cells. ChiP assays have shown that the islet-enriched transcription factor Pdx-1 also binds the IGRP promoter but mutational analysis of four Pdx-1 binding sites in the proximal IGRP promoter revealed surprisingly little effect of Pdx-1 binding on IGRP fusion gene expression in βTC-3 cells. In contrast, in both HIT and Min6 cells mutation of these four Pdx-1 binding sites resulted in an ~50% reduction in fusion gene expression. These data suggest that the same group of islet-enriched transcription factors, namely Pdx-1, Pax-6, MafA, BETA2 and Foxa2 directly or indirectly regulate expression of the two major autoantigens in type 1 diabetes. PMID:18753309

  20. The error-prone DNA polymerase zeta catalytic subunit (Rev3) gene is ubiquitously expressed in normal and malignant human tissues.

    PubMed

    Kawamura, K; O-Wang, J; Bahar, R; Koshikawa, N; Shishikura, T; Nakagawara, A; Sakiyama, S; Kajiwara, K; Kimura, M; Tagawa, M

    2001-01-01

    Mutagenesis induced by UV light and chemical agents in yeast is largely dependent on the function of Rev3, the catalytic subunit of DNA polymerase zeta that carries out translesion DNA synthesis. Human and mouse homologues of the yeast Rev3 gene have recently been identified, and inhibition of Rev3 expression in cultured human fibroblasts by Rev3 anti-sense was shown to reduce UV-induced mutagenesis, indicating that Rev3 also plays a crucial role in mutagenesis in mammalian cells. A common variant transcript with an insertion of 128-bp between nucleotides +139 and +140 is found in both human and mouse Rev3 cDNAs, but its biological significance has not been defined. We show here that the insertion variant is not translatable either under in vitro or in vivo conditions. We also found that the translational efficiency of Rev3 gene is enhanced by the 5' untranslated region that contains a putative stem-loop structure postulated to inhibit the translation. Since the human Rev3 gene is localized to chromosome 6q21, a region previously shown to contain genes involved in tumor suppression and cellular senescence, we examined its expression in various normal and malignant tissues. Rev3 and its insertion variant transcripts were ubiquitously detected in all 27 normal human tissues studied, with an additional variant species found in tissues with relatively high levels of Rev3 expression. Levels of Rev3 transcripts were similar in lung, gastric, colon and renal tumors compared to normal tissue counterparts. The data indicate that Rev3 expression is ubiquitous and is not dysregulated in malignancies.

  1. The catalytic subunit of DNA-dependent protein kinase is required for cellular resistance to oxidative stress independent of DNA double-strand break repair.

    PubMed

    Li, Mengxia; Lin, Yu-Fen; Palchik, Guillermo A; Matsunaga, Shinji; Wang, Dong; Chen, Benjamin P C

    2014-11-01

    DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated (ATM) are the two major kinases involved in DNA double-strand break (DSB) repair, and are required for cellular resistance to ionizing radiation. Whereas ATM is the key upstream kinase for DSB signaling, DNA-PKcs is primarily involved in DSB repair through the nonhomologous end-joining (NHEJ) mechanism. In addition to DSB repair, ATM has been shown to be involved in the oxidative stress response and could be activated directly in vitro on hydrogen peroxide (H2O2) treatment. However, the role of DNA-PKcs in cellular response to oxidative stress is not clear. We hypothesize that DNA-PKcs may participate in the regulation of ATM activation in response to oxidative stress, and that this regulatory role is independent of its role in DNA double-strand break repair. Our findings reveal that H2O2 induces hyperactivation of ATM signaling in DNA-PKcs-deficient, but not Ligase 4-deficient cells, suggesting an NHEJ-independent role for DNA-PKcs. Furthermore, DNA-PKcs deficiency leads to the elevation of reactive oxygen species (ROS) production, and to a decrease in cellular survival against H2O2. For the first time, our results reveal that DNA-PKcs plays a noncanonical role in the cellular response to oxidative stress, which is independent from its role in NHEJ. In addition, DNA-PKcs is a critical regulator of the oxidative stress response and contributes to the maintenance of redox homeostasis. Our findings reveal that DNA-PKcs is required for cellular resistance to oxidative stress and suppression of ROS buildup independently of its function in DSB repair.

  2. A Novel Phosphoregulatory Switch Controls the Activity and Function of the Major Catalytic Subunit of Protein Kinase A in Aspergillus fumigatus

    PubMed Central

    Shwab, E. Keats; Juvvadi, Praveen R.; Waitt, Greg; Soderblom, Erik J.; Moseley, M. Arthur; Nicely, Nathan I.; Asfaw, Yohannes G.

    2017-01-01

    ABSTRACT Invasive aspergillosis (IA), caused by the filamentous fungal pathogen Aspergillus fumigatus, is a major cause of death among immunocompromised patients. The cyclic AMP/protein kinase A (PKA) signaling pathway is essential for hyphal growth and virulence of A. fumigatus, but the mechanism of regulation of PKA remains largely unknown. Here, we discovered a novel mechanism for the regulation of PKA activity in A. fumigatus via phosphorylation of key residues within the major catalytic subunit, PkaC1. Phosphopeptide enrichment and tandem mass spectrometry revealed the phosphorylation of PkaC1 at four sites (S175, T331, T333, and T337) with implications for important and diverse roles in the regulation of A. fumigatus PKA. While the phosphorylation at one of the residues (T333) is conserved in other species, the identification of three other residues represents previously unknown PKA phosphoregulation in A. fumigatus. Site-directed mutagenesis of the phosphorylated residues to mimic or prevent phosphorylation revealed dramatic effects on kinase activity, growth, conidiation, cell wall stress response, and virulence in both invertebrate and murine infection models. Three-dimensional structural modeling of A. fumigatus PkaC1 substantiated the positive or negative regulatory roles for specific residues. Suppression of PKA activity also led to downregulation of PkaC1 protein levels in an apparent novel negative-feedback mechanism. Taken together, we propose a model in which PkaC1 phosphorylation both positively and negatively modulates its activity. These findings pave the way for future discovery of fungus-specific aspects of this key signaling network. PMID:28174315

  3. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis.

    PubMed

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A; De Wever, Veerle; Morrice, Nick A; Meek, Katheryn; Lees-Miller, Susan P

    2014-06-25

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs' role in mitosis may be mechanistically distinct from its well-established role in NHEJ.

  4. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit

    SciTech Connect

    Boylan, Joan M.; Salomon, Arthur R.; Tantravahi, Umadevi; Gruppuso, Philip A.

    2015-07-15

    Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders. - Highlights: • Lentiviral-transduced shRNA was used to generate a stable knockdown of PP6 in HepG2 cells. • Cells adapted to reduced PP6; cell proliferation was unaffected, and cell survival was normal. • However, PP6 knockdown was associated with a transition to a tetraploid state. • Genomic profiling showed downregulated anti-inflammatory signaling and DNA replication. • Phosphoproteomic profiling showed changes in proteins associated with DNA replication and repair.

  5. Effect of Bay K 8644 (−) and the β2a Subunit on Ca2+-dependent Inactivation in α1C Ca2+ Channels

    PubMed Central

    Noceti, Francesca; Olcese, Riccardo; Qin, Ning; Zhou, Jianming; Stefani, Enrico

    1998-01-01

    Ca2+ currents recorded from Xenopus oocytes expressing only the α1C pore-forming subunit of the cardiac Ca2+ channel show Ca2+-dependent inactivation with a single exponential decay. This current-dependent inactivation is not detected for inward Ba2+ currents in external Ba2+. Facilitation of pore opening speeds up the Ca2+-dependent inactivation process and makes evident an initial fast rate of decay. Facilitation can be achieved by (a) coexpression of the β2a subunit with the α1C subunit, or (b) addition of saturating Bay K 8644 (−) concentration to α1C channels. The addition of Bay K 8644 (−) to α1Cβ2a channels makes both rates of inactivation faster. All these maneuvers do not induce inactivation in Ba2+ currents in our expression system. These results support the hypothesis of a mechanism for the Ca2+-dependent inactivation process that is sensitive to both Ca2+ flux (single channel amplitude) and open probability. We conclude that the Ca2+ site for inactivation is in the α1C pore-forming subunit and we propose a kinetic model to account for the main features of α1Cβ2a Ca2+ currents. PMID:9482712

  6. Effects of detergents on catalytic activity of human endometase/matrilysin 2, a putative cancer biomarker.

    PubMed

    Park, Hyun I; Lee, Seakwoo; Ullah, Asad; Cao, Qiang; Sang, Qing-Xiang Amy

    2010-01-15

    Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 ( approximately 90muM). Their IC(50) values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon's plot; however, the inhibition mechanism of endometase was noncompetitive with a K(i) value of 240muM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.

  7. Differential contribution of the NR1- and NR2A-subunits to the selectivity filter of recombinant NMDA receptor channels.

    PubMed Central

    Wollmuth, L P; Kuner, T; Seeburg, P H; Sakmann, B

    1996-01-01

    1. The molecular determinants for the narrow constriction of recombinant N-methyl-D-aspartate (NMDA) receptor channels composed of wild-type and mutant NR1- and NR2A-subunits were studied in Xenopus oocytes. 2. The relative permeability of differently sized organic cations was used as an indicator of the size of the narrow constriction. From measured reversal potentials under bi-ionic conditions with K+ as the reference solution, permeability ratios were calculated with the Lewis equation. 3. For wild-type NMDA receptor channels, five organic cations showed clear reversal potentials, with permeability ratios (PX/PK): ammonium, 1.28; methylammonium, 0.48; dimethylammonium (DMA), 0.20; diethylammonium, 0.07; and dimethylethanol-ammonium, 0.02. 4. Mutation of the N-site asparagine (N) to glutamine (Q) at homologous positions in either NR1 (position 598) or NR2A (position 595) increased the permeability of DMA relative to wild-type channels about equally. However, for larger sized organic cations, the NR1(N598Q) mutation had stronger effects on increasing their permeability whereas the NR2A(N595Q) mutation was without effect. These changes in organic cation permeability suggest that the NR1(N598Q) mutation increases the pore size while the NR2A(N595Q) mutation does not. 5. Channels in which the NR1 N-site asparagine was replaced by the smaller glycine (G), NR1(N598G)-NR2A, showed the largest increase in pore size of all sites examined in either subunit. In contrast, in the NR2A-subunit the same N-site substitution to glycine produced only small effects on pore size. 6. For the NR2A-subunit, an asparagine residue (position 596) on the C-terminal side of the N-site, when mutated to larger or smaller sized amino acids, produced large, volume-specific effects on pore size. The mutant channel NR1-NR2A(N596G) had the largest increase in pore size of all sites examined in the NR2A-subunit. In contrast, mutation of the homologous position in the NR1-subunit had no effect on

  8. GluN1 and GluN2A NMDA Receptor Subunits Increase in the Hippocampus during Memory Consolidation in the Rat.

    PubMed

    Cercato, Magali C; Vázquez, Cecilia A; Kornisiuk, Edgar; Aguirre, Alejandra I; Colettis, Natalia; Snitcofsky, Marina; Jerusalinsky, Diana A; Baez, María V

    2016-01-01

    It is widely accepted that NMDA receptors (NMDAR) are required for learning and memory formation, and for synaptic plasticity induction. We have previously shown that hippocampal GluN1 and GluN2A NMDAR subunits significantly increased following habituation of rats to an open field (OF), while GluN2B remained unchanged. Similar results were obtained after CA1-long-term potentiation (LTP) induction in rat hippocampal slices. Other studies have also shown NMDAR up regulation at earlier and later time points after LTP induction or learning acquisition. In this work, we have studied NMDAR subunits levels in the hippocampus and prefrontal cortex (PFC) after OF habituation and after object recognition (OR), to find out whether rising of NMDAR subunits is a general and structure-specific feature during memory formation. In 1, 2 and 3 month old rats there was an increase in hippocampal GluN1 and GluN2A, but not in GluN2B levels 70 min after OF habituation. This rise overlaps with early phase of memory consolidation, suggesting a putative relationship between them. The increases fell down to control levels 90 min after training. Similar results were obtained in the hippocampus of adult rats 70 min after OR training, without changes in PFC. Following OF test or OR discrimination phase, NMDAR subunits remained unchanged. Hence, rising of hippocampal GluN1 and GluN2A appears to be a general feature after novel "spatial/discrimination" memory acquisition. To start investigating the dynamics and possible mechanisms of these changes, we have studied hippocampal neuron cultures stimulated by KCl to induce plasticity. GluN1 and GluN2A increased both in dendrites and neuronal bodies, reaching a maximum 75 min later and returning to control levels at 90 min. Translation and/or transcription and mobilization differentially contribute to this rise in subunits in bodies and dendrites. Our results showed that the NMDAR subunits increase follows a similar time course both in vitro and in

  9. GluN1 and GluN2A NMDA Receptor Subunits Increase in the Hippocampus during Memory Consolidation in the Rat

    PubMed Central

    Cercato, Magali C.; Vázquez, Cecilia A.; Kornisiuk, Edgar; Aguirre, Alejandra I.; Colettis, Natalia; Snitcofsky, Marina; Jerusalinsky, Diana A.; Baez, María V.

    2017-01-01

    It is widely accepted that NMDA receptors (NMDAR) are required for learning and memory formation, and for synaptic plasticity induction. We have previously shown that hippocampal GluN1 and GluN2A NMDAR subunits significantly increased following habituation of rats to an open field (OF), while GluN2B remained unchanged. Similar results were obtained after CA1-long-term potentiation (LTP) induction in rat hippocampal slices. Other studies have also shown NMDAR up regulation at earlier and later time points after LTP induction or learning acquisition. In this work, we have studied NMDAR subunits levels in the hippocampus and prefrontal cortex (PFC) after OF habituation and after object recognition (OR), to find out whether rising of NMDAR subunits is a general and structure-specific feature during memory formation. In 1, 2 and 3 month old rats there was an increase in hippocampal GluN1 and GluN2A, but not in GluN2B levels 70 min after OF habituation. This rise overlaps with early phase of memory consolidation, suggesting a putative relationship between them. The increases fell down to control levels 90 min after training. Similar results were obtained in the hippocampus of adult rats 70 min after OR training, without changes in PFC. Following OF test or OR discrimination phase, NMDAR subunits remained unchanged. Hence, rising of hippocampal GluN1 and GluN2A appears to be a general feature after novel “spatial/discrimination” memory acquisition. To start investigating the dynamics and possible mechanisms of these changes, we have studied hippocampal neuron cultures stimulated by KCl to induce plasticity. GluN1 and GluN2A increased both in dendrites and neuronal bodies, reaching a maximum 75 min later and returning to control levels at 90 min. Translation and/or transcription and mobilization differentially contribute to this rise in subunits in bodies and dendrites. Our results showed that the NMDAR subunits increase follows a similar time course both in vitro and

  10. Explicit water near the catalytic I helix Thr in the predicted solution structure of CYP2A4.

    PubMed

    Gorokhov, Anna; Negishi, Masahiko; Johnson, Eric F; Pedersen, Lars C; Perera, Lalith; Darden, Tom A; Pedersen, Lee G

    2003-01-01

    The solution structure of mouse cytochrome P450 2A4 (CYP2A4), a monooxygenase of deoxysteroids, was obtained using homology modeling and molecular dynamics. The solvent-equilibrated CYP2A4 preserves the essential features of CYP450s. A comparison of the models CYP2A4 and CYP2A4 with testosterone bound CYP2A4/T illustrates the changes induced by the binding of the substrate. Experimental evidence links four amino acid residues to the catalytic activity, substrate specificity, and regioselectivity of this enzyme. Three of the four amino acids are found within contact distance of the testosterone substrate, and therefore may control the binding of the substrate through direct interaction. Remarkably, a water complex previously observed in x-ray crystal structure forms near the bulge in the central I helix that contains a conserved Thr. The properties of the I helix are computed in the context of the presence or absence of ligand.

  11. FXYD2, a γ subunit of Na+,K+-ATPase, maintains persistent mechanical allodynia induced by inflammation

    PubMed Central

    Wang, Feng; Cai, Bing; Li, Kai-Cheng; Hu, Xu-Ye; Lu, Ying-Jin; Wang, Qiong; Bao, Lan; Zhang, Xu

    2015-01-01

    Na+,K+-ATPase (NKA) is required to generate the resting membrane potential in neurons. Nociceptive afferent neurons express not only the α and β subunits of NKA but also the γ subunit FXYD2. However, the neural function of FXYD2 is unknown. The present study shows that FXYD2 in nociceptive neurons is necessary for maintaining the mechanical allodynia induced by peripheral inflammation. FXYD2 interacted with α1NKA and negatively regulated the NKA activity, depolarizing the membrane potential of nociceptive neurons. Mechanical allodynia initiated in FXYD2-deficient mice was abolished 4 days after inflammation, whereas it persisted for at least 3 weeks in wild-type mice. Importantly, the FXYD2/α1NKA interaction gradually increased after inflammation and peaked on day 4 post inflammation, resulting in reduction of NKA activity, depolarization of neuron membrane and facilitation of excitatory afferent neurotransmission. Thus, the increased FXYD2 activity may be a fundamental mechanism underlying the persistent hypersensitivity to pain induced by inflammation. PMID:25633594

  12. Protein phosphatase 2A is essential to maintain active Wnt signaling and its Aβ tumor suppressor subunit is not expressed in colon cancer cells.

    PubMed

    Carmen Figueroa-Aldariz, M; Castañeda-Patlán, M Cristina; Santoyo-Ramos, Paula; Zentella, Alejandro; Robles-Flores, Martha

    2015-11-01

    Canonical Wnt signaling is altered in most cases of colorectal cancer. Experimental evidence indicates that protein phosphatase 2A (PP2A) may play either positive or negative roles in Wnt signaling but its precise in vivo functions remain elusive. In this work, using colon cultured cell lines we showed that basal PP2A activity is markedly reduced in malignant cells compared to non-malignant counterparts. We found that whereas normal or cancer cells displaying not altered Wnt signaling express mRNAs coding for PP2A-A scaffold α and β isoforms, cancer cells which have altered Wnt signaling do not express the Aβ isoform mRNA. Remarkably, we found that the Aβ protein levels are lost in all colon cancer cells, and in patients' tumor biopsies. In addition, all cancer cells exhibit higher levels of RalA activity, compared to non-malignant cells. Rescue experiments to restore Aβ expression in malignant RKO cells, diminished the RalGTPase activation and cell proliferation, indicating that the Aβ isoform acts as tumor suppressor in colon cancer cells. Reciprocal co-immunoprecipitation and immunofluorescence studies showed that the PP2A-C and -Aα subunits, expressed in all colon cells, interact in vivo with β-catenin only in malignant cells. Selective inhibition of PP2A did not significantly affect cellular apoptosis but induced dose-dependent negative effects in β-catenin-mediated transcriptional activity and in cell proliferation of malignant cells, indicating that the residual PP2A activity found in malignant cells, mediated by -C and Aα core subunits, is essential to maintain active Wnt signaling and cell proliferation in colon cancer cells.

  13. SWR1 Chromatin-Remodeling Complex Subunits and H2A.Z Have Non-overlapping Functions in Immunity and Gene Regulation in Arabidopsis.

    PubMed

    Berriri, Souha; Gangappa, Sreeramaiah N; Kumar, S Vinod

    2016-07-06

    Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWR1c and H2A.Z have been shown to control gene expression underlying development and environmental responses. Although they have been implicated in defense, the specific roles of the complex subunits and H2A.Z in immunity are not well understood. In this study, we analyzed the roles of the SWR1c subunits, PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX 6 (SWC6), as well as H2A.Z, in defense and gene regulation. We found that SWR1c components play different roles in resistance to different pathogens. Loss of PIE1 and SWC6 function as well as depletion of H2A.Z led to reduced basal resistance, while loss of ARP6 fucntion resulted in enhanced resistance. We found that mutations in PIE1 and SWC6 resulted in impaired effector-triggered immunity. Mutation in SWR1c components and H2A.Z also resulted in compromised jasmonic acid/ethylene-mediated immunity. Genome-wide expression analyses similarly reveal distinct roles for H2A.Z and SWR1c components in gene regulation, and suggest a potential role for PIE1 in the regulation of the cross talk between defense signaling pathways. Our data show that although they are part of the same complex, Arabidopsis SWR1c components could have non-redundant functions in plant immunity and gene regulation.

  14. Characterization of Atg38 and NRBF2, a fifth subunit of the autophagic Vps34/PIK3C3 complex

    PubMed Central

    Ohashi, Yohei; Soler, Nicolas; García Ortegón, Miguel; Zhang, Lufei; Kirsten, Marie L.; Perisic, Olga; Masson, Glenn R.; Burke, John E.; Jakobi, Arjen J.; Apostolakis, Apostolos A.; Johnson, Christopher M.; Ohashi, Maki; Ktistakis, Nicholas T.; Sachse, Carsten; Williams, Roger L.

    2016-01-01

    ABSTRACT The phosphatidylinositol 3-kinase Vps34 is part of several protein complexes. The structural organization of heterotetrameric complexes is starting to emerge, but little is known about organization of additional accessory subunits that interact with these assemblies. Combining hydrogen-deuterium exchange mass spectrometry (HDX-MS), X-ray crystallography and electron microscopy (EM), we have characterized Atg38 and its human ortholog NRBF2, accessory components of complex I consisting of Vps15-Vps34-Vps30/Atg6-Atg14 (yeast) and PIK3R4/VPS15-PIK3C3/VPS34-BECN1/Beclin 1-ATG14 (human). HDX-MS shows that Atg38 binds the Vps30-Atg14 subcomplex of complex I, using mainly its N-terminal MIT domain and bridges the coiled-coil I regions of Atg14 and Vps30 in the base of complex I. The Atg38 C-terminal domain is important for localization to the phagophore assembly site (PAS) and homodimerization. Our 2.2 Å resolution crystal structure of the Atg38 C-terminal homodimerization domain shows 2 segments of α-helices assembling into a mushroom-like asymmetric homodimer with a 4-helix cap and a parallel coiled-coil stalk. One Atg38 homodimer engages a single complex I. This is in sharp contrast to human NRBF2, which also forms a homodimer, but this homodimer can bridge 2 complex I assemblies. PMID:27630019

  15. Catalytic properties of NAD(P)H:quinone oxidoreductase-2 (NQO2), a dihydronicotinamide riboside dependent oxidoreductase.

    PubMed

    Wu, K; Knox, R; Sun, X Z; Joseph, P; Jaiswal, A K; Zhang, D; Deng, P S; Chen, S

    1997-11-15

    Human NAD(P)H:quinone acceptor oxidoreductase-2 (NQO2) has been prepared using an Escherichia coli expression method. NQO2 is thought to be an isoform of DT-diaphorase (EC 1.6.99.2) [also referred to as NAD(P)H:quinone acceptor oxidoreductase] because there is a 49% identity between their amino acid sequences. The present investigation has revealed that like DT-diaphorase, NQO2 is a dimer enzyme with one FAD prosthetic group per subunit. Interestingly, NQO2 uses dihydronicotinamide riboside (NRH) rather than NAD(P)H as an electron donor. It catalyzes a two-electron reduction of quinones and oxidation-reduction dyes. One-electron acceptors, such as potassium ferricyanide, cannot be reduced by NQO2. This enzyme also catalyzes a four-electron reduction, using methyl red as the electron acceptor. The NRH-methyl red reductase activity of NQO2 is 11 times the NADH-methyl red reductase activity of DT-diaphorase. In addition, through a four-electron reduction reaction, NQO2 can catalyze nitroreduction of cytotoxic compound CB 1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. NQO2 is 3000 times more effective than DT-diaphorase in the reduction of CB 1954. Therefore, NQO2 is a NRH-dependent oxidoreductase which catalyzes two- and four-electron reduction reactions. NQO2 is resistant to typical inhibitors of DT-diaphorase, such as dicumarol, Cibacron blue, and phenindone. Flavones are inhibitors of NQO2. However, structural requirements of flavones for the inhibition of NQO2 are different from those for DT-diaphorase. The most potent flavone inhibitor tested so far is quercetin (3,5,7,3',4'-. 6pentahydroxyflavone). It has been found that quercetin is a competitive inhibitor with respect to NRH (Ki = 21 nM). NQO2 is 43 amino acids shorter than DT-diaphorase, and it has been suggested that the carboxyl terminus of DT-diaphorase plays a role in substrate binding (S. Chen et al., Protein Sci. 3, 51-57, 1994). In order to understand better the basis of catalytic differences between

  16. Interferon-α Induces Neurotoxicity Through Activation of the Type I Receptor and the GluN2A Subunit of the NMDA Receptor

    PubMed Central

    Kessing, Cari F.

    2015-01-01

    Elevated levels of interferon-alpha (IFNα) in the central nervous system (CNS) are linked to cognitive dysfunction in patients with inflammatory CNS diseases such as HIV-associated neurocognitive disorders (HAND). Increased CNS IFNα has also been found to be associated with cognitive dysfunction in a HAND mouse model. Here, we corroborate previous studies showing a dose-dependent decrease in dendritic branching and length caused by IFNα treatment and extend those studies. Because both direct and indirect mechanisms of IFNα-induced neurotoxicity are likely involved, the cell signaling pathway involving the IFNα receptor (IFNAR) was initially evaluated. Rat neuronal cultures exposed to IFNα demonstrate increased phosphorylation of STAT1 and increased interferon stimulating gene 15 (ISG15) expression, indicators of IFNAR engagement. However, specific blocking antibodies to the IFNAR were found to only partially protect neurons from IFNα-induced neurotoxicity. Additionally, inhibiting the GluN2A subunit of N-methyl-D-asparate receptor (NMDAR) was also found to be partially protective against IFNα-induced neurotoxicity compared with the GluN2B subunit. Neurotoxicity is evident in neurons extracted from IFNAR KO mice treated with IFNα as well, further indicating that IFNAR signaling is not required for IFNα neurotoxicity. The neurotoxic actions of IFNα are mediated through both the IFNAR as well as the GluN2A subunit of the NMDAR to reduce dendritic arborization in neurons. Complete protection from IFNα-induced neurotoxicity was demonstrated when both pathways were blocked. Blocking these pathways could lead to potential therapies for cognitive dysfunction during neuroinflammation and specifically lead to better treatments for HAND. PMID:25517826

  17. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit.

    PubMed

    Volkmann, Robert A; Fanger, Christopher M; Anderson, David R; Sirivolu, Venkata Ramana; Paschetto, Kathy; Gordon, Earl; Virginio, Caterina; Gleyzes, Melanie; Buisson, Bruno; Steidl, Esther; Mierau, Susanna B; Fagiolini, Michela; Menniti, Frank S

    2016-01-01

    GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders.

  18. Functional Uncoupling NMDAR NR2A Subunit from PSD-95 in the Prefrontal Cortex: Effects on Behavioral Dysfunction and Parvalbumin Loss after Early-Life Stress.

    PubMed

    Ganguly, Prabarna; Holland, Freedom H; Brenhouse, Heather C

    2015-11-01

    Exposure to early-life stress increases vulnerability to psychiatric disorders, including depression, schizophrenia, and anxiety. Growing evidence implicates aberrant development of the prefrontal cortex (PFC) in the effects of early-life stress, which often emerge in adolescence or young adulthood. Specifically, early-life stress in the form of maternal separation (MS) in rodents has been shown to decrease parvalbumin (PVB)-positive interneurons in the adolescent PFC; however, the mechanism underpinning behavioral dysfunction and PVB loss is not yet known. We recently reported that MS causes overexpression of the NMDA subunit NR2A in the PFC of adolescent rats. Elevated PFC NR2A is also found in developmental models of schizophrenia and is correlated with behavioral deficits, acting largely through its association with the postsynaptic protein PSD-95. In addition, adolescent maturation of PVB-positive interneurons relies on NR2A-driven NMDA activity. Therefore, it is possible that the NR2A/PSD-95 signaling complex has a role in adolescent MS effects. Here, we aimed to determine whether a discrete manipulation of PFC NR2A could prevent MS effects on PFC-controlled behaviors, including cognition, anxiety, and novelty-induced hyperlocomotion, as well as PVB loss in adolescence. We intracranially infused the NR2A-specific blocking peptide TAT2A in order to uncouple NR2A from PSD-95 in the early-adolescent PFC, without antagonizing the NMDA receptor. We demonstrated that MS rats treated with TAT2A during early adolescence were protected from MS-induced PVB loss and exhibited less anxious behavior than those infused with control peptide. These data implicate NR2A-related N-methyl-D-aspartate receptor development in adolescent behavioral and neural consequences of early-life stress.

  19. A PP2A regulatory subunit PPTR-1 regulates the C. elegans Insulin/IGF-1 signaling pathway by modulating AKT-1 phosphorylation

    PubMed Central

    Padmanabhan, Srivatsan; Mukhopadhyay, Arnab; Narasimhan, Sri Devi; Tesz, Gregory; Czech, Michael P.; Tissenbaum, Heidi A.

    2009-01-01

    Summary The C. elegans insulin/IGF-1 signaling (IIS) cascade plays a central role in the regulation of lifespan, dauer diapause, metabolism and stress response. The major regulatory control of IIS is through phosphorylation of its components by serine/threonine-specific protein kinases. In a RNAi screen for serine/threonine protein phosphatases that counter-balance the effect of the kinases in the IIS pathway, we identified pptr-1, a B56 regulatory subunit of the PP2A holoenzyme. Modulation of pptr-1 affects phenotypes associated with the IIS pathway including lifespan, dauer, stress resistance and fat storage. We show that PPTR-1 functions by regulating worm AKT-1 phosphorylation at Thr 350. With striking conservation, mammalian B56β regulates Akt phosphorylation at Thr 308 in 3T3-L1 adipocytes. In C. elegans, this modulation ultimately leads to changes in subcellular localization and transcriptional activity of the forkhead transcription factor DAF-16. This study reveals a conserved role for the B56 regulatory subunit in modulating insulin signaling through AKT dephosphorylation and thereby has widespread implications in cancer and diabetes research. PMID:19249087

  20. The Nucleosome Assembly Protein TSPYL2 Regulates the Expression of NMDA Receptor Subunits GluN2A and GluN2B

    PubMed Central

    Tsang, Ka Hing; Lai, Suk King; Li, Qi; Yung, Wing Ho; Liu, Hang; Mak, Priscilla Hoi Shan; Ng, Cypress Chun Pong; McAlonan, Grainne; Chan, Ying Shing; Chan, Siu Yuen

    2014-01-01

    TSPYL2 is an X-linked gene encoding a nucleosome assembly protein. TSPYL2 interacts with calmodulin-associated serine/threonine kinase, which is implicated in X-linked mental retardation. As nucleosome assembly and chromatin remodeling are important in transcriptional regulation and neuronal function, we addressed the importance of TSPYL2 through analyzing Tspyl2 loss-of-function mice. We detected down-regulation of N-methyl-D-aspartate receptor subunits 2A and 2B (GluN2A and GluN2B) in the mutant hippocampus. Evidence from luciferase reporter assays and chromatin immunoprecipitation supported that TSPYL2 regulated the expression of Grin2a and Grin2b, the genes encoding GluN2A and GluN2B. We also detected an interaction between TSPYL2 and CBP, indicating that TSPYL2 may activate gene expression through binding CBP. In terms of functional outcome, Tspyl2 loss-of-function impaired long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, mutant mice showed a deficit in fear learning and memory. We conclude that TSPYL2 contributes to cognitive variability through regulating the expression of Grin2a and Grin2b. PMID:24413569

  1. Cdk5 inhibitor roscovitine alleviates neuropathic pain in the dorsal root ganglia by downregulating N-methyl-D-aspartate receptor subunit 2A.

    PubMed

    Yang, Lei; Gu, Xiaoping; Zhang, Wei; Zhang, Juan; Ma, Zhengliang

    2014-09-01

    Cyclin-dependent kinase 5 (Cdk5) is a member of the small proline-directed serine/threonine kinase family. Cdk5 is not involved in cell cycle regulation, but is implicated in neurodegenerative disorders. However, the role of Cdk5 in neuropathic pain remains unclear. This study aimed to evaluate the possibility that Cdk5 is involved in neuropathic pain in the dorsal root ganglia (DRG). We injected intrathecally Cdk5 inhibitor roscovitine in rat model of chronic compression of dorsal root ganglion and examined pain behaviors and the expression of N-methyl-d-aspartate receptor subunit 2A (NR2A) but not NR2B or NR1 in DRG. We found that roscovitine alleviated neuropathic pain, causing decline in paw withdrawal mechanical threshold and paw withdrawal thermal latency. Furthermore, roscovitine inhibited NR2A expression in DRG. These data suggest that Cdk5-NR2A pathway regulates neuropathic pain in DRG, and intrathecal injection of roscovitine could alleviate neuropathic pain. Our findings provide new insight into the analgesic effects of Roscovitine and identify Cdk5-NR2A pathway as a potential target for effective treatment of neuropathic pain.

  2. Purification and characterization of protein phosphatase 2A from petals of the tulip Tulipa gesnerina.

    PubMed

    Azad, Md Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2006-11-30

    The holoenzyme of protein phosphatase (PP) from tulip petals was purified by using hydrophobic interaction, anion exchange and microcystin affinity chromatography to analyze activity towards p-nitrophenyl phosphate (p-NPP). The catalytic subunit of PP was released from its endogenous regulatory subunits by ethanol precipitation and further purified. Both preparations were characterized by immunological and biochemical approaches to be PP2A. On SDS-PAGE, the final purified holoenzyme preparation showed three protein bands estimated at 38, 65, and 75 kDa while the free catalytic subunit preparation showed only the 38 kDa protein. In both preparations, the 38 kDa protein was identified immunologically as the catalytic subunit of PP2A by using a monoclonal antibody against the PP2A catalytic subunit. The final 623- and 748- fold purified holoenzyme and the free catalytic preparations, respectively, exhibited high sensitivity to inhibition by 1 nM okadaic acid when activity was measured with p-NPP. The holoenzyme displayed higher stimulation in the presence of ammonium sulfate than the free catalytic subunit did by protamine, thereby suggesting different enzymatic behaviors.

  3. Neonatal seizures alter NMDA glutamate receptor GluN2A and 3A subunit expression and function in hippocampal CA1 neurons

    PubMed Central

    Zhou, Chengwen; Sun, Hongyu; Klein, Peter M.; Jensen, Frances E.

    2015-01-01

    Neonatal seizures are commonly caused by hypoxic and/or ischemic injury during birth and can lead to long-term epilepsy and cognitive deficits. In a rodent hypoxic seizure (HS) model, we have previously demonstrated a critical role for seizure-induced enhancement of the AMPA subtype of glutamate receptor (GluA) in epileptogenesis and cognitive consequences, in part due to GluA maturational upregulation of expression. Similarly, as the expression and function of the N-Methyl-D-aspartate (NMDA) subtype of glutamate receptor (GluN) is also developmentally controlled, we examined how early life seizures during the critical period of synaptogenesis could modify GluN development and function. In a postnatal day (P)10 rat model of neonatal seizures, we found that seizures could alter GluN2/3 subunit composition of GluNs and physiological function of synaptic GluNs. In hippocampal slices removed from rats within 48–96 h following seizures, the amplitudes of synaptic GluN-mediated evoked excitatory postsynaptic currents (eEPSCs) were elevated in CA1 pyramidal neurons. Moreover, GluN eEPSCs showed a decreased sensitivity to GluN2B selective antagonists and decreased Mg2+ sensitivity at negative holding potentials, indicating a higher proportion of GluN2A and GluN3A subunit function, respectively. These physiological findings were accompanied by a concurrent increase in GluN2A phosphorylation and GluN3A protein. These results suggest that altered GluN function and expression could potentially contribute to future epileptogenesis following neonatal seizures, and may represent potential therapeutic targets for the blockade of future epileptogenesis in the developing brain. PMID:26441533

  4. Isolation of cDNA clones for the catalytic gamma subunit of mouse muscle phosphorylase kinase: expression of mRNA in normal and mutant Phk mice.

    PubMed Central

    Chamberlain, J S; VanTuinen, P; Reeves, A A; Philip, B A; Caskey, C T

    1987-01-01

    We have isolated and characterized cDNA clones for the gamma subunit of mouse muscle phosphorylase kinase (gamma-Phk). These clones were isolated from a lambda gt11 mouse muscle cDNA library via screening with a synthetic oligonucleotide probe corresponding to a portion of the rabbit gamma-Phk amino acid sequence. The gamma-Phk cDNA clones code for a 387-amino acid protein that shares 93% amino acid sequence identity with the corresponding rabbit amino acid sequence. RNA gel blot analysis reveals that the muscle gamma-Phk probe hybridizes to two mRNA species (2.4 and 1.6 kilobases) in skeletal muscle, cardiac muscle, and brain, but does not hybridize to liver RNA. Phk-deficient I-strain (Phk) mouse muscle contains reduced levels of gamma-Phk mRNA as compared with control mice. Although the Phk defect is an X-linked recessive trait, hybridization to a human-rodent somatic cell hybrid mapping panel shows that the gamma-Phk gene is not located on the X chromosome. Rather, the gamma-Phk cross-hybridizing human restriction fragments map to human chromosomes 7 (multiple) and 11 (single). Reduced gamma-Phk mRNA in I-strain mice, therefore, appears to be a consequence of the Phk-mutant trait and does not stem from a mutant gamma-subunit gene. Images PMID:3472241

  5. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency.

    PubMed

    Lucas, Carrie L; Kuehn, Hye Sun; Zhao, Fang; Niemela, Julie E; Deenick, Elissa K; Palendira, Umaimainthan; Avery, Danielle T; Moens, Leen; Cannons, Jennifer L; Biancalana, Matthew; Stoddard, Jennifer; Ouyang, Weiming; Frucht, David M; Rao, V Koneti; Atkinson, T Prescott; Agharahimi, Anahita; Hussey, Ashleigh A; Folio, Les R; Olivier, Kenneth N; Fleisher, Thomas A; Pittaluga, Stefania; Holland, Steven M; Cohen, Jeffrey I; Oliveira, Joao B; Tangye, Stuart G; Schwartzberg, Pamela L; Lenardo, Michael J; Uzel, Gulbu

    2014-01-01

    The p110δ subunit of phosphatidylinositol-3-OH kinase (PI(3)K) is selectively expressed in leukocytes and is critical for lymphocyte biology. Here we report fourteen patients from seven families who were heterozygous for three different germline, gain-of-function mutations in PIK3CD (which encodes p110δ). These patients presented with sinopulmonary infections, lymphadenopathy, nodular lymphoid hyperplasia and viremia due to cytomegalovirus (CMV) and/or Epstein-Barr virus (EBV). Strikingly, they had a substantial deficiency in naive T cells but an over-representation of senescent effector T cells. In vitro, T cells from patients exhibited increased phosphorylation of the kinase Akt and hyperactivation of the metabolic checkpoint kinase mTOR, enhanced glucose uptake and terminal effector differentiation. Notably, treatment with rapamycin to inhibit mTOR activity in vivo partially restored the abundance of naive T cells, largely 'rescued' the in vitro T cell defects and improved the clinical course.

  6. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit

    PubMed Central

    Volkmann, Robert A.; Fanger, Christopher M.; Anderson, David R.; Sirivolu, Venkata Ramana; Paschetto, Kathy; Gordon, Earl; Virginio, Caterina; Gleyzes, Melanie; Buisson, Bruno; Steidl, Esther; Mierau, Susanna B.; Fagiolini, Michela; Menniti, Frank S.

    2016-01-01

    GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders. PMID:26829109

  7. The proximal islet-specific glucose-6-phosphatase catalytic subunit-related protein autoantigen promoter is sufficient to initiate but not maintain transgene expression in mouse islets in vivo.

    PubMed

    Frigeri, Claudia; Martin, Cyrus C; Svitek, Christina A; Oeser, James K; Hutton, John C; Gannon, Maureen; O'Brien, Richard M

    2004-07-01

    We have previously reported the discovery of an islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) that is predominantly expressed in islet beta-cells. IGRP has recently been identified as a major autoantigen in a mouse model of type 1 diabetes. The analysis of IGRP-chloramphenicol acetyltransferase (CAT) fusion gene expression in transiently transfected islet-derived hamster insulinoma tumor and betaTC-3 cells revealed that the promoter region located between -306 and +3 confers high-level reporter gene expression. To determine whether this same promoter region is sufficient to confer islet beta-cell-specific gene expression in vivo, it was ligated to a beta-galactosidase reporter gene, and transgenic mice expressing the resulting fusion gene were generated. In two independent founder lines, this -306 to +3 promoter region was sufficient to drive beta-galactosidase expression in newborn mouse islets, predominantly in beta-cells, which was initiated during the expected time in development, around embryonic day 12.5. However, unlike the endogenous IGRP gene, beta-galactosidase expression was also detected in the cerebellum. Moreover, beta-galactosidase expression was almost completely absent in adult mouse islets, suggesting that cis-acting elements elsewhere in the IGRP gene are required for determining appropriate IGRP tissue-specific expression and for the maintenance of IGRP gene expression in adult mice.

  8. Solution structure analysis of the conformational changes that occur upon the binding of the protein kinase inhibitor peptide to the catalytic subunit of the cAMP dependent protein kinase

    SciTech Connect

    Mitchell, R.D.; Walsh, D.A.; Olah, G.A.; Sosnick, T.R.; Trewhella, J.

    1994-10-01

    Fourier transform infrared (FTIR) spectroscopy and small-angle x-ray scattering experiments have been used to examine both the secondary structure content and overall conformation, respectively, of the catalytic subunit of the cAMP-dependent protein kinase and to characterize the structural change that occurs upon binding of the protein kinase inhibitor peptide, PKI(5-22)amide. While the secondary structure of the enzyme is unaltered by the binding of PKI(5-22)amide, a large overall conformational change occurs resulting in a compaction of the enzyme that is characterized by a 2{angstrom} decrease in radius of gyration, Rg, and an 11{angstrom} decrease in the maximum linear dimension, d{sub max}. We have modeled the conformational change as a simple rotation of the upper and lower lobes of the kinase by 39{degrees} about a molecular hinge defined by Glyl25, resulting in a closure of the cleft between the two lobes of the kinase. These data are evaluated with respect to recent x-ray crystallographic studies of the cAMP-dependent protein kinase, CDK2 protein kinase, and the MAP kinase ERK2. In addition, the implications that these findings have for the remainder of the protein kinase family are discussed.

  9. Structural Hypervariability of the Two Human Protein Kinase CK2 Catalytic Subunit Paralogs Revealed by Complex Structures with a Flavonol- and a Thieno[2,3-d]pyrimidine-Based Inhibitor †

    PubMed Central

    Niefind, Karsten; Bischoff, Nils; Golub, Andriy G.; Bdzhola, Volodymyr G.; Balanda, Anatoliy O.; Prykhod’ko, Andriy O.; Yarmoluk, Sergiy M.

    2017-01-01

    Protein kinase CK2 is associated with a number of human diseases, among them cancer, and is therefore a target for inhibitor development in industry and academia. Six crystal structures of either CK2α, the catalytic subunit of human protein kinase CK2, or its paralog CK2α′ in complex with two ATP-competitive inhibitors—based on either a flavonol or a thieno[2,3-d]pyrimidine framework—are presented. The structures show examples for extreme structural deformations of the ATP-binding loop and its neighbourhood and of the hinge/helix αD region, i.e., of two zones of the broader ATP site environment. Thus, they supplement our picture of the conformational space available for CK2α and CK2α′. Further, they document the potential of synthetic ligands to trap unusual conformations of the enzymes and allow to envision a new generation of inhibitors that stabilize such conformations. PMID:28085026

  10. Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation

    NASA Technical Reports Server (NTRS)

    Peng, Yuanlin; Zhang, Qinming; Nagasawa, Hatsumi; Okayasu, Ryuichi; Liber, Howard L.; Bedford, Joel S.

    2002-01-01

    Targeted gene silencing in mammalian cells by RNA interference (RNAi) using small interfering RNAs (siRNAs) was recently described by Elbashir et al. (S. M. Elbashir et al., Nature (Lond.), 411: 494-498, 2001). We have used this methodology in several human cell strains to reduce expression of the Prkdc (DNA-PKcs) gene coding for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) that is involved in the nonhomologous end joining of DNA double-strand breaks. We have also demonstrated a radiosensitization for several phenotypic endpoints of radiation damage. In low-passage normal human fibroblasts, siRNA knock-down of DNA-PKcs resulted in a reduced capacity for restitution of radiation-induced interphase chromosome breaks as measured by premature chromosome condensation, an increased yield of acentric chromosome fragments at the first postirradiation mitosis, and an increased radiosensitivity for cell killing. For three strains of related human lymphoblasts, DNA-PKcs-targeted siRNA transfection resulted in little or no increase in radiosensitivity with respect to cell killing, a 1.5-fold decrease in induced mutant yield in TK6- and p53-null NH32 cells, but about a 2-fold increase in induced mutant yield in p53-mutant WTK1 cells at both the hypoxanthine quanine phosphoribosyl transferase (hprt) and the thymidine kinase loci.

  11. Identification of the Adenovirus E4orf4 Protein Binding Site on the B55α and Cdc55 Regulatory Subunits of PP2A: Implications for PP2A Function, Tumor Cell Killing and Viral Replication

    PubMed Central

    Mui, Melissa Z.; Kucharski, Michael; Miron, Marie-Joëlle; Hur, Woosuk Steve; Berghuis, Albert M.; Blanchette, Paola; Branton, Philip E.

    2013-01-01

    Adenovirus E4orf4 protein induces the death of human cancer cells and Saccharomyces cerevisiae. Binding of E4orf4 to the B/B55/Cdc55 regulatory subunit of protein phosphatase 2A (PP2A) is required, and such binding inhibits PP2AB55 activity leading to dose-dependent cell death. We found that E4orf4 binds across the putative substrate binding groove predicted from the crystal structure of B55α such that the substrate p107 can no longer interact with PP2AB55α. We propose that E4orf4 inhibits PP2AB55 activity by preventing access of substrates and that at high E4orf4 levels this inhibition results in cell death through the failure to dephosphorylate substrates required for cell cycle progression. However, E4orf4 is expressed at much lower and less toxic levels during a normal adenovirus infection. We suggest that in this context E4orf4 largely serves to recruit novel substrates such as ASF/SF2/SRSF1 to PP2AB55 to enhance adenovirus replication. Thus E4orf4 toxicity probably represents an artifact of overexpression and does not reflect the evolutionary function of this viral product. PMID:24244166

  12. A subset of RAB proteins modulates PP2A phosphatase activity.

    PubMed

    Sacco, Francesca; Mattioni, Anna; Boldt, Karsten; Panni, Simona; Santonico, Elena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2016-09-09

    Protein phosphatase 2A (PP2A) is one of the most abundant serine-threonine phosphatases in mammalian cells. PP2A is a hetero-trimeric holoenzyme participating in a variety of physiological processes whose deregulation is often associated to cancer. The specificity and activity of this phosphatase is tightly modulated by a family of regulatory B subunits that dock the catalytic subunit to the substrates. Here we characterize a novel and unconventional molecular mechanism controlling the activity of the tumor suppressor PP2A. By applying a mass spectrometry-based interactomics approach, we identified novel PP2A interacting proteins. Unexpectedly we found that a significant number of RAB proteins associate with the PP2A scaffold subunit (PPP2R1A), but not with the catalytic subunit (PPP2CA). Such interactions occur in vitro and in vivo in specific subcellular compartments. Notably we demonstrated that one of these RAB proteins, RAB9, competes with the catalytic subunit PPP2CA in binding to PPP2R1A. This competitive association has an important role in controlling the PP2A catalytic activity, which is compromised in several solid tumors and leukemias.

  13. The Something About Silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAFII30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)–FACT complex

    PubMed Central

    John, Sam; Howe, LeAnn; Tafrov, Stefan T.; Grant, Patrick A.; Sternglanz, Rolf; Workman, Jerry L.

    2000-01-01

    We have purified and characterized a Gcn5-independent nucleosomal histone H3 HAT complex, NuA3 (Nucleosomal Acetyltransferase of histone H3). Peptide sequencing of proteins from the purified NuA3 complex identified Sas3 as the catalytic HAT subunit of the complex. Sas3 is the yeast homolog of the human MOZ oncogene. Sas3 is required for both the HAT activity and the integrity of the NuA3 complex. In addition, NuA3 contains the TBP- associated factor, yTAFII30, which is also a component of the TFIID, TFIIF, and SWI/SNF complexes. Sas3 mediates interaction of the NuA3 complex with Spt16 both in vivo and in vitro. Spt16 functions as a component of the yeast CP (Cdc68/Pob3) and mammalian FACT (facilitates chromatin transcription) complexes, which are involved in transcription elongation and DNA replication. This interaction suggests that the NuA3 complex might function in concert with FACT–CP to stimulate transcription or replication elongation through nucleosomes by providing a coupled acetyltransferase activity. PMID:10817755

  14. Chlorinated Biphenyl Quinones and Phenyl-2,5-benzoquinone Differentially Modify the Catalytic Activity of Human Hydroxysteroid Sulfotransferase hSULT2A1

    PubMed Central

    Qin, Xiaoyan; Lehmler, Hans-Joachim; Teesch, Lynn M.; Robertson, Larry W.; Duffel, Michael W.

    2013-01-01

    Human hydroxysteroid sulfotransferase (hSULT2A1) catalyzes the sulfation of a broad range of environmental chemicals, drugs, and other xenobiotics in addition to endogenous compounds that include hydroxysteroids and bile acids. Polychlorinated biphenyls (PCBs) are persistent environmental contaminants, and oxidized metabolites of PCBs may play significant roles in the etiology of their adverse health effects. Quinones derived from oxidative metabolism of PCBs (PCB-quinones) react with nucleophilic sites in proteins and also undergo redox cycling to generate reactive oxygen species. This, along with the sensitivity of hSULT2A1 to oxidative modification at cysteine residues led us to hypothesize that electrophilic PCB-quinones react with hSULT2A1 to alter its catalytic function. Thus, we examined the effects of four phenylbenzoquinones on the ability of hSULT2A1 to catalyze the sulfation of the endogenous substrate, dehydroepiandrosterone (DHEA). The quinones studied were 2′-chlorophenyl-2,5-benzoquinone (2′-Cl-BQ), 4′-chlorophenyl-2,5-benzoquinone (4′-Cl-BQ), 4′-chlorophenyl-3,6-dichloro-2,5-benzoquinone (3,6,4′-triCl-BQ), and phenyl-2,5-benzoquinone (PBQ). At all concentrations examined, pretreatment of hSULT2A1 with the PCB-quinones decreased catalytic activity of hSULT2A1. Pretreatment with low concentrations of PBQ, however, increased the catalytic activity of the enzyme, while higher concentrations inhibited catalysis. A decrease in substrate inhibition with DHEA was seen following preincubation of hSULT2A1 with all of the quinones. Proteolytic digestion of the enzyme followed by LC/MS analysis indicated PCB-quinone- and PBQ-adducts at Cys55 and Cys199, as well as oxidation products at methionines in the protein. Equilibrium binding experiments and molecular modeling suggested that changes due to these modifications may affect the nucleotide binding site and the entrance to the sulfuryl acceptor binding site of hSULT2A1. PMID:24059442

  15. The Role of GluN2A and GluN2B Subunits on the Effects of NMDA Receptor Antagonists in Modeling Schizophrenia and Treating Refractory Depression

    PubMed Central

    Jiménez-Sánchez, Laura; Campa, Leticia; Auberson, Yves P; Adell, Albert

    2014-01-01

    Paradoxically, N-methyl-D-aspartate (NMDA) receptor antagonists are used to model certain aspects of schizophrenia as well as to treat refractory depression. However, the role of different subunits of the NMDA receptor in both conditions is poorly understood. Here we used biochemical and behavioral readouts to examine the in vivo prefrontal efflux of serotonin and glutamate as well as the stereotypical behavior and the antidepressant-like activity in the forced swim test elicited by antagonists selective for the GluN2A (NVP-AAM077) and GluN2B (Ro 25-6981) subunits. The effects of the non-subunit selective antagonist, MK-801; were also studied for comparison. The administration of MK-801 dose dependently increased the prefrontal efflux of serotonin and glutamate and markedly increased the stereotypy scores. NVP-AAM077 also increased the efflux of serotonin and glutamate, but without the induction of stereotypies. In contrast, Ro 25-6981 did not change any of the biochemical and behavioral parameters tested. Interestingly, the administration of NVP-AAM077 and Ro 25-6981 alone elicited antidepressant-like activity in the forced swim test, in contrast to the combination of both compounds that evoked marked stereotypies. Our interpretation of the results is that both GluN2A and GluN2B subunits are needed to induce stereotypies, which might be suggestive of potential psychotomimetic effects in humans, but the antagonism of only one of these subunits is sufficient to evoke an antidepressant response. We also propose that GluN2A receptor antagonists could have potential antidepressant activity in the absence of potential psychotomimetic effects. PMID:24871546

  16. Increased levels of insulin and insulin-like growth factor-1 hybrid receptors and decreased glycosylation of the insulin receptor alpha- and beta-subunits in scrapie-infected neuroblastoma N2a cells.

    PubMed

    Nielsen, Daniel; Gyllberg, Hanna; Ostlund, Pernilla; Bergman, Tomas; Bedecs, Katarina

    2004-06-01

    We have previously shown that ScN2a cells (scrapie-infected neuroblastoma N2a cells) express 2-fold- and 4-fold-increased levels of IR (insulin receptor) and IGF-1R (insulin-like growth factor-1 receptor) respectively. In addition, the IR alpha- and beta-subunits are aberrantly processed, with apparent molecular masses of 128 and 85 kDa respectively, as compared with 136 and 95 kDa in uninfected N2a cells. Despite the 2-fold increase in IR protein, the number of (125)I-insulin-binding sites was slightly decreased in ScN2a cells [Ostlund, Lindegren, Pettersson and Bedecs (2001) Brain Res. 97, 161-170]. In order to determine the cellular localization of IR in ScN2a cells, surface biotinylation was performed, showing a correct IR trafficking and localization to the cell surface. The present study shows for the first time that neuroblastoma N2a cells express significant levels of IR-IGF-1R hybrid receptors, and in ScN2a cells the number of hybrid receptors was 2-fold higher than that found in N2a cells, potentially explaining the apparent loss of insulin-binding sites due to a lower affinity for insulin compared with the homotypic IR. Furthermore, the decreased molecular mass of IR subunits in ScN2a cells is not caused by altered phosphorylation or proteolytic processing, but rather by altered glycosylation. Enzymic deglycosylation of immunoprecipitated IR from N2a and ScN2a cells with endoglycosidase H, peptide N-glycosidase F and neuraminidase all resulted in subunits with increased electrophoretic mobility; however, the 8-10 kDa shift remained. Combined enzymic or chemical deglycosylation using anhydrous trifluoromethane sulphonic acid treatment ultimately showed that the IR alpha- and beta-subunits from ScN2a cells are aberrantly glycosylated. The increased formation of IR-IGF-1R hybrids in ScN2a cells may be part of a neuroprotective response to prion infection. The degree and functional significance of aberrantly glycosylated proteins in ScN2a cells remain to be

  17. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth.

    PubMed

    Loveday, Chey; Tatton-Brown, Katrina; Clarke, Matthew; Westwood, Isaac; Renwick, Anthony; Ramsay, Emma; Nemeth, Andrea; Campbell, Jennifer; Joss, Shelagh; Gardner, McKinlay; Zachariou, Anna; Elliott, Anna; Ruark, Elise; van Montfort, Rob; Rahman, Nazneen

    2015-09-01

    Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B', beta (PPP2R5B); protein phosphatase 2, regulatory Subunit B', gamma (PPP2R5C); and protein phosphatase 2, regulatory Subunit B', delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates (P = 1.43 × 10(-10)). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences (P = 1.6 × 10(-5)). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions.

  18. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    PubMed

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  19. A2A adenosine-receptor-mediated facilitation of noradrenaline release in rat tail artery involves protein kinase C activation and betagamma subunits formed after alpha2-adrenoceptor activation.

    PubMed

    Fresco, Paula; Oliveira, Jorge M A; Kunc, Filip; Soares, Ana Sofia; Rocha-Pereira, Carolina; Gonçalves, Jorge; Diniz, Carmen

    2007-07-01

    This work aimed to investigate the molecular mechanisms involved in the interaction of alpha2-adrenoceptors and adenosine A2A-receptor-mediated facilitation of noradrenaline release in rat tail artery, namely the type of G-protein involved in this effect and the step or steps where the signalling cascades triggered by alpha2-adrenoceptors and A2A-receptors interact. The selective adenosine A2A-receptor agonist 2-p-(2-carboxy ethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 100 nM) enhanced tritium overflow evoked by trains of 100 pulses at 5 Hz. This effect was abolished by the selective adenosine A2A-receptor antagonist 5-amino-7-(2-phenyl ethyl)-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo [1,5-c]pyrimidine (SCH 58261; 20 nM) and by yohimbine (1 microM). CGS 21680-mediated effects were also abolished by drugs that disrupted G(i/o)-protein coupling with receptors, PTX (2 microg/ml) or NEM (40 microM), by the anti-G(salpha) peptide (2 microg/ml) anti-G(betagamma) peptide (10 microg/ml) indicating coupling of A2A-receptors to G(salpha) and suggesting a crucial role for G(betagamma) subunits in the A(2A)-receptor-mediated enhancement of tritium overflow. Furthermore, phorbol 12-myristate 13-acetate (PMA; 1 microM) or forskolin (1 microM), direct activators of protein kinase C and of adenylyl cyclase, respectively, also enhanced tritium overflow. In addition, PMA-mediated effects were not observed in the presence of either yohimbine or PTX. Results indicate that facilitatory adenosine A2A-receptors couple to G(salpha) subunits which is essential, but not sufficient, for the release facilitation to occur, requiring the involvement of G(i/o)-protein coupling (it disappears after disruption of G(i/o)-protein coupling, PTX or NEM) and/or G(betagamma) subunits (anti-G(betagamma)). We propose a mechanism for the interaction in study suggesting group 2 AC isoforms as a plausible candidate for the interaction site, as these isoforms can integrate inputs from G

  20. [Roles and expressions of the NMDA receptor subunits (NR2A and NR2B) in visual cortex area of kittens with the normal visual development and anisometropic amblyopia].

    PubMed

    Li, Haiwei; Liu, Longqian; Liu, Xuyang

    2011-04-01

    In order to understand the roles of the other subunits, we investigated expression of the NMDA receptor subunits (NR2A and NR2B) in visual cortex of normal and anisometropic amblyopia kittens with different ages in the present study. We examined the expressions of NR2A and NR2B in the visual cortex of the kittens by immunohistochemistry with polyclonal anti-NR2A antibody and anti-NR2B antibody, respectively. Using immunohisto-chemical Streptavidin Perosidase (SP) method, we observed the dynamic changes of NR2A and NR2B with microscope and computer-assisted image analyses. We found that NR2A and NR2B remained low expression after the peak of the critical period of kitten visual development; compared with normal group of the same age, NR2A expresses low. However, the difference is not significant for NR2B before maturation period of visual development. NR2B rises after the maturation period of visual development. According to this, the component of NR2A and NR2B can be affected by anisometropia. This research suggests that the difference of NR2A and NR2B expressions may affect the formation of amblyopia.

  1. Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics.

    PubMed

    Nakanishi-Matsui, Mayumi; Sekiya, Mizuki; Futai, Masamitsu

    2013-03-01

    In this article, we discuss single molecule observation of rotational catalysis by E. coli ATP synthase (F-ATPase) using small gold beads. Studies involving a low viscous drag probe showed the stochastic properties of the enzyme in alternating catalytically active and inhibited states. The importance of subunit interaction between the rotor and the stator, and thermodynamics of the catalysis are also discussed. "Single Molecule Enzymology" is a new trend for understanding enzyme mechanisms in biochemistry and physiology.

  2. Identification and characterization of G beta 3s2, a novel splice variant of the G-protein beta 3 subunit.

    PubMed Central

    Rosskopf, Dieter; Manthey, Iris; Habich, Christiane; Kielbik, Marzena; Eisenhardt, Andreas; Nikula, Christiane; Urban, Melanie; Kohnen, Stefanie; Graf, Eva; Ravens, Ursula; Siffert, Winfried

    2003-01-01

    The T-allele of a polymorphism (C825T) in the gene for the G-protein beta 3 subunit (GNB3) is associated with cardiovascular and metabolic disorders, distinct cellular features and altered drug responses. The molecular mechanisms that give rise to this complex phenotype have been linked to the occurrence of G beta 3s, a splice variant of GNB3. G beta 3s is predominantly expressed in cells with the 825T-allele. In the present study we describe the identification and characterization of an additional G beta 3 splice variant referred to as G beta 3s2. Its mRNA is expressed in heart, blood cells and tumour tissue, and its expression is also tightly associated with the GNB3 825T-allele. G beta 3s2 is generated by alternative splicing using non-canonical splice sites. G beta subunits belong to the family of propeller proteins and consist of seven regular propeller blades. Transcripts for G beta 3s2 are lacking 129 bp of the coding sequence of the wild-type G beta 3 protein. Thus the predicted structure consists of only six propeller blades, which resembles the structure of G beta 3s. Co-immunoprecipitation analyses indicated that G beta 3s2 dimerizes with different G gamma subunits, e.g. G gamma 5, G gamma 8(C) and G gamma 12. In Sf9 insect cells, expression of G beta 3s2 together with G gamma 12 enhances receptor-stimulated activation of G alpha(i2). Expression of G beta 3s2 in mammalian cells activated the mitogen-activated protein kinase cascade. Together, these results suggest that G beta 3s2 is a biologically active G beta variant which may play a role in the manifestation of the complex phenotype associated with the 825T-allele. PMID:12431187

  3. Mutations in ABO1/ELO2, a Subunit of Holo-Elongator, Increase Abscisic Acid Sensitivity and Drought Tolerance in Arabidopsis thaliana

    PubMed Central

    Chen, Zhizhong; Zhang, Hairong; Jablonowski, Daniel; Zhou, Xiaofeng; Ren, Xiaozhi; Hong, Xuhui; Schaffrath, Raffael; Zhu, Jian-Kang; Gong, Zhizhong

    2006-01-01

    The phytohormone abscisic acid (ABA) plays an important role in modulating plant growth, development, and stress responses. In a genetic screen for mutants with altered drought stress responses, we identified an ABA-overly sensitive mutant, the abo1 mutant, which showed a drought-resistant phenotype. The abo1 mutation enhances ABA-induced stomatal closing and increases ABA sensitivity in inhibiting seedling growth. abo1 mutants are more resistant to oxidative stress than the wild type and show reduced levels of transcripts of several stress- or ABA-responsive genes. Interestingly, the mutation also differentially modulates the development and growth of adjacent guard cells. Map-based cloning identified ABO1 as a new allele of ELO2, which encodes a homolog of Saccharomyces cerevisiae Iki3/Elp1/Tot1 and human IκB kinase-associated protein. Iki3/Elp1/Tot1 is the largest subunit of Elongator, a multifunctional complex with roles in transcription elongation, secretion, and tRNA modification. Ecotopic expression of plant ABO1/ELO2 in a tot1/elp1Δ yeast Elongator mutant complements resistance to zymocin, a yeast killer toxin complex, indicating that ABO1/ELO2 substitutes for the toxin-relevant function of yeast Elongator subunit Tot1/Elp1. Our results uncover crucial roles for ABO1/ELO2 in modulating ABA and drought responses in Arabidopsis thaliana. PMID:16943431

  4. Overexpression of the PP2A-C5 gene confers increased salt tolerance in Arabidopsis thaliana

    PubMed Central

    Hu, Rongbin; Zhu, Yinfeng; Shen, Guoxin; Zhang, Hong

    2017-01-01

    ABSTRACT Protein phosphatase 2A (PP2A) was shown to play important roles in biotic and abiotic stress signaling pathways in plants. PP2A is made of 3 subunits: a scaffolding subunit A, a regulatory subunit B, and a catalytic subunit C. It is believed that the B subunit recognizes specific substrates and the C subunit directly acts on the selected substrates, whereas the A subunit brings a B subunit and a C subunit together to form a specific PP2A holoenzyme. Because there are multiple isoforms for each PP2A subunit, there could be hundreds of novel PP2A holoenzymes in plants. For an example, there are 3 A subunits, 17 B subunits, and 5 C subunits in Arabidopsis, which could form 255 different PP2A holoenzymes. Understanding the roles of these PP2A holoenzymes in various signaling pathways is a challenging task. In a recent study,1 we discovered that PP2A-C5, the catalytic subunit 5 of PP2A, plays an important role in salt tolerance in Arabidopsis. We found that a knockout mutant of PP2A-C5 (i.e. pp2a-c5–1) was very sensitive to salt treatments, whereas PP2A-C5-overexpressing plants were more tolerant to salt stresses. Genetic analyses between pp2a-c5–1 and Salt-Overly-Sensitive (SOS) mutants indicated that PP2A-C5 does not function in the same pathway as SOS genes. Using yeast 2-hybrid analysis, we found that PP2A-C5 interacts with several vacuolar membrane bound chloride channel proteins. We hypothesize that these vacuolar chloride channel proteins might be PP2A-C5's substrates in vivo, and the action of PP2A-C5 on these channel proteins could increase or activate their activities, thereby result in accumulation of the chloride and sodium contents in vacuoles, leading to increased salt tolerance in plants. PMID:28045581

  5. Structure of Protein Phosphatase 2A Core Enzyme Bound to Tumor-Inducing Toxins

    SciTech Connect

    Xing,Y.; Xu, Y.; Chen, Y.; Jeffrey, P.; Chao, Y.; Lin, Z.; Li, Z.; Strack, S.; Stock, J.; Shi, Y.

    2006-01-01

    The serine/threonine phosphatase protein phosphatase 2A (PP2A) plays an essential role in many aspects of cellular functions and has been shown to be an important tumor suppressor. The core enzyme of PP2A comprises a 65 kDa scaffolding subunit and a 36 kDa catalytic subunit. Here we report the crystal structures of the PP2A core enzyme bound to two of its inhibitors, the tumor-inducing agents okadaic acid and microcystin-LR, at 2.6 and 2.8 {angstrom} resolution, respectively. The catalytic subunit recognizes one end of the elongated scaffolding subunit by interacting with the conserved ridges of HEAT repeats 11-15. Formation of the core enzyme forces the scaffolding subunit to undergo pronounced structural rearrangement. The scaffolding subunit exhibits considerable conformational flexibility, which is proposed to play an essential role in PP2A function. These structures, together with biochemical analyses, reveal significant insights into PP2A function and serve as a framework for deciphering the diverse roles of PP2A in cellular physiology.

  6. Identification of beta1C-2, a novel variant of the integrin beta1 subunit generated by utilization of an alternative splice acceptor site in exon C.

    PubMed Central

    Svineng, G; Fässler, R; Johansson, S

    1998-01-01

    A new splice variant of the human integrin subunit beta1 has been identified and designated beta1C-2. It differs from the previously reported beta1C (in this report designated beta1C-1) by 18 nucleotides, and is generated by splicing from exon 6 to an alternative splice acceptor site within exon C, causing an in-frame deletion of six amino acids of the cytoplasmic region of beta1C-1. The beta1C-2 mRNA is present in several human cell lines and tissues at low levels, similarly to beta1C-1. In peripheral T-lymphocytes, beta1C-2 is the selectively expressed isoform. Neither beta1C-1 nor beta1C-2 mRNA could be detected in mouse tissues, and Southern hybridization of a mouse genomic beta1 clone with a human exon-C-specific probe failed to identify a corresponding mouse exon. The antisense orientation of exon C is highly homologous to an Alu element. Since Alu elements are restricted to primates, the beta1C-1 and beta1C-2 variants of the integrin subunit beta1 are specific for these species. The protein coded for by the beta1C-2 cDNA can be expressed and localized to the surface of beta1 deficient mouse cells. However, while stable transformed clones expressing high levels of the beta1A were commonly found, the beta1C-1 and beta1C-2 expressing clones expressed barely detectable amounts of the beta1 protein. Hence, high levels of beta1C-2 may be incompatible with cell proliferation, as previously suggested for beta1C-1. PMID:9494094

  7. Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections.

    PubMed

    Misas-Villamil, Johana C; van der Burgh, Aranka M; Grosse-Holz, Friederike; Bach-Pages, Marcel; Kovács, Judit; Kaschani, Farnusch; Schilasky, Sören; Emon, Asif Emran Khan; Ruben, Mark; Kaiser, Markus; Overkleeft, Hermen S; van der Hoorn, Renier A L

    2017-01-24

    The proteasome is a nuclear - cytoplasmic proteolytic complex involved in nearly all regulatory pathways in plant cells. The three different catalytic activities of the proteasome can have different functions but tools to monitor and control these subunits selectively are not yet available in plant science. Here, we introduce subunit-selective inhibitors and dual-color fluorescent activity-based probes for studying two of the three active catalytic subunits of the plant proteasome. We validate these tools in two model plants and use this to study the proteasome during plant-microbe interactions. Our data reveals that Nicotiana benthamiana incorporates two different paralogs of each catalytic subunit into active proteasomes. Interestingly, both β1 and β5 activities are significantly increased upon infection with pathogenic Pseudomonas syringae pv. tomato DC3000 lacking hopQ1-1 (PtoDC3000(ΔhQ)) whilst the activity profile of the β1 subunit changes. Infection with wild-type PtoDC3000 causes proteasome activities that range from strongly induced β1 and β5 activities to strongly suppressed β5 activities, revealing that β1 and β5 activities can be uncoupled during bacterial infection. These selective probes and inhibitors are now available to the plant science community and can be widely and easily applied to study the activity and role of the different catalytic subunits of the proteasome in different plant species. This article is protected by copyright. All rights reserved.

  8. Inherent conformational flexibility of F1-ATPase α-subunit.

    PubMed

    Hahn-Herrera, Otto; Salcedo, Guillermo; Barril, Xavier; García-Hernández, Enrique

    2016-09-01

    The core of F1-ATPase consists of three catalytic (β) and three noncatalytic (α) subunits, forming a hexameric ring in alternating positions. A wealth of experimental and theoretical data has provided a detailed picture of the complex role played by catalytic subunits. Although major conformational changes have only been seen in β-subunits, it is clear that α-subunits have to respond to these changes in order to be able to transmit information during the rotary mechanism. However, the conformational behavior of α-subunits has not been explored in detail. Here, we have combined unbiased molecular dynamics (MD) simulations and calorimetrically measured thermodynamic signatures to investigate the conformational flexibility of isolated α-subunits, as a step toward deepening our understanding of its function inside the α3β3 ring. The simulations indicate that the open-to-closed conformational transition of the α-subunit is essentially barrierless, which is ideal to accompany and transmit the movement of the catalytic subunits. Calorimetric measurements of the recombinant α-subunit from Geobacillus kaustophilus indicate that the isolated subunit undergoes no significant conformational changes upon nucleotide binding. Simulations confirm that the nucleotide-free and nucleotide-bound subunits show average conformations similar to that observed in the F1 crystal structure, but they reveal an increased conformational flexibility of the isolated α-subunit upon MgATP binding, which might explain the evolutionary conserved capacity of α-subunits to recognize nucleotides with considerable strength. Furthermore, we elucidate the different dependencies that α- and β-subunits show on Mg(II) for recognizing ATP.

  9. Atypical Protein Phosphatase 2A Gene Families Do Not Expand via Paleopolyploidization1[OPEN

    PubMed Central

    2017-01-01

    Protein phosphatase 2A (PP2A) presents unique opportunities for analyzing molecular mechanisms of functional divergence between gene family members. The canonical PP2A holoenzyme regulates multiple eukaryotic signaling pathways by dephosphorylating target proteins and contains a catalytic (C) subunit, a structural/scaffolding (A) subunit, and a regulatory (B) subunit. Genes encoding PP2A subunits have expanded into multigene families in both flowering plants and mammals, and the extent to which different isoform functions may overlap is not clearly understood. To gain insight into the diversification of PP2A subunits, we used phylogenetic analyses to reconstruct the evolutionary histories of PP2A gene families in Arabidopsis (Arabidopsis thaliana). Genes encoding PP2A subunits in mammals represent ancient lineages that expanded early in vertebrate evolution, while flowering plant PP2A subunit lineages evolved much more recently. Despite this temporal difference, our data indicate that the expansion of PP2A subunit gene families in both flowering plants and animals was driven by whole-genome duplications followed by nonrandom gene loss. Selection analysis suggests that the expansion of one B subunit gene family (B56/PPP2R5) was driven by functional diversification rather than by the maintenance of gene dosage. We also observed reduced expansion rates in three distinct B subunit subclades. One of these subclades plays a highly conserved role in cell division, while the distribution of a second subclade suggests a specialized function in supporting beneficial microbial associations. Thus, while whole-genome duplications have driven the expansion and diversification of most PP2A gene families, members of functionally specialized subclades quickly revert to singleton status after duplication events. PMID:28034953

  10. Amino-terminal truncations of the ribulose-bisphosphate carboxylase small subunit influence catalysis and subunit interactions.

    PubMed Central

    Paul, K; Morell, M K; Andrews, T J

    1993-01-01

    The first 20 residues at the amino terminus of the small subunit of spinach ribulose-1,5-bisphosphate carboxylase form an irregular arm that makes extensive contacts with the large subunit and also with another small subunit (S. Knight, I. Andersson, and C.-I. Brändén [1990] J Mol Biol 215: 113-160). The influence of these contacts on subunit binding and, indirectly, on catalysis was investigated by constructing truncations from the amino terminus of the small subunit of the highly homologous enzyme from Synechococcus PCC 6301 expressed in Escherichia coli. Removal of the first six residues (and thus the region of contact with a neighboring small subunit) affected neither the affinity with which the small subunits bound to the large subunits nor the catalytic properties of the assembled holoenzyme. Extending the truncation to include the first 12 residues (which encroaches into a highly conserved region that interacts with the large subunit) also did not weaken intersubunit binding appreciably, but it reduced the catalytic activity of the holoenzyme nearly 5-fold. Removal of an additional single residue (i.e. removal of a total of 13 residues) weakened intersubunit binding approximately 80-fold. Paradoxically, this partially restored catalytic activity to approximately 40% of that of the wild-type holoenzyme. None of these truncations materially affected the Km values for ribulose-1,5-bisphosphate or CO2. Removal of all 20 residues of the irregular arm (thereby deleting the conserved region of contact with large subunits) totally abolished the small subunit's ability to bind to large subunits to form a stable holoenzyme. However, this truncated small subunit was still synthesized by the E. coli cells. These data are interpreted in terms of the role of the amino-terminal arm of the small subunit in maintaining the structure of the holoenzyme. PMID:8278544

  11. Anthranilate synthase subunit organization in Chromobacterium violaceum.

    PubMed

    Carminatti, C A; Oliveira, I L; Recouvreux, D O S; Antônio, R V; Porto, L M

    2008-09-16

    Tryptophan is an aromatic amino acid used for protein synthesis and cellular growth. Chromobacterium violaceum ATCC 12472 uses two tryptophan molecules to synthesize violacein, a secondary metabolite of pharmacological interest. The genome analysis of this bacterium revealed that the genes trpA-F and pabA-B encode the enzymes of the tryptophan pathway in which the first reaction is the conversion of chorismate to anthranilate by anthranilate synthase (AS), an enzyme complex. In the present study, the organization and structure of AS protein subunits from C. violaceum were analyzed using bioinformatics tools available on the Web. We showed by calculating molecular masses that AS in C. violaceum is composed of alpha (TrpE) and beta (PabA) subunits. This is in agreement with values determined experimentally. Catalytic and regulatory sites of the AS subunits were identified. The TrpE and PabA subunits contribute to the catalytic site while the TrpE subunit is involved in the allosteric site. Protein models for the TrpE and PabA subunits were built by restraint-based homology modeling using AS enzyme, chains A and B, from Salmonella typhimurium (PDB ID 1I1Q).

  12. Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-D-aspartate receptor function and neuronal excitotoxicity.

    PubMed

    Zhou, Xianju; Ding, Qi; Chen, Zhuoyou; Yun, Huifang; Wang, Hongbing

    2013-08-16

    GluN2A and GluN2B are the major subunits of functional NMDA receptors (NMDAR). Previous studies have suggested that GluN2A and GluN2B may differentially mediate NMDAR function at synaptic and extrasynaptic locations and play opposing roles in excitotoxicity, such as neurodegeneration triggered by ischemic stroke and brain injury. By using pharmacological and molecular approaches to suppress or enhance the function of GluN2A and GluN2B in cultured cortical neurons, we examined NMDAR-mediated, bidirectional regulation of prosurvival signaling (i.e. the cAMP response element-binding protein (CREB)-Bdnf cascade) and cell death. Inhibition of GluN2A or GluN2B attenuated the up-regulation of prosurvival signaling triggered by the activation of either synaptic or extrasynaptic NMDAR. Inhibition of GluN2A or GluN2B also attenuated the down-regulation of prosurvival signaling triggered by the coactivation of synaptic and extrasynaptic receptors. The effects of GluN2B on CREB-Bdnf signaling were larger than those of GluN2A. Consistently, compared with suppression of GluN2A, suppression of GluN2B resulted in more reduction of NMDA- and oxygen glucose deprivation-induced excitotoxicity as well as NMDAR-mediated elevation of intracellular calcium. Moreover, excitotoxicity and down-regulation of CREB were exaggerated in neurons overexpressing GluN2A or GluN2B. Together, we found that GluN2A and GluN2B are involved in the function of both synaptic and extrasynaptic NMDAR, demonstrating that they play similar rather than opposing roles in NMDAR-mediated bidirectional regulation of prosurvival signaling and neuronal death.

  13. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A.

    PubMed

    Ogris, E; Du, X; Nelson, K C; Mak, E K; Yu, X X; Lane, W S; Pallas, D C

    1999-05-14

    Carboxymethylation of proteins is a highly conserved means of regulation in eukaryotic cells. The protein phosphatase 2A (PP2A) catalytic (C) subunit is reversibly methylated at its carboxyl terminus by specific methyltransferase and methylesterase enzymes which have been purified, but not cloned. Carboxymethylation affects PP2A activity and varies during the cell cycle. Here, we report that substitution of glutamine for either of two putative active site histidines in the PP2A C subunit results in inactivation of PP2A and formation of stable complexes between PP2A and several cellular proteins. One of these cellular proteins, herein named protein phosphatase methylesterase-1 (PME-1), was purified and microsequenced, and its cDNA was cloned. PME-1 is conserved from yeast to human and contains a motif found in lipases having a catalytic triad-activated serine as their active site nucleophile. Bacterially expressed PME-1 demethylated PP2A C subunit in vitro, and okadaic acid, a known inhibitor of the PP2A methylesterase, inhibited this reaction. To our knowledge, PME-1 represents the first mammalian protein methylesterase to be cloned. Several lines of evidence indicate that, although there appears to be a role for C subunit carboxyl-terminal amino acids in PME-1 binding, amino acids other than those at the extreme carboxyl terminus of the C subunit also play an important role in PME-1 binding to a catalytically inactive mutant.

  14. A revised model for AMP-activated protein kinase structure: The alpha-subunit binds to both the beta- and gamma-subunits although there is no direct binding between the beta- and gamma-subunits.

    PubMed

    Wong, Kelly A; Lodish, Harvey F

    2006-11-24

    The 5'-AMP-activated protein kinase (AMPK) is a master sensor for cellular metabolic energy state. It is activated by a high AMP/ATP ratio and leads to metabolic changes that conserve energy and utilize alternative cellular fuel sources. The kinase is composed of a heterotrimeric protein complex containing a catalytic alpha-subunit, an AMP-binding gamma-subunit, and a scaffolding beta-subunit thought to bind directly both the alpha- and gamma-subunits. Here, we use coimmunoprecipitation of proteins in transiently transfected cells to show that the alpha2-subunit binds directly not only to the beta-subunit, confirming previous work, but also to the gamma1-subunit. Deletion analysis of the alpha2-subunit reveals that the C-terminal 386-552 residues are sufficient to bind to the beta-subunit. The gamma1-subunit binds directly to the alpha2-subunit at two interaction sites, one within the catalytic domain consisting of alpha2 amino acids 1-312 and a second within residues 386-552. Binding of the alpha2 and the gamma1-subunits was not affected by 400 mum AMP or ATP. Furthermore, we show that the beta-subunit C terminus is essential for binding to the alpha2-subunit but, in contrast to previous work, the beta-subunit does not bind directly to the gamma1-subunit. Taken together, this study presents a new model for AMPK heterotrimer structure where through its C terminus the beta-subunit binds to the alpha-subunit that, in turn, binds to the gamma-subunit. There is no direct interaction between the beta- and gamma-subunits.

  15. Antibody-mediated targeted gene transfer of helper virus-free HSV-1 vectors to rat neocortical neurons that contain either NMDA receptor 2B or 2A subunits.

    PubMed

    Cao, Haiyan; Zhang, Guo-rong; Geller, Alfred I

    2011-09-30

    Because of the numerous types of neurons in the brain, and particularly the forebrain, neuron type-specific expression will benefit many potential applications of direct gene transfer. The two most promising approaches for achieving neuron type-specific expression are targeted gene transfer to a specific type of neuron and using a neuron type-specific promoter. We previously developed antibody-mediated targeted gene transfer with Herpes Simplex Virus (HSV-1) vectors by modifying glycoprotein C (gC) to replace the heparin binding domain, which mediates the initial binding of HSV-1 particles to many cell types, with the Staphylococcus A protein ZZ domain, which binds immunoglobulin (Ig) G. We showed that a chimeric gC-ZZ protein is incorporated into vector particles and binds IgG. As a proof-of-principle for antibody-mediated targeted gene transfer, we isolated complexes of these vector particles and an anti-NMDA NR1 subunit antibody, and demonstrated targeted gene transfer to neocortical cells that contain NR1 subunits. However, because most forebrain neurons contain NR1, we obtained only a modest increase in the specificity of gene transfer, and this targeting specificity is of limited utility for physiological experiments. Here, we report efficient antibody-mediated targeted gene transfer to NMDA NR2B- or NR2A-containing cells in rat postrhinal cortex, and a neuron-specific promoter further restricted recombinant expression to neurons. Of note, because NR2A-containing neurons are relatively rare, these results show that antibody-mediated targeted gene transfer with HSV-1 vectors containing neuron type-specific promoters can restrict recombinant expression to specific types of forebrain neurons of physiological significance.

  16. Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening.

    PubMed

    Takemiya, Atsushi; Yamauchi, Shota; Yano, Takayuki; Ariyoshi, Chie; Shimazaki, Ken-ichiro

    2013-01-01

    Protein phosphatase 1 (PP1) is a eukaryotic serine/threonine protein phosphatase comprised of a catalytic subunit (PP1c) and a regulatory subunit that modulates catalytic activity, subcellular localization and substrate specificity. PP1c positively regulates stomatal opening through blue light signaling between phototropins and the plasma membrane H(+)-ATPase in guard cells. However, the regulatory subunit functioning in this process is unknown. We identified Arabidopsis PRSL1 (PP1 regulatory subunit2-like protein1) as a regulatory subunit of PP1c. Tautomycin, a selective inhibitor of PP1c, inhibited blue light responses of stomata in the single mutants phot1 and phot2, supporting the idea that signals from phot1 and phot2 converge on PP1c. We obtained PRSL1 based on the sequence similarity to Vicia faba PRS2, a PP1c-binding protein isolated by a yeast two-hybrid screen. PRSL1 bound to Arabidopsis PP1c through its RVxF motif, a consensus PP1c-binding sequence. Arabidopsis prsl1 mutants were impaired in blue light-dependent stomatal opening, H(+) pumping and phosphorylation of the H(+)-ATPase, but showed normal phototropin activities. PRSL1 complemented the prsl1 phenotype, but not if the protein carried a mutation in the RVxF motif, suggesting that PRSL1 functions through binding PP1c via the RVxF motif. PRSL1 did not affect the catalytic activity of Arabidopsis PP1c but it stimulated the localization of PP1c in the cytoplasm. We conclude that PRSL1 functions as a regulatory subunit of PP1 and regulates blue light signaling in stomata.

  17. Catalytic Reforming

    SciTech Connect

    Little, D.M.

    1985-01-01

    Don Little's Catalytic Reforming deals exclusively with reforming. With the increasing need for unleaded gasoline, the importance of this volume has escalated since it combines various related aspects of reforming technology into a single publication. For those with no practical knowledge of catalytic reforming, the chemical reactions, flow schemes and how the cat reformer fits into the overall refinery process will be of interest. Contents include: Catalytic reforming in refinery processing: How catalytic reformers work - chemical reactions; Process design; The catalyst, process variables and unit operation; Commercial processes; BTX operation; Feed preparation; naphtha hydrotreating and catalytic reforming; Index.

  18. STEP activation by Gαq coupled GPCRs opposes Src regulation of NMDA receptors containing the GluN2A subunit

    PubMed Central

    Tian, Meng; Xu, Jian; Lei, Gang; Lombroso, Paul J.; Jackson, Michael F.; MacDonald, John F.

    2016-01-01

    N-methyl-D-aspartate receptors (NMDARs) are necessary for the induction of synaptic plasticity and for the consolidation of learning and memory. NMDAR function is tightly regulated by functionally opposed families of kinases and phosphatases. Herein we show that the striatal-enriched protein tyrosine phosphatase (STEP) is recruited by Gαq-coupled receptors, including the M1 muscarinic acetylcholine receptor (M1R), and opposes the Src tyrosine kinase-mediated increase in the function of NMDARs composed of GluN2A. STEP activation by M1R stimulation requires IP3Rs and can depress NMDA-evoked currents with modest intracellular Ca2+ buffering. Src recruitment by M1R stimulation requires coincident NMDAR activation and can augment NMDA-evoked currents with high intracellular Ca2+ buffering. Our findings suggest that Src and STEP recruitment is contingent on differing intracellular Ca2+ dynamics that dictate whether NMDAR function is augmented or depressed following M1R stimulation. PMID:27857196

  19. Role of the NR2A/2B subunits of the N-methyl-D-aspartate receptor in glutamate-induced glutamic acid decarboxylase alteration in cortical GABAergic neurons in vitro.

    PubMed

    Monnerie, H; Hsu, F-C; Coulter, D A; Le Roux, P D

    2010-12-29

    The vulnerability of brain neuronal cell subpopulations to neurologic insults varies greatly. Among cells that survive a pathological insult, for example ischemia or brain trauma, some may undergo morphological and/or biochemical changes that may compromise brain function. The present study is a follow-up of our previous studies that investigated the effect of glutamate-induced excitotoxicity on the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67)'s expression in surviving DIV 11 cortical GABAergic neurons in vitro [Monnerie and Le Roux, (2007) Exp Neurol 205:367-382, (2008) Exp Neurol 213:145-153]. An N-methyl-D-aspartate receptor (NMDAR)-mediated decrease in GAD expression was found following glutamate exposure. Here we examined which NMDAR subtype(s) mediated the glutamate-induced change in GAD protein levels. Western blotting techniques on cortical neuron cultures showed that glutamate's effect on GAD proteins was not altered by NR2B-containing diheteromeric (NR1/NR2B) receptor blockade. By contrast, blockade of triheteromeric (NR1/NR2A/NR2B) receptors fully protected against a decrease in GAD protein levels following glutamate exposure. When receptor location on the postsynaptic membrane was examined, extrasynaptic NMDAR stimulation was observed to be sufficient to decrease GAD protein levels similar to that observed after glutamate bath application. Blocking diheteromeric receptors prevented glutamate's effect on GAD proteins after extrasynaptic NMDAR stimulation. Finally, NR2B subunit examination with site-specific antibodies demonstrated a glutamate-induced, calpain-mediated alteration in NR2B expression. These results suggest that glutamate-induced excitotoxic NMDAR stimulation in cultured GABAergic cortical neurons depends upon subunit composition and receptor location (synaptic vs. extrasynaptic) on the neuronal membrane. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered

  20. AMY-1 interacts with S-AKAP84 and AKAP95 in the cytoplasm and the nucleus, respectively, and inhibits cAMP-dependent protein kinase activity by preventing binding of its catalytic subunit to A-kinase-anchoring protein (AKAP) complex.

    PubMed

    Furusawa, Makoto; Taira, Takahiro; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2002-12-27

    We have reported that a novel c-Myc-binding protein, AMY-1, binds to cAMP-dependent protein kinase-anchoring protein 149 (AKAP149) and its splicing variant, AKAP84 and is localized in the mitochondria in a complex with RII, a regulatory subunit of cAMP-dependent protein kinase (PKA) (Furusawa, M., Ohnishi, T., Taira, T., Iguchi-Ariga, S. M. M., and Ariga, H. (2001) J. Biol. Chem. 276, 36647-36651). In this study, we further found that AMY-1 competitively bound to either AKAP95 or AKAP84 in the nucleus and the cytoplasm, respectively, in a concentration-dependent manner of either AKAP. Like AKAP84, AMY-1 was found to bind to the RII-binding region of AKAP95 in vivo and in vitro and to make a ternary complex with RII. It was also found that the formation of the complex of AMY-1 with AKAP84/95 and RII prevented a catalytic subunit from binding to this AKAP complex, leading to suppression of PKA activity. These findings suggest that AMY-1 is an important modulator of PKA.

  1. Interactions between beta D372 and gamma subunit N-terminus residues gamma K9 and gamma S12 are important to catalytic activity catalyzed by Escherichia coli F1F0-ATP synthase.

    PubMed

    Lowry, David S; Frasch, Wayne D

    2005-05-17

    Substitution of Escherichia coli F(1)F(0) ATP synthase residues betaD372 or gammaS12 with groups that are unable to form a hydrogen bond at this location decreased ATP synthase-dependent cell growth by 2 orders of magnitude, eliminated the ability of F(1)F(0) to catalyze ATPase-dependent proton pumping in inverted E. coli membranes, caused a 15-20% decrease in the coupling efficiency of the membranes as measured by the extent of succinate-dependent acridine orange fluorescence quenching, but increased soluble F(1)-ATPase activity by about 10%. Substitution of gammaK9 to eliminate the ability to form a salt bridge with betaD372 decreased soluble F(1)-ATPase activity and ATPase-driven proton pumping by 2-fold but had no effect on the proton gradient induced by addition of succinate. Mutations to eliminate the potential to form intersubunit hydrogen bonds and salt bridges between other less highly conserved residues on the gamma subunit N-terminus and the beta subunits had little effect on ATPase or ATP synthase activities. These results suggest that the betaD372-gammaK9 salt bridge contributes significantly to the rate-limiting step in ATP hydrolysis of soluble F(1) while the betaD372-gammaS12 hydrogen bond may serve as a component of an escapement mechanism for ATP synthesis in which alphabetagamma intersubunit interactions provide a means to make substrate binding a prerequisite of proton gradient-driven gamma subunit rotation.

  2. Single-channel analysis of a point mutation of a conserved serine residue in the S2 ligand-binding domain of the NR2A NMDA receptor subunit.

    PubMed

    Wyllie, David J A; Johnston, Alexander R; Lipscombe, Diane; Chen, Philip E

    2006-07-15

    We have examined the function of a conserved serine residue (Ser670) in the S2 ligand-binding region of the NR2A N-methyl-d-aspartate (NMDA) receptor subunit, using recombinant NR1/NR2A receptors expressed in Xenopus laevis oocytes. Mutation of Ser670 to glycine (S670G) in NR2A reduced the potency of glutamate by 124-fold. Single-channel conductance and the duration of apparent open periods of NR2A(S670G) receptor mutants were, however, indistinguishable from wild-type NMDA receptors. NR1/NR2A(S670G) shut-time distributions were best described by a mixture of six exponential components, and the four shortest shut intervals of each distribution were considered to occur within a channel activation (burst). Bursts of single-channel openings were fitted with a mixture of four exponential components. The longest two components carried the majority of the charge transfer and had mean durations of 9.6 +/- 0.5 and 29.6 +/- 1.5 ms. The overall channel open probability during a burst was high (mean, 0.83 +/- 0.06). Consistent with a shortening of NMDA receptor-channel burst lengths was the observation of an increased deactivation rate of macroscopic currents evoked by brief applications of glutamate to outside-out membrane patches. Correlations between shut times and adjacent open times were observed in all data records. Noticeably, shorter than average openings tended to occur next to long closed periods, whereas longer than average openings tended to occur next to short closings. Our single-channel data, together with modelling using a kinetic scheme to describe channel activations, support our hypothesis that the S670G point mutation reduces the dwell time of glutamate in its binding site.

  3. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling.

    PubMed Central

    Janssens, V; Goris, J

    2001-01-01

    Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon. PMID:11171037

  4. Nicotine and ethanol activate protein kinase A synergistically via G(i) betagamma subunits in nucleus accumbens/ventral tegmental cocultures: the role of dopamine D(1)/D(2) and adenosine A(2A) receptors.

    PubMed

    Inoue, Yuichiro; Yao, Lina; Hopf, F Woodward; Fan, Peidong; Jiang, Zhan; Bonci, Antonello; Diamond, Ivan

    2007-07-01

    Tobacco and alcohol are the most commonly used drugs of abuse and show the most serious comorbidity. The mesolimbic dopamine system contributes significantly to nicotine and ethanol reinforcement, but the underlying cellular signaling mechanisms are poorly understood. Nicotinic acetylcholine (nACh) receptors are highly expressed on ventral tegmental area (VTA) dopamine neurons, with relatively low expression in nucleus accumbens (NAcb) neurons. Because dopamine receptors D(1) and D(2) are highly expressed on NAcb neurons, nicotine could influence NAcb neurons indirectly by activating VTA neurons to release dopamine in the NAcb. To investigate this possibility in vitro, we established primary cultures containing neurons from VTA or NAcb separately or in cocultures. Nicotine increased cAMP response element-mediated gene expression only in cocultures; this increase was blocked by nACh or dopamine D(1) or D(2) receptor antagonists. Furthermore, subthreshold concentrations of nicotine with ethanol increased gene expression in cocultures, and this increase was blocked by nACh, D(2) or adenosine A(2A) receptor antagonists, Gbetagamma or protein kinase A (PKA) inhibitors, and adenosine deaminase. These results suggest that nicotine activated VTA neurons, causing the release of dopamine, which in turn stimulated both D(1) and D(2) receptors on NAcb neurons. In addition, subthreshold concentrations of nicotine and ethanol in combination also activated NAcb neurons through synergy between D(2) and A(2A) receptors. These data provide a novel cellular mechanism, involving Gbetagamma subunits, A(2A) receptors, and PKA, whereby combined use of tobacco and alcohol could enhance the reinforcing effect in humans as well as facilitate long-term neuroadaptations, increasing the risk for developing coaddiction.

  5. MiR-1 Overexpression Enhances Ca2+ release and Promotes Cardiac Arrhythmogenesis by Targeting PP2A Regulatory Subunit B56α and Causing CaMKII-Dependent Hyperphosphorylation of RyR2

    PubMed Central

    Terentyev, Dmitry; Belevych, Andriy E.; Terentyeva, Radmila; Martin, Mickey M.; Malana, Geraldine E.; Kuhn, Donald E.; Abdellatif, Maha; Feldman, David S; Elton, Terry S.; Gyorke, Sandor

    2015-01-01

    MicroRNAs are small endogenous noncoding RNAs that regulate protein expression by hybridization to imprecise complementary sequences of target mRNAs. Changes in abundance of muscle-specific microRNA, miR-1, have been implicated in cardiac disease, including arrhythmia and heart failure. However, the specific molecular targets and cellular mechanisms involved in the action of miR-1 in the heart are only beginning to emerge. In this study we investigated the effects of increased expression of miR-1 on excitation-contraction coupling and Ca2+ cycling in rat ventricular myocytes using methods of electrophysiology, Ca2+ imaging and quantitative immunoblotting. Adenoviral-mediated overexpression of miR-1 in myocytes resulted in a marked increase in the amplitude of the inward Ca2+ current, flattening of Ca2+ transients voltage dependency and enhanced frequency of spontaneous Ca2+ sparks while reducing the sarcoplasmic reticulum Ca2+ content as compared with control. In the presence of isoproterenol, rhythmically paced, miR-1-overexpressing myocytes exhibited spontaneous arrhythmogenic oscillations of intracellular Ca2+, events that occurred rarely in control myocytes under the same conditions. The effects of miR-1 were completely reversed by the CaMKII inhibitor KN93. Although phosphorylation of phospholamban was not altered, miR-1 overexpression increased phosphorylation of the ryanodine receptor (RyR2) at S2814 (CaMKII) but not at S2808 (PKA). Overexpression of miR-1 was accompanied by a selective decrease in expression of the protein phosphatase PP2A regulatory subunit B56α involved in PP2A targeting to specialized subcellular domains. We conclude that miR-1 enhances cardiac excitation-contraction coupling by selectively increasing phosphorylation of the L-type and RyR2 channels via disrupting localization of PP2A activity to these channels. PMID:19131648

  6. Autosomal-Recessive Mutations in the tRNA Splicing Endonuclease Subunit TSEN15 Cause Pontocerebellar Hypoplasia and Progressive Microcephaly.

    PubMed

    Breuss, Martin W; Sultan, Tipu; James, Kiely N; Rosti, Rasim O; Scott, Eric; Musaev, Damir; Furia, Bansri; Reis, André; Sticht, Heinrich; Al-Owain, Mohammed; Alkuraya, Fowzan S; Reuter, Miriam S; Abou Jamra, Rami; Trotta, Christopher R; Gleeson, Joseph G

    2016-07-07

    The tRNA splicing endonuclease is a highly evolutionarily conserved protein complex, involved in the cleavage of intron-containing tRNAs. In human it consists of the catalytic subunits TSEN2 and TSEN34, as well as the non-catalytic TSEN54 and TSEN15. Recessive mutations in the corresponding genes of the first three are known to cause pontocerebellar hypoplasia (PCH) types 2A-C, 4, and 5. Here, we report three homozygous TSEN15 variants that cause a milder version of PCH2. The affected individuals showed progressive microcephaly, delayed developmental milestones, intellectual disability, and, in two out of four cases, epilepsy. None, however, displayed the central visual failure seen in PCH case subjects where other subunits of the TSEN are mutated, and only one was affected by the extensive motor defects that are typical in other forms of PCH2. The three amino acid substitutions impacted the protein level of TSEN15 and the stoichiometry of the interacting subunits in different ways, but all resulted in an almost complete loss of in vitro tRNA cleavage activity. Taken together, our results demonstrate that mutations in any known subunit of the TSEN complex can cause PCH and progressive microcephaly, emphasizing the importance of its function during brain development.

  7. Effects of anthocyanidins and anthocyanins on the expression and catalytic activities of CYP2A6, CYP2B6, CYP2C9, and CYP3A4 in primary human hepatocytes and human liver microsomes.

    PubMed

    Srovnalova, Alzbeta; Svecarova, Michaela; Zapletalova, Michaela Kopecna; Anzenbacher, Pavel; Bachleda, Petr; Anzenbacherova, Eva; Dvorak, Zdenek

    2014-01-22

    Anthocyanidins and anthocyanins are pharmacologically active constituents of various berry fruits, such as blueberry and cranberry. These compounds are also contained in massively used nutritional supplements based on extracts or dry matter from berry fruits. The current study evaluated the effects of anthocyanidins and anthocyanins on the expression and catalytic activity of major drug-metabolizing enzymes CYP2C9, CYP2A6, CYP2B6, and CYP3A4 in primary cultures of human hepatocytes and human liver microsomes. Expression of mRNA was quantified by qRT-PCR. Expression of proteins was evaluated by Western blotting and immunochemiluminescence. The catalytic activity of CYP enzymes was measured by HPLC using specific enzyme substrates. Tested anthocyanidins (6) and anthocyanins (21) did not induce the expression of mRNA and protein of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 genes in human hepatocytes. Catalytic activities of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 enzymes were inhibited by all anthocyanidins to different extents (e.g., delphinidin inhibits CYP3A4 by >90% at 100 μM with IC50 = 32 μM). Of 21 anthocyanins tested, only cyanidin-3-O-rhamnoside (CYP3A4 by >75% at 100 μM with IC50 = 44 μM) and two glycosides of delphinidin significantly inhibited examined cytochromes P450. It may be concluded that in the ranges of common ingestion of either food or dietary supplement an induction or significant inhibition of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 activity is most probably not expected.

  8. Sodium channel auxiliary subunits.

    PubMed

    Tseng, Tsai-Tien; McMahon, Allison M; Johnson, Victoria T; Mangubat, Erwin Z; Zahm, Robert J; Pacold, Mary E; Jakobsson, Eric

    2007-01-01

    Voltage-gated ion channels are well known for their functional roles in excitable tissues. Excitable tissues rely on voltage-gated ion channels and their auxiliary subunits to achieve concerted electrical activity in living cells. Auxiliary subunits are also known to provide functional diversity towards the transport and biogenesis properties of the principal subunits. Recent interests in pharmacological properties of these auxiliary subunits have prompted significant amounts of efforts in understanding their physiological roles. Some auxiliary subunits can potentially serve as drug targets for novel analgesics. Three families of sodium channel auxiliary subunits are described here: beta1 and beta3, beta2 and beta4, and temperature-induced paralytic E (TipE). While sodium channel beta-subunits are encoded in many animal genomes, TipE has only been found exclusively in insects. In this review, we present phylogenetic analyses, discuss potential evolutionary origins and functional data available for each of these subunits. For each family, we also correlate the functional specificity with the history of evolution for the individual auxiliary subunits.

  9. Glycogen synthase kinase-3β regulates leucine-309 demethylation of protein phosphatase-2A via PPMT1 and PME-1.

    PubMed

    Yao, Xiu-Qing; Li, Xia-Chun; Zhang, Xiao-Xue; Yin, Yang-Yang; Liu, Bin; Luo, Dan-Ju; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2012-07-30

    Protein phosphatase-2A (PP2A) activity is significantly suppressed in Alzheimer's disease. We have reported that glycogen synthase kinase-3β (GSK-3β) inhibits PP2A via upregulating the phosphorylation of PP2A catalytic subunit (PP2A(C)). Here we studied the effects of GSK-3β on the inhibitory demethylation of PP2A at leucine-309 (dmL309-PP2A(C)). We found that GSK-3β regulates dmL309-PP2A(C) level by regulating PME-1 and PPMT1. Knockdown of PME-1 or PPMT1 eliminated the effects of GSK-3β on PP2A(C). GSK-3 could negatively regulate PP2A regulatory subunit protein level. We conclude that GSK-3β can inhibit PP2A by increasing the inhibitory L309-demethylation involving upregulation of PME-1 and inhibition of PPMT1.

  10. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase type 5 (PP5)

    NASA Technical Reports Server (NTRS)

    Swingle, Mark R.; Ciszak, Ewa M.; Honkanen, Richard E.

    2004-01-01

    Serine/threonine protein phosphatase-5 (PP5) is a member of the PPP-gene family of protein phosphatases that is widely expressed in mammalian tissues and is highly conserved among eukaryotes. PP5 associates with several proteins that affect signal transduction networks, including the glucocorticoid receptor (GR)-heat shock protein-90 (Hsp90)-heterocomplex, the CDC16 and CDC27 subunits of the anaphase-promoting complex, elF2alpha kinase, the A subunit of PP2A, the G12-alpha / G13-alpha subunits of heterotrimeric G proteins and DNA-PK. The catalytic domain of PP5 (PP5c) shares 35-45% sequence identity with the catalytic domains of other PPP-phosphatases, including protein phosphatase-1 (PP1), -2A (PP2A), -2B / calcineurin (PP2B), -4 (PP4), -6 (PP6), and -7 (PP7). Like PP1, PP2A and PP4, PP5 is also sensitive to inhibition by okadaic acid, microcystin, cantharidin, tautomycin, and calyculin A. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 angstroms. From this structure we propose a mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1):M(sub 2)-W(sup 1)-His(sup 304)-Asp(sup 274) catalytic motif. The structure of PP5c provides a possible structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  11. FAM122A, a new endogenous inhibitor of protein phosphatase 2A

    PubMed Central

    Fan, Li; Liu, Man-Hua; Guo, Meng; Hu, Chuan-Xi; Yan, Zhao-Wen; Chen, Jing; Chen, Guo-Qiang; Huang, Ying

    2016-01-01

    The regulation of the ubiquitously expressed protein phosphatase 2A (PP2A) is essential for various cellular functions such as cell proliferation, transformation, and fate determination. In this study, we demonstrate that the highly conserved protein in mammals, designated FAM122A, directly interacts with PP2A-Aα and B55α rather than B56α subunits, and inhibits the phosphatase activity of PP2A-Aα/B55α/Cα complex. Further, FAM122A potentiates the degradation of catalytic subunit PP2A-Cα with the increased poly-ubiquitination. In agreement, FAM122A silencing inhibits while its overexpression enhances cell growth and colony-forming ability. Collectively, we identify FAM122A as a new endogenous PP2A inhibitor and its physiological and pathophysiological significances warrant to be further investigated. PMID:27588481

  12. Specific Inhibition of Herpes Simplex Virus DNA Polymerase by Helical Peptides Corresponding to the Subunit Interface

    NASA Astrophysics Data System (ADS)

    Digard, Paul; Williams, Kevin P.; Hensley, Preston; Brooks, Ian S.; Dahl, Charles E.; Coen, Donald M.

    1995-02-01

    The herpes simplex virus DNA polymerase consists of two subunits-a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial α-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of α-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase δ and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.

  13. Differential expression of the protein kinase A subunits in normal adrenal glands and adrenocortical adenomas.

    PubMed

    Weigand, Isabel; Ronchi, Cristina L; Rizk-Rabin, Marthe; Dalmazi, Guido Di; Wild, Vanessa; Bathon, Kerstin; Rubin, Beatrice; Calebiro, Davide; Beuschlein, Felix; Bertherat, Jérôme; Fassnacht, Martin; Sbiera, Silviu

    2017-12-01

    Somatic mutations in protein kinase A catalytic α subunit (PRKACA) were found to be causative for 30-40% of cortisol-producing adenomas (CPA) of the adrenal gland, rendering PKA signalling constitutively active. In its resting state, PKA is a stable and inactive heterotetramer, consisting of two catalytic and two regulatory subunits with the latter inhibiting PKA activity. The human genome encodes three different PKA catalytic subunits and four different regulatory subunits that are preferentially expressed in different organs. In normal adrenal glands all regulatory subunits are expressed, while CPA exhibit reduced protein levels of the regulatory subunit IIβ. In this study, we linked for the first time the loss of RIIβ protein levels to the PRKACA mutation status and found the down-regulation of RIIβ to arise post-transcriptionally. We further found the PKA subunit expression pattern of different tumours is also present in the zones of the normal adrenal cortex and demonstrate that the different PKA subunits have a differential expression pattern in each zone of the normal adrenal gland, indicating potential specific roles of these subunits in the regulation of different hormones secretion.

  14. A new sodium channel alpha-subunit gene (Scn9a) from Schwann cells maps to the Scn1a, Scn2a, Scn3a cluster of mouse chromosome 2.

    PubMed

    Beckers, M C; Ernst, E; Belcher, S; Howe, J; Levenson, R; Gros, P

    1996-08-15

    We have used a total of 27 AXB/BXA recombinant inbred mouse strains to determine the chromosomal location of a newly identified gene encoding an alpha-subunit isoform of the sodium channel from Schwann cells, Scn9a. Linkage analysis established that Scn9a mapped to the proximal segment of mouse chromosome 2. The segregation of restriction fragment length polymorphisms in 145 progeny from a Mus spretus x C57BL/6J backcross indicates that Scn9a is very tightly linked to Scn1a (gene encoding the type I sodium channel alpha-subunit of the brain) and forms part of a cluster of four Scna genes located on mouse chromosome 2.

  15. Localization of the gene encoding the [alpha][sub 2]/[delta] subunit (CACNL2A) of the human skeletal muscle voltage-dependent Ca[sup 2+] channel to chromosome 7q21-q22 by somatic cell hybrid analysis

    SciTech Connect

    Powers, P.A.; Hogan, K.; Gregg, R.G. ); Scherer, S.W.; Tsui, L.C. Hospital for Sick Children, Ontario )

    1994-01-01

    Activation of voltage-dependent calcium channels (VDCCs) by membrane depolarization triggers key cellular responses such as contraction, secretion, excitation, and electrical signaling. The skeletal muscle L-type VDCC is a heteromultimer complex containing four subunits, [alpha][sub 1],[alpha][sub 2]/[delta],[beta][sub 1], and [gamma]. The [alpha][sub 2]/[delta] subunit, an integral component of the VDCC, appears to modulate the channel kinetics. The [alpha][sub 2]/[delta] gene is expressed in many tissues, including skeletal muscle, brain, heart, and lung, and cDNAs representing the skeletal muscle and brain isoforms have been isolated. DNA sequence comparisons indicate that these cDNAs are encoding by a single gene. 15 refs., 1 fig.

  16. Individual Interactions of the b Subunits within the Stator of the Escherichia coli ATP Synthase*

    PubMed Central

    Brandt, Karsten; Maiwald, Sarah; Herkenhoff-Hesselmann, Brigitte; Gnirß, Kerstin; Greie, Jörg-Christian; Dunn, Stanley D.; Deckers-Hebestreit, Gabriele

    2013-01-01

    FOF1 ATP synthases are rotary nanomotors that couple proton translocation across biological membranes to the synthesis/hydrolysis of ATP. During catalysis, the peripheral stalk, composed of two b subunits and subunit δ in Escherichia coli, counteracts the torque generated by the rotation of the central stalk. Here we characterize individual interactions of the b subunits within the stator by use of monoclonal antibodies and nearest neighbor analyses via intersubunit disulfide bond formation. Antibody binding studies revealed that the C-terminal region of one of the two b subunits is principally involved in the binding of subunit δ, whereas the other one is accessible to antibody binding without impact on the function of FOF1. Individually substituted cysteine pairs suitable for disulfide cross-linking between the b subunits and the other stator subunits (b-α, b-β, b-δ, and b-a) were screened and combined with each other to discriminate between the two b subunits (i.e. bI and bII). The results show the b dimer to be located at a non-catalytic α/β cleft, with bI close to subunit α, whereas bII is proximal to subunit β. Furthermore, bI can be linked to subunit δ as well as to subunit a. Among the subcomplexes formed were a-bI-α, bII-β, α-bI-bII-β, and a-bI-δ. Taken together, the data obtained define the different positions of the two b subunits at a non-catalytic interface and imply that each b subunit has a different role in generating stability within the stator. We suggest that bI is functionally related to the single b subunit present in mitochondrial ATP synthase. PMID:23846684

  17. Protein Phosphatase 2A Signaling in Human Prostate Cancer

    DTIC Science & Technology

    2012-06-01

    immunoblot and malachite green based assay, respectively. We observe that LNCaP- shPPP2CA cells have low PP2ACα expression (Figure 1A) and activity...regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 2001;353:417-39. (6) Jennbacken K, Gustavsson H...cancer cells - - - shPPP2CA. Expression and activity of catalytic subunit of PP2A (PP2ACα) was determined by immunoblot and melachite green - based

  18. Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity.

    PubMed

    Elbing, Karin; Rubenstein, Eric M; McCartney, Rhonda R; Schmidt, Martin C

    2006-09-08

    The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.

  19. Cloning, sequence determination, and regulation of the ribonucleotide reductase subunits from Plasmodium falciparum: a target for antimalarial therapy.

    PubMed Central

    Rubin, H; Salem, J S; Li, L S; Yang, F D; Mama, S; Wang, Z M; Fisher, A; Hamann, C S; Cooperman, B S

    1993-01-01

    Malaria remains a leading cause of morbidity and mortality worldwide, accounting for more than one million deaths annually. We have focused on the reduction of ribonucleotides to 2'-deoxyribonucleotides, catalyzed by ribonucleotide reductase, which represents the rate-determining step in DNA replication as a target for antimalarial agents. We report the full-length DNA sequence corresponding to the large (PfR1) and small (PfR2) subunits of Plasmodium falciparum ribonucleotide reductase. The small subunit (PfR2) contains the major catalytic motif consisting of a tyrosyl radical and a dinuclear Fe site. Whereas PfR2 shares 59% amino acid identity with human R2, a striking sequence divergence between human R2 and PfR2 at the C terminus may provide a selective target for inhibition of the malarial enzyme. A synthetic oligopeptide corresponding to the C-terminal 7 residues of PfR2 inhibits mammalian ribonucleotide reductase at concentrations approximately 10-fold higher than that predicted to inhibit malarial R2. The gene encoding the large subunit (PfR1) contains a single intron. The cysteines thought to be involved in the reduction mechanism are conserved. In contrast to mammalian ribonucleotide reductase, the genes for PfR1 and PfR2 are located on the same chromosome and the accumulation of mRNAs for the two subunits follow different temporal patterns during the cell cycle. Images Fig. 2 Fig. 4 Fig. 5 PMID:8415692

  20. Catalytic reforming

    SciTech Connect

    Aldag, A.W. Jr.

    1986-01-28

    This patent describes a process for the catalytic reforming of a feedstock which contains at least one reformable organic compound. The process consists of contacting the feedstock under suitable reforming conditions with a catalyst composition selected from the group consisting of a catalyst. The catalyst essentially consists of zinc oxide and a spinel structure alumina. Another catalyst consists essentially of a physical mixture of zinc titanate and a spinel structure alumina in the presence of sufficient added hydrogen to substantially prevent the formation of coke. Insufficient zinc is present in the catalyst composition for the formation of a bulk zinc aluminate.

  1. The subunit composition and function of mammalian cytochrome c oxidase.

    PubMed

    Kadenbach, Bernhard; Hüttemann, Maik

    2015-09-01

    Cytochrome c oxidase (COX) from mammals and birds is composed of 13 subunits. The three catalytic subunits I-III are encoded by mitochondrial DNA, the ten nuclear-coded subunits (IV, Va, Vb, VIa, VIb, VIc, VIIa, VIIb, VIIc, VIII) by nuclear DNA. The nuclear-coded subunits are essentially involved in the regulation of oxygen consumption and proton translocation by COX, since their removal or modification changes the activity and their mutation causes mitochondrial diseases. Respiration, the basis for ATP synthesis in mitochondria, is differently regulated in organs and species by expression of tissue-, developmental-, and species-specific isoforms for COX subunits IV, VIa, VIb, VIIa, VIIb, and VIII, but the holoenzyme in mammals is always composed of 13 subunits. Various proteins and enzymes were shown, e.g., by co-immunoprecipitation, to bind to specific COX subunits and modify its activity, but these interactions are reversible, in contrast to the tightly bound 13 subunits. In addition, the formation of supercomplexes with other oxidative phosphorylation complexes has been shown to be largely variable. The regulatory complexity of COX is increased by protein phosphorylation. Up to now 18 phosphorylation sites have been identified under in vivo conditions in mammals. However, only for a few phosphorylation sites and four nuclear-coded subunits could a specific function be identified. Research on the signaling pathways leading to specific COX phosphorylations remains a great challenge for understanding the regulation of respiration and ATP synthesis in mammalian organisms. This article reviews the function of the individual COX subunits and their isoforms, as well as proteins and small molecules interacting and regulating the enzyme.

  2. Gene expression studies of mRNAs encoding the NMDA receptor subunits NMDAR1, NMDAR2A, NMDAR2B, NMDAR2C, and NMDAR2D following long-term treatment with cis-and trans-flupenthixol as a model for understanding the mode of action of schizophrenia drug treatment.

    PubMed

    Chen, A C; McDonald, B; Moss, S J; Gurling, H M

    1998-02-01

    It has been hypothesized that glutamate receptor function is important in both the aetiology and treatment of schizophrenia. In order to understand how specific glutamate receptor genes are involved in the treatment of schizophrenia we have used a multiprobe oligonucleotide solution hybridization (MOSH) technique to examine the regulation of gene express of the NMDAR1, 2A, 2B, 2C, 2D receptor subunits in the left rat brain following treatment with the optical isomers of flupenthixol. cis- and trans-flupenthixol are both present in the commonly used oral and depot treatments for schizophrenia and a controlled trial showed that cis-flupenthixol had a significantly superior ability to ameliorate the positive symptoms of schizophrenia compared to its trans-isomer. At a dose of 0.2 mg/kg/day over a period of 1, 2, 4, 8, 12 and 24 weeks, we found that both isomers down regulated the expression of NMDAR1 mRNA in most regions of the brain. NMDAR2A, 2B and 2C receptor subunits showed a significantly decreased expression from 12 to 24 weeks but after 2 weeks NMDAR2B, 2C, 2D expression was increased in several brain regions. The NMDAR1 receptor subunit immunoreactivity in the right brain following 4 and 24 weeks of drug treatment was also examined by Western blotting. Both trans- and cis-flupenthixol significantly decreased the NR1 immunoreactivity in the right cerebellum after 24 weeks of treatment. These results suggest that NMDA receptor subunits may have a role in the action of antipsychotic drugs. If we assume that the NMDA receptor expression changes reflect a beneficial and significant mechanism in the treatment of schizophrenia, it could be argued that NMDA receptor changes are more related to the negative or non-specific symptoms of schizophrenia.

  3. Catalytic reactor

    SciTech Connect

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  4. Protein Expression of Proteasome Subunits in Elderly Patients with Schizophrenia

    PubMed Central

    Scott, Madeline R; Rubio, Maria D; Haroutunian, Vahram; Meador-Woodruff, James H

    2016-01-01

    The ubiquitin proteasome system (UPS) is a major regulator of protein processing, trafficking, and degradation. While protein ubiquitination is utilized for many cellular processes, one major function of this system is to target proteins to the proteasome for degradation. In schizophrenia, studies have found UPS transcript abnormalities in both blood and brain, and we have previously reported decreased protein expression of ubiquitin-associated proteins in brain. To test whether the proteasome is similarly dysregulated, we measured the protein expression of proteasome catalytic subunits as well as essential subunits from proteasome regulatory complexes in 14 pair-matched schizophrenia and comparison subjects in superior temporal cortex. We found decreased expression of Rpt1, Rpt3, and Rpt6, subunits of the 19S regulatory particle essential for ubiquitin-dependent degradation by the proteasome. Additionally, the α subunit of the 11S αβ regulatory particle, which enhances proteasomal degradation of small peptides and unfolded proteins, was also decreased. Haloperidol-treated rats did not have altered expression of these subunits, suggesting the changes we observed in schizophrenia are likely not due to chronic antipsychotic treatment. Interestingly, expression of the catalytic subunits of both the standard and immunoproteasome were unchanged, suggesting the abnormalities we observed may be specific to the complexed state of the proteasome. Aging has significant effects on the proteasome, and several subunits (20S β2, Rpn10, Rpn13, 11Sβ, and 11Sγ) were significantly correlated with subject age. These data provide further evidence of dysfunction of the ubiquitin-proteasome system in schizophrenia, and suggest that altered proteasome activity may be associated with the pathophysiology of this illness. PMID:26202105

  5. Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals.

    PubMed

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2004-05-01

    A protein phosphatase holo-type enzyme (38, 65, and 75 kDa) preparation and a free catalytic subunit (38 kDa) purified from tulip petals were characterized as protein phosphatase 2A (PP2A) by immunological and biochemical approaches. The plasma membrane containing the putative plasma membrane aquaporin (PM-AQP) was prepared from tulip petals, phosphorylated in vitro, and used as the substrate for both of the purified PP2A preparations. Although both preparations dephosphorylated the phosphorylated PM-AQP at 20 degrees C, only the holo-type enzyme preparation acted at 5 degrees C on the phosphorylated PM-AQP with higher substrate specificity, suggesting that regulatory subunits are required for low temperature-dependent dephosphorylation of PM-AQP in tulip petals.

  6. Transcriptional regulators of Na,K-ATPase subunits

    PubMed Central

    Li, Zhiqin; Langhans, Sigrid A.

    2015-01-01

    The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease. PMID:26579519

  7. Organocatalysis in heterocyclic synthesis: DABCO as a mild and efficient catalytic system for the synthesis of a novel class of quinazoline, thiazolo [3,2-a]quinazoline and thiazolo[2,3-b] quinazoline derivatives

    PubMed Central

    2013-01-01

    Background There are only limited publications devoted to the synthesis of especially thiazolo[3,2-a]quinazoline which involved reaction of 2-mercaptopropargyl quinazolin-4-one with various aryl iodides catalyzed by Pd-Cu or by condensation of 2-mercapto-4-oxoquinazoline with chloroacetic acid, inspite of this procedure was also reported in the literature to afford the thiazolo [2,3-b] quinazoline. So the multistep synthesis of the thiazolo[3,2-a]- quinazoline suffered from some flaws and in this study we have synthesized a novel class of thiazoloquinazolines by a simple and convenient method involving catalysis by 1,4-diazabicyclo[2.2.2]octane (DABCO). Results A new and convenient one-pot synthesis of a novel class of 2-arylidene-2H-thiazolo[3,2-a]quinazoline-1,5-diones 9a-i was established through the reaction between methyl-2-(2-thio-cyanatoacetamido)benzoate (4) and a variety of arylidene malononitriles 8a-i in the presence of DABCO as a mild and efficient catalytic system via a Michael type addition reaction and a mechanism for formation of the products observed is proposed. Moreover 4 was converted to ethyl-2-[(4-oxo-3,4-dihydroquinazolin-2-yl)thio]acetate (10) upon reflux in ethanol containing DABCO as catalyst. The latter was reacted with aromatic aldehydes and dimethylformamide dimethylacetal (DMF-DMA) to afford a mixture of two regioselectively products with identical percentage yield, these two products were identified as thiazolo[3,2-a]quinazoline 9,13 and thiazolo[2,3-b]quinazoline 11,12 derivatives respectively. The structure of the compounds prepared in this study was elucidated by different spectroscopic tools of analyses also the X-ray single crystal technique was employed in this study for structure elucidation, Z/E potential isomerism configuration determination and to determine the regioselectivity of the reactions. Conclusion A simple and efficient one-pot synthesis of a novel class of 2-arylidene-2H-thiazolo[3,2-a]quinazoline-1,5-diones 9a

  8. Genetic analysis of neuronal ionotropic glutamate receptor subunits.

    PubMed

    Granger, Adam J; Gray, John A; Lu, Wei; Nicoll, Roger A

    2011-09-01

    In the brain, fast, excitatory synaptic transmission occurs primarily through AMPA- and NMDA-type ionotropic glutamate receptors. These receptors are composed of subunit proteins that determine their biophysical properties and trafficking behaviour. Therefore, determining the function of these subunits and receptor subunit composition is essential for understanding the physiological properties of synaptic transmission. Here, we discuss and evaluate various genetic approaches that have been used to study AMPA and NMDA receptor subunits. These approaches have demonstrated that the GluA1 AMPA receptor subunit is required for activity-dependent trafficking and contributes to basal synaptic transmission, while the GluA2 subunit regulates Ca(2+) permeability, homeostasis and trafficking to the synapse under basal conditions. In contrast, the GluN2A and GluN2B NMDA receptor subunits regulate synaptic AMPA receptor content, both during synaptic development and plasticity. Ongoing research in this field is focusing on the molecular interactions and mechanisms that control these functions. To accomplish this, molecular replacement techniques are being used, where native subunits are replaced with receptors containing targeted mutations. In this review, we discuss a single-cell molecular replacement approach which should arguably advance our physiological understanding of ionotropic glutamate receptor subunits, but is generally applicable to study of any neuronal protein.

  9. Identification and isolation of three proteasome subunits and their encoding genes from Trypanosoma brucei.

    PubMed

    Huang, L; Shen, M; Chernushevich, I; Burlingame, A L; Wang, C C; Robertson, C D

    1999-08-20

    We have determined peptide sequences of three Trypanosoma brucei proteasome subunit proteins by mass spectrometry of tryptic digests of the proteins purified by two-dimensional (2-D) polyacrylamide gel electrophoresis. Three genes identified by the sequence of their cDNA encode the peptides identified in these three proteins. The three proteins predicted from the gene sequences have significant similarity to other known proteasome subunits and represent an alpha6 type subunit (TbPSA6), and two beta-type subunits belonging to the beta1-type (TbPSB1) and beta2 type (TbPSB2). The sequences of both beta-subunits predict formation of catalytically active subunits through proteolytic processing. The prediction is supported by the presence in each of the two beta-subunits of a tryptic peptide that has the correctly processed N-terminus that creates the threonine nucleophile of the mature protein. This peptide cannot be generated by trypsin because of the required cleavage of a glycine-threonine bond. It is thus likely that there are at least two catalytically active beta-subunits, TbPSB1 and TbPSB2, present in the mature 20S proteasome from T. brucei.

  10. F-subunit reinforces torque generation in V-ATPase.

    PubMed

    Kishikawa, Jun-ichi; Seino, Akihiko; Nakanishi, Atsuko; Tirtom, Naciye Esma; Noji, Hiroyuki; Yokoyama, Ken; Hayashi, Kumiko

    2014-09-01

    Vacuolar-type H(+)-pumping ATPases (V-ATPases) perform remarkably diverse functions in eukaryotic organisms. They are present in the membranes of many organelles and regulate the pH of several intracellular compartments. A family of V-ATPases is also present in the plasma membranes of some bacteria. Such V-ATPases function as ATP-synthases. Each V-ATPase is composed of a water-soluble domain (V1) and a membrane-embedded domain (Vo). The ATP-driven rotary unit, V[Formula: see text], is composed of A, B, D, and F subunits. The rotary shaft (the DF subcomplex) rotates in the central cavity of the A3B3-ring (the catalytic hexamer ring). The D-subunit, which has a coiled-coil domain, penetrates into the ring, while the F-subunit is a globular-shaped domain protruding from the ring. The minimal ATP-driven rotary unit of V[Formula: see text] is comprised of the A3B3D subunits, and we therefore investigated how the absence of the globular-shaped F-subunit affects the rotary torque generation of V[Formula: see text]. Using a single-molecule technique, we observed the motion of the rotary motors. To obtain the torque values, we then analyzed the measured motion trajectories based on the fluctuation theorem, which states that the law of entropy production in non-equilibrium conditions and has been suggested as a novel and effective method for measuring torque. The measured torque of A3B3D was half that of the wild-type V1, and full torque was recovered in the mutant V1, in which the F-subunit was genetically fused with the D-subunit, indicating that the globular-shaped F-subunit reinforces torque generation in V1.

  11. Structure-Activity Relationship Studies of Fostriecin, Cytostatin, and Key Analogs, with PP1, PP2A, PP5, and (β12–β13)-Chimeras (PP1/PP2A and PP5/PP2A), Provide Further Insight into the Inhibitory Actions of Fostriecin Family Inhibitors

    PubMed Central

    Swingle, Mark R.; Amable, Lauren; Lawhorn, Brian G.; Buck, Suzanne B.; Burke, Christopher P.; Ratti, Pukar; Fischer, Kimberly L.; Boger, Dale L.

    2009-01-01

    Fostriecin and cytostatin are structurally related natural inhibitors of serine/threonine phosphatases, with promising antitumor activity. The total synthesis of these antitumor agents has enabled the production of structural analogs, which are useful to explore the biological significance of features contained in the parent compounds. Here, the inhibitory activity of fostriecin, cytostatin, and 10 key structural analogs were tested in side-by-side phosphatase assays to further characterize their inhibitory activity against PP1c (Ser/Thr protein phosphatase 1 catalytic subunit), PP2Ac (Ser/Thr protein phosphatase 2A catalytic subunit), PP5c (Ser/Thr protein phosphatase 5 catalytic subunit), and chimeras of PP1 (Ser/Thr protein phosphatase 1) and PP5 (Ser/Thr protein phosphatase 5), in which key residues predicted for inhibitor contact with PP2A (Ser/Thr protein phosphatase 2A) were introduced into PP1 and PP5 using site-directed mutagenesis. The data confirm the importance of the C9-phosphate and C11-alcohol for general inhibition and further demonstrate the importance of a predicted C3 interaction with a unique cysteine (Cys269) in the β12–β13 loop of PP2A. The data also indicate that additional features beyond the unsaturated lactone contribute to inhibitory potency and selectivity. Notably, a derivative of fostriecin lacking the entire lactone subunit demonstrated marked potency and selectivity for PP2A, while having substantially reduced and similar activity against PP1 and PP1/PP2A- PP5/PP2A-chimeras that have greatly increased sensitivity to both fostriecin and cytostatin. This suggests that other features [e.g., the (Z,Z,E)-triene] also contribute to inhibitory selectivity. When considered together with previous data, these studies suggest that, despite the high structural conservation of the catalytic site in PP1, PP2A and PP5, the development of highly selective catalytic inhibitors should be feasible. PMID:19592665

  12. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  13. Crystal Structure of the Oxazolidinone Antibiotic Linezolid Bound to the 50S Ribosomal Subunit

    SciTech Connect

    Ippolito,J.; Kanyo, Z.; Wang, D.; Franceschi, F.; Moore, P.; Steitz, T.; Duffy, E.

    2008-01-01

    The oxazolidinone antibacterials target the 50S subunit of prokaryotic ribosomes. To gain insight into their mechanism of action, the crystal structure of the canonical oxazolidinone, linezolid, has been determined bound to the Haloarcula marismortui 50S subunit. Linezolid binds the 50S A-site, near the catalytic center, which suggests that inhibition involves competition with incoming A-site substrates. These results provide a structural basis for the discovery of improved oxazolidinones active against emerging drug-resistant clinical strains.

  14. Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in chlamydomonas.

    PubMed

    Genkov, Todor; Meyer, Moritz; Griffiths, Howard; Spreitzer, Robert J

    2010-06-25

    There has been much interest in the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) as a target for engineering an increase in net CO(2) fixation in photosynthesis. Improvements in the enzyme would lead to an increase in the production of food, fiber, and renewable energy. Although the large subunit contains the active site, a family of rbcS nuclear genes encodes the Rubisco small subunits, which can also influence the carboxylation catalytic efficiency and CO(2)/O(2) specificity of the enzyme. To further define the role of the small subunit in Rubisco function, small subunits from spinach, Arabidopsis, and sunflower were assembled with algal large subunits by transformation of a Chlamydomonas reinhardtii mutant that lacks the rbcS gene family. Foreign rbcS cDNAs were successfully expressed in Chlamydomonas by fusing them to a Chlamydomonas rbcS transit peptide sequence engineered to contain rbcS introns. Although plant Rubisco generally has greater CO(2)/O(2) specificity but a lower carboxylation V(max) than Chlamydomonas Rubisco, the hybrid enzymes have 3-11% increases in CO(2)/O(2) specificity and retain near normal V(max) values. Thus, small subunits may make a significant contribution to the overall catalytic performance of Rubisco. Despite having normal amounts of catalytically proficient Rubisco, the hybrid mutant strains display reduced levels of photosynthetic growth and lack chloroplast pyrenoids. It appears that small subunits contain the structural elements responsible for targeting Rubisco to the algal pyrenoid, which is the site where CO(2) is concentrated for optimal photosynthesis.

  15. Autocatalytic tyrosine-phosphorylation of protein kinase CK2 alpha and alpha' subunits: implication of Tyr182.

    PubMed Central

    Donella-Deana, A; Cesaro, L; Sarno, S; Brunati, A M; Ruzzene, M; Pinna, L A

    2001-01-01

    CK2 is a pleiotropic and constitutively active serine/threonine protein kinase composed of two catalytic (alpha and/or alpha') and two regulatory beta-subunits, whose mechanism of modulation is still obscure. Here we show that CK2 alpha/alpha' subunits undergo intermolecular (trans) tyrosine-autophosphorylation, which is dependent on intrinsic catalytic activity and is suppressed by the individual mutation of Tyr182, a crucial residue of the activation loop, to phenylalanine. At variance with serine-autophosphorylation, tyrosine-autophosphorylation of CK2alpha is reversed by ADP and GDP and is counteracted by the beta-subunit and by a peptide reproducing the activation loop of CK2alpha/alpha' (amino acids 175-201). These results disclose new perspectives about the mode of regulation of CK2 catalytic subunits. PMID:11439109

  16. Energy-driven subunit rotation at the interface between subunit a and the c oligomer in the FO sector of Escherichia coli ATP synthase

    PubMed Central

    Hutcheon, Marcus L.; Duncan, Thomas M.; Ngai, Helen; Cross, Richard L.

    2001-01-01

    Subunit rotation within the F1 catalytic sector of the ATP synthase has been well documented, identifying the synthase as the smallest known rotary motor. In the membrane-embedded FO sector, it is thought that proton transport occurs at a rotor/stator interface between the oligomeric ring of c subunits (rotor) and the single-copy a subunit (stator). Here we report evidence for an energy-dependent rotation at this interface. FOF1 was expressed with a pair of substituted cysteines positioned to allow an intersubunit disulfide crosslink between subunit a and a c subunit [aN214C/cM65C; Jiang, W. & Fillingame, R. H. (1998) Proc. Natl. Acad. Sci. USA 95, 6607–6612]. Membranes were treated with N,N′-dicyclohexyl-[14C]carbodiimide to radiolabel the D61 residue on less than 20% of the c subunits. After oxidation to form an a–c crosslink, the c subunit properly aligned to crosslink to subunit a was found to contain very little 14C label relative to other members of the c ring. However, exposure to MgATP before oxidation significantly increased the radiolabel in the a–c crosslink, indicating that a different c subunit was now aligned with subunit a. This increase was not induced by exposure to MgADP/Pi. Furthermore, preincubation with MgADP and azide to inhibit F1 or with high concentrations of N,N′-dicyclohexylcarbodiimide to label most c subunits prevented the ATP effect. These results provide evidence for an energy-dependent rotation of the c ring relative to subunit a. PMID:11438702

  17. Both NR2A and NR2B Subunits of the NMDA Receptor Are Critical for Long-Term Potentiation and Long-Term Depression in the Lateral Amygdala of Horizontal Slices of Adult Mice

    ERIC Educational Resources Information Center

    Muller, Tobias; Albrecht, Doris; Gebhardt, Christine

    2009-01-01

    The lateral nucleus of the amygdala (LA) is implicated in emotional and social behaviors. We recently showed that in horizontal brain slices, activation of NMDA receptors (NMDARs) is a requirement for persistent synaptic alterations in the LA, such as long-term potentiation (LTP) and long-term depression (LTD). In the LA, NR2A- and NR2B-type NMDRs…

  18. Physical association of GPR54 C-terminal with protein phosphatase 2A

    SciTech Connect

    Evans, Barry J.; Wang Zixuan; Mobley, La'Tonya; Khosravi, Davood; Fujii, Nobutaka; Navenot, Jean-Marc; Peiper, Stephen C.

    2008-12-26

    KiSS1 was discovered as a metastasis suppressor gene and subsequently found to encode kisspeptins (KP), ligands for a G protein coupled receptor (GPCR), GPR54. This ligand-receptor pair was later shown to play a critical role in the neuro-endocrine regulation of puberty. The C-terminal cytoplasmic (C-ter) domain of GPR54 contains a segment rich in proline and arginine residues that corresponds to the primary structure of four overlapping SH3 binding motifs. Yeast two hybrid experiments identified the catalytic subunit of protein phosphatase 2A (PP2A-C) as an interacting protein. Pull-down experiments with GST fusion proteins containing the GPR54 C-ter confirmed binding to PP2A-C in cell lysates and these complexes contained phosphatase activity. The proline arginine rich segment is necessary for these interactions. The GPR54 C-ter bound directly to purified recombinant PP2A-C, indicating the GPR54 C-ter may form complexes involving the catalytic subunit of PP2A that regulate phosphorylation of critical signaling intermediates.

  19. Specific Roles of NMDA Receptor Subunits in Mental Disorders

    PubMed Central

    Yamamoto, H.; Hagino, Y.; Kasai, S.; Ikeda, K.

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed. PMID:25817860

  20. The B56γ3 regulatory subunit-containing protein phosphatase 2A outcompetes Akt to regulate p27KIP1 subcellular localization by selectively dephosphorylating phospho-Thr157 of p27KIP1

    PubMed Central

    Lai, Tai-Yu; Yang, Yu-San; Hong, Wei-Fu; Chiang, Chi-Wu

    2016-01-01

    The B56γ-containing protein phosphatase 2A (PP2A-B56γ) has been postulated to have tumor suppressive functions. Here, we report regulation of p27KIP1 subcellular localization by PP2A-B56γ3. B56γ3 overexpression enhanced nuclear localization of p27KIP1, whereas knockdown of B56γ3 decreased p27KIP1 nuclear localization. B56γ3 overexpression decreased phosphorylation at Thr157 (phospho-Thr157), whose phosphorylation promotes cytoplasmic localization of p27KIP1, whereas B56γ3 knockdown significantly increased the level of phospho-Thr157. In vitro, PP2A-B56γ3 catalyzed dephosphorylation of phospho-Thr157 in a dose-dependent and okadaic acid-sensitive manner. B56γ3 did not increase p27KIP1 nuclear localization by down-regulating the upstream kinase Akt activity and outcompeted a myristoylated constitutively active Akt (Aktca) in regulating Thr157 phosphorylation and subcellular localization of p27KIP1. In addition, results of interaction domain mapping revealed that both the N-terminal and C-terminal domains of p27 and a domain at the C-terminus of B56γ3 are required for interaction between p27 and B56γ3. Furthermore, we demonstrated that p27KIP1 levels are positively correlated with B56γ levels in both non-tumor and tumor parts of a set of human colon tissue specimens. However, positive correlation between nuclear p27KIP1 levels and B56γ levels was found only in the non-tumor parts, but not in tumor parts of these tissues, implicating a dysregulation in PP2A-B56γ3-regulated p27KIP1 nuclear localization in these tumor tissues. Altogether, this study provides a new mechanism by which the PP2A-B56γ3 holoenzyme plays its tumor suppressor role. PMID:26684356

  1. Gastrointestinal stromal tumors - quantitative detection of the Ki-67, TPX2, TOP2A, and hTERT telomerase subunit mRNA levels to determine proliferation activity and a potential for aggressive biological behavior.

    PubMed

    Kalfusova, A; Hilska, I; Krskova, L; Kalinova, M; Linke, Z; Kodet, R

    2016-01-01

    Gastrointestinal stromal tumors (GISTs) have an unpredictable biological potential ranging from benign to malignant. Molecular markers involved in the mechanisms of proliferation and cellular senescence may provide additional information about biological behavior of the tumor. The aim of the present study was to investigate Ki-67, TPX2, TOP2A and hTERT mRNA expression levels in specimens from patients with GISTs to define relationships between proliferation activity and biological potential and progression of the disease. We measured Ki-67, TPX2, TOP2A and hTERT mRNA levels using quantitative real-time reverse transcription PCR (RQ RT PCR). The highest Ki-67, TPX2, TOP2A and hTERT mRNA expression levels were found in the highly proliferative BLs (18 specimens), in comparison with GISTs (137 specimens) and LMSs (9 specimens). Patients with GISTs and adequate information about mitotic activity, tumor size and anatomical site (84 specimens) were divided into two groups - GISTs with benign (29 patients) and with malignant (55 patients) potential. We observed association between higher Ki-67, TPX2 and hTERT mRNA levels and the GISTs with malignant potential. Univariate analysis (57 patients with available follow-up information) of survival (Kaplan Meier curves method) revealed a correlation between higher levels of TPX2, Ki-67 and hTERT markers and shorter event-free survival (EFS) or poorer overall survival (OS). The results demonstrate the importance of quantitative assessment of the proliferation activity in GISTs. Proliferation markers of Ki-67, TPX2, TOP2A and hTERT are suitable markers for detection the proliferation activity and telomerase activity of these tumors. Furthermore, the assessment of TPX2, Ki-67 and hTERT expression levels is appropriate for determination of malignant potential of GISTs.

  2. A Novel H2A/H4 Nucleosomal Histone Acetyltransferase in Tetrahymena thermophila

    PubMed Central

    Ohba, Reiko; Steger, David J.; Brownell, James E.; Mizzen, Craig A.; Cook, Richard G.; Côté, Jacques; Workman, Jerry L.; Allis, C. David

    1999-01-01

    Recently, we reported the identification of a 55-kDa polypeptide (p55) from Tetrahymena macronuclei as a catalytic subunit of a transcription-associated histone acetyltransferase (HAT A). Extensive homology between p55 and Gcn5p, a component of the SAGA and ADA transcriptional coactivator complexes in budding yeast, suggests an immediate link between the regulation of chromatin structure and transcriptional output. Here we report the characterization of a second transcription-associated HAT activity from Tetrahymena macronuclei. This novel activity is distinct from complexes containing p55 and putative ciliate SAGA and ADA components and shares several characteristics with NuA4 (for nucleosomal H2A/H4), a 1.8-MDa, Gcn5p-independent HAT complex recently described in yeast. A key feature of both the NuA4 and Tetrahymena activities is their acetylation site specificity for lysines 5, 8, 12, and 16 of H4 and lysines 5 and 9 of H2A in nucleosomal substrates, patterns that are distinct from those of known Gcn5p family members. Moreover, like NuA4, the Tetrahymena activity is capable of activating transcription from nucleosomal templates in vitro in an acetyl coenzyme A-dependent fashion. Unlike NuA4, however, sucrose gradient analyses of the ciliate enzyme, following sequential denaturation and renaturation, estimate the molecular size of the catalytically active subunit to be ∼80 kDa, consistent with the notion that a single polypeptide or a stable subcomplex is sufficient for this H2A/H4 nucleosomal HAT activity. Together, these data document the importance of this novel HAT activity for transcriptional activation from chromatin templates and suggest that a second catalytic HAT subunit, in addition to p55/Gcn5p, is conserved between yeast and Tetrahymena. PMID:10022893

  3. Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone

    SciTech Connect

    Guo, Feng; Stanevich, Vitali; Wlodarchak, Nathan; Sengupta, Rituparna; Jiang, Li; Satyshur, Kenneth A.; Xing, Yongna

    2013-10-08

    Proper activation of protein phosphatase 2A (PP2A) catalytic subunit is central for the complex PP2A regulation and is crucial for broad aspects of cellular function. The crystal structure of PP2A bound to PP2A phosphatase activator (PTPA) and ATPγS reveals that PTPA makes broad contacts with the structural elements surrounding the PP2A active site and the adenine moiety of ATP. PTPA-binding stabilizes the protein fold of apo-PP2A required for activation, and orients ATP phosphoryl groups to bind directly to the PP2A active site. This allows ATP to modulate the metal-binding preferences of the PP2A active site and utilize the PP2A active site for ATP hydrolysis. In vitro, ATP selectively and drastically enhances binding of endogenous catalytic metal ions, which requires ATP hydrolysis and is crucial for acquisition of pSer/Thr-specific phosphatase activity. Furthermore, both PP2A- and ATP-binding are required for PTPA function in cell proliferation and survival. Our results suggest novel mechanisms of PTPA in PP2A activation with structural economy and a unique ATP-binding pocket that could potentially serve as a specific therapeutic target.

  4. beta-subunits of Snf1 kinase are required for kinase function and substrate definition.

    PubMed

    Schmidt, M C; McCartney, R R

    2000-09-15

    The Snf1 kinase and its mammalian homolog, the AMP-activated protein kinase, are heterotrimeric enzymes composed of a catalytic alpha-subunit, a regulatory gamma-subunit and a beta-subunit that mediates heterotrimer formation. Saccharomyces cerevisiae encodes three beta-subunit genes, SIP1, SIP2 and GAL83. Earlier studies suggested that these subunits may not be required for Snf1 kinase function. We show here that complete and precise deletion of all three beta-subunit genes inactivates the Snf1 kinase. The sip1Delta sip2Delta gal83Delta strain is unable to derepress invertase, grows poorly on alternative carbon sources and fails to direct the phosphorylation of the Mig1 and Sip4 proteins in vivo. The SIP1 sip2Delta gal83Delta strain manifests a subset of Snf phenotypes (Raf(+), Gly(-)) observed in the snf1Delta 10 strain (Raf(-), Gly(-)), suggesting that individual beta-subunits direct the Snf1 kinase to a subset of its targets in vivo. Indeed, deletion of individual beta-subunit genes causes distinct differences in the induction and phosphorylation of Sip4, strongly suggesting that the beta-subunits play an important role in substrate definition.

  5. Switchable catalytic DNA catenanes.

    PubMed

    Hu, Lianzhe; Lu, Chun-Hua; Willner, Itamar

    2015-03-11

    Two-ring interlocked DNA catenanes are synthesized and characterized. The supramolecular catenanes show switchable cyclic catalytic properties. In one system, the catenane structure is switched between a hemin/G-quadruplex catalytic structure and a catalytically inactive state. In the second catenane structure the catenane is switched between a catalytically active Mg(2+)-dependent DNAzyme-containing catenane and an inactive catenane state. In the third system, the interlocked catenane structure is switched between two distinct catalytic structures that include the Mg(2+)- and the Zn(2+)-dependent DNAzymes.

  6. Controlling tetramer formation, subunit rotation and DNA ligation during Hin-catalyzed DNA inversion

    PubMed Central

    Chang, Yong; Johnson, Reid C.

    2015-01-01

    Two critical steps controlling serine recombinase activity are the remodeling of dimers into the chemically active synaptic tetramer and the regulation of subunit rotation during DNA exchange. We identify a set of hydrophobic residues within the oligomerization helix that controls these steps by the Hin DNA invertase. Phe105 and Met109 insert into hydrophobic pockets within the catalytic domain of the same subunit to stabilize the inactive dimer conformation. These rotate out of the catalytic domain in the dimer and into the subunit rotation interface of the tetramer. About half of residue 105 and 109 substitutions gain the ability to generate stable synaptic tetramers and/or promote DNA chemistry without activation by the Fis/enhancer element. Phe106 replaces Phe105 in the catalytic domain pocket to stabilize the tetramer conformation. Significantly, many of the residue 105 and 109 substitutions support subunit rotation but impair ligation, implying a defect in rotational pausing at the tetrameric conformer poised for ligation. We propose that a ratchet-like surface involving Phe105, Met109 and Leu112 within the rotation interface functions to gate the subunit rotation reaction. Hydrophobic residues are present in analogous positions in other serine recombinases and likely perform similar functions. PMID:26056171

  7. PME-1 modulates protein phosphatase 2A activity to promote the malignant phenotype of endometrial cancer cells.

    PubMed

    Wandzioch, Ewa; Pusey, Michelle; Werda, Amy; Bail, Sophie; Bhaskar, Aishwarya; Nestor, Mariya; Yang, Jing-Jing; Rice, Lyndi M

    2014-08-15

    Protein phosphatase 2A (PP2A) negatively regulates tumorigenic signaling pathways, in part, by supporting the function of tumor suppressors like p53. The PP2A methylesterase PME-1 limits the activity of PP2A by demethylating its catalytic subunit. Here, we report the finding that PME-1 overexpression correlates with increased cell proliferation and invasive phenotypes in endometrial adenocarcinoma cells, where it helps maintain activated ERK and Akt by inhibiting PP2A. We obtained evidence that PME-1 could bind and regulate protein phosphatase 4 (PP4), a tumor-promoting protein, but not the related protein phosphatase 6 (PP6). When the PP2A, PP4, or PP6 catalytic subunits were overexpressed, inhibiting PME-1 was sufficient to limit cell proliferation. In clinical specimens of endometrial adenocarcinoma, PME-1 levels were increased and we found that PME-1 overexpression was sufficient to drive tumor growth in a xenograft model of the disease. Our findings identify PME-1 as a modifier of malignant development and suggest its candidacy as a diagnostic marker and as a therapeutic target in endometrial cancer.

  8. Structural Mechanism of Demethylation and Inactivation of Protein Phosphatase 2A

    SciTech Connect

    Xing,Y.; Li, Z.; Chen, Y.; Stock, J.; Jeffrey, P.; Shi, Y.

    2008-01-01

    Protein phosphatase 2A (PP2A) is an important serine/threonine phosphatase that plays a role in many biological processes. Reversible carboxyl methylation of the PP2A catalytic subunit is an essential regulatory mechanism for its function. Demethylation and negative regulation of PP2A is mediated by a PP2A-specific methylesterase PME-1, which is conserved from yeast to humans. However, the underlying mechanism of PME-1 function remains enigmatic. Here we report the crystal structures of PME-1 by itself and in complex with a PP2A heterodimeric core enzyme. The structures reveal that PME-1 directly binds to the active site of PP2A and that this interaction results in the activation of PME-1 by rearranging the catalytic triad into an active conformation. Strikingly, these interactions also lead to inactivation of PP2A by evicting the manganese ions that are required for the phosphatase activity of PP2A. These observations identify a dual role of PME-1 that regulates PP2A activation, methylation, and holoenzyme assembly in cells.

  9. Construction of a library of structurally diverse ribonucleopeptides with catalytic groups.

    PubMed

    Tamura, Tomoki; Nakano, Shun; Nakata, Eiji; Morii, Takashi

    2017-03-15

    Functional screening of structurally diverse libraries consisting of proteins or nucleic acids is an effective method to obtain receptors or aptamers with unique molecular recognition characteristics. However, further modification of these selected receptors to exert a newly desired function is still a challenging task. We have constructed a library of structurally diverse ribonucleopeptides (RNPs) that are modified with a catalytic group, in which the catalytic group aligns with various orientations against the ATP binding pocket of RNA subunit. As a proof-of-principle, the screening of the constructed RNP library for the catalytic reaction of ester hydrolysis was successfully carried out. The size of both the substrate-binding RNA library and the catalytic group modified peptide library are independently expandable, and thus, the size of RNPs library could be enlarged by a combination of these two subunits. We anticipate that the library of functionalized and structurally diverse RNPs would be expanded for various other catalytic reactions.

  10. Ca(2+) channel inactivation heterogeneity reveals physiological unbinding of auxiliary beta subunits.

    PubMed Central

    Restituito, S; Cens, T; Rousset, M; Charnet, P

    2001-01-01

    Voltage gated Ca(2+) channel (VGCC) auxiliary beta subunits increase membrane expression of the main pore-forming alpha(1) subunits and finely tune channel activation and inactivation properties. In expression studies, co-expression of beta subunits also reduced neuronal Ca(2+) channel regulation by heterotrimeric G protein. Biochemical studies suggest that VGCC beta subunits and G protein betagamma can compete for overlapping interaction sites on VGCC alpha(1) subunits, suggesting a dynamic association of these subunits with alpha(1). In this work we have analyzed the stability of the alpha(1)/beta association under physiological conditions. Regulation of the alpha(1A) Ca(2+) channel inactivation properties by beta(1b) and beta(2a) subunits had two major effects: a shift in voltage-dependent inactivation (E(in)), and an increase of the non-inactivating current (R(in)). Unexpectedly, large variations in magnitude of the effects were recorded on E(in), when beta(1b) was expressed, and R(in), when beta(2a) was expressed. These variations were not proportional to the current amplitude, and occurred at similar levels of beta subunit expression. beta(2a)-induced variations of R(in) were, however, inversely proportional to the magnitude of G protein block. These data underline the two different mechanisms used by beta(1b) and beta(2a) to regulate channel inactivation, and suggest that the VGCC beta subunit can unbind the alpha1 subunit in physiological situations. PMID:11423397

  11. AMPK beta subunits display isoform specific affinities for carbohydrates.

    PubMed

    Koay, Ann; Woodcroft, Ben; Petrie, Emma J; Yue, Helen; Emanuelle, Shane; Bieri, Michael; Bailey, Michael F; Hargreaves, Mark; Park, Jong-Tae; Park, Kwan-Hwa; Ralph, Stuart; Neumann, Dietbert; Stapleton, David; Gooley, Paul R

    2010-08-04

    AMP-activated protein kinase (AMPK) is a heterotrimer of catalytic (alpha) and regulatory (beta and gamma) subunits with at least two isoforms for each subunit. AMPK beta1 is widely expressed whilst AMPK beta2 is highly expressed in muscle and both beta isoforms contain a mid-molecule carbohydrate-binding module (beta-CBM). Here we show that beta2-CBM has evolved to contain a Thr insertion and increased affinity for glycogen mimetics with a preference for oligosaccharides containing a single alpha-1,6 branched residue. Deletion of Thr-101 reduces affinity for single alpha-1,6 branched oligosaccharides by 3-fold, while insertion of this residue into the equivalent position in the beta1-CBM sequence increases affinity by 3-fold, confirming the functional importance of this residue.

  12. Catalytic properties of the eukaryotic exosome.

    PubMed

    Chlebowski, Aleksander; Tomecki, Rafał; López, María Eugenia Gas; Séraphin, Bertrand; Dziembowski, Andrzej

    2010-01-01

    The eukaryotic exosome complex is built around the backbone of a 9-subunit ring similar to phosporolytic ribonucleases such as RNase PH and polynucleotide phosphorylase (PNPase). Unlike those enzymes, the ring is devoid of any detectable catalytic activities, with the possible exception of the plant version of the complex. Instead, the essential RNA decay capability is supplied by associated hydrolytic ribonucleases belonging to the Dis3 and Rrp6 families. Dis3 proteins are endowed with two different activities: the long known processive 3'-5' exonucleolytic one and the recently discovered endonucleolytic one. Rrp6 proteins are distributive exonucleases. This chapter will review the current knowledge about the catalytic properties of theses nucleases and their interplay within the exosome holocomplex.

  13. Molecular cloning and functional analysis of three subunits of yeast proteasome.

    PubMed Central

    Emori, Y; Tsukahara, T; Kawasaki, H; Ishiura, S; Sugita, H; Suzuki, K

    1991-01-01

    The genes encoding three subunits of Saccharomyces cerevisiae proteasome were cloned and sequenced. The deduced amino acid sequences were homologous not only to each other (30 to 40% identity) but also to those of rat and Drosophila proteasomes (25 to 65% identity). However, none of these sequences showed any similarity to any other known sequences, including various proteases, suggesting that these proteasome subunits may constitute a unique gene family. Gene disruption analyses revealed that two of the three subunits (subunits Y7 and Y8) are essential for growth, indicating that the proteasome and its individual subunits play an indispensable role in fundamental biological processes. On the other hand, subunit Y13 is not essential; haploid cells with a disrupted Y13 gene can proliferate, although the doubling time is longer than that of cells with nondisrupted genes. In addition, biochemical analysis revealed that proteasome prepared from the Y13 disrupted cells contains tryptic and chymotryptic activities equivalent to those of nondisrupted cells, indicating that the Y13 subunit is not essential for tryptic or chymotryptic activity. However, the chymotryptic activity of the Y13 disrupted cells is not dependent on sodium dodecyl sulfate (SDS), an activator of proteasome, since nearly full activity was observed in the absence of SDS. Thus, the activity in proteasome of the Y13 disrupted cells might result in unregulated intracellular proteolysis, thus leading to the prolonged cell cycle. These results indicate that cloned proteasome subunits having similar sequences to the yeast Y13 subunit are structural, but not catalytic, components of proteasome. It is also suggested that two subunits (Y7 and Y8) might occupy positions essential to proteasome structure or activity, whereas subunit Y13 is in a nonessential but important position. Images PMID:1898763

  14. Reduction of tomato polygalacturonase beta subunit expression affects pectin solubilization and degradation during fruit ripening.

    PubMed Central

    Watson, C F; Zheng, L; DellaPenna, D

    1994-01-01

    The developmental changes that accompany tomato fruit ripening include increased solubilization and depolymerization of pectins due to the action of polygalacturonase (PG). Two PG isoenzymes can be extracted from ripe fruit: PG2, which is a single catalytic PG polypeptide, and PG1, which is composed of PG2 tightly associated with a second noncatalytic protein, the beta subunit. Previous studies have correlated ripening-associated increases in pectin solubilization and depolymerization with the presence of extractable PG1 activity, prior to the appearance of PG2, suggesting a functional role for the beta subunit and PG1 in pectin metabolism. To assess the function of the beta subunit, we produced and characterized transgenic tomatoes constitutively expressing a beta subunit antisense gene. Fruit from antisense lines had greatly reduced levels of beta subunit mRNA and protein and accumulated < 1% of their total extractable PG activity in ripe fruit as PG1, as compared with 25% for wild type. Inhibition of beta subunit expression resulted in significantly elevated levels of EDTA-soluble polyuronides at all stages of fruit ripening and a significantly higher degree of depolymerization at later ripening stages. Decreased beta subunit protein and extractable PG1 enzyme activity and increased pectin solubility and depolymerization all cosegregated with the beta subunit antisense transgene in T2 progeny. These results indicate (1) that PG2 is responsible for pectin solubilization and depolymerization in vivo and (2) that the beta subunit protein is not required for PG2 activity in vivo but (3) does play a significant role in regulating pectin metabolism in wild-type fruit by limiting the extent of pectin solubilization and depolymerization that can occur during ripening. Whether this occurs by direct interaction of the beta subunit with PG2 or indirectly by interaction of the beta subunit with the pectic substrate remains to be determined. PMID:7827495

  15. Role of the Rubisco small subunit. Final report for period May 1, 1997--April 30,2000

    SciTech Connect

    Spreitzer, Robert J.

    2000-10-04

    CO{sub 2} and O{sub 2} are mutually competitive at the active site of ribulose-1,5-biphosphate (RuBP) carboxylase/oxygenase (Rubisco). Rubisco contains two subunits, each present in eight copies. The 15-kD small subunit is coded by a family of nuclear RbcS genes. Until now, the role of the small subunit in Rubisco structure or catalytic efficiency is not known. Because of other work in eliminating the two RbcS genes in the green algo Chlamydomonas reinhardtii, it is now possible to address questions about the structure-function relationships of the eukaryotic small subunit. There are three specific aims in this project: (1) Alanine scanning mutagenesis is being used to dissect the importance of the {beta}A/{beta}B loop, a feature unique to the eukaryotic small subunit. (2) Random mutagenesis is being used to identify additional residues or regions of the small subunit that are important for holoenzyme assembly and function. (3) Attempts are being made to express foreign small subunits in Chlamydomonas to examine the contribution of small subunits to holoenzyme assembly, catalytic efficiency, and CO{sub 2}/O{sub 2} specificity.

  16. Directed evolution of the tryptophan synthase β-subunit for stand-alone function recapitulates allosteric activation

    PubMed Central

    Buller, Andrew R.; Brinkmann-Chen, Sabine; Romney, David K.; Herger, Michael; Murciano-Calles, Javier; Arnold, Frances H.

    2015-01-01

    Enzymes in heteromeric, allosterically regulated complexes catalyze a rich array of chemical reactions. Separating the subunits of such complexes, however, often severely attenuates their catalytic activities, because they can no longer be activated by their protein partners. We used directed evolution to explore allosteric regulation as a source of latent catalytic potential using the β-subunit of tryptophan synthase from Pyrococcus furiosus (PfTrpB). As part of its native αββα complex, TrpB efficiently produces tryptophan and tryptophan analogs; activity drops considerably when it is used as a stand-alone catalyst without the α-subunit. Kinetic, spectroscopic, and X-ray crystallographic data show that this lost activity can be recovered by mutations that reproduce the effects of complexation with the α-subunit. The engineered PfTrpB is a powerful platform for production of Trp analogs and for further directed evolution to expand substrate and reaction scope. PMID:26553994

  17. Rich catalytic injection

    DOEpatents

    Veninger, Albert

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  18. Two stage catalytic combustor

    NASA Technical Reports Server (NTRS)

    Alvin, Mary Anne (Inventor); Bachovchin, Dennis (Inventor); Smeltzer, Eugene E. (Inventor); Lippert, Thomas E. (Inventor); Bruck, Gerald J. (Inventor)

    2010-01-01

    A catalytic combustor (14) includes a first catalytic stage (30), a second catalytic stage (40), and an oxidation completion stage (49). The first catalytic stage receives an oxidizer (e.g., 20) and a fuel (26) and discharges a partially oxidized fuel/oxidizer mixture (36). The second catalytic stage receives the partially oxidized fuel/oxidizer mixture and further oxidizes the mixture. The second catalytic stage may include a passageway (47) for conducting a bypass portion (46) of the mixture past a catalyst (e.g., 41) disposed therein. The second catalytic stage may have an outlet temperature elevated sufficiently to complete oxidation of the mixture without using a separate ignition source. The oxidation completion stage is disposed downstream of the second catalytic stage and may recombine the bypass portion with a catalyst exposed portion (48) of the mixture and complete oxidation of the mixture. The second catalytic stage may also include a reticulated foam support (50), a honeycomb support, a tube support or a plate support.

  19. Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells

    PubMed Central

    Sontag, Jean-Marie; Nunbhakdi-Craig, Viyada; Mitterhuber, Martina; Ogris, Egon; Sontag, Estelle

    2010-01-01

    Neuritic alterations are a major feature of many neurodegenerative disorders. Methylation of protein phosphatase 2A (PP2A) catalytic C subunit by the leucine carboxyl methyltransferase LCMT1, and demethylation by the methylesterase PME-1, is a critical PP2A regulatory mechanism. It modulates the formation of PP2A holoenzymes containing the Bα subunit, which dephosphorylate key neuronal cytoskeletal proteins, including tau. Significantly, we have reported that LCMT1, methylated C and Bα expression levels are down-regulated in Alzheimer disease-affected brain regions. Here, we show that enhanced expression of LCMT1 in cultured N2a neuroblastoma cells, which increases endogenous methylated C and Bα levels, induces changes in F-actin organization. It promotes serum-independent neuritogenesis and development of extended tau-positive processes upon N2a cell differentiation. These stimulatory effects can be abrogated by LCMT1 knockdown and S-adenosylhomocysteine, an inhibitor of methylation reactions. Expression of PME-1 and the methylation-site L309Δ C subunit mutant, which decrease intracellular methylated C and Bα levels, block N2a cell differentiation and LCMT1-mediated neurite formation. Lastly, inducible and non-inducible knockdown of Bα in N2a cells inhibit process outgrowth. Altogether, our results establish a novel mechanistic link between PP2A methylation and development of neurite-like processes. PMID:21044074

  20. Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells.

    PubMed

    Sontag, Jean-Marie; Nunbhakdi-Craig, Viyada; Mitterhuber, Martina; Ogris, Egon; Sontag, Estelle

    2010-12-01

    Neuritic alterations are a major feature of many neurodegenerative disorders. Methylation of protein phosphatase 2A (PP2A) catalytic C subunit by the leucine carboxyl methyltransferase (LCMT1), and demethylation by the protein phosphatase methylesterase 1, is a critical PP2A regulatory mechanism. It modulates the formation of PP2A holoenzymes containing the Bα subunit, which dephosphorylate key neuronal cytoskeletal proteins, including tau. Significantly, we have reported that LCMT1, methylated C and Bα expression levels are down-regulated in Alzheimer disease-affected brain regions. In this study, we show that enhanced expression of LCMT1 in cultured N2a neuroblastoma cells, which increases endogenous methylated C and Bα levels, induces changes in F-actin organization. It promotes serum-independent neuritogenesis and development of extended tau-positive processes upon N2a cell differentiation. These stimulatory effects can be abrogated by LCMT1 knockdown and S-adenosylhomocysteine, an inhibitor of methylation reactions. Expression of protein phosphatase methylesterase 1 and the methylation-site L309Δ C subunit mutant, which decrease intracellular methylated C and Bα levels, block N2a cell differentiation and LCMT1-mediated neurite formation. Lastly, inducible and non-inducible knockdown of Bα in N2a cells inhibit process outgrowth. Altogether, our results establish a novel mechanistic link between PP2A methylation and development of neurite-like processes.

  1. Nucleotide-Protectable Labeling of Sulfhydryl Groups in Subunit I of the ATPhase from Halobacterium Saccharovorum

    NASA Technical Reports Server (NTRS)

    Sulzner, Michael; Stan-Lotter, Helga; Hochstein, Lawrence I.

    1992-01-01

    A membrane-bound ATPase from the archaebacterium Halobacterium saccharovorum is inhibited by N-ethyl-maleimide in a nucleotide-protectable manner. When the enzyme was incubated with N-[C-14]jethylmaleimide, the bulk of radioactivity was as- sociated with the 87,000-Da subunit (subunit 1). ATP, ADP, or AMP reduced incorporation of the inhibitor. No charge shift of subunit I was detected following labeling with N-ethylmaleimide, indicating an electroneutral reaction. The results are consistent with the selective modification of sulfhydryl groups in subunit I at or near the catalytic site and are further evidence of a resemblance between this archaebacterial ATPase and the vacuolar-type ATPases.

  2. Catalytic distillation structure

    DOEpatents

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  3. Enhancement of catalytic efficiency of enzymes through exposure to anhydrous organic solvent at 70 degrees C. Three-dimensional structure of a treated serine proteinase at 2.2 A resolution.

    PubMed

    Gupta, M N; Tyagi, R; Sharma, S; Karthikeyan, S; Singh, T P

    2000-05-15

    The enzyme behavior in anhydrous media has important applications in biotechnology. So far chemical modifications and protein engineering have been used to alter the catalytic power of the enzymes. For the first time, it is demonstrated that an exposure of enzyme to anhydrous organic solvents at optimized high temperature enhances its catalytic power through local changes at the binding region. Six enzymes: proteinase K, wheat germ acid phosphatase, alpha-amylase, beta-glucosidase, chymotrypsin and trypsin have been exposed to acetonitrile at 70 degrees C for three hours. The activities of these enzymes were found to be considerably enhanced. In order to understand the basis of this change in the activity of these enzymes, the structure of one of these treated enzymes, proteinase K has been analyzed in detail using X-ray diffraction method. The overall structure of the enzyme is similar to the native structure in aqueous environment. The hydrogen bonding system of the catalytic triad is intact after the treatment. However, the water structure in the substrate binding site undergoes some rearrangement as some of the water molecules are either displaced or completely absent. The most striking observation concerning the water structure pertains to the complete deletion of the water molecule which occupied the position at the so-called oxyanion hole in the active site of the native enzyme. Three acetonitrile molecules were found in the present structure. All the acetonitrile molecules are located in the recognition site. The sites occupied by acetonitrile molecules are independent of water molecules. The acetonitrile molecules are involved in extensive interactions with the protein atoms. All of them are interlinked through water molecules. The methyl group of one of the acetonitrile molecules (CCN1) interacts simultaneously with the hydrophobic side chains of Leu-96, Ile-107, and Leu-133. The development of such a hydrophobic environment at the recognition site

  4. Subunit regulation of the neuronal alpha 1A Ca2+ channel expressed in Xenopus oocytes.

    PubMed Central

    De Waard, M; Campbell, K P

    1995-01-01

    1. Voltage-dependent Ca2+ channels are multi-protein complexes composed of at least three subunits: alpha 1, alpha 2 delta and beta. Ba2+ currents were recorded in Xenopus oocytes expressing the neuronal alpha 1A Ca2+ channel, using the two-electrode voltage-clamp technique. Various subunit combinations were studied: alpha 1A, alpha 1A alpha 2 delta b, alpha 1A beta or alpha 1A alpha 2 delta b beta. 2. The alpha 1A subunit alone directs the expression of functional Ca2+ channels. It carries all the properties of the channel: gating, permeability, voltage dependence of activation and inactivation, and pharmacology. The alpha 1A channel is activated by low voltages when physiological concentrations of the permeant cation are used. Both ancillary subunits alpha 2 delta and beta induced considerable changes in the biophysical properties of the alpha 1A current. The subunit specificity of the changes in current properties was analysed for all four beta gene products by coexpressing beta 1b, beta 2a, beta 3 and beta 4. 3. All beta subunits induce a stimulation in the current amplitude, a change in inactivation kinetics, and two hyperpolarizing shifts--one in the voltage dependence of activation and a second in the voltage dependence of steady-state inactivation. The most significant difference in regulation among beta subunits is the induction of variable rate constants of current inactivation. Rates of inactivation were induced in the following order (fastest to slowest): beta 3 > beta 1b = beta 4 > beta 2a. 4. The alpha 2 delta b subunit does not modify the properties of alpha 1A Ca2+ channels in the absence of beta subunits. However, this subunit increases the beta-induced stimulation in current amplitude and also regulates the beta-induced change in inactivation kinetics. 5. Of all the subunit combinations tested, Ca2+ channels that included a beta subunit were the most prone to decrease in activity. It is concluded that beta subunits are the primary target for the

  5. Structure of the ATP Synthase Catalytic Complex (F1) from Escherichia coli in an Autoinhibited conformation

    SciTech Connect

    G Cingolani; T Duncan

    2011-12-31

    ATP synthase is a membrane-bound rotary motor enzyme that is critical for cellular energy metabolism in all kingdoms of life. Despite conservation of its basic structure and function, autoinhibition by one of its rotary stalk subunits occurs in bacteria and chloroplasts but not in mitochondria. The crystal structure of the ATP synthase catalytic complex (F{sub 1}) from Escherichia coli described here reveals the structural basis for this inhibition. The C-terminal domain of subunit {var_epsilon} adopts a heretofore unknown, highly extended conformation that inserts deeply into the central cavity of the enzyme and engages both rotor and stator subunits in extensive contacts that are incompatible with functional rotation. As a result, the three catalytic subunits are stabilized in a set of conformations and rotational positions distinct from previous F{sub 1} structures.

  6. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase

    PubMed Central

    He, Jiuya; Ford, Holly C.; Carroll, Joe; Ding, Shujing; Fearnley, Ian M.

    2017-01-01

    The permeability transition in human mitochondria refers to the opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membrane. Opening can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane, and ATP synthesis, followed by cell death. Recent proposals suggest that the pore is associated with the ATP synthase complex and specifically with the ring of c-subunits that constitute the membrane domain of the enzyme’s rotor. The c-subunit is produced from three nuclear genes, ATP5G1, ATP5G2, and ATP5G3, encoding identical copies of the mature protein with different mitochondrial-targeting sequences that are removed during their import into the organelle. To investigate the involvement of the c-subunit in the PTP, we generated a clonal cell, HAP1-A12, from near-haploid human cells, in which ATP5G1, ATP5G2, and ATP5G3 were disrupted. The HAP1-A12 cells are incapable of producing the c-subunit, but they preserve the characteristic properties of the PTP. Therefore, the c-subunit does not provide the PTP. The mitochondria in HAP1-A12 cells assemble a vestigial ATP synthase, with intact F1-catalytic and peripheral stalk domains and the supernumerary subunits e, f, and g, but lacking membrane subunits ATP6 and ATP8. The same vestigial complex plus associated c-subunits was characterized from human 143B ρ0 cells, which cannot make the subunits ATP6 and ATP8, but retain the PTP. Therefore, none of the membrane subunits of the ATP synthase that are involved directly in transmembrane proton translocation is involved in forming the PTP. PMID:28289229

  7. The ribosomal subunit assembly line

    PubMed Central

    Dlakić, Mensur

    2005-01-01

    Recent proteomic studies in Saccharomyces cerevisiae have identified nearly 200 proteins, other than the structural ribosomal proteins, that participate in the assembly of ribosomal subunits and their transport from the nucleus. In a separate line of research, proteomic studies of mature plant ribosomes have revealed considerable variability in the protein composition of individual ribosomes. PMID:16207363

  8. Characterization of the Testis-specific Proteasome Subunit α4s in Mammals

    PubMed Central

    Uechi, Hiroyuki; Hamazaki, Jun; Murata, Shigeo

    2014-01-01

    The 26 S proteasome is responsible for regulated proteolysis in eukaryotic cells. It is composed of one 20 S core particle (CP) flanked by one or two 19 S regulatory particles. The CP is composed of seven different α-type subunits (α1-α7) and seven different β-type subunits, three of which are catalytic. Vertebrates encode four additional catalytic β subunits that are expressed predominantly in immune tissues and produce distinct subtypes of CPs particularly well suited for the acquired immune system. In contrast, the diversity of α subunits remains poorly understood. Recently, another α subunit, referred to as α4s, was reported. However, little is known about α4s. Here we provide a detailed characterization of α4s and the α4s-containing CP. α4s is exclusively expressed in germ cells that enter the meiotic prophase and is incorporated into the CP in place of α4. A comparison of structural models revealed that the differences in the primary sequences between α4 and α4s are located on the outer surface of the CP, suggesting that α4s interacts with specific molecules via these unique regions. α4s-containing CPs account for the majority of the CPs in mouse sperm. The catalytic β subunits in the α4s-containing CP are β1, β2, and β5, and immunosubunits are not included in the α4s-containing CP. α4s-containing CPs have a set of peptidase activities almost identical to those of α4-containing CPs. Our results provide a basis for understanding the role of α4s and male germ cell-specific proteasomes in mammals. PMID:24668818

  9. In Search of Small Molecule Inhibitors Targeting the Flexible CK2 Subunit Interface

    PubMed Central

    Bestgen, Benoît; Belaid-Choucair, Zakia; Lomberget, Thierry; Le Borgne, Marc; Filhol, Odile; Cochet, Claude

    2017-01-01

    Protein kinase CK2 is a tetrameric holoenzyme composed of two catalytic (α and/or α’) subunits and two regulatory (β) subunits. Crystallographic data paired with fluorescence imaging techniques have suggested that the formation of the CK2 holoenzyme complex within cells is a dynamic process. Although the monomeric CK2α subunit is endowed with a constitutive catalytic activity, many of the plethora of CK2 substrates are exclusively phosphorylated by the CK2 holoenzyme. This means that the spatial and high affinity interaction between CK2α and CK2β subunits is critically important and that its disruption may provide a powerful and selective way to block the phosphorylation of substrates requiring the presence of CK2β. In search of compounds inhibiting this critical protein–protein interaction, we previously designed an active cyclic peptide (Pc) derived from the CK2β carboxy-terminal domain that can efficiently antagonize the CK2 subunit interaction. To understand the functional significance of this interaction, we generated cell-permeable versions of Pc, exploring its molecular mechanisms of action and the perturbations of the signaling pathways that it induces in intact cells. The identification of small molecules inhibitors of this critical interaction may represent the first-choice approach to manipulate CK2 in an unconventional way. PMID:28165359

  10. In Search of Small Molecule Inhibitors Targeting the Flexible CK2 Subunit Interface.

    PubMed

    Bestgen, Benoît; Belaid-Choucair, Zakia; Lomberget, Thierry; Le Borgne, Marc; Filhol, Odile; Cochet, Claude

    2017-02-03

    Protein kinase CK2 is a tetrameric holoenzyme composed of two catalytic (α and/or α') subunits and two regulatory (β) subunits. Crystallographic data paired with fluorescence imaging techniques have suggested that the formation of the CK2 holoenzyme complex within cells is a dynamic process. Although the monomeric CK2α subunit is endowed with a constitutive catalytic activity, many of the plethora of CK2 substrates are exclusively phosphorylated by the CK2 holoenzyme. This means that the spatial and high affinity interaction between CK2α and CK2β subunits is critically important and that its disruption may provide a powerful and selective way to block the phosphorylation of substrates requiring the presence of CK2β. In search of compounds inhibiting this critical protein-protein interaction, we previously designed an active cyclic peptide (Pc) derived from the CK2β carboxy-terminal domain that can efficiently antagonize the CK2 subunit interaction. To understand the functional significance of this interaction, we generated cell-permeable versions of Pc, exploring its molecular mechanisms of action and the perturbations of the signaling pathways that it induces in intact cells. The identification of small molecules inhibitors of this critical interaction may represent the first-choice approach to manipulate CK2 in an unconventional way.

  11. The Ubiquitin E3 Ligase NOSIP Modulates Protein Phosphatase 2A Activity in Craniofacial Development

    PubMed Central

    Hoffmeister, Meike; Prelle, Carola; Küchler, Philipp; Kovacevic, Igor; Moser, Markus; Müller-Esterl, Werner; Oess, Stefanie

    2014-01-01

    Holoprosencephaly is a common developmental disorder in humans characterised by incomplete brain hemisphere separation and midface anomalies. The etiology of holoprosencephaly is heterogeneous with environmental and genetic causes, but for a majority of holoprosencephaly cases the genes associated with the pathogenesis could not be identified so far. Here we report the generation of knockout mice for the ubiquitin E3 ligase NOSIP. The loss of NOSIP in mice causes holoprosencephaly and facial anomalies including cleft lip/palate, cyclopia and facial midline clefting. By a mass spectrometry based protein interaction screen we identified NOSIP as a novel interaction partner of protein phosphatase PP2A. NOSIP mediates the monoubiquitination of the PP2A catalytic subunit and the loss of NOSIP results in an increase in PP2A activity in craniofacial tissue in NOSIP knockout mice. We conclude, that NOSIP is a critical modulator of brain and craniofacial development in mice and a candidate gene for holoprosencephaly in humans. PMID:25546391

  12. PP2A Regulates HDAC4 Nuclear Import

    PubMed Central

    Paroni, Gabriela; Cernotta, Nadia; Dello Russo, Claudio; Gallinari, Paola; Pallaoro, Michele; Foti, Carmela; Talamo, Fabio; Orsatti, Laura; Steinkühler, Christian

    2008-01-01

    Different signal-regulated serine/threonine kinases phosphorylate class II histone deacetylases (HDACs) to promote nuclear export, cytosolic accumulation, and activation of gene transcription. However, little is known about mechanisms operating in the opposite direction, which, possibly through phosphatases, should promote class II HDACs nuclear entry and subsequent gene repression. Here we show that HDAC4 forms a complex with the PP2A holoenzyme Cα, Aα, B/PR55α. In vitro and in vivo binding studies demonstrate that the N-terminus of HDAC4 interacts with the catalytic subunit of PP2A. HDAC4 is dephosphorylated by PP2A and experiments using okadaic acid or RNA interference have revealed that PP2A controls HDAC4 nuclear import. Moreover, we identified serine 298 as a putative phosphorylation site important for HDAC4 nuclear import. The HDAC4 mutant mimicking phosphorylation of serine 298 is defective in nuclear import. Mutation of serine 298 to alanine partially rescues the defect in HDAC4 nuclear import observed in cells with down-regulated PP2A. These observations suggest that PP2A, via the dephosphorylation of multiple serines including the 14-3-3 binding sites and serine 298, controls HDAC4 nuclear import. PMID:18045992

  13. Catalytic distillation process

    DOEpatents

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  14. Catalytic distillation process

    DOEpatents

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  15. Evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.

    1993-01-01

    An RNA-based evolution system was constructed in the laboratory and used to develop RNA enzymes with novel catalytic function. By controlling the nature of the catalytic task that the molecules must perform in order to survive, it is possible to direct the evolving population toward the expression of some desired catalytic behavior. More recently, this system has been coupled to an in vitro translation procedure, raising the possibility of evolving protein enzymes in the laboratory to produce novel proteins with desired catalytic properties. The aim of this line of research is to reduce darwinian evolution, the fundamental process of biology, to a laboratory procedure that can be made to operate in the service of organic synthesis.

  16. Catalytic distillation structure

    DOEpatents

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  17. Suppression of Scant Identifies Endos as a Substrate of Greatwall Kinase and a Negative Regulator of Protein Phosphatase 2A in Mitosis

    PubMed Central

    Rangone, Hélène; Wegel, Eva; Gatt, Melanie K.; Yeung, Eirene; Flowers, Alexander; Debski, Janusz; Dadlez, Michal; Janssens, Veerle; Carpenter, Adelaide T. C.; Glover, David M.

    2011-01-01

    Protein phosphatase 2A (PP2A) plays a major role in dephosphorylating the targets of the major mitotic kinase Cdk1 at mitotic exit, yet how it is regulated in mitotic progression is poorly understood. Here we show that mutations in either the catalytic or regulatory twins/B55 subunit of PP2A act as enhancers of gwlScant, a gain-of-function allele of the Greatwall kinase gene that leads to embryonic lethality in Drosophila when the maternal dosage of the mitotic kinase Polo is reduced. We also show that heterozygous mutant endos alleles suppress heterozygous gwlScant; many more embryos survive. Furthermore, heterozygous PP2A mutations make females heterozygous for the strong mutation polo11 partially sterile, even in the absence of gwlScant. Heterozygosity for an endos mutation suppresses this PP2A/polo11 sterility. Homozygous mutation or knockdown of endos leads to phenotypes suggestive of defects in maintaining the mitotic state. In accord with the genetic interactions shown by the gwlScant dominant mutant, the mitotic defects of Endos knockdown in cultured cells can be suppressed by knockdown of either the catalytic or the Twins/B55 regulatory subunits of PP2A but not by the other three regulatory B subunits of Drosophila PP2A. Greatwall phosphorylates Endos at a single site, Ser68, and this is essential for Endos function. Together these interactions suggest that Greatwall and Endos act to promote the inactivation of PP2A-Twins/B55 in Drosophila. We discuss the involvement of Polo kinase in such a regulatory loop. PMID:21852956

  18. Clean catalytic combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.

    1983-01-01

    A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.

  19. Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex

    PubMed Central

    Lyumkis, Dmitry; Oliveira dos Passos, Dario; Tahara, Erich B.; Webb, Kristofor; Bennett, Eric J.; Vinterbo, Staal; Potter, Clinton S.; Carragher, Bridget; Joazeiro, Claudio A. P.

    2014-01-01

    All organisms have evolved mechanisms to manage the stalling of ribosomes upon translation of aberrant mRNA. In eukaryotes, the large ribosomal subunit-associated quality control complex (RQC), composed of the listerin/Ltn1 E3 ubiquitin ligase and cofactors, mediates the ubiquitylation and extraction of ribosome-stalled nascent polypeptide chains for proteasomal degradation. How RQC recognizes stalled ribosomes and performs its functions has not been understood. Using single-particle cryoelectron microscopy, we have determined the structure of the RQC complex bound to stalled 60S ribosomal subunits. The structure establishes how Ltn1 associates with the large ribosomal subunit and properly positions its E3-catalytic RING domain to mediate nascent chain ubiquitylation. The structure also reveals that a distinguishing feature of stalled 60S particles is an exposed, nascent chain-conjugated tRNA, and that the Tae2 subunit of RQC, which facilitates Ltn1 binding, is responsible for selective recognition of stalled 60S subunits. RQC components are engaged in interactions across a large span of the 60S subunit surface, connecting the tRNA in the peptidyl transferase center to the distally located nascent chain tunnel exit. This work provides insights into a mechanism linking translation and protein degradation that targets defective proteins immediately after synthesis, while ignoring nascent chains in normally translating ribosomes. PMID:25349383

  20. Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex.

    PubMed

    Lyumkis, Dmitry; Oliveira dos Passos, Dario; Tahara, Erich B; Webb, Kristofor; Bennett, Eric J; Vinterbo, Staal; Potter, Clinton S; Carragher, Bridget; Joazeiro, Claudio A P

    2014-11-11

    All organisms have evolved mechanisms to manage the stalling of ribosomes upon translation of aberrant mRNA. In eukaryotes, the large ribosomal subunit-associated quality control complex (RQC), composed of the listerin/Ltn1 E3 ubiquitin ligase and cofactors, mediates the ubiquitylation and extraction of ribosome-stalled nascent polypeptide chains for proteasomal degradation. How RQC recognizes stalled ribosomes and performs its functions has not been understood. Using single-particle cryoelectron microscopy, we have determined the structure of the RQC complex bound to stalled 60S ribosomal subunits. The structure establishes how Ltn1 associates with the large ribosomal subunit and properly positions its E3-catalytic RING domain to mediate nascent chain ubiquitylation. The structure also reveals that a distinguishing feature of stalled 60S particles is an exposed, nascent chain-conjugated tRNA, and that the Tae2 subunit of RQC, which facilitates Ltn1 binding, is responsible for selective recognition of stalled 60S subunits. RQC components are engaged in interactions across a large span of the 60S subunit surface, connecting the tRNA in the peptidyl transferase center to the distally located nascent chain tunnel exit. This work provides insights into a mechanism linking translation and protein degradation that targets defective proteins immediately after synthesis, while ignoring nascent chains in normally translating ribosomes.

  1. Molecular architecture of the yeast Elongator complex reveals an unexpected asymmetric subunit arrangement.

    PubMed

    Setiaputra, Dheva T; Cheng, Derrick Th; Lu, Shan; Hansen, Jesse M; Dalwadi, Udit; Lam, Cindy Hy; To, Jeffrey L; Dong, Meng-Qiu; Yip, Calvin K

    2017-02-01

    Elongator is a ~850 kDa protein complex involved in multiple processes from transcription to tRNA modification. Conserved from yeast to humans, Elongator is assembled from two copies of six unique subunits (Elp1 to Elp6). Despite the wealth of structural data on the individual subunits, the overall architecture and subunit organization of the full Elongator and the molecular mechanisms of how it exerts its multiple activities remain unclear. Using single-particle electron microscopy (EM), we revealed that yeast Elongator adopts a bilobal architecture and an unexpected asymmetric subunit arrangement resulting from the hexameric Elp456 subassembly anchored to one of the two Elp123 lobes that form the structural scaffold. By integrating the EM data with available subunit crystal structures and restraints generated from cross-linking coupled to mass spectrometry, we constructed a multiscale molecular model that showed the two Elp3, the main catalytic subunit, are located in two distinct environments. This work provides the first structural insights into Elongator and a framework to understand the molecular basis of its multifunctionality.

  2. In vivo formation of hybrid aspartate transcarbamoylases from native subunits of divergent members of the family Enterobacteriaceae.

    PubMed Central

    Foltermann, K F; Beck, D A; Wild, J R

    1986-01-01

    The genes encoding the catalytic (pyrB) and regulatory (pyrI) polypeptides of aspartate transcarbamoylase (ATCase, EC 2.1.3.2) from several members of the family Enterobacteriaceae appear to be organized as bicistronic operons. The pyrBI gene regions from several enteric sources were cloned into selected plasmid vectors and expressed in Escherichia coli. Subsequently, the catalytic cistrons were subcloned and expressed independently from the regulatory cistrons from several of these sources. The regulatory cistron of E. coli was cloned separately and expressed from lac promoter-operator vectors. By utilizing plasmids from different incompatibility groups, it was possible to express catalytic and regulatory cistrons from different bacterial sources in the same cell. In all cases examined, the regulatory and catalytic polypeptides spontaneously assembled to form stable functional hybrid holoenzymes. This hybrid enzyme formation indicates that the r:c domains of interaction, as well as the dodecameric architecture, are conserved within the Enterobacteriaceae. The catalytic subunits of the hybrid ATCases originated from native enzymes possessing varied responses to allosteric effectors (CTP inhibition, CTP activation, or very slight responses; and ATP activation or no ATP response). However, each of the hybrid ATCases formed with regulatory subunits from E. coli demonstrated ATP activation and CTP inhibition, which suggests that the allosteric control characteristics are determined by the regulatory subunits. Images PMID:3722124

  3. The Properties of the Heavy and Light Subunits of Bovine Enterokinase

    DTIC Science & Technology

    1990-01-01

    Properties of the Heavy and Light Subunits of Bovine Enterokinase 12. PERSONAL AUTHOR(S) Albert Light 13a. TYPE OF REPORT 1l3b. TIME COVERED I 4. DATE OF...COfE ifcey and identify by block nue mber)FEL [ GOUP SUBGROU --Bovine Enterokinase , Amino Acids, Enzymes, Enterokinase r,-;. ,, .._ --0 . !9. ABSTRACT...properties of bovine enterokinase . The light chain is the catalytic suhunit and contains the histidine-serine-aspartic acid of the active site. The

  4. Relative activities and stabilities of mutant Escherichia coli tryptophan synthase alpha subunits.

    PubMed Central

    Lim, W K; Shin, H J; Milton, D L; Hardman, J K

    1991-01-01

    In vitro mutagenesis of the Escherichia coli trpA gene has yielded 66 mutant tryptophan synthase alpha subunits containing single amino acid substitutions at 49 different residue sites and 29 double and triple amino acid substitutions at 16 additional sites, all within the first 121 residues of the protein. The 66 singly altered mutant alpha subunits encoded from overexpression vectors have been examined for their ability to support growth in trpA mutant host strains and for their enzymatic and stability properties in crude extracts. With the exception of mutant alpha subunits altered at catalytic residue sites Glu-49 and Asp-60, all support growth; this includes those (48 of 66) that have no enzymatic defects and those (18 of 66) that do. The majority of the enzymatically defective mutant alpha subunits have decreased capacities for substrate (indole-3-glycerol phosphate) utilization, typical of the early trpA missense mutants isolated by in vivo selection methods. These defects vary in severity from complete loss of activity for mutant alpha subunits altered at residue positions 49 and 60 to those, altered elsewhere, that are partially (up to 40 to 50%) defective. The complete inactivation of the proteins altered at the two catalytic residue sites suggest that, as found via in vitro site-specific mutagenesis of the Salmonella typhimurium tryptophan synthetase alpha subunit, both residues probably also participate in a push-pull general acid-base catalysis of indole-3-glycerol phosphate breakdown for the E. coli enzyme as well. Other classes of mutant alpha subunits include some novel types that are defective in their functional interaction with the other tryptophan synthetase component, the beta 2 subunit. Also among the mutant alpha subunits, 19 were found altered at one or another of the 34 conserved residue sites in this portion of the alpha polypeptide sequence; surprisingly, 10 of these have wild-type enzymatic activity, and 16 of these can satisfy growth

  5. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  6. Transient catalytic combustor model

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1981-01-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  7. Transient catalytic combustor model

    NASA Astrophysics Data System (ADS)

    Tien, J. S.

    1981-05-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  8. Catalytic membranes beckon

    SciTech Connect

    Caruana, C.M.

    1994-11-01

    Chemical engineers here and abroad are finding that the marriage of catalysts and membranes holds promise for faster and more specific reactions, although commercialization of this technology is several years away. Catalytic membrane reactors (CMRs) combine a heterogeneous catalyst and a permselective membrane. Reactions performed by CMRs provide higher yields--sometimes as much as 50% higher--because of better reaction selectivity--as opposed to separation selectivity. CMRs also can work at very high temperatures, using ceramic materials that would not be possible with organic membranes. Although the use of CMRs is not widespread presently, the development of new membranes--particularly porous ceramic and zeolite membranes--will increase the potential to improve yields of many catalytic processes. The paper discusses ongoing studies, metal and advanced materials for membranes, the need for continued research, hydrogen recovery from coal-derived gases, catalytic oxidation of sulfides, CMRs for water purification, and oxidative coupling of methane.

  9. Catalytic hydrotreating process

    DOEpatents

    Karr, Jr., Clarence; McCaskill, Kenneth B.

    1978-01-01

    Carbonaceous liquids boiling above about 300.degree. C such as tars, petroleum residuals, shale oils and coal-derived liquids are catalytically hydrotreated by introducing the carbonaceous liquid into a reaction zone at a temperature in the range of 300.degree. to 450.degree. C and a pressure in the range of 300 to 4000 psig for effecting contact between the carbonaceous liquid and a catalytic transition metal sulfide in the reaction zone as a layer on a hydrogen permeable transition metal substrate and then introducing hydrogen into the reaction zone by diffusing the hydrogen through the substrate to effect the hydrogenation of the carbonaceous liquid in the presence of the catalytic sulfide layer.

  10. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  11. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  12. Differential proteolysis of the subunits of pyrophosphate-dependent 6-phosphofructo-1-phosphotransferase.

    PubMed

    Cheng, H F; Tao, M

    1990-02-05

    Antibodies against the alpha (Mr 67,000) and beta (Mr 60,000) subunits of wheat seedling Fru-2,6-P2-stimulated pyrophosphate-dependent 6-phosphofructo-1-phosphotransferase (PFP) were used to probe the subunit structures of several partially purified plant PFPs after tryptic digestion. Antisera to the alpha and beta subunits of wheat seedling PFP cross-reacted with the corresponding alpha and beta subunits of PFP preparations from wheat germ, potato tubers, and lettuce leaves. With the mung bean PFP, both antisera reacted with a protein band of Mr 60,000. A protein band corresponding to the Mr 67,000 alpha subunit was not detected in the mung bean PFP preparation. Tryptic digestion of wheat seedling and potato tuber PFPs resulted in the preferential cleavage of the alpha subunit. The trypsinized PFP retained most of its Fru-2,6-P2-stimulated activity but not its basal activity. The proteolyzed enzyme also exhibited a 2-fold increase in Ka for Fru-2,6-P2. Studies with the mung bean enzyme revealed that the anti-alpha immunoreactive component was more sensitive to trypsinization than the anti-beta immunoreactive component of the Mr 60,000 protein band. Thus, the Mr 60,000 protein band of the mung bean PFP appears to be heterogeneous and contains both alpha and beta-like proteins. The above observations indicate that the alpha and beta subunits of PFP are two distinct polypeptides and that alpha acts as a regulatory protein in regulating both the catalytic activity and the Fru-2,6-P2-binding affinity of the beta subunit.

  13. Catalytic efficiency of designed catalytic proteins

    PubMed Central

    Korendovych, Ivan V; DeGrado, William F

    2014-01-01

    The de novo design of catalysts that mimic the affinity and specificity of natural enzymes remains one of the Holy Grails of chemistry. Despite decades of concerted effort we are still unable to design catalysts as efficient as enzymes. Here we critically evaluate approaches to (re)design of novel catalytic function in proteins using two test cases: Kemp elimination and ester hydrolysis. We show that the degree of success thus far has been modest when the rate enhancements seen for the designed proteins are compared with the rate enhancements by small molecule catalysts in solvents with properties similar to the active site. Nevertheless, there are reasons for optimism: the design methods are ever improving and the resulting catalyst can be efficiently improved using directed evolution. PMID:25048695

  14. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  15. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  16. Protein serine/threonine Phosphotase-2A is differentially expressed and regulates eye development in vertebrates.

    PubMed

    Liu, W-B; Hu, X-H; Zhang, X-W; Deng, M-X; Nie, L; Hui, S-S; Duan, W; Tao, M; Zhang, C; Liu, J; Hu, W-F; Huang, Z-X; Li, L; Yi, M; Li, T-T; Wang, L; Liu, Y; Liu, S-J; Li, D W-C

    2013-09-01

    Protein serine/threonine phosphatase-2A (PP-2A) is one of the key enzymes responsible for dephosphorylation in vertebrates. PP-2A-mediated dephosphorylation participates in many different biological processes including cell proliferation, differentiation, transformation, apoptosis, autophage and senescence. However, whether PP-2A directly controls animal development remains to be explored. Here, we present direct evidence to show that PP-2A displays important functions in regulating eye development of vertebrates. Using goldfish as a model system, we have demonstrated the following novel information. First, inhibition of PP-2A activity leads to significant death of the treated embryos, which is derived from blastomere apoptosis associated with enhanced phosphorylation of Bcl-XL at Ser-62, and the survived embryos displayed severe phenotype in the eye. Second, knockdown of PP-2A with morpholino oligomers leads to significant death of the injected embryos. The survived embryos from PP-2A knockdown displayed clear retardation in lens differentiation. Finally, overexpression of each catalytic subunit of PP-2A also causes death of majority of the injected embryos and leads to absence of goldfish eye lens or severely disturbed differentiation. Together, our results provide direct evidence that protein phosphatase-2A is important for normal eye development in goldfish.

  17. The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1

    SciTech Connect

    V Stanevich; L Jiang; K Satyshur; Y Li; P Jeffrey; Z Li; P Menden; M Semmelhack; Y Xing

    2011-12-31

    Proper formation of protein phosphatase 2A (PP2A) holoenzymes is essential for the fitness of all eukaryotic cells. Carboxyl methylation of the PP2A catalytic subunit plays a critical role in regulating holoenzyme assembly; methylation is catalyzed by PP2A-specific methyltransferase LCMT-1, an enzyme required for cell survival. We determined crystal structures of human LCMT-1 in isolation and in complex with PP2A stabilized by a cofactor mimic. The structures show that the LCMT-1 active-site pocket recognizes the carboxyl terminus of PP2A, and, interestingly, the PP2A active site makes extensive contacts to LCMT-1. We demonstrated that activation of the PP2A active site stimulates methylation, suggesting a mechanism for efficient conversion of activated PP2A into substrate-specific holoenzymes, thus minimizing unregulated phosphatase activity or formation of inactive holoenzymes. A dominant-negative LCMT-1 mutant attenuates the cell cycle without causing cell death, likely by inhibiting uncontrolled phosphatase activity. Our studies suggested mechanisms of LCMT-1 in tight control of PP2A function, important for the cell cycle and cell survival.

  18. The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1

    SciTech Connect

    Stanevich, Vitali; Jiang, Li; Satyshur, Kenneth A.; Li, Yongfeng; Jeffrey, Philip D.; Li, Zhu; Menden, Patrick; Semmelhack, Martin F.; Xing, Yongna

    2012-05-29

    Proper formation of protein phosphatase 2A (PP2A) holoenzymes is essential for the fitness of all eukaryotic cells. Carboxyl methylation of the PP2A catalytic subunit plays a critical role in regulating holoenzyme assembly; methylation is catalyzed by PP2A-specific methyltransferase LCMT-1, an enzyme required for cell survival. We determined crystal structures of human LCMT-1 in isolation and in complex with PP2A stabilized by a cofactor mimic. The structures show that the LCMT-1 active-site pocket recognizes the carboxyl terminus of PP2A, and, interestingly, the PP2A active site makes extensive contacts to LCMT-1. We demonstrated that activation of the PP2A active site stimulates methylation, suggesting a mechanism for efficient conversion of activated PP2A into substrate-specific holoenzymes, thus minimizing unregulated phosphatase activity or formation of inactive holoenzymes. A dominant-negative LCMT-1 mutant attenuates the cell cycle without causing cell death, likely by inhibiting uncontrolled phosphatase activity. Our studies suggested mechanisms of LCMT-1 in tight control of PP2A function, important for the cell cycle and cell survival.

  19. The Subunit Structure of Benzylsuccinate Synthase†

    PubMed Central

    Li, Lei; Patterson, Dustin P.; Fox, Christel C.; Lin, Brian; Coschigano, Peter W.; Marsh, E. Neil G.

    2010-01-01

    Benzylsuccinate synthase is a member of the glycyl radical family of enzymes. It catalyzes the addition of toluene to fumarate to form benzylsuccinate as the first step in the anaerobic pathway of toluene fermentation. The enzyme comprises three subunits α, β and γ that in Thauera Aromatica T1 strain are encoded by the tutD, tutG and tutF genes respectively. The large α-subunit contains the essential glycine and cysteine residues that are conserved in all glycyl radical enzymes. However, the function of the small β- and γ-subunits has remained unclear. We have over-expressed all three subunits of benzylsuccinate synthase in E. coli, both individually and in combination. Co-expression of the γ-subunit (but not the β-subunit) is essential for efficient expression of the α-subunit. The benzylsuccinate synthase complex lacking the glycyl radical could be purified as an α2β2γ2 hexamer by nickel-affinity chromatography through a ‘His6’ affinity tag engineered onto the C-terminus of the α-subunit. Unexpectedly, BSS was found to contain two iron-sulfur clusters, one associated with the β-subunit and the other with the γ-subunit that appear to be necessary for the structural integrity of the complex. The spectroscopic properties of these clusters suggest that they are most likely [4Fe-4S] clusters. Removal of iron with chelating agents results in dissociation of the complex; similarly a mutant γ-subunit lacking the [4Fe-4S] cluster is unable to stabilize the α-subunit when the proteins are co-expressed. PMID:19159265

  20. Differential expression of 26S proteasome subunits and functional activity during neonatal development.

    PubMed

    Claud, Erika C; McDonald, Julie A K; He, Shu-Mei; Yu, Yueyue; Duong, Lily; Sun, Jun; Petrof, Elaine O

    2014-08-29

    Proteasomes regulate many essential cellular processes by degrading intracellular proteins. While aging is known to be associated with dysfunction of the proteasome, there are few reports detailing activity and function of proteasomes in the early stages of life. To elucidate the function and development of mammalian proteasomes, 26S proteasomes were affinity-purified from rat intestine, spleen and liver. The developmental expression of core, regulatory and immunoproteasome subunits was analyzed by immunoblotting and reverse-transcriptase PCR of mRNA subunits, and proteasome catalytic function was determined by fluorogenic enzymatic assays. The expression of core (β2, β5, α7 and β1) and regulatory (Rpt5) subunits was found to be present at low levels at birth and increased over time particularly at weaning. In contrast, while gradual developmental progression of proteasome structure was also seen with the immunoproteasome subunits (β1i, β5i, and β2i), these were not present at birth. Our studies demonstrate a developmental pattern to 26S proteasome activity and subunit expression, with low levels of core proteasome components and absence of immunoproteasomes at birth followed by increases at later developmental stages. This correlates with findings from other studies of a developmental hyporesponsiveness of the adaptive immune system to allow establishment of microbial colonization immediately after birth.

  1. Structural analysis of the α subunit of Na(+)/K(+) ATPase genes in invertebrates.

    PubMed

    Thabet, Rahma; Rouault, J-D; Ayadi, Habib; Leignel, Vincent

    2016-01-01

    The Na(+)/K(+) ATPase is a ubiquitous pump coordinating the transport of Na(+) and K(+) across the membrane of cells and its role is fundamental to cellular functions. It is heteromer in eukaryotes including two or three subunits (α, β and γ which is specific to the vertebrates). The catalytic functions of the enzyme have been attributed to the α subunit. Several complete α protein sequences are available, but only few gene structures were characterized. We identified the genomic sequences coding the α-subunit of the Na(+)/K(+) ATPase, from the whole-genome shotgun contigs (WGS), NCBI Genomes (chromosome), Genomic Survey Sequences (GSS) and High Throughput Genomic Sequences (HTGS) databases across distinct phyla. One copy of the α subunit gene was found in Annelida, Arthropoda, Cnidaria, Echinodermata, Hemichordata, Mollusca, Placozoa, Porifera, Platyhelminthes, Urochordata, but the nematodes seem to possess 2 to 4 copies. The number of introns varied from 0 (Platyhelminthes) to 26 (Porifera); and their localization and length are also highly variable. Molecular phylogenies (Maximum Likelihood and Maximum Parsimony methods) showed some clusters constituted by (Chordata/(Echinodermata/Hemichordata)) or (Plathelminthes/(Annelida/Mollusca)) and a basal position for Porifera. These structural analyses increase our knowledge about the evolutionary events of the α subunit genes in the invertebrates.

  2. A novel protein phosphatase 2A (PP2A) is involved in the transformation of human protozoan parasite Trypanosoma cruzi.

    PubMed Central

    González, Jorge; Cornejo, Alberto; Santos, Marcia R M; Cordero, Esteban M; Gutiérrez, Bessy; Porcile, Patricio; Mortara, Renato A; Sagua, Hernán; Da Silveira, José Franco; Araya, Jorge E

    2003-01-01

    Here we provide evidence for a critical role of PP2As (protein phosphatase 2As) in the transformation of Trypanosoma cruzi. In axenic medium at pH 5.0, trypomastigotes rapidly transform into amastigotes, a process blocked by okadaic acid, a potent PP2A inhibitor, at concentrations as low as 0.1 microM. 1-Norokadaone, an inactive okadaic acid analogue, did not affect the transformation. Electron microscopy studies indicated that okadaic acid-treated trypomastigotes had not undergone ultrastructural modifications, reinforcing the idea that PP2A inhibits transformation. Using a microcystin-Sepharose affinity column we purified the native T. cruzi PP2A. The enzyme displayed activity against 32P-labelled phosphorylase a that was inhibited in a dose-dependent manner by okadaic acid. The protein was also submitted to MS and, from the peptides obtained, degenerate primers were used to clone a novel T. cruzi PP2A enzyme by PCR. The isolated gene encodes a protein of 303 amino acids, termed TcPP2A, which displayed a high degree of homology (86%) with the catalytic subunit of Trypanosoma brucei PP2A. Northern-blot analysis revealed the presence of a major 2.1-kb mRNA hybridizing in all T. cruzi developmental stages. Southern-blot analysis suggested that the TcPP2A gene is present in low copy number in the T. cruzi genome. These results are consistent with the mapping of PP2A genes in two chromosomal bands by pulsed-field gel electrophoresis and chromoblot hybridization. Our studies suggest that in T. cruzi PP2A is important for the complete transformation of trypomastigotes into amastigotes during the life cycle of this protozoan parasite. PMID:12737627

  3. Role of the Rubisco Small Subunit

    SciTech Connect

    Spreitzer, Robert Joseph

    2016-11-05

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis. However, it is a slow enzyme, and O2 competes with CO2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO2. If carboxylation could be increased or oxygenation decreased, an increase in net CO2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants, and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO2/O2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a

  4. Membrane-localized β-subunits alter the PIP2 regulation of high-voltage activated Ca2+ channels.

    PubMed

    Suh, Byung-Chang; Kim, Dong-Il; Falkenburger, Björn H; Hille, Bertil

    2012-02-21

    The β-subunits of voltage-gated Ca(2+) (Ca(V)) channels regulate the functional expression and several biophysical properties of high-voltage-activated Ca(V) channels. We find that Ca(V) β-subunits also determine channel regulation by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)). When Ca(V)1.3, -2.1, or -2.2 channels are cotransfected with the β3-subunit, a cytosolic protein, they can be inhibited by activating a voltage-sensitive lipid phosphatase to deplete PIP(2). When these channels are coexpressed with a β2a-subunit, a palmitoylated peripheral membrane protein, the inhibition is much smaller. PIP(2) sensitivity could be increased by disabling the two palmitoylation sites in the β2a-subunit. To further test effects of membrane targeting of Ca(V) β-subunits on PIP(2) regulation, the N terminus of Lyn was ligated onto the cytosolic β3-subunit to confer lipidation. This chimera, like the Ca(V) β2a-subunit, displayed plasma membrane localization, slowed the inactivation of Ca(V)2.2 channels, and increased the current density. In addition, the Lyn-β3 subunit significantly decreased Ca(V) channel inhibition by PIP(2) depletion. Evidently lipidation and membrane anchoring of Ca(V) β-subunits compete with the PIP(2) regulation of high-voltage-activated Ca(V) channels. Compared with expression with Ca(V) β3-subunits alone, inhibition of Ca(V)2.2 channels by PIP(2) depletion could be significantly attenuated when β2a was coexpressed with β3. Our data suggest that the Ca(V) currents in neurons would be regulated by membrane PIP(2) to a degree that depends on their endogenous β-subunit combinations.

  5. Proton slippage in cytochrome c oxidase of Paracoccus denitrificans. Membrane-potential measurements with the two-subunit and three-subunit enzyme.

    PubMed

    Steverding, D; Köhnke, D; Ludwig, B; Kadenbach, B

    1993-03-15

    Isolated cytochrome c oxidase from Paracoccus denitrificans, containing either two or three subunits, was reconstituted into liposomes and the membrane potential was measured at different rates of respiration using a triphenylmethylphosponium bromide electrode. Both enzymes revealed a non-linear increase of the membrane potential with increasing respiratory rates. The ratios of the respiratory rates of the two proton pumps decreased with increasing membrane potential, suggesting slippage of proton pumping, as has been shown before with two cytochrome c oxidases from bovine heart, differing in H+/e- stoichiometries due to chemical modification [Steverding, D. & Kadenbach, B. (1991) J. Biol. Chem. 266, 8097-8101]. The data suggest that slippage of proton pumping represents an intrinsic property of cytochrome c oxidase associated with the two catalytic subunits, I and II.

  6. Catalytic, hollow, refractory spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1987-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  7. Catalytic thermal barrier coatings

    DOEpatents

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  8. Cloning and purification of protein kinase CK2 recombinant alpha and beta subunits from the Mediterranean fly Ceratitis capitata.

    PubMed

    Kouyanou-Koutsoukou, Sophia; Baier, Andrea; Kolaitis, Regina-Maria; Maniatopoulou, Evanthia; Thanopoulou, Konstantina; Szyszka, Ryszard

    2011-10-01

    The Mediterranean fruit fly Ceratitis capitata is an insect capable of wreaking extensive damage to a wide range of fruit crops. Protein kinase CK2 is a ubiquitous Ser/Thr kinase that is highly conserved among eukaryotes; it is a heterotetramer composed of two catalytic (α) and a dimer of regulatory (β) subunits. We present here the construction of the cDNA molecules of the CK2α and CK2β subunits from the medfly C. capitata by the 5'/3' RACE and RT-PCR methods, respectively. CcCK2α catalytic subunit presents the characteristic and conserved features of a typical protein kinase, similar to the regulatory CcCK2β subunit, that also possess the conserved features of regulatory CK2β subunits, as revealed by comparison of their predicted amino acid sequences with other eukaryotic species. The recombinant CcCK2α and CcCK2β proteins were purified by affinity chromatography to homogeneity, after overexpression in Escherichia coli. CcCK2α is capable to utilize GTP and its activity and is inhibited by polyanions and stimulated by polycations in phosphorylation assays, using purified acidic ribosomal protein P1 as a substrate.

  9. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  10. Catalytic reforming catalyst

    SciTech Connect

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  11. Embryonic Expression of the Putative γ Subunit of the Sodium Pump Is Required for Acquisition of Fluid Transport Capacity during Mouse Blastocyst Development

    PubMed Central

    Jones, D. Holstead; Davies, Tyler C.; Kidder, Gerald M.

    1997-01-01

    The sodium/potassium pump, Na+,K+-ATPase, is generally understood to function as a heterodimer of two subunits, a catalytic α subunit and a noncatalytic, glycosylated β subunit. Recently, a putative third subunit, the γ subunit, was cloned. This small protein (6.5 kD) coimmunoprecipitates with the α and β subunits and is closely associated with the ouabain binding site on the holoenzyme, but its function is unknown. We have investigated the expression of the γ subunit in preimplantation mouse development, where Na+,K+-ATPase plays a critical role as the driving force for blastocoel formation (cavitation). Using reverse transcriptase-polymerase chain reaction, we demonstrated that the γ subunit mRNA accumulates continuously from the eight-cell stage onward and that it cosediments with polyribosomes from its time of first appearance. Confocal immunofluorescence microscopy revealed that the γ subunit itself accumulates and is localized at the blastomere surfaces up to the blastocyst stage. In contrast with the α and β subunits, the γ subunit is not concentrated in the basolateral surface of the polarized trophectoderm layer, but is strongly expressed at the apical surface as well. When embryos were treated with antisense oligodeoxynucleotide complementary to the γ subunit mRNA, ouabain-sensitive K+ transport (as indicated by 86Rb+ uptake) was reduced and cavitation delayed. However, Na+,K+-ATPase enzymatic activity was unaffected as determined by a direct phosphorylation assay (“back door” phosphorylation) applied to plasma membrane preparations. These results indicate that the γ subunit, although not an integral component of Na+,K+-ATPase, is an important determinant of active cation transport and that, as such, its embryonic expression is essential for blastocoel formation in the mouse. PMID:9396759

  12. Novel structure of an N-terminal domain that is crucial for the dimeric assembly and DNA-binding of an archaeal DNA polymerase D large subunit from Pyrococcus horikoshii.

    PubMed

    Matsui, Ikuo; Urushibata, Yuji; Shen, Yulong; Matsui, Eriko; Yokoyama, Hideshi

    2011-02-04

    Archaea-specific D-family DNA polymerase forms a heterotetramer consisting of two large polymerase subunits and two small exonuclease subunits. The N-terminal (1-300) domain structure of the large subunit was determined by X-ray crystallography, although ∼50 N-terminal residues were disordered. The determined structure consists of nine alpha helices and three beta strands. We also identified the DNA-binding ability of the domain by SPR measurement. The N-terminal (1-100) region plays crucial roles in the folding of the large subunit dimer by connecting the ∼50 N-terminal residues with their own catalytic region (792-1163).

  13. Bovine kidney alkaline phosphatase. Catalytic properties, subunit interactions in the catalytic process, and mechanism of Mg2+ stimulation.

    PubMed

    Cathala, G; Brunel, C

    1975-08-10

    Kidney alkaline phosphatase is an enzyme which requires two types of metals for maximal activity: zinc, which is essential, and magnesium, which is stimulatory. The main features of the Mg2+ stimulation have been analyzed. The stimulation is pH-dependent and is observed mainly between pH 7.5 and 10.5. Mg2+ binding to native alkaline phosphatase is characterized by a dissociation constant of 50 muM at pH 8.5,25 degrees. Binding of Zn2+ is an athermic process. Both the rate constants of association, ka, and of dissociation, kd, have low values. Typical values are 7 M(-1) at pH 8.0, 25 degrees, for ka and 4.10(-4) S(-1) at pH 8.0, 25 degrees, for kd. The on and off processes have high activation energies of 29 kcal mol (-1). Mg2+ can be replaced at its specific site by Mn2+, Co2+, Ni2+, and Zn2+. Zinc binding to the Mg2+ site inhibits the native alkaline phosphatase. Mn2+, Co2+, and Ni2+ also bind to the Mg2+ site with a stimulatory effect which is nearly identic-al with that of Mg2+, Mn2+ is the stimulatory cation which binds most tightly to the Mg2+ site; the dissociation constant of the Mn2+ kidney phosphatase complex is 2 muM at pH 8.5. The stoichiometry of Mn2+ binding has been found to be 1 eq of Mn2+ per mol of dimeric kidney phosphatase. The native enzyme displays absolute half-site reactivity for Mn2+ binding. Mg2+ binding site and the substrate binding sites are distinct sites. The Mg2+ stimulation corresponds to an allosteric effect. Mg2+ binding to its specific sites does not affect substrate recognition, it selectively affects Vmax values. Quenching of the phosphoenzyme formed under steady state conditions with [32P]AMP as a substrate as well as stopped flow analysis of the catalyzed hydrolysis of 2,4-dinitrophenyl phosphate or p-nitrophenyl phosphate have shown that the two active sites of the native and of the Mg2+-stimulated enzyme are not equivalent. Stopped flow analysis indicated that one of the two active sites was phosphorylated very rapidly whereas the other one was phosphorylated much more slowly at pH 4.2. Half of the sites were shown to be reactive at pH 8.0. Quenching experiments have shown that only one of the two sites is phosphorylated at any instant; this result was confirmed by the stopped flow observation of a burst of only 1 mol of nitrophenol per mol of dimeric phosphatase in the pre-steady state hydrolysis of p-nitrophenyl phosphate. The half-of-the-sites reactivity observed for the native and for the Mg2+-stimulated enzyme indicates that the same type of complex, the monophosphorylated complex, accumulates under steady state conditions with both types of enzymes. Mg2+ binding to the native enzyme at pH 8.0 increases considerably the dephosphorylation rate of this monophosphorylated intermediate. A possible mechanism of Mg2+ stimulation is discussed.

  14. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J.; Hryn, John N.; Elam, Jeffrey W.

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  15. Quenched catalytic cracking process

    SciTech Connect

    Krambeck, F.J.; Penick, J.E.; Schipper, P.H.

    1990-12-18

    This paper describes improvement in a fluidized catalytic cracking process wherein a fluidizable catalyst cracking catalyst and a hydrocarbon feed are charged to a reactor riser at catalytic riser cracking conditions to form catalytically cracked vapor product and spent catalyst which are discharged into a reactor vessel having a volume via a riser reactor outlet equipped with a separation means to produce a catalyst lean phase. It comprises: a majority of the cracked product, and a catalyst rich phase comprising a majority of the spend catalyst. The the catalyst rich phase is discharged into a dense bed of catalyst maintained below the riser outlet and the catalyst lean phase is discharged into the vessel for a time, and at a temperature, which cause unselective thermal cracking of the cracked product in the reactor volume before product is withdrawn from the vessel via a vessel outlet. The improvement comprises: addition, after riser cracking is completed, and after separation of cracked products from catalyst, of a quenching stream into the vessel above the dense bed of catalyst, via a quench stream addition point which allows the quench stream to contact at least a majority of the volume of the vessel above the dense bed.

  16. Cloning of the cDNAs for the small subunits of bovine and human DNA polymerase {delta} and chromosomal location of the human gene (POLD2)

    SciTech Connect

    Zhang, Jian; Tan, Cheng-Keat; Downey, K.M.

    1995-09-01

    cDNAs encoding the small subunit of bovine and human DNA polymerase {delta} have been cloned and sequenced. The predicted polypeptides, 50,885 and 51,289 Daltons, respectively, are 94% identical, similar to the catalytic subunits. The high degree of conservation of the polypeptides suggests an essential function for the small subunit in the heterodimeric core enzyme. Although the catalytic subunit of DNA polymerase 5 shares significant homology with those of the herpes virus family of DNA polymerases, the small subunit of mammalian DNA polymerase 6 is not homologous to the small subunit of either herpes simplex virus type 1 DNA polymerase (UL42 protein) or the Epstein-Barr virus DNA polymerase (BMRF1 protein). Searches of the protein databases failed to detect significant homology with any protein sequenced thus far. PCR analysis of DNA from a panel of human-hamster hybrid cell lines localized the gene (POLD2) for the small subunit of DNA polymerase 5 to human chromosome 7. 45 refs., 2 figs., 2 tabs.

  17. A new light on the meiotic DSB catalytic complex.

    PubMed

    Robert, Thomas; Vrielynck, Nathalie; Mézard, Christine; de Massy, Bernard; Grelon, Mathilde

    2016-06-01

    Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks (DSBs). More than 15 years ago, Spo11 was identified as the protein responsible for meiotic DSB formation, notably because of its striking similarities with the A subunit of topoisomerase VI (TopoVI). TopoVI are enzymes that modify DNA topology by generating transient DSBs and are active as heterotetramers, composed of two A and two B subunits. A2 dimers catalyse the DNA cleavage reaction, whereas the B subunits regulate A2 conformation, DNA capture, cleavage and re-ligation. The recent identification in plants and mammals of a B-like TopoVI subunit that interacts with SPO11 and is required for meiotic DSB formation makes us to reconsider our understanding of the meiotic DSB catalytic complex. We provide here an overview of the knowledge on TopoVI structure and mode of action and we compare them with their meiotic counterparts. This allows us to discuss the nature, structure and functions of the meiotic TopoVI-like complex during meiotic DSB formation.

  18. Protein phosphatase 2A Cα regulates osteoblast differentiation and the expressions of bone sialoprotein and osteocalcin via osterix transcription factor.

    PubMed

    Okamura, Hirohiko; Yoshida, Kaya; Yang, Di; Haneji, Tatsuji

    2013-05-01

    Serine/threonine protein phosphatase 2A (PP2A) participates in regulating many important physiological processes such as cell cycle, growth, apoptosis, and signal transduction. Osterix is a zinc-finger-containing transcription factor that is essential for osteoblast differentiation and regulation of many bone-related genes. We have recently reported that decrease in α-isoform of PP2A catalytic subunit (PP2A Cα) accelerates osteoblast differentiation through the expression of bone-related genes. In this study, we further examined the role of PP2A Cα in osteoblast differentiation by establishing the stable cell lines that overexpress PP2A Cα. Overexpression of PP2A Cα reduced alkaline phosphatase (ALP) activity. Osteoblast differentiation and mineralization were also decreased in PP2A Cα-overexpressing cells, with reduction of bone-related genes including osterix, bone sialoprotein (Bsp), and osteocalcin (OCN). Luciferase assay showed that the transcriptional activity of the Osterix promoter region was decreased in PP2A Cα-overexpressing cells. Introduction of ectopic Osterix rescued the expression of Bsp and OCN in PP2A Cα-overexpressing cells. These results indicate that PP2A Cα and its activity play a negative role in osteoblast differentiation and Osterix is a key factor responsible for regulating the expressions of Bsp and OCN during PP2A Cα-mediated osteoblast differentiation.

  19. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking*

    PubMed Central

    Lee, Jennifer; Ding, ShuJing; Walpole, Thomas B.; Holding, Andrew N.; Montgomery, Martin G.; Fearnley, Ian M.; Walker, John E.

    2015-01-01

    The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase. PMID:25851905

  20. Subunit mass analysis for monitoring antibody oxidation

    PubMed Central

    Sokolowska, Izabela; Mo, Jingjie; Dong, Jia; Lewis, Michael J.; Hu, Ping

    2017-01-01

    ABSTRACT Methionine oxidation is a common posttranslational modification (PTM) of monoclonal antibodies (mAbs). Oxidation can reduce the in-vivo half-life, efficacy and stability of the product. Peptide mapping is commonly used to monitor the levels of oxidation, but this is a relatively time-consuming method. A high-throughput, automated subunit mass analysis method was developed to monitor antibody methionine oxidation. In this method, samples were treated with IdeS, EndoS and dithiothreitol to generate three individual IgG subunits (light chain, Fd’ and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit were quantitated based on the deconvoluted mass spectra using the UNIFI software. The oxidation results obtained by subunit mass analysis correlated well with the results obtained by peptide mapping. Method qualification demonstrated that this subunit method had excellent repeatability and intermediate precision. In addition, UNIFI software used in this application allows automated data acquisition and processing, which makes this method suitable for high-throughput process monitoring and product characterization. Finally, subunit mass analysis revealed the different patterns of Fc methionine oxidation induced by chemical and photo stress, which makes it attractive for investigating the root cause of oxidation. PMID:28106519

  1. Subunit mass analysis for monitoring antibody oxidation.

    PubMed

    Sokolowska, Izabela; Mo, Jingjie; Dong, Jia; Lewis, Michael J; Hu, Ping

    2017-04-01

    Methionine oxidation is a common posttranslational modification (PTM) of monoclonal antibodies (mAbs). Oxidation can reduce the in-vivo half-life, efficacy and stability of the product. Peptide mapping is commonly used to monitor the levels of oxidation, but this is a relatively time-consuming method. A high-throughput, automated subunit mass analysis method was developed to monitor antibody methionine oxidation. In this method, samples were treated with IdeS, EndoS and dithiothreitol to generate three individual IgG subunits (light chain, Fd' and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit were quantitated based on the deconvoluted mass spectra using the UNIFI software. The oxidation results obtained by subunit mass analysis correlated well with the results obtained by peptide mapping. Method qualification demonstrated that this subunit method had excellent repeatability and intermediate precision. In addition, UNIFI software used in this application allows automated data acquisition and processing, which makes this method suitable for high-throughput process monitoring and product characterization. Finally, subunit mass analysis revealed the different patterns of Fc methionine oxidation induced by chemical and photo stress, which makes it attractive for investigating the root cause of oxidation.

  2. Cornichon proteins determine the subunit composition of synaptic AMPA receptors.

    PubMed

    Herring, Bruce E; Shi, Yun; Suh, Young Ho; Zheng, Chan-Ying; Blankenship, Sabine M; Roche, Katherine W; Nicoll, Roger A

    2013-03-20

    Cornichon-2 and cornichon-3 (CNIH-2/-3) are AMPA receptor (AMPAR) binding proteins that promote receptor trafficking and markedly slow AMPAR deactivation in heterologous cells, but their role in neurons is unclear. Using CNIH-2 and CNIH-3 conditional knockout mice, we find a profound reduction of AMPAR synaptic transmission in the hippocampus. This deficit is due to the selective loss of surface GluA1-containing AMPARs (GluA1A2 heteromers), leaving a small residual pool of synaptic GluA2A3 heteromers. The kinetics of AMPARs in neurons lacking CNIH-2/-3 are faster than those in WT neurons due to the fast kinetics of GluA2A3 heteromers. The remarkably selective effect of CNIHs on the GluA1 subunit is probably mediated by TARP γ-8, which prevents a functional association of CNIHs with non-GluA1 subunits. These results point to a sophisticated interplay between CNIHs and γ-8 that dictates subunit-specific AMPAR trafficking and the strength and kinetics of synaptic AMPAR-mediated transmission.

  3. Reduction and Methyl Transfer Kinetics of the Alpha Subunit from Acetyl-Coenzyme A Synthase

    SciTech Connect

    Xiangshi Tan; Christopher Sewell; Qingwu Yang; Paul A. Lindahl

    2003-01-15

    OAK-B135 Stopped-flow was used to evaluate the methylation and reduction kinetics of the isolated alpha subunit of acetyl-Coenzyme A synthase from Moorella thermoacetica. This catalytically active subunit contains a novel Ni-X-Fe4S4 cluster and a putative unidentified n =2 redox site called D. The D-site must be reduced for a methyl group to transfer from a corrinoid-iron-sulfur protein, a key step in the catalytic synthesis of acetyl-CoA. The Fe4S4 component of this cluster is also redox active, raising the possibility that it is the D-site or a portion thereof. Results presented demonstrate that the D-site reduces far faster than the Fe4S4 component, effectively eliminating this possibility. Rather, this component may alter catalytically important properties of the Ni center. The D-site is reduced through a pathway that probably does not involve the Fe4S4 component of this active-site cluster.

  4. Asymmetry of the alpha subunit of the chloroplast ATP synthase as probed by the binding of Lucifer Yellow vinyl sulfone.

    PubMed

    Lowe, K M; McCarty, R E

    1998-02-24

    The catalytic portion of the chloroplast ATP synthase (CF1) is structurally asymmetric. Asymmetry of the otherwise symmetrical alpha3beta3 heterohexamer is induced by the presence of tightly bound nucleotides and interactions with the single-copy, smaller subunits. Lucifer Yellow vinyl sulfone (4-amino-N-[3-(vinylsulfonyl)phenyl]naphthalimide-3,6-disulfonic acid) rapidly and covalently binds to lysine 378 on one alpha subunit [Nalin, C. M., Snyder, B., and McCarty, R. E., (1985) Biochemistry 24, 2318-2324] [Shapiro, A. B. (1991) Ph.D. Thesis, Cornell University, Ithaca, NY). The asymmetrical binding of Lucifer Yellow to CF1 provides a method to investigate the cause of asymmetry in the alpha subunits. The reaction of CF1 with Lucifer Yellow was monitored by total fluorescence of bound Lucifer Yellow as well as by quantitative determination of Lucifer Yellow bound to the tryptic peptide that contains lysine 378 of the alpha subunit. The total binding of Lucifer Yellow to CF1 was not affected by the presence of tightly bound nucleotides or nucleotide in the medium. Neither the total binding of Lucifer Yellow to CF1 nor the reaction of alpha-lysine 378 with Lucifer Yellow was changed by the removal of the epsilon subunit, the delta subunit, or both subunits. The extent of incorporation of Lucifer Yellow into lysine 378 of the alpha subunit in (alphabeta)n was about three times that of Lucifer Yellow incorporation into CF1. Reconstitution of (alphabeta)n with gamma restored the binding of one Lucifer Yellow per alpha3beta3gamma. Therefore, the interactions between gamma and the alphabeta heterohexamer are important in conferring asymmetry to the alpha subunits of CF1.

  5. Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review

    NASA Astrophysics Data System (ADS)

    Li, Yawei; Chan, Siew Hwa; Sun, Qiang

    2015-05-01

    The conversion of CO2 into fuels and useful chemicals has been intensively pursued for renewable, sustainable and green energy. However, due to the negative adiabatic electron affinity (EA) and large ionization potential (IP), the CO2 molecule is chemically inert, thus making the conversion difficult under normal conditions. Novel catalysts, which have high stability, superior efficiency and low cost, are urgently needed to facilitate the conversion. As the first step to design such catalysts, understanding the mechanisms involved in CO2 conversion is absolutely indispensable. In this review, we have summarized the recent theoretical progress in mechanistic studies based on density functional theory, kinetic Monte Carlo simulation, and microkinetics modeling. We focus on reaction channels, intermediate products, the key factors determining the conversion of CO2 in solid-gas interface thermocatalytic reduction and solid-liquid interface electrocatalytic reduction. Furthermore, we have proposed some possible strategies for improving CO2 electrocatalysis and also discussed the challenges in theory, model construction, and future research directions.

  6. Catalytic reforming process

    SciTech Connect

    Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

    1989-06-13

    This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

  7. Novel Catalytic Membrane Reactors

    SciTech Connect

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  8. Role of Small Subunit in Mediating Assembly of Red-type Form I Rubisco

    PubMed Central

    Joshi, Jidnyasa; Mueller-Cajar, Oliver; Tsai, Yi-Chin C.; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2015-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco. PMID:25371207

  9. Chloroplast ATP synthase contains one single copy of subunit delta that is indispensable for photophosphorylation.

    PubMed

    Engelbrecht, S; Schürmann, K; Junge, W

    1989-01-15

    F0F1 ATP synthases synthesize ATP in their F1 portion at the expense of free energy supplied by proton flow which enters the enzyme through their channel portion F0. The smaller subunits of F1, especially subunit delta, may act as energy transducers between these rather distant functional units. We have previously shown that chloroplast delta, when added to thylakoids partially depleted of the coupling factor CF1, can reconstitute photophosphorylation by inhibiting proton leakage through exposed coupling factor CF0. In view of controversies in the literature, we reinvestigated two further aspects related to subunit delta, namely (a) its stoichiometry in CF0CF1 and (b) whether or not delta is required for photophosphorylation. By rocket immunoelectrophoresis of thylakoid membranes and calibration against purified delta, we confirmed a stoichiometry of one delta per CF0CF1. In CF1-depleted thylakoids photophosphorylation could be reconstituted not only by adding CF1 and subunit delta but, surprisingly, also by CF1 (-delta). We found that the latter was attributable to a contamination of CF1 (-delta) preparations with integral CF1. To lesser extent CF1 (-delta) acted by complementary rebinding to CF0 channels that were closed because they contained delta [CF0(+delta)]. This added catalytic capacity to proton-tight thylakoid vesicles. The ability of subunit delta to control proton flow through CF0 and the absolute requirement for delta in restoration of photophosphorylation suggest an essential role of this small subunit at the interface between the large portions of ATP synthase: delta may be part of the coupling site between electrochemical, conformational and chemical events in this enzyme.

  10. Nicotine enhances the cyclic AMP-dependent protein kinase-mediated phosphorylation of alpha4 subunits of neuronal nicotinic receptors.

    PubMed

    Hsu, Y N; Edwards, S C; Wecker, L

    1997-12-01

    Studies determined whether alpha4beta2 or alpha3beta2 neuronal nicotinic receptors expressed in Xenopus oocytes are substrates for cyclic AMP-dependent protein kinase (PKA) and whether nicotine affects receptor phosphorylation. The cRNAs for the subunits were coinjected into oocytes, and cells were incubated for 24 h in the absence or presence of nicotine (50 nM for alpha4beta2 and 500 nM for alpha3beta2 receptors). Nicotine did not interfere with the isolation of the receptors. When receptors isolated from oocytes expressing alpha4beta2 receptors were incubated with [gamma-32P]ATP and the catalytic subunit of PKA, separated by electrophoresis, and visualized by autoradiography, a labeled phosphoprotein with the predicted molecular size of the alpha4 subunit was present. Phosphorylation of alpha4 subunits of alpha4beta2 receptors increased within the first 5 min of incubation with nicotine and persisted for 24 h. In contrast, receptors isolated from oocytes expressing alpha3beta2 receptors did not exhibit a labeled phosphoprotein corresponding to the size of the alpha3 subunit. Results suggest that the PKA-mediated phosphorylation of alpha4 and not alpha3 subunits may explain the differential inactivation by nicotine of these receptor subtypes expressed in oocytes.

  11. Structures of benzylsuccinate synthase elucidate roles of accessory subunits in glycyl radical enzyme activation and activity

    PubMed Central

    Funk, Michael A.; Judd, Evan T.; Marsh, E. Neil G.; Elliott, Sean J.; Drennan, Catherine L.

    2014-01-01

    Anaerobic degradation of the environmental pollutant toluene is initiated by the glycyl radical enzyme benzylsuccinate synthase (BSS), which catalyzes the radical addition of toluene to fumarate, forming benzylsuccinate. We have determined crystal structures of the catalytic α-subunit of BSS with its accessory subunits β and γ, which both bind a [4Fe-4S] cluster and are essential for BSS activity in vivo. We find that BSSα has the common glycyl radical enzyme fold, a 10-stranded β/α-barrel that surrounds the glycyl radical cofactor and active site. Both accessory subunits β and γ display folds related to high potential iron–sulfur proteins but differ substantially from each other in how they interact with the α-subunit. BSSγ binds distally to the active site, burying a hydrophobic region of BSSα, whereas BSSβ binds to a hydrophilic surface of BSSα that is proximal to the active site. To further investigate the function of BSSβ, we determined the structure of a BSSαγ complex. Remarkably, we find that the barrel partially opens, allowing the C-terminal region of BSSα that houses the glycyl radical to shift within the barrel toward an exit pathway. The structural changes that we observe in the BSSαγ complex center around the crucial glycyl radical domain, thus suggesting a role for BSSβ in modulating the conformational dynamics required for enzyme activity. Accompanying proteolysis experiments support these structural observations. PMID:24982148

  12. Subunits of ADA-two-A-containing (ATAC) or Spt-Ada-Gcn5-acetyltrasferase (SAGA) Coactivator Complexes Enhance the Acetyltransferase Activity of GCN5.

    PubMed

    Riss, Anne; Scheer, Elisabeth; Joint, Mathilde; Trowitzsch, Simon; Berger, Imre; Tora, László

    2015-11-27

    Histone acetyl transferases (HATs) play a crucial role in eukaryotes by regulating chromatin architecture and locus specific transcription. GCN5 (KAT2A) is a member of the GNAT (Gcn5-related N-acetyltransferase) family of HATs. In metazoans this enzyme is found in two functionally distinct coactivator complexes, SAGA (Spt Ada Gcn5 acetyltransferase) and ATAC (Ada Two A-containing). These two multiprotein complexes comprise complex-specific and shared subunits, which are organized in functional modules. The HAT module of ATAC is composed of GCN5, ADA2a, ADA3, and SGF29, whereas in the SAGA HAT module ADA2b is present instead of ADA2a. To better understand how the activity of human (h) hGCN5 is regulated in the two related, but different, HAT complexes we carried out in vitro HAT assays. We compared the activity of hGCN5 alone with its activity when it was part of purified recombinant hATAC or hSAGA HAT modules or endogenous hATAC or hSAGA complexes using histone tail peptides and full-length histones as substrates. We demonstrated that the subunit environment of the HAT complexes into which GCN5 incorporates determines the enhancement of GCN5 activity. On histone peptides we show that all the tested GCN5-containing complexes acetylate mainly histone H3K14. Our results suggest a stronger influence of ADA2b as compared with ADA2a on the activity of GCN5. However, the lysine acetylation specificity of GCN5 on histone tails or full-length histones was not changed when incorporated in the HAT modules of ATAC or SAGA complexes. Our results thus demonstrate that the catalytic activity of GCN5 is stimulated by subunits of the ADA2a- or ADA2b-containing HAT modules and is further increased by incorporation of the distinct HAT modules in the ATAC or SAGA holo-complexes.

  13. Berberine Attenuates Axonal Transport Impairment and Axonopathy Induced by Calyculin A in N2a Cells

    PubMed Central

    Abid, Morad Dirhem Naji; Yan, Huanhuan; Huang, Hao; Wan, Limin; Feng, Zuohua; Chen, Juan

    2014-01-01

    Berberine is a primary component of the most functional extracts of Coptidis rhizome used in traditional Chinese medicine for centuries. Recent reports indicate that Berberine has the potential to prevent and treat Alzheimer's disease (AD). The previous studies reported that Calyculin A (CA) impaired the axonal transport in neuroblastoma-2a (N2a) cells. Berberine attenuated tau hyperphosphorylation and cytotoxicity induced by CA. Our study aimed at investigating the effects of Berberine on the axonal transport impairment induced by CA in N2a cells. The results showed that Berberine could protect the cell from CA -induced toxicity in metabolism and viability, as well as hyperphosphorylation of tau and neurofilaments (NFs). Furthermore, Berberine could reverse CA-induced axonal transport impairment significantly. Berberine also partially reversed the phosphorylation of the catalytic subunit of PP-2A at Tyrosine 307, a crucial site negatively regulating the activity of PP-2A, and reduced the levels of malondialdehyde and the activity of superoxide dismutase, markers of oxidative stress, induced by CA. The present work for the first time demonstrates that Berberine may play a role in protecting against CA-induced axonal transport impairment by modulating the activity of PP-2A and oxidative stress. Our findings also suggest that Berberine may be a potential therapeutic drug for AD. PMID:24713870

  14. Luminal starch substrate "brake" on maltase-glucoamylase activity is located within the glucoamylase subunit.

    PubMed

    Quezada-Calvillo, Roberto; Sim, Lyann; Ao, Zihua; Hamaker, Bruce R; Quaroni, Andrea; Brayer, Gary D; Sterchi, Erwin E; Robayo-Torres, Claudia C; Rose, David R; Nichols, Buford L

    2008-04-01

    The detailed mechanistic aspects for the final starch digestion process leading to effective alpha-glucogenesis by the 2 mucosal alpha-glucosidases, human sucrase-isomaltase complex (SI) and human maltase-glucoamylase (MGAM), are poorly understood. This is due to the structural complexity and vast variety of starches and their intermediate digestion products, the poorly understood enzyme-substrate interactions occurring during the digestive process, and the limited knowledge of the structure-function properties of SI and MGAM. Here we analyzed the basic catalytic properties of the N-terminal subunit of MGAM (ntMGAM) on the hydrolysis of glucan substrates and compared it with those of human native MGAM isolated by immunochemical methods. In relation to native MGAM, ntMGAM displayed slower activity against maltose to maltopentose (G5) series glucose oligomers, as well as maltodextrins and alpha-limit dextrins, and failed to show the strong substrate inhibitory "brake" effect caused by maltotriose, maltotetrose, and G5 on the native enzyme. In addition, the inhibitory constant for acarbose was 2 orders of magnitude higher for ntMGAM than for native MGAM, suggesting lower affinity and/or fewer binding configurations of the active site in the recombinant enzyme. The results strongly suggested that the C-terminal subunit of MGAM has a greater catalytic efficiency due to a higher affinity for glucan substrates and larger number of binding configurations to its active site. Our results show for the first time, to our knowledge, that the C-terminal subunit of MGAM is responsible for the MGAM peptide's "glucoamylase" activity and is the location of the substrate inhibitory brake. In contrast, the membrane-bound ntMGAM subunit contains the poorly inhibitable "maltase" activity of the internally duplicated enzyme.

  15. Catalytic cracking of hydrocarbons

    SciTech Connect

    Absil, R.P.L.; Bowes, E.; Green, G.J.; Marler, D.O.; Shihabi, D.S.; Socha, R.F.

    1992-02-04

    This patent describes an improvement in a catalytic cracking process in which a hydrocarbon feed is cracked in a cracking zone in the absence of added hydrogen and in the presence of a circulating inventory of solid acidic cracking a catalyst which acquires a deposit of coke that contains chemically bound nitrogen while the cracking catalyst is in the cracking zone, the coke catalyst being circulated to t regeneration zone to convert the coke catalyst to a regenerated catalyst with the formation of a flue gas comprising nitrogen oxides: the improvement comprises incorporating into the circulating catalyst inventory an amount of additive particles comprising a synthetic porous crystalline material containing copper metal or cations, to reduce the content of nitrogen oxides in the flue gas.

  16. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1986-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  17. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  18. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  19. ALLOSTERY AND SUBSTRATE CHANNELING IN THE TRYPTOPHAN SYNTHASE BIENZYME COMPLEX: EVIDENCE FOR TWO SUBUNIT CONFORMATIONS AND FOUR QUATERNARY STATES

    PubMed Central

    Niks, Dimitri; Hilario, Eduardo; Dierkers, Adam; Ngo, Huu; Borchardt, Dan; Neubauer, Thomas J.; Fan, Li; Mueller, Leonard J.; Dunn, Michael F.

    2014-01-01

    The allosteric regulation of substrate channeling in tryptophan synthase involves ligand-mediated allosteric signaling that switches the α- and β-subunits between open (low activity) and closed (high activity) conformations. This switching prevents the escape of the common intermediate, indole, and synchronizes the α- and β-catalytic cycles. 19F NMR studies of bound α-site substrate analogues, N-(4’-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F6) and N-(4’-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), were found to be sensitive NMR probes of β-subunit conformation. Both the internal and external aldimine F6 complexes gave a single bound peak at the same chemical shift, while α-aminoacrylate and quinonoid F6 complexes all gave a different bound peak shifted by +1.07 ppm. The F9 complexes exhibited similar behavior, but with a corresponding shift of -0.12 ppm. X-ray crystal structures show the F6 and F9 CF3 groups located at the α-β subunit interface and report changes in both the ligand conformation and the surrounding protein microenvironment. Ab initio computational modeling suggests that the change in 19F chemical shift results primarily from changes in the α-site ligand conformation. Structures of α-aminoacrylate F6 and F9 complexes and quinonoid F6 and F9 complexes show the α- and β-subunits have closed conformations wherein access of ligands into the α- and β-sites from solution is blocked. Internal and external aldimine structures show the α- and β-subunits with closed and open global conformations, respectively. These results establish that β-subunits exist in two global conformation states, designated open, where the β-sites are freely accessible to substrates, and closed, where the β-site portal into solution is blocked. Switching between these conformations is critically important for the αβ-catalytic cycle. PMID:23952479

  20. Protein synthesis by ribosomes with tethered subunits.

    PubMed

    Orelle, Cédric; Carlson, Erik D; Szal, Teresa; Florin, Tanja; Jewett, Michael C; Mankin, Alexander S

    2015-08-06

    The ribosome is a ribonucleoprotein machine responsible for protein synthesis. In all kingdoms of life it is composed of two subunits, each built on its own ribosomal RNA (rRNA) scaffold. The independent but coordinated functions of the subunits, including their ability to associate at initiation, rotate during elongation, and dissociate after protein release, are an established model of protein synthesis. Furthermore, the bipartite nature of the ribosome is presumed to be essential for biogenesis, since dedicated assembly factors keep immature ribosomal subunits apart and prevent them from translation initiation. Free exchange of the subunits limits the development of specialized orthogonal genetic systems that could be evolved for novel functions without interfering with native translation. Here we show that ribosomes with tethered and thus inseparable subunits (termed Ribo-T) are capable of successfully carrying out protein synthesis. By engineering a hybrid rRNA composed of both small and large subunit rRNA sequences, we produced a functional ribosome in which the subunits are covalently linked into a single entity by short RNA linkers. Notably, Ribo-T was not only functional in vitro, but was also able to support the growth of Escherichia coli cells even in the absence of wild-type ribosomes. We used Ribo-T to create the first fully orthogonal ribosome-messenger RNA system, and demonstrate its evolvability by selecting otherwise dominantly lethal rRNA mutations in the peptidyl transferase centre that facilitate the translation of a problematic protein sequence. Ribo-T can be used for exploring poorly understood functions of the ribosome, enabling orthogonal genetic systems, and engineering ribosomes with new functions.

  1. NADP+ binding to the regulatory subunit of methionine adenosyltransferase II increases intersubunit binding affinity in the hetero-trimer.

    PubMed

    González, Beatriz; Garrido, Francisco; Ortega, Rebeca; Martínez-Júlvez, Marta; Revilla-Guarinos, Ainhoa; Pérez-Pertejo, Yolanda; Velázquez-Campoy, Adrián; Sanz-Aparicio, Julia; Pajares, María A

    2012-01-01

    Mammalian methionine adenosyltransferase II (MAT II) is the only hetero-oligomer in this family of enzymes that synthesize S-adenosylmethionine using methionine and ATP as substrates. Binding of regulatory β subunits and catalytic α2 dimers is known to increase the affinity for methionine, although scarce additional information about this interaction is available. This work reports the use of recombinant α2 and β subunits to produce oligomers showing kinetic parameters comparable to MAT II purified from several tissues. According to isothermal titration calorimetry data and densitometric scanning of the stained hetero-oligomer bands on denatured gels, the composition of these oligomers is that of a hetero-trimer with α2 dimers associated to single β subunits. Additionally, the regulatory subunit is able to bind NADP(+) with a 1:1 stoichiometry, the cofactor enhancing β to α2-dimer binding affinity. Mutants lacking residues involved in NADP(+) binding and N-terminal truncations of the β subunit were able to oligomerize with α2-dimers, although the kinetic properties appeared altered. These data together suggest a role for both parts of the sequence in the regulatory role exerted by the β subunit on catalysis. Moreover, preparation of a structural model for the hetero-oligomer, using the available crystal data, allowed prediction of the regions involved in β to α2-dimer interaction. Finally, the implications that the presence of different N-terminals in the β subunit could have on MAT II behavior are discussed in light of the recent identification of several splicing forms of this subunit in hepatoma cells.

  2. NADP+ Binding to the Regulatory Subunit of Methionine Adenosyltransferase II Increases Intersubunit Binding Affinity in the Hetero-Trimer

    PubMed Central

    Ortega, Rebeca; Martínez-Júlvez, Marta; Revilla-Guarinos, Ainhoa; Pérez-Pertejo, Yolanda; Velázquez-Campoy, Adrián; Sanz-Aparicio, Julia; Pajares, María A.

    2012-01-01

    Mammalian methionine adenosyltransferase II (MAT II) is the only hetero-oligomer in this family of enzymes that synthesize S-adenosylmethionine using methionine and ATP as substrates. Binding of regulatory β subunits and catalytic α2 dimers is known to increase the affinity for methionine, although scarce additional information about this interaction is available. This work reports the use of recombinant α2 and β subunits to produce oligomers showing kinetic parameters comparable to MAT II purified from several tissues. According to isothermal titration calorimetry data and densitometric scanning of the stained hetero-oligomer bands on denatured gels, the composition of these oligomers is that of a hetero-trimer with α2 dimers associated to single β subunits. Additionally, the regulatory subunit is able to bind NADP+ with a 1∶1 stoichiometry, the cofactor enhancing β to α2-dimer binding affinity. Mutants lacking residues involved in NADP+ binding and N-terminal truncations of the β subunit were able to oligomerize with α2-dimers, although the kinetic properties appeared altered. These data together suggest a role for both parts of the sequence in the regulatory role exerted by the β subunit on catalysis. Moreover, preparation of a structural model for the hetero-oligomer, using the available crystal data, allowed prediction of the regions involved in β to α2-dimer interaction. Finally, the implications that the presence of different N-terminals in the β subunit could have on MAT II behavior are discussed in light of the recent identification of several splicing forms of this subunit in hepatoma cells. PMID:23189196

  3. Engineered recombinant enteropeptidase catalytic subunit: effect of N-terminal modification.

    PubMed

    Song, Hye-Won; Choi, Sung-Il; Seong, Baik L

    2002-04-01

    Enteropeptidase (enterokinase) is a serine protease highly specific for recognition and cleavage of the target sequence of Asp-Asp-Asp-Asp-Lys (D4K). The three-dimensional structure of the enteropeptidase shows that the N-terminal amino acid is buried inside the protein providing molecular interactions necessary to maintain the conformation of the active site. To determine the influence of the N-terminal amino acid of enteropeptidase light chain (EK(L)) on the enzymatic activity, we constructed various mutants including 17 different single amino acid substitutions and three different extensions at the N-terminal end. The mutants of recombinant enteropeptidase (rEK(L)) were expressed in Saccharomyces cerevisiae and secreted into culture medium. Among 20 different mutants tested, the only mutant with the Ile --> Val substitution exhibited significant activity. The kinetic properties of the mutant protein were very similar to those of the wild-type rEK(L). Based on the three-dimensional structure where the N-terminal Ile is oriented into hydrophobic pocket, the results suggest that Val could substitute Ile without affecting the active conformation of the enzyme. The results also explain why all trypsin-like serine proteases carry either Ile or Val at the N-termini and none other amino acid residues are found. Moreover, this finding provides a mental framework for expressing the N-terminally engineered enteropeptidase in Escherichia coli, utilizing the known property of the methionine aminopeptidase that exhibits poor activity toward the N-terminal Met-Ile bond, but offers efficient cleavage of the Met-Val bond.

  4. Crystal structure of acetylcholinesterase catalytic subunits of the malaria vector Anopheles gambiae.

    PubMed

    Han, Qian; Wong, Dawn M; Robinson, Howard; Ding, Haizhen; Lam, Polo C H; Totrov, Maxim M; Carlier, Paul R; Li, Jianyong

    2017-03-01

    Acetylcholinesterase (AChE) hydrolyzes the neurotransmitter acetylcholine at cholinergic synapses in the central nervous system (Toutant, 1989). Inhibition of the enzyme in insects could lead to the death of insects rapidly; thus AChE has been a molecular target for developing insecticides. This article is protected by copyright. All rights reserved.

  5. Multiple binding modes of substrate to the catalytic RNA subunit of RNase P from Escherichia coli.

    PubMed Central

    Pomeranz Krummel, D A; Altman, S

    1999-01-01

    M1 RNA that contained 4'-thiouridine was photochemically cross-linked to different substrates and to a product of the reaction it governs. The locations of the cross-links in these photochemically induced complexes were identified. The cross-links indicated that different substrates share some contacts but have distinct binding modes to M1 RNA. The binding of some substrates also results in a substrate-dependent conformational change in the enzymatic RNA, as evidenced by the appearance of an M1 RNA intramolecular cross-link. The identification of the cross-links between M1 RNA and product indicate that they are shared with only one of the three cross-linked E-S complexes that were identified, an indication of noncompetitive inhibition by the product. We also examined whether the cross-linked complexes between M1 RNA and substrate(s) or product are altered in the presence of the enzyme's protein cofactor (C5 protein) and in the presence of different concentrations of divalent metal ions. C5 protein enhanced the yield of certain M1 RNA-substrate cross-linked complexes for both wild-type M1 RNA and a deletion mutant of M1 RNA (delta[273-281]), but not for the M1 RNA-product complex. High concentrations of Mg2+ increased the yield of all M1 RNA-substrate complexes but not the M1 RNA-product complex. PMID:10445877

  6. Regulation of the human catalytic subunit of telomerase (hTERT)

    PubMed Central

    Daniel, Michael; Peek, Gregory W.; Tollefsbol, Trygve O.

    2012-01-01

    Over the past decade, there has been much interest in the regulation of telomerase, the enzyme responsible for maintaining the integrity of chromosomal ends, and its crucial role in cellular immortalization, tumorigenesis, and the progression of cancer. Telomerase activity is characterized by the expression of the telomerase reverse transcriptase (TERT) gene, suggesting that TERT serves as the major limiting agent for telomerase activity. Recent discoveries have led to characterization of various interactants that aid in the regulation of human TERT (hTERT), including numerous transcription factors; further supporting the pivotal role that transcription plays in both the expression and repression of telomerase. Several studies have suggested that epigenetic modulation of the hTERT core promoter region may provide an additional level of regulation. Although these studies have provided essential information on the regulation of hTERT, there has been ambiguity of the role of methylation within the core promoter region and the subsequent binding of various activating and repressive agents. As a result, we found it necessary to consolidate and summarize these recent developments and elucidate these discrepancies. In this review, we focus on the co-regulation of hTERT via transcriptional regulation, the presence or absence of various activators and repressors, as well as the epigenetic pathways of DNA methylation and histone modifications. PMID:22381618

  7. Is Dimerization Required for the Catalytic Activity of Bacterial Biotin Carboxylase?

    SciTech Connect

    Shen,Y.; Chou, C.; Chang, G.; Tong, L.

    2006-01-01

    Acetyl-coenzyme A carboxylases (ACCs) have crucial roles in fatty acid metabolism. The biotin carboxylase (BC) subunit of Escherichia coli ACC is believed to be active only as a dimer, although the crystal structure shows that the active site of each monomer is 25 Angstroms from the dimer interface. We report here biochemical, biophysical, and structural characterizations of BC carrying single-site mutations in the dimer interface. Our studies demonstrate that two of the mutants, R19E and E23R, are monomeric in solution but have only a 3-fold loss in catalytic activity. The crystal structures of the E23R and F363A mutants show that they can still form the correct dimer at high concentrations. Our data suggest that dimerization is not an absolute requirement for the catalytic activity of the E. coli BC subunit, and we propose a new model for the molecular mechanism of action for BC in multisubunit and multidomain ACCs.

  8. Activation of protein phosphatase 2A in FLT3+ acute myeloid leukemia cells enhances the cytotoxicity of FLT3 tyrosine kinase inhibitors

    PubMed Central

    Lee, Erwin M.; Harrison, Celeste; Kahl, Richard; Flanagan, Hayley; Panicker, Nikita; Mashkani, Baratali; Don, Anthony S.; Morris, Jonathan; Toop, Hamish; Lock, Richard B.; Powell, Jason A.; Thomas, Daniel; Guthridge, Mark A.; Moore, Andrew; Ashman, Leonie K.; Skelding, Kathryn A.; Enjeti, Anoop; Verrills, Nicole M.

    2016-01-01

    Constitutive activation of the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3), via co-expression of its ligand or by genetic mutation, is common in acute myeloid leukemia (AML). In this study we show that FLT3 activation inhibits the activity of the tumor suppressor, protein phosphatase 2A (PP2A). Using BaF3 cells transduced with wildtype or mutant FLT3, we show that FLT3-induced PP2A inhibition sensitizes cells to the pharmacological PP2A activators, FTY720 and AAL(S). FTY720 and AAL(S) induced cell death and inhibited colony formation of FLT3 activated cells. Furthermore, PP2A activators reduced the phosphorylation of ERK and AKT, downstream targets shared by both FLT3 and PP2A, in FLT3/ITD+ BaF3 and MV4-11 cell lines. PP2A activity was lower in primary human bone marrow derived AML blasts compared to normal bone marrow, with blasts from FLT3-ITD patients displaying lower PP2A activity than WT-FLT3 blasts. Reduced PP2A activity was associated with hyperphosphorylation of the PP2A catalytic subunit, and reduced expression of PP2A structural and regulatory subunits. AML patient blasts were also sensitive to cell death induced by FTY720 and AAL(S), but these compounds had minimal effect on normal CD34+ bone marrow derived monocytes. Finally, PP2A activating compounds displayed synergistic effects when used in combination with tyrosine kinase inhibitors in FLT3-ITD+ cells. A combination of Sorafenib and FTY720 was also synergistic in the presence of a protective stromal microenvironment. Thus combining a PP2A activating compound and a FLT3 inhibitor may be a novel therapeutic approach for treating AML. PMID:27329844

  9. Crystal structures capture three states in the catalytic cycle of a pyridoxal phosphate (PLP) synthase.

    PubMed

    Smith, Amber Marie; Brown, William Clay; Harms, Etti; Smith, Janet L

    2015-02-27

    PLP synthase (PLPS) is a remarkable single-enzyme biosynthetic pathway that produces pyridoxal 5'-phosphate (PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate. The intact enzyme includes 12 synthase and 12 glutaminase subunits. PLP synthesis occurs in the synthase active site by a complicated mechanism involving at least two covalent intermediates at a catalytic lysine. The first intermediate forms with ribose 5-phosphate. The glutaminase subunit is a glutamine amidotransferase that hydrolyzes glutamine and channels ammonia to the synthase active site. Ammonia attack on the first covalent intermediate forms the second intermediate. Glyceraldehyde 3-phosphate reacts with the second intermediate to form PLP. To investigate the mechanism of the synthase subunit, crystal structures were obtained for three intermediate states of the Geobacillus stearothermophilus intact PLPS or its synthase subunit. The structures capture the synthase active site at three distinct steps in its complicated catalytic cycle, provide insights into the elusive mechanism, and illustrate the coordinated motions within the synthase subunit that separate the catalytic states. In the intact PLPS with a Michaelis-like intermediate in the glutaminase active site, the first covalent intermediate of the synthase is fully sequestered within the enzyme by the ordering of a generally disordered 20-residue C-terminal tail. Following addition of ammonia, the synthase active site opens and admits the Lys-149 side chain, which participates in formation of the second intermediate and PLP. Roles are identified for conserved Asp-24 in the formation of the first intermediate and for conserved Arg-147 in the conversion of the first to the second intermediate.

  10. Drosophila laminin: sequence of B2 subunit and expression of all three subunits during embryogenesis

    PubMed Central

    1989-01-01

    In a previous study, we described the cloning of the genes encoding the three subunits of Drosophila laminin, a substrate adhesion molecule, and the cDNA sequence of the B1 subunit (Montell and Goodman, 1988). This analysis revealed the similarity of Drosophila laminin with the mouse and human complexes in subunit composition, domain structure, and amino acid sequence. In this paper, we report the deduced amino acid sequence of the B2 subunit. We then describe the expression and tissue distribution of the three subunits of laminin during Drosophila embryogenesis using both in situ hybridization and immunolocalization techniques, with particular emphasis on its expression in and around the developing nervous system. PMID:2808533

  11. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each

  12. Crystallization of the glycogen-binding domain of the AMP-activated protein kinase β subunit and preliminary X-ray analysis

    PubMed Central

    Polekhina, Galina; Feil, Susanne C.; Gupta, Abhilasha; O’Donnell, Paul; Stapleton, David; Parker, Michael W.

    2005-01-01

    AMP-activated protein kinase (AMPK) is an intracellular energy sensor that regulates metabolism in response to energy demand and supply by adjusting the ATP-generating and ATP-consuming pathways. AMPK potentially plays a critical role in diabetes and obesity as it is known to be activated by metforin and rosiglitazone, drugs used for the treatment of type II diabetes. AMPK is a heterotrimer composed of a catalytic α subunit and two regulatory subunits, β and γ. Mutations in the γ subunit are known to cause glycogen accumulation, leading to cardiac arrhythmias. Recently, a functional glycogen-binding domain (GBD) has been identified in the β subunit. Here, the crystallization of GBD in the presence of β-cyclodextrin is reported together with preliminary X-ray data analysis allowing the determination of the structure by single isomorphous replacement and threefold averaging using in-house X-ray data collected from a selenomethionine-substituted protein. PMID:16508085

  13. Effect of protein S-nitrosylation on autolysis and catalytic ability of μ-calpain.

    PubMed

    Liu, Rui; Li, Yupin; Wang, Mengqin; Zhou, Guanghong; Zhang, Wangang

    2016-12-15

    The effect of S-nitrosylation on the autolysis and catalytic ability of μ-calpain in vitro in the presence of 50μM Ca(2 +) was investigated. μ-Calpain was incubated with different concentrations of nitric oxide donor S-nitrosoglutathione (GSNO) and subsequently reacted with purified myofibrils. Results showed that the amount of 80kDa μ-calpain subunit significantly decreased as GSNO increased from 0 to 300μM, but increases of GSNO to 300, 500 and 1000μM did not result in further inhibition. The catalytic ability of nitrosylated μ-calpain to degrade titin, nebulin, troponin-T and desmin was significantly reduced when the GSNO concentration was higher than 300μM. The cysteine residues of μ-calpain at positions 49, 351, 384, and 592 in the catalytic subunit and at 142 in small subunit were S-nitrosylated, which could be responsible for decreased μ-calpain activity. Thus, S-nitrosylation can negatively regulate the activation of μ-calpain resulting in decreased proteolytic ability on myofibrils.

  14. Diversity of insect nicotinic acetylcholine receptor subunits.

    PubMed

    Jones, Andrew K; Sattelle, David B

    2010-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. They consist of five subunits arranged around a central ion channeL Since the subunit composition determines the functional and pharmacological properties of the receptor the presence of nAChR families comprising several subunit-encodinggenes provides a molecular basis for broad functional diversity. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their nematode andvertebrate counterparts. Thus, the fruit fly (Drosophila melanogaster), malaria mosquito (Anopheles gambiae), honey bee (Apis mellifera), silk worm (Bombyx mon) and the red flour beetle (Tribolium castaneum) possess 10-12 nAChR genes while human and the nematode Caenorhabditis elegans have 16 and 29 respectively. Although insect nAChRgene families are amongst the smallest known, receptor diversity can be considerably increased by the posttranscriptional processes alternative splicing and mRNA A-to-I editingwhich can potentially generate protein products which far outnumber the nAChR genes. These two processes can also generate species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit which may perform species-specific functions. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that target specific pest insects while sparing beneficial species.

  15. Catalytic Membrane Sensors

    SciTech Connect

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  16. Catalytic gasification of biomass

    NASA Astrophysics Data System (ADS)

    Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

    1981-12-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

  17. Dynamics of Human Telomerase Holoenzyme Assembly and Subunit Exchange across the Cell Cycle.

    PubMed

    Vogan, Jacob M; Collins, Kathleen

    2015-08-28

    Human telomerase acts on telomeres during the genome synthesis phase of the cell cycle, accompanied by its concentration in Cajal bodies and transient colocalization with telomeres. Whether the regulation of human telomerase holoenzyme assembly contributes to the cell cycle restriction of telomerase function is unknown. We investigated the steady-state levels, assembly, and exchange dynamics of human telomerase subunits with quantitative in vivo cross-linking and other methods. We determined the physical association of telomerase subunits in cells blocked or progressing through the cell cycle as synchronized by multiple protocols. The total level of human telomerase RNA (hTR) was invariant across the cell cycle. In vivo snapshots of telomerase holoenzyme composition established that hTR remains bound to human telomerase reverse transcriptase (hTERT) throughout all phases of the cell cycle, and subunit competition assays suggested that hTERT-hTR interaction is not readily exchangeable. In contrast, the telomerase holoenzyme Cajal body-associated protein, TCAB1, was released from hTR in mitotic cells coincident with TCAB1 delocalization from Cajal bodies. This telomerase holoenzyme disassembly was reversible with cell cycle progression without any change in total TCAB1 protein level. Consistent with differential cell cycle regulation of hTERT-hTR and TCAB1-hTR protein-RNA interactions, overexpression of hTERT or TCAB1 had limited if any influence on hTR assembly of the other subunit. Overall, these findings revealed a cell cycle regulation that disables human telomerase association with telomeres while preserving the co-folded hTERT-hTR ribonucleoprotein catalytic core. Studies here, integrated with previous work, led to a unifying model for telomerase subunit assembly and trafficking in human cells.

  18. Rnr4p, a novel ribonucleotide reductase small-subunit protein.

    PubMed Central

    Wang, P J; Chabes, A; Casagrande, R; Tian, X C; Thelander, L; Huffaker, T C

    1997-01-01

    Ribonucleotide reductases catalyze the formation of deoxyribonucleotides by the reduction of the corresponding ribonucleotides. Eukaryotic ribonucleotide reductases are alpha2beta2 tetramers; each of the larger, alpha subunits possesses binding sites for substrate and allosteric effectors, and each of the smaller, beta subunits contains a binuclear iron complex. The iron complex interacts with a specific tyrosine residue to form a tyrosyl free radical which is essential for activity. Previous work has identified two genes in the yeast Saccharomyces cerevisiae, RNR1 and RNR3, that encode alpha subunits and one gene, RNR2, that encodes a beta subunit. Here we report the identification of a second gene from this yeast, RNR4, that encodes a protein with significant similarity to the beta-subunit proteins. The phenotype of rnr4 mutants is consistent with that expected for a defect in ribonucleotide reductase; rnr4 mutants are supersensitive to the ribonucleotide reductase inhibitor hydroxyurea and display an S-phase arrest at their restrictive temperature. rnr4 mutant extracts are deficient in ribonucleotide reductase activity, and this deficiency can be remedied by the addition of exogenous Rnr4p. As is the case for the other RNR genes, RNR4 is induced by agents that damage DNA. However, Rnr4p lacks a number of sequence elements thought to be essential for iron binding, and mutation of the critical tyrosine residue does not affect Rnr4p function. These results suggest that Rnr4p is catalytically inactive but, nonetheless, does play a role in the ribonucleotide reductase complex. PMID:9315671

  19. Apical endosomes isolated from kidney collecting duct principal cells lack subunits of the proton pumping ATPase

    PubMed Central

    1992-01-01

    Endocytic vesicles that are involved in the vasopressin-stimulated recycling of water channels to and from the apical membrane of kidney collecting duct principal cells were isolated from rat renal papilla by differential and Percoll density gradient centrifugation. Fluorescence quenching measurements showed that the isolated vesicles maintained a high, HgCl2-sensitive water permeability, consistent with the presence of vasopressin-sensitive water channels. They did not, however, exhibit ATP-dependent luminal acidification, nor any N-ethylmaleimide-sensitive ATPase activity, properties that are characteristic of most acidic endosomal compartments. Western blotting with specific antibodies showed that the 31- and 70-kD cytoplasmically oriented subunits of the vacuolar proton pump were not detectable in these apical endosomes from the papilla, whereas they were present in endosomes prepared in parallel from the cortex. In contrast, the 56-kD subunit of the proton pump was abundant in papillary endosomes, and was localized at the apical pole of principal cells by immunocytochemistry. Finally, an antibody that recognizes the 16-kD transmembrane subunit of oat tonoplast ATPase cross-reacted with a distinct 16-kD band in cortical endosomes, but no 16-kD band was detectable in endosomes from the papilla. This antibody also recognized a 16-kD band in affinity- purified H+ ATPase preparations from bovine kidney medulla. Therefore, early endosomes derived from the apical plasma membrane of collecting duct principal cells fail to acidify because they lack functionally important subunits of a vacuolar-type proton pumping ATPase, including the 16-kD transmembrane domain that serves as the proton-conducting channel, and the 70-kD cytoplasmic subunit that contains the ATPase catalytic site. This specialized, non-acidic early endosomal compartment appears to be involved primarily in the hormonally induced recycling of water channels to and from the apical plasma membrane of

  20. Expression of alpha subunit of alpha glucosidase II in adult mouse brain regions and selective organs

    PubMed Central

    Anji, Antje; Miller, Hayley; Raman, Chandrasekar; Phillips, Mathew; Ciment, Gary; Kumari, Meena

    2014-01-01

    Alpha glucosidase II (GII), a resident of endoplasmic reticulum (ER) and an important enzyme in folding of nascent glycoproteins, is heterodimeric consisting of alpha (GIIα) and beta (GIIβ) subunits. The catalytic GIIα subunit with the help of mannose 6-phosphate receptor homology (MRH) domain of GIIβ sequentially hydrolyzes two α-1-3-linked glucose residues in the 2nd step of N-linked oligosaccharide-mediated protein folding. The soluble GIIα subunit is retained in the ER through its interaction with the HDEL-containing GIIβ subunit. N-glycosylation and correct protein folding is crucial for protein stability, trafficking, and cell surface expression of several proteins in the brain. Alterations in N-glycosylation lead to abnormalities in neuronal migration and mental retardation, various neurodegenerative diseases, and invasion of malignant gliomas. Inhibitors of GII are used to inhibit cell proliferation and migration in a variety of different pathologies such as viral infection, cancer and diabetes. In spite of the widespread usage of GIIα inhibitory drugs and the role of GIIα in brain function little is known about its expression in brain and other tissues. Here, we report generation of a highly specific chicken antibody to GIIα subunit and its characterization by Western blotting and immunoprecipitation using cerebral cortical extracts. Using this antibody we show that the GIIα protein is highly expressed in testis, kidney, and lung, with the least amount in heart. GIIα polypeptide levels in whole brain were comparable to spleen. However, higher expression of GIIα protein was detected in cerebral cortex reflecting its continuous requirement in correct folding of cell surface proteins. PMID:25131991

  1. Influence of gamma subunit prenylation on association of guanine nucleotide-binding regulatory proteins with membranes.

    PubMed Central

    Muntz, K H; Sternweis, P C; Gilman, A G; Mumby, S M

    1992-01-01

    Two approaches were taken to address the possible role of gamma-subunit prenylation in dictating the cellular distribution of guanine nucleotide-binding regulatory proteins. Prenylation of gamma subunits was prevented by site-directed mutagenesis or by inhibiting the synthesis of mevalonate, the precursor of cellular isoprenoids. When beta or gamma subunits were transiently expressed in COS-M6 simian kidney cells (COS) cells, the proteins were found in the membrane fraction by immunoblotting. Immunofluorescence experiments indicated that the proteins were distributed to intracellular structures in addition to plasma membranes. Replacement of Cys68 of gamma with Ser prevented prenylation of the mutant protein and association of the protein with the membrane fraction of COS cells. Immunoblotting results demonstrated that some of the beta subunits were found in the cytoplasm when coexpressed with the nonprenylated mutant gamma subunit. When Neuro 2A cells were treated with compactin to inhibit protein prenylation, a fraction of endogenous beta and gamma was distributed in the cytoplasm. It is concluded that prenylation facilitates association of gamma subunits with membranes, that the cellular location of gamma influences the distribution of beta, and that prenylation is not an absolute requirement for interaction of beta and gamma. Images PMID:1550955

  2. Cyclic AMP and AKAP-mediated targeting of protein kinase A regulates lactate dehydrogenase subunit A mRNA stability.

    PubMed

    Jungmann, Richard A; Kiryukhina, Olga

    2005-07-01

    Expression of the lactate dehydrogenase A subunit (ldh-A) gene is controlled through transcriptional as well as post-transcriptional mechanisms. Both mechanisms involve activation of protein kinase A (PKA) into its subunits and subsequent phosphorylation and activation of several key regulatory factors. In rat C6 glioma cells, post-transcriptional gene regulation occurs through PKA-mediated stabilization of LDH-A mRNA and subsequent increase of intracellular LDH-A mRNA levels. Previous studies have demonstrated a cAMP-stabilizing region (CSR) located in the LDH-A 3'-untranslated region which, in combination with several phosphorylated CSR-binding proteins (CSR-BP), regulates the PKA-mediated stabilization of LDH-A mRNA. However, the mechanistic details of interaction of CSR with proteins as they pertain to mRNA stabilization by PKA are so far largely unknown. In this study we tested the hypothesis that ribosomal protein extracts (RSW) from glioma cells contain PKA regulatory (RII) and catalytic (C) subunits that, in combination with a protein kinase A anchoring protein (AKAP 95) and CSR-BPs participate in forming CSR-protein complexes that are responsible for mRNA stability regulation. To demonstrate the importance of CSR-protein complex formation, the PKA subunits and AKAP 95 were removed from the RSW by immunoprecipitation, and the antigen-deleted RSW were subjected to CSR binding analysis using gel mobility shift and UV cross-linking. It was shown that AKAP 95 as well as RII formed a direct linkage with CSR during CSR-protein complex formation. In contrast, the catalytic subunit formed part of the CSR-protein complex but did not bind to CSR directly in a covalent linkage. To determine whether formation of CSR complexes that included C, RII, and AKAP 95 constituted a functional event and was necessary for mRNA stabilization, cell-free decay reactions were carried out with RSW extracts, and the kinetics of decay of LDH-A mRNA was determined. Depletion of PKA

  3. The E3 Ubiquitin Ligase- and Protein Phosphatase 2A (PP2A)-binding Domains of the Alpha4 Protein Are Both Required for Alpha4 to Inhibit PP2A Degradation

    SciTech Connect

    LeNoue-Newton, Michele; Watkins, Guy R.; Zou, Ping; Germane, Katherine L.; McCorvey, Lisa R.; Wadzinski, Brian E.; Spiller, Benjamin W.

    2012-04-30

    Protein phosphatase 2A (PP2A) is regulated through a variety of mechanisms, including post-translational modifications and association with regulatory proteins. Alpha4 is one such regulatory protein that binds the PP2A catalytic subunit (PP2Ac) and protects it from polyubiquitination and degradation. Alpha4 is a multidomain protein with a C-terminal domain that binds Mid1, a putative E3 ubiquitin ligase, and an N-terminal domain containing the PP2Ac-binding site. In this work, we present the structure of the N-terminal domain of mammalian Alpha4 determined by x-ray crystallography and use double electron-electron resonance spectroscopy to show that it is a flexible tetratricopeptide repeat-like protein. Structurally, Alpha4 differs from its yeast homolog, Tap42, in two important ways: (1) the position of the helix containing the PP2Ac-binding residues is in a more open conformation, showing flexibility in this region; and (2) Alpha4 contains a ubiquitin-interacting motif. The effects of wild-type and mutant Alpha4 on PP2Ac ubiquitination and stability were examined in mammalian cells by performing tandem ubiquitin-binding entity precipitations and cycloheximide chase experiments. Our results reveal that both the C-terminal Mid1-binding domain and the PP2Ac-binding determinants are required for Alpha4-mediated protection of PP2Ac from polyubiquitination and degradation.

  4. Catalytic reforming of naphtha fractions

    SciTech Connect

    Bishop, K.C.; Vorhis, F.H.

    1980-09-16

    Production of motor gasoline and a btx-enriched reformate by fractionating a naphtha feedstock into a mid-boiling btxprecursor fraction, a relatively high-boiling fraction and a relatively low-boiling fraction; catalytically reforming the btxprecursor fraction in a first reforming zone; combining the relatively high-boiling and low-boiling fractions and catalytically reforming the combined fractions in a second reforming zone.

  5. Structure of the Cmr2 Subunit of the CRISPR-Cas RNA Silencing Complex

    SciTech Connect

    Cocozaki, Alexis I.; Ramia, Nancy F.; Shao, Yaming; Hale, Caryn R.; Terns, Rebecca M.; Terns, Michael P.; Li, Hong

    2012-08-10

    Cmr2 is the largest and an essential subunit of a CRISPR RNA-Cas protein complex (the Cmr complex) that cleaves foreign RNA to protect prokaryotes from invading genetic elements. Cmr2 is thought to be the catalytic subunit of the effector complex because of its N-terminal HD nuclease domain. Here, however, we report that the HD domain of Cmr2 is not required for cleavage by the complex in vitro. The 2.3 {angstrom} crystal structure of Pyrococcus furiosus Cmr2 (lacking the HD domain) reveals two adenylyl cyclase-like and two {alpha}-helical domains. The adenylyl cyclase-like domains are arranged as in homodimeric adenylyl cyclases and bind ADP and divalent metals. However, mutagenesis studies show that the metal- and ADP-coordinating residues of Cmr2 are also not critical for cleavage by the complex. Our findings suggest that another component provides the catalytic function and that the essential role by Cmr2 does not require the identified ADP- or metal-binding or HD domains in vitro.

  6. AMP-activated protein kinase (AMPK) α2 subunit mediates glycolysis in postmortem skeletal muscle.

    PubMed

    Liang, Junfang; Yang, Qiyuan; Zhu, Mei-Jun; Jin, Ye; Du, Min

    2013-11-01

    Postmortem glycolysis is directly linked to the incidences of PSE (pale, soft and exudative) and DFD (dark, firm and dry) meats which cause significant loss to meat industry. AMP-activated protein kinase (AMPK) is a major regulator of postmortem glycolysis. However, there are two isoforms of the AMPKα catalytic subunit, and their roles in glycolysis of postmortem muscle remain unclear. The objective was to identify the isoform specific roles of AMPK in postmortem glycolysis. Wild type, AMPKα1, and AMPKα2 knockout (KO) mice were used in the current study. AMPK in Longissimus muscle was activated shortly after death. AMPKα2 but not AMPKα1 KO abolished the activity of AMPK in postmortem muscle. In addition, AMPKα2 KO reduced postmortem pH decline and the generation of lactate, while AMPKα1 KO had no significant effect. Finally, the glycogen content of skeletal muscle was reduced in AMPKα2 KO but not AMPKα1 KO mice. Data clearly demonstrate that AMPKα2 catalytic subunit mainly regulates postmortem glycolysis in muscle.

  7. Subunit Recombinant Vaccine Protects Against Monkeypox

    DTIC Science & Technology

    2006-05-27

    Subunit Recombinant Vaccine Protects against Monkeypox1 Jean-Michel Heraud,* Yvette Edghill-Smith,*† Victor Ayala,‡ Irene Kalisz,‡ Janie Parrino ...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Heraud, JM Edghill-Smith, Y Ayala, V Kalisz, I Parrino , J Kalyanaraman, VS Manischewitz, J King

  8. Moving Iron through Ferritin Protein Nanocages Depends on Residues throughout Each Four α-Helix Bundle Subunit*

    PubMed Central

    Haldar, Suranjana; Bevers, Loes E.; Tosha, Takehiko; Theil, Elizabeth C.

    2011-01-01

    Eukaryotic H ferritins move iron through protein cages to form biologically required, iron mineral concentrates. The biominerals are synthesized during protein-based Fe2+/O2 oxidoreduction and formation of [Fe3+O]n multimers within the protein cage, en route to the cavity, at sites distributed over ∼50 Å. Recent NMR and Co2+-protein x-ray diffraction (XRD) studies identified the entire iron path and new metal-protein interactions: (i) lines of metal ions in 8 Fe2+ ion entry channels with three-way metal distribution points at channel exits and (ii) interior Fe3+O nucleation channels. To obtain functional information on the newly identified metal-protein interactions, we analyzed effects of amino acid substitution on formation of the earliest catalytic intermediate (diferric peroxo-A650 nm) and on mineral growth (Fe3+O-A350 nm), in A26S, V42G, D127A, E130A, and T149C. The results show that all of the residues influenced catalysis significantly (p < 0.01), with effects on four functions: (i) Fe2+ access/selectivity to the active sites (Glu130), (ii) distribution of Fe2+ to each of the three active sites near each ion channel (Asp127), (iii) product (diferric oxo) release into the Fe3+O nucleation channels (Ala26), and (iv) [Fe3+O]n transit through subunits (Val42, Thr149). Synthesis of ferritin biominerals depends on residues along the entire length of H subunits from Fe2+ substrate entry at 3-fold cage axes at one subunit end through active sites and nucleation channels, at the other subunit end, inside the cage at 4-fold cage axes. Ferritin subunit-subunit geometry contributes to mineral order and explains the physiological impact of ferritin H and L subunits. PMID:21592958

  9. Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex.

    PubMed

    Mangat, Simmanjeet; Chandrashekarappa, Dakshayini; McCartney, Rhonda R; Elbing, Karin; Schmidt, Martin C

    2010-01-01

    Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic alpha subunit and regulatory beta and gamma subunits. In this study, the role of the beta subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (alpha), Snf4 (gamma), and one of three alternative beta subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three beta subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the beta subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation.

  10. Differential Roles of the Glycogen-Binding Domains of β Subunits in Regulation of the Snf1 Kinase Complex▿

    PubMed Central

    Mangat, Simmanjeet; Chandrashekarappa, Dakshayini; McCartney, Rhonda R.; Elbing, Karin; Schmidt, Martin C.

    2010-01-01

    Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic α subunit and regulatory β and γ subunits. In this study, the role of the β subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (α), Snf4 (γ), and one of three alternative β subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three β subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the β subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation. PMID:19897735

  11. Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces

    PubMed Central

    Zhu, Shujia; Riou, Morgane; Yao, C. Andrea; Carvalho, Stéphanie; Rodriguez, Pamela C.; Bensaude, Olivier; Paoletti, Pierre; Ye, Shixin

    2014-01-01

    Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo–cross-linker p-azido-l-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion. PMID:24715733

  12. Random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit from Dictyostelium discoideum.

    PubMed Central

    Biondi, R M; Baehler, P J; Reymond, C D; Véron, M

    1998-01-01

    The green fluorescent protein (GFP) is currently being used for diverse cellular biology approaches, mainly as a protein tag or to monitor gene expression. Recently it has been shown that GFP can also be used to monitor the activation of second messenger pathways by the use of fluorescence resonance energy transfer (FRET) between two different GFP mutants fused to a Ca2+sensor. We show here that GFP fusions can also be used to obtain information on regions essential for protein function. As FRET requires the two GFPs to be very close, N- or C-terminal fusion proteins will not generally produce FRET between two interacting proteins. In order to increase the probability of FRET, we decided to study the effect of random insertion of two GFP mutants into a protein of interest. We describe here a methodology for random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit using a bacterial expression vector. The selection and analysis of 120 green fluorescent colonies revealed that the insertions were distributed throughout the R coding region. 14 R/GFP fusion proteins were partially purified and characterized for cAMP binding, fluorescence and ability to inhibit PKA catalytic activity. This study reveals that GFP insertion only moderately disturbed the overall folding of the protein or the proper folding of another domain of the protein, as tested by cAMP binding capacity. Furthermore, three R subunits out of 14, which harbour a GFP inserted in the cAMP binding site B, inhibit PKA catalytic subunit in a cAMP-dependent manner. Random insertion of GFP within the R subunit sets the path to develop two-component FRET with the C subunit. PMID:9776758

  13. Random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit from Dictyostelium discoideum.

    PubMed

    Biondi, R M; Baehler, P J; Reymond, C D; Véron, M

    1998-11-01

    The green fluorescent protein (GFP) is currently being used for diverse cellular biology approaches, mainly as a protein tag or to monitor gene expression. Recently it has been shown that GFP can also be used to monitor the activation of second messenger pathways by the use of fluorescence resonance energy transfer (FRET) between two different GFP mutants fused to a Ca2+sensor. We show here that GFP fusions can also be used to obtain information on regions essential for protein function. As FRET requires the two GFPs to be very close, N- or C-terminal fusion proteins will not generally produce FRET between two interacting proteins. In order to increase the probability of FRET, we decided to study the effect of random insertion of two GFP mutants into a protein of interest. We describe here a methodology for random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit using a bacterial expression vector. The selection and analysis of 120 green fluorescent colonies revealed that the insertions were distributed throughout the R coding region. 14 R/GFP fusion proteins were partially purified and characterized for cAMP binding, fluorescence and ability to inhibit PKA catalytic activity. This study reveals that GFP insertion only moderately disturbed the overall folding of the protein or the proper folding of another domain of the protein, as tested by cAMP binding capacity. Furthermore, three R subunits out of 14, which harbour a GFP inserted in the cAMP binding site B, inhibit PKA catalytic subunit in a cAMP-dependent manner. Random insertion of GFP within the R subunit sets the path to develop two-component FRET with the C subunit.

  14. The intein of the Thermoplasma A-ATPase A subunit: Structure, evolution and expression in E. coli

    PubMed Central

    Senejani, Alireza G; Hilario, Elena; Gogarten, J Peter

    2001-01-01

    Background Inteins are selfish genetic elements that excise themselves from the host protein during post translational processing, and religate the host protein with a peptide bond. In addition to this splicing activity, most reported inteins also contain an endonuclease domain that is important in intein propagation. Results The gene encoding the Thermoplasma acidophilum A-ATPase catalytic subunit A is the only one in the entire T. acidophilum genome that has been identified to contain an intein. This intein is inserted in the same position as the inteins found in the ATPase A-subunits encoding gene in Pyrococcus abyssi, P. furiosus and P. horikoshii and is found 20 amino acids upstream of the intein in the homologous vma-1 gene in Saccharomyces cerevisiae. In contrast to the other inteins in catalytic ATPase subunits, the T. acidophilum intein does not contain an endonuclease domain. T. acidophilum has different codon usage frequencies as compared to Escherichia coli. Initially, the low abundance of rare tRNAs prevented expression of the T. acidophilum A-ATPase A subunit in E. coli. Using a strain of E. coli that expresses additional tRNAs for rare codons, the T. acidophilum A-ATPase A subunit was successfully expressed in E. coli. Conclusions Despite differences in pH and temperature between the E. coli and the T. acidophilum cytoplasms, the T. acidophilum intein retains efficient self-splicing activity when expressed in E. coli. The small intein in the Thermoplasma A-ATPase is closely related to the endonuclease containing intein in the Pyrococcus A-ATPase. Phylogenetic analyses suggest that this intein was horizontally transferred between Pyrococcus and Thermoplasma, and that the small intein has persisted in Thermoplasma apparently without homing. PMID:11722801

  15. Apo- and Cellopentaose-bound Structures of the Bacterial Cellulose Synthase Subunit BcsZ

    SciTech Connect

    Mazur, Olga; Zimmer, Jochen

    2012-10-25

    Cellulose, a very abundant extracellular polysaccharide, is synthesized in a finely tuned process that involves the activity of glycosyl-transferases and hydrolases. The cellulose microfibril consists of bundles of linear {beta}-1,4-glucan chains that are synthesized inside the cell; however, the mechanism by which these polymers traverse the cell membrane is currently unknown. In Gram-negative bacteria, the cellulose synthase complex forms a trans-envelope complex consisting of at least four subunits. Although three of these subunits account for the synthesis and translocation of the polysaccharide, the fourth subunit, BcsZ, is a periplasmic protein with endo-{beta}-1,4-glucanase activity. BcsZ belongs to family eight of glycosyl-hydrolases, and its activity is required for optimal synthesis and membrane translocation of cellulose. In this study we report two crystal structures of BcsZ from Escherichia coli. One structure shows the wild-type enzyme in its apo form, and the second structure is for a catalytically inactive mutant of BcsZ in complex with the substrate cellopentaose. The structures demonstrate that BcsZ adopts an ({alpha}/{alpha}){sub 6}-barrel fold and that it binds four glucan moieties of cellopentaose via highly conserved residues exclusively on the nonreducing side of its catalytic center. Thus, the BcsZ-cellopentaose structure most likely represents a posthydrolysis state in which the newly formed nonreducing end has already left the substrate binding pocket while the enzyme remains attached to the truncated polysaccharide chain. We further show that BcsZ efficiently degrades {beta}-1,4-glucans in in vitro cellulase assays with carboxymethyl-cellulose as substrate.

  16. Disruption of the RIIβ subunit of PKA reverses the obesity syndrome of agouti lethal yellow mice

    PubMed Central

    Czyzyk, Traci A.; Sikorski, Maria A.; Yang, Linghai; McKnight, G. Stanley

    2008-01-01

    Agouti lethal yellow (Ay) mice express agouti ectopically because of a genetic rearrangement at the agouti locus. The agouti peptide is a potent antagonist of the melanocortin 4 receptor (MC4R) expressed in neurons, and this leads to hyperphagia, hypoactivity, and increased fat mass. The MC4R signals through Gs and is thought to stimulate the production of cAMP and activation of downstream cAMP effector molecules such as PKA. Disruption of the RIIβ regulatory subunit gene of PKA results in release of the active catalytic subunit and an increase in basal PKA activity in cells where RIIβ is highly expressed. Because RIIβ is expressed in neurons including those in the hypothalamic nuclei where MC4R is prominent we tested the possibility that the RIIβ knockout might rescue the body weight phenotypes of the Ay mice. Disruption of the RIIβ PKA regulatory subunit gene in mice leads to a 50% reduction in white adipose tissue and resistance to diet-induced obesity and hyperglycemia. The RIIβ mutation rescued the elevated body weight, hyperphagia, and obesity of Ay mice. Partial rescue of the Ay phenotypes was even observed on an RIIβ heterozygote background. These results suggest that the RIIβ gene mutation alters adiposity and locomotor activity by modifying PKA signaling pathways downstream of the agouti antagonism of MC4R in the hypothalamus. PMID:18172198

  17. A Small Covalent Allosteric Inhibitor of Human Cytomegalovirus DNA Polymerase Subunit Interactions.

    PubMed

    Chen, Han; Coseno, Molly; Ficarro, Scott B; Mansueto, My Sam; Komazin-Meredith, Gloria; Boissel, Sandrine; Filman, David J; Marto, Jarrod A; Hogle, James M; Coen, Donald M

    2017-02-10

    Human cytomegalovirus DNA polymerase comprises a catalytic subunit, UL54, and an accessory subunit, UL44, the interaction of which may serve as a target for the development of new antiviral drugs. Using a high-throughput screen, we identified a small molecule, (5-((dimethylamino)methylene-3-(methylthio)-6,7-dihydrobenzo[c]thiophen-4(5H)-one), that selectively inhibits the interaction of UL44 with a UL54-derived peptide in a time-dependent manner, full-length UL54, and UL44-dependent long-chain DNA synthesis. A crystal structure of the compound bound to UL44 revealed a covalent reaction with lysine residue 60 and additional noncovalent interactions that cause steric conflicts that would prevent the UL44 connector loop from interacting with UL54. Analyses of the reaction of the compound with model substrates supported a resonance-stabilized conjugation mechanism, and substitution of the lysine reduced the ability of the compound to inhibit UL44-UL54 peptide interactions. This novel covalent inhibitor of polymerase subunit interactions may serve as a starting point for new, needed drugs to treat human cytomegalovirus infections.

  18. Crystal Structure of the 25 kDa Subunit of Human Cleavage Factor I{m}

    SciTech Connect

    Coseno,M.; Martin, G.; Berger, C.; Gilmartin, G.; Keller, W.; Doublie, S.

    2008-01-01

    Cleavage factor Im is an essential component of the pre-messenger RNA 3'-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein-protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic {alpha}/{beta}/{alpha} fold and a conserved catalytic sequence or Nudix box. We present here the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Angstroms, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3'-end processing.

  19. The helical domain of a G protein alpha subunit is a regulator of its effector.

    PubMed

    Liu, W; Northup, J K

    1998-10-27

    The alpha subunit (Galpha) of heterotrimeric G proteins is a major determinant of signaling selectivity. The Galpha structure essentially comprises a GTPase "Ras-like" domain (RasD) and a unique alpha-helical domain (HD). We used the vertebrate phototransduction model to test for potential functions of HD and found that the HD of the retinal transducin Galpha (Galphat) and the closely related gustducin (Galphag), but not Galphai1, Galphas, or Galphaq synergistically enhance guanosine 5'-gamma[-thio]triphosphate bound Galphat (GalphatGTPgammaS) activation of bovine rod cGMP phosphodiesterase (PDE). In addition, both HDt and HDg, but not HDi1, HDs, or HDq attenuate the trypsin-activated PDE. GalphatGDP and HDt attenuation of trypsin-activated PDE saturate with similar affinities and to an identical 38% of initial activity. These data suggest that interaction of intact Galphat with the PDE catalytic core may be caused by the HD moiety, and they indicate an independent site(s) for the HD moiety of Galphat within the PDE catalytic core in addition to the sites for the inhibitory Pgamma subunits. The HD moiety of GalphatGDP is an attenuator of the activated catalytic core, whereas in the presence of activated GalphatGTPgammaS the independently expressed HDt is a potent synergist. Rhodopsin catalysis of Galphat activation enhances the PDE activation produced by subsaturating levels of Galphat, suggesting a HD-moiety synergism from a transient conformation of Galphat. These results establish HD-selective regulations of vertebrate retinal PDE, and they provide evidence demonstrating that the HD is a modulatory domain. We suggest that the HD works in concert with the RasD, enhancing the efficiency of G protein signaling.

  20. Catalytic combustion with steam injection

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Tacina, R. R.

    1982-01-01

    The effects of steam injection on (1) catalytic combustion performance, and (2) the tendency of residual fuel to burn in the premixing duct upstream of the catalytic reactor were determined. A petroleum residual, no. 2 diesel, and a blend of middle and heavy distillate coal derived fuels were tested. Fuel and steam were injected together into the preheated airflow entering a 12 cm diameter catalytic combustion test section. The inlet air velocity and pressure were constant at 10 m/s and 600 kPa, respectively. Steam flow rates were varied from 24 percent to 52 percent of the air flow rate. The resulting steam air mixture temperatures varied from 630 to 740 K. Combustion temperatures were in the range of 1200 to 1400 K. The steam had little effect on combustion efficiency or emissions. It was concluded that the steam acts as a diluent which has no adverse effect on catalytic combustion performance for no. 2 diesel and coal derived liquid fuels. Tests with the residual fuel showed that upstream burning could be eliminated with steam injection rates greater than 30 percent of the air flow rate, but inlet mixture temperatures were too low to permit stable catalytic combustion of this fuel.

  1. Tau pathology involves protein phosphatase 2A in Parkinsonism-dementia of Guam

    PubMed Central

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M.; Iqbal, Khalid

    2014-01-01

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr307 and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr307 in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr307. These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5–PP2A complex, and its phosphorylation at Tyr307 by Src. PMID:24395787

  2. Structural Asymmetry and Disulfide Bridges among Subunits Modulate the Activity of Human Malonyl-CoA Decarboxylase*

    PubMed Central

    Aparicio, David; Pérez-Luque, Rosa; Carpena, Xavier; Díaz, Mireia; Ferrer, Joan C.; Loewen, Peter C.; Fita, Ignacio

    2013-01-01

    Decarboxylation of malonyl-CoA to acetyl-CoA by malonyl-CoA decarboxylase (MCD; EC 4.1.1.9) is an essential facet in the regulation of fatty acid metabolism. The structure of human peroxisomal MCD reveals a molecular tetramer that is best described as a dimer of structural heterodimers, in which the two subunits present markedly different conformations. This molecular organization is consistent with half-of-the-sites reactivity. Each subunit has an all-helix N-terminal domain and a catalytic C-terminal domain with an acetyltransferase fold (GNAT superfamily). Intersubunit disulfide bridges, Cys-206–Cys-206 and Cys-243–Cys-243, can link the four subunits of the tetramer, imparting positive cooperativity to the catalytic process. The combination of a half-of-the-sites mechanism within each structural heterodimer and positive cooperativity in the tetramer produces a complex regulatory picture that is further complicated by the multiple intracellular locations of the enzyme. Transport into the peroxisome has been investigated by docking human MCD onto the peroxisomal import protein peroxin 5, which revealed interactions that extend beyond the C-terminal targeting motif. PMID:23482565

  3. Structural Comparison, Substrate Specificity, and Inhibitor Binding of AGPase Small Subunit from Monocot and Dicot: Present Insight and Future Potential

    PubMed Central

    Choudhury, Manabendra D.; Modi, Mahendra K.

    2014-01-01

    ADP-glucose pyrophosphorylase (AGPase) is the first rate limiting enzyme of starch biosynthesis pathway and has been exploited as the target for greater starch yield in several plants. The structure-function analysis and substrate binding specificity of AGPase have provided enormous potential for understanding the role of specific amino acid or motifs responsible for allosteric regulation and catalytic mechanisms, which facilitate the engineering of AGPases. We report the three-dimensional structure, substrate, and inhibitor binding specificity of AGPase small subunit from different monocot and dicot crop plants. Both monocot and dicot subunits were found to exploit similar interactions with the substrate and inhibitor molecule as in the case of their closest homologue potato tuber AGPase small subunit. Comparative sequence and structural analysis followed by molecular docking and electrostatic surface potential analysis reveal that rearrangements of secondary structure elements, substrate, and inhibitor binding residues are strongly conserved and follow common folding pattern and orientation within monocot and dicot displaying a similar mode of allosteric regulation and catalytic mechanism. The results from this study along with site-directed mutagenesis complemented by molecular dynamics simulation will shed more light on increasing the starch content of crop plants to ensure the food security worldwide. PMID:25276800

  4. Structural comparison, substrate specificity, and inhibitor binding of AGPase small subunit from monocot and dicot: present insight and future potential.

    PubMed

    Sarma, Kishore; Sen, Priyabrata; Barooah, Madhumita; Choudhury, Manabendra D; Roychoudhury, Shubhadeep; Modi, Mahendra K

    2014-01-01

    ADP-glucose pyrophosphorylase (AGPase) is the first rate limiting enzyme of starch biosynthesis pathway and has been exploited as the target for greater starch yield in several plants. The structure-function analysis and substrate binding specificity of AGPase have provided enormous potential for understanding the role of specific amino acid or motifs responsible for allosteric regulation and catalytic mechanisms, which facilitate the engineering of AGPases. We report the three-dimensional structure, substrate, and inhibitor binding specificity of AGPase small subunit from different monocot and dicot crop plants. Both monocot and dicot subunits were found to exploit similar interactions with the substrate and inhibitor molecule as in the case of their closest homologue potato tuber AGPase small subunit. Comparative sequence and structural analysis followed by molecular docking and electrostatic surface potential analysis reveal that rearrangements of secondary structure elements, substrate, and inhibitor binding residues are strongly conserved and follow common folding pattern and orientation within monocot and dicot displaying a similar mode of allosteric regulation and catalytic mechanism. The results from this study along with site-directed mutagenesis complemented by molecular dynamics simulation will shed more light on increasing the starch content of crop plants to ensure the food security worldwide.

  5. Protein Phosphatase Methyl-Esterase PME-1 Protects Protein Phosphatase 2A from Ubiquitin/Proteasome Degradation.

    PubMed

    Yabe, Ryotaro; Miura, Akane; Usui, Tatsuya; Mudrak, Ingrid; Ogris, Egon; Ohama, Takashi; Sato, Koichi

    2015-01-01

    Protein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity. However, here we show that PME-1 knockout mouse embryonic fibroblasts (MEFs) exhibit lower PP2A activity than wild type MEFs. Loss of PME-1 enhanced poly-ubiquitination of PP2Ac and shortened the half-life of PP2Ac protein resulting in reduced PP2Ac levels. Chemical inhibition of PME-1 and rescue experiments with wild type and mutated PME-1 revealed methyl-esterase activity was necessary to maintain PP2Ac protein levels. Our data demonstrate that PME-1 methyl-esterase activity protects PP2Ac from ubiquitin/proteasome degradation.

  6. Rubisco small subunits from the unicellular green alga Chlamydomonas complement Rubisco-deficient mutants of Arabidopsis.

    PubMed

    Atkinson, Nicky; Leitão, Nuno; Orr, Douglas J; Meyer, Moritz T; Carmo-Silva, Elizabete; Griffiths, Howard; Smith, Alison M; McCormick, Alistair J

    2017-04-01

    Introducing components of algal carbon concentrating mechanisms (CCMs) into higher plant chloroplasts could increase photosynthetic productivity. A key component is the Rubisco-containing pyrenoid that is needed to minimise CO2 retro-diffusion for CCM operating efficiency. Rubisco in Arabidopsis was re-engineered to incorporate sequence elements that are thought to be essential for recruitment of Rubisco to the pyrenoid, namely the algal Rubisco small subunit (SSU, encoded by rbcS) or only the surface-exposed algal SSU α-helices. Leaves of Arabidopsis rbcs mutants expressing 'pyrenoid-competent' chimeric Arabidopsis SSUs containing the SSU α-helices from Chlamydomonas reinhardtii can form hybrid Rubisco complexes with catalytic properties similar to those of native Rubisco, suggesting that the α-helices are catalytically neutral. The growth and photosynthetic performance of complemented Arabidopsis rbcs mutants producing near wild-type levels of the hybrid Rubisco were similar to those of wild-type controls. Arabidopsis rbcs mutants expressing a Chlamydomonas SSU differed from wild-type plants with respect to Rubisco catalysis, photosynthesis and growth. This confirms a role for the SSU in influencing Rubisco catalytic properties.

  7. Expression studies of catalytic antibodies

    SciTech Connect

    Ulrich, H.D.; Patten, P.A.; Yang, P.L.

    1995-12-05

    We have examined the positive influence of human constant regions on the folding and bacterial expression of active soluble mouse immunoglobulin variable domains derived form a number of catalytic antibodies. Expression yields of eight hybridoma-and myeloma-derived chimeric Fab fragments are compared in both shake flasks and high-density fermentation. In addition the usefulness of this system for the generation of in vivo expression libraries is examined by constructing and expressing combinations of heavy and light chain variable regions that were not selected as a pair during an immune response. A mutagenesis study of one of the recombinant catalytic Fab fragments reveals that single amino acid substitutions can have dramatic effects on the expression yield. This system should be generally applicable to the production of Fab fragments of catalytic and other hybridoma-derived antibodies for crystallographic and structure-function studies. 41 refs., 4 figs., 1 tab.

  8. Catalytic distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  9. Recent Advances in Subunit Vaccine Carriers

    PubMed Central

    Vartak, Abhishek; Sucheck, Steven J.

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  10. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy

    NASA Astrophysics Data System (ADS)

    Deng, Yuanjun; Guo, Yanyan; Liu, Ping; Zeng, Rui; Ning, Yong; Pei, Guangchang; Li, Yueqiang; Chen, Meixue; Guo, Shuiming; Li, Xiaoqing; Han, Min; Xu, Gang

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment withTAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis.

  11. Comprehensive Characterization of AMP-Activated Protein Kinase Catalytic Domain by Top-Down Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2016-02-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ). C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ had noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems.

  12. Comprehensive Characterization of AMP-activated Protein Kinase Catalytic Domain by Top-down Mass Spectrometry

    PubMed Central

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2015-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ. C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ has noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems. PMID:26489410

  13. In Polytomella sp. mitochondria, biogenesis of the heterodimeric COX2 subunit of cytochrome c oxidase requires two different import pathways.

    PubMed

    Jiménez-Suárez, Alejandra; Vázquez-Acevedo, Miriam; Rojas-Hernández, Andrés; Funes, Soledad; Uribe-Carvajal, Salvador; González-Halphen, Diego

    2012-05-01

    In the vast majority of eukaryotic organisms, the mitochondrial cox2 gene encodes subunit II of cytochrome c oxidase (COX2). However, in some lineages including legumes and chlorophycean algae, the cox2 gene migrated to the nucleus. Furthermore, in chlorophycean algae, this gene was split in two different units. Thereby the COX2 subunit is encoded by two independent nuclear genes, cox2a and cox2b, and mitochondria have to import the cytosol-synthesized COX2A and COX2B subunits and assemble them into the cytochrome c oxidase complex. In the chlorophycean algae Chlamydomonas reinhardtii and Polytomella sp., the COX2A precursor exhibits a long (130-140 residues), cleavable mitochondrial targeting sequence (MTS). In contrast, COX2B lacks an MTS, suggesting that mitochondria use different mechanisms to import each subunit. Here, we explored the in vitro import processes of both, the Polytomella sp. COX2A precursor and the COX2B protein. We used isolated, import-competent mitochondria from this colorless alga. Our results suggest that COX2B is imported directly into the intermembrane space, while COX2A seems to follow an energy-dependent import pathway, through which it finally integrates into the inner mitochondrial membrane. In addition, the MTS of the COX2A precursor is eliminated. This is the first time that the in vitro import of split COX2 subunits into mitochondria has been achieved.

  14. Perfluoropolyalkylether decomposition on catalytic aluminas

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo

    1994-01-01

    The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.

  15. Coordinated DNA dynamics during the human telomerase catalytic cycle

    NASA Astrophysics Data System (ADS)

    Parks, Joseph W.; Stone, Michael D.

    2014-06-01

    The human telomerase reverse transcriptase (hTERT) utilizes a template within the integral RNA subunit (hTR) to direct extension of telomeres. Telomerase exhibits repeat addition processivity (RAP) and must therefore translocate the nascent DNA product into a new RNA:DNA hybrid register to prime each round of telomere repeat synthesis. Here, we use single-molecule FRET and nuclease protection assays to monitor telomere DNA structure and dynamics during the telomerase catalytic cycle. DNA translocation during RAP proceeds through a previously uncharacterized kinetic substep during which the 3‧-end of the DNA substrate base pairs downstream within the hTR template. The rate constant for DNA primer realignment reveals this step is not rate limiting for RAP, suggesting a second slow conformational change repositions the RNA:DNA hybrid into the telomerase active site and drives the extrusion of the 5‧-end of the DNA primer out of the enzyme complex.

  16. Vitamin K epoxide reductase: homology, active site and catalytic mechanism.

    PubMed

    Goodstadt, Leo; Ponting, Chris P

    2004-06-01

    Vitamin K epoxide reductase (VKOR) recycles reduced vitamin K, which is used subsequently as a co-factor in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. VKORC1, a subunit of the VKOR complex, has recently been shown to possess this activity. Here, we show that VKORC1 is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. Four cysteine residues and one residue, which is either serine or threonine, are identified as likely active-site residues. In some plant and bacterial homologues the VKORC1 homologous domain is fused with domains of the thioredoxin family of oxidoreductases. These might reduce disulfide bonds of VKORC1-like enzymes as a prerequisite for their catalytic activities.

  17. Cobalamin Catalytic Centers for Stable Fuels Generation from Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Robertson, Wesley D.; Jawdat, Benmaan I.; Ennist, Nathan M.; Warncke, Kurt

    2010-03-01

    Our aim is to design and construct protein-based artificial photosynthetic systems that reduce carbon dioxide (CO2) to stable fuel forms within the robust and adaptable (βα)8 TIM-barrel protein structure. The EutB subunit of the adenosylcobalamin-dependent enzyme, ethanolamine ammonia-lyase, from Salmonella typhimurium, was selected as the protein template. This system was selected because the Co^I forms of the native cobalamin (Cbl) cofactor, and the related cobinamide (Cbi), possess redox properties that are commensurate with reduction of CO2. The kinetics of photo- (excited 5'-deazariboflavin electron donor) and chemical [Ti(III)] reduction, and subsequent reaction, of the Cbl and Cbi with CO2 are measured by time-resolved UV/visible absorption spectroscopy. Products are quantified by NMR spectroscopy. The results address the efficacy of the organocobalt catalytic centers for CO2 reduction to stable fuels, towards protein device integration.

  18. Subunit organization in cytoplasmic dynein subcomplexes

    PubMed Central

    King, Stephen J.; Bonilla, Myriam; Rodgers, Michael E.; Schroer, Trina A.

    2002-01-01

    Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain–binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo. PMID:11967380

  19. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas

    PubMed Central

    Clark, Victoria E; Harmancı, Akdes Serin; Bai, Hanwen; Youngblood, Mark W; Lee, Tong Ihn; Baranoski, Jacob F; Ercan-Sencicek, A Gulhan; Abraham, Brian J; Weintraub, Abraham S; Hnisz, Denes; Simon, Matthias; Krischek, Boris; Erson-Omay, E Zeynep; Henegariu, Octavian; Carrión-Grant, Geneive; Mishra-Gorur, Ketu; Durán, Daniel; Goldmann, Johanna E; Schramm, Johannes; Goldbrunner, Roland; Piepmeier, Joseph M; Vortmeyer, Alexander O; Günel, Jennifer Moliterno; Bilgüvar, Kaya; Yasuno, Katsuhito; Young, Richard A; Günel, Murat

    2016-01-01

    RNA polymerase II mediates the transcription of all protein-coding genes in eukaryotic cells, a process that is fundamental to life. Genomic mutations altering this enzyme have not previously been linked to any pathology in humans, which is a testament to its indispensable role in cell biology. On the basis of a combination of next-generation genomic analyses of 775 meningiomas, we report that recurrent somatic p.Gln403Lys or p.Leu438_His439del mutations in POLR2A, which encodes the catalytic subunit of RNA polymerase II (ref. 1), hijack this essential enzyme and drive neoplasia. POLR2A mutant tumors show dysregulation of key meningeal identity genes2, 3, including WNT6 and ZIC1/ZIC4. In addition to mutations in POLR2A, NF2, SMARCB1, TRAF7, KLF4, AKT1, PIK3CA, and SMO4, 5, 6, 7, 8, we also report somatic mutations in AKT3, PIK3R1, PRKAR1A, and SUFU in meningiomas. Our results identify a role for essential transcriptional machinery in driving tumorigenesis and define mutually exclusive meningioma subgroups with distinct clinical and pathological features. PMID:27548314

  20. Rotenone Activates Phagocyte NADPH Oxidase through Binding to Its Membrane Subunit gp91phox

    PubMed Central

    Zhou, Hui; Zhang, Feng; Chen, Shih-heng; Zhang, Dan; Wilson, Belinda; Hong, Jau-shyong; Gao, Hui-Ming

    2011-01-01

    Rotenone, a widely used pesticide, reproduces Parkinsonism in rodents and associates with increased risk for Parkinson’s disease. We previously reported rotenone increased superoxide production through stimulating microglial phagocyte NADPH oxidase (PHOX). The present study identified a novel mechanism by which rotenone activates PHOX. Ligand-binding assay revealed that rotenone directly bound to membrane gp91phox, the catalytic subunit of PHOX; such binding was inhibited by diphenyleneiodonium, a PHOX inhibitor with a binding site on gp91phox. Functional studies showed both membrane and cytosolic subunits were required for rotenone-induced superoxide production in cell-free systems, intact phagocytes, and COS7 cells transfected with membrane subunits (gp91phox/p22phox) and cytosolic subunits (p67phox and p47phox). Rotenone-elicited extracellular superoxide release in p47phox-deficient macrophages suggested rotenone enabled to activate PHOX through a p47phox-independent mechanism. Increased membrane translocation of p67phox, elevated binding of p67phox to rotenone-treated membrane fractions, and co-immunoprecipitation of p67phox and gp91phox in rotenone-treated wild-type and p47phox-deficient macrophages indicated p67phox played a critical role in rotenone-induced PHOX activation via its direct interaction with gp91phox. Rac1, a Rho-like small GTPase, enhanced p67phox-gp91phox interaction; Rac1 inhibition decreased rotenone-elicited superoxide release. In conclusion, rotenone directly interacted with gp91phox; such an interaction triggered membrane translocation of p67phox, leading to PHOX activation and superoxide production. PMID:22094225

  1. Developmental dynamics of PAFAH1B subunits during mouse brain development.

    PubMed

    Escamez, Teresa; Bahamonde, Olga; Tabares-Seisdedos, Rafael; Vieta, Eduard; Martinez, Salvador; Echevarria, Diego

    2012-12-01

    Platelet-activating factor (PAF) mediates an array of biological processes in the mammalian central nervous system as a bioactive lipid messenger in synaptic function and dysfunction (plasticity, memory, and neurodegeneration). The intracellular enzyme that deacetylates the PAF (PAFAH1B) is composed of a tetramer of two catalytic subunits, ALPHA1 (PAFAH1B3) and ALPHA2 (PAFAH1B2), and a regulatory dimer of LIS1 (PAFAH1B1). We have investigated the mouse PAFAH1B subunit genes during brain development in normal mice and in mice with a hypomorphic allele for Lis1 (Lis1/sLis1; Cahana et al. [2001] Proc Natl Acad Sci U S A 98:6429-6434). We have analyzed quantitatively (by means of real-time polymerase chain reaction) and qualitatively (by in situ hybridization techniques) the amounts and expression patterns of their transcription in developing and postnatal brain, focusing mainly on differences in two laminated encephalic regions, the forebrain (telencephalon) and hindbrain (cerebellum) separately. The results revealed significant differences in cDNA content between these two brain subdivisions but, more importantly, between the LIS1 complex subunits. In addition, we found significant spatial differences in gene expression patterns. Comparison of results obtained with Lis1/sLis1 analysis also revealed significant temporal and spatial differences in Alpha1 and Lis1 expression levels. Thus, small changes in the amount of the Lis1 gene may differentially regulate expression of Alpha1 and Alpha2, depending on the brain region, which suggests different roles for each LIS1 complex subunit during neural differentiation and neural migration.

  2. Molecular cloning of Schistosoma mansoni calcineurin subunits and immunolocalization to the excretory system.

    PubMed

    Mecozzi, B; Rossi, A; Lazzaretti, P; Kady, M; Kaiser, S; Valle, C; Cioli, D; Klinkert, M Q

    2000-10-01

    In order to explain the schistosomicidal effect of cyclosporin A, the hypothesis was advanced that the drug, complexed with cyclophilin, inhibits the phosphatase activity of parasite calcineurin (CN), with mechanisms similar to those operating in its immunosuppressive action. As a preparatory step to the testing of this hypothesis, we report the molecular cloning of both CN subunits in Schistosoma mansoni. The catalytic (A) subunit has a predicted sequence of 607 amino acids and shows substantial similarity to other cloned CNs, except for the carboxy-terminal end that is highly divergent. The regulatory (B) subunit consists of 169 amino acids that are 86% identical to those of the human counterpart and, from its anomalous electrophoretic mobility, it appears to be myristoylated. The results of Southern blotting experiments are compatible with the existence of multiple genes for CNA and a single gene for CNB. Western blots showed that both subunits are present at all stages of the parasite life cycle and can be detected both in the soluble and in the membrane fraction. Immunofluorescence confocal microscopy revealed a striking concentration of the anti-CNA reactivity in 6-8 discrete spots in the schistosomula and in distinct spots along the body of the adult parasite, corresponding to the expected localization of flame cells. Both patterns were confirmed by a perfect co-localization of the anti-CNA signal with that of a previously characterized anti-flame cell monoclonal antibody. The preferential confinement of schistosome CN to the protonephridial system suggests that the enzyme in the parasite may fulfil similar functions to those performed in mammalian kidneys.

  3. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits.

    PubMed

    Van Engelenburg, Schuyler B; Shtengel, Gleb; Sengupta, Prabuddha; Waki, Kayoko; Jarnik, Michal; Ablan, Sherimay D; Freed, Eric O; Hess, Harald F; Lippincott-Schwartz, Jennifer

    2014-02-07

    The human immunodeficiency virus (HIV) hijacks the endosomal sorting complexes required for transport (ESCRT) to mediate virus release from infected cells. The nanoscale organization of ESCRT machinery necessary for mediating viral abscission is unclear. Here, we applied three-dimensional superresolution microscopy and correlative electron microscopy to delineate the organization of ESCRT components at HIV assembly sites. We observed ESCRT subunits localized within the head of budding virions and released particles, with head-localized levels of CHMP2A decreasing relative to Tsg101 and CHMP4B upon virus abscission. Thus, the driving force for HIV release may derive from initial scaffolding of ESCRT subunits within the viral bud interior followed by plasma membrane association and selective remodeling of ESCRT subunits.

  4. DNA sequences, recombinant DNA molecules and processes for producing the A and B subunits of cholera toxin and preparations containing so-obtained subunit or subunits

    SciTech Connect

    Harford, N.; De Wilde, M.

    1987-05-19

    A recombinant DNA molecule is described comprising at least a portion coding for subunits A and B of cholera toxin, or a fragment or derivative of the portion wherein the fragment or derivative codes for a polypeptide have an activity which can induce an immune response to subunit A; can induce an immune response to subunit A and cause epithelial cell penetration and the enzymatic effect leading to net loss of fluid into the gut lumen; can bind to the membrane receptor for the B subunit of cholera toxin; can induce an immune response to subunit B; can induce an immune response to subunit B and bind to the membrane receptor; or has a combination of the activities.

  5. Mass Spectrometry Reveals Differences in Stability and Subunit Interactions between Activated and Nonactivated Conformers of the (αβγδ)4 Phosphorylase Kinase Complex*

    PubMed Central

    Lane, Laura A.; Nadeau, Owen W.; Carlson, Gerald M.; Robinson, Carol V.

    2012-01-01

    Phosphorylase kinase (PhK), a 1.3 MDa enzyme complex that regulates glycogenolysis, is composed of four copies each of four distinct subunits (α, β, γ, and δ). The catalytic protein kinase subunit within this complex is γ, and its activity is regulated by the three remaining subunits, which are targeted by allosteric activators from neuronal, metabolic, and hormonal signaling pathways. The regulation of activity of the PhK complex from skeletal muscle has been studied extensively; however, considerably less is known about the interactions among its subunits, particularly within the non-activated versus activated forms of the complex. Here, nanoelectrospray mass spectrometry and partial denaturation were used to disrupt PhK, and subunit dissociation patterns of non-activated and phospho-activated (autophosphorylation) conformers were compared. In so doing, we have established a network of subunit contacts that complements and extends prior evidence of subunit interactions obtained from chemical crosslinking, and these subunit interactions have been modeled for both conformers within the context of a known three-dimensional structure of PhK solved by cryoelectron microscopy. Our analyses show that the network of contacts among subunits differs significantly between the nonactivated and phospho-activated conformers of PhK, with the latter revealing new interprotomeric contact patterns for the β subunit, the predominant subunit responsible for PhK's activation by phosphorylation. Partial disruption of the phosphorylated conformer yields several novel subcomplexes containing multiple β subunits, arguing for their self-association within the activated complex. Evidence for the theoretical αβγδ protomeric subcomplex, which has been sought but not previously observed, was also derived from the phospho-activated complex. In addition to changes in subunit interaction patterns upon phospho-activation, mass spectrometry revealed a large change in the overall

  6. P. berghei telomerase subunit TERT is essential for parasite survival.

    PubMed

    Religa, Agnieszka A; Ramesar, Jai; Janse, Chris J; Scherf, Artur; Waters, Andrew P

    2014-01-01

    Telomeres define the ends of chromosomes protecting eukaryotic cells from chromosome instability and eventual cell death. The complex regulation of telomeres involves various proteins including telomerase, which is a specialized ribonucleoprotein responsible for telomere maintenance. Telomeres of chromosomes of malaria parasites are kept at a constant length during blood stage proliferation. The 7-bp telomere repeat sequence is universal across different Plasmodium species (GGGTTT/CA), though the average telomere length varies. The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), is present in all sequenced Plasmodium species and is approximately three times larger than other eukaryotic TERTs. The Plasmodium RNA component of TERT has recently been identified in silico. A strategy to delete the gene encoding TERT via double cross-over (DXO) homologous recombination was undertaken to study the telomerase function in P. berghei. Expression of both TERT and the RNA component (TR) in P. berghei blood stages was analysed by Western blotting and Northern analysis. Average telomere length was measured in several Plasmodium species using Telomere Restriction Fragment (TRF) analysis. TERT and TR were detected in blood stages and an average telomere length of ∼ 950 bp established. Deletion of the tert gene was performed using standard transfection methodologies and we show the presence of tert- mutants in the transfected parasite populations. Cloning of tert- mutants has been attempted multiple times without success. Thorough analysis of the transfected parasite populations and the parasite obtained from extensive parasite cloning from these populations provide evidence for a so called delayed death phenotype as observed in different organisms lacking TERT. The findings indicate that TERT is essential for P. berghei cell survival. The study extends our current knowledge on telomere biology in malaria parasites and validates further investigations to

  7. Differential accumulation of ribonucleotide reductase subunits in clam oocytes: the large subunit is stored as a polypeptide, the small subunit as untranslated mRNA

    PubMed Central

    1986-01-01

    Within minutes of fertilization of clam oocytes, translation of a set of maternal mRNAs is activated. One of the most abundant of these stored mRNAs encodes the small subunit of ribonucleotide reductase (Standart, N. M., S. J. Bray, E. L. George, T. Hunt, and J. V. Ruderman, 1985, J. Cell Biol., 100:1968-1976). Unfertilized oocytes do not contain any ribonucleotide reductase activity; such activity begins to appear shortly after fertilization. In virtually all organisms, this enzyme is composed of two dissimilar subunits with molecular masses of approximately 44 and 88 kD, both of which are required for activity. This paper reports the identification of the large subunit of clam ribonucleotide reductase isolated by dATP-Sepharose chromatography as a relatively abundant 86-kD polypeptide which is already present in oocytes, and whose level remains constant during early development. The enzyme activity of this large subunit was established in reconstitution assays using the small subunit isolated from embryos by virtue of its binding to the anti-tubulin antibody YL 1/2. Thus the two components of clam ribonucleotide reductase are differentially stored in the oocyte: the small subunit in the form of untranslated mRNA and the large subunit as protein. When fertilization triggers the activation of translation of the maternal mRNA, the newly synthesized small subunit combines with the preformed large subunit to generate active ribonucleotide reductase. PMID:3536960

  8. Carbon Cloth Supports Catalytic Electrodes

    NASA Technical Reports Server (NTRS)

    Lu, W. T. P.; Ammon, R. L.

    1983-01-01

    Carbon cloth is starting material for promising new catalytic electrodes. Carbon-cloth electrodes are more efficient than sintered-carbon configuration previously used. Are also chemically stable and require less catalyst--an important economic advantage when catalyst is metal such as platinum.

  9. High temperature catalytic membrane reactors

    SciTech Connect

    Not Available

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  10. Catalytic oxidation of waste materials

    NASA Technical Reports Server (NTRS)

    Jagow, R. B.

    1977-01-01

    Aqueous stream of human waste is mixed with soluble ruthenium salts and is introduced into reactor at temperature where ruthenium black catalyst forms on internal surfaces of reactor. This provides catalytically active surface to convert oxidizable wastes into breakdown products such as water and carbon dioxide.

  11. Simple, Chemoselective, Catalytic Olefin Isomerization

    PubMed Central

    2015-01-01

    Catalytic amounts of Co(SaltBu,tBu)Cl and organosilane irreversibly isomerize terminal alkenes by one position. The same catalysts effect cycloisomerization of dienes and retrocycloisomerization of strained rings. Strong Lewis bases like amines and imidazoles, and labile functionalities like epoxides, are tolerated. PMID:25398144

  12. Catalytic Asymmetric Bromocyclization of Polyenes.

    PubMed

    Samanta, Ramesh C; Yamamoto, Hisashi

    2017-02-01

    The first catalytic asymmetric bromonium ion-induced polyene cyclization has been achieved by using a chiral BINOL-derived thiophosphoramide catalyst and 1,3-dibromo-5,5-dimethylhydantoin as an electrophilic bromine source. Bromocyclization products are obtained in high yields, with good enantiomeric ratios and high diastereoselectivity, and are abundantly found as scaffolds in natural products.

  13. Catalytically enhanced packed tower scrubbing

    SciTech Connect

    Stitt, E.H.; Taylor, F.J.; Kelly, K.

    1996-12-31

    An enhanced wet scrubbing process for the treatment of gas streams containing odours and low level VOC`s is presented. It comprises essentially a single scrubbing column and a fixed bed catalytic reactor through which the dilute alkaline bleach scrubbing liquor is recirculated. The process has significant cost advantages over conventional chemical scrubbing technology, and copes well with peaks in odour levels. Traditional bleach scrubbing, and the improvements in process chemistry and the flowsheet afforded by inclusion of the catalyst, are discussed. The catalyst enables many of the well known problems associated with bleach scrubbing to be overcome, and facilitates odour removal efficiencies of greater than 99% in a single column. Pilot plant data from trials on sewage treatment works are presented. These show clearly the ability of the catalytically enhanced process to achieve sulphide and odour removals in excess of 99% in the single column. Case studies of some of the existing commercial installations are given, indicating the wide range of applications, industries and scale of the installed units. Comparative data are presented, measured on a commercial unit for the conventional operation of a bleach scrubber, and with the retrofitted catalyst in use. These data show clearly the benefits of the catalytic process in terms of removal efficiencies; and hence by inference also in equipment size and costs. The catalytic process is also shown to achieve very high removal efficiencies of organo-sulphides in a single column. 8 refs., 3 figs., 10 tabs.

  14. Process for Coating Substrates with Catalytic Materials

    NASA Technical Reports Server (NTRS)

    Klelin, Ric J. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor)

    2004-01-01

    A process for forming catalysts by coating substrates with two or more catalytic components, which comprises the following sequence of steps. First, the substrate is infused with an adequate amount of solution having a starting material comprising a catalytic component precursor, wherein the thermal decomposition product of the catalytic component precursor is a catalytic component. Second, the excess of the solution is removed from the substrate. thereby leaving a coating of the catalytic component precursor on the surface of the substrate. Third, the coating of the catalytic component precursor is converted to the catalytic component by thermal decomposition. Finally, the coated substance is etched to increase the surface area. The list three steps are then repeated for at least a second catalytic component. This process is ideally suited for application in producing efficient low temperature oxidation catalysts.

  15. Structural Basis for Catalytic Activation of a Serine Recombinase

    SciTech Connect

    Keenholtz, Ross A.; Rowland, Sally-J.; Boocock, Martin R.; Stark, W. Marshall; Rice, Phoebe A.

    2014-10-02

    Sin resolvase is a site-specific serine recombinase that is normally controlled by a complex regulatory mechanism. A single mutation, Q115R, allows the enzyme to bypass the entire regulatory apparatus, such that no accessory proteins or DNA sites are required. Here, we present a 1.86 {angstrom} crystal structure of the Sin Q115R catalytic domain, in a tetrameric arrangement stabilized by an interaction between Arg115 residues on neighboring subunits. The subunits have undergone significant conformational changes from the inactive dimeric state previously reported. The structure provides a new high-resolution view of a serine recombinase active site that is apparently fully assembled, suggesting roles for the conserved active site residues. The structure also suggests how the dimer-tetramer transition is coupled to assembly of the active site. The tetramer is captured in a different rotational substate than that seen in previous hyperactive serine recombinase structures, and unbroken crossover site DNA can be readily modeled into its active sites.

  16. Prefoldin Subunits Are Protected from Ubiquitin-Proteasome System-mediated Degradation by Forming Complex with Other Constituent Subunits*

    PubMed Central

    Miyazawa, Makoto; Tashiro, Erika; Kitaura, Hirotake; Maita, Hiroshi; Suto, Hiroo; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2011-01-01

    The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation. PMID:21478150

  17. Prefoldin subunits are protected from ubiquitin-proteasome system-mediated degradation by forming complex with other constituent subunits.

    PubMed

    Miyazawa, Makoto; Tashiro, Erika; Kitaura, Hirotake; Maita, Hiroshi; Suto, Hiroo; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2011-06-03

    The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation.

  18. Cloning, sequence analysis and expression of the F1F0-ATPase beta-subunit from wine lactic acid bacteria.

    PubMed

    Sievers, Martin; Uermösi, Christina; Fehlmann, Marc; Krieger, Sibylle

    2003-09-01

    The nucleotide sequences of the genes encoding the F1F0-ATPase beta-subunit from Oenococcus oeni, Leuconostoc mesenteroides subsp. mesenteroides, Pediococcus damnosus, Pediococcus parvulus, Lactobacillus brevis and Lactobacillus hilgardii were determined. Their deduced amino acid sequences showed homology values of 79-98%. Data from the alignment and ATPase tree indicated that O. oeni and L. mesenteroides subsp. mesenteroides formed a group well-separated from P. damnosus and P. parvulus and from the group comprises L. brevis and L. hilgardii. The N-terminus of the F1F0-ATPase beta-subunit of O. oeni contains a stretch of additional 38 amino acid residues. The catalytic site of the ATPase beta-subunit of the investigated strains is characterized by the two conserved motifs GGAGVGKT and GERTRE. The amplified atpD coding sequences were inserted into the pCRT7/CT-TOPO vector using TA-cloning strategy and transformed in Escherichia coli. SDS-PAGE and Western blot analyses confirmed that O. oeni has an ATPase beta-subunit protein which is larger in size than the corresponding molecules from the investigated strains.

  19. Crystal structure and CRISPR RNA-binding site of the Cmr1 subunit of the Cmr interference complex.

    PubMed

    Sun, Jiali; Jeon, Jae-Hyun; Shin, Minsang; Shin, Ho-Chul; Oh, Byung-Ha; Kim, Jeong-Sun

    2014-02-01

    A multi-subunit ribonucleoprotein complex termed the Cmr RNA-silencing complex recognizes and destroys viral RNA in the CRISPR-mediated immune defence mechanism in many prokaryotes using an as yet unclear mechanism. In Archaeoglobus fulgidus, this complex consists of six subunits, Cmr1-Cmr6. Here, the crystal structure of Cmr1 from A. fulgidus is reported, revealing that the protein is composed of two tightly associated ferredoxin-like domains. The domain located at the N-terminus is structurally most similar to the N-terminal ferredoxin-like domain of the CRISPR RNA-processing enzyme Cas6 from Pyrococcus furiosus. An ensuing mutational analysis identified a highly conserved basic surface patch that binds single-stranded nucleic acids specifically, including the mature CRISPR RNA, but in a sequence-independent manner. In addition, this subunit was found to cleave single-stranded RNA. Together, these studies elucidate the structure and the catalytic activity of the Cmr1 subunit.

  20. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography.

    PubMed

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-08-22

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same 'double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs.

  1. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography

    PubMed Central

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-01-01

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same ‘double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs. PMID:27548043

  2. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii.

    PubMed

    Lin, Huawen; Miller, Michelle L; Granas, David M; Dutcher, Susan K

    2013-01-01

    Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating.

  3. Activation of CK1ε by PP2A/PR61ε is required for the initiation of Wnt signaling

    PubMed Central

    Curto, J; Padilla, M; Villarroel, A; Yang, J; de Herreros, AG; Duñach, M

    2016-01-01

    Canonical Wnt signaling induces the stabilization of β-catenin, its translocation to the nucleus and the activation of target promoters. This pathway is initiated by the binding of Wnt ligands to the Frizzled receptor, the association of the LRP5/6 coreceptor and the formation of a complex comprising Dvl-2, Axin and protein kinases CK1α, ε, γ and GSK3. Among these, activation of CK1ε, constitutively bound to LRP5/6 through p120-catenin, is required for the association of the rest of the components. We describe here that CK1ε is activated by the PP2A/PR61ε phosphatase. Binding of Wnt ligands promotes the interaction of LRP5/6-associated CK1ε with Frizzled-bound PR61ε regulatory subunit, facilitating the access of PP2A catalytic subunit to CK1ε and its activation, what enables the recruitment of Dvl-2 to the receptor complex and the initiation of the Wnt pathway. Our results uncover the mechanism of activation of the canonical Wnt pathway by its ligands. PMID:27321178

  4. Activation of CK1ɛ by PP2A/PR61ɛ is required for the initiation of Wnt signaling.

    PubMed

    Vinyoles, M; Del Valle-Pérez, B; Curto, J; Padilla, M; Villarroel, A; Yang, J; de Herreros, A G; Duñach, M

    2017-01-19

    Canonical Wnt signaling induces the stabilization of β-catenin, its translocation to the nucleus and the activation of target promoters. This pathway is initiated by the binding of Wnt ligands to the Frizzled receptor, the association of the LRP5/6 co-receptor and the formation of a complex comprising Dvl-2, Axin and protein kinases CK1α, ɛ, γ and GSK3. Among these, activation of CK1ɛ, constitutively bound to LRP5/6 through p120-catenin, is required for the association of the rest of the components. We describe here that CK1ɛ is activated by the PP2A/PR61ɛ phosphatase. Binding of Wnt ligands promotes the interaction of LRP5/6-associated CK1ɛ with Frizzled-bound PR61ɛ regulatory subunit, facilitating the access of PP2A catalytic subunit to CK1ɛ and its activation, what enables the recruitment of Dvl-2 to the receptor complex and the initiation of the Wnt pathway. Our results uncover the mechanism of activation of the canonical Wnt pathway by its ligands.

  5. The function of Glu338 in the catalytic triad of the carbamoyl phosphate synthetase amidotransferase domain.

    PubMed

    Hewagama, A; Guy, H I; Chaparian, M; Evans, D R

    1998-11-10

    The synthesis of carbamoyl phosphate by the mammalian multifunctional protein, CAD, involves the concerted action of the 40 kDa amidotransferase domain (GLN), that hydrolyzes glutamine and the 120 kDa synthetase (CPS) domain that uses the ammonia, thus produced, ATP and bicarbonate to make carbamoyl phosphate. The separately cloned GLN domain has very low activity due to a reduction in kcat and an increase in Km but forms a hybrid complex with the isolated Escherichia coli CPS subunit. The hybrid has full glutamine-dependent catalytic activity and a functional interdomain linkage. The mammalian-E. coli hybrid was used to investigate the functional consequence of replacing His336 and Glu338, two residues postulated to participate in catalysis as part of a catalytic triad. The mutant mammalian GLN domains formed stable complexes with the E. coli CPS subunit, but the catalytic activity was severely impaired. While the His336Asn mutant does not form measurable amounts of the gamma-glutamyl thioester, the steady state concentration of the intermediate with the Glu338Gly mutant was comparable to the wild type hybrid because both the rate of formation and breakdown of the thioester are reduced. This result is consistent with the postulated role of Glu338 in maintaining His336 in the optimal orientation for catalysis and suggests a mechanism for the GLN CPS functional linkage.

  6. Catalytic gasification fundamentals

    SciTech Connect

    Heinemann, H.; Somorjai, G.A.

    1992-01-01

    Last year it was found that Maya coke gasification could be greatly accelerated if the colting took place in the presence of small amounts (below 1%) of caustic. When the Maya coke thus prepared was impregnated with 1% of CaO-KO[sub x] catalyst, the rate of gasification was doubled. During the past year, this phenomenon has been further investigated and the work has been extended to two other and very different cokes. As shown in Figure 2, a Statfjord Bottoms coke prepared in the presence of 1% NaOH and then impregnated with CaO[sub x]-KO[sub x] catalyst gasified very much faster than the same material coked in the absence of NaOH. The same phenomenon is exhibited in Figure 3 for a Torrance Hondo coke, although in this case the difference between the cokes prepared in the presence and absence of NaOH is somewhat smaller. It is concluded that the preparation method of the coke is of major importance for the rate of gasification and that the phenomenon that presence of alkali during coking is helpful is a generic one.

  7. Catalytic gasification fundamentals

    SciTech Connect

    Heinemann, H.; Somorjai, G.A.

    1992-11-01

    Last year it was found that Maya coke gasification could be greatly accelerated if the coking took place in the presence of small amounts (below 1%) of caustic. When the Maya coke thus prepared was impregnated with 1% of CaO-KO{sub x} catalyst, the rate of gasification was doubled. During the past year, this phenomenon has been further investigated and the work has been extended to two other and very different cokes. As shown in Figure 2, a Statfjord Bottoms coke prepared in the presence of 1% NaOH and then impregnated with CaO{sub x}-KO{sub x} catalyst gasified very much faster than the same material coked in the absence of NaOH. The same phenomenon is exhibited in Figure 3 for a Torrance Hondo coke, although in this case the difference between the cokes prepared in the presence and absence of NaOH is somewhat smaller. It is concluded that the preparation method of the coke is of major importance for the rate of gasification and that the phenomenon that presence of alkali during coking is helpful is a generic one.

  8. Mitochondrial proteome analysis reveals depression of the Ndufs3 subunit and activity of complex I in diabetic rat brain.

    PubMed

    Taurino, Federica; Stanca, Eleonora; Siculella, Luisa; Trentadue, Raffaella; Papa, Sergio; Zanotti, Franco; Gnoni, Antonio

    2012-04-18

    Type-1 diabetes resulting from defective insulin secretion and consequent hyperglycemia, is associated with "diabetic encephalopathy." This is characterized by brain neurophysiological and structural changes resulting in impairment of cognitive function. The present proteomic analysis of brain mitochondrial proteins from streptozotocin-induced type-1 diabetic rats, shows a large decrement of the Ndufs3 protein subunit of complex I, decreased level of the mRNA and impaired catalytic activity of the complex in the diabetic rats as compared to controls. The severe depression of the expression and enzymatic activity of complex I can represent a critical contributing factor to the onset of the diabetic encephalopathy in type-1 diabetes.

  9. Dominant-negative mutation in the beta2 and beta6 proteasome subunit genes affect alternative cell fate decisions in the Drosophila sense organ lineage.

    PubMed

    Schweisguth, F

    1999-09-28

    In Drosophila, dominant-negative mutations in the beta2 and beta6 proteasome catalytic subunit genes have been identified as dominant temperature-sensitive (DTS) mutations. At restrictive temperature, beta2 and beta6 DTS mutations confer lethality at the pupal stage. I investigate here the role of proteasome activity in regulating cell fate decisions in the sense organ lineage at the early pupal stage. Temperature-shift experiments in beta2 and beta6 DTS mutant pupae occasionally resulted in external sense organs with two sockets and no shaft. This double-socket phenotype was strongly enhanced in conditions in which Notch signaling was up-regulated. Furthermore, conditional overexpression of the beta6 dominant-negative mutant subunit led to shaft-to-socket and to neuron-to-sheath cell fate transformations, which are both usually associated with increased Notch signaling activity. Finally, expression of the beta6 dominant-negative mutant subunit led to the stabilization of an ectopically expressed nuclear form of Notch in imaginal wing discs. This study demonstrates that mutations affecting two distinct proteasome catalytic subunits affect two alternative cell fate decisions and enhance Notch signaling activity in the sense organ lineage. These findings raise the possibility that the proteasome targets an active form of the Notch receptor for degradation in Drosophila.

  10. [Nose surgical anatomy in six aesthetic subunits].

    PubMed

    Chaput, B; Lauwers, F; Lopez, R; Saboye, J; André, A; Grolleau, J-L; Chavoin, J-P

    2013-04-01

    The nose is a complex entity, combining aesthetic and functional roles. Descriptive anatomy is a fundamental science that it can be difficult to relate directly to our daily surgical activity. Reasoning in terms of aesthetic subunits to decide on his actions appeared to us so obvious. The aim of this paper is to resume the anatomical bases relevant to our daily practice in order to fully apprehend the restorative or cosmetic procedures. We discuss the limits of the systematization of these principles in nasal oncology.

  11. Multi site polyadenylation and transcriptional response to stress of a vacuolar type H+-ATPase subunit A gene in Arabidopsis thaliana

    PubMed Central

    Magnotta, Scot M; Gogarten, Johann Peter

    2002-01-01

    Background Vacuolar type H+-ATPases play a critical role in the maintenance of vacuolar homeostasis in plant cells. V-ATPases are also involved in plants' defense against environmental stress. This research examined the expression and regulation of the catalytic subunit of the vacuolar type H+-ATPase in Arabidopsis thaliana and the effect of environmental stress on multiple transcripts generated by this gene. Results Evidence suggests that subunit A of the vacuolar type H+-ATPase is encoded by a single gene in Arabidopsis thaliana. Genome blot analysis showed no indication of a second subunit A gene being present. The single gene identified was shown by whole RNA blot analysis to be transcribed in all organs of the plant. Subunit A was shown by sequencing the 3' end of multiple cDNA clones to exhibit multi site polyadenylation. Four different poly (A) tail attachment sites were revealed. Experiments were performed to determine the response of transcript levels for subunit A to environmental stress. A PCR based strategy was devised to amplify the four different transcripts from the subunit A gene. Conclusions Amplification of cDNA generated from seedlings exposed to cold, salt stress, and etiolation showed that transcript levels for subunit A of the vacuolar type H+-ATPase in Arabidopsis were responsive to stress conditions. Cold and salt stress resulted in a 2–4 fold increase in all four subunit A transcripts evaluated. Etiolation resulted in a slight increase in transcript levels. All four transcripts appeared to behave identically with respect to stress conditions tested with no significant differential regulation. PMID:11985780

  12. Na+/K+-ATPase α-subunit in swimming crab Portunus trituberculatus: molecular cloning, characterization, and expression under low salinity stress

    NASA Astrophysics Data System (ADS)

    Han, Xiaolin; Liu, Ping; Gao, Baoquan; Wang, Haofeng; Duan, Yafei; Xu, Wenfei; Chen, Ping

    2015-07-01

    Na+/K+-ATPases are membrane-associated enzymes responsible for the active transport of Na+ and K+ ions across cell membranes, generating chemical and electrical gradients. These enzymes' α-subunit provides catalytic function, binding and hydrolyzing ATP, and itself becoming phosphorylated during the transport cycle. In this study, Na+/K+-ATPase α-subunit cDNA was cloned from gill tissue of the swimming crab Portunus trituberculatus by reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end methods. Analysis of the nucleotide sequence revealed that the cDNA had a full-length of 3 833 base pairs (bp), with an open reading frame of 3 120 bp, 5' untranslated region (UTR) of 317 bp, and 3' UTR of 396 bp. The sequence encoded a 1 039 amino acid protein with a predicted molecular weight of 115.57 kDa and with estimated pI of 5.21. It was predicted here to possess all expected features of Na+/K+-ATPase members, including eight transmembrane domains, putative ATP-binding site, and phosphorylation site. Comparison of amino acid sequences showed that the P. trituberculatus α-subunit possessed an overall identity of 75%-99% to that of other organisms. Phylogenetic analysis revealed that this α-subunit was in the same category as those of crustaceans. Quantitative real-time RT-PCR analysis indicated that this α-subunit's transcript were most highly expressed in gill and lowest in muscle. RT-PCR analysis also revealed that α-subunit expression in crab gill decreased after 2 and 6 h, but increased after 12, 24, 48, and 72 h. In addition, α-subunit expression in hepatopancreas of crab decreased after 2-72 h. These facts indicated that the crab's Na+/K+-ATPase α-subunit was potentially involved in the observed acute response to low salinity stress.

  13. The NS4A Cofactor Dependent Enhancement of HCV NS3 Protease Activity Correlates with a 4D Geometrical Measure of the Catalytic Triad Region

    PubMed Central

    Hamad, Hamzah A.; Thurston, Jeremy; Teague, Thomas; Ackad, Edward; Yousef, Mohammad S.

    2016-01-01

    We are developing a 4D computational methodology, based on 3D structure modeling and molecular dynamics simulation, to analyze the active site of HCV NS3 proteases, in relation to their catalytic activity. In our previous work, the 4D analyses of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) yielded divergent, gradual and genotype-dependent, 4D conformational instability measures, which strongly correlate with the known disparate catalytic activities among genotypes. Here, the correlation of our 4D geometrical measure is extended to intra-genotypic alterations in NS3 protease activity, due to sequence variations in the NS4A activating cofactor. The correlation between the 4D measure and the enzymatic activity is qualitatively evident, which further validates our methodology, leading to the development of an accurate quantitative metric to predict protease activity in silico. The results suggest plausible “communication” pathways for conformational propagation from the activation subunit (the NS4A cofactor binding site) to the catalytic subunit (the catalytic triad). The results also strongly suggest that the well-sampled (via convergence quantification) structural dynamics are more connected to the divergent catalytic activity observed in HCV NS3 proteases than to rigid structures. The method could also be applicable to predict patients’ responses to interferon therapy and better understand the innate interferon activation pathway. PMID:27936126

  14. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  15. Essential role of GluD1 in dendritic spine development and GluN2B to GluN2A NMDAR subunit switch in the cortex and hippocampus reveals ability of GluN2B inhibition in correcting hyperconnectivity

    PubMed Central

    Gupta, Subhash C.; Yadav, Roopali; Pavuluri, Ratnamala; Morley, Barbara J.; Stairs, Dustin J.; Dravid, Shashank M.

    2015-01-01

    The glutamate delta-1 (GluD1) receptor is highly expressed in the forebrain. We have previously shown that loss of GluD1 leads to social and cognitive deficits in mice, however, its role in synaptic development and neurotransmission remains poorly understood. Here we report that GluD1 is enriched in the medial prefrontal cortex (mPFC) and GluD1 knockout mice exhibit a higher dendritic spine number, greater excitatory neurotransmission as well as higher number of synapses in mPFC. In addition abnormalities in the LIMK1-cofilin signaling, which regulates spine dynamics, and a lower ratio of GluN2A/GluN2B expression was observed in the mPFC in GluD1 knockout mice. Analysis of the GluD1 knockout CA1 hippocampus similarly indicated the presence of higher spine number and synapses and altered LIMK1-cofilin signaling. We found that systemic administration of an N-methyl-d-aspartate (NMDA) receptor partial agonist d-cycloserine (DCS) at a high-dose, but not at a low-dose, and a GluN2B-selective inhibitor Ro-25-6981 partially normalized the abnormalities in LIMK1-cofilin signaling and reduced excess spine number in mPFC. The molecular effects of high-dose DCS and GluN2B inhibitor correlated with their ability to reduce the higher stereotyped behavior and depression-like behavior in GluD1 knockout mice. Together these findings demonstrate a critical requirement for GluD1 in normal spine development in the cortex and hippocampus. Moreover, these results identify inhibition of GluN2Bcontaining receptors as a mechanism for reducing excess dendritic spines and stereotyped behavior which may have therapeutic value in certain neurodevelopmental disorders. PMID:25721396

  16. Deacetylase inhibitors dissociate the histone-targeting ING2 subunit from the Sin3 complex

    PubMed Central

    Smith, Karen T.; Martin-Brown, Skylar A.; Florens, Laurence; Washburn, Michael P.; Workman, Jerry L.

    2010-01-01

    Summary Histone deacetylase (HDAC) inhibitors are in clinical development for several diseases, including cancers and neurodegenerative disorders. HDACs1 and 2 are among the targets of these inhibitors and are part of multisubunit protein complexes. HDAC inhibitors (HDACi) block the activity of HDACs by chelating a zinc molecule in their catalytic sites. It is not known if the inhibitors have any additional functional effects on the multisubunit HDAC complexes. Here, we find that suberoylanilide hydroxamic acid (SAHA), the recently FDA approved HDACi, causes the dissociation of the PHD-finger containing ING2 subunit from the Sin3 deacetylase complex. Loss of ING2 disrupts the in vivo binding of the Sin3 complex to the p21 promoter, an important target gene for cell growth inhibition by SAHA. Our findings reveal a new molecular mechanism by which HDAC inhibitors disrupt deacetylase function. PMID:20142042

  17. PP2A-3 interacts with ACR4 and regulates formative cell division in the Arabidopsis root.

    PubMed

    Yue, Kun; Sandal, Priyanka; Williams, Elisabeth L; Murphy, Evan; Stes, Elisabeth; Nikonorova, Natalia; Ramakrishna, Priya; Czyzewicz, Nathan; Montero-Morales, Laura; Kumpf, Robert; Lin, Zhefeng; van de Cotte, Brigitte; Iqbal, Mudassar; Van Bel, Michiel; Van De Slijke, Eveline; Meyer, Matthew R; Gadeyne, Astrid; Zipfel, Cyril; De Jaeger, Geert; Van Montagu, Marc; Van Damme, Daniël; Gevaert, Kris; Rao, A Gururaj; Beeckman, Tom; De Smet, Ive

    2016-02-02

    In plants, the generation of new cell types and tissues depends on coordinated and oriented formative cell divisions. The plasma membrane-localized receptor kinase ARABIDOPSIS CRINKLY 4 (ACR4) is part of a mechanism controlling formative cell divisions in the Arabidopsis root. Despite its important role in plant development, very little is known about the molecular mechanism with which ACR4 is affiliated and its network of interactions. Here, we used various complementary proteomic approaches to identify ACR4-interacting protein candidates that are likely regulators of formative cell divisions and that could pave the way to unraveling the molecular basis behind ACR4-mediated signaling. We identified PROTEIN PHOSPHATASE 2A-3 (PP2A-3), a catalytic subunit of PP2A holoenzymes, as a previously unidentified regulator of formative cell divisions and as one of the first described substrates of ACR4. Our in vitro data argue for the existence of a tight posttranslational regulation in the associated biochemical network through reciprocal regulation between ACR4 and PP2A-3 at the phosphorylation level.

  18. Catalytic σ-Bond Metathesis

    NASA Astrophysics Data System (ADS)

    Reznichenko, Alexander L.; Hultzsch, Kai C.

    This account summarizes information on recently reported applications of organo-rare-earth metal complexes in various catalytic transformations of small molecules. The σ-bond metathesis at d0rare-earth metal centers plays a pivotal role in carbon-carbon and carbon-heteroatom bond forming processes. Relevant mechanistic details are discussed and the focus of the review lies in practical applications of organo-rare-earth metal complexes.

  19. Thermodynamics of catalytic nanoparticle morphology

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Sharma, Renu; Lin, Pin Ann

    Metallic nanoparticles are an important class of industrial catalysts. The variability of their properties and the environment in which they act, from their chemical nature & surface modification to their dispersion and support, allows their performance to be optimized for many chemical processes useful in, e.g., energy applications and other areas. Their large surface area to volume ratio, as well as varying sizes and faceting, in particular, makes them an efficient source for catalytically active sites. These characteristics of nanoparticles - i.e., their morphology - can often display intriguing behavior as a catalytic process progresses. We develop a thermodynamic model of nanoparticle morphology, one that captures the competition of surface energy with other interactions, to predict structural changes during catalytic processes. Comparing the model to environmental transmission electron microscope images of nickel nanoparticles during carbon nanotube (and other product) growth demonstrates that nickel deformation in response to the nanotube growth is due to a favorable interaction with carbon. Moreover, this deformation is halted due to insufficient volume of the particles. We will discuss the factors that influence morphology and also how the model can be used to extract interaction strengths from experimental observations.

  20. Complementation of subunits from different bacterial luciferases. Evidence for the role of the. beta. subunit in the bioluminescent mechanism

    SciTech Connect

    Meighen, E.A.; Bartlet, I.

    1980-12-10

    Complementation of the nonidentical subunits (..cap alpha.. and ..beta..) of luciferases isolated from two different bioluminescent strains, Beneckea harveyi and Photobacterium phosphoreum, has resulted in the formation of a functional hybrid luciferase (..cap alpha../sub h/..beta../sub p/) containing the ..cap alpha.. subunit from B. harveyi luciferase (..cap alpha../sub h/) and the ..beta.. subunit from P. phosphoreum luciferase (..beta../sub p/). The complementation was unidirectional; activity could not be restored by complementing the ..cap alpha.. subunit of P. phosphoreum luciferase with the ..beta.. subunit of B. harveyi luciferase, showing that the subunits from these luciferases were not identical. Kinetic parameters of the hybrid luciferase reflecting the intermediate and later steps of the bioluminescent reaction as well as the overall activity and specificity were essentially identical to the same kinetic parameters for B. harveyi luciferase, the source of the ..cap alpha.. subunit, and quite distinct from those of P. phosphoreum luciferase. However, kinetic parameters that reflected the initial step in the reaction involving interaction of FMNH/sub 2/ and luciferase were altered in the hybrid luciferase compared to both the parental luciferases, the K/sub d/ for FMNH/sub 2/ actually being closer to that observed for the P. phosphoreum luciferase (the source of the ..beta.. subunit). These results provide direct evidence that modification or alteration of the ..beta.. subunit in a dimeric luciferase molecule can affect the kinetic properties and indicates that the ..beta.. subunit plays a functional role in the bioluminescent mechanism. It is proposed that both the ..cap alpha.. and ..beta.. subunits are involved with the initial interaction with FMNH/sub 2/, whereas subsequent steps in the mechanism are dictated exclusively by the ..cap alpha.. subunit and are unaffected by alterations in the ..beta.. subunit.

  1. Formation of active bacterial luciferase between interspecific subunits in vivo.

    PubMed

    Almashanu, S; Tuby, A; Hadar, R; Einy, R; Kuhn, J

    1995-01-01

    Interspecific complementation between luxAs and luxBs from Vibrio harveyi, Vibrio fischeri, Photobacterium leiognathi and Xenorhabdus luminescens was examined in vivo. The individual genes from these species were cloned on different compatible plasmids or amplified by PCR and brought together to yield cis combinations without extraneous DNA. The beta subunits from V. harveyi and X. luminescens form active enzyme only with alpha subunits from one of these species. All other combinations yield active enzymes. The lack of activity of the V. harveyi and X. luminescens beta subunits with the alpha subunits from V. fischeri and P. leiognathi results from a lack of association. This was shown by in vivo competition in which these beta subunits were overproduced in comparison with the beta and alpha of V. fischeri. No reduction in light was found. Overall, the in vivo results parallel those found in vitro using isolated denatured subunits and renaturation by removal of the denaturant.

  2. Sodium channel β subunits: emerging targets in channelopathies

    PubMed Central

    O’Malley, Heather A.; Isom, Lori L.

    2016-01-01

    Voltage-gated sodium channels (VGSCs) are responsible for initiation and propagation of action potentials in excitable cells. VGSCs in mammalian brain are heterotrimeric complexes of α and β subunits. Originally called “auxiliary,” we now know that β subunit proteins are multifunctional signaling molecules that play roles in both excitable and non-excitable cell types, and with or without the pore-forming α subunit present. β subunits function in VGSC and potassium channel modulation, cell adhesion, and gene regulation, with particularly important roles in brain development. Mutations in the genes encoding β subunits are linked to a number of diseases, including epilepsy, sudden death syndromes like SUDEP and SIDS, and cardiac arrhythmia. While VGSC β subunit-specific drugs have not yet been developed, this protein family is an emerging therapeutic target. PMID:25668026

  3. Subunit structure of a class A aspartate transcarbamoylase from Pseudomonas fluorescens.

    PubMed Central

    Bergh, S T; Evans, D R

    1993-01-01

    The class A aspartate transcarbamoylase (ATCase, EC 2.1.3.2) from Pseudomonas fluorescens was purified to homogeneity with retention of full catalytic and regulatory functions. Careful determinations under conditions that minimized proteolysis showed that the molecule is a 1:1 stoichiometric complex of two polypeptide chains of 34 and 45 kDa. Pyridoxal phosphate is a competitive inhibitor of the enzyme (Ki = 1 microM). Reduction of the pyridoxal phosphate enzyme adduct with sodium boro[3H]hydride showed that the active site is located on the 34-kDa polypeptide. Affinity labeling with 5'-[p-(fluorosulfonyl)benzoyl]adenosine, an ATP analog, suggested that the regulatory site is also located on the 34-kDa species. While the function of the 45-kDa subunit is unknown, neither carbamoyl phosphate synthetase nor dihydroorotase activities are associated with the ATCase. The molecular mass of the enzyme was determined by gel filtration, sedimentation velocity, and electron microscopy to be 464 kDa. Thus the enzyme is composed of six copies of the 34-kDa polypeptide and six copies of the 45-kDa polypeptide. The molecule has a Stokes' ratio of 70.9 A and a frictional ratio of 1.37, suggesting a compact globular shape. We propose that the P. fluorescens ATCase is composed of two trimers of 34-kDa catalytic chains and is likely to be a D3 dodecamer with an arrangement of subunits analogous to that of the class B ATCase molecules. Images Fig. 2 Fig. 3 Fig. 5 PMID:8234318

  4. Structural and functional influences of coagulation factor XIII subunit B heterozygous missense mutants

    PubMed Central

    Thomas, Anne; Biswas, Arijit; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2015-01-01

    The coagulation factor XIII(FXIII) is a plasma circulating heterotetrameric protransglutaminase that acts at the end of the coagulation cascade by covalently cross-linking preformed fibrin clots (to themselves and to fibrinolytic inhibitors) in order to stabilize them against fibrinolysis. It circulates in the plasma as a heterotetramer composed of two homomeric catalytic Factor XIIIA2 (FXIIIA2) and two homomeric protective/carrier Factor XIIIB2 subunit (FXIIIB2). Congenital deficiency of FXIII is of two types: severe homozygous/compound heterozygous FXIII deficiency which results in severe bleeding symptoms and mild heterozygous FXIII deficiency which is associated with mild bleeding (only upon trauma) or an asymptomatic phenotype. Defects in the F13B gene (Factor XIIIB subunit) occur more frequently in mild FXIII deficiency patients than in severe FXIII deficiency. We had recently reported secretion-related defects for seven previously reported F13B missense mutations. In the present study we further analyze the underlying molecular pathological mechanisms as well as the heterozygous expression phenotype for these mutations using a combination of in vitro heterologous expression (in HEK293T cells) and confocal microscopy. In combination with the in vitro work we have also performed an in silico solvated molecular dynamic simulation study on previously reported FXIIIB subunit sushi domain homology models in order to predict the putative structure-functional impact of these mutations. We were able to categorize the mutations into the following functional groups that: (1) affect antigenic stability as well as binding to FXIIIA subunit, that is, Cys5Arg, Cys316Phe, and Pro428Ser (2) affect binding to FXIIIA subunit with little or no influence on antigenic stability, that is, Ile81Asn and Val401Gln c) influence neither aspects and are most likely causality linked polymorphisms or functional polymorphisms, that is, Leu116Phe and Val217Ile. The Cys5Arg mutation was the

  5. Quantifying the cooperative subunit action in a multimeric membrane receptor

    PubMed Central

    Wongsamitkul, Nisa; Nache, Vasilica; Eick, Thomas; Hummert, Sabine; Schulz, Eckhard; Schmauder, Ralf; Schirmeyer, Jana; Zimmer, Thomas; Benndorf, Klaus

    2016-01-01

    In multimeric membrane receptors the cooperative action of the subunits prevents exact knowledge about the operation and the interaction of the individual subunits. We propose a method that permits quantification of ligand binding to and activation effects of the individual binding sites in a multimeric membrane receptor. The power of this method is demonstrated by gaining detailed insight into the subunit action in olfactory cyclic nucleotide-gated CNGA2 ion channels. PMID:26858151

  6. Expression of GABA receptor rho subunits in rat brain.

    PubMed

    Boue-Grabot, E; Roudbaraki, M; Bascles, L; Tramu, G; Bloch, B; Garret, M

    1998-03-01

    The GABA receptor rho1, rho2, and rho3 subunits are expressed in the retina where they form bicuculline-insensitive GABA(C) receptors. We used northern blot, in situ hybridization, and RT-PCR analysis to study the expression of rho subunits in rat brains. In situ hybridization allowed us to detect rho-subunit expression in the superficial gray layer of the superior colliculus and in the cerebellar Purkinje cells. RT-PCR experiments indicated that (a) in retina and in domains that may contain functional GABA(C) receptors, rho2 and rho1 subunits are expressed at similar levels; and (b) in domains and in tissues that are unlikely to contain GABA(C) receptors, rho2 mRNA is enriched relative to rho1 mRNA. These results suggest that both rho1 and rho2 subunits are necessary to form a functional GABA(C) receptor. The use of RT-PCR also showed that, except in the superior colliculus, rho3 is expressed along with rho1 and rho2 subunits. We also raised an antibody against a peptide sequence unique to the rho1 subunit. The use of this antibody on cerebellum revealed the rat rho1 subunit in the soma and dendrites of Purkinje neurons. The allocation of GABA(C) receptor subunits to identified neurons paves the way for future electrophysiological studies.

  7. Activities of human RRP6 and structure of the human RRP6 catalytic domain

    SciTech Connect

    Januszyk, Kurt; Liu, Quansheng; Lima, Christopher D.

    2011-08-29

    The eukaryotic RNA exosome is a highly conserved multi-subunit complex that catalyzes degradation and processing of coding and noncoding RNA. A noncatalytic nine-subunit exosome core interacts with Rrp44 and Rrp6, two subunits that possess processive and distributive 3'-to-5' exoribonuclease activity, respectively. While both Rrp6 and Rrp44 are responsible for RNA processing in budding yeast, Rrp6 may play a more prominent role in processing, as it has been demonstrated to be inhibited by stable RNA secondary structure in vitro and because the null allele in budding yeast leads to the buildup of specific structured RNA substrates. Human RRP6, otherwise known as PM/SCL-100 or EXOSC10, shares sequence similarity to budding yeast Rrp6 and is proposed to catalyze 3'-to-5' exoribonuclease activity on a variety of nuclear transcripts including ribosomal RNA subunits, RNA that has been poly-adenylated by TRAMP, as well as other nuclear RNA transcripts destined for processing and/or destruction. To characterize human RRP6, we expressed the full-length enzyme as well as truncation mutants that retain catalytic activity, compared their activities to analogous constructs for Saccharomyces cerevisiae Rrp6, and determined the X-ray structure of a human construct containing the exoribonuclease and HRDC domains that retains catalytic activity. Structural data show that the human active site is more exposed when compared to the yeast structure, and biochemical data suggest that this feature may play a role in the ability of human RRP6 to productively engage and degrade structured RNA substrates more effectively than the analogous budding yeast enzyme.

  8. Identification of AKAP79 as a Protein Phosphatase 1 catalytic binding protein

    PubMed Central

    Le, Andrew. V.; Tavalin, Steven. J.

    2011-01-01

    The ubiquitously expressed and highly promiscuous Protein Phosphatase 1 (PP1) regulates many cellular processes. Targeting PP1 to specific locations within the cell allows for the regulation of PP1 by conferring substrate specificity. In the present study, we identified AKAP79 as a novel PP1 regulatory subunit. Immunoprecipitaiton of the AKAP from rat brain extract found that the PP1 catalytic subunit co-purified with the anchoring protein. This is a direct interaction, demonstrated by pulldown experiments using purified proteins. Interestingly, the addition of AKAP79 to purified PP1 catalytic subunit decreased phosphatase activity with an IC50 of 811±0.56 nM of the anchoring protein. Analysis of AKAP79 identified a PP1 binding site that conformed to a consensus PP1 binding motif (FxxR/KxR/K) in the first 44 amino acids of the anchoring protein. This was confirmed when a peptide mimicking this region of AKAP79 was able to bind PP1 by both pulldown assay and Surface Plasmon Resonance. However, PP1 was still able to bind to AKAP79 upon deletion of this region, suggestion additional sites of contact between the anchoring protein and the phosphatase. Importantly, this consensus PP1 binding motif was found not to be responsible for PP1 inhibition, but rather enhanced phosphatase activity, as deletion of this domain resulted in an increased inhibition of PP1 activity. Instead, a second interaction domain localized to residues 150–250 of AKAP79 was required for the inhibition of PP1. However, the inhibitory actions of AKAP79 on PP1 are substrate dependent, as the anchoring protein did not inhibit PP1 dephosphorylation of phospho-PSD-95, a substrate found in AKAP79 complexes in the brain. These combined observations suggest that AKAP79 acts as a PP1 regulatory subunit that can direct PP1 activity towards specific targets in the AKAP79 complex. PMID:21561082

  9. Expression of α-subunit of α-glucosidase II in adult mouse brain regions and selected organs.

    PubMed

    Anji, Antje; Miller, Hayley; Raman, Chandrasekar; Phillips, Mathew; Ciment, Gary; Kumari, Meena

    2015-01-01

    α-Glucosidase II (GII), a resident of endoplasmic reticulum (ER) and an important enzyme in the folding of nascent glycoproteins, is heterodimeric, consisting of α (GIIα) and β (GIIβ) subunits. The catalytic GIIα subunit, with the help of mannose 6-phosphate receptor homology domain of GIIβ, sequentially hydrolyzes two α1-3-linked glucose residues in the second step of N-linked oligosaccharide-mediated protein folding. The soluble GIIα subunit is retained in the ER through its interaction with the HDEL-containing GIIβ subunit. N-glycosylation and correct protein folding are crucial for protein stability and trafficking and cell surface expression of several proteins in the brain. Alterations in N-glycosylation lead to abnormalities in neuronal migration and mental retardation, various neurodegenerative diseases, and invasion of malignant gliomas. Inhibitors of GII are used to inhibit cell proliferation and migration in a variety of different pathologies, such as viral infection, cancer, and diabetes. Despite the widespread use of GIIα inhibitory drugs and the role of GIIα in brain function, little is known about its expression in brain and other tissues. Here, we report generation of a highly specific chicken antibody to the GIIα subunit and its characterization by Western blotting and immunoprecipitation using cerebral cortical extracts. By using this antibody, we showed that the GIIα protein is highly expressed in testis, kidney, and lung, with the lowest amount in heart. GIIα polypeptide levels in whole brain were comparable to those in spleen. However, a higher expression of GIIα protein was detected in the cerebral cortex, reflecting its continuous requirement in correct folding of cell surface proteins.

  10. Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase.

    PubMed

    Allegretti, Matteo; Klusch, Niklas; Mills, Deryck J; Vonck, Janet; Kühlbrandt, Werner; Davies, Karen M

    2015-05-14

    ATP, the universal energy currency of cells, is produced by F-type ATP synthases, which are ancient, membrane-bound nanomachines. F-type ATP synthases use the energy of a transmembrane electrochemical gradient to generate ATP by rotary catalysis. Protons moving across the membrane drive a rotor ring composed of 8-15 c-subunits. A central stalk transmits the rotation of the c-ring to the catalytic F1 head, where a series of conformational changes results in ATP synthesis. A key unresolved question in this fundamental process is how protons pass through the membrane to drive ATP production. Mitochondrial ATP synthases form V-shaped homodimers in cristae membranes. Here we report the structure of a native and active mitochondrial ATP synthase dimer, determined by single-particle electron cryomicroscopy at 6.2 Å resolution. Our structure shows four long, horizontal membrane-intrinsic α-helices in the a-subunit, arranged in two hairpins at an angle of approximately 70° relative to the c-ring helices. It has been proposed that a strictly conserved membrane-embedded arginine in the a-subunit couples proton translocation to c-ring rotation. A fit of the conserved carboxy-terminal a-subunit sequence places the conserved arginine next to a proton-binding c-subunit glutamate. The map shows a slanting solvent-accessible channel that extends from the mitochondrial matrix to the conserved arginine. Another hydrophilic cavity on the lumenal membrane surface defines a direct route for the protons to an essential histidine-glutamate pair. Our results provide unique new insights into the structure and function of rotary ATP synthases and explain how ATP production is coupled to proton translocation.

  11. Mitochondrial cytochrome c oxidase subunit II variations predict adverse prognosis in cytogenetically normal acute myeloid leukaemia.

    PubMed

    Silkjaer, Trine; Nyvold, Charlotte Guldborg; Juhl-Christensen, Caroline; Hokland, Peter; Nørgaard, Jan Maxwell

    2013-10-01

    Alterations in the two catalytic genes cytochrome c oxidase subunits I and II (COI and COII) have recently been suggested to have an adverse impact on prognosis in patients with acute myeloid leukaemia (AML). In order to explore this in further detail, we sequenced these two mitochondrial genes in diagnostic bone marrow or blood samples in 235 patients with AML. In 37 (16%) patients, a non-synonymous variation in either COI or COII could be demonstrated. No patients harboured both COI and COII non-synonymous variations. Twenty-four (10%) patients had non-synonymous variations in COI, whereas 13 (6%) patients had non-synonymous variations in COII. The COI and COII are essential subunits of cytochrome c oxidase that is the terminal enzyme in the oxidative phosphorylation complexes. In terms of disease course, we observed that in patients with a normal cytogenetic analysis at disease presentation (CN-AML) treated with curative intent, the presence of a non-synonymous variation in the COII was an adverse prognostic marker for both overall survival and disease-free survival (DFS) in both univariate (DFS; hazard ratio (HR) 4.4, P = 0.006) and multivariate analyses (DFS; HR 7.2, P = 0.001). This is the first demonstration of a mitochondrial aberration playing an adverse prognostic role in adult AML, and we argue that its role as a potentially novel adverse prognostic marker in the subset of CN-AML should be explored further.

  12. Photolabeling of Glu-129 of the S-1 subunit of pertussis toxin with NAD

    SciTech Connect

    Barbieri, J.T.; Mende-Mueller, L.M.; Rappuoli, R.; Collier, R.J. )

    1989-11-01

    UV irradiation was shown to induce efficient transfer of radiolabel from nicotinamide-labeled NAD to a recombinant protein (C180 peptide) containing the catalytic region of the S-1 subunit of pertussis toxin. Incorporation of label from (3H-nicotinamide)NAD was efficient (0.5 to 0.6 mol/mol of protein) relative to incorporation from (32P-adenylate)NAD (0.2 mol/mol of protein). Label from (3H-nicotinamide)NAD was specifically associated with Glu-129. Replacement of Glu-129 with glycine or aspartic acid made the protein refractory to photolabeling with (3H-nicotinamide)NAD, whereas replacement of a nearby glutamic acid, Glu-139, with serine did not. Photolabeling of the C180 peptide with NAD is similar to that observed with diphtheria toxin and exotoxin A of Pseudomonas aeruginosa, in which the nicotinamide portion of NAD is transferred to Glu-148 and Glu-553, respectively, in the two toxins. These results implicate Glu-129 of the S-1 subunit as an active-site residue and a potentially important site for genetic modification of pertussis toxin for development of an acellular vaccine against Bordetella pertussis.

  13. Cloning and characterization of GST fusion tag stabilized large subunit of Escherichia coli acetohydroxyacid synthase I.

    PubMed

    Li, Heng; Liu, Nan; Wang, Wen-Ting; Wang, Ji-Yu; Gao, Wen-Yun

    2016-01-01

    There are three acetohydroxyacid synthase (AHAS, EC 4.1.3.18) isozymes (I, II, and III) in the enterobacteria Escherichia coli among which AHAS I is the most active. Its large subunit (LSU) possesses full catalytic machinery, but is unstable in the absence of the small subunit (SSU). To get applicable LSU of AHAS I, we prepared and characterized in this study the polypeptide as a His-tagged (His-LSU) and a glutathione S-transferase (GST)-tagged (GST-LSU) fusion protein, respectively. The results showed that the His-LSU is unstable, whereas the GST-LSU displays excellent stability. This phenomenon suggests that the GST polypeptide fusion tag could stabilize the target protein when compared with histidine tag. It is the first time that the stabilizing effect of the GST tag was observed. Further characterization of the GST-LSU protein indicated that it possesses the basic functions of AHAS I with a specific activity of 20.8 μmol min(-1) mg(-1) and a Km value for pyruvate of 0.95 mM. These observations imply that introduction of the GST fusion tag to LSU of AHAS I does not affect the function of the protein. The possible reasons that the GST fusion tag could make the LSU stable are initially discussed.

  14. De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder.

    PubMed

    Küry, Sébastien; Besnard, Thomas; Ebstein, Frédéric; Khan, Tahir N; Gambin, Tomasz; Douglas, Jessica; Bacino, Carlos A; Sanders, Stephan J; Lehmann, Andrea; Latypova, Xénia; Khan, Kamal; Pacault, Mathilde; Sacharow, Stephanie; Glaser, Kimberly; Bieth, Eric; Perrin-Sabourin, Laurence; Jacquemont, Marie-Line; Cho, Megan T; Roeder, Elizabeth; Denommé-Pichon, Anne-Sophie; Monaghan, Kristin G; Yuan, Bo; Xia, Fan; Simon, Sylvain; Bonneau, Dominique; Parent, Philippe; Gilbert-Dussardier, Brigitte; Odent, Sylvie; Toutain, Annick; Pasquier, Laurent; Barbouth, Deborah; Shaw, Chad A; Patel, Ankita; Smith, Janice L; Bi, Weimin; Schmitt, Sébastien; Deb, Wallid; Nizon, Mathilde; Mercier, Sandra; Vincent, Marie; Rooryck, Caroline; Malan, Valérie; Briceño, Ignacio; Gómez, Alberto; Nugent, Kimberly M; Gibson, James B; Cogné, Benjamin; Lupski, James R; Stessman, Holly A F; Eichler, Evan E; Retterer, Kyle; Yang, Yaping; Redon, Richard; Katsanis, Nicholas; Rosenfeld, Jill A; Kloetzel, Peter-Michael; Golzio, Christelle; Bézieau, Stéphane; Stankiewicz, Paweł; Isidor, Bertrand

    2017-02-02

    Degradation of proteins by the ubiquitin-proteasome system (UPS) is an essential biological process in the development of eukaryotic organisms. Dysregulation of this mechanism leads to numerous human neurodegenerative or neurodevelopmental disorders. Through a multi-center collaboration, we identified six de novo genomic deletions and four de novo point mutations involving PSMD12, encoding the non-ATPase subunit PSMD12 (aka RPN5) of the 19S regulator of 26S proteasome complex, in unrelated individuals with intellectual disability, congenital malformations, ophthalmologic anomalies, feeding difficulties, deafness, and subtle dysmorphic facial features. We observed reduced PSMD12 levels and an accumulation of ubiquitinated proteins without any impairment of proteasome catalytic activity. Our PSMD12 loss-of-function zebrafish CRISPR/Cas9 model exhibited microcephaly, decreased convolution of the renal tubules, and abnormal craniofacial morphology. Our data support the biological importance of PSMD12 as a scaffolding subunit in proteasome function during development and neurogenesis in particular; they enable the definition of a neurodevelopmental disorder due to PSMD12 variants, expanding the phenotypic spectrum of UPS-dependent disorders.

  15. Early chronic blockade of NR2B subunits and transient activation of NMDA receptors modulate LTP in mouse auditory cortex.

    PubMed

    Mao, Yuting; Zang, Shaoyun; Zhang, Jiping; Sun, Xinde

    2006-02-16

    In the auditory cortex, the properties of NMDA receptors depend primarily on the ratio of NR2A and NR2B subunits. NR2B subunit expression is high at the beginning of critical period and lower in adulthood. Because NMDA receptors are crucial in triggering long-term potentiation (LTP) and long-term depression, developmental or experience-dependent modification of NMDAR subunit composition is likely to influence synaptic plasticity. To examine how NMDA subunit change during postnatal development affect the adult synaptic plasticity, we employed chronic ifenprodil blockade of NR2B subunits and analyzed evoked field potentials in adult C57BL/6 mice auditory cortex (AC). We found that chronic loss of NR2B activity led to a decline in LTP magnitude in the AC of adult mice. Adding NMDA to the artificial cerebrospinal fluid (ACSF) in blocked mice had the opposite effect, producing LTP magnitudes at or exceeding those found in treated or untreated animals. These results suggest that, even in adulthood when NR2B expression is downregulated, these receptor subunits play an important role in experience-dependent plasticity of mouse auditory cortex. Blockade from P60 did not result in any decrease of LTP amplitude, suggesting that chronic block in postnatal period may permanently affect cortical circuits so that they cannot produce significant LTP in adulthood.

  16. PiZ Mouse Liver Accumulates Polyubiquitin Conjugates That Associate with Catalytically Active 26S Proteasomes

    PubMed Central

    Haddock, Christopher J.; Blomenkamp, Keith; Gautam, Madhav; James, Jared; Mielcarska, Joanna; Gogol, Edward; Teckman, Jeffrey; Skowyra, Dorota

    2014-01-01

    Accumulation of aggregation-prone human alpha 1 antitrypsin mutant Z (AT-Z) protein in PiZ mouse liver stimulates features of liver injury typical of human alpha 1 antitrypsin type ZZ deficiency, an autosomal recessive genetic disorder. Ubiquitin-mediated proteolysis by the 26S proteasome counteracts AT-Z accumulation and plays other roles that, when inhibited, could exacerbate the injury. However, it is unknown how the conditions of AT-Z mediated liver injury affect the 26S proteasome. To address this question, we developed a rapid extraction strategy that preserves polyubiquitin conjugates in the presence of catalytically active 26S proteasomes and allows their separation from deposits of insoluble AT-Z. Compared to WT, PiZ extracts had about 4-fold more polyubiquitin conjugates with no apparent change in the levels of the 26S and 20S proteasomes, and unassembled subunits. The polyubiquitin conjugates had similar affinities to ubiquitin-binding domain of Psmd4 and co-purified with similar amounts of catalytically active 26S complexes. These data show that polyubiquitin conjugates were accumulating despite normal recruitment to catalytically active 26S proteasomes that were available in excess, and suggest that a defect at the 26S proteasome other than compromised binding to polyubiquitin chain or peptidase activity played a role in the accumulation. In support of this idea, PiZ extracts were characterized by high molecular weight, reduction-sensitive forms of selected subunits, including ATPase subunits that unfold substrates and regulate access to proteolytic core. Older WT mice acquired similar alterations, implying that they result from common aspects of oxidative stress. The changes were most pronounced on unassembled subunits, but some subunits were altered even in the 26S proteasomes co-purified with polyubiquitin conjugates. Thus, AT-Z protein aggregates indirectly impair degradation of polyubiquitinated proteins at the level of the 26S proteasome

  17. Compilation of small ribosomal subunit RNA structures.

    PubMed Central

    Neefs, J M; Van de Peer, Y; De Rijk, P; Chapelle, S; De Wachter, R

    1993-01-01

    The database on small ribosomal subunit RNA structure contained 1804 nucleotide sequences on April 23, 1993. This number comprises 365 eukaryotic, 65 archaeal, 1260 bacterial, 30 plastidial, and 84 mitochondrial sequences. These are stored in the form of an alignment in order to facilitate the use of the database as input for comparative studies on higher-order structure and for reconstruction of phylogenetic trees. The elements of the postulated secondary structure for each molecule are indicated by special symbols. The database is available on-line directly from the authors by ftp and can also be obtained from the EMBL nucleotide sequence library by electronic mail, ftp, and on CD ROM disk. PMID:8332525

  18. Rubisco small subunit gene family in cassava.

    PubMed

    Yeo, T W; Mak, Y M; Ho, K K

    1999-01-01

    Cassava leaves of two different cultivars, Brazil and Buloh, were used to isolate mRNA. The mRNA isolated was successfully used in the construction of cDNA libraries for each of the cultivars. The cDNA libraries were screened for members of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene family and positive clones were sequenced. A total of seven different SSU genes, of which five were from cultivar Brazil and two were from cultivar Buloh, were isolated. Comparison results show that even though all the sequences are highly similar, they can be classified into three subfamilies. Homology between members of the same subfamily is higher than homology between members from the same cultivar.

  19. Distinct Elements in the Proteasomal β5 Subunit Propeptide Required for Autocatalytic Processing and Proteasome Assembly*

    PubMed Central

    Li, Xia; Li, Yanjie; Arendt, Cassandra S.; Hochstrasser, Mark

    2016-01-01

    Eukaryotic 20S proteasome assembly remains poorly understood. The subunits stack into four heteroheptameric rings; three inner-ring subunits (β1, β2, and β5) bear the protease catalytic residues and are synthesized with N-terminal propeptides. These propeptides are removed autocatalytically late in assembly. In Saccharomyces cerevisiae, β5 (Doa3/Pre2) has a 75-residue propeptide, β5pro, that is essential for proteasome assembly and can work in trans. We show that deletion of the poorly conserved N-terminal half of the β5 propeptide nonetheless causes substantial defects in proteasome maturation. Sequences closer to the cleavage site have critical but redundant roles in both assembly and self-cleavage. A conserved histidine two residues upstream of the autocleavage site strongly promotes processing. Surprisingly, although β5pro is functionally linked to the Ump1 assembly factor, trans-expressed β5pro associates only weakly with Ump1-containing precursors. Several genes were identified as dosage suppressors of trans-expressed β5pro mutants; the strongest encoded the β7 proteasome subunit. Previous data suggested that β7 and β5pro have overlapping roles in bringing together two half-proteasomes, but the timing of β7 addition relative to half-mer joining was unclear. Here we report conditions where dimerization lags behind β7 incorporation into the half-mer. Our results suggest that β7 insertion precedes half-mer dimerization, and the β7 tail and β5 propeptide have unequal roles in half-mer joining. PMID:26627836

  20. Distinct Elements in the Proteasomal β5 Subunit Propeptide Required for Autocatalytic Processing and Proteasome Assembly.

    PubMed

    Li, Xia; Li, Yanjie; Arendt, Cassandra S; Hochstrasser, Mark

    2016-01-22

    Eukaryotic 20S proteasome assembly remains poorly understood. The subunits stack into four heteroheptameric rings; three inner-ring subunits (β1, β2, and β5) bear the protease catalytic residues and are synthesized with N-terminal propeptides. These propeptides are removed autocatalytically late in assembly. In Saccharomyces cerevisiae, β5 (Doa3/Pre2) has a 75-residue propeptide, β5pro, that is essential for proteasome assembly and can work in trans. We show that deletion of the poorly conserved N-terminal half of the β5 propeptide nonetheless causes substantial defects in proteasome maturation. Sequences closer to the cleavage site have critical but redundant roles in both assembly and self-cleavage. A conserved histidine two residues upstream of the autocleavage site strongly promotes processing. Surprisingly, although β5pro is functionally linked to the Ump1 assembly factor, trans-expressed β5pro associates only weakly with Ump1-containing precursors. Several genes were identified as dosage suppressors of trans-expressed β5pro mutants; the strongest encoded the β7 proteasome subunit. Previous data suggested that β7 and β5pro have overlapping roles in bringing together two half-proteasomes, but the timing of β7 addition relative to half-mer joining was unclear. Here we report conditions where dimerization lags behind β7 incorporation into the half-mer. Our results suggest that β7 insertion precedes half-mer dimerization, and the β7 tail and β5 propeptide have unequal roles in half-mer joining.

  1. New insights into the organisation and intracellular localisation of the two subunits of glucose-6-phosphatase.

    PubMed

    Soty, Maud; Chilloux, Julien; Casteras, Sylvie; Grichine, Alexeï; Mithieux, Gilles; Gautier-Stein, Amandine

    2012-03-01

    Glucose-6 phosphatase (G6Pase), a key enzyme of glucose homeostasis, catalyses the hydrolysis of glucose-6 phosphate (G6P) to glucose and inorganic phosphate. A deficiency in G6Pase activity causes type 1 glycogen storage disease (GSD-1), mainly characterised by hypoglycaemia. Genetic analyses of the two forms of this rare disease have shown that the G6Pase system consists of two proteins, a catalytic subunit (G6PC) responsible for GSD-1a, and a G6P translocase (G6PT), responsible for GSD-1b. However, since their identification, few investigations concerning their structural relationship have been made. In this study, we investigated the localisation and membrane organisation of the G6Pase complex. To this aim, we developed chimera proteins by adding a fluorescent protein to the C-terminal ends of both subunits. The G6PC and G6PT fluorescent chimeras were both addressed to perinuclear membranes as previously suggested, but also to vesicles throughout the cytoplasm. We demonstrated that both proteins strongly colocalised in perinuclear membranes. Then, we studied G6PT organisation in the membrane. We highlighted FRET between the labelled C and N termini of G6PT. The intramolecular FRET of this G6PT chimera was 27%. The coexpression of unlabelled G6PC did not modify this FRET intensity. Finally, the chimera constructs generated in this work enabled us for the first time to analyze the relationship between GSD-1 mutations and the intracellular localisation of both G6Pase subunits. We showed that GSD1 mutations did neither alter the G6PC or G6PT chimera localisation, nor the interaction between G6PT termini. In conclusion, our results provide novel information on the intracellular distribution and organisation of the G6Pase complex.

  2. Structural insights on the small subunit of DNA topoisomerase I from the unicellular parasite Leishmania donovani.

    PubMed

    Díaz González, Rosario; Pérez Pertejo, Yolanda; Redondo, Carmen M; Pommier, Yves; Balaña-Fouce, Rafael; Reguera, Rosa M

    2007-12-01

    Leishmania donovani, the causative organism of visceral leishmaniasis, contains a unique heterodimeric DNA topoisomerase IB (LdTop1). The catalytically active enzyme consists of a large subunit (LdTop1L), which contains the non-conserved N-terminal end and a phylogenetically conserved core domain, and of a small subunit (LdTop1S) which harbours the C-terminal region with a characteristic tyrosine residue in the active site. Heterologous co-expression of LdTop1L and LdTop1S in a topoisomerase I deficient yeast strain, reconstitutes a fully functional enzyme which can be used for structural studies. The role played by the non-conserved N-terminal extension of LdTop1S in both relaxation activity and CPT sensitivity of LdTop1 has been examined co-expressing the full-length LdTop1L with several deletions of LdTop1S lacking growing sequences of the N-terminal end. The sequential deletion study shows that the first 174 amino acids of LdTop1S are dispensable in terms of relaxation activity and DNA cleavage. It is also described that the trapping of the covalent complex between LdTop1 and DNA by CPT requires a pentapeptide between amino acid residues 175 and 179 of LdTop1S. Our results suggest the crucial role played by the N-terminal extension of the small subunit of DNA topoisomerase I.

  3. Subunit vaccine efficacy against Botulinum neurotoxin subtypes.

    PubMed

    Henkel, James S; Tepp, William H; Przedpelski, Amanda; Fritz, Robert B; Johnson, Eric A; Barbieri, Joseph T

    2011-10-13

    Botulinum neurotoxins (BoNT) are classified into 7 serotypes (A-G) based upon neutralization by serotype-specific anti-sera. Several recombinant serotype-specific subunit BoNT vaccines have been developed, including a subunit vaccine comprising the receptor binding domain (HCR) of the BoNTs. Sequencing of the genes encoding BoNTs has identified variants (subtypes) that possess up to 32% primary amino acid variation among different BoNT serotypes. Studies were conducted to characterize the ability of the HCR of BoNT/A to protect against challenge by heterologous BoNT/A subtypes (A1-A3). High dose vaccination with HCR/A subtypes A1-A4 protected mice from challenge by heterologous BoNT/A subtype A1-A3, while low dose HCR vaccination yielded partial protection to heterologous BoNT/A subtype challenge. Absolute IgG titers to HCRs correlated to the dose of HCR used for vaccination, where HCR/A1 elicited an A1 subtype-specific IgG response, which was not observed with HCR/A2 vaccination. Survival of mice challenged to heterologous BoNT/A2 following low dose HCR/A1 vaccination correlated with elevated IgG titers directed to the denatured C-terminal sub-domain of HCR/A2, while survival of mice to heterologous BoNT/A1 following low dose HCR/A2 vaccination correlated to elevated IgG titers directed to native HCRc/A1. This implies that low dose vaccinations with HCR/A subtypes elicit unique IgG responses, and provides a basis to define how the host develops a neutralizing immune response to BoNT intoxication. These results may provide a reference for the development of pan-BoNT vaccines.

  4. Effects of aging and caloric restriction on dentate gyrus synapses and glutamate receptor subunits

    PubMed Central

    Newton, Isabel G.; Forbes, M. Elizabeth; Linville, M. Constance; Pang, Hui; Tucker, Elizabeth M.; Riddle, David R.; Brunso-Bechtold, Judy K.

    2009-01-01

    Caloric restriction (CR) attenuates aging-related degenerative processes throughout the body. It is less clear, however, whether CR has a similar effect in the brain, particularly in the hippocampus, an area important for learning and memory processes that often are compromised in aging. In order to evaluate the effect of CR on synapses across lifespan, we quantified synapses stereologically in the middle molecular layer of the dentate gyrus (DG) of young, middle aged, and old Fischer 344 X Brown Norway rats fed ad libitum (AL) or a CR diet from 4 months of age. The results indicate that synapses are maintained across lifespan in both AL and CR rats. In light of this stability, we addressed whether aging and CR influence neurotransmitter receptor levels by measuring subunits of NMDA (NR1, NR2A, and NR2B) and AMPA (GluR1, GluR2) receptors in the DG of a second cohort of AL and CR rats across lifespan. The results reveal that the NR1 and GluR1 subunits decline with age in AL, but not CR rats. The absence of an aging-related decline in these subunits in CR rats, however, does not arise from increased levels in old CR rats. Instead, it is due to subunit decreases in young CR rats to levels that are sustained in CR rats throughout lifespan, but that are reached in AL rats only in old age. PMID:17433502

  5. Chemically related 4,5-linked aminoglycoside antibiotics drive subunit rotation in opposite directions

    PubMed Central

    Wasserman, Michael R.; Pulk, Arto; Zhou, Zhou; Altman, Roger B.; Zinder, John C.; Green, Keith D.; Garneau-Tsodikova, Sylvie; Doudna Cate, Jamie H.; Blanchard, Scott C.

    2015-01-01

    Dynamic remodelling of intersubunit bridge B2, a conserved RNA domain of the bacterial ribosome connecting helices 44 (h44) and 69 (H69) of the small and large subunit, respectively, impacts translation by controlling intersubunit rotation. Here we show that aminoglycosides chemically related to neomycin—paromomycin, ribostamycin and neamine—each bind to sites within h44 and H69 to perturb bridge B