Science.gov

Sample records for 2a pp2a activity

  1. Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone

    SciTech Connect

    Guo, Feng; Stanevich, Vitali; Wlodarchak, Nathan; Sengupta, Rituparna; Jiang, Li; Satyshur, Kenneth A.; Xing, Yongna

    2013-10-08

    Proper activation of protein phosphatase 2A (PP2A) catalytic subunit is central for the complex PP2A regulation and is crucial for broad aspects of cellular function. The crystal structure of PP2A bound to PP2A phosphatase activator (PTPA) and ATPγS reveals that PTPA makes broad contacts with the structural elements surrounding the PP2A active site and the adenine moiety of ATP. PTPA-binding stabilizes the protein fold of apo-PP2A required for activation, and orients ATP phosphoryl groups to bind directly to the PP2A active site. This allows ATP to modulate the metal-binding preferences of the PP2A active site and utilize the PP2A active site for ATP hydrolysis. In vitro, ATP selectively and drastically enhances binding of endogenous catalytic metal ions, which requires ATP hydrolysis and is crucial for acquisition of pSer/Thr-specific phosphatase activity. Furthermore, both PP2A- and ATP-binding are required for PTPA function in cell proliferation and survival. Our results suggest novel mechanisms of PTPA in PP2A activation with structural economy and a unique ATP-binding pocket that could potentially serve as a specific therapeutic target.

  2. PP2A inhibition results in hepatic insulin resistance despite Akt2 activation.

    PubMed

    Galbo, Thomas; Perry, Rachel J; Nishimura, Erica; Samuel, Varman T; Quistorff, Bjørn; Shulman, Gerald I

    2013-10-01

    In the liver, insulin suppresses hepatic gluconeogenesis by activating Akt, which inactivates the key gluconeogenic transcription factor FoxO1 (Forkhead Box O1). Recent studies have implicated hyperactivity of the Akt phosphatase Protein Phosphatase 2A (PP2A) and impaired Akt signaling as a molecular defect underlying insulin resistance. We therefore hypothesized that PP2A inhibition would enhance insulin-stimulated Akt activity and decrease glucose production. PP2A inhibitors increased hepatic Akt phosphorylation and inhibited FoxO1in vitro and in vivo, and suppressed gluconeogenesis in hepatocytes. Paradoxically, PP2A inhibition exacerbated insulin resistance in vivo. This was explained by phosphorylation of both hepatic glycogen synthase (GS) (inactivation) and phosphorylase (activation) resulting in impairment of glycogen storage. Our findings underline the significance of GS and Phosphorylase as hepatic PP2A substrates and importance of glycogen metabolism in acute plasma glucose regulation. PMID:24150286

  3. Inhibitor-1 and -2 of PP2A have preference between PP2A complexes.

    PubMed

    Hino, Hirotsugu; Takaki, Kaori; Mochida, Satoru

    2015-11-13

    Protein phosphatase 2A (PP2A) forms tens of kinds of complexes with different substrate specificity and functions by using various regulatory B subunits. But how these complexes' activities are regulated separately is not well understood. Here we showed unequal enzyme inhibition of each form by two proteinous PP2A inhibitors, I1(PP2A) and I2(PP2A). Immunoprecipitation assay using Xenopus egg extract showed that I1(PP2A) bound B″/PR48, and I2(PP2A) bound B56γ and B″/PR48 among four B subunits analyzed. Thus I1(PP2A) and I2(PP2A) seem to have B-subunit specificity. These results support the hypothesis that PP2A complexes containing common catalytic subunit are individually regulated for their separate functions in vivo. PMID:26449453

  4. Inhibitor-1 and -2 of PP2A have preference between PP2A complexes.

    PubMed

    Hino, Hirotsugu; Takaki, Kaori; Mochida, Satoru

    2015-11-13

    Protein phosphatase 2A (PP2A) forms tens of kinds of complexes with different substrate specificity and functions by using various regulatory B subunits. But how these complexes' activities are regulated separately is not well understood. Here we showed unequal enzyme inhibition of each form by two proteinous PP2A inhibitors, I1(PP2A) and I2(PP2A). Immunoprecipitation assay using Xenopus egg extract showed that I1(PP2A) bound B″/PR48, and I2(PP2A) bound B56γ and B″/PR48 among four B subunits analyzed. Thus I1(PP2A) and I2(PP2A) seem to have B-subunit specificity. These results support the hypothesis that PP2A complexes containing common catalytic subunit are individually regulated for their separate functions in vivo.

  5. A subset of RAB proteins modulates PP2A phosphatase activity.

    PubMed

    Sacco, Francesca; Mattioni, Anna; Boldt, Karsten; Panni, Simona; Santonico, Elena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2016-01-01

    Protein phosphatase 2A (PP2A) is one of the most abundant serine-threonine phosphatases in mammalian cells. PP2A is a hetero-trimeric holoenzyme participating in a variety of physiological processes whose deregulation is often associated to cancer. The specificity and activity of this phosphatase is tightly modulated by a family of regulatory B subunits that dock the catalytic subunit to the substrates. Here we characterize a novel and unconventional molecular mechanism controlling the activity of the tumor suppressor PP2A. By applying a mass spectrometry-based interactomics approach, we identified novel PP2A interacting proteins. Unexpectedly we found that a significant number of RAB proteins associate with the PP2A scaffold subunit (PPP2R1A), but not with the catalytic subunit (PPP2CA). Such interactions occur in vitro and in vivo in specific subcellular compartments. Notably we demonstrated that one of these RAB proteins, RAB9, competes with the catalytic subunit PPP2CA in binding to PPP2R1A. This competitive association has an important role in controlling the PP2A catalytic activity, which is compromised in several solid tumors and leukemias. PMID:27611305

  6. A subset of RAB proteins modulates PP2A phosphatase activity

    PubMed Central

    Sacco, Francesca; Mattioni, Anna; Boldt, Karsten; Panni, Simona; Santonico, Elena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2016-01-01

    Protein phosphatase 2A (PP2A) is one of the most abundant serine–threonine phosphatases in mammalian cells. PP2A is a hetero-trimeric holoenzyme participating in a variety of physiological processes whose deregulation is often associated to cancer. The specificity and activity of this phosphatase is tightly modulated by a family of regulatory B subunits that dock the catalytic subunit to the substrates. Here we characterize a novel and unconventional molecular mechanism controlling the activity of the tumor suppressor PP2A. By applying a mass spectrometry-based interactomics approach, we identified novel PP2A interacting proteins. Unexpectedly we found that a significant number of RAB proteins associate with the PP2A scaffold subunit (PPP2R1A), but not with the catalytic subunit (PPP2CA). Such interactions occur in vitro and in vivo in specific subcellular compartments. Notably we demonstrated that one of these RAB proteins, RAB9, competes with the catalytic subunit PPP2CA in binding to PPP2R1A. This competitive association has an important role in controlling the PP2A catalytic activity, which is compromised in several solid tumors and leukemias. PMID:27611305

  7. A novel and essential mechanism determining specificity and activity of protein phosphatase 2A (PP2A) in vivo.

    PubMed

    Fellner, Thomas; Lackner, Daniel H; Hombauer, Hans; Piribauer, Patrick; Mudrak, Ingrid; Zaragoza, Katrin; Juno, Claudia; Ogris, Egon

    2003-09-01

    Protein phosphatase 2A (PP2A) is an essential intracellular serine/threonine phosphatase containing a catalytic subunit that possesses the potential to dephosphorylate promiscuously tyrosine-phosphorylated substrates in vitro. How PP2A acquires its intracellular specificity and activity for serine/threonine-phosphorylated substrates is unknown. Here we report a novel and phylogenetically conserved mechanism to generate active phospho-serine/threonine-specific PP2A in vivo. Phosphotyrosyl phosphatase activator (PTPA), a protein of so far unknown intracellular function, is required for the biogenesis of active and specific PP2A. Deletion of the yeast PTPA homologs generated a PP2A catalytic subunit with a conformation different from the wild-type enzyme, as indicated by its altered substrate specificity, reduced protein stability, and metal dependence. Complementation and RNA-interference experiments showed that PTPA fulfills an essential function conserved from yeast to man.

  8. PP2A and GSK-3beta act antagonistically to regulate active zone development.

    PubMed

    Viquez, Natasha M; Füger, Petra; Valakh, Vera; Daniels, Richard W; Rasse, Tobias M; DiAntonio, Aaron

    2009-09-16

    The synapse is composed of an active zone apposed to a postsynaptic cluster of neurotransmitter receptors. Each Drosophila neuromuscular junction comprises hundreds of such individual release sites apposed to clusters of glutamate receptors. Here, we show that protein phosphatase 2A (PP2A) is required for the development of structurally normal active zones opposite glutamate receptors. When PP2A is inhibited presynaptically, many glutamate receptor clusters are unapposed to Bruchpilot (Brp), an active zone protein required for normal transmitter release. These unapposed receptors are not due to presynaptic retraction of synaptic boutons, since other presynaptic components are still apposed to the entire postsynaptic specialization. Instead, these data suggest that Brp localization is regulated at the level of individual release sites. Live imaging of glutamate receptors demonstrates that this disruption to active zone development is accompanied by abnormal postsynaptic development, with decreased formation of glutamate receptor clusters. Remarkably, inhibition of the serine-threonine kinase GSK-3beta completely suppresses the active zone defect, as well as other synaptic morphology phenotypes associated with inhibition of PP2A. These data suggest that PP2A and GSK-3beta function antagonistically to control active zone development, providing a potential mechanism for regulating synaptic efficacy at a single release site.

  9. TWEAK prevents TNF-α-induced insulin resistance through PP2A activation in human adipocytes.

    PubMed

    Vázquez-Carballo, Ana; Ceperuelo-Mallafré, Victòria; Chacón, Matilde R; Maymó-Masip, Elsa; Lorenzo, Margarita; Porras, Almudena; Vendrell, Joan; Fernández-Veledo, Sonia

    2013-07-01

    Visceral fat is strongly associated with insulin resistance. Obesity-associated adipose tissue inflammation and inflammatory cytokine production are considered key mediators of insulin signaling inhibition. TWEAK is a relatively new member of the TNF cytokine superfamily, which can exist as full length membrane-associated (mTWEAK) and soluble (sTWEAK) isoforms. Although TWEAK has been shown to have important functions in chronic inflammatory diseases its physiological role in adipose tissue remains unresolved. In this study, we explore the molecular mechanisms involved in the modulation of TNF-α-induced effects on insulin sensitivity by sTWEAK in a human visceral adipose cell line and also in primary human adipocytes obtained from visceral fat depots. Our data reveal that sTWEAK ameliorates TNF-α-induced insulin resistance on glucose uptake, GLUT4 translocation and insulin signaling without affecting other metabolic effects of TNF-α such as lipolysis or apoptotis. Co-immunoprecipitation experiments in adipose cells revealed that pretreatment with sTWEAK specifically inhibits TRAF2 association with TNFR1, but not with TNFR2, which mediates insulin resistance. However, sTWEAK does not affect other downstream molecules activated by TNF-α, such as TAK1. Rather, sTWEAK abolishes the stimulatory effect of TNF-α on JNK1/2, which is directly involved in the development of insulin resistance. This is associated with an increase in PP2A activity upon sTWEAK treatment. Silencing of the PP2A catalytic subunit gene overcomes the dephosphorylation effect of sTWEAK on JNK1/2, pointing to PP2A as a relevant mediator of sTWEAK-induced JNK inactivation. Overall, our data reveal a protective role of TWEAK in glucose homeostasis and identify PP2A as a new driver in the modulation of TNF-α signaling by sTWEAK.

  10. AIP1 recruits phosphatase PP2A to ASK1 in tumor necrosis factor-induced ASK1-JNK activation.

    PubMed

    Min, Wang; Lin, Yan; Tang, Shibo; Yu, Luyang; Zhang, Haifeng; Wan, Ting; Luhn, Tricia; Fu, Haian; Chen, Hong

    2008-04-11

    Previously we have shown that AIP1 (apoptosis signal-regulating kinase [ASK]1-interacting protein 1), a novel member of the Ras-GAP protein family, facilitates dephosphorylation of ASK1 at pSer967 and subsequently 14-3-3 release from ASK1, leading to enhanced ASK1-JNK signaling. However, the phosphatase(s) responsible for ASK1 dephosphorylation at pSer967 has not been identified. In the present study, we identified protein phosphatase (PP)2A as a potential phosphatase in vascular endothelial cells (ECs). Tumor necrosis factor (TNF)-induced dephosphorylation of ASK1 pSer967 in ECs was blocked by PP2A inhibitor okadaic acid. Overexpression of PP2A catalytic subunit induced dephosphorylation of ASK1 pSer967 and activation of c-Jun N-terminal kinase (JNK). In contrast, a catalytic inactive form of PP2A or PP2A small interfering RNA blunted TNF-induced dephosphorylation of ASK1 pSer967 and activation of JNK without effects on NF-kappaB activation. Whereas AIP1, via its C2 domain, binds to ASK1, PP2A binds to the GAP domain of AIP1. Endogenous AIP1-PP2A complex can be detected in the resting state, and TNF induces a complex formation of AIP1-PP2A with ASK1. Furthermore, TNF-induced association of PP2A with ASK1 was diminished in AIP1-knockdown ECs, suggesting a critical role of AIP1 in recruiting PP2A to ASK1. TNF-signaling molecules TRAF2 and RIP1, known to be in complex with AIP1 and activate AIP1 by phosphorylating AIP1 at Ser604, are critical for TNF-induced ASK1 dephosphorylation. Finally, PP2A and AIP1 cooperatively induce activation of ASK1-JNK signaling and EC apoptosis, as demonstrated by both overexpression and small interfering RNA knockdown approaches. Taken together, our data support a critical role of PP2A-AIP1 complex in TNF-induced activation of ASK1-JNK apoptotic signaling. PMID:18292600

  11. Regulation of PP2A by Sphingolipid Metabolism and Signaling

    PubMed Central

    Oaks, Joshua; Ogretmen, Besim

    2014-01-01

    Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that is a primary regulator of cellular proliferation through targeting of proliferative kinases, cell cycle regulators, and apoptosis inhibitors. It is through the regulation of these regulatory elements that gives PP2A tumor suppressor functions. In addition to mutations on the regulatory subunits, the phosphatase/tumor suppressing activity of PP2A is also inhibited in several cancer types due to overexpression or modification of the endogenous PP2A inhibitors such as SET/I2PP2A. This review focuses on the current literature regarding the interactions between the lipid signaling molecules, selectively sphingolipids, and the PP2A inhibitor SET for the regulation of PP2A, and the therapeutic potential of sphingolipids as PP2A activators for tumor suppression via targeting SET oncoprotein. PMID:25642418

  12. Shugoshin-1 balances Aurora B kinase activity via PP2A to promote chromosome bi-orientation.

    PubMed

    Meppelink, Amanda; Kabeche, Lilian; Vromans, Martijn J M; Compton, Duane A; Lens, Susanne M A

    2015-04-28

    Correction of faulty kinetochore-microtubule attachments is essential for faithful chromosome segregation and dictated by the opposing activities of Aurora B kinase and PP1 and PP2A phosphatases. How kinase and phosphatase activities are appropriately balanced is less clear. Here, we show that a centromeric pool of PP2A-B56 counteracts Aurora B T-loop phosphorylation and is recruited to centromeres through Shugoshin-1 (Sgo1). In non-transformed RPE-1 cells, Aurora B, Sgo1, and PP2A-B56 are enriched on centromeres and levels diminish as chromosomes establish bi-oriented attachments. Elevating Sgo1 levels at centromeres recruits excess PP2A-B56, and this counteracts Aurora B kinase activity, undermining efficient correction of kinetochore-microtubule attachment errors. Conversely, Sgo1-depleted cells display reduced centromeric localization of Aurora B, whereas the remaining kinase is hyperactive due to concomitant reduction of centromeric PP2A-B56. Our data suggest that Sgo1 can tune the stability of kinetochore-microtubule attachments through recruitment of PP2A-B56 that balances Aurora B activity at the centromere.

  13. Phosphatidic acid (PA) binds PP2AA1 to regulate PP2A activity and PIN1 polar localization.

    PubMed

    Gao, Hong-Bo; Chu, Yu-Jia; Xue, Hong-Wei

    2013-09-01

    Phospholipase D (PLD) exerts broad biological functions in eukaryotes through regulating downstream effectors by its product, phosphatidic acid (PA). Protein kinases and phosphatases, such as mammalian target of rapamycin (mTOR), Protein Phosphatase 1 (PP1) and Protein Phosphatase 2C (PP2C), are PA-binding proteins that execute crucial regulatory functions in both animals and plants. PA participates in many signaling pathways by modulating the enzymatic activity and/or subcellular localization of bound proteins. In this study, we demonstrated that PLD-derived PA interacts with the scaffolding A1 subunit of Protein Phosphatase 2A (PP2A) and regulates PP2A-mediated PIN1 dephosphorylation in Arabidopsis. Genetic and pharmacological studies showed that both PA and PP2A participate in the regulation of auxin distribution. In addition, both the phosphorylation status and polar localization of PIN1 protein were affected by PLD inhibitors. Exogenous PA triggered the membrane accumulation of PP2AA1 and enhanced the PP2A activity at membrane, while PLD inhibition resulted in the reduced endosomal localization and perinuclear aggregation of PP2AA1. These results demonstrate the important role of PLD-derived PA in normal PP2A-mediated PIN dephosphorylation and reveal a novel mechanism, in which PA recruits PP2AA1 to the membrane system and regulates PP2A function on membrane-targeted proteins. As PA and PP2A are conserved among eukaryotes, other organisms might use similar mechanisms to mediate multiple biological processes.

  14. PP2A inhibition determines poor outcome and doxorubicin resistance in early breast cancer and its activation shows promising therapeutic effects

    PubMed Central

    Zazo, Sandra; Arpí, Oriol; Menéndez, Silvia; Manso, Rebeca; Lluch, Ana; Eroles, Pilar; Rovira, Ana; Albanell, Joan; García-Foncillas, Jesús; Madoz-Gúrpide, Juan; Rojo, Federico

    2015-01-01

    The protein phosphatase 2A (PP2A) is a key tumor suppressor which has emerged as a novel molecular target in some human cancers. Here, we show that PP2A inhibition is a common event in breast cancer and identified PP2A phosphorylation and deregulation SET and CIP2A as molecular contributing mechanisms to inactivate PP2A. Interestingly, restoration of PP2A activity after FTY720 treatment reduced cell growth, induced apoptosis and decreased AKT and ERK activation. Moreover, FTY720 led to PP2A activation then enhancing doxorubicin-induced antitumor effects both in vitro and in vivo. PP2A inhibition (CPscore: PP2A phosphorylation and/or CIP2A overexpression) was detected in 27% of cases (62/230), and associated with grade (p = 0.017), relapse (p < 0.001), negative estrogen (p < 0.001) and progesterone receptor expression (p < 0.001), HER2-positive tumors (p = 0.049), Ki-67 expression (p < 0.001), and higher AKT (p < 0.001) and ERK (p < 0.001) phosphorylation. Moreover, PP2A inhibition determined shorter overall (p = 0.006) and event-free survival (p = 0.003), and multivariate analysis confirmed its independent prognostic impact. Altogether, our results indicate that PP2A is frequently inactivated in breast cancer and determines worse outcome, and its restoration using PP2A activators represents an alternative therapeutic strategy in this disease. PMID:25726524

  15. The Brassinosteroid-Activated BRI1 Receptor Kinase Is Switched off by Dephosphorylation Mediated by Cytoplasm-Localized PP2A B' Subunits.

    PubMed

    Wang, Ruiju; Liu, Mengmeng; Yuan, Min; Oses-Prieto, Juan A; Cai, Xingbo; Sun, Ying; Burlingame, Alma L; Wang, Zhi-Yong; Tang, Wenqiang

    2016-01-01

    Brassinosteroid (BR) binding activates the receptor kinase BRI1 by inducing heterodimerization with its co-receptor kinase BAK1; however, the mechanisms that reversibly inactivate BRI1 remain unclear. Here we show that cytoplasm-localized protein phosphatase 2A (PP2A) B' regulatory subunits interact with BRI1 to mediate its dephosphorylation and inactivation. Loss-of-function and overexpression experiments showed that a group of PP2A B' regulatory subunits, represented by B'η, negatively regulate BR signaling by decreasing BRI1 phosphorylation. BR increases the expression levels of these B' subunits, and B'η interacts preferentially with phosphorylated BRI1, suggesting that the dynamics of BR signaling are modulated by the PP2A-mediated feedback inactivation of BRI1. Compared with PP2A B'α and B'β, which promote BR responses by dephosphorylating the downstream transcription factor BZR1, the BRI1-inactivating B' subunits showed similar binding to BRI1 and BZR1 but distinct subcellular localization. Alteration of the nuclear/cytoplasmic localization of the B' subunits revealed that cytoplasmic PP2A dephosphorylates BRI1 and inhibits the BR response, whereas nuclear PP2A dephosphorylates BZR1 and activates the BR response. Our findings not only identify the PP2A regulatory B subunits that mediate the binding and dephosphorylation of BRI1, but also demonstrate that the subcellular localization of PP2A specifies its substrate selection and distinct effects on BR signaling.

  16. Protein phosphatase 2A (PP2A) has a potential role in CAPE-induced apoptosis of CCRF-CEM cells via effecting human telomerase reverse transcriptase activity.

    PubMed

    Avci, Cigir Biray; Sahin, Fahri; Gunduz, Cumhur; Selvi, Nur; Aydin, Hikmet Hakan; Oktem, Gulperi; Topcuoglu, Nejat; Saydam, Guray

    2007-12-01

    Caffeic acid phenethyl ester (CAPE) is one of the most effective components of propolis which is collected by honey bees. The aim of this study was to investigate the cytotoxic and apoptotic effects of CAPE in the CCRF-CEM cell line and to clarify the role of serine/threonine protein phosphatase 2A (PP2A) and human telomerase reverse transcriptase (hTERT) activity as an underlining mechanism of CAPE-induced apoptosis. Trypan blue dye exclusion test and XTT methods were used to evaluate the cytotoxicity and ELISA based oligonucleotide detection, which can be seen during apoptosis, was used to determine apoptosis. Acridine orange/ethidium bromide dye technique was also used to evaluate apoptosis. The cytotoxic effect of CAPE was detected in a dose and time dependent manner with the IC(50) of 1 muM. ELISA and acridine orange/ethidium bromide methods have shown remarkable apoptosis at 48th hour in CAPE treated cells. To investigate the role of PP2A in CAPE-induced apoptosis of CCRF-CEM cells, we performed combination studies with CAPE and, Calyculin A and Okadaic acid, which are very well known inhibitors of PP2A, in IC(20) of inhibitors and IC(50) of CAPE. Combination studies revealed synergistic effect of both drugs by concomitant use. Western blot analyses of PP2A catalytic and regulatory subunits showed down-regulation of expression of PP2A catalytic subunit in CAPE treated cells at 48th hour. Since, PP2A is important in hTERT (telomerase catalytic subunit) activation and deactivation, we also performed hTERT activity in CAPE treated cells simultaneously. Treating cells with IC(50) of CAPE for 96 h with the intervals of 24 h showed marked reduction of hTERT activity. The reduction of hTERT activity in CAPE treated CCRF-CEM cells was more prominent in the initial 48 h. The variation of hTERT activity in CAPE treated CCRF-CEM cells may be the reason for the protein phosphatase interaction that occurred after treatment with CAPE. PMID:17852432

  17. PhosphoTyrosyl Phosphatase Activator of Plasmodium falciparum: Identification of Its Residues Involved in Binding to and Activation of PP2A

    PubMed Central

    Vandomme, Audrey; Fréville, Aline; Cailliau, Katia; Kalamou, Hadidjatou; Bodart, Jean-François; Khalife, Jamal; Pierrot, Christine

    2014-01-01

    In Plasmodium falciparum (Pf), the causative agent of the deadliest form of malaria, a tight regulation of phosphatase activity is crucial for the development of the parasite. In this study, we have identified and characterized PfPTPA homologous to PhosphoTyrosyl Phosphatase Activator, an activator of protein phosphatase 2A which is a major phosphatase involved in many biological processes in eukaryotic cells. The PfPTPA sequence analysis revealed that five out of six amino acids involved in interaction with PP2A in human are conserved in P. falciparum. Localization studies showed that PfPTPA and PfPP2A are present in the same compartment of blood stage parasites, suggesting a possible interaction of both proteins. In vitro binding and functional studies revealed that PfPTPA binds to and activates PP2A. Mutation studies showed that three residues (V283, G292 and M296) of PfPTPA are indispensable for the interaction and that the G292 residue is essential for its activity. In P. falciparum, genetic studies suggested the essentiality of PfPTPA for the completion of intraerythrocytic parasite lifecycle. Using Xenopus oocytes, we showed that PfPTPA blocked the G2/M transition. Taken together, our data suggest that PfPTPA could play a role in the regulation of the P. falciparum cell cycle through its PfPP2A regulatory activity. PMID:24521882

  18. The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1

    SciTech Connect

    Stanevich, Vitali; Jiang, Li; Satyshur, Kenneth A.; Li, Yongfeng; Jeffrey, Philip D.; Li, Zhu; Menden, Patrick; Semmelhack, Martin F.; Xing, Yongna

    2012-05-29

    Proper formation of protein phosphatase 2A (PP2A) holoenzymes is essential for the fitness of all eukaryotic cells. Carboxyl methylation of the PP2A catalytic subunit plays a critical role in regulating holoenzyme assembly; methylation is catalyzed by PP2A-specific methyltransferase LCMT-1, an enzyme required for cell survival. We determined crystal structures of human LCMT-1 in isolation and in complex with PP2A stabilized by a cofactor mimic. The structures show that the LCMT-1 active-site pocket recognizes the carboxyl terminus of PP2A, and, interestingly, the PP2A active site makes extensive contacts to LCMT-1. We demonstrated that activation of the PP2A active site stimulates methylation, suggesting a mechanism for efficient conversion of activated PP2A into substrate-specific holoenzymes, thus minimizing unregulated phosphatase activity or formation of inactive holoenzymes. A dominant-negative LCMT-1 mutant attenuates the cell cycle without causing cell death, likely by inhibiting uncontrolled phosphatase activity. Our studies suggested mechanisms of LCMT-1 in tight control of PP2A function, important for the cell cycle and cell survival.

  19. The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1

    SciTech Connect

    V Stanevich; L Jiang; K Satyshur; Y Li; P Jeffrey; Z Li; P Menden; M Semmelhack; Y Xing

    2011-12-31

    Proper formation of protein phosphatase 2A (PP2A) holoenzymes is essential for the fitness of all eukaryotic cells. Carboxyl methylation of the PP2A catalytic subunit plays a critical role in regulating holoenzyme assembly; methylation is catalyzed by PP2A-specific methyltransferase LCMT-1, an enzyme required for cell survival. We determined crystal structures of human LCMT-1 in isolation and in complex with PP2A stabilized by a cofactor mimic. The structures show that the LCMT-1 active-site pocket recognizes the carboxyl terminus of PP2A, and, interestingly, the PP2A active site makes extensive contacts to LCMT-1. We demonstrated that activation of the PP2A active site stimulates methylation, suggesting a mechanism for efficient conversion of activated PP2A into substrate-specific holoenzymes, thus minimizing unregulated phosphatase activity or formation of inactive holoenzymes. A dominant-negative LCMT-1 mutant attenuates the cell cycle without causing cell death, likely by inhibiting uncontrolled phosphatase activity. Our studies suggested mechanisms of LCMT-1 in tight control of PP2A function, important for the cell cycle and cell survival.

  20. A protein array screen for Kaposi's sarcoma-associated herpesvirus LANA interactors links LANA to TIP60, PP2A activity, and telomere shortening.

    PubMed

    Shamay, Meir; Liu, Jianyong; Li, Renfeng; Liao, Gangling; Shen, Li; Greenway, Melanie; Hu, Shaohui; Zhu, Jian; Xie, Zhi; Ambinder, Richard F; Qian, Jiang; Zhu, Heng; Hayward, S Diane

    2012-05-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein functions in latently infected cells as an essential participant in KSHV genome replication and as a driver of dysregulated cell growth. To identify novel LANA protein-cell protein interactions that could contribute to these activities, we performed a proteomic screen in which purified, adenovirus-expressed Flag-LANA protein was incubated with an array displaying 4,192 nonredundant human proteins. Sixty-one interacting cell proteins were consistently detected. LANA interactions with high-mobility group AT-hook 1 (HMGA1), HMGB1, telomeric repeat binding factor 1 (TRF1), xeroderma pigmentosum complementation group A (XPA), pygopus homolog 2 (PYGO2), protein phosphatase 2A (PP2A)B subunit, Tat-interactive protein 60 (TIP60), replication protein A1 (RPA1), and RPA2 proteins were confirmed in coimmunoprecipitation assays. LANA-associated TIP60 retained acetyltransferase activity and, unlike human papillomavirus E6 and HIV-1 TAT proteins, LANA did not reduce TIP60 stability. The LANA-bound PP2A B subunit was associated with the PP2A A subunit but not the catalytic C subunit, suggesting a disruption of PP2A phosphatase activity. This is reminiscent of the role of simian virus 40 (SV40) small t antigen. Chromatin immunoprecipitation (ChIP) assays showed binding of RPA1 and RPA2 to the KSHV terminal repeats. Interestingly, LANA expression ablated RPA1 and RPA2 binding to the cell telomeric repeats. In U2OS cells that rely on the alternative mechanism for telomere maintenance, LANA expression had minimal effect on telomere length. However, LANA expression in telomerase immortalized endothelial cells resulted in telomere shortening. In KSHV-infected cells, telomere shortening may be one more mechanism by which LANA contributes to the development of malignancy. PMID:22379092

  1. Mitotic exit: Determining the PP2A dephosphorylation program.

    PubMed

    Pereira, Gislene; Schiebel, Elmar

    2016-08-29

    In mitotic exit, proteins that were highly phosphorylated are sequentially targeted by the phosphatase PP2A-B55, but what underlies substrate selection is unclear. In this issue, Cundell et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201606033) identify the determinants of PP2A-B55's dephosphorylation program, thereby influencing spindle disassembly, nuclear envelope reformation, and cytokinesis.

  2. Zinc-α2-Glycoprotein Modulates AKT-Dependent Insulin Signaling in Human Adipocytes by Activation of the PP2A Phosphatase

    PubMed Central

    Duran, Xavier; Pachón, Gisela; Vázquez-Carballo, Ana; Roche, Kelly; Núñez-Roa, Catalina; Garrido-Sánchez, Lourdes; Tinahones, Francisco J.; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Objective Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. Methods ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. Results ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. Conclusions ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner. PMID:26068931

  3. Suggested Involvement of PP1/PP2A Activity and De Novo Gene Expression in Anhydrobiotic Survival in a Tardigrade, Hypsibius dujardini, by Chemical Genetic Approach.

    PubMed

    Kondo, Koyuki; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Upon desiccation, some tardigrades enter an ametabolic dehydrated state called anhydrobiosis and can survive a desiccated environment in this state. For successful transition to anhydrobiosis, some anhydrobiotic tardigrades require pre-incubation under high humidity conditions, a process called preconditioning, prior to exposure to severe desiccation. Although tardigrades are thought to prepare for transition to anhydrobiosis during preconditioning, the molecular mechanisms governing such processes remain unknown. In this study, we used chemical genetic approaches to elucidate the regulatory mechanisms of anhydrobiosis in the anhydrobiotic tardigrade, Hypsibius dujardini. We first demonstrated that inhibition of transcription or translation drastically impaired anhydrobiotic survival, suggesting that de novo gene expression is required for successful transition to anhydrobiosis in this tardigrade. We then screened 81 chemicals and identified 5 chemicals that significantly impaired anhydrobiotic survival after severe desiccation, in contrast to little or no effect on survival after high humidity exposure only. In particular, cantharidic acid, a selective inhibitor of protein phosphatase (PP) 1 and PP2A, exhibited the most profound inhibitory effects. Another PP1/PP2A inhibitor, okadaic acid, also significantly and specifically impaired anhydrobiotic survival, suggesting that PP1/PP2A activity plays an important role for anhydrobiosis in this species. This is, to our knowledge, the first report of the required activities of signaling molecules for desiccation tolerance in tardigrades. The identified inhibitory chemicals could provide novel clues to elucidate the regulatory mechanisms underlying anhydrobiosis in tardigrades.

  4. Suggested Involvement of PP1/PP2A Activity and De Novo Gene Expression in Anhydrobiotic Survival in a Tardigrade, Hypsibius dujardini, by Chemical Genetic Approach

    PubMed Central

    Kondo, Koyuki; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Upon desiccation, some tardigrades enter an ametabolic dehydrated state called anhydrobiosis and can survive a desiccated environment in this state. For successful transition to anhydrobiosis, some anhydrobiotic tardigrades require pre-incubation under high humidity conditions, a process called preconditioning, prior to exposure to severe desiccation. Although tardigrades are thought to prepare for transition to anhydrobiosis during preconditioning, the molecular mechanisms governing such processes remain unknown. In this study, we used chemical genetic approaches to elucidate the regulatory mechanisms of anhydrobiosis in the anhydrobiotic tardigrade, Hypsibius dujardini. We first demonstrated that inhibition of transcription or translation drastically impaired anhydrobiotic survival, suggesting that de novo gene expression is required for successful transition to anhydrobiosis in this tardigrade. We then screened 81 chemicals and identified 5 chemicals that significantly impaired anhydrobiotic survival after severe desiccation, in contrast to little or no effect on survival after high humidity exposure only. In particular, cantharidic acid, a selective inhibitor of protein phosphatase (PP) 1 and PP2A, exhibited the most profound inhibitory effects. Another PP1/PP2A inhibitor, okadaic acid, also significantly and specifically impaired anhydrobiotic survival, suggesting that PP1/PP2A activity plays an important role for anhydrobiosis in this species. This is, to our knowledge, the first report of the required activities of signaling molecules for desiccation tolerance in tardigrades. The identified inhibitory chemicals could provide novel clues to elucidate the regulatory mechanisms underlying anhydrobiosis in tardigrades. PMID:26690982

  5. Silencing PP2A Inhibitor by Lenti-shRNA Interference Ameliorates Neuropathologies and Memory Deficits in tg2576 Mice

    PubMed Central

    Liu, Gong-Ping; Wei, Wei; Zhou, Xin; Shi, Hai-Rong; Liu, Xing-Hua; Chai, Gao-Shang; Yao, Xiu-Qing; Zhang, Jia-Yu; Peng, Cai-Xia; Hu, Juan; Li, Xia-Chun; Wang, Qun; Wang, Jian-Zhi

    2013-01-01

    Deficits of protein phosphatase-2A (PP2A) play a crucial role in tau hyperphosphorylation, amyloid overproduction, and synaptic suppression of Alzheimer's disease (AD), in which PP2A is inactivated by the endogenously increased inhibitory protein, namely inhibitor-2 of PP2A (I2PP2A). Therefore, in vivo silencing I2PP2A may rescue PP2A and mitigate AD neurodegeneration. By infusion of lentivirus-shRNA targeting I2PP2A (LV-siI2PP2A) into hippocampus and frontal cortex of 11-month-old tg2576 mice, we demonstrated that expression of LV-siI2PP2A decreased remarkably the elevated I2PP2A in both mRNA and protein levels. Simultaneously, the PP2A activity was restored with the mechanisms involving reduction of the inhibitory binding of I2PP2A to PP2A catalytic subunit (PP2AC), repression of the inhibitory Leu309-demethylation and elevation of PP2AC. Silencing I2PP2A induced a long-lasting attenuation of amyloidogenesis in tg2576 mice with inhibition of amyloid precursor protein hyperphosphorylation and β-secretase activity, whereas simultaneous inhibition of PP2A abolished the antiamyloidogenic effects of I2PP2A silencing. Finally, silencing I2PP2A could improve learning and memory of tg2576 mice with preservation of several memory-associated components. Our data reveal that targeting I2PP2A can efficiently rescue Aβ toxicities and improve the memory deficits in tg2576 mice, suggesting that I2PP2A could be a promising target for potential AD therapies. PMID:23922015

  6. Protein phosphatase 2a (PP2A) binds within the oligomerization domain of striatin and regulates the phosphorylation and activation of the mammalian Ste20-Like kinase Mst3

    PubMed Central

    2011-01-01

    Background Striatin, a putative protein phosphatase 2A (PP2A) B-type regulatory subunit, is a multi-domain scaffolding protein that has recently been linked to several diseases including cerebral cavernous malformation (CCM), which causes symptoms ranging from headaches to stroke. Striatin association with the PP2A A/C (structural subunit/catalytic subunit) heterodimer alters PP2A substrate specificity, but targets and roles of striatin-associated PP2A are not known. In addition to binding the PP2A A/C heterodimer to form a PP2A holoenzyme, striatin associates with cerebral cavernous malformation 3 (CCM3) protein, the mammalian Mps one binder (MOB) homolog, Mob3/phocein, the mammalian sterile 20-like (Mst) kinases, Mst3, Mst4 and STK25, and several other proteins to form a large signaling complex. Little is known about the molecular architecture of the striatin complex and the regulation of these sterile 20-like kinases. Results To help define the molecular organization of striatin complexes and to determine whether Mst3 might be negatively regulated by striatin-associated PP2A, a structure-function analysis of striatin was performed. Two distinct regions of striatin are capable of stably binding directly or indirectly to Mob3--one N-terminal, including the coiled-coil domain, and another more C-terminal, including the WD-repeat domain. In addition, striatin residues 191-344 contain determinants necessary for efficient association of Mst3, Mst4, and CCM3. PP2A associates with the coiled-coil domain of striatin, but unlike Mob3 and Mst3, its binding appears to require striatin oligomerization. Deletion of the caveolin-binding domain on striatin abolishes striatin family oligomerization and PP2A binding. Point mutations in striatin that disrupt PP2A association cause hyperphosphorylation and activation of striatin-associated Mst3. Conclusions Striatin orchestrates the regulation of Mst3 by PP2A. It binds Mst3 likely as a dimer with CCM3 via residues lying between

  7. Cardiomyocyte specific deletion of PP2A causes cardiac hypertrophy

    PubMed Central

    Li, Lei; Fang, Chao; Xu, Di; Xu, Yidan; Fu, Heling; Li, Jianmin

    2016-01-01

    Cardiac hypertrophy is a common pathological alteration in heart disease, which has been reported to be connected with serine/threonine protein phosphatases that control the dephosphorylation of a variety of cardiac proteins. Herein, we generated protein phosphatase type 2A knockout expressing a tamoxifen-inducible Cre recombinase protein fused to two mutant estrogen-receptor ligand-binding domains (MerCreMer) under the control of the a-myosin heavy chain promoter. Cardiac function of mice was determined by echocardiography. Decrease in PP2A activity leads to increased cardiomyocyte hypertrophy and fibrosis. Loss of PP2ACα leads to the heart failure, including the changes of EF, FS, LV, ANP and BNP. On the molecular level, knockout mice shows increased expression of B55a and B56e at 60 days after tamoxifen injection. Additionally, the regulation of the Akt/GSK3β/β-catenin pathway is severely disturbed in knockout mice. In conclusion, cardiomyocyte specific deletion of PP2A gene causes the cardiac hypertrophy. We will use the knockout mice to generate a type of cardiomyocyte hypertrophy mouse model with myocardial fibrosis. PMID:27186301

  8. From the Biology of PP2A to the PADs for Therapy of Hematologic Malignancies

    PubMed Central

    Ciccone, Maria; Calin, George A.; Perrotti, Danilo

    2015-01-01

    Over the past decades, an emerging role of phosphatases in the pathogenesis of hematologic malignancies and solid tumors has been established. The tumor-suppressor protein phosphatase 2A (PP2A) belongs to the serine–threonine phosphatases family and accounts for the majority of serine–threonine phosphatase activity in eukaryotic cells. Numerous studies have shown that inhibition of PP2A expression and/or function may contribute to leukemogenesis in several hematological malignancies. Likewise, overexpression or aberrant expression of physiologic PP2A inhibitory molecules (e.g., SET and its associated SETBP1 and CIP2A) may turn off PP2A function and participate to leukemic progression. The discovery of PP2A as tumor suppressor has prompted the evaluation of the safety and the efficacy of new compounds, which can restore PP2A activity in leukemic cells. Although further studies are needed to better understand how PP2A acts in the intricate phosphatases/kinases cancer network, the results reviewed herein strongly support the development on new PP2A-activating drugs and the immediate introduction of those available into clinical protocols for leukemia patients refractory or resistant to current available therapies. PMID:25763353

  9. An aluminum-based rat model for Alzheimer's disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration.

    PubMed

    Walton, J R

    2007-09-01

    In Alzheimer's disease (AD), oxidative damage leads to the formation of amyloid plaques while low PP2A activity results in hyperphosphorylated tau that polymerizes to form neurofibrillary tangles. We probed these early events, using brain tissue from a rat model for AD that develops memory deterioration and AD-like behaviors in old age after chronically ingesting 1.6 mg aluminum/kg bodyweight/day, equivalent to the high end of the human dietary aluminum range. A control group consumed 0.4 mg aluminum/kg/day. We stained brain sections from the cognitively-damaged rats for evidence of amyloid plaques, neurofibrillary tangles, aluminum, oxidative damage, and hyperphosphorylated tau. PP2A activity levels measured 238.71+/-17.56 pmol P(i)/microg protein and 580.67+/-111.70 pmol P(i)/microg protein (p<0.05) in neocortical/limbic homogenates prepared from cognitively-damaged and control rat brains, respectively. Thus, PP2A activity in cognitively-damaged brains was 41% of control value. Staining results showed: (1) aluminum-loading occurs in some aged rat neurons as in some aged human neurons; (2) aluminum-loading in rat neurons is accompanied by oxidative damage, hyperphosphorylated tau, neuropil threads, and granulovacuolar degeneration; and (3) amyloid plaques and neurofibrillary tangles were absent from all rat brain sections examined. Known species difference can reasonably explain why plaques and tangles are unable to form in brains of genetically-normal rats despite developing the same pathological changes that lead to their formation in human brain. As neuronal aluminum can account for early stages of plaque and tangle formation in an animal model for AD, neuronal aluminum could also initiate plaque and tangle formation in humans with AD.

  10. AMP-activated protein kinase attenuates oxLDL uptake in macrophages through PP2A/NF-κB/LOX-1 pathway.

    PubMed

    Chen, Bo; Li, Jin; Zhu, Haibo

    2016-10-01

    The differentiation of macrophages into lipid-laden foam cells is a hallmark in early-stage atherosclerosis. The developmental role of adenosine monophosphate-activated protein kinase (AMPK) in a transformation of foam cells, especially in macrophage cholesterol uptake that remains undetermined. Here we demonstrate that AMPK activation in response to IMM-H007 or AICAR resulted in a decrease in macrophage cholesterol uptake and thus inhibited foam cell formation in macrophages mediated by oxidized low-density lipoprotein (oxLDL). This functional change was caused by a downregulation of mRNA and protein expression of LOX-1 but not other scavenger receptors, including scavenger receptor-A (SR-A), CD36 and scavenger receptor-BI (SR-BI). The expression of LOX-1 was regulated by AMPK activation induced decreased phosphorylation of nuclear transcription factor NF-κB, since siRNA interference or dominant negative AMPK overexpression significantly promotes Ser536 dephosphorylation of NF-κB p65 and thus increases LOX-1 expression. Moreover, pharmacological AMPK activation was shown to promote protein phosphatase 2A (PP2A) activity and the specific PP2A inhibitor, okadaic acid, could prevent the effects of IMM-H007 or AICAR on NF-κB and LOX-1. In vivo, pharmacological AMPK activation reduced the lesion size of atherosclerosis and the expression of LOX-1 in aortas in apolipoprotein E-deficient mice. Our current findings suggest a novel mechanism of LOX-1 regulation by AMPK to attenuate macrophage oxLDL uptake and atherosclerosis. PMID:26297684

  11. AMP-activated protein kinase attenuates oxLDL uptake in macrophages through PP2A/NF-κB/LOX-1 pathway.

    PubMed

    Chen, Bo; Li, Jin; Zhu, Haibo

    2016-10-01

    The differentiation of macrophages into lipid-laden foam cells is a hallmark in early-stage atherosclerosis. The developmental role of adenosine monophosphate-activated protein kinase (AMPK) in a transformation of foam cells, especially in macrophage cholesterol uptake that remains undetermined. Here we demonstrate that AMPK activation in response to IMM-H007 or AICAR resulted in a decrease in macrophage cholesterol uptake and thus inhibited foam cell formation in macrophages mediated by oxidized low-density lipoprotein (oxLDL). This functional change was caused by a downregulation of mRNA and protein expression of LOX-1 but not other scavenger receptors, including scavenger receptor-A (SR-A), CD36 and scavenger receptor-BI (SR-BI). The expression of LOX-1 was regulated by AMPK activation induced decreased phosphorylation of nuclear transcription factor NF-κB, since siRNA interference or dominant negative AMPK overexpression significantly promotes Ser536 dephosphorylation of NF-κB p65 and thus increases LOX-1 expression. Moreover, pharmacological AMPK activation was shown to promote protein phosphatase 2A (PP2A) activity and the specific PP2A inhibitor, okadaic acid, could prevent the effects of IMM-H007 or AICAR on NF-κB and LOX-1. In vivo, pharmacological AMPK activation reduced the lesion size of atherosclerosis and the expression of LOX-1 in aortas in apolipoprotein E-deficient mice. Our current findings suggest a novel mechanism of LOX-1 regulation by AMPK to attenuate macrophage oxLDL uptake and atherosclerosis.

  12. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity.

    PubMed

    Umberger, Nicole L; Caspary, Tamara

    2015-01-15

    Primary cilia are built and maintained by intraflagellar transport (IFT), whereby the two IFT complexes, IFTA and IFTB, carry cargo via kinesin and dynein motors for anterograde and retrograde transport, respectively. Many signaling pathways, including platelet- derived growth factor (PDGF)-AA/αα, are linked to primary cilia. Active PDGF-AA/αα signaling results in phosphorylation of Akt at two residues: P-Akt(T308) and P-Akt(S473), and previous work showed decreased P-Akt(S473) in response to PDGF-AA upon anterograde transport disruption. In this study, we investigated PDGF-AA/αα signaling via P-Akt(T308) and P-Akt(S473) in distinct ciliary transport mutants. We found increased Akt phosphorylation in the absence of PDGF-AA stimulation, which we show is due to impaired dephosphorylation resulting from diminished PP2A activity toward P-Akt(T308). Anterograde transport mutants display low platelet-derived growth factor receptor (PDGFR)α levels, whereas retrograde mutants exhibit normal PDGFRα levels. Despite this, neither shows an increase in P-Akt(S473) or P-Akt(T308) upon PDGF-AA stimulation. Because mammalian target of rapamycin complex 1 (mTORC1) signaling is increased in ciliary transport mutant cells and mTOR signaling inhibits PDGFRα levels, we demonstrate that inhibition of mTORC1 rescues PDGFRα levels as well as PDGF-AA-dependent phosphorylation of Akt(S473) and Akt(T308) in ciliary transport mutant MEFs. Taken together, our data indicate that the regulation of mTORC1 signaling and PP2A activity by ciliary transport plays key roles in PDGF-AA/αα signaling.

  13. Neuroprotective effects of donepezil against Aβ42-induced neuronal toxicity are mediated through not only enhancing PP2A activity but also regulating GSK-3β and nAChRs activity.

    PubMed

    Noh, Min-Young; Koh, Seong H; Kim, Sung-Min; Maurice, Tangui; Ku, Sae-Kwang; Kim, Seung H

    2013-11-01

    The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase-3β (GSK-3β) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid-beta (Aβ)42-induced neuronal toxicity model of Alzheimer's disease. In Aβ42-induced toxic conditions, each PP2A and GSK-3β activity measured at different times showed time-dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre-treatment showed dose-dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aβ42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aβ42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK-3β activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aβ42-induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK-3β and nAChRs activity would partially contribute to its effects. We investigated neuroprotective mechanisms of donepezil against Aβ42 toxicity: Donepezil increased neuronal viability with reduced p-tau by enhancing PP2A activity. Despite of blocked PP2A activity, donepezil showed additional recovering effect on neuronal viability, which findings led us to assume that additional

  14. Over activation of hippocampal serine/threonine protein phosphatases PP1 and PP2A is involved in lead-induced deficits in learning and memory in young rats.

    PubMed

    Rahman, Abdur; Khan, Khalid M; Al-Khaledi, Ghanim; Khan, Islam; Al-Shemary, Tahany

    2012-06-01

    Serine/threonine protein phosphatases regulate several key cellular events in the brain, including learning and memory. These enzymes, when over-activated, are known to function as a constraint on learning and memory. We investigated whether these phosphatases are implicated in lead (Pb)-induced deficits in learning and memory. Wistar rat pups were exposed to 0.2% Pb-acetate via their dams' drinking water from postnatal day (PND) 1-21 and directly in drinking water until PND 30. Pb levels in blood, brain and hippocampus were measured and expression of PP1, PP2A, PP2B and PP5 in hippocampus was analyzed. Total phosphatase activity, and PP1 and PP2A activities were determined. Tau phosphorylation at various epitopes was determined by Western blot. Spatial learning and memory was determined by Morris water maze test. Pb exposure significantly increased levels of Pb in blood, brain and hippocampus, reduced the number of synapses in hippocampus and impaired learning and long-term memory (LTM). Short-term memory (STM) was only affected in rats at PND21. Pb exposure increased the expression and activity of PP1 and decreased phosphorylation of tau at threonine-231 in hippocampus at both PND21 and PND30. Pb-induced phosphorylation of tau at serine-199/202 (AT8) paralleled with PP2A activity; at PND21 PP2A activity increased and AT8 phosphorylation decreased; at PND30 PP2A activity decreased and AT8 phosphorylation increased. Increased PP1 activity in hippocampus by Pb is associated with learning and LTM impairment, whereas, increased PP2A activity is associated with STM impairment. These findings suggest the overactivation of PP1 and PP2A, together with changes in tau phosphorylation, as a potential mechanism of lead-induced deficits in learning and memory.

  15. B vitamin deficiency promotes tau phosphorylation through regulation of GSK3beta and PP2A.

    PubMed

    Nicolia, Vincenzina; Fuso, Andrea; Cavallaro, Rosaria A; Di Luzio, Andrea; Scarpa, Sigfrido

    2010-01-01

    Neurofibrillary tangles (NFTs), composed of intracellular filamentous aggregates of hyperphosphorylated protein tau, are one of the pathological hallmarks of Alzheimer's disease (AD). Tau phosphorylation is regulated by the equilibrium between activities of its protein kinases and phosphatases; unbalance of these activities is proposed to be a reasonable causative factor to the disease process. Glycogen synthase kinase 3beta (GSK3beta) is one of the most important protein kinase in regulating tau phosphorylation; overexpression of active GSK3beta causes ADlike hyperphosphorylation of tau. Protein phosphatase 2A (PP2A) is the major phosphatase that dephosphorylates tau; it was demonstrated that highly conserved carboxyl-terminal sequence of PP2A C-subunit is a focal point for phosphatase regulation. This is the site of a reversible methyl esterification reaction that controls AB_{alpha}C heterotrimers formation. Here we demonstrate that GSK3beta and PP2A genes were upregulated by inhibiting methylation reactions through B vitamin deficiency. In this condition, methylated catalytic subunit PP2Ac was decreased, leading to reduced PP2A activity. By contrast, we observed GSK3beta protein increase and a modulation in phosphorylation sites that regulate GSK3beta activity. Therefore, one-carbon metabolism alteration seems to be a cause of deregulation of the equilibrium between GSK3beta and PP2A, leading to abnormal hyperphosphorylated tau.

  16. PP2A in the regulation of cell motility and invasion.

    PubMed

    Basu, Sunanda

    2011-02-01

    Cell motility is a very critical phenomenon that plays an important role in the development of eukaryotic organisms. One of the well studied cell motility phenomena is chemotaxis, which is described as a directional movement of cell in response to changes in external chemotactic gradient. Numerous studies conducted both in unicellular organism and in mammalian cells have demonstrated the importance of phosphatidylionositol-3 kinase (PI3K) in this process. In addition, it is now well established that although PI3K plays an activation role in chemotaxis, the role of phosphatases is also critical to maintain this dynamic cyclical process. Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase that is a key player in regulating PI3K signaling. PP2A is abundantly and ubiquitously expressed and has been highly conserved during the evolution of eukaryotes. PP2A is composed of three protein subunits, A, B, and C. Subunit 'A' is a 60-65 kDa structural component, 'C' is a 36-38 kDa catalytic subunit, and 'B' is a 54-130 kDa regulatory subunit. The core complex of PP2A is comprised of the A and C subunits, which are tightly associated and this dimeric core complexes with the regulatory B subunit. The B subunit determines the substrate specificity as well as the spatial and temporal functions of PP2A. PP2A plays an important role in regulating multiple signal transduction pathways, including cell-cycle regulation, cell-growth and development, cytoskeleton dynamics, and cell motility. This review focuses on the role of PP2A in regulating motility of normal and transformed cells.

  17. The therapeutic effects of SET/I2PP2A inhibitors on canine melanoma.

    PubMed

    Enjoji, Shuhei; Yabe, Ryotaro; Fujiwara, Nobuyuki; Tsuji, Shunya; Vitek, Michael P; Mizuno, Takuya; Nakagawa, Takayuki; Usui, Tatsuya; Ohama, Takashi; Sato, Koichi

    2015-11-01

    Canine melanoma is one of the most important diseases in small animal medicine. Protein phosphatase 2A (PP2A), a well conserved serine/threonine phosphatase, plays a critical role as a tumor suppressor. SET/I2PP2A is an endogenous inhibitor for PP2A, which directly binds to PP2A and suppresses its phosphatase activity. Elevated SET protein levels have been reported to exacerbate human tumor progression. The role of SET in canine melanoma, however, has not been understood. Here, we investigated the potential therapeutic role for SET inhibitors in canine melanoma. The expression of SET protein was observed in 6 canine melanoma cell lines. We used CMeC-1 cells (primary origin) and CMeC-2 cells (metastatic origin) to generate cell lines stably expressing SET-targeting shRNAs. Knockdown of SET expression in CMeC-2, but not in CMeC-1, leads to decreased cell proliferation, invasion and colony formation. Phosphorylation level of p70 S6 kinase was decreased by SET knockdown in CMeC-2, suggesting the involvement of mTOR (mammalian target of rapamycin)/p70 S6 kinase signaling. The SET inhibitors, OP449 and FTY720, more effectively killed CMeC-2 than CMeC-1. We observed PP2A activation in CMeC-2 treated with OP449 and FTY720. These results demonstrated the potential therapeutic application of SET inhibitors for canine melanoma. PMID:26062569

  18. A novel protein phosphatase 2A (PP2A) is involved in the transformation of human protozoan parasite Trypanosoma cruzi.

    PubMed Central

    González, Jorge; Cornejo, Alberto; Santos, Marcia R M; Cordero, Esteban M; Gutiérrez, Bessy; Porcile, Patricio; Mortara, Renato A; Sagua, Hernán; Da Silveira, José Franco; Araya, Jorge E

    2003-01-01

    Here we provide evidence for a critical role of PP2As (protein phosphatase 2As) in the transformation of Trypanosoma cruzi. In axenic medium at pH 5.0, trypomastigotes rapidly transform into amastigotes, a process blocked by okadaic acid, a potent PP2A inhibitor, at concentrations as low as 0.1 microM. 1-Norokadaone, an inactive okadaic acid analogue, did not affect the transformation. Electron microscopy studies indicated that okadaic acid-treated trypomastigotes had not undergone ultrastructural modifications, reinforcing the idea that PP2A inhibits transformation. Using a microcystin-Sepharose affinity column we purified the native T. cruzi PP2A. The enzyme displayed activity against 32P-labelled phosphorylase a that was inhibited in a dose-dependent manner by okadaic acid. The protein was also submitted to MS and, from the peptides obtained, degenerate primers were used to clone a novel T. cruzi PP2A enzyme by PCR. The isolated gene encodes a protein of 303 amino acids, termed TcPP2A, which displayed a high degree of homology (86%) with the catalytic subunit of Trypanosoma brucei PP2A. Northern-blot analysis revealed the presence of a major 2.1-kb mRNA hybridizing in all T. cruzi developmental stages. Southern-blot analysis suggested that the TcPP2A gene is present in low copy number in the T. cruzi genome. These results are consistent with the mapping of PP2A genes in two chromosomal bands by pulsed-field gel electrophoresis and chromoblot hybridization. Our studies suggest that in T. cruzi PP2A is important for the complete transformation of trypomastigotes into amastigotes during the life cycle of this protozoan parasite. PMID:12737627

  19. Activation of ERK/IER3/PP2A-B56γ-positive feedback loop in lung adenocarcinoma by allelic deletion of B56γ gene.

    PubMed

    Ito, Tomoko; Ozaki, Satoru; Chanasong, Rachanee; Mizutani, Yuki; Oyama, Takeru; Sakurai, Hiroshi; Matsumoto, Isao; Takemura, Hirofumi; Kawahara, Ei

    2016-05-01

    In order to investigate the involvement of the IER3/PP2A-B56γ/ERK-positive feedback loop, which leads to sustained phosphorylation/activation of ERK in carcinogenesis, we immunohistochemically examined the expression of IER3 and phosphorylated ERK in lung tumor tissues. IER3 was overexpressed in all cases of adenocarcinomas examined, but was not overexpressed in squamous cell carcinomas. Phosphorylated ERK (pERK) was also overexpressed in almost all adenocarcinomas. EGFR and RAS, whose gene product is located upstream of ERK, were sequenced. Activating mutation of EGFR, which is a possible cause of overexpression of IER3 and pERK, was found only in 5 adenocarcinomas (42%). No mutation of RAS was found. We further examined the sequences of all exons of B56γ gene (PPP2R5C) and IER3, but no mutation was found. Using a single nucleotide insertion in intron 1 of PPP2R5C, which was found in the process of sequencing, allelic deletion of PPP2R5C was examined. Eight cases were informative (67%), and the deletion was found in 4 of them (50%). Three cases having deletion of PPP2R5C did not have EGFR mutation. Finally, PPP2R5C deletion or EGFR mutation that could be responsible for IER3/pERK overexpression was found in at least 8 cases (67% or more). This is the first report of a high incidence of deletion of PPP2R5C in human carcinomas.

  20. TLR2 ligation induces corticosteroid insensitivity in A549 lung epithelial cells: Anti-inflammatory impact of PP2A activators.

    PubMed

    Rahman, Md Mostafizur; Prabhala, Pavan; Rumzhum, Nowshin N; Patel, Brijeshkumar S; Wickop, Thomas; Hansbro, Philip M; Verrills, Nicole M; Ammit, Alaina J

    2016-09-01

    Corticosteroids are effective anti-inflammatory therapies widely utilized in chronic respiratory diseases. But these medicines can lose their efficacy during respiratory infection resulting in disease exacerbation. Further in vitro research is required to understand how infection worsens lung function control in order to advance therapeutic options to treat infectious exacerbation in the future. In this study, we utilize a cellular model of bacterial exacerbation where we pretreat A549 lung epithelial cells with the synthetic bacterial lipoprotein Pam3CSK4 (a TLR2 ligand) to mimic bacterial infection and tumor necrosis factor α (TNFα) to simulate inflammation. Under these conditions, Pam3CSK4 induces corticosteroid insensitivity; demonstrated by substantially reduced ability of the corticosteroid dexamethasone to repress TNFα-induced interleukin 6 secretion. We then explored the molecular mechanism responsible and found that corticosteroid insensitivity induced by bacterial mimics was not due to altered translocation of the glucocorticoid receptor into the nucleus, nor an impact on the NF-κB pathway. Moreover, Pam3CSK4 did not affect corticosteroid-induced upregulation of anti-inflammatory MAPK deactivating phosphatase-MKP-1. However, Pam3CSK4 can induce oxidative stress and we show that a proportion of the MKP-1 produced in response to corticosteroid in the context of TLR2 ligation was rendered inactive by oxidation. Thus to combat inflammation in the context of bacterial exacerbation we sought to discover effective strategies that bypassed this road-block. We show for the first time that known (FTY720) and novel (theophylline) activators of the phosphatase PP2A can serve as non-steroidal anti-inflammatory alternatives and/or corticosteroid-sparing approaches in respiratory inflammation where corticosteroid insensitivity exists. PMID:27477309

  1. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins

    PubMed Central

    Jin, Lin; Ham, Jong Hyun; Hage, Rosemary; Zhao, Wanying; Soto-Hernández, Jaricelis; Lee, Sang Yeol; Paek, Seung-Mann; Kim, Min Gab; Boone, Charles; Coplin, David L.; Mackey, David

    2016-01-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B’ regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B’ subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B’ subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B’ subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B’ subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family. PMID:27191168

  2. PMC, a potent hydrophilic α-tocopherol derivative, inhibits NF-κB activation via PP2A but not IκBα-dependent signals in vascular smooth muscle cells

    PubMed Central

    Hsieh, Cheng-Ying; Hsiao, George; Hsu, Ming-Jen; Wang, Yi-Hsuan; Sheu, Joen-Rong

    2014-01-01

    The hydrophilic α-tocopherol derivative, 2,2,5,7,8-pentamethyl-6-hydroxychromane (PMC), is a promising alternative to vitamin E in clinical applications. Critical vascular inflammation leads to vascular dysfunction and vascular diseases, including atherosclerosis, hypertension and abdominal aortic aneurysms. In this study, we investigated the mechanisms of the inhibitory effects of PMC in vascular smooth muscle cells (VSMCs) exposed to pro-inflammatory stimuli, lipopolysaccharide (LPS) combined with interferon (IFN)-γ. Treatment of LPS/IFN-γ-stimulated VSMCs with PMC suppressed the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase-9 in a concentration-dependent manner. A reduction in LPS/IFN-γ-induced nuclear factor (NF)-κB activation was also observed in PMC-treated VSMCs. The translocation and phosphorylation of p65, protein phosphatase 2A (PP2A) inactivation and the formation of reactive oxygen species (ROS) were significantly inhibited by PMC in LPS/IFN-γ-activated VSMCs. However, neither IκBα degradation nor IκB kinase (IKK) or ribosomal s6 kinase-1 phosphorylation was affected by PMC under these conditions. Both treatments with okadaic acid, a PP2A-selective inhibitor, and transfection with PP2A siRNA markedly reversed the PMC-mediated inhibition of iNOS expression, NF-κB-promoter activity and p65 phosphorylation. Immunoprecipitation analysis of the cellular extracts of LPS/IFN-γ-stimulated VSMCs revealed that p65 colocalizes with PP2A. In addition, p65 phosphorylation and PP2A inactivation were induced in VSMCs by treatment with H2O2, but neither IκBα degradation nor IKK phosphorylation was observed. These results collectively indicate that the PMC-mediated inhibition of NF-κB activity in LPS/IFN-γ-stimulated VSMCs occurs through the ROS-PP2A-p65 signalling cascade, an IKK-IκBα-independent mechanism. Therapeutic interventions using PMC may therefore be beneficial for the treatment of vascular inflammatory

  3. The Ser/Thr Phosphatase PP2A Regulatory Subunit Widerborst Inhibits Notch Signaling

    PubMed Central

    Bose, Anasua; Majot, Adam T.; Bidwai, Ashok P.

    2014-01-01

    Drosophila Enhancer of split M8, an effector of Notch signaling, is regulated by protein kinase CK2. The phosphatase PP2A is thought to play an opposing (inhibitory) role, but the identity of the regulatory subunit was unknown. The studies described here reveal a role for the PP2A regulatory subunit widerborst (wdb) in three developmental contexts; the bristle, wing and the R8 photoreceptors of the eye. wdb overexpression elicits bristle and wing defects akin to reduced Notch signaling, whereas hypomorphic mutations in this PP2A subunit elicit opposite effects. We have also evaluated wdb functions using mutations in Notch and E(spl) that affect the eye. We find that the eye and R8 defects of the well-known Nspl mutation are enhanced by a hypomorphic allele of wdb, whereas they are strongly rescued by wdb overexpression. Similarly, ectopic wdb rescues the eye and R8 defects of the E(spl)D mutation, which affects the m8 gene. In addition, wdb overexpression also rescues the bristle defects of ectopically expressed M8, or the eye and R8 defects of its CK2 phosphomimetic variant M8-S159D. The latter finding suggests that PP2A may target M8 at highly conserved residues in the vicinity of the CK2 site, whose phosphorylation controls repression of Atonal and the R8 fate. Together, the studies identify PP2A-Wdb as a participant in Notch signaling, and suggest that M8 activity is controlled by phosphorylation and dephosphorylation. The conservation of the phosphorylation sites between Drosophila E(spl) and the HES/HER proteins from mammals, reptiles, amphibians, birds and fish raises the prospect that this mode of regulation is widespread. PMID:25006677

  4. PP2A methylation controls sensitivity and resistance to β-amyloid–induced cognitive and electrophysiological impairments

    PubMed Central

    Nicholls, Russell E.; Sontag, Jean-Marie; Zhang, Hong; Staniszewski, Agnieszka; Yan, Shijun; Kim, Carla Y.; Yim, Michael; Woodruff, Caitlin M.; Arning, Erland; Wasek, Brandi; Yin, Deqi; Bottiglieri, Teodoro; Sontag, Estelle; Kandel, Eric R.; Arancio, Ottavio

    2016-01-01

    Elevated levels of the β-amyloid peptide (Aβ) are thought to contribute to cognitive and behavioral impairments observed in Alzheimer’s disease (AD). Protein phosphatase 2A (PP2A) participates in multiple molecular pathways implicated in AD, and its expression and activity are reduced in postmortem brains of AD patients. PP2A is regulated by protein methylation, and impaired PP2A methylation is thought to contribute to increased AD risk in hyperhomocysteinemic individuals. To examine further the link between PP2A and AD, we generated transgenic mice that overexpress the PP2A methylesterase, protein phosphatase methylesterase-1 (PME-1), or the PP2A methyltransferase, leucine carboxyl methyltransferase-1 (LCMT-1), and examined the sensitivity of these animals to behavioral and electrophysiological impairments caused by exogenous Aβ exposure. We found that PME-1 overexpression enhanced these impairments, whereas LCMT-1 overexpression protected against Aβ-induced impairments. Neither transgene affected Aβ production or the electrophysiological response to low concentrations of Aβ, suggesting that these manipulations selectively affect the pathological response to elevated Aβ levels. Together these data identify a molecular mechanism linking PP2A to the development of AD-related cognitive impairments that might be therapeutically exploited to target selectively the pathological effects caused by elevated Aβ levels in AD patients. PMID:26951658

  5. PRG-1 Regulates Synaptic Plasticity via Intracellular PP2A/β1-Integrin Signaling.

    PubMed

    Liu, Xingfeng; Huai, Jisen; Endle, Heiko; Schlüter, Leslie; Fan, Wei; Li, Yunbo; Richers, Sebastian; Yurugi, Hajime; Rajalingam, Krishnaraj; Ji, Haichao; Cheng, Hong; Rister, Benjamin; Horta, Guilherme; Baumgart, Jan; Berger, Hendrik; Laube, Gregor; Schmitt, Ulrich; Schmeisser, Michael J; Boeckers, Tobias M; Tenzer, Stefan; Vlachos, Andreas; Deller, Thomas; Nitsch, Robert; Vogt, Johannes

    2016-08-01

    Alterations in dendritic spine numbers are linked to deficits in learning and memory. While we previously revealed that postsynaptic plasticity-related gene 1 (PRG-1) controls lysophosphatidic acid (LPA) signaling at glutamatergic synapses via presynaptic LPA receptors, we now show that PRG-1 also affects spine density and synaptic plasticity in a cell-autonomous fashion via protein phosphatase 2A (PP2A)/β1-integrin activation. PRG-1 deficiency reduces spine numbers and β1-integrin activation, alters long-term potentiation (LTP), and impairs spatial memory. The intracellular PRG-1 C terminus interacts in an LPA-dependent fashion with PP2A, thus modulating its phosphatase activity at the postsynaptic density. This results in recruitment of adhesome components src, paxillin, and talin to lipid rafts and ultimately in activation of β1-integrins. Consistent with these findings, activation of PP2A with FTY720 rescues defects in spine density and LTP of PRG-1-deficient animals. These results disclose a mechanism by which bioactive lipid signaling via PRG-1 could affect synaptic plasticity and memory formation. PMID:27453502

  6. The Basic Biology of PP2A in Hematologic Cells and Malignancies.

    PubMed

    Haesen, Dorien; Sents, Ward; Lemaire, Katleen; Hoorne, Yana; Janssens, Veerle

    2014-01-01

    Reversible protein phosphorylation plays a crucial role in regulating cell signaling. In normal cells, phosphoregulation is tightly controlled by a network of protein kinases counterbalanced by several protein phosphatases. Deregulation of this delicate balance is widely recognized as a central mechanism by which cells escape external and internal self-limiting signals, eventually resulting in malignant transformation. A large fraction of hematologic malignancies is characterized by constitutive or unrestrained activation of oncogenic kinases. This is in part achieved by activating mutations, chromosomal rearrangements, or constitutive activation of upstream kinase regulators, in part by inactivation of their anti-oncogenic phosphatase counterparts. Protein phosphatase 2A (PP2A) represents a large family of cellular serine/threonine phosphatases with suspected tumor suppressive functions. In this review, we highlight our current knowledge about the complex structure and biology of these phosphatases in hematologic cells, thereby providing the rationale behind their diverse signaling functions. Eventually, this basic knowledge is a key to truly understand the tumor suppressive role of PP2A in leukemogenesis and to allow further rational development of therapeutic strategies targeting PP2A.

  7. A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase.

    PubMed

    Hertz, Emil Peter Thrane; Kruse, Thomas; Davey, Norman E; López-Méndez, Blanca; Sigurðsson, Jón Otti; Montoya, Guillermo; Olsen, Jesper V; Nilsson, Jakob

    2016-08-18

    Dynamic protein phosphorylation is a fundamental mechanism regulating biological processes in all organisms. Protein phosphatase 2A (PP2A) is the main source of phosphatase activity in the cell, but the molecular details of substrate recognition are unknown. Here, we report that a conserved surface-exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues within the motif increases B56 binding, allowing integration of kinase and phosphatase activity. We identify conserved LxxIxE motifs in essential proteins throughout the eukaryotic domain of life and in human viruses, suggesting that the motifs are required for basic cellular function. Our study provides a molecular description of PP2A binding specificity with broad implications for understanding signaling in eukaryotes.

  8. A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase.

    PubMed

    Hertz, Emil Peter Thrane; Kruse, Thomas; Davey, Norman E; López-Méndez, Blanca; Sigurðsson, Jón Otti; Montoya, Guillermo; Olsen, Jesper V; Nilsson, Jakob

    2016-08-18

    Dynamic protein phosphorylation is a fundamental mechanism regulating biological processes in all organisms. Protein phosphatase 2A (PP2A) is the main source of phosphatase activity in the cell, but the molecular details of substrate recognition are unknown. Here, we report that a conserved surface-exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues within the motif increases B56 binding, allowing integration of kinase and phosphatase activity. We identify conserved LxxIxE motifs in essential proteins throughout the eukaryotic domain of life and in human viruses, suggesting that the motifs are required for basic cellular function. Our study provides a molecular description of PP2A binding specificity with broad implications for understanding signaling in eukaryotes. PMID:27453045

  9. Mechanism of PP2A-mediated IKKβ dephosphorylation: a systems biological approach

    PubMed Central

    Witt, Johannes; Barisic, Sandra; Schumann, Eva; Allgöwer, Frank; Sawodny, Oliver; Sauter, Thomas; Kulms, Dagmar

    2009-01-01

    Background Biological effects of nuclear factor-κB (NFκB) can differ tremendously depending on the cellular context. For example, NFκB induced by interleukin-1 (IL-1) is converted from an inhibitor of death receptor induced apoptosis into a promoter of ultraviolet-B radiation (UVB)-induced apoptosis. This conversion requires prolonged NFκB activation and is facilitated by IL-1 + UVB-induced abrogation of the negative feedback loop for NFκB, involving a lack of inhibitor of κB (IκBα) protein reappearance. Permanent activation of the upstream kinase IKKβ results from UVB-induced inhibition of the catalytic subunit of Ser-Thr phosphatase PP2A (PP2Ac), leading to immediate phosphorylation and degradation of newly synthesized IκBα. Results To investigate the mechanism underlying the general PP2A-mediated tuning of IKKβ phosphorylation upon IL-1 stimulation, we have developed a strictly reduced mathematical model based on ordinary differential equations which includes the essential processes concerning the IL-1 receptor, IKKβ and PP2A. Combining experimental and modelling approaches we demonstrate that constitutively active, but not post-stimulation activated PP2A, tunes out IKKβ phosphorylation thus allowing for IκBα resynthesis in response to IL-1. Identifiability analysis and determination of confidence intervals reveal that the model allows reliable predictions regarding the dynamics of PP2A deactivation and IKKβ phosphorylation. Additionally, scenario analysis is used to scrutinize several hypotheses regarding the mode of UVB-induced PP2Ac inhibition. The model suggests that down regulation of PP2Ac activity, which results in prevention of IκBα reappearance, is not a direct UVB action but requires instrumentality. Conclusion The model developed here can be used as a reliable building block of larger NFκB models and offers comprehensive simplification potential for future modeling of NFκB signaling. It gives more insight into the newly discovered

  10. Changes in Carboxy Methylation and Tyrosine Phosphorylation of Protein Phosphatase PP2A Are Associated with Epididymal Sperm Maturation and Motility.

    PubMed

    Dudiki, Tejasvi; Kadunganattil, Suraj; Ferrara, John K; Kline, Douglas W; Vijayaraghavan, Srinivasan

    2015-01-01

    Mammalian sperm contain the serine/threonine phosphatases PP1γ2 and PP2A. The role of sperm PP1γ2 is relatively well studied. Here we confirm the presence of PP2A in sperm and show that it undergoes marked changes in methylation (leucine 309), tyrosine phosphorylation (tyrosine 307) and catalytic activity during epididymal sperm maturation. Spermatozoa isolated from proximal caput, distal caput and caudal regions of the epididymis contain equal immuno-reactive amounts of PP2A. Using demethyl sensitive antibodies we show that PP2A is methylated at its carboxy terminus in sperm from the distal caput and caudal regions but not in sperm from the proximal caput region of the epididymis. The methylation status of PP2A was confirmed by isolation of PP2A with microcystin agarose followed by alkali treatment, which causes hydrolysis of protein carboxy methyl esters. Tyrosine phosphorylation of sperm PP2A varied inversely with methylation. That is, PP2A was tyrosine phosphorylated when it was demethylated but not when methylated. PP2A demethylation and its reciprocal tyrosine phosphorylation were also affected by treatment of sperm with L-homocysteine and adenosine, which are known to elevate intracellular S-adenosylhomocysteine, a feedback inhibitor of methyltransferases. Catalytic activity of PP2A declined during epididymal sperm maturation. Inhibition of PP2A by okadaic acid or by incubation of caudal epididymal spermatozoa with L-homocysteine and adenosine resulted in increase of sperm motility parameters including percent motility, velocity, and lateral head amplitude. Demethylation or pharmacological inhibition of PP2A also leads to an increase in phosphorylation of glycogen synthase kinase-3 (GSK3). Our results show for the first time that changes in PP2A activity due to methylation and tyrosine phosphorylation occur in sperm and that these changes may play an important role in the regulation of sperm function. PMID:26569399

  11. PP2A delays APC/C-dependent degradation of separase-associated but not free securin

    PubMed Central

    Hellmuth, Susanne; Böttger, Franziska; Pan, Cuiping; Mann, Matthias; Stemmann, Olaf

    2014-01-01

    The universal triggering event of eukaryotic chromosome segregation is cleavage of centromeric cohesin by separase. Prior to anaphase, most separase is kept inactive by association with securin. Protein phosphatase 2A (PP2A) constitutes another binding partner of human separase, but the functional relevance of this interaction has remained enigmatic. We demonstrate that PP2A stabilizes separase-associated securin by dephosphorylation, while phosphorylation of free securin enhances its polyubiquitylation by the ubiquitin ligase APC/C and proteasomal degradation. Changing PP2A substrate phosphorylation sites to alanines slows degradation of free securin, delays separase activation, lengthens early anaphase, and results in anaphase bridges and DNA damage. In contrast, separase-associated securin is destabilized by introduction of phosphorylation-mimetic aspartates or extinction of separase-associated PP2A activity. G2- or prometaphase-arrested cells suffer from unscheduled activation of separase when endogenous securin is replaced by aspartate-mutant securin. Thus, PP2A-dependent stabilization of separase-associated securin prevents precocious activation of separase during checkpoint-mediated arrests with basal APC/C activity and increases the abruptness and fidelity of sister chromatid separation in anaphase. PMID:24781523

  12. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A).

    PubMed

    Obanda, Diana N; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T

    2016-01-01

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation. PMID:26916435

  13. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A)

    PubMed Central

    Obanda, Diana N.; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T.

    2016-01-01

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation. PMID:26916435

  14. The broken "Off" switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance.

    PubMed

    Ruvolo, Peter P

    2016-12-01

    Aberrant activation of signal transduction pathways can transform a normal cell to a malignant one and can impart survival properties that render cancer cells resistant to therapy. A diverse set of cascades have been implicated in various cancers including those mediated by serine/threonine kinases such RAS, PI3K/AKT, and PKC. Signal transduction is a dynamic process involving both "On" and "Off" switches. Activating mutations of RAS or PI3K can be viewed as the switch being stuck in the "On" position resulting in continued signaling by a survival and/or proliferation pathway. On the other hand, inactivation of protein phosphatases such as the PP2A family can be seen as the defective "Off" switch that similarly can activate these pathways. A problem for therapeutic targeting of PP2A is that the enzyme is a hetero-trimer and thus drug targeting involves complex structures. More importantly, since PP2A isoforms generally act as tumor suppressors one would want to activate these enzymes rather than suppress them. The elucidation of the role of cellular inhibitors like SET and CIP2A in cancer suggests that targeting these proteins can have therapeutic efficacy by mechanisms involving PP2A activation. Furthermore, drugs such as FTY-720 can activate PP2A isoforms directly. This review will cover the current state of knowledge of PP2A role as a tumor suppressor in cancer cells and as a mediator of processes that can impact drug resistance and immune surveillance. PMID:27556014

  15. Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis

    PubMed Central

    Hu, Xiaoyong; Garcia, Consuelo; Fazli, Ladan; Gleave, Martin; Vitek, Michael P.; Jansen, Marilyn; Christensen, Dale; Mulholland, David J

    2015-01-01

    The PP2A signaling axis regulates multiple oncogenic drivers of castration resistant prostate cancer (CRPC). We show that targeting the endogenous PP2A regulator, SET (I2PP2A), is a viable strategy to inhibit prostate cancers that are resistant to androgen deprivation therapy. Our data is corroborated by analysis of prostate cancer patient cohorts showing significant elevation of SET transcripts. Tissue microarray analysis reveals that elevated SET expression correlates with clinical cancer grading, duration of neoadjuvant hormone therapy (NHT) and time to biochemical recurrence. Using prostate regeneration assays, we show that in vivo SET overexpression is sufficient to induce hyperplasia and prostatic intraepithelial neoplasia. Knockdown of SET induced significant reductions in tumorgenesis both in murine and human xenograft models. To further validate SET as a therapeutic target, we conducted in vitro and in vivo treatments using OP449 - a recently characterized PP2A-activating drug (PAD). OP449 elicits robust anti-cancer effects inhibiting growth in a panel of enzalutamide resistant prostate cancer cell lines. Using the Pten conditional deletion mouse model of prostate cancer, OP449 potently inhibited PI3K-Akt signaling and impeded CRPC progression. Collectively, our data supports a critical role for the SET-PP2A signaling axis in CRPC progression and hormone resistant disease. PMID:26563471

  16. Evolutionary Analysis of the B56 Gene Family of PP2A Regulatory Subunits

    PubMed Central

    Sommer, Lauren M.; Cho, Hyuk; Choudhary, Madhusudan; Seeling, Joni M.

    2015-01-01

    Protein phosphatase 2A (PP2A) is an abundant serine/threonine phosphatase that functions as a tumor suppressor in numerous cell-cell signaling pathways, including Wnt, myc, and ras. The B56 subunit of PP2A regulates its activity, and is encoded by five genes in humans. B56 proteins share a central core domain, but have divergent amino- and carboxy-termini, which are thought to provide isoform specificity. We performed phylogenetic analyses to better understand the evolution of the B56 gene family. We found that B56 was present as a single gene in eukaryotes prior to the divergence of animals, fungi, protists, and plants, and that B56 gene duplication prior to the divergence of protostomes and deuterostomes led to the origin of two B56 subfamilies, B56αβε and B56γδ. Further duplications led to three B56αβε genes and two B56γδ in vertebrates. Several nonvertebrate B56 gene names are based on distinct vertebrate isoform names, and would best be renamed. B56 subfamily genes lack significant divergence within primitive chordates, but each became distinct in complex vertebrates. Two vertebrate lineages have undergone B56 gene loss, Xenopus and Aves. In Xenopus, B56δ function may be compensated for by an alternatively spliced transcript, B56δ/γ, encoding a B56δ-like amino-terminal region and a B56γ core. PMID:25950761

  17. Evolutionary Analysis of the B56 Gene Family of PP2A Regulatory Subunits.

    PubMed

    Sommer, Lauren M; Cho, Hyuk; Choudhary, Madhusudan; Seeling, Joni M

    2015-01-01

    Protein phosphatase 2A (PP2A) is an abundant serine/threonine phosphatase that functions as a tumor suppressor in numerous cell-cell signaling pathways, including Wnt, myc, and ras. The B56 subunit of PP2A regulates its activity, and is encoded by five genes in humans. B56 proteins share a central core domain, but have divergent amino- and carboxy-termini, which are thought to provide isoform specificity. We performed phylogenetic analyses to better understand the evolution of the B56 gene family. We found that B56 was present as a single gene in eukaryotes prior to the divergence of animals, fungi, protists, and plants, and that B56 gene duplication prior to the divergence of protostomes and deuterostomes led to the origin of two B56 subfamilies, B56αβε and B56γδ. Further duplications led to three B56αβε genes and two B56γδ in vertebrates. Several nonvertebrate B56 gene names are based on distinct vertebrate isoform names, and would best be renamed. B56 subfamily genes lack significant divergence within primitive chordates, but each became distinct in complex vertebrates. Two vertebrate lineages have undergone B56 gene loss, Xenopus and Aves. In Xenopus, B56δ function may be compensated for by an alternatively spliced transcript, B56δ/γ, encoding a B56δ-like amino-terminal region and a B56γ core.

  18. PP2A phosphatase acts upon SAS-5 to ensure centriole formation in C. elegans embryos.

    PubMed

    Kitagawa, Daiju; Flückiger, Isabelle; Polanowska, Jolanta; Keller, Debora; Reboul, Jérôme; Gönczy, Pierre

    2011-04-19

    Centrosome duplication occurs once per cell cycle and ensures that the two resulting centrosomes assemble a bipolar mitotic spindle. Centriole formation is fundamental for centrosome duplication. In Caenorhabditis elegans, the evolutionarily conserved proteins SPD-2, ZYG-1, SAS-6, SAS-5, and SAS-4 are essential for centriole formation, but how they function is not fully understood. Here, we demonstrate that Protein Phosphatase 2A (PP2A) is also critical for centriole formation in C. elegans embryos. We find that PP2A subunits genetically and physically interact with the SAS-5/SAS-6 complex. Furthermore, we show that PP2A-mediated dephosphorylation promotes centriolar targeting of SAS-5 and ensures SAS-6 delivery to the site of centriole assembly. We find that PP2A is similarly needed for the presence of HsSAS-6 at centrioles and for centriole formation in human cells. These findings lead us to propose that PP2A-mediated loading of SAS-6 proteins is critical at the onset of centriole formation.

  19. PP2A as a master regulator of the cell cycle

    PubMed Central

    Wlodarchak, Nathan; Xing, Yongna

    2016-01-01

    Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases. PMID:26906453

  20. Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism.

    PubMed

    Galbo, Thomas; Olsen, Grith Skytte; Quistorff, Bjørn; Nishimura, Erica

    2011-01-01

    In type 2 Diabetes (T2D) free fatty acids (FFAs) in plasma are increased and hepatic insulin resistance is "selective", in the sense that the insulin-mediated decrease of glucose production is blunted while insulin's effect on stimulating lipogenesis is maintained. We investigated the molecular mechanisms underlying this pathogenic paradox. Primary rat hepatocytes were exposed to palmitate for twenty hours. To establish the physiological relevance of the in vitro findings, we also studied insulin-resistant Zucker Diabetic Fatty (ZDF) rats. While insulin-receptor phosphorylation was unaffected, activation of Akt and inactivation of the downstream targets Glycogen synthase kinase 3α (Gsk3α and Forkhead box O1 (FoxO1) was inhibited in palmitate-exposed cells. Accordingly, dose-response curves for insulin-mediated suppression of the FoxO1-induced gluconeogenic genes and for de novo glucose production were right shifted, and insulin-stimulated glucose oxidation and glycogen synthesis were impaired. In contrast, similar to findings in human T2D, the ability of insulin to induce triglyceride (TG) accumulation and transcription of the enzymes that catalyze de novo lipogenesis and TG assembly was unaffected. Insulin-induction of these genes could, however, be blocked by inhibition of the atypical PKCs (aPKCs). The activity of the Akt-inactivating Protein Phosphatase 2A (PP2A) was increased in the insulin-resistant cells. Furthermore, inhibition of PP2A by specific inhibitors increased insulin-stimulated activation of Akt and phosphorylation of FoxO1 and Gsk3α. Finally, PP2A mRNA levels were increased in liver, muscle and adipose tissue, while PP2A activity was increased in liver and muscle tissue in insulin-resistant ZDF rats. In conclusion, our findings indicate that FFAs may cause a selective impairment of insulin action upon hepatic glucose metabolism by increasing PP2A activity. PMID:22087313

  1. PP2A regulates kinetochore-microtubule attachment during meiosis I in oocyte.

    PubMed

    Tang, An; Shi, Peiliang; Song, Anying; Zou, Dayuan; Zhou, Yue; Gu, Pengyu; Huang, Zan; Wang, Qinghua; Lin, Zhaoyu; Gao, Xiang

    2016-06-01

    Studies using in vitro cultured oocytes have indicated that the protein phosphatase 2A (PP2A), a major serine/threonine protein phosphatase, participates in multiple steps of meiosis. Details of oocyte maturation regulation by PP2A remain unclear and an in vivo model can provide more convincing information. Here, we inactivated PP2A by mutating genes encoding for its catalytic subunits (PP2Acs) in mouse oocytes. We found that eliminating both PP2Acs caused female infertility. Oocytes lacking PP2Acs failed to complete 1(st) meiotic division due to chromosome misalignment and abnormal spindle assembly. In mitosis, PP2A counteracts Aurora kinase B/C (AurkB/C) to facilitate correct kinetochore-microtubule (KT-MT) attachment. In meiosis I in oocyte, we found that PP2Ac deficiency destabilized KT-MT attachments. Chemical inhibition of AurkB/C in PP2Ac-null oocytes partly restored the formation of lateral/merotelic KT-MT attachments but not correct KT-MT attachments. Taken together, our findings demonstrate that PP2Acs are essential for chromosome alignments and regulate the formation of correct KT-MT attachments in meiosis I in oocytes.

  2. The mitotic PP2A regulator ENSA/ARPP-19 is remarkably conserved across plants and most eukaryotes.

    PubMed

    Labandera, Anne-Marie; Vahab, Ahmad R; Chaudhuri, Sibapriya; Kerk, David; Moorhead, Greg B G

    2015-03-20

    Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase of eukaryotes. PP2A containing the B55 subunit is a key regulator of mitosis and must be inhibited by phosphorylated α-endosulfine (ENSA) or cyclic AMP-regulated 19 kDa phosphoprotein (ARPP-19) to allow passage through mitosis. Exit from mitosis then requires dephosphorylation of ENSA/ARPP-19 to relieve inhibition of PP2A/B55. ENSA/ARPP-19 has been characterized in several vertebrates and budding yeast, but little is known about its presence in plants and the majority of other eukaryotes. Here we show that three isoforms of ENSA/ARPP-19 are present in the Arabidopsis thaliana genome with distinct expression profiles across various plant tissues. The ENSA/ARPP-19 proteins, and in particular their key inhibitory sequence FDSGDY (FDSADW in plants), is remarkably conserved across plants and most eukaryotes suggesting an ancient origin and conserved function to control PP2A activity.

  3. Capsaicin inhibits the Wnt/β-catenin signaling pathway by down-regulating PP2A.

    PubMed

    Park, Dong-Seok; Yoon, Gang-Ho; Lee, Hyun-Shik; Choi, Sun-Cheol

    2016-09-01

    Xenopus embryo serves as an ideal model for teratogenesis assays to examine the effects of any substances on the cellular processes critical for early development and adult tissue homeostasis. In our chemical library screening with frog embryo, capsaicin was found to repress the Wnt/β-catenin signaling. Depending on the stages at which embryos became exposed to capsaicin, it could disrupt formation of dorsal or posterior body axis of embryo, which is associated with inhibition of maternal or zygotic Wnt signal in early development. In agreement with these phenotypes, capsaicin suppressed the expression of Wnt target genes such as Siamois and Chordin in the organizer region of embryo and in Wnt signals-stimulated tissue explants. In addition, the cellular level of β-catenin, a key component of Wnt pathway, was down-regulated in capsaicin-treated embryonic cells. Unlike wild-type β-catenin, its non-phosphorylatable mutant in which serine and threonine residues phosphorylated by GSK3 are substituted with alanine was not destabilized by capsaicin, indicative of the effect of this chemical on the phosphorylation status of β-catenin. In support of this, capsaicin up-regulated the level of GSK3- or CK1-phosphorylated β-catenin, concomitantly lowering that of its de-phosphorylated version. Notably, capsaicin augmented the phosphorylation of a phosphatase, PP2A at tyrosine 307, suggesting its repression of the enzymatic activity of the phosphatase. Furthermore, capsaicin still enhanced β-catenin phosphorylation in cells treated with a GSK3 inhibitor, LiCl but not in those treated with a phosphatase inhibitor, okadaic acid. Together, these results indicate that capsaicin inhibits the patterning of the dorso-ventral and anterior-posterior body axes of embryo by repressing PP2A and thereby down-regulating the Wnt/β-catenin signaling. PMID:27318088

  4. A protein phosphatase 2A (PP2A) inhibition assay using a recombinant enzyme for rapid detection of microcystins.

    PubMed

    Ikehara, Tsuyoshi; Imamura, Shihoko; Oshiro, Naomasa; Ikehara, Satsuki; Shinjo, Fukiko; Yasumoto, Takeshi

    2008-06-15

    Worldwide blooms of toxic cyanobacteria (blue-green algae) commonly occur in freshwater, often in drinking water sources, necessitating routine monitoring of water quality. Microcystin-LR and related cyanobacterial toxins strongly inhibit protein phosphatase 2A (PP2A) and are therefore assayable by measuring the extent of PP2A inhibition. In this study, we evaluated the suitability of the catalytic subunit of recombinant PP2A (rPP2Ac) expressed with a baculovirus system for use in a microplate microcystin assay. Five microcystin analogs, microcystin-LR, -RR, -YR, -LF, and -LW, and nodularin strongly inhibited rPP2Ac activity with IC(50) values of 0.048, 0.072, 0.147, 0.096, 0.114, and 0.54 nM, respectively. Microcystin-LR in a water sample could be assayed from 0.005 to 5 ng/ml. The assay could detect the toxin at a far lower level than required by the World Health Organization for regulation of microcystin-LR or its equivalent (1 microg/L). Pretreatment or concentration of water samples with low toxin concentrations was not necessary. The microplate assay using rPP2Ac was more sensitive than an enzyme-linked immunosorbent assay (ELISA) method and a cytotoxicity assay. The genetically engineered rPP2Ac was more stable than a commercially available dimeric enzyme, producing accurate and reproducible results. Our results confirm that the rPP2Ac we prepared is an excellent tool for detecting and quantifying microcystins in water.

  5. A protein phosphatase 2A (PP2A) inhibition assay using a recombinant enzyme for rapid detection of microcystins.

    PubMed

    Ikehara, Tsuyoshi; Imamura, Shihoko; Oshiro, Naomasa; Ikehara, Satsuki; Shinjo, Fukiko; Yasumoto, Takeshi

    2008-06-15

    Worldwide blooms of toxic cyanobacteria (blue-green algae) commonly occur in freshwater, often in drinking water sources, necessitating routine monitoring of water quality. Microcystin-LR and related cyanobacterial toxins strongly inhibit protein phosphatase 2A (PP2A) and are therefore assayable by measuring the extent of PP2A inhibition. In this study, we evaluated the suitability of the catalytic subunit of recombinant PP2A (rPP2Ac) expressed with a baculovirus system for use in a microplate microcystin assay. Five microcystin analogs, microcystin-LR, -RR, -YR, -LF, and -LW, and nodularin strongly inhibited rPP2Ac activity with IC(50) values of 0.048, 0.072, 0.147, 0.096, 0.114, and 0.54 nM, respectively. Microcystin-LR in a water sample could be assayed from 0.005 to 5 ng/ml. The assay could detect the toxin at a far lower level than required by the World Health Organization for regulation of microcystin-LR or its equivalent (1 microg/L). Pretreatment or concentration of water samples with low toxin concentrations was not necessary. The microplate assay using rPP2Ac was more sensitive than an enzyme-linked immunosorbent assay (ELISA) method and a cytotoxicity assay. The genetically engineered rPP2Ac was more stable than a commercially available dimeric enzyme, producing accurate and reproducible results. Our results confirm that the rPP2Ac we prepared is an excellent tool for detecting and quantifying microcystins in water. PMID:18430448

  6. Binding Properties of the N-Acetylglucosamine and High-Mannose N-Glycan PP2-A1 Phloem Lectin in Arabidopsis[W

    PubMed Central

    Beneteau, Julie; Renard, Denis; Marché, Laurent; Douville, Elise; Lavenant, Laurence; Rahbé, Yvan; Dupont, Didier; Vilaine, Françoise; Dinant, Sylvie

    2010-01-01

    Phloem Protein2 (PP2) is a component of the phloem protein bodies found in sieve elements. We describe here the lectin properties of the Arabidopsis (Arabidopsis thaliana) PP2-A1. Using a recombinant protein produced in Escherichia coli, we demonstrated binding to N-acetylglucosamine oligomers. Glycan array screening showed that PP2-A1 also bound to high-mannose N-glycans and 9-acyl-N-acetylneuraminic sialic acid. Fluorescence spectroscopy-based titration experiments revealed that PP2-A1 had two classes of binding site for N,N′,N″-triacetylchitotriose, a low-affinity site and a high-affinity site, promoting the formation of protein dimers. A search for structural similarities revealed that PP2-A1 aligned with the Cbm4 and Cbm22-2 carbohydrate-binding modules, leading to the prediction of a β-strand structure for its conserved domain. We investigated whether PP2-A1 interacted with phloem sap glycoproteins by first characterizing abundant Arabidopsis phloem sap proteins by liquid chromatography-tandem mass spectrometry. Then we demonstrated that PP2-A1 bound to several phloem sap proteins and that this binding was not completely abolished by glycosidase treatment. As many plant lectins have insecticidal activity, we also assessed the effect of PP2-A1 on weight gain and survival in aphids. Unlike other mannose-binding lectins, when added to an artificial diet, recombinant PP2-A1 had no insecticidal properties against Acyrthosiphon pisum and Myzus persicae. However, at mid-range concentrations, the protein affected weight gain in insect nymphs. These results indicate the presence in PP2-A1 of several carbohydrate-binding sites, with potentially different functions in the trafficking of endogenous proteins or in interactions with phloem-feeding insects. PMID:20442276

  7. Characterization of B56γ tumor-associated mutations reveals mechanisms for inactivation of B56γ-PP2A

    PubMed Central

    Nobumori, Yumiko; Shouse, Geoffrey P.; Wu, Yong; Lee, Kyu Joon; Shen, Binghui; Liu, Xuan

    2013-01-01

    A subset of the hetero-trimeric PP2A serine/threonine phosphatases that contain B56, and in particular B56γ, can function as tumor suppressors. In response to DNA damage, the B56γ subunit complexes with the PP2A AC core (B56γ–PP2A) and binds p53. This event promotes PP2A-mediated dephosphorylation of p53 at Thr55, which induces expression of p21, and the subsequent inhibition of cell proliferation and transformation. In addition to dephosphorylation of p53, B56γ–PP2A also inhibits cell proliferation and transformation by a second, as yet unknown, p53-independent mechanism. Here, we characterized a panel of B56γ mutations found in human cancer samples and cancer cell lines and showed that the mutations lost B56γ tumor-suppressive activity by two distinct mechanisms; one is by disrupting interaction with the PP2A AC core and the other with B56γ–PP2A substrates (p53 and unknown proteins). For the first mechanism, due to the absence of the C catalytic subunit in the complex, the mutants would be unable to mediate dephosphorylation of any substrate and thus failed to promote both p53-dependent and p53–independent tumor-suppressive function of B56γ-PP2A. For the second mechanism, the mutants lacked specific substrate interactions and thus partially lost tumor-suppressive function, i.e. either p53-dependent or p53-independent contingent upon which substrate binding was affected. Overall the data provide new insight into the mechanisms for inactivation of tumor-suppressive function of B56γ and further indicate the importance of B56γ-PP2A in tumorigenesis. PMID:23723076

  8. Greatwall-phosphorylated Endosulfine is both an inhibitor and a substrate of PP2A-B55 heterotrimers

    PubMed Central

    Williams, Byron C; Filter, Joshua J; Blake-Hodek, Kristina A; Wadzinski, Brian E; Fuda, Nicholas J; Shalloway, David; Goldberg, Michael L

    2014-01-01

    During M phase, Endosulfine (Endos) family proteins are phosphorylated by Greatwall kinase (Gwl), and the resultant pEndos inhibits the phosphatase PP2A-B55, which would otherwise prematurely reverse many CDK-driven phosphorylations. We show here that PP2A-B55 is the enzyme responsible for dephosphorylating pEndos during M phase exit. The kinetic parameters for PP2A-B55’s action on pEndos are orders of magnitude lower than those for CDK-phosphorylated substrates, suggesting a simple model for PP2A-B55 regulation that we call inhibition by unfair competition. As the name suggests, during M phase PP2A-B55’s attention is diverted to pEndos, which binds much more avidly and is dephosphorylated more slowly than other substrates. When Gwl is inactivated during the M phase-to-interphase transition, the dynamic balance changes: pEndos dephosphorylated by PP2A-B55 cannot be replaced, so the phosphatase can refocus its attention on CDK-phosphorylated substrates. This mechanism explains simultaneously how PP2A-B55 and Gwl together regulate pEndos, and how pEndos controls PP2A-B55. DOI: http://dx.doi.org/10.7554/eLife.01695.001 PMID:24618897

  9. Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway

    SciTech Connect

    Chuang, Jian-Ying; Hung, Jan-Jong

    2011-04-15

    Highlights: {yields} Overexpression of HDAC1 induces Sp1 deacetylation and raises Sp1/p300 complex formation to bind to PP2Ac promoter. {yields} Overexpression of HDAC1 strongly inhibits the phosphorylation of pRb through up-regulation of PP2A. {yields} Overexpressed HDAC1 restrains cell proliferaction and induces cell senescence though a novel Sp1/PP2A/pRb pathway. -- Abstract: Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.

  10. A PP2A-B55 recognition signal controls substrate dephosphorylation kinetics during mitotic exit.

    PubMed

    Cundell, Michael J; Hutter, Lukas H; Nunes Bastos, Ricardo; Poser, Elena; Holder, James; Mohammed, Shabaz; Novak, Bela; Barr, Francis A

    2016-08-29

    PP2A-B55 is one of the major phosphatases regulating cell division. Despite its importance for temporal control during mitotic exit, how B55 substrates are recognized and differentially dephosphorylated is unclear. Using phosphoproteomics combined with kinetic modeling to extract B55-dependent rate constants, we have systematically identified B55 substrates and assigned their temporal order in mitotic exit. These substrates share a bipartite polybasic recognition determinant (BPR) flanking a Cdk1 phosphorylation site. Experiments and modeling show that dephosphorylation rate is encoded into B55 substrates, including its inhibitor ENSA, by cooperative action of basic residues within the BPR. A complementary acidic surface on B55 decodes this signal, supporting a cooperative electrostatic mechanism for substrate selection. A further level of specificity is encoded into B55 substrates because B55 displays selectivity for phosphothreonine. These simple biochemical properties, combined with feedback control of B55 activity by the phosphoserine-containing substrate/inhibitor ENSA, can help explain the temporal sequence of events during exit from mitosis. PMID:27551054

  11. A PP2A-B55 recognition signal controls substrate dephosphorylation kinetics during mitotic exit.

    PubMed

    Cundell, Michael J; Hutter, Lukas H; Nunes Bastos, Ricardo; Poser, Elena; Holder, James; Mohammed, Shabaz; Novak, Bela; Barr, Francis A

    2016-08-29

    PP2A-B55 is one of the major phosphatases regulating cell division. Despite its importance for temporal control during mitotic exit, how B55 substrates are recognized and differentially dephosphorylated is unclear. Using phosphoproteomics combined with kinetic modeling to extract B55-dependent rate constants, we have systematically identified B55 substrates and assigned their temporal order in mitotic exit. These substrates share a bipartite polybasic recognition determinant (BPR) flanking a Cdk1 phosphorylation site. Experiments and modeling show that dephosphorylation rate is encoded into B55 substrates, including its inhibitor ENSA, by cooperative action of basic residues within the BPR. A complementary acidic surface on B55 decodes this signal, supporting a cooperative electrostatic mechanism for substrate selection. A further level of specificity is encoded into B55 substrates because B55 displays selectivity for phosphothreonine. These simple biochemical properties, combined with feedback control of B55 activity by the phosphoserine-containing substrate/inhibitor ENSA, can help explain the temporal sequence of events during exit from mitosis.

  12. Phosphoregulation of MgcRacGAP in mitosis involves Aurora B and Cdk1 protein kinases and the PP2A phosphatase.

    PubMed

    Touré, Aminata; Mzali, Rym; Liot, Caroline; Seguin, Laetitia; Morin, Laurence; Crouin, Catherine; Chen-Yang, Ilin; Tsay, Yeou-Guang; Dorseuil, Olivier; Gacon, Gérard; Bertoglio, Jacques

    2008-04-01

    MgcRacGAP, a Rho GAP essential to cytokinesis, works both as a Rho GTPase regulator and as a scaffolding protein. MgcRacGAP interacts with MKLP1 to form the centralspindlin complex and associates with the RhoGEF Ect2. The GAP activity of MgcRacGAP is regulated by Aurora B phosphorylation. We have isolated B56epsilon, a PP2A regulatory subunit, as a new MgcRacGAP partner. We report here that (i) MgcRacGAP is phosphorylated by Aurora B and Cdk1, (ii) PP2A dephosphorylates Aurora B and Cdk1 phosphorylated sites and (iii) inhibition of PP2A abrogates MgcRacGAP/Ect2 interaction. Therefore, PP2A may regulate cytokinesis by dephosphorylating MgcRacGAP and its interacting partners.

  13. Standardised extract of Bacopa monniera (CDRI-08) improves contextual fear memory by differentially regulating the activity of histone acetylation and protein phosphatases (PP1α, PP2A) in hippocampus.

    PubMed

    Preethi, Jayakumar; Singh, Hemant K; Venkataraman, Jois Shreyas; Rajan, Koilmani Emmanuvel

    2014-05-01

    Contextual fear conditioning is a paradigm for investigating cellular mechanisms involved in hippocampus-dependent memory. Earlier, we showed that standardised extract of Bacopa monniera (CDRI-08) improves hippocampus-dependent learning in postnatal rats by elevating the level of serotonin (5-hydroxytryptamine, 5-HT), activate 5-HT3A receptors, and cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein. In this study, we have further examined the molecular mechanism of CDRI-08 in hippocampus-dependent memory and compared to the histone deacetylase (HDACs) inhibitor sodium butyrate (NaB). To assess the hippocampus-dependent memory, wistar rat pups were subjected to contextual fear conditioning (CFC) following daily (postnatal days 15-29) administration of vehicle solution (0.5 % gum acacia + 0.9 % saline)/CDRI-08 (80 mg/kg, p.o.)/NaB (1.2 g/kg in PBS, i.p.). CDRI-08/NaB treated group showed enhanced freezing behavior compared to control group when re-exposed to the same context. Administration of CDRI-08/NaB resulted in activation of extracellular signal-regulated kinase ERK/CREB signaling cascade and up-regulation of p300, Ac-H3 and Ac-H4 levels, and down-regulation of HDACs (1, 2) and protein phosphatases (PP1α, PP2A) in hippocampus following CFC. This would subsequently result in an increased brain-derived neurotrophic factor (Bdnf) (exon IV) mRNA in hippocampus. Altogether, our results indicate that CDRI-08 enhances hippocampus-dependent contextual memory by differentially regulating histone acetylation and protein phosphatases in hippocampus.

  14. Standardised extract of Bacopa monniera (CDRI-08) improves contextual fear memory by differentially regulating the activity of histone acetylation and protein phosphatases (PP1α, PP2A) in hippocampus.

    PubMed

    Preethi, Jayakumar; Singh, Hemant K; Venkataraman, Jois Shreyas; Rajan, Koilmani Emmanuvel

    2014-05-01

    Contextual fear conditioning is a paradigm for investigating cellular mechanisms involved in hippocampus-dependent memory. Earlier, we showed that standardised extract of Bacopa monniera (CDRI-08) improves hippocampus-dependent learning in postnatal rats by elevating the level of serotonin (5-hydroxytryptamine, 5-HT), activate 5-HT3A receptors, and cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein. In this study, we have further examined the molecular mechanism of CDRI-08 in hippocampus-dependent memory and compared to the histone deacetylase (HDACs) inhibitor sodium butyrate (NaB). To assess the hippocampus-dependent memory, wistar rat pups were subjected to contextual fear conditioning (CFC) following daily (postnatal days 15-29) administration of vehicle solution (0.5 % gum acacia + 0.9 % saline)/CDRI-08 (80 mg/kg, p.o.)/NaB (1.2 g/kg in PBS, i.p.). CDRI-08/NaB treated group showed enhanced freezing behavior compared to control group when re-exposed to the same context. Administration of CDRI-08/NaB resulted in activation of extracellular signal-regulated kinase ERK/CREB signaling cascade and up-regulation of p300, Ac-H3 and Ac-H4 levels, and down-regulation of HDACs (1, 2) and protein phosphatases (PP1α, PP2A) in hippocampus following CFC. This would subsequently result in an increased brain-derived neurotrophic factor (Bdnf) (exon IV) mRNA in hippocampus. Altogether, our results indicate that CDRI-08 enhances hippocampus-dependent contextual memory by differentially regulating histone acetylation and protein phosphatases in hippocampus. PMID:24610280

  15. Functional dissection of Timekeeper (Tik) implicates opposite roles for CK2 and PP2A during Drosophila neurogenesis.

    PubMed

    Kunttas-Tatli, Ezgi; Bose, Anasua; Kahali, Bhaskar; Bishop, Clifton P; Bidwai, Ashok P

    2009-10-01

    Repression by E(spl)M8 during inhibitory Notch (N) signaling (lateral inhibition) is regulated, in part, by protein kinase CK2, but the involvement of a phosphatase has been unclear. The studies we report here employ Tik, a unique dominant-negative (DN) mutation in the catalytic subunit of CK2, in a Gal4-UAS based assay for impaired lateral inhibition. Specifically, overexpression of Tik elicits ectopic bristles in N(+) flies and suppresses the retinal defects of the gain-of-function allele N(spl). Functional dissection of the two substitutions in Tik (M(161)K and E(165)D), suggests that both mutations contribute to its DN effects. While the former replacement compromises CK2 activity by impairing ATP-binding, the latter affects a conserved motif implicated in binding the phosphatase PP2A. Accordingly, overexpression of microtubule star (mts), the PP2A catalytic subunit closely mimics the phenotypic effects of loss of CK2 functions in N(+) or N(spl) flies, and elicits notched wings, a characteristic of N mutations. Our findings suggest antagonistic roles for CK2 and PP2A during inhibitory N signaling.

  16. Functional Genetic Polymorphisms in PP2A Subunit Genes Confer Increased Risks of Lung Cancer in Southern and Eastern Chinese

    PubMed Central

    Yang, Rongrong; Yang, Lei; Qiu, Fuman; Zhang, Lisha; Wang, Hui; Yang, Xiaorong; Deng, Jieqiong; Fang, Wenxiang; Zhou, Yifeng; Lu, Jiachun

    2013-01-01

    Protein phosphatase-2A (PP2A) is one of the major cellular serine-threonine phosphatases and functions as a tumor suppressor that negatively regulates the activity of some oncogenic kinases. Recent studies have reported that PP2A expression was suppressed during lung carcinogenesis, we there hypothesized that the single nucleotide polymorphisms (SNPs) in PP2A subunit genes may affect PP2A function and thus contribute to lung cancer susceptibility. In a two-stage case-control study with a total of 1559 lung cancer patients and 1679 controls, we genotyped eight putative functional SNPs and one identified functional SNP (i.e., rs11453459) in seven major PP2A subunits (i.e., PPP2R1A, PPP2R1B, PPP2CA, PPP2R2A, PPP2R2B, PPP2R5C, PPP2R5E) in southern and eastern Chinese. We found that rs11453459G (-G/GG) variant genotypes of PPP2R1A and the rs1255722AA variant genotype of PPP2R5E conferred increased risks of lung cancer (rs11453459, -G/GG vs. –: OR = 1.31, 95% CI = 1.13–1.51; rs1255722, AA vs. AG/GG: OR = 1.27, 95% CI = 1.07–1.51). After combined the two variants, the number of the adverse genotypes was positively associated with lung cancer risk in a dose-response manner (Ptrend  = 5.63×10−6). Further functional assay showed that lung cancer tissues carrying rs1255722AA variant genotype had a significantly lower mRNA level of PPP2R5E compared with tissues carrying GG/GA genotypes. However, such effect was not observed for the other SNPs and other combinations. Our findings suggested that the two functional variants in PPP2R1A and PPP2R5E and their combination are associated with lung cancer risk in Chinese, which may be valuable biomarkers to predict risk of lung cancer. PMID:24204789

  17. Compression regulates gene expression of chondrocytes through HDAC4 nuclear relocation via PP2A-dependent HDAC4 dephosphorylation.

    PubMed

    Chen, Chongwei; Wei, Xiaochun; Wang, Shaowei; Jiao, Qiang; Zhang, Yang; Du, Guoqing; Wang, Xiaohu; Wei, Fangyuan; Zhang, Jianzhong; Wei, Lei

    2016-07-01

    Biomechanics plays a critical role in the modulation of chondrocyte function. The mechanisms by which mechanical loading is transduced into intracellular signals that regulate chondrocyte gene expression remain largely unknown. Histone deacetylase 4 (HDAC4) is specifically expressed in chondrocytes. Mice lacking HDAC4 display chondrocyte hypertrophy, ectopic and premature ossification, and die early during the perinatal period. HDAC4 has a remarkable ability to translocate between the cell's cytoplasm and nucleus. It has been established that subcellular relocation of HDAC4 plays a critical role in chondrocyte differentiation and proliferation. However, it remains unclear whether subcellular relocation of HDAC4 in chondrocytes can be induced by mechanical loading. In this study, we first report that compressive loading induces HDAC4 relocation from the cytoplasm to the nucleus of chondrocytes via stimulation of Ser/Thr-phosphoprotein phosphatases 2A (PP2A) activity, which results in dephosphorylation of HDAC4. Dephosphorylated HDAC4 relocates to the nucleus to achieve transcriptional repression of Runx2 and regulates chondrocyte gene expression in response to compression. Our results elucidate the mechanism by which mechanical compression regulates chondrocyte gene expression through HDAC4 relocation from the cell's cytoplasm to the nucleus via PP2A-dependent HDAC4 dephosphorylation.

  18. Overexpression of PP2A inhibitor SET oncoprotein is associated with tumor progression and poor prognosis in human non-small cell lung cancer

    PubMed Central

    Liu, Hao; Gu, Yixue; Wang, Hongsheng; Yin, Jiang; Zheng, Guopei; Zhang, Zhijie; Lu, Minyin; Wang, Chenkun; He, Zhimin

    2015-01-01

    SET oncoprotein is an endogenous inhibitor of protein phosphatase 2A (PP2A), and SET-mediated PP2A inhibition is an important regulatory mechanism for promoting cancer initiation and progression of several types of human leukemia disease. However, its potential relevance in solid tumors as non-small cell lung cancer (NSCLC) remains mostly unknown. In this study, we showed that SET was evidently overexpressed in human NSCLC cell lines and NSCLC tissues. Clinicopathologic analysis showed that SET expression was significantly correlated with clinical stage (p < 0.001), and lymph node metastasis (p < 0.05). Kaplan-Meier analysis revealed that patients with high SET expression had poorer overall survival rates than those with low SET expression. Moreover, knockdown of SET in NSCLC cells resulted in attenuated proliferative and invasive abilities. The biological effect of SET on proliferation and invasion was mediated by the inhibition of the PP2A, which in turn, activation of AKT and ERK, increased the expression of cyclin D1 and MMP9, and decreased the expression of p27. Furthermore, we observed that restoration of PP2A using SET antagonist FTY720 impaired proliferative and invasive potential in vitro, as well as inhibited tumor growth in vivo of NSCLC cells. Taken together, SET oncoprotein plays an important role in NSCLC progression, which could serve as a potential prognosis marker and a novel therapeutic target for NSCLC patients. PMID:25945834

  19. A triangular connection between Cyclin G, PP2A and Akt1 in the regulation of growth and metabolism in Drosophila

    PubMed Central

    Fischer, Patrick; Preiss, Anette; Nagel, Anja C.

    2016-01-01

    ABSTRACT Size and weight control is a tightly regulated process, involving the highly conserved Insulin receptor/target of rapamycin (InR/TOR) signaling cascade. We recently identified Cyclin G (CycG) as an important modulator of InR/TOR signaling activity in Drosophila. cycG mutant flies are underweight and show a disturbed fat metabolism resembling TOR mutants. In fact, InR/TOR signaling activity is disturbed in cycG mutants at the level of Akt1, the central kinase linking InR and TORC1. Akt1 is negatively regulated by protein phosphatase PP2A. Notably the binding of the PP2A B′-regulatory subunit Widerborst (Wdb) to Akt1 is differentially regulated in cycG mutants, presumably by a direct interaction of CycG and Wdb. Since the metabolic defects of cycG mutant animals are abrogated by a concomitant loss of Wdb, CycG presumably influences Akt1 activity at the PP2A nexus. Here we show that Well rounded (Wrd), another B' subunit of PP2A in Drosophila, binds CycG similar to Wdb, and that its loss ameliorates some, but not all, of the metabolic defects of cycG mutants. We propose a model, whereby the binding of CycG to a particular B′-regulatory subunit influences the tissue specific activity of PP2A, required for the fine tuning of the InR/TOR signaling cascade in Drosophila. PMID:26980713

  20. PP2A(Cdc55)'s role in reductional chromosome segregation during achiasmate meiosis in budding yeast is independent of its FEAR function.

    PubMed

    Kerr, Gary W; Wong, Jin Huei; Arumugam, Prakash

    2016-07-26

    PP2A(Cdc55) is a highly conserved serine-threonine protein phosphatase that is involved in diverse cellular processes. In budding yeast, meiotic cells lacking PP2A(Cdc55) activity undergo a premature exit from meiosis I which results in a failure to form bipolar spindles and divide nuclei. This defect is largely due to its role in negatively regulating the Cdc Fourteen Early Anaphase Release (FEAR) pathway. PP2A(Cdc55) prevents nucleolar release of the Cdk (Cyclin-dependent kinase)-antagonising phosphatase Cdc14 by counteracting phosphorylation of the nucleolar protein Net1 by Cdk. CDC55 was identified in a genetic screen for monopolins performed by isolating suppressors of spo11Δ spo12Δ lethality suggesting that Cdc55 might have a role in meiotic chromosome segregation. We investigated this possibility by isolating cdc55 alleles that suppress spo11Δ spo12Δ lethality and show that this suppression is independent of PP2A(Cdc55)'s FEAR function. Although the suppressor mutations in cdc55 affect reductional chromosome segregation in the absence of recombination, they have no effect on chromosome segregation during wild type meiosis. We suggest that Cdc55 is required for reductional chromosome segregation during achiasmate meiosis and this is independent of its FEAR function.

  1. Total synthesis and evaluation of cytostatin, its C10-C11 diastereomers, and additional key analogues: impact on PP2A inhibition.

    PubMed

    Lawhorn, Brian G; Boga, Sobhana B; Wolkenberg, Scott E; Colby, David A; Gauss, Carla-Maria; Swingle, Mark R; Amable, Lauren; Honkanen, Richard E; Boger, Dale L

    2006-12-27

    The total synthesis of cytostatin, an antitumor agent belonging to the fostriecin family of natural products, is described in full detail. The convergent approach relied on a key epoxide-opening reaction to join the two stereotriad units and a single-step late-stage stereoselective installation of the sensitive (Z,Z,E)-triene through a beta-chelation-controlled nucleophilic addition. The synthetic route provided rapid access to the C4-C6 stereoisomers of the cytostatin lactone, which were prepared and used to define the C4-C6 relative stereochemistry of the natural product. In addition to the natural product, each of the C10-C11 diastereomers of cytostatin was divergently prepared (11 steps from key convergence step) by this route and used to unequivocally confirm the relative and absolute stereochemistry of cytostatin. Each of the cytostatin diastereomers exhibited a reduced activity toward inhibition of PP2A (>100-fold), demonstrating the importance of the presence and stereochemistry of the C10-methyl and C11-hydroxy groups for potent PP2A inhibition. Extensions of the studies provided dephosphocytostatin, sulfocytostatin (a key analogue related to the natural product sultriecin), 11-deshydroxycytostatin, and an analogue lacking the entire C12-C18 (Z,Z,E)-triene segment, which were used to define the magnitude of the C9-phosphate (>4000-fold), C11-alcohol (250-fold), and triene (220-fold) contribution to PP2A inhibition. A model of cytostatin bound to the active site of PP2A is presented, compared to that of fostriecin, which is also presented in detail for the first time, and used to provide insights into the role of the key substituents. Notably, the alpha,beta unsaturated lactone of cytostatin, like that of fostriecin, is projected to serve as a key electrophile, providing a covalent adduct with Cys269 unique to PP2A, contributing to its potency (> or =200-fold for fostriecin) and accounting for its selectivity.

  2. The E3 Ubiquitin Ligase- and Protein Phosphatase 2A (PP2A)-binding Domains of the Alpha4 Protein Are Both Required for Alpha4 to Inhibit PP2A Degradation

    SciTech Connect

    LeNoue-Newton, Michele; Watkins, Guy R.; Zou, Ping; Germane, Katherine L.; McCorvey, Lisa R.; Wadzinski, Brian E.; Spiller, Benjamin W.

    2012-04-30

    Protein phosphatase 2A (PP2A) is regulated through a variety of mechanisms, including post-translational modifications and association with regulatory proteins. Alpha4 is one such regulatory protein that binds the PP2A catalytic subunit (PP2Ac) and protects it from polyubiquitination and degradation. Alpha4 is a multidomain protein with a C-terminal domain that binds Mid1, a putative E3 ubiquitin ligase, and an N-terminal domain containing the PP2Ac-binding site. In this work, we present the structure of the N-terminal domain of mammalian Alpha4 determined by x-ray crystallography and use double electron-electron resonance spectroscopy to show that it is a flexible tetratricopeptide repeat-like protein. Structurally, Alpha4 differs from its yeast homolog, Tap42, in two important ways: (1) the position of the helix containing the PP2Ac-binding residues is in a more open conformation, showing flexibility in this region; and (2) Alpha4 contains a ubiquitin-interacting motif. The effects of wild-type and mutant Alpha4 on PP2Ac ubiquitination and stability were examined in mammalian cells by performing tandem ubiquitin-binding entity precipitations and cycloheximide chase experiments. Our results reveal that both the C-terminal Mid1-binding domain and the PP2Ac-binding determinants are required for Alpha4-mediated protection of PP2Ac from polyubiquitination and degradation.

  3. PP2A-3 interacts with ACR4 and regulates formative cell division in the Arabidopsis root

    PubMed Central

    Yue, Kun; Sandal, Priyanka; Williams, Elisabeth L.; Murphy, Evan; Stes, Elisabeth; Nikonorova, Natalia; Ramakrishna, Priya; Czyzewicz, Nathan; Montero-Morales, Laura; Kumpf, Robert; Lin, Zhefeng; van de Cotte, Brigitte; Iqbal, Mudassar; Van Bel, Michiel; Van De Slijke, Eveline; Meyer, Matthew R.; Gadeyne, Astrid; Zipfel, Cyril; De Jaeger, Geert; Van Montagu, Marc; Van Damme, Daniël; Gevaert, Kris; Rao, A. Gururaj; Beeckman, Tom; De Smet, Ive

    2016-01-01

    In plants, the generation of new cell types and tissues depends on coordinated and oriented formative cell divisions. The plasma membrane-localized receptor kinase ARABIDOPSIS CRINKLY 4 (ACR4) is part of a mechanism controlling formative cell divisions in the Arabidopsis root. Despite its important role in plant development, very little is known about the molecular mechanism with which ACR4 is affiliated and its network of interactions. Here, we used various complementary proteomic approaches to identify ACR4-interacting protein candidates that are likely regulators of formative cell divisions and that could pave the way to unraveling the molecular basis behind ACR4-mediated signaling. We identified PROTEIN PHOSPHATASE 2A-3 (PP2A-3), a catalytic subunit of PP2A holoenzymes, as a previously unidentified regulator of formative cell divisions and as one of the first described substrates of ACR4. Our in vitro data argue for the existence of a tight posttranslational regulation in the associated biochemical network through reciprocal regulation between ACR4 and PP2A-3 at the phosphorylation level. PMID:26792519

  4. Combination treatment with triptolide and hydroxycamptothecin synergistically enhances apoptosis in A549 lung adenocarcinoma cells through PP2A-regulated ERK, p38 MAPKs and Akt signaling pathways

    PubMed Central

    MENG, GUANMIN; WANG, WEI; CHAI, KEQUN; YANG, SUWEN; LI, FANGQIONG; JIANG, KAI

    2015-01-01

    Lung cancer is the leading cause of cancer death worldwide. Recently, two plant-derived drugs triptolide (TP) and hydroxycamptothecin (HCPT) both have shown broad-spectrum anticancer activities. Our previous study documented that combination treatment with these two drugs acted more effectively than mono-therapy, however, the molecular basis underlying the synergistic cytotoxicity remains poorly understood. In this study, we aimed to clarify the molecular mechanism of TP/HCPT anticancer effect in A549 lung adenocarcinoma cells, by investigating the involvement of phosphatase 2A (PP2A) and PP2A-regulated mitogen-activated protein kinases (MAPKs) and Akt signaling pathways. The results showed that TP and HCPT synergistically exerted cytotoxicity in the growth of A549 cells. Combinatorial TP/HCPT treatment significantly enhanced the activation of caspase-3 and -9, Bax/Bcl-2 ratio, release of cytochrome c from mitochondrial and subsequent apoptosis. While the Akt survival pathway was inhibited, ERK and p38 MAPKs were dramatically activated. Furthermore, the activity of PP2A was significantly augmented. Regulation of p38, ERK and Akt by PP2A was demonstrated, by using a specific PP2A inhibitor okadaic acid (OA). Finally, pharmacological inhibitors OA, SB203580, SP600125 and PD98059 confirm the role of PP2A and its substrates ERK, p38 MAPK and Akt in mediating TP/HCPT-induced apoptosis. Taken together, this study provides the first evidence for a synergistic TP/HCPT anti-cancer activity in A549 cells and also supports a critical role of PP2A and PP2A-regulated signaling pathways, providing new insight into the mode of action of TP/HCPT in cancer therapy. PMID:25573072

  5. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response.

    PubMed

    Guillonneau, Maëva; Paris, François; Dutoit, Soizic; Estephan, Hala; Bénéteau, Elise; Huot, Jacques; Corre, Isabelle

    2016-08-01

    Oxidative stress is a leading cause of endothelial dysfunction. The p38 MAPK pathway plays a determinant role in allowing cells to cope with oxidative stress and is tightly regulated by a balanced interaction between p38 protein and its interacting partners. By using a proteomic approach, we identified nucleophosmin (NPM) as a new partner of p38 in HUVECs. Coimmunoprecipitation and microscopic analyses confirmed the existence of a cytosolic nucleophosmin (NPM)/p38 interaction in basal condition. Oxidative stress, which was generated by exposure to 500 µM H2O2, induces a rapid dephosphorylation of NPM at T199 that depends on phosphatase PP2A, another partner of the NPM/p38 complex. Blocking PP2A activity leads to accumulation of NPM-pT199 and to an increased association of NPM with p38. Concomitantly to its dephosphorylation, oxidative stress promotes translocation of NPM to the nucleus to affect the DNA damage response. Dephosphorylated NPM impairs the signaling of oxidative stress-induced DNA damage via inhibition of the phosphorylation of ataxia-telangiectasia mutated and DNA-dependent protein kinase catalytic subunit. Overall, these results suggest that the p38/NPM/PP2A complex acts as a dynamic sensor, allowing endothelial cells to react rapidly to acute oxidative stress.-Guillonneau, M., Paris, F., Dutoit, S., Estephan, H., Bénéteau, E., Huot, J., Corre, I. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response.

  6. PP2A Ligand ITH12246 Protects against Memory Impairment and Focal Cerebral Ischemia in Mice

    PubMed Central

    2013-01-01

    ITH12246 (ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate) is a 1,8-naphthyridine described to feature an interesting neuroprotective profile in in vitro models of Alzheimer’s disease. These effects were proposed to be due in part to a regulatory action on protein phosphatase 2A inhibition, as it prevented binding of its inhibitor okadaic acid. We decided to investigate the pharmacological properties of ITH12246, evaluating its ability to counteract the memory impairment evoked by scopolamine, a muscarinic antagonist described to promote memory loss, as well as to reduce the infarct volume in mice suffering phototrombosis. Prior to conducting these experiments, we confirmed its in vitro neuroprotective activity against both oxidative stress and Ca2+ overload-derived excitotoxicity, using SH-SY5Y neuroblastoma cells and rat hippocampal slices. Using a predictive model of blood-brain barrier crossing, it seems that the passage of ITH12246 is not hindered. Its potential hepatotoxicity was observed only at very high concentrations, from 0.1 mM. ITH12246, at the concentration of 10 mg/kg i.p., was able to improve the memory index of mice treated with scopolamine, from 0.22 to 0.35, in a similar fashion to the well-known Alzheimer’s disease drug galantamine 2.5 mg/kg. On the other hand, ITH12246, at the concentration of 2.5 mg/kg, reduced the phototrombosis-triggered infarct volume by 67%. In the same experimental conditions, 15 mg/kg melatonin, used as control standard, reduced the infarct volume by 30%. All of these findings allow us to consider ITH12246 as a new potential drug for the treatment of neurodegenerative diseases, which would act as a multifactorial neuroprotectant. PMID:23763493

  7. E4orf4 induces PP2A- and Src-dependent cell death in Drosophila melanogaster and at the same time inhibits classic apoptosis pathways

    PubMed Central

    Pechkovsky, Antonina; Lahav, Maoz; Bitman, Eliya; Salzberg, Adi; Kleinberger, Tamar

    2013-01-01

    The adenovirus E4orf4 protein regulates the progression of viral infection, and when expressed alone in mammalian tissue culture cells it induces protein phosphatase 2A (PP2A)-B55– and Src-dependent cell death, which is more efficient in oncogene-transformed cells than in normal cells. This form of cell death is caspase-independent, although it interacts with classic caspase-dependent apoptosis. PP2A-B55–dependent E4orf4-induced toxicity is highly conserved in evolution from yeast to mammalian cells. In this work we investigated E4orf4-induced cell death in a whole multicellular organism, Drosophila melanogaster. We show that E4orf4 induced low levels of cell killing, caused by both caspase-dependent and -independent mechanisms. Drosophila PP2A-B55 (twins/abnormal anaphase resolution) and Src64B contributed additively to this form of cell death. Our results provide insight into E4orf4-induced cell death, demonstrating that in parallel to activating caspase-dependent apoptosis, E4orf4 also inhibited this form of cell death induced by the proapoptotic genes reaper, head involution defective, and grim. The combination of both induction and inhibition of caspase-dependent cell death resulted in low levels of tissue damage that may explain the inefficient cell killing induced by E4orf4 in normal cells in tissue culture. Furthermore, E4orf4 inhibited JNK-dependent cell killing as well. However, JNK inhibition did not impede E4orf4-induced toxicity and even enhanced it, indicating that E4orf4-induced cell killing is a distinctive form of cell death that differs from both JNK- and Rpr/Hid/Grim-induced forms of cell death. PMID:23613593

  8. PP2A function toward mitotic kinases and substrates during the cell cycle

    PubMed Central

    Jeong, Ae Lee; Yang, Young

    2013-01-01

    To maintain cellular homeostasis against the demands of the extracellular environment, a precise regulation of kinases and phosphatases is essential. In cell cycle regulation mechanisms, activation of the cyclin-dependent kinase (CDK1) and cyclin B complex (CDK1:cyclin B) causes a remarkable change in protein phosphorylation. Activation of CDK1:cyclin B is regulated by two auto-amplification loops-CDK1:cyclin B activates Cdc25, its own activating phosphatase, and inhibits Wee1, its own inhibiting kinase. Recent biological evidence has revealed that the inhibition of its counteracting phosphatase activity also occurs, and it is parallel to CDK1:cyclin B activation during mitosis. Phosphatase regulation of mitotic kinases and their substrates is essential to ensure that the progression of the cell cycle is ordered. Outlining how the mutual control of kinases and phosphatases governs the localization and timing of cell division will give us a new understanding about cell cycle regulation. [BMB Reports 2013; 46(6): 289-294] PMID:23790971

  9. Analysis of nucleo-cytoplasmic shuttling of the proto-oncogene SET/I2PP2A.

    PubMed

    Lam, B Daniel; Anthony, Eloise C; Hordijk, Peter L

    2012-01-01

    SET/I2PP2A is a nuclear protein that was initially identified as an oncogene in human undifferentiated acute myeloid leukemia, fused to the nuclear porin Nup-214. In addition, SET is a potent inhibitior of the phosphatase PP2A. Previously, we proposed a model in which the small GTPase Rac1 recruits SET from the nucleus to the plasma membrane to promote cell migration. This event represents an entirely novel concept in the field of cell migration. Now, fluorescent versions of the SET protein are generated to analyze its nucleo-cytoplasmic shuttling in live cells. Our studies showed that under steady-state conditions a fraction of the SET protein, which is primarily localized in the nucleus, translocates to the cytosol in an apparently random fashion. SET exiting the nucleus was also seen in spreading as well as dividing cells. We designed an image analysis method to quantify the frequency of nuclear exit of the SET proteins, based on 4D confocal imaging. This straightforward method was validated by analysis of SET wild-type and mutant proteins. This showed that the frequency of nuclear exit of a Ser-9 phosphomimetic mutant (S9E) is enhanced compared to wild-type SET or a S9A mutant. Thus, we have developed a novel method to analyze the nucleo-cytoplasmic shuttling of the proto-oncogene SET dynamics in live cells. This method will also be applicable to monitor dynamic localization of other nuclear and/or cytoplasmic signaling proteins.

  10. Rapamycin inhibits BAFF-stimulated cell proliferation and survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells.

    PubMed

    Zeng, Qingyu; Zhang, Hai; Qin, Jiamin; Xu, Zhigang; Gui, Lin; Liu, Beibei; Liu, Chunxiao; Xu, Chong; Liu, Wen; Zhang, Shuangquan; Huang, Shile; Chen, Long

    2015-12-01

    B-cell activating factor (BAFF) is involved in not only physiology of normal B cells, but also pathophysiology of aggressive B cells related to malignant and autoimmune diseases. Rapamycin, a lipophilic macrolide antibiotic, has recently shown to be effective in the treatment of human lupus erythematosus. However, how rapamycin inhibits BAFF-stimulated B-cell proliferation and survival has not been fully elucidated. Here, we show that rapamycin inhibited human soluble BAFF (hsBAFF)-induced cell proliferation and survival in normal and B-lymphoid (Raji and Daudi) cells by activation of PP2A and inactivation of Erk1/2. Pretreatment with PD98059, down-regulation of Erk1/2, expression of dominant negative MKK1, or overexpression of wild-type PP2A potentiated rapamycin's suppression of hsBAFF-activated Erk1/2 and B-cell proliferation/viability, whereas expression of constitutively active MKK1, inhibition of PP2A by okadaic acid, or expression of dominant negative PP2A attenuated the inhibitory effects of rapamycin. Furthermore, expression of a rapamycin-resistant and kinase-active mTOR (mTOR-T), but not a rapamycin-resistant and kinase-dead mTOR-T (mTOR-TE), conferred resistance to rapamycin's effects on PP2A, Erk1/2 and B-cell proliferation/viability, implying mTOR-dependent mechanism involved. The findings indicate that rapamycin inhibits BAFF-stimulated cell proliferation/survival by targeting mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells. Our data highlight that rapamycin may be exploited for preventing excessive BAFF-induced aggressive B-cell malignancies and autoimmune diseases.

  11. Ceramide Mediates Vascular Dysfunction in Diet-Induced Obesity by PP2A-Mediated Dephosphorylation of the eNOS-Akt Complex

    PubMed Central

    Zhang, Quan-Jiang; Holland, William L.; Wilson, Lloyd; Tanner, Jason M.; Kearns, Devin; Cahoon, Judd M.; Pettey, Dix; Losee, Jason; Duncan, Bradlee; Gale, Derrick; Kowalski, Christopher A.; Deeter, Nicholas; Nichols, Alexandrea; Deesing, Michole; Arrant, Colton; Ruan, Ting; Boehme, Christoph; McCamey, Dane R.; Rou, Janvida; Ambal, Kapil; Narra, Krishna K.; Summers, Scott A.; Abel, E. Dale; Symons, J. David

    2012-01-01

    Vascular dysfunction that accompanies obesity and insulin resistance may be mediated by lipid metabolites. We sought to determine if vascular ceramide leads to arterial dysfunction and to elucidate the underlying mechanisms. Pharmacological inhibition of de novo ceramide synthesis, using the Ser palmitoyl transferase inhibitor myriocin, and heterozygous deletion of dihydroceramide desaturase prevented vascular dysfunction and hypertension in mice after high-fat feeding. These findings were recapitulated in isolated arteries in vitro, confirming that ceramide impairs endothelium-dependent vasorelaxation in a tissue-autonomous manner. Studies in endothelial cells reveal that de novo ceramide biosynthesis induced protein phosphatase 2A (PP2A) association directly with the endothelial nitric oxide synthase (eNOS)/Akt/Hsp90 complex that was concurrent with decreased basal and agonist-stimulated eNOS phosphorylation. PP2A attenuates eNOS phosphorylation by preventing phosphorylation of the pool of Akt that colocalizes with eNOS and by dephosphorylating eNOS. Ceramide decreased the association between PP2A and the predominantly cytosolic inhibitor 2 of PP2A. We conclude that ceramide mediates obesity-related vascular dysfunction by a mechanism that involves PP2A-mediated disruption of the eNOS/Akt/Hsp90 signaling complex. These results provide important insight into a pathway that represents a novel target for reversing obesity-related vascular dysfunction. PMID:22586587

  12. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells

    PubMed Central

    Liu, Chen-Chi; Lin, Shih-Pei; Hsu, Han-Shui; Yang, Shung-Haur; Lin, Chiu-Hua; Yang, Muh-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh

    2016-01-01

    Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis. PMID:27306323

  13. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells.

    PubMed

    Liu, Chen-Chi; Lin, Shih-Pei; Hsu, Han-Shui; Yang, Shung-Haur; Lin, Chiu-Hua; Yang, Muh-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh

    2016-06-16

    Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis.

  14. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells.

    PubMed

    Liu, Chen-Chi; Lin, Shih-Pei; Hsu, Han-Shui; Yang, Shung-Haur; Lin, Chiu-Hua; Yang, Muh-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh

    2016-01-01

    Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis. PMID:27306323

  15. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway.

    PubMed

    Ahn, Chang Sook; Ahn, Hee-Kyung; Pai, Hyun-Sook

    2015-02-01

    Tap46, a regulatory subunit of protein phosphatase 2A (PP2A), plays an essential role in plant growth and development through a functional link with the Target of Rapamycin (TOR) signalling pathway. Here, we have characterized the molecular mechanisms behind a gain-of-function phenotype of Tap46 and its relationship with TOR to gain further insights into Tap46 function in plants. Constitutive overexpression of Tap46 in Arabidopsis resulted in overall growth stimulation with enlarged organs, such as leaves and siliques. Kinematic analysis of leaf growth revealed that increased cell size was mainly responsible for the leaf enlargement. Tap46 overexpression also enhanced seed size and viability under accelerated ageing conditions. Enhanced plant growth was also observed in dexamethasone (DEX)-inducible Tap46 overexpression Arabidopsis lines, accompanied by increased cellular activities of nitrate-assimilating enzymes. DEX-induced Tap46 overexpression and Tap46 RNAi resulted in increased and decreased phosphorylation of S6 kinase (S6K), respectively, which is a sensitive indicator of endogenous TOR activity, and Tap46 interacted with S6K in planta based on bimolecular fluorescence complementation and co-immunoprecipitation. Furthermore, inactivation of TOR by estradiol-inducible RNAi or rapamycin treatment decreased Tap46 protein levels, but increased PP2A catalytic subunit levels. Real-time quantitative PCR analysis revealed that Tap46 overexpression induced transcriptional modulation of genes involved in nitrogen metabolism, ribosome biogenesis, and lignin biosynthesis. These findings suggest that Tap46 modulates plant growth as a positive effector of the TOR signalling pathway and Tap46/PP2Ac protein abundance is regulated by TOR activity.

  16. Promotion of Cell Viability and Histone Gene Expression by the Acetyltransferase Gcn5 and the Protein Phosphatase PP2A in Saccharomyces cerevisiae.

    PubMed

    Petty, Emily L; Lafon, Anne; Tomlinson, Shannon L; Mendelsohn, Bryce A; Pillus, Lorraine

    2016-08-01

    Histone modifications direct chromatin-templated events in the genome and regulate access to DNA sequence information. There are multiple types of modifications, and a common feature is their dynamic nature. An essential step for understanding their regulation, therefore, lies in characterizing the enzymes responsible for adding and removing histone modifications. Starting with a dosage-suppressor screen in Saccharomyces cerevisiae, we have discovered a functional interaction between the acetyltransferase Gcn5 and the protein phosphatase 2A (PP2A) complex, two factors that regulate post-translational modifications. We find that RTS1, one of two genes encoding PP2A regulatory subunits, is a robust and specific high-copy suppressor of temperature sensitivity of gcn5∆ and a subset of other gcn5∆ phenotypes. Conversely, loss of both PP2A(Rts1) and Gcn5 function in the SAGA and SLIK/SALSA complexes is lethal. RTS1 does not restore global transcriptional defects in gcn5∆; however, histone gene expression is restored, suggesting that the mechanism of RTS1 rescue includes restoration of specific cell cycle transcripts. Pointing to new mechanisms of acetylation-phosphorylation cross-talk, RTS1 high-copy rescue of gcn5∆ growth requires two residues of H2B that are phosphorylated in human cells. These data highlight the potential significance of dynamic phosphorylation and dephosphorylation of these deeply conserved histone residues for cell viability. PMID:27317677

  17. Genistein targets the cancerous inhibitor of PP2A to induce growth inhibition and apoptosis in breast cancer cells.

    PubMed

    Zhao, Qingxia; Zhao, Ming; Parris, Amanda B; Xing, Ying; Yang, Xiaohe

    2016-09-01

    Genistein is a soy isoflavone with phytoestrogen and tyrosine kinase inhibitory properties. High intake of soy/genistein has been associated with reduced breast cancer risk. Despite the advances in genistein-mediated antitumor studies, the underlying mechanisms remain unclear. In the present study, we investigated genistein-induced regulation of the cancerous inhibitor of protein phosphatase 2A (CIP2A), a novel oncogene frequently overexpressed in breast cancer, and its functional impact on genistein-induced growth inhibition and apoptosis. We demonstrated that genistein induced downregulation of CIP2A in MCF-7-C3 and T47D breast cancer cells, which was correlated with its growth inhibition and apoptotic activities. Overexpression of CIP2A attenuated, whereas CIP2A knockdown sensitized, genistein-induced growth inhibition and apoptosis. We further showed that genistein-induced downregulation of CIP2A involved both transcriptional suppression and proteasomal degradation. In particular, genistein at higher concentrations induced concurrent downregulation of E2F1 and CIP2A. Overexpression of E2F1 attenuated genistein-induced downregulation of CIP2A mRNA, indicating the role of E2F1 in genistein-induced transcriptional suppression of CIP2A. Taken together, our results identified CIP2A as a functional target of genistein and demonstrated that modulation of E2F1-mediated transcriptional regulation of CIP2A contributes to its downregulation. These data advance our understanding of genistein-induced growth inhibition and apoptosis, and support further investigation on CIP2A as a therapeutic target of relevant anticancer agents. PMID:27574003

  18. Genistein targets the cancerous inhibitor of PP2A to induce growth inhibition and apoptosis in breast cancer cells

    PubMed Central

    Zhao, Qingxia; Zhao, Ming; Parris, Amanda B.; Xing, Ying; Yang, Xiaohe

    2016-01-01

    Genistein is a soy isoflavone with phytoestrogen and tyrosine kinase inhibitory properties. High intake of soy/genistein has been associated with reduced breast cancer risk. Despite the advances in genistein-mediated antitumor studies, the underlying mechanisms remain unclear. In the present study, we investigated genistein-induced regulation of the cancerous inhibitor of protein phosphatase 2A (CIP2A), a novel oncogene frequently overexpressed in breast cancer, and its functional impact on genistein-induced growth inhibition and apoptosis. We demonstrated that genistein induced downregulation of CIP2A in MCF-7-C3 and T47D breast cancer cells, which was correlated with its growth inhibition and apoptotic activities. Overexpression of CIP2A attenuated, whereas CIP2A knockdown sensitized, genistein-induced growth inhibition and apoptosis. We further showed that genistein-induced downregulation of CIP2A involved both transcriptional suppression and proteasomal degradation. In particular, genistein at higher concentrations induced concurrent downregulation of E2F1 and CIP2A. Overexpression of E2F1 attenuated genistein-induced downregulation of CIP2A mRNA, indicating the role of E2F1 in genistein-induced transcriptional suppression of CIP2A. Taken together, our results identified CIP2A as a functional target of genistein and demonstrated that modulation of E2F1-mediated transcriptional regulation of CIP2A contributes to its downregulation. These data advance our understanding of genistein-induced growth inhibition and apoptosis, and support further investigation on CIP2A as a therapeutic target of relevant anticancer agents. PMID:27574003

  19. Vitamin B12 deficiency reduces proliferation and promotes differentiation of neuroblastoma cells and up-regulates PP2A, proNGF, and TACE

    PubMed Central

    Battaglia-Hsu, Shyue-fang; Akchiche, Nassila; Noel, Nicole; Alberto, Jean-Marc; Jeannesson, Elise; Orozco-Barrios, Carlos Enrique; Martinez-Fong, Daniel; Daval, Jean-Luc; Guéant, Jean-Louis

    2009-01-01

    Vitamin B12 (cobalamin, Cbl) is indispensable for proper brain development and functioning, suggesting that it has neurotrophic effects beside its well-known importance in metabolism. The molecular basis of these effects remains hypothetical, one of the reasons being that no efficient cell model has been made available for investigating the consequences of B12 cellular deficiency in neuronal cells. Here, we designed an approach by stable transfection of NIE115 neuroblastoma cells to impose the anchorage of a chimeric B12-binding protein, transcobalamin-oleosin (TO) to the intracellular membrane. This model produced an intracellular sequestration of B12 evidenced by decreased methyl-Cbl and S-adenosylmethionine and increased homocysteine and methylmalonic acid concentrations. B12 deficiency affected the proliferation of NIE115 cells through an overall increase in catalytic protein phosphatase 2A (PP2A), despite its demethylation. It promoted cellular differentiation by improving initial outgrowth of neurites and, at the molecular level, by augmenting the levels of proNGF and p75NTR. The up-regulation of PP2A and pro-nerve growth factor (NGF) triggered changes in ERK1/2 and Akt, two signaling pathways that influence the balance between proliferation and neurite outgrowth. Compared with control cells, a 2-fold increase of p75NTR-regulated intramembraneous proteolysis (RIP) was observed in proliferating TO cells (P < 0.0001) that was associated with an increased expression of two tumor necrosis factor (TNF)-α converting enzyme (TACE) secretase enzymes, Adam 10 and Adam 17. In conclusion, our data show that B12 cellular deficiency produces a slower proliferation and a speedier differentiation of neuroblastoma cells through interacting signaling pathways that are related with increased expression of PP2A, proNGF, and TACE. PMID:19959661

  20. Functional Crosstalk between the PP2A and SUMO Pathways Revealed by Analysis of STUbL Suppressor, razor 1-1

    PubMed Central

    Nie, Minghua; Prudden, John; Schaffer, Lana; Head, Steven; Boddy, Michael N.

    2016-01-01

    Posttranslational modifications (PTMs) provide dynamic regulation of the cellular proteome, which is critical for both normal cell growth and for orchestrating rapid responses to environmental stresses, e.g. genotoxins. Key PTMs include ubiquitin, the Small Ubiquitin-like MOdifier SUMO, and phosphorylation. Recently, SUMO-targeted ubiquitin ligases (STUbLs) were found to integrate signaling through the SUMO and ubiquitin pathways. In general, STUbLs are recruited to target proteins decorated with poly-SUMO chains to ubiquitinate them and drive either their extraction from protein complexes, and/or their degradation at the proteasome. In fission yeast, reducing or preventing the formation of SUMO chains can circumvent the essential and DNA damage response functions of STUbL. This result indicates that whilst some STUbL "targets" have been identified, the crucial function of STUbL is to antagonize SUMO chain formation. Herein, by screening for additional STUbL suppressors, we reveal crosstalk between the serine/threonine phosphatase PP2A-Pab1B55 and the SUMO pathway. A hypomorphic Pab1B55 mutant not only suppresses STUbL dysfunction, but also mitigates the phenotypes associated with deletion of the SUMO protease Ulp2, or mutation of the STUbL cofactor Rad60. Together, our results reveal a novel role for PP2A-Pab1B55 in modulating SUMO pathway output, acting in parallel to known critical regulators of SUMOylation homeostasis. Given the broad evolutionary functional conservation of the PP2A and SUMO pathways, our results could be relevant to the ongoing attempts to therapeutically target these factors. PMID:27398807

  1. Pin1 inhibits PP2A-mediated Rb dephosphorylation in regulation of cell cycle and S-phase DNA damage.

    PubMed

    Tong, Y; Ying, H; Liu, R; Li, L; Bergholz, J; Xiao, Z-X

    2015-01-01

    Inactivation of the retinoblastoma protein (Rb) has a key role in tumorigenesis. It is well established that Rb function is largely regulated by a dynamic balance of phosphorylation and dephosphorylation. Although much research has been done to understand the mechanisms and function of RB phosphorylation, the regulation of Rb dephosphorylation is still not well understood. In this study, we demonstrate that Pin1 has an important role in the regulation of Rb function in cell cycle progression and S-phase checkpoint upon DNA damage. We show that the Rb C-pocket directly binds to the Pin1 WW domain in vitro and in vivo, and that the phosphorylation of Rb C-pocket by G1/S Cyclin/Cyclin-dependent kinase complexes is critical for mediating this interaction. We further show that Rb-mediated cell cycle arrest and Rb-induced premature cellular senescence are effectively inhibited by Pin1 expression. In addition, DNA damage induces Rb dephosphorylation in a PP2A-dependent manner, and this process is inhibited by Pin1. Furthermore, the overexpression of Pin1 promotes Rb hyperphosphorylation upon S-phase DNA damage. Importantly, both the Pin1 WW domain and isomerase activity are required for its effect on S-phase checkpoint. Moreover, the overexpression of Pin1 is correlated with Rb hyperphosphorylation in breast cancer biopsies. These results indicate that Pin1 has a critical role in the modulation of Rb function by the regulation of Rb dephosphorylation, which may have an important pathological role in cancer development.

  2. Pin1 inhibits PP2A-mediated Rb dephosphorylation in regulation of cell cycle and S-phase DNA damage

    PubMed Central

    Tong, Y; Ying, H; Liu, R; Li, L; Bergholz, J; Xiao, Z-X

    2015-01-01

    Inactivation of the retinoblastoma protein (Rb) has a key role in tumorigenesis. It is well established that Rb function is largely regulated by a dynamic balance of phosphorylation and dephosphorylation. Although much research has been done to understand the mechanisms and function of RB phosphorylation, the regulation of Rb dephosphorylation is still not well understood. In this study, we demonstrate that Pin1 has an important role in the regulation of Rb function in cell cycle progression and S-phase checkpoint upon DNA damage. We show that the Rb C-pocket directly binds to the Pin1 WW domain in vitro and in vivo, and that the phosphorylation of Rb C-pocket by G1/S Cyclin/Cyclin-dependent kinase complexes is critical for mediating this interaction. We further show that Rb-mediated cell cycle arrest and Rb-induced premature cellular senescence are effectively inhibited by Pin1 expression. In addition, DNA damage induces Rb dephosphorylation in a PP2A-dependent manner, and this process is inhibited by Pin1. Furthermore, the overexpression of Pin1 promotes Rb hyperphosphorylation upon S-phase DNA damage. Importantly, both the Pin1 WW domain and isomerase activity are required for its effect on S-phase checkpoint. Moreover, the overexpression of Pin1 is correlated with Rb hyperphosphorylation in breast cancer biopsies. These results indicate that Pin1 has a critical role in the modulation of Rb function by the regulation of Rb dephosphorylation, which may have an important pathological role in cancer development. PMID:25675300

  3. Pin1 inhibits PP2A-mediated Rb dephosphorylation in regulation of cell cycle and S-phase DNA damage.

    PubMed

    Tong, Y; Ying, H; Liu, R; Li, L; Bergholz, J; Xiao, Z-X

    2015-01-01

    Inactivation of the retinoblastoma protein (Rb) has a key role in tumorigenesis. It is well established that Rb function is largely regulated by a dynamic balance of phosphorylation and dephosphorylation. Although much research has been done to understand the mechanisms and function of RB phosphorylation, the regulation of Rb dephosphorylation is still not well understood. In this study, we demonstrate that Pin1 has an important role in the regulation of Rb function in cell cycle progression and S-phase checkpoint upon DNA damage. We show that the Rb C-pocket directly binds to the Pin1 WW domain in vitro and in vivo, and that the phosphorylation of Rb C-pocket by G1/S Cyclin/Cyclin-dependent kinase complexes is critical for mediating this interaction. We further show that Rb-mediated cell cycle arrest and Rb-induced premature cellular senescence are effectively inhibited by Pin1 expression. In addition, DNA damage induces Rb dephosphorylation in a PP2A-dependent manner, and this process is inhibited by Pin1. Furthermore, the overexpression of Pin1 promotes Rb hyperphosphorylation upon S-phase DNA damage. Importantly, both the Pin1 WW domain and isomerase activity are required for its effect on S-phase checkpoint. Moreover, the overexpression of Pin1 is correlated with Rb hyperphosphorylation in breast cancer biopsies. These results indicate that Pin1 has a critical role in the modulation of Rb function by the regulation of Rb dephosphorylation, which may have an important pathological role in cancer development. PMID:25675300

  4. Molecular Cloning of the Genes Encoding the PR55/Bβ/δ Regulatory Subunits for PP-2A and Analysis of Their Functions in Regulating Development of Goldfish, Carassius auratus.

    PubMed

    Zhao, Jun-Qiong; Xie, Si-Si; Liu, Wen-Bin; Xiao, Ya-Mei; Zeng, Xiao-Ming; Deng, Mi; Gong, Lili; Liu, Jin-Ping; Chen, Pei-Chao; Zhou, Jie; Hu, Xiao-Hui; Lv, Jia-Han; Yu, Xiang-Qian; Wang, Dao; Li, Chi; Peng, Yun-Lei; Liao, Gao-Peng; Liu, Yun; Li, David Wan-Cheng

    2010-01-01

    The protein phosphatase-2A (PP-2A), one of the major phosphatases in eukaryotes, is a heterotrimer, consisting of a scaffold A subunit, a catalytic C subunit and a regulatory B subunit. Previous studies have shown that besides regulating specific PP-2A activity, various B subunits encoded by more than 16 different genes, may have other functions. To explore the possible roles of the regulatory subunits of PP-2A in vertebrate development, we have cloned the PR55/B family regulatory subunits: β and δ, analyzed their tissue specific and developmental expression patterns in Goldfish ( Carassius auratus). Our results revealed that the full-length cDNA for PR55/Bβ consists of 1940 bp with an open reading frame of 1332 nucleotides coding for a deduced protein of 443 amino acids. The full length PR55/Bδ cDNA is 2163 bp containing an open reading frame of 1347 nucleotides encoding a deduced protein of 448 amino acids. The two isoforms of PR55/B display high levels of sequence identity with their counterparts in other species. The PR55/Bβ mRNA and protein are detected in brain and heart. In contrast, the PR55/Bδ is expressed in all 9 tissues examined at both mRNA and protein levels. During development of goldfish, the mRNAs for PR55/Bβ and PR55/Bδ show distinct patterns. At the protein level, PR55/Bδ is expressed at all developmental stages examined, suggesting its important role in regulating goldfish development. Expression of the PR55/Bδ anti-sense RNA leads to significant downregulation of PR55/Bδ proteins and caused severe abnormality in goldfish trunk and eye development. Together, our results suggested that PR55/Bδ plays an important role in governing normal trunk and eye formation during goldfish development.

  5. PP2A-B56ϵ complex is involved in dephosphorylation of γ-H2AX in the repair process of CPT-induced DNA double-strand breaks.

    PubMed

    Li, Xiuying; Nan, Anuo; Xiao, Ying; Chen, Yongzhong; Lai, Yandong

    2015-05-01

    Phosphorylation of histone H2AX (γ-H2AX) in response to DNA double-strand breaks (DSBs) should be eliminated from the sites of DNA damage to fulfill the DNA repair and release cells from the growth arrest. Previous study showed that protein phosphatase 2A (PP2A) interact with γ-H2AX that lead to the dephosphorylation of γ-H2AX. Here, we examined the effects of suppression of PP2A regulatory subunits on dephosphorylation of γ-H2AX in human embryonic kidney epithelial cells (HEK) treated by topoisomerase I inhibitor camptothecin (CPT). We found that cells with suppression of B55α or B56ϵ were more sensitive to DNA damage agents. Suppression of B56ϵ led to persistence of γ-H2AX, resulting in prolonged DSBs repair and increased chromatin instability measured by comet assay. In addition, the deficiency of B56ϵ impaired the cell cycle regulation and the DNA repair pathway of homologous recombination (HR). Notably, we detected that PP2A B56ϵ subunit was involved directly in dephosphorylation of γ-H2AX and translocated from cytoplasm to nucleus upon the treatment of CPT. Our findings demonstrate that PP2A holoenzyme containing B56ϵ is responsible for the dephosphorylation of γ-H2AX and regulation of DNA repair of DSBs induced by CPT.

  6. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth.

    PubMed

    Loveday, Chey; Tatton-Brown, Katrina; Clarke, Matthew; Westwood, Isaac; Renwick, Anthony; Ramsay, Emma; Nemeth, Andrea; Campbell, Jennifer; Joss, Shelagh; Gardner, McKinlay; Zachariou, Anna; Elliott, Anna; Ruark, Elise; van Montfort, Rob; Rahman, Nazneen

    2015-09-01

    Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B', beta (PPP2R5B); protein phosphatase 2, regulatory Subunit B', gamma (PPP2R5C); and protein phosphatase 2, regulatory Subunit B', delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates (P = 1.43 × 10(-10)). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences (P = 1.6 × 10(-5)). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions.

  7. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth.

    PubMed

    Loveday, Chey; Tatton-Brown, Katrina; Clarke, Matthew; Westwood, Isaac; Renwick, Anthony; Ramsay, Emma; Nemeth, Andrea; Campbell, Jennifer; Joss, Shelagh; Gardner, McKinlay; Zachariou, Anna; Elliott, Anna; Ruark, Elise; van Montfort, Rob; Rahman, Nazneen

    2015-09-01

    Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B', beta (PPP2R5B); protein phosphatase 2, regulatory Subunit B', gamma (PPP2R5C); and protein phosphatase 2, regulatory Subunit B', delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates (P = 1.43 × 10(-10)). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences (P = 1.6 × 10(-5)). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions. PMID:25972378

  8. Ceramide signaling targets the PP2A-like protein phosphatase Sit4p to impair vacuolar function, vesicular trafficking and autophagy in Isc1p deficient cells.

    PubMed

    Teixeira, Vitor; Medeiros, Tânia C; Vilaça, Rita; Ferreira, João; Moradas-Ferreira, Pedro; Costa, Vítor

    2016-01-01

    The vacuoles play important roles in cellular homeostasis and their functions include the digestion of cytoplasmic material and organelles derived from autophagy. Conserved nutrient signaling pathways regulate vacuolar function and autophagy, ensuring normal cell and organismal development and aging. Recent evidence implicates sphingolipids in the modulation of these processes, but the impact of ceramide signaling on vacuolar dynamics and autophagy remains largely unknown. Here, we show that yeast cells lacking Isc1p, an orthologue of mammalian neutral sphingomyelinase type 2, exhibit vacuolar fragmentation and dysfunctions, namely decreased Pep4p-mediated proteolysis and V-ATPase activity, which impairs vacuolar acidification. Moreover, these phenotypes are suppressed by downregulation of the ceramide-activated protein phosphatase Sit4p. The isc1Δ cells also exhibit defective Cvt and vesicular trafficking in a Sit4p-dependent manner, ultimately contributing to a reduced autophagic flux. Importantly, these phenotypes are also suppressed by downregulation of the nutrient signaling kinase TORC1, which is known to inhibit Sit4p and autophagy, or Sch9p. These results support a model in which Sit4p functions downstream of Isc1p in a TORC1-independent, ceramide-dependent signaling branch that impairs vacuolar function and vesicular trafficking, leading to autophagic defects in yeast.

  9. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart.

    PubMed

    Little, Sean C; Curran, Jerry; Makara, Michael A; Kline, Crystal F; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M; Carnes, Cynthia A; Biesiadecki, Brandon J; Davis, Jonathan P; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H; Hund, Thomas J; Mohler, Peter J

    2015-07-21

    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α(+/-) myocytes resulted in reduced Ca(2+) waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca(2+) regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart.

  10. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart

    PubMed Central

    Little, Sean C.; Curran, Jerry; Makara, Michael A.; Kline, Crystal F.; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M.; Carnes, Cynthia A.; Biesiadecki, Brandon J.; Davis, Jonathan P.; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H.; Hund, Thomas J.; Mohler, Peter J.

    2015-01-01

    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α+/− myocytes resulted in reduced Ca2+ waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca2+ regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart. PMID:26198358

  11. Arabidopsis PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR is essential for PROTEIN PHOSPHATASE 2A holoenzyme assembly and plays important roles in hormone signaling, salt stress response, and plant development.

    PubMed

    Chen, Jian; Hu, Rongbin; Zhu, Yinfeng; Shen, Guoxin; Zhang, Hong

    2014-11-01

    PROTEIN PHOSPHATASE 2A (PP2A) is a major group of serine/threonine protein phosphatases in eukaryotes. It is composed of three subunits: scaffolding subunit A, regulatory subunit B, and catalytic subunit C. Assembly of the PP2A holoenzyme in Arabidopsis (Arabidopsis thaliana) depends on Arabidopsis PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR (AtPTPA). Reduced expression of AtPTPA leads to severe defects in plant development, altered responses to abscisic acid, ethylene, and sodium chloride, and decreased PP2A activity. In particular, AtPTPA deficiency leads to decreased methylation in PP2A-C subunits (PP2Ac). Complete loss of PP2Ac methylation in the suppressor of brassinosteroid insensitive1 mutant leads to 30% reduction of PP2A activity, suggesting that PP2A with a methylated C subunit is more active than PP2A with an unmethylated C subunit. Like AtPTPA, PP2A-A subunits are also required for PP2Ac methylation. The interaction between AtPTPA and PP2Ac is A subunit dependent. In addition, AtPTPA deficiency leads to reduced interactions of B subunits with C subunits, resulting in reduced functional PP2A holoenzyme formation. Thus, AtPTPA is a critical factor for committing the subunit A/subunit C dimer toward PP2A heterotrimer formation.

  12. Metabolic Control of Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII)-mediated Caspase-2 Suppression by the B55β/Protein Phosphatase 2A (PP2A)*

    PubMed Central

    Huang, Bofu; Yang, Chih-Sheng; Wojton, Jeffrey; Huang, Nai-Jia; Chen, Chen; Soderblom, Erik J.; Zhang, Liguo; Kornbluth, Sally

    2014-01-01

    High levels of metabolic activity confer resistance to apoptosis. Caspase-2, an apoptotic initiator, can be suppressed by high levels of nutrient flux through the pentose phosphate pathway. This metabolic control is exerted via inhibitory phosphorylation of the caspase-2 prodomain by activated Ca2+/calmodulin-dependent protein kinase II (CaMKII). We show here that this activation of CaMKII depends, in part, on dephosphorylation of CaMKII at novel sites (Thr393/Ser395) and that this is mediated by metabolic activation of protein phosphatase 2A in complex with the B55β targeting subunit. This represents a novel locus of CaMKII control and also provides a mechanism contributing to metabolic control of apoptosis. These findings may have implications for metabolic control of the many CaMKII-controlled and protein phosphatase 2A-regulated physiological processes, because both enzymes appear to be responsive to alterations in glucose metabolized via the pentose phosphate pathway. PMID:25378403

  13. Protein phosphatase 2A activity is required for functional adherent junctions in endothelial cells.

    PubMed

    Kása, Anita; Czikora, István; Verin, Alexander D; Gergely, Pál; Csortos, Csilla

    2013-09-01

    Reversible Ser/Thr phosphorylation of cytoskeletal and adherent junction (AJ) proteins has a critical role in the regulation of endothelial cell (EC) barrier function. We have demonstrated earlier that protein phosphatase 2A (PP2A) activity is important in EC barrier integrity. In the present work, macro- and microvascular EC were examined and we provided further evidence on the significance of PP2A in the maintenance of EC cytoskeleton and barrier function with special focus on the Bα (regulatory) subunit of PP2A. Immunofluorescent staining revealed that the inhibition of PP2A results in changes in the organization of EC cytoskeleton as microtubule dissolution and actin re-arrangement were detected. Depletion of Bα regulatory subunit of PP2A had similar effect on the cytoskeleton structure of the cells. Furthermore, transendothelial electric resistance measurements demonstrated significantly slower barrier recovery of Bα depleted EC after thrombin treatment. AJ proteins, VE-cadherin and β-catenin, were detected along with Bα in pull-down assay. Also, the inhibition of PP2A (by okadaic acid or fostriecin) or depletion of Bα caused β-catenin translocation from the membrane to the cytoplasm in parallel with its phosphorylation on Ser552. In conclusion, our data suggest that the A/Bα/C holoenzyme form of PP2A is essential in EC barrier integrity both in micro- and macrovascular EC. PMID:23721711

  14. Protein phosphatase 2A Cα regulates proliferation, migration, and metastasis of osteosarcoma cells.

    PubMed

    Yang, Di; Okamura, Hirohiko; Morimoto, Hiroyuki; Teramachi, Jumpei; Haneji, Tatsuji

    2016-10-01

    Osteosarcoma is the most frequent primary bone tumor. Serine/threonine protein phosphatase 2A (PP2A) participates in regulating many important physiological processes, such as cell cycle, growth, apoptosis, and signal transduction. In this study, we examined the expression and function of PP2A Cα in osteosarcoma cells. PP2A Cα expression was expected to be higher in malignant osteosarcoma tissues. PP2A Cα expression level and PP2A activity was higher in malignant osteosarcoma LM8 cells compared with that in primary osteoblasts and in the osteoblast-like cell line MC3T3-E1. Okadaic acid, an inhibitor of PP2A, reduced cell viability and induced apoptosis in LM8 cells. PP2A Cα-knockdown LM8 cells (shPP2A) exhibited less striking filopodial and lamellipodial structures than that in original LM8 cells. Focal adhesion kinase phosphorylation and NF-κB activity decreased in shPP2A-treated cells. Sensitivity to serum deprivation-induced apoptosis increased in shPP2A-treated cells, accompanied by a lower expression level of anti-apoptotic BCL-2 in these cells. Reduction of PP2A Cα resulted in a decrease in the migration ability of LM8 cells in vitro. Reduction in PP2A Cα levels in vivo suppressed proliferation and metastasis in LM8 cells. PP2A Cα expression was also higher in human osteosarcoma MG63 and SaOS-2 cells than that in primary osteoblasts and MC3T3-E1 cells, and reduction in PP2A Cα levels suppressed the cell proliferation rate and migration ability of MG63 cells. These results indicate that PP2A Cα has a critical role in the proliferation and metastasis of osteosarcoma cells; therefore, its inhibition could potentially suppress the malignancy of osteosarcoma cells. PMID:27617401

  15. High glucose exposure promotes activation of protein phosphatase 2A in rodent islets and INS-1 832/13 β-cells by increasing the posttranslational carboxylmethylation of its catalytic subunit.

    PubMed

    Arora, Daleep K; Machhadieh, Baker; Matti, Andrea; Wadzinski, Brian E; Ramanadham, Sasanka; Kowluru, Anjaneyulu

    2014-02-01

    Existing evidence implicates regulatory roles for protein phosphatase 2A (PP2A) in a variety of cellular functions, including cytoskeletal remodeling, hormone secretion, and apoptosis. We report here activation of PP2A in normal rat islets and insulin-secreting INS-1 832/13 cells under the duress of hyperglycemic (HG) conditions. Small interfering RNA-mediated knockdown of the catalytic subunit of PP2A (PP2Ac) markedly attenuated glucose-induced activation of PP2A. HG, but not nonmetabolizable 3-O-methyl glucose or mannitol (osmotic control), significantly stimulated the methylation of PP2Ac at its C-terminal Leu-309, suggesting a novel role for this posttranslational modification in glucose-induced activation of PP2A. Moreover, knockdown of the cytosolic leucine carboxymethyl transferase 1 (LCMT1), which carboxymethylates PP2Ac, significantly attenuated PP2A activation under HG conditions. In addition, HG conditions, but not 3-O-methyl glucose or mannitol, markedly increased the expression of LCMT1. Furthermore, HG conditions significantly increased the expression of B55α, a regulatory subunit of PP2A, which has been implicated in islet dysfunction under conditions of oxidative stress and diabetes. Thapsigargin, a known inducer of endoplasmic reticulum stress, failed to exert any discernible effects on the carboxymethylation of PP2Ac, expression of LCMT1 and B55α, or PP2A activity, suggesting no clear role for endoplasmic reticulum stress in HG-induced activation of PP2A. Based on these findings, we conclude that exposure of the islet β-cell to HG leads to accelerated PP2A signaling pathway, leading to loss in glucose-induced insulin secretion. PMID:24265448

  16. Protein phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis.

    PubMed Central

    Ronne, H; Carlberg, M; Hu, G Z; Nehlin, J O

    1991-01-01

    We have cloned three genes for protein phosphatases in the yeast Saccharomyces cerevisiae. Two of the genes, PPH21 and PPH22, encode highly similar proteins that are homologs of the mammalian protein phosphatase 2A (PP2A), while the third gene, PPH3, encodes a new PP2A-related protein. Disruptions of either PPH21 or PPH22 had no effects, but spores disrupted for both genes produced very small colonies with few surviving cells. We conclude that PP2A performs an important function in yeast cells. A disruption of the third gene, PPH3, did not in itself affect growth, but it completely prevented growth of spores disrupted for both PPH21 and PPH22. Thus, PPH3 provides some PP2A-complementing activity which allows for a limited growth of PP2A-deficient cells. Strains were constructed in which we could study the phenotypes caused by either excess PP2A or total PP2A depletion. We found that the level of PP2A activity has dramatic effects on cell shape. PP2A-depleted cells develop an abnormal pear-shaped morphology which is particularly pronounced in the growing bud. In contrast, overexpression of PP2A produces more elongated cells, and high-level overexpression causes a balloonlike phenotype with huge swollen cells filled by large vacuoles. Images PMID:1656215

  17. Subunits B'γ and B'ζ of protein phosphatase 2A regulate photo-oxidative stress responses and growth in Arabidopsis thaliana.

    PubMed

    Konert, Grzegorz; Rahikainen, Moona; Trotta, Andrea; Durian, Guido; Salojärvi, Jarkko; Khorobrykh, Sergey; Tyystjärvi, Esa; Kangasjärvi, Saijaliisa

    2015-12-01

    Plants survive periods of unfavourable conditions with the help of sensory mechanisms that respond to reactive oxygen species (ROS) as signalling molecules in different cellular compartments. We have previously demonstrated that protein phosphatase 2A (PP2A) impacts on organellar cross-talk and associated pathogenesis responses in Arabidopsis thaliana. This was evidenced by drastically enhanced pathogenesis responses and cell death in cat2 pp2a-b'γ double mutants, deficient in the main peroxisomal antioxidant enzyme CATALASE 2 and PP2A regulatory subunit B'γ (PP2A-B'γ). In the present paper, we explored the impacts of PP2A-B'γ and a highly similar regulatory subunit PP2A-B'ζ in growth regulation and light stress tolerance in Arabidopsis. PP2A-B'γ and PP2A-B'ζ display high promoter activities in rapidly growing tissues and are required for optimal growth under favourable conditions. Upon acclimation to a combination of high light, elevated temperature and reduced availability of water, however, pp2a-b'γζ double mutants grow similarly to the wild type and show enhanced tolerance against photo-oxidative stress. We conclude that by controlling ROS homeostasis and signalling, PP2A-B'γ and PP2A-B'ζ may direct acclimation strategies upon environmental perturbations, hence acting as important determinants of defence responses and light acclimation in plants.

  18. Protein phosphatase 2A is requisite for the function of regulatory T cells

    PubMed Central

    Apostolidis, Sokratis A.; Rodríguez-Rodríguez, Noé; Suárez-Fueyo, Abel; Dioufa, Nikolina; Ozcan, Esra; Crispín, José C.; Tsokos, Maria G.; Tsokos, George C.

    2015-01-01

    Immune homeostasis depends on the proper function of regulatory T (Treg) cells. Compromised Treg cell suppressive activity leads to autoimmune disease, graft rejection and promotes anti-tumor immunity. Here we report the previously unrecognized requirement of the serine/threonine phosphatase Protein Phosphatase 2A (PP2A) for the function of Treg cells. Treg cells exhibited high PP2A activity and Treg cell-specific ablation of the PP2A complex resulted in a severe, multi-organ, lymphoproliferative autoimmune disorder. Mass spectrometric analysis revealed that PP2A associates with components of the mTOR pathway and suppresses mTORC1 activity. In the absence of PP2A, Treg cells altered their metabolic and cytokine profile and were unable to suppress effector immune responses. Therefore, PP2A is requisite for the function of Treg cells and the prevention of autoimmunity. PMID:26974206

  19. Structural Mechanism of Demethylation and Inactivation of Protein Phosphatase 2A

    SciTech Connect

    Xing,Y.; Li, Z.; Chen, Y.; Stock, J.; Jeffrey, P.; Shi, Y.

    2008-01-01

    Protein phosphatase 2A (PP2A) is an important serine/threonine phosphatase that plays a role in many biological processes. Reversible carboxyl methylation of the PP2A catalytic subunit is an essential regulatory mechanism for its function. Demethylation and negative regulation of PP2A is mediated by a PP2A-specific methylesterase PME-1, which is conserved from yeast to humans. However, the underlying mechanism of PME-1 function remains enigmatic. Here we report the crystal structures of PME-1 by itself and in complex with a PP2A heterodimeric core enzyme. The structures reveal that PME-1 directly binds to the active site of PP2A and that this interaction results in the activation of PME-1 by rearranging the catalytic triad into an active conformation. Strikingly, these interactions also lead to inactivation of PP2A by evicting the manganese ions that are required for the phosphatase activity of PP2A. These observations identify a dual role of PME-1 that regulates PP2A activation, methylation, and holoenzyme assembly in cells.

  20. Activation of protein phosphatase 2A tumor suppressor as potential treatment of pancreatic cancer

    PubMed Central

    Chien, Wenwen; Sun, Qiao-Yang; Lee, Kian Leong; Ding, Ling-Wen; Wuensche, Peer; Torres-Fernandez, Lucia A.; Tan, Siew Zhuan; Tokatly, Itay; Zaiden, Norazean; Poellinger, Lorenz; Mori, Seiichi; Yang, Henry; Tyner, Jeffrey W.; Koeffler, H. Phillip

    2015-01-01

    We utilized three tiers of screening to identify novel therapeutic agents for pancreatic cancers. First, we analyzed 14 pancreatic cancer cell lines against a panel of 66 small-molecule kinase inhibitors and dasatinib was the most potent. Second, we performed RNA expression analysis on 3 dasatinib-resistant and 3 dasatinib–sensitive pancreatic cancer cell lines to profile their gene expression. Third, gene profiling data was integrated with the connectivity map database to search for potential drugs. Thioridazine was one of the top ranking small molecules with highly negative enrichment. Thioridazine and its family members of phenothiazine including penfludidol caused pancreatic cancer cell death and affected protein expression levels of molecules involved in cell cycle regulation, apoptosis, and multiple kinase activities. This family of drugs causes activation of protein phosphatase 2 (PP2A). The drug FTY-720 (activator of PP2A) induced apoptosis of pancreatic cancer cells. Silencing catalytic unit of PP2A rendered pancreatic cancer cells resistant to penfluridol. Our observations suggest potential therapeutic use of penfluridol or similar agent associated with activation of PP2A in pancreatic cancers. PMID:25637283

  1. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection.

    PubMed

    Côme, Christophe; Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H; Ollert, Markus W; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; Hrabě de Angelis, Martin; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects.

  2. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection

    PubMed Central

    Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H.; Ollert, Markus W.; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabě; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects. PMID:27100879

  3. The Protein Phosphatase 2A Regulatory Subunit B56γ Mediates Suppression of T Cell Receptor (TCR)-induced Nuclear Factor-κB (NF-κB) Activity*

    PubMed Central

    Breuer, Rebecca; Becker, Michael S.; Brechmann, Markus; Mock, Thomas; Arnold, Rüdiger; Krammer, Peter H.

    2014-01-01

    NF-κB is an important transcription factor in the immune system, and aberrant NF-κB activity contributes to malignant diseases and autoimmunity. In T cells, NF-κB is activated upon TCR stimulation, and signal transduction to NF-κB activation is triggered by a cascade of phosphorylation events. However, fine-tuning and termination of TCR signaling are only partially understood. Phosphatases oppose the role of kinases by removing phosphate moieties. The catalytic activity of the protein phosphatase PP2A has been implicated in the regulation of NF-κB. PP2A acts in trimeric complexes in which the catalytic subunit is promiscuous and the regulatory subunit confers substrate specificity. To understand and eventually target NF-κB-specific PP2A functions it is essential to define the regulatory PP2A subunit involved. So far, the regulatory PP2A subunit that mediates NF-κB suppression in T cells remained undefined. By performing a siRNA screen in Jurkat T cells harboring a NF-κB-responsive luciferase reporter, we identified the PP2A regulatory subunit B56γ as negative regulator of NF-κB in TCR signaling. B56γ was strongly up-regulated upon primary human T cell activation, and B56γ silencing induced increased IκB kinase (IKK) and IκBα phosphorylation upon TCR stimulation. B56γ silencing enhanced NF-κB activity, resulting in increased NF-κB target gene expression including the T cell cytokine IL-2. In addition, T cell proliferation was increased upon B56γ silencing. These data help to understand the physiology of PP2A function in T cells and the pathophysiology of diseases involving PP2A and NF-κB. PMID:24719332

  4. Spatial control of protein phosphatase 2A (de)methylation

    SciTech Connect

    Longin, Sari; Zwaenepoel, Karen; Martens, Ellen; Louis, Justin V.; Rondelez, Evelien; Goris, Jozef; Janssens, Veerle

    2008-01-01

    Reversible methylation of the protein phosphatase 2A catalytic subunit (PP2A{sub C}) is an important regulatory mechanism playing a crucial role in the selective recruitment of regulatory B subunits. Here, we investigated the subcellular localization of leucine carboxyl methyltransferase (LCMT1) and protein phosphatase methylesterase (PME-1), the two enzymes catalyzing this process. The results show that PME-1 is predominantly localized in the nucleus and harbors a functional nuclear localization signal, whereas LCMT1 is underrepresented in the nucleus and mainly localizes to the cytoplasm, Golgi region and late endosomes. Indirect immunofluorescence with methylation-sensitive anti-PP2A{sub C} antibodies revealed a good correlation with the methylation status of PP2A{sub C}, demethylated PP2A{sub C} being substantially nuclear. Throughout mitosis, demethylated PP2A{sub C} is associated with the mitotic spindle and during cytokinesis with the cleavage furrow. Overexpression of PME-1, but not of an inactive mutant, results in increased demethylation of PP2A{sub C} in the nucleus, whereas overexpression of a cytoplasmic PME-1 mutant lacking the NLS results in increased demethylation in the cytoplasm-in all cases, however, without any obvious functional consequences. PME-1 associates with an inactive PP2A population, regardless of its esterase activity or localization. We propose that stabilization of this inactive, nuclear PP2A pool is a major in vivo function of PME-1.

  5. Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions.

    PubMed

    Jaumot, M; Hancock, J F

    2001-07-01

    Raf-1 activation is a complex process which involves plasma membrane recruitment, phosphorylation, protein-protein and lipid-protein interactions. We now show that PP1 and PP2A serine-threonine phosphatases also have a positive role in Ras dependent Raf-1 activation. General serine-threonine phosphatase inhibitors such sodium fluoride, or ss-glycerophosphate and sodium pyrophosphate, or specific PP1 and PP2A inhibitors including microcystin-LR, protein phosphatase 2A inhibitor I(1) or protein phosphatase inhibitor 2 all abrogate H-Ras and K-Ras dependent Raf-1 activation in vitro. A critical Raf-1 target residue for PP1 and PP2A is S259. Serine phosphatase inhibitors block the dephosphorylation of S259, which accompanies Raf-1 activation, and Ras dependent activation of mutant Raf259A is relatively resistant to serine phosphatase inhibitors. Sucrose gradient analysis demonstrates that serine phosphatase inhibition increases the total amount of 14-3-3 and Raf-1 associated with the plasma membrane and significantly alters the distribution of 14-3-3 and Raf-1 across different plasma membrane microdomains. These observations suggest that dephosphorylation of S259 is a critical early step in Ras dependent Raf-1 activation which facilitates 14-3-3 displacement. Inhibition of PP1 and PP2A therefore causes plasma membrane accumulation of Raf-1/14-3-3 complexes which cannot be activated.

  6. Regulatory subunit B'gamma of protein phosphatase 2A prevents unnecessary defense reactions under low light in Arabidopsis.

    PubMed

    Trotta, Andrea; Wrzaczek, Michael; Scharte, Judith; Tikkanen, Mikko; Konert, Grzegorz; Rahikainen, Moona; Holmström, Maija; Hiltunen, Hanna-Maija; Rips, Stephan; Sipari, Nina; Mulo, Paula; Weis, Engelbert; von Schaewen, Antje; Aro, Eva-Mari; Kangasjärvi, Saijaliisa

    2011-07-01

    Light is an important environmental factor that modulates acclimation strategies and defense responses in plants. We explored the functional role of the regulatory subunit B'γ (B'γ) of protein phosphatase 2A (PP2A) in light-dependent stress responses of Arabidopsis (Arabidopsis thaliana). The predominant form of PP2A consists of catalytic subunit C, scaffold subunit A, and highly variable regulatory subunit B, which determines the substrate specificity of PP2A holoenzymes. Mutant leaves of knockdown pp2a-b'γ plants show disintegration of chloroplasts and premature yellowing conditionally under moderate light intensity. The cell-death phenotype is accompanied by the accumulation of hydrogen peroxide through a pathway that requires CONSTITUTIVE EXPRESSION OF PR GENES5 (CPR5). Moreover, the pp2a-b'γ cpr5 double mutant additionally displays growth suppression and malformed trichomes. Similar to cpr5, the pp2a-b'γ mutant shows constitutive activation of both salicylic acid- and jasmonic acid-dependent defense pathways. In contrast to cpr5, however, pp2a-b'γ leaves do not contain increased levels of salicylic acid or jasmonic acid. Rather, the constitutive defense response associates with hypomethylation of DNA and increased levels of methionine-salvage pathway components in pp2a-b'γ leaves. We suggest that the specific B'γ subunit of PP2A is functionally connected to CPR5 and operates in the basal repression of defense responses under low irradiance.

  7. Protein Phosphatase 2A as a Therapeutic Target in Acute Myeloid Leukemia

    PubMed Central

    Arriazu, Elena; Pippa, Raffaella; Odero, María D.

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous malignant disorder of hematopoietic progenitor cells in which several genetic and epigenetic aberrations have been described. Despite progressive advances in our understanding of the molecular biology of this disease, the outcome for most patients is poor. It is, therefore, necessary to develop more effective treatment strategies. Genetic aberrations affecting kinases have been widely studied in AML; however, the role of phosphatases remains underexplored. Inactivation of the tumor-suppressor protein phosphatase 2A (PP2A) is frequent in AML patients, making it a promising target for therapy. There are several PP2A inactivating mechanisms reported in this disease. Deregulation or specific post-translational modifications of PP2A subunits have been identified as a cause of PP2A malfunction, which lead to deregulation of proliferation or apoptosis pathways, depending on the subunit affected. Likewise, overexpression of either SET or cancerous inhibitor of protein phosphatase 2A, endogenous inhibitors of PP2A, is a recurrent event in AML that impairs PP2A activity, contributing to leukemogenesis progression. Interestingly, the anticancer activity of several PP2A-activating drugs (PADs) depends on interaction/sequestration of SET. Preclinical studies show that pharmacological restoration of PP2A activity by PADs effectively antagonizes leukemogenesis, and that these drugs have synergistic cytotoxic effects with conventional chemotherapy and kinase inhibitors, opening new possibilities for personalized treatment in AML patients, especially in cases with SET-dependent inactivation of PP2A. Here, we review the role of PP2A as a druggable tumor suppressor in AML. PMID:27092295

  8. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo

    NASA Technical Reports Server (NTRS)

    Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.

  9. Yeast Protein Phosphatase 2A-Cdc55 Regulates the Transcriptional Response to Hyperosmolarity Stress by Regulating Msn2 and Msn4 Chromatin Recruitment

    PubMed Central

    Reiter, Wolfgang; Klopf, Eva; De Wever, Veerle; Anrather, Dorothea; Petryshyn, Andriy; Roetzer, Andreas; Niederacher, Gerhard; Roitinger, Elisabeth; Dohnal, Ilse; Görner, Wolfram; Mechtler, Karl; Brocard, Cécile

    2013-01-01

    We have identified Cdc55, a regulatory B subunit of protein phosphatase 2A (PP2A), as an essential activating factor for stress gene transcription in Saccharomyces cerevisiae. The presence of PP2A-Cdc55 is required for full activation of the environmental stress response mediated by the transcription factors Msn2 and Msn4. We show that PP2A-Cdc55 contributes to sustained nuclear accumulation of Msn2 and Msn4 during hyperosmolarity stress. PP2A-Cdc55 also enhances Msn2-dependent transactivation, required for extended chromatin recruitment of the transcription factor. We analyzed a possible direct regulatory role for PP2A-Cdc55 on the phosphorylation status of Msn2. Detailed mass spectrometric and genetic analysis of Msn2 showed that stress exposure causes immediate transient dephosphorylation of Msn2 which is not dependent on PP2A-Cdc55 activity. Furthermore, the Hog1 mitogen-activated protein kinase pathway activity is not influenced by PP2A-Cdc55. We therefore propose that the PP2A-Cdc55 phosphatase is not involved in cytosolic stress signal perception but is involved in a specific intranuclear mechanism to regulate Msn2 and Msn4 nuclear accumulation and chromatin association under stress conditions. PMID:23275436

  10. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy

    NASA Astrophysics Data System (ADS)

    Deng, Yuanjun; Guo, Yanyan; Liu, Ping; Zeng, Rui; Ning, Yong; Pei, Guangchang; Li, Yueqiang; Chen, Meixue; Guo, Shuiming; Li, Xiaoqing; Han, Min; Xu, Gang

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment withTAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis.

  11. Dephosphorylation of CDK9 by protein phosphatase 2A and protein phosphatase-1 in Tat-activated HIV-1 transcription

    PubMed Central

    Ammosova, Tatyana; Washington, Kareem; Debebe, Zufan; Brady, John; Nekhai, Sergei

    2005-01-01

    Background HIV-1 Tat protein recruits human positive transcription elongation factor P-TEFb, consisting of CDK9 and cyclin T1, to HIV-1 transactivation response (TAR) RNA. CDK9 is maintained in dephosphorylated state by TFIIH and undergo phosphorylation upon the dissociation of TFIIH. Thus, dephosphorylation of CDK9 prior to its association with HIV-1 preinitiation complex might be important for HIV-1 transcription. Others and we previously showed that protein phosphatase-2A and protein phosphatase-1 regulates HIV-1 transcription. In the present study we analyze relative contribution of PP2A and PP1 to dephosphorylation of CDK9 and to HIV-1 transcription in vitro and in vivo. Results In vitro, PP2A but not PP1 dephosphorylated autophosphorylated CDK9 and reduced complex formation between P-TEFb, Tat and TAR RNA. Inhibition of PP2A by okadaic acid inhibited basal as well as Tat-induced HIV-1 transcription whereas inhibition of PP1 by recombinant nuclear inhibitor of PP1 (NIPP1) inhibited only Tat-induced transcription in vitro. In cultured cells, low concentration of okadaic acid, inhibitory for PP2A, only mildly inhibited Tat-induced HIV-1 transcription. In contrast Tat-mediated HIV-1 transcription was strongly inhibited by expression of NIPP1. Okadaic acid induced phosphorylation of endogenous as well transiently expressed CDK9, but this induction was not seen in the cells expressing NIPP1. Also the okadaic acid did not induce phosphorylation of CDK9 with mutation of Thr 186 or with mutations in Ser-329, Thr-330, Thr-333, Ser-334, Ser-347, Thr-350, Ser-353, and Thr-354 residues involved in autophosphorylation of CDK9. Conclusion Our results indicate that although PP2A dephosphorylates autophosphorylated CDK9 in vitro, in cultured cells PP1 is likely to dephosphorylate CDK9 and contribute to the regulation of activated HIV-1 transcription. PMID:16048649

  12. Structure and Mechanism of the Phosphotyrosyl Phosphatase Activator

    SciTech Connect

    Chao,Y.; Xing, Y.; Chen, Y.; Xu, Y.; Lin, Z.; Li, Z.; Jeffrey, P.; Stock, J.; Shi, Y.

    2006-01-01

    Phosphotyrosyl phosphatase activator (PTPA), also known as PP2A phosphatase activator, is a conserved protein from yeast to human. Here we report the 1.9 {angstrom} crystal structure of human PTPA, which reveals a previously unreported fold consisting of three subdomains: core, lid, and linker. Structural analysis uncovers a highly conserved surface patch, which borders the three subdomains, and an associated deep pocket located between the core and the linker subdomains. The conserved surface patch and the deep pocket are responsible for binding to PP2A and ATP, respectively. PTPA and PP2A A-C dimer together constitute a composite ATPase. PTPA binding to PP2A results in a dramatic alteration of substrate specificity, with enhanced phosphotyrosine phosphatase activity and decreased phosphoserine phosphatase activity. This function of PTPA strictly depends on the composite ATPase activity. These observations reveal significant insights into the function and mechanism of PTPA and have important ramifications for understanding PP2A function.

  13. Structural and Biochemical Insights into the Regulation of Protein Phosphatase 2A by Small t Antigen of SV40

    SciTech Connect

    Chen,Y.; Xu, Y.; Bao, Q.; Xing, Y.; Li, Z.; Lin, Z.; Stock, J.; Jeffrey, P.; Shi, Y.

    2007-01-01

    The small t antigen (ST) of DNA tumor virus SV40 facilitates cellular transformation by disrupting the functions of protein phosphatase 2A (PP2A) through a poorly defined mechanism. The crystal structure of the core domain of SV40 ST bound to the scaffolding subunit of human PP2A reveals that the ST core domain has a novel zinc-binding fold and interacts with the conserved ridge of HEAT repeats 3-6, which overlaps with the binding site for the B' (also called PR61 or B56) regulatory subunit. ST has a lower binding affinity than B' for the PP2A core enzyme. Consequently, ST does not efficiently displace B' from PP2A holoenzymes in vitro. Notably, ST inhibits PP2A phosphatase activity through its N-terminal J domain. These findings suggest that ST may function mainly by inhibiting the phosphatase activity of the PP2A core enzyme, and to a lesser extent by modulating assembly of the PP2A holoenzymes.

  14. cAMP-stimulated protein phosphatase 2A activity associated with muscle A kinase-anchoring protein (mAKAP) signaling complexes inhibits the phosphorylation and activity of the cAMP-specific phosphodiesterase PDE4D3.

    PubMed

    Dodge-Kafka, Kimberly L; Bauman, Andrea; Mayer, Nicole; Henson, Edward; Heredia, Lorena; Ahn, Jung; McAvoy, Thomas; Nairn, Angus C; Kapiloff, Michael S

    2010-04-01

    The concentration of the second messenger cAMP is tightly controlled in cells by the activity of phosphodiesterases. We have previously described how the protein kinase A-anchoring protein mAKAP serves as a scaffold for the cAMP-dependent protein kinase PKA and the cAMP-specific phosphodiesterase PDE4D3 in cardiac myocytes. PKA and PDE4D3 constitute a negative feedback loop whereby PKA-catalyzed phosphorylation and activation of PDE4D3 attenuate local cAMP levels. We now show that protein phosphatase 2A (PP2A) associated with mAKAP complexes is responsible for reversing the activation of PDE4D3 by catalyzing the dephosphorylation of PDE4D3 serine residue 54. Mapping studies reveal that a C-terminal mAKAP domain (residues 2085-2319) binds PP2A. Binding to mAKAP is required for PP2A function, such that deletion of the C-terminal domain enhances both base-line and forskolin-stimulated PDE4D3 activity. Interestingly, PP2A holoenzyme associated with mAKAP complexes in the heart contains the PP2A targeting subunit B56delta. Like PDE4D3, B56delta is a PKA substrate, and PKA phosphorylation of mAKAP-bound B56delta enhances phosphatase activity 2-fold in the complex. Accordingly, expression of a B56delta mutant that cannot be phosphorylated by PKA results in increased PDE4D3 phosphorylation. Taken together, our findings demonstrate that PP2A associated with mAKAP complexes promotes PDE4D3 dephosphorylation, serving both to inhibit PDE4D3 in unstimulated cells and also to mediate a cAMP-induced positive feedback loop following adenylyl cyclase activation and B56delta phosphorylation. In general, PKA.PP2A.mAKAP complexes exemplify how protein kinases and phosphatases may participate in molecular signaling complexes to dynamically regulate localized intracellular signaling. PMID:20106966

  15. Tau pathology involves protein phosphatase 2A in Parkinsonism-dementia of Guam

    PubMed Central

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M.; Iqbal, Khalid

    2014-01-01

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr307 and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr307 in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr307. These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5–PP2A complex, and its phosphorylation at Tyr307 by Src. PMID:24395787

  16. Tau pathology involves protein phosphatase 2A in parkinsonism-dementia of Guam.

    PubMed

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M; Iqbal, Khalid

    2014-01-21

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr(307) and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr(307) in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr(307). These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5-PP2A complex, and its phosphorylation at Tyr(307) by Src.

  17. Tau pathology involves protein phosphatase 2A in parkinsonism-dementia of Guam.

    PubMed

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M; Iqbal, Khalid

    2014-01-21

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr(307) and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr(307) in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr(307). These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5-PP2A complex, and its phosphorylation at Tyr(307) by Src. PMID:24395787

  18. Cytoplasmic SET induces tau hyperphosphorylation through a decrease of methylated phosphatase 2A

    PubMed Central

    2014-01-01

    Background The neuronal cytoplasmic localization of SET, an inhibitor of the phosphatase 2A (PP2A), results in tau hyperphosphorylation in the brains of Alzheimer patients through mechanisms that are still not well defined. Results We used primary neurons and mouse brain slices to show that SET is translocated to the cytoplasm in a manner independent of both its cleavage and over-expression. The localization of SET in the cytoplasm, either by the translocation of endogenous SET or by internalization of the recombinant full-length SET protein, induced tau hyperphosphorylation. Cytoplasmic recombinant full-length SET in mouse brain slices induced a decrease of PP2A activity through a decrease of methylated PP2A levels. The levels of methylated PP2A were negatively correlated with tau hyperphosphorylation at Ser-202 but not with the abnormal phosphorylation of tau at Ser-422. Conclusions The presence of full-length SET in the neuronal cytoplasm is sufficient to impair PP2A methylation and activity, leading to tau hyperphosphorylation. In addition, our data suggest that tau hyperphosphorylation is regulated by different mechanisms at distinct sites. The translocation of SET to the neuronal cytoplasm, the low activity of PP2A, and tau hyperphosphorylation are associated in the brains of Alzheimer patients. Our data show a link between the translocation of SET in the cytoplasm and the decrease of methylated PP2A levels leading to a decrease of PP2A activity and tau hyperphosphorylation. This chain of events may contribute to the pathogenesis of Alzheimer disease. PMID:24981783

  19. Mutations in a new Arabidopsis cyclophilin disrupt its interaction with protein phosphatase 2A

    NASA Technical Reports Server (NTRS)

    Jackson, K.; Soll, D.; Evans, M. L. (Principal Investigator)

    1999-01-01

    The heterotrimeric protein phosphatase 2A (PP2A) is a component of multiple signaling pathways in eukaryotes. Disruption of PP2A activity in Arabidopsis is known to alter auxin transport and growth response pathways. We demonstrated that the regulatory subunit A of an Arabidopsis PP2A interacts with a novel cyclophilin, ROC7. The gene for this cyclophilin encodes a protein that contains a unique 30-amino acid extension at the N-terminus, which distinguishes the gene product from all previously identified Arabidopsis cyclophilins. Altered forms of ROC7 cyclophilin with mutations in the conserved DENFKL domain did not bind to PP2A. Unlike protein phosphatase 2B, PP2A activity in Arabidopsis extracts was not affected by the presence of the cyclophilin-binding molecule cyclosporin. The ROC7 transcript was expressed to high levels in all tissues tested. Expression of an ROC7 antisense transcript gave rise to increased root growth. These results indicate that cyclophilin may have a role in regulating PP2A activity, by a mechanism that differs from that employed for cyclophilin regulation of PP2B.

  20. Palmitate action to inhibit glycogen synthase and stimulate protein phosphatase 2A increases with risk factors for type 2 diabetes

    PubMed Central

    Mott, David M.; Stone, Karen; Gessel, Mary C.; Bunt, Joy C.; Bogardus, Clifton

    2008-01-01

    Recent studies have suggested that abnormal regulation of protein phosphatase 2A (PP2A) is associated with Type 2 diabetes in rodent and human tissues. Results with cultured mouse myotubes support a mechanism for palmitate activation of PP2A, leading to activation of glycogen synthase kinase 3. Phosphorylation and inactivation of glycogen synthase by glycogen synthase kinase 3 could be the mechanism for long-chain fatty acid inhibition of insulin-mediated carbohydrate storage in insulin-resistant subjects. Here, we test the effects of palmitic acid on cultured muscle glycogen synthase and PP2A activities. Palmitate inhibition of glycogen synthase fractional activity is increased in subjects with high body mass index compared with subjects with lower body mass index (r = −0.43, P = 0.03). Palmitate action on PP2A varies from inhibition in subjects with decreased 2-h plasma glucose concentration to activation in subjects with increased 2-h plasma glucose concentration (r = 0.45, P < 0.03) during oral glucose tolerance tests. The results do not show an association between palmitate effects on PP2A and glycogen synthase fractional activity. We conclude that subjects at risk for Type 2 diabetes have intrinsic differences in palmitate regulation of at least two enzymes (PP2A and glycogen synthase), contributing to abnormal insulin regulation of glucose metabolism. PMID:18056794

  1. Palmitate action to inhibit glycogen synthase and stimulate protein phosphatase 2A increases with risk factors for type 2 diabetes.

    PubMed

    Mott, David M; Stone, Karen; Gessel, Mary C; Bunt, Joy C; Bogardus, Clifton

    2008-02-01

    Recent studies have suggested that abnormal regulation of protein phosphatase 2A (PP2A) is associated with Type 2 diabetes in rodent and human tissues. Results with cultured mouse myotubes support a mechanism for palmitate activation of PP2A, leading to activation of glycogen synthase kinase 3. Phosphorylation and inactivation of glycogen synthase by glycogen synthase kinase 3 could be the mechanism for long-chain fatty acid inhibition of insulin-mediated carbohydrate storage in insulin-resistant subjects. Here, we test the effects of palmitic acid on cultured muscle glycogen synthase and PP2A activities. Palmitate inhibition of glycogen synthase fractional activity is increased in subjects with high body mass index compared with subjects with lower body mass index (r = -0.43, P = 0.03). Palmitate action on PP2A varies from inhibition in subjects with decreased 2-h plasma glucose concentration to activation in subjects with increased 2-h plasma glucose concentration (r = 0.45, P < 0.03) during oral glucose tolerance tests. The results do not show an association between palmitate effects on PP2A and glycogen synthase fractional activity. We conclude that subjects at risk for Type 2 diabetes have intrinsic differences in palmitate regulation of at least two enzymes (PP2A and glycogen synthase), contributing to abnormal insulin regulation of glucose metabolism.

  2. Protein phosphatase 2A mediates resensitization of the neurokinin 1 receptor

    PubMed Central

    Murphy, Jane E.; Roosterman, Dirk; Cottrell, Graeme S.; Padilla, Benjamin E.; Feld, Micha; Brand, Eva; Cedron, Wendy J.; Steinhoff, Martin

    2011-01-01

    Activated G protein-coupled receptors (GPCRs) are phosphorylated and interact with β-arrestins, which mediate desensitization and endocytosis. Endothelin-converting enzyme-1 (ECE-1) degrades neuropeptides in endosomes and can promote recycling. Although endocytosis, dephosphorylation, and recycling are accepted mechanisms of receptor resensitization, a large proportion of desensitized receptors can remain at the cell surface. We investigated whether reactivation of noninternalized, desensitized (phosphorylated) receptors mediates resensitization of the substance P (SP) neurokinin 1 receptor (NK1R). Herein, we report a novel mechanism of resensitization by which protein phosphatase 2A (PP2A) is recruited to dephosphorylate noninternalized NK1R. A desensitizing concentration of SP reduced cell-surface SP binding sites by only 25%, and SP-induced Ca2+ signals were fully resensitized before cell-surface binding sites started to recover, suggesting resensitization of cell-surface-retained NK1R. SP induced association of β-arrestin1 and PP2A with noninternalized NK1R. β-Arrestin1 small interfering RNA knockdown prevented SP-induced association of cell-surface NK1R with PP2A, indicating that β-arrestin1 mediates this interaction. ECE-1 inhibition, by trapping β-arrestin1 in endosomes, also impeded SP-induced association of cell-surface NK1R with PP2A. Resensitization of NK1R signaling required both PP2A and ECE-1 activity. Thus, after stimulation with SP, PP2A interacts with noninternalized NK1R and mediates resensitization. PP2A interaction with NK1R requires β-arrestin1. ECE-1 promotes this process by releasing β-arrestin1 from NK1R in endosomes. These findings represent a novel mechanism of PP2A- and ECE-1-dependent resensitization of GPCRs. PMID:21795521

  3. Protein phosphatase 2A mediates resensitization of the neurokinin 1 receptor.

    PubMed

    Murphy, Jane E; Roosterman, Dirk; Cottrell, Graeme S; Padilla, Benjamin E; Feld, Micha; Brand, Eva; Cedron, Wendy J; Bunnett, Nigel W; Steinhoff, Martin

    2011-10-01

    Activated G protein-coupled receptors (GPCRs) are phosphorylated and interact with β-arrestins, which mediate desensitization and endocytosis. Endothelin-converting enzyme-1 (ECE-1) degrades neuropeptides in endosomes and can promote recycling. Although endocytosis, dephosphorylation, and recycling are accepted mechanisms of receptor resensitization, a large proportion of desensitized receptors can remain at the cell surface. We investigated whether reactivation of noninternalized, desensitized (phosphorylated) receptors mediates resensitization of the substance P (SP) neurokinin 1 receptor (NK(1)R). Herein, we report a novel mechanism of resensitization by which protein phosphatase 2A (PP2A) is recruited to dephosphorylate noninternalized NK(1)R. A desensitizing concentration of SP reduced cell-surface SP binding sites by only 25%, and SP-induced Ca(2+) signals were fully resensitized before cell-surface binding sites started to recover, suggesting resensitization of cell-surface-retained NK(1)R. SP induced association of β-arrestin1 and PP2A with noninternalized NK(1)R. β-Arrestin1 small interfering RNA knockdown prevented SP-induced association of cell-surface NK(1)R with PP2A, indicating that β-arrestin1 mediates this interaction. ECE-1 inhibition, by trapping β-arrestin1 in endosomes, also impeded SP-induced association of cell-surface NK(1)R with PP2A. Resensitization of NK(1)R signaling required both PP2A and ECE-1 activity. Thus, after stimulation with SP, PP2A interacts with noninternalized NK(1)R and mediates resensitization. PP2A interaction with NK(1)R requires β-arrestin1. ECE-1 promotes this process by releasing β-arrestin1 from NK(1)R in endosomes. These findings represent a novel mechanism of PP2A- and ECE-1-dependent resensitization of GPCRs.

  4. Phosphorylated protein phosphatase 2A determines poor outcome in patients with metastatic colorectal cancer

    PubMed Central

    Cristóbal, I; Manso, R; Rincón, R; Caramés, C; Zazo, S; del Pulgar, T G; Cebrián, A; Madoz-Gúrpide, J; Rojo, F; García-Foncillas, J

    2014-01-01

    Background: Protein phosphatase 2A (PP2A) is a tumour suppressor frequently inactivated in human cancer and its tyrosine-307 phosphorylation has been reported as a molecular inhibitory mechanism. Methods: Expression of phosphorylated PP2A (p-PP2A) was evaluated in 250 metastatic colorectal cancer (CRC) patients. Chi-square, Kaplan–Meier and Cox analyses were used to determine correlations with clinical and molecular parameters and impact on clinical outcomes. Results: High p-PP2A levels were found in 17.2% cases and were associated with ECOG performance status (P=0.001) and presence of synchronous metastasis at diagnosis (P=0.035). This subgroup showed substantially worse overall survival (OS) (median OS, 6.0 vs 26.2 months, P<0.001) and progression-free survival (PFS) (median PFS, 3.8 vs 13.3 months, P<0.001). The prognostic impact of p-PP2A was particularly evident in patients aged <70 years (P<0.001). Multivariate analysis revealed that p-PP2A retained its prognostic impact for OS (hazard ratio 2.7; 95% confidence interval, 1.8–4.1; P<0.001) and PFS (hazard ratio 3.0; 95% confidence interval, 1.8–5.0; P<0.001). Conclusions: Phosphorylated PP2A is an alteration that determines poor outcome in metastatic CRC and represents a novel potential therapeutic target in this disease, thus enabling to define a subgroup of patients who could benefit from future treatments based on PP2A activators. PMID:25003662

  5. cAMP-stimulated Protein Phosphatase 2A Activity Associated with Muscle A Kinase-anchoring Protein (mAKAP) Signaling Complexes Inhibits the Phosphorylation and Activity of the cAMP-specific Phosphodiesterase PDE4D3*

    PubMed Central

    Dodge-Kafka, Kimberly L.; Bauman, Andrea; Mayer, Nicole; Henson, Edward; Heredia, Lorena; Ahn, Jung; McAvoy, Thomas; Nairn, Angus C.; Kapiloff, Michael S.

    2010-01-01

    The concentration of the second messenger cAMP is tightly controlled in cells by the activity of phosphodiesterases. We have previously described how the protein kinase A-anchoring protein mAKAP serves as a scaffold for the cAMP-dependent protein kinase PKA and the cAMP-specific phosphodiesterase PDE4D3 in cardiac myocytes. PKA and PDE4D3 constitute a negative feedback loop whereby PKA-catalyzed phosphorylation and activation of PDE4D3 attenuate local cAMP levels. We now show that protein phosphatase 2A (PP2A) associated with mAKAP complexes is responsible for reversing the activation of PDE4D3 by catalyzing the dephosphorylation of PDE4D3 serine residue 54. Mapping studies reveal that a C-terminal mAKAP domain (residues 2085–2319) binds PP2A. Binding to mAKAP is required for PP2A function, such that deletion of the C-terminal domain enhances both base-line and forskolin-stimulated PDE4D3 activity. Interestingly, PP2A holoenzyme associated with mAKAP complexes in the heart contains the PP2A targeting subunit B56δ. Like PDE4D3, B56δ is a PKA substrate, and PKA phosphorylation of mAKAP-bound B56δ enhances phosphatase activity 2-fold in the complex. Accordingly, expression of a B56δ mutant that cannot be phosphorylated by PKA results in increased PDE4D3 phosphorylation. Taken together, our findings demonstrate that PP2A associated with mAKAP complexes promotes PDE4D3 dephosphorylation, serving both to inhibit PDE4D3 in unstimulated cells and also to mediate a cAMP-induced positive feedback loop following adenylyl cyclase activation and B56δ phosphorylation. In general, PKA·PP2A·mAKAP complexes exemplify how protein kinases and phosphatases may participate in molecular signaling complexes to dynamically regulate localized intracellular signaling. PMID:20106966

  6. Theophylline Represses IL-8 Secretion from Airway Smooth Muscle Cells Independently of Phosphodiesterase Inhibition. Novel Role as a Protein Phosphatase 2A Activator.

    PubMed

    Patel, Brijeshkumar S; Rahman, Md Mostafizur; Rumzhum, Nowshin N; Oliver, Brian G; Verrills, Nicole M; Ammit, Alaina J

    2016-06-01

    Theophylline is an old drug experiencing a renaissance owing to its beneficial antiinflammatory effects in chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Multiple modes of antiinflammatory action have been reported, including inhibition of the enzymes that degrade cAMP-phosphodiesterase (PDE). Using primary cultures of airway smooth muscle (ASM) cells, we recently revealed that PDE4 inhibitors can potentiate the antiinflammatory action of β2-agonists by augmenting cAMP-dependent expression of the phosphatase that deactivates mitogen-activated protein kinase (MAPK)-MAPK phosphatase (MKP)-1. Therefore, the aim of this study was to address whether theophylline repressed cytokine production in a similar, PDE-dependent, MKP-1-mediated manner. Notably, theophylline did not potentiate cAMP release from ASM cells treated with the long-acting β2-agonist formoterol. Moreover, theophylline (0.1-10 μM) did not increase formoterol-induced MKP-1 messenger RNA expression nor protein up-regulation, consistent with the lack of cAMP generation. However, theophylline (at 10 μM) was antiinflammatory and repressed secretion of the neutrophil chemoattractant cytokine IL-8, which is produced in response to TNF-α. Because theophylline's effects were independent of PDE4 inhibition or antiinflammatory MKP-1, we then wished to elucidate the novel mechanisms responsible. We investigated the impact of theophylline on protein phosphatase (PP) 2A, a master controller of multiple inflammatory signaling pathways, and show that theophylline increases TNF-α-induced PP2A activity in ASM cells. Confirmatory results were obtained in A549 lung epithelial cells. PP2A activators have beneficial effects in ex vivo and in vivo models of respiratory disease. Thus, our study is the first to link theophylline with PP2A activation as a novel mechanism to control respiratory inflammation.

  7. Potential role for inhibition of protein phosphatase 2A tumor suppressor in salivary gland malignancies.

    PubMed

    Routila, Johannes; Mäkelä, Juho-Antti; Luukkaa, Heikki; Leivo, Ilmo; Irjala, Heikki; Westermarck, Jukka; Mäkitie, Antti; Ventelä, Sami

    2016-01-01

    The aetiology and pathogenesis of salivary gland malignancies remain unknown. To reveal novel molecular factors behind the development of salivary gland cancer, we performed gene expression analyses from Smgb-Tag mouse salivary gland samples. The overall purpose was to apply these results for clinical use to find new approaches for both possible therapeutic targets and more accurate diagnostic tools. Smgb-Tag mouse strain, in which salivary neoplasms arise through a dysplastic phase in submandibular glands, was investigated using genome-wide microarray expression analysis, ingenuity pathway analysis, RT-PCR, and immunohistochemistry. Thirty-eight human salivary gland adenoid cystic carcinoma samples were investigated using immunohistochemistry for validation purposes. Our genome-wide study showed that Ppp2r1b, a PP2A subunit encoding tumor suppressor gene, is underexpressed in submandibular gland tumors of Smgb-Tag mice. mTOR signaling pathway was significantly enriched and mTOR linked PP2A subunit gene B55 gamma was significantly underexpressed in the analyses. Furthermore, parallel immunohistochemical analysis of three PP2A inhibitors demonstrated that two PP2A inhibitors, CIP2A and SET, are highly expressed in both dysplastic and adenocarcinomatous tumors of the Smgb-Tag mice. In addition, all 38 investigated human salivary adenoid cystic carcinoma samples stained positively for CIP2A and most for SET. Finally, p-S6 staining showed activation of mTOR pathway in human adenoid cystic carcinoma samples. Our results suggest that PP2A inhibition either via PP2A subunit underexpression or PP2A inhibitor overexpression play an important role in the formation of salivary gland malignancy, potentially due to mTOR signaling activation.

  8. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity

    PubMed Central

    Segonzac, Cécile; Macho, Alberto P; Sanmartín, Maite; Ntoukakis, Vardis; Sánchez-Serrano, José Juan; Zipfel, Cyril

    2014-01-01

    Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern-recognition receptors (PRRs) activates plant innate immunity, mainly through activation of numerous protein kinases. Appropriate induction of immune responses must be tightly regulated, as many of the kinases involved have an intrinsic high activity and are also regulated by other external and endogenous stimuli. Previous evidences suggest that PAMP-triggered immunity (PTI) is under constant negative regulation by protein phosphatases but the underlying molecular mechanisms remain unknown. Here, we show that protein Ser/Thr phosphatase type 2A (PP2A) controls the activation of PRR complexes by modulating the phosphostatus of the co-receptor and positive regulator BAK1. A potential PP2A holoenzyme composed of the subunits A1, C4, and B’η/ζ inhibits immune responses triggered by several PAMPs and anti-bacterial immunity. PP2A constitutively associates with BAK1 in planta. Impairment in this PP2A-based regulation leads to increased steady-state BAK1 phosphorylation, which can poise enhanced immune responses. This work identifies PP2A as an important negative regulator of plant innate immunity that controls BAK1 activation in surface-localized immune receptor complexes. PMID:25085430

  9. Nilotinib induces autophagy in hepatocellular carcinoma through AMPK activation.

    PubMed

    Yu, Hui-Chuan; Lin, Chen-Si; Tai, Wei-Tien; Liu, Chun-Yu; Shiau, Chung-Wai; Chen, Kuen-Feng

    2013-06-21

    Hepatocellular carcinoma (HCC) is the most common liver cancer and the third-leading cause of cancer death worldwide. Nilotinib is an orally available receptor tyrosine kinase inhibitor approved for chronic myelogenous leukemia. This study investigated the effect of nilotinib on HCC. Nilotinib did not induce cellular apoptosis. Instead, staining with acridine orange and microtubule-associated protein 1 light chain 3 revealed that nilotinib induced autophagy in a dose- and time-dependent manner in HCC cell lines, including PLC5, Huh-7, and Hep3B. Moreover, nilotinib up-regulated the phosphryaltion of AMP-activated kinase (AMPK) and protein phosphatase PP2A inactivation were detected after nilotinib treatment. Up-regulating PP2A activity suppressed nilotinib-induced AMPK phosphorylation and autophagy, suggesting that PP2A mediates the effect of nilotinib on AMPK phosphorylation and autophagy. Our data indicate that nilotinib-induced AMPK activation is mediated by PP2A, and AMPK activation and subsequent autophagy might be a major mechanism of action of nilotinib. Growth of PLC5 tumor xenografts in BALB/c nude mice was inhibited by daily oral treatment with nilotinib. Western blot analysis showed both increased phospho-AMPK expression and decreased PP2A activity in vivo. Together, our results reveal that nilotinib induces autophagy, but not apoptosis in HCC, and that the autophagy-inducing activity is associated with PP2A-regulated AMPK phosphorylation.

  10. Resveratrol prevents cadmium activation of Erk1/2 and JNK pathways from neuronal cell death via protein phosphatases 2A and 5.

    PubMed

    Liu, Chunxiao; Zhang, Ruijie; Sun, Chenxia; Zhang, Hai; Xu, Chong; Liu, Wen; Gao, Wei; Huang, Shile; Chen, Long

    2015-11-01

    Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative disorders. Resveratrol, a natural product, has been found to exert neuroprotective effects. However, little is known regarding the effect of resveratrol on Cd-evoked neurotoxicity. Here, we show that resveratrol effectively reversed Cd-elicited cell viability reduction, morphological change, nuclear fragmentation and condensation, as well as activation of caspase-3 in neuronal cells, implying neuroprotection against Cd-poisoning by resveratrol. Further research revealed that both c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinases 1/2 (Erk1/2) were involved in the inhibitory effect of resveratrol on Cd-induced cell death, as selective inhibitors of Erk1/2 (U0126) and JNK (SP600125), or over-expression of dominant negative mitogen-activated protein kinase kinase 1 (MKK1) or dominant negative c-Jun potentiated resveratrol's prevention of Cd-induced phosphorylation of JNK and Erk1/2, as well as cell death in neuronal cells. Interestingly, resveratrol potently rescued the cells from Cd-induced suppression of protein phosphatases 2A (PP2A) and 5 (PP5) activity. Over-expression of PP2A or PP5 strengthened the inhibitory effects of resveratrol on Cd-induced activation of Erk1/2 and/or JNK, as well as cell death. The results indicate that resveratrol prevents Cd-induced activation of Erk1/2 and JNK pathways and neuronal cell death in part via activating PP2A and PP5. Our findings strongly support the notion that resveratrol may serve as a potential therapeutic agent in the prevention of Cd-induced neurodegenerative diseases.

  11. Protein Phosphatase 2A Inhibition with LB100 Enhances Radiation-Induced Mitotic Catastrophe and Tumor Growth Delay in Glioblastoma.

    PubMed

    Gordon, Ira K; Lu, Jie; Graves, Christian A; Huntoon, Kristin; Frerich, Jason M; Hanson, Ryan H; Wang, Xiaoping; Hong, Christopher S; Ho, Winson; Feldman, Michael J; Ikejiri, Barbara; Bisht, Kheem; Chen, Xiaoyuan S; Tandle, Anita; Yang, Chunzhang; Arscott, W Tristram; Ye, Donald; Heiss, John D; Lonser, Russell R; Camphausen, Kevin; Zhuang, Zhengping

    2015-07-01

    Protein phosphatase 2A (PP2A) is a tumor suppressor whose function is lost in many cancers. An emerging, though counterintuitive, therapeutic approach is inhibition of PP2A to drive damaged cells through the cell cycle, sensitizing them to radiotherapy. We investigated the effects of PP2A inhibition on U251 glioblastoma cells following radiation treatment in vitro and in a xenograft mouse model in vivo. Radiotherapy alone augmented PP2A activity, though this was significantly attenuated with combination LB100 treatment. LB100 treatment yielded a radiation dose enhancement factor of 1.45 and increased the rate of postradiation mitotic catastrophe at 72 and 96 hours. Glioblastoma cells treated with combination LB100 and radiotherapy maintained increased γ-H2AX expression at 24 hours, diminishing cellular repair of radiation-induced DNA double-strand breaks. Combination therapy significantly enhanced tumor growth delay and mouse survival and decreased p53 expression 3.68-fold, compared with radiotherapy alone. LB100 treatment effectively inhibited PP2A activity and enhanced U251 glioblastoma radiosensitivity in vitro and in vivo. Combination treatment with LB100 and radiation significantly delayed tumor growth, prolonging survival. The mechanism of radiosensitization appears to be related to increased mitotic catastrophe, decreased capacity for repair of DNA double-strand breaks, and diminished p53 DNA-damage response pathway activity.

  12. Sodium selenate, a protein phosphatase 2A activator, mitigates hyperphosphorylated tau and improves repeated mild traumatic brain injury outcomes.

    PubMed

    Tan, Xin L; Wright, David K; Liu, Shijie; Hovens, Christopher; O'Brien, Terence J; Shultz, Sandy R

    2016-09-01

    Mild traumatic brain injuries may result in cumulative brain damage and neurodegenerative disease. To date, there is no pharmaceutical intervention known to prevent these consequences. Hyperphosphorylated tau has been associated in this process, and protein phosphatase 2A 55 kDa regulatory B subunit (PP2A/PR55) - the major tau phosphatase - is decreased after a brain insult. Sodium selenate up-regulates PP2A/PR55 and dephosphorylates tau, and may hold promise as a treatment in the mild brain injury setting. Here we investigated sodium selenate treatment in rats given repeated mild traumatic brain injuries. Rats were given three mild fluid percussion injuries or three sham-injuries, and treated with sodium selenate (1 mg/kg/day) or saline-vehicle for three months before undergoing behavioral testing, MRI, and post-mortem analysis of brain tissue. Repeated mild traumatic brain injuries increased the phosphorylation of tau and decreased PP2A/PR55, whilst inducing brain atrophy and cognitive and sensorimotor deficits. Sodium selenate treatment increased PP2A/PR55, and decreased tau phosphorylation, brain damage, and cognitive and motor impairments in rats given repeated mild traumatic brain injuries. Our findings implicate PP2A/PR55 and tau as important mechanisms in the pathophysiological aftermath of repeated mild brain traumas, and support sodium selenate as a novel and translatable treatment for these common injuries. PMID:27163189

  13. Structural basis of protein phosphatase 2A stable latency

    PubMed Central

    Jiang, Li; Stanevich, Vitali; Satyshur, Kenneth A; Kong, Mei; Watkins, Guy R.; Wadzinski, Brian E.; Sengupta, Rituparna; Xing, Yongna

    2013-01-01

    The catalytic subunit of protein phosphatase 2A (PP2Ac) is stabilized in a latent form by α4, a regulatory protein essential for cell survival and biogenesis of all PP2A complexes. Here we report the structure of α4 bound to the N-terminal fragment of PP2Ac. This structure suggests that α4 binding to the full-length PP2Ac requires local unfolding near the active site, which perturbs the scaffold subunit binding site at the opposite surface via allosteric relay. These changes stabilize an inactive conformation of PP2Ac and convert oligomeric PP2A complexes to the α4 complex upon perturbation of the active site. The PP2Ac–α4 interface is essential for cell survival and sterically hinders a PP2A ubiquitination site, important for the stability of cellular PP2Ac. Our results show that α4 is a scavenger chaperone that binds to and stabilizes partially folded PP2Ac for stable latency, and reveal a mechanism by which α4 regulates cell survival, and biogenesis and surveillance of PP2A holoenzymes. PMID:23591866

  14. Estimation of the rate constants associated with the inhibitory effect of okadaic acid on type 2A protein phosphatase by time-course analysis.

    PubMed Central

    Takai, A; Ohno, Y; Yasumoto, T; Mieskes, G

    1992-01-01

    As is often the case with tightly binding inhibitors, okadaic acid produces its inhibitory effect on type 2A protein phosphatase (PP2A) in a time-dependent manner. We measured the rate constants associated with the binding of okadaic acid to PP2A by analysing the time-course of the reduction of the p-nitrophenyl phosphate (pNPP) phosphatase activity of the enzyme after application of okadaic acid. The rate constants for dissociation of okadaic acid from PP2A were also estimated from the time-course of the recovery of the activity from inhibition by okadaic acid after addition of a mouse IgG1 monoclonal antibody raised against the inhibitor. Our results show that the rate constants for the binding of okadaic acid and PP2A are of the order of 10(7) M-1.s-1, a typical value for reactions involving relatively large molecules, whereas those for their dissociation are in the range 10(-4)-10(-3) s-1. The very low values of the latter seems to be the determining factor for the exceedingly high affinity of okadaic acid for PP2A. The dissociation constants for the interaction of okadaic acid with the free enzyme and the enzyme-substrate complex, estimated as the ratio of the rate constants, are both in the range 30-40 pM, in agreement with the results of previous dose-inhibition analyses. PMID:1329723

  15. The role of Saccharomyces cerevisiae type 2A phosphatase in the actin cytoskeleton and in entry into mitosis.

    PubMed Central

    Lin, F C; Arndt, K T

    1995-01-01

    We have prepared a temperature-sensitive Saccharomyces cerevisiae type 2A phosphatase (PP2A) mutant, pph21-102. At the restrictive temperature, the pph21-102 cells arrested predominantly with small or aberrant buds, and their actin cytoskeleton and chitin deposition were abnormal. The involvement of PP2A in bud growth may be due to the role of PP2A in actin distribution during the cell cycle. Moreover, after a shift to the non-permissive temperature, the pph21-102 cells were blocked in G2 and had low activity of Clb2-Cdc28 kinase. Expression of Clb2 from the S.cerevisiae ADH promoter in pph21-102 cells was able to partially bypass the G2 arrest in the first cell cycle, but was not able to stimulate passage through a second mitosis. These cells had higher total amounts of Clb2-Cdc28 kinase activity, but the Clb2-normalized specific activity was lower in the pph21-102 cells compared with wild-type cells. Unlike wild-type strains, a PP2A-deficient strain was sensitive to the loss of MIH1, which is a homolog of the Schizosaccharomyces pombe mitotic inducer cdc25+. Furthermore, the cdc28F19 mutation cured the synthetic defects of a PP2A-deficient strain containing a deletion of MIH1. These results suggest that PP2A is required during G2 for the activation of Clb-Cdc28 kinase complexes for progression into mitosis. Images PMID:7796803

  16. Heavy Metal-induced Metallothionein Expression Is Regulated by Specific Protein Phosphatase 2A Complexes*

    PubMed Central

    Chen, Liping; Ma, Lu; Bai, Qing; Zhu, Xiaonian; Zhang, Jinmiao; Wei, Qing; Li, Daochuan; Gao, Chen; Li, Jie; Zhang, Zhengbao; Liu, Caixia; He, Zhini; Zeng, Xiaowen; Zhang, Aihua; Qu, Weidong; Zhuang, Zhixiong; Chen, Wen; Xiao, Yongmei

    2014-01-01

    Induction of metallothionein (MT) expression is involved in metal homeostasis and detoxification. To identify the key pathways that regulate metal-induced cytotoxicity, we investigate how phosphorylated metal-responsive transcription factor-1 (MTF-1) contributed to induction of MT expression. Immortal human embryonic kidney cells (HEK cells) were treated with seven kinds of metals including cadmium chloride (CdCl2), zinc sulfate (ZnSO4), copper sulfate(CuSO4), lead acetate (PbAc), nickel sulfate (NiSO4), sodium arsenite (NaAsO2), and potassium bichromate (K2Cr2O7). The MT expression was induced in a dose-response and time-dependent manner upon various metal treatments. A cycle of phosphorylation and dephosphorylation was required for translocation of MTF-1 from cytoplasm to nucleus, leading to the up-regulation of MTs expression. Protein phosphatase 2A (PP2A) participated in regulating MT expression through dephosphorylation of MTF-1. A loss-of-function screen revealed that the specific PP2A complexes containing PR110 were involved in metal-induced MT expression. Suppression of PP2A PR110 in HEK cells resulted in the persistent MTF-1 phosphorylation and the disturbance of MTF-1 nuclear translocation, which was concomitant with a significant decrease of MT expression and enhanced cytotoxicity in HEK cells. Notably, MTF-1 was found in complex with specific PP2A complexes containing the PR110 subunit upon metal exposure. Furthermore, we identify that the dephosphorylation of MTF-1 at residue Thr-254 is directly regulated by PP2A PR110 complexes and responsible for MTF-1 activation. Taken together, these findings delineate a novel pathway that determines cytotoxicity in response to metal treatments and provide new insight into the role of PP2A in cellular stress response. PMID:24962574

  17. Activation of asparaginyl endopeptidase leads to Tau hyperphosphorylation in Alzheimer disease.

    PubMed

    Basurto-Islas, Gustavo; Grundke-Iqbal, Inge; Tung, Yunn Chyn; Liu, Fei; Iqbal, Khalid

    2013-06-14

    Neurofibrillary pathology of abnormally hyperphosphorylated Tau is a key lesion of Alzheimer disease and other tauopathies, and its density in the brain directly correlates with dementia. The phosphorylation of Tau is regulated by protein phosphatase 2A, which in turn is regulated by inhibitor 2, I2(PP2A). In acidic conditions such as generated by brain ischemia and hypoxia, especially in association with hyperglycemia as in diabetes, I2(PP2A) is cleaved by asparaginyl endopeptidase at Asn-175 into the N-terminal fragment (I2NTF) and the C-terminal fragment (I2CTF). Both I2NTF and I2CTF are known to bind to the catalytic subunit of protein phosphatase 2A and inhibit its activity. Here we show that the level of activated asparaginyl endopeptidase is significantly increased, and this enzyme and I2(PP2A) translocate, respectively, from neuronal lysosomes and nucleus to the cytoplasm where they interact and are associated with hyperphosphorylated Tau in Alzheimer disease brain. Asparaginyl endopeptidase from Alzheimer disease brain could cleave GST-I2(PP2A), except when I2(PP2A) was mutated at the cleavage site Asn-175 to Gln. Finally, an induction of acidosis by treatment with kainic acid or pH 6.0 medium activated asparaginyl endopeptidase and consequently produced the cleavage of I2(PP2A), inhibition of protein phosphatase 2A, and hyperphosphorylation of Tau, and the knockdown of asparaginyl endopeptidase with siRNA abolished this pathway in SH-SY5Y cells. These findings suggest the involvement of brain acidosis in the etiopathogenesis of Alzheimer disease, and asparaginyl endopeptidase-I2(PP2A)-protein phosphatase 2A-Tau hyperphosphorylation pathway as a therapeutic target.

  18. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    SciTech Connect

    Sung, Uhna; Jennings, Jennifer L.; Link, Andrew J.; Blakely, Randy D.; E-mail: andy.blakely@vanderbilt.edu

    2005-08-05

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH{sub 2}-terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking.

  19. Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling.

    PubMed

    Kauko, Otto; Laajala, Teemu Daniel; Jumppanen, Mikael; Hintsanen, Petteri; Suni, Veronika; Haapaniemi, Pekka; Corthals, Garry; Aittokallio, Tero; Westermarck, Jukka; Imanishi, Susumu Y

    2015-08-17

    Hyperactivated RAS drives progression of many human malignancies. However, oncogenic activity of RAS is dependent on simultaneous inactivation of protein phosphatase 2A (PP2A) activity. Although PP2A is known to regulate some of the RAS effector pathways, it has not been systematically assessed how these proteins functionally interact. Here we have analyzed phosphoproteomes regulated by either RAS or PP2A, by phosphopeptide enrichment followed by mass-spectrometry-based label-free quantification. To allow data normalization in situations where depletion of RAS or PP2A inhibitor CIP2A causes a large uni-directional change in the phosphopeptide abundance, we developed a novel normalization strategy, named pairwise normalization. This normalization is based on adjusting phosphopeptide abundances measured before and after the enrichment. The superior performance of the pairwise normalization was verified by various independent methods. Additionally, we demonstrate how the selected normalization method influences the downstream analyses and interpretation of pathway activities. Consequently, bioinformatics analysis of RAS and CIP2A regulated phosphoproteomes revealed a significant overlap in their functional pathways. This is most likely biologically meaningful as we observed a synergistic survival effect between CIP2A and RAS expression as well as KRAS activating mutations in TCGA pan-cancer data set, and synergistic relationship between CIP2A and KRAS depletion in colony growth assays.

  20. Structure, evolution and expression of a second subfamily of protein phosphatase 2A catalytic subunit genes in the rice plant (Oryza sativa L.).

    PubMed

    Yu, Richard Man Kit; Wong, Minnie Man Lai; Jack, Ralph Wilson; Kong, Richard Yuen Chong

    2005-11-01

    Protein phosphatase 2A (PP2A) is one of the major serine/threonine protein phosphatases in the cell and plays a variety of regulatory roles in metabolism and signal transduction. Previously, we described the structure and expression of two genes encoding PP2A catalytic subunits (PP2Ac)--OsPP2A-1 and OsPP2A-3--in the rice plant (Yu et al. 2003). Here, we report the isolation and characterisation of a second structurally distinguishable PP2Ac subfamily comprised of three additional isogenes, OsPP2A-2, OsPP2A-4 (each containing ten introns) and OsPP2A-5 (which contains nine introns). Northern blot analysis demonstrated that the three isogenes are ubiquitously expressed in all rice tissues during plant development, and differentially expressed in response to high salinity and the combined stresses of drought and heat. Phylogenetic analyses indicated that the two PP2Ac subfamilies are descended from two ancient lineages, which derived from gene duplications that occurred after the monocotyledon-dicotyledon split. In the second subfamily, it is proposed that two duplication events were involved; in which, the initial duplication of a ten-intron primordial gene yielded OsPP2A-2 and the progenitor of OsPP2A-4 and OsPP2A-5. The OsPP2A-4/OsPP2A-5 progenitor, in turn, underwent a second duplication event, resulting in the present day OsPP2A-4 and OsPP2A-5. It is proposed that loss of the 5'-most intron from OsPP2A-5 occurred after these two duplication events. PMID:16021503

  1. Protein phosphatase 2A subunit PR70 interacts with pRb and mediates its dephosphorylation.

    PubMed

    Magenta, Alessandra; Fasanaro, Pasquale; Romani, Sveva; Di Stefano, Valeria; Capogrossi, Maurizio C; Martelli, Fabio

    2008-01-01

    The retinoblastoma tumor suppressor protein (pRb) regulates cell proliferation and differentiation via phosphorylation-sensitive interactions with specific targets. While the role of cyclin/cyclin-dependent kinase complexes in the modulation of pRb phosphorylation has been extensively studied, relatively little is known about the molecular mechanisms regulating phosphate removal by phosphatases. Protein phosphatase 2A (PP2A) is constituted by a core dimer bearing catalytic activity and one variable B regulatory subunit conferring target specificity and subcellular localization. We previously demonstrated that PP2A core dimer binds pRb and dephosphorylates pRb upon oxidative stress. In the present study, we identified a specific PP2A-B subunit, PR70, that was associated with pRb both in vitro and in vivo. PR70 overexpression caused pRb dephosphorylation; conversely, PR70 knockdown prevented both pRb dephosphorylation and DNA synthesis inhibition induced by oxidative stress. Moreover, we found that intracellular Ca(2+) mobilization was necessary and sufficient to trigger pRb dephosphorylation and PP2A phosphatase activity of PR70 was Ca(2+) induced. These data underline the importance of PR70-Ca(2+) interaction in the signal transduction mechanisms triggered by redox imbalance and leading to pRb dephosphorylation.

  2. Telomerase activation as a repair response to radiation-induced DNA damage in Y79 retinoblastoma cells.

    PubMed

    Akiyama, Masaharu; Ozaki, Kohji; Kawano, Takeshi; Yamada, Osamu; Kawauchi, Kiyotaka; Ida, Hiroyuki; Yamada, Hisashi

    2013-10-28

    The molecular mechanism of telomerase activation induced by ionizing radiation (IR) remains poorly understood. We demonstrate that DNA damage induced by IR at doses of 2-5 Gy triggers activation of Akt, predominant to that of protein phosphatase 2A (PP2A), resulting in human telomerase reverse transcriptase (hTERT) phosphorylation and increased telomerase activity in Y79 cells. DNA damage induced by IR at doses greater than 10 Gy might trigger PP2A activation, predominant to that of Akt, resulting in hTERT dephosphorylation and decreased telomerase activity. Our results suggest that differential activation of Akt and PP2A may be responsible for telomerase regulation. PMID:23850566

  3. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants.

    PubMed

    Durian, Guido; Rahikainen, Moona; Alegre, Sara; Brosché, Mikael; Kangasjärvi, Saijaliisa

    2016-01-01

    Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants. PMID:27375664

  4. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants

    PubMed Central

    Durian, Guido; Rahikainen, Moona; Alegre, Sara; Brosché, Mikael; Kangasjärvi, Saijaliisa

    2016-01-01

    Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants. PMID:27375664

  5. Physical association of GPR54 C-terminal with protein phosphatase 2A

    SciTech Connect

    Evans, Barry J.; Wang Zixuan; Mobley, La'Tonya; Khosravi, Davood; Fujii, Nobutaka; Navenot, Jean-Marc; Peiper, Stephen C.

    2008-12-26

    KiSS1 was discovered as a metastasis suppressor gene and subsequently found to encode kisspeptins (KP), ligands for a G protein coupled receptor (GPCR), GPR54. This ligand-receptor pair was later shown to play a critical role in the neuro-endocrine regulation of puberty. The C-terminal cytoplasmic (C-ter) domain of GPR54 contains a segment rich in proline and arginine residues that corresponds to the primary structure of four overlapping SH3 binding motifs. Yeast two hybrid experiments identified the catalytic subunit of protein phosphatase 2A (PP2A-C) as an interacting protein. Pull-down experiments with GST fusion proteins containing the GPR54 C-ter confirmed binding to PP2A-C in cell lysates and these complexes contained phosphatase activity. The proline arginine rich segment is necessary for these interactions. The GPR54 C-ter bound directly to purified recombinant PP2A-C, indicating the GPR54 C-ter may form complexes involving the catalytic subunit of PP2A that regulate phosphorylation of critical signaling intermediates.

  6. Cucurbitacin B reverses multidrug resistance by targeting CIP2A to reactivate protein phosphatase 2A in MCF-7/adriamycin cells.

    PubMed

    Cai, Fen; Zhang, Liang; Xiao, Xiangling; Duan, Chao; Huang, Qiuyue; Fan, Chunsheng; Li, Jian; Liu, Xuewen; Li, Shan; Liu, Ying

    2016-08-01

    Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a human oncoprotein that is overexpressed in various tumors. A previous study found that CIP2A expression is associated with doxorubicin (Dox) resistance. In the present study, we investigated whether cucurbitacin B (CuB), a natural anticancer compound found in Cucurbitaceae, reversed multidrug resistance (MDR) and downregulated CIP2A expression in MCF-7/Adriamycin (MCF-7/Adr) cells, a human breast multidrug-resistant cancer cell line. CuB treatment significantly suppressed MCF-7/Adr cell proliferation, and reversed Dox resistance. CuB treatment also induced caspase-dependent apoptosis, decreased phosphorylation of Akt (pAkt). The suppression of pAkt was mediated through CuB-induced activation of protein phosphatase 2A (PP2A). Furthermore, CuB activated PP2A through the suppression of CIP2A. Silencing CIP2A enhanced CuB-induced growth inhibition, apoptosis and MDR inhibition in MCF-7/Adr cells. In conclusion, we found that enhancement of PP2A activity by inhibition of CIP2A promotes the reversal of MDR induced by CuB. PMID:27350399

  7. Suppression of protein phosphatase 2A activity enhances Ad5/F35 adenovirus transduction efficiency in normal human B lymphocytes and in Raji cells.

    PubMed

    Cayer, Marie-Pierre; Samson, Mélanie; Bertrand, Claudia; Dumont, Nellie; Drouin, Mathieu; Jung, Daniel

    2012-02-28

    Investigation of the molecular processes which control the development and function of lymphocytes is essential for our understanding of humoral immunity, as well as lymphocyte associated pathogenesis. Adenovirus-mediated gene transfer provided a powerful tool to investigate these processes. We have previously demonstrated that adenoviral vector Ad5/F35 transduces plasma cell lines at a higher efficiency than primary B cells, owing to differences in intracellular trafficking. Given that phosphatases are effectors of intracellular trafficking, here we have analyzed the effects of a panel of phosphatase inhibitors on Ad5/F35 transduction efficiency in B lymphocytes in the present study. FACS analysis was conducted to determine Ad5/F35-EYFP transduction efficiency in lymphoid cells, including human primary B cells, following serine/threonine phosphatase (PSP) inhibitor treatment. We further used confocal microscopy to analyze intracellular trafficking and fate of CY3 labeled Ad5/F35 vectors, in PSP treated lymphoid cell. Finally, we analyzed the MAPK pathway by Western blot in PSP treated cells. Adenoviral transduction efficiency was unresponsive to inhibition of PP1 whereas inhibition of PP2A by cantharidic acid, or PP1 and PP2A by okadaic acid, substantially increased transduction efficiency. Importantly, confocal microscopy analyses revealed that inhibition of PP2A shut down adenovirus recycling. Moreover, inhibition of PP2A resulted in increased phosphorylation of AKT, ERK1/2 and MEK1/2. Taken together, these results suggest that Ad5/F35 is more efficiently transduced in cells following PP2A inhibition. Our results are in agreement with reports indicating that PP2A is involved in the formation of recycling vesicles and might be of interest for gene therapy applications.

  8. Effect of beta-sitosterol, a plant sterol, on growth, protein phosphatase 2A, and phospholipase D in LNCaP cells.

    PubMed

    Awad, A B; Gan, Y; Fink, C S

    2000-01-01

    Previous work from this laboratory suggests an activation of the sphingomyelin cycle as a mechanism for growth inhibition with the incorporation of beta-sitosterol (SIT) into human prostate cancer LNCaP cells. In the present study we examined two key enzymes that have been shown to play a role in the sphingomyelin cycle. Dietary sterols (SIT and cholesterol) were compared for their effect on LNCaP cell growth, phospholipase D (PLD) activity, and protein phosphatase 2A (PP 2A) activity and expression. PP 2A has been suggested as a direct in vitro target of ceramide action on cell growth and apoptosis. Ceramide also inhibits phorbol myristate acetate-stimulated PLD. SIT (16 microM) increased PP 2A activity by 50% compared with cholesterol treatment in LNCaP prostate cells; however, SIT did not alter protein levels of PP 2A. There was an increase in PLD activity in the presence of phorbol myristate acetate in cells supplemented with 16 microM SIT compared with those supplemented with cholesterol after five days of treatment. The present study suggests that the activation of PP 2A added support to the role of the activation of the sphingomyelin cycle by SIT treatment. However, the increase in PLD activity, which was modest but significant, with SIT supplementation suggests that this pathway may be modulated by other mechanisms. This includes the incorporation of SIT into cell membranes that may alter fluidity and, thus, influence the activation of membrane-bound enzymes such as PLD.

  9. Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice.

    PubMed

    Lecca, Salvatore; Pelosi, Assunta; Tchenio, Anna; Moutkine, Imane; Lujan, Rafael; Hervé, Denis; Mameli, Manuel

    2016-03-01

    The lateral habenula (LHb) encodes aversive signals, and its aberrant activity contributes to depression-like symptoms. However, a limited understanding of the cellular mechanisms underlying LHb hyperactivity has precluded the development of pharmacological strategies to ameliorate depression-like phenotypes. Here we report that an aversive experience in mice, such as foot-shock exposure (FsE), induces LHb neuronal hyperactivity and depression-like symptoms. This occurs along with increased protein phosphatase 2A (PP2A) activity, a known regulator of GABAB receptor (GABABR) and G protein-gated inwardly rectifying potassium (GIRK) channel surface expression. Accordingly, FsE triggers GABAB1 and GIRK2 internalization, leading to rapid and persistent weakening of GABAB-activated GIRK-mediated (GABAB-GIRK) currents. Pharmacological inhibition of PP2A restores both GABAB-GIRK function and neuronal excitability. As a consequence, PP2A inhibition ameliorates depression-like symptoms after FsE and in a learned-helplessness model of depression. Thus, GABAB-GIRK plasticity in the LHb represents a cellular substrate for aversive experience. Furthermore, its reversal by PP2A inhibition may provide a novel therapeutic approach to alleviate symptoms of depression in disorders that are characterized by LHb hyperactivity. PMID:26808347

  10. Carcinogenic Aspects of Protein Phosphatase 1 and 2A Inhibitors

    NASA Astrophysics Data System (ADS)

    Fujiki, Hirota; Suganuma, Masami

    Okadaic acid is functionally a potent tumor promoter working through inhibition of protein phosphatases 1 and 2A (PP1 and PP2A), resulting in sustained phosphorylation of proteins in cells. The mechanism of tumor promotion with oka-daic acid is thus completely different from that of the classic tumor promoter phorbol ester. Other potent inhibitors of PP1 and PP2A - such as dinophysistoxin-1, calyculins A-H, microcystin-LR and its derivatives, and nodularin - were isolated from marine organisms, and their structural features including the crystal structure of the PP1-inhibitor complex, tumor promoting activities, and biochemical and biological effects, are here reviewed. The compounds induced tumor promoting activity in three different organs, including mouse skin, rat glandular stomach and rat liver, initiated with three different carcinogens. The results indicate that inhibition of PP1 and PP2A is a general mechanism of tumor promotion applicable to various organs. This study supports the concept of endogenous tumor promoters in human cancer development.

  11. HDAC1 controls CIP2A transcription in human colorectal cancer cells

    PubMed Central

    Balliu, Manjola; Cellai, Cristina; Lulli, Matteo; Laurenzana, Anna; Torre, Eugenio; Vannucchi, Alessandro Maria; Paoletti, Francesco

    2016-01-01

    This work describes the effectiveness of HDAC-inhibitor (S)-2 towards colorectal cancer (CRC) HCT116 cells in vitro by inducing cell cycle arrest and apoptosis, and in vivo by contrasting tumour growth in mice xenografts. Among the multifaceted drug-induced events described herein, an interesting link has emerged between the oncoprotein histone deacetylase HDAC1 and the oncogenic Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) which is overexpressed in several cancers including CRCs. HDAC1 inhibition by (S)-2 or specific siRNAs downregulates CIP2A transcription in three different CRC cell lines, thus restoring the oncosuppressor phosphatase PP2A activity that is reduced in most cancers. Once re-activated, PP2A dephosphorylates pGSK-3β(ser9) which phosphorylates β-catenin that remains within the cytosol where it undergoes degradation. The decreased amount/activity of β-catenin transcription factor prompts cell growth arrest by diminishing c-Myc and cyclin D1 expression and abrogating the prosurvival Wnt/β-catenin signaling pathway. These results are the first evidence that the inhibition of HDAC1 by (S)-2 downregulates CIP2A transcription and unleashes PP2A activity, thus inducing growth arrest and apoptosis in CRC cells. PMID:27029072

  12. Novel effects of FTY720 on perinuclear reorganization of keratin network induced by sphingosylphosphorylcholine: Involvement of protein phosphatase 2A and G-protein-coupled receptor-12.

    PubMed

    Park, Mi Kyung; Park, Soyeun; Kim, Hyun Ji; Kim, Eun Ji; Kim, So Yeon; Kang, Gyeoung Jin; Byun, Hyun Jung; Kim, Sang Hee; Lee, Ho; Lee, Chang Hoon

    2016-03-15

    Sphingosylphosphorylcholine (SPC) evokes perinuclear reorganization of keratin 8 (K8) filaments and regulates the viscoelasticity of metastatic cancer cells leading to enhanced migration. Few studies have addressed the compounds modulating the viscoelasticity of metastatic cancer cells. We studied the effects of sphingosine (SPH), sphingosine 1-phosphate (S1P), FTY720 and FTY720-phosphate (FTY720P) on SPC-induced K8 phosphorylation and reorganization using Western blot and confocal microscopy, and also evaluated the elasticity of PANC-1 cells by atomic force microscopy. FTY720, FTY720P, SPH, and S1P concentration-dependently inhibited SPC-evoked phosphorylation and reorganization of K8, and migration of PANC-1 cells. SPC triggered reduction and narrow distribution of elastic constant K and conversely, FTY720 blocked them. A common upstream regulator of JNK and ERK, protein phosphatase 2A (PP2A) expression was reduced by SPC, but was restored by FTY720 and FTY72P. Butyryl forskolin, a PP2A activator, suppressed SPC-induced K8 phosphorylation and okadaic acid, a PP2A inhibitor, induced K8 phosphorylation. Gene silencing of PP2A also led to K8 phosphorylation, reorganization and migration. We also investigated the involvement of GPR12, a high-affinity SPC receptor, in SPC-evoked keratin phosphorylation and reorganization. GPR12 siRNA suppressed the SPC-triggered phosphorylation and reorganization of K8. GPR12 overexpression stimulated keratin phosphorylation and reorganization even without SPC. FTY720 and FTY720P suppressed the GPR12-induced phosphorylation and reorganization of K8. The collective data indicates that FTY720 and FTY720P suppress SPC-induced phosphorylation and reorganization of K8 in PANC-1 cells by restoring the expression of PP2A via GPR12. These findings might be helpful in the development of compounds that modulate the viscoelasticity of metastatic cancer cells and various SPC actions. PMID:26872988

  13. Enhanced Phosphatase Activity Attenuates α-Synucleinopathy in a Mouse Model

    PubMed Central

    Lee, Kang-Woo; Chen, Walter; Junn, Eunsung; Im, Joo-Young; Grosso, Hilary; Sonsalla, Patricia K.; Feng, Xuyan; Ray, Neelanjana; Fernandez, Jose R.; Chao, Yang; Masliah, Eliezer; Voronkov, Michael; Braithwaite, Steven P.; Stock, Jeffry B.; Mouradian, M. Maral

    2016-01-01

    α-Synuclein (α-Syn) is a key protein that accumulates as hyperphosphorylated aggregates in pathologic hallmark features of Parkinson’s disease (PD) and other neurodegenerative disorders. Phosphorylation of this protein at serine 129 is believed to promote its aggregation and neurotoxicity suggesting that this post-translational modification could be a therapeutic target. Here, we demonstrate that protein phosphatase 2A (PP2A) dephosphorylates α-Syn at serine 129, and that this activity is greatly enhanced by carboxyl methylation of the catalytic C subunit of PP2A. α-Syn transgenic mice raised on a diet supplemented with eicosinoyl-5-hydroxytryptamide (EHT), an agent that enhances PP2A methylation, dramatically reduced both α-Syn phosphorylation at Serine 129 and α-Syn aggregation in the brain. These biochemical changes were associated with enhanced neuronal activity, increased dendritic arborizations, reduced astroglial and microglial activation, as well as improved motor performance. These findings support the notion that serine 129 phosphorylation of α-Syn is of pathogenetic significance, and that promoting PP2A activity is a viable disease modifying therapeutic strategy for α-synucleinopathies such as PD. PMID:21562258

  14. Protein Phosphatase 2A Mediates Oxidative Stress Induced Apoptosis in Osteoblasts.

    PubMed

    Huang, Chong-xin; Lv, Bo; Wang, Yue

    2015-01-01

    Osteoporosis is one of the most common bone diseases, which is characterized by a systemic impairment of bone mass and fragility fractures. Age-related oxidative stress is highly associated with impaired osteoblastic dysfunctions and subsequent osteoporosis. In osteoblasts (bone formation cells), reactive oxygen species (ROS) are continuously generated and further cause lipid peroxidation, protein damage, and DNA lesions, leading to osteoblastic dysfunctions, dysdifferentiations, and apoptosis. Although much progress has been made, the mechanism responsible for oxidative stress induced cellular alternations and osteoblastic toxicity is still not fully elucidated. Here, we demonstrate that protein phosphatase 2A (PP2A), a major protein phosphatase in mammalian cells, mediates oxidative stress induced apoptosis in osteoblasts. Our results showed that lipid peroxidation products (4-HNE) may induce dramatic oxidative stress, inflammatory reactions, and apoptosis in osteoblasts. These oxidative stress responses may ectopically activate PP2A phosphatase activity, which may be mediated by inactivation of AKT/mTOR pathway. Moreover, inhibition of PP2A activity by okadaic acid might partly prevent osteoblastic apoptosis under oxidative conditions. These findings may reveal a novel mechanism to clarify the role of oxidative stress for osteoblastic apoptosis and provide new possibilities for the treatment of related bone diseases, such as osteoporosis. PMID:26538836

  15. Effects of regulatory subunits on the kinetics of protein phosphatase 2A.

    PubMed

    Price, N E; Mumby, M C

    2000-09-19

    Both the scaffold (A) and the regulatory (R) subunits of protein phosphatase 2A regulate enzyme activity and specificity. Heterotrimeric enzymes containing different R-subunits differ in their specific activities for substrates. Kinetic parameters for the dephosphorylation of a phosphopeptide by different oligomeric forms of PP2A were determined to begin to elucidate the molecular basis of regulatory subunit effects on phosphatase activity. Using steady state kinetics and the pH dependence of kinetic parameters, we have explored the effect of the A- and R-subunits on the kinetic and chemical mechanism of PP2A. The regulatory subunits affected a broad range of kinetic parameters. The C-subunit and AC dimer were qualitatively similar with respect to the product inhibition patterns and the pH dependence of kinetic parameters. However, a 22-fold decrease in rate and a 4.7-fold decrease in K(m) can be attributed to the presence of the A-subunit. The presence of the R2alpha (Balpha or PR55alpha) subunit caused an additional decrease in K(m) and changed the kinetic mechanism of peptide dephosphorylation. The R2alpha-subunit also caused significant changes in the pH dependence of kinetic parameters as compared to the free C subunit or AC heterodimer. The data support an important role for the regulatory subunits in determining both the affinity of PP2A heterotrimers for peptide substrates and the mechanism by which they are dephosphorylated.

  16. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A.

    PubMed

    Wong, Pui-Mun; Feng, Yan; Wang, Junru; Shi, Rong; Jiang, Xuejun

    2015-01-01

    Autophagy is a cellular catabolic process critical for cell viability and homoeostasis. Inhibition of mammalian target of rapamycin (mTOR) complex-1 (mTORC1) activates autophagy. A puzzling observation is that amino acid starvation triggers more rapid autophagy than pharmacological inhibition of mTORC1, although they both block mTORC1 activity with similar kinetics. Here we find that in addition to mTORC1 inactivation, starvation also causes an increase in phosphatase activity towards ULK1, an mTORC1 substrate whose dephosphorylation is required for autophagy induction. We identify the starvation-stimulated phosphatase for ULK1 as the PP2A-B55α complex. Treatment of cells with starvation but not mTORC1 inhibitors triggers dissociation of PP2A from its inhibitor Alpha4. Furthermore, pancreatic ductal adenocarcinoma cells, whose growth depends on high basal autophagy, possess stronger basal phosphatase activity towards ULK1 and require ULK1 for sustained anchorage-independent growth. Taken together, concurrent mTORC1 inactivation and PP2A-B55α stimulation fuel ULK1-dependent autophagy. PMID:26310906

  17. Structure of a Protein Phosphatase 2A Holoenzyme: Insights into B55-Mediated Tau Dephosphorylation

    SciTech Connect

    Xu, Y.; Chen, Y; Zhang, P; Jeffrey, P; Shi, Y

    2008-01-01

    Protein phosphatase 2A (PP2A) regulates many essential aspects of cellular physiology. Members of the regulatory B/B55/PR55 family are thought to play a key role in the dephosphorylation of Tau, whose hyperphosphorylation contributes to Alzheimer's disease. The underlying mechanisms of the PP2A-Tau connection remain largely enigmatic. Here, we report the complete reconstitution of a Tau dephosphorylation assay and the crystal structure of a heterotrimeric PP2A holoenzyme involving the regulatory subunit B?. We show that B? specifically and markedly facilitates dephosphorylation of the phosphorylated Tau in our reconstituted assay. The B? subunit comprises a seven-bladed ? propeller, with an acidic, substrate-binding groove located in the center of the propeller. The ? propeller latches onto the ridge of the PP2A scaffold subunit with the help of a protruding ? hairpin arm. Structure-guided mutagenesis studies revealed the underpinnings of PP2A-mediated dephosphorylation of Tau.

  18. Protein Phosphatase 2A Stabilizes Human Securin, Whose Phosphorylated Forms Are Degraded via the SCF Ubiquitin Ligase

    PubMed Central

    Gil-Bernabé, Ana M.; Romero, Francisco; Limón-Mortés, M. Cristina; Tortolero, María

    2006-01-01

    Sister chromatid segregation is triggered at the metaphase-to-anaphase transition by the activation of the protease separase. For most of the cell cycle, separase activity is kept in check by its association with the inhibitory chaperone securin. Activation of separase occurs at anaphase onset, when securin is targeted for destruction by the anaphase-promoting complex or cyclosome E3 ubiquitin protein ligase. This results in the release of the cohesins from chromosomes, which in turn allows the segregation of sister chromatids to opposite spindle poles. Here we show that human securin (hSecurin) forms a complex with enzymatically active protein phosphatase 2A (PP2A) and that it is a substrate of the phosphatase, both in vitro and in vivo. Treatment of cells with okadaic acid, a potent inhibitor of PP2A, results in various hyperphosphorylated forms of hSecurin which are extremely unstable, due to the action of the Skp1/Cul1/F-box protein complex ubiquitin ligase. We propose that PP2A regulates hSecurin levels by counteracting its phosphorylation, which promotes its degradation. Misregulation of this process may lead to the formation of tumors, in which overproduction of hSecurin is often observed. PMID:16705156

  19. Purification and characterization of protein phosphatase 2A from petals of the tulip Tulipa gesnerina.

    PubMed

    Azad, Md Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2006-11-30

    The holoenzyme of protein phosphatase (PP) from tulip petals was purified by using hydrophobic interaction, anion exchange and microcystin affinity chromatography to analyze activity towards p-nitrophenyl phosphate (p-NPP). The catalytic subunit of PP was released from its endogenous regulatory subunits by ethanol precipitation and further purified. Both preparations were characterized by immunological and biochemical approaches to be PP2A. On SDS-PAGE, the final purified holoenzyme preparation showed three protein bands estimated at 38, 65, and 75 kDa while the free catalytic subunit preparation showed only the 38 kDa protein. In both preparations, the 38 kDa protein was identified immunologically as the catalytic subunit of PP2A by using a monoclonal antibody against the PP2A catalytic subunit. The final 623- and 748- fold purified holoenzyme and the free catalytic preparations, respectively, exhibited high sensitivity to inhibition by 1 nM okadaic acid when activity was measured with p-NPP. The holoenzyme displayed higher stimulation in the presence of ammonium sulfate than the free catalytic subunit did by protamine, thereby suggesting different enzymatic behaviors.

  20. The role of protein phosphatase 2A in regulating Wnt signaling and apoptosis

    NASA Astrophysics Data System (ADS)

    Li, Xinghai

    Protein phosphatase 2A (PP2A) is a major serine/threonine-specific phosphatase and regulates a significant array of cellular events. This dissertation primarily describes the novel role of PP2A in Wnt signaling and apoptosis. First, PP2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. PP2A is required for β- catenin degradation in vitro. A PP2A heterotrimer containing A, C, and B56 subunits was co- immunoprecipitated with axin. A, C, and B56 subunits each have ventralizing ability in Xenopus embryos. B56 was epistatically positioned downstream of GSK3β and axin but upstream of β-catenin. Second, B56-targeted PP2A is required for survival and protects from apoptosis in Drosophila. Loss of A, C, or B56 subunits by RNA interference (RNAi) induced apoptosis in S2 cells, which requires the presence of specific caspases. Epistasis analysis placed B56-targeted PP2A functionally upstream of Apaf-1, Reaper and Hid, and p53. Loss of B56-targeted PP2A in Drosophila embryos by RNAi resulted in abortion of embryo development and this phenotype was rescued by co-RNAi of Drice. Third, two conserved domains in B subunits mediate binding to the A subunit of PP2A. B subunits have no detectable sequence homology among different families. In vitro expression of a series of B56α fragments identified two distinct domains that independently bound to the A subunit. Sequence alignment of these A subunit-binding domains recognized conserved residues in B/PR55 and B'/PR72 family members that serve a similar function. Fourth, to examine whether the B56β gene within 11q12 is a tumor suppressor mutated in neuroblastoma, the DNA and RNA samples from neuroblastoma patients and cell lines were analyzed and no mutations were identified in the coding regions of the B56β gene. Finally, to identify novel regulatory subunits of PP2A in S. cerevisiae , biochemical approaches for purifying PP2A-associated novel regulators were undertaken. Although the A and C subunit complex in the

  1. Protein phosphatase 2A dephosphorylates SNAP-25 through two distinct mechanisms in mouse brain synaptosomes.

    PubMed

    Iida, Yuuki; Yamamori, Saori; Itakura, Makoto; Miyaoka, Hitoshi; Takahashi, Masami

    2013-03-01

    Synaptosomal-associated protein 25 (SNAP-25) plays an essential role in exocytotic neurotransmitter release as a t-SNARE protein. SNAP-25 is phosphorylated at Ser(187) in a protein kinase C (PKC)-dependent manner, but the mechanism for dephosphorylation has yet to be clarified. We investigated SNAP-25 dephosphorylation by comparing it to growth associated protein 43 (GAP-43), another PKC-dependent presynaptic phosphoprotein, in crude mouse brain synaptosome preparations. Phosphorylation levels for both SNAP-25 and GAP-43 increased significantly after treatment with PKC activator phorbol 12, 13-dibutyrate (PDB), and ionomycin treatment induced a striking reduction in a time-dependent manner. This dephosphorylation occurred only in the presence of extracellular Ca(2+), indicating involvement of a Ca(2+)-dependent phosphatase. Ca(2+)-dependent dephosphorylation was not suppressed by calcineurin/PP2B inhibitors such as FK506 and cyclosporine A. SNAP-25 dephosphorylation, however, was suppressed by calyculin A, a non-selective inhibitor of PP1 and PP2A, and okadaic acid selective for PP2A, but not by tautomycin selective for PP1. In contrast, none of these inhibitors suppressed GAP-43 dephosphorylation. PDB-induced SNAP-25 phosphorylation was enhanced by okadaic acid in a concentration-dependent manner. These results suggest that PP2A participates in SNAP-25 dephosphorylation through Ca(2+)-dependent and Ca(2+)-independent mechanisms but is not involved in GAP-43 dephosphorylation.

  2. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling.

    PubMed

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-03-01

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity.

  3. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling

    PubMed Central

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-01-01

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical–basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity. PMID:26888284

  4. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling.

    PubMed

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-03-01

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity. PMID:26888284

  5. microRNA-183 plays as oncogenes by increasing cell proliferation, migration and invasion via targeting protein phosphatase 2A in renal cancer cells.

    PubMed

    Qiu, Mingning; Liu, Lei; Chen, Lieqian; Tan, Guobin; Liang, Ziji; Wang, Kangning; Liu, Jianjun; Chen, Hege

    2014-09-12

    The aim of this study was to investigate the function of miR-183 in renal cancer cells and the mechanisms miR-183 regulates this process. In this study, level of miR-183 in clinical renal cancer specimens was detected by quantitative real-time PCR. miR-183 was up- and down-regulated in two renal cancer cell lines ACHN and A498, respectively, and cell proliferation, Caspase 3/7 activity, colony formation, in vitro migration and invasion were measured; and then the mechanisms of miR-183 regulating was analyzed. We found that miR-183 was up-regulated in renal cancer tissues; inhibition of endogenous miR-183 suppressed in vitro cell proliferation, colony formation, migration, and invasion and stimulated Caspase 3/7 activity; up-regulated miR-183 increased cell growth and metastasis and suppressed Caspase 3/7 activity. We also found that miR-183 directly targeted tumor suppressor, specifically the 3'UTR of three subunits of protein phosphatase 2A (PP2A-Cα, PP2A-Cβ, and PP2A-B56-γ) transcripts, inhibiting their expression and regulated the downstream regulators p21, p27, MMP2/3/7 and TIMP1/2/3/4. These results revealed the oncogenes role of miR-183 in renal cancer cells via direct targeting protein phosphatase 2A.

  6. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    PubMed Central

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-01-01

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. PMID:26080028

  7. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2.

    PubMed

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs.

  8. Diversity in genomic organisation, developmental regulation and distribution of the murine PR72/B" subunits of protein phosphatase 2A

    PubMed Central

    Zwaenepoel, Karen; Louis, Justin V; Goris, Jozef; Janssens, Veerle

    2008-01-01

    Background Protein phosphatase 2A (PP2A) is a serine/threonine-specific phosphatase displaying vital functions in growth and development through its role in various signalling pathways. PP2A holoenzymes comprise a core dimer composed of a catalytic C and a structural A subunit, which can associate with a variable B-type subunit. The importance of the B-type subunits for PP2A regulation cannot be overestimated as they determine holoenzyme localisation, activity and substrate specificity. Three B-type subunit families have been identified: PR55/B, PR61/B' and PR72/B", of which the latter is currently the least characterised. Results We deduced the sequences and genomic organisation of the different murine PR72/B" isoforms: three genes encode nine isoforms, five of which are abundantly expressed and give rise to genuine PP2A subunits. Thereby, one novel subunit was identified. Using Northern blotting, we examined the tissue-specific and developmental expression of these subunits. All subunits are highly expressed in heart, suggesting an important cardiac function. Immunohistochemical analysis revealed a striated expression pattern of PR72 and PR130 in heart and skeletal muscle, but not in bladder smooth muscle. The subcellular localisation and cell cycle regulatory ability of several PR72/B" isoforms were determined, demonstrating differences as well as similarities. Conclusion In contrast to PR55/B and PR61/B', the PR72/B" family seems evolutionary more divergent, as only two of the murine genes have a human orthologue. We have integrated these results in a more consistent nomenclature of both human and murine PR72/B" genes and their transcripts/proteins. Our results provide a platform for the future generation of PR72/B" knockout mice. PMID:18715506

  9. Knockdown of microRNA-195 contributes to protein phosphatase-2A inactivation in rats with chronic brain hypoperfusion.

    PubMed

    Liu, Cheng-Di; Wang, Qin; Zong, De-Kang; Pei, Shuang-Chao; Yan, Yan; Yan, Mei-Ling; Sun, Lin-Lin; Hao, Yang-Yang; Mao, Meng; Xing, Wen-Jing; Ren, Huan; Ai, Jing

    2016-09-01

    Reduction of protein phosphatase-2A (PP2A) activity is a common clinical feature of Alzheimer's disease and vascular dementia. In this study, we observed that chronic brain hypoperfusion induced by bilateral common carotid artery occlusion of rats led to PP2A inactivation based on the increase in tyrosine-307 phosphorylation and leucine-309 demethylation of PP2AC and the depression in PP2ABα. Knockdown of miR-195 using overexpression of its antisense molecule oligonucleotide (pre-AMO-miR-195) delivered by a lentivirus (lenti-pre-AMO-miR-195) increased tyrosine-307 phosphorylation and decreased both PP2ABα expression and leucine-309 methylation; these effects were prevented by the overexpression of miR-195 using lenti-pre-miR-195 and controlled by an increase in methylesterase (PME-1) and a decrease in leucine carboxyl methyltransferase-1. In vitro studies demonstrated that miR-195 regulated PME-1 expression by binding to the Ppme1 gene 3'-untranslated region (3'UTR) domain. Masking the miR-195 binding sites in the amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 genes prevented miR-195-induced leucine carboxyl methyltransferase-1 elevation. We concluded that the miR-195 downregulation in chronic brain hypoperfusion involved PP2A inactivity, which was mediated by the post-transcriptional regulation PME-1, APP, and β-site APP cleaving enzyme 1 expression. PMID:27459928

  10. Curcumin treatment recovery the decrease of protein phosphatase 2A subunit B induced by focal cerebral ischemia in Sprague-Dawley rats

    PubMed Central

    Shah, Fawad-Ali; Park, Dong-Ju; Gim, Sang-Ah

    2015-01-01

    Curcumin provides various biological effects through its anti-inflammatory and antioxidant properties. Moreover, curcumin exerts a neuroprotective effect against ischemic condition-induced brain damage. Protein phosphatase 2A (PP2A) is a ubiquitous serine and threonine phosphatase with various cell functions and broad substrate specificity. Especially PP2A subunit B plays an important role in nervous system. This study investigated whether curcumin regulates PP2A subunit B expression in focal cerebral ischemia. Cerebral ischemia was induced surgically by middle cerebral artery occlusion (MCAO). Adult male rats were injected with either vehicle or curcumin (50 mg/kg) 1 h after MCAO and cerebral cortex tissues were isolated 24 h after MCAO. A proteomics study, reverse transverse-PCR and Western blot analyses were performed to examine PP2A subunit B expression levels. We identified a reduction in PP2A subunit B expression in MCAO-operated animals using a proteomic approach. However, curcumin treatment prevented injury-induced reductions in PP2A subunit B levels. Reverse transverse-PCR and Western blot analyses confirmed that curcumin treatment attenuated the injury-induced reduction in PP2A subunit B levels. These findings can suggest that the possibility that curcumin maintains levels of PP2A subunit B in response to cerebral ischemia, which likely contributes to the neuroprotective function of curcumin in cerebral ischemic injury. PMID:26472966

  11. Effects of manganese on tyrosine hydroxylase (TH) activity and TH-phosphorylation in a dopaminergic neural cell line

    SciTech Connect

    Zhang Danhui; Kanthasamy, Arthi; Anantharam, Vellareddy; Kanthasamy, Anumantha

    2011-07-15

    Manganese (Mn) exposure causes manganism, a neurological disorder similar to Parkinson's disease. However, the cellular mechanism by which Mn impairs the dopaminergic neurotransmitter system remains unclear. We previously demonstrated that caspase-3-dependent proteolytic activation of protein kinase C delta (PKC{delta}) plays a key role in Mn-induced apoptotic cell death in dopaminergic neurons. Recently, we showed that PKC{delta} negatively regulates tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, by enhancing protein phosphatase-2A activity in dopaminergic neurons. Here, we report that Mn exposure can affect the enzymatic activity of TH, the rate-limiting enzyme in dopamine synthesis, by activating PKC{delta}-PP2A signaling pathway in a dopaminergic cell model. Low dose Mn (3-10 {mu}M) exposure to differentiated mesencephalic dopaminergic neuronal cells for 3 h induced a significant increase in TH activity and phosphorylation of TH-Ser40. The PKC{delta} specific inhibitor rottlerin did not prevent Mn-induced TH activity or TH-Ser40 phosphorylation. On the contrary, chronic exposure to 0.1-1 {mu}M Mn for 24 h induced a dose-dependent decrease in TH activity. Interestingly, chronic Mn treatment significantly increased PKC{delta} kinase activity and protein phosphatase 2A (PP2A) enzyme activity. Treatment with the PKC{delta} inhibitor rottlerin almost completely prevented chronic Mn-induced reduction in TH activity, as well as increased PP2A activity. Neither acute nor chronic Mn exposures induced any cytotoxic cell death or altered TH protein levels. Collectively, these results demonstrate that low dose Mn exposure impairs TH activity in dopaminergic cells through activation of PKC{delta} and PP2A activity.

  12. MID1 Catalyzes the Ubiquitination of Protein Phosphatase 2A and Mutations within Its Bbox1 Domain Disrupt Polyubiquitination of Alpha4 but Not of PP2Ac

    PubMed Central

    Du, Haijuan; Wu, Kuanlin; Didoronkute, Alma; Levy, Marcus V. A.; Todi, Nimish; Shchelokova, Anna; Massiah, Michael A.

    2014-01-01

    MID1 is a microtubule-associated protein that belongs to the TRIM family. MID1 functions as an ubiquitin E3 ligase, and recently was shown to catalyze the polyubiquitination of, alpha4, a protein regulator of protein phosphatase 2A (PP2A). It has been hypothesized that MID1 regulates PP2A, requiring the intermediary interaction with alpha4. Here we report that MID1 catalyzes the in vitro ubiquitination of the catalytic subunit of PP2A (PP2Ac) in the absence of alpha4. In the presence of alpha4, the level of PP2Ac ubiquitination is reduced. Using the MID1 RING-Bbox1-Bbox2 (RB1B2) construct containing the E3 ligase domains, we investigate the functional effects of mutations within the Bbox domains that are identified in patients with X-linked Opitz G syndrome (XLOS). The RB1B2 proteins harboring the C142S, C145T, A130V/T mutations within the Bbox1 domain and C195F mutation within the Bbox2 domain maintain auto-polyubiquitination activity. Qualitatively, the RB1B2 proteins containing these mutations are able to catalyze the ubiquitination of PP2Ac. In contrast, the RB1B2 proteins with mutations within the Bbox1 domain are unable to catalyze the polyubiquitination of alpha4. These results suggest that unregulated alpha4 may be the direct consequence of these natural mutations in the Bbox1 domain of MID1, and hence alpha4 could play a greater role to account for the increased amount of PP2A observed in XLOS-derived fibroblasts. PMID:25207814

  13. Lithium-induced activation of Akt and CaM kinase II contributes to its neuroprotective action in a rat microsphere embolism model.

    PubMed

    Sasaki, Takuya; Han, Feng; Shioda, Norifumi; Moriguchi, Shigeki; Kasahara, Jiro; Ishiguro, Koichi; Fukunaga, Kohji

    2006-09-01

    Lithium used in bipolar mood disorder therapy protects neurons from brain ischemic cell death. Here, we documented that lithium administration under microsphere-embolism (ME)-induced brain ischemia restored decreased protein kinase B (Akt) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activities 24 h after ischemia in rat brain. Akt activation was associated with increased phosphorylation of its potential targets forkhead transcription factor (FKHR) and glycogen synthase kinase-3beta (GSK-3beta). In parallel with decreased CaMKII autophosphorylation, we also found marked dephosphorylation of tau proteins 24-72 h after ME. Increased protein phosphatase 2A (PP2A) activity was found 24 h after ME. Inhibition of increased PP2A activity by lithium treatment apparently mediated restored tau phosphorylation. Taken together, activation of Akt and CaMKII by lithium was associated with neuroprotective activity in ME-induced neuronal injury.

  14. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    SciTech Connect

    Eum, Sung Yong Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  15. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses.

    PubMed

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A; Kay, Steve A; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R; Schroeder, Julian I

    2015-09-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases.

  16. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses.

    PubMed

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A; Kay, Steve A; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R; Schroeder, Julian I

    2015-09-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  17. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    PubMed Central

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  18. Mastl is required for timely activation of APC/C in meiosis I and Cdk1 reactivation in meiosis II.

    PubMed

    Adhikari, Deepak; Diril, M Kasim; Busayavalasa, Kiran; Risal, Sanjiv; Nakagawa, Shoma; Lindkvist, Rebecca; Shen, Yan; Coppola, Vincenzo; Tessarollo, Lino; Kudo, Nobuaki R; Kaldis, Philipp; Liu, Kui

    2014-09-29

    In mitosis, the Greatwall kinase (called microtubule-associated serine/threonine kinase like [Mastl] in mammals) is essential for prometaphase entry or progression by suppressing protein phosphatase 2A (PP2A) activity. PP2A suppression in turn leads to high levels of Cdk1 substrate phosphorylation. We have used a mouse model with an oocyte-specific deletion of Mastl to show that Mastl-null oocytes resume meiosis I and reach metaphase I normally but that the onset and completion of anaphase I are delayed. Moreover, after the completion of meiosis I, Mastl-null oocytes failed to enter meiosis II (MII) because they reassembled a nuclear structure containing decondensed chromatin. Our results show that Mastl is required for the timely activation of anaphase-promoting complex/cyclosome to allow meiosis I exit and for the rapid rise of Cdk1 activity that is needed for the entry into MII in mouse oocytes.

  19. Structure of Protein Phosphatase 2A Core Enzyme Bound to Tumor-Inducing Toxins

    SciTech Connect

    Xing,Y.; Xu, Y.; Chen, Y.; Jeffrey, P.; Chao, Y.; Lin, Z.; Li, Z.; Strack, S.; Stock, J.; Shi, Y.

    2006-01-01

    The serine/threonine phosphatase protein phosphatase 2A (PP2A) plays an essential role in many aspects of cellular functions and has been shown to be an important tumor suppressor. The core enzyme of PP2A comprises a 65 kDa scaffolding subunit and a 36 kDa catalytic subunit. Here we report the crystal structures of the PP2A core enzyme bound to two of its inhibitors, the tumor-inducing agents okadaic acid and microcystin-LR, at 2.6 and 2.8 {angstrom} resolution, respectively. The catalytic subunit recognizes one end of the elongated scaffolding subunit by interacting with the conserved ridges of HEAT repeats 11-15. Formation of the core enzyme forces the scaffolding subunit to undergo pronounced structural rearrangement. The scaffolding subunit exhibits considerable conformational flexibility, which is proposed to play an essential role in PP2A function. These structures, together with biochemical analyses, reveal significant insights into PP2A function and serve as a framework for deciphering the diverse roles of PP2A in cellular physiology.

  20. Structure of the Protein Phosphatase 2A Holoenzyme

    SciTech Connect

    Xu,Y.; Xing, Y.; Chen, Y.; Chao, Y.; Lin, Z.; Fan, E.; Yu, J.; Strack, S.; Jeffrey, P.; Shi, Y.

    2006-01-01

    Protein Phosphatase 2A (PP2A) plays an essential role in many aspects of cellular physiology. The PP2A holoenzyme consists of a heterodimeric core enzyme, which comprises a scaffolding subunit and a catalytic subunit, and a variable regulatory subunit. Here we report the crystal structure of the heterotrimeric PP2A holoenzyme involving the regulatory subunit B'/B56/PR61. Surprisingly, the B'/PR61 subunit has a HEAT-like (huntingtin-elongation-A subunit-TOR-like) repeat structure, similar to that of the scaffolding subunit. The regulatory B'/B56/PR61 subunit simultaneously interacts with the catalytic subunit as well as the conserved ridge of the scaffolding subunit. The carboxyterminus of the catalytic subunit recognizes a surface groove at the interface between the B'/B56/PR61 subunit and the scaffolding subunit. Compared to the scaffolding subunit in the PP2A core enzyme, formation of the holoenzyme forces the scaffolding subunit to undergo pronounced conformational rearrangements. This structure reveals significant ramifications for understanding the function and regulation of PP2A.

  1. Roles of phosphotase 2A in nociceptive signal processing

    PubMed Central

    2013-01-01

    Multiple protein kinases affect the responses of dorsal horn neurons through phosphorylation of synaptic receptors and proteins involved in intracellular signal transduction pathways, and the consequences of this modulation may be spinal central sensitization. In contrast, the phosphatases catalyze an opposing reaction of de-phosphorylation, which may also modulate the functions of crucial proteins in signaling nociception. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. Accumulated evidence has shown that phosphatase 2A (PP2A), a serine/threonine specific phosphatase, is implicated in synaptic plasticity of the central nervous system and central sensitization of nociception. Therefore, targeting protein phosphotase 2A may provide an effective and novel strategy for the treatment of clinical pain. This review will characterize the structure and functional regulation of neuronal PP2A and bring together recent advances on the modulation of PP2A in targeted downstream substrates and relevant multiple nociceptive signaling molecules. PMID:24010880

  2. A phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors.

    PubMed

    Simboeck, Elisabeth; Sawicka, Anna; Zupkovitz, Gordin; Senese, Silvia; Winter, Stefan; Dequiedt, Franck; Ogris, Egon; Di Croce, Luciano; Chiocca, Susanna; Seiser, Christian

    2010-12-24

    Histone deacetylase inhibitors induce cell cycle arrest and apoptosis in tumor cells and are, therefore, promising anti-cancer drugs. The cyclin-dependent kinase inhibitor p21 is activated in histone deacetylase (HDAC) inhibitor-treated tumor cells, and its growth-inhibitory function contributes to the anti-tumorigenic effect of HDAC inhibitors. We show here that induction of p21 by trichostatin A involves MAP kinase signaling. Activation of the MAP kinase signaling pathway by growth factors or stress signals results in histone H3 serine 10 phosphorylation at the p21 promoter and is crucial for acetylation of the neighboring lysine 14 and recruitment of activated RNA polymerase II in response to trichostatin A treatment. In non-induced cells, the protein phosphatase PP2A is associated with the p21 gene and counteracts its activation. Induction of p21 is linked to simultaneous acetylation and phosphorylation of histone H3. The dual modification mark H3S10phK14ac at the activated p21 promoter is recognized by the phospho-binding protein 14-3-3ζ, which protects the phosphoacetylation mark from being processed by PP2A. Taken together we have revealed a cross-talk of reversible phosphorylation and acetylation signals that controls the activation of p21 by HDAC inhibitors and identify the phosphatase PP2A as chromatin-associated transcriptional repressor in mammalian cells.

  3. Protein phosphatase 2A cooperates with the autophagy-related kinase UNC-51 to regulate axon guidance in Caenorhabditis elegans.

    PubMed

    Ogura, Ken-ichi; Okada, Takako; Mitani, Shohei; Gengyo-Ando, Keiko; Baillie, David L; Kohara, Yuji; Goshima, Yoshio

    2010-05-01

    UNC-51 is a serine/threonine protein kinase conserved from yeast to humans. The yeast homolog Atg1 regulates autophagy (catabolic membrane trafficking) required for surviving starvation. In C. elegans, UNC-51 regulates the axon guidance of many neurons by a different mechanism than it and its homologs use for autophagy. UNC-51 regulates the subcellular localization (trafficking) of UNC-5, a receptor for the axon guidance molecule UNC-6/Netrin; however, the molecular details of the role for UNC-51 are largely unknown. Here, we report that UNC-51 physically interacts with LET-92, the catalytic subunit of serine/threonine protein phosphatase 2A (PP2A-C), which plays important roles in many cellular functions. A low allelic dose of LET-92 partially suppressed axon guidance defects of weak, but not severe, unc-51 mutants, and a low allelic dose of PP2A regulatory subunits A (PAA-1/PP2A-A) and B (SUR-6/PP2A-B) partially enhanced the weak unc-51 mutants. We also found that LET-92 can work cell-non-autonomously on axon guidance in neurons, and that LET-92 colocalized with UNC-51 in neurons. In addition, PP2A dephosphorylated phosphoproteins that had been phosphorylated by UNC-51. These results suggest that, by forming a complex, PP2A cooperates with UNC-51 to regulate axon guidance by regulating phosphorylation. This is the first report of a serine/threonine protein phosphatase functioning in axon guidance in vivo.

  4. The B56γ3 regulatory subunit-containing protein phosphatase 2A outcompetes Akt to regulate p27KIP1 subcellular localization by selectively dephosphorylating phospho-Thr157 of p27KIP1

    PubMed Central

    Lai, Tai-Yu; Yang, Yu-San; Hong, Wei-Fu; Chiang, Chi-Wu

    2016-01-01

    The B56γ-containing protein phosphatase 2A (PP2A-B56γ) has been postulated to have tumor suppressive functions. Here, we report regulation of p27KIP1 subcellular localization by PP2A-B56γ3. B56γ3 overexpression enhanced nuclear localization of p27KIP1, whereas knockdown of B56γ3 decreased p27KIP1 nuclear localization. B56γ3 overexpression decreased phosphorylation at Thr157 (phospho-Thr157), whose phosphorylation promotes cytoplasmic localization of p27KIP1, whereas B56γ3 knockdown significantly increased the level of phospho-Thr157. In vitro, PP2A-B56γ3 catalyzed dephosphorylation of phospho-Thr157 in a dose-dependent and okadaic acid-sensitive manner. B56γ3 did not increase p27KIP1 nuclear localization by down-regulating the upstream kinase Akt activity and outcompeted a myristoylated constitutively active Akt (Aktca) in regulating Thr157 phosphorylation and subcellular localization of p27KIP1. In addition, results of interaction domain mapping revealed that both the N-terminal and C-terminal domains of p27 and a domain at the C-terminus of B56γ3 are required for interaction between p27 and B56γ3. Furthermore, we demonstrated that p27KIP1 levels are positively correlated with B56γ levels in both non-tumor and tumor parts of a set of human colon tissue specimens. However, positive correlation between nuclear p27KIP1 levels and B56γ levels was found only in the non-tumor parts, but not in tumor parts of these tissues, implicating a dysregulation in PP2A-B56γ3-regulated p27KIP1 nuclear localization in these tumor tissues. Altogether, this study provides a new mechanism by which the PP2A-B56γ3 holoenzyme plays its tumor suppressor role. PMID:26684356

  5. microRNA-183 plays as oncogenes by increasing cell proliferation, migration and invasion via targeting protein phosphatase 2A in renal cancer cells

    SciTech Connect

    Qiu, Mingning Liu, Lei Chen, Lieqian Tan, Guobin Liang, Ziji Wang, Kangning Liu, Jianjun Chen, Hege

    2014-09-12

    Highlights: • miR-183 was up-regulated in renal cancer tissues. • Inhibition of endogenous miR-183 suppressed renal cancer cell growth and metastasis. • miR-183 increased cell growth and metastasis. • miR-183 regulated renal cancer cell growth and metastasis via directly targeting tumor suppressor protein phosphatase 2A. - Abstract: The aim of this study was to investigate the function of miR-183 in renal cancer cells and the mechanisms miR-183 regulates this process. In this study, level of miR-183 in clinical renal cancer specimens was detected by quantitative real-time PCR. miR-183 was up- and down-regulated in two renal cancer cell lines ACHN and A498, respectively, and cell proliferation, Caspase 3/7 activity, colony formation, in vitro migration and invasion were measured; and then the mechanisms of miR-183 regulating was analyzed. We found that miR-183 was up-regulated in renal cancer tissues; inhibition of endogenous miR-183 suppressed in vitro cell proliferation, colony formation, migration, and invasion and stimulated Caspase 3/7 activity; up-regulated miR-183 increased cell growth and metastasis and suppressed Caspase 3/7 activity. We also found that miR-183 directly targeted tumor suppressor, specifically the 3′UTR of three subunits of protein phosphatase 2A (PP2A-Cα, PP2A-Cβ, and PP2A-B56-γ) transcripts, inhibiting their expression and regulated the downstream regulators p21, p27, MMP2/3/7 and TIMP1/2/3/4. These results revealed the oncogenes role of miR-183 in renal cancer cells via direct targeting protein phosphatase 2A.

  6. Simian virus 40 small t antigen cooperates with mitogen-activated kinases to stimulate AP-1 activity.

    PubMed Central

    Frost, J A; Alberts, A S; Sontag, E; Guan, K; Mumby, M C; Feramisco, J R

    1994-01-01

    The simian virus 40 small tumor antigen (small t) specifically interacts with protein phosphatase type 2A (PP2A) in vivo and alters its catalytic activity in vitro. Among the substrates for PP2A in vitro are the activated forms of MEK and ERK kinases. Dephosphorylation of the activating phosphorylation sites on MEK and ERKs by PP2A in vitro results in a decrease in their respective kinase activities. Recently, it has been shown that overexpression of small t in CV-1 cells results in an inhibition of PP2A activity toward MEK and ERK2 and a constitutive upregulation of MEK and ERK2 activity. Previously, we have observed that overexpression of either ERK1, MEK1, or a constitutively active truncated form of c-Raf-1 (BXB) is insufficient to activate AP-1 in REF52 fibroblasts. We therefore examined whether overexpression of small t either alone or in conjunction with ERK1, MEK1, or BXB could activate AP-1. We found that coexpression of small t and either ERK1, MEK1, or BXB resulted in an increase in AP-1 activity, whereas expression of either small t or any of the kinases alone did not have any effect. Similarly, coexpression of small t and ERK1 activated serum response element-regulated promoters. Coexpression of kinase-deficient mutants of ERK1 and ERK2 inhibited the activation of AP-1 caused by expression of small t and either MEK1 or BXB. Coexpression of an interfering MEK, which inhibited AP-1 activation by small t and BXB, did not inhibit the activation of AP-1 caused by small t and ERK1. In contrast to REF52 cells, we observed that overexpression of either small or ERK1 alone in CV-1 cells was sufficient to stimulate AP-1 activity and that this stimulation was not enhanced by expression of small t and ERK1 together. These results show that the effects of small t on immediate-early gene expression depend on the cell type examined and suggest that the mitogen-activated protein kinase activation pathway is distinctly regulated in different cell types. Images PMID

  7. Oridonin inhibits gefitinib-resistant lung cancer cells by suppressing EGFR/ERK/MMP-12 and CIP2A/Akt signaling pathways.

    PubMed

    Xiao, Xiangling; He, Zhongwei; Cao, Wei; Cai, Fen; Zhang, Liang; Huang, Qiuyue; Fan, Chunsheng; Duan, Chao; Wang, Xiaobo; Wang, Jiu; Liu, Ying

    2016-06-01

    Oridonin (Ori), a diterpenoid compound extracted from traditional medicinal herbs, elicits antitumor effects on many cancer types. However, whether Ori can be used in gefitinib-resistant non-small cell lung cancer (NSCLC) cells remains unclear. This study investigated the antitumor activity and underlying mechanisms of Ori. Results demonstrated that this compound dose-dependently inhibited the proliferation, invasion, and migration of the gefitinib-resistant NSCLC cells in vitro. Ori also significantly downregulated the phosphorylation of EGFR, ERK, Akt, expression levels of matrix metalloproteinase-12 (MMP-12), and the cancerous inhibitor of protein phosphatase 2A (CIP2A). In addition, Ori upregulated protein phosphatase 2A (PP2A) activity of gefitinib-resistant NSCLC cells. Ori combined with docetaxel synergistically inhibited these cells. Ori also inhibited tumor growth in murine models. Immunohistochemistry results further revealed that Ori downregulated phospho-EGFR, MMP-12, and CIP2A in vivo. These findings indicated that Ori can inhibit the proliferation, invasion, and migration of gefitinib-resistant NSCLC cells by suppressing EGFR/ERK/MMP-12 and CIP2A/PP2A/Akt signaling pathways. Thus, Ori may be a novel effective candidate to treat gefitinib-resistant NSCLC.

  8. Early glycogen synthase kinase-3β and protein phosphatase 2A independent tau dephosphorylation during global brain ischaemia and reperfusion following cardiac arrest and the role of the adenosine monophosphate kinase pathway.

    PubMed

    Majd, Shohreh; Power, John H T; Koblar, Simon A; Grantham, Hugh J M

    2016-08-01

    Abnormal tau phosphorylation (p-tau) has been shown after hypoxic damage to the brain associated with traumatic brain injury and stroke. As the level of p-tau is controlled by Glycogen Synthase Kinase (GSK)-3β, Protein Phosphatase 2A (PP2A) and Adenosine Monophosphate Kinase (AMPK), different activity levels of these enzymes could be involved in tau phosphorylation following ischaemia. This study assessed the effects of global brain ischaemia/reperfusion on the immediate status of p-tau in a rat model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR). We reported an early dephosphorylation of tau at its AMPK sensitive residues, Ser(396) and Ser(262) after 2 min of ischaemia, which did not recover during the first two hours of reperfusion, while the tau phosphorylation at GSK-3β sensitive but AMPK insensitive residues, Ser(202) /Thr(205) (AT8), as well as the total amount of tau remained unchanged. Our data showed no alteration in the activities of GSK-3β and PP2A during similar episodes of ischaemia of up to 8 min and reperfusion of up to 2 h, and 4 weeks recovery. Dephosphorylation of AMPK followed the same pattern as tau dephosphorylation during ischaemia/reperfusion. Catalase, another AMPK downstream substrate also showed a similar pattern of decline to p-AMPK, in ischaemic/reperfusion groups. This suggests the involvement of AMPK in changing the p-tau levels, indicating that tau dephosphorylation following ischaemia is not dependent on GSK-3β or PP2A activity, but is associated with AMPK dephosphorylation. We propose that a reduction in AMPK activity is a possible early mechanism responsible for tau dephosphorylation.

  9. Protein phosphatase 2A, a potential regulator of actin dynamics and actin-based organelle motility in the green alga Acetabularia.

    PubMed

    Menzel, D; Vugrek, O; Frank, S; Elsner-Menzel, C

    1995-06-01

    The giant, unicellular alga Acetabularia is a well known experimental model for the study of actin-dependent intracellular organelle motility. In the cyst stage, however, which is equivalent to the gametophytic stage, organelles are immobile, even though an actin cytoskeleton is present. The reason for the lack of organelle motility at this stage has not been known. To test the hypothesis that organelle motility could be under the control of posttranslational modification by protein phosphorylation, we have treated cysts with submicromolar concentrations of okadaic acid or calyculin A, both potent inhibitors of serine/threonine protein phosphatases (ser/thr-PPases). The effects were dramatic: Instead of linear actin bundles typical for control cysts, circular arrays of actin bundles formed in the cortical cyst cytoplasm. Concomitant with the formation of these action rings, the cytoplasmic layers beneath the rings began to slowly rotate in a continuous and uniform counter-clockwise fashion. This effect suggests that protein phosphorylation acts on the actin cytoskeleton at two levels: (1) It changes the assembly properties of the actin filament system to the extent that novel cytoskeletal configurations are formed and (2) it raises the activity of putative motor proteins involved in the rotational movements to levels sufficiently high to support motility at a stage when organelle motility does not normally occur. Northern blot analysis of cyst stage-mRNA using probes specific to protein phosphatase type 1 (PP1) and type 2A (PP2A) reveals that PP2A is strongly expressed at this developmental stage whereas PP1 is not detectable, suggesting that PP2A is the likely target to the protein phosphatase inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Modulation of plant HMG-CoA reductase by protein phosphatase 2A

    PubMed Central

    Antolín-Llovera, Meritxell; Leivar, Pablo; Arró, Montserrat; Ferrer, Albert; Boronat, Albert

    2011-01-01

    The enzyme HMG-CoA reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis, critical not only for normal plant development, but also for the adaptation to demanding environmental conditions. Consistent with this notion, plant HMGR is modulated by many diverse endogenous signals and external stimuli. Protein phosphatase 2A (PP2A) is involved in auxin, abscisic acid, ethylene and brassinosteroid signaling and now emerges as a positive and negative multilevel regulator of plant HMGR, both during normal growth and in response to a variety of stress conditions. The interaction with HMGR is mediated by B″ regulatory subunits of PP2A, which are also calcium binding proteins. The new discoveries uncover the potential of PP2A to integrate developmental and calcium-mediated environmental signals in the control of plant HMGR. PMID:21701259

  11. Expression of protein phosphatase 2A mutants and silencing of the regulatory B alpha subunit induce a selective loss of acetylated and detyrosinated microtubules.

    PubMed

    Nunbhakdi-Craig, Viyada; Schuechner, Stefan; Sontag, Jean-Marie; Montgomery, Lisa; Pallas, David C; Juno, Claudia; Mudrak, Ingrid; Ogris, Egon; Sontag, Estelle

    2007-05-01

    Carboxymethylation and phosphorylation of protein phosphatase 2A (PP2A) catalytic C subunit are evolutionary conserved mechanisms that critically control PP2A holoenzyme assembly and substrate specificity. Down-regulation of PP2A methylation and PP2A enzymes containing the B alpha regulatory subunit occur in Alzheimer's disease. In this study, we show that expressed wild-type and methylation- (L309 Delta) and phosphorylation- (T304D, T304A, Y307F, and Y307E) site mutants of PP2A C subunit differentially bind to B, B', and B''-type regulatory subunits in NIH 3T3 fibroblasts and neuro-2a (N2a) neuroblastoma cells. They also display distinct binding affinity for microtubules (MTs). Relative to controls, expression of the wild-type, T304A and Y307F C subunits in N2a cells promotes the accumulation of acetylated and detyrosinated MTs. However, expression of the Y307E, L309 Delta, and T304D mutants, which are impaired in their ability to associate with the B alpha subunit, induces their loss. Silencing of B alpha subunit in N2a and NIH 3T3 cells is sufficient to induce a similar breakdown of acetylated and detyrosinated MTs. It also confers increased sensitivity to nocodazole-induced MT depolymerization. Our findings suggest that changes in intracellular PP2A subunit composition can modulate MT dynamics. They support the hypothesis that reduced amounts of neuronal B alpha-containing PP2A heterotrimers contribute to MT destabilization in Alzheimer's disease.

  12. X-linked Inhibitor of Apoptosis Protein (XIAP) Regulation of Cyclin D1 Protein Expression and Cancer Cell Anchorage-independent Growth via Its E3 Ligase-mediated Protein Phosphatase 2A/c-Jun Axis*

    PubMed Central

    Cao, Zipeng; Zhang, Ruowen; Li, Jingxia; Huang, Haishan; Zhang, Dongyun; Zhang, Jingjie; Gao, Jimin; Chen, Jingyuan; Huang, Chuanshu

    2013-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is a well known potent inhibitor of apoptosis; however, it is also involved in other cancer cell biological behavior. In the current study, we discovered that XIAP and its E3 ligase played a crucial role in regulation of cyclin D1 expression in cancer cells. We found that deficiency of XIAP expression resulted in a marked reduction in cyclin D1 expression. Consistently, cell cycle transition and anchorage-independent cell growth were also attenuated in XIAP-deficient cancer cells compared with those of the parental wild-type cells. Subsequent studies demonstrated that E3 ligase activity within the RING domain of XIAP is crucial for its ability to regulate cyclin D1 transcription, cell cycle transition, and anchorage-independent cell growth by up-regulating transactivation of c-Jun/AP-1. Moreover, we found that E3 ligase within RING domain was required for XIAP inhibition of phosphatase PP2A activity by up-regulation of PP2A phosphorylation at Tyr-307 in its catalytic subunit. Such PP2A phosphorylation and inactivation resulted in phosphorylation and activation of its downstream target c-Jun in turn leading to cyclin D1 expression. Collectively, our studies uncovered a novel function of E3 ligase activity of XIAP in the up-regulation of cyclin D1 expression, providing significant insight into the understanding of the biomedical significance of overexpressed XIAP in cancer development, further offering a new molecular basis for utilizing XIAP E3 ligase as a cancer therapeutic target. PMID:23720779

  13. Drosophila Syd-1, Liprin-α, and Protein Phosphatase 2A B′ Subunit Wrd Function in a Linear Pathway to Prevent Ectopic Accumulation of Synaptic Materials in Distal Axons

    PubMed Central

    Li, Long; Tian, Xiaolin; Zhu, Mingwei; Bulgari, Dinara; Böhme, Mathias A.; Goettfert, Fabian; Wichmann, Carolin; Sigrist, Stephan J.; Levitan, Edwin S.

    2014-01-01

    During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B′ [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3β kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot). PMID:24948803

  14. Alpha2A adrenergic receptor activation inhibits epileptiform activity in the rat hippocampal CA3 region.

    PubMed

    Jurgens, Chris W D; Hammad, Hana M; Lichter, Jessica A; Boese, Sarah J; Nelson, Brian W; Goldenstein, Brianna L; Davis, Kylie L; Xu, Ke; Hillman, Kristin L; Porter, James E; Doze, Van A

    2007-06-01

    Norepinephrine has potent antiepileptic properties, the pharmacology of which is unclear. Under conditions in which GABAergic inhibition is blocked, norepinephrine reduces hippocampal cornu ammonis 3 (CA3) epileptiform activity through alpha(2) adrenergic receptor (AR) activation on pyramidal cells. In this study, we investigated which alpha(2)AR subtype(s) mediates this effect. First, alpha(2)AR genomic expression patterns of 25 rat CA3 pyramidal cells were determined using real-time single-cell reverse transcription-polymerase chain reaction, demonstrating that 12 cells expressed alpha(2A)AR transcript; 3 of the 12 cells additionally expressed mRNA for alpha(2C)AR subtype and no cells possessing alpha(2B)AR mRNA. Hippocampal CA3 epileptiform activity was then examined using field potential recordings in brain slices. The selective alphaAR agonist 6-fluoronorepinephrine caused a reduction of CA3 epileptiform activity, as measured by decreased frequency of spontaneous epileptiform bursts. In the presence of betaAR blockade, concentration-response curves for AR agonists suggest that an alpha(2)AR mediates this response, as the rank order of potency was 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK-14304) >or= epinephrine >6-fluoronorepinephrine > norepinephrine > phenylephrine. Finally, equilibrium dissociation constants (K(b)) of selective alphaAR antagonists were functionally determined to confirm the specific alpha(2)AR subtype inhibiting CA3 epileptiform activity. Apparent K(b) values calculated for atipamezole (1.7 nM), MK-912 (4.8 nM), BRL-44408 (15 nM), yohimbine (63 nM), ARC-239 (540 nM), prazosin (4900 nM), and terazosin (5000 nM) correlated best with affinities previously determined for the alpha(2A)AR subtype (r = 0.99, slope = 1.0). These results suggest that, under conditions of impaired GABAergic inhibition, activation of alpha(2A)ARs is primarily responsible for the antiepileptic actions of norepinephrine in the rat hippocampal CA3

  15. Force-inhibiting effect of Ser/Thr protein phosphatase 2A inhibitors on bovine ciliary muscle.

    PubMed

    Ishida, Minori; Takeya, Kosuke; Miyazu, Motoi; Yoshida, Akitoshi; Takai, Akira

    2015-01-01

    Ciliary muscle is a smooth muscle characterized by a rapid response to muscarinic receptor stimulation and sustained contraction. Although it is evident that these contractions are Ca2+-dependent, detailed molecular mechanisms are still unknown. In order to elucidate the role of Ser/Thr protein phosphatase 2A (PP2A) in ciliary muscle contraction, we examined the effects of okadaic acid and other PP2A inhibitors on contractions induced by carbachol (CCh) and ionomycin in bovine ciliary muscle strips (BCM). Okadaic acid inhibited ionomycin-induced contraction, while it did not cause significant changes in CCh-induced contraction. Fostriecin showed similar inhibitory effects on the contraction of BCM. On the other hand, rubratoxin A inhibited both ionomycin- and CCh-induced contractions. These results indicated that PP2A was involved at least in ionomycin-induced Ca2+-dependent contraction, and that BCM had a unique regulatory mechanism in CCh-induced contraction. PMID:26727726

  16. PKA, PKC, and the protein phosphatase 2A influence HAND factor function: a mechanism for tissue-specific transcriptional regulation.

    PubMed

    Firulli, Beth A; Howard, Marthe J; McDaid, Jennifer R; McIlreavey, Leanne; Dionne, Karen M; Centonze, Victoria E; Cserjesi, Peter; Virshup, David M; Firulli, Anthony B

    2003-11-01

    The bHLH factors HAND1 and HAND2 are required for heart, vascular, neuronal, limb, and extraembryonic development. Unlike most bHLH proteins, HAND factors exhibit promiscuous dimerization properties. We report that phosphorylation/dephosphorylation via PKA, PKC, and a specific heterotrimeric protein phosphatase 2A (PP2A) modulates HAND function. The PP2A targeting-subunit B56delta specifically interacts with HAND1 and -2, but not other bHLH proteins. PKA and PKC phosphorylate HAND proteins in vivo, and only B56delta-containing PP2A complexes reduce levels of HAND1 phosphorylation. During RCHOI trophoblast stem cell differentiation, B56delta expression is downregulated and HAND1 phosphorylation increases. Mutations in phosphorylated residues result in altered HAND1 dimerization and biological function. Taken together, these results suggest that site-specific phosphorylation regulates HAND factor functional specificity.

  17. Protein phosphatase activity and sucrose-mediated induction of fructan synthesis in wheat.

    PubMed

    Martínez-Noël, Giselle M A; Tognetti, Jorge A; Salerno, Graciela L; Wiemken, Andres; Pontis, Horacio G

    2009-10-01

    In this work, we analyze protein phosphatase (PP) involvement in the sucrose-mediated induction of fructan metabolism in wheat (Triticum aestivum). The addition of okadaic acid (OA), a PP-inhibitor, to sucrose-fed leaves reduced fructosylsucrose-synthesizing activity (FSS) induction in a dose-dependent manner. The expression of the two enzymes that contribute to FSS activity, 1-SST (1-sucrose:sucrose fructosyltransferase, E.C. 2.4.1.99) and 6-SFT (6-sucrose:fructan fructosyltransferase, E.C. 2.4.1.10), was blocked by 1 microM OA. These results suggest the involvement of a PP type 2A in sucrose signaling leading to fructan synthesis. OA addition to the feeding medium impaired both sucrose accumulation in leaves and the expression of sucrose-H+ symporter (SUT1). It is known that sucrose concentration must exceed a threshold for the induction of fructan metabolism; hence PP2A inhibition may result in lower sucrose levels than required for this induction. OA also induced the vacuolar acid invertase (acid INV) transcript levels suggesting that PP activity might play a role in carbon partitioning. Total extractable PP2A activity decreased during 24 h of treatment with sucrose, in parallel with declining sugar uptake into leaf tissues. In conclusion, our results suggest that PP2A is involved in sucrose-induction of fructan metabolism and may play a role in regulating sucrose uptake, but do not rule out that further steps in sucrose signaling pathway may be affected.

  18. B56δ-related protein phosphatase 2A dysfunction identified in patients with intellectual disability

    PubMed Central

    Houge, Gunnar; Haesen, Dorien; Vissers, Lisenka E.L.M.; Mehta, Sarju; Parker, Michael J.; Wright, Michael; Vogt, Julie; McKee, Shane; Tolmie, John L.; Cordeiro, Nuno; Kleefstra, Tjitske; Willemsen, Marjolein H.; Reijnders, Margot R.F.; Berland, Siren; Hayman, Eli; Lahat, Eli; Brilstra, Eva H.; van Gassen, Koen L.I.; Zonneveld-Huijssoon, Evelien; de Bie, Charlotte I.; Hoischen, Alexander; Eichler, Evan E.; Holdhus, Rita; Steen, Vidar M.; Døskeland, Stein Ove; Hurles, Matthew E.; FitzPatrick, David R.; Janssens, Veerle

    2015-01-01

    Here we report inherited dysregulation of protein phosphatase activity as a cause of intellectual disability (ID). De novo missense mutations in 2 subunits of serine/threonine (Ser/Thr) protein phosphatase 2A (PP2A) were identified in 16 individuals with mild to severe ID, long-lasting hypotonia, epileptic susceptibility, frontal bossing, mild hypertelorism, and downslanting palpebral fissures. PP2A comprises catalytic (C), scaffolding (A), and regulatory (B) subunits that determine subcellular anchoring, substrate specificity, and physiological function. Ten patients had mutations within a highly conserved acidic loop of the PPP2R5D-encoded B56δ regulatory subunit, with the same E198K mutation present in 6 individuals. Five patients had mutations in the PPP2R1A-encoded scaffolding Aα subunit, with the same R182W mutation in 3 individuals. Some Aα cases presented with large ventricles, causing macrocephaly and hydrocephalus suspicion, and all cases exhibited partial or complete corpus callosum agenesis. Functional evaluation revealed that mutant A and B subunits were stable and uncoupled from phosphatase activity. Mutant B56δ was A and C binding–deficient, while mutant Aα subunits bound B56δ well but were unable to bind C or bound a catalytically impaired C, suggesting a dominant-negative effect where mutant subunits hinder dephosphorylation of B56δ-anchored substrates. Moreover, mutant subunit overexpression resulted in hyperphosphorylation of GSK3β, a B56δ-regulated substrate. This effect was in line with clinical observations, supporting a correlation between the ID degree and biochemical disturbance. PMID:26168268

  19. Protein phosphatases type 2A mediate tuberization signaling in Solanum tuberosum L. leaves.

    PubMed

    País, Silvia Marina; García, María Noelia Muñiz; Téllez-Iñón, María Teresa; Capiati, Daniela Andrea

    2010-06-01

    Tuber formation in potato (Solanum tuberosum L.) is regulated by hormonal and environmental signals that are thought to be integrated in the leaves. The molecular mechanisms that mediate the responses to tuberization-related signals in leaves remain largely unknown. In this study we analyzed the roles of protein phosphatase type 2A catalytic subunits (PP2Ac) in the leaf responses to conditions that affect tuberization. The responses were monitored by analyzing the expression of the "tuber-specific" genes Patatin and Pin2, which are induced in tubers and leaves during tuber induction. Experiments using PP2A inhibitors, together with PP2Ac expression profiles under conditions that affect tuberization indicate that high sucrose/nitrogen ratio, which promotes tuber formation, increases the transcript levels of Patatin and Pin2, by increasing the activity of PP2As without affecting PP2Ac mRNA or protein levels. Gibberellic acid (GA), a negative regulator of tuberization, down-regulates the transcription of catalytic subunits of PP2As from the subfamily I and decreases their enzyme levels. In addition, GA inhibits the expression of Patatin and Pin2 possibly by a PP2A-independent mechanism. PP2Ac down-regulation by GA may inhibit tuberization signaling downstream of the inductive effects of high sucrose/nitrogen ratio. These results are consistent with the hypothesis that PP2As of the subfamily I may positively modulate the signaling pathways that lead to the transcriptional activation of "tuber-specific" genes in leaves, and act as molecular switches regulated by both positive and negative modulators of tuberization. PMID:20358221

  20. Inhibition of specific binding of okadaic acid to protein phosphatase 2A by microcystin-LR, calyculin-A and tautomycin: method of analysis of interactions of tight-binding ligands with target protein.

    PubMed Central

    Takai, A; Sasaki, K; Nagai, H; Mieskes, G; Isobe, M; Isono, K; Yasumoto, T

    1995-01-01

    Several groups have reported that okadaic acid (OA) and some other tight-binding protein phosphatase inhibitors including microcystin-LR (MCLR), calyculin-A and tautomycin prevent each other from binding to protein phosphatase 2A (PP2A). In this paper, we have introduced an improved procedure for examining to what extent the affinity of an enzyme for a labelled tight-binding ligand is reduced by binding of an unlabelled tight-binding, ligand to the enzyme. Using this procedure, we have analysed the dose-dependent reduction of PP2A binding of [24-3H]OA by addition of OA, MCLR, calyculin-A and tautomycin. The results indicate that the binding of the unlabelled inhibitors to the PP2A molecule causes a dramatic (10(6)-10(8)-fold) increase in the dissociation constant associated with the interaction of [24-3H]OA and PP2A. This suggests that OA and the other inhibitors bind to PP2A in a mutually exclusive manner. The protein phosphatase inhibitors may share the same binding site on the PP2A molecule. We have also measured values of the dissociation constant (Ki) for the interaction of these toxins with protein phosphatase 1 (PP1). For MCLR and calyculin-A, the ratio of the Ki value obtained for PP1 to that for PP2A was in the range 4-9, whereas it was 0.01-0.02 for tautomycin. The value of tautomycin is considerably smaller than that (0.4) calculated from previously reported Ki values. PMID:7702557

  1. Activation of β-catenin Signaling by TFF1 Loss Promotes Cell Proliferation and Gastric Tumorigenesis

    PubMed Central

    Soutto, Mohammed; Peng, DunFa; Katsha, Ahmed; Chen, Zheng; Piazuelo, M. Blanca; Washington, M. Kay; Belkhiri, Abbes; Correa, Pelayo; El-Rifai, Wael

    2014-01-01

    Objective In this study, we investigated the role of TFF1 in regulating cell proliferation and tumor development through β-catenin signaling using in vivo and in vitro models of gastric tumorigenesis. Design TFF1-Knockout mice, Immunohistochemistry, luciferase reporter, qRT-PCR, immunoblot and phosphatase assays were used to examine the role of TFF1 on β-catenin signaling pathway. Results Nuclear localization of β-catenin with transcriptional upregulation of its target genes, c-Myc and Ccnd1, was detected in hyperplastic tissue at early age of 4-6 weeks and maintained during all stages of gastric tumorigenesis in the Tff1-knockout mice. The reconstitution of TFF1 or TFF1 conditioned media significantly inhibited the β-catenin/TCF transcription activity in MKN28 gastric cancer cells. In agreement with these results, we detected a reduction in the levels of nuclear β-catenin with downregulation of c-MYC and CCND1 mRNA. Analysis of signaling molecules upstream of β-catenin revealed a decrease in p-GSK3β (Ser9) and p-AKT (Ser473) protein levels following the reconstitution of TFF1 expression; this was consistent with the increase of p-β-catenin (Ser33/37/Thr41) and decrease of p-β-catenin (Ser552). This TFF1-induced reduction in phosphorylation of GSK3β and AKT was dependent on PP2A activity. The treatment with okadaic acid or knockdown of PP2A abrogated these effects. Consistent with the mouse data, we observed loss of TFF1 and an increase in nuclear localization of β-catenin in stages of human gastric tumorigenesis. Conclusion Our data indicate that loss of TFF1 promotes β-catenin activation and gastric tumorigenesis through regulation of PP2A, a major regulator of AKT-GSK3β signaling. PMID:25107557

  2. Histone chaperone NAP1 mediates sister chromatid resolution by counteracting protein phosphatase 2A.

    PubMed

    Moshkin, Yuri M; Doyen, Cecile M; Kan, Tsung-Wai; Chalkley, Gillian E; Sap, Karen; Bezstarosti, Karel; Demmers, Jeroen A; Ozgur, Zeliha; van Ijcken, Wilfred F J; Verrijzer, C Peter

    2013-01-01

    Chromosome duplication and transmission into daughter cells requires the precisely orchestrated binding and release of cohesin. We found that the Drosophila histone chaperone NAP1 is required for cohesin release and sister chromatid resolution during mitosis. Genome-wide surveys revealed that NAP1 and cohesin co-localize at multiple genomic loci. Proteomic and biochemical analysis established that NAP1 associates with the full cohesin complex, but it also forms a separate complex with the cohesin subunit stromalin (SA). NAP1 binding to cohesin is cell-cycle regulated and increases during G2/M phase. This causes the dissociation of protein phosphatase 2A (PP2A) from cohesin, increased phosphorylation of SA and cohesin removal in early mitosis. PP2A depletion led to a loss of centromeric cohesion. The distinct mitotic phenotypes caused by the loss of either PP2A or NAP1, were both rescued by their concomitant depletion. We conclude that the balanced antagonism between NAP1 and PP2A controls cohesin dissociation during mitosis. PMID:24086141

  3. A Novel Effect of MARCKS Phosphorylation by Activated PKC: The Dephosphorylation of Its Serine 25 in Chick Neuroblasts

    PubMed Central

    Toledo, Andrea; Zolessi, Flavio R.; Arruti, Cristina

    2013-01-01

    MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) is a peripheral membrane protein, especially abundant in the nervous system, and functionally related to actin organization and Ca-calmodulin regulation depending on its phosphorylation by PKC. However, MARCKS is susceptible to be phosphorylated by several different kinases and the possible interactions between these phosphorylations have not been fully studied in intact cells. In differentiating neuroblasts, as well as some neurons, there is at least one cell-type specific phosphorylation site: serine 25 (S25) in the chick. We demonstrate here that S25 is included in a highly conserved protein sequence which is a Cdk phosphorylatable region, located far away from the PKC phosphorylation domain. S25 phosphorylation was inhibited by olomoucine and roscovitine in neuroblasts undergoing various states of cell differentiation in vitro. These results, considered in the known context of Cdks activity in neuroblasts, suggest that Cdk5 is the enzyme responsible for this phosphorylation. We find that the phosphorylation by PKC at the effector domain does not occur in the same molecules that are phosphorylated at serine 25. The in situ analysis of the subcellular distribution of these two phosphorylated MARCKS variants revealed that they are also segregated in different protein clusters. In addition, we find that a sustained stimulation of PKC by phorbol-12-myristate-13-acetate (PMA) provokes the progressive disappearance of phosphorylation at serine 25. Cells treated with PMA, but in the presence of several Ser/Thr phosphatase (PP1, PP2A and PP2B) inhibitors indicated that this dephosphorylation is achieved via a phosphatase 2A (PP2A) form. These results provide new evidence regarding the existence of a novel consequence of PKC stimulation upon the phosphorylated state of MARCKS in neural cells, and propose a link between PKC and PP2A activity on MARCKS. PMID:23634231

  4. A novel effect of MARCKS phosphorylation by activated PKC: the dephosphorylation of its serine 25 in chick neuroblasts.

    PubMed

    Toledo, Andrea; Zolessi, Flavio R; Arruti, Cristina

    2013-01-01

    MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) is a peripheral membrane protein, especially abundant in the nervous system, and functionally related to actin organization and Ca-calmodulin regulation depending on its phosphorylation by PKC. However, MARCKS is susceptible to be phosphorylated by several different kinases and the possible interactions between these phosphorylations have not been fully studied in intact cells. In differentiating neuroblasts, as well as some neurons, there is at least one cell-type specific phosphorylation site: serine 25 (S25) in the chick. We demonstrate here that S25 is included in a highly conserved protein sequence which is a Cdk phosphorylatable region, located far away from the PKC phosphorylation domain. S25 phosphorylation was inhibited by olomoucine and roscovitine in neuroblasts undergoing various states of cell differentiation in vitro. These results, considered in the known context of Cdks activity in neuroblasts, suggest that Cdk5 is the enzyme responsible for this phosphorylation. We find that the phosphorylation by PKC at the effector domain does not occur in the same molecules that are phosphorylated at serine 25. The in situ analysis of the subcellular distribution of these two phosphorylated MARCKS variants revealed that they are also segregated in different protein clusters. In addition, we find that a sustained stimulation of PKC by phorbol-12-myristate-13-acetate (PMA) provokes the progressive disappearance of phosphorylation at serine 25. Cells treated with PMA, but in the presence of several Ser/Thr phosphatase (PP1, PP2A and PP2B) inhibitors indicated that this dephosphorylation is achieved via a phosphatase 2A (PP2A) form. These results provide new evidence regarding the existence of a novel consequence of PKC stimulation upon the phosphorylated state of MARCKS in neural cells, and propose a link between PKC and PP2A activity on MARCKS.

  5. A novel effect of MARCKS phosphorylation by activated PKC: the dephosphorylation of its serine 25 in chick neuroblasts.

    PubMed

    Toledo, Andrea; Zolessi, Flavio R; Arruti, Cristina

    2013-01-01

    MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) is a peripheral membrane protein, especially abundant in the nervous system, and functionally related to actin organization and Ca-calmodulin regulation depending on its phosphorylation by PKC. However, MARCKS is susceptible to be phosphorylated by several different kinases and the possible interactions between these phosphorylations have not been fully studied in intact cells. In differentiating neuroblasts, as well as some neurons, there is at least one cell-type specific phosphorylation site: serine 25 (S25) in the chick. We demonstrate here that S25 is included in a highly conserved protein sequence which is a Cdk phosphorylatable region, located far away from the PKC phosphorylation domain. S25 phosphorylation was inhibited by olomoucine and roscovitine in neuroblasts undergoing various states of cell differentiation in vitro. These results, considered in the known context of Cdks activity in neuroblasts, suggest that Cdk5 is the enzyme responsible for this phosphorylation. We find that the phosphorylation by PKC at the effector domain does not occur in the same molecules that are phosphorylated at serine 25. The in situ analysis of the subcellular distribution of these two phosphorylated MARCKS variants revealed that they are also segregated in different protein clusters. In addition, we find that a sustained stimulation of PKC by phorbol-12-myristate-13-acetate (PMA) provokes the progressive disappearance of phosphorylation at serine 25. Cells treated with PMA, but in the presence of several Ser/Thr phosphatase (PP1, PP2A and PP2B) inhibitors indicated that this dephosphorylation is achieved via a phosphatase 2A (PP2A) form. These results provide new evidence regarding the existence of a novel consequence of PKC stimulation upon the phosphorylated state of MARCKS in neural cells, and propose a link between PKC and PP2A activity on MARCKS. PMID:23634231

  6. Activated astrocytes display increased 5-HT2a receptor expression in pathological states.

    PubMed

    Wu, C; Singh, S K; Dias, P; Kumar, S; Mann, D M

    1999-08-01

    In human brain tissues from patients dying with cerebral infarction, hypertensive encephalopathy, Alzheimer's disease, Huntington's disease, frontotemporal dementia, and Creutzfeldt-Jakob disease there is an activation of astrocytes. Such activated astrocytes display GFAP and strong 5-HT(2A), but not 5-HT(2B) or 5-HT(2C), receptor immunoreactivity; this 5-HT(2A) reaction has not been observed in normal, nonactivated astrocytes. It is suggested that an up-regulation of 5-HT(2A) receptors may be part of an early response reaction in astrocytes, possibly designed to maintain homeostasis or to induce secondary message pathways involving trophic factors or glycogenolysis. PMID:10415157

  7. Resistin regulates the expression of plasminogen activator inhibitor-1 in 3T3-L1 adipocytes.

    PubMed

    Ikeda, Yoshito; Tsuchiya, Hiroyuki; Hama, Susumu; Kajimoto, Kazuaki; Kogure, Kentaro

    2014-05-30

    Resistin and plasminogen activator inhibitor-1 (PAI-1) are adipokines, which are secreted from adipocytes. Increased plasma resistin and PAI-1 levels aggravate metabolic syndrome through exacerbation of insulin resistance and induction of chronic inflammation. However, the relationship between resistin and PAI-1 gene expression remains unclear. Previously, we found that resistin regulates lipid metabolism via carbohydrate responsive element-binding protein (ChREBP) during adipocyte maturation (Ikeda et al., 2013) [6]. In this study, to clarify the relationship between expression of resistin and PAI-1, PAI-1 expression in differentiated 3T3-L1 adipocytes was measured after transfection with anti-resistin siRNA. We found that PAI-1 gene expression and secreted PAI-1 protein were significantly decreased by resistin knockdown. Furthermore, phosphorylation of Akt, which can inhibit PAI-1 expression, was accelerated and the activity of protein phosphatase 2A (PP2A) was suppressed in resistin knockdown 3T3-L1 adipocytes. In addition, the expression of glucose transporter type 4, a ChREBP target gene, was reduced and was associated with inhibition of PP2A. The addition of culture medium collected from COS7 cells transfected with a resistin expression plasmid rescued the suppression of PAI-1 expression in resistin knockdown 3T3-L1 adipocytes. Our findings suggest that resistin regulates PAI-1 expression in 3T3-L1 adipocytes via Akt phosphorylation.

  8. Activation of NTS A2a adenosine receptors differentially resets baroreflex control of renal vs. adrenal sympathetic nerve activity.

    PubMed

    Ichinose, Tomoko K; O'Leary, Donal S; Scislo, Tadeusz J

    2009-04-01

    The role of nucleus of solitary tract (NTS) A(2a) adenosine receptors in baroreflex mechanisms is controversial. Stimulation of these receptors releases glutamate within the NTS and elicits baroreflex-like decreases in mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas inhibition of these receptors attenuates HR baroreflex responses. In contrast, stimulation of NTS A(2a) adenosine receptors increases preganglionic adrenal sympathetic nerve activity (pre-ASNA), and the depressor and sympathoinhibitory responses are not markedly affected by sinoaortic denervation and blockade of NTS glutamatergic transmission. To elucidate the role of NTS A(2a) adenosine receptors in baroreflex function, we compared full baroreflex stimulus-response curves for HR, RSNA, and pre-ASNA (intravenous nitroprusside/phenylephrine) before and after bilateral NTS microinjections of selective adenosine A(2a) receptor agonist (CGS-21680; 2.0, 20 pmol/50 nl), selective A(2a) receptor antagonist (ZM-241385; 40 pmol/100 nl), and nonselective A(1) + A(2a) receptor antagonist (8-SPT; 1 nmol/100 nl) in urethane/alpha-chloralose anesthetized rats. Activation of A(2a) receptors decreased the range, upper plateau, and gain of baroreflex-response curves for RSNA, whereas these parameters all increased for pre-ASNA, consistent with direct effects of the agonist on regional sympathetic activity. However, no resetting of baroreflex-response curves along the MAP axis occurred despite the marked decreases in baseline MAP. The antagonists had no marked effects on baseline variables or baroreflex-response functions. We conclude that the activation of NTS A(2a) adenosine receptors differentially alters baroreflex control of HR, RSNA, and pre-ASNA mostly via non-baroreflex mechanism(s), and these receptors have virtually no tonic action on baroreflex control of these sympathetic outputs.

  9. TOSPAC calculations in support of the COVE 2A benchmarking activity; Yucca Mountain Site Characterization Project

    SciTech Connect

    Gauthier, J.H.; Zieman, N.B.; Miller, W.B.

    1991-10-01

    The purpose of the the Code Verification (COVE) 2A benchmarking activity is to assess the numerical accuracy of several computer programs for the Yucca Mountain Site Characterization Project of the Department of Energy. This paper presents a brief description of the computer program TOSPAC and a discussion of the calculational effort and results generated by TOSPAC for the COVE 2A problem set. The calculations were performed twice. The initial calculations provided preliminary results for comparison with the results from other COVE 2A participants. TOSPAC was modified in response to the comparison and the final calculations included a correction and several enhancements to improve efficiency. 8 refs.

  10. Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure

    PubMed Central

    Kho, Changwon; Lee, Ahyoung; Jeong, Dongtak; Oh, Jae Gyun; Gorski, Przemek A.; Fish, Kenneth; Sanchez, Roberto; DeVita, Robert J.; Christensen, Geir; Dahl, Russell; Hajjar, Roger J.

    2015-01-01

    Decreased activity and expression of the cardiac sarcoplasmic reticulum calcium ATPase (SERCA2a), a critical pump regulating calcium cycling in cardiomyocyte, are hallmarks of heart failure. We have previously described a role for the small ubiquitin-like modifier type 1 (SUMO-1) as a regulator of SERCA2a and have shown that gene transfer of SUMO-1 in rodents and large animal models of heart failure restores cardiac function. Here, we identify and characterize a small molecule, N106, which increases SUMOylation of SERCA2a. This compound directly activates the SUMO-activating enzyme, E1 ligase, and triggers intrinsic SUMOylation of SERCA2a. We identify a pocket on SUMO E1 likely to be responsible for N106's effect. N106 treatment increases contractile properties of cultured rat cardiomyocytes and significantly improves ventricular function in mice with heart failure. This first-in-class small-molecule activator targeting SERCA2a SUMOylation may serve as a potential therapeutic strategy for treatment of heart failure. PMID:26068603

  11. Synthesis and biological activity of pyrimido [1, 2-a] quinoline moiety and its 2-substituted derivatives

    NASA Astrophysics Data System (ADS)

    Jadhav, A. G.; Halikar, N. K.

    2013-04-01

    2-Amino-3-cyano quinoline (1) and bis (methylthio) methylene malononitrile (2) were refluxed in N,N-dimethyl formamide (DMF) in presence of catalytic amount of anhydrous potassium carbonate to afforded 3, 11-dicyano-4-imino-2-methylthio -4H-pyrimido [1, 2-a] quinoline (3). The latter were further reacted with different substituted aniline, phenol, hetryl amine and compound containing active methyl group. Afforded to 3, 11-dicyano-4-imino -4H-pyrimido [1, 2-a] quinoline and their 2-substuited derivatives (4a-7c). All these newly synthesized compounds were characterized by elemental analysis and spectral data, and screened for their antimicrobial activities.

  12. Protein phosphatase 2A and Cdc7 kinase regulate the DNA unwinding element-binding protein in replication initiation.

    PubMed

    Gao, Yanzhe; Yao, Jianhong; Poudel, Sumeet; Romer, Eric; Abu-Niaaj, Lubna; Leffak, Michael

    2014-12-26

    The DNA unwinding element (DUE)-binding protein (DUE-B) binds to replication origins coordinately with the minichromosome maintenance (MCM) helicase and the helicase activator Cdc45 in vivo, and loads Cdc45 onto chromatin in Xenopus egg extracts. Human DUE-B also retains the aminoacyl-tRNA proofreading function of its shorter orthologs in lower organisms. Here we report that phosphorylation of the DUE-B unstructured C-terminal domain unique to higher organisms regulates DUE-B intermolecular binding. Gel filtration analyses show that unphosphorylated DUE-B forms multiple high molecular weight (HMW) complexes. Several aminoacyl-tRNA synthetases and Mcm2-7 proteins were identified by mass spectrometry of the HMW complexes. Aminoacyl-tRNA synthetase binding is RNase A sensitive, whereas interaction with Mcm2-7 is nuclease resistant. Unphosphorylated DUE-B HMW complex formation is decreased by PP2A inhibition or direct DUE-B phosphorylation, and increased by inhibition of Cdc7. These results indicate that the state of DUE-B phosphorylation is maintained by the equilibrium between Cdc7-dependent phosphorylation and PP2A-dependent dephosphorylation, each previously shown to regulate replication initiation. Alanine mutation of the DUE-B C-terminal phosphorylation target sites increases MCM binding but blocks Cdc45 loading in vivo and inhibits cell division. In egg extracts alanine mutation of the DUE-B C-terminal phosphorylation sites blocks Cdc45 loading and inhibits DNA replication. The effects of DUE-B C-terminal phosphorylation reveal a novel S phase kinase regulatory mechanism for Cdc45 loading and MCM helicase activation.

  13. Antiulcer agents. 3. Structure-activity-toxicity relationships of substituted imidazo[1,2-a]pyridines and a related imidazo[1,2-a]pyrazine.

    PubMed

    Kaminski, J J; Perkins, D G; Frantz, J D; Solomon, D M; Elliott, A J; Chiu, P J; Long, J F

    1987-11-01

    Investigation of the interrelationship between structure, antiulcer activity, and toxicology screening data derived from a series of compounds selected from structure-activity studies directed toward identifying a successor to 3-(cyanomethyl)-2-methyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine, Sch 28080 (1), has identified 3-(cyanomethyl)-2,7-dimethyl-8-(phenylmethoxy)imidazo[1,2 -a]pyridine (5), 3-amino-2-methyl-8-(2-phenylethyl)imidazo[1,2-a]pyridine (6), and 3-amino-2-methyl-8-(phenylmethoxy)imidazo[1,2-a]pyrazine (7). These analogues exhibit a combination of antisecretory and cytoprotective activity in animal models, while eliminating the adverse effects of the prototype 1. One of these, 3-amino-2-methyl-8-(phenylmethoxy)imidazo[1,2-a]pyrazine, Sch 32651 (7), has a profile meeting all criteria. PMID:3669012

  14. Evaluation of structural effects on 5-HT2A receptor antagonism by aporphines: identification of a new aporphine with 5-HT2A antagonist activity

    PubMed Central

    Ponnala, Shashikanth; Gonzales, Junior; Kapadia, Nirav; Navarro, Hernan A.; Harding, Wayne W.

    2014-01-01

    A set of aporphine analogs related to nantenine was evaluated for antagonist activity at 5-HT2A and α1A adrenergic receptors. With regards to 5-HT2A receptor antagonism, a C2 allyl group is detrimental to activity. The chiral center of nantenine is not important for 5-HT2A antagonist activity, however the N6 nitrogen atom is a critical feature for 5-HT2A antagonism. Compound 12b was the most potent 5-HT2A aporphine antagonist identified in this study and has similar potency to previously identified aporphine antagonists 2 and 3. The ring A and N6 modifications examined were detrimental to α1A antagonism. A slight eutomeric preference for the R enantiomer of nantenine was observed in relation to α1A antagonism. PMID:24630561

  15. Modulation of Receptor Phosphorylation Contributes to Activation of Peroxisome Proliferator Activated Receptor α by Dehydroepiandrosterone and Other Peroxisome Proliferators

    PubMed Central

    Tamasi, Viola; Miller, Kristy K. Michael; Ripp, Sharon L.; Vila, Ermin; Geoghagen, Thomas E.; Prough, Russell A.

    2008-01-01

    Dehydroepiandrosterone (DHEA), a C19 human adrenal steroid, activates peroxisome proliferator-activated receptor α (PPARα) in vivo but does not ligand-activate PPARα in transient transfection experiments. We demonstrate that DHEA regulates PPARα action by altering both the levels and phosphorylation status of the receptor. Human hepatoma cells (HepG2) were transiently transfected with the expression plasmid encoding PPARα and a plasmid containing two copies of fatty acyl coenzyme oxidase (FACO) peroxisome-proliferator activated receptor responsive element consensus oligonucleotide in a luciferase reporter gene. Nafenopin treatment increased reporter gene activity in this system, whereas DHEA treatment did not. Okadaic acid significantly decreased nafenopin-induced reporter activity in a concentration-dependent manner. Okadaic acid treatment of primary rat hepatocytes decreased both DHEA- and nafenopin-induced FACO activity in primary rat hepatocytes. DHEA induced both PPARα mRNA and protein levels, as well as PP2A message in primary rat hepatocytes. Western blot analysis showed that the serines at positions 12 and 21 were rapidly dephosphorylated upon treatment with DHEA and nafenopin. Results using specific protein phosphatase inhibitors suggested that protein phosphatase 2A (PP2A) is responsible for DHEA action, and protein phosphatase 1 might be involved in nafenopin induction. Mutation of serines at position 6, 12, and 21 to an uncharged alanine residue significantly increased transcriptional activity, whereas mutation to negative charged aspartate residues (mimicking receptor phosphorylation) decreased transcriptional activity. DHEA action involves induction of PPARα mRNA and protein levels as well as increased PPARα transcriptional activity through decreasing receptor phosphorylation at serines in the AF1 region. PMID:18079279

  16. Overexpression of SET is a recurrent event associated with poor outcome and contributes to protein phosphatase 2A inhibition in acute myeloid leukemia

    PubMed Central

    Cristóbal, Ion; Garcia-Orti, Laura; Cirauqui, Cristina; Cortes-Lavaud, Xabier; García-Sánchez, María A.; Calasanz, María J.; Odero, María D.

    2012-01-01

    Background Protein phosphatase 2A is a novel potential therapeutic target in several types of chronic and acute leukemia, and its inhibition is a common event in acute myeloid leukemia. Upregulation of SET is essential to inhibit protein phosphatase 2A in chronic myeloid leukemia, but its importance in acute myeloid leukemia has not yet been explored. Design and Methods We quantified SET expression by real time reverse transcriptase polymerase chain reaction in 214 acute myeloid leukemia patients at diagnosis. Western blot was performed in acute myeloid leukemia cell lines and in 16 patients’ samples. We studied the effect of SET using cell viability assays. Bioinformatics analysis of the SET promoter, chromatin immunoprecipitation, and luciferase assays were performed to evaluate the transcriptional regulation of SET. Results SET overexpression was found in 60/214 patients, for a prevalence of 28%. Patients with SET overexpression had worse overall survival (P<0.01) and event-free survival (P<0.01). Deregulation of SET was confirmed by western blot in both cell lines and patients’ samples. Functional analysis showed that SET promotes proliferation, and restores cell viability after protein phosphatase 2A overexpression. We identified EVI1 overexpression as a mechanism involved in SET deregulation in acute myeloid leukemia cells. Conclusions These findings suggest that SET overexpression is a key mechanism in the inhibition of PP2A in acute myeloid leukemia, and that EVI1 overexpression contributes to the deregulation of SET. Furthermore, SET overexpression is associated with a poor outcome in acute myeloid leukemia, and it can be used to identify a subgroup of patients who could benefit from future treatments based on PP2A activators. PMID:22133779

  17. Activation of 5-HT2A/2C receptors reduces the excitability of cultured cortical neurons.

    PubMed

    Hu, Lingli; Liu, Chunhua; Dang, Minyan; Luo, Bin; Guo, Yiping; Wang, Haitao

    2016-10-01

    The abundant forebrain serotonergic projections are believed to modulate the activities of cortical neurons. 5-HT2 receptor among multiple subtypes of serotonin receptors contributes to the modulation of excitability, synaptic transmissions and plasticity. In the present study, whole-cell patch-clamp recording was adopted to examine whether activation of 5-HT2A/2C receptors would have any impact on the excitability of cultured cortical neurons. We found that 2,5-Dimethoxy-4-iodoamphetamine (DOI), a selective 5-HT2A/2C receptor agonist, rapidly and reversibly depressed spontaneous action potentials mimicking the effect of serotonin. The decreased excitability was also observed for current-evoked firing. Additionally DOI increased neuronal input resistance. Hyperpolarization-activated cyclic nucleotide-gated cationic channels (HCN) did not account for the inhibition of spontaneous firing. The synaptic contribution was ruled out in that DOI augmented excitation and attenuated inhibition to actually favor an increase in the excitability. Our findings revealed that activation of 5-HT2A/2C receptors reduces neuronal excitability, which would deepen our understanding of serotonergic modulation of cortical activities. PMID:27585751

  18. BAP1/ASXL1 recruitment and activation for H2A deubiquitination

    PubMed Central

    Sahtoe, Danny D.; van Dijk, Willem J.; Ekkebus, Reggy; Ovaa, Huib; Sixma, Titia K.

    2016-01-01

    The deubiquitinating enzyme BAP1 is an important tumor suppressor that has drawn attention in the clinic since its loss leads to a variety of cancers. BAP1 is activated by ASXL1 to deubiquitinate mono-ubiquitinated H2A at K119 in Polycomb gene repression, but the mechanism of this reaction remains poorly defined. Here we show that the BAP1 C-terminal extension is important for H2A deubiquitination by auto-recruiting BAP1 to nucleosomes in a process that does not require the nucleosome acidic patch. This initial encounter-like complex is unproductive and needs to be activated by the DEUBAD domains of ASXL1, ASXL2 or ASXL3 to increase BAP1's affinity for ubiquitin on H2A, to drive the deubiquitination reaction. The reaction is specific for Polycomb modifications of H2A as the complex cannot deubiquitinate the DNA damage-dependent ubiquitination at H2A K13/15. Our results contribute to the molecular understanding of this important tumor suppressor. PMID:26739236

  19. Early thymocyte development is regulated by modulation of E2A protein activity.

    PubMed

    Engel, I; Johns, C; Bain, G; Rivera, R R; Murre, C

    2001-09-17

    The E2A gene encodes the E47 and E12 basic helix-loop-helix (bHLH) transcription factors. T cell development in E2A-deficient mice is partially arrested before lineage commitment. Here we demonstrate that E47 expression becomes uniformly high at the point at which thymocytes begin to commit towards the T cell lineage. E47 protein levels remain high until the double positive developmental stage, at which point they drop to relatively moderate levels, and are further downregulated upon transition to the single positive stage. However, stimuli that mimic pre-T cell receptor (TCR) signaling in committed T cell precursors inhibit E47 DNA-binding activity and induce the bHLH inhibitor Id3 through a mitogen-activated protein kinase kinase-dependent pathway. Consistent with these observations, a deficiency in E2A proteins completely abrogates the developmental block observed in mice with defects in TCR rearrangement. Thus E2A proteins are necessary for both initiating T cell differentiation and inhibiting development in the absence of pre-TCR expression. Mechanistically, these data link pre-TCR mediated signaling and E2A downstream target genes into a common pathway.

  20. Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development

    PubMed Central

    Beier, Anna; Krisp, Christoph; Wolters, Dirk A.

    2016-01-01

    ABSTRACT The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora. Fruiting body development is controlled by subunits of the highly conserved striatin-interacting phosphatase and kinase (STRIPAK) complex, which has been described in organisms ranging from yeasts to humans. The highly conserved heterotrimeric protein phosphatase PP2A is a subunit of STRIPAK. Here, catalytic subunit 1 of PP2A was functionally characterized. The Δpp2Ac1 strain is sterile, unable to undergo hyphal fusion, and devoid of ascogonial septation. Further, PP2Ac1, together with STRIPAK subunit PRO22, governs vegetative and stress-related growth. We revealed in vitro catalytic activity of wild-type PP2Ac1, and our in vivo analysis showed that inactive PP2Ac1 blocks the complementation of the sterile deletion strain. Tandem affinity purification, followed by mass spectrometry and yeast two-hybrid analysis, verified that PP2Ac1 is a subunit of STRIPAK. Further, these data indicate links between the STRIPAK complex and other developmental signaling pathways, implying the presence of a large interconnected signaling network that controls eukaryotic developmental processes. The insights gained in our study can be transferred to higher eukaryotes and will be important for understanding eukaryotic cellular development in general. PMID:27329756

  1. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  2. Mechanistic insight into GPCR-mediated activation of the microtubule-associated RhoA exchange factor GEF-H1.

    PubMed

    Meiri, David; Marshall, Christopher B; Mokady, Daphna; LaRose, Jose; Mullin, Michael; Gingras, Anne-Claude; Ikura, Mitsuhiko; Rottapel, Robert

    2014-01-01

    The RhoGEF GEF-H1 can be sequestered in an inactive state on polymerized microtubules by the dynein motor light-chain Tctex-1. Phosphorylation of GEF-H1 Ser885 by PKA or PAK kinases creates an inhibitory 14-3-3-binding site. Here we show a new mode of GEF-H1 activation in response to the G-protein-coupled receptor (GPCR) ligands lysophosphatidic acid (LPA) or thrombin that is independent of microtubule depolymerization. LPA/thrombin stimulates disassembly of the GEF-H1:dynein multi-protein complex through the concerted action of Gα and Gβγ. Gα binds directly to GEF-H1 and displaces it from Tctex-1, while Gβγ binds to Tctex-1 and disrupts its interaction with the dynein intermediate chain, resulting in the release of GEF-H1. Full activation of GEF-H1 requires dephosphorylation of Ser885 by PP2A, which is induced by thrombin. The coordinated displacement of GEF-H1 from microtubules by G-proteins and its dephosphorylation by PP2A demonstrate a multistep GEF-H1 activation and present a unique mechanism coupling GPCR signalling to Rho activation. PMID:25209408

  3. Metabolic Activation of Polycyclic Aromatic Hydrocarbons and Aryl and Heterocyclic Amines by Human Cytochromes P450 2A13 and 2A6

    PubMed Central

    Shimada, Tsutomu; Murayama, Norie; Yamazaki, Hiroshi; Tanaka, Katsuhiro; Takenaka, Shigeo; Komori, Masayuki; Kim, Donghak; Guengerich, F. Peter

    2013-01-01

    Human cytochrome P450 (P450) 2A13 was found to interact with several polycyclic aromatic hydrocarbons (PAHs) to produce Type I binding spectra, including acenaphthene, acenaphthylene, benzo[c]phenanthrene, fluoranthene, fluoranthene-2,3-diol, and 1-nitropyrene. P450 2A6 also interacted with acenaphthene and acenaphthylene, but not with fluoranthene, fluoranthene-2,3-diol, or 1-nitropyrene. P450 1B1 is well known to oxidize many carcinogenic PAHs, and we found that several PAHs (i.e., 7,12-dimethylbenz[a]anthracene, 7,12-dimethylbenz[a]anthracene-5,6-diol, benzo[c]phenanthrene, fluoranthene, fluoranthene-2,3-diol, 5-methylchrysene, benz[a]pyrene-4,5-diol, benzo[a]pyrene-7,8-diol, 1-nitropyrene, 2-aminoanthracene, 2-aminofluorene, and 2-acetylaminofluorene) interacted with P450 1B1, producing Reverse Type I binding spectra. Metabolic activation of PAHs and aryl- and heterocyclic amines to genotoxic products was examined in Salmonella typhimurium NM2009, and we found that P450 2A13 and 2A6 (as well as P450 1B1) were able to activate several of these procarcinogens. The former two enzymes were particularly active in catalyzing 2-aminofluorene and 2-aminoanthracene activation, and molecular docking simulations supported the results with these procarcinogens, in terms of binding in the active sites of P450 2A13 and 2A6. These results suggest that P450 2A enzymes, as well as P450 Family 1 enzymes including P450 1B1, are major enzymes involved in activating PAHs and aryl- and heterocyclic amines, as well as tobacco-related nitrosamines. PMID:23432465

  4. Inhibition of proteolytic activity of poliovirus and rhinovirus 2A proteinases by elastase-specific inhibitors.

    PubMed Central

    Molla, A; Hellen, C U; Wimmer, E

    1993-01-01

    A polyprotein cleavage assay has been developed to assay the proteolytic activities in vitro of the 2A proteinases encoded by poliovirus and human rhinovirus 14, which are representative members of the Enterovirus and Rhinovirus genera of picornaviruses, respectively. The elastase-specific substrate-based inhibitors elastatinal and methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone (MPCMK) inhibited both 2A proteinases in vitro. The electrophoretic mobilities of both 2A proteinases were reduced upon incubation with elastatinal, whereas the mobility of a Cys-109-->Ala poliovirus 2Apro mutant was unchanged, an observation suggesting that this inhibitor may have formed a covalent bond with the active-site Cys-109 nucleophile. Iodoacetamide, calpain inhibitor 1, and antipain inhibited poliovirus 2Apro. MPCMK caused a reduction in the yields of the enteroviruses poliovirus type 1 and coxsackievirus A21 and of human rhinovirus 2 in infected HeLa cells but did not affect the growth of encephalomyocarditis virus, a picornavirus of the Cardiovirus genus. MPCMK abrogated the shutoff of host cell protein synthesis that is induced by enterovirus and rhinovirus infection and reduced the synthesis of virus-encoded polypeptides in infected cells. These results indicate that the determinants of substrate recognition by 2A proteinases resemble those of pancreatic and leukocyte elastases. These results may be relevant to the development of broad-range chemotherapeutic agents against entero- and rhinoviruses. Images PMID:8392608

  5. E2A Antagonizes PU.1 Activity through Inhibition of DNA Binding.

    PubMed

    Rogers, Jason H; Owens, Kristin S; Kurkewich, Jeffrey; Klopfenstein, Nathan; Iyer, Sangeeta R; Simon, M Celeste; Dahl, Richard

    2016-01-01

    Antagonistic interactions between transcription factors contribute to cell fate decisions made by multipotent hematopoietic progenitor cells. Concentration of the transcription factor PU.1 affects myeloid/lymphoid development with high levels of PU.1 directing myeloid cell fate acquisition at the expense of B cell differentiation. High levels of PU.1 may be required for myelopoiesis in order to overcome inhibition of its activity by transcription factors that promote B cell development. The B cell transcription factors, E2A and EBF, are necessary for commitment of multipotential progenitors and lymphoid primed multipotential progenitors to lymphocytes. In this report we hypothesized that factors required for early B cell commitment would bind to PU.1 and antagonize its ability to induce myeloid differentiation. We investigated whether E2A and/or EBF associate with PU.1. We observed that the E2A component, E47, but not EBF, directly binds to PU.1. Additionally E47 represses PU.1-dependent transactivation of the MCSFR promoter through antagonizing PU.1's ability to bind to DNA. Exogenous E47 expression in hematopoietic cells inhibits myeloid differentiation. Our data suggest that E2A antagonism of PU.1 activity contributes to its ability to commit multipotential hematopoietic progenitors to the lymphoid lineages.

  6. Structural Domains Underlying the Activation of Acid-Sensing Ion Channel 2a

    PubMed Central

    Schuhmacher, Laura-Nadine; Srivats, Shyam; Smith, Ewan St. John

    2015-01-01

    The acid-sensing ion channels (ASICs) are a family of ion channels expressed throughout the mammalian nervous system. The principal activator of ASICs is extracellular protons, and ASICs have been demonstrated to play a significant role in many physiologic and pathophysiologic processes, including synaptic transmission, nociception, and fear. However, not all ASICs are proton-sensitive: ASIC2a is activated by acid, whereas its splice variant ASIC2b is not. We made a series of chimeric ASIC2 proteins, and using whole-cell electrophysiology we have identified the minimal region of the ASIC2a extracellular domain that is required for ASIC2 proton activation: the first 87 amino acids after transmembrane domain 1. We next examined the function of different domains within the ASIC2b N-terminus and identified a region proximal to the first transmembrane domain that confers tachyphylaxis upon ASIC2a. We have thus identified domains of ASIC2 that are crucial to channel function and may be important for the function of other members of the ASIC family. PMID:25583083

  7. Serine 62-Phosphorylated MYC Associates with Nuclear Lamins and Its Regulation by CIP2A Is Essential for Regenerative Proliferation.

    PubMed

    Myant, Kevin; Qiao, Xi; Halonen, Tuuli; Come, Christophe; Laine, Anni; Janghorban, Mahnaz; Partanen, Johanna I; Cassidy, John; Ogg, Erinn-Lee; Cammareri, Patrizia; Laiterä, Tiina; Okkeri, Juha; Klefström, Juha; Sears, Rosalie C; Sansom, Owen J; Westermarck, Jukka

    2015-08-11

    An understanding of the mechanisms determining MYC's transcriptional and proliferation-promoting activities in vivo could facilitate approaches for MYC targeting. However, post-translational mechanisms that control MYC function in vivo are poorly understood. Here, we demonstrate that MYC phosphorylation at serine 62 enhances MYC accumulation on Lamin A/C-associated nuclear structures and that the protein phosphatase 2A (PP2A) inhibitor protein CIP2A is required for this process. CIP2A is also critical for serum-induced MYC phosphorylation and for MYC-elicited proliferation induction in vitro. Complementary transgenic approaches and an intestinal regeneration model further demonstrated the in vivo importance of CIP2A and serine 62 phosphorylation for MYC activity upon DNA damage. However, targeting of CIP2A did not influence the normal function of intestinal crypt cells. These data underline the importance of nuclear organization in the regulation of MYC phosphorylation, leading to an in vivo demonstration of a strategy for inhibiting MYC activity without detrimental physiological effects.

  8. Mutations in the Saccharomyces Cerevisiae Type 2a Protein Phosphatase Catalytic Subunit Reveal Roles in Cell Wall Integrity, Actin Cytoskeleton Organization and Mitosis

    PubMed Central

    Evans, DRH.; Stark, MJR.

    1997-01-01

    Temperature-sensitive mutations were generated in the Saccharomyces cerevisiae PPH22 gene that, together with its homologue PPH21, encode the catalytic subunit of type 2A protein phosphatase (PP2A). At the restrictive temperature (37°), cells dependent solely on pph22(ts) alleles for PP2A function displayed a rapid arrest of proliferation. Ts(-) pph22 mutant cells underwent lysis at 37°, showing an accompanying viability loss that was suppressed by inclusion of 1 M sorbitol in the growth medium. Ts(-) pph22 mutant cells also displayed defects in bud morphogenesis and polarization of the cortical actin cytoskeleton at 37°. PP2A is therefore required for maintenance of cell integrity and polarized growth. On transfer from 24° to 37°, Ts(-) pph22 mutant cells accumulated a 2N DNA content indicating a cell cycle block before completion of mitosis. However, during prolonged incubation at 37°, many Ts(-) pph22 mutant cells progressed through an aberrant nuclear division and accumulated multiple nuclei. Ts(-) pph22 mutant cells also accumulated aberrant microtubule structures at 37°, while under semi-permissive conditions they were sensitive to the microtubule-destabilizing agent benomyl, suggesting that PP2A is required for normal microtubule function. Remarkably, the multiple defects of Ts(-) pph22 mutant cells were suppressed by a viable allele (SSD1-v1) of the polymorphic SSD1 gene. PMID:9071579

  9. CRL4–DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation

    PubMed Central

    Yu, Chao; Ji, Shu-Yan; Sha, Qian-Qian; Sun, Qing-Yuan; Fan, Heng-Yu

    2015-01-01

    Oocyte meiosis is a specialized cell cycle that gives rise to fertilizable haploid gametes and is precisely controlled in various dimensions. We recently found that E3 ubiquitin ligase CRL4 is required for female fertility by regulating DNA hydroxymethylation to maintain oocyte survival and to promote zygotic genome reprogramming. However, not all phenotypes of CRL4-deleted oocytes could be explained by this mechanism. Here we show that CRL4 controls oocyte meiotic maturation by proteasomal degradation of protein phosphatase 2A scaffold subunit, PP2A-A. Oocyte-specific deletion of DDB1 or DCAF1 (also called VPRBP) results in delayed meiotic resumption and failure to complete meiosis I along with PP2A-A accumulation. DCAF1 directly binds to and results in the poly-ubiquitination of PP2A-A. Moreover, combined deletion of Ppp2r1a rescues the meiotic defects caused by DDB1/DCAF1 deficiency. These results provide in vivo evidence that CRL4-directed PP2A-A degradation is physiologically essential for regulating oocyte meiosis and female fertility. PMID:26281983

  10. High CYP2A6 Enzyme Activity as Measured by a Caffeine Test and Unique Distribution of CYP2A6 Variant Alleles in Ethiopian Population

    PubMed Central

    Djordjevic, Natasa; Carrillo, Juan Antonio; Makonnen, Eyasu; Bertilsson, Leif; Ingelman-Sundberg, Magnus

    2014-01-01

    Abstract CYP2A6 metabolizes clinically relevant drugs, including antiretroviral and antimalarial drugs of major public health importance for the African populations. CYP2A6 genotype–phenotype relationship in African populations, and implications of geographic differences on enzyme activity, remain to be investigated. We evaluated the influence of CYP2A6 genotype, geographical differences, gender, and cigarette smoking on enzyme activity, using caffeine as a probe in 100 healthy unrelated Ethiopians living in Ethiopia, and 72 living in Sweden. CYP2A6 phenotype was estimated by urinary 1,7-dimethyluric acid (17U)/1,7-dimethylxanthine or paraxanthine (17X) ratio. The frequencies of CYP2A6*1B, *1D, *2, *4, *9, and *1x2 in Ethiopians were 31.3, 29.4, 0.6, 0.6, 2.8, and 0.3%, respectively. The overall mean±SD for log 17U/17X was 0.12±0.24 and coefficient of variation 199%. No significant difference in the mean log 17U/17X ratio between Ethiopians living in Sweden versus Ethiopia was observed. Analysis of variance revealed CYP2A6 genotype (p=0.04, F=2.01) but not geographical differences, sex, or cigarette smoking as predictors of CYP2A6 activity. Importantly, the median (interquartile range) of 17U/17X ratio in Ethiopians 1.35 (0.99 to 1.84) was 3- and 11-fold higher than the previously reported value in Swedes 0.52 (0.27 to 1.00) and Koreans 0.13 (0.0 to 0.35), respectively (Djordjevic et al., 2013). Taken together, we report here the relevance of CYP2A6 genotype for enzyme activity in this Ethiopian sample, as well as high CYP2A6 activity and unique distribution of the CYP2A6 variant alleles in Ethiopians as compared other populations described hitherto. Because Omics biomarker research is rapidly accelerating in Africa, CYP2A6 pharmacogenetics and clinical pharmacology observations reported herein for the Ethiopian populations have clinical and biological importance to plan for future rational therapeutics efforts in the African continent as well as therapeutics

  11. Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor.

    PubMed

    Lee, Yoonji; Kim, Songmi; Choi, Sun; Hyeon, Changbong

    2016-09-20

    Water molecules inside a G-protein coupled receptor (GPCR) have recently been spotlighted in a series of crystal structures. To decipher the dynamics and functional roles of internal water molecules in GPCR activity, we studied the A2A adenosine receptor using microsecond molecular-dynamics simulations. Our study finds that the amount of water flux across the transmembrane (TM) domain varies depending on the receptor state, and that the water molecules of the TM channel in the active state flow three times more slowly than those in the inactive state. Depending on the location in solvent-protein interface as well as the receptor state, the average residence time of water in each residue varies from ∼O(10(2)) ps to ∼O(10(2)) ns. Especially, water molecules, exhibiting ultraslow relaxation (∼O(10(2)) ns) in the active state, are found around the microswitch residues that are considered activity hotspots for GPCR function. A continuous allosteric network spanning the TM domain, arising from water-mediated contacts, is unique in the active state, underscoring the importance of slow water molecules in the activation of GPCRs. PMID:27653477

  12. Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals.

    PubMed

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2004-05-01

    A protein phosphatase holo-type enzyme (38, 65, and 75 kDa) preparation and a free catalytic subunit (38 kDa) purified from tulip petals were characterized as protein phosphatase 2A (PP2A) by immunological and biochemical approaches. The plasma membrane containing the putative plasma membrane aquaporin (PM-AQP) was prepared from tulip petals, phosphorylated in vitro, and used as the substrate for both of the purified PP2A preparations. Although both preparations dephosphorylated the phosphorylated PM-AQP at 20 degrees C, only the holo-type enzyme preparation acted at 5 degrees C on the phosphorylated PM-AQP with higher substrate specificity, suggesting that regulatory subunits are required for low temperature-dependent dephosphorylation of PM-AQP in tulip petals.

  13. Deubiquitinase USP2a Sustains Interferons Antiviral Activity by Restricting Ubiquitination of Activated STAT1 in the Nucleus

    PubMed Central

    Liu, Jin; Yuan, Yukang; Cheng, Qiao; Zuo, Yibo; Qian, Liping; Guo, Tingting; Qian, Guanghui; Li, Lemin; Ge, Jun; Dai, Jianfeng; Xiong, Sidong; Zheng, Hui

    2016-01-01

    STAT1 is a critical transcription factor for regulating host antiviral defenses. STAT1 activation is largely dependent on phosphorylation at tyrosine 701 site of STAT1 (pY701-STAT1). Understanding how pY701-STAT1 is regulated by intracellular signaling remains a major challenge. Here we find that pY701-STAT1 is the major form of ubiquitinated-STAT1 induced by interferons (IFNs). While total STAT1 remains relatively stable during the early stages of IFNs signaling, pY701-STAT1 can be rapidly downregulated by the ubiquitin-proteasome system. Moreover, ubiquitinated pY701-STAT1 is located predominantly in the nucleus, and inhibiting nuclear import of pY701-STAT1 significantly blocks ubiquitination and downregulation of pY701-STAT1. Furthermore, we reveal that the deubiquitinase USP2a translocates into the nucleus and binds to pY701-STAT1, and inhibits K48-linked ubiquitination and degradation of pY701-STAT1. Importantly, USP2a sustains IFNs-induced pY701-STAT1 levels, and enhances all three classes of IFNs- mediated signaling and antiviral activity. To our knowledge, this is the first identified deubiquitinase that targets activated pY701-STAT1. These findings uncover a positive mechanism by which IFNs execute efficient antiviral signaling and function, and may provide potential targets for improving IFNs-based antiviral therapy. PMID:27434509

  14. Maintained activity of glycogen synthase kinase-3{beta} despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    SciTech Connect

    Lim, Yong-Whan; Yoon, Seung-Yong; Choi, Jung-Eun; Kim, Sang-Min; Lee, Hui-Sun; Choe, Han; Lee, Seung-Chul; Kim, Dong-Hou

    2010-04-30

    Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.

  15. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  16. Oncogenic nexus of cancerous inhibitor of protein phosphatase 2A (CIP2A): An oncoprotein with many hands

    PubMed Central

    De, Pradip; Carlson, Jennifer; Leyland-Jones, Brian; Dey, Nandini

    2014-01-01

    Oncoprotein CIP2A a Cancerous Inhibitor of PP2A forms an “oncogenic nexus” by virtue of its control on PP2A and MYC stabilization in cancer cells. The expression and prognostic function of CIP2A in different solid tumors including colorectal carcinoma, head & neck cancers, gastric cancers, lung carcinoma, cholangiocarcinoma, esophageal cancers, pancreatic carcinoma, brain cancers, breast carcinoma, bladder cancers, ovarian carcinoma, renal cell carcinomas, tongue cancers, cervical carcinoma, prostate cancers, and oral carcinoma as well as a number of hematological malignancies are just beginning to emerge. Herein, we reviewed the recent progress in our understanding of (1) how an “oncogenic nexus” of CIP2A participates in the tumorigenic transformation of cells and (2) how we can prospect/view the clinical relevance of CIP2A in the context of cancer therapy. The review will try to understand the role of CIP2A (a) as a biomarker in cancers and evaluate the prognostic value of CIP2A in different cancers (b) as a therapeutic target in cancers and (c) in drug response and developing chemo-resistance in cancers. PMID:25015035

  17. Synthesis and antiproliferative activity evaluation of steroidal imidazo[1,2-a]pyridines.

    PubMed

    Rassokhina, Irina V; Volkova, Yulia A; Kozlov, Andrey S; Scherbakov, Alexander M; Andreeva, Olga E; Shirinian, Valerik Z; Zavarzin, Igor V

    2016-09-01

    An elegant approach to unknown steroidal imidazo[1,2-a]pyridine hybrids is disclosed. Unique derivatives of androstene and estrane series containing imidazo[1,2-a]pyridine motifs were prepared from 17-ethynyl steroids in good yields via copper-catalyzed cascade aminomethylation/cycloisomerization with imines. The synthesized compounds were screened for cytotoxicity against human breast (MCF-7, MDA-MB-231, HBL-100, MDA-MB-453) and prostate (LNCaP-LN3, PC-3, DU 145) cancer cell lines. The majority of tested compounds showed activities at μM level in breast cancer cells. The hormone-responsive breast cancer cells MCF-7 were more sensitive to novel compounds than ERα-negative cells; in particular, compounds 6a,b exhibited promising cytotoxicity against this cell line with the IC50 values in the range of 3-4μM. Furthermore, compound 4a showed remarkable effects as a selective ERα receptor modulator.

  18. Synthesis and antiproliferative activity evaluation of steroidal imidazo[1,2-a]pyridines.

    PubMed

    Rassokhina, Irina V; Volkova, Yulia A; Kozlov, Andrey S; Scherbakov, Alexander M; Andreeva, Olga E; Shirinian, Valerik Z; Zavarzin, Igor V

    2016-09-01

    An elegant approach to unknown steroidal imidazo[1,2-a]pyridine hybrids is disclosed. Unique derivatives of androstene and estrane series containing imidazo[1,2-a]pyridine motifs were prepared from 17-ethynyl steroids in good yields via copper-catalyzed cascade aminomethylation/cycloisomerization with imines. The synthesized compounds were screened for cytotoxicity against human breast (MCF-7, MDA-MB-231, HBL-100, MDA-MB-453) and prostate (LNCaP-LN3, PC-3, DU 145) cancer cell lines. The majority of tested compounds showed activities at μM level in breast cancer cells. The hormone-responsive breast cancer cells MCF-7 were more sensitive to novel compounds than ERα-negative cells; in particular, compounds 6a,b exhibited promising cytotoxicity against this cell line with the IC50 values in the range of 3-4μM. Furthermore, compound 4a showed remarkable effects as a selective ERα receptor modulator. PMID:27263438

  19. Optimisation of Recombinant Production of Active Human Cardiac SERCA2a ATPase

    PubMed Central

    Antaloae, Ana V.; Montigny, Cédric; le Maire, Marc; Watson, Kimberly A.; Sørensen, Thomas L.-M.

    2013-01-01

    Methods for recombinant production of eukaryotic membrane proteins, yielding sufficient quantity and quality of protein for structural biology, remain a challenge. We describe here, expression and purification optimisation of the human SERCA2a cardiac isoform of Ca2+ translocating ATPase, using Saccharomyces cerevisiae as the heterologous expression system of choice. Two different expression vectors were utilised, allowing expression of C-terminal fusion proteins with a biotinylation domain or a GFP- His8 tag. Solubilised membrane fractions containing the protein of interest were purified onto Streptavidin-Sepharose, Ni-NTA or Talon resin, depending on the fusion tag present. Biotinylated protein was detected using specific antibody directed against SERCA2 and, advantageously, GFP-His8 fusion protein was easily traced during the purification steps using in-gel fluorescence. Importantly, talon resin affinity purification proved more specific than Ni-NTA resin for the GFP-His8 tagged protein, providing better separation of oligomers present, during size exclusion chromatography. The optimised method for expression and purification of human cardiac SERCA2a reported herein, yields purified protein (> 90%) that displays a calcium-dependent thapsigargin-sensitive activity and is suitable for further biophysical, structural and physiological studies. This work provides support for the use of Saccharomyces cerevisiae as a suitable expression system for recombinant production of multi-domain eukaryotic membrane proteins. PMID:23951256

  20. Communication over the Network of Binary Switches Regulates the Activation of A2A Adenosine Receptor

    PubMed Central

    Lee, Yoonji; Choi, Sun; Hyeon, Changbong

    2015-01-01

    Dynamics and functions of G-protein coupled receptors (GPCRs) are accurately regulated by the type of ligands that bind to the orthosteric or allosteric binding sites. To glean the structural and dynamical origin of ligand-dependent modulation of GPCR activity, we performed total ~ 5 μsec molecular dynamics simulations of A2A adenosine receptor (A2AAR) in its apo, antagonist-bound, and agonist-bound forms in an explicit water and membrane environment, and examined the corresponding dynamics and correlation between the 10 key structural motifs that serve as the allosteric hotspots in intramolecular signaling network. We dubbed these 10 structural motifs “binary switches” as they display molecular interactions that switch between two distinct states. By projecting the receptor dynamics on these binary switches that yield 210 microstates, we show that (i) the receptors in apo, antagonist-bound, and agonist-bound states explore vastly different conformational space; (ii) among the three receptor states the apo state explores the broadest range of microstates; (iii) in the presence of the agonist, the active conformation is maintained through coherent couplings among the binary switches; and (iv) to be most specific, our analysis shows that W246, located deep inside the binding cleft, can serve as both an agonist sensor and actuator of ensuing intramolecular signaling for the receptor activation. Finally, our analysis of multiple trajectories generated by inserting an agonist to the apo state underscores that the transition of the receptor from inactive to active form requires the disruption of ionic-lock in the DRY motif. PMID:25664580

  1. VprBP Has Intrinsic Kinase Activity Targeting Histone H2A and Represses Gene Transcription

    PubMed Central

    Kim, Kyunghwan; Kim, Jin-Man; Kim, Joong-Sun; Choi, Jongkyu; Lee, Yong Suk; Neamati, Nouri; Song, Jin Sook; Heo, Kyu; An, Woojin

    2013-01-01

    SUMMARY Histone modifications play important roles in the regulation of gene expression and chromatin organization. VprBP has been implicated in transcriptionally silent chromatin formation and cell cycle regulation, but the molecular basis underlying such effects remains unclear. Here we report that VprBP possesses an intrinsic protein kinase activity and is capable of phosphorylating histone H2A on threonine 120 (H2AT120p) in a nucleosomal context. VprBP is localized to a large set of tumor suppressor genes and blocks their transcription, in a manner that is dependent on its kinase activity toward H2AT120. The functional significance of VprBP-mediated H2AT120p is further underscored by the fact that RNAi knockdown and small-molecule inhibition of VprBP reactivate growth regulatory genes and impede tumor growth. Our findings establish VprBP as a major kinase responsible for H2AT120p in cancer cells and suggest that VprBP inhibition could be a new strategy for the development of anticancer therapeutics. PMID:24140421

  2. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A

    PubMed Central

    Wong, Pui-Mun; Feng, Yan; Wang, Junru; Shi, Rong; Jiang, Xuejun

    2015-01-01

    Autophagy is a cellular catabolic process critical for cell viability and homoeostasis. Inhibition of mammalian target of rapamycin (mTOR) complex-1 (mTORC1) activates autophagy. A puzzling observation is that amino acid starvation triggers more rapid autophagy than pharmacological inhibition of mTORC1, although they both block mTORC1 activity with similar kinetics. Here we find that in addition to mTORC1 inactivation, starvation also causes an increase in phosphatase activity towards ULK1, an mTORC1 substrate whose dephosphorylation is required for autophagy induction. We identify the starvation-stimulated phosphatase for ULK1 as the PP2A–B55α complex. Treatment of cells with starvation but not mTORC1 inhibitors triggers dissociation of PP2A from its inhibitor Alpha4. Furthermore, pancreatic ductal adenocarcinoma cells, whose growth depends on high basal autophagy, possess stronger basal phosphatase activity towards ULK1 and require ULK1 for sustained anchorage-independent growth. Taken together, concurrent mTORC1 inactivation and PP2A–B55α stimulation fuel ULK1-dependent autophagy. PMID:26310906

  3. Recombinant interferon alfa-2a, an active agent in advanced cutaneous T-cell lymphomas.

    PubMed

    Bunn, P A; Ihde, D C; Foon, K A

    1987-01-01

    The cutaneous T-cell lymphomas including mycosis fungoides and the Sézary syndrome, are indolent lymphomas with early systemic dissemination. Like the indolent B-cell lymphomas, they cannot be cured by currently available systemic chemotherapy so new systemic therapies need to be developed. A study of very high-dose recombinant interferon alfa-2a was, therefore, initiated in 20 patients with advanced cutaneous T-cell lymphoma (5 in stage II, 2 in stage III and 13 in stage IV). All patients were refractory to at least 2 standard therapies, including topical nitrogen mustard (18 patients), psoralens and ultraviolet A light (12 patients), total skin electron irradiation (14 patients) and systemic chemotherapy (16 patients). Nine out of 20 patients (45%; 95% confidence interval 25-69%) had either objective partial or complete responses within 3 months of starting treatment. Maximal response, however, often did not occur for at least one year. The median duration of response was 5.5 months and all complete responses lasted more than 2 years. Response frequencies were equal at both cutaneous and extracutaneous sites and in patients with or without prior chemotherapy. Toxicity was exhibited primarily as a flu-like syndrome consisting of fever, malaise, fatigue, anorexia and weight loss which necessitated dose reductions in all patients. Transient elevations in liver function and decreases in renal function and granulocyte counts occurred in some patients. It is concluded that interferon alfa-2a is highly active against advanced cutaneous T-cell lymphomas and that it should be studied in its early stages. It should also be evaluated in combination with other biological agents and with chemotherapy.

  4. Carbonylation Contributes to SERCA2a Activity Loss and Diastolic Dysfunction in a Rat Model of Type 1 Diabetes

    PubMed Central

    Shao, Chun Hong; Capek, Haley L.; Patel, Kaushik P.; Wang, Mu; Tang, Kang; DeSouza, Cyrus; Nagai, Ryoji; Mayhan, William; Periasamy, Muthu; Bidasee, Keshore R.

    2011-01-01

    OBJECTIVE Approximately 25% of children and adolescents with type 1 diabetes will develop diastolic dysfunction. This defect, which is characterized by an increase in time to cardiac relaxation, results in part from a reduction in the activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a), the ATP-driven pump that translocates Ca2+ from the cytoplasm to the lumen of the sarcoplasmic reticulum. To date, mechanisms responsible for SERCA2a activity loss remain incompletely characterized. RESEARCH DESIGN AND METHODS The streptozotocin (STZ)-induced murine model of type 1 diabetes, in combination with echocardiography, high-speed video detection, confocal microscopy, ATPase and Ca2+ uptake assays, Western blots, mass spectrometry, and site-directed mutagenesis, were used to assess whether modification by reactive carbonyl species (RCS) contributes to SERCA2a activity loss. RESULTS After 6–7 weeks of diabetes, cardiac and myocyte relaxation times were prolonged. Total ventricular SERCA2a protein remained unchanged, but its ability to hydrolyze ATP and transport Ca2+ was significantly reduced. Western blots and mass spectroscopic analyses revealed carbonyl adducts on select basic residues of SERCA2a. Mutating affected residues to mimic physio-chemical changes induced on them by RCS reduced SERCA2a activity. Preincubating with the RCS, methylglyoxal (MGO) likewise reduced SERCA2a activity. Mutating an impacted residue to chemically inert glutamine did not alter SERCA2a activity, but it blunted MGO's effect. Treating STZ-induced diabetic animals with the RCS scavenger, pyridoxamine, blunted SERCA2a activity loss and minimized diastolic dysfunction. CONCLUSIONS These data identify carbonylation as a novel mechanism that contributes to SERCA2a activity loss and diastolic dysfunction during type 1 diabetes. PMID:21300842

  5. Rhesus lymphocryptovirus latent membrane protein 2A activates {beta}-catenin signaling and inhibits differentiation in epithelial cells

    SciTech Connect

    Siler, Catherine A.; Raab-Traub, Nancy

    2008-08-01

    Rhesus lymphocryptovirus (LCV) is a {gamma}-herpesvirus closely related to Epstein-Barr virus (EBV). The rhesus latent membrane protein 2A (LMP2A) is highly homologous to EBV LMP2A. EBV LMP2A activates the phosphatidylinositol 3-kinase (PI3K) and {beta}-catenin signaling pathways in epithelial cells and affects differentiation. In the present study, the biochemical and biological properties of rhesus LMP2A in epithelial cells were investigated. The expression of rhesus LMP2A in epithelial cells induced Akt activation, GSK3{beta} inactivation and accumulation of {beta}-catenin in the cytoplasm and nucleus. The nuclear translocation, but not accumulation of {beta}-catenin was dependent on Akt activation. Rhesus LMP2A also impaired epithelial cell differentiation; however, this process was not dependent upon Akt activation. A mutant rhesus LMP2A lacking six transmembrane domains functioned similarly to wild-type rhesus LMP2A indicating that the full number of transmembrane domains is not required for effects on {beta}-catenin or cell differentiation. These results underscore the similarity of LCV to EBV and the suitability of the macaque as an animal model for studying EBV pathogenesis.

  6. H2O2 Activates the Nuclear Localization of Msn2 and Maf1 through Thioredoxins in Saccharomyces cerevisiae▿

    PubMed Central

    Boisnard, Stéphanie; Lagniel, Gilles; Garmendia-Torres, Cecilia; Molin, Mikael; Boy-Marcotte, Emmanuelle; Jacquet, Michel; Toledano, Michel B.; Labarre, Jean; Chédin, Stéphane

    2009-01-01

    The cellular response to hydrogen peroxide (H2O2) is characterized by a repression of growth-related processes and an enhanced expression of genes important for cell defense. In budding yeast, this response requires the activation of a set of transcriptional effectors. Some of them, such as the transcriptional activator Yap1, are specific to oxidative stress, and others, such as the transcriptional activators Msn2/4 and the negative regulator Maf1, are activated by a wide spectrum of stress conditions. How these general effectors are activated in response to oxidative stress remains an open question. In this study, we demonstrate that the two cytoplasmic thioredoxins, Trx1 and Trx2, are essential to trigger the nuclear accumulation of Msn2/4 and Maf1, specifically under H2O2 treatment. Contrary to the case with many stress conditions previously described for yeast, the H2O2-induced nuclear accumulation of Msn2 and Maf1 does not correlate with the downregulation of PKA kinase activity. Nevertheless, we show that PP2A phosphatase activity is essential for driving Maf1 dephosphorylation and its subsequent nuclear accumulation in response to H2O2 treatment. Interestingly, under this condition, the lack of PP2A activity has no impact on the subcellular localization of Msn2, demonstrating that the H2O2 signaling pathways share a common route through the thioredoxin system and then diverge to activate Msn2 and Maf1, the final integrators of these pathways. PMID:19581440

  7. Alzheimer disease and amyotrophic lateral sclerosis: An etiopathogenic connection

    PubMed Central

    Wang, Xiaochuan; Blanchard, Julie; Grundke-Iqbal, Inge; Wegiel, Jerzy; Deng, Han-Xiang; Siddique, Teepu; Iqbal, Khalid

    2013-01-01

    The etiopathogenesis of neither the sporadic form of Alzheimer disease (AD) nor of amyotrophic lateral sclerosis (ALS) are well understood. The activity of protein phosphatase-2A (PP2A), which regulates the phosphorylation of tau and neurofilaments, is negatively regulated by the myeloid leukemia-associated protein SET, also known as inhibitor-2 of PP2A, I2PP2A. In AD brain PP2A activity is compromised, probably because I2PP2A is overexpressed and is selectively cleaved at asparagine 175 into an N-terminal fragment, I2NTF, and a C-terminal fragment, I2CTF, and both fragments inhibit PP2A. Here we analyzed the spinal cords from ALS and control cases for I2PP2A cleavage and PP2A activity. As observed in AD brain, we found a selective increase in the cleavage of I2PP2A into I2NTF and I2CTF and inhibition of the activity and not the expression of PP2A in the spinal cords of ALS cases. To test the hypothesis that both AD and ALS could be triggered by I2CTF, a cleavage product of I2PP2A, we transduced by intracerebroventricular injections newborn rats with adeno-associated virus serotype 1 (AAV1) containing human I2CTF. AAV1- I2CTF produced reference memory impairment and tau pathology, and intraneuronal accumulation of Aβ by 5–8 months, and motor deficit and hyperphosphorylation and proliferation of neurofilaments, tau and TDP-43 pathologies, degeneration and loss of motor neurons and axons in the spinal cord by 10–14 months in rats. These findings suggest a previously undiscovered etiopathogenic relationship between sporadic forms of AD and ALS that is linked to I2PP2A and the potential of I2PP2A-based therapeutics for these diseases. PMID:24136402

  8. Serotonin 5-HT(2A) receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism.

    PubMed

    Parrish, Jason C; Nichols, David E

    2006-11-01

    To date, several studies have demonstrated that phospholipase C-coupled receptors stimulate the production of endocannabinoids, particularly 2-arachidonoylglycerol. There is now evidence that endocannabinoids are involved in phospholipase C-coupled serotonin 5-HT(2A) receptor-mediated behavioral effects in both rats and mice. The main objective of this study was to determine whether activation of the 5-HT(2A) receptor leads to the production and release of the endocannabinoid 2-arachidonoylglycerol. NIH3T3 cells stably expressing the rat 5-HT(2A) receptor were first incubated with [(3)H]-arachidonic acid for 24 h. Following stimulation with 10 mum serotonin, lipids were extracted from the assay medium, separated by thin layer chromatography, and analyzed by liquid scintillation counting. Our results indicate that 5-HT(2A) receptor activation stimulates the formation and release of 2-arachidonoylglycerol. The 5-HT(2A) receptor-dependent release of 2-arachidonoylglycerol was partially dependent on phosphatidylinositol-specific phospholipase C activation. Diacylglycerol produced downstream of 5-HT(2A) receptor-mediated phospholipase D or phosphatidylcholine-specific phospholipase C activation did not appear to contribute to 2-arachidonoylglycerol formation in NIH3T3-5HT(2A) cells. In conclusion, our results support a functional model where neuromodulatory neurotransmitters such as serotonin may act as regulators of endocannabinoid tone at excitatory synapses through the activation of phospholipase C-coupled G-protein coupled receptors. PMID:17010161

  9. The 2a protein of Cucumber mosaic virus induces a hypersensitive response in cowpea independently of its replicase activity.

    PubMed

    Hu, Zhongze; Zhang, Tianqi; Yao, Min; Feng, Zhike; Miriam, Karwitha; Wu, Jianyan; Zhou, Xueping; Tao, Xiaorong

    2012-12-01

    Resistance in cowpea to infection with strains of Cucumber mosaic virus (CMV) involves a local hypersensitive response (HR), and previous studies indicated that the 2a replicase of CMV is involved in HR induction. In this study, we confirmed and extended this observation by demonstrating that the nonviral expression of the 2a protein encoded by CMV is able to induce a cell death response in cowpea plants, whereas no other CMV-encoded proteins elicits such response. The 2a single-amino acid mutant, F631Y, no longer induces the necrosis response, yet the A641S mutant still induces cell death. The 2a double mutant, F631Y and A641S, does not induce HR. However, the three 2a mutants have comparable replicase activities in a fluorescence reporter assay. The 2a(D610A) mutant that alters the highly conserved GDD motif abolishes the replicase activity, however it does not affect HR induction in cowpea. The 2a(301-778aa) fragment introduced with the same D610A mutation in the GDD motif is also capable of inducing HR in cowpea. Collectively, these findings suggest that the 2a protein of CMV is sufficient to induce HR in cowpea independently of its replicase activity.

  10. 5-Hydroxytryptamine 2A receptor signaling cascade modulates adiponectin and plasminogen activator inhibitor 1 expression in adipose tissue.

    PubMed

    Uchida-Kitajima, Shoko; Yamauchi, Toshimasa; Takashina, Youko; Okada-Iwabu, Miki; Iwabu, Masato; Ueki, Kohjiro; Kadowaki, Takashi

    2008-09-01

    Knowledge of the regulatory factors associated with down-regulation of adiponectin gene expression and up-regulation of PAI-1 gene expression is crucial to understand the pathophysiological basis of obesity and metabolic diseases, and could establish new treatment strategies for these conditions. We showed that expression of 5-HT(2A) receptors was up-regulated in hypertrophic 3T3-L1 adipocytes, which exhibited decreased expression of adiponectin and increased expression of PAI-1. 5-HT(2A) receptor antagonists and suppression of 5-HT(2A) receptor gene expression enhanced adiponectin expression. Activation of Gq negatively regulated adiponectin expression, and inhibition of mitogen-activated protein kinase reversed the Gq-induced effect. Moreover, the 5-HT(2A) receptor blockade reduced PAI-1 expression. These findings indicate that antagonism of 5-HT(2A) receptors in adipocytes could improve the obesity-linked decreases in adiponectin expression and increases in PAI-1 expression.

  11. Protein Phosphatase 2A Holoenzyme Is Targeted to Peroxisomes by Piggybacking and Positively Affects Peroxisomal β-Oxidation1[OPEN

    PubMed Central

    Kataya, Amr R.A.; Heidari, Behzad; Hagen, Lars; Kommedal, Roald; Slupphaug, Geir; Lillo, Cathrine

    2015-01-01

    The eukaryotic, highly conserved serine (Ser)/threonine-specific protein phosphatase 2A (PP2A) functions as a heterotrimeric complex composed of a catalytic (C), scaffolding (A), and regulatory (B) subunit. In Arabidopsis (Arabidopsis thaliana), five, three, and 17 genes encode different C, A, and B subunits, respectively. We previously found that a B subunit, B′θ, localized to peroxisomes due to its C-terminal targeting signal Ser-Ser-leucine. This work shows that PP2A C2, C5, andA2 subunits interact and colocalize with B′θ in peroxisomes. C and A subunits lack peroxisomal targeting signals, and their peroxisomal import depends on B′θ and appears to occur by piggybacking transport. B′θ knockout mutants were impaired in peroxisomal β-oxidation as shown by developmental arrest of seedlings germinated without sucrose, accumulation of eicosenoic acid, and resistance to protoauxins indole-butyric acid and 2,4-dichlorophenoxybutyric acid. All of these observations strongly substantiate that a full PP2A complex is present in peroxisomes and positively affects β-oxidation of fatty acids and protoauxins. PMID:25489022

  12. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea

    PubMed Central

    Loza-Muller, Lloyd; Rodríguez-Corona, Ulises; Sobol, Margarita; Rodríguez-Zapata, Luis C.; Hozak, Pavel; Castano, Enrique

    2015-01-01

    Fibrillarin is a well conserved methyltransferase involved in several if not all of the more than 100 methylations sites in rRNA which are essential for proper ribosome function. It is mainly localized in the nucleoli and Cajal bodies inside the cell nucleus where it exerts most of its functions. In plants, fibrillarin binds directly the guide RNA together with Nop56, Nop58, and 15.5ka proteins to form a snoRNP complex that selects the sites to be methylated in pre-processing of ribosomal RNA. Recently, the yeast counterpart NOP1 was found to methylate histone H2A in the nucleolar regions. Here we show that plant fibrillarin can also methylate histone H2A. In Brassica floral meristem cells the methylated histone H2A is mainly localized in the nucleolus but unlike yeast or human cells it also localize in the periphery of the nucleus. In specialized transport cells the pattern is altered and it exhibits a more diffuse staining in the nucleus for methylated histone H2A as well as for fibrillarin. Here we also show that plant fibrillarin is capable of interacting with H2A and carry out its methylation in the rDNA promoter. PMID:26594224

  13. Adenosine is required for sustained inflammasome activation via the A2A receptor and the HIF-1α pathway

    NASA Astrophysics Data System (ADS)

    Ouyang, Xinshou; Ghani, Ayaz; Malik, Ahsan; Wilder, Tuere; Colegio, Oscar Rene; Flavell, Richard Anthony; Cronstein, Bruce Neil; Mehal, Wajahat Zafar

    2013-12-01

    Inflammasome pathways are important in chronic diseases; however, it is not known how the signalling is sustained after initiation. Inflammasome activation is dependent on stimuli such as lipopolysaccharide (LPS) and ATP that provide two distinct signals resulting in rapid production of interleukin (IL)-1β, with the lack of response to repeat stimulation. Here we report that adenosine is a key regulator of inflammasome activity, increasing the duration of the inflammatory response via the A2A receptor. Adenosine does not replace signals provided by stimuli such as LPS or ATP but sustains inflammasome activity via a cAMP/PKA/CREB/HIF-1α pathway. In the setting of the lack of IL-1β responses after previous exposure to LPS, adenosine can supersede this tolerogenic state and drive IL-1β production. These data reveal that inflammasome activity is sustained, after initial activation, by A2A receptor-mediated signalling.

  14. Synthesis and Structure–Activity Relationships of N-Benzyl Phenethylamines as 5-HT2A/2C Agonists

    PubMed Central

    2014-01-01

    N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor. PMID:24397362

  15. Activation of α2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint

    PubMed Central

    Jiao, Kai; Zeng, Guang; Niu, Li-Na; Yang, Hong-xu; Ren, Gao-tong; Xu, Xin-yue; Li, Fei-fei; Tay, Franklin R.; Wang, Mei-qing

    2016-01-01

    This study tested whether activation of adrenoreceptors in chondrocytes has roles in degenerative remodelling of temporomandibular joint (TMJ) and to determine associated mechanisms. Unilateral anterior crossbite (UAC) was established to induce TMJ degeneration in rats. Saline vehicle, α2- and β-adrenoreceptor antagonists or agonists were injected locally into the TMJ area of UAC rats. Cartilage degeneration, subchondral bone microarchitecture and the expression of adrenoreceptors, aggrecans, matrix metalloproteinases (MMPs) and RANKL by chondrocytes were evaluated. Chondrocytes were stimulated by norepinephrine to investigate signal transduction of adrenoreceptors. Increased α2A-adrenoreceptor expression was observed in condylar cartilage of UAC rats, together with cartilage degeneration and subchondral bone loss. Norepinephrine depresses aggrecans expression but stimulates MMP-3, MMP-13 and RANKL production by chondrocytes through ERK1/2 and PKA pathway; these effects were abolished by an α2A-adrenoreceptor antagonist. Furthermore, inhibition of α2A-adrenoreceptor attenuated degenerative remodelling in the condylar cartilage and subchondral bone, as revealed by increased cartilage thickness, proteoglycans and aggrecan expression, and decreased MMP-3, MMP-13 and RANKL expressions in cartilage, increased BMD, BV/TV, and decreased Tb.Sp in subchondral bone. Conversely, activation of α2A-adrenoreceptor intensified aforementioned degenerative changes in UAC rats. It is concluded that activation of α2A-adrenergic signal in chondrocytes promotes TMJ degenerative remodelling by chondrocyte-mediated pro-catabolic activities. PMID:27452863

  16. Activation of α2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint.

    PubMed

    Jiao, Kai; Zeng, Guang; Niu, Li-Na; Yang, Hong-Xu; Ren, Gao-Tong; Xu, Xin-Yue; Li, Fei-Fei; Tay, Franklin R; Wang, Mei-Qing

    2016-07-25

    This study tested whether activation of adrenoreceptors in chondrocytes has roles in degenerative remodelling of temporomandibular joint (TMJ) and to determine associated mechanisms. Unilateral anterior crossbite (UAC) was established to induce TMJ degeneration in rats. Saline vehicle, α2- and β-adrenoreceptor antagonists or agonists were injected locally into the TMJ area of UAC rats. Cartilage degeneration, subchondral bone microarchitecture and the expression of adrenoreceptors, aggrecans, matrix metalloproteinases (MMPs) and RANKL by chondrocytes were evaluated. Chondrocytes were stimulated by norepinephrine to investigate signal transduction of adrenoreceptors. Increased α2A-adrenoreceptor expression was observed in condylar cartilage of UAC rats, together with cartilage degeneration and subchondral bone loss. Norepinephrine depresses aggrecans expression but stimulates MMP-3, MMP-13 and RANKL production by chondrocytes through ERK1/2 and PKA pathway; these effects were abolished by an α2A-adrenoreceptor antagonist. Furthermore, inhibition of α2A-adrenoreceptor attenuated degenerative remodelling in the condylar cartilage and subchondral bone, as revealed by increased cartilage thickness, proteoglycans and aggrecan expression, and decreased MMP-3, MMP-13 and RANKL expressions in cartilage, increased BMD, BV/TV, and decreased Tb.Sp in subchondral bone. Conversely, activation of α2A-adrenoreceptor intensified aforementioned degenerative changes in UAC rats. It is concluded that activation of α2A-adrenergic signal in chondrocytes promotes TMJ degenerative remodelling by chondrocyte-mediated pro-catabolic activities.

  17. Activation of α2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint.

    PubMed

    Jiao, Kai; Zeng, Guang; Niu, Li-Na; Yang, Hong-Xu; Ren, Gao-Tong; Xu, Xin-Yue; Li, Fei-Fei; Tay, Franklin R; Wang, Mei-Qing

    2016-01-01

    This study tested whether activation of adrenoreceptors in chondrocytes has roles in degenerative remodelling of temporomandibular joint (TMJ) and to determine associated mechanisms. Unilateral anterior crossbite (UAC) was established to induce TMJ degeneration in rats. Saline vehicle, α2- and β-adrenoreceptor antagonists or agonists were injected locally into the TMJ area of UAC rats. Cartilage degeneration, subchondral bone microarchitecture and the expression of adrenoreceptors, aggrecans, matrix metalloproteinases (MMPs) and RANKL by chondrocytes were evaluated. Chondrocytes were stimulated by norepinephrine to investigate signal transduction of adrenoreceptors. Increased α2A-adrenoreceptor expression was observed in condylar cartilage of UAC rats, together with cartilage degeneration and subchondral bone loss. Norepinephrine depresses aggrecans expression but stimulates MMP-3, MMP-13 and RANKL production by chondrocytes through ERK1/2 and PKA pathway; these effects were abolished by an α2A-adrenoreceptor antagonist. Furthermore, inhibition of α2A-adrenoreceptor attenuated degenerative remodelling in the condylar cartilage and subchondral bone, as revealed by increased cartilage thickness, proteoglycans and aggrecan expression, and decreased MMP-3, MMP-13 and RANKL expressions in cartilage, increased BMD, BV/TV, and decreased Tb.Sp in subchondral bone. Conversely, activation of α2A-adrenoreceptor intensified aforementioned degenerative changes in UAC rats. It is concluded that activation of α2A-adrenergic signal in chondrocytes promotes TMJ degenerative remodelling by chondrocyte-mediated pro-catabolic activities. PMID:27452863

  18. Novel imidazo[1,2-a]naphthyridinic systems (part 1): synthesis, antiproliferative and DNA-intercalating activities.

    PubMed

    Andaloussi, Mounir; Moreau, Emmanuel; Masurier, Nicolas; Lacroix, Jacques; Gaudreault, René C; Chezal, Jean-Michel; El Laghdach, Anas; Canitrot, Damien; Debiton, Eric; Teulade, Jean-Claude; Chavignon, Olivier

    2008-11-01

    Novel imidazo[1,2-a]naphthyridinic systems 6a-15a and 6b-15b were obtained from Friedländer's reaction in imidazo[1,2-a]pyridine series. Most of the compounds were evaluated for their antitumor activity in the NCIs in vitro human tumor cell line screening panel. Among them, pentacyclic derivatives 13b and 14a exhibited in vitro activity comparable to anticancer agent such as amsacrine. Their mechanism of cytotoxicity action was unrelated to poisoning or inhibiting abilities against topo1. On the contrary, we highlighted a direct intercalation of the drugs into DNA by electrophoresis on agarose gel. PMID:18403058

  19. Measuring the Activity of Leucine-Rich Repeat Kinase 2: A Kinase Involved in Parkinson's Disease

    PubMed Central

    Lee, Byoung Dae; Li, Xiaojie; Dawson, Ted M.; Dawson, Valina L.

    2015-01-01

    Mutations in the LRRK2 (Leucine-Rich Repeat Kinase 2) gene are the most common cause of autosomal dominant Parkinson's disease. LRRK2 has multiple functional domains including a kinase domain. The kinase activity of LRRK2 is implicated in the pathogenesis of Parkinson's disease. Developing an assay to understand the mechanisms of LRRK2 kinase activity is important for the development of pharmacologic and therapeutic applications. Here, we describe how to measure in vitro LRRK2 kinase activity and its inhibition. PMID:21960214

  20. Serotonin 2A and 2B receptor-induced phrenic motor facilitation: differential requirement for spinal NADPH oxidase activity

    PubMed Central

    MacFarlane, P.M.; Vinit, S.; Mitchell, G.S.

    2011-01-01

    Acute intermittent hypoxia (AIH) facilitates phrenic motor output by a mechanism that requires spinal serotonin (type 2) receptor activation, NADPH oxidase activity and formation of reactive oxygen species (ROS). Episodic spinal serotonin (5-HT) receptor activation alone, without changes in oxygenation, is sufficient to elicit NADPH oxidase-dependent phrenic motor facilitation (pMF). Here we investigated: 1) whether serotonin 2A and/or 2B (5-HT2a/b) receptors are expressed in identified phrenic motor neurons, and 2) which receptor subtype is capable of eliciting NADPH-oxidase-dependent pMF. In anesthetized, artificially ventilated adult rats, episodic C4 intrathecal injections (3 × 6µl injections, 5 min intervals) of a 5-HT2a (DOI) or 5-HT2b (BW723C86) receptor agonist elicited progressive and sustained increases in integrated phrenic nerve burst amplitude (i.e. pMF), an effect lasting at least 90 minutes post-injection for both receptor subtypes. 5-HT2a and 5-HT2b receptor agonist-induced pMF were both blocked by selective antagonists (ketanserin and SB206553, respectively), but not by antagonists to the other receptor subtype. Single injections of either agonist failed to elicit pMF, demonstrating a need for episodic receptor activation. Phrenic motor neurons retrogradely labeled with cholera toxin B fragment expressed both 5-HT2a and 5-HT2b receptors. Pre-treatment with NADPH oxidase inhibitors (apocynin and DPI) blocked 5-HT2b, but not 5-HT2a-induced pMF. Thus, multiple spinal type 2 serotonin receptors elicit pMF, but they act via distinct mechanisms that differ in their requirement for NADPH oxidase activity. PMID:21223996

  1. Apple scar skin viroid naked RNA is actively transmitted by the whitefly Trialeurodes vaporariorum.

    PubMed

    Walia, Yashika; Dhir, Sunny; Zaidi, Aijaz Asghar; Hallan, Vipin

    2015-01-01

    Nucleic acid transfer between plants is a phenomenon which is likely to occur in many ways in nature. We report here the active transmission of Apple scar skin viroid (ASSVd) naked ssRNA species by the whitefly Trialeurodes vaporariorum (Tv). Not only the viroid RNA, its DNA form was also identified from the insect. The viroid transfer efficiency was enhanced with the help of Cucumis sativus Phloem protein 2 (CsPP2), a plant protein known to translocate viroid RNAs. This PP2/ASSVd complex is stably present in the viroid infected cucumber plants, as was identified with the help of immunological reaction. As viroid-like secondary structures are found in some plant RNAs, and PP2 is known to bind and translocate several RNAs, the results have huge implications in transfer of these RNA species between plants visited by the whitefly.

  2. Apple scar skin viroid naked RNA is actively transmitted by the whitefly Trialeurodes vaporariorum

    PubMed Central

    Walia, Yashika; Dhir, Sunny; Zaidi, Aijaz Asghar; Hallan, Vipin

    2015-01-01

    Nucleic acid transfer between plants is a phenomenon which is likely to occur in many ways in nature. We report here the active transmission of Apple scar skin viroid (ASSVd) naked ssRNA species by the whitefly Trialeurodes vaporariorum (Tv). Not only the viroid RNA, its DNA form was also identified from the insect. The viroid transfer efficiency was enhanced with the help of Cucumis sativus Phloem protein 2 (CsPP2), a plant protein known to translocate viroid RNAs. This PP2/ASSVd complex is stably present in the viroid infected cucumber plants, as was identified with the help of immunological reaction. As viroid-like secondary structures are found in some plant RNAs, and PP2 is known to bind and translocate several RNAs, the results have huge implications in transfer of these RNA species between plants visited by the whitefly. PMID:26327493

  3. Activation of α2A-Containing Nicotinic Acetylcholine Receptors Mediates Nicotine-Induced Motor Output in Embryonic Zebrafish

    PubMed Central

    Menelaou, Evdokia; Udvadia, Ava J.; Tanguay, Robert L.; Svoboda, Kurt R.

    2014-01-01

    It is well established that cholinergic signaling has critical roles during central nervous system development. In physiological and behavioral studies, activation of nicotinic acetylcholine receptors has been implicated in mediating cholinergic signaling. In developing spinal cord, cholinergic transmission is associated with neural circuits responsible for producing locomotor behaviors. In this study, we investigated the expression pattern of the α2A nAChR subunit as evidence from others suggested it could be expressed by spinal neurons. In situ hybridization and immunohistochemistry revealed that the α2A nAChR subunits are expressed in spinal Rohon-Beard (RB) neurons and olfactory sensory neurons in young embryos. In order to examine the functional role of the α2A nAChR subunit during embryogenesis, we blocked its expression using antisense modified oligonucleotides. Blocking the expression of α2A nAChR subunits had no effect on spontaneous motor activity. However, it did alter the embryonic nicotine-induced motor output. This reduction in motor activity was not accompanied by defects in neuronal and muscle elements associated with the motor output. Moreover, the anatomy and functionality of RB neurons was normal even in the absence of the α2A nAChR subunit. Thus, we propose that α2A-containing nAChR are dispensable for normal RB development. However, in the context of nicotine-induced motor output, α2A-containing nAChRs on RB neurons provide the substrate that nicotine acts upon to induce the motor output. These findings also indicate that functional neuronal nAChRs are present within spinal cord at the time when locomotor output in zebrafish first begins to manifest itself. PMID:24738729

  4. Activation of α2A-containing nicotinic acetylcholine receptors mediates nicotine-induced motor output in embryonic zebrafish.

    PubMed

    Menelaou, Evdokia; Udvadia, Ava J; Tanguay, Robert L; Svoboda, Kurt R

    2014-07-01

    It is well established that cholinergic signaling has critical roles during central nervous system development. In physiological and behavioral studies, activation of nicotinic acetylcholine receptors (nAChRs) has been implicated in mediating cholinergic signaling. In developing spinal cord, cholinergic transmission is associated with neural circuits responsible for producing locomotor behaviors. In this study, we investigated the expression pattern of the α2A nAChR subunit as previous evidence suggested it could be expressed by spinal neurons. In situ hybridization and immunohistochemistry revealed that the α2A nAChR subunits are expressed in spinal Rohon-Beard (RB) neurons and olfactory sensory neurons in young embryos. To examine the functional role of the α2A nAChR subunit during embryogenesis, we blocked its expression using antisense modified oligonucleotides. Blocking the expression of α2A nAChR subunits had no effect on spontaneous motor activity. However, it did alter the embryonic nicotine-induced motor output. This reduction in motor activity was not accompanied by defects in neuronal and muscle elements associated with the motor output. Moreover, the anatomy and functionality of RB neurons was normal even in the absence of the α2A nAChR subunit. Thus, we propose that α2A-containing nAChRs are dispensable for normal RB development. However, in the context of nicotine-induced motor output, α2A-containing nAChRs on RB neurons provide the substrate that nicotine acts upon to induce the motor output. These findings also indicate that functional neuronal nAChRs are present within spinal cord at the time when locomotor output in zebrafish first begins to manifest itself.

  5. Human Immunodeficiency Virus Tat-Activated Expression of Poliovirus Protein 2A Inhibits mRNA Translation

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Hong; Baltimore, David

    1989-04-01

    To study the effect of poliovirus protein 2A on cellular RNA translation, the tat control system of human immunodeficiency virus (HIV) was used. Protein 2A was expressed from a plasmid construct (pHIV/2A) incorporating the HIV long terminal repeat. Protein synthesis was measured by using chloramphenicol acetyltransferase as a reporter gene driven by the Rous sarcoma virus long terminal repeat. When HIV/2A was contransfected with the reporter, addition of a tat-producing plasmid caused at least a 50-fold drop in chloramphenicol acetyltransferase synthesis. A HeLa cell line carrying HIV/2A was established. In it, tat expression caused more than a 10-fold drop in chloramphenicol acetyltransferase synthesis from the reporter plasmid. Furthermore, 2A induction by tat caused cleavage of the cellular translation factor P220, a part of eukaryotic translation initiation factor 4F. Thus protein 2A can, by itself, carry out the inhibition of cellular protein synthesis characteristic of a poliovirus infection. Also, the HIV tat activation provides a very effective method to control gene expression in mammalian cells.

  6. Soluble ST2: A new and promising activity marker in ulcerative colitis

    PubMed Central

    Díaz-Jiménez, David; Núñez, Lucía E; Beltrán, Caroll J; Candia, Enzo; Suazo, Cristóbal; Álvarez-Lobos, Manuel; González, María-Julieta; Hermoso, Marcela A; Quera, Rodrigo

    2011-01-01

    AIM: To correlate circulating soluble ST2 (sST2) levels with the severity of ulcerative colitis (UC) and serum levels of pro-inflammatory cytokines, and to demonstrate the predictive power of sST2 levels for differentiation between active and inactive UC. METHODS: We recruited 153 patients: 82 with UC, 26 with Crohn’s disease (CD) and 43 disease controls [non-inflammatory bowel disease (IBD)]. Subjects were excluded if they had diagnosis of asthma, autoimmune diseases or hypertension. The serum levels of sST2 and pro-inflammatory cytokines [pg/mL; median (25th-75th)] as well as clinical features, endoscopic and histological features, were subjected to analyses. The sST2 performance for discrimination between active and inactive UC, non-IBD and healthy controls (HC) was determined with regard to sensitivity and specificity, and Spearman’s rank correlation coefficient (r). To validate the method, the area under the curve (AUC) of receiver-operator characteristic (ROC) was determined (AUC, 95% CI) and the total ST2 content of the colonic mucosa in UC patients was correlated with circulating levels of sST2. RESULTS: The serum sST2 value was significantly higher in patients with active [235.80 (90.65-367.90) pg/mL] rather than inactive UC [33.19 (20.04-65.32) pg/mL], based on clinical, endoscopic and histopathological characteristics, as well as compared with non-IBD and HC (P < 0.001). The median level of sST2 in CD patients was 54.17 (35.02-122.0) pg/mL, significantly higher than that of the HC group only (P < 0.01). The cutoff was set at 74.87 pg/mL to compare active with inactive UC in a multicenter cohort of patients. Values of sensitivity, specificity, and ability to correctly classify UC, according to activity, were 83.33%, 83.33% and 83.33%, respectively. The AUC of the ROC curve to assess the ability of this molecule to discriminate between active vs inactive UC was 0.92 (0.86-0.97, P < 0.0001). The serum levels of sST2 in patients with UC significantly

  7. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    PubMed

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  8. Glycine triggers a non-ionotropic activity of GluN2A-containing NMDA receptors to confer neuroprotection

    PubMed Central

    Hu, Rong; Chen, Juan; Lujan, Brendan; Lei, Ruixue; Zhang, Mi; Wang, Zefen; Liao, Mingxia; Li, Zhiqiang; Wan, Yu; Liu, Fang; Feng, Hua; Wan, Qi

    2016-01-01

    Ionotropic activation of NMDA receptors (NMDARs) requires agonist glutamate and co-agonist glycine. Here we show that glycine enhances the activation of cell survival-promoting kinase Akt in cultured cortical neurons in which both the channel activity of NMDARs and the glycine receptors are pre-inhibited. The effect of glycine is reduced by shRNA-mediated knockdown of GluN2A subunit-containing NMDARs (GluN2ARs), suggesting that a non-ionotropic activity of GluN2ARs mediates glycine-induced Akt activation. In support of this finding, glycine enhances Akt activation in HEK293 cells over-expressing GluN2ARs. The effect of glycine on Akt activation is sensitive to the antagonist of glycine-GluN1 binding site. As a functional consequence, glycine protects against excitotoxicity-induced neuronal death through the non-ionotropic activity of GluN2ARs and the neuroprotective effect is attenuated by Akt inhibition. Thus, this study reveals an unexpected role of glycine in eliciting a non-ionotropic activity of GluN2ARs to confer neuroprotection via Akt activation. PMID:27694970

  9. Characterization of potato (Solanum tuberosum) and tomato (Solanum lycopersicum) protein phosphatases type 2A catalytic subunits and their involvement in stress responses.

    PubMed

    País, Silvia Marina; González, Marina Alejandra; Téllez-Iñón, María Teresa; Capiati, Daniela Andrea

    2009-06-01

    Protein phosphorylation/dephosphorylation plays critical roles in stress responses in plants. This report presents a comparative characterization of the serine/threonine PP2A catalytic subunit family in Solanum tuberosum (potato) and S. lycopersicum (tomato), two important food crops of the Solanaceae family, based on the sequence analysis and expression profiles in response to environmental stress. Sequence homology analysis revealed six isoforms in potato and five in tomato clustered into two subfamilies (I and II). The data presented in this work show that the expression of different PP2Ac genes is regulated in response to environmental stresses in potato and tomato plants and suggest that, in general, mainly members of the subfamily I are involved in stress responses in both species. However, the differences found in the expression profiles between potato and tomato suggest divergent roles of PP2A in the plant defense mechanisms against stress in these closely related species. PMID:19330349

  10. Groundwater flow code verification ``benchmarking`` activity (COVE-2A): Analysis of participants` work

    SciTech Connect

    Dykhuizen, R.C.; Barnard, R.W.

    1992-02-01

    The Nuclear Waste Repository Technology Department at Sandia National Laboratories (SNL) is investigating the suitability of Yucca Mountain as a potential site for underground burial of nuclear wastes. One element of the investigations is to assess the potential long-term effects of groundwater flow on the integrity of a potential repository. A number of computer codes are being used to model groundwater flow through geologic media in which the potential repository would be located. These codes compute numerical solutions for problems that are usually analytically intractable. Consequently, independent confirmation of the correctness of the solution is often not possible. Code verification is a process that permits the determination of the numerical accuracy of codes by comparing the results of several numerical solutions for the same problem. The international nuclear waste research community uses benchmarking for intercomparisons that partially satisfy the Nuclear Regulatory Commission (NRC) definition of code verification. This report presents the results from the COVE-2A (Code Verification) project, which is a subset of the COVE project.

  11. Increased Orbitofrontal Brain Activation after Administration of a Selective Adenosine A2A Antagonist in Cocaine Dependent Subjects

    PubMed Central

    Moeller, F. Gerard; Steinberg, Joel L.; Lane, Scott D.; Kjome, Kimberly L.; Ma, Liangsuo; Ferre, Sergi; Schmitz, Joy M.; Green, Charles E.; Bandak, Stephen I.; Renshaw, Perry F.; Kramer, Larry A.; Narayana, Ponnada A.

    2012-01-01

    Background: Positron Emission Tomography imaging studies provide evidence of reduced dopamine function in cocaine dependent subjects in the striatum, which is correlated with prefrontal cortical glucose metabolism, particularly in the orbitofrontal cortex. However, whether enhancement of dopamine in the striatum in cocaine dependent subjects would be associated with changes in prefrontal cortical brain activation is unknown. One novel class of medications that enhance dopamine function via heteromer formation with dopamine receptors in the striatum is the selective adenosine A2A receptor antagonists. This study sought to determine the effects administration of the selective adenosine A2A receptor antagonist SYN115 on brain function in cocaine dependent subjects. Methodology/Principle Findings: Twelve cocaine dependent subjects underwent two fMRI scans (one after a dose of placebo and one after a dose of 100 mg of SYN115) while performing a working memory task with three levels of difficulty (3, 5, and 7 digits). fMRI results showed that for 7-digit working memory activation there was significantly greater activation from SYN115 compared to placebo in portions of left (L) lateral orbitofrontal cortex, L insula, and L superior and middle temporal pole. Conclusion/Significance: These findings are consistent with enhanced dopamine function in the striatum in cocaine dependent subjects via blockade of adenosine A2A receptors producing increased brain activation in the orbitofrontal cortex and other cortical regions. This suggests that at least some of the changes in brain activation in prefrontal cortical regions in cocaine dependent subjects may be related to altered striatal dopamine function, and that enhancement of dopamine function via adenosine A2A receptor blockade could be explored further for amelioration of neurobehavioral deficits associated with chronic cocaine use. PMID:22654774

  12. The MATROSHKA experiment: results and comparison from extravehicular activity (MTR-1) and intravehicular activity (MTR-2A/2B) exposure.

    PubMed

    Berger, Thomas; Bilski, Paweł; Hajek, Michael; Puchalska, Monika; Reitz, Günther

    2013-12-01

    Astronauts working and living in space are exposed to considerably higher doses and different qualities of ionizing radiation than people on Earth. The multilateral MATROSHKA (MTR) experiment, coordinated by the German Aerospace Center, represents the most comprehensive effort to date in radiation protection dosimetry in space using an anthropomorphic upper-torso phantom used for radiotherapy treatment planning. The anthropomorphic upper-torso phantom maps the radiation distribution as a simulated human body installed outside (MTR-1) and inside different compartments (MTR-2A: Pirs; MTR-2B: Zvezda) of the Russian Segment of the International Space Station. Thermoluminescence dosimeters arranged in a 2.54 cm orthogonal grid, at the site of vital organs and on the surface of the phantom allow for visualization of the absorbed dose distribution with superior spatial resolution. These results should help improve the estimation of radiation risks for long-term human space exploration and support benchmarking of radiation transport codes.

  13. Folic Acid Inhibits Amyloid β-Peptide Production through Modulating DNA Methyltransferase Activity in N2a-APP Cells.

    PubMed

    Li, Wen; Jiang, Mingyue; Zhao, Shijing; Liu, Huan; Zhang, Xumei; Wilson, John X; Huang, Guowei

    2015-10-20

    Alzheimer's disease (AD) is a common neurodegenerative disease resulting in progressive dementia, and is a principal cause of dementia among older adults. Folate acts through one-carbon metabolism to support the methylation of multiple substrates. We hypothesized that folic acid supplementation modulates DNA methyltransferase (DNMT) activity and may alter amyloid β-peptide (Aβ) production in AD. Mouse Neuro-2a cells expressing human APP695 were incubated with folic acid (2.8-40 μmol/L), and with or without zebularine (the DNMT inhibitor). DNMT activity, cell viability, Aβ and DNMTs expression were then examined. The results showed that folic acid stimulated DNMT gene and protein expression, and DNMT activity. Furthermore, folic acid decreased Aβ protein production, whereas inhibition of DNMT activity by zebularine increased Aβ production. The results indicate that folic acid induces methylation potential-dependent DNMT enzymes, thereby attenuating Aβ production.

  14. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism.

    PubMed

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Jaeho; Kim, Jae Il; Lee, Dong Gun

    2015-02-01

    Scolopendin 2 is a 16-mer peptide (AGLQFPVGRIGRLLRK) derived from the centipede Scolopendra subspinipes mutilans. We observed that this peptide exhibited antimicrobial activity in a salt-dependent manner against various fungal and bacterial pathogens and showed no hemolytic effect in the range of 1.6 μM to 100 μM. Circular dichroism analysis showed that the peptide has an α-helical properties. Furthermore, we determined the mechanism(s) of action using flow cytometry and by investigating the release of intracellular potassium. The results showed that the peptide permeabilized the membranes of Escherichia coli O157 and Candida albicans, resulting in loss of intracellular potassium ions. Additionally, bis-(1,3-dibutylbarbituric acid) trimethine oxonol and 3,3'-dipropylthiacarbocyanine iodide assays showed that the peptide caused membrane depolarization. Using giant unilamellar vesicles encapsulating calcein and large unilamellar vesicles containing fluorescein isothiocyanate-dextran, which were similar in composition to typical E. coli O157 and C. albicans membranes, we demonstrated that scolopendin 2 disrupts membranes, resulting in a pore size between 4.8 nm and 5.0 nm. Thus, we have demonstrated that a cationic antimicrobial peptide, scolopendin 2, exerts its broad-spectrum antimicrobial effects by forming pores in the cell membrane.

  15. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism.

    PubMed

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Jaeho; Kim, Jae Il; Lee, Dong Gun

    2015-02-01

    Scolopendin 2 is a 16-mer peptide (AGLQFPVGRIGRLLRK) derived from the centipede Scolopendra subspinipes mutilans. We observed that this peptide exhibited antimicrobial activity in a salt-dependent manner against various fungal and bacterial pathogens and showed no hemolytic effect in the range of 1.6 μM to 100 μM. Circular dichroism analysis showed that the peptide has an α-helical properties. Furthermore, we determined the mechanism(s) of action using flow cytometry and by investigating the release of intracellular potassium. The results showed that the peptide permeabilized the membranes of Escherichia coli O157 and Candida albicans, resulting in loss of intracellular potassium ions. Additionally, bis-(1,3-dibutylbarbituric acid) trimethine oxonol and 3,3'-dipropylthiacarbocyanine iodide assays showed that the peptide caused membrane depolarization. Using giant unilamellar vesicles encapsulating calcein and large unilamellar vesicles containing fluorescein isothiocyanate-dextran, which were similar in composition to typical E. coli O157 and C. albicans membranes, we demonstrated that scolopendin 2 disrupts membranes, resulting in a pore size between 4.8 nm and 5.0 nm. Thus, we have demonstrated that a cationic antimicrobial peptide, scolopendin 2, exerts its broad-spectrum antimicrobial effects by forming pores in the cell membrane. PMID:25462167

  16. Role of "oncogenic nexus" of CIP2A in breast oncogenesis: how does it work?

    PubMed

    De, Pradip; Carlson, Jennifer H; Leyland-Jones, Brian; Dey, Nandini

    2015-01-01

    The CIP2A gene is an oncogene associated with solid and hematologic malignancies [1]. CIP2A protein is an oncoprotein and a potential cancer therapy target [2]. Literature shows that CIP2A inhibits the tumor suppressor protein PP2A [3] which downregulates phophorylation of AKT, a hallmark of cancers [4] and stabilizes the proto-oncogene, c-MYC in tumor cells [5], the comprehensive action of CIP2A and its functional interaction(s) with other oncoproteins and tumor suppressors is not clearly established. Recently we tried to put forward a contextual mode-of-action of CIP2A protein in a review which proposed that CIP2A influences oncogenesis via an "oncogenic nexus" [1]. In this review we critically evaluated the potential relevance of the mode-of-action of the "oncogenic nexus" of CIP2A in breast carcinogenesis and appraised the role of this nexus in different PAM50 luminal A, PAM50 luminal B, PAM50 HER2-enriched and PAM50 basal BC. This review has a novel approach. Here we have not only compiled and discussed the latest developments in this field but also presented data obtained from c-BioPortal and STRING10 in order to substantiate our view regarding the mode-of-action of the "oncogenic nexus" of CIP2A. We functionally correlated alterations of genes pertaining to the "oncogenic nexus" of CIP2A with protein-protein interactions between the different components of the nexus including (1) subunits of PP2A, (2) multiple transcription factors including MYC oncogene and (3) components of the PI3K-mTOR and the MAPK-ERK oncogenic pathways. Using these proteins as "input" to STRING10 we studied the association, Action view, at the highest Confidence level. OncoPrints (c-BioPortal) showed alterations (%) of regulatory subunits genes of PP2A (PPP2R1A and PPP2R1B) along with alterations of CIP2A in breast invasive carcinoma (TCGA, Nature 2012 & TCGA, Provisional). Similar genetic alterations of PP2A were also observed in samples of breast tumors at our Avera Research

  17. Threshold Levels of Gfi1 Maintain E2A Activity for B Cell Commitment via Repression of Id1

    PubMed Central

    Fraszczak, Jennifer; Helness, Anne; Chen, Riyan; Vadnais, Charles; Robert, François; Khandanpour, Cyrus; Möröy, Tarik

    2016-01-01

    A regulatory circuit that controls myeloid versus B lymphoid cell fate in hematopoietic progenitors has been proposed, in which a network of the transcription factors Egr1/2, Nab, Gfi1 and PU.1 forms the core element. Here we show that a direct link between Gfi1, the transcription factor E2A and its inhibitor Id1 is a critical element of this regulatory circuit. Our data suggest that a certain threshold of Gfi1 is required to gauge E2A activity by adjusting levels of Id1 in multipotent progenitors, which are the first bipotential myeloid/lymphoid-restricted progeny of hematopoietic stem cells. If Gfi1 levels are high, Id1 is repressed enabling E2A to activate a specific set of B lineage genes by binding to regulatory elements for example the IL7 receptor gene. If Gfi1 levels fall below a threshold, Id1 expression increases and renders E2A unable to function, which prevents hematopoietic progenitors from engaging along the B lymphoid lineage. PMID:27467586

  18. The downregulation of thioredoxin accelerated Neuro2a cell apoptosis induced by advanced glycation end product via activating several pathways.

    PubMed

    Ren, Xiang; Ma, Haiying; Qiu, Yuanyuan; Liu, Bo; Qi, Hui; Li, Zeyu; Kong, Hui; Kong, Li

    2015-08-01

    Thioredoxin (Trx), a 12 kDa protein, has different functions in different cellular environments, playing important anti-oxidative and anti-apoptotic roles and regulating the expression of transcription factors. Advanced glycation end products (AGEs) are a heterogeneous group of irreversible adducts from glucose-protein condensation reactions and are considered crucial to the development of diabetic nephropathy, retinopathy, neurodegeneration and atherosclerosis. The aim of this study was to use a Trx inhibitor to investigate the effects and mechanism of Trx down-regulation on AGE-induced Neuro2a cell apoptosis. Neuro2a cells were cultured in vitro and treated with different conditions. The apoptosis and proliferation of Neuro2a cells were detected using flow cytometry, DNA-Ladder and CCK8 assays. Rho 123 was used to detect the mitochondrial membrane potential. ROS generation and caspase3 activity were detected using a DCFH-DA probe and micro-plate reader. Western blotting and real-time PCR were used to detect the expression of proteins and genes. We found that the down-regulation of thioredoxin could accelerate AGE-induced apoptosis in Neuro2a cells. A possible underlying mechanism is that the down-regulation of thioredoxin stimulated the up-regulation of ASK1, p-JNK, PTEN, and Txnip, as well as the down-regulation of p-AKT, ultimately increasing ROS levels and caspase3 activity.

  19. The downregulation of thioredoxin accelerated Neuro2a cell apoptosis induced by advanced glycation end product via activating several pathways.

    PubMed

    Ren, Xiang; Ma, Haiying; Qiu, Yuanyuan; Liu, Bo; Qi, Hui; Li, Zeyu; Kong, Hui; Kong, Li

    2015-08-01

    Thioredoxin (Trx), a 12 kDa protein, has different functions in different cellular environments, playing important anti-oxidative and anti-apoptotic roles and regulating the expression of transcription factors. Advanced glycation end products (AGEs) are a heterogeneous group of irreversible adducts from glucose-protein condensation reactions and are considered crucial to the development of diabetic nephropathy, retinopathy, neurodegeneration and atherosclerosis. The aim of this study was to use a Trx inhibitor to investigate the effects and mechanism of Trx down-regulation on AGE-induced Neuro2a cell apoptosis. Neuro2a cells were cultured in vitro and treated with different conditions. The apoptosis and proliferation of Neuro2a cells were detected using flow cytometry, DNA-Ladder and CCK8 assays. Rho 123 was used to detect the mitochondrial membrane potential. ROS generation and caspase3 activity were detected using a DCFH-DA probe and micro-plate reader. Western blotting and real-time PCR were used to detect the expression of proteins and genes. We found that the down-regulation of thioredoxin could accelerate AGE-induced apoptosis in Neuro2a cells. A possible underlying mechanism is that the down-regulation of thioredoxin stimulated the up-regulation of ASK1, p-JNK, PTEN, and Txnip, as well as the down-regulation of p-AKT, ultimately increasing ROS levels and caspase3 activity. PMID:26142569

  20. NADPH Oxidase-dependent Generation of Lysophosphatidylserine Enhances Clearance of Activated and Dying Neutrophils via G2A*S⃞

    PubMed Central

    Frasch, S. Courtney; Berry, Karin Zemski; Fernandez-Boyanapalli, Ruby; Jin, Hyun-Sun; Leslie, Christina; Henson, Peter M.; Murphy, Robert C.; Bratton, Donna L.

    2008-01-01

    Exofacial phosphatidylserine (PS) is an important ligand mediating apoptotic cell clearance by phagocytes. Oxidation of PS fatty acyl groups (oxPS) during apoptosis reportedly mediates recognition through scavenger receptors. Given the oxidative capacity of the neutrophil NADPH oxidase, we sought to identify oxPS signaling species in stimulated neutrophils. Using mass spectrometry analysis, only trace amounts of previously characterized oxPS species were found. Conversely, 18:1 and 18:0 lysophosphatidylserine (lyso-PS), known bioactive signaling phospholipids, were identified as abundant modified PS species following activation of the neutrophil oxidase. NADPH oxidase inhibitors blocked the production of lyso-PS in vitro, and accordingly, its generation in vivo by activated, murine neutrophils during zymosan-induced peritonitis was absent in mice lacking a functional NADPH oxidase (gp91phox-/-). Treatment of macrophages with lyso-PS enhanced the uptake of apoptotic cells in vitro, an effect that was dependent on signaling via the macrophage G2A receptor. Similarly, endogenously produced lyso-PS also enhanced the G2A-mediated uptake of activated PS-exposing (but non-apoptotic) neutrophils, raising the possibility of non-apoptotic mechanisms for removal of inflammatory cells during resolution. Finally, antibody blockade of G2A signaling in vivo prolonged zymosan-induced neutrophilia in wild-type mice, whereas having no effect in gp91phox-/- mice where lyso-PS are not generated. Taken together, we show that lyso-PS are modified PS species generated following activation of the NADPH oxidase and lyso-PS signaling through the macrophage G2A functions to enhance existing receptor/ligand systems for optimal resolution of neutrophilic inflammation. PMID:18824544

  1. The silent point mutations at the cleavage site of 2A/2B have no effect on the self-cleavage activity of 2A of foot-and-mouth disease virus.

    PubMed

    Gao, Zong-liang; Zhou, Jian-hua; Zhang, Jie; Ding, Yao-zhong; Liu, Yong-sheng

    2014-12-01

    The 2A region of the foot-and-mouth disease virus (FMDV) polyprotein is 18 amino acids in length, and 2A self-cleavage site (2A/2B) contains a conserved amino acid motif G2A/P2B. To investigate the synonymous codon usage for Glycine at the 2A/2B cleavage site of FMDV, 66 2A/2B1 nucleotide sequences were aligned and found that the synonymous codon usage of G2A is conserved and GGG was the most frequently used. To examine the role of synonymous codons for G2A in self-cleavage efficiency of 2A/2B, recombinant constructs which contains the chloramphenicol acetyltransferase protein (CAT) and enhanced green fluorescent protein (EGFP) linked by the FMDV 2A sequence with four synonymous codons for G2A were produced. The activities of all the F2As based plasmids were determined in CHO cells. The results showed that the synonymous codon usage patterns for G2A at the cleavage site (2A/2B) have no effect on the cleavage efficiency. This suggests that the synonymous codon usage of 2A peptide has no effect on the cleavage efficiency of FMDV 2A element. PMID:25152485

  2. Important role for phylogenetically invariant PP2Acalpha active site and C-terminal residues revealed by mutational analysis in Saccharomyces cerevisiae.

    PubMed Central

    Evans, D R; Hemmings, B A

    2000-01-01

    PP2A is a central regulator of eukaryotic signal transduction. The human catalytic subunit PP2Acalpha functionally replaces the endogenous yeast enzyme, Pph22p, indicating a conservation of function in vivo. Therefore, yeast cells were employed to explore the role of invariant PP2Ac residues. The PP2Acalpha Y127N substitution abolished essential PP2Ac function in vivo and impaired catalysis severely in vitro, consistent with the prediction from structural studies that Tyr-127 mediates substrate binding and its side chain interacts with the key active site residues His-118 and Asp-88. The V159E substitution similarly impaired PP2Acalpha catalysis profoundly and may cause global disruption of the active site. Two conditional mutations in the yeast Pph22p protein, F232S and P240H, were found to cause temperature-sensitive impairment of PP2Ac catalytic function in vitro. Thus, the mitotic and cell lysis defects conferred by these mutations result from a loss of PP2Ac enzyme activity. Substitution of the PP2Acalpha C-terminal Tyr-307 residue by phenylalanine impaired protein function, whereas the Y307D and T304D substitutions abolished essential function in vivo. Nevertheless, Y307D did not reduce PP2Acalpha catalytic activity significantly in vitro, consistent with an important role for the C terminus in mediating essential protein-protein interactions. Our results identify key residues important for PP2Ac function and characterize new reagents for the study of PP2A in vivo. PMID:10978272

  3. Guaiazulene biochemical activity and cytotoxic and genotoxic effects on rat neuron and N2a neuroblastom cells

    PubMed Central

    Togar, Basak; Turkez, Hasan; Hacimuftuoglu, Ahmet; Tatar, Abdulgani; Geyikoglu, Fatime

    2015-01-01

    Aim: Neuroblastoma (NB)cells are often used in cancer researches such as glioblastoma cells since they have the potential of high mitotic activity, nuclear pleomorphism, and tumor necrosis. Guaiazulene (GYZ 1,4-dimethyl-7-isopropylazulene)is present in several essential oils of medicinal and aromatic plants. Many studies have reported the cytotoxic effect of GYZ; however, there are no studies that compare such effects between cancer cell lines and normal human cells after treatment with GYZ. Materials and Methods: In this study, we aimed to describe in vitro antiproliferative and/or cytotoxic properties (by 3-[4,5 dimetylthiazol -2-yl]-2,5 diphenlytetrazolium bromide [MTT] test), oxidative effects (by total antioxidant capacity [TAC] and total oxidative stress [TOS] analysis)and genotoxic damage potentials (by single cell gel electrophoresis)of GYZ. Result: The results indicated that GYZ have anti-proliferative activity suppressing the proliferation of neuron and N2a-NB cells at high doses. In addition, GYZ treatments at higher doses led to decreases of TAC levels and increases of TOS levels in neuron and N2a-NB cells. On the other hand, the mean values of the total scores of cells showing DNA damage were not found different from the control values. Conclusion: From this study, it is observed that GYZ has in vitro cytotoxic activity against neuron and N2a-NB cells. PMID:26401381

  4. Histone variant H2A.Bbd is associated with active transcription and mRNA processing in human cells

    PubMed Central

    Tolstorukov, Michael Y.; Goldman, Joseph A.; Gilbert, Cristele; Ogryzko, Vasily; Kingston, Robert E.; Park, Peter J.

    2013-01-01

    Summary Variation in chromatin composition and organization often reflects differences in genome function. Histone variants, for example, replace canonical histones to contribute to regulation of numerous nuclear processes including transcription, DNA repair and chromosome segregation. Here we focus on H2A.Bbd, a rapidly evolving variant found in mammals but not in invertebrates. We report that in human cells, nucleosomes bearing H2A.Bbd form unconventional chromatin structures enriched within actively transcribed genes and characterized by shorter DNA protection and nucleosome spacing. Analysis of transcriptional profiles from cells depleted for H2A.Bbd demonstrated widespread changes in gene expression with a net down-regulation of transcription and disruption of normal mRNA splicing patterns. In particular, we observed changes in exon inclusion rates and increased presence of intronic sequences in mRNA products upon H2A.Bbd depletion. Taken together, our results indicate that H2A.Bbd is involved in formation of a specific chromatin structure that facilitates both transcription and initial mRNA processing. PMID:22795134

  5. Serotonin 5-hydroxytryptamine(2A) receptor activation suppresses tumor necrosis factor-alpha-induced inflammation with extraordinary potency.

    PubMed

    Yu, Bangning; Becnel, Jaime; Zerfaoui, Mourad; Rohatgi, Rasika; Boulares, A Hamid; Nichols, Charles D

    2008-11-01

    The G protein-coupled serotonin 5-hydroxytryptamine (5-HT)(2A) receptor is primarily recognized for its role in brain neurotransmission, where it mediates a wide variety of functions, including certain aspects of cognition. However, there is significant expression of this receptor in peripheral tissues, where its importance is largely unknown. We have now discovered that activation of 5-HT(2A) receptors in primary aortic smooth muscle cells provides a previously unknown and extremely potent inhibition of tumor necrosis factor (TNF)-alpha-mediated inflammation. 5-HT(2A) receptor stimulation with the agonist (R)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(R)-DOI] rapidly inhibits a variety of TNF-alpha-mediated proinflammatory markers, including intracellular adhesion molecule 1 (ICAM-1), vascular adhesion molecule 1 (VCAM-1), and interleukin (IL)-6 gene expression, nitric-oxide synthase activity, and nuclear translocation of nuclear factor kappaB, with IC(50) values of only 10 to 20 pM. It is significant that proinflammatory markers can also be inhibited by (R)-DOI hours after treatment with TNF-alpha. With the exception of a few natural toxins, no current drugs or small molecule therapeutics demonstrate a comparable potency for any physiological effect. TNF-alpha-mediated inflammatory pathways have been strongly implicated in a number of diseases, including atherosclerosis, rheumatoid arthritis, psoriasis, type II diabetes, depression, schizophrenia, and Alzheimer's disease. Our results indicate that activation of 5-HT(2A) receptors represents a novel, and extraordinarily potent, potential therapeutic avenue for the treatment of disorders involving TNF-alpha-mediated inflammation. Note that because (R)-DOI can significantly inhibit the effects of TNF-alpha many hours after the administration of TNF-alpha, potential therapies could be aimed not only at preventing inflammation but also treating inflammatory injury that has already occurred or is ongoing. PMID

  6. Design, synthesis and anxiolytic-like activity of 1-arylpyrrolo[1,2-a]pyrazine-3-carboxamides.

    PubMed

    Mokrov, G V; Deeva, O A; Gudasheva, T A; Yarkov, S A; Yarkova, M A; Seredenin, S B

    2015-07-01

    A series of 1-arylpyrrolo[1,2-a]pyrazine-3-carboxamides were designed and synthesized as 18kDa translocator protein (TSPO) ligands. Anxiolytic-like activity of compounds was evaluated in the open field test and elevated plus maze test. Compounds 1a and 1b demonstrated high anxiolytic-like effect in the dose range of 0.1-1.0mg/kg comparable with that of diazepam. The involvement of TSPO receptor in the mechanism of anxiolytic-like activity of new compounds was proved by antagonism of the most active compound 1a with TSPO selective inhibitor PK11195. In vitro binding studies demonstrated high TSPO affinities for compounds 1a and 1b.

  7. Presynaptic facilitatory adenosine A2A receptors mediate fade induced by neuromuscular relaxants that exhibit anticholinesterase activity.

    PubMed

    Bornia, Elaine Cs; Correia-de-Sá, Paulo; Alves-Do-Prado, Wilson

    2011-03-01

    1. Pancuronium, cisatracurium and vecuronium are antinicotinic agents that, in contrast with d-tubocurarine and hexamethonium, exhibit anticholinesterase activity. Pancuronium-, cisatracurium- and vecuronium-induced fade results from blockade of facilitatory nicotinic receptors on motor nerves, but fade produced by such agents also depends on the presynaptic activation of inhibitory muscarinic M2 receptors by acetylcholine released from motor nerve terminals and activation of inhibitory adenosine A1 receptors by adenosine released from motor nerves and muscles. The participation of presynaptic facilitatory A2A receptors in fade caused by pancuronium, cisatracurium and vecuronium has not yet been investigated. In the present study, we determined the effects of ZM241385, an antagonist of presynaptic facilitatory A2A receptors, on fade produced by these neuromuscular relaxants in the rat phrenic nerve-diaphragm (PND) preparation. 2. The muscles were stimulated indirectly at 75±3Hz to induce a sustained tetanizing muscular contraction. The lowest concentration at which each antinicotinic agent produced fade without modifying initial tetanic tension (presynaptic action) was determined. 3. d-Tubocurarine-induced fade occurred only at 55 nmol/L, a concentration that also reduced maximal tetanic tension (post-synaptic action). At 10 nmol/L, ZM 241385 alone did not produce fade, but it did attenuate pancuronium (0.32 μmol/L)-, cisatracurium (0.32 μmol/L)- and vecuronium (0.36 μmol/L)-induced fade. 4. The fade induced by the 'pure' antinicotinic agents d-tubocurarine (55 nmol/L) and hexamethonium (413 μmol/L) was not altered by 10 nmol/L ZM 241385, indicating that presynaptic adenosine A2A receptors play a significant role in the fade produced by antinicotinic agents when such agents have anticholinesterase activity.

  8. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  9. Design and synthesis of new imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrazine derivatives with antiproliferative activity against melanoma cells.

    PubMed

    Garamvölgyi, Rita; Dobos, Judit; Sipos, Anna; Boros, Sándor; Illyés, Eszter; Baska, Ferenc; Kékesi, László; Szabadkai, István; Szántai-Kis, Csaba; Kéri, György; Őrfi, László

    2016-01-27

    Melanoma is an aggressive form of skin cancer and it is generally associated with poor prognosis in patients with late-stage disease. Due to the increasing occurrence of melanoma, there is a need for the development of novel therapies. A new series of diarylamide and diarylurea derivatives containing imidazo[1,2-a]pyridine or imidazo[1,2-a]pyrazine scaffold was designed and synthesized to investigate their in vitro efficacy against the A375P human melanoma cell line. We found several compounds expressing submicromolar IC50 values against the A375P cells, from which 15d, 17e, 18c, 18h, 18i demonstrated the highest potencies with IC50 below 0.06 μM.

  10. RGS2 modulates the activity and internalization of dopamine D2 receptors in neuroblastoma N2A cells.

    PubMed

    Luessen, Deborah J; Hinshaw, Tyler P; Sun, Haiguo; Howlett, Allyn C; Marrs, Glen; McCool, Brian A; Chen, Rong

    2016-11-01

    Dysregulated expression and function of dopamine D2 receptors (D2Rs) are implicated in drug addiction, Parkinson's disease and schizophrenia. In the current study, we examined whether D2Rs are modulated by regulator of G protein signaling 2 (RGS2), a member of the RGS family that regulates G protein signaling via acceleration of GTPase activity. Using neuroblastoma 2a (N2A) cells, we found that RGS2 was immunoprecipitated by aluminum fluoride-activated Gαi2 proteins. RGS2 siRNA knockdown enhanced membrane [(35)S] GTPγS binding to activated Gαi/o proteins, augmented inhibition of cAMP accumulation and increased ERK phosphorylation in the presence of a D2/D3R agonist quinpirole when compared to scrambled siRNA treatment. These data suggest that RGS2 is a negative modulator of D2R-mediated Gαi/o signaling. Moreover, RGS2 knockdown slightly increased constitutive D2R internalization and markedly abolished quinpirole-induced D2R internalization assessed by immunocytochemistry. RGS2 knockdown did not compromise agonist-induced β-arrestin membrane recruitment; however, it prevents β-arrestin dissociation from the membrane after prolonged quinpirole treatment during which time β-arrestin moved away from the membrane in control cells. Additionally, confocal microscopy analysis of β-arrestin post-endocytic fate revealed that quinpirole treatment caused β-arrestin to translocate to the early and the recycling endosome in a time-dependent manner in control cells whereas translocation of β-arrestin to these endosomes did not occur in RGS2 knockdown cells. The impaired β-arrestin translocation likely contributed to the abolishment of quinpirole-stimulated D2R internalization in RGS2 knockdown cells. Thus, RGS2 is integral for β-arrestin-mediated D2R internalization. The current study revealed a novel regulation of D2R signaling and internalization by RGS2 proteins.

  11. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans.

    PubMed

    Valle, Marta; Maqueda, Ana Elda; Rabella, Mireia; Rodríguez-Pujadas, Aina; Antonijoan, Rosa Maria; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miquel Àngel; Barker, Steven; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-07-01

    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus β-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans. PMID:27039035

  12. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans.

    PubMed

    Valle, Marta; Maqueda, Ana Elda; Rabella, Mireia; Rodríguez-Pujadas, Aina; Antonijoan, Rosa Maria; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miquel Àngel; Barker, Steven; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-07-01

    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus β-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans.

  13. A1 and A2a receptors mediate inhibitory effects of adenosine on the motor activity of human colon.

    PubMed

    Fornai, M; Antonioli, L; Colucci, R; Ghisu, N; Buccianti, P; Marioni, A; Chiarugi, M; Tuccori, M; Blandizzi, C; Del Tacca, M

    2009-04-01

    Experimental evidence in animal models suggests that adenosine is involved in the regulation of digestive functions. This study examines the influence of adenosine on the contractile activity of human colon. Reverse transcription-polymerase chain reaction revealed A(1) and A(2a) receptor expression in colonic neuromuscular layers. Circular muscle preparations were connected to isotonic transducers to determine the effects of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; A(1) receptor antagonist), ZM 241385 (A(2a) receptor antagonist), CCPA (A(1) receptor agonist) and 2-[(p-2-carboxyethyl)-phenethylamino]-5'-N-ethyl-carboxamide-adenosine (CGS 21680; A(2a) receptor agonist) on motor responses evoked by electrical stimulation or carbachol. Electrically evoked contractions were enhanced by DPCPX and ZM 241385, and reduced by CCPA and CGS 21680. Similar effects were observed when colonic preparations were incubated with guanethidine (noradrenergic blocker), L-732,138, GR-159897 and SB-218795 (NK receptor antagonists). However, in the presence of guanethidine, NK receptor antagonists and N(omega)-propyl-L-arginine (NPA; neuronal nitric oxide synthase inhibitor), the effects of DPCPX and CCPA were still evident, while those of ZM 241385 and CGS 21680 no longer occurred. Carbachol-induced contractions were unaffected by A(2a) receptor ligands, but they were enhanced or reduced by DPCPX and CCPA, respectively. When colonic preparations were incubated with guanethidine, NK antagonists and atropine, electrically induced relaxations were partly reduced by ZM 241385 or NPA, but unaffected by DPCPX. Dipyridamole or application of exogenous adenosine reduced electrically and carbachol-evoked contractions, whereas adenosine deaminase enhanced such motor responses. In conclusion, adenosine exerts an inhibitory control on human colonic motility. A(1) receptors mediate direct modulating actions on smooth muscle, whereas A(2a) receptors operate through inhibitory nitrergic nerve pathways.

  14. Simultaneous determination of cytochrome P450 1A, 2A and 3A activities in porcine liver microsomes.

    PubMed

    Johansson, Monika; Tomankova, Jana; Li, Shengjie; Zamaratskaia, Galia

    2012-09-01

    The aim of this study was to develop a robust method for the simultaneous determination of the activities of three porcine CYP450 enzymes in hepatic microsomes. A cocktail consisting of three selective CYP450 probe substrates, 7-ethoxyresorufin (CYP1A), coumarin (CYP2A) and 7-benzyloxy-4-trifluoromethylcoumarin (BFC; CYP3A), was incubated with porcine liver microsomes. The presence of 7-ethoxyresorufin appears to significantly influence the kinetics of coumarin hydroxylation and BFC O-debenzylation. These results indicate that the use of 7-ethoxyresorufin in substrate cocktails together with coumarin and BFC should be avoided.

  15. Inhibition of human cytochrome P450 2E1 and 2A6 by aldehydes: structure and activity relationships.

    PubMed

    Kandagatla, Suneel K; Mack, Todd; Simpson, Sean; Sollenberger, Jill; Helton, Eric; Raner, Gregory M

    2014-08-01

    The purpose of this study was to probe active site structure and dynamics of human cytochrome P4502E1 and P4502A6 using a series of related short chain fatty aldehydes. Binding efficiency of the aldehydes was monitored via their ability to inhibit the binding and activation of the probe substrates p-nitrophenol (2E1) and coumarin (2A6). Oxidation of the aldehydes was observed in reactions with individually expressed 2E1, but not 2A6, suggesting alternate binding modes. For saturated aldehydes the optimum chain length for inhibition of 2E1 was 9 carbons (KI=7.8 ± 0.3 μM), whereas for 2A6 heptanal was most potent (KI=15.8 ± 1.1 μM). A double bond in the 2-position of the aldehyde significantly decreased the observed KI relative to the corresponding saturated compound in most cases. A clear difference in the effect of the double bond was observed between the two isoforms. With 2E1, the double bond appeared to remove steric constraints on aldehyde binding with KI values for the 5-12 carbon compounds ranging between 2.6 ± 0.1 μM and 12.8 ± 0.5 μM, whereas steric effects remained the dominant factor in the binding of the unsaturated aldehydes to 2A6 (observed KI values between 7.0 ± 0.5 μM and >1000 μM). The aldehyde function was essential for effective inhibition, as the corresponding carboxylic acids had very little effect on enzyme activity over the same range of concentrations, and branching at the 3-position of the aldehydes increased the corresponding KI value in all cases examined. The results suggest that a conjugated π-system may be a key structural determinant in the binding of these compounds to both enzymes, and may also be an important feature for the expansion of the active site volume in 2E1.

  16. Inhibition of human Cytochrome P450 2E1 and 2A6 by aldehydes: Structure and activity relationships

    PubMed Central

    Kandagatla, Suneel K.; Mack, Todd; Simpson, Sean; Sollenberger, Jill; Helton, Eric; Raner, Gregory M.

    2014-01-01

    The purpose of this study was to probe active site structure and dynamics of human cytochrome P4502E1 and P4502A6 using a series of related short chain fatty aldehydes. Binding efficiency of the aldehydes was monitored via their ability to inhibit the binding and activation of the probe substrates p-nitrophenol (2E1) and coumarin (2A6). Oxidation of the aldehydes was observed in reactions with individually expressed 2E1, but not 2A6, suggesting alternate binding modes. For saturated aldehydes the optimum chain length for inhibition of 2E1 was 9 carbons (KI=7.8 ±0.3 μM), whereas for 2A6 heptanal was most potent (KI=15.8 ±1.1 μM). A double bond in the 2-position of the aldehyde significantly decreased the observed KI relative to the corresponding saturated compound in most cases. A clear difference in the effect of the double bond was observed between the two isoforms. With 2E1, the double bond appeared to remove steric constraints on aldehyde binding with KI values for the 5–12 carbon compounds ranging between 2.6 ± 0.1 μM and 12.8± 0.5 μM, whereas steric effects remained the dominant factor in the binding of the unsaturated aldehydes to 2A6 (observed KI values between 7.0± 0.5 μM and >1000 μM). The aldehyde function was essential for effective inhibition, as the corresponding carboxylic acids had very little effect on enzyme activity over the same range of concentrations, and branching at the 3-position of the aldehydes increased the corresponding KI value in all cases examined. The results suggest that a conjugated π-system may be a key structural determinant in the binding of these compounds to both enzymes, and may also be an important feature for the expansion of the active site volume in 2E1. PMID:24924949

  17. Inhibitors of 7-Dehydrocholesterol Reductase: Screening of a Collection of Pharmacologically Active Compounds in Neuro2a Cells.

    PubMed

    Kim, Hye-Young H; Korade, Zeljka; Tallman, Keri A; Liu, Wei; Weaver, C David; Mirnics, Karoly; Porter, Ned A

    2016-05-16

    A small library of pharmacologically active compounds (the NIH Clinical Collection) was assayed in Neuro2a cells to determine their effect on the last step in the biosynthesis of cholesterol, the transformation of 7-dehydrocholesterol (7-DHC) to cholesterol promoted by 7-dehydrocholesterol reductase, DHCR7. Of some 727 compounds in the NIH Clinical Collection, over 30 compounds significantly increased 7-DHC in Neuro2a cells when assayed at 1 μM. Active compounds that increased 7-DHC with a Z-score of +3 or greater generally gave rise to modest decreases in desmosterol and increases in lanosterol levels. Among the most active compounds identified in the library were the antipsychotic, antidepressant, and anxiolytic compounds that included perospirone, nefazodone, haloperidol, aripiprazole, trazodone, and buspirone. Fluoxetine and risperidone were also active at 1 μM, and another 10 compounds in this class of pharmaceuticals were identified in the screen at concentrations of 10 μM. Increased levels of 7-DHC are associated with Smith-Lemli-Opitz syndrome (SLOS), a human condition that results from a mutation in the gene that encodes DHCR7. The SLOS phenotype includes neurological deficits and congenital malformations, and it is linked to a higher incidence of autism spectrum disorder. The significance of the current study is that it identifies common pharmacological compounds that may induce a biochemical presentation similar to SLOS. Little is known about the side effects of elevated 7-DHC postdevelopmentally, and the elevated 7-DHC that results from exposure to these compounds may also be a confounder in the diagnosis of SLOS. PMID:27097157

  18. In Vitro Anti-Neuroblastoma Activity of Thymoquinone Against Neuro-2a Cells via Cell-cycle Arrest.

    PubMed

    Paramasivam, Arumugam; Raghunandhakumar, Subramanian; Priyadharsini, Jayaseelan Vijayashree; Jayaraman, Gopalswamy

    2015-01-01

    We have recently shown that thymoquinone (TQ) has a potent cytotoxic effect and induces apoptosis via caspase-3 activation with down-regulation of XIAP in mouse neuroblastoma (Neuro-2a) cells. Interestingly, our results showed that TQ was significantly more cytotoxic towards Neuro-2a cells when compared with primary normal neuronal cells. In this study, the effects of TQ on cell-cycle regulation and the mechanisms that contribute to this effect were investigated using Neuro-2a cells. Cell-cycle analysis performed by flow cytometry revealed cell-cycle arrest at G2/M phase and a significant increase in the accumulation of TQ-treated cells at sub-G1 phase, indicating induction of apoptosis by the compound. Moreover, TQ increased the expression of p53, p21 mRNA and protein levels, whereas it decreased the protein expression of PCNA, cyclin B1 and Cdc2 in a dose- dependent manner. Our finding suggests that TQ could suppress cell growth and cell survival via arresting the cell-cycle in the G2/M phase and inducing apoptosis of neuroblastoma cells.

  19. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    SciTech Connect

    Li, Ming V.; Chen, Weiqin; Harmancey, Romain N.; Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip; Taegtmeyer, Heinrich; Chan, Lawrence

    2010-05-07

    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.

  20. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  1. Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids

    DOE PAGES

    Naranjo, Andrea N.; McNeely, Patrick M.; Katsaras, John; Skaja Robinson, Anne

    2016-05-27

    The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, ormore » DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. Furthermore, the studies presented in this paper also underline the importance of the protein’s purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner.« less

  2. USP10 deubiquitylates the histone variant H2A.Z and both are required for androgen receptor-mediated gene activation.

    PubMed

    Draker, Ryan; Sarcinella, Elizabeth; Cheung, Peter

    2011-05-01

    H2A.Z, a variant of H2A, is found at the promoters of inducible genes in both yeast and higher eukaryotes. However, its role in transcriptional regulation is complex since it has been reported to function both as a repressor and activator. We have previously found that mono-ubiquitylation of H2A.Z is linked to transcriptional silencing. Here, we provide new evidence linking H2A.Z deubiquitylation to transcription activation. We found that H2A.Z and ubiquitin-specific protease 10 (USP10) are each required for transcriptional activation of the androgen receptor (AR)-regulated PSA and KLK3 genes. USP10 directly deubiquitylates H2A.Z in vitro and in vivo, and reducing USP10 expression in prostate cancer cells results in elevated steady-state levels of mono-ubiquitylated H2A.Z (H2A.Zub1). Moreover, knockdown of USP10 ablates hormone-induced deubiquitylation of chromatin proteins at the AR-regulated genes. Finally, by sequential ChIP assays, we found that H2A.Zub1 is enriched at the PSA and KLK3 regulatory regions, and loss of H2A.Zub1 is associated with transcriptional activation of these genes. Together, these data provide novel insights into how H2A.Z ubiquitylation/deubiquitylation and USP10 function in AR-regulated gene expression.

  3. HSP105 Recruits Protein Phosphatase 2A To Dephosphorylate β-Catenin

    PubMed Central

    Yu, Nancy; Kakunda, Michael; Pham, Victoria; Lill, Jennie R.; Du, Pan; Wongchenko, Matthew; Yan, Yibing; Firestein, Ron

    2015-01-01

    The Wnt/β-catenin pathway causes accumulation of β-catenin in the cytoplasm and its subsequent translocation into the nucleus to initiate the transcription of the target genes. Without Wnt stimulation, β-catenin forms a complex with axin (axis inhibitor), adenomatous polyposis coli (APC), casein kinase 1α (CK1α), and glycogen synthase kinase 3β (GSK3β) and undergoes phosphorylation-dependent ubiquitination. Phosphatases, such as protein phosphatase 2A (PP2A), interestingly, also are components of this degradation complex; therefore, a balance must be reached between phosphorylation and dephosphorylation. How this balance is regulated is largely unknown. Here we show that a heat shock protein, HSP105, is a previously unidentified component of the β-catenin degradation complex. HSP105 is required for Wnt signaling, since depletion of HSP105 compromises β-catenin accumulation and target gene transcription upon Wnt stimulation. Mechanistically, HSP105 depletion disrupts the integration of PP2A into the β-catenin degradation complex, favoring the hyperphosphorylation and degradation of β-catenin. HSP105 is overexpressed in many types of tumors, correlating with increased nuclear β-catenin protein levels and Wnt target gene upregulation. Furthermore, overexpression of HSP105 is a prognostic biomarker that correlates with poor overall survival in breast cancer patients as well as melanoma patients participating in the BRIM2 clinical study. PMID:25645927

  4. Structure and chromosomal localization of the human gene of the phosphotyrosyl phosphatase activator (PTPA) of protein phosphatase 2A

    SciTech Connect

    Van Hoof, C.; Cayla, X.; Merlevede, W.; Goris, J.

    1995-07-20

    The PTPA gene encodes a specific phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase 2A. PTPA, cloned from human genomic libraries, is encoded by one single-copy gene, composed of 10 exons and 9 introns with a total length of about 60 kb. The transcription start site was determined, and the 5{prime} flanking sequence was analyzed for its potential as a promotor. This region lacks a TATA sequence in the appropriate position relative to the transcription start, is very GC-rich, and contains upstream of the transcription start four Sp1 sites, a feature common to many TATA-less promotors. Based on the homology with DNA binding consensus sequences of transcription factors, we identified in this promotor region several putative DNA binding sites for transcription factors, such as NF-{kappa}B, Myb, Ets-1, Myc, and ATF. Transfection experiments with a construct containing the PTPA promotor region inserted 5{prime} of a luciferase reporter gene revealed that the 5{prime} flanking sequence of the PTPA gene indeed displayed promotor activity that seems to be cell-line dependent. By fluorescence in situ hybridization and G-banding, the PTPA gene was localized to the 9q34 region. The PTPA gene is positioned centromeric of c-abl in a region embracing several genes implicated in oncogenesis. 28 refs., 8 figs., 1 tab.

  5. Synthesis, antiproliferative activity and DNA binding properties of novel 5-aminobenzimidazo[1,2-a]quinoline-6-carbonitriles.

    PubMed

    Perin, Nataša; Nhili, Raja; Ester, Katja; Laine, William; Karminski-Zamola, Grace; Kralj, Marijeta; David-Cordonnier, Marie-Hélène; Hranjec, Marijana

    2014-06-10

    The synthesis of 5-amino substituted benzimidazo[1,2-a]quinolines prepared by microwave assisted amination from halogeno substituted precursor was described. The majority of compounds were active at micromolar concentrations against colon, lung and breast carcinoma cell lines in vitro. The N,N-dimethylaminopropyl 9 and piperazinyl substituted derivative 19 showed the most pronounced activity towards all of the three tested tumor cell lines, which could be correlated to the presence of another N heteroatom and its potential interactions with biological targets. The DNA binding studies, consisting of UV/Visible absorbency, melting temperature studies, and fluorescence and circular dichroism titrations, revealed that compounds 9, 19 and 20 bind to DNA as strong intercalators. The cellular distribution analysis, based on compounds' intrinsic fluorescence, showed that compound 20 does not enter the cell, while compounds 9 and 19 do, which is in agreement with their cytotoxic effects. Compound 9 efficiently targets the nucleus whereas 19, which also showed DNA intercalating properties in vitro, was mostly localised in the cytoplasm suggesting that the antitumor mechanism of action is DNA-independent. PMID:24780599

  6. SET antagonist enhances the chemosensitivity of non-small cell lung cancer cells by reactivating protein phosphatase 2A

    PubMed Central

    Hung, Man-Hsin; Wang, Cheng-Yi; Chen, Yen-Lin; Chu, Pei-Yi; Hsiao, Yung-Jen; Tai, Wei-Tien; Chao, Ting-Ting; Yu, Hui-Chuan; Shiau, Chung-Wai; Chen, Kuen-Feng

    2016-01-01

    SET is known as a potent PP2A inhibitor, however, its oncogenic role including its tumorigenic potential and involvement in the development of chemoresistance in non-small cell lung cancer (NSCLC) has not yet been fully discussed. In present study, we investigated the oncogenic role of SET by SET-knockdown and showed that SET silencing impaired cell growth rate, colony formation and tumor sphere formation in A549 cells. Notably, silencing SET enhanced the pro-apoptotic effects of paclitaxel, while ectopic expression of SET diminished the sensitivity of NSCLC cells to paclitaxel. Since the SET protein was shown to affect chemosensitivity, we next examined whether combining a novel SET antagonist, EMQA, sensitized NSCLC cells to paclitaxel. Both the in vitro and in vivo experiments suggested that EMQA and paclitaxel combination treatment was synergistic. Importantly, we found that downregulating p-Akt by inhibiting SET-mediated protein phosphatase 2A (PP2A) inactivation determined the pro-apoptotic effects of EMQA and paclitaxel combination treatment. To dissect the critical site for EMQA functioning, we generated several truncated SET proteins. By analysis of the effects of EMQA on the binding affinities of different truncated SET proteins to PP2A-catalytic subunits, we revealed that the 227–277 amino-acid sequence is critical for EMQA-induced SET inhibition. Our findings demonstrate the critical role of SET in NSCLC, particularly in the development of chemoresistance. The synergistic effects of paclitaxel and the SET antagonist shown in current study encourage further validation of the clinical potential of this combination. PMID:26575017

  7. The interferon-induced gene Ifi27l2a is active in lung macrophages and lymphocytes after influenza A infection but deletion of Ifi27l2a in mice does not increase susceptibility to infection.

    PubMed

    Tantawy, Mohamed A; Hatesuer, Bastian; Wilk, Esther; Dengler, Leonie; Kasnitz, Nadine; Weiß, Siegfried; Schughart, Klaus

    2014-01-01

    Interferons represent one of the first and essential host defense mechanisms after infection, and the activation of the IFN-pathway results in the transcriptional activation of hundreds of interferon-stimulated genes. The alpha-inducible protein 27 like 2A (Ifi27l2a) gene (human synonym: ISG12) is strongly up-regulated in the lung after influenza A infection in mice and has been shown in gene expression studies to be highly correlated to other activated genes. Therefore, we investigated the role of Ifi27l2a for the host defense to influenza A infections in more detail. RT-PCR analyses in non-infected mice demonstrated that Ifi27l2a was expressed in several tissues, including the lung. Detailed analyses of reporter gene expression in lungs from Ifi27l2a-LacZ mice revealed that Ifi27l2a was expressed in macrophages and lymphocytes but not in alveolar cells or bronchiolar epithelium cells. The number of macrophages and lymphocyte strongly increased in the lung after infection, but no significant increase in expression levels of the LacZ reporter gene was found within individual immune cells. Also, no reporter gene expression was found in bronchiolar epithelial cells, alveolar cells or infiltrating neutrophils after infection. Thus, up-regulation of Ifi27l2a in infected lungs is mainly due to the infiltration of macrophages and lymphocytes. Most surprisingly, deletion of Ifi27l2a in mouse knock-out lines did not result in increased susceptibility to infections with H1N1 or H7N7 influenza A virus compared to wild type C57BL/6N mice, suggesting a less important role of the gene for the host response to influenza infections than for bacterial infections. PMID:25184786

  8. Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A)-Mediated changes in Fas Expression and Fas-Dependent Apoptosis: Role of Lyn/Syk activation

    PubMed Central

    Incrocci, Ryan; Hussain, Samira; Stone, Amanda; Bieging, Kathryn; Alt, Lauren A.C.; Fay, Michael J.; Swanson-Mungerson, Michelle

    2015-01-01

    Epstein-Barr virus Latent Membrane Protein 2A (LMP2A) is expressed in EBV-infected B cells in the germinal center, a site of significant apoptosis induced by engagement of Fas on activated B cells. Signals from the B cell receptor (BCR) protect germinal center B cells from Fas-mediated apoptosis, and since LMP2A is a BCR mimic, we hypothesized that LMP2A would also protect B cells from Fas-mediated apoptosis. Surprisingly, latently-infected human and murine B cell lines expressing LMP2A were more sensitive to Fas-mediated apoptosis, as determined by increases in Annexin-V staining, and cleavage of caspase-8, −3 and PARP. Additional studies show that LMP2A-expressing B cell lines demonstrate a Lyn- and Syk-dependent increase in sensitivity to Fas-mediated apoptosis, due to an LMP2A-dependent enhancement in Fas expression. These findings demonstrate the ability for LMP2A to directly increase a pro-apoptotic molecule and have implications for EBV latency as well as the treatment of EBV-associated malignancies. PMID:26255694

  9. Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial myocytes.

    PubMed

    Molina, Cristina E; Llach, Anna; Herraiz-Martínez, Adela; Tarifa, Carmen; Barriga, Montserrat; Wiegerinck, Rob F; Fernandes, Jacqueline; Cabello, Nuria; Vallmitjana, Alex; Benitéz, Raúl; Montiel, José; Cinca, Juan; Hove-Madsen, Leif

    2016-01-01

    Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation.

  10. Nek2A destruction marks APC/C activation at the prophase-to-prometaphase transition by spindle-checkpoint-restricted Cdc20.

    PubMed

    Boekhout, Michiel; Wolthuis, Rob

    2015-04-15

    Nek2 isoform A (Nek2A) is a presumed substrate of the anaphase-promoting complex/cyclosome containing Cdc20 (APC/C(Cdc20)). Nek2A, like cyclin A, is degraded in mitosis while the spindle checkpoint is active. Cyclin A prevents spindle checkpoint proteins from binding to Cdc20 and is recruited to the APC/C in prometaphase. We found that Nek2A and cyclin A avoid being stabilized by the spindle checkpoint in different ways. First, enhancing mitotic checkpoint complex (MCC) formation by nocodazole treatment inhibited the degradation of geminin and cyclin A, whereas Nek2A disappeared at a normal rate. Second, depleting Cdc20 effectively stabilized cyclin A but not Nek2A. Nevertheless, Nek2A destruction crucially depended on Cdc20 binding to the APC/C. Third, in contrast to cyclin A, Nek2A was recruited to the APC/C before the start of mitosis. Interestingly, the spindle checkpoint very effectively stabilized an APC/C-binding mutant of Nek2A, which required the Nek2A KEN box. Apparently, in cells, the spindle checkpoint primarily prevents Cdc20 from binding destruction motifs. Nek2A disappearance marks the prophase-to-prometaphase transition, when Cdc20, regardless of the spindle checkpoint, activates the APC/C. However, Mad2 depletion accelerated Nek2A destruction, showing that spindle checkpoint release further increases APC/C(Cdc20) catalytic activity. PMID:25673878

  11. DYRK1A-mediated phosphorylation of GluN2A at Ser(1048) regulates the surface expression and channel activity of GluN1/GluN2A receptors.

    PubMed

    Grau, Cristina; Arató, Krisztina; Fernández-Fernández, José M; Valderrama, Aitana; Sindreu, Carlos; Fillat, Cristina; Ferrer, Isidre; de la Luna, Susana; Altafaj, Xavier

    2014-01-01

    N-methyl-D-aspartate glutamate receptors (NMDARs) play a pivotal role in neural development and synaptic plasticity, as well as in neurological disease. Since NMDARs exert their function at the cell surface, their density in the plasma membrane is finely tuned by a plethora of molecules that regulate their production, trafficking, docking and internalization in response to external stimuli. In addition to transcriptional regulation, the density of NMDARs is also influenced by post-translational mechanisms like phosphorylation, a modification that also affects their biophysical properties. We previously described the increased surface expression of GluN1/GluN2A receptors in transgenic mice overexpressing the Dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), suggesting that DYRK1A regulates NMDARs. Here we have further investigated whether the density and activity of NMDARs were modulated by DYRK1A phosphorylation. Accordingly, we show that endogenous DYRK1A is recruited to GluN2A-containing NMDARs in the adult mouse brain, and we identify a DYRK1A phosphorylation site at Ser(1048) of GluN2A, within its intracellular C-terminal domain. Mechanistically, the DYRK1A-dependent phosphorylation of GluN2A at Ser(1048) hinders the internalization of GluN1/GluN2A, causing an increase of surface GluN1/GluN2A in heterologous systems, as well as in primary cortical neurons. Furthermore, GluN2A phosphorylation at Ser(1048) increases the current density and potentiates the gating of GluN1/GluN2A receptors. We conclude that DYRK1A is a direct regulator of NMDA receptors and we propose a novel mechanism for the control of NMDAR activity in neurons. PMID:25368549

  12. DYRK1A-mediated phosphorylation of GluN2A at Ser1048 regulates the surface expression and channel activity of GluN1/GluN2A receptors

    PubMed Central

    Grau, Cristina; Arató, Krisztina; Fernández-Fernández, José M.; Valderrama, Aitana; Sindreu, Carlos; Fillat, Cristina; Ferrer, Isidre; de la Luna, Susana; Altafaj, Xavier

    2014-01-01

    N-methyl-D-aspartate glutamate receptors (NMDARs) play a pivotal role in neural development and synaptic plasticity, as well as in neurological disease. Since NMDARs exert their function at the cell surface, their density in the plasma membrane is finely tuned by a plethora of molecules that regulate their production, trafficking, docking and internalization in response to external stimuli. In addition to transcriptional regulation, the density of NMDARs is also influenced by post-translational mechanisms like phosphorylation, a modification that also affects their biophysical properties. We previously described the increased surface expression of GluN1/GluN2A receptors in transgenic mice overexpressing the Dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), suggesting that DYRK1A regulates NMDARs. Here we have further investigated whether the density and activity of NMDARs were modulated by DYRK1A phosphorylation. Accordingly, we show that endogenous DYRK1A is recruited to GluN2A-containing NMDARs in the adult mouse brain, and we identify a DYRK1A phosphorylation site at Ser1048 of GluN2A, within its intracellular C-terminal domain. Mechanistically, the DYRK1A-dependent phosphorylation of GluN2A at Ser1048 hinders the internalization of GluN1/GluN2A, causing an increase of surface GluN1/GluN2A in heterologous systems, as well as in primary cortical neurons. Furthermore, GluN2A phosphorylation at Ser1048 increases the current density and potentiates the gating of GluN1/GluN2A receptors. We conclude that DYRK1A is a direct regulator of NMDA receptors and we propose a novel mechanism for the control of NMDAR activity in neurons. PMID:25368549

  13. Axonal elongation and dendritic branching is enhanced by adenosine A2A receptors activation in cerebral cortical neurons.

    PubMed

    Ribeiro, Filipa F; Neves-Tomé, Raquel; Assaife-Lopes, Natália; Santos, Telma E; Silva, Rui F M; Brites, Dora; Ribeiro, Joaquim A; Sousa, Mónica M; Sebastião, Ana M

    2016-06-01

    Axon growth and dendrite development are key processes for the establishment of a functional neuronal network. Adenosine, which is released by neurons and glia, is a known modulator of synaptic transmission but its influence over neuronal growth has been much less investigated. We now explored the action of adenosine A2A receptors (A2AR) upon neurite outgrowth, discriminating actions over the axon or dendrites, and the mechanisms involved. Morphometric analysis of primary cultures of cortical neurons from E18 Sprague-Dawley rats demonstrated that an A2AR agonist, CGS 21680, enhances axonal elongation and dendritic branching, being the former prevented by inhibitors of phosphoinositide 3-kinase, mitogen-activated protein kinase and phospholipase C, but not of protein kinase A. By testing the influence of a scavenger of BDNF (brain-derived neurotrophic factor) over the action of the A2AR agonist and the action of a selective A2AR antagonist over the action of BDNF, we could conclude that while the action of A2ARs upon dendritic branching is dependent on the presence of endogenous BDNF, the influence of A2ARs upon axonal elongation is independent of endogenous BDNF. In consonance with the action over axonal elongation, A2AR activation promoted a decrease in microtubule stability and an increase in microtubule growth speed in axonal growth cones. In conclusion, we disclose a facilitatory action of A2ARs upon axonal elongation and microtubule dynamics, providing new insights for A2ARs regulation of neuronal differentiation and axonal regeneration.

  14. Synthesis of new steroidal imidazo [1,2-a] pyridines: DNA binding studies, cleavage activity and in vitro cytotoxicity.

    PubMed

    Dar, Ayaz Mahmood; Shamsuzzaman; Gatoo, Manzoor Ahmad

    2015-12-01

    A one-pot strategy for the catalytic synthesis of series of new 5α-cholestan-6-spiro-5'-phenylamino-2H-imidazo [1',2'-a] pyridines (4-14) has been investigated. The synthesized products were obtained in good yields (85-90%) and the protocol uses Multi-component Reaction (MCR) involving steroidal ketones, 2-aminopyridines, isocyanides and propylphosphonic anhydride (®T3P) as a catalyst. After characterization by spectral and analytical data, the interaction studies of compounds (4-6) with DNA were studied by UV-vis, fluorescence spectroscopy, gel electrophoresis and molecular docking. The compounds bind to DNA preferentially through electrostatic and hydrophobic interactions with Kb; 2.35×10(4), 3.71×10(4) and 3.24×10(4) M(-1), respectively, indicating the higher binding affinity of compound 5 towards DNA. Gel electrophoresis showed the concentration dependent cleavage activity of compounds 4-6 with DNA. Molecular docking studies suggested that compounds bind through minor groove to DNA. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay depicted promising anti-proliferative activity of compound 4-9 against different given cancer cells. In Western blotting, the expressions of relevant apoptotic markers depicted an apoptosis by steroidal imidazopyridines in A549 cells. Annexin V-FITC/PI staining data indicated that compounds could effectively induce apoptosis in A549 cells in a dose-dependent manner. FACS analysis shows that the compound 6 bring about cell cycle arrest at 2.62 μM concentration.

  15. Adenosine A2A receptors regulate the activity of sleep regulatory GABAergic neurons in the preoptic hypothalamus

    PubMed Central

    Kumar, Sunil; Rai, Seema; Hsieh, Kung-Chiao; McGinty, Dennis; Alam, Md. Noor

    2013-01-01

    The median preoptic nucleus (MnPN) and the ventrolateral preoptic area (VLPO) are two hypothalamic regions that have been implicated in sleep regulation, and both nuclei contain sleep-active GABAergic neurons. Adenosine is an endogenous sleep regulatory substance, which promotes sleep via A1 and A2A receptors (A2AR). Infusion of A2AR agonist into the lateral ventricle or into the subarachnoid space underlying the rostral basal forebrain (SS-rBF), has been previously shown to increase sleep. We examined the effects of an A2AR agonist, CGS-21680, administered into the lateral ventricle and the SS-rBF on sleep and c-Fos protein immunoreactivity (Fos-IR) in GABAergic neurons in the MnPN and VLPO. Intracerebroventricular administration of CGS-21680 during the second half of lights-on phase increased sleep and increased the number of MnPN and VLPO GABAergic neurons expressing Fos-IR. Similar effects were found with CGS-21680 microinjection into the SS-rBF. The induction of Fos-IR in preoptic GABAergic neurons was not secondary to drug-induced sleep, since CGS-21680 delivered to the SS-rBF significantly increased Fos-IR in MnPN and VLPO neurons in animals that were not permitted to sleep. Intracerebroventricular infusion of ZM-241385, an A2AR antagonist, during the last 2 h of a 3-h period of sleep deprivation caused suppression of subsequent recovery sleep and reduced Fos-IR in MnPN and VLPO GABAergic neurons. Our findings support a hypothesis that A2AR-mediated activation of MnPN and VLPO GABAergic neurons contributes to adenosinergic regulation of sleep. PMID:23637137

  16. Cytochrome P450 2A13 is an efficient enzyme in metabolic activation of aflatoxin G1 in human bronchial epithelial cells.

    PubMed

    Zhang, Zhan; Yang, Xuejiao; Wang, Yun; Wang, Xichen; Lu, Huiyuan; Zhang, Xiaoming; Xiao, Xue; Li, Shushu; Wang, Xinru; Wang, Shou-Lin

    2013-09-01

    Cytochrome P450 2A13 (CYP2A13) is an extrahepatic enzyme that mainly expresses in human respiratory system, and it is reported to mediate the metabolic activation of aflatoxin B1. Due to the structural similarity, AFG1 is predicted to be metabolized by CYP2A13. However, the role of CYP2A13 in metabolic activation of AFG1 is unclear. In present study, human bronchial epithelial cells that stably express CYP2A13 (B-2A13) were used to conduct the effects of AFG1 on cytotoxicity, apoptosis, DNA damages, and their response protein expression. Low concentrations of AFG1 induced significant cytotoxicity and apoptosis, which was consistent with the increased expressions of pro-apoptotic proteins, such as C-PARP and C-caspase-3. In addition, AFG1 increased 8-OHdG and γH2AX in the nuclies and induced S phase arrest and DNA damage in B-2A13 cells, and the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and γH2AX, were activated. All the above effects were inhibited by nicotine (a substrate of CYP2A13) or 8-MOP (an inhibitor of CYP enzymes), confirming that CYP2A13 mediated the AFG1-induced cytotoxicity and DNA damages. Collectively, our findings first demonstrate that CYP2A13 might be an efficient enzyme in metabolic activation of AFG1 and helps provide a new insight into adverse effects of AFG1 in human respiratory system. PMID:23907605

  17. Functional redundancy between the transcriptional activation domains of E2A is mediated by binding to the KIX domain of CBP/p300.

    PubMed

    Denis, Christopher M; Langelaan, David N; Kirlin, Alyssa C; Chitayat, Seth; Munro, Kim; Spencer, Holly L; LeBrun, David P; Smith, Steven P

    2014-06-01

    The E-protein transcription factors play essential roles in lymphopoiesis, with E12 and E47 (hereafter called E2A) being particularly important in B cell specification and maturation. The E2A gene is also involved in a chromosomal translocation that results in the leukemogenic oncoprotein E2A-PBX1. The two activation domains of E2A, AD1 and AD2, display redundant, independent, and cooperative functions in a cell-dependent manner. AD1 of E2A functions by binding the transcriptional co-activator CBP/p300; this interaction is required in oncogenesis and occurs between the conserved ϕ-x-x-ϕ-ϕ motif in AD1 and the KIX domain of CBP/p300. However, co-activator recruitment by AD2 has not been characterized. Here, we demonstrate that the first of two conserved ϕ-x-x-ϕ-ϕ motifs within AD2 of E2A interacts at the same binding site on KIX as AD1. Mutagenesis uncovered a correspondence between the KIX-binding affinity of AD2 and transcriptional activation. Although AD2 is dispensable for oncogenesis, experimentally increasing the affinity of AD2 for KIX uncovered a latent potential to mediate immortalization of primary hematopoietic progenitors by E2A-PBX1. Our findings suggest that redundancy between the two E2A activation domains with respect to transcriptional activation and oncogenic function is mediated by binding to the same surface of the KIX domain of CBP/p300.

  18. Guanosine may increase absence epileptic activity by means of A2A adenosine receptors in Wistar Albino Glaxo Rijswijk rats.

    PubMed

    Lakatos, Renáta Krisztina; Dobolyi, Árpád; Todorov, Mihail Ivilinov; Kékesi, Katalin A; Juhász, Gábor; Aleksza, Magdolna; Kovács, Zsolt

    2016-06-01

    The non-adenosine nucleoside guanosine (Guo) was demonstrated to decrease quinolinic acid(QA)-induced seizures, spontaneously emerged absence epileptic seizures and lipopolysaccharide(LPS)-evoked induction of absence epileptic seizures suggesting its antiepileptic potential. It was also described previously that intraperitoneal (i.p.) injection of 20 and 50mg/kg Guo decreased the number of spike-wave discharges (SWDs) in a well investigated model of human absence epilepsy, the Wistar Albino Glaxo Rijswijk (WAG/Rij) rats during 4th (20mg/kg Guo) and 3rd as well as 4th (50mg/kg Guo) measuring hours. Guanosine can potentially decrease SWD number by means of its putative receptors but absence epileptic activity changing effects of Guo by means of increased extracellular adenosine (Ado) cannot be excluded. An increase in the dose of i.p. injected Guo is limited by its low solubility in saline, therefore, we addressed in the present study whether higher doses of Guo, diluted in sodium hydroxide (NaOH) solution, have more potent antiepileptic effect in WAG/Rij rats. We confirmed that i.p. 50mg/kg Guo decreased but, surprisingly, i.p. 100mg/kg Guo enhanced the number of SWDs in WAG/Rij rats. Combined i.p. injection of a non-selective Ado receptor antagonist theophylline (5mg/kg) or a selective Ado A2A receptor (A2AR) antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) (1mg/kg) and a cyclooxygenase 1 and 2/COX-1 and COX-2 inhibitor indomethacin (10mg/kg) with 100mg/kg Guo decreased the SWD number compared to i.p. 100mg/kg Guo alone. The results suggest that i.p. 100mg/kg Guo can increase SWD number by means of the adenosinergic system. PMID:27154620

  19. Synthesis and evaluation of the anticoccidial activity of trifluoropyrido[1,2-a]pyrimidin-2-one derivatives.

    PubMed

    Silpa, Laurence; Niepceron, Alisson; Laurent, Fabrice; Brossier, Fabien; Pénichon, Mélanie; Enguehard-Gueiffier, Cécile; Abarbri, Mohamed; Silvestre, Anne; Petrignet, Julien

    2016-01-01

    Screening of our chemical library to discover new molecules exhibiting in vitro activity against the invasion of host cells by Eimeria tenella revealed a lead compound with an IC50 of 15μM. Structure-activity relationship studies were conducted with 34 newly synthesized compounds to identify more active molecules and enhance in vitro activity against the parasite. Four compounds were more effective in inhibiting MDBK cell invasion in vitro than the lead compound. PMID:26597537

  20. A novel CYP2A6*20 allele found in African-American population produces a truncated protein lacking enzymatic activity.

    PubMed

    Fukami, Tatsuki; Nakajima, Miki; Higashi, Eriko; Yamanaka, Hiroyuki; McLeod, Howard L; Yokoi, Tsuyoshi

    2005-09-01

    Human CYP2A6 is a cytochrome P450 (CYP) isoform responsible for the metabolism of nicotine, coumarin, tegafur, and valproic acid, and metabolic activation of nitrosamines. Genetic polymorphisms of the CYP2A6 gene are a major causal factor of the large interindividual differences in nicotine metabolism. In the present study, we identified a novel allele, termed CYP2A6*20, in an African-American population. The allele possesses the deletion of two nucleotides in exon 4 resulting in a frame-shift from codon 196 and an early stop codon at 220 (exon 5) as well as three synonymous SNPs of G51A (G51A in cDNA), T5684C (T1191C), and C6692G (C1546G, 3'-untranslated region). The allele frequency in the African-American population (n=96) was 1.6% (95% confidence interval, 0.6-4.5%). In contrast, the CYP2A6*20 allele was not found in Caucasians (European-American) (n=185), Japanese (n=184) and Korean (n=209) populations. To investigate the effects of the polymorphism on the enzymatic activities, we expressed a wild type or variant (deletion of two nucleotides) CYP2A6 together with NADPH-CYP reductase in Escherichia coli. SDS-PAGE and immunoblot analyses demonstrated that truncated CYP2A6 protein was produced from the variant allele, although detected mRNA was the predicted size by reverse transcriptional-polymerase chain reaction. Coumarin 7-hydroxylation and nicotine C-oxidation, which are typical CYP2A6 activities, were completely abolished in the E. coli membrane expressing the variant allele. In vivo nicotine metabolism was evaluated using the cotinine/nicotine ratio 2 h after the chewing of one piece of nicotine gum. Two CYP2A6*1/CYP2A6*20 heterozygotes and a single CYP2A6*17/CYP2A6*20 heterozygote revealed lower cotinine/nicotine ratios compared with CYP2A6*1/CYP2A6*1 subjects (1.6 and 4.5, and 1.8 versus 9.5+/-5.4, n=52, respectively). We found a novel CYP2A6*20 allele in African-American subjects which codes a truncated protein lacking enzymatic activity.

  1. Genetic determinants of CYP2A6 activity across racial/ethnic groups with different risks of lung cancer and effect on their smoking intensity.

    PubMed

    Park, Sungshim L; Tiirikainen, Maarit I; Patel, Yesha M; Wilkens, Lynne R; Stram, Daniel O; Le Marchand, Loic; Murphy, Sharon E

    2016-03-01

    Genetic variation in cytochrome P450 2A6 (CYP2A6) gene is the primary contributor to the intraindividual and interindividual differences in nicotine metabolism and has been found to influence smoking intensity. However, no study has evaluated the relationship between CYP2A6 genetic variants and the CYP2A6 activity ratio (total 3-hydroxycotinine/cotinine) and their influence on smoking intensity [total nicotine equivalents (TNE)], across five racial/ethnic groups found to have disparate rates of lung cancer. This study genotyped 10 known functional CYP2A6 genetic or copy number variants in 2115 current smokers from the multiethnic cohort study [African Americans (AA) = 350, Native Hawaiians (NH) = 288, Whites = 413, Latinos (LA) = 437 and Japanese Americans (JA) = 627] to conduct such an investigation. Here, we found that LA had the highest CYP2A6 activity followed by Whites, AA, NH and JA, who had the lowest levels. Adjusting for age, sex, race/ethnicity and body mass index, we found that CYP2A6 diplotypes were predictive of TNE levels, particularly in AA and JA (P trend < 0.0001). However, only in JA did the association remain after accounting for cigarettes per day. Also, it is only in this population that the lower activity ratio supports lower TNE levels, carcinogen exposure and thereby lower risk of lung cancer. Despite the association between nicotine metabolism (CYP2A6 activity phenotype and diplotypes) and smoking intensity (TNE), CYP2A6 levels did not correlate with the higher TNE levels found in AA nor the lower TNE levels found in LA, suggesting that other factors may influence smoking dose in these populations. Therefore, further study in these populations is recommended.

  2. Genetic determinants of CYP2A6 activity across racial/ethnic groups with different risks of lung cancer and effect on their smoking intensity.

    PubMed

    Park, Sungshim L; Tiirikainen, Maarit I; Patel, Yesha M; Wilkens, Lynne R; Stram, Daniel O; Le Marchand, Loic; Murphy, Sharon E

    2016-03-01

    Genetic variation in cytochrome P450 2A6 (CYP2A6) gene is the primary contributor to the intraindividual and interindividual differences in nicotine metabolism and has been found to influence smoking intensity. However, no study has evaluated the relationship between CYP2A6 genetic variants and the CYP2A6 activity ratio (total 3-hydroxycotinine/cotinine) and their influence on smoking intensity [total nicotine equivalents (TNE)], across five racial/ethnic groups found to have disparate rates of lung cancer. This study genotyped 10 known functional CYP2A6 genetic or copy number variants in 2115 current smokers from the multiethnic cohort study [African Americans (AA) = 350, Native Hawaiians (NH) = 288, Whites = 413, Latinos (LA) = 437 and Japanese Americans (JA) = 627] to conduct such an investigation. Here, we found that LA had the highest CYP2A6 activity followed by Whites, AA, NH and JA, who had the lowest levels. Adjusting for age, sex, race/ethnicity and body mass index, we found that CYP2A6 diplotypes were predictive of TNE levels, particularly in AA and JA (P trend < 0.0001). However, only in JA did the association remain after accounting for cigarettes per day. Also, it is only in this population that the lower activity ratio supports lower TNE levels, carcinogen exposure and thereby lower risk of lung cancer. Despite the association between nicotine metabolism (CYP2A6 activity phenotype and diplotypes) and smoking intensity (TNE), CYP2A6 levels did not correlate with the higher TNE levels found in AA nor the lower TNE levels found in LA, suggesting that other factors may influence smoking dose in these populations. Therefore, further study in these populations is recommended. PMID:26818358

  3. Second generation tyrosine kinase inhibitors prevent disease progression in high-risk (high CIP2A) chronic myeloid leukaemia patients.

    PubMed

    Lucas, C M; Harris, R J; Holcroft, A K; Scott, L J; Carmell, N; McDonald, E; Polydoros, F; Clark, R E

    2015-07-01

    High cancerous inhibitor of PP2A (CIP2A) protein levels at diagnosis of chronic myeloid leukaemia (CML) are predictive of disease progression in imatinib-treated patients. It is not known whether this is true in patients treated with second generation tyrosine kinase inhibitors (2G TKI) from diagnosis, and whether 2G TKIs modulate the CIP2A pathway. Here, we show that patients with high diagnostic CIP2A levels who receive a 2G TKI do not progress, unlike those treated with imatinib (P=<0.0001). 2G TKIs induce more potent suppression of CIP2A and c-Myc than imatinib. The transcription factor E2F1 is elevated in high CIP2A patients and following 1 month of in vivo treatment 2G TKIs suppress E2F1 and reduce CIP2A; these effects are not seen with imatinib. Silencing of CIP2A, c-Myc or E2F1 in K562 cells or CML CD34+ cells reactivates PP2A leading to BCR-ABL suppression. CIP2A increases proliferation and this is only reduced by 2G TKIs. Patients with high CIP2A levels should be offered 2G TKI treatment in preference to imatinib. 2G TKIs disrupt the CIP2A/c-Myc/E2F1 positive feedback loop, leading to lower disease progression risk. The data supports the view that CIP2A inhibits PP2Ac, stabilising E2F1, creating a CIP2A/c-Myc/E2F1 positive feedback loop, which imatinib cannot overcome.

  4. Facile synthesis, structural evaluation, antimicrobial activity and synergistic effects of novel imidazo[1,2-a]pyridine based organoselenium compounds.

    PubMed

    Kumar, Sanjeev; Sharma, Nidhi; Maurya, Indresh K; Bhasin, Aman K K; Wangoo, Nishima; Brandão, Paula; Félix, Vítor; Bhasin, K K; Sharma, Rohit K

    2016-11-10

    A simple and efficient method has been described to synthesize the hitherto unknown imidazo[1,2-a]pyridine selenides (5a-l) by reaction of 2-chloroimidazo [1,2-a]pyridines with aryl/heteroaryl selenols, generated in situ by reduction of various diselenides with hypophosphorous acid. The crystal structures of 3-nitro-2-(phenylselanyl)-imidazo[1,2-a]pyridine (5a), 2-(mesitylselanyl)-3-nitro-imidazo[1,2-a]pyridine (5d) and 3-nitro-2-(pyridin-2-ylselanyl)-imidazo[1,2-a]pyridine (5e) were confirmed by X-ray crystallography and the DFT calculations were performed to determine various structural parameters which were correlated with the X-ray crystal structures. The synthesized compounds were subjected to antimicrobial evaluation and it was found that compounds 5a and 5j were active against gram negative bacterium Escherichia coli whereas compound 5e was active against different fungal strains. Time kill assay was performed to understand the microbial activity of synthesized organoselenium compounds and the toxicity of these compounds was evaluated against human cell lines. Synergistic effects of active compounds 5a and 5e were tested with existing antibiotic drugs which exhibited that the antibiotic combination with synthesized organoselenium compounds efficiently enhanced the antimicrobial activity.

  5. Abscisic Acid Promotion of Arbuscular Mycorrhizal Colonization Requires a Component of the PROTEIN PHOSPHATASE 2A Complex1[W][OPEN

    PubMed Central

    Charpentier, Myriam; Sun, Jongho; Wen, Jiangqi; Mysore, Kirankumar S.; Oldroyd, Giles E.D.

    2014-01-01

    Legumes can establish intracellular interactions with symbiotic microbes to enhance their fitness, including the interaction with arbuscular mycorrhizal (AM) fungi. AM fungi colonize root epidermal cells to gain access to the root cortex, and this requires the recognition by the host plant of fungus-made mycorrhizal factors. Genetic dissection has revealed the symbiosis signaling pathway that allows the recognition of AM fungi, but the downstream processes that are required to promote fungal infection are poorly understood. Abscisic acid (ABA) has been shown to promote arbuscule formation in tomato (Solanum lycopersicum). Here, we show that ABA modulates the establishment of the AM symbiosis in Medicago truncatula by promoting fungal colonization at low concentrations and impairing it at high concentrations. We show that the positive regulation of AM colonization via ABA requires a PROTEIN PHOSPHATASE 2A (PP2A) holoenzyme subunit, PP2AB′1. Mutations in PP2AB′1 cause reduced levels of AM colonization that cannot be rescued with permissive ABA application. The action of PP2AB′1 in response to ABA is unlinked to the generation of calcium oscillations, as the pp2aB′1 mutant displays a normal calcium response. This contrasts with the application of high concentrations of ABA that impairs mycorrhizal factor-induced calcium oscillations, suggesting different modes of action of ABA on the AM symbiosis. Our work reveals that ABA functions at multiple levels to regulate the AM symbiosis and that a PP2A phosphatase is required for the ABA promotion of AM colonization. PMID:25293963

  6. Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis.

    PubMed

    Flögel, Ulrich; Burghoff, Sandra; van Lent, Peter L E M; Temme, Sebastian; Galbarz, Lisa; Ding, Zhaoping; El-Tayeb, Ali; Huels, Sandra; Bönner, Florian; Borg, Nadine; Jacoby, Christoph; Müller, Christa E; van den Berg, Wim B; Schrader, Jürgen

    2012-08-01

    Adenosine A(2A) receptor (A(2A)R) agonists are both highly effective anti-inflammatory agents and potent vasodilators. To separate these two activities, we have synthesized phosphorylated A(2A)R agonists (prodrugs) that require the presence of ecto-5'-nucleotidase (CD73) to become activated. In the model of collagen-induced arthritis, 2-(cyclohexylethylthio)adenosine 5'-monophosphate (chet-AMP), but not 2-(cyclohexylethylthio)adenosine (chet-adenosine), potently reduced inflammation as assessed by fluorine-19 ((19)F) magnetic resonance imaging and by histology. The prodrug effect was blunted by inhibition of CD73 and A(2A)R. The selectivity of drug action is due to profound up-regulation of CD73 and adenosine A(2A)R expression in neutrophils and inflammatory monocytes as found in recovered cells from the synovial fluid of arthritic mice. Plasma chet-adenosine was in the subnanomolar range when chet-AMP was applied, whereas concentrations required for vasodilation were about 100 times higher. Thus, chet-AMP is a potent immunosuppressant with negligible vasodilatory activity. These data suggest that phosphorylated A(2A)R agonists may serve as a promising new group of drugs for targeted immunotherapy of inflammation. PMID:22875828

  7. Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis.

    PubMed

    Flögel, Ulrich; Burghoff, Sandra; van Lent, Peter L E M; Temme, Sebastian; Galbarz, Lisa; Ding, Zhaoping; El-Tayeb, Ali; Huels, Sandra; Bönner, Florian; Borg, Nadine; Jacoby, Christoph; Müller, Christa E; van den Berg, Wim B; Schrader, Jürgen

    2012-08-01

    Adenosine A(2A) receptor (A(2A)R) agonists are both highly effective anti-inflammatory agents and potent vasodilators. To separate these two activities, we have synthesized phosphorylated A(2A)R agonists (prodrugs) that require the presence of ecto-5'-nucleotidase (CD73) to become activated. In the model of collagen-induced arthritis, 2-(cyclohexylethylthio)adenosine 5'-monophosphate (chet-AMP), but not 2-(cyclohexylethylthio)adenosine (chet-adenosine), potently reduced inflammation as assessed by fluorine-19 ((19)F) magnetic resonance imaging and by histology. The prodrug effect was blunted by inhibition of CD73 and A(2A)R. The selectivity of drug action is due to profound up-regulation of CD73 and adenosine A(2A)R expression in neutrophils and inflammatory monocytes as found in recovered cells from the synovial fluid of arthritic mice. Plasma chet-adenosine was in the subnanomolar range when chet-AMP was applied, whereas concentrations required for vasodilation were about 100 times higher. Thus, chet-AMP is a potent immunosuppressant with negligible vasodilatory activity. These data suggest that phosphorylated A(2A)R agonists may serve as a promising new group of drugs for targeted immunotherapy of inflammation.

  8. PM2: a partitioning-mining-measuring method for identifying progressive changes in older adults' sleeping activity.

    PubMed

    Lin, Qiang; Zhang, Daqing; Connelly, Kay; Zhou, Xingshe; Ni, Hongbo

    2014-01-01

    As people age, their health typically declines, resulting in difficulty in performing daily activities. Sleep-related problems are common issues with older adults, including shifts in circadian rhythms. A detection method is proposed to identify progressive changes in sleeping activity using a three-step process: partitioning, mining, and measuring. Specifically, the original spatiotemporal representation of each sleeping activity instance was first transformed into a sequence of equal-sized segments, or symbols, via a partitioning process. A data-mining-based algorithm was proposed to find symbols that are not present in all instances of a sleeping activity. Finally, a measuring process was responsible for evaluating the changes in these symbols. Experimental evaluation conducted on a group of datasets of older adults showed that the proposed method is able to identify progressive changes in sleeping activity.

  9. The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken.

    PubMed

    Bruce, Kimberley; Myers, Fiona A; Mantouvalou, Evangelia; Lefevre, Pascal; Greaves, Ian; Bonifer, Constanze; Tremethick, David J; Thorne, Alan W; Crane-Robinson, Colyn

    2005-01-01

    The replacement histone H2A.Z is variously reported as being linked to gene expression and preventing the spread of heterochromatin in yeast, or concentrated at heterochromatin in mammals. To resolve this apparent dichotomy, affinity-purified antibodies against the N-terminal region of H2A.Z, in both a triacetylated and non-acetylated state, are used in native chromatin immmuno-precipitation experiments with mononucleosomes from three chicken cell types. The hyperacetylated species concentrates at the 5' end of active genes, both tissue specific and housekeeping but is absent from inactive genes, while the unacetylated form is absent from both active and inactive genes. A concentration of H2A.Z is also found at insulators under circumstances implying a link to barrier activity but not to enhancer blocking. Although acetylated H2A.Z is widespread throughout the interphase genome, at mitosis its acetylation is erased, the unmodified form remaining. Thus, although H2A.Z may operate as an epigenetic marker for active genes, its N-terminal acetylation does not. PMID:16204459

  10. 14-3-3ζ Interacts with Stat3 and Regulates Its Constitutive Activation in Multiple Myeloma Cells

    PubMed Central

    Li, Wenliang; Xiong, Qian; Yang, Mingkun; Zheng, Peng; Li, Chongyang; Pei, Jianfeng; Ge, Feng

    2012-01-01

    The 14-3-3 proteins are a family of regulatory signaling molecules that interact with other proteins in a phosphorylation-dependent manner and function as adapter or scaffold proteins in signal transduction pathways. One family member, 14-3-3ζ, is believed to function in cell signaling, cycle control, and apoptotic death. A systematic proteomic analysis done in our laboratory has identified signal transducers and activators of transcription 3 (Stat3) as a novel 14-3-3ζ interacting protein. Following our initial finding, in this study, we provide evidence that 14-3-3ζ interacts physically with Stat3. We further demonstrate that phosphorylation of Stat3 at Ser727 is vital for 14-3-3ζ interaction and mutation of Ser727 to Alanine abolished 14-3-3ζ/Stat3 association. Inhibition of 14-3-3ζ protein expression in U266 cells inhibited Stat3 Ser727 phosphorylation and nuclear translocation, and decreased both Stat3 DNA binding and transcriptional activity. Moreover, 14-3-3ζ is involved in the regulation of protein kinase C (PKC) activity and 14-3-3ζ binding to Stat3 protects Ser727 dephosphorylation from protein phosphatase 2A (PP2A). Taken together, our findings support the model that multiple signaling events impinge on Stat3 and that 14-3-3ζ serves as an essential coordinator for different pathways to regulate Stat3 activation and function in MM cells. PMID:22279540

  11. Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers

    PubMed Central

    Nakahata, Shingo; Ichikawa, Tomonaga; Maneesaay, Phudit; Saito, Yusuke; Nagai, Kentaro; Tamura, Tomohiro; Manachai, Nawin; Yamakawa, Norio; Hamasaki, Makoto; Kitabayashi, Issay; Arai, Yasuhito; Kanai, Yae; Taki, Tomohiko; Abe, Takaya; Kiyonari, Hiroshi; Shimoda, Kazuya; Ohshima, Koichi; Horii, Akira; Shima, Hiroshi; Taniwaki, Masafumi; Yamaguchi, Ryoji; Morishita, Kazuhiro

    2014-01-01

    Constitutive phosphatidylinositol 3-kinase (PI3K)-AKT activation has a causal role in adult T-cell leukaemia-lymphoma (ATLL) and other cancers. ATLL cells do not harbour genetic alterations in PTEN and PI3KCA but express high levels of PTEN that is highly phosphorylated at its C-terminal tail. Here we report a mechanism for the N-myc downstream-regulated gene 2 (NDRG2)-dependent regulation of PTEN phosphatase activity via the dephosphorylation of PTEN at the Ser380, Thr382 and Thr383 cluster within the C-terminal tail. We show that NDRG2 is a PTEN-binding protein that recruits protein phosphatase 2A (PP2A) to PTEN. The expression of NDRG2 is frequently downregulated in ATLL, resulting in enhanced phosphorylation of PTEN at the Ser380/Thr382/Thr383 cluster and enhanced activation of the PI3K-AKT pathway. Given the high incidence of T-cell lymphoma and other cancers in NDRG2-deficient mice, PI3K-AKT activation via enhanced PTEN phosphorylation may be critical for the development of cancer. PMID:24569712

  12. Activity-induced synaptic delivery of the GluN2A-containing NMDA receptor is dependent on endoplasmic reticulum chaperone Bip and involved in fear memory

    PubMed Central

    Zhang, Xiao-min; Yan, Xun-yi; Zhang, Bin; Yang, Qian; Ye, Mao; Cao, Wei; Qiang, Wen-bin; Zhu, Li-jun; Du, Yong-lan; Xu, Xing-xing; Wang, Jia-sheng; Xu, Fei; Lu, Wei; Qiu, Shuang; Yang, Wei; Luo, Jian-hong

    2015-01-01

    The N-methyl-D-aspartate receptor (NMDAR) in adult forebrain is a heterotetramer mainly composed of two GluN1 subunits and two GluN2A and/or GluN2B subunits. The synaptic expression and relative numbers of GluN2A- and GluN2B-containing NMDARs play critical roles in controlling Ca2+-dependent signaling and synaptic plasticity. Previous studies have suggested that the synaptic trafficking of NMDAR subtypes is differentially regulated, but the precise molecular mechanism is not yet clear. In this study, we demonstrated that Bip, an endoplasmic reticulum (ER) chaperone, selectively interacted with GluN2A and mediated the neuronal activity-induced assembly and synaptic incorporation of the GluN2A-containing NMDAR from dendritic ER. Furthermore, the GluN2A-specific synaptic trafficking was effectively disrupted by peptides interrupting the interaction between Bip and GluN2A. Interestingly, fear conditioning in mice was disrupted by intraperitoneal injection of the interfering peptide before training. In summary, we have uncovered a novel mechanism for the activity-dependent supply of synaptic GluN2A-containing NMDARs, and demonstrated its relevance to memory formation. PMID:26088419

  13. In vitro anti-Giardia lamblia activity of 2-aryl-3-hydroxymethyl imidazo[1,2-a]pyridines and -pyrimidines, individually and in combination with albendazole.

    PubMed

    Velázquez-Olvera, Stephanía; Salgado-Zamora, Héctor; Jiménez-Cardoso, Enedina; Campos-Aldrete, Maria-Elena; Pérez-González, Cuauhtémoc; Ben Hadda, Taibi

    2016-03-01

    Giardiasis is a major diarrheal disease found throughout the world, the causative agent being the flagellate protozoan Giardia intestinalis. Infection is more common in children than in adults. The appearance of drug resistance has complicated the treatment of several parasitic diseases, including giardiasis. Thus, the aim of this investigation was to make an in vitro evaluation of the antigiardia response of synthetic derivatives 2-aryl-3-hydroxymethylimidazo[1,2-a]pyridines 1 and -pyrimidines 2 against trophozoites of Giardia lamblia WB, in comparison with the reference drug, albendazole. Additionally, the synergistic action of albendazole in combination with each of the most active 2-aryl-3-hydroxymethyl imidazo[1,2-a]pyridines and pyrimidines was also assessed. Based on the IC50 values obtained, the best anti-Giardia activity was provided by the 3-hydroxymethyl-4-fluorophenylimidazo[1,2-a]pyrimidine derivative 2c and the corresponding imidazo[1,2-a]pyrimidine with the p-tolyl substituent 2d, followed by 2a and 2b. These four compounds showed effectiveness at a concentration similar to that of albendazole. Regarding synergism, the IC50 of the combination of albendazole with 2a, 2b or 2c gave the best anti-Giardia action, showing greater efficacy than albendazole alone. Hence, G. lamblia WB showed high susceptibility to some 2-aryl-3-hydroxymethyl imidazo[1,2-a] pyrimidines, which acted synergistically when used in combination with albendazole. PMID:26657313

  14. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease. PMID:23785166

  15. Sustained Toll-Like Receptor 9 Activation Promotes Systemic and Cardiac Inflammation, and Aggravates Diastolic Heart Failure in SERCA2a KO Mice

    PubMed Central

    Dhondup, Yangchen; Sjaastad, Ivar; Scott, Helge; Sandanger, Øystein; Zhang, Lili; Haugstad, Solveig Bjærum; Aronsen, Jan Magnus; Ranheim, Trine; Holmen, Sigve Dhondup; Alfsnes, Katrine; Ahmed, Muhammad Shakil; Attramadal, Håvard; Gullestad, Lars; Aukrust, Pål; Christensen, Geir; Yndestad, Arne; Vinge, Leif Erik

    2015-01-01

    Aim Cardiac inflammation is important in the pathogenesis of heart failure. However, the consequence of systemic inflammation on concomitant established heart failure, and in particular diastolic heart failure, is less explored. Here we investigated the impact of systemic inflammation, caused by sustained Toll-like receptor 9 activation, on established diastolic heart failure. Methods and Results Diastolic heart failure was established in 8–10 week old cardiomyocyte specific, inducible SERCA2a knock out (i.e., SERCA2a KO) C57Bl/6J mice. Four weeks after conditional KO, mice were randomized to receive Toll-like receptor 9 agonist (CpG B; 2μg/g body weight) or PBS every third day. After additional four weeks, echocardiography, phase contrast magnetic resonance imaging, histology, flow cytometry, and cardiac RNA analyses were performed. A subgroup was followed, registering morbidity and death. Non-heart failure control groups treated with CpG B or PBS served as controls. Our main findings were: (i) Toll-like receptor 9 activation (CpG B) reduced life expectancy in SERCA2a KO mice compared to PBS treated SERCA2a KO mice. (ii) Diastolic function was lower in SERCA2a KO mice with Toll-like receptor 9 activation. (iii) Toll-like receptor 9 stimulated SERCA2a KO mice also had increased cardiac and systemic inflammation. Conclusion Sustained activation of Toll-like receptor 9 causes cardiac and systemic inflammation, and deterioration of SERCA2a depletion-mediated diastolic heart failure. PMID:26461521

  16. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  17. Anti-inflammatory effects of Perilla frutescens in activated human neutrophils through two independent pathways: Src family kinases and Calcium

    PubMed Central

    Chen, Chun-Yu; Leu, Yann-Lii; Fang, Yu; Lin, Chwan-Fwu; Kuo, Liang-Mou; Sung, Wei-Che; Tsai, Yung-Fong; Chung, Pei-Jen; Lee, Ming-Chung; Kuo, Yu-Ting; Yang, Hsuan-Wu; Hwang, Tsong-Long

    2015-01-01

    The leaves of Perilla frutescens (L.) Britt. have been traditionally used as an herbal medicine in East Asian countries to treat a variety diseases. In this present study, we investigated the inhibitory effects of P. frutescens extract (PFE) on N-formyl-Met-Leu-Phe (fMLF)-stimulated human neutrophils and the underlying mechanisms. PFE (1, 3, and 10 μg/ml) inhibited superoxide anion production, elastase release, reactive oxygen species formation, CD11b expression, and cell migration in fMLF-activated human neutrophils in dose-dependent manners. PFE inhibited fMLF-induced phosphorylation of the Src family kinases (SFKs), Src (Tyr416) and Lyn (Tyr396), and reduced their enzymatic activities. Both PFE and PP2 (a selective inhibitor of SFKs) reduced the phosphorylation of Burton’s tyrosine kinases (Tyr223) and Vav (Tyr174) in fMLF-activated human neutrophils. Additionally, PFE decreased intracellular Ca2+ levels ([Ca2+]i), whereas PP2 prolonged the time required for [Ca2+]i to return to its basal level. Our findings indicated that PFE effectively regulated the inflammatory activities of fMLF-activated human neutrophils. The anti-inflammatory effects of PFE on activated human neutrophils were mediated through two independent signaling pathways involving SFKs (Src and Lyn) and mobilization of intracellular Ca2+. PMID:26659126

  18. Antimicrobial activity of pleurocidin is retained in Plc-2, a C-terminal 12-amino acid fragment.

    PubMed

    Souza, Andre L A; Díaz-Dellavalle, Paola; Cabrera, Andrea; Larrañaga, Patricia; Dalla-Rizza, Marco; De-Simone, Salvatore G

    2013-07-01

    An analysis of a series of five peptides composed of various portions of the pleurocidin (Plc) sequence identified a l2-amino acid fragment from the C-terminus of Plc, designated Plc-2, as the smallest fragment that retained a antimicrobial activity comparable to that of the parent compound. MIC tests in vitro with low-ionic-strength medium showed that Plc-2 has potent activity against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus but not against Enterococcus faecalis. The antifungal activity of the synthetic peptides against phytopathogenic fungi, such as Fusarium oxysporum, Colletotrichum sp., Aspergillus niger and Alternaria sp., also identified Plc-2 as a biologically active peptide. Microscopy studies of fluorescently stained fungi treated with Plc-2 demonstrated that cytoplasmic and nuclear membranes were compromised in all strains of phytopathogenic fungi tested. Together, these results identify Plc-2 as a potential antimicrobial agent with similar properties to its parent compound, pleurocidin. In addition, it demonstrated that the KHVGKAALTHYL residues are critical for the antimicrobial activity described for pleurocidin.

  19. A large Rab GTPase encoded by CRACR2A is a component of subsynaptic vesicles that transmit T cell activation signals.

    PubMed

    Srikanth, Sonal; Kim, Kyun-Do; Gao, Yuanyuan; Woo, Jin Seok; Ghosh, Shubhamoy; Calmettes, Guillaume; Paz, Aviv; Abramson, Jeff; Jiang, Meisheng; Gwack, Yousang

    2016-03-22

    More than 60 members of the Rab family of guanosine triphosphatases (GTPases) exist in the human genome. Rab GTPases are small proteins that are primarily involved in the formation, trafficking, and fusion of vesicles. We showed thatCRACR2A(Ca(2+) release-activated Ca(2+) channel regulator 2A) encodes a lymphocyte-specific large Rab GTPase that contains multiple functional domains, including EF-hand motifs, a proline-rich domain (PRD), and a Rab GTPase domain with an unconventional prenylation site. Through experiments involving gene silencing in cells and knockout mice, we demonstrated a role for CRACR2A in the activation of the Ca(2+) and c-Jun N-terminal kinase signaling pathways in response to T cell receptor (TCR) stimulation. Vesicles containing this Rab GTPase translocated from near the Golgi to the immunological synapse formed between a T cell and a cognate antigen-presenting cell to activate these signaling pathways. The interaction between the PRD of CRACR2A and the guanidine nucleotide exchange factor Vav1 was required for the accumulation of these vesicles at the immunological synapse. Furthermore, we demonstrated that GTP binding and prenylation of CRACR2A were associated with its localization near the Golgi and its stability. Our findings reveal a previously uncharacterized function of a large Rab GTPase and vesicles near the Golgi in TCR signaling. Other GTPases with similar domain architectures may have similar functions in T cells. PMID:27016526

  20. Molecular mechanism underlying Akt activation in zinc-induced cardioprotection

    PubMed Central

    Lee, SungRyul; Chanoit, Guillaume; McIntosh, Rachel; Zvara, David A.; Xu, Zhelong

    2009-01-01

    Our previous study demonstrated that zinc prevents cardiac reperfusion injury by targeting the mitochondrial permeability transition pore (mPTP) via Akt and glycogen synthetase kinase 3β (GSK-3β). We aimed to address the mechanism by which zinc activates Akt. Treatment of H9c2 cells with ZnCl2 (10 μM) in the presence of the zinc ionophore pyrithione (4 μM) for 20 min enhanced Akt phosphorylation (Ser473), indicating that zinc can rapidly activate Akt. Zinc did not alter either phosphatase and tensin homolog deleted on chromosome 10 (PTEN) phosphorylation and total PTEN protein levels or PTEN oxidation, implying that PTEN may not play a role in the action of zinc. However, zinc-induced Akt phosphorylation was blocked by both the nonselective receptor tyrosine kinase (RTK) inhibitor genistein and the selective insulin-like growth factor-1 RTK (IGF-1RTK) inhibitor AG1024, indicating that zinc activates Akt via IGF-1RTK. Zinc-induced phosphorylation of protein tyrosine and Ser/Thr was also abolished by AG1024. In addition, zinc markedly enhanced phosphorylation of IGF-1 receptor (IGF-1R), which was again reversed by genistein and AG1024. A confocal imaging study revealed that AG1024 abolished the preventive effect of zinc on oxidant-induced mPTP opening, confirming that IGF-1RTK plays a role in zinc-induced cardioprotection. Furthermore, zinc decreased the activity of protein phosphatase 2A (PP2A), a major protein Ser/Thr phosphatase, implying that protein Ser/Thr phosphatases may also play a role in the action of zinc on Akt activity. Taken together, these findings demonstrate that exogenous zinc activates Akt via IGF-1RTK and prevents the mPTP opening in cardiac cells. Inactivation of Ser/Thr protein phosphatases may also contribute to zinc-induced Akt activation. PMID:19525380

  1. PYK2: A Calcium-sensitive Protein Tyrosine Kinase Activated in Response to Fertilization of the Zebrafish Oocyte

    PubMed Central

    Sharma, Dipika; Kinsey, William H.

    2012-01-01

    Fertilization begins with binding and fusion of a sperm with the oocyte, a process that triggers a high amplitude calcium transient which propagates through the oocyte and stimulates a series of preprogrammed signal transduction events critical for zygote development. Identification of the pathways downstream of this calcium transient remains an important step in understanding the basis of zygote quality. The present study demonstrates that the calcium-calmodulin sensitive protein tyrosine kinase PYK2 is a target of the fertilization-induced calcium transient in the zebrafish oocyte and that it plays an important role in actin-mediated events critical for sperm incorporation. At fertilization, PYK2 was activated initially at the site of sperm-oocyte interaction and was closely associated with actin filaments forming the fertilization cone. Later PYK2 activation was evident throughout the entire oocyte cortex, however activation was most intense over the animal hemisphere. Fertilization-induced PYK2 activation could be blocked by suppressing calcium transients in the ooplasm via injection of BAPTA as a calcium chelator. PYK2 activation could be artificially induced in unfertilized oocytes by injection of IP3 at concentrations sufficient to induce calcium release. Functionally, suppression of PYK2 activity by chemical inhibition or by injection of a dominant-negative construct encoding the N-terminal ERM domain of PKY2 inhibited formation of an organized fertilization cone and reduced the frequency of successful sperm incorporation. Together, the above findings support a model in which PYK2 responds to the fertilization-induced calcium transient by promoting reorganization of the cortical actin cytoskeleton to form the fertilization cone. PMID:23084926

  2. PYK2: a calcium-sensitive protein tyrosine kinase activated in response to fertilization of the zebrafish oocyte.

    PubMed

    Sharma, Dipika; Kinsey, William H

    2013-01-01

    Fertilization begins with binding and fusion of a sperm with the oocyte, a process that triggers a high amplitude calcium transient which propagates through the oocyte and stimulates a series of preprogrammed signal transduction events critical for zygote development. Identification of the pathways downstream of this calcium transient remains an important step in understanding the basis of zygote quality. The present study demonstrates that the calcium-calmodulin sensitive protein tyrosine kinase PYK2 is a target of the fertilization-induced calcium transient in the zebrafish oocyte and that it plays an important role in actin-mediated events critical for sperm incorporation. At fertilization, PYK2 was activated initially at the site of sperm-oocyte interaction and was closely associated with actin filaments forming the fertilization cone. Later PYK2 activation was evident throughout the entire oocyte cortex, however activation was most intense over the animal hemisphere. Fertilization-induced PYK2 activation could be blocked by suppressing calcium transients in the ooplasm via injection of BAPTA as a calcium chelator. PYK2 activation could be artificially induced in unfertilized oocytes by injection of IP3 at concentrations sufficient to induce calcium release. Functionally, suppression of PYK2 activity by chemical inhibition or by injection of a dominant-negative construct encoding the N-terminal ERM domain of PKY2 inhibited formation of an organized fertilization cone and reduced the frequency of successful sperm incorporation. Together, the above findings support a model in which PYK2 responds to the fertilization-induced calcium transient by promoting reorganization of the cortical actin cytoskeleton to form the fertilization cone.

  3. Mechanisms of olfactory toxicity of the herbicide 2,6-dichlorobenzonitrile: Essential roles of CYP2A5 and target-tissue metabolic activation

    SciTech Connect

    Xie Fang; Zhou Xin; Behr, Melissa; Fang Cheng; Horii, Yuichi; Gu Jun; Kannan, Kurunthachalam; Ding Xinxin

    2010-11-15

    The herbicide 2,6-dichlorobenzonitril (DCBN) is a potent and tissue-specific toxicant to the olfactory mucosa (OM). The toxicity of DCBN is mediated by cytochrome P450 (P450)-catalyzed bioactivation; however, it is not known whether target-tissue metabolic activation is essential for toxicity. CYP2A5, expressed abundantly in both liver and OM, was previously found to be one of the P450 enzymes active in DCBN bioactivation in vitro. The aims of this study were to determine the role of CYP2A5 in DCBN toxicity in vivo, by comparing the extents of DCBN toxicity between Cyp2a5-null and wild-type (WT) mice, and to determine whether hepatic microsomal P450 enzymes (including CYP2A5) are essential for the DCBN toxicity, by comparing the extents of DCBN toxicity between liver-Cpr-null (LCN) mice, which have little P450 activity in hepatocytes, and WT mice. We show that the loss of CYP2A5 expression did not alter systemic clearance of DCBN (at 25 mg/kg); but it did inhibit DCBN-induced non-protein thiol depletion and cytotoxicity in the OM. Thus, CYP2A5 plays an essential role in mediating DCBN toxicity in the OM. In contrast to the results seen in the Cyp2a5-null mice, the rates of systemic DCBN clearance were substantially reduced, while the extents of DCBN-induced nasal toxicity were increased, rather than decreased, in the LCN mice, compared to WT mice. Therefore, hepatic P450 enzymes, although essential for DCBN clearance, are not necessary for DCBN-induced OM toxicity. Our findings form the basis for a mechanism-based approach to assessing the potential risks of DCBN nasal toxicity in humans.

  4. Casein Kinase 2-mediated Synaptic GluN2A Up-regulation Increases N-Methyl-d-aspartate Receptor Activity and Excitability of Hypothalamic Neurons in Hypertension*

    PubMed Central

    Ye, Zeng-You; Li, Li; Li, De-Pei; Pan, Hui-Lin

    2012-01-01

    Increased glutamatergic input, particularly N-methyl-d-aspartate receptor (NMDAR) activity, in the paraventricular nucleus (PVN) of the hypothalamus is closely associated with high sympathetic outflow in essential hypertension. The molecular mechanisms underlying augmented NMDAR activity in hypertension are unclear. GluN2 subunit composition at the synaptic site critically determines NMDAR functional properties. Here, we found that evoked NMDAR-excitatory postsynaptic currents (EPSCs) of retrogradely labeled spinally projecting PVN neurons displayed a larger amplitude and shorter decay time in spontaneously hypertensive rats (SHRs) than in Wistar-Kyoto (WKY) rats. Blocking GluN2B caused a smaller decrease in NMDAR-EPSCs of PVN neurons in SHRs than in WKY rats. In contrast, GluN2A blockade resulted in a larger reduction in evoked NMDAR-EPSCs and puff NMDA-elicited currents of PVN neurons in SHRs than in WKY rats. Blocking presynaptic GluN2A, but not GluN2B, significantly reduced the frequency of miniature EPSCs and the firing activity of PVN neurons in SHRs. The mRNA and total protein levels of GluN2A and GluN2B in the PVN were greater in SHRs than in WKY rats. Furthermore, the GluN2B Ser1480 phosphorylation level and the synaptosomal GluN2A protein level in the PVN were significantly higher in SHRs than in WKY rats. Inhibition of protein kinase CK2 normalized the GluN2B Ser1480 phosphorylation level and the contribution of GluN2A to NMDAR-EPSCs and miniature EPSCs of PVN neurons in SHRs. Collectively, our findings suggest that CK2-mediated GluN2B phosphorylation contributes to increased synaptic GluN2A, which potentiates pre- and postsynaptic NMDAR activity and the excitability of PVN presympathetic neurons in hypertension. PMID:22474321

  5. Dioxygen Binding in the Active Site of Histone Demethylase JMJD2A and the Role of the Protein Environment.

    PubMed

    Cortopassi, Wilian A; Simion, Robert; Honsby, Charles E; França, Tanos C C; Paton, Robert S

    2015-12-21

    JMJD2A catalyses the demethylation of di- and trimethylated lysine residues in histone tails and is a target for the development of new anticancer medicines. Mechanistic details of demethylation are yet to be elucidated and are important for the understanding of epigenetic processes. We have evaluated the initial step of histone demethylation by JMJD2A and demonstrate the dramatic effect of the protein environment upon oxygen binding using quantum mechanics/molecular mechanics (QM/MM) calculations. The changes in electronic structure have been studied for possible spin states and different conformations of O2 , using a combination of quantum and classical simulations. O2 binding to this histone demethylase is computed to occur preferentially as an end-on superoxo radical bound to a high-spin ferric centre, yielding an overall quintet ground state. The favourability of binding is strongly influenced by the surrounding protein: we have quantified this effect using an energy decomposition scheme into electrostatic and dispersion contributions. His182 and the methylated lysine assist while Glu184 and the oxoglutarate cofactor are deleterious for O2 binding. Charge separation in the superoxo-intermediate benefits from the electrostatic stabilization provided by the surrounding residues, stabilizing the binding process significantly. This work demonstrates the importance of the extended protein environment in oxygen binding, and the role of energy decomposition in understanding the physical origin of binding/recognition. PMID:26577067

  6. Reduced neuronal size and mTOR pathway activity in the Mecp2 A140V Rett syndrome mouse model

    PubMed Central

    Rangasamy, Sampathkumar; Olfers, Shannon; Gerald, Brittany; Hilbert, Alex; Svejda, Sean; Narayanan, Vinodh

    2016-01-01

    Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutation in the X-linked MECP2 gene, encoding methyl-CpG-binding protein 2. We have created a mouse model ( Mecp2 A140V “knock-in” mutant) expressing the recurrent human MECP2 A140V mutation linked to an X-linked mental retardation/Rett syndrome phenotype. Morphological analyses focused on quantifying soma and nucleus size were performed on primary hippocampus and cerebellum granule neuron (CGN) cultures from mutant ( Mecp2 A140V/y) and wild type ( Mecp2 +/y) male mice. Cultured hippocampus and cerebellar granule neurons from mutant animals were significantly smaller than neurons from wild type animals. We also examined soma size in hippocampus neurons from individual female transgenic mice that express both a mutant  (maternal allele) and a wild type Mecp2 gene linked to an eGFP transgene (paternal allele). In cultures from such doubly heterozygous female mice, the size of neurons expressing the mutant (A140V) allele also showed a significant reduction compared to neurons expressing wild type MeCP2, supporting a cell-autonomous role for MeCP2 in neuronal development. IGF-1 (insulin growth factor-1) treatment of neuronal cells from Mecp2 mutant mice rescued the soma size phenotype. We also found that Mecp2   mutation leads to down-regulation of the mTOR signaling pathway, known to be involved in neuronal size regulation. Our results suggest that i) reduced neuronal size is an important in vitro cellular phenotype of Mecp2 mutation in mice, and ii) MeCP2 might play a critical role in the maintenance of neuronal structure by modulation of the mTOR pathway. The definition of a quantifiable cellular phenotype supports using neuronal size as a biomarker in the development of a high-throughput, in vitro assay to screen for compounds that rescue small neuronal phenotype (“phenotypic assay”). PMID:27781091

  7. Modulation of cytochrome P450 2A5 activity by lipopolysaccharide: low-dose effects and non-monotonic dose-response relationship.

    PubMed

    De-Oliveira, Ana C A X; Poça, Kátia S; Totino, Paulo R R; Paumgartten, Francisco J R

    2015-01-01

    Mouse cytochrome P450 (CYP) 2A5 is induced by inflammatory conditions and infectious diseases that down-regulate the expression and activity of most other CYP isoforms. Enhanced oxidative stress and nuclear factor (erythroid 2-related factor) 2 (Nrf2) transcription factor activation have been hypothesised to mediate up-regulation of CYP2A5 expression in the murine liver. The unique and complex regulation of CYP2A5, however, is far from being thoroughly elucidated. Sepsis and high doses of bacterial lipopolysaccharide (LPS) elicit oxidative stress in the liver, but depression, not induction, of CYP2A5 has been observed in studies of mice treated with LPS. The foregoing facts prompted us to evaluate the response of CYP2A5 liver activity in female DBA-2 mice over a broad range of LPS doses (0, 0.025, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, and 20 mg/kg). Cytokine levels (interleukin [IL]-2, IL-4, IL-6, IL-10, IL-17A, interferon gamma, tumour necrosis factor alpha) and nitric oxide (NO) were measured in the blood serum. Activities of CYP1A (EROD) and CYP2B (BROD) in the liver were also determined for comparative purposes. LPS depressed CYP2A5 at low doses (0.025-2.0 mg/kg) but not at doses (>2 mg/kg) that increased pro-inflammatory cytokines and NO serum levels, and depressed CYP1A and CYP2B activities. Blockade of pro-inflammatory cytokines and the overproduction of NO induced by co-treatment with pentoxifylline and LPS and iNOS inhibition with aminoguanidine both extended down-regulation of CYP2A5 to the high dose range while not affecting LPS-induced depression of CYP1A and CYP2B. Overall, the results suggested that NO plays a role in the reversal of the low-dose LPS-induced depression of CYP2A5 observed when mice were challenged with higher doses of LPS. PMID:25635819

  8. Synthesis, Antibacterial and Antitubercular Activities of Some 5H-Thiazolo[3,2-a]pyrimidin-5-ones and Sulfonic Acid Derivatives.

    PubMed

    Cai, Dong; Zhang, Zhi-Hua; Chen, Yu; Yan, Xin-Jia; Zou, Liang-Jing; Wang, Ya-Xin; Liu, Xue-Qi

    2015-09-10

    A series of 5H-thiazolo[3,2-a]pyrimidin-5-ones were synthesized by the cyclization reactions of S-alkylated derivatives in concentrated H₂SO₄. Upon treatment of S-alkylated derivatives at different temperatures, intramolecular cyclization to 7-(substituted phenylamino)-5H-thiazolo[3,2-a]pyrimidin-5-ones or sulfonation of cyclized products to sulfonic acid derivatives occurred. The structures of the target compounds were confirmed by IR, ¹H-NMR, (13)C-NMR and HRMS studies. The compounds were evaluated for their preliminary in vitro antibacterial activity against some Gram-positive and Gram-negative bacteria and screened for antitubercular activity against Mycobacterium tuberculosis by the broth dilution assay method. Some compounds showed good antibacterial and antitubercular activities.

  9. Sources and sinks for atmospheric H2 - A current analysis with projections for the influence of anthropogenic activity

    NASA Technical Reports Server (NTRS)

    Penner, J. E.; Mcelroy, M. B.; Wofsy, S. C.

    1977-01-01

    Oxidation of CH4 provides the major source for atmospheric H2, which is removed mainly by reaction with OH. Biological activity at earth's surface appears to represent at most a minor sink for H2. Anthropogenic activity is a significant source for both H2 and CO in the present atmosphere and may be expected to exert a growing influence in the future. Models are presented which suggest a rise in the mixing ratio of H2 from its present value of 5.6 ten-millionths to about 1.8 millionths by the year 2100. The mixing ratio of CO should grow from 9.7 hundred-millionths to 2.3 ten-millionths over the same time period, and there should be a rise in CH4 by about a factor of 1.5 associated with anthropogenically induced reductions in tropospheric OH.

  10. EhPAK2, a novel p21-activated kinase, is required for collagen invasion and capping in Entamoeba histolytica.

    PubMed

    Arias-Romero, Luis Enrique; de Jesús Almáraz-Barrera, Ma; Díaz-Valencia, Juan Daniel; Rojo-Domínguez, Arturo; Hernandez-Rivas, Rosaura; Vargas, Miguel

    2006-09-01

    p21-activated kinases (PAKs) are a highly conserved family of enzymes that are activated by Rho GTPases. All PAKs contain an N-terminal Cdc42/Rac interacting binding (CRIB) domain, which confers binding to these GTPases, and a C-terminal kinase domain. In addition, some PAKs such as Cla4p, Skm1p and Pak2p contain an N-terminal pleckstrin homology (PH) domain and form a distinct group of PAK proteins involved in cell morphology, cell-cycle and gene transcription. Here, we describe a novel p21-activated kinase, denominated EhPAK2, on the parasitic protozoan Entamoeba histolytica. This is the first reported Entamoeba PAK member that contains a N-terminal PH domain and a highly conserved CRIB domain. EhPAK2 CRIB domain shares 29% of amino acid identity and 53% of amino acid homology with these of DdPAKC from Dictyostelium discoideum and Cla4p from Saccharomyces cerevisiae and binds in vitro and in vivo to EhRacA GTPase. This domain also possesses the conserved residues His123, Phe134 and Trp141, which are important for the interaction with the effector loop and strand beta2 of the GTPase; and the residues Met121 and Phe145, which are specific for the interaction of EhPAK2 with EhRacA. Functional studies of EhPAK2 showed that its C-terminal kinase domain had activity toward myelin basic protein. Cellular studies showed that Entamoeba trophozoites transfected with the vector pExEhNeo/kinase-myc, had a 90% decrease in the ability to invade a collagen matrix as well as severe defects in capping, suggesting the involvement of EhPAK2 in these cellular processes.

  11. TIPRL Inhibits Protein Phosphatase 4 Activity and Promotes H2AX Phosphorylation in the DNA Damage Response

    PubMed Central

    Rosales, Kimberly Romero; Reid, Michael A.; Yang, Ying; Tran, Thai Q.; Wang, Wen-I; Lowman, Xazmin; Pan, Min; Kong, Mei

    2015-01-01

    Despite advances in our understanding of protein kinase regulation in the DNA damage response, the mechanism that controls protein phosphatase activity in this pathway is unclear. Unlike kinases, the activity and specificity of serine/threonine phosphatases is governed largely by their associated proteins. Here we show that Tip41-like protein (TIPRL), an evolutionarily conserved binding protein for PP2A-family phosphatases, is a negative regulator of protein phosphatase 4 (PP4). Knockdown of TIPRL resulted in increased PP4 phosphatase activity and formation of the active PP4-C/PP4R2 complex known to dephosphorylate γ-H2AX. Thus, overexpression of TIPRL promotes phosphorylation of H2AX, and increases γ-H2AX positive foci in response to DNA damage, whereas knockdown of TIPRL inhibits γ-H2AX phosphorylation. In correlation with γ-H2AX levels, we found that TIPRL overexpression promotes cell death in response to genotoxic stress, and knockdown of TIPRL protects cells from genotoxic agents. Taken together, these data demonstrate that TIPRL inhibits PP4 activity to allow for H2AX phosphorylation and the subsequent DNA damage response. PMID:26717153

  12. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    PubMed Central

    Bazovkina, Darya V.; Kondaurova, Elena M.; Naumenko, Vladimir S.; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  13. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  14. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors.

  15. Metallothionein 2A inhibits NF-κB pathway activation and predicts clinical outcome segregated with TNM stage in gastric cancer patients following radical resection

    PubMed Central

    2013-01-01

    Background Metallothionein 2A (MT2A) as a stress protein, plays a protective role in gastric mucosal barrier. Its role in the development of gastric cancer (GC) is unclear. The mechanism of MT2A will be investigated in gastric tumorigenesis. Methods MT2A expression was detected in 973 gastric specimens. The biological function was determined through ectopic expressing MT2A in vitro and in vivo. The possible downstream effectors of MT2A were investigated in NF-κB signaling. The protein levels of MT2A, IκB-α and p-IκB-α (ser32/36) expression were analyzed in a subset of 258 patients by IHC staining. The prognostic effects of MT2A, status of IκB-α and TNM stage were evaluated using the Kaplan-Meier method and compared using the log-rank test. Results Decreased MT2A expression was detected in cell lines and primary tumors of GC. In clinical data, loss of MT2A (MT2A + in Normal (n =171, 76.0%); Intestinal metaplasia (n = 118, 50.8%); GC (n = 684. 22.4%, P < 0.001)) was associated with poor prognosis (P < 0.001), advanced TNM stage (P = 0.05), and down-regulation of IκB-α expression (P < 0.001). Furthermore, MT2A was the independent prognostic signature segregated from the status of IκB-α and pathological features. In addition, MT2A inhibited cell growth through apoptosis and G2/M arrest, which negatively regulated NF-κB pathway through up-regulation of IκB-α and down-regulation of p-IκB-α and cyclin D1 expression. Conclusions MT2A might play a tumor suppressive activity through inhibiting NF-κB signaling and may be a prognostic biomarker and potential target for individual therapy of GC patients. PMID:23870553

  16. Pressure Modulation of the Enzymatic Activity of Phospholipase A2, A Putative Membrane-Associated Pressure Sensor.

    PubMed

    Suladze, Saba; Cinar, Suleyman; Sperlich, Benjamin; Winter, Roland

    2015-10-01

    Phospholipases A2 (PLA2) catalyze the hydrolysis reaction of sn-2 fatty acids of membrane phospholipids and are also involved in receptor signaling and transcriptional pathways. Here, we used pressure modulation of the PLA2 activity and of the membrane's physical-chemical properties to reveal new mechanistic information about the membrane association and subsequent enzymatic reaction of PLA2. Although the effect of high hydrostatic pressure (HHP) on aqueous soluble and integral membrane proteins has been investigated to some extent, its effect on enzymatic reactions operating at the water/lipid interface has not been explored, yet. This study focuses on the effect of HHP on the structure, membrane binding and enzymatic activity of membrane-associated bee venom PLA2, covering a pressure range up to 2 kbar. To this end, high-pressure Fourier-transform infrared and high-pressure stopped-flow fluorescence spectroscopies were applied. The results show that PLA2 binding to model biomembranes is not significantly affected by pressure and occurs in at least two kinetically distinct steps. Followed by fast initial membrane association, structural reorganization of α-helical segments of PLA2 takes place at the lipid water interface. FRET-based activity measurements reveal that pressure has a marked inhibitory effect on the lipid hydrolysis rate, which decreases by 75% upon compression up to 2 kbar. Lipid hydrolysis under extreme environmental conditions, such as those encountered in the deep sea where pressures up to the kbar-level are encountered, is hence markedly affected by HHP, rendering PLA2, next to being a primary osmosensor, a good candidate for a sensitive pressure sensor in vivo.

  17. Anti-viral drug treatment along with immune activator IL-2: a control-based mathematical approach for HIV infection

    NASA Astrophysics Data System (ADS)

    Nath Chatterjee, Amar; Roy, Priti Kumar

    2012-02-01

    Recent development in antiretroviral treatment against HIV can help AIDS patients to fight against HIV. But the question that whether the disease is to be partially or totally eradicated from HIV infected individuals still remains unsolved. Usually, the most effective treatment for the disease is HAART which can only control the disease progression. But as the immune system becomes weak, the patients can not fight against other diseases. Immune cells are activated and proliferated by IL-2 after the identification of antigen. IL-2 production is impaired in HIV positive patients and intermitted administration of immune activator IL-2 together with HAART which is a more effective treatment to fight against the disease. Thus, its expediency is essential and is yet to be explored. In this article we anticipated a mathematical model of the effect of IL-2 together with RTIs therapy in HIV positive patients. Our analytical as well as numerical study shows that the optimal schedule of treatment for best result is to be obtained by systematic drug therapy. But at the last stage of treatment, the infection level raises again due to minimisation of drug dosage. Thus we study the perfect adherence of the drugs and found out if RTIs are taken with sufficient interval then for fixed interval of IL-2 therapy, certain amount of drug dosages may be able to sustain the immune system at pre-infection stage and the infected CD4+T cells are going towards extinction.

  18. Characterization of Xenopus Tissue Inhibitor of Metalloproteinases-2: A Role in Regulating Matrix Metalloproteinase Activity during Development

    PubMed Central

    Fiorentino, Maria; Shi, Yun-Bo

    2012-01-01

    Background Frog metamorphosis is totally dependent on thyroid hormone (T3) and mimics the postembryonic period around birth in mammals. It is an excellent model to study the molecular basis of postembryonic development in vertebrate. We and others have shown that many, if not all, matrix metalloproteinases (MMPs), which cleave proteins of the extracellular matrix as well as other substrates, are induced by T3 and important for metamorphosis. MMP activity can be inhibited by tissue inhibitors of metalloproteinase (TIMPs). There are 4 TIMPs in vertebrates and their roles in postembryonic development are poorly studied. Methodology/Principal Findings We analyzed the TIMP2 genes in Xenopus laevis and the highly related species Xenopus tropicalis and discovered that TIMP2 is a single copy gene in Xenopus tropicalis as in mammals but is duplicated in Xenopus laevis. Furthermore, the TIMP2 locus in Xenopus tropicalis genome is different from that in human, suggesting an evolutionary reorganization of the locus. More importantly, we found that the duplicated TIMP2 genes were similarly regulated in the developing limb, remodeling intestine, resorbing tail during metamorphosis. Unexpectedly, like its MMP target genes, the TIMP2 genes were upregulated by T3 during both natural and T3-induced metamorphosis. Conclusions/Significance Our results indicate that TIMP2 is highly conserved among vertebrates and that the TIMP2 locus underwent a chromosomal reorganization during evolution. Furthermore, the unexpected upregulation of TIMP2 genes during metamorphosis suggests that proper balance of MMP activity is important for metamorphosis. PMID:22693555

  19. Hyperthermia-induced seizures alter adenosine A1 and A2A receptors and 5'-nucleotidase activity in rat cerebral cortex.

    PubMed

    León-Navarro, David Agustín; Albasanz, José L; Martín, Mairena

    2015-08-01

    Febrile seizure is one of the most common convulsive disorders in children. The neuromodulator adenosine exerts anticonvulsant actions through binding adenosine receptors. Here, the impact of hyperthermia-induced seizures on adenosine A1 and A2A receptors and 5'-nucleotidase activity has been studied at different periods in the cerebral cortical area by using radioligand binding, real-time PCR, and 5'-nucleotidase activity assays. Hyperthermic seizures were induced in 13-day-old rats using a warmed air stream from a hair dryer. Neonates exhibited rearing and falling over associated with hindlimb clonus seizures (stage 5 on Racine scale criteria) after hyperthermic induction. A significant increase in A1 receptor density was observed using [(3) H]DPCPX as radioligand, and mRNA coding A1 was observed 48 h after hyperthermia-induced seizures. In contrast, a significant decrease in A2A receptor density was detected, using [(3) H]ZM241385 as radioligand, 48 h after hyperthermia-evoked convulsions. These short-term changes in A1 and A2A receptors were also accompanied by a loss of 5'-nucleotidase activity. No significant variations either in A1 or A2A receptor density or 5'-nucleotidase were observed 5 and 20 days after hyperthermic seizures. Taken together, both regulation of A1 and A2A receptors and loss of 5'-nucleotidase in the cerebral cortex suggest the existence of a neuroprotective mechanism against seizures. Febrile seizure is one of the most common convulsive disorders in children. The consequences of hyperthermia-induced seizures (animal model of febrile seizures) on adenosine A1 and A2A receptors and 5'-nucleotidase activity have been studied at different periods in cerebral cortical area. A significant increase in A1 receptor density and mRNA coding A1 was observed 48 h after hyperthermia-induced seizures. In contrast, a significant decrease in A2A receptor density and 5'-nucleotidase activity was detected 48 h after convulsions evoked by hyperthermia

  20. Compressional ULF waves in the outer magnetosphere. 2: A case study of Pc 5 type wave activity

    NASA Technical Reports Server (NTRS)

    Zhu, Xiaoming; Kivelson, Margaret G.

    1994-01-01

    In previously published work (Zhu and Kivelson, 1991) the spatial distribution of compressional magnetic pulsations of period 2 - 20 min in the outer magnetosphere was described. In this companion paper, we study some specific compressional events within our data set, seeking to determine the structure of the waves and identifying the wave generation mechanism. We use both the magnetic field and three-dimensional plasma data observed by the International Sun-Earth Explorer (ISEE) 1 and/or 2 spacecraft to characterize eight compressional ultra low frequency (ULF) wave events with frequencies below 8 mHz in the outer magnetosphere. High time resolution plasma data for the event of July 24, 1978, made possible a detailed analysis of the waves. Wave properties specific to the event of July 24, 1978, can be summarized as follows: (1) Partial plasma pressures in the different energy ranges responded to the magnetic field pressure differently. In the low-energy range they oscillated in phase with the magnetic pressure, while oscillations in higher-energy ranges were out-of-phase; (2) Perpendicular wavelengths for the event were determined to be 60,000 and 30,000 km in the radial and azimuthal directions, respectively. Wave properties common to all events can be summarized as follows: (1) Compressional Pc 5 wave activity is correlated with Beta, the ratio of the plasma pressure to the magnetic pressure; the absolute magnitude of the plasma pressure plays a minor role for the wave activity; (2) The magnetic equator is a node of the compressional perturbation of the magnetic field; (3) The criterion for the mirror mode instability is often satisfied near the equator in the outer magnetosphere when the compressional waves are present. We believe these waves are generated by internal magnetohydrodynamic (MHD) instabilities.

  1. Discovery, characterization and in vivo activity of pyocin SD2, a protein antibiotic from Pseudomonas aeruginosa

    PubMed Central

    McCaughey, Laura C.; Josts, Inokentijs; Grinter, Rhys; White, Paul; Byron, Olwyn; Tucker, Nicholas P.; Matthews, Jacqueline M.; Kleanthous, Colin; Whitchurch, Cynthia B.; Walker, Daniel

    2016-01-01

    Increasing rates of antibiotic resistance among Gram-negative pathogens such as Pseudomonas aeruginosa means alternative approaches to antibiotic development are urgently required. Pyocins, produced by P. aeruginosa for intraspecies competition, are highly potent protein antibiotics known to actively translocate across the outer membrane of P. aeruginosa. Understanding and exploiting the mechanisms by which pyocins target, penetrate and kill P. aeruginosa is a promising approach to antibiotic development. In this work we show the therapeutic potential of a newly identified tRNase pyocin, pyocin SD2, by demonstrating its activity in vivo in a murine model of P. aeruginosa lung infection. In addition, we propose a mechanism of cell targeting and translocation for pyocin SD2 across the P. aeruginosa outer membrane. Pyocin SD2 is concentrated at the cell surface, via binding to the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide (LPS), from where it can efficiently locate its outer membrane receptor FpvAI. This strategy of utilizing both the CPA and a protein receptor for cell targeting is common among pyocins as we show that pyocins S2, S5 and SD3 also bind to the CPA. Additional data indicate a key role for an unstructured N-terminal region of pyocin SD2 in the subsequent translocation of the pyocin into the cell. These results greatly improve our understanding of how pyocins target and translocate across the outer membrane of P. aeruginosa. This knowledge could be useful for the development of novel anti-pseudomonal therapeutics and will also support the development of pyocin SD2 as a therapeutic in its own right. PMID:27252387

  2. Discovery, characterization and in vivo activity of pyocin SD2, a protein antibiotic from Pseudomonas aeruginosa.

    PubMed

    McCaughey, Laura C; Josts, Inokentijs; Grinter, Rhys; White, Paul; Byron, Olwyn; Tucker, Nicholas P; Matthews, Jacqueline M; Kleanthous, Colin; Whitchurch, Cynthia B; Walker, Daniel

    2016-08-01

    Increasing rates of antibiotic resistance among Gram-negative pathogens such as Pseudomonas aeruginosa means alternative approaches to antibiotic development are urgently required. Pyocins, produced by P. aeruginosa for intraspecies competition, are highly potent protein antibiotics known to actively translocate across the outer membrane of P. aeruginosa. Understanding and exploiting the mechanisms by which pyocins target, penetrate and kill P. aeruginosa is a promising approach to antibiotic development. In this work we show the therapeutic potential of a newly identified tRNase pyocin, pyocin SD2, by demonstrating its activity in vivo in a murine model of P. aeruginosa lung infection. In addition, we propose a mechanism of cell targeting and translocation for pyocin SD2 across the P. aeruginosa outer membrane. Pyocin SD2 is concentrated at the cell surface, via binding to the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide (LPS), from where it can efficiently locate its outer membrane receptor FpvAI. This strategy of utilizing both the CPA and a protein receptor for cell targeting is common among pyocins as we show that pyocins S2, S5 and SD3 also bind to the CPA. Additional data indicate a key role for an unstructured N-terminal region of pyocin SD2 in the subsequent translocation of the pyocin into the cell. These results greatly improve our understanding of how pyocins target and translocate across the outer membrane of P. aeruginosa. This knowledge could be useful for the development of novel anti-pseudomonal therapeutics and will also support the development of pyocin SD2 as a therapeutic in its own right. PMID:27252387

  3. MASTL(Greatwall) regulates DNA damage responses by coordinating mitotic entry after checkpoint recovery and APC/C activation

    PubMed Central

    Wong, Po Yee; Ma, Hoi Tang; Lee, Hyun-jung; Poon, Randy Y. C.

    2016-01-01

    The G2 DNA damage checkpoint is one of the most important mechanisms controlling G2–mitosis transition. The kinase Greatwall (MASTL in human) promotes normal G2–mitosis transition by inhibiting PP2A via ARPP19 and ENSA. In this study, we demonstrate that MASTL is critical for maintaining genome integrity after DNA damage. Although MASTL did not affect the activation of DNA damage responses and subsequent repair, it determined the timing of entry into mitosis and the subsequent fate of the recovering cells. Constitutively active MASTL promoted dephosphorylation of CDK1Tyr15 and accelerated mitotic entry after DNA damage. Conversely, downregulation of MASTL or ARPP19/ENSA delayed mitotic entry. Remarkably, APC/C was activated precociously, resulting in the damaged cells progressing from G2 directly to G1 and skipping mitosis all together. Collectively, these results established that precise control of MASTL is essential to couple DNA damage to mitosis through the rate of mitotic entry and APC/C activation. PMID:26923777

  4. The effects of copper doping on photocatalytic activity at (101) planes of anatase TiO2: A theoretical study

    NASA Astrophysics Data System (ADS)

    Assadi, M. Hussein N.; Hanaor, Dorian A. H.

    2016-11-01

    Copper dopants are varyingly reported to enhance photocatalytic activity at titanium dioxide surfaces through uncertain mechanisms. In order to interpret how copper doping might alter the performance of titanium dioxide photocatalysts in aqueous media we applied density functional theory methods to simulate surface units of doped anatase (101) planes. By including van der Waals interactions, we consider the energetics of adsorbed water at anatase surfaces in pristine and copper doped systems. Simulation results indicate that copper dopant at anatase (101) surfaces is most stable in a 2+ oxidation state and a disperse configuration, suggesting the formation of secondary CuO phases is energetically unfavourable. In agreement with previous reports, water at the studied surface is predicted to exhibit molecular adsorption with this tendency slightly enhanced by copper. Results imply that the enhancement of photoactivity at anatase surfaces through Cu doping is more likely to arise from electronic interactions mediated by charge transfer and inter-bandgap states increasing photoexcitation and extending surface-hole lifetimes rather than through the increased density of adsorbed hydroxyl groups.

  5. Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues

    PubMed Central

    Principalli, Maria A; Dupuis, Julien P; Moreau, Christophe J; Vivaudou, Michel; Revilloud, Jean

    2015-01-01

    ATP-sensitive potassium channels (K-ATP channels) play a key role in adjusting the membrane potential to the metabolic state of cells. They result from the unique combination of two proteins: the sulfonylurea receptor (SUR), an ATP-binding cassette (ABC) protein, and the inward rectifier K+ channel Kir6.2. Both subunits associate to form a heterooctamer (4 SUR/4 Kir6.2). SUR modulates channel gating in response to the binding of nucleotides or drugs and Kir6.2 conducts potassium ions. The activity of K-ATP channels varies with their localization. In pancreatic β-cells, SUR1/Kir6.2 channels are partly active at rest while in cardiomyocytes SUR2A/Kir6.2 channels are mostly closed. This divergence of function could be related to differences in the interaction of SUR1 and SUR2A with Kir6.2. Three residues (E1305, I1310, L1313) located in the linker region between transmembrane domain 2 and nucleotide-binding domain 2 of SUR2A were previously found to be involved in the activation pathway linking binding of openers onto SUR2A and channel opening. To determine the role of the equivalent residues in the SUR1 isoform, we designed chimeras between SUR1 and the ABC transporter multidrug resistance-associated protein 1 (MRP1), and used patch clamp recordings on Xenopus oocytes to assess the functionality of SUR1/MRP1 chimeric K-ATP channels. Our results reveal that the same residues in SUR1 and SUR2A are involved in the functional association with Kir6.2, but they display unexpected side-chain specificities which could account for the contrasted properties of pancreatic and cardiac K-ATP channels. PMID:26416970

  6. A pH Switch Regulates the Inverse Relationship between Membranolytic and Chaperone-like Activities of HSP-1/2, a Major Protein of Horse Seminal Plasma.

    PubMed

    Kumar, C Sudheer; Swamy, Musti J

    2016-07-01

    HSP-1/2, a major protein of horse seminal plasma binds to choline phospholipids present on the sperm plasma membrane and perturbs its structure by intercalating into the hydrophobic core, which results in an efflux of choline phospholipids and cholesterol, an important event in sperm capacitation. HSP-1/2 also exhibits chaperone-like activity (CLA) in vitro and protects target proteins against various kinds of stress. In the present study we show that HSP-1/2 exhibits destabilizing activity toward model supported and cell membranes. The membranolytic activity of HSP-1/2 is found to be pH dependent, with lytic activity being high at mildly acidic pH (6.0-6.5) and low at mildly basic pH (8.0-8.5). Interestingly, the CLA is also found to be pH dependent, with high activity at mildly basic pH and low activity at mildly acidic pH. Taken together the present studies demonstrate that the membranolytic and chaperone-like activities of HSP-1/2 have an inverse relationship and are regulated via a pH switch, which is reversible. The higher CLA observed at mildly basic pH could be correlated to an increase in surface hydrophobicity of the protein. To the best of our knowledge, this is the first study reporting regulation of two different activities of a chaperone protein by a pH switch. PMID:27292547

  7. Activation of serotonin2A receptors in the medial septum-diagonal band of Broca complex enhanced working memory in the hemiparkinsonian rats.

    PubMed

    Li, Li-Bo; Zhang, Li; Sun, Yi-Na; Han, Ling-Na; Wu, Zhong-Heng; Zhang, Qiao-Jun; Liu, Jian

    2015-04-01

    Serotonin2A (5-HT2A) receptors are highly expressed in the medial septum-diagonal band of Broca complex (MS-DB), especially in parvalbumin (PV)-positive neurons linked to hippocampal theta rhythm, which is involved in cognition. Cognitive impairments commonly occur in Parkinson's disease. Here we performed behavioral, electrophysiological, neurochemical and immunohistochemical studies in rats with complete unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) to assess the importance of dopamine (DA) depletion and MS-DB 5-HT2A receptors for working memory. The MFB lesions resulted in working memory impairment and decreases in firing rate and density of MS-DB PV-positive neurons, peak frequency of hippocampal theta rhythm, and DA levels in septohippocampal system and medial prefrontal cortex (mPFC) compared to control rats. Intra-MS-DB injection of high affinity 5-HT2A receptor agonist TCB-2 enhanced working memory, increased firing rate of PV-positive neurons and peak frequency of hippocampal theta rhythm, elevated DA levels in the hippocampus and mPFC, and decreased 5-HT level in the hippocampus in control and lesioned rats. Compared to control rats, the duration of the excitatory effect produced by TCB-2 on the firing rate of PV-positive neurons was markedly shortened in lesioned rats, indicating dysfunction of 5-HT2A receptors. These findings suggest that unilateral lesions of the MFB in rats induced working memory deficit, and activation of MS-DB 5-HT2A receptors enhanced working memory, which may be due to changes in the activity of septohippocampal network and monoamine levels in the hippocampus and mPFC. PMID:25486618

  8. Activation of serotonin2A receptors in the medial septum-diagonal band of Broca complex enhanced working memory in the hemiparkinsonian rats.

    PubMed

    Li, Li-Bo; Zhang, Li; Sun, Yi-Na; Han, Ling-Na; Wu, Zhong-Heng; Zhang, Qiao-Jun; Liu, Jian

    2015-04-01

    Serotonin2A (5-HT2A) receptors are highly expressed in the medial septum-diagonal band of Broca complex (MS-DB), especially in parvalbumin (PV)-positive neurons linked to hippocampal theta rhythm, which is involved in cognition. Cognitive impairments commonly occur in Parkinson's disease. Here we performed behavioral, electrophysiological, neurochemical and immunohistochemical studies in rats with complete unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) to assess the importance of dopamine (DA) depletion and MS-DB 5-HT2A receptors for working memory. The MFB lesions resulted in working memory impairment and decreases in firing rate and density of MS-DB PV-positive neurons, peak frequency of hippocampal theta rhythm, and DA levels in septohippocampal system and medial prefrontal cortex (mPFC) compared to control rats. Intra-MS-DB injection of high affinity 5-HT2A receptor agonist TCB-2 enhanced working memory, increased firing rate of PV-positive neurons and peak frequency of hippocampal theta rhythm, elevated DA levels in the hippocampus and mPFC, and decreased 5-HT level in the hippocampus in control and lesioned rats. Compared to control rats, the duration of the excitatory effect produced by TCB-2 on the firing rate of PV-positive neurons was markedly shortened in lesioned rats, indicating dysfunction of 5-HT2A receptors. These findings suggest that unilateral lesions of the MFB in rats induced working memory deficit, and activation of MS-DB 5-HT2A receptors enhanced working memory, which may be due to changes in the activity of septohippocampal network and monoamine levels in the hippocampus and mPFC.

  9. The enhancing effect of ethanol on the mutagenic activation of N-nitrosomethylbenzylamine by cytochrome P450 2A in the rat oesophagus.

    PubMed

    Tatematsu, Kenjiro; Koide, Akihiro; Morimura, Keiichirou; Fukushima, Shoji; Mori, Yukio

    2013-03-01

    Alcohol consumption is frequently associated with various cancers and the enhancement of the metabolic activation of carcinogens has been proposed as a mechanism underlying this relationship. The ethanol-induced enhancement of N-nitrosodiethylamine (DEN)-mediated carcinogenesis can be attributed to an increase in hepatic activity. However, the mechanism of elevation of N-nitrosomethylbenzylamine (NMBA)-induced tumorigenesis remains unclear. To elucidate the mechanism underlying the role of ethanol in the enhancement of NMBA-induced oesophageal carcinogenesis, we evaluated the hepatic and extrahepatic levels of the cytochrome P450 (CYP) and mutagenic activation of environmental carcinogens by immunoblot analyses and Ames preincubation test, respectively, in F344 rats treated with ethanol. Five weeks of treatment with 10% ethanol added to the drinking water or two intragastric treatments with 50% ethanol, both resulted in elevated levels of CYP2E1 (1.5- to 2.3-fold) and mutagenic activities of DEN, N-nitrosodimethylamine and N-nitrosopyrrolidine in the presence of rat liver S9 (1.5- to 2.4-fold). This was not the case with CYP1A1/2, CYP2A1/2, CYP2B1/2 or CYP3A2, nor with the activities of 2-amino-3-methylimidazo[4,5-f]quinoline, 3-amino-1-methyl-5H-pyrido[4,3-b]indole, aflatoxin B(1) or other N-nitroso compounds (NOCs), including NMBA. Ethanol-induced elevations of CYP2A and CYP2E1 were observed in the oesophagus (up to 1.7- and 2.3-fold) and kidney (up to 1.5- and 1.8-fold), but not in the lung or colon. In oesophagus and kidney, the mutagenic activities of NMBA and four NOCs were markedly increased (1.3- to 2.4-fold) in treated rats. The application of several CYP inhibitors revealed that CYP2A were likely to contribute to the enhancing effect of ethanol on NMBA activation in the rat oesophagus and kidney, but that CYP2E1 failed to do so. These results showed that the enhancing effect of ethanol on NMBA-induced oesophageal carcinogenesis could be attributed to an

  10. Effect of GABAergic ligands on the anxiolytic-like activity of DOI (a 5-HT(2A/2C) agonist) in the four-plate test in mice.

    PubMed

    Massé, Fabienne; Hascoët, Martine; Bourin, Michel

    2007-01-01

    5-HTergic and GABAergic systems are involved in neurobiology of anxiety. Precedent studies have demonstrated that SSRIs possessed an anxiolytic-like effect in the four-plate test (FPT) at doses that did not modify spontaneous locomotor activity. This effect seems to be mediated through the activation of 5-HT(2A) postsynaptic receptors. The purpose of the present study was to examine the implication of GABA system in the anxiolytic-like activity of DOI in the FPT. To achieve this, the co-administration of DOI (5-HT(2A/2C) receptor agonists) with GABA(A) and GABA(B) receptor ligands was evaluated in the FPT. Alprazolam, diazepam and muscimol (for higher dose) potentiated the anxiolytic-like effect of DOI. Bicuculline, picrotoxin and baclofen inhibited the anxiolytic-like effect of DOI. Flumazenil and CGP 35348 had no effect on the anxiolytic-like activity of DOI. These results suggest that the GABA system seems to be strongly implicated in the anxiolytic-like activity of DOI in the FPT.

  11. Calcium release by ryanodine receptors mediates hydrogen peroxide-induced activation of ERK and CREB phosphorylation in N2a cells and hippocampal neurons.

    PubMed

    Kemmerling, Ulrike; Muñoz, Pablo; Müller, Marioly; Sánchez, Gina; Aylwin, María L; Klann, Eric; Carrasco, M Angélica; Hidalgo, Cecilia

    2007-05-01

    Hydrogen peroxide, which stimulates ERK phosphorylation and synaptic plasticity in hippocampal neurons, has also been shown to stimulate calcium release in muscle cells by promoting ryanodine receptor redox modification (S-glutathionylation). We report here that exposure of N2a cells or rat hippocampal neurons in culture to 200 microM H2O2 elicited calcium signals, increased ryanodine receptor S-glutathionylation, and enhanced both ERK and CREB phosphorylation. In mouse hippocampal slices, H2O2 (1 microM) also stimulated ERK and CREB phosphorylation. Preincubation with ryanodine (50 microM) largely prevented the effects of H2O2 on calcium signals and ERK/CREB phosphorylation. In N2a cells, the ERK kinase inhibitor U0126 suppressed ERK phosphorylation and abolished the stimulation of CREB phosphorylation produced by H2O2, suggesting that H2O2 enhanced CREB phosphorylation via ERK activation. In N2a cells in calcium-free media, 200 microM H2O2 stimulated ERK and CREB phosphorylation, while preincubation with thapsigargin prevented these enhancements. These combined results strongly suggest that H2O2 promotes ryanodine receptors redox modification; the resulting calcium release signals, by enhancing ERK activity, would increase CREB phosphorylation. We propose that ryanodine receptor stimulation by activity-generated redox species produces calcium release signals that may contribute significantly to hippocampal synaptic plasticity, including plasticity that requires long-lasting ERK-dependent CREB phosphorylation. PMID:17074386

  12. Thermally activated surface oxygen defects at the perimeter of Au/TiO2: a DFT+U study.

    PubMed

    Saqlain, Muhammad Adnan; Hussain, Akhtar; Siddiq, Mohammad; Ferreira, Ary R; Leitão, Alexandre A

    2015-10-14

    Density functional theory calculations were performed to examine the formation of oxygen atom vacancies on three model surfaces namely, clean anatase TiO2(001) and, Au3 and Au10 clusters supported on anatase TiO2(001). On the Au/TiO2 systems, three different types of lattice oxygen atoms can be identified: the Ti-O-Au bridge, the Ti-O-Ti bridge in the perimeter of the Au cluster and the Ti-O-Ti bridge away from the Au cluster, the oxygen atoms on the clean surface. The variation in ΔG° with temperature for surface O vacancy formation was calculated for these three situations using total-energy, vibrational structure and optimized geometries of the material surfaces and the O2 molecule. The calculations reveal that the O defect formation on the clean anatase TiO2(001) surface seems very difficult due to the large positive value of ΔG° (290 kJ mol(-1)) from 0 to 650 K. However, the presence of the Au cluster on the TiO2 surface changes the surface chemistry of the TiO2 significantly. We observed that the trend in ΔG° variation for the vacancy formation from the Ti-O-Au bridge is the same as on Au3/TiO2 and Au10/TiO2 systems, almost constant with large positive values of ΔG° around 250 and 350 kJ mol(-1), respectively. The ΔG° for the perimeter defect formation (Ti-O-Ti bridge in the perimeter of the Au cluster) is smaller for Aun/TiO2 systems than the clean TiO2 surface, however, the vacancy formation is possible only for the Au10/TiO2 system (close to 506 K). Finally, extended calculations for other oxygen atoms on the Au10/TiO2 model reveal that the trend in ΔG° variation is similar for all the interface or perimeter O atoms around the Au cluster with marginal differences in the numerical value of ΔG°. Since, the surface O atoms are activated only in the presence of a particular sized Au, we propose that a Au catalyzed Mars-van Krevelen mechanism could be a possible reaction mechanism for CO oxidation on Au/TiO2 catalysts at slightly elevated

  13. Protein kinase activity associated with Fc. gamma. /sub 2a/ receptor of a murine macrophage like cell line, P388D/sub 1/

    SciTech Connect

    Hirata, Y.; Suzuki, T.

    1987-12-15

    The properties of protein kinase activity associated with Fc receptor specific for IgG/sub 2a/(Fc..gamma../sub 2a/R) of a murine macrophage like cell line, P388D/sub 1/, were investigated. IgG/sub 2a/-binding protein isolated from the detergent lysate of P388D/sub 1/ cells by affinity chromatography of IgG-Sepharose was found to contain four distinct proteins of M/sub r/ 50,000, 43,000, 37,000, and 17,000, which could be autophosphorylated upon incubation with (..gamma..-/sup 32/P)ATP. The autophosphorylation of Fc..gamma../sub 2a/ receptor complex ceased when exogenous phosphate acceptors (case